

Apache Maven
Cookbook

Over 90 hands-on recipes to successfully build and
automate development life cycle tasks following Maven
conventions and best practices

Raghuram Bharathan

BIRMINGHAM - MUMBAI

Apache Maven Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-612-4

www.packtpub.com

Credits

Author
Raghuram Bharathan

Reviewers
Gurkan Erdogdu

Jérôme Leleu

Peter Major

Phani Krishna Pemmaraju

Commissioning Editor
Ashwin Nair

Acquisition Editor
Vinay Argekar

Content Development Editor
Vaibhav Pawar

Technical Editors
Mrunal M. Chavan

Rahul C. Shah

Copy Editors
Sonia Michelle Cheema

Shambhavi Pai

Stuti Srivastava

Laxmi Subramanian

Project Coordinator
Kranti Berde

Proofreaders
Stephen Copestake

Safis Editing

Paul Hindle

Indexer
Tejal Soni

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Author

Raghuram Bharathan is a postgraduate in computer applications from the National
Institute of Technology, Trichy. In his career in the software industry, he has worked with
Hewlett-Packard, Cisco, and ThoughtWorks, among others. He is the cofounder of Innoventes
Technologies, a tech company involved in product engineering and providing services in
mobile and web applications.

He is experienced in enterprise web and mobile technologies and is well-versed in the setting
up, maintenance, and usage of various build automation tools, such as ANT, Apache Maven,
Gradle, and Buildr.

He has been using Apache Maven for more than 7 years in his projects and is one of the top
providers of answers for Maven in Stack Overflow.

About the Reviewers

Gurkan Erdogdu is the CTO and cofounder of MechSoft Software Solutions, based in
Turkey. He has been working with JavaTM and JavaTM EE technologies since 1999. He is a
member of several open source foundations, including Apache Software Foundation and
OW2 Consortium. He is founder of the Apache OpenWebBeans and OW2 Siwpas open source
projects. He holds a bachelor's degree in computer engineering from Middle East Technical
University (METU). He lives in Istanbul with his wife and little daughter and can be reached at
gurkanerdogdu@yahoo.com.

I am thankful to my family, who have provided me with encouragement,
friendship, wisdom, and patience throughout my life. Without them, it would
not have been possible for me to become the person I am now.

Jérôme Leleu is a software architect living in Paris, France.

A consultant for 7 years, he has worked for many different companies in different fields and
with a variety of people. He has participated in many IT projects as a developer, technical lead,
or projects manager, though mostly in the J2EE technology.

Currently working in a French telecom company, he is the software architect of a WebSSO,
which supports very high traffic: millions of authentications from millions of users everyday.

He is involved in open source development as a CAS (WebSSO) chairman. He's interested in
security/protocol issues, and has developed several libraries (refer to http://www.pac4j.
org) to implement client support for protocols such as CAS, OAuth, and OpenID.

He is the founder of an SSO Cloud provider, which is based on CAS (refer to https://www.
casinthecloud.com).

Peter Major is a software developer at ForgeRock, where he has mainly been working
on OpenAM, an enterprise scale single sign-on solution. In the past 5 years, he has worked
on various Maven projects of divergent sizes and has been through the different stages of
software development, testing, and release.

Phani Krishna Pemmaraju has more than 10 years of IT experience with expertise
in SOA, ESB, J2EE/Spring technologies, mobile computing, and Oracle Fusion Middleware
products. He completed his master's degree in computer applications as a topper from
Osmania University, India. He has rich implementation expertise in EAI/SOA integrations and
has worked on some challenging projects across different verticals.

He has extensive experience in architecting, designing, developing, and testing solutions using
various SOA technology (SCA/JBI) products, such as Oracle Fusion, Java CAPS, and Glassfish
ESB. He has worked for highly reputed IT consulting companies and various prestigious clients
and played a key role in architecting and designing solutions. He has a penchant for learning
new technologies and their implementation methodologies.

Thanks to Packt Publishing for giving me the opportunity to review this book
and share my experiences and knowledge of Maven.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

i

Table of Contents
Preface	 v
Chapter 1: Getting Started	 1

Introduction	 1
Installing Maven on Microsoft Windows	 2
Installing Maven on Mac OS X	 8
Installing Maven on Linux	 11
Changing the JDK used by Maven	 15
Creating a simple project with Maven	 16
Building a simple project with Maven	 19
Changing the location of the Maven repository	 20
Running Maven behind an HTTP proxy server	 22
Understanding the standard directory layout	 23

Chapter 2: IDE Integration with Maven	 25
Introduction	 25
Creating a new Maven project in Eclipse	 26
Importing an existing Maven project in Eclipse	 30
Creating a new Maven project in NetBeans	 32
Importing an existing Maven project in NetBeans	 34
Creating a new Maven project in IntelliJ IDEA	 36
Importing an existing Maven project in IntelliJ IDEA	 40

Chapter 3: Maven Lifecycle	 43
Introduction	 43
Understanding the Maven lifecycle, phases, and goals	 44
Understanding the pom file	 46
Understanding Maven settings	 47
Understanding command-line options in Maven	 51

ii

Table of Contents

Understanding Maven profiles	 53
Adding a new Maven profile	 54
Activating/deactivating a Maven profile	 55
Using properties in Maven	 57
Specifying source encoding for platform-independent builds	 59

Chapter 4: Essential Maven Plugins	 61
Introduction	 61
Using the Maven Clean plugin	 62
Using the Maven Compiler plugin	 66
Changing the compiler used by the Maven Compiler plugin	 67
Specifying the Java version for the Compiler plugin	 69
Using the Maven Surefire plugin to run unit tests	 71
Using the Maven Failsafe plugin to run integration tests	 75
Using the Maven Resources plugin	 76
Filtering using resources	 78
Using Eclipse to run Maven goals	 80
Using NetBeans to run Maven goals	 81
Using IntelliJ IDEA to run Maven goals	 82

Chapter 5: Dependency Management	 85
Introduction	 85
Choosing the scope of dependency	 86
Getting a report of dependencies	 88
Getting into dependency and avoiding dependency hell	 90
Downloading dependencies into a folder	 92
Understanding SNAPSHOT dependencies	 94
Handling dependency download errors	 97
Detecting unused/undeclared dependencies	 100
Manually installing dependencies that are not available in a repository	 101
Dependency management using Eclipse	 103
Dependency management using NetBeans	 106
Dependency management using IntelliJ IDEA	 108

Chapter 6: Code Quality Plugins	 111
Introduction	 111
Analyzing code coverage with the Maven JaCoCo plugin	 112
Analyzing code coverage with the Maven Cobertura plugin	 115
Analyzing code with the Maven PMD plugin	 118
Analyzing code with the Maven Checkstyle plugin	 121
Analyzing code with the Maven FindBugs plugin	 125
Generating source references with the Maven JXR plugin	 128
Analyzing code with the Maven SonarQube plugin	 130

iii

Table of Contents

Chapter 7: Reporting and Documentation	 135
Introduction	 135
Documenting with the Maven Site plugin	 136
Generating Javadocs for a site	 140
Generating source cross-reference for a site	 142
Generating unit test reports for a site	 143
Generating code coverage reports for a site	 144
Generating code quality reports for a site	 147
Generating selective reports	 149
Deploying a site	 150

Chapter 8: Handling Typical Build Requirements	 153
Introduction	 153
Including and excluding additional resources	 154
Including and excluding source files and folders	 158
Configuring Maven to search for plugins	 161
Working in offline mode	 163
Controlling the verbosity of the Maven output	 166
Using the Maven Help plugin	 168
Using the Maven SCM plugin	 170
Generating changelogs for a site	 174

Chapter 9: Multi-module Projects	 177
Introduction	 177
Understanding project inheritance	 178
Understanding project aggregation	 181
Combining inheritance and aggregation	 183
Performing multi-module dependency management	 184
Performing multi-module plugin management	 186
Selectively building modules	 190
Reporting for multi-module projects	 192

Chapter 10: Java Development with Maven	 197
Introduction	 197
Building a JAR project	 198
Generating an executable JAR	 199
Generating a JAR of the source code	 201
Generating a JAR of the test classes	 204
Building a WAR project	 206
Building an EAR project	 209
Building a pom project	 211
Running a web project with Jetty	 214
Running a web project with Tomcat	 216

iv

Table of Contents

Chapter 11: Advanced Maven Usage	 221
Introduction	 221
Creating an assembly	 221
Running a custom executable	 226
Running an ANT task	 228
Determining updates to Maven plugins	 230
Determining updates to Maven dependencies	 234
Controlling the constraints	 235
Generating unique builds	 237
Releasing a Maven project	 239

Index	 245

v

Preface
Apache Maven Cookbook describes the features of Apache Maven through a series of recipes.
This book will help you understand what Apache Maven is and allow you to use its features
with the help of complete and working examples.

What this book covers
Chapter 1, Getting Started, covers the installation of Apache Maven on Microsoft Windows,
Mac OS X, or Linux, as well as creating and building your first project with it. The chapter also
details the steps to install prerequisite software required for Maven.

Chapter 2, IDE Integration with Maven, focuses on configuring popular IDEs with the help of
Maven and running Maven projects in them. Eclipse, NetBeans, and IntelliJ IDEA are the three
IDEs covered in this chapter.

Chapter 3, Maven Lifecycle, covers the life cycle of Apache Maven and explores the concept of
phases and goals. It also describes how a user can use profiles to customize builds.

Chapter 4, Essential Maven Plugins, describes the Maven plugins, which are essential to build
a project. For each plugin, the various configuration options are also explored.

Chapter 5, Dependency Management, explores the various types of Maven dependencies,
and delves into downloading and getting reports on them. It also talks about how to handle
network issues during a dependency download.

Chapter 6, Code Quality Plugins, covers the support provided for various code quality tools,
such as Checkstyle, PMD, FindBugs, and Sonar. The configuration options for each plugin as
well as generating reports are also explored.

Chapter 7, Reporting and Documentation, covers the reporting features of Maven. The site
plugins and the various reports supported by it are described in detail.

Preface

vi

Chapter 8, Handling Typical Build Requirements, explores the features provided by Maven to
handle builds of selective sources and the inclusion of selected resources. It also describes
how to use the command line and help features of Maven along with interfacing with software
configuration management systems.

Chapter 9, Multi-module Projects, describes the support required to build large projects
with multiple modules. Maven support for aggregated builds and defining parent-child
relationships is also described here.

Chapter 10, Java Development with Maven, describes the building of different types of java
artifacts like Jar, War and Ear. It also describes Maven support to run projects in Jetty
and Tomcat.

Chapter 11, Advanced Maven Usage, explores the advanced features of Maven, such as
creating distributions and enforcing rules. It also describes how to make a project release.

What you need for this book
To run the various recipes in this book, the following are required. Unless otherwise
mentioned, it is best to have the latest version of the software suggested here:

ff A computer with one of the three operating systems, such as Microsoft Windows, Mac
OS X or Linux, and preferably recent/supported versions

ff Java—specifically Java Development Kit (JDK)

ff Apache Maven

ff Git—for examples related to version control systems

ff One or more of the following IDEs:

�� Eclipse

�� NetBeans

�� IntelliJ IDEA

Who this book is for
Apache Maven Cookbook is intended for those of you who are seeking to learn what build
automation is and how Apache Maven can be used for this purpose. It is also meant for you
if you're familiar with Maven, but would like to understand the finer nuances of it to solve
specific problems. It is also a good book if you're looking for ready-made recipes to solve
specific use cases.

Preface

vii

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
preceding output will still not tell you where your Java is installed, which is required to set
JAVA_HOME."

Preface

viii

A block of code is set as follows:

<reporting>
 <plugins>
 <plugin>
 <artifactId>maven-project-info-reports-plugin</artifactId>
 <version>2.0.1</version>
 <reportSets>
 <reportSet></reportSet>
 </reportSets>
 </plugin>
 </plugins>
</reporting>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-
1.0.0.xsd">
 <localRepository>C:/software/maven</localRepository>
</settings>

Any command-line input or output is written as follows:

brew install maven

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "To persist this, set Environment
Variables... using the Control Panel option, as described later for the M2_HOME variable."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

ix

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/ApacheMavenCookbook_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/ApacheMavenCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheMavenCookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata

Preface

x

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Getting Started

In this chapter, we will cover the basic tasks related to getting started with Apache Maven:

ff Installing Maven on Microsoft Windows

ff Installing Maven on Mac OS X

ff Installing Maven on Linux

ff Changing the JDK used by Maven

ff Creating a simple project with Maven

ff Building a simple project with Maven

ff Changing the location of the Maven repository

ff Running Maven behind an HTTP proxy server

ff Understanding the standard directory layout

Introduction
Apache Maven is a popular tool for build automation, primarily Java projects. Maven
addresses two aspects of building software. First, it describes how a software is built
and, second, it describes its dependencies. It uses conventions for the build procedure.
An XML file describes the software project being built, its dependencies on other external
modules and components, the build order, directories, and required plugins. It comes with
predefined targets to perform certain well-defined tasks, such as code compilation and its
packaging. Maven dynamically downloads Java libraries and Maven plugins from one or more
repositories, such as the Maven Central Repository, and stores them locally.

Ever since Maven 1.0 was released in 2004, it has gained popularity and is today the build
tool for a large number of open source and commercial projects.

Getting Started

2

If you are reading this book, then you are not here to understand why Maven is required. You
are here to explore Maven and unleash the potential that it offers. The objective of this book is
to make the reader aware of Maven's various features, which include installation, configuration,
and simple to complex usage by means of examples, illustrations, and working projects.

A brief comparison with other build automation tools
Let's briefly discuss some build automation tools:

ff Make: If you are from the C programming world, chances are you have used Make.
Makefiles are not platform-independent. They are not natively compatible with
Windows. Thus, they are unsuited to build Java projects.

ff Ant: This is modeled after Make and has targets and dependencies. Each target
has a set of tasks. Ant doesn't have any conventions. It is procedural and does not
have the concept of a build lifecycle. Maven has conventions, is declarative, and
has a lifecycle.

In this chapter, we will cover the basics of Maven—installing the software, verifying the
installation, and creating, implementing, and building a simple Java project. We will also cover
a few advanced items, such as changing the location of the repository or running Maven
behind an HTTP proxy server as it could be relevant to those who have issues with the way
Maven works by default.

Let us start by setting up Maven. We will cover how to do this on the three popular operating
systems, namely Microsoft Windows, Mac OS X, and Linux.

Installing Maven on Microsoft Windows
At the time of writing this book, Microsoft Windows 8.1 is the latest version of Microsoft
Windows. While the screenshots and output will be for Microsoft Windows 8.1, the steps are
similar for earlier (and possibly later) versions as well.

Getting ready
As Maven requires a Java platform, first ensure that you have installed the Java environment
on your system, Java Development Kit (JDK) specifically; Java Runtime Environment (JRE) is
not sufficient.

Chapter 1

3

You can verify whether Java is installed on your system by opening Add or Remove Programs.
If you see something similar to the following screenshot, JDK is installed on your system:

You can also verify the program folder structure from Microsoft Windows Explorer:

How to do it...
Let's start installing Java and Maven by performing the following steps:

1.	 Set the variable JAVA_HOME to point to the Java installation that you want Maven to
use; for example, you can do this by setting JAVA_HOME variable in the following way:
C:\projects\apache_maven_cookbook>set JAVA_HOME=C:\Program Files\
Java\jdk1.8.0_20

Getting Started

4

Note that this setting will not be persisted once the command prompt is
closed. To persist this, set Environment Variables... using the Control Panel
option, as described later for the M2_HOME variable.

2.	 If JDK is not installed on your system, now is the time to download and install it from
the Oracle Java SE download page at http://www.oracle.com/technetwork/
java/javase/downloads/index.html.

Once it is installed, ensure JAVA_HOME is set as described earlier.

Now that we have set up Java, let us download and set up Maven.

3.	 Go to http://maven.apache.org/ and click on the Download link.

4.	 The links to the latest stable versions of Maven are displayed.

5.	 The binaries are available in both, .zip and .tar.gz formats. Choose one of them.

6.	 Extract the downloaded binary to a folder you want Maven to reside in. In this case I
have chosen C:\software.

It is best to avoid folders with spaces as some features of
Maven or its plugins might not work.

7.	 Ensure the contents are similar to the following screenshot:

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/

Chapter 1

5

The preceding screenshot displays a list of directories contained in Maven.

Now let's briefly discuss what these directories contain:

ff The bin folder contains the batch files and shell scripts to run Maven on
various platforms.

ff The boot folder contains the jars required for Maven to start.

ff The conf folder contains the default settings.xml file used by Maven.

ff The lib folder contains the libraries used by Maven. It also contains an ext folder
in which third-party extensions, which can extend or override the default Maven
implementation, can be placed.

Now let us make sure we can run Maven from the command prompt by carrying out the
following steps:

1.	 Open Control Panel:

Getting Started

6

2.	 Choose Advanced system settings:

3.	 Click on Environment Variables.... Add the M2_HOME variable and set it to the folder
where Maven was extracted.

4.	 Edit the PATH variable to include Maven's bin folder:

Chapter 1

7

How it works...
A Maven installation is essentially a set of JAR files, configuration files, and a Microsoft
Windows batch file, mvn.bat.

The mvn command essentially runs this batch file. It first checks for JAVA_HOME. This file is
present in the bin folder of the Maven installation and, hence, it needs to be in PATH.

If the batch file does not find JAVA_HOME, it looks for Java in its PATH. This can lead to
unexpected results, as typically the Java in PATH is usually the JRE and not the JDK.

The batch file then looks for M2_HOME, which is the location of the Maven installation. It does
this so that it can load the libraries that are present.

Additionally, it also reads values specified in MAVEN_OPTS. This variable allows you to run
Maven with an additional heap size and other Java parameters.

Using the values for JAVA_HOME, M2_HOME, and Maven_OPTS, the batch file runs its main
class org.codehaus.plexus.classworlds.launcher.Launcher.

There's more...
Verify your Maven installation using the following steps:

1.	 Open a command prompt in Microsoft Windows and run the following command:
C:\software\apache-maven-cookbook>mvn -version

2.	 The following output should be displayed:

Apache Maven 3.2.5 (12a6b3acb947671f09b81f49094c53f426d8cea1;
2014-12-14T22:59:23+05:30)

Maven home: C:\software\apache-maven-3.2.5

Java version: 1.7.0_67, vendor: Oracle Corporation

Java home: C:\Program Files\Java\jdk1.7.0_67\jre

Default locale: en_IN, platform encoding: Cp1252

OS name: "windows 8.1", version: "6.3", arch: "amd64", family:
"windows"

See also
ff The Creating a simple project with Maven recipe in this chapter

Getting Started

8

Installing Maven on Mac OS X
Let us look at the steps to install Maven on Mac OS X. This applies to the latest version of Mac
OS X, namely Yosemite.

Earlier, Apple provided Java for Mac, but stopped doing so from Java 7 onwards. Apple Java is
not available on recent versions of Mac OS X.

Getting ready
Let us check if the Java environment is available on your Mac:

1.	 Open the terminal and run the following command:
/usr/libexec/java_home -v 1.7

2.	 See if you get an output similar to the following:
/Library/Java/JavaVirtualMachines/jdk1.7.0_71.jdk/Contents/
Home

3.	 Run the following command to check if you have Java 8:
/usr/libexec/java_home -v 1.8

4.	 This should give the following output if Java exists:
/Library/Java/JavaVirtualMachines/jdk1.8.0_25.jdk/Contents/Home

As you can see, my system has both Java 1.7 and 1.8.

5.	 Set JAVA_HOME to the desired JDK. This can be done in two ways, depending on
what you desire:

If this is for the duration of the session, run the following command:
export
JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_25.jdk
/Contents/Home

If this is permanent, add the preceding line in .bash_profile in your HOME folder

Ensure you have the JDK installation and not JRE.

If Java is not present, download and install Java from the Oracle Java download page at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 1

9

Once installed, verify the Java installation by following the preceding steps.

Now, let us set up Maven on Mac OS X.

How to do it...
Let's download Maven from its official website by performing the following steps:

1.	 Go to http://maven.apache.org/ and click on the Download link. Links to the
latest stable versions of Maven will be displayed.

2.	 The binaries are available in both .zip and .tar.gz formats. Choose one of them.

3.	 Extract the downloaded binary to the folder you want Maven to reside in. The typical
location for the Mac is /usr/local folder.

4.	 You will need a super user (su) or administrator access to place the contents in
the /usr/local folder. If you do not have access, you can place the contents in a
subfolder of your HOME folder.

5.	 Ensure the contents are similar to the following output by executing the following
command:
/usr/local/apache-maven-3.2.5$ ls -l

The output is shown as:

total 27

-rw-r--r-- 1 root wheel 17464 Aug 12 02:29 LICENSE

-rw-r--r-- 1 root wheel 182 Aug 12 02:29 NOTICE

-rw-r--r-- 1 root wheel 2508 Aug 12 02:26 README.txt

drwxr-xr-x 8 root wheel 4096 Aug 19 13:41 bin

drwxr-xr-x 3 root wheel 0 Aug 19 13:41 boot

drwxr-xr-x 4 root wheel 0 Oct 14 17:39 conf

drwxr-xr-x 67 root wheel 28672 Aug 19 13:41 lib

6.	 Set the M2_HOME variable as follows:
export M2_HOME=/usr/local/apache-maven-3.2.5

7.	 Update the PATH to include Maven's bin folder:

export PATH=$PATH:$M2_HOME/bin

Like JAVA_HOME, the preceding settings can be persisted
by updating .bash_profile with the preceding lines.

http://maven.apache.org/

Getting Started

10

In the preceding steps, we discussed the steps to download Maven from its official website.
We will now discuss installing Maven using brew. Brew is a popular application on Mac OS X
to install open source software. If you have brew installed on your Mac OS X, run the following
command to install Maven:

brew install maven

The output for the preceding command will be displayed as shown in the following screenshot:

How it works...
The Maven installation is essentially a set of JAR files, configuration files, and a Mac OS X shell
script, namely mvn.

The mvn command essentially runs this script. It first checks for JAVA_HOME. This file is
present in the bin folder of the Maven installation and, hence, it needs to be in PATH.

If the shell script does not find JAVA_HOME, it looks for Java in its PATH. This can lead to
unexpected results, as typically the Java in PATH is usually the JRE installation and not JDK.

The shell script then looks for M2_HOME, which is the location for the Maven installation. It
does this so that it can load the libraries that are present.

Additionally, it also reads values specified in MAVEN_OPTS. This variable allows you to run
Maven with an additional heap size and other Java parameters.

Using the values for JAVA_HOME, M2_HOME, and MAVEN_OPTS, the shell script runs its main
class org.codehaus.plexus.classworlds.launcher.Launcher.

There's more...
Verify your Maven installation using the following steps:

1.	 Open a command prompt and run the following command:
mvn –version

Chapter 1

11

2.	 The output for the preceding command should be displayed as shown in the
following screenshot:

See also
ff The Creating a simple project with Maven recipe in this chapter

Installing Maven on Linux
Let us look at the steps to install Maven on Linux.

While there are many flavors of Linux (Ubuntu, Fedora, RHEL, SUSE, CentOS, and so on), the
steps to set up Maven are similar.

Getting ready
Maven needs Java, specifically the Java Development Kit (JDK). Using the following steps, let
us check if it is installed in your Linux system, which is a bit tricky:

1.	 Open a terminal and run the following command:
java -version

2.	 See if you get an output similar to the following:
java version "1.7.0_65"

OpenJDK Runtime Environment (rhel-2.5.1.2.el6_5-x86_64 u65-
b17)

The preceding output will still not tell you where your Java is installed, which is
required to set JAVA_HOME. You can get this information by performing the next set
of steps.

3.	 Check if javac works; it does only if JDK is installed, not JRE:
$ javac -version

The output for the preceding command is shown as:

javac 1.7.0_65

Getting Started

12

4.	 Find the location of the javac command:
$ which javac

The output for the preceding command is shown as:

/usr/bin/javac

5.	 In the preceding output, javac is a symbolic link to the actual location of the file. Try
to determine this location in the following way:
$ readlink /usr/bin/javac

The output for the preceding command is shown as:

/etc/alternatives/javac

6.	 By executing the preceding command, we again got the symbolic link. To get the path
to the location of javac, we execute the following command again:
$ readlink /etc/alternatives/javac

The output for the preceding command is shown as:

/usr/lib/jvm/java-1.7.0-openjdk.x86_64/bin/javac

7.	 We have now located the folder where JDK is installed:
/usr/lib/jvm/java-1.7.0-openjdk.x86_64/

8.	 Set JAVA_HOME to the preceding folder. This can be done in two ways, depending on
what you desire:

If it is for the duration of the session, run the following command:
export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk.x86_64/

If this is permanent, add the preceding line in .bash_profile in your HOME folder.

If Java is not present, download and install Java from the Oracle Java download page at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

If you have an rpm-based Linux distribution, you can download and install rpm. Otherwise, you
can download the .tar.gz format of the distribution and extract it to a folder of your choice.

In the earlier case, you know exactly where Java is installed and can set JAVA_HOME
correspondingly. Once installed, verify the Java installation by following the preceding steps.

Now, let us set up Maven on Linux.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 1

13

How to do it...
To set up Maven on Linux, perform the following steps:

1.	 Go to http://maven.apache.org/ and click on the Download link. The links to
latest stable versions of Maven will be displayed.

2.	 The binaries are available in both .zip and .tar.gz formats. For Mac OS X and
Linux, the preferred download format is .tar.gz.

3.	 Extract the downloaded binary to a folder you want Maven to reside in. The typical
location in Linux is the /usr/local folder.

You will need a super user (su) or administrator access to place
contents in the /usr/local folder. If you do not have access, you
can place this in a subfolder of your HOME folder.

4.	 Execute the following command, and ensure the contents of the apache-
maven-3.2.5 folder are similar to the following output:
/usr/local/apache-maven-3.2.5$ ls -l

The output for the preceding command is shown as:

total 27

-rw-r--r-- 1 root root 17464 Aug 12 02:29 LICENSE

-rw-r--r-- 1 root root 182 Aug 12 02:29 NOTICE

-rw-r--r-- 1 root root 2508 Aug 12 02:26 README.txt

drwxr-xr-x 8 root root 4096 Aug 19 13:41 bin

drwxr-xr-x 3 root root 0 Aug 19 13:41 boot

drwxr-xr-x 4 root root 0 Oct 14 17:39 conf

drwxr-xr-x 67 root root 28672 Aug 19 13:41 lib

5.	 Set the M2_HOME variable as follows:
export M2_HOME=/usr/local/apache-maven-3.2.5

6.	 Update PATH to include Maven's bin folder:

export PATH=$PATH:$M2_HOME/bin

Like JAVA_HOME, the preceding settings can be persisted by updating .bash_profile.

http://maven.apache.org/

Getting Started

14

How it works...
The Maven installation is essentially a set of JAR files, configuration files, and a Linux shell
script, namely mvn.

The mvn command essentially runs this script. It first checks for JAVA_HOME. This file is
present in the bin folder of the Maven installation and hence needs to be in PATH.

If the shell script does not find JAVA_HOME, it looks for java in its PATH. This can lead to
unexpected results, as typically, the Java in PATH is usually JRE and not JDK.

The shell script then looks for M2_HOME, which is the location of the Maven installation. It
does this so that it can load the libraries that are present.

Additionally, it also reads values specified in MAVEN_OPTS. This variable allows you to run
Maven with an additional heap size and other Java parameters.

Using the values for JAVA_HOME, M2_HOME, and MAVEN_OPTS, the shell script runs its org.
codehaus.plexus.classworlds.launcher.Launcher main class.

There's more...
Using the following steps, let's confirm that Maven has been set up correctly, by running a
Maven command:

1.	 Open a command prompt and run the following command:
mvn –version

2.	 The following output should be displayed:
Apache Maven 3.2.5
(12a6b3acb947671f09b81f49094c53f426d8cea1; 2014-12-
14T22:59:23+05:30)

Maven home: /usr/local/maven

Java version: 1.7.0_65, vendor: Oracle Corporation

Java home: /usr/lib/jvm/java-1.7.0-openjdk-
1.7.0.65.x86_64/jre

Default locale: en_US, platform encoding: ANSI_X3.4-1968

OS name: "linux", version: "2.6.32-279.22.1.el6.x86_64",
arch: "amd64", family: "unix"

If you get an error, recheck the installation steps and repeat them.

Chapter 1

15

See also
ff The Creating a simple project with Maven recipe in this chapter

Changing the JDK used by Maven
It is possible to have more than one version of JDK installed on your system. By following
some simple steps, you can specify and/or change the JDK to be used by Maven.

How to do it...
You will recall that, in the earlier section, we used Java SE 7. Let us now change to Java SE 8.
To change the JDK version to Java SE 8 on Microsoft Windows, perform the following steps:

1.	 From the command prompt, run the following command:
set JAVA_HOME=C:\Program Files\Java\jdk1.8.0_20

2.	 For Linux or Mac, the command will be:
export JAVA_HOME=<java-8-home-folder>

3.	 Now, run the following command to check the version of Maven installed:
mvn –version

4.	 To check the version of Maven installed on Microsoft Windows, run the following
command from the command prompt. You should get the following output. The
output will be similar for Linux and Mac:
C:\projects\apache-maven-cookbook>mvn -version

The output for the preceding command is shown as:

Apache Maven 3.2.5
(12a6b3acb947671f09b81f49094c53f426d8cea1; 2014-12-
14T22:59:23+05:30)

Maven home: C:\software\apache-maven-3.2.5

Java version: 1.8.0_20, vendor: Oracle Corporation

Java home: C:\Program Files\Java\jdk1.8.0_20\jre

Default locale: en_IN, platform encoding: Cp1252

OS name: "windows 8.1", version: "6.3", arch: "amd64", family:
"windows"

Getting Started

16

How it works...
Maven always uses the JDK specified by JAVA_HOME, no matter how many JDK installations
are available on the system. This allows the user the flexibility to change JDKs as required or
based on the project.

Hence, it is important to ensure JAVA_HOME is defined. In the absence of this variable, Maven
attempts to detect the presence of Java from PATH. This is typically JRE and not JDK.

Creating a simple project with Maven
Now that we have set up Maven on our favorite operating system and verified that it works
fine, it is time to create a simple Java project.

Maven makes it easy to bootstrap a new project by creating a bunch of files and folders
following accepted conventions.

How to do it...
Let's start creating the first simple project using Maven, by performing the following steps:

1.	 Open a command prompt and change the directory to the folder in which you want to
create your first Maven project.

2.	 Run the following command:
mvn archetype:generate -DgroupId=com.packt.cookbook -
DartifactId=simple-project -DarchetypeArtifactId=maven-
archetype-quickstart -DinteractiveMode=false

You can change the groupId and artifactId values in the preceding command
as per your requirement.

3.	 You will see Maven downloading a bunch of files:
Downloading:
https://repo.maven.apache.org/maven2/org/apache/maven/plugi
ns/maven-clean-plugin/2.5/maven-clean-plugin-2.5.pom

Downloaded:
https://repo.maven.apache.org/maven2/org/apache/maven/plugi
ns/maven-clean-plugin/2.5/maven-clean-plugin-2.5.pom (4 KB
at 1.4 KB/sec)

4.	 Then it will start generating sources:
[INFO] >>> maven-archetype-plugin:2.2:generate (default-
cli) > generate-sources

@ standalone-pom >>>

Chapter 1

17

5.	 When Maven has completed generating sources, it will create the project
that we want:

[INFO] Using following parameters for creating project from
Old (1.x) Archetype:
maven-archetype-quickstart:1.0
[INFO] --

[INFO] Parameter: groupId, Value: com.packt.cookbook
[INFO] Parameter: packageName, Value: com.packt.cookbook
[INFO] Parameter: package, Value: com.packt.cookbook
[INFO] Parameter: artifactId, Value: simple-project
[INFO] Parameter: basedir, Value: C:\projects\apache-maven-
cookbook
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] project created from Old (1.x) Archetype in dir:
C:\projects\apache-maven-cookbook\simple-project

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

How it works...
Did you get an while error running the preceding command to create your simple project?

One possibility is that your Maven is behind an HTTP proxy server. If so, see the Running
Maven behind an HTTP proxy server recipe in this chapter.

Let's look at the folder structure that is created:

Getting Started

18

You will notice the following things:

ff The Maven project configuration file pom.xml is created in the root of the simple-
project folder. We will explore this file in detail in subsequent sections.

ff A bunch of folders are created:

�� src\main\java: This is for Java source files

�� src\test\java: This is for Java test source files

�� src\main\resources: This is for resource files for the project

�� src\test\resources: This is for resource files for the test

ff Within each of the preceding folders, a folder structure corresponding to the
groupId (org.packt.cookbook) is created.

The following are essentially Maven conventions at work:

ff Maven expects all Java source files to reside in src\main\java

ff Similarly, it expects all Java test files to reside in src\test\java

ff It expects all project resources to reside in src\main\resources and test
resources to reside in src\test\resources

ff It expects that source files will typically have the same package structure as the
groupId parameter (though this is not mandatory)

ff Two sample classes, namely App.java and AppTest.java, are also created and it
is not expected that they will be used beyond testing how Maven works

The mvn command that we used in the Creating a simple project with Maven recipe in this
chapter, tries to invoke the generate goal of the archetype plugin with the specified
command-line parameters.

The default Maven installation has minimal features. All features of Maven are available as
Maven plugins. When given a plugin name, Maven knows where to download it from and
then run it.

In this case, Maven downloads the archetype plugin. This plugin, in turn, can depend on
another plugin. In this case, the latter plugin gets downloaded. This happens in a recursive
fashion and, at the end of the process, all the relevant plugins required to run the specified
command are downloaded.

These plugins are placed in your local repository, which is a location in your system. Once
downloaded, these are never downloaded again unless deleted.

Chapter 1

19

See also
ff The Running Maven behind an HTTP proxy server recipe in this chapter

Building a simple project with Maven
Let us now build the project that was created in the preceding section.

How to do it...
To build the previously created simple project with Maven, perform the following steps:

1.	 Open the command prompt and run the following command, changing the directory
to the folder the project was created:
mvn package

2.	 Observe the following things in the output:

Notice the following warning (we will see how to resolve this later in this book):
[INFO] --- maven-resources-plugin:2.6:resources (default-
resources) @ simple-project ---

[WARNING] Using platform encoding (Cp1252 actually) to copy
filtered resources,

i.e. build is platform dependent!

Check if the sources are compiled:
[INFO] --- maven-compiler-plugin:3.1:compile (default-
compile) @ simple-project

Check if the tests are run:

[INFO] --- maven-surefire-plugin:2.12.4:test (default-test)
@ simple-project ---

[INFO] Surefire report directory: C:\projects\apache-maven-
cookbook\simple-project\target\surefire-reports

 T E S T S

Running com.packt.cookbook.AppTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time
elapsed: 0.005 sec

3.	 A JAR file is now created.

Getting Started

20

How it works...
In the mvn package command, the package parameter is a phase in the build lifecycle.
Maven has a default build lifecycle that has a number of phases. Each phase will execute
every phase prior to it in order along with the specified phase. In this case, the package
phase executes in the following order:

ff Validate
ff Compile
ff Test
ff Package

The validate phase makes sure that the project (specifically the pom.xml file that describes
the project) is in order and all the necessary information to run the project is available.

The compile phase compiles the sources.

The test phase compiles the test sources and then runs the test using a suitable test
framework. In the earlier example, the JUnit framework is used to run the tests.

The package phase packages the artifacts to the format specified in the pom.xml file.

Changing the location of the Maven
repository

There are three types of Maven repositories:

ff Local: This is the repository in your computer filesystem
ff Remote: This is the repository from where the required Maven files get downloaded
ff Mirrors: These are repository managers, such as Nexus and Artifactory, that mirror

various repositories

You will have seen Maven downloading a number of files (called poms and jars). Let us see
where they are located in your computer:

ff Go to your HOME folder (C:\Users\username) in the case of Microsoft Windows, /
Users/username for Mac, and, /home/username (or a similar location) for Linux

ff You will notice the .m2 folder and within that, a subfolder called repository

Any folder that starts with a dot (.) is typically hidden from view.
You will need to change your folder viewer settings to see it.

ff You will see a number of folders and files that are used by Maven

Chapter 1

21

You may want to change this location for the following reasons:

ff You may want to conserve space in the C drive and store these folders and files in the
D drive on Microsoft Windows.

ff You may want to take a back up of the contents. Backup software usually backs up
contents in specific folders of the filesystem.

ff Your organization may have a policy for all users to store a local repository in the
same folder.

How to do it...
To change the location of the Maven repository, perform the following steps:

1.	 Create a file called settings.xml in the .m2 folder.

2.	 Add the following contents to the settings.xml file that you just created:
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-
1.0.0.xsd">
 <localRepository>C:/software/maven</localRepository>
</settings>

Notice the highlighted part of the preceding code. We have changed the location of
the repository contents to C:\software\maven. You can change it to any valid folder
name.

3.	 Delete the repository subfolder and run the mvn package command again.

You will now notice that the repository folder is not created in the .m2 folder.
Instead, it is created in C:\software\maven.

How it works...
Maven determines the location of the local repository in the following way:

ff If settings.xml exists in the user's .m2 folder, which contains the
<localRepository> tag, then Maven uses its contents to determine the location

ff If not, Maven will check if localRepository is explicitly defined in the default
settings.xml, present in the conf folder of the Maven installation

ff If it is not present there, Maven will use the default value for the local repository,
which is the user's .m2 folder

Getting Started

22

Running Maven behind an HTTP proxy server
Most organizations do not allow devices in their network to access the Internet directly for
security and other reasons. In such cases, typically, a proxy server comes into picture. The
proxy server details are specified in the browser or any other location where access to the
Internet is required.

How to do it...
Let's start running Maven behind an HTTP proxy server, by performing the following steps:

1.	 Create a settings.xml file in the .m2 folder in your HOME directory, if it does not
exist already.

2.	 Add the following code within the settings tag:
 <proxies>
 <proxy>
 <id>myproxy</id>
 <active>true</active>
 <protocol>http</protocol>
 <host>proxy.myorg.com</host>
 <port>8080</port>
 <username>proxyuser</username>
 <password>somepassword</password>
 <nonProxyHosts>*.myorg.com </nonProxyHosts>
 </proxy>
 </proxies>

If the proxy server does not need authentication, the username and password tags can
be omitted.

The nonProxyHosts tag allows you to specify locations that can be accessed directly (for
instance, your intranet). This can be skipped if not relevant.

How it works...
Maven needs Internet access to download plugins and dependencies. When Maven runs, it
reads the user's settings.xml file, if it exists. It checks for any active proxy settings and
applies the same.

Maven uses the values in the proxy settings to download any artifacts from the repository. If
there are no artifacts to be downloaded, then these values are not used.

Chapter 1

23

The HTTP proxy server may work only in your organization's network. If
you are running Maven from a different network, you may want to turn
off the HTTP proxy server. This can be done by setting the active tag to
false in the preceding code.

Understanding the standard directory layout
When we built our sample Java project earlier, we saw files being compiled, tests being run,
and a JAR being generated. We do not know where these artifacts were created.

How to do it...
Let's find where the artifacts were created by performing the following steps:

1.	 Go to the folder that has the sample Maven project.

2.	 Open the target subfolder that was created:

How it works...
When Maven runs, it puts all the contents that it generates into a separate folder. This is to
distinguish it from any user-generated content. Let us examine the contents of this folder:

ff The classes folder: Compiled source files are placed in this folder. This folder will
also contain resources, such as XML and property files that are part of the source,
placed in src/main/resources.

ff The test-classes folder: Compiled test source files are available in this folder. In
addition, it also contains test resources, which are files required for the purpose of
testing, but not for running the project.

ff The surefire-reports folder: Test reports are separately placed in this folder.
Typically, both XML and HTML report formats are available. The latter can be opened
in the browser, while the former can be integrated with a code coverage tool.

ff The output .jar file: The generated project artifact is also present in this folder.

ff Two other folders—maven-archiver and maven-status—hold information used by
Maven during the build.

25

2
IDE Integration

with Maven

In this chapter, we will see how to set up and use Maven with three popular Java Integrated
Development Environments (IDE). We will cover the following recipes:

ff Creating a new Maven project in Eclipse

ff Importing an existing Maven project in Eclipse

ff Creating a new Maven project in NetBeans

ff Importing an existing Maven project in NetBeans

ff Creating a new Maven project in IntelliJ IDEA

ff Importing an existing Maven project in IntelliJ IDEA

Introduction
IDE improves developer productivity by performing the following functions:

ff Creating boilerplate code

ff Carrying out code completion

ff Identifying syntax issues

ff Performing tasks such as compilation, unit testing, and deploying to web/app servers

While Maven is primarily intended to be a command-line tool, IDEs help developers enjoy as
well as exploit Maven features in better ways. The integration of Maven with IDE helps us to
automatically download dependencies and quickly search for dependencies through the UI,
among other benefits.

IDE Integration with Maven

26

The IDE integration of Maven has improved over the years and most Maven features can be
set through IDE now.

Creating a new Maven project in Eclipse
Eclipse is one of the most popular open source IDEs. It originated primarily from IBM's
VisualAge for Java. It is a platform that allows extensibility by means of plugins (something
that Maven does as well). Eclipse can be used to develop not only Java projects, but also a
host of other languages by means of plugins.

As of writing this book, Eclipse 4.4.1 (Luna SR1) is the most recent edition. The screenshots in
this book are for this version.

Getting ready
Eclipse needs a Java environment to run and hence needs Java to be installed on the
system. To do this, refer to the Getting ready sections of the first three recipes of
Chapter 1, Getting Started.

Download Eclipse from https://www.eclipse.org/downloads/. Eclipse binaries are
available for all popular operating systems. There are also different package solutions of
Eclipse targeted at different types of developers (C/C++, Java EE, PHP, and so on). You should
choose one of the Eclipse IDEs for Java developers, or the Eclipse IDE for Java EE developers.

For Maven to work, it is important to start Eclipse using JDK and
not JRE. This can be done by passing the following argument to
the start up script:

-vm %JAVA_HOME%\bin\javaw

The recent versions of Eclipse come preinstalled with Maven support. Let us confirm this by
performing the following steps:

1.	 Launch Eclipse and click on the About Eclipse button in the Help menu, as shown in
the following screenshot:

https://www.eclipse.org/downloads/

Chapter 2

27

2.	 Click on the m2 icon from the list of icons that you see:

3.	 On clicking the m2 icon, you should see something similar to the following
screenshot:

4.	 Click on the Maven link by navigating to Window | Preferences from the Eclipse
menu bar.

IDE Integration with Maven

28

5.	 Click on Installations. You will see the existing installations available to Eclipse. It
uses an EMBEDDED installation of Maven that comes with Eclipse, as shown in the
following screenshot:

6.	 Add the Maven installation that you set up by clicking on the Add… button.

7.	 You can check this installation so that it is chosen instead of the
EMBEDDED installation.

Chapter 2

29

How to do it...
To create a new Maven project, perform the following steps:

1.	 Navigate to File | New | Maven Project. You will see the following screen:

2.	 Check the Create a simple project (skip archetype selection) option to avoid
choosing what to create.

3.	 Fill the same values that we specified as parameters in the Creating a simple project
with Maven recipe in Chapter 1, Getting Started (Group Id: com.packt.cookbook,
Artifact Id: simple-project) to create a simple Maven project.

IDE Integration with Maven

30

4.	 Click on Finish. Your project is now set up. Click on the pom.xml file. You will see the
following screenshot:

How it works...
Eclipse has built-in support (using the m2e plugin) for Maven projects. In this recipe, we used
Eclipse to create a simple Maven project, skipping the artifact selection. We also specified the
groupId, artifactId, and version for the project.

Using this information, Eclipse invokes the Maven archetype plugin to create a quick start
project. The Eclipse console shows the steps performed, and the project is created.

The folder structure and contents are identical to the project created from the command-line.

Importing an existing Maven project in
Eclipse

If you have already set up a Maven project from the command-line, then it can easily be
imported to Eclipse.

If you have not yet set up Eclipse and verified that Maven exists, please follow the Getting
ready section of the preceding recipe.

Chapter 2

31

How to do it...
To import an existing Maven project in Eclipse, perform the following steps:

1.	 Navigate to File | Import… and click on Maven:

2.	 Choose the project we created in the previous chapter:

3.	 Import the project. You will see contents identical to what we saw when creating a
new Maven project.

IDE Integration with Maven

32

How it works...
Eclipse has built-in support for Maven projects. When a Maven project is imported, it parses
the pom file, pom.xml, for the specified project. Based on the project's pom configuration file,
it creates relevant Eclipse configurations to recognize source files, tests, and artifacts.

It also identifies all the dependencies of the project, downloads these using Maven (if they
haven't been downloaded already), and adds them to the project dependencies.

Creating a new Maven project in NetBeans
NetBeans is another popular IDE. This is backed by Oracle, is equally feature-rich and
extensible, and supports multiple languages, such as Eclipse.

As of writing this, NetBeans 8.0.2 is the most recent edition. The screenshots in this book
reflect this version.

Getting ready
NetBeans can be downloaded in two different ways (if not downloaded already):

ff Oracle provides a download of the latest JDK along with the latest version of
NetBeans. This is a good option, especially if you have not installed JDK yet.

ff If JDK is already installed, then NetBeans can be downloaded separately
from https://netbeans.org/. There are different bundles of NetBeans
(similar to Eclipse). You can choose one from Java SE or Java EE, or all of them,
based on your preference.

How to do it...
Now that NetBeans is installed, let us create a new Maven project, by performing the
following steps:

1.	 Navigate to Tools | Options. Choose Java and click on the Maven tab. You will notice
Maven Home showing up as Bundled with (Version: 3.0.5):

https://netbeans.org/

Chapter 2

33

2.	 You can leave it as is or change it to your Maven installation by choosing
the dropdown.

3.	 Now navigate to File | New Project.

4.	 Choose Maven from Categories: and Java Application from Projects:, as shown in
the following screenshot:

IDE Integration with Maven

34

5.	 Specify the details of the project:

You are done! A new project is now created in NetBeans.

How it works...
Like Eclipse, NetBeans has built-in support for Maven. Unlike Eclipse, NetBeans did not use
the Maven archetype for a quick start. Instead, it created a new project using its template. In
this case, you will notice that it did not create the dummy source and test class that the quick
archetype creates.

Importing an existing Maven project in
NetBeans

Instead of creating a new Maven project, as we did in the preceding recipe, you may want to
open an existing Maven project in NetBeans. Let us now see how we can import an existing
Maven project.

Chapter 2

35

Getting ready
NetBeans can be downloaded in two different ways (if not downloaded already):

ff Oracle provides a download of the latest JDK along with the latest version of
NetBeans. This is a good option, especially if you haven't installed JDK yet.

ff If JDK is already installed, then NetBeans can be downloaded separately
at https://netbeans.org/. There are different bundles of NetBeans
(similar to Eclipse). You can choose one from Java SE or Java EE, or all of them,
based on your preference.

How to do it...
To import an existing Maven project in NetBeans, perform the following steps:

1.	 Navigate to File | Open Project...:

2.	 Choose the project we created earlier from the command-line. Notice how NetBeans
recognizes it (with the ma icon) as a Maven project:

3.	 NetBeans now opens the Maven project.

https://netbeans.org/

IDE Integration with Maven

36

How it works...
Like Eclipse, NetBeans has built-in support for Maven. It identifies a folder as a Maven
project due to the presence of pom.xml. It parses this file and opens the project associating
the files and folders to Source Packages, Dependencies, and Project Files, as shown in
following screenshot:

Creating a new Maven project in IntelliJ
IDEA

IntelliJ IDEA is an IDE from JetBrains. It has both Community and commercial editions. IntelliJ
IDEA is enormously popular among developers and is regularly updated with the latest
language and platform features.

For the purpose of this cookbook, we will use the Community Edition. The steps are the same
for the commercial edition as well.

As of writing this book, IntelliJ IDEA 14.0.3 is the most recent edition. The screenshots in this
book reflect this version.

Chapter 2

37

Getting ready
As IntelliJ IDEA needs a Java environment to run, let us first ensure that the Java environment
is set up on our system:

1.	 Ensure that JDK is installed.

2.	 Download IntelliJ IDEA by visiting https://www.jetbrains.com/idea/ and
clicking on the Download link.

3.	 Ensure the project SDK is set to your Java installation.

How to do it...
Use the following steps to create a new Maven project in IntelliJ IDEA:

1.	 Open IntelliJ IDEA.

2.	 Click on Create New Project.

3.	 Choose Maven.

4.	 Select the Create from archetype option and choose maven-archetype-quickstart:1.1:

5.	 Specify the values required to create the project:

https://www.jetbrains.com/idea/

IDE Integration with Maven

38

6.	 Confirm the values for the project:

You are done! A new Maven project is created in IntelliJ IDEA.

How it works...
IntelliJ IDEA has first-class support for Maven. It can create a new Maven project as per
archetype by downloading the required plugins and dependencies from the repository. It uses
the configured Maven settings, which can be customized as specified in the next section.

There's more...
You can customize Maven in IntelliJ IDEA by opening the Maven settings as follows:

1.	 Navigate to Configure | Settings:

Chapter 2

39

2.	 Click on Maven on the left panel:

3.	 Click on Override to change the values as you desire.

4.	 Change a few of the default options such as Work offline or Output level:, as shown
in the preceding screenshot.

IDE Integration with Maven

40

Importing an existing Maven project in
IntelliJ IDEA

While we can use IntelliJ IDEA to create a new project, in most cases you will already have an
existing project in your filesystem. In the latter scenario, you will want to import this project.

Getting ready
As IntelliJ IDEA needs a Java environment to run, let us first ensure that the Java environment
is set up on our system:

1.	 Ensure that JDK is installed.

2.	 Download IntelliJ IDEA by visiting https://www.jetbrains.com/idea/ and
clicking on the Download link.

3.	 Ensure the project SDK is set to your Java installation.

How to do it...
To import an existing Maven project in IntelliJ IDEA, perform the following steps:

1.	 Start IntelliJ IDEA.

2.	 Choose Import Project. Browse for the simple project that we created earlier:

https://www.jetbrains.com/idea/

Chapter 2

41

3.	 Make changes if required. The changes can be made as shown in the
following screenshot:

4.	 Confirm the project to be imported:

You are done! The existing Maven project is now imported to IntelliJ IDEA.

IDE Integration with Maven

42

How it works...
IntelliJ IDEA has first-class support for Maven. It can parse pom files to determine the project
structure and dependencies, and lay them out in the IDE.

Once the project is opened in IntelliJ IDEA, the following folders and files get created:

There's more...
All Maven-related operations can be conducted from the IDE by opening the Maven Projects
tab in IntelliJ IDEA:

You can choose Lifecycle and click on the phase to be run. For instance, in the preceding
screenshot, we run the package phase of the Lifecycle.

43

3
Maven Lifecycle

Let us start putting Maven to use. In this chapter, we will cover the following recipes:

ff Understanding the Maven lifecycle, phases, and goals

ff Understanding the pom file

ff Understanding Maven settings

ff Understanding command-line options in Maven

ff Understanding Maven profiles

ff Adding a new Maven profile

ff Activating/deactivating a Maven profile

ff Using properties in Maven

ff Specifying source encoding for platform-independent builds

Introduction
We have set up Maven on our computer. We have created a simple Maven project and seen
how to build it. We have also set up Maven to run on our preferred IDE.

Let us now understand better how Maven works and how to use it. We will start by
understanding the Maven build lifecycle as well as the phases and goals that make up the
lifecycle. We will also explore Maven's project configuration pom file as well as the settings file.
We will also try to understand what Maven profiles are and why they are needed. Finally, we
will look at Maven's properties.

Maven Lifecycle

44

Understanding the Maven lifecycle, phases,
and goals

As we start using Maven, we need to understand the Maven project lifecycle. Maven is
implemented based around the concept of a build lifecycle. This means there is a clearly
defined process to build and distribute artifacts with Maven.

What makes up a lifecycle? The stages of a lifecycle are called phases. In each phase, one or
more goals can be executed.

Getting ready
Maven is set up on your system and is verified as working. For setting up Apache Maven, refer
to the first three recipes of Chapter 1, Getting Started.

How to do it...
To build a Maven project, perform the following steps:

1.	 Open the command prompt.

2.	 Run one of the Maven commands that we are familiar with:
mvn package

3.	 Observe the various steps that get executed.

How it works...
Maven has three built-in build lifecycles:

ff default: The default lifecycle handles project build and deployment

ff clean: The clean lifecycle cleans up the files and folders produced by Maven

ff site: The site lifecycle handles the creation of project documentation

You will have noticed that you do not have to explicitly specify a lifecycle. Instead, what you
specify is a phase. Maven infers the lifecycle based on the phase specified.

For instance, the package phase indicates it is the default lifecycle.

When Maven is run with the package phase as a parameter, the default build lifecycle gets
executed. Maven runs all the phases in sequence, up to and including the specified phase (in
our case, the package phase).

Chapter 3

45

While each lifecycle has a number of phases, let us look at the important phases for
each lifecycle:

ff The clean lifecycle: The clean phase removes all the files and folders created by
Maven as part of its build

ff The site lifecycle: The site phase generates the project's documentation, which
can be published, as well as a template that can be customized further

ff The default lifecycle: The following are some of the important phases of the
default lifecycle:

�� validate: This phase validates that all project information is available
and correct

�� process-resources: This phase copies project resources to the
destination to package

�� compile: This phase compiles the source code

�� test: This phase runs unit tests within a suitable framework

�� package: This phase packages the compiled code in its distribution format

�� integration-test: This phase processes the package in the integration
test environment

�� verify: This phase runs checks to verify that the package is valid

�� install: This phase installs the package in the local repository

�� deploy: This phase installs the final package in the configured repository

Each phase is made up of plugin goals. A plugin goal is a specific task that builds the project.
Some goals make sense only in specific phases (for example, the compile goal of the Maven
Compiler plugin makes sense in the compile phase, but the checkstyle goal of the Maven
Checkstyle plugin can potentially be run in any phase). So some goals are bound to a specific
phase of a lifecycle, while others are not.

Here is a table of phases, plugins, and goals:

Phase Plugin Goal
clean Maven Clean plugin clean
site Maven Site plugin site
process-resources Maven Resources plugin resource
compile Maven Compiler plugin compile
test Maven Surefire plugin test
package Varies based on the packaging; for

instance, the Maven JAR plugin
jar (in the case of a
Maven JAR plugin)

Maven Lifecycle

46

Phase Plugin Goal
install Maven Install plugin install
deploy Maven Deploy plugin deploy

Understanding the pom file
Every Maven project has a pom file that defines what the project is all about and how it should
be built. Pom is an acronym for project object model. Let us take a peek at this file.

How to do it...
Let's understand the pom file, by performing the following steps:

1.	 Go to a Maven project that we created in previous chapters.

2.	 Open the file named pom.xml.

How it works...
A pom file is an XML file that is based on a specific schema, as specified at the top of the file:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-
4.0.0.xsd">

There is also a modelVersion element that defines the version of this schema:

<modelVersion>4.0.0</modelVersion>

These are the basic elements of a pom file.

The groupId element is a unique identifier of the organization to which the project belongs.
For our sample project, it is org.packt.cookbook. It is a good practice to follow the reverse
domain name notation to specify this:

<groupId>...</groupId>

The artifactId element is the name of the project. For our sample project, it is
simple-project:

<artifactId>...</artifactId>

Chapter 3

47

The version element is the specific instance of the project, corresponding to the source
code at a particular instance of time. In our case, it is 1.0-SNAPSHOT, which is a default
version during development:

<version>...</version>

We will explore the difference between the SNAPSHOT and concrete versions later in
the book.

The combination of groupId, artifactId, and version uniquely identifies the project. In
this sense, they are the coordinates of the project.

The packaging element indicates the artifact type of the project. This is typically a jar, war,
zip, or in some cases, a pom:

 <packaging>...</packaging>

The dependencies element section of the pom file defines all the dependent projects of this
project. This would typically be third-party libraries required to build, test, and run the project:

 <dependencies>...</dependencies>

The parent section is used to indicate a relationship, specifically a parent-child relationship.
If the project is part of a multi-module project or inherits project information from another
project, then the details are specified in this section:

 <parent>...</parent>

Maven properties are placeholders. Their values are accessible anywhere in the pom file by
using ${key}, where key is the property name:

 <properties>...</properties>

A project with modules is known as a multi-module or aggregator project. Modules are
projects that this pom file lists and are executed as a group:

 <modules>...</modules>

For more information on multi-module projects refer to Chapter 9, Multi-module Projects.

Understanding Maven settings
Now that we have got an idea of the essential elements of a pom file, let us also examine the
various setting properties of Maven.

Maven Lifecycle

48

How to do it...
To understand the Maven settings, perform the following steps:

1.	 Open the settings.xml file in the .m2 subfolder of your HOME folder, if it exists:

2.	 Otherwise, open the settings.xml file in the conf folder of your Maven installation
(as defined in M2_HOME).

How it works...
Maven has a global settings file called settings.xml in the conf folder of the Maven
installation. The values in this file can be overridden in the user settings file— the settings.
xml file—that is present in the .m2 subfolder of your HOME folder.

The settings file contains configurations that are not specific to a project, but are global in
nature. It also contains information that is not meant to be distributed (for example, passwords).

Like the pom file, the settings file is also an XML file based on an XML schema. It starts
as follows:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-
1.0.0.xsd">

Let us now see some of the typical setting configurations:

The localRepository element
The following code represents the localRepository element in the settings file:

<localRepository>${user.home}/.m2/repository</localRepository>

Chapter 3

49

We have seen this in the Changing the location of the Maven repository recipe in Chapter 1,
Getting Started, where we wanted to change the default location where Maven
dependencies and plugins are stored.

The offline element
The following code represents the offline element in the settings file:

<offline>false</offline>

This setting indicates whether Maven should operate in offline mode; that is, it should not
download updates or dependencies if they are not available.

The proxies element
We saw proxies in the Running Maven behind an HTTP proxy server recipe in Chapter 1,
Getting Started. The following code represents the proxies element in the settings file:

<proxies>
 <proxy>
 <id>myproxy</id>
 <active>true</active>
 <protocol>http</protocol>
 <host>proxy.myorg.com</host>
 <port>8080</port>
 <username>proxyuser</username>
 <password>somepassword</password>
 <nonProxyHosts>*.myorg.com </nonProxyHosts>
 </proxy>
 </proxies>

This allows us to specify a proxy server to connect to the Internet. This is relevant in enterprises
where direct access to the Internet might be blocked due to security or other reasons.

The mirrors element
The following code represents the mirrors element in the settings file:

 <mirror>
 <id>nexus</id>
 <name>My Company Mirror</name>
 <url>http://nexus.mycompany.com/pub/maven2</url>
 <mirrorOf>central</mirrorOf>
 </mirror>

Maven Lifecycle

50

Instead of downloading dependencies from Maven Central, you can configure Maven
to download them from a mirror of the central repository. This is extremely useful in an
organization where the repository can be mirrored in a repository manager within an
organization and all users can download dependencies from this mirror.

The repositories element
Repositories are remote collections of projects that Maven uses to populate the required
dependencies to a local repository. There are two types of repositories—releases and
snapshots—and Maven allows specific configurations for each, as illustrated in the
following code:

<repositories>
 <repository>
 <id>codehausSnapshots</id>
 <name>Codehaus Snapshots</name>
 <releases>
 <enabled>false</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://snapshots.maven.codehaus.org/maven2</url>
 <layout>default</layout>
 </repository>
 </repositories>

The pluginRepositories element
While repositories store dependencies required for the project, the pluginRepositories
element stores plugin libraries and associated files. Maven distinguishes between these
two by having separate configurations for both. The elements are the same as that for
repositories, except that the parent element is pluginRepositories.

Chapter 3

51

The servers element
The repositories for download and deployment are defined by the repositories and
distributionManagement elements of the pom file. However, settings such as username
and password cannot be distributed in the pom file for confidentiality reasons. Maven
provides a mechanism to specify this in the settings file:

<servers>
 <server>
 <id>server001</id>
 <username>my_login</username>
 <password>my_password</password>
 <privateKey>${user.home}/.ssh/id_dsa</privateKey>
 <passphrase>some_passphrase</passphrase>
 <filePermissions>664</filePermissions>
 <directoryPermissions>775</directoryPermissions>
 <configuration></configuration>
 </server>
 </servers>

Understanding command-line options in
Maven

While the most popular way to run Maven is to specify goals, Maven provides a number
of command-line options to customize its behavior. They range from specifying values for
properties, to varying the verbosity of the Maven output. It is useful to know some of the
arguments, as they will often help with troubleshooting issues with Maven.

Getting ready
Maven is set up on your system and is verified as working.

How to do it...
To understand command-line options in Maven, perform the following steps:

1.	 Open the command prompt.

2.	 Run the following command:
mvn –h

Maven Lifecycle

52

3.	 You will see an output such as the following screenshot:

A number of options that Maven supports are displayed in the preceding screenshot.

How it works...
We will briefly discuss the command-line options that Maven provides.

Options
When there is an error while running Maven, this flag will result in Maven displaying a detailed
stack trace of the error:

-e –errors

When the quiet option is enabled, only errors are displayed. The other outputs are not
printed. This permits speeding up builds where verbose outputs are usually displayed:

-q –quiet

We have seen the version option to display the Maven version in the first three recipes of
Chapter 1, Getting Started. This is also a simple way to check if Maven is installed and working:

-v –version

Chapter 3

53

When invoked with the offline option, Maven does not attempt to download any
dependency or plugin from the Internet. This option will work correctly, provided Maven has all
the information required for the project to be built and run. We will see how to enable projects
to run in offline mode:

-o –offline

When enabled with the debug option, Maven prints a lot of verbose output about every step
that it performs. This is typically used to troubleshoot any build issues:

-X –debug

Understanding Maven profiles
Maven is designed to create portable builds that are expected to work across different
platforms and in various runtime environments.

Now, there may be situations where you need to build the same project differently. For
instance, you may need to build a project differently for the purpose of staging and production.
You may not want to build a project that requires a Linux library on Windows.

How to do it...
Let's understand Maven profiles by performing the following steps:

1.	 Open settings.xml in the conf subfolder of your Maven installation (as specified
in M2_HOME).

2.	 View the commented section of profiles.

How it works...
Maven provides three type of profiles:

ff Per Project profile as defined in the pom file of the project

ff Per User profile as defined in the user settings file (in the .m2 subfolder of the user's
HOME folder)

ff A Global profile as defined in the global settings file (in the conf folder of M2_HOME)

By creating different profiles for different variations of the project build, you can use the same
pom file to create differing builds.

One should be careful to ensure that this does not result in a non-portable build.

Maven Lifecycle

54

Adding a new Maven profile
Let us add a simple Maven profile to test our understanding of profiles.

How to do it...
Let's create a new Maven profile, by performing the following steps:

1.	 Create a new Maven project using the commands specified in the Creating a simple
project with Maven recipe in Chapter 1, Getting Started.

2.	 Add the following code in the pom.xml file:
<profiles>
 <profile>
 <id>dev</id>
 <activation>
 <activeByDefault>false</activeByDefault>
 </activation>
 </profile>
 </profiles>

How it works...
There are two ways to create a profile: in the project's pom file or in the settings file. It is
important to note that, if a profile is active from the settings file, its values will override any
profiles with equivalent IDs in the pom file.

The profile in pom.xml can have the following elements:

<profile>
 <id>test</id>
 <activation>...</activation>
 <build>...</build>
 <modules>...</modules>
 <repositories>...</repositories>
 <pluginRepositories>...</pluginRepositories>
 <dependencies>...</dependencies>
 <reporting>...</reporting>
 <dependencyManagement>...</dependencyManagement>
 <distributionManagement>...</distributionManagement>
 </profile>

Chapter 3

55

The profile in settings.xml can only have the following elements:

<profile>
 <id>test</id>
 <activation>...</activation>
 <repositories>...</repositories>
 <pluginRepositories>...</pluginRepositories>
 <properties>…</properties>
 </profile>

See also
ff The Activating/deactivating a Maven profile recipe in this chapter

Activating/deactivating a Maven profile
A profile can be specified in pom.xml or settings.xml. Each profile may be created for
a specific purpose; for instance, to run on a particular platform or to run in an integration
environment. All profiles may not need to run in all cases. Maven provides a mechanism to
activate and deactivate a profile as required.

Getting ready
Use the project where we created the profile to add a new Maven profile section.

How to do it...
Let's perform the following steps to activate/deactivate a Maven profile:

1.	 To deactivate a profile, set the following value in the activeByDefault element:
<activeByDefault>false</activeByDefault>

2.	 Run the Maven command to check if the profile is active:
mvn help:active-profiles

The output for the preceding command is shown as follows:

[INFO] --- maven-help-plugin:2.2:active-profiles (default-cli) @
project-with-profile ---

[INFO]

Maven Lifecycle

56

Active Profiles for Project 'com.packt.cookbook:project-with-
profile:jar:1.0-SNAPSHOT':

The following profiles are active:

3.	 To activate the profile, set the following value:
<activeByDefault>true</activeByDefault>

4.	 Confirm that the profile is now active, by executing the following command:

mvn help:active-profiles

The output for preceding command is shown as follows:

The following profiles are active:

- dev (source: com.packt.cookbook:project-with-profile:1.0-
SNAPSHOT)

How it works...
Profiles can be triggered in one of the following ways:

ff Explicitly: Here, Maven provides a command-line option to invoke a profile, shown in
the following command:
mvn –P dev package

This invokes the dev profile

ff Through settings: A profile can be activated in the settings file by setting the
<active> property to true. If activated, when the project is built, the profile is
invoked:
 <activeProfiles>
 <activeProfile>dev</activeProfile>
 </activeProfiles>

ff Based on environment variables: The profile can be activated based on any
environment variable and the value that it has:
<profile>
 <activation>
 <property>
 <name>debug</name>
 </property>
 </activation>
 ...
</profile>

Chapter 3

57

If the system property debug is defined and has any value, then the profile is
activated

ff Based on OS settings: The following profile will only run on Windows:
<profile>
 <activation>
 <os>
 <family>Windows</family>
 </os>
 </activation>
 ...
 </profile>

ff Present or missing files: The following profile will be activated if the target/site
file is missing:

<profile>
 <activation>
 <file>
 <missing>target/site</missing>
 </file>
 </activation>
 </profile>

Using properties in Maven
Maven allows us to define as well as use properties. Properties allow us to avoid hardcoding
values in multiple places such as versions of dependencies. They also provide flexibility to the
build tool by allowing values to be passed at runtime.

How to do it...
Let's define and use Maven properties by performing the following steps:

1.	 Open the pom file of a project that we created earlier.

2.	 Define a property:
<properties>
 <junit.version>3.8.1</junit.version>
</properties>

Maven Lifecycle

58

3.	 Use the property:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>${junit.version}</version>
 <scope>test</scope>
 </dependency>

How it works...
There are different types of properties. They are as follows:

ff Environment variables: Prefixing a variable with env. will return the value of the
shell's environment variable. For example, ${env.PATH} will return the value of the
PATH variable.

ff pom variables: Prefixing a variable with project. will return the value of that
element in the pom file. For example, ${project.version} will return the value in
the <version> tag of the pom file.

ff The settings variable: Prefixing a variable with settings. will return the value of
that element in the settings file. For example, ${settings.offline} will return
the value <offline> in the settings file.

ff Java properties: Any property available through the System.getProperties()
method in Java is available. For example, ${java.home}.

ff Normal properties: Values that are specified in the <properties> tag, which is
shown in the following example:

<properties>
 <java.version>1.7</java.version>
</properties>

Here, the ${java.version} command will return 1.7

Do remember that properties and profiles can break the portability of the project. Two specific
practices for looking up in problem areas are as follows:

ff External properties: These are properties defined outside the pom file (in a settings
file) but used as part of a plugin configuration. The absence of this property definition
will break the build.

ff Incomplete specification: This is where properties are defined for different build
environments. A missing definition for one will break the build.

Chapter 3

59

See also
ff The Specifying source encoding for platform-independent builds recipe in

this chapter.

Specifying source encoding for platform-
independent builds

Let us put our learning of properties to practical use. You will have observed the following
warning while building the simple project that we created in the Building a simple project with
Maven recipe in Chapter 1, Getting Started:

[WARNING] Using platform encoding (Cp1252 actually) to copy filtered
resources,

i.e. build is platform dependent!

Let us remove this warning if we really do not want the build to be platform dependent.

How to do it...
Let's specify the source encoding for platform-independent builds in our Maven project, by
performing the following steps:

1.	 Open the pom file we created previously.

2.	 Add the following code:
<properties>
 <project.build.sourceEncoding>UTF-8
</project.build.sourceEncoding>
 </properties>

3.	 Run the following command:
mvn package

4.	 Observe that the warning is no longer present.

How it works...
The project.build.sourceEncoding property explicitly specifies the encoding of the
source files. Maven plugins get information about the encoding from the value of this property
and use it.

This value will be the same on any platform that the project is built on and, thus, the build
becomes independent of the platform.

61

4
Essential Maven Plugins

In this chapter, we will look at the following recipes:

ff Using the Maven Clean plugin

ff Using the Maven Compiler plugin

ff Changing the compiler used by the Maven Compiler plugin

ff Specifying the Java version for the Compiler plugin

ff Using the Maven Surefire plugin to run unit tests

ff Using the Maven Failsafe plugin to run integration tests

ff Using the Maven Resources plugin

ff Filtering using resources

ff Using Eclipse to run Maven goals

ff Using NetBeans to run Maven goals

ff Using IntelliJ IDEA to run Maven goals

Introduction
In the previous chapter, we learned about the Maven lifecycle and the phases and goals of
the lifecycle, understood the essential elements of the pom project configuration file and the
settings file, and learned to use Maven profiles and properties.

In this chapter, we will look at how to add and configure plugins to the pom file and use
them to perform essential build tasks. Maven has a plugin architecture, and except for core
functionalities, every task in Maven is done using plugins. There are a number of plugins that
are provided by Maven. In addition, there are several third-party plugins. Maven also provides
a mechanism for users to develop their own plugins if they choose to do so.

Essential Maven Plugins

62

Using the Maven Clean plugin
When a project is built, it is important to ensure that it is not adversely affected by artifacts of an
earlier build. Usually, build tools generate artifacts in a well-defined folder, namely the target
folder, called project working directory. Before a new build, this folder is usually deleted.

Getting ready
Maven is set up on your system and is verified to work. To do this, refer to the first three
recipes of Chapter 1, Getting Started.

How to do it...
Let's start using the Maven Clean plugin by performing the following steps:

1.	 Open the command prompt.

2.	 Run the following Maven command in the simple Maven project that we created in
the Creating a simple project with Maven recipe in Chapter 1, Getting Started:
mvn clean

3.	 Observe the various steps that get executed:

[INFO] --- maven-clean-plugin:2.4.1:clean (default-clean) @
simple-project ---

[INFO] Deleting C:\projects\apache-maven-cookbook\simple-
project\target

If there are no files/folders to delete, you will not see the following output:

[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @
simple-project ---

[INFO] ---

[INFO] BUILD SUCCESS

How it works...
When the clean phase is invoked, Maven automatically infers that the clean lifecycle
is invoked.

It uses the Maven Clean plugin for this. The plugin has only one goal, namely clean, to clean
the working directory.

Chapter 4

63

In the case of Maven, the working directory is called target. Maven creates this directory
when a build is done. The clean goal of the plugin attempts to delete this directory.

As clean is a separate lifecycle from the default (build) lifecycle, clean needs to be
explicitly called before the default lifecycle if you need to ensure that the working directory
is removed.

There's more...
In this section, we will discuss how to run the Clean plugin automatically during the build, the
steps to skip the deletion of working directory, and the process of deleting some additional
files/folders.

Cleaning automatically
In the previous example, as we used the default behavior of the plugin and did not need to
make any configurations, we did not need to make any change to the pom configuration file.
However, what if we want to ensure that the clean goal is run without explicitly calling it?

To do this, we need to define the plugin with some parameters in our pom file:

1.	 Let us add the following code in our pom file:
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <id>auto-clean</id>
 <phase>initialize</phase>
 <goals>
 <goal>clean</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

Though the preceding declaration may look verbose, all we are asking is for the
clean goal to be invoked during the initialize phase of the project. We are
identifying this execution with an id called auto-clean.

Essential Maven Plugins

64

2.	 Now run the following command on the command prompt:
mvn package

3.	 You will see the following screenshot:

Even though we did not call the clean phase, the clean goal got invoked because it was
configured in the pom file to run in the initialize phase.

Skipping the deletion of the working directory
Let us look at the converse of the preceding use case. For some reason, we do not want the
working directory to be deleted, even if clean is run. To do this, perform the following steps:

1.	 Configure the plugin as follows:
 <plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <skip>true</skip>
 </configuration>
 </plugin>

2.	 Run the following command on the command prompt:
mvn clean

3.	 Observe the output, which is as follows:

C:\projects\apache-maven-cookbook\project-with-clean-
disabled>mvn clean

[INFO] Scanning for projects...

[INFO]

[INFO] ---

[INFO] Building Project with clean disabled 1.0-SNAPSHOT

Chapter 4

65

[INFO] ---

[INFO]

[INFO] --- maven-clean-plugin:2.6:clean (default-clean) @
project-with-clean-disabled ---

[INFO] Clean is skipped.

Setting the skip plugin property to true indicates to Maven that the clean goal must
be skipped.

Deleting additional folders/files
What if your project has an additional folder, say report, besides target, which is perhaps
created by another script, and you want that to be deleted as well? We use the following steps
to do the same:

1.	 Configure the plugin as follows:
 <plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <filesets>
 <fileset>
 <directory>${basedir}/report</directory>
 </fileset>
 </filesets>
 </configuration>
 </plugin>

You have now configured the plugin to delete an additional directory

2.	 Create a report folder for the purpose of testing.

3.	 Run the following command on command prompt:
mvn clean

4.	 You will now see the following output:

C:\projects\apache-maven-cookbook\project-with-clean-
additional-folder>mvn clean

[INFO] Scanning for projects...

[INFO]

[INFO] ---

[INFO] Building Project with clean additional folder 1.0-
SNAPSHOT

Essential Maven Plugins

66

[INFO] ---

[INFO]

[INFO] --- maven-clean-plugin:2.6:clean (default-clean) @
project-with-clean-additional-folder ---

[INFO] Deleting C:\projects\apache-maven-cookbook\project-
with-clean-additional-folder\report (includes = [], excludes =
[])

The report folder is deleted as well. In fact, Maven can be configured to delete (or not
delete) specific folders and files inside that folder as well.

Using the Maven Compiler plugin
Compilation is an essential task performed by a build tool. Maven uses the Maven Compiler
plugin to do the compilation. The plugin provides several configurations to make the
compilation flexible.

How to do it...
To use the Maven Compiler plugin, perform the following steps:

1.	 Open a command prompt.

2.	 Run the following Maven command on the simple project that we created in the
Creating a simple project with Maven recipe in Chapter 1, Getting Started:
mvn compile

3.	 Observe the output, which is as follows:

[INFO] --- maven-compiler-plugin:2.3.2:compile (default-
compile) @ simple-project ---

[INFO] Compiling 1 source file to C:\projects\apache-maven-
cookbook\simple-project\target\classes

How it works...
The compile parameter indicates the invocation of the default lifecycle to Maven. As
illustrated in the Understanding the Maven lifecycle, phases, and goals recipe in Chapter 3,
Maven Lifecycle, Maven runs all the phases up to and including the compile phase in order.

The compile phase itself essentially runs the compile goal of the Maven Compiler plugin.

This compiles the Java source files to classes in the target/classes folder.

Chapter 4

67

One question would have struck you. What about the test classes? Why does the compile
phase not compile the test sources?

The answer lies in the way Maven handles the lifecycle and phases of the lifecycle. Why would
you want to compile the test sources unless you want to run the tests?

There's more...
What if we want to compile the test sources?

Let us try running the following command on the command prompt:

mvn test

Observe the output as shown in the following screenshot:

As we specified the test phase, Maven ran all phases prior to it, which includes compiling the
test sources using the testCompile goal of the Maven Compiler plugin.

Changing the compiler used by the Maven
Compiler plugin

Let us say we are running Maven using JDK 7 but our project requires the sources to be
compiled using JDK 8. Essentially, we want to use a JDK for compilation that is different from
the JDK running Maven.

In this case, we can specify the compiler we want to use to Maven.

How to do it...
Use the following steps to change the compiler used by the Maven Compiler plugin:

1.	 Open the command prompt.

Essential Maven Plugins

68

2.	 Define a Maven property to store the location details for Java 8:
<properties>
 <JAVA8.HOME>C:/Program
Files/Java/jdk1.8.0_20</JAVA8.HOME>
</properties>

The portable way to do this would be to define this property in a
profile in the user's settings.xml file. This is because the
location of JAVA_HOME may be different for different users based on
their operating system or preferred installation location.

3.	 Add the following plugin configuration to the Maven project:
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.2</version>
 <configuration>
 <verbose>true</verbose>
 <fork>true</fork>
 <executable>${JAVA8.HOME}/bin/javac</executable>
 <compilerVersion>1.8</compilerVersion>
 </configuration>
 </plugin>

 </plugins>

The fork element needs to be set to true for the preceding code to
work. Maven will invoke the different java compiler in a separate thread
and hence the need to fork. This is so that Maven can load a different
JVM corresponding to a different JDK.

4.	 Run the following command on a command prompt:
mvn compile

How it works...
There would no visible difference in the way the compilation happens, except that now, the
compiler specified in the executable element will get invoked.

Chapter 4

69

See also
ff The Specifying the Java version for the Compiler plugin recipe in this chapter

Specifying the Java version for the
Compiler plugin

When we created a new project in Eclipse, you would have observed the following warning:

Why does this error occur? This is because the Maven Compiler plugin, by default, considers
the source and target Java version to be 1.5 (for backward compatibility reasons).

Let us resolve this warning.

How to do it...
Let us assume you have configured Java 8 as the default Java runtime in Eclipse, and perform
the following steps:

1.	 Open the Eclipse project.

2.	 Add the following configuration to the Maven Compiler plugin:
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.2</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>

Essential Maven Plugins

70

3.	 Alternately, add the following properties in the properties element (this is
essentially a shortcut for the earlier process):
<properties>
 <maven.compiler.target>1.8</maven.compiler.target>
 <maven.compiler.source>1.8</maven.compiler.source>
</properties>

4.	 Check if the warning goes away.

How it works...
When the source and target versions of Java are explicitly set to the compiler, the version
of java used in the source code as well as the desired version of the compiled classes are
unambiguous. There is no likelihood of the compiler compiling to the incorrect target
version of Java.

Consequently, the Eclipse warning goes away.

There's more...
You may need to pass compiler arguments in the compilerArguement element to the
compiler. For instance, you may want to identify the usage of deprecated APIs in the code. You
can do this by adding the following configuration:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.2</version>
 <configuration>
 <compilerArgument>-Xlint:deprecation</compilerArgument>
 </configuration>
</plugin>

When run on a code that has a deprecation, you can see the relevant lines:

[INFO] Compiling 1 source file to C:\projects\apache-maven-
cookbook\project-with-deprecation\target\classes

[WARNING] /C:/projects/apache-maven-cookbook/project-with-
deprecation/src/main/java/com/packt/cookbook/App.java:[12,24]
Date(int,int,int) in java.util.Date has been deprecated

Chapter 4

71

Using the Maven Surefire plugin to run unit
tests

A best practice of software development is writing automated unit tests for the code that you
develop. Let us now see how to run these tests.

The plugin that does this job is the Maven Surefire plugin.

How to do it...
To run unit tests using the Maven Surefire plugin, perform the following steps:

1.	 Open the command prompt.

2.	 Run the following command on one of our sample projects:
mvn test

3.	 Observe the various steps that get executed:

[INFO] --- maven-surefire-plugin:2.10:test (default-test) @
simple-project ---

[INFO] Surefire report directory: C:\projects\apache-maven-
cookbook\simple-project\target\surefire-reports

 T E S T S

Running com.packt.cookbook.AppTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time
elapsed: 0 sec

Results:

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

How it works...
The test parameter indicates the invocation of the default lifecycle to Maven. As illustrated
in the Understanding the Maven lifecycle, phases, and goals recipe in Chapter 3, Maven
Lifecycle, Maven runs all the phases up to and including the test phase, in order.

The test phase itself essentially runs the test goal of the Maven Surefire plugin.

This runs the test classes that are present in the target/test-classes folder.

Essential Maven Plugins

72

The test that we have is a test written using the JUnit framework. Not only does the plugin run
the test, it also generates a test report that can be used to analyze failures as well as test
coverage.

Check the surefire-reports folder:

While the text file contains the summary report, the XML file has the details of each of
the tests.

There's more...
The Surefire plugin provides many configurations to make testing easier.

Using TestNG
JUnit is not the only way to write automated unit tests. You could use TestNG (http://
testng.org) or even write your tests without using any framework (by using Java asserts).

Surefire determines the framework to be used based on the dependencies that have
been defined.

Our earlier example ran JUnit tests because we had defined the junit dependency in
the pom file.

Let us now write a test using TestNG and see what needs to change for it to work. Refer to
the Maven project with TestNG.

The only change in the pom file is to replace the junit dependency with testng:

<dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>6.8.8</version>
 <scope>test</scope>
</dependency>

Run the following command on command prompt:
mvn test

Chapter 4

73

The tests are now run in using TestNG:

[INFO]

[INFO] --- maven-surefire-plugin:2.10:test (default-test) @ project-
with-testNG---

[INFO] Surefire report directory: C:\projects\apache-maven-
cookbook\project-with-testNG\target\surefire-reports

T E S T S

Running com.packt.cookbook.AppTest

Set up run

Fast test

Slow test

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.609
sec

Now, examine the surefire-reports folder. It has a different set of files corresponding to
testng:

The same tests work with TestNG and JUnit as TestNG can run JUnit tests.

Essential Maven Plugins

74

Skipping tests
There may be situations where you might not want to run the tests; some tests are possibly
broken. This can be done in the following ways:

ff Configuring the Surefire plugin in the pom file: Configure your Surefire plugin in the
pom.xml file using the following code:
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.17</version>
 <configuration>
 <skipTests>true</skipTests>
 </configuration>
 </plugin>
 </plugins>

Now, run the following command:
mvn test

You will see the following output:

[INFO]

[INFO] --- maven-surefire-plugin:2.17:test (default-test) @
project-with-tests-skipped ---

[INFO] Tests are skipped.

ff Issuing an mvn command with a command-line parameter: The tests can be skipped
even by issuing the following command:
mvn –DskipTests tests

Skipping the compilation of test sources
The skipTests parameter used in the preceding mvn command skips running of tests, but
the test sources still get compiled by the earlier phases/goals. To skip the compilation of test
sources, you can run the following command:

mvn –Dmaven.test.skip=true package

This will completely skip the test compilation and test execution.

Chapter 4

75

Using the Maven Failsafe plugin to run
integration tests

In addition to unit tests, Maven also allows you to automate the running of your integration
tests. While unit tests are run during the test phase of the build lifecycle, integration tests
are run during the verify phase. The Maven Failsafe plugin is used to run integration tests.

How to do it...
To run integration tests using Maven Failsafe plugin, perform the following steps:

1.	 Open a project containing integration tests, namely project-with-integration-
test.

2.	 Add the following plugin configuration to the pom file:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>2.18</version>
 <executions>
 <execution>
 <id>integration-tests</id>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

3.	 Run the following command:
mvn verify

Essential Maven Plugins

76

4.	 Observe the various steps that get executed:

How it works...
We have specified in the pom file that the integration test must be run and the goals of the
Maven Failsafe plugin must be verified. These goals are bound to the verify phase of Maven
and get invoked.

Using the Maven Resources plugin
The Resources plugin comes into picture to copy project resources to the output directory. The
resources can be for the project to run or for the purpose of testing.

How to do it...
Let's start using the Maven Resources plugin by performing the following steps:

1.	 Open the command prompt.

2.	 Run the following command on the simple project that we created earlier:
mvn process-resources

Chapter 4

77

3.	 Observe what happens:

[INFO] --- maven-resources-plugin:2.5:resources (default-
resources) @ simple-project ---

[INFO] skip non existing resourceDirectory C:\projects\apache-
maven-cookbook\simple-project\src\main\resources

How it works...
When we specify the process-resources phase, Maven executes the resources goal of
maven-resources-plugin, which is bound to the process-resources lifecycle phase.

In the earlier project, there are no resources and hence, resources are not copied.

If you add a file in src\main\resources (as in the case of the project-with-
resources project), you will see the following output:

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @
project-with-properties ---

[INFO] Copying 1 resource

You could also explicitly invoke the plugin's goal as follows:

mvn resources:resources

You could also invoke any phase following the process-resources phase, which will trigger
resource processing as well:

mvn compile

There is a separate goal to copy test resources to provide separation of the main and test
resources. Like project resources, the test resource processing can be invoked in three ways,
which are as follows:

ff By specifying a phase that will automatically invoke phases before it:
mvn process-test-resources

ff By explicitly stating the plugin's goal:
mvn resources:testResources

ff By a phase following process-test-resources:
mvn test

Essential Maven Plugins

78

There's more...
What if we had resources in additional folders? The Maven Resources plugin allows us to
configure these additional folders.

Let's say we have an additional resources folder, namely src/main/additional. We can
configure the pom.xml file as follows:

<build>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 </resource>
 <resource>
 <directory>src/main/additional</directory>
 </resource>
 </resources>
 </build>

Now, run the following command:

mvn process-resources

Observe the output:

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @
project-with-additional-resources ---

[INFO] Copying 1 resource

[INFO] Copying 1 resource

The line Copying 1 resource repeats twice, indicating the copying happening from
two folders.

Filtering using resources
Now, let us see how we can put the resources features of Maven to good use, that is,
to perform variable replacements on project resources. This feature is useful when you
need to parameterize a build with different configuration values, depending on the
deployment platform.

You can define variables in your resources. Let us see how we can get the value of these
variables from properties, resource filter files, and the command line.

Chapter 4

79

How to do it...
To perform filtering using resources, use the following steps:

1.	 Add a property with a variable in the src/main/resource/app.properties file:
display.name=Hello ${project.name}

2.	 Add the following code in the pom file:
 <build>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 </resource>
 </resources>
 </build>

3.	 Invoke the process-resources phase:
mvn process-resources

4.	 Examine the processed resource app.properties in target/classes:
C:\projects\apache-maven-cookbook\project-with-resource-
filtering\target\classes>type app.properties

display.name=Hello Project with resource filtering

How it works...
In the Using properties in Maven recipe of Chapter 3, Maven Lifecycle, we saw the various
types of properties that Maven can have. In the preceding case, we set the filtering
element to true. Maven replaced the variable ${project.name} with the property value
corresponding to the name of the project defined in the pom file, namely Project with
resource filtering.

There's more...
You can override the property values from the command line:

mvn –Dproject.name="Override from command line" process-resources

Now, look at app.properties by navigating to target/classes:

C:\projects\apache-maven-cookbook\project-with-resource-
filtering>type target\classes\app.properties

display.name=Hello Override from command line

Essential Maven Plugins

80

If you have a large number of variables whose values differ based on the environment, then
you can create a file, say my-filter-values.properties, in the project codebase
holding the keys and values (say, src/filter folder) and use them as filters:

<filters>
 <filter>my-filter-values.properties</filter>
</filters>

Using Eclipse to run Maven goals
If you are using Eclipse to develop your project, it is good to know how to run some of the
plugins we have discussed earlier using the IDE.

How to do it...
To run Maven goals using Eclipse, use the following steps:

1.	 Open the simple project in Eclipse.

2.	 Right-click on the project.

3.	 Choose Run As.

4.	 View the available Maven options:

Chapter 4

81

How it works...
Eclipse provides an option to run various goals from the IDE. Among the ones we have seen in
this chapter, clean, compile, and test are offered by Eclipse. There are a few other options
as well.

In addition, Eclipse also allows us to modify the configurations as suitable.

Eclipse also allows the project to be Run As a Java Application in the traditional way (without
using any Maven plugins). Likewise, it allows a JUnit Test to be run without using Maven.

Using NetBeans to run Maven goals
Let us now see how we can run the Maven goals in NetBeans.

How to do it...
To run Maven goals using the NetBeans IDE, implement the following steps:

1.	 Open the simple project in the NetBeans IDE.

2.	 Right-click on the project.

3.	 View the available options:

Essential Maven Plugins

82

How it works...
Unlike Eclipse, NetBeans has a tighter Maven integration. This means each of the menu
options (Build, Clean and Build, Clean, and so on) call the corresponding Maven
command to do so.

For instance, clicking on the Clean option will result in the following:

As can be seen, it runs the mvn clean command.

Similarly, the Clean and Build option is equivalent to the mvn clean install command.

These are simple use cases. NetBeans provides additional configuration options to override
default Maven behavior.

Using IntelliJ IDEA to run Maven goals
Finally, let us look at what IntelliJ IDEA provides.

How to do it...
To run Maven goals using IntelliJ IDEA, perform the following steps:

1.	 Open the simple project in IntelliJ IDEA.

2.	 Select Maven Projects:

Chapter 4

83

3.	 Open Lifecycle and click on a suitable goal/phase:

Essential Maven Plugins

84

How it works...
Clicking on a Maven phase/goal invokes the corresponding Maven command and the same is
executed. For instance, clicking on compile does the following:

There are also other configuration options provided by IntelliJ IDEA to customize
Maven projects.

85

5
Dependency

Management

In this chapter, we will cover the following recipes:

ff Choosing the scope of dependency
ff Getting a report of dependencies
ff Getting into dependency and avoiding dependency hell
ff Downloading dependencies into a folder
ff Understanding SNAPSHOT dependencies
ff Handling dependency download errors
ff Detecting unused/undeclared dependencies
ff Manually installing dependencies that are not available in a repository
ff Dependency management using Eclipse
ff Dependency management using NetBeans
ff Dependency management using IntelliJ IDEA

Introduction
One of the powerful features of Maven is managing the dependencies required by the project.
It is rare for a project to be developed without using other dependencies. The typical issues
in using dependencies relate to the number and choice of dependencies, their versions,
and the transitive dependencies (a project dependency, in turn, being dependent on
other dependencies).

Maven has a way of managing the dependencies, as well as providing users with enough
flexibility to handle complexities, as they arise.

Dependency Management

86

Choosing the scope of dependency
We may use a dependency for many reasons. Some of them may be required to compile and
run the projects. There might be others only to run tests (for instance, junit). Then there may
be dependencies that are required at runtime, say logback.

How to do it...
Use the following steps to choose the scope of the dependency:

1.	 Open the Maven project we had created earlier.

2.	 Observe the following section:
<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>

3.	 Remove the preceding lines of code and run the following command:
mvn compile

4.	 Observe that it runs without any issues.

5.	 Now, run the following command:
mvn test

6.	 Note the following error:

[INFO] Compiling 1 source file to C:\projects\apache-maven-
cookbook\project-with

-dependencies\target\test-classes

[INFO] ---

[ERROR] COMPILATION ERROR:

[INFO] ---

[ERROR] /C:/projects/apache-maven-cookbook/project-with-
dependencies/src/test/java/com/packt/cookbook/AppTest.java:[3,
23] package junit.framework does not exist

Chapter 5

87

How it works...
The Java source code App.java did not have any dependency. Only the source classes were
compiled by mvn and thus, the command ran without any error.

The test code AppTest.java required the junit library to build. This is declared in the
import statement in the code. The mvn test tried to compile the test classes, and as it did not
find the dependency, it failed.

The following information needs to be specified to declare a dependency:

 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>

The preceding three elements uniquely identify the dependency.

The fourth piece of information is as follows:

<scope>test</scope>

By default, the scope is compile.

There are six different dependency scopes available:

ff compile: This dependency is required for compilation. This automatically means it is
required for testing as well as runtime (when the project is run).

ff test: This dependency is only required for tests. This means the dependency
is typically in the test code. As the test code is not used to run the project, these
dependencies are not required for runtime.

ff runtime: These dependencies are not required during compilation, but only required
to run the project. One example would be the logback dependency if you are using
Simple Logging Facade for Java (slf4j) to log and want to use logback binding.

ff provided: This tells Maven that dependency is required for compilation and runtime,
but this dependency need not be packaged with the package for distribution.
The dependency will be provided by the user. An example of this dependency is
servlet-api. Typically, application servers have these libraries.

ff system: This is similar to the provided scope. Here, we need to explicitly provide the
location of the JAR file. It is not looked up from the repository. This may be useful to
specify a dependency that is not present in the repository:
 <dependency>
 <groupId>com.myorg</groupId>
 <artifactId>some-jar</artifactId>
 <version>2.0</version>

Dependency Management

88

 <scope>system</scope>
 <systemPath>${basedir}/lib/some.jar</systemPath>
 </dependency>

ff import: This is only used on a dependency of the pom type in the
dependencyManagement section. It indicates that the specified pom should be
replaced with the dependencies in that pom's dependencyManagement section.
This is intended to centralize dependencies of large multi-module projects.

See also
ff The Manually installing dependencies that are not available in a repository recipe in

this chapter

Getting a report of dependencies
It is useful to get a list of dependencies for a Maven project in order to identify and
troubleshoot problems. The Maven Dependency plugin helps us here.

Getting ready
To appreciate this, we need to have a fairly complex project that has several transitive
dependencies. You can look at one such project at https://github.com/selendroid/
demoproject-selendroid.

The project source code is available as a Git repository. A Git repository is typically
downloaded by cloning it. To do this, install Git on your system. Refer to the Git setup link
(https://help.github.com/articles/set-up-git/) for detailed instructions.

How to do it...
Use the following steps, to get a list of dependencies for a Maven project:

1.	 Clone the open source project demoproject-selendroid.

2.	 Run the following Maven goal:
mvn dependency:list

https://github.com/selendroid/demoproject-selendroid
https://github.com/selendroid/demoproject-selendroid
https://help.github.com/articles/set-up-git/

Chapter 5

89

3.	 Observe the output as shown in the following screenshot:

How it works...
The Maven Dependency plugin has several goals to obtain information regarding
dependencies as well as manage them.

Interestingly, this goal is not bound to any phase or lifecycle of Maven. This means, when the
mvn dependency:list command is run, Maven runs the list goal and nothing else.

The dependency:list parameter tells Maven to run the list goal of the Maven
Dependency plugin. This analyzes the pom file and generates a list of dependencies for
the project.

There's more...
While the dependency list might be good enough for simple cases, a more interesting and
useful one would be a dependency report in a tree format.

This can be done by running the tree goal of Maven Dependency plugin:

mvn dependency:tree

Dependency Management

90

Running this on the preceding project gives the following output:

As we can see, this is a better representation of the transitivity of the dependencies. Now we
know that which other dependencies are used, for instance, commons-logging.

Getting into dependency and avoiding
dependency hell

As you use a number of dependencies, each of them in turn may also include further
dependencies. A situation may come when there are multiple versions of the same
dependencies in the project. This can often lead to errors.

Getting ready
To understand this, we need to have a fairly complex project that has several transitive
dependencies. You can look at one such project at https://github.com/selendroid/
demoproject-selendroid.

https://github.com/selendroid/demoproject-selendroid
https://github.com/selendroid/demoproject-selendroid

Chapter 5

91

Clone the repository on your system. Now, we are ready to see how complex dependencies
can get.

How to do it...
Use the following steps to avoid dependency hell:

1.	 Run the following command:
mvn dependency:tree -Dverbose

2.	 Note the output as shown in the following screenshot:

How it works...
As you can see, in the course of identifying the dependencies to be used in the project, Maven
does a dependency analysis. This reveals two things:

ff Two or more dependencies require the same version of another dependency. Maven
includes a dependency only once.

ff Two or more dependencies require a different version of another dependency.

Dependency Management

92

Maven resolves this by supporting the nearest definition, which means that it will use the
version of the dependency closest to your project in the tree of dependencies.

This means it will not necessarily take either the latest or the oldest version. It will go by the
version that it finds first in the order of dependencies.

Where the project fails to work due to the incorrect version being used, the correct way to
resolve is to explicitly define the desired version of the dependency in your pom file. By the
previous strategy, this being the nearest definition will get precedence over any other versions
defined in any other dependency.

There's more...
Maven provides another way to handle the preceding scenario, namely, by using the
dependencyManagement element.

This allows us to directly specify the versions of artifacts to be used when they are
encountered in transitive dependencies or in dependencies where no version has been
specified. In the example in the preceding section, the guava dependency was directly
added to demoproject-selendroid, even though it was not directly used by the
project. Instead, demoproject-selendroid can include guava as a dependency in its
dependencyManagement section and directly control which version of guava is used when,
or if, it is ever referenced.

There is no magic bullet to prevent dependency hell. Even if you manually manage the version
of a library that gets included in your project by the preceding mechanism, it does not mean
that other transitive dependencies, which depend on a different version of the same library,
will suddenly become binary compatible with the managed version.

Downloading dependencies into a folder
Some projects may have a requirement for all the dependencies to be made available, say, in
a folder. This could be to archive the dependencies used in a particular version of the build.

How to do it...
Use the following steps to download dependencies in the target/dependency folder:

1.	 Let us open the demo project that we used in the previous recipe.

2.	 Run the following command:
mvn dependency:copy-dependencies

Chapter 5

93

3.	 See the output in the target/dependency folder:

How it works...
The copy-dependencies goal of the Maven Dependency plugin copies over all the
dependencies used in the project, including transitive dependencies, to target/
dependency folder of the project.

There's more...
This goal takes several parameters to handle various use cases, such as copying pom files
of the dependencies, copying parent poms, preserving the folder structure of the repository,
and so on.

The folder location can be changed by passing the following argument:

mvn dependency:copy-dependencies -DoutputDirectory=dependencies

The dependencies will now be copied over to the dependencies folder instead of the default
target/dependency folder.

The folder structure of the repository can be preserved and the poms of the dependencies
can be copied over by running the following command:

mvn dependency:copy-dependencies -Dmdep.copyPom=true
Dmdep.useRepositoryLayout=true

Dependency Management

94

The resultant folder structure will be similar to the repository layout as shown in the
following screenshot:

Understanding SNAPSHOT dependencies
In Maven, a SNAPSHOT version is a version of the project/dependency that has not been
released. This is indicated by suffixing SNAPSHOT to the version number. Here's an example:

<version>1.0-SNAPSHOT</version>

You will notice that the project we created using the Maven archetype quickstart had a
SNAPSHOT version.

The version number specified before -SNAPSHOT is the version that the released project/
dependency is expected to have. So, 1.0-SNAPSHOT indicates 1.0 is not released yet.

As the SNAPSHOT version indicates software under development, Maven deals with these
dependencies differently.

Chapter 5

95

How to do it...
One would rarely use the SNAPSHOT version of an external dependency. If you are developing
a multi-module project in your organization, chances are you will use SNAPSHOT versions of
other modules required in your project.

Let us try the following contrived example:

1.	 Open one of the projects that we have created.

2.	 Add the following dependency:
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.1.0.BUILD-SNAPSHOT</version>
</dependency>

3.	 Add the following code to specify the repository where the dependency is available:
<repositories>
 <repository>
 <id>repository.spring.snapshot</id>
 <name>Spring Snapshot Repository</name>
 <url>http://repo.spring.io/snapshot</url>
 </repository>
</repositories>

4.	 Run the following command:
C:\projects\apache-maven-cookbook\project-with-snapshot-
dependencies>mvn verify

5.	 Observe the following results:

[INFO] Scanning for projects...

[INFO]

[INFO] ---

[INFO] Building Project with SNAPSHOT dependencies 1.0-
SNAPSHOT

[INFO] ---

Downloading:http://repo.spring.io/snapshot/org/springframework
/spring-context/4.1.2.BUILD-SNAPSHOT/maven-metadata.xml

Downloaded:http://repo.spring.io/snapshot/org/springframework/
spring-context/4.1.2.BUILD-SNAPSHOT/maven-metadata.xml (3 KB
at 1.7 KB/sec)

Dependency Management

96

Downloading:http://repo.spring.io/snapshot/org/springframework
/spring-context/4.1.2.BUILD-SNAPSHOT/spring-context-
4.1.2.BUILD-20141107.161556-92.pom

Downloaded:http://repo.spring.io/snapshot/org/springframework/
spring-context/4.1.2.BUILD-SNAPSHOT/spring-context-
4.1.2.BUILD-20141107.161556-92.pom (5 KB at 6.8 KB/sec)

How it works...
The first thing you would have seen is the need to define a specific repository to download
the dependencies. These dependencies are not available in the usual repositories. They
reside separately in repositories called snapshot repositories. In the preceding example, we
specified the snapshot repository where the desired dependencies were available.

The second thing you would notice are the filenames. Each artifact that is being downloaded
is appended with 20141107.161556-92. This is a unique identifier for each SNAPSHOT
version in the repository. This value changes each time a new SNAPSHOT version is available
in the repository.

Maven treats SNAPSHOT versions differently from release versions.

For a release version, Maven checks if the artifact is available in the local repository that is
already downloaded. If so, it does not attempt to fetch the same from the remote repositories.

For SNAPSHOT versions, even if the artifact is available locally, it checks the SNAPSHOT
version for updates in the remote repository based on the update policy that can be
configured.

By default, the update interval is once a day. This means, if Maven downloads a SNAPSHOT
dependency at noon today, it will check for an update to it at noon tomorrow and not before
that, irrespective of how many times you build the project.

The update interval can be specified in the repository section of the pom or settings file
as follows:

<updatePolicy>always<updatePolicy>

The choices are always, daily (default), interval:X (where X is an integer in minutes), or
never. Let's discuss in brief about these choices:

ff always: This checks for updates for every Maven run.

ff daily: This checks for updates once a day. This does not necessarily mean exactly
24 hours from the last check; just once a day at the start of the day.

ff interval:X: This checks for updates after a specified time.

Chapter 5

97

In a multi-module project, it is good to set the updatePolicy
element value to always for intermodule dependencies.

There's more...
As mentioned earlier, there are separate repositories for release and snapshot versions. By
default, snapshots are disabled for a release repository and vice versa. The repository
element has separate releases and snapshots sub-elements where this can be specified:

 <repository>
 <id>my-repo</id>
 <name>My Release Repo</name>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://my.repo.url</url>
 <layout>default</layout>
 </repository>

Typically, for a release repository, enabled will be false for snapshots. For a snapshot
repository, enabled will be true for snapshots and false for releases. This is so that
Maven looks at the right repository for the right artifacts and does not unnecessarily look at
the wrong repositories each time it needs a dependency.

The checksumPolicy element tells Maven what to do in case the checksum of the
downloaded dependency does not match the actual checksum. The value of fail will stop
the build with a checksum error.

Handling dependency download errors
There could be situations when a dependency might not be downloaded due to network
problems or other issues. Sometimes, the error reported by Maven might not indicate the
problem. It is good to know how to get around this problem.

Dependency Management

98

How to do it...
It is difficult to simulate this problem in a normal scenario, but we can create a contrived
scenario, by using the following steps:

1.	 Modify the dependency version for JUnit in our simple project:
<version>3.9.1 </version>

2.	 Run the following command:
mvn verify

3.	 This will attempt to download the dependency and fail (as the version is invalid):
[INFO] Building simple-project 1.0-SNAPSHOT

[INFO] ---

Downloading:https://repo.maven.apache.org/maven2/junit/junit/3
.9.1/junit-3.9.1.pom

[WARNING] The POM for junit:junit:jar:3.9.1 is missing, no
dependency information available

Downloading:https://repo.maven.apache.org/maven2/junit/junit/3
.9.1/junit-3.9.1.jar

[INFO] ---

[INFO] BUILD FAILURE

[INFO] ---

[INFO] Total time: 3.329 s

[INFO] Finished at: 2014-11-08T15:59:33+05:30

[INFO] Final Memory: 7M/154M

[INFO] ---

[ERROR] Failed to execute goal on project simple-project:
Could not resolve dependencies for project
com.packt.cookbook:simple-project:jar:1.0-SNAPSHOT: Could n
ot find artifact junit:junit:jar:3.9.1 in central
(https://repo.maven.apache.org/maven2) -> [Help 1]

Chapter 5

99

4.	 Run the command again and observe the results:
[ERROR] Failed to execute goal on project simple-project:
Could not resolve dependencies for project
com.packt.cookbook:simple-project:jar:1.0-SNAPSHOT: Failure to
find junit:junit:jar:3.9.1 in
https://repo.maven.apache.org/maven2 was cached in the local
repository, resolution will not be reattempted until the
update interval of central has elapsed or updates are forced -
> [Help 1]

5.	 Delete the folder 3.9.1 (or the files in the folder ending with .lastUpdated) in the
local repo (.m2/repository/junit/junit/3.9.1) and retry.

The resolution will not be attempted error will go away and Maven will
attempt to download the dependency again

How it works...
Maven first downloads the pom file of the dependency. It analyzes the pom file and recursively
downloads the transitive dependencies specified there. It then downloads the actual
dependency file, typically, a JAR file.

When Maven fails to download an artifact, it creates a file with the same name as the artifact
it failed to download, but suffixed with .lastUpdated. In the file, it puts information related
to the download, as shown in the following example:

#NOTE: This is an Aether internal implementation file, its format
can be changed without prior notice.
#Sat Nov 08 15:59:33 IST 2014
https\://repo.maven.apache.org/maven2/.lastUpdated=1415442573938
https\://repo.maven.apache.org/maven2/.error=

When a request is made to Maven to download the dependency again, maven refers to the
contents of this file to decide whether or not maven should reattempt. This is the case for
release dependencies. The deletion of this file will ensure maven reattempts to download the
dependency when asked.

We have seen how this works for SNAPSHOT dependencies in the Understanding the
SNAPSHOT dependencies recipe of this chapter.

Dependency Management

100

Detecting unused/undeclared dependencies
As your project becomes large and the number of dependencies increase (including
transitive dependencies), it is good to know if we have ended up declaring dependencies
that we are not using, or if we are using undeclared dependencies (which are brought in
by transitive dependencies).

How to do it...
Use the following steps to detect the unused/undeclared dependencies:

1.	 Run the following Maven command on the demo-selendroid project that we
used earlier:
mvn dependency:analyze

2.	 Note the report generated:

[WARNING] Used undeclared dependencies found:

[WARNING] org.seleniumhq.selenium:selenium-
api:jar:2.43.1:compile

[WARNING] org.hamcrest:hamcrest-library:jar:1.3:compile

[WARNING] io.selendroid:selendroid-
common:jar:0.12.0:compile

[WARNING] Unused declared dependencies found:

[WARNING] org.hamcrest:hamcrest-integration:jar:1.3:compile

How it works...
As can be seen from the preceding report, Maven has identified a dependency used by the
project that is not declared, for instance the selenium-api JAR file. It has also found a
dependency that is declared in the pom file, but is not used by the project (hamcrest-
integration). You could check if the removal causes any side-effect and if not, go ahead.

It is a good practice to explicitly define the dependency used in the project, specifying the
version number instead of using it by means of a transitive dependency. This is because we
have no control over the version or availability of this transitive dependency.

On the other hand, in order to have better control over dependency conflicts that we saw
earlier, it may not be a bad idea to explicitly define versions of dependencies that are not
directly required by our project but used by our dependencies.

Chapter 5

101

Manually installing dependencies that are
not available in a repository

There may be situations where a library, which is not present in any Maven repository, needs
to be used. We have seen one way to use it, that is, specifying it as a dependency with
system scope and explicitly specifying the path to it.

The problem with this approach is that this dependency will not be available if you need to
distribute your project as a library.

Maven provides a mechanism to install an artifact to your local repository so that you can
declare and use it like other dependencies.

How to do it...
Use the following steps to manually install the dependencies that aren't available in
a repository:

1.	 Add the following dependency to the simple project that we created earlier:
<dependency>
 <groupId>org.apache.tomcat</groupId>
 <artifactId>apache-tomcat</artifactId>
 <version>8.0.14</version>
 <type>tar.gz</type>
 </dependency>

The project will fail to compile with the error of a missing dependency

2.	 Now run the following Maven command:
C:\projects\apache-maven-cookbook\project-with-dependency-not-
in-repo>mvn install:install-file -DgroupId=org.apache.tomcat -
DartifactId=apache-tomcat -Dversion=8.0.14 -Dpackaging=tar.gz
-Dfile=C:\Users\raghu\Downloads\apache-tomcat-8.0.14.tar.gz -
DgeneratePom=true

3.	 Note the result:

[INFO] --- maven-install-plugin:2.4:install-file (default-cli)
@ project-with-dependency-not-in-repo ---

[INFO] Installing C:\Users\raghu\Downloads\apache-tomcat-
8.0.14.tar.gz to C:\software\maven\org\apache\tomcat\apache-
tomcat\8.0.14\apache-tomcat-8.0.14.tar.gz

Dependency Management

102

[INFO] Installing
C:\Users\raghu\AppData\Local\Temp\mvninstall829576027181316239
5.pom to C:\software\maven\org\apache\tomcat\apache-
tomcat\8.0.14\apache-tomcat-8.0.14.pom

How it works...
The install-file goal of the Maven Install plugin allows dependencies to be installed
to the local repository. It takes groupId, artifactId, version, and packaging type as
parameters so that it can place the dependency suitably in the repository as well as create a
simple pom file for it.

This method is not ideal in a project with multiple developers, as each developer needs
to perform this step manually. One way to deal with this is to install this dependency in a
repository manager that is used by the organization. As the developers will be using this
repository manager as a mirror, Maven will find the dependency from the mirror
and proceed.

In such a case, we could use the deploy goal of the Maven deploy plugin to install the
artifact to the remote repository.

Some remote repositories have access control. Maven allows access details to be specified in
the server element. It is best to specify this in settings.xml as this file is specific to
each user.

There's more...
Projects with dependencies that are installed by this method are again not distributable, as
those using them will fail to find the dependencies.

Where projects are expected to be distributed and included by others as dependencies, a
different approach needs to be followed—the static in-project repository solution. Use the
following steps to follow the in-project repository approach:

1.	 Create a repository inside your project by adding the following in your pom file:
<repository>
 <id>in-project-repo</id>
 <releases>
 <checksumPolicy>ignore</checksumPolicy>
 </releases>
 <url>file://${project.basedir}/lib</url>
</repository>

Chapter 5

103

2.	 Use the following command to install the dependency to this repository:
mvn install:install-file -DgroupId=org.apache.tomcat -
DartifactId=apache-tomcat -Dversion=8.0.14 -Dpackaging=tar.gz
-Dfile=C:\Users\raghu\Downloads\apache-tomcat-8.0.14.tar.gz -
DgeneratePom=true -DlocalRepositoryPath=lib

What have we achieved? Now, the dependency is packaged along with the source code in the
lib folder of our project and available for distribution. This is transparent to the user as they
do not need to do anything special to access it.

Dependency management using Eclipse
We have seen that the Eclipse IDE provides support for Maven projects and allows us to
run Maven commands from the IDE. Let us now see how we can manage dependencies
using Eclipse.

How to do it...
Use the following steps in Eclipse IDE to manage the dependencies:

1.	 Open the demoproject-selendroid file in Eclipse.

2.	 Open the pom.xml file.

3.	 Click on the Dependencies tab as shown in the following screenshot:

Dependency Management

104

4.	 A new dependency can be added by clicking on the Add… button (see in the
preceding screenshot for the Add... button):

As you can see in the preceding screenshot, you can specify the values in the Group
Id:, Artifact Id:, and Version: textboxes along with the value in the Scope dropdown.
Alternately, you can search for an artifact in the Enter groupId, artifactId or sha1
prefix or pattern (*): textbox, and eclipse will populate the relevant columns based
on your selection in the Search Results list.

5.	 You can also see the dependency tree by clicking on the Dependency Hierarchy tab:

Chapter 5

105

How it works...
As Eclipse has built-in support for Maven, it allows visualization of dependencies by parsing
the pom file. It also calls various Maven commands (such as dependency:tree) internally to
build the hierarchy and display the same.

There's more...
We saw that users can search for and add dependencies. For this to work, navigate to
Windows | Preferences | Maven and check the Download repository index updates on
startup option to download indexes, as shown in the following screenshot:

Dependency Management

106

You may need to restart Eclipse for this to take effect. Also, you can enable the Maven
Repositories view (see in the preceding screenshot), see the repositories, and also update
the index as required.

Dependency management using NetBeans
Like Eclipse, NetBeans also allows dependencies to be managed and viewed through the IDE.
Unlike Eclipse, NetBeans displays a graphical view of the dependencies along with additional
information, which makes it easy for developers to troubleshoot issues.

How to do it...
Use the following steps in the NetBeans IDE to manage the dependencies:

1.	 Open the demoproject-selendroid file in NetBeans.

2.	 Open the pom.xml file.

3.	 Click on the Graph tab:

Chapter 5

107

4.	 Hover over one of the dependencies in red (commons-codec):

5.	 Hover over one of the dependencies in orange (httpclient):

How it works...
NetBeans creates a graph of all the project dependencies and displays the same. It colors the
dependencies that have conflicts in red and those that have warnings in orange. On hovering,
NetBeans displays details of the issues.

This allows the user to take suitable action.

Dependency Management

108

Dependency management using IntelliJ
IDEA

Unlike Eclipse and NetBeans, viewing dependencies as graphs is only possible in the
IntelliJ IDEA Ultimate version, which is commercial. The Community Edition does not
support this option.

How to do it...
Use the following steps in IntelliJ Idea Ultimate version to manage the dependencies:

1.	 Open the demoproject-selendroid file in the IntelliJ IDEA Ultimate edition.

2.	 Right-click on the pom.xml file.

3.	 Click on the Show Dependencies... option (See this option in the preceding
screenshot) and observe the following screenshot:

Chapter 5

109

How it works...
IntelliJ IDEA has first-class support for Maven projects. It reads the pom.xml file of the project,
parses it, and identifies all the dependencies, including transitive dependencies. It then
displays the same in a graphical manner, allowing users to visualize the project.

111

6
Code Quality Plugins

In this chapter, we will review some of the available tools for the Java language and how to use
them in the context of Maven. We will cover the following recipes:

ff Analyzing code coverage with the Maven JaCoCo plugin

ff Analyzing code coverage with the Maven Cobertura plugin

ff Analyzing code with the Maven PMD plugin

ff Analyzing code with the Maven Checkstyle plugin

ff Analyzing code with the Maven FindBugs plugin

ff Generating source references with the Maven JXR plugin

ff Analyzing code with the Maven SonarQube plugin

Introduction
It is one thing to write code and another to write good code. The subjectivity of code quality is
greatly reduced by having coding guidelines/standards. Whether a developer follows coding
standards or not can be verified by subjecting the code to a code review. On the other hand,
there are tools that automatically perform these reviews against defined standards.

In addition to code quality, programming best practices also recommend writing automated
unit tests for the code. The line and branch coverage achieved by these unit tests can also be
quantitatively measured by tools.

Code Quality Plugins

112

Analyzing code coverage with the Maven
JaCoCo plugin

JaCoCo is a free Java code coverage tool. This is essentially the successor to Emma, and it
has been developed by the EclEmma team as an Eclipse project.

JaCoCo offers line and branch coverage.

Getting ready
Maven is set up on your system and is verified to work. To do this, refer to the first three
recipes of Chapter1, Getting Started.

How to do it...
Use the following steps to analyze the code coverage with the Maven JaCoCo plugin:

1.	 Open the pom file of a project that has unit tests (for instance, project-with-
tests).

2.	 Add the following code:
<plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.7.2.201409121644</version>
 <executions>
 <execution>
 <id>default-prepare-agent</id>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 <execution>
 <id>default-report</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>report</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

Chapter 6

113

3.	 Run the following command from the command prompt:
mvn package

4.	 Note the output for the preceding command:

[INFO] --- jacoco-maven-plugin:0.7.2.201409121644:prepare-
agent (default-prepare-agent) @ project-with-tests ---

[INFO] argLine set to -
javaagent:C:\\software\\maven\\org\\jacoco\\org.jacoco.ag
ent\\0.7.2.201409121644\\org.jacoco.agent-0.7.2.201409121644-
runtime.jar=destfile=C:\\projects\\apache-maven-
cookbook\\project-with-tests\\target\\jacoco.exec

[INFO] --- jacoco-maven-plugin:0.7.2.201409121644:report
(default-report) @ project-with-tests ---

[INFO] Analyzed bundle 'Project with Tests with 1 classes

5.	 Open the index.html file generated in the target/site/jacoco folder:

How it works...
In the pom file, we instruct Maven to run the following two goals of the Maven JaCoCo plugin:

ff prepare-agent: This is bound by default to the initialize phase of the Maven
default lifecycle. The goal runs and prepares the agent that does the analysis.

ff report: This agent gathers test coverage information when the tests are run and
creates the report as part of the prepare-package phase (which we have explicitly
specified).

The report gives information about the test coverage. Green indicates lines that are covered
by tests and red indicates lines that are not covered by tests. In the preceding example, 12 of
19 instructions are not covered by tests.

Code Quality Plugins

114

There's more...
You could subject the project to code coverage and generate the same report without making
any changes to the pom file. To do this, run the following command:

mvn jacoco:prepare-agent test jacoco:report

Now, you may get the following error:

[ERROR] No plugin found for prefix 'jacoco' in the current project
and in the plugin groups [org.apache.maven.plugins] available from
the repositories [local (C:\software\maven), central
(https://repo.maven.apache.org/maven2)] -> [Help 1]

To fix this, specify the groupId and artifactId parameters of the plugin explicitly. In
the Configuring Maven to search for plugins recipe of Chapter 8, Handling Typical Build
Requirements, we will see an alternate way to address this.

In the following code, what what we will be doing is explicitly calling the relevant goals that we
saw getting executed earlier. So, first prepare-agent will run, followed by test, and then
the report goal:

mvn org.jacoco:jacoco-maven-plugin:prepare-agent test
org.jacoco:jacoco-maven-plugin:report

How about failing the build if the code coverage is below a threshold value? To do this,
perform the following steps:

1.	 Add the following execution block to the plugin configuration in the build section
specified earlier:
<execution>
 <id>default-check</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>check</goal>
 </goals>
 <configuration>
 <rules>
 <rule>
 <element>BUNDLE</element>
 <limits>
 <limit>
 <counter>COMPLEXITY</counter>
 <value>COVEREDRATIO</value>
 <minimum>0.60</minimum>
 </limit>

Chapter 6

115

 </limits>
 </rule>
 </rules>
 </configuration>
</execution>

2.	 Run the following command:
mvn package

3.	 Observe the result as shown in following screenshot:

Analyzing code coverage with the Maven
Cobertura plugin

Cobertura is another popular Java tool that calculates the percentage of code accessed by
tests. It is based on jcoverage. There are many ways to use Cobertura, including standalone,
through Ant script, and Maven. Let us use the Maven Cobertura plugin.

How to do it...
Use the following steps to analyze the code coverage with the Maven Cobertura plugin:

1.	 Open a Maven project that has unit tests (for instance, project-with-tests).

2.	 Run the following command:
mvn cobertura:cobertura

3.	 Observe the following output:
[INFO] <<< cobertura-maven-plugin:2.6:cobertura (default-cli)
< [cobertura]test@ project-with-tests <<<

[INFO]

Code Quality Plugins

116

[INFO] --- cobertura-maven-plugin:2.6:cobertura (default-cli)
@ project-with-tests ---

[INFO] Cobertura 2.0.3 - GNU GPL License (NO WARRANTY) - See
COPYRIGHT file

Report time: 165ms

[ERROR] Nov 15, 2014 5:06:25 PM

net.sourceforge.cobertura.coveragedata.CoverageDataFileHand
ler loadCoverageData

INFO: Cobertura: Loaded information on 1 classes.

4.	 See the report generated:

How it works...
JaCoCo instruments the code online when the tests are running and hence,it needs to have
the agent running. On the other hand, Cobertura instruments the bytecode during compilation
offline. The cobertura goal of the Cobertura Maven plugin instruments the project, runs the
tests, and generates the report.

There are separate goals to instrument and check results, if required.

There's more...
What if we want to fail the build if the code coverage is below a threshold level? We can set up
Cobertura to do this:

1.	 Add the following to the pom file:
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>cobertura-maven-plugin</artifactId>

Chapter 6

117

 <version>2.6</version>
 <configuration>
 <check>
 <branchRate>85</branchRate>
 <lineRate>85</lineRate>
 <haltOnFailure>true</haltOnFailure>
 </check>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

2.	 Run the following command:
mvn cobertura:check

3.	 Observe the output as shown in the following screenshot:

The build has failed because, in the pom file, we specified that the build should be halted if
the coverage is less than 85%.

Code Quality Plugins

118

Analyzing code with the Maven PMD plugin
PMD is a source code analyzer. It finds common programming flaws such as unused variables,
empty catch blocks, and unnecessary object creation. It also includes the Copy/Paste
Detector (CPD) that finds duplicated code.

How to do it...
Use the following steps to run PMD on a Maven project:

1.	 Open the Maven project for which you want to do a PMD analysis (for instance,
project-with-violations).

2.	 Run the following command:
mvn pmd:pmd pmd:cpd

3.	 Observe the output:
[INFO] --- maven-pmd-plugin:3.2:pmd (default-cli) @ project-
with-violations ---

[WARNING] Unable to locate Source XRef to link to – DISABLED

[INFO] --- maven-pmd-plugin:3.2:cpd (default-cli) @ project-
with-violations ---

[WARNING] Unable to locate Source XRef to link to - DISABLED

[INFO] ---

[INFO] BUILD SUCCESS

4.	 Check the contents of the target folder:

5.	 Open the pmd.xml report:

Chapter 6

119

6.	 Open the cpd.html file in the site folder:

How it works...
The pmd or cpd goals of the Maven PMD plugin are not bound to any phase. Also, they analyze
the Java source and thus, do not need any other Maven phase or goal to be run.

When the pmd goal is run, it generates a PMD site report using default rulesets and the
configuration set in the plugin. It also generates a pmd output file in the XML format.

Code Quality Plugins

120

You can also define your own customized ruleset. To do this, add the following code in the
configuration section of the pom file:

<reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <version>3.4</version>
 <configuration>
 <rulesets>
 <!-- Two rule sets that come bundled with PMD -->
 <ruleset>/rulesets/java/braces.xml</ruleset>
 <ruleset>/rulesets/java/naming.xml</ruleset>
 <!-- Custom local file system rule set -->
 <ruleset>d:\rulesets\strings.xml</ruleset>
 <!-- Custom remote rule set accessed via a URL -->
 <ruleset>http://localhost/design.xml</ruleset>
 </rulesets>
 </configuration>
 </plugin>
 </plugins>
 </reporting>

Likewise, when the cpd goal is run, it generates a similar report for duplicated code. By
default, the minimum token count that it considers to report that code is duplicated is 100
tokens (which is typically 10 lines of code).

There's more...
The plugin can be made to fail the build by using the check goal in the following way:

1.	 Add the following code to the pom file of project-with-violations:
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <version>3.4</version>
 <executions>
 <execution>
 <goals>
 <goal>check</goal>

Chapter 6

121

 <goal>cpd-check</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

2.	 Run the following command:
mvn verify

3.	 Observe the output as shown in the following screenshot:

Analyzing code with the Maven Checkstyle
plugin

Checkstyle is a tool that helps programmers follow coding standards. It automates the
process of checking if defined coding standards are followed. It can support any coding
standards by suitable configuration. Like other tools, it can be run standalone as well as
integrated with Maven.

How to do it...
Use the following steps to analyze code with the Maven Checkstyle plugin:

1.	 Open the Maven project for which you want to do a Checkstyle analysis (for instance,
project-with-violations).

2.	 Run the following command:
mvn checkstyle:checkstyle

Code Quality Plugins

122

3.	 Observe the output as shown in the following screenshot:
[INFO]

[INFO] --- maven-checkstyle-plugin:2.13:checkstyle (default-
cli) @ project-with-violations ---

[INFO]

[INFO] There are 29 checkstyle errors.

[WARNING] Unable to locate Source XRef to link to - DISABLED

[INFO] ---

[INFO] BUILD SUCCESS

4.	 Open the checkstyle-result.xml report in the target folder:

How it works...
Unlike the pmd, checkstyle goal of Maven, the Checkstyle plugin is not bound to any phase.

When the checkstyle goal is run, it generates a Checkstyle site report using default
rulesets and the configuration set in the plugin. It also generates a Checkstyle output file in
the XML format.

The Maven Checkstyle plugin supports several configuration options to customize the rules,
exclude files from being checked, and so on. Let's briefly discuss the examples that show
usage of Maven Checkstyle plugin in some advanced usecases:

Chapter 6

123

1.	 Checkstyle rules can be specified inline in the configuration section of the plugin:
<configuration>
 <checkstyleRules>
 <module name="Checker">
 <module name="TreeWalker">
 <module name="FinalLocalVariable">
 <property name="tokens" value="VARIABLE_DEF,PARAMETER_
DEF"/>
 </module>
 </module>
 </module>
 </checkstyleRules>
</configuration>

2.	 They can also be specified in an external file and referred using the
configLocation element:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <version>2.14</version>
 <configuration>
 <configLocation>checkstyle.xml</configLocation>
 </configuration>
</plugin>

3.	 A Suppressions filter can be created to tell Checkstyle not to report violations on
specific files and specific sections of the files:

<suppressions>
 <suppress checks="JavadocStyleCheck"
 files="GeneratedObject.java"
 lines="50-9999"/>
 <suppress checks="MagicNumberCheck"
 files="LegacyDatasetConvertor.java"
 lines="221,250-295"/>
</suppressions>

Code Quality Plugins

124

There's more...
As in the case of PMD, we can configure the Maven Checkstyle plugin such that it fails a build
in case of errors:

1.	 Add the following code to the pom file of project-with-violations:
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <version>2.14</version>
 <executions>
 <execution>
 <id>verify-style</id>
 <phase>process-sources</phase>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

2.	 Run the following Maven command:
mvn verify

3.	 Observe the output as shown in the following screenshot:

Chapter 6

125

Analyzing code with the Maven FindBugs
plugin

FindBugs is another tool that uses static analysis to inspect Java bytecode for bugs in a Java
code. It is based on the concept of bug patterns. A bug pattern is a code snippet that is often
an error.

How to do it...
Let us see how we can use the Maven FindBugs plugin to analyze and identify defects in
our code:

1.	 Open the Maven project for which you want to do the FindBugs analysis.

2.	 Run the following command:
mvn clean compile findbugs:findbugs

3.	 Observe the output:
[INFO] --- maven-compiler-plugin:3.1:compile (default-compile)
@ project-with-violations ---

[INFO] Changes detected - recompiling the module!

[INFO] Compiling 1 source file to C:\projects\apache-maven
cookbook\project-with-violations\target\classes

[INFO]

[INFO] --- findbugs-maven-plugin:3.0.0:findbugs (default-cli)
@ project-with-violations ---

[INFO] Fork Value is true

[java] Warnings generated: 3

[INFO] Done FindBugs Analysis....

Code Quality Plugins

126

4.	 Open the generated XML file findbugsXml.xml in the target folder:

How it works...
When the findbugs goal of the FindBugs plugin is run, it analyzes the bytecode and reports
errors to an output file in the XML format. Unlike Checkstyle and the PMD plugins, it does not
generate a default site report unless configured differently.

As FindBugs works on bytecode, the project needs to be compiled
before the FindBugs analysis can be run. Otherwise, you will not
find any FindBugs defects!

FindBugs also provides several options that allow you to specify the classes to be included/
excluded from analysis, specify the rules to be run, and to fail when errors crop up during the
build. Let's briefly discuss some examples that describe the basic usage of the FindBugs plugin:

ff Filter bugs to report: This plugin allows us to specify classes and methods that can be
included or excluded from reporting:
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <version>3.0.1-SNAPSHOT</version>
 <configuration>
 <excludeFilterFile>findbugs
 exclude.xml</excludeFilterFile>
 <includeFilterFile>findbugs-
 include.xml</includeFilterFile>

Chapter 6

127

 </configuration>
 </plugin>

ff Bug detectors to run: We can also specify which detectors to run. This can be done in
the following manner:

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <version>3.0.1-SNAPSHOT</version>
 <configuration>
<visitors>FindDeadLocalStores,UnreadFields</visitors>
 </configuration>
 </plugin>

There's more...
You can also launch the FindBugs GUI to view the report in a graphical format:

1.	 To do this, run the following Maven command:
mvn compile findbugs:findbugs findbugs:gui

2.	 Observe the FindBugs screen:

Code Quality Plugins

128

Generating source references with the
Maven JXR plugin

You may have observed the following warnings when running the PMD or Checkstyle plugin:

[INFO] --- maven-pmd-plugin:3.2:pmd (default-cli) @ project-with-
violations ---

[WARNING] Unable to locate Source XRef to link to – DISABLED

[INFO] --- maven-checkstyle-plugin:2.13:checkstyle (default-cli) @
project-with-violations ---

[INFO]

[INFO] There are 36 checkstyle errors.

[WARNING] Unable to locate Source XRef to link to – DISABLED

The plugins attempt to link the violation to the specific lines in the cross-reference of the
source. As they are unable to find this cross-reference, they display the warning.

To generate this cross-reference, we need to use the Maven JXR plugin.

How to do it...
Use the following steps to generate source references with the Maven JXR plugin:

1.	 Open the project for which you want to run the cross-reference.

2.	 Run the following Maven command:
mvn jxr:jxr

3.	 Observe the output:
[INFO]

[INFO] --- maven-jxr-plugin:2.5:jxr (default-cli) @ project-
with-violations ---

[INFO] ---

4.	 Browse the target/site folder.

Chapter 6

129

5.	 Open the contents of the xref folder in the browser:

How it works...
When the jxr goal of the Maven JXR plugin is run, it generates a cross-reference of all the
source files of the project. The format is similar to Javadoc, but on clicking on the class, you
get to see the source code with the line numbers:

Code Quality Plugins

130

There's more...
Once the cross-reference exists, code quality tools, such as PMD and Checkstyle, link to this
reference automatically by using the following steps:

1.	 Run the following Maven command:
mvn jxr:jxr checkstyle:checkstyle

2.	 Open the Checkstyle report in the browser:

You can now see the line numbers against each of the violations, with the link to the line
number in the cross-referenced source code.

Analyzing code with the Maven SonarQube
plugin

Each of the code analysis tools we have seen in the previous sections identify specific issues
in the code. While Checkstyle looks for violations in coding guidelines, PMD identifies common
coding errors, and FindBugs detects bug patterns.

You could have your project configured to run all the three. In addition, you could also run
plugins to identify coverage. You could also do all these and more by doing a SonarQube
analysis of the project.

SonarQube is a platform to manage code quality. It is a web-based application, where rules,
alerts, thresholds, and other metrics can be configured. It provides various ways to analyze
code. The results of the analysis can then be viewed in a web application. SonarQube also
provides several paid plugins, such as SQALE, and for specific languages, such as Cobol
and C++.

Chapter 6

131

Getting ready...
Let's briefly discuss some basic requirements for using the Maven SonarQube plugin:

1.	 Visit the download page for SonarQube at http://www.sonarqube.org/
downloads/.

2.	 Download the latest release.

3.	 Unzip the ZIP file to a folder of your choice.

4.	 Based on the platform, start the server by following the instructions.

5.	 Confirm that the server is running by visiting the web page at http://
localhost:9000/ (assuming it's a default installation).

How to do it...
Use the following steps to analyze the code with the Maven SonarQube plugin:

1.	 Open the Maven project for which you want to do SonarQube analysis.

2.	 Run the following Maven command:
mvn sonar:sonar

3.	 Observe the output as shown in the following screenshot:

http://www.sonarqube.org/downloads/
http://www.sonarqube.org/downloads/

Code Quality Plugins

132

4.	 Visit the Sonar web page at http://localhost:9000:

5.	 Click on the project link:

Chapter 6

133

How it works...
The sonar goal of the Maven SonarQube plugin sets in motion a series of steps to do various
analyses of the project. Based on the configuration, the Sonar plugin performs Checkstyle
analysis, FindBugs analysis and PMD analysis, as well as detects code coverage, code
duplication, design issues and code complexity.

It sends the output to a database and generates reports that can be viewed from the web
page by the user.

As you can see from the dashboard, it has generated the unit test report along with coverage
information. Clicking on the link will take the user to details of the coverage.

Code Quality Plugins

134

Similarly, clicking on Issues gives details of the various violations:

Each of these issues can be drilled down to the line-level details, and Sonar provides the
details, including fix suggestions.

There's more...
SonarQube provides several configuration options to specify rules to be included/excluded,
source files to be included/excluded, and so on. The configuration can be done through the
web interface, and in some cases, by means of properties, either in the Maven's settings file
or through the command line.

In addition, SonarQube provides plugins for Eclipse and IntelliJ. Once installed and configured,
these plugins report violations directly in the IDE in the specific lines. As this is not specific to
Maven, its details are outside the scope of this section.

135

7
Reporting and

Documentation

In this chapter, we will see how we can use the Maven Site plugin, as well as configure various
reports on a site. We will cover the following recipes:

ff Documenting with the Maven Site plugin

ff Generating Javadocs for a site

ff Generating source cross-reference for a site

ff Generating unit test reports for a site

ff Generating code coverage reports for a site

ff Generating code quality reports for a site

ff Generating selective reports

ff Deploying a site

Introduction
One of the most powerful features of Maven is the ability to create documentation for the
project. It is useful to have a self-documenting project that can be published to a website
without additional effort. Maven provides the ability to generate this documentation, known
as a site report, and publish it to a website.

Many Maven plugins use the Site feature to generate project documentation. In fact, Maven
itself uses the Site plugin to generate its website.

Reporting and Documentation

136

Documenting with the Maven Site plugin
Along with the clean and default lifecycle, Maven also consists of a site lifecycle. Like
clean, site is implemented by a Maven plugin, in this case, the Maven Site plugin.

Getting ready
Maven is set up on your system and is verified for work. To do this, refer to the first three
recipes of Chapter 1, Getting Started.

How to do it...
Use the following steps to generate documentation using the Maven Site plugin:

1.	 Open one of the Maven projects for which we need to generate a site report (for
instance, project-with-documentation).

2.	 Run the following command:
mvn site

3.	 Observe the output as shown in the following screenshot:

Chapter 7

137

4.	 Open the index.html file generated in the target/site folder:

How it works...
Site is one of the Maven lifecycles. When the mvn site command is run, it invokes the
site phase of the site lifecycle. The site goal of the Maven Site plugin is bound to this
phase and is invoked.

The site goal performs a series of steps to generate the report. It uses various elements in
the pom file related to this. Let us look at the various items in the default report:

Reporting and Documentation

138

In addition to this, the site command generates reports based on the contents of the
reporting section of the pom:

<reporting>
 <plugins>
 <plugin>
 <artifactId>maven-project-info-reports-plugin</artifactId>
 <version>2.0.1</version>
 <reportSets>
 <reportSet></reportSet>
 </reportSets>
 </plugin>
 </plugins>
</reporting>

A number of Maven plugins can generate reports defined and configured under the
reporting element. We will see many reports in the following sections.

There's more...
We have only seen what the default site command offers. The Maven Site plugin offers
various configurations to make many more customizations. Some of them are as follows:

ff Create a different documentation format: The default format of the site is APT (almost
plain text), a wiki-like format

ff Override the default navigation tree: This is required if you want to insert additional
content in the site

ff Creating skins: This is needed if you want to style the site reports differently

Let us see how to do some of these:

1.	 Add the site.xml file with the following content to the src\site folder of the
project-with-documentation project folder:
<project xmlns="http://maven.apache.org/DECORATION/1.6.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/DECORATION/1.6.
0 http://maven.apache.org/xsd/decoration-1.6.0.xsd"
name="Project with Documentation">
 <bannerLeft>
 <name>Left Banner</name>
 <src>images/packt.png</src>
 <href>http://www.packtpub.com</href>
 </bannerLeft>
 <body>

Chapter 7

139

 <menu name="Project with Documentation">
 <item name="Overview" href="index.html"/>
 </menu>
 <menu ref="reports"/>
 </body>
</project>

2.	 Add the image named packt.png to the src\site\resources\images folder.

3.	 Now, add the index.apt file in the src\site\apt folder with the following content:
Welcome to Project with Documentation. This is a maven project
created as part of apache maven cookbook by Packt Publishing.

What is Project with Documentation?

This maven project contains examples of how to use the site
feature of maven.

4.	 Run the following command:
mvn clean site

5.	 View the generated site report:

You can see a customized site page with the logo and the content that we specified.

Reporting and Documentation

140

Generating Javadocs for a site
Documentation for Java projects is created using Javadocs. Maven provides support not only
to generate Javadocs, but also to publish them as part of the site. Plugins configured within
the reporting element will generate content for the site. When they are configured within
the build element, they can generate reports independent of site.

How to do it...
Use the following steps to generate Javadocs for a site:

1.	 Open the Maven project project-with-documentation.

2.	 Add the following section in the pom.xml file:
<reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-javadoc-plugin</artifactId>
 <version>2.10.1</version>
 </plugin>
 </plugins>
</reporting>

3.	 Run the following command:
mvn site

4.	 See the report generated:

Chapter 7

141

5.	 Click on the JavaDocs link:

How it works...
We added the Javadoc plugin to the reporting section of pom. When the Site plugin runs, it
examines this section and runs the reports configured there. In this case, it found javadoc
and ran the relevant plugin to generate the Javadoc reports for the project.

Maven links the report from the site page in the Project Reports section.

There's more...
What if we do not want to document the test classes, but only the source? We can configure
the plugin to do this by performing the following steps:

1.	 Add the following code to the reporting section where we set the value of report
element to javadoc:
 <reportSets>
 <reportSet>
 <reports>
 <report>javadoc</report>
 </reports>
 </reportSet>
 </reportSets>

Reporting and Documentation

142

2.	 Run the following command:
mvn site

3.	 Open the resulting Site web page. Only the JavaDocs link is present on the site. The
Test JavaDocs link is no longer present.

Generating source cross-reference for a site
In the previous chapter, we saw how the Maven JXR plugin generates source cross-reference.
When publishing a project, it is useful to provide a way to refer to sources in addition to
Javadocs. Let us see how to make that part of the site report.

How to do it...
Use the following steps to generate source cross-reference for a site:

1.	 Open the Maven project project with documentation.

2.	 Add the following code to the reporting section of the pom.xml file:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jxr-plugin</artifactId>
 <version>2.5</version>
</plugin>

3.	 Run the following command:
mvn site

4.	 Open the generated site report:

Chapter 7

143

How it works...
Adding the Maven JXR plugin to the reporting section of pom automatically creates
the project source cross-reference. By default, both source and test cross-references are
generated. Like Javadoc, the reportSet element can be configured if we do not want a
cross-reference for test classes.

Generating unit test reports for a site
When we have unit tests for our project, it will be good to see the test reports in the site
documentation. Let us see how to do this.

How to do it...
Use the following steps to generate unit test reports for a site:

1.	 Open the Maven project for which you want to generate the site documentation
(for instance, project-with-documentation).

2.	 Add the following code in the reporting section of the pom.xml file:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-report-plugin</artifactId>
 <version>2.18</version>
</plugin>

3.	 Run the following command:
mvn site

Reporting and Documentation

144

4.	 Observe the generated site report:

How it works...
If you recall, we use the Maven Surefire plugin to run tests. Surefire provides a Surefire Report
plugin. When this plugin is added to the reporting section of the pom.xml file, it includes
the test report in the site documentation.

The reports are identical, irrespective of whether JUnit or TestNG is used for unit testing.

In addition to the format of the report for the site, TestNG generates
additional reports in a different format. These are available in the
target folder but are not part of the site documentation.

Generating code coverage reports for a site
Let us now include code coverage from the unit tests of our project in the site documentation.

How to do it...
Use the following steps to generate code coverage reports for a site:

1.	 Open the Maven project for which you want to do this (for instance, project-with-
documentation).

2.	 Add the following code in the <build> section of the pom.xml file:
 <plugin>
 <groupId>org.jacoco</groupId>

Chapter 7

145

 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.7.2.201409121644</version>
 <executions>
 <execution>
 <id>default-prepare-agent</id>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

3.	 Add the following code in the reporting section of the pom.xml file:
<plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.7.2.201409121644</version>
</plugin>

4.	 Run the following Maven command:
mvn test site

5.	 Observe the site report as shown in following screenshot:

Reporting and Documentation

146

How it works...
The JaCoCo unit test coverage report shows up in site documentation on account of the
following issues:

ff As the prepare-agent goal of the JaCoCo plugin is added to the build section,
Maven runs the JaCoCo agent

ff As the test goal is run, Maven runs the test and the agent analyzes the tests
for coverage

ff As the JaCoCo plugin is added to the reporting section of the pom.xml file, the
coverage report is generated and linked to the site documentation

ff As you can see, the same plugin is added to the build and reporting section and
does different things

There's more...
If you were to use Cobertura instead of JaCoCo to generate test coverage, you could do
the following:

1.	 Remove the lines related to JaCoCo in the build and reporting sections.

2.	 Add the following code to the reporting section of the pom.xml file:
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>cobertura-maven-plugin</artifactId>
 <version>2.6</version>
 </plugin>

3.	 Run the following Maven command:
mvn site

Chapter 7

147

4.	 Open the site documentation:

You will notice two things:

ff We didn't need to specify anything in the build section

ff We didn't need to run the test goal explicitly; the Maven Cobertura plugin did this.

Generating code quality reports for a site
We have seen how to use various code quality tools to perform static code analysis. Let us
now see how we can update our site documentation with reports from these tools.

How to do it...
Use the following steps to generate code quality reports for a site:

1.	 Open the project for which we want to generate the site report.

2.	 Add the following code to the reporting section of the pom.xml file:
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <version>3.3</version>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <version>2.13</version>
 </plugin>

Reporting and Documentation

148

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <version>3.0.0</version>
 </plugin>>

3.	 Run the following Maven command:
mvn test site

4.	 Open the generated site report:

How it works...
For each of the code quality tools specified in the reporting section of the pom.xml file, the
site goal runs the specified tool, generates the report, and links to the site documentation.

Clicking on each of the links takes the user to the specific report.

There's more...
If you have chosen to use SonarQube for analysis and want to link the Sonar report to the site
documentation, then you can do the following:

1.	 Add the following code in the reporting section of the pom.xml file:
<plugin>
 <groupId>org.codehaus.sonar-plugins</groupId>
 <artifactId>maven-report</artifactId>
 <version>0.1</version>
</plugin>

Chapter 7

149

2.	 Generate the site by running the following Maven command:
mvn test site

3.	 Open the site report:

A new Sonar link is present in Project Reports, which automatically redirects to the default
Sonar installation. The link can be customized to the appropriate URL, if it is different.

Generating selective reports
We have seen that by default the site command generates some Project Information. Some
of it, for instance Mailing Lists, may be nonexistent or irrelevant to the project. Let us see
how we can avoid generating these. The Maven Project Info Reports plugin is the plugin that
provides the standard reports from pom. It can be configured to exclude specific reports.

How to do it...
Use the following steps to generate selective site report:

1.	 Open the project for which you want to generate the site report.

2.	 Add the following code to the reporting section of the pom.xml file:
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-project-info-reports-plugin</artifactId>
 <version>2.7</version>
 <reportSets>
 <reportSet>
 <reports>
 <report>dependencies</report>
 <report>project-team</report>
 <report>license</report>
 <report>scm</report>

Reporting and Documentation

150

 </reports>
 </reportSet>
 </reportSets>
 </plugin>

3.	 Run the following Maven site command:
mvn test site

4.	 Open the generated report:

How it works...
We explicitly specified the reports that we wanted to see in Project Information. Due to this,
only those reports are generated and displayed.

This allows us to avoid generating and displaying reports that are not applicable to the project.

Deploying a site
Once a site report is generated, it needs to be published. While this can be done manually,
Maven also provides facilities to do this. Let us see how.

Getting ready
To publish a site, you need to have access to the web server where the site has to
be deployed.

Chapter 7

151

How to do it...
To deploy a site, use the following steps:

1.	 Add the following code to your pom.xml file. This could also be added in
settings.xml:
 <distributionManagement>
 <site>
 <id>myorg</id>
 <url>scp://www.myorg.com/project/</url>
 </site>
 </distributionManagement>

2.	 For the corresponding ID, add the relevant username and password in your
settings.xml file:
<servers>
 <server>
 <id>myorg</id>
 <username>username</username>
 <password>password</password>
 <filePermissions>664</filePermissions>
 <directoryPermissions>775</directoryPermissions>
 </server>
 </servers>

3.	 Run the following Maven command:
mvn site-deploy

How it works...
When the site-deploy goal is run, Maven first builds the site. Then, it uses the entry set in the
distributionManagement element to determine how the site needs to be deployed. The first
part of the URL is the protocol to be used to transfer the file. In this case, it is scp. It uses the
credentials specified in the settings.xml file and transfers the file to the destination.

There's more...
If you want to test your site before deploying, you can easily do so in the following way:

1.	 Run the following Maven command:
mvn site:run

Reporting and Documentation

152

2.	 Open the browser and go to http://localhost:8080:

The run goal of the Maven Site plugin deploys the site in a jetty server, which is started by
default by port 8080. This allows you to view the site report and verify it before publishing.

153

8
Handling Typical

Build Requirements

In this chapter, we will cover the following recipes:

ff Including and excluding additional resources

ff Including and excluding source files and folders

ff Configuring Maven to search for plugins

ff Working in offline mode

ff Controlling the verbosity of the Maven output

ff Using the Maven Help plugin

ff Using the Maven SCM plugin

ff Generating changelogs for a site

Introduction
In previous chapters, we have seen how to set up Apache Maven to build software projects.
We have also seen how to configure it to analyze code quality and code coverage. We have
seen how to generate and publish project documentation.

As we use Apache Maven, we will encounter requirements that are not generic, but at the
same time, not rare. In many projects, there would be a need to include additional source or
resource folders. We will see how Maven allows us to do this. We would also want to get more
verbose output from Maven to help troubleshoot when things go wrong. We will also see to
what extent we can get the Maven build working without the Internet. We will also see how
Maven works with software configuration management (SCM) systems and allows SCM
changes to be part of project documentation.

Handling Typical Build Requirements

154

Including and excluding additional resources
There are many situations where you will need to include additional resource files or folders
for compilation or testing. You might also have to exclude specific files or folders. Let us see
how we can do this.

Getting ready
Maven is set up on your system and is verified for work. To do this, refer to the first three
recipes of Chapter 1, Getting Started.

How to do it...
1.	 Open one of the Maven projects for which we need to include or exclude files or

folders; for instance, project-with-include-exclude.

2.	 Add the following to the build section of your pom file:
<resources>
 <resource>
 <directory>src/resources/xml</directory>
 <includes>
 <include>*.xml</include>
 </includes>
 </resource>
 <resource>
 <directory>src/resources/json</directory>
 <includes>
 <include>include.json</include>
 </includes>
 <excludes>
 <exclude>exclude.json</exclude>
 </excludes>
 </resource>
</resources>

3.	 Run the following command:
mvn resources:resources

Chapter 8

155

4.	 Observe the output:
[INFO] --- maven-resources-plugin:2.6:resources (default-cli) @
project-with-include-exclude ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] Copying 2 resources

[INFO] Copying 1 resource

[INFO] ---

5.	 View the contents of the resources folder:

6.	 View the contents of the build output directory:

How it works...
The resources goal of the Maven Resources plugin copies all the resources required by the
source to build the output directory. This goal is bound to the process-resources phase,
which is part of the default lifecycle.

By default, the goal copies over the contents of src/main/resources. When the
resources tag is specified in the pom file, it copies the contents of the directories specified
there, based on the include and exclude filters specified.

Handling Typical Build Requirements

156

In our specific example, we did three things:

ff Included all the XML files in the src/resources/xml folder

ff Included a specific file in the src/resources/json folder

ff Excluded a specific file in the src/resouces/json folder

There's more...
What if we need to copy test resources selectively? For this, we would need to do the following:

1.	 Add the following in the build section of your pom file:
<testResources>
 <testResource>
 <directory>src/resources/xml</directory>
 <includes>
 <include>*.xml</include>
 </includes>
 </testResource>
 <testResource>
 <directory>src/resources/json</directory>
 <includes>
 <include>include.json</include>
 </includes>
 <excludes>
 <exclude>exclude.json</exclude>
 </excludes>
 </testResource>
</testResources>

2.	 Run the following command:

mvn resources:testResources

Chapter 8

157

3.	 View the contents of the test-classes folder:

This will now copy over the specified test resources to the test output directory (target/
test-classes).

We saw that the resources and testResources goals copied resources to classes and
test-classes respectively. What if we need to copy these to specific folders, For instance,
xml files to the xml folder and json files to the json folder? The add-resource and add-
test-resource goals of the Build Helper Maven plugin come to our assistance here.

1.	 Update the pom file with the following code:
<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.9.1</version>
 <executions>
 <execution>
 <id>add-resource</id>
 <phase>generate-resources</phase>
 <goals>
 <goal>add-resource</goal>
 </goals>
 <configuration>
 <resources>
 <resource>
 <directory>src/resources/xml</directory>
 <targetPath>xml</targetPath>
 </resource>
 <resource>
 <directory>src/resources/json</directory>
 <targetPath>json</targetPath>
 <includes>

Handling Typical Build Requirements

158

 <include>include.json</include>
 </includes>
 <excludes>
 <exclude>exclude.json</exclude>
 </excludes>
 </resource>
 </resources>
 </configuration>
 </execution>
 </executions>
</plugin>

2.	 Run the following command:
mvn compile

3.	 Examine the target/classes folder now.

You will see the xml and json subfolders with their respective content.

Including and excluding source files
and folders

As per Maven conventions, all project sources should be in the src folder. However, there
may be legacy projects that are organized differently and may have more than one source
folder. Also, in some projects, we might generate sources dynamically from tools such as
wsdl2java. In such cases, Maven needs to be told about these additional source folders.
Note that such projects may not work well in IDEs.

How to do it...
Use the following steps to include and exclude source files and folders in your Maven project:

1.	 Open the Maven project named project-with-additional-source.

2.	 Add the following section in the pom file:

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.9.1</version>
 <executions>
 <execution>
 <id>add-source</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>add-source</goal>
 </goals>

Chapter 8

159

 <configuration>
 <sources>
 <source>src/main/source</source>
 </sources>
 </configuration>
 </execution>
 </executions>
 </plugin>

3.	 Run the following command:
mvn compile

4.	 See the output generated:
[INFO] --- build-helper-maven-plugin:1.9.1:add-source (add-source)
@ project-with-additional-source ---

[INFO] Source directory: C:\projects\apache-maven-cookbook\
project-with-additional-source\src\main\source added.

5.	 View the target/classes folder:

How it works...
We had an additional source folder called src/main/source. We specified this in the
configuration section of the Build Helper Maven plugin. We also bound the add-source
goal of the plugin to the generate-sources phase of the default lifecycle.

As part of the default lifecycle, the generate-sources phase is run by Maven prior to the
compile goal. This invokes the add-source goal of the plugin, which adds the additional
folder and its contents for compilation.

In a similar way, additional test folders can be added to the build. The configuration would be
identical to the earlier case, except for the execution section, which would be as follows:

 <execution>
 <id>add-test-source</id>
 <phase>generate-test-sources</phase>
 <goals>
 <goal>add-test-source</goal>

Handling Typical Build Requirements

160

 </goals>
 <configuration>
 <sources>
 <source>src/main/source</source>
 </sources>
 </configuration>
 </execution>

We specify the add-test-source goal instead of add-source and bind it to the
generate-test-sources phase.

There's more...
The Build Helper Maven plugin provides a number of other goals that meet specific project
requirements. Here are some of them:

ff attach-artifact: This is used to attach additional artifacts to be installed and/or
deployed, besides the project artifact. This would be done by configuring the plugin
as follows:
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.9.1</version>
 <executions>
 <execution>
 <id>attach-artifacts</id>
 <phase>package</phase>
 <goals>
 <goal>attach-artifact</goal>
 </goals>
 <configuration>
 <artifacts>
 <artifact>
 <file>some file</file>
 <type>extension of your file </type>
 <classifier>optional</classifier>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
 </plugin>

Chapter 8

161

ff maven-version: This is used to set a property containing the current version of
Maven, which can be used as required. To use the Maven version number in the
manifest of the project JAR, we will configure the plugin as follows:

 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.9.1</version>
 <executions>
 <execution>
 <id>maven-version</id>
 <goals>
 <goal>maven-version</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <archive>
 <manifestEntries>
 <Maven-Version>${maven.version}</Maven-Version>
 </manifestEntries>
 </archive>
 </configuration>
 </plugin>
 </plugins>
 </build>

Configuring Maven to search for plugins
You will recall that in the section on using the Maven JaCoCo plugin, to generate code
coverage we had to explicitly specify the projectId and artifactId values of the plugin
to it from the command line. However, for most other plugins, we specified the plugin name
without additional information.

We will see why we had to do this and how to avoid it.

Handling Typical Build Requirements

162

How to do it...
1.	 Open the settings file (specifically the settings.xml file in your home directory).

2.	 Add the following section:

<pluginGroups>
 <pluginGroup>org.jacoco</pluginGroup>
</pluginGroups>

3.	 Run the following command on the same project for which you ran JaCoCo earlier:
mvn clean jacoco:prepare-agent test jacoco:report

4.	 Observe the output:

[INFO]

[INFO] --- jacoco-maven-plugin:0.7.2.201409121644:report (default-
cli) @ project-with-tests ---

[INFO] Analyzed bundle 'Project with Tests' with 1 classes

How it works...
There are two types of Maven plugins, which are as follows:

ff Plugins maintained by the Maven team itself (let us call them official plugins).
These are in the default plugin groups org.apache.maven.plugins and org.
codehaus.mojo.

ff All other plugins (let's say third-party plugins).

All official plugins have the same groupId, namely org.apache.maven.plugins. They
also have a convention for artifactId: maven-${prefix}-plugin, where prefix
stands for the plugin prefix, the short name to refer to the plugin.

The prefix used to reference the plugin can be customized as well. The prefix can be specified
directly through the goalPrefix configuration parameter on the Maven-plugin-plugin of
the plugin's pom file.

So, when we run mvn clean, Maven looks for the maven-clean-plugin in the org.
apache.maven.plugins group.

What about third-party plugins? pluginGroups lets Maven know the groupId where it
should search for additional plugins. So in the earlier case, Maven searched for plugins in
the org.jacoco group.

Chapter 8

163

Third-party plugins should be named differently from official plugins. The conventional way
to define the artifactId for third-party plugins is ${prefix}-maven-plugin. When
specified in this way, Maven automatically identifies the shortcut name for the plugin. In the
earlier case, as the artifactId is jacoco-maven-plugin, the shortcut is jacoco.

There's more...
Maven will always search specified pluginGroups before it searches the following
default groups:

ff org.apache.maven.plugins

ff org.codehaus.mojo

Maven takes the first match for the shortcut that it finds. For instance, if there is a clean
shortcut in a user-specified plugin in pluginGroups, it will take precedence over a Maven
Clean plugin.

Working in offline mode
There might be situations where a Maven project needs to be built without access to the
Internet. Let us see how Maven supports this, as well as the caveats.

How to do it...
1.	 Open a project that you want to build offline.

2.	 Run the following command:
mvn dependency:go-offline

Handling Typical Build Requirements

164

3.	 Observe the output:

4.	 Run the following command:
mvn –o clean package

Observe that the build is completed successfully without any network connection.

How it works...
The go-offline goal of the Maven Dependency plugin downloads all the required
dependencies and plugins for the project, based on the pom file. The –o option tells Maven to
work offline and not check the Internet for anything.

Chapter 8

165

However, it is not without its issues. On a brand new local repository, the offline option will
not work with the following error:

This is a known problem or limitation with the Maven Dependency plugin. The required
project has to be built online once to download anything that is missed out by the plugin.
Subsequently, the project can be built offline. This is typically not required, as most
organizations use a repository manager, such as Nexus or Artifactory, if they do not allow
direct Internet access.

If your project uses SNAPSHOT dependencies, then Maven will need the
Internet to look for updates to the dependencies. To avoid this, you can set
the updatePolicy to never, but this would be counterproductive as you
will not get the latest version of the dependency.

There's more...
Another way to run Maven in offline mode is to specify the offline parameter as true in the
settings file. Once this is done, no attempt is made by Maven to connect to the Internet.

1.	 Add the following in the settings file:
<offline>true</offline>

2.	 Run a Maven build:
mvn clean package

Observe that the build is completed successfully without connecting to the Internet.

Handling Typical Build Requirements

166

Controlling the verbosity of the Maven
output

Sometimes, the output from Maven might be too verbose and we may want to only see the
errors. At other times, the information displayed by Maven may be insufficient and we want to
see more details. Let us see how we can control this.

How to do it...
1.	 Open a Maven project.

2.	 Run the following command:
 mvn –q clean package

3.	 Observe the output:

4.	 Now run the following command:
 mvn –X clean package

5.	 Observe the output:

Chapter 8

167

How it works...
Maven provides different levels of logging. The typical levels are DEBUG (detailed messages),
INFO (information messages), and ERROR (error messages). Specifying a level displays all
messages at and above that level. For instance, specifying the INFO level displays messages
at the INFO and ERROR levels.

By default, Maven logs all INFO level messages to the screen.

The -q parameter tells Maven to be quiet and not display anything other than ERROR level
messages on the screen. So the only display is the output from tests.

On the other hand, the -X parameter tells Maven to display all messages at the DEBUG level
and above. This gives a lot of information, which is useful for troubleshooting issues.

Handling Typical Build Requirements

168

There's more...
Instead of viewing the Maven output on the screen, you could redirect it to a file to be viewed
later. To do this, run the following command:

 mvn –l simple-project-log.txt clean package

The command will be completed with no output on the screen. The simple-project-log.
txt file will contain all the log messages. You can use a combination of –l along with –q or
–X to redirect the appropriate level of logging to the file.

Alternately, the output can be redirected to a file:

mvn clean package > simple-project-log.txt

Using the Maven Help plugin
Maven provides a –h command-line flag to display various command-line parameters that it
supports. However, there is a Help plugin that helps you get other information.

How to do it...
1.	 Open the simple Maven project.

2.	 Run the following command:
 mvn help:effective-pom

3.	 Observe the output:

Chapter 8

169

4.	 Run the following command on a project with a profile (for instance, project-with-
profile):
mvn help:all-profiles

5.	 Observe the output:
[INFO] --- maven-help-plugin:2.2:all-profiles (default-cli) @
project-with-profile ---

[INFO] Listing Profiles for Project: com.packt.cookbook:project-
with-profile:jar

:1.0-SNAPSHOT

 Profile Id: dev (Active: false , Source: pom)

6.	 Run the following command:
mvn –help:active-profiles

7.	 Observe the output:
Active Profiles for Project 'com.packt.cookbook:project-with-
profile:jar:1.0-SNAPSHOT':

The following profiles are active:

8.	 Now run the following command:
mvn –Pdev help:active-profiles

9.	 Observe the output:
Active Profiles for Project 'com.packt.cookbook:project-with-
profile:jar:1.0-SNAPSHOT':

The following profiles are active:

 - dev (source: com.packt.cookbook:project-with-profile:1.0-
SNAPSHOT)

How it works...
The Maven Help plugin provides different goals. These are also supported by IDEs, and are
as follows:

ff effective-pom: This displays the pom file that will be used by Maven after applying
inheritance, interpolation, and profiles. This is useful to know the final pom file when
it is needed for troubleshooting.

Handling Typical Build Requirements

170

ff all-profiles: This goal displays all the profiles that are available for the project. It
indicates whether the profiles are active or not.

ff active-profiles: This goal displays the list of active profiles. We explicitly
enabled the dev profile (which was not active by default), so it showed up in the list
of active profiles.

There's more...
The Maven Help plugin provides a few other goals as well. A notable one is the describe
goal, which is used to get details of any plugin.

1.	 To understand this, let's use an instance and run the following command:
mvn help:describe -DgroupId=org.jacoco
-DartifactId=jacoco-maven-plugin -Ddetail=true

2.	 Observe the results:

The describe goal does not need you to have a Maven project. You
are just getting some help information for a particular plugin!

Using the Maven SCM plugin
Maven provides a mechanism to interact with SCM systems in a vendor-independent way.
Typically, a Maven project is checked in an SCM. Using the Maven SCM plugin, you can
perform a number of SCM-related activities.

Chapter 8

171

Getting ready
The Maven project that we want to use the plugin with should be in an SCM. Maven supports
a number of SCM providers. We will use Git to illustrate this.

How to do it...
1.	 Add the following code to your pom file:

 <scm>
 <connection>scm:git:https://bitbucket.org/maruhgar/apache-
maven-cookbook</connection>
 <developerConnection>scm:git:https://maruhgar@bitbucket.org/
maruhgar/apache-maven-cookbook</developerConnection>
 <url>https://bitbucket.org/maruhgar/apache-maven-
cookbook</url>
 </scm>

2.	 Run the following command:
mvn scm:status

3.	 Observe the output in Windows:

4.	 For Linux, the output will be as follows:

Handling Typical Build Requirements

172

How it works...
When the status goal of the Maven SCM plugin is run, it uses the information in the scm tag
of the pom file to get the SCM details. It uses this information and invokes the corresponding
scm command to get the status information. In the preceding example, it is the git status.

The command-line version of the relevant SCM client must be
installed and available in the Maven path for this to work.

There are three entries in the scm tag:

ff connection: This is the connection information to access the repository. This is
typically in the following form:
<service name>:<scm implementation>:<repository url>

�� service name: This would be an SCM

�� scm implementation: This would be one of the supported SCMs

�� repository url: This would be a URL for the repository

ff developerConnection: This is similar to any connection, except that this may
need authentication or have additional privileges. Typically, the connection access
would be read-only, while the developerConnection access would be read-write.

ff url: This is the repository URL.

You will also notice that the appropriate shell command is used based on the operating
system, which is cmd.exe in the case of Windows and sh in the case of Linux.

There's more...
The Maven SCM plugin provides a number of other commands for various SCM operations,
such as add, remove, checkin, checkout, update, diff, branch, and tag.

Bootstrap is an interesting option to checkout and build a project with:

1.	 Create a new Maven project (or open the bootstrap-project file).

2.	 Add a valid Maven project in the scm section:
scm>
 <connection>scm:git:https://github.com/maruhgar/mvn-examples</
connection>
 <url>https://github.com/maruhgar/mvn-examples</url>
 </scm>

Chapter 8

173

3.	 Add the following entries in the build section:
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-scm-plugin</artifactId>
 <version>1.9.2</version>
 <configuration>
 <goals>install</goals>
 <goalsDirectory>test-properties</goalsDirectory>
 </configuration>
 </plugin>
 </plugins>
</build>

4.	 Run the Maven command:
mvn scm:bootstrap

5.	 Observe the results:

Handling Typical Build Requirements

174

Our Maven project has checked another Maven project, using the information in the scm
section, and run the specified goal on this. We specify a goalsDirectory element because
the SCM contains a number of projects and we want to execute the goals for a specific project,
in this case test-properties.

Generating changelogs for a site
Now that we have seen the Maven SCM plugin in action, we can see how we can use this
feature to generate a log of project changes as part of the site report.

How to do it...
1.	 Open the Maven project project-with-documentation.

2.	 Add the following entry in the reporting section:
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-changelog-plugin</artifactId>
 <version>2.3</version>
 </plugin>

3.	 Run the following command:
mvn site

4.	 Observe the output:
[INFO] Generating "Change Log" report --- maven-changelog-
plugin:2.3

[INFO] Generating changed sets xml to:
C:\projects\apache-maven-cookbook\project-with-documentation\
target\changelog.xml

[INFO] Executing: cmd.exe /X /C "git whatchanged
"--since=2014-11-06 02:45:57 +0

000" "--until=2014-12-07 02:45:57 +0000" --date=iso --
C:\projects\apache-maven-cookbook\project-with-documentation"

Chapter 8

175

5.	 Observe the generated reports:

How it works...
When the site command is run, Maven uses the information in the reporting section of
the pom file to generate various reports. It finds an entry for the Maven Changelog plugin and
generates the corresponding changelog report.

This is essentially the SCM log for the project, with details such as timestamp, author, and
details of change.

177

9
Multi-module Projects

In this chapter we will cover the following recipes:

ff Understanding project inheritance

ff Understanding project aggregation

ff Combining inheritance and aggregation

ff Performing multi-module dependency management

ff Performing multi-module plugin management

ff Selectively building modules

ff Reporting for multi-module projects

Introduction
Except for simple projects, most real-life projects have more than one module. Each of them
can be developed independently. Some modules might depend on others. A project that uses
these modules would want to ensure that it builds successfully with the appropriate versions
of all the modules.

As we look at multiple modules, each module may use a number of dependencies. To avoid
dependency hell, it is important that the versions of dependencies used by each module are
managed well. There is also an opportunity to optimize on the dependencies and plugins to
reduce the repetition of build scripts.

Multi-module Projects

178

Understanding project inheritance
There are times when you might want a project to use values from another .pom file. You may
be building a large software product, so you do not want to repeat the dependency and other
elements multiple times.

Maven provides a feature called project inheritance for this. Maven allows a number of
elements specified in the parent pom file to be merged to the inheriting project. In fact, the
super pom file is an example of project inheritance.

Getting ready
Maven is set up on your system and is verified to work. To do this, refer to Chapter 1,
Getting Started.

How to do it...
1.	 Open a project that has inheritance; project-with-inheritance in our case. This has a

subfolder named child, which is the project that inherits from the parent.

2.	 Update the parent pom file as follows:
 <groupId>com.packt.cookbook</groupId>
 <artifactId>project-with-inheritance</artifactId>
 <packaging>pom</packaging>
 <version>1.0-SNAPSHOT</version>

3.	 Create the pom file for child as follows:
 <parent>
 <groupId>com.packt.cookbook</groupId>
 <artifactId>project-with-inheritance</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>child</artifactId>
 <packaging>jar</packaging>
 <name>Child Project</name>

4.	 Run the following Maven command in the child subfolder:
mvn clean package

Chapter 9

179

5.	 Observe the output:

How it works...
We specified a parent element in the pom file of child. Here, we added the coordinates of
the parent, namely groupId, artifactId, and version. We did not specify the groupId
and version coordinates of the child project. We also did not specify any properties
and dependencies.

In the parent pom file, we specified properties and dependencies.

Due to the relationship defined, when Maven runs on the child project, it inherits groupId,
version, properties, and dependencies defined in the parent.

Interestingly, the parent pom file (project-with-inheritance) is oblivious to the fact that
there is a child project.

However, this only works if the parent project is of the pom type.

How did Maven know where the parent pom is located? We did not specify a location in the
pom file. This is because, by default, Maven looks for the parent pom in the parent folder of
child. Otherwise, it attempts to download the parent pom from the repository.

Multi-module Projects

180

There's more...
What if the parent pom is not in any repository? Also, what if it is in a different folder from the
parent folder of the child? Let's see what happens:

1.	 Open a child project, where the parent project is not in the parent folder but in a
subfolder (in our case, parent):

2.	 Update the pom file of the child project as follows:
 <parent>
 <groupId>com.packt.cookbook</groupId>
 <artifactId>parent</artifactId>
 <version>1.0-SNAPSHOT</version>
 <relativePath>../parent/pom.xml</relativePath>
 </parent>

3.	 Build the child project:

mvn clean package

Maven now determines the location of the parent pom by virtue of the relativePath
element, which indicates the folder where the parent pom is located. Using this, it builds the
child project successfully.

Chapter 9

181

Understanding project aggregation
A key difference between inheritance and aggregation is that, aggregation is defined with a
top-down approach, whereas inheritance is defined the other way around. In Maven, project
aggregation is similar to project inheritance, except that the change is made in the parent
pom instead of the child pom.

Maven uses the term module to define a child or subproject, which is part of a larger
project. An aggregate project can build all the modules together. Also, a Maven command
run on the parent pom or the pom file of the aggregate project will also apply to all the
modules that it contains.

How to do it...
1.	 Open a project that has aggregation; in our case project-with-aggregation.

This has a subfolder named aggregate-child, which is the module that is
aggregated by the parent project.

2.	 Update the parent pom as follows:
 <groupId>com.packt.cookbook</groupId>
 <artifactId>project-with-aggregation</artifactId>
 <packaging>pom</packaging>
 <version>1.0-SNAPSHOT</version>

3.	 Add the module section and specify the child:
 <modules>
 <module>aggregate-child</module>
 </module>

4.	 Run the following Maven command in the parent folder:
mvn clean package

5.	 Observe the output:

C:\projects\apache-maven-cookbook\project-with-aggregation>mvn
clean package

[INFO] Scanning for projects...

[INFO] ---

[INFO] Reactor Build Order:

[INFO]

[INFO] Aggregate child Project

Multi-module Projects

182

[INFO] project-with-aggregation

…

[INFO] ---

[INFO] Reactor Summary:

[INFO]

[INFO] Child Project
SUCCESS [2.866 s]

[INFO] project-with-aggregation
SUCCESS [0.004 s]

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

How it works...
We specified the child project as a module in the aggregator pom. The child project is a
normal Maven project, which has no information about the fact that there exists an
aggregator pom.

When the aggregator project is built, it builds the child project in turn. You will notice the word
Reactor in the Maven output. Reactor is a part of Maven, which allows it to execute a goal
on a set of modules. While modules are discrete units of work; they can be gathered together
using the reactor to build them simultaneously. The reactor determines the correct build order
from the dependencies stated by each module.

There's more...
As in the case of inheritance, what the module is, is not a subfolder of the aggregator project,
but a sibling.

1.	 Update the module section as follows:
 <modules>
 <module>../aggregate-child</module>
 </module>

2.	 Build the aggregator project:

mvn clean package

Chapter 9

183

Maven now determines the location of the module by virtue of the path specified, which
indicates the folder where the parent pom is located. By convention, the module name is
expected to be identical to the folder name.

Combining inheritance and aggregation
By using the project inheritance feature of Maven, we can share common build attributes such
as properties and dependencies across all children. We can also aggregate modules and
build them together.

When project inheritance is used, the parent is not aware of the child. In the case of project
aggregation, each module is not aware of the aggregation.

We will now see how to combine and get the benefits of both.

How to do it...
1.	 Open a multi-module project; in our case, simple-multi-module. This has a

subfolder child, which is the module that is aggregated by the parent project.

2.	 Update the parent pom as follows:
 <groupId>com.packt.cookbook</groupId>
 <artifactId>simple-multi-module</artifactId>
 <packaging>pom</packaging>
 <version>1.0-SNAPSHOT</version>

3.	 Add the module section and specify the child:
 <modules>
 <module>child</module>

4.	 Update the child pom to specify the parent element:
 <parent>
 <groupId>com.packt.cookbook</groupId>
 <artifactId>simple-multi-module</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>

5.	 Run the following Maven command in the parent folder:
mvn clean package

Multi-module Projects

184

6.	 Observe the output:
[INFO] Reactor Summary:

[INFO]

[INFO] simple-multi-module
SUCCESS [0.162 s]

[INFO] Child Project
SUCCESS [2.411 s]

How it works...
We have specified the parent element in the child pom to indicate who the parent is.
We have also specified the child project as a module in the parent pom. Thus, both the
relationships—inheritance and aggregation—are defined.

When we build the parent project, it automatically builds the child by virtue of the modules
element. At the same time, the child project can be built independently as well.

There's more...
The child project need not necessarily be a subfolder of the parent project. If it is elsewhere,
as we have seen in the earlier recipes, it can be one of the following:

ff relativePath: relativePath of the parent element should point to the
appropriate location of the parent

ff module: The module element should contain the appropriate path to the
child project

Performing multi-module dependency
management

Dependency management is a mechanism to centralize dependency information. When there
are a set of projects (or modules) that inherit a common parent, all information about the
dependency can be put in the parent pom and the projects can have simpler references to
them. This makes it easy to maintain the dependencies across multiple projects and reduces
the issues that typically arise due to multiple versions of the same dependencies.

Chapter 9

185

How to do it...
1.	 Open a multi-module project (simple-multi-module).

2.	 Add a dependency for junit in the dependencyManagement section:
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

3.	 Update the dependencies section of the child project as follows:
<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 </dependency>
</dependencies>

4.	 Run the following command:
mvn clean test

Ensure that the build completes successfully.

5.	 Run the Maven command to check the dependency:
mvn dependency:tree

6.	 Observe the results:

[INFO] --- maven-dependency-plugin:2.8:tree (default-cli) @
simple-multi-module

[INFO] com.packt.cookbook:simple-multi-module:pom:1.0-SNAPSHOT

[INFO]

[INFO] ---

[INFO] Building Child Project 1.0-SNAPSHOT

[INFO] ---

Multi-module Projects

186

[INFO]

[INFO] --- maven-dependency-plugin:2.8:tree (default-cli) @ child

[INFO] com.packt.cookbook:child:jar:1.0-SNAPSHOT

[INFO] \- junit:junit:jar:3.8.1:test

How it works...
Dependencies that are specified within the dependencyManagement section of the parent
pom are available for use to all the child projects. The child project needs to choose the
dependencies by explicitly specifying the required dependencies in the dependencies
section. While doing this, the child projects can omit the version and scope information so
that they are inherited from the parent.

You may ask, "Why have the dependencyManagement section when child projects inherit
dependencies defined in the parent pom anyway?" The reason is, the parent centralizes
dependencies across several projects. A child project typically needs only some of the
dependencies that the parent defines and not all of them. The dependencyManagement
section allows child projects to selectively choose these.

There's more...
The dependencyManagement section also helps address any surprises of Maven's
dependency mediation. Dependency mediation is what determines what version
of dependency will be used when multiple versions of an artifact are encountered.
However, dependencyManagement takes precedence over dependency mediation and
ensures that dependency mediation does not pick a version over the one specified in
dependencyManagement.

It should be noted that dependencies on different versions are error prone and
dependencyManagement cannot always save them from library version incompatibilities.

Performing multi-module plugin management
In multi-module projects, pluginManagement allows you to configure plugin information that
can be used as required by child projects. The parent pom can define the configurations for
various plugins used by different child projects. Each child project can chose the plugins that
it needs for the build.

Chapter 9

187

How to do it...
1.	 Open a multi-module project (simple-multi-module).

2.	 Add a configuration for the Maven build helper plugin in the pluginManagement
section to copy additional resources:
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.9.1</version>
 <executions>
 <execution>
 <id>add-resource</id>
 <phase>generate-resources</phase>
 <goals>
 <goal>add-resource</goal>
 </goals>
 <configuration>
 <resources>
 <resource>
 <directory>src/resources/xml</directory>
 <targetPath>xml</targetPath>
 </resource>
 <resource>
 <directory>src/resources/json</directory>
 <targetPath>json</targetPath>
 <includes>
 <include>include.json</include>
 </includes>
 <excludes>
 <exclude>exclude.json</exclude>
 </excludes>
 </resource>
 </resources>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

Multi-module Projects

188

3.	 Run the following command to build the project:
 mvn clean test

Note that the additional resources are not getting copied in the child project.

4.	 Now, use the corresponding plugin in the child project:
 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

5.	 Build the project again.

6.	 Observe the output:
[INFO] Copying 2 resources to xml

[INFO] Copying 1 resource to json

How it works...
We defined the Maven build helper plugin to copy resources from additional folders in the
pluginManagement section of the parent pom. It is not available to the child pom until the
child uses the plugin. When the child project did not define the plugin, the plugin definition in
the parent pom had no effect. When the child project defined the plugin, it took effect and the
additional resources got copied over.

There's more...
If a plugin is used as part of the build lifecycle, then its configuration in the
pluginManagement section will take effect, even if not explicitly defined by the child. Let us
see how this happens:

1.	 Define the Maven compiler plugin in pluginManagement of the parent pom:
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.2</version>
 <configuration>

Chapter 9

189

 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 <plugin>
</pluginManagement>

2.	 Without adding the plugin to the child pom, run the following command using Java 7:
mvn clean test

3.	 Observe the error:

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-
compiler-plugin:3.

2:compile (default-compile) on project child: Fatal error
compiling: invalid tar

get release: 1.8 -> [Help 1]

What happened here? Even though the child pom did not define the Maven Compiler plugin,
the configuration for the Maven Compiler plugin in the pluginManagement section of the
parent pom took effect because the compile goal was part of the build lifecycle. As the
configuration stipulated a Java 8 target, the compilation failed.

What if we do not want to inherit specific plugin configurations? Maven provides a way to do
this. Let us see how:

1.	 Update the preceding Maven Compiler plugin configuration as follows:
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.2</version>
 <inherited>false</inherited>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 <plugin>
</pluginManagement>

2.	 Now run the following using Java 7:
mvn clean package

Multi-module Projects

190

3.	 Observe that the project compiles without errors, though the plugin configuration
specified Java 8.

This is because the configuration was not inherited to the child module as we set the
inherited element to false.

Selectively building modules
When a project has a number of modules, there may be situations when we might want to
selectively build modules. One such situation could be because the module might run only on
specific machines. Another reason could be that a module may have long-running tests that
may make sense only in test servers.

Let us see how we can selectively build modules by using the profile feature of Maven.

How to do it...
1.	 Open a multi-module project that has two modules (two-multi-module), namely

common-one and dev-two.

2.	 In the parent pom, add one project to the modules section:
 <modules>
 <module>common-one</module>
 </modules>

3.	 Define a profile and include both modules:
<profiles>
 <profile>
 <id>dev</id>
 <modules>
 <module>common-one</module>
 <module>dev-two</module>
 </modules>
 </profile>
 </profiles>

4.	 Run the Maven command to build with the dev profile:
mvn –P dev clean test

5.	 Observe the result:

Chapter 9

191

6.	 Run the Maven command to build without profile:
mvn clean test

7.	 Observe the result:

How it works...
When you have multiple modules and you want to control when specific ones should be built,
the simplest way to achieve this is to define specific profiles and define modules within each
of them. In our example, we created a dev profile to build both modules, common-one and
dev-two. The default Maven build builds only the common-one module.

What we achieved is the ability to exclude or skip specific modules from build as required. As
you saw, a profile can only extend the list of modules, so it cannot actually blacklist a module.

Similarly, we could define pluginManagement and
dependencyManagement within profiles so that these take
effect only for the profiles.

There's more...
Maven also provides command-line options to build modules selectively. Here are some of
them with examples based on the two-multi-module Maven project:

ff -pl –projects: This is a comma-separated list of projects to be built. An example
for this is as follows:
mvn clean package –pl common-one

Multi-module Projects

192

ff –am: This stands for --also-make: This builds projects required by the list if the
project list is specified:
mvn clean package –pl common-one –am

ff –amd: This stands for --also-make-dependants. This builds projects that depend
on projects on the list (if project list is specified):
mvn clean package –pl common-one –amd

ff -rf: This stands for –resume-from. This resumes build from a specific project
(useful in the case of failures in a multi-module build):

mvn –Pdev clean package –rf dev-two

Reporting for multi-module projects
When we talk about generating a site report for a multi-module project, we refer to generating
this for each module of the project and the parent project. In the case of the site report for a
multi-module project, a couple of factors need to be taken into account. The first one is to test
if the links between the parent and the modules work correctly. The other is to check if certain
site reports can be aggregated instead of being reported individually for each module.

How to do it...
1.	 Open a multi-module project (two-multi-module) with two modules, one and two.

2.	 Add the following command to the reporting section of the parent pom for
checkstyle:
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <version>2.13</version>
 <reportSets>
 <reportSet>
 <id>aggregate</id>
 <inherited>false</inherited>
 <reports>
 <report>checkstyle-aggregate</report>
 </reports>
 </reportSet>
 </reportSets>
 </plugin>

Chapter 9

193

3.	 Run the command to generate site report:
mvn test site

4.	 Click on the Checkstyle link in the site report:

How it works...
When the site goal is run for a multi-module project, it generates the site report for all the
modules in addition to the parent module. All the reports are separately generated for each
module. However, plugins such as Checkstyle provide an option to generate aggregated
report across all the modules of the project. This allows us to get a consolidated view of the
Checkstyle violations across all the modules of the project.

Other reporting plugins such as FindBugs, PMD, and Cobertura
support multi-module reporting. However, not all of them support the
aggregation of reports. Other reporting plugins that allow aggregated
reporting are Javadocs and JXR.

There's more...
Though the site report generated for a multi-module project includes links to each child
module, the links will not work correctly, as each module report is in the target/site folder
of the respective module.

Multi-module Projects

194

Let's see how we can verify that the modules are correctly linked in the report:

1.	 Add a distributionManagement section in the parent pom:
<distributionManagement>
 <site>
 <id>packt</id>
 <url>file:///C:/fullsite</url>
 </site>
 </distributionManagement>

2.	 Run the following command to generate site report:
mvn test site

3.	 Run the following command to stage the site:
mvn site:stage –DstagingDirectory=C:/fullsite

4.	 Open the folder:

Chapter 9

195

You will notice that the site data for both the modules are now subfolders of the project site
folder. Opening the index page of fullsite will allow us to navigate to each module site and
ensure that the links are working:

197

10
Java Development

with Maven

In this chapter, we will cover the following recipes:

ff Building a JAR project

ff Generating an executable JAR

ff Generating a JAR of the source code

ff Generating a JAR of the test classes

ff Building a WAR project

ff Building an EAR project

ff Building a pom project

ff Running a web project with Jetty

ff Running a web project with Tomcat

Introduction
Maven is primarily a build tool for Java projects. Java projects can generate different types of
binaries. Typically, the output of a Java project is a JAR file. For web applications, Java classes
combined with other type of files result in a WAR or EAR file as well. Maven provides plugins
and lifecycle phases to generate various types of binary artifacts for Java projects.

Java Development with Maven

198

Building a JAR project
The default type of artifact generated by Maven is JAR. If the packaging element is absent,
or specified as jar, Maven considers it a JAR project. A JAR project combines all the source
classes along with the necessary project resources to a single file. This JAR file can be
distributed for it to be used elsewhere.

Getting ready
Maven is set up on your system and is verified for work. To do this, refer to Chapter 1,
Getting Started.

How to do it...
1.	 Open a simple Maven project, in our case simple-project.

2.	 Verify that the type is absent or set to jar:
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.cookbook</groupId>
 <artifactId>simple-project</artifactId>
 <packaging>jar</packaging>

3.	 Run the following Maven command:
mvn clean package

4.	 Observe the output:

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ simple-project

[INFO] Building jar: C:\Users\Deepa\Documents\apache-maven-
cookbook\simple-project\target\simple-project-1.0-SNAPSHOT.jar

How it works...
The package option is part of Maven's default lifecycle. When Maven is run with the package
option, it runs all the phases up to and prior to it, in order. Maven first compiles the project,
runs the tests, and then, based on the packaging type, invokes the suitable plugin to package.
In our case, as we specified the packaging as jar, Maven used the jar goal of the Maven
JAR plugin to create a JAR artifact in the target folder.

Chapter 10

199

See also
ff The Generating an executable JAR recipe in this chapter

Generating an executable JAR
The JAR artifact generated by Maven works well when used as a dependency in another
project. However, it cannot be run as an executable without manually specifying the main
class and explicitly specifying the dependencies that the project uses in the classpath.

What if we want to create an executable JAR for the project? This may be useful when the
JAR needs to be tested or the project is a simple tool that should be invoked without
additional effort.

How to do it...
1.	 Open a simple Maven project (project-with-executable-jar):

2.	 Add the following section in the pom file:
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 <mainClass>com.packt.cookbook.App</mainClass>
 </manifest>
 </archive>
 </configuration>
 </plugin>
 </plugins>
 </build>

3.	 Add the plugin configuration to copy over the dependencies to the target folder:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.9</version>
 <executions>

Java Development with Maven

200

 <execution>
 <id>copy-dependencies</id>
 <phase>package</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 <configuration>
 <outputDirectory>${project.build.directory}</
outputDirectory>
 <excludeArtifactIds>junit</excludeArtifactIds>
 </configuration>
 </execution>
 </executions>
 </plugin>

4.	 Run the following command:
mvn clean package

5.	 Observe the target folder:

6.	 Run the generated JAR file:
 java -jar project-with-executable-jar-1.0-SNAPSHOT.jar

7.	 Observe the output:

C:\projects\apache-maven-cookbook\project-with-executable-
jar\target>java -jar project-with-executable-jar-1.0-
SNAPSHOT.jar

06:40:18.437 [main] INFO com.packt.cookbook.App - Hello World

Chapter 10

201

How it works...
We have made the following configurations to the Maven JAR plugin in our pom file:

ff Added classpath: This adds all the dependant JARs to the manifest classpath section

ff Specified the main class: This information is again updated in the manifest

We also added the copy-dependencies goal of the Maven Dependency plugin to copy over
the required dependencies to the folder where the executable JAR is generated.

When we then run the executable JAR, it uses the manifest file to determine the main class as
well as the dependencies, loads them, and runs.

Let us look at the manifest file generated:

Evidently, for this to work, the executable JAR should be accompanied by the dependencies
that it uses. In the Creating an assembly recipe in Chapter 11, Advanced Maven Usage,
we will learn how to create an assembly with all the dependencies, which can be distributed
more easily.

Generating a JAR of the source code
For many projects, it is useful to generate a JAR of the source code along with the artifact.
The source thus generated can be imported to IDEs and used for browsing and debugging.
Typically, the artifacts of most open source projects are accompanied by sources
and Javadocs.

How to do it...
1.	 Open a project for which you want to generate and attach the source code

(project-with-source-code).

2.	 Add the following plugin configuration to the pom file:
 <build>
 <plugins>

Java Development with Maven

202

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-source-plugin</artifactId>
 <version>2.4</version>
 <executions>
 <execution>
 <id>attach-sources</id>
 <phase>package</phase>
 <goals>
 <goal>jar-no-fork</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

3.	 Run the following Maven command:
mvn clean package

4.	 Observe the output:
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ project-with-
source-attached ---

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-source-attached\target\project-with-source-attached-1.0-
SNAPSHOT.jar

[INFO]

[INFO] --- maven-source-plugin:2.4:jar-no-fork (attach-sources) @
project-with-source-attached ---

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-source-attached\target\project-with-source-attached-1.0-
SNAPSHOT-sources.jar

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

Chapter 10

203

5.	 Examine the target folder:

How it works...
We added the Maven Source plugin to the pom file. We also configured the plugin to run the
jar-no-fork goal during the package phase. The goal creates a JAR of the project source
code and makes it available along with the project artifacts.

The jar-no-fork goal is used to bind the goal to the build lifecycle. To run the plugin and
create the JAR independent of the lifecycle, the jar goal can be used as follows:

mvn source:jar

Subsequent phases (such as install) install the source artifact along with the
project artifact.

There's more...
What if we want to attach the Javadoc instead of (or in addition to) sources? Let us do this:

1.	 Add the following plugin to the pom file:
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-javadoc-plugin</artifactId>
 <version>2.10.1</version>
 <executions>
 <execution>
 <id>attach-javadocs</id>
 <phase>package</phase>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

Java Development with Maven

204

2.	 Build the aggregator project:
mvn clean package

3.	 Observe the output:

Maven runs the jar goal of the Maven Javadoc plugin in addition to the jar-no-fork goal
of the Maven Source plugin. Both the JARs are now created, in addition to the project artifacts,
and are now available for distribution.

Besides sources, the test sources and test Javadocs can also be
generated and attached, if relevant to the project.

Generating a JAR of the test classes
There could be situations when you would want to use the test classes and resources of a
project as a test dependency in another project. This is typically the case in multi-module
projects, where a module depends on another module. There could be utility code in the test
classes of a module that can be reused in another module.

One way to achieve this would be by creating a separate project to hold these classes.
However, that is cumbersome and may be confusing as well.

Maven provides another way to achieve this.

Chapter 10

205

How to do it...
1.	 Open a project for which you want to create a test JAR (project-with-test-jar).

2.	 Add the following plugin configuration to the pom file:
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.5</version>
 <executions>
 <execution>
 <goals>
 <goal>test-jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

3.	 Run the following Maven command:
mvn clean package

4.	 Observe the output:
[INFO] --- maven-jar-plugin:2.5:jar (default-jar) @ project-with-
test-jar ---

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-test-jar\tar

get\project-with-test-jar-1.0-SNAPSHOT.jar

[INFO]

[INFO] --- maven-jar-plugin:2.5:test-jar (default) @ project-with-
test-jar ---

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-test-jar\tar

get\project-with-test-jar-1.0-SNAPSHOT-tests.jar

Java Development with Maven

206

5.	 Examine the target folder:

How it works...
We specified a test-jar goal to the Maven JAR plugin. This asks Maven to generate a JAR of
test classes and resources. This JAR can be installed along with the project artifact. It can also
be specified as a dependency in another project as follows:

<dependencies>
 <dependency>
 <groupId>com.packt.cookbook</groupId>
 <artifactId>project-with-test-jar</artifactId>
 <version>1.0-SNAPSHOT</version>
 <type>test-jar</type>
 <scope>test</scope>
 </dependency>
</dependencies>

One thing to note though is the test JAR does not bring its transitive test-
scoped dependencies with it if you add a dependency on this. These
dependencies, if required, need to be specified by hand.

Building a WAR project
So far, we have been building projects that generate a JAR artifact. When it comes to web
applications, we typically create WAR artifacts. Maven supports the building of WAR artifacts.
The packaging type .war indicates to Maven that it is a WAR artifact. Maven automatically
invokes the corresponding lifecycle bindings.

Chapter 10

207

How to do it...
1.	 Run the following command from the command prompt:

mvn archetype:generate –DinteractiveMode=false
-DgroupId=com.packt.cookbook -DartifactId=simple-webapp
-DarchetypeArtifactId=maven-archetype-webapp

2.	 Observe the output:

3.	 Open the created pom file:
<modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.cookbook</groupId>
 <artifactId>simple-webapp</artifactId>
 <packaging>war</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>simple-webapp Maven Webapp</name>
 <url>http://maven.apache.org</url>
 <build>
 <finalName>simple-webapp</finalName>
 </build>

4.	 Run the command to build the project:
mvn clean package

Java Development with Maven

208

5.	 Observe the output:

6.	 Check the target folder:
[Directory of C:\projects\apache-maven-cookbook\simple-webapp\
target

18-12-2014 20:52 <DIR> .
18-12-2014 20:52 <DIR> ..
18-12-2014 20:52 <DIR> classes
18-12-2014 20:52 <DIR> maven-archiver
18-12-2014 20:52 <DIR> simple-webapp
18-12-2014 20:52 2,226 simple-webapp.war

How it works...
We used the Maven Archetype plugin to bootstrap a simple web project. This generated a pom
file along with other contents for a web application. When you examine the pom file, you will
notice that the packaging type is set to war.

Maven uses this information to invoke the war goal of the Maven plugin to create a WAR of
the project contents.

Also, observe that we specified the finalName element. Maven uses this to create the name
of the WAR artifact. In the absence of this element, Maven uses the default name, which
would have been simple-webapp-1.0-SNAPSHOT.war.

There's more...
The Maven WAR plugin can be used in many ways. The default option creates a WAR file.
During development, we would want to speed up things by generating the WAR file in exploded
form. To do this, perform the following steps:

1.	 Open the simple-webapp project.

2.	 Run the following command:
mvn war:exploded

Chapter 10

209

3.	 Examine the content of the target folder:

Building an EAR project
Maven provides support to generate Java EE Enterprise Archive (EAR) files. These can be
deployed in application servers such as JBoss, WebLogic, and WebSphere.

How to do it...
1.	 Run the following command from the command prompt:

mvn archetype:generate -DgroupId=com.packt.cookbook
-DartifactId=simple-ear -DarchetypeArtifactId=wildfly-javaee7-
webapp-ear-archetype -DarchetypeGroupId=org.wildfly.archetype
-DinteractiveMode=false

Java Development with Maven

210

2.	 Observe the result:

3.	 Build the generated project:
mvn clean package

4.	 Observe the generated output:

5.	 Open the target folder:

Chapter 10

211

How it works...
We used the Maven Archetype plugin to bootstrap a simple EAR project. It generated a multi-
module project, which has an EJB module, web module, and a EAR module along with the
aggregate pom file. When you examine the pom file of the EAR module, you will notice that the
packaging type is set to ear.

Once built, Maven builds all the modules. In the EAR module, it uses the packaging
information to invoke the ear goal of the Maven EAR plugin to create a EAR of the
project contents.

Building a pom project
There are many reasons why you may want to make a pom file available as an artifact. One
reason is the aggregate project. An aggregate project must have the pom packaging type.
Another reason could be a pom, which can be imported as a dependency. Whatever the
reason, Maven provides support to build a pom project.

How to do it...
1.	 Open a simple pom project (simple-pom-project).

2.	 Observe the packaging type:
<groupId>com.packt.cookbook</groupId>
 <artifactId>simple-pom-project</artifactId>
 <packaging>pom</packaging>
 <version>1.0-SNAPSHOT</version>
 <description>Simple pom project</description>

3.	 Build the project:
mvn clean package

Note that only the clean goal is run.

4.	 Run the following command:
 mvn clean install

Java Development with Maven

212

5.	 Observe the output:

How it works...
The following are the default bindings for the pom packaging type:

ff package: site:attach-descriptor: This attaches a descriptor to the site
report, if applicable

ff install: install:install: This installs the project in the local repository

ff deploy: deploy:deploy: This deploys the project to the remote repository

As we can see, Maven does not run any other goals for the pom packaging type. However, if it
sees module elements, it invokes the specified Maven goals on all the defined modules.

Also, various configurations, including pluginManagement and dependencyManagement,
get inherited by all of the child projects.

There's more...
What if you had a reason to compile some source files or run some tests even though the
packaging type is pom? This may not be a usual scenario, but it can be done by explicitly
invoking the relevant plugin goals in the following way:

1.	 Open the simple pom project (simple-pom-project).

2.	 Run the following command:
mvn clean compiler:compile compiler:testCompile surefire:test
jar:jar

Chapter 10

213

3.	 Observe the output:

We now explicitly invoke the following goals:

ff compiler:compile: This compiles the source files

ff compiler:testCompile: This compiles test files

ff surefire:test: This runs tests

ff jar:jar: This creates a JAR artifact

Maven does not prevent us from doing this.

Java Development with Maven

214

Running a web project with Jetty
When developing web applications, it is good to have a quick way to check if the application
deploys successfully without errors. IDEs allow users to hot-deploy applications. Maven
provides a mechanism to quickly run the project using Jetty. Jetty is a popular open source
application server that can be used to deploy web projects. The Maven Jetty plugin allows
applications to be deployed to Jetty and runs them as part of the Maven build process.

How to do it...
1.	 Open a simple web project (simple-web-project).

2.	 Run the following Maven command:
mvn org.eclipse.jetty:jetty-maven-plugin:run

3.	 Observe the result:

Chapter 10

215

4.	 Access the web application from the browser by going to http://localhost:8080.

How it works...
The Maven Jetty plugin allows web applications to be deployed and tested using Jetty. The
run goal is bound to the package phase. Maven runs all the phases prior to it. Jetty deploys
the webapp from its sources; the webapp does not have to be built into a WAR. It looks for the
relevant parts of the web application in the default Maven locations. Here are some instances:

ff resources in src/main/webapp

ff classes in target/classes

ff web.xml in src/main/webapp/WEB-INF

Jetty uses default values to start the server.

As Jetty is not an official Maven plugin, we have explicitly specified groupId
(org.eclipse.jetty) and artifactId (jetty-maven-plugin)
instead of the short plugin prefix. To use the short plugin prefix, add the
following in the settings file:

<pluginGroup>org.eclipse.jetty</pluginGroup>

Then, Maven can be invoked as follows:
mvn jetty:run

There's more...
The Maven Jetty plugin provides several goals and configurations to help develop
web applications.

1.	 Run the WAR file:
mvn jetty:run-war

Java Development with Maven

216

Jetty now builds the WAR file and then runs it:

2.	 Run the exploded WAR file:
mvn jetty:run-exploded

Jetty now builds the WAR file, explodes it, and then runs it:

There are some other goals that can be used as well:

ff jetty:deploy-war: This deploys an existing WAR file without building it

ff jetty:start: This starts the Jetty server

ff jetty:stop: This stops the Jetty server

ff jetty:run-forked: This runs the Jetty server in a Java virtual machine process
different from Maven

Running a web project with Tomcat
Tomcat is a popular open source application server. The Maven Tomcat plugin supports the
ability to build and deploy Maven projects in Tomcat. In fact, there are two Maven Tomcat
plugins, one for Tomcat 6 and another for Tomcat 7.

Let us look at how to run a web project with Tomcat 7. The steps will be identical for Tomcat
6, except that the plugin would be tomcat6-maven-plugin instead of tomcat7-maven-
plugin, and the plugin prefix would be tomcat6 instead of tomcat7.

Chapter 10

217

How to do it...
1.	 Open a simple web project (simple-web-project).

2.	 Run the following Maven command:
mvn org.apache.tomcat.maven:tomcat7-maven-plugin:run

3.	 Observe the result:

4.	 Browse to the deployed webapp by visiting http://localhost:8080/simple-
webapp:

How it works...
The Maven Tomcat plugin allows web applications to be deployed and tested using Apache
Tomcat. The run goal is bound to the package phase. Maven runs all the phases prior to it.

Tomcat uses default values to start the server.

Java Development with Maven

218

As this is not an official Maven plugin, we have explicitly specified the
groupId (org.apache.tomcat.maven) and the artifactId
(tomcat7-maven-plugin) instead of the short plugin prefix. To use the
short plugin prefix, add the following in the settings file:

<pluginGroup>org.apache.tomcat.maven</pluginGroup>

Then Maven can be invoked as follows:
mvn tomcat7:run

There's more...
The Maven Tomcat7 plugin also supports goals to start and stop Tomcat, which can be used
when running integration tests.

It also supports the creation of an executable JAR using embedded Tomcat. Let us see how
to do this:

1.	 Open the web project for which you want to create an executable JAR (project-
with-executable-webapp).

2.	 Add the following plugin and configuration:
 <plugins>
 <plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.1</version>
 <executions>
 <execution>
 <id>tomcat-run</id>
 <goals>
 <goal>exec-war-only</goal>
 </goals>
 <phase>package</phase>
 <configuration>
 <path>/</path>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>

3.	 Run the following command:
mvn clean package

Chapter 10

219

4.	 Run the JAR created in the target folder:
java –jar project-with-executable-webapp-1.0-SNAPSHOT-war-exec.jar

5.	 Observe the output:

What we have now is a distributable web application using embedded Tomcat.

There is a bug due to which we need to use version 2.1 of the plugin
rather than 2.2 for this to work.

221

11
Advanced Maven Usage

Let us look at the following recipes in this chapter:

ff Creating an assembly

ff Running a custom executable

ff Running an ANT task

ff Determining updates to Maven plugins

ff Determining updates to Maven dependencies

ff Controlling the constraints

ff Generating unique builds

ff Releasing a Maven project

Introduction
In this chapter, we look at using features of Maven that may not be required on a regular basis
or for projects. These range from assembling your project for distribution to releasing your
project. These are not typical build tasks, but essential elements of a project lifecycle.

Creating an assembly
A typical project requirement is to aggregate the project output along with its dependencies,
modules, and other files into a single distributable archive. An assembly is a group of files,
directories, and dependencies that are assembled into an archive format and distributed.
Maven provides prefabricated assembly descriptors to build these assemblies. The
descriptors handle common operations, such as packaging a project's artifact, along with
the dependencies.

Advanced Maven Usage

222

Getting ready
Maven should be set up on your system and verified to work. To do this, refer to Chapter 1,
Getting Started.

How to do it...
1.	 Open a Maven project for which you want to generate the assembly; in our case,

project-with-assembly.

2.	 Add the following plugin and configuration to the pom file:
<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.5.3</version>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 <archive>
 <manifest>
 <mainClass>com.packt.cookbook.App</mainClass>
 </manifest>
 </archive>
 </configuration>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
</plugin>

3.	 Run the following Maven command:
mvn clean package

4.	 Observe the output:
[INFO] --- maven-assembly-plugin:2.5.3:single (make-assembly) @
project-with-assembly ---

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-assembly\target\project-with-assembly-1.0-SNAPSHOT-jar-with-
dependencies.jar

Chapter 11

223

5.	 Run the created distribution JAR:
C:\projects\apache-maven-cookbook\project-with-assembly\
target>java -jar project-with-assembly-1.0-SNAPSHOT-jar-with-
dependencies.jar

07:13:25.660 [main] INFO com.packt.cookbook.App - Hello World

How it works...
We made the following changes to the pom file:

ff We chose jar-with-dependencies, one of the prefabricated assembly
descriptors provided by the Maven Assembly plugin. This creates a single JAR with all
the dependencies of the project.

ff We also used the archive configuration to specify the main class of the project. This
is to make the JAR file executable.

ff We then specified when the single goal of assembly should be run, namely, the
package phase.

When Maven ran, it used the preceding configurations to assemble a JAR with dependencies
in the package phase. We could run this as a normal executable JAR.

Besides predefined descriptors, the Maven Assembly plugin also allows us to create custom
descriptors that can have fine-grained control over the contents of the assembly.

The Assembly plugin can also build an assembly from a multi-module project, where the
modules can be part of the final assembly.

There's more...
While opening the JAR file, you would have observed that all the dependant JARs have been
unpacked as well.

Advanced Maven Usage

224

This is due to the default configuration for the predefined descriptor. Let us see how to create
the same distribution but retain dependant JARs as they are. To do this, we will now use one
Maven JAR plugin, which uses a custom class loader to load dependant JARs within the
parent JAR:

1.	 Open the project for which you want to create an executable with unpackaged
dependant jars (project-with-one-jar).

2.	 Add the following plugin in the pom file:
 <plugin>
 <groupId>org.dstovall</groupId>
 <artifactId>onejar-maven-plugin</artifactId>
 <version>1.4.4</version>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>
 <goals>
 <goal>one-jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

3.	 Add the JAR plugin to specify the main class for the executable JAR:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <archive>
 <manifest>
 <mainClass>com.packt.cookbook.App</mainClass>
 </manifest>
 </archive>
 </configuration>
</plugin>

4.	 Add the following code as the plugin binaries are not in the central Maven repository:
 <pluginRepositories>
 <pluginRepository>
 <id>onejar-maven-plugin.googlecode.com</id>
 <url>http://onejar-maven-plugin.googlecode.com/svn/
mavenrepo</url>
 </pluginRepository>
 </pluginRepositories>

Chapter 11

225

5.	 Run the following command:
mvn package

6.	 Run the generated executable and observe the result:
java -jar project-with-one-jar-1.0-SNAPSHOT.one-jar.jar

06:57:45.995 [main] INFO com.packt.cookbook.App - Hello World

7.	 Open the created JAR file:

We can see that in contrast to the assembly JAR, the executable JAR is created
without unpacking the libraries (dependencies) involved.

8.	 Navigate to the lib folder in the JAR:

The dependant JARs are stored in the lib folder.

See also
ff The Generating an executable JAR recipe in Chapter 10, Java Development

with Maven

Advanced Maven Usage

226

Running a custom executable
There are many situations when you want Maven to run a specific executable on your
computer. A simple use case would be to run the JAR that you created. Another case would be
to have Maven run commands that are not provided as plugins (for instance, create a native
Windows installer).

Maven provides support to run any executable system in a separate process along with Java
programs in the same virtual machine on which Maven runs. The Maven Exec plugin provides
this support using the exec goal (to run in a separate process) and the java goal (to run Java
programs in the same process).

How to do it...
1.	 Open a simple Maven project (simple-project).

2.	 Run the command:
mvn clean package exec:java –Dexec.mainClass="com.packt.cookbook.
App"

3.	 Observe the results:

How it works...
We wanted to run the JAR file that we had created in the project. To do this, we called the
java goal of the Maven Exec plugin. We provided the plugin with the required parameter
(mainClass) so that it knew which main class needed to be run.

There's more...
You could integrate the running of the executable as part of the project lifecycle. Let us do this
for our example:

1.	 Open the project (let's call it project-with-exec).

2.	 Add the following code to the pom file:
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.3.2</version>

Chapter 11

227

 <executions>
 <execution>
 <id>hello-world</id>
 <phase>package</phase>
 <goals>
 <goal>java</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <mainClass>com.packt.cookbook.App</mainClass>
 </configuration>
 </plugin>

3.	 Run the following command:
mvn clean package

4.	 Observe the result:

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ project-with-
exec ---

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-exec\target\

project-with-exec-1.0-SNAPSHOT.jar

[INFO]

[INFO] --- exec-maven-plugin:1.3.2:java (hello-world) @ project-
with-exec ---

[WARNING] Warning: killAfter is now deprecated. Do you need it ?
Please comment

on MEXEC-6.

06:25:26.005 [com.packt.cookbook.App.main()] INFO com.packt.
cookbook.App - Hell

o World

[INFO] ---

The project is run during the package phase based on the configuration that we specified in
the plugin.

Advanced Maven Usage

228

The same can be done for non-Java executables; we need to invoke the exec goal instead of
the java goal.

Running system executables makes the build nonportable,
so use it with care.

Running an ANT task
ANT is a popular build automation tool that provides a great degree of flexibility. It also
provides tasks, such as echo and touch, that are not available in Maven. There might be
advantages in combining ANT tasks with Maven to achieve certain goals, though it is best to
avoid it until it's inevitable.

Maven provides a mechanism to run arbitrary ANT tasks by way of the Maven AntRun plugin.
Let us see how to use this to run an ANT task in our project.

How to do it...
1.	 Open a project for which you want to run ANT tasks (project-with-ant).

2.	 Add the following plugin configuration to the pom file:
 <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.8</version>
 <executions>
 <execution>
 <phase>package</phase>
 <configuration>
 <target>
 <echo message="Calling ant task in package
phase"/>
 </target>
 </configuration>
 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

3.	 Run the following Maven command:
mvn clean package

Chapter 11

229

4.	 Observe the output:

How it works...
We configured the Maven AntRun plugin to run an ANT target during the package phase. In
the ANT target, we specified a simple echo task, which outputted a string we wanted.

Instead of the echo task, we could write more complex tasks. The Maven AntRun plugin also
provides a means for ANT tasks to refer to Maven properties, class paths, and others.

There's more...
It is good practice to separate ANT tasks to a separate ANT build script (build.xml) and
invoke the same from Maven. Let us see how to do this:

1.	 Create a simple ANT build script, build.xml, and add the following contents:
 <project name="project-with-ant" default="echo" basedir=".">
 <description>
 Simple ant task to echo a string
 </description>

 <target name="echo">
 <echo message="Hello World"/>
 </target>
</project>

2.	 Replace the target configuration in the pom file as follows:
<target>
 <ant target="echo"/>
 </target>

3.	 Run the Maven command:
mvn clean package

Advanced Maven Usage

230

4.	 Observe the output:

The result is the same, but now the ANT scripts are separated from Maven.

Determining updates to Maven plugin AntRun
In our build scripts, we explicitly specify the version of the Maven plugins that we use. This is
required in order to create reproducible builds. In the absence of the version, Maven gives a
warning such as the following:

[WARNING] Some problems were encountered while building the effective
model for

com.packt.cookbook:project-with-exec:jar:1.0-SNAPSHOT

[WARNING] 'build.plugins.plugin.version' for org.codehaus.mojo:exec-
maven-plugin is missing. @ line 42, column 17

[WARNING]

[WARNING] It is highly recommended to fix these problems because they
threaten the stability of your build.

[WARNING]

[WARNING] For this reason, future Maven versions might no longer support
building such malformed projects.

Over a period of time, there could be updates to these plugins. It would be good to know if
there are any so that we can suitably update the plugin versions. Let us see how we can
do this.

How to do it...
1.	 Take a project for which you want to check the plugin update (project-with-

exec).

2.	 Change the version of the plugin to an older one:
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.2</version>>

Chapter 11

231

3.	 Run the following command:
mvn versions:display-plugin-updates

4.	 Observe the output:

[INFO] --- versions-maven-plugin:2.0:display-plugin-updates
(default-cli) @ proj

ect-with-exec ---

[INFO]

[INFO] All plugins with a version specified are using the latest
versions.

...

[WARNING] The following plugins do not have their version
specified:

[WARNING] maven-clean-plugin (from
super-pom) 2.5

[WARNING] maven-compiler-plugin (from
super-pom) 3.1

...

[WARNING] Project does not define minimum Maven version, default
is: 2.0

[INFO] Plugins require minimum Maven version of: 2.2.1

...

[ERROR] Project does not define required minimum version of Maven.

[ERROR] Update the pom.xml to contain

[ERROR] <prerequisites>

[ERROR] <maven>2.2.1</maven>

[ERROR] </prerequisites>

...

[INFO] Require Maven 2.2.1 to use the following plugin updates:

[INFO] maven-jar-plugin ..
........ 2.5

[INFO] maven-site-plugin
........ 3.2

[INFO] org.codehaus.mojo:exec-maven-plugin
........................... 1.3.2

Advanced Maven Usage

232

How it works...
The display-plugin-updates goal of the Maven Versions plugin downloads the metadata
for all the plugins specified in the pom file and then produces a report. The report reveals a
number of things that are of interest.

ff A prerequisites tag is absent. The prerequisites tag in the pom file specifies
the minimum version of Maven that is required to build the project. In the absence
of this, Maven takes the minimum version as 2.0. There is a risk of nonreproducible
builds if different developers use different versions of Maven. Hence, it is a good
practice to specify a minimum version by using this tag.

ff There is a warning about plugin versions not being defined. As we have seen, plugins
in the pom file don't need to be specified explicitly unless they need to be configured.
Now, Maven still uses various plugins for execution (such as clean, resources,
compile, test, and so on) and it needs to determine the version to be used. It uses
the version specified by the super pom, which is fine in most cases. However, the
Versions plugin alerts us that this is the case, so we can take action as appropriate.

ff There is a difference in plugin versions based on the Maven version. The report
specifies different versions of various plugins based on the Maven version used. This
is all the more reason why it is important to specify a prerequisite.

As the output indicates, if we specify that we need at least the 2.2.1 version of Maven, then
we can see that there is a newer version of the Maven Exec plugin, which is 1.3.2.

There's more...
Let us now specify the prerequisites element in the pom file and see how it affects the
output of the goal:

1.	 Add the following to the pom file:
 <prerequisites>
 <maven>3.2.5</maven>
 </prerequisites>

2.	 Run the following command:
mvn versions:display-plugin-updates

3.	 Observe the output:

[INFO] --- versions-maven-plugin:2.0:display-plugin-updates
(default-cli) @ project-with-exec ---

...

INFO]

Chapter 11

233

INFO] The following plugin updates are available:

INFO] org.codehaus.mojo:exec-maven-plugin
1.2 -> 1.3.2

INFO]

We now see that the plugin reports a plugin update based on the prerequisite that
we specified.

It is difficult to determine if there are updates to plugins that we do not explicitly define in the
pom file. For instance, as per the output from the preceding command, which
is as follows:

[WARNING] The following plugins do not have their version
specified:

[WARNING] maven-clean-plugin (from
super-pom) 2.5

[WARNING] maven-compiler-plugin (from
super-pom) 3.1

[WARNING] maven-deploy-plugin (from
super-pom) 2.7

[WARNING] maven-install-plugin (from
super-pom) 2.4

However, as of writing this book, the latest version of the Maven Clean plugin is 2.6.1,
that of the Maven Compiler plugin is 3.2, and so on. The version that the super pom has
is the version that must have been the latest when it was created. The versions of these
dependencies become important when bugs or newer features are present in the newer
versions. In this case, we do want to get the newer version of these plugins. It is easy to get
these by explicitly specifying the version of the plugins in the pom file.

Add the following to the pom file:

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-clean-plugin</artifactId>
 <version>2.5</version>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 </plugin>

Advanced Maven Usage

234

Now, re-run the previous command and note the output:

[INFO] The following plugin updates are available:

[INFO] maven-clean-plugin 2.5 ->
2.6.1

[INFO] maven-compiler-plugin 3.1
-> 3.2

[INFO] org.codehaus.mojo:exec-maven-plugin 1.2 ->
1.3.2

Determining updates to Maven
dependencies

We use a number of third-party libraries to build our projects. As you recall, we specify the
groupId, artifactId, and version elements of each of these dependant libraries in
our pom file. There may be many occasions when there are updates to these libraries and
new versions are released. It will be good to have a mechanism to get notified about these
releases and update the project build file suitably.

How to do it...
1.	 Take a project for which you want to check for a dependency update, simple-

project, which we had created using the quick-start archetype.

2.	 Run the following command:
mvn versions:display-dependency-updates

3.	 Observe the output:

[INFO] --- versions-maven-plugin:2.1:display-dependency-updates
(default-cli) @

simple-project ---

[INFO] artifact junit:junit: checking for updates from central

[INFO] The following dependencies in Dependencies have newer
versions:

[INFO] junit:junit ..
3.8.1 -> 4.12

Chapter 11

235

How it works...
The display-dependency-updates goal of the Maven Versions plugin uses the metadata
of each of the maven dependencies to determine the latest version of each dependency. If it
does not match the current version, it displays a report about the difference.

We have already seen earlier that SNAPSHOT versions are handled differently by Maven, and it
automatically checks and updates these dependencies for each build as per the configuration.
If the version number of the SNAPSHOT changes (1.0-SNAPSHOT to 1.1-SNAPSHOT), then
the Versions plugin indicates that.

There's more...
The Maven Versions plugin provides several other goals to manage updates to dependency
and plugin versions. This includes automatically changing the versions to the latest release
versions, replacing SNAPSHOT with release versions, and so on.

Controlling the constraints
One of the requirements for a build tool is to be able to generate repeatable builds. In
a project, the build tool should behave identically for all team members. While a project
guideline can be made on the version of Java or Maven to be used, it would be easier if it
could be enforced automatically.

This is where the Maven Enforcer plugin comes in.

How to do it...
1.	 Open a simple project (project-with-enforcer).

2.	 Add the following plugin configuration:
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.3.1</version>
 <executions>
 <execution>
 <id>enforce-versions</id>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>

Advanced Maven Usage

236

 <rules>
 <requireMavenVersion>
 <version>3.2.3</version>
 </requireMavenVersion>
 <requireJavaVersion>
 <version>1.8</version>
 </requireJavaVersion>
 </rules>
 </configuration>
 </execution>
 </executions>
 </plugin>

3.	 Build the project using Java 7 and Maven 3.2.3:
mvn clean package.

4.	 Observe the output:

How it works...
The Enforcer plugin uses the rules configuration and validates the project against the rules. If
it finds violations, it reports the error(s) and does not proceed with the build.

In the preceding example, our project had two issues:

ff The Maven version: We were using version 3.2.3 but we had specified 3.2.5 in
the rules

ff The Java version: We were using Java 7 but we had specified Java 8 in the rules

Chapter 11

237

There's more...
The Maven Enforcer plugin has several other rules to enforce various constraints. A couple of
them are as follows:

ff requireOS: This ensures the project can be built only on specific operating systems

ff requireFilesExist: This ensures specific files exist for the project to build

It is also possible to implement custom enforcer rules. One such is available at https://
github.com/ferstl/pedantic-pom-enforcers.

Generating unique builds
As we have seen, we use a SNAPSHOT version to specify that the project is under
development. In the course of development, we will create several builds for the project. In
many situations, it will be useful to distinguish one such build from another. One could be
when we use continuous integration. Another would be when a tester needs to log defects
against a build.

It would be nice if there was a way to generate a unique build number to identify a build in the
case of SNAPSHOT versions.

How to do it...
1.	 Open the project for which you want to have a build number (project-with-

build-number).

2.	 Add the following plugin configuration:
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>buildnumber-maven-plugin</artifactId>
 <version>1.3</version>
 <executions>
 <execution>
 <phase>validate</phase>
 <goals>
 <goal>create</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <shortRevisionLength>5</shortRevisionLength>

https://github.com/ferstl/pedantic-pom-enforcers
https://github.com/ferstl/pedantic-pom-enforcers

Advanced Maven Usage

238

 </configuration>
 </plugin>

3.	 Add the following to use the unique build number created:
<finalName>${project.artifactId}-${project.version}-
r${buildNumber}</finalName>

4.	 Add the SCM configuration for the project:
<scm>
 <developerConnection>scm:git:https://bitbucket.org/maruhgar/
apache-maven-cookbook</developerConnection>
 <url>https://bitbucket.org/maruhgar/apache-maven-cookbook</
url>
 </scm>

5.	 Build the project:
mvn clean package

6.	 Observe the output:

[INFO] --- buildnumber-maven-plugin:1.3:create (default) @
project-with-build-nu

mber ---

[INFO] ShortRevision tag detected. The value is '5'.

[INFO] Executing: cmd.exe /X /C "git rev-parse --verify --short=5
HEAD"

[INFO] Working directory: C:\projects\apache-maven-cookbook\
project-with-build-n

umber

[INFO] Storing buildNumber: 0950d at timestamp: 1421244408851

[INFO] Storing buildScmBranch: master

...

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ project-with-
build-number --

-

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-build-number

\target\project-with-build-number-1.0-SNAPSHOT-r0950d.jar

Chapter 11

239

How it works...
The Maven Build Number plugin provides three ways to generate a unique number, namely by
using SCM, a sequential build number, or a timestamp.

In the preceding example, we used SCM as it is easy to map the build against the
corresponding SCM version. We used git and specified the SCM details in the SCM tag of the
pom file.

We also specified to the Maven Build Number plugin to use five characters and create the
short revision, as a typical git revision is a long hash value. We also configured the plugin to
run during the validation phase of the lifecycle.

We used the generated Build Number in the name of the generated artifact, by appending it
along with the version number.

Now, each time a new check-in is done and the build is completed, an artifact with a unique
name is generated. Based on the requirement, each such artifact can be archived or traced to
a corresponding source.

Releasing a Maven project
The ultimate goal of any project is the release. After development is complete and bugs are
fixed, it is time to release the project. Different projects are released in different ways. Web
projects are released by deploying them to the web server. Other projects may be packaged into
executable JARs. Still others may be packaged as executables or installers. If the project is a
library or a dependency used in other projects, then it needs to be made available suitably.

As we have seen before, we use the SNAPSHOT version during development. When the project
has to be released, this version now needs to be replaced with a concrete version.

One of the most advanced features of Maven is its support to do a project release. Let us
explore this.

How to do it...
1.	 Open a project for which you want to do a release (project-with-release).

2.	 Verify if the SCM details are present in the pom file:
<scm>
 <developerConnection>scm:git:https://bitbucket.org/maruhgar/
apache-maven-cookbook</developerConnection>
 <url>https://bitbucket.org/maruhgar/apache-maven-cookbook</
url>

Advanced Maven Usage

240

 <tag>HEAD</tag>
 </scm>

3.	 Add the plugin definition in order to specify the latest version of the plugin:
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.5.1</version>
 </plugin>
 </plugins>

4.	 Run the following Maven command:
mvn release:prepare –DpushChanges=false

By default, changes made by the plugin are pushed to the repository. If you do not
want that, set the pushChanges configuration option to false.

5.	 Choose the default values when prompted.

You could choose the default values for the release version, the SCM tag and new
development version, or provide your values.

Chapter 11

241

6.	 Observe the output:

Maven runs a number of commands that modify the pom file. Then, it checks in the
changes into the repository.

7.	 Now run the following command:
mvn release:perform –Dgoals=package –DlocalCheckout=true

By default, the perform goal of the Maven Release plugin runs the deploy goal to
deploy the project to the specified repository. If you do not have a remote repository
to deploy to, or want to run a different goal as part of the release, you can specify
it using the goals configuration. In the preceding case, we have set it to run the
package goal.

Advanced Maven Usage

242

Also, to do the release, Maven checks out the tag created by the prepare goal from
the repository. If you want Maven to check out the local copy instead, you could do so
by setting the localCheckout configuration to true.

8.	 Observe the output:

9.	 Ensure that the release binaries are created in the target/checkout/project-
with-release/target folder:

Chapter 11

243

How it works...
There are two steps to making a release—prepare and perform.

When the prepare goal of the Maven Release plugin is run, it does the following:

ff Checks there are no uncommitted changes

ff Checks that the project does not have any SNAPSHOT dependencies

ff Changes the version of the SNAPSHOT project; you will be prompted to confirm or
override the default

ff Adds a tag element to the scm element and computes the value (by default, HEAD)

ff Runs the verify goal to ensure that the changes do not break anything

ff Commits the modified pom to the SCM

ff Tags the code in SCM with a version name (you will be prompted to confirm or
override the default):

ff Bumps the version in the pom to the new SNAPSHOT value (from 1.0-SNAPSHOT;
this would be 1.1-SNAPSHOT); you will be prompted to confirm or override this

ff Commits the modified pom to SCM

As you can see, once the goal is met, you will have an updated SCM with a tag with the
release version and the HEAD with the next SNAPSHOT version. A release.properties file
is also created. It contains information that is needed for the perform goal.

Advanced Maven Usage

244

The second platform does as follows:

ff The perform goal uses the information in release.properties to check out from
the SCM tag that was created earlier

ff It then runs the specified goal on the checked-out project (by default, deploy)

ff This generates the release binaries

Once the build is successful, release.properties and other backup files created by the
Release plugin are removed.

245

Index
A
aggregator project 47
ANT task

running 228-230
Apache Maven. See Maven
Artifactory 20
assembly

creating 221-225

B
build automation tools

Ant 2
Make 2

Build Helper Maven plugin, goals
attach-artifact 160
maven-version 161

C
changelogs

generating, for site 174, 175
Checkstyle plugin

about 121
used, for analyzing code 121-124

checksumPolicy element 97
clean lifecycle 44, 45
Clean plugin

additional folders/files, deleting 65, 66
deletion, skipping of working directory 64, 65
running, automatically 63, 64
using 62, 63

Cobertura plugin
about 115
used, for analyzing code coverage 115-117
used, for generating test coverage 146, 147

code, analyzing
with Checkstyle plugin 121-124
with FindBugs plugin 125, 126
with PMD plugin 118-121
with SonarQube plugin 130-134

code coverage, analyzing
with Cobertura plugin 115-117
with JaCoCo plugin 112-115

code coverage reports
generating, for site 144-146

code quality reports
generating, for site 147, 148

command-line options, Maven 51, 52
command-line options, modules

-am 192
-amd 192
-pl -projects 191
-rf 192
about 191

compilation
about 66
skipping, of test sources 74

compile phase 20
compiler

modifying, used by Maven 67, 68
Compiler plugin

Java version, specifying for 69, 70
using 66

complex project, transitive dependencies
references 88

configurations, Maven JAR plugin
in pom file 201

constraints
controlling 235, 236

Copy/Paste Detector (CPD) 118

246

custom enforcer rules
reference link 237

custom executable
running 226, 227

D
default lifecycle

about 44
phases 45

dependencies
downloading, to folder 92, 93
installing, manually 101, 102
managing, Eclipse IDE used 103-105
managing, IntelliJ IDEA used 108, 109
managing, NetBeans IDE used 106, 107

dependency download errors
handling 97-99

dependency hell
avoiding 91, 92

dependency management 184
dependency scopes

compile 87
import 88
provided 87
runtime 87
system 87
test 87

display-dependency-updates goal 235
display-plugin-updates goal 232
documentation

generating, with Site plugin 136-138

E
EAR files 209
EAR project

building 209-211
Eclipse

about 26
existing Maven project, importing in 30-32
new Maven project, creating in 26-30
URL, for downloading 26
used, for managing dependencies 103-105
used, for running Maven goals 80, 81

Enforcer plugin 236

Enforcer plugin, rules
requireFilesExist 237
requireOS 237

executable JAR
generating 199-201

existing Maven project, importing
in Eclipse 30-32
in IntelliJ IDEA 40-42
in NetBeans 34, 35

F
Failsafe plugin

used, for running integration tests 75, 76
filtering

performing, resources used 78, 79
FindBugs plugin

about 125
used, for analyzing code 125, 126

folder
dependencies, downloading to 92, 93

G
Git setup link

URL 88
goals, JaCoCo plugin

prepare-agent 113
report 113

go-offline goal 164

H
Help plugin

using 168, 169
Help plugin, goals

active-profiles 170
all-profiles 170
effective-pom 169

HTTP Proxy Server
Maven, running behind 22, 23

I
IDE 25
in-project repository 102
install-file goal 102

247

integration tests
running, Failsafe plugin used 75, 76

IntelliJ IDEA
about 36
existing Maven project, importing in 40-42
Maven, customizing in 38, 39
new Maven project, creating in 36-38
URL, for downloading 37
used, for managing dependencies 108, 109
used, for running Maven goals 82-84

J
JaCoCo plugin

about 112
used, for analyzing code coverage 112-115

jar-no-fork goal 203
JAR, of source code

generating 201-204
JAR, of test classes

generating 204-206
JAR project

building 198
Java Development Kit (JDK)

about 2
modifying, used by Maven 15, 16

Javadocs
generating, for site 140-142

Java Runtime Environment (JRE) 2
Java SE Downloads

URL 4
Java version

about
specifying, for Compiler plugin 69, 70

Jetty
web project, running with 214-216

jetty server 152
JUnit 20, 72
JXR plugin

source references, generating with 128-130

L
lifecycles, Maven

clean 44, 45
default 44, 45
site 44, 45

Linux
Maven, installing on 11-14

localRepository element 48
location

modifying, of Maven repository 20, 21

M
Mac OS X

Maven, installing on 8-10
Make 2
Maven

about 1
command-line options 51, 52
configuring, for searching plugin 161, 162
customizing, in IntelliJ IDEA 38, 39
goals 44
installing, on Linux 11-14
installing, on Mac OS X 8-10
installing, on Microsoft Windows 2-7
lifecycle 44
phases 44, 45
properties, using in 57, 58
running, behind HTTP Proxy Server 22, 23
settings configurations 48-50
simple project, building with 19, 20
simple project, creating with 16-18
URL 4

Maven Central Repository 1
Maven dependencies

updates, determining to 234, 235
Maven goals

running, Eclipse used 80, 81
running, IntelliJ IDEA used 82-84
running, NetBeans used 81, 82

Maven output
verbosity, controlling of 166, 167

Maven plugins
updates, determining to 23-234

Maven profile
about 53
activating 55-57
adding 54
deactivating 55-57
Global profile 53
Per Project profile 53
Per User profile 53

248

Maven project
releasing 239-243

Maven repositories
local 20
location, modifying of 20, 21
mirrors 20
remote 20

Maven settings 48
Maven version 236
Microsoft Windows

Maven, installing on 2-7
modules

about 181
building, selectively 190, 191

multi-module dependency management
performing 184-186

multi-module plugin management
performing 187-189

multi-module projects
reporting for 192-195

N
NetBeans

about 32
existing Maven project, importing in 34, 35
new Maven project, creating in 32-34
URL 32
used, for managing dependencies 106, 107
used, for running Maven goals 81, 82

new Maven project, creating
in Eclipse 26-30
in IntelliJ IDEA 36-38
in NetBeans 32-34

Nexus 20

O
offline element 49
offline mode

working in 163-165
Oracle Java download page

URL 8

P
package phase 20
phases, default lifecycle

compile 45
deploy 45
install 45
integration-test 45
package 45
process-resources 45
test 45
validate 45
verify 45

placeholders 47
platform-independent builds

source encoding, specifying for 59
pluginGroups element 163
pluginManagement element 186
pluginRepositories element 50
PMD plugin

about 118
used, for analyzing code 118-121

pom file 46, 47
POM project

building 211, 212
profile feature

used, for building modules 190, 191
project aggregation

about 181, 182
combining, with project inheritance 183, 184

project inheritance
about 178-180
combining, with project aggregation 183, 184

project working directory 62
properties

using, in Maven 57, 58
proxies element 49

R
relativePath element 184
report, of dependencies

obtaining 88-90
repositories element 50
repositories, for release version 97
repositories, for snapshot version 97

249

resources
excluding 154, 155
including 154, 155
used, for performing filtering 78, 79

Resources plugin
about 76
using 76, 77

S
SCM plugin

operations 172-174
using 170, 171

scm tag, entries
connection 172
developerConnection 172
url 172

scope, of dependency
selecting 86-88

selective reports
generating 149, 150

servers element 51
settings configurations, Maven

localRepository element 48
mirrors element 49
offline element 49
pluginRepositories element 50
proxies element 49
repositories element 50
servers element 51

Simple Logging Facade for Java (slf4j) 87
simple project

building, with Maven 19, 20
creating, with Maven 16-18

site
changelogs, generating for 174, 175
code coverage reports, generating

for 144-146
code quality reports, generating for 147, 148
deploying 150, 151
Javadocs, generating for 140-142
source cross-reference, generating

for 142, 143
testing, before deployment 151
unit test reports, generating for 143, 144

site documentation
Sonar report, linking from 148

site lifecycle 44, 45
Site plugin

configurations, for customizations 138, 139
documenting with 136-138

SNAPSHOT dependencies 94-96
software configuration management

 (SCM) 153
SonarQube plugin

URL, for downloading 131
used, for analyzing code 130-134

Sonar report
linking, from site documentation 148

source cross-reference
generating, for site 142, 143

source encoding
specifying, for platform-independent

builds 59
source references

generating, with JXR plugin 128-130
sources

excluding 158, 159
including 158, 159

standard directory layout 23
Surefire plugin

used, for running unit tests 71

T
test coverage

generating, Cobertura plugin used 146, 147
TestNG

URL 72
using 72

test phase 20
test resources

copying, selectively 156-158
tests

skipping 74
test sources

compilation, skipping of 74
Tomcat

web project, running with 216-219

250

U
unique builds

generating 237-239
unit test reports

generating, for site 143, 144
unit tests

running, Surefire plugin used 71
unused/undeclared dependencies

detecting 100
updates

determining, to Maven
dependencies 234, 235

determining, to Maven plugin 230-234

V
validate phase 20
verbosity

controlling, of Maven output 166, 167

W
WAR plugin 208
WAR project

building 206-208
web project

running, with Jetty 214-216
running, with Tomcat 216-219

Thank you for buying

Apache Maven Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Maven Build Customization
ISBN: 978-1-78398-722-1 Paperback: 270 pages

Discover the real power of Maven 3 to manage your Java
projects more effectively than ever

1.	 Administer complex projects customizing the
Maven framework and improving the software
lifecycle of your organization with "Maven friend
technologies".

2.	 Automate your delivery process and make it fast
and easy.

3.	 An easy-to-follow tutorial on Maven customization
and integration with a real project and
practical examples.

Apache Maven 3 Cookbook
ISBN: 978-1-84951-244-2 Paperback: 224 pages

Over 50 recipes towards optimal Java software
engineering with Maven 3

1.	 Grasp the fundamentals and extend Apache
Maven 3 to meet your needs.

2.	 Implement engineering practices in your
application development process with
Apache Maven.

3.	 Collaboration techniques for Agile teams
with Apache Maven.

Please check www.PacktPub.com for information on our titles

Learning Apache Maven 3
[Video]
ISBN: 978-1-78216-666-5 Duration: 01:59 hours

Get to grips with the basics and concepts of building a
real world Java Application with Apache Maven

1.	 A practical example-driven approach to learning
Apache Maven 3.

2.	 Grasp the fundamentals and extend Apache
Maven 3 to meet your needs.

3.	 Learn to use Apache Maven with Java, Enterprise
Frameworks, and various other cutting-edge
technologies.

Apache Maven Dependency
Management
ISBN: 978-1-78328-301-9 Paperback: 158 pages

Manage your Java and JEE project dependencies with
ease with this hands-on guide to Maven

1.	 Improve your productivity by efficiently managing
dependencies.

2.	 Learn how to detect and fix dependency conflicts.

3.	 Learn how to share transitive relations and to
visualize your dependencies.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introduction
	Installing Maven on Microsoft Windows
	Installing Maven on Mac OS X
	Installing Maven on Linux
	Changing the JDK used by Maven
	Creating a simple project with Maven
	Building a simple project with Maven
	Changing the location of the Maven repository
	Running Maven behind an HTTP proxy server
	Understanding the standard directory layout

	Chapter 2: IDE Integration with Maven
	Introduction
	Creating a new Maven project in Eclipse
	Importing an existing Maven project in Eclipse
	Creating a new Maven project in NetBeans
	Importing an existing Maven project in NetBeans
	Creating a new Maven project in IntelliJ IDEA
	Importing an existing Maven project in IntelliJ IDEA

	Chapter 3: Maven Lifecycle
	Introduction
	Understanding the Maven lifecycle, phases, and goals
	Understanding the pom file
	Understanding Maven settings
	Understanding command-line options in Maven
	Understanding Maven profiles
	Adding a new Maven profile
	Activating/deactivating a Maven profile
	Using properties in Maven
	Specifying source encoding for platform-independent builds

	Chapter 4: Essential Maven Plugins
	Introduction
	Using the Maven Clean plugin
	Using the Maven Compiler plugin
	Changing the compiler used by the Maven Compiler plugin
	Specifying the Java version for the
Compiler plugin
	Using the Maven Surefire plugin to run unit tests
	Using the Maven Failsafe plugin to run integration tests
	Using the Maven Resources plugin
	Filtering using resources
	Using Eclipse to run Maven goals
	Using NetBeans to run Maven goals
	Using IntelliJ IDEA to run Maven goals

	Chapter 5: Dependency Management
	Introduction
	Choosing the scope of dependency
	Getting a report of dependencies
	Getting into dependency and avoiding dependency hell
	Downloading dependencies into a folder
	Understanding SNAPSHOT dependencies
	Handling dependency download errors
	Detecting unused/undeclared dependencies
	Manually installing dependencies that are not available in a repository
	Dependency management using Eclipse
	Dependency management using NetBeans
	Dependency management using IntelliJ IDEA

	Chapter 6: Code Quality Plugins
	Introduction
	Analyzing code coverage with the Maven JaCoCo plugin
	Analyzing code coverage with the Maven Cobertura plugin
	Analyzing code with the Maven PMD plugin
	Analyzing code with the Maven Checkstyle plugin
	Analyzing code with the Maven FindBugs plugin
	Generating source references with the Maven JXR plugin
	Analyzing code with the Maven SonarQube plugin

	Chapter 7: Reporting and Documentation
	Introduction
	Documenting with the Maven Site plugin
	Generating Javadocs for a site
	Generating source cross-reference for a site
	Generating unit test reports for a site
	Generating code coverage reports for a site
	Generating code quality reports for a site
	Generating selective reports
	Deploying a site

	Chapter 8: Handling Typical Build Requirements
	Introduction
	Including and excluding additional resources
	Including and excluding source files
and folders
	Configuring Maven to search for plugins
	Working in offline mode
	Controlling the verbosity of Maven output
	Using the Maven Help plugin
	Using the Maven SCM plugin
	Generating changelogs for a site

	Chapter 9: Multimodule Projects
	Introduction
	Understanding project inheritance
	Understanding project aggregation
	Combining inheritance and aggregation
	Performing multimodule dependency management
	Performing multimodule plugin management
	Selectively building modules
	Reporting for multimodule projects

	Chapter 10: Java Development with Maven
	Introduction
	Building a JAR project
	Generating an executable JAR
	Generating a JAR of the source code
	Generating a JAR of the test classes
	Building a WAR project
	Building an EAR project
	Building a pom project
	Running a web project with Jetty
	Running a web project with Tomcat

	Chapter 11: Advanced Maven Usage
	Introduction
	Creating an assembly
	Running a custom executable
	Running an ANT task
	Determining updates to Maven plugin
	Determining updates to Maven dependencies
	Controlling the constraints
	Generating unique builds
	Releasing a Maven project

	Index

