Quick answers to common problems

Apache Maven Cookbook

Over 90 hands-on recipes to successfully build and automate
development life cycle tasks following Maven conventions
and best practices

Raghuram Bharathan [] open source

community experience distilled

PUBLISHING

Apache Maven
Cookbook

Over 90 hands-on recipes to successfully build and
automate development life cycle tasks following Maven
conventions and best practices

Raghuram Bharathan

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Apache Maven Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: April 2015
Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-612-4

www . packtpub.com

Credits

Author Copy Editors
Raghuram Bharathan Sonia Michelle Cheema
Shambhavi Pai
Reviewers Stuti Srivastava

Gurkan Erdogdu Laxmi Subramanian

Jérébme Leleu

Peter Major Project Coordinator

Phani Krishna Pemmaraju Kranti Berde
Commissioning Editor Proofreaders

Ashwin Nair Stephen Copestake

Safis Editing

Acquisition Editor Paul Hindle

Vinay Argekar

Indexer

Content Development Editor Tejal Soni

Vaibhav Pawar

Production Coordinator
Technical Editors Alwin Roy

Mrunal M. Chavan
Rahul C. Shah Cover Work
Alwin Roy

About the Author

Raghuram Bharathan is a postgraduate in computer applications from the National
Institute of Technology, Trichy. In his career in the software industry, he has worked with
Hewlett-Packard, Cisco, and ThoughtWorks, among others. He is the cofounder of Innoventes
Technologies, a tech company involved in product engineering and providing services in
mobile and web applications.

He is experienced in enterprise web and mobile technologies and is well-versed in the setting
up, maintenance, and usage of various build automation tools, such as ANT, Apache Maven,
Gradle, and Buildr.

He has been using Apache Maven for more than 7 years in his projects and is one of the top
providers of answers for Maven in Stack Overflow.

About the Reviewers

Gurkan Erdogdu is the CTO and cofounder of MechSoft Software Solutions, based in
Turkey. He has been working with Java™ and Java™ EE technologies since 1999. He is a
member of several open source foundations, including Apache Software Foundation and
OW2 Consortium. He is founder of the Apache OpenWebBeans and OW2 Siwpas open source
projects. He holds a bachelor's degree in computer engineering from Middle East Technical
University (METU). He lives in Istanbul with his wife and little daughter and can be reached at
gurkanerdogdu@yahoo . com.

| am thankful to my family, who have provided me with encouragement,
friendship, wisdom, and patience throughout my life. Without them, it would
not have been possible for me to become the person | am now.

Jérome Leleu is a software architect living in Paris, France.

A consultant for 7 years, he has worked for many different companies in different fields and
with a variety of people. He has participated in many IT projects as a developer, technical lead,
or projects manager, though mostly in the J2EE technology.

Currently working in a French telecom company, he is the software architect of a WebSSO,
which supports very high traffic: millions of authentications from millions of users everyday.

He is involved in open source development as a CAS (WebSSO) chairman. He's interested in
security/protocol issues, and has developed several libraries (refer to http://www.pac4j.
org) to implement client support for protocols such as CAS, OAuth, and OpenlD.

He is the founder of an SSO Cloud provider, which is based on CAS (refer to https://www.
casinthecloud. com).

Peter Major is a software developer at ForgeRock, where he has mainly been working
on OpenAM, an enterprise scale single sign-on solution. In the past 5 years, he has worked
on various Maven projects of divergent sizes and has been through the different stages of
software development, testing, and release.

Phani Krishna Pemmaraju has more than 10 years of IT experience with expertise

in SOA, ESB, J2EE/Spring technologies, mobile computing, and Oracle Fusion Middleware
products. He completed his master's degree in computer applications as a topper from
Osmania University, India. He has rich implementation expertise in EAl/SOA integrations and
has worked on some challenging projects across different verticals.

He has extensive experience in architecting, designing, developing, and testing solutions using
various SOA technology (SCA/JBI) products, such as Oracle Fusion, Java CAPS, and Glassfish
ESB. He has worked for highly reputed IT consulting companies and various prestigious clients
and played a key role in architecting and designing solutions. He has a penchant for learning
new technologies and their implementation methodologies.

Thanks to Packt Publishing for giving me the opportunity to review this book
and share my experiences and knowledge of Maven.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@epacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content
» On demand and accessible via a web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface v
Chapter 1: Getting Started 1
Introduction 1
Installing Maven on Microsoft Windows 2
Installing Maven on Mac 0S X 8
Installing Maven on Linux 11
Changing the JDK used by Maven 15
Creating a simple project with Maven 16
Building a simple project with Maven 19
Changing the location of the Maven repository 20
Running Maven behind an HTTP proxy server 22
Understanding the standard directory layout 23
Chapter 2: IDE Integration with Maven 25
Introduction 25
Creating a new Maven project in Eclipse 26
Importing an existing Maven project in Eclipse 30
Creating a new Maven project in NetBeans 32
Importing an existing Maven project in NetBeans 34
Creating a new Maven project in IntelliJ IDEA 36
Importing an existing Maven project in IntelliJ IDEA 40
Chapter 3: Maven Lifecycle 43
Introduction 43
Understanding the Maven lifecycle, phases, and goals 44
Understanding the pom file 46
Understanding Maven settings 47
Understanding command-line options in Maven 51

Table of Contents

Understanding Maven profiles 53
Adding a new Maven profile 54
Activating/deactivating a Maven profile 55
Using properties in Maven 57
Specifying source encoding for platform-independent builds 59
Chapter 4: Essential Maven Plugins 61
Introduction 61
Using the Maven Clean plugin 62
Using the Maven Compiler plugin 66
Changing the compiler used by the Maven Compiler plugin 67
Specifying the Java version for the Compiler plugin 69
Using the Maven Surefire plugin to run unit tests 71
Using the Maven Failsafe plugin to run integration tests 75
Using the Maven Resources plugin 76
Filtering using resources 78
Using Eclipse to run Maven goals 80
Using NetBeans to run Maven goals 81
Using IntelliJ IDEA to run Maven goals 82
Chapter 5: Dependency Management 85
Introduction 85
Choosing the scope of dependency 86
Getting a report of dependencies 88
Getting into dependency and avoiding dependency hell 90
Downloading dependencies into a folder 92
Understanding SNAPSHOT dependencies 94
Handling dependency download errors 97
Detecting unused/undeclared dependencies 100
Manually installing dependencies that are not available in a repository 101
Dependency management using Eclipse 103
Dependency management using NetBeans 106
Dependency management using IntelliJ IDEA 108
Chapter 6: Code Quality Plugins 111
Introduction 111
Analyzing code coverage with the Maven JaCoCo plugin 112
Analyzing code coverage with the Maven Cobertura plugin 115
Analyzing code with the Maven PMD plugin 118
Analyzing code with the Maven Checkstyle plugin 121
Analyzing code with the Maven FindBugs plugin 125
Generating source references with the Maven JXR plugin 128
Analyzing code with the Maven SonarQube plugin 130

Table of Contents

Chapter 7: Reporting and Documentation 135
Introduction 135
Documenting with the Maven Site plugin 136
Generating Javadocs for a site 140
Generating source cross-reference for a site 142
Generating unit test reports for a site 143
Generating code coverage reports for a site 144
Generating code quality reports for a site 147
Generating selective reports 149
Deploying a site 150

Chapter 8: Handling Typical Build Requirements 153
Introduction 153
Including and excluding additional resources 154
Including and excluding source files and folders 158
Configuring Maven to search for plugins 161
Working in offline mode 163
Controlling the verbosity of the Maven output 166
Using the Maven Help plugin 168
Using the Maven SCM plugin 170
Generating changelogs for a site 174

Chapter 9: Multi-module Projects 177
Introduction 177
Understanding project inheritance 178
Understanding project aggregation 181
Combining inheritance and aggregation 183
Performing multi-module dependency management 184
Performing multi-module plugin management 186
Selectively building modules 190
Reporting for multi-module projects 192

Chapter 10: Java Development with Maven 197
Introduction 197
Building a JAR project 198
Generating an executable JAR 199
Generating a JAR of the source code 201
Generating a JAR of the test classes 204
Building a WAR project 206
Building an EAR project 209
Building a pom project 211
Running a web project with Jetty 214
Running a web project with Tomcat 216

Table of Contents

Chapter 11: Advanced Maven Usage 221
Introduction 221
Creating an assembly 221
Running a custom executable 226
Running an ANT task 228
Determining updates to Maven plugins 230
Determining updates to Maven dependencies 234
Controlling the constraints 235
Generating unique builds 237
Releasing a Maven project 239

Index 245

Preface

Apache Maven Cookbook describes the features of Apache Maven through a series of recipes.
This book will help you understand what Apache Maven is and allow you to use its features
with the help of complete and working examples.

What this book covers

Chapter 1, Getting Started, covers the installation of Apache Maven on Microsoft Windows,
Mac OS X, or Linux, as well as creating and building your first project with it. The chapter also
details the steps to install prerequisite software required for Maven.

Chapter 2, IDE Integration with Maven, focuses on configuring popular IDEs with the help of
Maven and running Maven projects in them. Eclipse, NetBeans, and IntelliJ IDEA are the three
IDEs covered in this chapter.

Chapter 3, Maven Lifecycle, covers the life cycle of Apache Maven and explores the concept of
phases and goals. It also describes how a user can use profiles to customize builds.

Chapter 4, Essential Maven Plugins, describes the Maven plugins, which are essential to build
a project. For each plugin, the various configuration options are also explored.

Chapter 5, Dependency Management, explores the various types of Maven dependencies,
and delves into downloading and getting reports on them. It also talks about how to handle
network issues during a dependency download.

Chapter 6, Code Quality Plugins, covers the support provided for various code quality tools,
such as Checkstyle, PMD, FindBugs, and Sonar. The configuration options for each plugin as
well as generating reports are also explored.

Chapter 7, Reporting and Documentation, covers the reporting features of Maven. The site
plugins and the various reports supported by it are described in detail.

Preface

Chapter 8, Handling Typical Build Requirements, explores the features provided by Maven to
handle builds of selective sources and the inclusion of selected resources. It also describes
how to use the command line and help features of Maven along with interfacing with software
configuration management systems.

Chapter 9, Multi-module Projects, describes the support required to build large projects
with multiple modules. Maven support for aggregated builds and defining parent-child
relationships is also described here.

Chapter 10, Java Development with Maven, describes the building of different types of java
artifacts like Jar, War and Ear. It also describes Maven support to run projects in Jetty
and Tomcat.

Chapter 11, Advanced Maven Usage, explores the advanced features of Maven, such as
creating distributions and enforcing rules. It also describes how to make a project release.

What you need for this book

To run the various recipes in this book, the following are required. Unless otherwise
mentioned, it is best to have the latest version of the software suggested here:

» A computer with one of the three operating systems, such as Microsoft Windows, Mac
OS X or Linux, and preferably recent/supported versions
» Java—specifically Java Development Kit (JDK)
» Apache Maven
» Git—for examples related to version control systems
» One or more of the following IDEs:
o Eclipse
o NetBeans
o IntelliJ IDEA

Who this book is for

Apache Maven Cookbook is intended for those of you who are seeking to learn what build
automation is and how Apache Maven can be used for this purpose. It is also meant for you
if you're familiar with Maven, but would like to understand the finer nuances of it to solve
specific problems. It is also a good book if you're looking for ready-made recipes to solve
specific use cases.

Preface

In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

This section usually consists of a detailed explanation of what happened in the
previous section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
preceding output will still not tell you where your Java is installed, which is required to set
JAVA HOME."

Preface
A block of code is set as follows:

<reporting>
<plugins>
<plugin>
<artifactIds>maven-project-info-reports-plugin</artifactIds>
<version>2.0.1</versions>
<reportSets>
<reportSet></reportSet>
</reportSets>
</plugin>
</plugins>
</reporting>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0

http://maven.apache.org/xsd/settings-
1.0.0.xsd">

<localRepository>C:/software/maven</localRepository>
</settings>

Any command-line input or output is written as follows:
brew install maven

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "To persist this, set Environment
Variables... using the Control Panel option, as described later for the M2 HOME variable."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/ApacheMavenCookbook ColorImages.pdf.

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

[ix |-

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/ApacheMavenCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ApacheMavenCookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata

Preface

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

If you have a problem with any aspect of this book, you can contact us at questionse
packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Getting Started

In this chapter, we will cover the basic tasks related to getting started with Apache Maven:

>

Installing Maven on Microsoft Windows
Installing Maven on Mac OS X

Installing Maven on Linux

Changing the JDK used by Maven

Creating a simple project with Maven

Building a simple project with Maven
Changing the location of the Maven repository
Running Maven behind an HTTP proxy server

Understanding the standard directory layout

Introduction

Apache Maven is a popular tool for build automation, primarily Java projects. Maven
addresses two aspects of building software. First, it describes how a software is built

and, second, it describes its dependencies. It uses conventions for the build procedure.

An XML file describes the software project being built, its dependencies on other external
modules and components, the build order, directories, and required plugins. It comes with
predefined targets to perform certain well-defined tasks, such as code compilation and its
packaging. Maven dynamically downloads Java libraries and Maven plugins from one or more
repositories, such as the Maven Central Repository, and stores them locally.

Ever since Maven 1.0 was released in 2004, it has gained popularity and is today the build
tool for a large number of open source and commercial projects.

(1}

Getting Started

If you are reading this book, then you are not here to understand why Maven is required. You
are here to explore Maven and unleash the potential that it offers. The objective of this book is
to make the reader aware of Maven's various features, which include installation, configuration,
and simple to complex usage by means of examples, illustrations, and working projects.

A brief comparison with other build automation tools

Let's briefly discuss some build automation tools:

» Make: If you are from the C programming world, chances are you have used Make.
Makefiles are not platform-independent. They are not natively compatible with
Windows. Thus, they are unsuited to build Java projects.

» Ant: This is modeled after Make and has targets and dependencies. Each target
has a set of tasks. Ant doesn't have any conventions. It is procedural and does not
have the concept of a build lifecycle. Maven has conventions, is declarative, and
has a lifecycle.

In this chapter, we will cover the basics of Maven—installing the software, verifying the
installation, and creating, implementing, and building a simple Java project. We will also cover
a few advanced items, such as changing the location of the repository or running Maven
behind an HTTP proxy server as it could be relevant to those who have issues with the way
Maven works by default.

Let us start by setting up Maven. We will cover how to do this on the three popular operating
systems, namely Microsoft Windows, Mac OS X, and Linux.

Installing Maven on Microsoft Windows

At the time of writing this book, Microsoft Windows 8.1 is the latest version of Microsoft
Windows. While the screenshots and output will be for Microsoft Windows 8.1, the steps are
similar for earlier (and possibly later) versions as well.

Getting ready

As Maven requires a Java platform, first ensure that you have installed the Java environment
on your system, Java Development Kit (JDK) specifically; Java Runtime Environment (JRE) is
not sufficient.

Chapter 1

You can verify whether Java is installed on your system by opening Add or Remove Programs.
If you see something similar to the following screenshot, JDK is installed on your system:

Programs and Features = =
T » Control Panel » All Control Panel ltems » Programs and Features w| @& SearchPrograms and Features 0
Control Panel Home .
Uninstall or change a program
View installed updates To uninstall a pregram, select it from the list and then click Uninstall, Change, or Repair.
) Turm Windows features on or
off Organize = = @
Name - Publisher Installed On ~ Size Version "
|£)Java 7 Update 67 (64-bit) Oracle 14-10-2014 118MB 7.0.670
|£/Java 2 Update 20 (64-bit) Oracle Corporation 14-10-2014 228MB 20200
|£)Java SE Development Kit 7 Update 67 (64-bit) Oracle 14-10-2014 B1MB 1.7.0.670
| £ Java SE Development Kit 8 Update 20 (64-bit) Oracle Corporation 14-10-2014 314MB_ 8.0.200.26

You can also verify the program folder structure from Microsoft Windows Explorer:

, « Local Disk (C:) » Program Files » Java » jdk1.8.0_20 » v & Search jdk1.8
ive -~ Name : Date modified Type
| bin 14-10-2014 13:37 File folder
otes db 14-10-2014 1337 Fill folder
J include 14-10-201413:37 File folder
| jre 14-10-2014 13:37 File folder
B) lib 14-10-2014 1337 File folder
| COPYRIGHT 30-07-2014 14:25 File
1) javafx-src 14-10-2014 13:37 Compressed (zipp...
| LICEMNSE 14-10-2014 1337 File
[& README 14-10-2014 13:37 Chrome HTML Do...
: || release 14-10-2014 13:37 File
1) src 30-07-2014 14:25 Compressed (zipp..
| THIRDPARTYLICENSEREADME 14-10-2014 13:37 Text Document
i __| THIRDPARTYLICENSEREADME-JAVAFX 14-10-2014 1337 Text Document

1KB
4,908 KB
1KB
1KB
1KB
20,703 KB
175 KB
108 KB

How to do it...

Let's start installing Java and Maven by performing the following steps:

1. Setthe variable JAVA HOME to point to the Java installation that you want Maven to

use; for example, you can do this by setting JAVA HOME variable in the

following way:

C:\projects\apache maven cookbook>set JAVA HOME=C:\Program Files\

Java\jdkl.8.0 20

Getting Started

¢ Note that this setting will not be persisted once the command prompt is

closed. To persist this, set Environment Variables... using the Control Panel

© o &~ W

option, as described later for the M2 HOME variable.

If JDK is not installed on your system, now is the time to download and install it from
the Oracle Java SE download page at http://www.oracle.com/technetwork/
java/javase/downloads/index.html.

Once it is installed, ensure JAVA_HOME is set as described earlier.

Now that we have set up Java, let us download and set up Maven.

Go to http://maven.apache.org/ and click on the Download link.
The links to the latest stable versions of Maven are displayed.
The binaries are available in both, . zip and . tar.gz formats. Choose one of them.

Extract the downloaded binary to a folder you want Maven to reside in. In this case |
have chosen C:\software.

1
‘Q It is best to avoid folders with spaces as some features of

Maven or its plugins might not work.

Ensure the contents are similar to the following screenshot:

. v ThisPC » Local Disk (C) » software » apache-maven-3.2.3 v & Search apache-maven-3.2.3 pel

-

N Mame Date modified Type Size

J bin 19-08-2014 13:41 File folder
J boot File folder
) conf File folder

) lib File folder

|| LICEMSE File 18 KB
|| NOTICE File 1KB
. README Text Document 3KB

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/

The preceding screenshot displays a list of directories contained in Maven.

Now let's briefly discuss what these directories contain:

Chapter 1

» The bin folder contains the batch files and shell scripts to run Maven on

various platforms.

» The boot folder contains the jars required for Maven to start.

» The conf folder contains the default settings.xml file used by Maven.

» The 1ib folder contains the libraries used by Maven. It also contains an ext folder
in which third-party extensions, which can extend or override the default Maven
implementation, can be placed.

Now let us make sure we can run Maven from the command prompt by carrying out the
following steps:

1. Open Control Panel:

See also
Action Center

Windows Update

Get more features with a new

edition of Windows
System

Processor:

Installed memory (RAM):

Systemn type:

Pen and Touch:

Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz 2.50
GHz

8.00 GB (7.89 GB usable)
64-hit Operating System, x64-based processor
MNe Pen or Touch Input is available for this Display

B Syeem -
1 1B » Control Panel » All Control Panel ltems b+ System v & Search Control Panel 2
[7 3
Control Panel Home . - .
View basic information about your computer
Ii\g' Device Manager Windows edition
fy Remote settings Windows 8.1 Single Language -- .
® System protection © 2013 Microsoft Corporation, All . WI n d OWS 8
"\“:;f' Advanced system settings rights reserved. .

/

Support Information "

Getting Started

2. Choose Advanced system settings:

System Properties
Computer Name | Hardware | Advanced | System Protection | Remote

You must be logaed on as an Administrator to make most of these changes.
Performance

Visual effects, processor scheduling, memory usage, and virtual memory

Settings...
Uzer Profiles
Desktop settings related to your sign-n
Settings...
Startup and Recovery
System startup, system failure, and debugging information
Settings...

Environment Varables. .

QK Cancel Apphy

3. Click on Environment Variables.... Add the M2 HOME variable and set it to the folder
where Maven was extracted.

Variable Value
JAVA_HOME C:\Program Files\Javaljdk1.7.0_&67
M2_HOME Ci\software\apache-maven-3.2.5

4. Edit the PATH variable to include Maven's bin folder:

Edit User Variable

Variable name: PATH

Variable value: JelAVA_HOMESGbin; ¥M2_HOMESG\bin; C:Y

oK Cancel

Chapter 1

A Maven installation is essentially a set of JAR files, configuration files, and a Microsoft
Windows batch file, mvn.bat.

The mvn command essentially runs this batch file. It first checks for JAvA HOME. This file is
present in the bin folder of the Maven installation and, hence, it needs to be in PATH.

If the batch file does not find JAVA HOME, it looks for Java in its PATH. This can lead to
unexpected results, as typically the Java in PATH is usually the JRE and not the JDK.

The batch file then looks for M2 HOME, which is the location of the Maven installation. It does
this so that it can load the libraries that are present.

Additionally, it also reads values specified in MAVEN OPTS. This variable allows you to run
Maven with an additional heap size and other Java parameters.

Using the values for JAVA HOME, M2 HOME, and Maven_OPTS, the batch file runs its main
class org.codehaus.plexus.classworlds.launcher.Launcher.

Verify your Maven installation using the following steps:

1. Open acommand prompt in Microsoft Windows and run the following command:
C:\software\apache-maven-cookbook>mvn -version
2. The following output should be displayed:
Apache Maven 3.2.5 (12a6b3acb947671£09b81£f49094c53f426d8ceal;
2014-12-14T22:59:23+05:30)
Maven home: C:\software\apache-maven-3.2.5
Java version: 1.7.0 67, vendor: Oracle Corporation
Java home: C:\Program Files\Java\jdkl.7.0_67\jre
Default locale: en IN, platform encoding: Cpl252

OS name: "windows 8.1", version: "6.3", arch: "amd64", family:
"windows"

» The Creating a simple project with Maven recipe in this chapter

Getting Started

Installing Maven on Mac OS X

Let us look at the steps to install Maven on Mac OS X. This applies to the latest version of Mac
0S X, namely Yosemite.

Earlier, Apple provided Java for Mac, but stopped doing so from Java 7 onwards. Apple Java is
not available on recent versions of Mac OS X.

Getting ready

Let us check if the Java environment is available on your Mac:

1. Open the terminal and run the following command:

/usr/libexec/java_home -v 1.7

2. See if you get an output similar to the following:
/Library/Java/JavaVirtualMachines/jdk1l.7.0_71.jdk/Contents/
Home

3. Run the following command to check if you have Java 8:

/usr/libexec/java home -v 1.8

4. This should give the following output if Java exists:
/Library/Java/JavaVirtualMachines/jdk1.8.0_25.jdk/Contents/Home

As you can see, my system has both Java 1.7 and 1.8.

5. Set JAVA HOME to the desired JDK. This can be done in two ways, depending on
what you desire:

If this is for the duration of the session, run the following command:

export
JAVA HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0 25.jdk
/Contents/Home

If this is permanent, add the preceding line in .bash profile in your HOME folder

Q Ensure you have the JDK installation and not JRE.

If Java is not present, download and install Java from the Oracle Java download page at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

—e1]

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 1

Once installed, verify the Java installation by following the preceding steps.

Now, let us set up Maven on Mac OS X.

How to do it...

Let's download Maven from its official website by performing the following steps:
1. Gotohttp://maven.apache.org/ and click on the Download link. Links to the
latest stable versions of Maven will be displayed.
The binaries are available in both . zip and . tar.gz formats. Choose one of them.

Extract the downloaded binary to the folder you want Maven to reside in. The typical
location for the Mac is /usr/local folder.

4. You will need a super user (su) or administrator access to place the contents in
the /usr/local folder. If you do not have access, you can place the contents in a
subfolder of your HOME folder.

5. Ensure the contents are similar to the following output by executing the following
command:

/usr/local/apache-maven-3.2.5% 1ls -1

The output is shown as:

total 27

-YW-r--r-- 1 root wheel 17464 Aug 12 02:29 LICENSE
-YwW-r--r-- 1 root wheel 182 Aug 12 02:29 NOTICE
-YwW-r--r-- 1 root wheel 2508 Aug 12 02:26 README.txt
drwxr-xr-x 8 root wheel 4096 Aug 19 13:41 bin
drwxr-xr-x 3 root wheel 0 Aug 19 13:41 boot
drwxr-xr-x 4 root wheel 0 Oct 14 17:39 conf
drwxr-xr-x 67 root wheel 28672 Aug 19 13:41 1lib

6. Setthe M2 HOME variable as follows:

export M2 HOME=/usr/local/apache-maven-3.2.5
7. Update the PATH to include Maven's bin folder:

export PATH=$PATH:$M2_HOME/bin

1
‘\Q Like JAVA HOME, the preceding settings can be persisted

by updating .bash profile with the preceding lines.

http://maven.apache.org/

Getting Started

In the preceding steps, we discussed the steps to download Maven from its official website.
We will now discuss installing Maven using brew. Brew is a popular application on Mac 0S X
to install open source software. If you have brew installed on your Mac OS X, run the following
command to install Maven:

brew install maven

The output for the preceding command will be displayed as shown in the following screenshot:

. @ Documents — bash — 80x24

MacBook-Pro:~ raghu$ brew install maven
==> Downloading http://www.apache.org/dyn/closer.cgi?path=maven/maven-3/3.2.5/bi
==> Best Mirror http://apache.bytenet.in/maven/maven-3/3.2.5/binaries/apache-mav

B R HHH AR 100, 0%

W /usr/local/Cellar/maven/3.2.5: 82 files, 9.1M, built in 6 seconds

The Maven installation is essentially a set of JAR files, configuration files, and a Mac OS X shell
script, namely mvn.

The mvn command essentially runs this script. It first checks for JAVA HOME. This file is
present in the bin folder of the Maven installation and, hence, it needs to be in PATH.

If the shell script does not find JAVA_HOME, it looks for Java in its PATH. This can lead to
unexpected results, as typically the Java in PATH is usually the JRE installation and not JDK.

The shell script then looks for M2_HOME, which is the location for the Maven installation. It
does this so that it can load the libraries that are present.

Additionally, it also reads values specified in MAVEN OPTS. This variable allows you to run
Maven with an additional heap size and other Java parameters.

Using the values for JAVA HOME, M2 HOME, and MAVEN_OPTS, the shell script runs its main
class org.codehaus.plexus.classworlds. launcher.Launcher.

Verify your Maven installation using the following steps:

1. Open acommand prompt and run the following command:

mvn -version

Chapter 1

2. The output for the preceding command should be displayed as shown in the
following screenshot:

. @ Documents — bash — 80x24

IMacBook-Pro:~ raghu$ mvn -version

Apache Maven 3.2.5 (12a6b3ach947671f09b81f49094c53f426d8ceal; 2014-12-14T22:59:2
3+05:38)

Maven home: /usr/local/Cellar/mavens/3.2.5/libexec

Java version: 1.8.0_25, vendor: Oracle Corporation

Java home: /Library/Java/JavaVirtualMachines/jdk1.8.8_25.jdk/Contents/Home/jre
Default locale: en_US, platform encoding: UTF-8

0S name: "mac os x", version: "1@.1@.2", arch: "xB6_64", family: "mac"

See also

» The Creating a simple project with Maven recipe in this chapter

Installing Maven on Linux

Let us look at the steps to install Maven on Linux.

While there are many flavors of Linux (Ubuntu, Fedora, RHEL, SUSE, CentOS, and so on), the
steps to set up Maven are similar.

Getting ready

Maven needs Java, specifically the Java Development Kit (JDK). Using the following steps, let
us check if it is installed in your Linux system, which is a bit tricky:

1. Open aterminal and run the following command:

java -version

2. See if you get an output similar to the following:
java version "1.7.0 65"

OpenJDK Runtime Environment (rhel-2.5.1.2.el6 5-x86 64 u65-
b1l7)

The preceding output will still not tell you where your Java is installed, which is
required to set JAVA HOME. You can get this information by performing the next set
of steps.

3. Check if javac works; it does only if JDK is installed, not JRE:

$ javac -version
The output for the preceding command is shown as:

javac 1.7.0 65

s

Getting Started

4. Find the location of the javac command:

$ which javac
The output for the preceding command is shown as:
/usr/bin/javac

5. Inthe preceding output, javac is a symbolic link to the actual location of the file. Try
to determine this location in the following way:

$ readlink /usr/bin/javac
The output for the preceding command is shown as:
/etc/alternatives/javac

6. By executing the preceding command, we again got the symbolic link. To get the path
to the location of javac, we execute the following command again:

$ readlink /etc/alternatives/javac
The output for the preceding command is shown as:
/usr/lib/jvm/java-1.7.0-openjdk.x86 64/bin/javac

7. We have now located the folder where JDK is installed:
/usr/lib/jvm/java-1.7.0-openjdk.x86 64/

8. Set JAVA HOME to the preceding folder. This can be done in two ways, depending on
what you desire:

If it is for the duration of the session, run the following command:
export JAVA HOME=/usr/lib/jvm/java-1.7.0-openjdk.x86 64/

If this is permanent, add the preceding line in .bash profile in your HOME folder.

If Java is not present, download and install Java from the Oracle Java download page at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

If you have an rpm-based Linux distribution, you can download and install rpm. Otherwise, you
can download the . tar.gz format of the distribution and extract it to a folder of your choice.

In the earlier case, you know exactly where Java is installed and can set JAVA HOME
correspondingly. Once installed, verify the Java installation by following the preceding steps.

Now, let us set up Maven on Linux.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

How to do it...

To set up Maven on Linux, perform the following steps:

Chapter 1

1. Gotohttp://maven.apache.org/ and click on the Download link. The links to

latest stable versions of Maven will be displayed.

2. The binaries are available in both . zip and .tar.gz formats. For Mac OS X and
Linux, the preferred download formatis .tar.gz.

3. Extract the downloaded binary to a folder you want Maven to reside in. The typical
location in Linux is the /usr/local folder.

M You will need a super user (su) or administrator access to place
Q contents in the /usr/local folder. If you do not have access, you
can place this in a subfolder of your HOME folder.

4. Execute the following command, and ensure the contents of the apache-
maven-3.2.5 folder are similar to the following output:

/usr/local/apache-maven-3.2.5$ 1ls -1

The output for the preceding command is shown as:

total 27

-rw-Y--I--
-rw-Y--I--
-rw-Y--I--

drwxr-xXr-x
drwxr-xXr-x
drwxr-xXr-x

drwxr-xr-x

5. Setthe M2 HOME variable as follows:

6

1
1
1
8
3
4
7

root
root
root
root
root
root

root

root
root
root
root
root
root

root

17464
182
2508
4096

28672

Aug
Aug
Aug
Aug
Aug
Oct
Aug

12
12
12
19
19
14
19

export M2 HOME=/usr/local/apache-maven-3.2.5

6. Update PATH to include Maven's bin folder:

export PATH=$PATH:$M2 HOME/bin

02:
02:
02:
13:
13:
17:
13:

29
29
26
41
41
39
41

LICENSE
NOTICE
README. txt
bin

boot

cont

lib

Like JAVA HOME, the preceding settings can be persisted by updating .bash profile.

http://maven.apache.org/

Getting Started

The Maven installation is essentially a set of JAR files, configuration files, and a Linux shell
script, namely mvn.

The mvn command essentially runs this script. It first checks for JAVA HOME. This file is
present in the bin folder of the Maven installation and hence needs to be in PATH.

If the shell script does not find JAVA HOME, it looks for java in its PATH. This can lead to
unexpected results, as typically, the Java in PATH is usually JRE and not JDK.

The shell script then looks for M2_HOME, which is the location of the Maven installation. It
does this so that it can load the libraries that are present.

Additionally, it also reads values specified in MAVEN OPTS. This variable allows you to run
Maven with an additional heap size and other Java parameters.

Using the values for JAVA HOME, M2 HOME, and MAVEN OPTS, the shell script runs its org.
codehaus.plexus.classworlds.launcher.Launcher main class.

There's more...

Using the following steps, let's confirm that Maven has been set up correctly, by running a
Maven command:

1. Open acommand prompt and run the following command:

mvn -version

2. The following output should be displayed:

Apache Maven 3.2.5
(12a6b3acb947671£09b81£49094c53f426d8ceal; 2014-12-
14T22:59:23+05:30)

Maven home: /usr/local/maven
Java version: 1.7.0_65, vendor: Oracle Corporation

Java home: /usr/lib/jvm/java-1.7.0-openjdk-
1.7.0.65.x86_64/jre

Default locale: en US, platform encoding: ANSI X3.4-1968
OS name: "linux", version: "2.6.32-279.22.1.el6.x86 64",

arch: "amdé64", family: "unix"

If you get an error, recheck the installation steps and repeat them.

Chapter 1

See also

>

The Creating a simple project with Maven recipe in this chapter

Changing the JDK used by Maven

It is possible to have more than one version of JDK installed on your system. By following
some simple steps, you can specify and/or change the JDK to be used by Maven.

How to do it...

You will recall that, in the earlier section, we used Java SE 7. Let us now change to Java SE 8.
To change the JDK version to Java SE 8 on Microsoft Windows, perform the following steps:

1.

From the command prompt, run the following command:
set JAVA HOME=C:\Program Files\Java\jdkl.8.0 20

For Linux or Mac, the command will be:
export JAVA HOME=<java-8-home-folder>

Now, run the following command to check the version of Maven installed:

mvn -version

To check the version of Maven installed on Microsoft Windows, run the following
command from the command prompt. You should get the following output. The
output will be similar for Linux and Mac:

C:\projects\apache-maven-cookbook>mvn -version
The output for the preceding command is shown as:

Apache Maven 3.2.5
(12a6b3acb947671£09b81£49094c53f426d8ceal; 2014-12-
14T22:59:23+05:30)

Maven home: C:\software\apache-maven-3.2.5

Java version: 1.8.0 20, vendor: Oracle Corporation
Java home: C:\Program Files\Java\jdkl.8.0 20\jre
Default locale: en IN, platform encoding: Cpl252

OS name: "windows 8.1l", version: "6.3", arch: "amd64", family:
"windows"

Getting Started

Maven always uses the JDK specified by JAVA HOME, no matter how many JDK installations
are available on the system. This allows the user the flexibility to change JDKs as required or
based on the project.

Hence, it is important to ensure JAVA HOME is defined. In the absence of this variable, Maven
attempts to detect the presence of Java from PATH. This is typically JRE and not JDK.

Creating a simple project with Maven

Now that we have set up Maven on our favorite operating system and verified that it works
fine, it is time to create a simple Java project.

Maven makes it easy to bootstrap a new project by creating a bunch of files and folders
following accepted conventions.

How to do it...

Let's start creating the first simple project using Maven, by performing the following steps:

1. Open acommand prompt and change the directory to the folder in which you want to
create your first Maven project.
2. Run the following command:

mvn archetype:generate -DgroupId=com.packt.cookbook -
DartifactId=simple-project -DarchetypeArtifactId=maven-
archetype-quickstart -DinteractiveMode=false

You can change the groupId and artifactId values in the preceding command
as per your requirement.

3. You will see Maven downloading a bunch of files:

Downloading:
https://repo.maven.apache.org/maven2/org/apache/maven/plugi
ns/maven-clean-plugin/2.5/maven-clean-plugin-2.5.pom

Downloaded:
https://repo.maven.apache.org/maven2/org/apache/maven/plugi
ns/maven-clean-plugin/2.5/maven-clean-plugin-2.5.pom (4 KB
at 1.4 KB/sec)

4. Then it will start generating sources:

[INFO] >>> maven-archetype-plugin:2.2:generate (default-
cli) > generate-sources

@ standalone-pom >>>

Al

Q

Chapter 1

When Maven has completed generating sources, it will create the project
that we want:

[INFO] Using following parameters for creating project from

0ld (1.x) Archetype:

maven-archetype-quickstart:1.0

[INFO] = - - mmmm oo oo oo oo oo
[INFO] Parameter: groupld, Value: com.packt.cookbook

[INFO] Parameter: packageName, Value: com.packt.cookbook
[INFO] Parameter: package, Value: com.packt.cookbook

[INFO] Parameter: artifactId, Value: simple-project

[INFO] Parameter: basedir, Value: C:\projects\apache-maven-
cookbook

[INFO] Parameter: version, Value: 1.0-SNAPSHOT

[INFO] project created from 0ld (1.x) Archetype in dir:
C:\projects\apache-maven-cookbook\simple-project

Downloading the example code

You can download the example code files from your accountat http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/
support and register to have the files e-mailed directly to you.

Did you get an while error running the preceding command to create your simple project?

One possibility is that your Maven is behind an HTTP proxy server. If so, see the Running
Maven behind an HTTP proxy server recipe in this chapter.

Let's look at the folder structure that is created:

©

rl

Home Share View d
* T | « projects » apache-maven-cookbook » simple-project » v & Search simple-project P
. simple-project |" Name Date modified Type Size
4 1 src P - .
| sIC 15-10-2014 16:46 File folder
4 . main o . .
i | pom 2 XML File 1KB
4 java
4 | com
4 || packt
cookbook
4 | test
4 | java
4 | com
4 . packt

cookbook

Getting Started

You will notice the following things:
» The Maven project configuration file pom.xm1l is created in the root of the simple-
project folder. We will explore this file in detail in subsequent sections.

» A bunch of folders are created:
o src\main\java: This is for Java source files
o src\test\java: This is for Java test source files
o src\main\resources: This is for resource files for the project
o src\test\resources: This is for resource files for the test

» Within each of the preceding folders, a folder structure corresponding to the
groupld (org.packt.cookbook) is created.

The following are essentially Maven conventions at work:

» Maven expects all Java source files to reside in src\main\java
» Similarly, it expects all Java test files to reside in src\test\java

» It expects all project resources to reside in src\main\resources and test
resources to reside in src\test\resources

» It expects that source files will typically have the same package structure as the
groupId parameter (though this is not mandatory)

» Two sample classes, namely 2pp . java and AppTest . java, are also created and it
is not expected that they will be used beyond testing how Maven works

The mvn command that we used in the Creating a simple project with Maven recipe in this
chapter, tries to invoke the generate goal of the archetype plugin with the specified
command-line parameters.

The default Maven installation has minimal features. All features of Maven are available as
Maven plugins. When given a plugin name, Maven knows where to download it from and
then run it.

In this case, Maven downloads the archetype plugin. This plugin, in turn, can depend on
another plugin. In this case, the latter plugin gets downloaded. This happens in a recursive
fashion and, at the end of the process, all the relevant plugins required to run the specified
command are downloaded.

These plugins are placed in your local repository, which is a location in your system. Once
downloaded, these are never downloaded again unless deleted.

Chapter 1

See also

» The Running Maven behind an HTTP proxy server recipe in this chapter

Building a simple project with Maven

Let us now build the project that was created in the preceding section.

How to do it...

To build the previously created simple project with Maven, perform the following steps:

1. Open the command prompt and run the following command, changing the directory
to the folder the project was created:

mvn package

2. Observe the following things in the output:
Notice the following warning (we will see how to resolve this later in this book):

[INFO] --- maven-resources-plugin:2.6:resources (default-
resources) @ simple-project ---

[WARNING] Using platform encoding (Cpl252 actually) to copy
filtered resources,

i.e. build is platform dependent!

Check if the sources are compiled:

[INFO] --- maven-compiler-plugin:3.l:compile (default-
compile) @ simple-project

Check if the tests are run:

[INFO] --- maven-surefire-plugin:2.12.4:test (default-test)
@ simple-project ---

[INFO] Surefire report directory: C:\projects\apache-maven-
cookbook\simple-project\target\surefire-reports

Running com.packt.cookbook.AppTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time
elapsed: 0.005 sec

3. AJAR file is now created.

[}

Getting Started

In the mvn package command, the package parameter is a phase in the build lifecycle.
Maven has a default build lifecycle that has a number of phases. Each phase will execute
every phase prior to it in order along with the specified phase. In this case, the package
phase executes in the following order:

» Validate
» Compile
» Test

» Package

The validate phase makes sure that the project (specifically the pom.xm1 file that describes
the project) is in order and all the necessary information to run the project is available.

The compile phase compiles the sources.

The test phase compiles the test sources and then runs the test using a suitable test
framework. In the earlier example, the JUnit framework is used to run the tests.

The package phase packages the artifacts to the format specified in the pom.xm1 file.

Changing the location of the Maven

repository

There are three types of Maven repositories:

» Local: This is the repository in your computer filesystem
» Remote: This is the repository from where the required Maven files get downloaded

» Mirrors: These are repository managers, such as Nexus and Artifactory, that mirror
various repositories

You will have seen Maven downloading a number of files (called poms and jars). Let us see
where they are located in your computer:

» Go to your HOME folder (C: \Users\username) in the case of Microsoft Windows, /
Users/username for Mac, and, /home/username (or a similar location) for Linux
» You will notice the .m2 folder and within that, a subfolder called repository

1
‘Q Any folder that starts with a dot (.) is typically hidden from view.

You will need to change your folder viewer settings to see it.

» You will see a number of folders and files that are used by Maven

=]

Chapter 1

You may want to change this location for the following reasons:

>

You may want to conserve space in the C drive and store these folders and files in the
D drive on Microsoft Windows.

You may want to take a back up of the contents. Backup software usually backs up
contents in specific folders of the filesystem.

Your organization may have a policy for all users to store a local repository in the
same folder.

How to do it...

To change the location of the Maven repository, perform the following steps:

Create a file called settings.xml in the .m2 folder.
Add the following contents to the settings.xml file that you just created:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0

http://maven.apache.org/xsd/settings-
1.0.0.xsd">

<localRepository>C:/software/maven</localRepository>
</settings>

Notice the highlighted part of the preceding code. We have changed the location of
the repository contents to C:\software\maven. You can change it to any valid folder
name.

Delete the repository subfolder and run the mvn package command again.

You will now notice that the repository folder is not created in the .m2 folder.
Instead, it is created in C: \software\maven.

Maven determines the location of the local repository in the following way:

>

If settings.xml exists in the user's .m2 folder, which contains the
<localRepositorys> tag, then Maven uses its contents to determine the location

If not, Maven will check if 1localRepository is explicitly defined in the default
settings.xml, present in the conf folder of the Maven installation

If it is not present there, Maven will use the default value for the local repository,
which is the user's .m2 folder

s

Getting Started

Running Maven behind an HTTP proxy server

Most organizations do not allow devices in their network to access the Internet directly for
security and other reasons. In such cases, typically, a proxy server comes into picture. The
proxy server details are specified in the browser or any other location where access to the
Internet is required.

How to do it...

Let's start running Maven behind an HTTP proxy server, by performing the following steps:

1. Create a settings.xml file in the .m2 folder in your HOME directory, if it does not
exist already.

2. Add the following code within the settings tag:

<proxies>
<proxys
<id>myproxy</id>
<activestrue</actives
<protocol>http</protocols>
<host>proxy.myorg.com</host >
<port>8080</port>
<username>proxyuser</usernames
<password>somepassword</password>
<nonProxyHosts>*.myorg.com </nonProxyHosts>
</proxys>
</proxies>

If the proxy server does not need authentication, the username and password tags can
be omitted.

The nonProxyHosts tag allows you to specify locations that can be accessed directly (for
instance, your intranet). This can be skipped if not relevant.

Maven needs Internet access to download plugins and dependencies. When Maven runs, it
reads the user's settings.xml file, if it exists. It checks for any active proxy settings and
applies the same.

Maven uses the values in the proxy settings to download any artifacts from the repository. If
there are no artifacts to be downloaded, then these values are not used.

=

Chapter 1

_ The HTTP proxy server may work only in your organization's network. If
% you are running Maven from a different network, you may want to turn
s off the HTTP proxy server. This can be done by setting the active tagto
false in the preceding code.

Understanding the standard directory layout

When we built our sample Java project earlier, we saw files being compiled, tests being run,
and a JAR being generated. We do not know where these artifacts were created.

How to do it...

Let's find where the artifacts were created by performing the following steps:

1. Go to the folder that has the sample Maven project.
2. Open the target subfolder that was created:

Directory of G:sprojectssapache-maven—cookbhookssimple-projectstarget

18-18-2814 H <DIR>

18-18-2814 H <DIR> .-

18-18-2814 H <DIR> classes

18-18-2814 H <DIR> nmaven—archiver

18-18-29814 H <DIR> maven—status

18-16-2814 H simple— ject—1.8-SNAPSHOT . jar

18-18-2814 H <DIR> suref ir eports
18-18-2814 H <DIR> test—classes

When Maven runs, it puts all the contents that it generates into a separate folder. This is to
distinguish it from any user-generated content. Let us examine the contents of this folder:

» The classes folder: Compiled source files are placed in this folder. This folder will
also contain resources, such as XML and property files that are part of the source,
placed in src/main/resources.

» The test-classes folder: Compiled test source files are available in this folder. In
addition, it also contains test resources, which are files required for the purpose of
testing, but not for running the project.

» The surefire-reports folder: Test reports are separately placed in this folder.
Typically, both XML and HTML report formats are available. The latter can be opened
in the browser, while the former can be integrated with a code coverage tool.

» The output . jar file: The generated project artifact is also present in this folder.

» Two other folders—maven-archiver and maven-status—hold information used by
Maven during the build.

s

IDE Integration
with Maven

In this chapter, we will see how to set up and use Maven with three popular Java Integrated
Development Environments (IDE). We will cover the following recipes:

» Creating a new Maven project in Eclipse

» Importing an existing Maven project in Eclipse

» Creating a new Maven project in NetBeans

» Importing an existing Maven project in NetBeans

» Creating a new Maven project in Intelli) IDEA

» Importing an existing Maven project in IntelliJ IDEA

Introduction

IDE improves developer productivity by performing the following functions:

» Creating boilerplate code

» Carrying out code completion

» ldentifying syntax issues

» Performing tasks such as compilation, unit testing, and deploying to web/app servers
While Maven is primarily intended to be a command-line tool, IDEs help developers enjoy as
well as exploit Maven features in better ways. The integration of Maven with IDE helps us to

automatically download dependencies and quickly search for dependencies through the Ul,
among other benefits.

=]

IDE Integration with Maven

The IDE integration of Maven has improved over the years and most Maven features can be
set through IDE now.

Creating a new Maven project in Eclipse

Eclipse is one of the most popular open source IDEs. It originated primarily from IBM's
VisualAge for Java. It is a platform that allows extensibility by means of plugins (something
that Maven does as well). Eclipse can be used to develop not only Java projects, but also a
host of other languages by means of plugins.

As of writing this book, Eclipse 4.4.1 (Luna SR1) is the most recent edition. The screenshots in
this book are for this version.

Getting ready

Eclipse needs a Java environment to run and hence needs Java to be installed on the
system. To do this, refer to the Getting ready sections of the first three recipes of
Chapter 1, Getting Started.

Download Eclipse from https://www.eclipse.org/downloads/. Eclipse binaries are
available for all popular operating systems. There are also different package solutions of
Eclipse targeted at different types of developers (C/C++, Java EE, PHP, and so on). You should
choose one of the Eclipse IDEs for Java developers, or the Eclipse IDE for Java EE developers.

For Maven to work, it is important to start Eclipse using JDK and
M not JRE. This can be done by passing the following argument to
Q the start up script:

-vm $JAVA HOME$%\bin\javaw

The recent versions of Eclipse come preinstalled with Maven support. Let us confirm this by
performing the following steps:

1. Launch Eclipse and click on the About Eclipse button in the Help menu, as shown in
the following screenshot:

https://www.eclipse.org/downloads/

Chapter 2

Help |

i@ Welcome

(Z) Help Contents

% Search
Dynamic Help
Key Assist... Ctrl+Shift+L
Tips and Tricks...

gg’ Report Bug or Enhancement...
Cheat Sheets...

"%9 Check for Updates

@ Install New Software...

B3 Installation Details

mp Eclipse Marketplace...

@] About Eclipse i

2. Click on the m2 icon from the list of icons that you see:

About Eclipse ==
Eclipse Java EE IDE for Web Developers. A

Version: Luna Service Release 1a (4.4.1)
Build id: 20150103-0600

(c) Copyright Eclipse contributors and others 2000, 2014, Al rights reserved. Eclipse and the Eclipse logo are trademarks of the Eclipse Foundation, Inc.,
https://ww.eclipse.org/. The Eclipse loga cannot be altered without Eclipse's permision. Eclipse lagos are provided for use under the Eclipse logo and trademark

guidelines, https://wwi.eclipse.org/logstm/. Otacle and Java are trademarks or registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

PFeEddedd T - SOo~EICOHOEIO
@' Installation Details
3. Onclicking the m2 icon, you should see something similar to the following
screenshot:
A About Eclipse Features > =

About Eclipse Features

Provider Feature Name Version Feature Id
Eclipse.org - m2e Maven Integration for Eclipse 1.5.0.20140606-... org.eclipse.mlefeature
< >

M2E - Maven Integration for Eclipse

4. Click on the Maven link by navigating to Window | Preferences from the Eclipse
menu bar.

e

IDE Integration with Maven

5. Click on Installations. You will see the existing installations available to Eclipse. It
uses an EMBEDDED installation of Maven that comes with Eclipse, as shown in the

following screenshot:

L} Preferences

type filter text Installations

> Install/Update
lava

Select the installation used to launch Maven:

Marme Details

Java EE
Java Persistence

EMBEDDED

Edit...

» JavaScript i] WORKSPACE H

NOT AVAILABLE (3.0

MakeGood

Maven
Archetypes
Discovery
Errars/Warnings
Installations
Java EE Integration
Lifecycle Mappings
Templates
User Interface
User Settings

Remove

Add the Maven installation that you set up by clicki

ng on the Add... button.

Mew Maven Runtime

Specify attributes for a Maven installation

Installation type: (®) External Waorkspace

Installation home: | Chsoftwarelapache-maven-3.2.3

Installation name: | apache-maven-3.2.3

Additional extension libraries;

_—

Directory...

Project...

7. You can check this installation so that it is chosen instead of the

EMBEDDED installation.

Chapter 2

How to do it...

To create a new Maven project, perform the following steps:

1. Navigate to File | New | Maven Project. You will see the following screen:

& New Maven Project - o EN]
New Maven project L
Select project name and location M |

[] Create a simple project (skip archetype selection)

Use default Workspace location

Browse...

[[1Add project(s) to working set

More...

» Advanced

2. Check the Create a simple project (skip archetype selection) option to avoid
choosing what to create.

3. Fill the same values that we specified as parameters in the Creating a simple project
with Maven recipe in Chapter 1, Getting Started (Group Id: com. packt . cookbook,
Artifact Id: simple-project) to create a simple Maven project.

& New Maven Project = =
New Maven project e S
Configure project M
Artifact
Group Id: com.packt.cookbook v
Artifact Id: | simple-project -
Version: 1.0-5MAPSHOT v
Packaging: | jar v
MName: Simple Project v

Description: | a simple project created with quickstart archetype plugin

Parent Project

Group Id: W
Artifact Id: v
Version: v Browse... Clear

s

IDE Integration with Maven

4. Click on Finish. Your project is now set up. Click on the pom.xm1 file. You will see the

following screenshot:
[t Project Explorer 31 = O || [m simple-project/pomaxml & =Qlil» =g
=5 7| Overview & - S
a 1= simple-project <> projectx
(# sre/mainfjava Artifact ~ Project
[src/main/resources.
& srotest/java Group Id: com packt.cookbook Name: Simple Project
> (# src/test/resources ArtifactId: + simple-project URL:
= JRE System Library [125E-1.5
2 Moven Depentiencis Vesiors | 1.0-SNAPSHOT Descrption: | & simpleproject rcated with quickstat
= " Packaging: |jar v archetype plugin
s st
(= target _
» Parent &
[l pomaml =3
» Properties
» Modules Inceptien:

» Organization

b SCM .
Overview| Dependencies| Dependency Hierarchy| Effective POM | pomnl a3 >
[Markers 22 | [T Properties | 41 Servers| [Data Source Explorer| £ Snippets v =0
0 errors, 1 warning, 0 others
Description : Resource Path Location Type
4 & Java Build Path Problems (1 item)
_u Build path specifies execution environment J25E-1.5. There are no JREs install simple-project Build path JRE System

Eclipse has built-in support (using the m2e plugin) for Maven projects. In this recipe, we used
Eclipse to create a simple Maven project, skipping the artifact selection. We also specified the
groupld, artifactId, and version for the project.

Using this information, Eclipse invokes the Maven archetype plugin to create a quick start
project. The Eclipse console shows the steps performed, and the project is created.

The folder structure and contents are identical to the project created from the command-line.

Importing an existing Maven project in

Eclipse

If you have already set up a Maven project from the command-line, then it can easily be
imported to Eclipse.

If you have not yet set up Eclipse and verified that Maven exists, please follow the Getting
ready section of the preceding recipe.

NED

How to do it...

To import an existing Maven project in Eclipse, perform the following steps:

1. Navigate to File | Import... and click on Maven:

A Import

Select

Import Existing Maven Projects

Select an import source:

type filter text

s [General

s = CVS

> = EIB

s = Git

> = Install

> (= Jawa EE

4 = Maven
f._j‘ Check out Maven Projects from SCM
|ﬂ Existing Mawven Projects
[, Install or deploy an artifact to a Maven repository
fj‘ Materialize Maven Projects from 5CM

2. Choose the project we created in the previous chapter:

Chapter 2

&

Maven Projects

Projects:

Import Maven Projects

Select Maven projects

Root Directory: | Chprojects\apache-maven-cockbook\simple-project

fpomxml com.packt.cookbookisimple-project:1.0-5SNAPSHOT:jar

Browse...

Select All

Deselect All

ooy o F

3.

new Maven project.

Import the project. You will see contents identical to what we saw when creating a

Es

IDE Integration with Maven

Eclipse has built-in support for Maven projects. When a Maven project is imported, it parses
the pom file, pom.xml, for the specified project. Based on the project's pom configuration file,
it creates relevant Eclipse configurations to recognize source files, tests, and artifacts.

It also identifies all the dependencies of the project, downloads these using Maven (if they
haven't been downloaded already), and adds them to the project dependencies.

Creating a new Maven project in NetBeans

NetBeans is another popular IDE. This is backed by Oracle, is equally feature-rich and
extensible, and supports multiple languages, such as Eclipse.

As of writing this, NetBeans 8.0.2 is the most recent edition. The screenshots in this book
reflect this version.

Getting ready

NetBeans can be downloaded in two different ways (if not downloaded already):

» Oracle provides a download of the latest JDK along with the latest version of
NetBeans. This is a good option, especially if you have not installed JDK yet.

» If JDK is already installed, then NetBeans can be downloaded separately
from https://netbeans.org/. There are different bundles of NetBeans
(similar to Eclipse). You can choose one from Java SE or Java EE, or all of them,
based on your preference.

How to do it...

Now that NetBeans is installed, let us create a new Maven project, by performing the
following steps:

1. Navigate to Tools | Options. Choose Java and click on the Maven tab. You will notice
Maven Home showing up as Bundled with (Version: 3.0.5):

https://netbeans.org/

Chapter 2

Q Options

@y) — & — Q, [Filter (Ctrl+F)
@//_ 2 k.t._-"{?\ = | = Javar| @2 S =T

General Editor Fonts & Colors Keymap Java PHP Team Appearance Miscellaneous

Ant | GUI Builder | Maven | JavaFX | Java Debugger | JavaScript | Profiler

Categories:

Execution
Appearance
Dependencies
Index

Maven Home :

Bundled
(Version: 3.0.5)

Global Execution Options

Edit Global Custom Goal Definitions. ..

Reuse Qutput Tabs from Finished Processes
Always Show Output

[] Skip Tests for any build executions not directly related to testing

Output Tab identified by: (@) ProjectName (_) Maven Artifactld

[] Also show active configuration

[] Collapse folds for successfully executed majos

Add

You can leave it as is or change it to your Maven installation by choosing

the dropdown.

Now navigate to File | New Project.

Choose Maven from Categories: and Java Application from Projects:, as shown in
the following screenshot:

©

New Project

Steps Choose Project
1. Choose Project Q, Filter:
2
Categories: Projects:
. Java ~ Java Application
.....)\ JavaFx '&‘ JavaFy Application
-----). JavaWeb % vieb Applcation
----- . Java EE 3
’ ﬁ Enterprise Application
----- 1) HTMLS) .
Enterprise Application Client
""" 1 vaven | } 05GiBundle
""" o PHP E‘:J MetBeans Module
.....)\ Groovy 2 NetBeans Application
| I MetBeans Modules {ils POM Project
| samples lills Project from Archetype
)\ Java | | Project with Existing PGM
Description:

A simple Java SE application using Maven.

s

IDE Integration with Maven

5. Specify the details of the project:

7] MNew Java Application

Steps Name and Location

1. Choose Project

Project Name: simple-project
2. MName and Location

Project Location: | C:\Usersyraghu\Documents \MetBeansProjects Browse...
Project Folder: |C:\Usersyraghu'\Documents\NetBeansProjects \simple-project

Artifact Id: simple-project

Group Id: com.packt. cookbook

Version: 1.0-SMAPSHOT

Package: com.packt. cookbook| (Optional)

You are done! A new project is now created in NetBeans.

Like Eclipse, NetBeans has built-in support for Maven. Unlike Eclipse, NetBeans did not use
the Maven archetype for a quick start. Instead, it created a new project using its template. In
this case, you will notice that it did not create the dummy source and test class that the quick
archetype creates.

Importing an existing Maven project in

NetBeans

Instead of creating a new Maven project, as we did in the preceding recipe, you may want to
open an existing Maven project in NetBeans. Let us now see how we can import an existing
Maven project.

S E

Chapter 2

Getting ready

NetBeans can be downloaded in two different ways (if not downloaded already):

» Oracle provides a download of the latest JDK along with the latest version of

NetBeans. This is a good option, especially if you haven't installed JDK yet.

If JDK is already installed, then NetBeans can be downloaded separately
athttps://netbeans.org/. There are different bundles of NetBeans

(similar to Eclipse). You can choose one from Java SE or Java EE, or all of them,
based on your preference.

How to do it...

To import an existing Maven project in NetBeans, perform the following steps:

1. Navigate to File | Open Project...:

9]
Edit View Mavigate Source Refactor Run
P Mew Project... Ctrl+ Shift+M
T New File... Ctrl+N

|
Open Project... Ctrl+ Shift+0

2. Choose the project we created earlier from the command-line. Notice how NetBeans
recognizes it (with the ma icon) as a Maven project:

Open Project
Lookin: |78 This PC v P
E| . apache-maven-cookbook A | Project Mame:
§oEe | ot simple-project
-~ | settings-examples S
(=297 simple-project Open Required Projects:
B Jfjle aura [

3. NetBeans now opens the Maven project.

s

https://netbeans.org/

IDE Integration with Maven

Like Eclipse, NetBeans has built-in support for Maven. It identifies a folder as a Maven
project due to the presence of pom.xml. It parses this file and opens the project associating
the files and folders to Source Packages, Dependencies, and Project Files, as shown in
following screenshot:

Q simple-project - NetBeans IDE 8.0.1 = =
File Edit Yiew MNavigate Source Refactor Run Debug Profile Teem JTools Window Help Q- Search (Ctrl+)
i ERELT] I .
‘1}’_‘ EI % <default config = vl |> o é S
Proj... X |Files Services — || StartPage | [3] pom.xml [simple-project] X 0
simple-project Source Graph Effective History |[& - eSS R UE R | v
| Source Packages - -
—_ 1 <?xml version="1.0" encoding="UTF-8"?2> ~
-5 com.packt.cookbook . N . - B
. 2|] <project mmlns="http av org/POM/4.0.0" xmlns:xsi="http
Dependencies R X - - I—
3 <modelVersion>4.0.0</modelVersion>
e Java Dependencies
Proiect Fil 4 <groupld>com.packt.cookbook</groupId>
roject Files
< o ¢ 5 <artifactId»simple-project</artifactId>
- " [<version>l.0-3NAPSHOT</version>
[] settings.xml X i
7 <packaging>jar</packaging>
g8 <properties>
g <project.build.sourceEncoding>UTF-8</project.build. sourceErn
10 <maven.compiler,source>l, 7</maven, compiler,source>
11 <maven.compiler.target>l.7</maven.compiler.target>
Havigator > - 12| </propertiss>
POM model v || 13 - </project> .
Model Version : 4.0.0 < >
Groupld : com.packt.cookbook ——
Artifactld : simple-project Mofifications X \hipaik -
Packaging : jar Q Priority ~ Message + Date Created Category
Version : 1.0-5NAPSHOT ?
- Properties

Creating a new Maven project in IntelliJ

IDEA

IntelliJ IDEA is an IDE from JetBrains. It has both Community and commercial editions. Intelli)
IDEA is enormously popular among developers and is regularly updated with the latest
language and platform features.

For the purpose of this cookbook, we will use the Community Edition. The steps are the same
for the commercial edition as well.

As of writing this book, IntelliJ IDEA 14.0.3 is the most recent edition. The screenshots in this
book reflect this version.

NEQ

Chapter 2

Getting ready

As IntelliJ IDEA needs a Java environment to run, let us first ensure that the Java environment
is set up on our system:
1. Ensure that JDK is installed.

2. Download IntelliJ IDEA by visiting https://www.jetbrains.com/idea/ and
clicking on the Download link.

3. Ensure the project SDK is set to your Java installation.

How to do it...

Use the following steps to create a new Maven project in IntelliJ IDEA:

1. Open IntelliJ IDEA.

2. Click on Create New Project.

3. Choose Maven.

4. Select the Create from archetype option and choose maven-archetype-quickstart:1.1:

Il New Project
ES Java o : Ny p—
roject SDK: | 2 1.8 (java version "1.8.0_20") New...
3 Java FX
'ﬁ' Android [V Create from archetype Add Archetype..
£% Intelli) Platform Plugin T T T T T ST T S T ST e

org.apachemaven.archetypes:maven-archetype-marmalade-mojo
org.apache.maven.archetypes:maven-archetype-mojo
¥ Gradle org.apache.maven.archetypes:maven-archetype-portlet
& Groowy org.apache.maven.archetypes:maven-archetype-profiles
org.apachemaven.archetypes:maven-archetype-quickstart
D Grifon maven-archetype-quickstart: RELEASE

3 Empty Project maven-archetype-quickstart:1.1

org.apache.maven.archetypes:maven-archetype-site

org.apachemaven.archetypesimaven-archetype-site-simple

5. Specify the values required to create the project:

a New Project
Groupld | com.packt.cookbook | [V Inherit
Artifactid [simple-project l
| V] Inherit

Version | 1.0-SNAPSHOT

Eis

https://www.jetbrains.com/idea/

IDE Integration with Maven

6. Confirm the values for the project:

9l

User settings file:

Local repositery:
Properties
groupld
artifactld
Version
archetypeGroupld
archetypehrtifactld
archetypeVersion

New Project

Maven home directory: | Cisoftware\apache-maven-3.2.3

|D |:| Cwerride

M2_HOME is used by default

| Ch\Users\raghu.m2\settings.xml

|D |:| Cherride

| Cihsoftwareimaven

”j] Override

com.packt.cookbook
simple-project
1.0-5SNAPSHOT
org.apache.maven.archetypes
maven-archetype-quickstart
1.1

You are done! A new Maven project is created in IntelliJ IDEA.

IntelliJ IDEA has first-class support for Maven. It can create a new Maven project as per
archetype by downloading the required plugins and dependencies from the repository. It uses
the configured Maven settings, which can be customized as specified in the next section.

There's more...

You can customize Maven in IntelliJ IDEA by opening the Maven settings as follows:

1. Navigate to Configure | Settings:

NED

P |

IntelliJ IDEA

Version 14.0.3

1% Create New Project
T3 Import Project
[Open

¥ Check out from Version Control ~

% Configure = Get Help ~

e [

Chapter 2

Plugins
Import Settings
Export Settings
Check for Update
Project Defaults »
2. Click on Maven on the left panel:
0 Settings
@) Build, Execution, Deployment) Build Tools » Maven ' For default project
Appearance & Behavior
o [Work offline
Plugins [Use plugin registry
Version Control Execute goals recursively
Build, Execution, Deployment
Build Tools [Print exception stack traces

(o] @

@ s

Gradle B
Gant = Outputlevel: Info n
=
Compler Checksum policy: Ne Global Policy '
Coverage [

Debugger Multiproject build fail policy: | Defaut n
Path Variables
Plugin update policy: Defautt n ignared by Maven 3+

Languages & Frameworks

Maven home directory: [Csoftware\apache-maven-32.5

Hj [Override

M2_HOME is used by defauft

User gettings file: [C\Usersraghut m2\settings.xm

\D [Override

Local repository: [Chsoftware\maven

\D [Override

3. Click on Override to change the values as you desire.

4. Change a few of the default options such as Work offline or Output level:, as shown

in the preceding screenshot.

s

IDE Integration with Maven

Importing an existing Maven project in

Intellid IDEA

While we can use IntelliJ IDEA to create a new project, in most cases you will already have an
existing project in your filesystem. In the latter scenario, you will want to import this project.

Getting ready

As IntelliJ IDEA needs a Java environment to run, let us first ensure that the Java environment
is set up on our system:

1. Ensure that JDK is installed.

2. Download IntelliJ IDEA by visiting https://www.jetbrains.com/idea/ and
clicking on the Download link.

3. Ensure the project SDK is set to your Java installation.

How to do it...

To import an existing Maven project in IntelliJ IDEA, perform the following steps:

1. Start Intelli) IDEA.

2. Choose Import Project. Browse for the simple project that we created earlier:

b/ Select File or Directory to Import

Select directory with existing sources,

Eclipse project (.project) or classpath (.classpath) file,
Maven project file (pom.aml),

Gradle build script (*.gradle).

) O B Hide path

Cih\projects\apache-maven-cockbookisimple-project\pom.axml I;I

apache-maven-cookbook
settings-examples
simple-project

settings

src

target

.classpath

Jproject

=l .gitignare

https://www.jetbrains.com/idea/

Chapter 2

3. Make changes if required. The changes can be made as shown in the
following screenshot:

Il Import Project from Maven

LG WL projects\apache-maven-cookbook)\simp | l

[Search for projects recursively

Project format: | .idea (directory based) I'

[Keep project files in: | Hj

[Import Maven projects automnatically

@ Create Intelli) IDEA modules for aggregator projects (with '‘pem’ packaging)
[] Create maodule groups for multi-module Maven projects

@ Keep source and test folders on reimport

@ Exclude build directory (%PROJECT_ROOT %/target)

@ Use Maven putput directories

Generated sources folders: | Detect automatically n

Phase to be used for folders update: | process-resources n

IDEA needs to execute one of the listed phases in order to discover all source folders that are configured via Maven plugins.
Mote that all test-* phases firstly generate and compile production sources.

Autematically download: |:| Sources |:| Documentation

Dependency types: | jar, test-jar, maven-plugin, gjb, gjb-client, jboss-har, jbess-sar, war, ear, bundle

Comma separated list of dependency types that should be imported

| Environment settings... ‘

Previous Next | Cancel ‘ | Help ‘

4. Confirm the project to be imported:

b Import Project from Maven

Select Maven projects to import

4 com.packt.cookbook:simple-project:1.0-SNAPSHOT

You are done! The existing Maven project is now imported to IntelliJ IDEA.

@l

IDE Integration with Maven

IntelliJ IDEA has first-class support for Maven. It can parse pom files to determine the project
structure and dependencies, and lay them out in the IDE.

Once the project is opened in IntelliJ IDEA, the following folders and files get created:

GC:isprojectssapache—maven—cookbookwsimple—project>tree /F
Folder PATH listing
Uolume serial number is B4BE-E184

.classpath

.project

nom.xnl

simple-project.iml

compiler.xml
encodings.xml

misc.xml
modules.xml
ves.xml
workspace . xml

opyright
profiles_settings.xml

libraries
MHaven__junit_junit_3_8_1.xml

Scopes

scope_settings.xml
v
There's more...

All Maven-related operations can be conducted from the IDE by opening the Maven Projects
tab in IntelliJ IDEA:

b/l simple-project - [C\Users\raghu\ldeaProjects\simple-project] - [simple-project] - ..\pomxml - IntelliJ IDEA 13.1.5
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
simple-project pomaml L3 Allin simple
3 Project - simple-project Maven Projects
simple-project iproject mmlns="http://maven.apache.org/POM/4.0.0" mulns:xsi="http://wer. B (5 2 & + P F 9 @ =
.idea xsi:schemalocation="http://maven.apache.org/PO/4.0.0 http://maven.apac .
Profiles

ore <modelVersion>4.0.0</modelVersion>

T simple-project
main

<groupId>com. pack. cockbeok</groupld> 3 Lifecycle
ava
J <artifactId>sizple-project</artifactIds> % clean
com.packt.cookbook <version>1.0-SHAPSHOT</version> 5 validate
b App <packaging>jar</packaging>
% compile
test
o <name>sirple-project</name> b test
<urlsheip:/ /maven. apache. ora</url
com.packt.cookbook B/ o T [,
2" % AppTest W verify
PP st <properties> & install
pom.ml <project.build.sourceEncoding>UTF-E</project . build. sourceEncoding> 5 site
Il simple-projectiml </properties>
o < deploy
il External Libraries
c1Es <dependencies> @ Plugins
<dependency> il Dependencies

i Maven: junitjunit:3.8.1 <groupld>juni t</groupld>

<artifactId>junit</artifactId>
<version>3.8.1¢/version>
<scope>test</scope>

Run * simple-project [package]

You can choose Lifecycle and click on the phase to be run. For instance, in the preceding
screenshot, we run the package phase of the Lifecycle.

=

Maven Lifecycle

Let us start putting Maven to use. In this chapter, we will cover the following recipes:

>

Understanding the Maven lifecycle, phases, and goals
Understanding the pom file

Understanding Maven settings

Understanding command-line options in Maven
Understanding Maven profiles

Adding a new Maven profile

Activating/deactivating a Maven profile

Using properties in Maven

Specifying source encoding for platform-independent builds

Introduction

We have set up Maven on our computer. We have created a simple Maven project and seen
how to build it. We have also set up Maven to run on our preferred IDE.

Let us now understand better how Maven works and how to use it. We will start by
understanding the Maven build lifecycle as well as the phases and goals that make up the
lifecycle. We will also explore Maven's project configuration pom file as well as the settings file.
We will also try to understand what Maven profiles are and why they are needed. Finally, we
will look at Maven's properties.

Maven Lifecycle

Understanding the Maven lifecycle, phases,

and goals

As we start using Maven, we need to understand the Maven project lifecycle. Maven is
implemented based around the concept of a build lifecycle. This means there is a clearly
defined process to build and distribute artifacts with Maven.

What makes up a lifecycle? The stages of a lifecycle are called phases. In each phase, one or
more goals can be executed.

Getting ready

Maven is set up on your system and is verified as working. For setting up Apache Maven, refer
to the first three recipes of Chapter 1, Getting Started.

How to do it...

To build a Maven project, perform the following steps:

1. Open the command prompt.
2. Run one of the Maven commands that we are familiar with:

mvn package

3. Observe the various steps that get executed.

Maven has three built-in build lifecycles:

» default:The default lifecycle handles project build and deployment
» clean: The clean lifecycle cleans up the files and folders produced by Maven
» site: The site lifecycle handles the creation of project documentation

You will have noticed that you do not have to explicitly specify a lifecycle. Instead, what you
specify is a phase. Maven infers the lifecycle based on the phase specified.

For instance, the package phase indicates it is the default lifecycle.

When Maven is run with the package phase as a parameter, the default build lifecycle gets
executed. Maven runs all the phases in sequence, up to and including the specified phase (in
our case, the package phase).

=

Chapter 3

While each lifecycle has a number of phases, let us look at the important phases for

each lifecycle:

» The clean lifecycle: The clean phase removes all the files and folders created by
Maven as part of its build

» The site lifecycle: The site phase generates the project's documentation, which
can be published, as well as a template that can be customized further

» The default lifecycle: The following are some of the important phases of the
default lifecycle:

[m]

[m]

[m]

validate: This phase validates that all project information is available
and correct

process-resources: This phase copies project resources to the
destination to package

compile: This phase compiles the source code
test: This phase runs unit tests within a suitable framework
package: This phase packages the compiled code in its distribution format

integration-test: This phase processes the package in the integration
test environment

verify: This phase runs checks to verify that the package is valid
install: This phase installs the package in the local repository
deploy: This phase installs the final package in the configured repository

Each phase is made up of plugin goals. A plugin goal is a specific task that builds the project.
Some goals make sense only in specific phases (for example, the compile goal of the Maven
Compiler plugin makes sense in the compile phase, but the checkstyle goal of the Maven
Checkstyle plugin can potentially be run in any phase). So some goals are bound to a specific
phase of a lifecycle, while others are not.

Here is a table of phases, plugins, and goals:

Phase Plugin Goal

clean Maven Clean plugin clean

site Maven Site plugin site

process-resources Maven Resources plugin resource

compile Maven Compiler plugin compile

test Maven Surefire plugin test

package Varies based on the packaging; for | jar (in the case of a
instance, the Maven JAR plugin Maven JAR plugin)

=]

Maven Lifecycle

Phase Plugin Goal
install Maven Install plugin install
deploy Maven Deploy plugin deploy

Understanding the pom file

Every Maven project has a pom file that defines what the project is all about and how it should
be built. Pom is an acronym for project object model. Let us take a peek at this file.

How to do it...

Let's understand the pom file, by performing the following steps:

1. Go to a Maven project that we created in previous chapters.
2. Open the file named pom.xml.

A pom file is an XML file that is based on a specific schema, as specified at the top of the file:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-
4.0.0.xsd">

There is also a modelVersion element that defines the version of this schema:
<modelVersions>4.0.0</modelVersions>
These are the basic elements of a pom file.

The groupId element is a unique identifier of the organization to which the project belongs.
For our sample project, it is org.packt . cookbook. It is a good practice to follow the reverse
domain name notation to specify this:

<groupIds>...</groupld>

The artifactId elementisthe name of the project. For our sample project, it is
simple-project:

<artifactIds>...</artifactIds>

Chapter 3

The version element is the specific instance of the project, corresponding to the source
code at a particular instance of time. In our case, it is 1. 0-SNAPSHOT, which is a default
version during development:

<versions>...</version>

We will explore the difference between the SNAPSHOT and concrete versions later in
the book.

The combination of groupId, artifactId, and version uniquely identifies the project. In
this sense, they are the coordinates of the project.

The packaging element indicates the artifact type of the project. This is typically a jar, war,
zip, Or in some cases, a pom:

<packagings>. . .</packaging>

The dependencies element section of the pom file defines all the dependent projects of this
project. This would typically be third-party libraries required to build, test, and run the project:

<dependencies>...</dependencies>

The parent section is used to indicate a relationship, specifically a parent-child relationship.
If the project is part of a multi-module project or inherits project information from another
project, then the details are specified in this section:

<parents>...</parent>

Maven properties are placeholders. Their values are accessible anywhere in the pom file by
using ${key}, where key is the property name:

<propertiess>...</properties>

A project with modules is known as a multi-module or aggregator project. Modules are
projects that this pom file lists and are executed as a group:

<modules>...</modules>

For more information on multi-module projects refer to Chapter 9, Multi-module Projects.

Understanding Maven settings

Now that we have got an idea of the essential elements of a pom file, let us also examine the
various setting properties of Maven.

@1

Maven Lifecycle

How to do it...

To understand the Maven settings, perform the following steps:

1. Openthe settings.xml file in the .m2 subfolder of your HOME folder, if it exists:

settings xmlms="http://maven.apache.org/SETTINGS/1.8.8"
xmlns xsi="http://wwu.vwi.orqg/2081/8HLSchema-instance™
¥si:schemalocation="http://maven.apache.org/SETTINGS/1.8.8
http://maven.apache.orgfxsd/settings-1.08.8.xsd">
<localRepository>C:/software/maven</localRepository’
<pluginGroups>
{pluginGroup>org.eclipse.jetty</pluginGroup>
{pluginGroup>org.codehaus.cargo</pluginGroup>
{pluginGroup>org.apache.tomcat.maven<{/pluginGroup>
<pluginGroup>org.jacoco</pluginGroup>
</pluginGroups>
Fisettings)

2. Otherwise, open the settings.xml file in the conf folder of your Maven installation
(as defined in M2_HOME).

Maven has a global settings file called settings.xml in the conf folder of the Maven
installation. The values in this file can be overridden in the user settings file— the settings.
xml file—that is present in the . m2 subfolder of your HOME folder.

The settings file contains configurations that are not specific to a project, but are global in
nature. It also contains information that is not meant to be distributed (for example, passwords).

Like the pom file, the settings file is also an XML file based on an XML schema. It starts
as follows:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0

http://maven.apache.org/xsd/settings-
1.0.0.xsd">

Let us now see some of the typical setting configurations:

The localRepository element
The following code represents the localRepository elementin the settings file:

<localRepository>${user.home}/.m2/repository</localRepositorys>

=

Chapter 3

We have seen this in the Changing the location of the Maven repository recipe in Chapter 1,
Getting Started, where we wanted to change the default location where Maven
dependencies and plugins are stored.

The offline element
The following code represents the of £1ine element in the settings file:

<offline>false</offlines>

This setting indicates whether Maven should operate in offline mode; that is, it should not
download updates or dependencies if they are not available.

The proxies element

We saw proxies in the Running Maven behind an HTTP proxy server recipe in Chapter 1,
Getting Started. The following code represents the proxies element in the settings file:

<proxies>

<proxys
<ids>myproxy</id>
<activestrue</actives
<protocols>http</protocols>
<host>proxy.myorg.com</host >
<port>8080</port>
<username>proxyuser</usernames
<password>somepassword</password>
<nonProxyHosts>*.myorg.com </nonProxyHosts>

</proxy>

</proxies>

This allows us to specify a proxy server to connect to the Internet. This is relevant in enterprises
where direct access to the Internet might be blocked due to security or other reasons.

The mirrors element
The following code represents the mirrors element in the settings file:

<mirrors>
<idsnexus</id>
<name>My Company Mirror</names>
<urlshttp://nexus.mycompany.com/pub/maven2</urls>
<mirrorOf>central</mirrorOf>

</mirrors

Maven Lifecycle

Instead of downloading dependencies from Maven Central, you can configure Maven
to download them from a mirror of the central repository. This is extremely useful in an
organization where the repository can be mirrored in a repository manager within an
organization and all users can download dependencies from this mirror.

The repositories element

Repositories are remote collections of projects that Maven uses to populate the required
dependencies to a local repository. There are two types of repositories—releases and
snapshots—and Maven allows specific configurations for each, as illustrated in the
following code:

<repositoriess>
<repository>
<id>codehausSnapshots</id>
<name>Codehaus Snapshots</name>
<releases>
<enabled>false</enabled>
<updatePolicy>always</updatePolicy>
<checksumPolicy>warn</checksumPolicy>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
<checksumPolicy>fail</checksumPolicy>
</snapshots>
<urls>http://snapshots.maven.codehaus.org/maven2</urls>
<layout>default</layouts>
</repositorys>
</repositories>

The pluginRepositories element

While repositories store dependencies required for the project, the pluginRepositories
element stores plugin libraries and associated files. Maven distinguishes between these
two by having separate configurations for both. The elements are the same as that for
repositories, except that the parent element is pluginRepositories.

SNED

Chapter 3

The servers element

The repositories for download and deployment are defined by the repositories and
distributionManagement elements of the pom file. However, settings such as username
and password cannot be distributed in the pom file for confidentiality reasons. Maven
provides a mechanism to specify this in the settings file:

<servers>

<servers
<id>server001l</id>
<username>my login</usernames>
<password>my password</passwords>
<privateKey>${user.home}/.ssh/id _dsa</privateKey>
<passphrase>some_ passphrase</passphrases>
<filePermissions>664</filePermissionss>
<directoryPermissions>775</directoryPermissions>
<configuration></configurations>

</server>

</servers>

Understanding command-line options in

Maven

While the most popular way to run Maven is to specify goals, Maven provides a number
of command-line options to customize its behavior. They range from specifying values for
properties, to varying the verbosity of the Maven output. It is useful to know some of the
arguments, as they will often help with troubleshooting issues with Maven.

Getting ready

Maven is set up on your system and is verified as working.

How to do it...

To understand command-line options in Maven, perform the following steps:

1. Openthe command prompt.
2. Run the following command:

mvn -h

i

Maven Lifecycle

3. You will see an output such as the following screenshot:

C:wprojectssapache—maven—cookbook>men —h

uzage: men [options] [<goal¢s>>] [{phasefs>>]

Options:
—am,.——also—make

—amd, —also—nmake—-dependents

—B.—hbatch—-mode
=h.—builder <{arg>
—-G,.——strict—checksums

—c,.——lax—checksums
—cpu, —check—plugin—updates

—D.—define <{arg>

-8, —Eerrors

—emp, —encrypt—master—password {arg?
—ep,——encrypt—password {arg>
—f,—file <arg’>

—fae.—fail-at—end

—ff, —fail-fast

If project list is specified. also
build projects required by the
list

If project list iz specified,. also
build projects that depend on
projects on the list

RBun in non—-interactive <hatch)

mode

The id of the build strategy to
use.

Fail the build if checksums
match

Warn if checksumsz don’'t match
Ineffective, only kept for
backward compatibility

Define a system property

Produce execution error messages
Encrypt master security password
Encrypt server password

Force the use of an alternate POM

don't

file <or directory with pom.xml>.
Only fail the build afterwards:
allow all non—impacted builds to
cont inue

Stop at first failure in
reactorized builds

A number of options that Maven supports are displayed in the preceding screenshot.

We will briefly discuss the command-line options that Maven provides.

Options

When there is an error while running Maven, this flag will result in Maven displaying a detailed

stack trace of the error:

-e

—€rrors

When the quiet option is enabled, only errors are displayed. The other outputs are not
printed. This permits speeding up builds where verbose outputs are usually displayed:

g

-quiet

We have seen the version option to display the Maven version in the first three recipes of

Chapter 1, Getting Started. This is also a simple way to check if Maven is installed and working:

-V

=

-version

Chapter 3

When invoked with the of £1ine option, Maven does not attempt to download any
dependency or plugin from the Internet. This option will work correctly, provided Maven has all
the information required for the project to be built and run. We will see how to enable projects
to run in offline mode:

-o —-offline

When enabled with the debug option, Maven prints a lot of verbose output about every step
that it performs. This is typically used to troubleshoot any build issues:

-X -debug

Understanding Maven profiles

Maven is designed to create portable builds that are expected to work across different
platforms and in various runtime environments.

Now, there may be situations where you need to build the same project differently. For
instance, you may need to build a project differently for the purpose of staging and production.
You may not want to build a project that requires a Linux library on Windows.

How to do it...

Let's understand Maven profiles by performing the following steps:

1. Open settings.xml in the conf subfolder of your Maven installation (as specified
in M2 HOME).

2. View the commented section of profiles.

Maven provides three type of profiles:

» Per Project profile as defined in the pom file of the project

» Per User profile as defined in the user settings file (in the .m2 subfolder of the user's
HOME folder)

» A Global profile as defined in the global settings file (in the conf folder of M2 HOME)

By creating different profiles for different variations of the project build, you can use the same
pom file to create differing builds.

One should be careful to ensure that this does not result in a non-portable build.

Maven Lifecycle

Adding a new Maven profile

Let us add a simple Maven profile to test our understanding of profiles.

How to do it...

Let's create a new Maven profile, by performing the following steps:

1. Create a new Maven project using the commands specified in the Creating a simple
project with Maven recipe in Chapter 1, Getting Started.

2. Add the following code in the pom.xm1 file:

<profiles>

<profile>
<id>dev</id>
<activation>

<activeByDefault>false</activeByDefault>

</activations>

</profiles>

</profiles>

There are two ways to create a profile: in the project's pom file or in the settings file. It is
important to note that, if a profile is active from the settings file, its values will override any
profiles with equivalent IDs in the pom file.

The profile in pom.xml can have the following elements:

<profile>
<id>test</id>
<activations>...</activations>
<builds...</build>
<moduless>...</modules>
<repositories>...</repositoriess>
<pluginRepositoriess>...</pluginRepositories>
<dependenciess>...</dependencies>
<reportings...</reportings>
<dependencyManagements>. . .</dependencyManagement >
<distributionManagements...</distributionManagement>

</profiles>

Chapter 3

The profile in settings.xml can only have the following elements:

<profile>
<id>test</id>
<activations>...</activations>
<repositories>...</repositories>

<pluginRepositoriess>...</pluginRepositories>
<propertiess..</propertiess>
</profiles>

» The Activating/deactivating a Maven profile recipe in this chapter

Activating/deactivating a Maven profile

A profile can be specified in pom.xml or settings.xml. Each profile may be created for
a specific purpose; for instance, to run on a particular platform or to run in an integration
environment. All profiles may not need to run in all cases. Maven provides a mechanism to
activate and deactivate a profile as required.

Getting ready

Use the project where we created the profile to add a new Maven profile section.

How to do it...

Let's perform the following steps to activate/deactivate a Maven profile:

1. To deactivate a profile, set the following value in the activeByDefault element:

<activeByDefault>false</activeByDefaults>

2. Runthe Maven command to check if the profile is active:

mvn help:active-profiles
The output for the preceding command is shown as follows:

[INFO] --- maven-help-plugin:2.2:active-profiles (default-cli) @
project-with-profile ---

[INFO]

s

Maven Lifecycle

Active Profiles for Project 'com.packt.cookbook:project-with-
profile:jar:1.0-SNAPSHOT':

The following profiles are active:

3. To activate the profile, set the following value:

<activeByDefault>true</activeByDefaults>

4. Confirm that the profile is now active, by executing the following command:
mvn help:active-profiles
The output for preceding command is shown as follows:

The following profiles are active:

- dev (source: com.packt.cookbook:project-with-profile:1.0-
SNAPSHOT)

Profiles can be triggered in one of the following ways:

» Explicitly: Here, Maven provides a command-line option to invoke a profile, shown in
the following command:

mvn -P dev package
This invokes the dev profile

» Through settings: A profile can be activated in the settings file by setting the
<active> property to true. If activated, when the project is built, the profile is
invoked:

<activeProfiles>
<activeProfile>dev</activeProfile>
</activeProfiles>

» Based on environment variables: The profile can be activated based on any
environment variable and the value that it has:

<profiles>
<activations
<property>
<name>debug</name>
</property>
</activations>

</profile>

5]

Chapter 3

If the system property debug is defined and has any value, then the profile is
activated

» Based on OS settings: The following profile will only run on Windows:
<profile>
<activations
<0s>
<family>Windows</family>
</os>
</activations>

</profiles>

» Present or missing files: The following profile will be activated if the target/site
file is missing;:

<profile>
<activation>
<file>
<missing>target/site</missings>
</file>
</activations>
</profiles>

Using properties in Maven

Maven allows us to define as well as use properties. Properties allow us to avoid hardcoding
values in multiple places such as versions of dependencies. They also provide flexibility to the
build tool by allowing values to be passed at runtime.

How to do it...

Let's define and use Maven properties by performing the following steps:

Open the pom file of a project that we created earlier.
Define a property:
<propertiess>

<junit.version>3.8.1</junit.version>
</propertiess>

7}

Maven Lifecycle

3.

Use the property:

<dependency>
<groupld>junit</grouplds>
<artifactId>junit</artifactId>
<version>${junit.version}</versions>
<scope>test</scope>
</dependency>

There are different types of properties. They are as follows:

>

Environment variables: Prefixing a variable with env . will return the value of the
shell's environment variable. For example, ${env.PATH} will return the value of the
PATH variable.

pom variables: Prefixing a variable with project . will return the value of that
element in the pom file. For example, ${project.version} will return the value in
the <versions> tag of the pom file.

The settings variable: Prefixing a variable with settings. will return the value of
that element in the settings file. For example, ${settings.offline} will return
the value <offlines> in the settings file.

Java properties: Any property available through the System.getProperties ()
method in Java is available. For example, ${java.home}.

Normal properties: Values that are specified in the <propertiess tag, which is
shown in the following example:

<propertiess>
<java.version>1.7</java.version>
</propertiess>

Here, the ${java.version} command will return 1.7

Do remember that properties and profiles can break the portability of the project. Two specific
practices for looking up in problem areas are as follows:

>

NED

External properties: These are properties defined outside the pom file (in a settings
file) but used as part of a plugin configuration. The absence of this property definition
will break the build.

Incomplete specification: This is where properties are defined for different build
environments. A missing definition for one will break the build.

Chapter 3

See also

» The Specifying source encoding for platform-independent builds recipe in
this chapter.

Specifying source encoding for platform-

independent builds

Let us put our learning of properties to practical use. You will have observed the following
warning while building the simple project that we created in the Building a simple project with
Maven recipe in Chapter 1, Getting Started:

[WARNING] Using platform encoding (Cpl252 actually) to copy filtered
resources,

i.e. build is platform dependent!

Let us remove this warning if we really do not want the build to be platform dependent.

How to do it...

Let's specify the source encoding for platform-independent builds in our Maven project, by
performing the following steps:

1. Open the pom file we created previously.

2. Add the following code:

<propertiess
<project.build.sourceEncoding>UTF-8
</project.build.sourceEncoding>

</properties>

3. Run the following command:

mvn package

4. Observe that the warning is no longer present.

The project.build. sourceEncoding property explicitly specifies the encoding of the
source files. Maven plugins get information about the encoding from the value of this property
and use it.

This value will be the same on any platform that the project is built on and, thus, the build
becomes independent of the platform.

s

Essential Maven Plugins

In this chapter, we will look at the following recipes:

>

Using the Maven Clean plugin

Using the Maven Compiler plugin

Changing the compiler used by the Maven Compiler plugin
Specifying the Java version for the Compiler plugin

Using the Maven Surefire plugin to run unit tests

Using the Maven Failsafe plugin to run integration tests
Using the Maven Resources plugin

Filtering using resources

Using Eclipse to run Maven goals

Using NetBeans to run Maven goals

Using IntelliJ IDEA to run Maven goals

Introduction

In the previous chapter, we learned about the Maven lifecycle and the phases and goals of
the lifecycle, understood the essential elements of the pom project configuration file and the
settings file, and learned to use Maven profiles and properties.

In this chapter, we will look at how to add and configure plugins to the pom file and use

them to perform essential build tasks. Maven has a plugin architecture, and except for core
functionalities, every task in Maven is done using plugins. There are a number of plugins that
are provided by Maven. In addition, there are several third-party plugins. Maven also provides
a mechanism for users to develop their own plugins if they choose to do so.

[ei-

Essential Maven Plugins

Using the Maven Clean plugin

When a project is built, it is important to ensure that it is not adversely affected by artifacts of an
earlier build. Usually, build tools generate artifacts in a well-defined folder, namely the target
folder, called project working directory. Before a new build, this folder is usually deleted.

Getting ready

Maven is set up on your system and is verified to work. To do this, refer to the first three
recipes of Chapter 1, Getting Started.

How to do it...

Let's start using the Maven Clean plugin by performing the following steps:

1. Openthe command prompt.

2. Run the following Maven command in the simple Maven project that we created in
the Creating a simple project with Maven recipe in Chapter 1, Getting Started:

mvn clean

3. Observe the various steps that get executed:

[INFO] --- maven-clean-plugin:2.4.l:clean (default-clean) @
simple-project ---

[INFO] Deleting C:\projects\apache-maven-cookbook\simple-
project\target

If there are no files/folders to delete, you will not see the following output:

[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @
simple-project ---

[INFO] BUILD SUCCESS

When the clean phase is invoked, Maven automatically infers that the clean lifecycle
is invoked.

It uses the Maven Clean plugin for this. The plugin has only one goal, namely clean, to clean
the working directory.

&

Chapter 4

In the case of Maven, the working directory is called target. Maven creates this directory
when a build is done. The clean goal of the plugin attempts to delete this directory.

As clean is a separate lifecycle from the default (build) lifecycle, clean needs to be
explicitly called before the default lifecycle if you need to ensure that the working directory
is removed.

In this section, we will discuss how to run the Clean plugin automatically during the build, the
steps to skip the deletion of working directory, and the process of deleting some additional
files/folders.

Cleaning automatically

In the previous example, as we used the default behavior of the plugin and did not need to
make any configurations, we did not need to make any change to the pom configuration file.
However, what if we want to ensure that the clean goal is run without explicitly calling it?

To do this, we need to define the plugin with some parameters in our pom file:

1. Let us add the following code in our pom file:

<builds>
<plugins>
<plugin>
<artifactIds>maven-clean-plugin</artifactId>
<version>2.6</version>
<executions>
<execution>
<idsauto-clean</id>
<phase>initialize</phase>
<goals>
<goal>clean</goals>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</builds>

Though the preceding declaration may look verbose, all we are asking is for the
clean goal to be invoked during the initialize phase of the project. We are
identifying this execution with an id called auto-clean.

(&5}

Essential Maven Plugins

2. Now run the following command on the command prompt:

mvn package

3. You will see the following screenshot:

=N Command Prompt -

isprojectshapache—maven—cookhookhproject—with—autoclean>nvn package
[INFO]1 Scanning for projects...

[INF(1]

[INF(1]

[INFO1 Building Project with autoclean 1.8-SMAPSHOT

——— maven—clean—plugin:2.6:clean Cauto—clean?> B project—with—autoclean —|

Deleting C:sprojectssapache—-maven—cookbooksproject—with—autocleanstarget

——— maven—-resources—plugin:2 _6:resources {(default-resources) @ project—wi
h-autoclean ——

Even though we did not call the clean phase, the clean goal got invoked because it was
configured in the pom file to run in the initialize phase.

Skipping the deletion of the working directory
Let us look at the converse of the preceding use case. For some reason, we do not want the
working directory to be deleted, even if clean is run. To do this, perform the following steps:
1. Configure the plugin as follows:
<plugin>
<artifactIds>maven-clean-plugin</artifactIds>
<version>2.6</version>
<configuration>
<skip>true</skip>

</configurations>
</plugin>

2. Run the following command on the command prompt:

mvn clean
3. Observe the output, which is as follows:

C:\projects\apache-maven-cookbook\project-with-clean-
disabled>mvn clean

[INFO] Scanning for projects...
[INFO]

[INFO] Building Project with clean disabled 1.0-SNAPSHOT

=

Chapter 4

[INFO] --- maven-clean-plugin:2.6:clean (default-clean) @
project-with-clean-disabled ---

[INFO] Clean is skipped.

Setting the skip plugin property to true indicates to Maven that the clean goal must
be skipped.

Deleting additional folders/files

What if your project has an additional folder, say report, besides target, which is perhaps

created by another script, and you want that to be deleted as well? We use the following steps
to do the same:

1. Configure the plugin as follows:
<plugins>
<artifactIds>maven-clean-plugin</artifactIds>
<versions>2.6</version>
<configurations>
<filesets>
<fileset>

<directory>${basedir}/report</directorys>
</fileset>
</filesets>
</configurations>
</plugin>

You have now configured the plugin to delete an additional directory

2. Create a report folder for the purpose of testing.
3. Run the following command on command prompt:

mvn clean
4. You will now see the following output:

C:\projects\apache-maven-cookbook\project-with-clean-
additional-folder>mvn clean

[INFO] Scanning for projects...
[INFO]

[INFO] Building Project with clean additional folder 1.0-
SNAPSHOT

]

Essential Maven Plugins

[INFO] --- maven-clean-plugin:2.6:clean (default-clean) @
project-with-clean-additional-folder ---

[INFO] Deleting C:\projects\apache-maven-cookbook\project-
with-clean-additional-folder\report (includes = [], excludes =

(1

The report folder is deleted as well. In fact, Maven can be configured to delete (or not
delete) specific folders and files inside that folder as well.

Using the Maven Compiler plugin

Compilation is an essential task performed by a build tool. Maven uses the Maven Compiler
plugin to do the compilation. The plugin provides several configurations to make the
compilation flexible.

How to do it...

To use the Maven Compiler plugin, perform the following steps:

1. Open acommand prompt.

2. Run the following Maven command on the simple project that we created in the
Creating a simple project with Maven recipe in Chapter 1, Getting Started:

mvn compile
3. Observe the output, which is as follows:

[INFO] --- maven-compiler-plugin:2.3.2:compile (default-
compile) @ simple-project ---

[INFO] Compiling 1 source file to C:\projects\apache-maven-
cookbook\simple-project\target\classes

The compile parameter indicates the invocation of the default lifecycle to Maven. As
illustrated in the Understanding the Maven lifecycle, phases, and goals recipe in Chapter 3,
Maven Lifecycle, Maven runs all the phases up to and including the compile phase in order.

The compile phase itself essentially runs the compile goal of the Maven Compiler plugin.

This compiles the Java source files to classes in the target /classes folder.

(&)

Chapter 4

One question would have struck you. What about the test classes? Why does the compile
phase not compile the test sources?

The answer lies in the way Maven handles the lifecycle and phases of the lifecycle. Why would
you want to compile the test sources unless you want to run the tests?

What if we want to compile the test sources?
Let us try running the following command on the command prompt:
mvn test

Observe the output as shown in the following screenshot:

[INFO1 ~
[INFO1 —— maven—compiler-plugin:3.1:testCompile (default—testCompile) @ simple—
project ———

[INFO1 Changes detected — recompiling the module?

[WARNING] File encoding has not heen set. using platform encoding Cpl252, i.e. h

1ild is platform dependent?

[INFO1 Compiling 1 source file to C:sprojects“apache—-maven—cookhook simple—proje
:t\targettest—classes

[INFO1

[INFO1 —— maven—surefire-—plugin:2.12.4:test (default—test)> @ simple—project ——

As we specified the test phase, Maven ran all phases prior to it, which includes compiling the
test sources using the testCompile goal of the Maven Compiler plugin.

Changing the compiler used by the Maven

Compiler plugin

Let us say we are running Maven using JDK 7 but our project requires the sources to be
compiled using JDK 8. Essentially, we want to use a JDK for compilation that is different from
the JDK running Maven.

In this case, we can specify the compiler we want to use to Maven.

How to do it...

Use the following steps to change the compiler used by the Maven Compiler plugin:

1. Open the command prompt.

&7}

Essential Maven Plugins

2. Define a Maven property to store the location details for Java 8:

<properties>

<JAVAS8 .HOME>C: /Program
Files/Java/jdk1l.8.0_ 20</JAVA8.HOME>
</propertiess>

_ The portable way to do this would be to define this property in a
% profile inthe user's settings.xml file. This is because the
s location of JAVA_ HOME may be different for different users based on
their operating system or preferred installation location.

3. Add the following plugin configuration to the Maven project:
<pluginss>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactIds>
<versions>3.2</version>
<configurations>
<verboses>true</verboses>
<fork>true</fork>
<executable>${JAVA8.HOME}/bin/javac</executables>
<compilerVersion>1.8</compilerVersion>
</configurations>
</plugin>
</pluginss>

The fork element needs to be set to true for the preceding code to

work. Maven will invoke the different java compiler in a separate thread
VS and hence the need to fork. This is so that Maven can load a different
JVM corresponding to a different JDK.

4. Run the following command on a command prompt:

mvn compile

There would no visible difference in the way the compilation happens, except that now, the
compiler specified in the executable element will get invoked.

Chapter 4

See also

» The Specifying the Java version for the Compiler plugin recipe in this chapter

Specifying the Java version for the

Compiler plugin

When we created a new project in Eclipse, you would have observed the following warning:

[&] Markers 22 | [Properties | 4 Servers EE Data Source Explorer | [[5 Snippets
0 errors, 1 warning, 0 others

Description ‘ R
a (& Java Build Path Problems (1 item)

-+ Build path specifies execution environment J25E-1.5. There are no JREs installed in the workspace that are strictly compatible with this environment, si

Why does this error occur? This is because the Maven Compiler plugin, by default, considers
the source and target Java version to be 1.5 (for backward compatibility reasons).

Let us resolve this warning.

How to do it...

Let us assume you have configured Java 8 as the default Java runtime in Eclipse, and perform
the following steps:

1. Open the Eclipse project.
2. Add the following configuration to the Maven Compiler plugin:
<pluginss>
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactIds>
<versions>3.2</version>
<configurations>
<sources>1l.8</sources
<target>1.8</target>
</configurations>
</plugin>
</plugins>

[}

Essential Maven Plugins

3. Alternately, add the following properties in the properties element (this is
essentially a shortcut for the earlier process):

<properties>
<maven.compiler.target>1.8</maven.compiler.target>
<maven.compiler.source>1l.8</maven.compiler.sources>
</propertiess>

4. Check if the warning goes away.

When the source and target versions of Java are explicitly set to the compiler, the version
of java used in the source code as well as the desired version of the compiled classes are
unambiguous. There is no likelihood of the compiler compiling to the incorrect target

version of Java.

Consequently, the Eclipse warning goes away.

You may need to pass compiler arguments in the compilerArguement element to the
compiler. For instance, you may want to identify the usage of deprecated APIs in the code. You
can do this by adding the following configuration:

<plugin>
<groupld>org.apache.maven.plugins</groupIld>
<artifactIds>maven-compiler-plugin</artifactIds>
<version>3.2</version>
<configuration>

<compilerArgument>-Xlint:deprecation</compilerArgument >

</configurations>

</plugin>

When run on a code that has a deprecation, you can see the relevant lines:
[INFO] Compiling 1 source file to C:\projects\apache-maven-

cookbook\project-with-deprecation\target\classes

[WARNING] /C:/projects/apache-maven-cookbook/project-with-
deprecation/src/main/java/com/packt/cookbook/App.java: [12,24]
Date(int,int,int) in java.util.Date has been deprecated

Chapter 4

Using the Maven Surefire plugin to run unit

tests

A best practice of software development is writing automated unit tests for the code that you
develop. Let us now see how to run these tests.

The plugin that does this job is the Maven Surefire plugin.

How to do it...

To run unit tests using the Maven Surefire plugin, perform the following steps:

1. Open the command prompt.
2. Run the following command on one of our sample projects:

mvn test

3. Observe the various steps that get executed:
[INFO] --- maven-surefire-plugin:2.10:test (default-test) @
simple-project ---

[INFO] Surefire report directory: C:\projects\apache-maven-
cookbook\simple-project\target\surefire-reports

Running com.packt.cookbook.AppTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time
elapsed: 0 sec

Results:

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

The test parameter indicates the invocation of the default lifecycle to Maven. As illustrated
in the Understanding the Maven lifecycle, phases, and goals recipe in Chapter 3, Maven
Lifecycle, Maven runs all the phases up to and including the test phase, in order.

The test phase itself essentially runs the test goal of the Maven Surefire plugin.

This runs the test classes that are present in the target /test-classes folder.

Essential Maven Plugins

The test that we have is a test written using the JUnit framework. Not only does the plugin run
the test, it also generates a test report that can be used to analyze failures as well as test
coverage.

Check the surefire-reports folder:

snprojectssapache—maven—cookbooksimple—projectstargetssuref ire—reports >dir
Uolume in drive C has no lahel.
Uolume Serial MWumber is B4BE-Ei184

Directory of C:sprojectssapache—maven—cookbhooksszimple—projectutargetssuref ire—v|
eports

16—A2-2015 AE:A8 PH <DIR> -

16—A2-2015 AE:A8 PH <DIR> .

16—A2-2015 AE:A8 PH 274 com.packt.cookbook.AppTest.txt

16—82-2015 AE:A8 PH 6,274 TEST—com.packt.cookbook.AppTest.xml
2 Filed(s> 6,548 hytes

While the text file contains the summary report, the XML file has the details of each of
the tests.

There's more...

The Surefire plugin provides many configurations to make testing easier.

Using TestNG

JUnit is not the only way to write automated unit tests. You could use TestNG (http://
testng.org) or even write your tests without using any framework (by using Java asserts).

Surefire determines the framework to be used based on the dependencies that have
been defined.

Our earlier example ran JUnit tests because we had defined the junit dependency in
the pom file.

Let us now write a test using TestNG and see what needs to change for it to work. Refer to
the Maven project with TestNG.

The only change in the pom file is to replace the junit dependency with testng:

<dependencys>
<grouplds>org.testng</groupIld>
<artifactId>testng</artifactIds>
<version>6.8.8</versions>
<scope>test</scope>
</dependency>

Run the following command on command prompt:

mvn test

=

Chapter 4
The tests are now run in using TestNG:

[INFO]

[INFO] --- maven-surefire-plugin:2.10:test (default-test) @ project-
with-testNG---

[INFO] Surefire report directory: C:\projects\apache-maven-
cookbook\project-with-testNG\target\surefire-reports

Running com.packt.cookbook.AppTest

Set up run

Fast test

Slow test

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.609

sec

Now, examine the surefire-reports folder. It has a different set of files corresponding to
testng:

surefire-reports = =
View L
ct-with-testNG » target » surefire-reports » v G Search surefire-reports P
~ MName : Date modified Type Size

. com.packt.cookbook. AppTest 01- File folder

| junitreports 01- File folder

J old 01- File folder
B bullet_point 01- PNG image 1 KB
%7 collapseall 01- GIF image 1 KB
. com.packt.cockbook.AppTest 01- Text Document 1 KB
€ emailable-report 01- Chrome HTML Da... 3KB
B failed 01- PNG image 1 KB
& index 01- Chrome HTML Do... 14 KB
=] jguery-1.7.1.min 01- J5 File 92 KB
B navigator-bullet 01- PMG image 1 KB
B passed 01- PNG image 1KB
B skipped 01- PNG image 1KB
jTEST-com.paclct.cookbook.AppTest 01- XML File TKB
|+ testng 01- CS5File 1 KB
|+ testng-reports 01- CS5File 5KB
|- testng-reports 01- 9 J5 File 4KB
jtestng-results 01-11-2014 20:15 XML File 2KB

The same tests work with TestNG and JUnit as TestNG can run JUnit tests.

Essential Maven Plugins

Skipping tests
There may be situations where you might not want to run the tests; some tests are possibly
broken. This can be done in the following ways:

» Configuring the Surefire plugin in the pom file: Configure your Surefire plugin in the
pom.xml file using the following code:
<plugins>
<plugins>
<groupIds>org.apache.maven.plugins</groupIds>
<artifactId>maven-surefire-plugin</artifactId>
<versions>2.17</version>
<configurations>
<skipTests>true</skipTests>
</configurations>
</plugin>
</plugins>

Now, run the following command:

mvn test
You will see the following output:

[INFO]

[INFO] --- maven-surefire-plugin:2.17:test (default-test) @
project-with-tests-skipped ---

[INFO] Tests are skipped.
» Issuing an mvn command with a command-line parameter: The tests can be skipped
even by issuing the following command:

mvn -DskipTests tests

Skipping the compilation of test sources

The skipTests parameter used in the preceding mvn command skips running of tests, but
the test sources still get compiled by the earlier phases/goals. To skip the compilation of test
sources, you can run the following command:

mvn -Dmaven.test.skip=true package

This will completely skip the test compilation and test execution.

Chapter 4

Using the Maven Failsafe plugin to run

integration tests

In addition to unit tests, Maven also allows you to automate the running of your integration
tests. While unit tests are run during the test phase of the build lifecycle, integration tests
are run during the verify phase. The Maven Failsafe plugin is used to run integration tests.

How to do it...

To run integration tests using Maven Failsafe plugin, perform the following steps:

1. Open a project containing integration tests, namely project-with-integration-
test.

2. Add the following plugin configuration to the pom file:
<plugins>
<groupld>org.apache.maven.plugins</groupIlds>
<artifactIds>maven-failsafe-plugin</artifactId>
<versions>2.18</versions>
<executionss>
<execution>
<id>integration-tests</id>
<goals>
<goal>integration-test</goals>
<goals>verify</goal>
</goals>
</executions
</executions>
</plugin>

3. Run the following command:

mvn verify

Essential Maven Plugins

4. Observe the various steps that get executed:

[INF(O1

[INFO1 —— maven—failsafe-plugin:2.18:-integration—test {integration—tests> @ pro
ject—with—integration—tests ——

[INF0O1 Failszafe report directory: GC:isprojectssapache—maven—cookhook project—uith
—integration—testsstarget:failzsafe—-reports

P
Tests run: 1, Failures: B, Errors: B, Skipped: 8. Time elapsed: B sec — in com.)p
ackt .cookbook. ApplIT

Rezults =

Tests run: 1. Failures: B, Errors: B, Skipped: 8

[WARNING] File encoding has not bheen set,. using platform encoding Cpl252, i.e. h

uild is platform dependent?

[INF(O1

[INFO]1 —— maven—failsafe—-plugin:2.18:verify {(integration—tests?> @ project—with—|

integration—tests ——

[INF0O1 Failszafe report directory: GC:inprojectssapache—maven—cookhbook project—uith

—integration—tests“\target:failsafe-reports

[WARNING] File encoding has not been set,. using platform encoding Cpl252, i.e. h
iz platform dependent?

We have specified in the pom file that the integration test must be run and the goals of the
Maven Failsafe plugin must be verified. These goals are bound to the verify phase of Maven
and get invoked.

Using the Maven Resources plugin

The Resources plugin comes into picture to copy project resources to the output directory. The
resources can be for the project to run or for the purpose of testing.

How to do it...

Let's start using the Maven Resources plugin by performing the following steps:

1. Openthe command prompt.
2. Run the following command on the simple project that we created earlier:

mvn process-resources

7@

Chapter 4
3. Observe what happens:

[INFO] --- maven-resources-plugin:2.5:resources (default-
resources) @ simple-project ---

[INFO] skip non existing resourceDirectory C:\projects\apache-
maven-cookbook\simple-project\src\main\resources

When we specify the process-resources phase, Maven executes the resources goal of
maven-resources-plugin, which is bound to the process-resources lifecycle phase

In the earlier project, there are no resources and hence, resources are not copied.

If you add a file in src\main\resources (as in the case of the project-with-
resources project), you will see the following output:

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @
project-with-properties ---

[INFO] Copying 1 resource
You could also explicitly invoke the plugin's goal as follows:
mvn resources:resources

You could also invoke any phase following the process-resources phase, which will trigger
resource processing as well:

mvn compile

There is a separate goal to copy test resources to provide separation of the main and test
resources. Like project resources, the test resource processing can be invoked in three ways,
which are as follows:

» By specifying a phase that will automatically invoke phases before it:

mvn process-test-resources

» By explicitly stating the plugin's goal:

mvn resources:testResources

» By a phase following process-test-resources:

mvn test

Essential Maven Plugins

There's more...

What if we had resources in additional folders? The Maven Resources plugin allows us to
configure these additional folders.

Let's say we have an additional resources folder, namely src/main/additional. We can
configure the pom. xm1 file as follows:

<builds>
<resources>
<resource>
<directorys>src/main/resources</directorys>
</resources
<resource>
<directorys>src/main/additional</directory>
</resources
</resources>
</build>

Now, run the following command:

mvn process-resources

Observe the output:

[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @
project-with-additional-resources ---

[INFO] Copying 1 resource

[INFO] Copying 1 resource

The line Copying 1 resource repeats twice, indicating the copying happening from
two folders.

Filtering using resources

Now, let us see how we can put the resources features of Maven to good use, that is,
to perform variable replacements on project resources. This feature is useful when you
need to parameterize a build with different configuration values, depending on the
deployment platform.

You can define variables in your resources. Let us see how we can get the value of these
variables from properties, resource filter files, and the command line.

@

Chapter 4

How to do it...

To perform filtering using resources, use the following steps:

1. Add a property with a variable in the src/main/resource/app.properties file:

display.name=Hello ${project.name}

2. Add the following code in the pom file:

<builds>
<resources>
<resource>
<directorys>src/main/resources</directory>
<filtering>true</filtering>
</resource>
</resources>
</builds>

3. Invoke the process-resources phase:

mvin process-resources

4. Examine the processed resource app.properties in target/classes:

C:\projects\apache-maven-cookbook\project-with-resource-
filtering\target\classes>type app.properties

display.name=Hello Project with resource filtering

In the Using properties in Maven recipe of Chapter 3, Maven Lifecycle, we saw the various
types of properties that Maven can have. In the preceding case, we set the filtering
element to true. Maven replaced the variable ${project .name} with the property value
corresponding to the name of the project defined in the pom file, namely Project with
resource filtering.

You can override the property values from the command line:
mvn -Dproject.name="Override from command line" process-resources
Now, look at app . properties by navigating to target /classes

C:\projects\apache-maven-cookbook\project-with-resource-
filtering>type target\classes\app.properties

display.name=Hello Override from command line

(7]

Essential Maven Plugins

If you have a large number of variables whose values differ based on the environment, then
you can create a file, say my-filter-values.properties, in the project codebase
holding the keys and values (say, src/filter folder) and use them as filters:

<filterss>
<filter>my-filter-values.properties</filters>
</filters>

Using Eclipse to run Maven goals

If you are using Eclipse to develop your project, it is good to know how to run some of the
plugins we have discussed earlier using the IDE.

How to do it...

To run Maven goals using Eclipse, use the following steps:

1. Open the simple project in Eclipse.
2. Right-click on the project.
3. Choose Run As.
4. View the available Maven options:
.,.L_/ e T Paste Crl+V ~ P
4 ‘,:} > simple-proje |
(5 sic/mein/js *K Delete Delete jook Na
(8 sreftestdjavi Remove from Context Ctrl+Alt+Shift+ Down | Ul
=, JRE System Build Path | o
e
= MavenDepl pofactor AlteShift=T > f
(i src | v
(= target fug Import... I
I pemaml | 5 Eeport... =
» simple-proj I
2 Refresh F5
Close Project |
Cleose Unrelated Projects Inc
Replace With 3 »
Restore from Local History... b S
Validate bl
Show in Remote Systems view
r g
Profile As 3
Debug As 3 [n(y Hierarchy | Effective POM | pom.aml
Run As v | E 1Java Applet Alt+Shift+ X, A
Coverage As » |30 2Java Application Alt+Shift+X,] |
Maven P | Ju 3 JUnit Test Alt+Shift+X, T |
Run All Tests Alt+ M m2 4 Maven build Alt+Shift+X, M
Team : , | m2 5Maven build... I
Compare With pf| 2 Bl d =
Eanhnne y | m2 7Maven generate-sources
Source y | m2 &Maven install I
m2 9 Maven test
< TestNG 3 ‘
- Run Cenfigurations... |
= simple-project Properties Alt+Enter

(&)

Chapter 4

Eclipse provides an option to run various goals from the IDE. Among the ones we have seen in
this chapter, clean, compile, and test are offered by Eclipse. There are a few other options
as well.

In addition, Eclipse also allows us to modify the configurations as suitable.

Eclipse also allows the project to be Run As a Java Application in the traditional way (without
using any Maven plugins). Likewise, it allows a JUnit Test to be run without using Maven.

Using NetBeans to run Maven goals

Let us now see how we can run the Maven goals in NetBeans.

How to do it...

To run Maven goals using the NetBeans IDE, implement the following steps:

1. Open the simple project in the NetBeans IDE.
2. Right-click on the project.
3. View the available options:

Projects X | Services |Fi|es | — || 5ta

ER Weimoic-projec
-7 Source Mew 3
i [Testp:
+ o Depen Build
+ g TestDi Clean and Build
+ g JavaD Build with Dependencies
i

b | g, Project
" o) Clean

Generate Javadoc

Run

Debug

Profile

Test Alt+F&

Custom 4

Set Cenfiguration L4

s

Essential Maven Plugins

Unlike Eclipse, NetBeans has a tighter Maven integration. This means each of the menu
options (Build, Clean and Build, Clean, and so on) call the corresponding Maven
command to do so.

For instance, clicking on the Clean option will result in the following:

Nofifications | Output - Build (simple-projsct) X | Search Results

M | ed c:\projects\apache-maven-cookbook\simple-project; "JAVA HOME=C:\\Program Files\\Java\\jdkl Z.0_20" M2 HOME=C:\\software\\apache-maven-3.Z

Scanning for projects...

al Zauuding simple-project 1.0-SHAPSHOT

Deleting C:\projects\apache-maven-cookbook\simple-project\targes

BUILD SUCCESS

Total time: 0.362 =
Finished at: 2014-11-07T14:02:03+05:30
Final Memory: SM/123M

As can be seen, it runs the mvn clean command.
Similarly, the Clean and Build option is equivalent to the mvn clean install command.

These are simple use cases. NetBeans provides additional configuration options to override
default Maven behavior.

Using IntelliJ IDEA to run Maven goals

Finally, let us look at what IntelliJ IDEA provides.

How to do it...

To run Maven goals using Intelli) IDEA, perform the following steps:

1. Open the simple project in IntelliJ IDEA.
2. Select Maven Projects:

Terminal
% Ant Build
Event Log
v Favorites
55 TODO
7 Structure
= Commander
I Project
[Update Info: A new

3. Open Lifecycle and click on a suitable goal/phase:

Maven Projects - A
D& + PREFS = B

& Profiles
[simple-project

[Lifecycle
¥ clean
¥ validate
£ test
4 package
£ verify
£F install
4 site
& deploy

[Plugins

[l Dependencies

Chapter 4

Essential Maven Plugins

Clicking on a Maven phase/goal invokes the corresponding Maven command and the same is
executed. For instance, clicking on compile does the following:

- L

\Bim\jave" -Dmaven hemesD:\sofverelapache-maven-3.2.3 -Dolasswerlds, senfeCr)sofruezelepache-maven-3. 2, Tubin\m2, seng -Dides.launcher.porcaTsis '

Building sisple-project 1.0-SHARSHIT

4

encoding (TTF-E actuslly

[]

There are also other configuration options provided by IntelliJ IDEA to customize
Maven projects.

=

Dependency
Management

In this chapter, we will cover the following recipes:

Choosing the scope of dependency

Getting a report of dependencies

Getting into dependency and avoiding dependency hell
Downloading dependencies into a folder
Understanding SNAPSHOT dependencies

Handling dependency download errors

Detecting unused/undeclared dependencies

Manually installing dependencies that are not available in a repository
Dependency management using Eclipse

Dependency management using NetBeans
Dependency management using IntelliJ IDEA

Introduction

One of the powerful features of Maven is managing the dependencies required by the project.
It is rare for a project to be developed without using other dependencies. The typical issues

in using dependencies relate to the number and choice of dependencies, their versions,

and the transitive dependencies (a project dependency, in turn, being dependent on

other dependencies).

Maven has a way of managing the dependencies, as well as providing users with enough
flexibility to handle complexities, as they arise.

&1

Dependency Management

Choosing the scope of dependency

We may use a dependency for many reasons. Some of them may be required to compile and
run the projects. There might be others only to run tests (for instance, junit). Then there may
be dependencies that are required at runtime, say logback.

How to do it...

Use the following steps to choose the scope of the dependency:

1.
2.

Open the Maven project we had created earlier.

Observe the following section:

<dependencies>
<dependency>
<groupId>junit</groupIds>
<artifactIds>junit</artifactIds>
<version>3.8.1l</version>
<scope>test</scope>
</dependency>
Remove the preceding lines of code and run the following command:

mvn compile

Observe that it runs without any issues.
Now, run the following command:

mvn test

Note the following error:

[INFO] Compiling 1 source file to C:\projects\apache-maven-
cookbook\project-with

-dependencies\target\test-classes

[ERROR] /C:/projects/apache-maven-cookbook/project-with-
dependencies/src/test/java/com/packt/cookbook/AppTest.java: [3,
23] package junit.framework does not exist

~[ee]

Chapter 5

The Java source code App . java did not have any dependency. Only the source classes were
compiled by mvn and thus, the command ran without any error.

The test code AppTest . java required the junit library to build. This is declared in the
import statement in the code. The mvn test tried to compile the test classes, and as it did not
find the dependency, it failed.

The following information needs to be specified to declare a dependency:

<groupId>junit</grouplds>
<artifactIds>junit</artifactIds>
<version>3.8.1l</versions>

The preceding three elements uniquely identify the dependency.

The fourth piece of information is as follows:
<scope>test</scopes>

By default, the scope is compile.

There are six different dependency scopes available:

» compile: This dependency is required for compilation. This automatically means it is
required for testing as well as runtime (when the project is run).

» test: This dependency is only required for tests. This means the dependency
is typically in the test code. As the test code is not used to run the project, these
dependencies are not required for runtime.

» runtime: These dependencies are not required during compilation, but only required
to run the project. One example would be the 1ogback dependency if you are using
Simple Logging Facade for Java (slf4j) to log and want to use 1ogback binding.

» provided: This tells Maven that dependency is required for compilation and runtime,
but this dependency need not be packaged with the package for distribution.
The dependency will be provided by the user. An example of this dependency is
servlet-api. Typically, application servers have these libraries.

» system: This is similar to the provided scope. Here, we need to explicitly provide the
location of the JAR file. It is not looked up from the repository. This may be useful to
specify a dependency that is not present in the repository:

<dependencys>
<groupId>com.myorg</grouplds>
<artifactId>some-jar</artifactId>
<version>2.0</versions>

7}

Dependency Management

<scope>system</scope>
<systemPath>${basedir}/lib/some.jar</systemPath>
</dependency>

» import: This is only used on a dependency of the pom type in the
dependencyManagement section. It indicates that the specified pom should be
replaced with the dependencies in that pom's dependencyManagement section.
This is intended to centralize dependencies of large multi-module projects.

See also

» The Manually installing dependencies that are not available in a repository recipe in
this chapter

Getting a report of dependencies

It is useful to get a list of dependencies for a Maven project in order to identify and
troubleshoot problems. The Maven Dependency plugin helps us here.

Getting ready

To appreciate this, we need to have a fairly complex project that has several transitive
dependencies. You can look at one such project at https://github.com/selendroid/
demoproject-selendroid

The project source code is available as a Git repository. A Git repository is typically
downloaded by cloning it. To do this, install Git on your system. Refer to the Git setup link
(https://help.github.com/articles/set-up-git/) for detailed instructions.

How to do it...

Use the following steps, to get a list of dependencies for a Maven project:

1. Clone the open source project demoproject-selendroid.
2. Run the following Maven goal:

mvn dependency:list

(e

https://github.com/selendroid/demoproject-selendroid
https://github.com/selendroid/demoproject-selendroid
https://help.github.com/articles/set-up-git/

Chapter 5

3. Observe the output as shown in the following screenshot:

svprojectssdemoproject—selendroid>mun dependency:list
FO] Scanning for projects...

——— maven—dependency-plugin:2.8:1list {(default-cli> P demoproject—selendro

The following files have been resolved:
io.selendroid:selendroid—standalone:jar:08.12_.B:compile
io.selendroid:selendroid—server—common: jar:@.12 . A:compile
org.seleniumhg.selenium:selenium—java: Jar'Z 43 . 1:compile
org. u3c casisacsjar:l.3:compile
com.android.tools.ddmssddmlib: jar:23.8.1:conpile
io.selendroid:selendroid—client: jar:A.12 B:compile
xalan:iserializer:jar:2.7.1:compile
org.hamcrest tham st—library:jar:1.3:compile
org.tukaani:x=:-jar:1.2:compile
io.nettynetty-all:-jar:4.8.21 . Final:compile
com.google .guavasgquavasjar:17.@:compile
net.zourceforge .nekohtml:nekohtml: jar:1.9.21:compile
io.selendroid:android—-driver—app:apk:8.12 _B:icompile
xml-apisixml—apis:jar:1.4.81:compile
cglib:cglib—nodep:jar:2.1_3:compile
net.sourceforge . htmlunithtmlunit—core—js:jar:2.15:compile
org.apache . httpcomponents thttpclient:jar:4.3.4:compile
org.apache .httpcomponents thttpcore:jar:4.3.2:compile
org.zeleniumhg.selenium:zelenium—support:jar:=2.43 1:compile
org.hamcrest thamcrest—core: jar:l.3:compile
net.sf.loml:ikxnl2: jar:2.3.B:compile
org.seleniumhg.selenium:selenium—remote—driver:jar:2.43.1::compile
Junit:junit:jar:4.8.2:compile
org.eclipse.jetty:jetty—do:zjar:8.1.15.020148411 :compile

The Maven Dependency plugin has several goals to obtain information regarding
dependencies as well as manage them.

Interestingly, this goal is not bound to any phase or lifecycle of Maven. This means, when the
mvn dependency:1list command is run, Maven runs the 1ist goal and nothing else.

The dependency:1ist parameter tells Maven to run the 1ist goal of the Maven
Dependency plugin. This analyzes the pom file and generates a list of dependencies for
the project.

While the dependency list might be good enough for simple cases, a more interesting and
useful one would be a dependency report in a tree format.

This can be done by running the tree goal of Maven Dependency plugin:

mvn dependency:tree

]

Dependency Management

Running this on the preceding project gives the following output:

sprojectssdemoproject—selendroid?mun dependency:tree
FO01 Scanning for projects...

Building demoproject—selendroid B.12_.8

—— maven—dependency—-plugin:2.8:tree {default—cli> @ demoproject—selendro

io.selendroid:demoproject—selendroid:jar:8.12.8
io.selendroid:selendroid-standalone:jar:8.12 _B:compile
+— jo.selendroid:selendroid-common:jar:@B.12 . @:compile
+— jo.selendroid:selendroid-server—common:-jar:8.12.8:compile
! ~— io.netty:netty-all:jar:4.0.21_Final:compile
+— jo.selendroid:selendroid—server:iapk:B.12 . A:compile
io.zelendroid:android-driver—appiapk:8.12_B:compile
+— oprg.apache .httpcomponents:httpclient:jar:4.3.4:conpile
+— prg.apache.httpcomponents thttpcore: jar:4.3.2::compile
+— commons—logging:commons—logging:jar:1l.1.3:compile
“— commons—codec :commons—codec:jar:l._6icompile
org.json:json: jar:20090211 :compile
commons—io:commons—io:jar:2.2:compile
org.apache .commons :commons—exec :jar:1l.1l:compile
com.beust:=jocommander: jar:1.3B8:compile
com.android.tools.ddms iddmlib: jar:=23.8.1:compile
+— net.sf _kxml:kxml2:jar:2.3 .@:compile
“— com.android.tools:common: jar:23.@.1:-compile
org.apache.commons commMoOnNs —COMPPESSs:j .D:compile
“— org.tukaani:xz:jar:1.2:compile
com.google.guava:guava:jar:17.A:compile
org.seleniumhg.selenium:selenium—java:jar:2.43.1:compile
+— prg.seleniumhg.selenium:selenium—chrome—driver:jar:2.43.1:compil]

i org.seleniumhg.zelenium:zelenium—remote—driver:jar:2.43.1:com

+— cglib:cglib—nodep:jar:2.1_3:compile
“— org.seleniumhg.zelenium:selenium—api:jar:2.43.1:compile
+— org.seleniumhg.zelenium:selenium—htmlunit—driver:jar:2.43.1:conp|

i - net.sourceforge. htmlunit:htmlunit:jar:2.15%:compile

+— xalan:xalan:jar:2.7.1:compile

i 5~ xalan:tserializer:jar:2.7.1:compile

As we can see, this is a better representation of the transitivity of the dependencies. Now we
know that which other dependencies are used, for instance, commons - 1ogging.

Getting into dependency and avoiding

dependency hell

As you use a number of dependencies, each of them in turn may also include further
dependencies. A situation may come when there are multiple versions of the same
dependencies in the project. This can often lead to errors.

To understand this, we need to have a fairly complex project that has several transitive
dependencies. You can look at one such project at https://github.com/selendroid/
demoproject-selendroid.

(5]

https://github.com/selendroid/demoproject-selendroid
https://github.com/selendroid/demoproject-selendroid

Chapter 5

Clone the repository on your system. Now, we are ready to see how complex dependencies

can get.

How to do it...

Use the following steps to avoid dependency hell:

1. Run the following command:

mvn dependency:tree -Dverbose

2. Note the output as shown in the following screenshot:

alalelalnlals
=
=

Soo o
=
=

=

=

As you can seeg, in the course of identifying the dependencies to be used in the project,

does a dependency analysis. This reveals two things:

Maven

» Two or more dependencies require the same version of another dependency. Maven

includes a dependency only once.

» Two or more dependencies require a different version of another dependency.

i

Dependency Management

Maven resolves this by supporting the nearest definition, which means that it will use the
version of the dependency closest to your project in the tree of dependencies.

This means it will not necessarily take either the latest or the oldest version. It will go by the
version that it finds first in the order of dependencies.

Where the project fails to work due to the incorrect version being used, the correct way to
resolve is to explicitly define the desired version of the dependency in your pom file. By the
previous strategy, this being the nearest definition will get precedence over any other versions
defined in any other dependency.

There's more...

Maven provides another way to handle the preceding scenario, namely, by using the
dependencyManagement element.

This allows us to directly specify the versions of artifacts to be used when they are
encountered in transitive dependencies or in dependencies where no version has been
specified. In the example in the preceding section, the guava dependency was directly
added to demoproject-selendroid, even though it was not directly used by the

project. Instead, demoproject-selendroid can include guava as a dependency in its
dependencyManagement section and directly control which version of guava is used when,
or if, it is ever referenced.

There is no magic bullet to prevent dependency hell. Even if you manually manage the version
of a library that gets included in your project by the preceding mechanism, it does not mean
that other transitive dependencies, which depend on a different version of the same library,
will suddenly become binary compatible with the managed version.

Downloading dependencies into a folder

Some projects may have a requirement for all the dependencies to be made available, say, in
a folder. This could be to archive the dependencies used in a particular version of the build.

How to do it...

Use the following steps to download dependencies in the target /dependency folder:

1. Let us open the demo project that we used in the previous recipe.
2. Run the following command:

mvn dependency:copy-dependencies

[

Chapter 5
3. See the output in the target /dependency folder:

C:sprojectssdemoproject—selendroidstargetsdependency>dir
Uolume in drive C has no label.
Uolume Serial Mumber iz B4BB-E184

Directory of Cisprojectssdemoproject—selendroidstargetsdependency

19-A2-2015% B7:38 <DIR> .

19-B82-20815 <DIR> .-

19-82-2815 android—driver—-app—8.12.8.apk
19-A2-2815 cglib—nodep—-2.1_3.jar
19-82-2815 - common—23_8.1. jar

19-A2-2815 - commonsz—codec—1 _6. jar
19-82-2815 commons—collections—-3.2.1.jar
19-A2-2815 commons—compress—1 . 5. jar
19-82-2815 commonz—exec—1 . 1. jar
19-A2-2815 commons—io—2.2_ jar
19-82-2815 - commonz—lang3-3._1. jar
19-A2-2815 - commons—logging—1.1.3.jar
19-82-2815 czsparser—H.9_14_ jar
19-B2-20815 ddmlib-23.8.1.jar

19-82-2815 gzon—2.2.1_jar

19-A2-2815 guava—-17.8._jar

19-82-2815 - hancrest—core—1._3. jar
19-A2-2815 hamcrest—integration—-1.3.jar
19-82-2815 hancrest—library—1.3.jar
19-82-2815 htmlunit-2.15%. jar

19-A2-2815 htnlunit—core—js—2.15. jar
19-82-2815 httpclient—4.3 .4 jar
19-A2-2815 282,269 httpcore—4.3.2. jar

The copy-dependencies goal of the Maven Dependency plugin copies over all the
dependencies used in the project, including transitive dependencies, to target/
dependency folder of the project.

This goal takes several parameters to handle various use cases, such as copying pom files
of the dependencies, copying parent poms, preserving the folder structure of the repository,
and so on.

The folder location can be changed by passing the following argument:
mvn dependency:copy-dependencies -DoutputDirectory=dependencies

The dependencies will now be copied over to the dependencies folder instead of the default
target/dependency folder.

The folder structure of the repository can be preserved and the poms of the dependencies
can be copied over by running the following command:

mvn dependency:copy-dependencies -Dmdep.copyPom=true
Dmdep.useRepositoryLayout=true

Dependency Management

The resultant folder structure will be similar to the repository layout as shown in the
following screenshot:

wprojectzsdemoproject—se lendroidstargetsdependencyXtree ~F
older PATH lizting
olume serial number iz H4B8-E184

~_cglih
L——cglib—nodep
maven—metadata—local.xml

2.1_3
cglib—nodep—-2.1_3 . jar
cglib—nodep—2.1_3J.pom

on
android
L—+tools
ommon

| maven—metadata—local.xml

2 0 e
common—23.08.1. jar
common—23_A.1 _pom

dms
L—ddmlih
| maven—metadata—local.xml

2 0 e
ddmlib-23.8.1. jar
ddmlib-23_8.1_.pom

heust

L —dJcommander
I maven—metadata—local.xml

1.38
Jecommander—1.38. jar
Jeommander—1 .38 _pom

Understanding SNAPSH dependencies

In Maven, a SNAPSHOT version is a version of the project/dependency that has not been
released. This is indicated by suffixing SNAPSHOT to the version humber. Here's an example:

<version>1.0-SNAPSHOT</versions>

You will notice that the project we created using the Maven archetype quickstart had a
SNAPSHOT version.

The version number specified before - SNAPSHOT is the version that the released project/
dependency is expected to have. So, 1.0-SNAPSHOT indicates 1. 0 is not released yet.

As the SNAPSHOT version indicates software under development, Maven deals with these
dependencies differently.

=

Chapter 5

How to do it...

One would rarely use the SNAPSHOT version of an external dependency. If you are developing
a multi-module project in your organization, chances are you will use SNAPSHOT versions of
other modules required in your project.

Let us try the following contrived example:

1.
2.

Open one of the projects that we have created.
Add the following dependency:

<dependency>
<grouplds>org.springframework</groupIlds>
<artifactIds>spring-context</artifactId>
<version>4.1.0.BUILD-SNAPSHOT</version>
</dependency>

Add the following code to specify the repository where the dependency is available:
<repositories>
<repositorys
<id>repository.spring.snapshot</id>
<name>Spring Snapshot Repository</names>
<urls>http://repo.spring.io/snapshot</urls>
</repositorys>
</repositories>

Run the following command:

C:\projects\apache-maven-cookbook\project-with-snapshot-
dependenciess>mvn verify

Observe the following results:

[INFO] Scanning for projects...
[INFO]

[INFO] Building Project with SNAPSHOT dependencies 1.0-
SNAPSHOT

Downloading:http://repo.spring.io/snapshot/org/springframework
/spring-context/4.1.2.BUILD-SNAPSHOT/maven-metadata.xml

Downloaded:http://repo.spring.io/snapshot/org/springframework/
spring-context/4.1.2.BUILD-SNAPSHOT/maven-metadata.xml (3 KB
at 1.7 KB/sec)

[55]-

Dependency Management

Downloading:http://repo.spring.io/snapshot/org/springframework
/spring-context/4.1.2.BUILD-SNAPSHOT/spring-context-
4.1.2.BUILD-20141107.161556-92.pom

Downloaded:http://repo.spring.io/snapshot/org/springframework/

spring-context/4.1.2.BUILD-SNAPSHOT/spring-context-
4.1.2.BUILD-20141107.161556-92.pom (5 KB at 6.8 KB/sec)

The first thing you would have seen is the need to define a specific repository to download
the dependencies. These dependencies are not available in the usual repositories. They
reside separately in repositories called snapshot repositories. In the preceding example, we
specified the snapshot repository where the desired dependencies were available.

The second thing you would notice are the filenames. Each artifact that is being downloaded
is appended with 20141107.161556-92. This is a unique identifier for each SNAPSHOT
version in the repository. This value changes each time a new SNAPSHOT version is available
in the repository.

Maven treats SNAPSHOT versions differently from release versions.

For a release version, Maven checks if the artifact is available in the local repository that is
already downloaded. If so, it does not attempt to fetch the same from the remote repositories.

For SNAPSHOT versions, even if the artifact is available locally, it checks the SNAPSHOT
version for updates in the remote repository based on the update policy that can be
configured.

By default, the update interval is once a day. This means, if Maven downloads a SNAPSHOT
dependency at noon today, it will check for an update to it at noon tomorrow and not before
that, irrespective of how many times you build the project.

The update interval can be specified in the repository section of the pom or settings file
as follows:

<updatePolicy>always<updatePolicy>

The choices are always, daily (default), interval : X (where X is an integer in minutes), or
never. Let's discuss in brief about these choices:
» always: This checks for updates for every Maven run.

» daily: This checks for updates once a day. This does not necessarily mean exactly
24 hours from the last check; just once a day at the start of the day.

» interval:X: This checks for updates after a specified time.

5]

Chapter 5

1
‘\Q In a multi-module project, it is good to set the updatePolicy

element value to always for intermodule dependencies.

There's more...

As mentioned earlier, there are separate repositories for release and snapshot versions. By
default, snapshots are disabled for a release repository and vice versa. The repository
element has separate releases and snapshots sub-elements where this can be specified:

<repositorys>
<ids>my-repo</id>
<name>My Release Repo</names
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
<checksumPolicy>fail</checksumPolicy>
</releases>
<snapshots>
<enabled>false</enableds>
<updatePolicy>always</updatePolicy>
<checksumPolicy>fail</checksumPolicy>
</snapshots>
<urlshttp://my.repo.url</urls>
<layout>default</layout>
</repository>

Typically, for a release repository, enabled will be false for snapshots. For a snapshot
repository, enabled will be true for snapshots and false for releases. This is so that
Maven looks at the right repository for the right artifacts and does not unnecessarily look at
the wrong repositories each time it needs a dependency.

The checksumPolicy element tells Maven what to do in case the checksum of the
downloaded dependency does not match the actual checksum. The value of fail will stop
the build with a checksum error.

Handling dependency download errors

There could be situations when a dependency might not be downloaded due to network
problems or other issues. Sometimes, the error reported by Maven might not indicate the
problem. It is good to know how to get around this problem.

Dependency Management

How to do it...

It is difficult to simulate this problem in a normal scenario, but we can create a contrived
scenario, by using the following steps:

1.

Modify the dependency version for JUnit in our simple project:

<version>3.9.1 </versions>

Run the following command:

mvn verify

This will attempt to download the dependency and fail (as the version is invalid):
[INFO] Building simple-project 1.0-SNAPSHOT

Downloading:https://repo.maven.apache.org/maven2/junit/junit/3
.9.1/junit-3.9.1.pom

[WARNING] The POM for junit:junit:jar:3.9.1 is missing, no
dependency information available

Downloading:https://repo.maven.apache.org/maven2/junit/junit/3
.9.1/junit-3.9.1.jar

[INFO] BUILD FAILURE
[INFO] == oo s e oo et b e eee e memeeeemmemeeemeaaens

[INFO] Total time: 3.329 s
[INFO] Finished at: 2014-11-08T15:59:33+05:30
[INFO] Final Memory: 7M/154M

[ERROR] Failed to execute goal on project simple-project:
Could not resolve dependencies for project
com.packt.cookbook:simple-project:jar:1.0-SNAPSHOT: Could n
ot find artifact junit:junit:jar:3.9.1 in central
(https://repo.maven.apache.org/maven2) -> [Help 1]

5]

Chapter 5

4. Runthe command again and observe the results:

[ERROR] Failed to execute goal on project simple-project:
Could not resolve dependencies for project
com.packt.cookbook:simple-project:jar:1.0-SNAPSHOT: Failure to
find junit:junit:jar:3.9.1 in
https://repo.maven.apache.org/maven2 was cached in the local
repository, resolution will not be reattempted until the
update interval of central has elapsed or updates are forced -
> [Help 1]

5. Delete the folder 3.9.1 (or the files in the folder ending with . lastUpdated) in the
local repo (.m2/repository/junit/junit/3.9.1) and retry.

The resolution will not be attempted error will go away and Maven will
attempt to download the dependency again

Maven first downloads the pom file of the dependency. It analyzes the pom file and recursively
downloads the transitive dependencies specified there. It then downloads the actual
dependency file, typically, a JAR file.

When Maven fails to download an artifact, it creates a file with the same name as the artifact
it failed to download, but suffixed with . lastUpdated. In the file, it puts information related
to the download, as shown in the following example:

#NOTE: This is an Aether internal implementation file, its format
can be changed without prior notice.

#Sat Nov 08 15:59:33 IST 2014
https\://repo.maven.apache.org/maven2/.lastUpdated=1415442573938
https\://repo.maven.apache.org/maven2/.error=

When a request is made to Maven to download the dependency again, maven refers to the
contents of this file to decide whether or not maven should reattempt. This is the case for
release dependencies. The deletion of this file will ensure maven reattempts to download the
dependency when asked.

We have seen how this works for SNAPSHOT dependencies in the Understanding the
SNAPSHOT dependencies recipe of this chapter.

s

Dependency Management

Detecting unused/undeclared dependencies

As your project becomes large and the number of dependencies increase (including
transitive dependencies), it is good to know if we have ended up declaring dependencies
that we are not using, or if we are using undeclared dependencies (which are brought in
by transitive dependencies).

How to do it...

Use the following steps to detect the unused/undeclared dependencies:

1. Run the following Maven command on the demo-selendroid project that we
used earlier:

mvn dependency:analyze
2. Note the report generated:

[WARNING] Used undeclared dependencies found:

[WARNING] org.seleniumhg.selenium:selenium-
api:jar:2.43.1l:compile

[WARNING] org.hamcrest:hamcrest-library:jar:1.3:compile

[WARNING] io.selendroid:selendroid-
common:jar:0.12.0:compile

[WARNING] Unused declared dependencies found:

[WARNING] org.hamcrest:hamcrest-integration:jar:1.3:compile

As can be seen from the preceding report, Maven has identified a dependency used by the
project that is not declared, for instance the selenium-api JAR file. It has also found a
dependency that is declared in the pom file, but is not used by the project (hamcrest -
integration). You could check if the removal causes any side-effect and if not, go ahead.

It is a good practice to explicitly define the dependency used in the project, specifying the
version number instead of using it by means of a transitive dependency. This is because we
have no control over the version or availability of this transitive dependency.

On the other hand, in order to have better control over dependency conflicts that we saw
earlier, it may not be a bad idea to explicitly define versions of dependencies that are not
directly required by our project but used by our dependencies.

100

Chapter 5

Manually installing dependencies that are

not available in a repository

There may be situations where a library, which is not present in any Maven repository, needs
to be used. We have seen one way to use it, that is, specifying it as a dependency with
system scope and explicitly specifying the path to it.

The problem with this approach is that this dependency will not be available if you need to
distribute your project as a library.

Maven provides a mechanism to install an artifact to your local repository so that you can
declare and use it like other dependencies.

How to do it...

Use the following steps to manually install the dependencies that aren't available in
a repository:

1. Add the following dependency to the simple project that we created earlier:
<dependencys>
<groupIds>org.apache.tomcat</groupIlds>
<artifactId>apache-tomcat</artifactIds>
<version>8.0.1l4</version>
<type>tar.gz</type>
</dependency>

The project will fail to compile with the error of a missing dependency

2. Now run the following Maven command:

C:\projects\apache-maven-cookbook\project-with-dependency-not-
in-repo>mvn install:install-file -Dgroupld=org.apache.tomcat -
DartifactId=apache-tomcat -Dversion=8.0.14 -Dpackaging=tar.gz

-Dfile=C:\Users\raghu\Downloads\apache-tomcat-8.0.14.tar.gz -

DgeneratePom=true

3. Note the result:
[INFO] --- maven-install-plugin:2.4:install-file (default-cli)
@ project-with-dependency-not-in-repo ---

[INFO] Installing C:\Users\raghu\Downloads\apache-tomcat-
8.0.14.tar.gz to C:\software\maven\org\apache\tomcat\apache-
tomcat\8.0.14\apache-tomcat-8.0.14.tar.gz

Dependency Management

[INFO] Installing
C:\Users\raghu\AppData\Local\Temp\mvninstall829576027181316239
5.pom to C:\software\maven\org\apache\tomcat\apache-
tomcat\8.0.14\apache-tomcat-8.0.14.pom

The install-file goal of the Maven Install plugin allows dependencies to be installed

to the local repository. It takes groupId, artifactId, version, and packaging type as
parameters so that it can place the dependency suitably in the repository as well as create a
simple pom file for it.

This method is not ideal in a project with multiple developers, as each developer needs
to perform this step manually. One way to deal with this is to install this dependency in a
repository manager that is used by the organization. As the developers will be using this
repository manager as a mirror, Maven will find the dependency from the mirror

and proceed.

In such a case, we could use the deploy goal of the Maven deploy plugin to install the
artifact to the remote repository.

Some remote repositories have access control. Maven allows access details to be specified in
the server element. It is best to specify this in settings.xml as this file is specific to
each user.

There's more...

Projects with dependencies that are installed by this method are again not distributable, as
those using them will fail to find the dependencies.

Where projects are expected to be distributed and included by others as dependencies, a
different approach needs to be followed—the static in-project repository solution. Use the
following steps to follow the in-project repository approach:

1. Create a repository inside your project by adding the following in your pom file:

<repositorys
<id>in-project-repo</id>
<releases>
<checksumPolicys>ignore</checksumPolicy>
</releases>
<urls>file://${project.basedir}/lib</urls>
</repository>

102

Chapter 5

2. Use the following command to install the dependency to this repository:

mvn install:install-file -DgroupId=org.apache.tomcat -
DartifactId=apache-tomcat -Dversion=8.0.14 -Dpackaging=tar.gz
-Dfile=C:\Users\raghu\Downloads\apache-tomcat-8.0.14.tar.gz -
DgeneratePom=true -DlocalRepositoryPath=1ib

What have we achieved? Now, the dependency is packaged along with the source code in the
1ib folder of our project and available for distribution. This is transparent to the user as they
do not need to do anything special to access it.

Dependency management using Eclipse

We have seen that the Eclipse IDE provides support for Maven projects and allows us to
run Maven commands from the IDE. Let us now see how we can manage dependencies
using Eclipse.

How to do it...

Use the following steps in Eclipse IDE to manage the dependencies:

1. Open the demoproject-selendroid file in Eclipse.
2. Open the pom.xml file.

3. Click on the Dependencies tab as shown in the following screenshot:

|m| demoproject-selendroid/pomaml &3 = 0
Dependencies Filter: | o
Dependencies 3L Dependency Management a |3

1 selendroid-standalone : §{zelendroid.version}
"1 selendroid-client : ${selendroid.version}

I junit:4.8.2

I_I hamcrest-integration : 1.3

Manage...

To manage your transitive dependency exclusions, please use the Dependency Hierarchy

Overview | Dependencies| Dependency Hierarchy | Effective POM | pom.xml

Dependency Management

4. A new dependency can be added by clicking on the Add... button (see in the

preceding screenshot for the Add... button):

Group Id: # mysqgl
Artifact |d: # mysqgl-connector-java

Version: 5.1.33

Enter groupld, artifactld or shal prefix or pattern ()
mysql-java

Search Results:

[T mysql mysql-connector-java|

Ly Select Dependency

-) com.github.shyike mysqgl-binlog-connector-java

-) orgopsdj.patipi org.opsd).paxtipimysgl.connectorjava
. [org.wisdom-framework mysgl-connector-java

-

Scope | compile w

As you can see in the preceding screenshot, you can specify the values in the Group
Id:, Artifact Id:, and Version: textboxes along with the value in the Scope dropdown.
Alternately, you can search for an artifact in the Enter groupld, artifactld or shal
prefix or pattern (*): textbox, and eclipse will populate the relevant columns based

on your selection in the Search Results list.

5. You can also see the dependency tree by clicking on the Dependency Hierarchy tab:

Overview | Dependencies | Dependency Hierarchy | Effective POM | pom.xml|

[demoproject-selendroid/pomaxml 52 =
Dependency Hierarchy [test] |
Dependency Hierarchy =Nz | 18, o0 |2 Resolved Dependencies

4 [selendroid-standalone: 0.8.0 [compile] (1 android-driver-app : 0.8.0 [compile]

a () selendroid-common: 0.8.0 [compile] () eglib-nodep : 2.1_3 [compile]

1 selenium-java : 2.37.1 {omitted for conflict with 2.37.1) [compile]) commen : 22.5.0 [compile]
F S| sflendruld-sawer-cummun : 0.8.0 [compile] 1 commens-codec: 1.6 [compile]
4 U “iEbb't‘ DAJ“‘F’F"F”IE]) () commens-collections : 3.2.1 [compile]
_ Y n.etty :3.5.2Final [compile] () commons-compress : 1.5 [compile]
a0 s_elendruld-s.erver: 0.8.0 [compile]] o 7 commons-exec : 1.1 [compile]
| selendroid-server-common : 0.8.0 (emitted for conflict with 0.8.0) [compile] = .
_ R X . (L1 commons-io: 2.2 [compile]
| android-driver-app : 0.8.0 [compile] = .
= . 3 (L1 cemmaons-lang3 : 3.1 [compile]

a [httpclient: 4.2.1 [compile] = | 111 |
T hitpeore: 42.1 [compile] 1 commens-logging : 1.1.1 [compile]
= - . (1 cssparser: 0.8.11 [compile]

| commons-legging : 1.1.1 [compile] - X :
) commons-cedec: 1.6 [compile] = ddmlib : 22.5.0 [compile]
7 json: 20080211 [compile] [guava: 15.0 [compile]
T commons-io: 2.2 [compile] (1 hamcrest-core : 1.3 [compile]
= commons-exec: 1.1 [compile] () hamerest-integration : 1.3 [compile]
) jeommander: 1,30 [compile] () hamerest-library : 1.3 [compile]
a () ddmlib: 22.5.0 [compile] (1 htmlunit: 2.13 [compile]
(71 kaenl2 2 2,3.0 [compile] () htmlunit-core-js : 2,13 [compile]
4) common: 22.5.0 [compile] () httpelient : 4.2.1 [compile]
T anmia s 180 Tramnila] T P
< >

Chapter 5

As Eclipse has built-in support for Maven, it allows visualization of dependencies by parsing
the pom file. It also calls various Maven commands (such as dependency : tree) internally to
build the hierarchy and display the same.

There's more...

We saw that users can search for and add dependencies. For this to work, navigate to

Windows | Preferences | Maven and check the Download repository index updates on
startup option to download indexes, as shown in the following screenshot:

> Data Management

> Dynamic Languages

> Help

> Install/Update

> Java

» Java EE

> Java Persistence

- JavaScript
MakeGood

[Mien)

> Mylyn

> PHP

> Remote Systems
> Run/Debug
» Server
> Team
Terminal

7\

d

[] Download Artifact Sources
[l Download Artifact JavaDoc

Download repository index updates on startup

> Plug-in Develepment

[TUpdate Maven projects on startup
[] Hide folders of physically nested modules (experimental)

Global Checksum Policy: | Default

Restore Defaults

&; Preferences
type filter text Maven & . -
» Genera.l [Offline
> Android
. Ant Do not automatically update dependencies from remote repositories
s CfC++ [Debug Output

Apply

Cancel

> | Local Repositories
4 | Global Repositories

(2 Markers | [Properties | 4ih Servers ¥ Data Source Explorer | [Snippets | &) Consele | 53 Progress | [5) Maven Repositories &2

> [l central (http:/frepo.maven.apache.org/maven2) [updating]
= Project Repositories
i Custom Repositories

Dependency Management

You may need to restart Eclipse for this to take effect. Also, you can enable the Maven
Repositories view (see in the preceding screenshot), see the repositories, and also update

the index as required.

Dependency management using NetBeans

Like Eclipse, NetBeans also allows dependencies to be managed and viewed through the IDE.
Unlike Eclipse, NetBeans displays a graphical view of the dependencies along with additional
information, which makes it easy for developers to troubleshoot issues.

How to do it...

Use the following steps in the NetBeans IDE to manage the dependencies:

1. Openthe demoproject-selendroid file in NetBeans.
2. Open the pom.xml file.
3. Click on the Graph tab:

pom.xml [demopraoject-selendroid] Xl
Source Graph Effectve History Show Graph @\ Q Find: Path: 112 Scopes: Al
. k | ercesimpl N "
™ \ \| 2110 hitpmime @ demoproject-selendroid
S Y N 433 0.12.0
N 1) | i
ac . | P
3 \ commons-collections [
~ hamerestibrary VoA 321 [
13 \ o\ | himunitcoreds |/ Il
N | . A 215 common ||
23041 |
b | netty-all iy * |
40.21 Final) AT
\ LU | / [
\ [7 /
N 12 /| commons-lang3
nekohtml ¥ / FARET!
ram hamcres-integration /el 7 jeommander
w13 gson | FA Y 130
xalan S - (] 1
270 [—— | himiunit P v | android-driver-app
| 215 ddmlib | 04120
- 5 i |
2301
L [4
) N Y [
CESparser B N | y httpcore
bata COMMONS-CoM prass ™ | / ! 132
15 ! | /
| quava
: L ¥ . I Il 170
commons-codec || A / -api
selendroid-server-common . '.\\ | -"u a7 / selenium-api
0120 . L ! 2431 cglib-nodep
commons-logging || Ison 7 213
113 f 0
A
|I .'J
\ f| Ina
340 platform
B A 340
Y /
[ri|

106

Chapter 5

4. Hover over one of the dependencies in red (commons-codec):

| X

%Cﬂﬂ‘!‘ll“l‘lﬂlﬁcu hamereal-library
[.
[[| - |)
oo Groupld: commons-codec
Artifactld: commons-codec
Version: 1.6
t Scope: compile T
| Type: jar
Conflict with 1.9 version required by htmlunit| |

hirmnlunit-core-js | / |

5. Hover over one of the dependencies in orange (httpclient):

7 Y | Filip care:
ntpche [e Lo

W 4.3.4 b

Groupld: org.apache.httpcomponents | 4 |

Artifactld: httpclient [nerg

[Version: 4.3.4

Scoper compile

N Type: jar
- Warning, clder versions requested:

iy
Version Artifact :|
4.3.3 htrmlunit

433 httpmirne
[

NetBeans creates a graph of all the project dependencies and displays the same. It colors the
dependencies that have conflicts in red and those that have warnings in orange. On hovering,
NetBeans displays details of the issues.

This allows the user to take suitable action.

Dependency Management

Dependency management using IntelliJ

IDEA

Unlike Eclipse and NetBeans, viewing dependencies as graphs is only possible in the
IntelliJ IDEA Ultimate version, which is commercial. The Community Edition does not
support this option.

How to do it...

Use the following steps in IntelliJ Idea Ultimate version to manage the dependencies:

1. Openthe demoproject-selendroid file in the IntelliJ IDEA Ultimate edition.
2. Right-click on the pom.xm1l file.

® Create Gist...

=" Show Dependencies... 038U
2% Show Dependencies Popup... 38U M Maven >

3. Click on the Show Dependencies... option (See this option in the preceding
screenshot) and observe the following screenshot:

act-selendroid ® | L7 demoproject-selendraid x

m project- -l 5 tandalone ——+ [5 camman

— il netty-all
i selendraid-server

* il android-driver-app

f——* §il httpclient — §h httpcore
\ * jl commans=logging
commons-codec

* il Json

-+ il commaons -io

f————— I} commons-exec

= I jeommandes

[[l ddmlib = Fi kxmilZ

—+ gl common

& il COMMans =Comprass > il xz

i guava

- leni - 1 h d - 1 dri - ulhi calib

108

Chapter 5

IntelliJ IDEA has first-class support for Maven projects. It reads the pom.xm1 file of the project,
parses it, and identifies all the dependencies, including transitive dependencies. It then
displays the same in a graphical manner, allowing users to visualize the project.

Code Quality Plugins

In this chapter, we will review some of the available tools for the Java language and how to use
them in the context of Maven. We will cover the following recipes:

>

>

Analyzing code coverage with the Maven JaCoCo plugin
Analyzing code coverage with the Maven Cobertura plugin
Analyzing code with the Maven PMD plugin

Analyzing code with the Maven Checkstyle plugin
Analyzing code with the Maven FindBugs plugin
Generating source references with the Maven JXR plugin

Analyzing code with the Maven SonarQube plugin

Introduction

It is one thing to write code and another to write good code. The subjectivity of code quality is
greatly reduced by having coding guidelines/standards. Whether a developer follows coding
standards or not can be verified by subjecting the code to a code review. On the other hand,
there are tools that automatically perform these reviews against defined standards.

In addition to code quality, programming best practices also recommend writing automated
unit tests for the code. The line and branch coverage achieved by these unit tests can also be
quantitatively measured by tools.

Code Quality Plugins

Analyzing code coverage with the Maven

JaCoCo plugin

JaCoCo is a free Java code coverage tool. This is essentially the successor to Emma, and it
has been developed by the EcClIEmma team as an Eclipse project.

JaCoCo offers line and branch coverage.

Getting ready

Maven is set up on your system and is verified to work. To do this, refer to the first three
recipes of Chapterl, Getting Started.

How to do it...

Use the following steps to analyze the code coverage with the Maven JaCoCo plugin:

1. Open the pom file of a project that has unit tests (for instance, project-with-
tests).
2. Add the following code:
<plugins>
<grouplds>org.jacoco</groupld>
<artifactId>jacoco-maven-plugin</artifactIds>
<version>0.7.2.201409121644</version>
<executionss>
<executions
<id>default-prepare-agent</id>
<goals>
<goals>prepare-agent</goal>
</goals>
</executions
<executions
<id>default-report</id>
<phases>prepare-package</phase>
<goals>
<goal>report</goal>
</goals>
</executions>
</executions>
</plugins>

Chapter 6

Run the following command from the command prompt:

mvn package
Note the output for the preceding command:
[INFO] --- jacoco-maven-plugin:0.7.2.201409121644:prepare-

agent (default-prepare-agent) @ project-with-tests ---

[INFO] argLine set to -
javaagent:C:\\software\\maven\\org\\jacoco\\org.jacoco.ag
ent\\0.7.2.201409121644\\org.jacoco.agent-0.7.2.201409121644-
runtime.jar=destfile=C:\\projects\\apache-maven-
cookbook\\project-with-tests\\target\\jacoco.exec

[INFO] --- jacoco-maven-plugin:0.7.2.201409121644:report
(default-report) @ project-with-tests ---

[INFO] Analyzed bundle 'Project with Tests with 1 classes

Open the index.html file generated in the target/site/jacoco folder:

&«

[Project with Tests & Sessions

Project with Tests

C N [filey//C/projects/apache-maven-cookbook/project-with-tests/target/site/ 5'v | (L) i =

Element Missed Instructions= Cov.~ Missed Branches ~ Cov.~ Missed- Cxty~ Missed Lines~ Missed
£ com packt cookbook 37% n'a 3 5 3 5 3
Total 12 of 19 7% Oof0 n/a 3 5 3 5 3

In the pom file, we instruct Maven to run the following two goals of the Maven JaCoCo plugin:

>

prepare-agent: This is bound by default to the initialize phase of the Maven
default lifecycle. The goal runs and prepares the agent that does the analysis.

report: This agent gathers test coverage information when the tests are run and
creates the report as part of the prepare-package phase (which we have explicitly
specified).

The report gives information about the test coverage. Green indicates lines that are covered
by tests and red indicates lines that are not covered by tests. In the preceding example, 12 of
19 instructions are not covered by tests.

Code Quality Plugins

There's more...

You could subject the project to code coverage and generate the same report without making
any changes to the pom file. To do this, run the following command:

mvn jacoco:prepare-agent test jacoco:report
Now, you may get the following error:

[ERROR] No plugin found for prefix 'jacoco' in the current project
and in the plugin groups [org.apache.maven.plugins] available from
the repositories [local (C:\software\maven), central
(https://repo.maven.apache.org/maven2)] -> [Help 1]

To fix this, specify the groupId and artifactId parameters of the plugin explicitly. In
the Configuring Maven to search for plugins recipe of Chapter 8, Handling Typical Build
Requirements, we will see an alternate way to address this.

In the following code, what what we will be doing is explicitly calling the relevant goals that we
saw getting executed earlier. So, first prepare-agent will run, followed by test, and then
the report goal:

mvn org.jacoco:jacoco-maven-plugin:prepare-agent test
org.jacoco:jacoco-maven-plugin:report

How about failing the build if the code coverage is below a threshold value? To do this,
perform the following steps:

1. Add the following execution block to the plugin configuration in the build section
specified earlier:

<execution>
<id>default-check</id>
<phase>prepare-package</phase>
<goals>
<goal>check</goal>
</goals>
<configurations>
<rules>
<rule>
<element >BUNDLE</element>
<limitss>
<limit>
<counter>COMPLEXITY</counters
<value>COVEREDRATIO</value>
<minimum>0.60</minimums>
</limits>

114

Chapter 6

</limits>
</rule>
</rules>
</configurations>
</executions>

2. Run the following command:

mvn package

3. Observe the result as shown in following screenshot:

LIMEU] ;—— JACOCO MAVEN-DIUGIN-W. f.£.L013071 21033 FEPOPT LOETAUIL-FEDOPL) 1 pro,j

ct—with—tests ——

[INFO] Analyzed bundle °‘Project with Tests’' with 1 classes

LINFO]

[INFOE ——— Jjacoco—maven—plugin:=@.7.2.201482121644:check <{default—-check) @ projec

—with—tests —-

[INFO] Analyzed bundle *‘Project with Tests’ with 1 classes

[WARNING] Rule violated for bundle Project with Tests: complexity covered ratio

iz B.48. but expected minimum is B.6

[INFQ1]

[INFO1 BUILD FAILURE

[INFQ1

[INFO]1 Total time: s

[INFO] Finished at: 2814-11-15T22:23:37+85%:38

[INFO] Final Memory: 16M/223M

LINFO]

[ERROR] Failed to execute goal org.jacoco:jacocomaven—plugin:8.7.2.2014609121644

icheck (default-check? on project project—with-tests: Coverage checks have not h
met . See log for details. —» [Help 11

Analyzing code coverage with the Maven
Cobertura plugin

Cobertura is another popular Java tool that calculates the percentage of code accessed by
tests. It is based on jcoverage. There are many ways to use Cobertura, including standalone,
through Ant script, and Maven. Let us use the Maven Cobertura plugin.

How to do it...

Use the following steps to analyze the code coverage with the Maven Cobertura plugin:

1. Open a Maven project that has unit tests (for instance, project-with-tests).
2. Run the following command:

mvn cobertura:cobertura

3. Observe the following output:

[INFO] <<< cobertura-maven-plugin:2.6:cobertura (default-cli)
< [cobertural] test@ project-with-tests <<«

[INFO]

Code Quality Plugins

[INFO] --- cobertura-maven-plugin:2.6:cobertura (default-cli)
@ project-with-tests ---

[INFO] Cobertura 2.0.3 - GNU GPL License (NO WARRANTY) - See
COPYRIGHT file

Report time: 165ms
[ERROR] Nov 15, 2014 5:06:25 PM

net.sourceforge.cobertura.coveragedata.CoverageDataFileHand
ler loadCoverageData

INFO: Cobertura: Loaded information on 1 classes.

4. See the report generated:

- [| file:///C:/projects/apache—maven—cookbook/project—wi'th—tests/targe‘tfsite/‘323 0 Lk =

Packages Coverage Report - All Packages

Al Pack £ #Cl

com.packt.cookbook ECEIE =
All Packages 1 1
com.packt.cookbook 1 aov DN A e 1

Report generated by Cobertura 2.0.3 on 15/11/14 5:06 PM.

All Packages

Classes

App (40%)

JaCoCo instruments the code online when the tests are running and hence,it needs to have
the agent running. On the other hand, Cobertura instruments the bytecode during compilation
offline. The cobertura goal of the Cobertura Maven plugin instruments the project, runs the
tests, and generates the report.

There are separate goals to instrument and check results, if required.

What if we want to fail the build if the code coverage is below a threshold level? We can set up
Cobertura to do this:

1. Add the following to the pom file:
<plugin>

<groupld>org.codehaus.mojo</groupIlds>
<artifactId>cobertura-maven-plugin</artifactIds>

Chapter 6

<versions>2.6</version>
<configurations>
<check>
<branchRate>85</branchRate>
<lineRate>85</lineRate>
<haltOnFailurestrue</haltOnFailure>
</check>
</configurations>
<executionss>
<execution>
<goals>
<goal>check</goal>
</goals>
</executions>
</executions>
</plugin>

2. Run the following command:

mvn cobertura:check
3. Observe the output as shown in the following screenshot:

[INFO1 <<{ cobertura—maven—plugin:2.6:check (default—cli> < [coberturaltest @ pr
rject—with—tests {{<

[INFO1

[INFO1 —— cobertura—maven—-plugin:2.6:check {(default—cli> @ project—with—tests —

[INFO1 Cobertura 2.8.3 — GHU GPL License (MO WARRANTY> — See COPYRIGHT file
[ERROR1 Mov 15, 2814 5:27:22 PM net.sourceforge.cobertura.coveragedata.Coveragel
ataFileHandler loadCoverageData

[NFO: Cobertura: Loaded information on 1 classes.
rom.packt .cookbook_fApp failed check. Line coverage rate of 48_8:x iz below B5._8x

i 7 s
Finished at: 2014-11-15T17:27:22+85:30
[INFO1 Final Memory: ?M-/15%7H

[INFO1

[ERROR1 Failed to execute goal org.codehaus_mojo:cobertura—maven—plugin:2_6:chec
k (default—cli> on project project—with—tests: Coverage check failed. See messag
s above. —» [Help 11

The build has failed because, in the pom file, we specified that the build should be halted if
the coverage is less than 85%.

Code Quality Plugins

Analyzing code with the Maven PMD plugin

PMD is a source code analyzer. It finds common programming flaws such as unused variables,
empty catch blocks, and unnecessary object creation. It also includes the Copy/Paste
Detector (CPD) that finds duplicated code.

How to do it...

Use the following steps to run PMD on a Maven project:

1. Open the Maven project for which you want to do a PMD analysis (for instance,
project-with-violations).
2. Run the following command:

mvn pmd:pmd pmd:cpd

3. Observe the output:

[INFO] --- maven-pmd-plugin:3.2:pmd (default-cli) @ project-
with-violations ---

[WARNING] Unable to locate Source XRef to link to - DISABLED

[INFO] --- maven-pmd-plugin:3.2:cpd (default-cli) @ project-
with-violations ---

[WARNING] Unable to locate Source XRef to link to - DISABLED

[INFO] BUILD SUCCESS

4. Check the contents of the target folder:

ssprojectshapache—maven—cookbooksproject—with—violationsstarget >tree ~F
older PATH listing
olume serial number is B4BE-E184
i cpd.xml
Java-hasic.xml

Java—imports.xml
Java—unusedcode . xml
pmd . xml

site
cpd.html
pmd . html

5. Open the pmd.xml report:

Chapter 6

€« C [file///C/projects/apache-maven-cookbook/project-with-violations/target/pmd.xml| icdl o X EI

This XML file does not appear to have any style mformation associated with 1t. The document tree 1s shown below.

wepmd version="5.1.2" timestamp="2814-11-15T22:47:17.173">

v<file name="C:\projects\apache-maven-cookbook\project-with-viclations\src\mainljava\com\packticookbook\App.java">
<violation beginline="2" endline="2" begincolumn="1" endcolumn="25" rule="UnusedImports” ruleset="Import Statements"
package="com.packt.cockbook” externalInfoUrl="http://pmd.sourceforge.net/pmd-5.1.2/rules/java/imports. html#UnusedImports™
priority="4">Avoid unused imports such as °"java.util.Hashmap'</violation»
<violation beginline="11" endline="11" begincolumn="13" endcolumn="13" rule="UnusedLocalVariable" ruleset="Unused Code"
package="com.packt.cookbook" class="App" method="add" variable="c" externalInfoUrl="http://pmd.sourceforge.net/pmd-
5.1.2/rules/java/unusedcode. html#UnusedLocalVariable™ priority="3">Avoid unused local variables such as 'c'.</viclation>

</filex
</pmd>

6. Open the cpd.html file in the site folder:

« C M [filey//C/projects/apache-maven-cookbook/project-with-violations/target/site/cpd.html

Last Published: 2014-11-15 | Version: § {project.version}

Ty

P A
CPD Results

The followmg document contains the results of PMD's CPD 5.1.2.
Duplications

File Line
com'packt'cookbook ' App.java 27
com'packt'cookbook' App.java 36

public void methoda() {
int a;
int b;
int ¢ = 2 + b;
System.out.println(c);
c=a - b;
System.out.pritln(c);

Copvright © All Rights Reserved.

The pmd or cpd goals of the Maven PMD plugin are not bound to any phase. Also, they analyze
the Java source and thus, do not need any other Maven phase or goal to be run.

When the pmd goal is run, it generates a PMD site report using default rulesets and the
configuration set in the plugin. It also generates a pmd output file in the XML format.

Code Quality Plugins

You can also define your own customized ruleset. To do this, add the following code in the
configuration section of the pom file:

<reporting>
<plugins>
<plugin>
<groupIds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-pmd-plugin</artifactIds>
<version>3.4</version>
<configuration>
<rulesets>
<!-- Two rule sets that come bundled with PMD -->
<ruleset>/rulesets/java/braces.xml</ruleset>
<ruleset>/rulesets/java/naming.xml</ruleset>

<!-- Custom local file system rule set -->
<ruleset>d:\rulesets\strings.xml</ruleset>
<!-- Custom remote rule set accessed via a URL -->
<ruleset>http://localhost/design.xml</ruleset>
</rulesets>
</configurations>
</plugin>
</plugins>
</reporting>

Likewise, when the cpd goal is run, it generates a similar report for duplicated code. By
default, the minimum token count that it considers to report that code is duplicated is 100
tokens (which is typically 10 lines of code).

The plugin can be made to fail the build by using the check goal in the following way:

1. Add the following code to the pom file of project-with-violations:

<builds>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupIds>
<artifactIds>maven-pmd-plugin</artifactIds>
<version>3.4</version>
<executions>
<execution>
<goals>
<goals>check</goals>

120

Chapter 6

<goal>cpd-check</goal>
</goals>
</executions>
</executions>
</plugin>
</plugins>
</build>

2. Run the following command:

mvn verify

3. Observe the output as shown in the following screenshot:

—— maven—pmnd-plugin:3.2:check {default—-cli> @ project—with-violations ——

B78 =
2014-11-15T22:59:82+85:38
Hemory: 28M-226M
[ERROR] Failed to execute goal org.apache.maven.plugins:maven—pmnd—plugin:3.2:che
k {default—cli> on project project—with—violations: You have 2 PHD violations.
For more details see:C:projectssapache—maven—cookbook project—with—violationsst
rgetspmd.xml —> [Help 11

Analyzing code with the Maven Checkstyle
plugin

Checkstyle is a tool that helps programmers follow coding standards. It automates the
process of checking if defined coding standards are followed. It can support any coding
standards by suitable configuration. Like other tools, it can be run standalone as well as
integrated with Maven.

How to do it...

Use the following steps to analyze code with the Maven Checkstyle plugin:
1. Open the Maven project for which you want to do a Checkstyle analysis (for instance,
project-with-violations).
2. Run the following command:

mvn checkstyle:checkstyle

Code Quality Plugins

3. Observe the output as shown in the following screenshot:
[INFO]

[INFO] --- maven-checkstyle-plugin:2.13:checkstyle (default-
cli) @ project-with-violations ---

[INFO]
[INFO] There are 29 checkstyle errors.

[WARNING] Unable to locate Source XRef to link to - DISABLED

[INFO] BUILD SUCCESS

4. Openthe checkstyle-result.xml reportin the target folder:

<« C i [filey//C/projects/apache-maven-cookbook/project-with-violations/target/checkstyle-resultxml ol

This XML file does not appear to have any style information associated with 1t. The document tree 1s shown below.

¥<checkstyle version="5.7">
v<¢file name="C:\projects\apache-maven-cookbookl\project-with-violations\srcimaintjava'com\packticookbookhApp.java">

<error line="@" severity="error" message="Missing package-info.java file.”
source="com. puppycrawl.tools.checkstyle.checks.javadoc.JavadocPackageCheck"/ >
<error line="2" column="8" severity="error" message="Unused import - java.util.Hashmap.”
source="com. puppycrawl.tools.checkstyle.checks.imports.UnusedImportsCheck™ />
<error line="8" severity="error” message="Line has trailing spaces.”
source="com. puppycrawl.tools.checkstyle.checks.regexp.RegexpSinglelineCheck™/>
<error line="9" column="1" severity="error" message="'{' should be on the previous line."
source="com. puppycrawl.tools.checkstyle.checks.blocks. LeftCurlyCheck”/>
<error line="18" column="5" severity="error" messag ethod 'add" is not designed for extension - needs to be abstract, final or
empty."” source="com.puppycrawl.tools.checkstyle.checks.design.DesignForExtensionCheck"/>
<error line="18" column="5" severity="error" message= sing a Javadoc comment.”
source="com. puppycrawl.tools.checkstyle.checks. javadoc.JavadocMethodCheck™ />
<error line="18" column="28" severity="error” message="Parameter a should be final."
source="com. puppycrawl.tools.checkstyle.checks.FinalParametersCheck"/>»
<error line="18" column="27" severity="error" message="Parameter b should be final."
source="com. puppycrawl.tools.checkstyle.checks.FinalParametersCheck"/>
<error line="15" column="5" severity="error" message="Method 'subtract’' is not designed for extension - needs to be abstract,
final or empty." source="com.puppycrawl.tools.checkstyle.checks.design.DesignForExtensionCheck™/>

Unlike the pmd, checkstyle goal of Maven, the Checkstyle plugin is not bound to any phase.

When the checkstyle goal is run, it generates a Checkstyle site report using default
rulesets and the configuration set in the plugin. It also generates a Checkstyle output file in
the XML format.

The Maven Checkstyle plugin supports several configuration options to customize the rules,
exclude files from being checked, and so on. Let's briefly discuss the examples that show
usage of Maven Checkstyle plugin in some advanced usecases:

122

Chapter 6

Checkstyle rules can be specified inline in the configuration section of the plugin:

<configuration>
<checkstyleRules>
<module name="Checker">
<module name="TreeWalker">
<module name="FinallLocalVariable">
<property name="tokens" value="VARIABLE DEF, PARAMETER
DEF"/>
</modules>
</modules>
</modules>
</checkstyleRuless>
</configuration>

They can also be specified in an external file and referred using the

configLocation element:

<plugin>
<groupld>org.apache.maven.plugins</groupIld>
<artifactIds>maven-checkstyle-plugin</artifactIds>
<version>2.1l4</version>
<configuration>

<configlocation>checkstyle.xml</configLocations>

</configurations>

</plugin>

A Suppressions filter can be created to tell Checkstyle not to report violations on
specific files and specific sections of the files:

<suppressions>
<suppress checks="JavadocStyleCheck"
files="GeneratedObject.java"
lines="50-9999"/>
<suppress checks="MagicNumberCheck"
files="LegacyDatasetConvertor.java"
lines="221,250-295"/>
</suppressions>

Code Quality Plugins

There's more...

As in the case of PMD, we can configure the Maven Checkstyle plugin such that it fails a build
in case of errors:

1. Add the following code to the pom file of project-with-violations:

<builds>
<pluginss>
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactIds>
<version>2.1l4</versions>
<executionss>
<execution>
<ids>verify-style</id>
<phase>process-sources</phase>
<goals>
<goal>check</goal>
</goals>
</executions>
</executions>
</plugin>
</plugins>
</build>

2. Run the following Maven command:

mvn verify

3. Observe the output as shown in the following screenshot:

Scanning for projects...

—— maven—checkstyle—plugin:2._.14:check (verify—-style) @ project—with—viol
There are 37 checkstyle errors.
IROR]1 srcmain™javascomspacktscookbooksApp.javald]l <javadoc? JavadocPackage: M
ting package—info.java Fil

NIRRT ocwncsmadins dauatseomsnackitscankbhanlsfan danal71 (woanmawviand Bonovntinalaline =

124

Chapter 6

Analyzing code with the Maven FindBugs

plugin

FindBugs is another tool that uses static analysis to inspect Java bytecode for bugs in a Java
code. It is based on the concept of bug patterns. A bug pattern is a code snippet that is often
an error.

How to do it...

Let us see how we can use the Maven FindBugs plugin to analyze and identify defects in
our code:

1. Open the Maven project for which you want to do the FindBugs analysis.
2. Run the following command:

mvn clean compile findbugs:findbugs

3. Observe the output:

[INFO] --- maven-compiler-plugin:3.l:compile (default-compile)
@ project-with-violations ---

[INFO] Changes detected - recompiling the module!

[INFO] Compiling 1 source file to C:\projects\apache-maven
cookbook\project-with-violations\target\classes

[INFO]

[INFO] --- findbugs-maven-plugin:3.0.0:findbugs (default-cli)
@ project-with-violations ---

[INFO] Fork Value is true
[java]l] Warnings generated: 3

[INFO] Done FindBugs Analysis....

Code Quality Plugins

4. Open the generated XML file £indbugsXml .xml in the target folder:

L C M [filey//Cy/projects/apache-maven-cookbook/project-with-violations/target/findbugsXmlxml el

This XML file does not appear to have any style information associated with 1t. The document tree 1s shown below.

¥ <BugCollection timestamp="1416445170552" analysisTimestamp="1416445174187" sequence="@" release="" version="3.8.8">

P <Project projectName="Project with Violations">...</Project>

» <BugInstance rank="17" category="STYLE" instanceHash="4f027af21b37f148%bd197ce531a9f@3" instanceOccurrenceNum="@" priority="2"
abbrev="DLS" type="DLS_DEAD_LOCAL_STORE" cweid="563" instanceOccurrenceMax="@">...</Buglnstance>

» <BugInstance rank="17" category="STYLE" instanceHash="2dcac29520d28ae184dd714477438337" instanceOccurrenceNum="@" priority="2"
abbrev="DLS" type="DLS_DEAD_LOCAL_STORE" cweid="563" instanceQccurrenceMax="08">...</Buglnstance>

» <BugInstance rank="18" category="STYLE" instanceHash="elb4dd3632776db0244801cb96c39555" instanceOccurrenceNum="8" priority="2"
abbrev="SF" type="SF_SWITCH_NO_DEFAULT" instanceOccurrenceMax="@">...</Buglnstance>

¥ <BugCategory category="STYLE">...</BugCategory>

» <BugPattern category="STYLE" abbrew="SF" type="SF_SWITCH_NO_DEFAULT":...</BugPattern>

» <BugPattern category="STYLE" abbrev="DLS" type="DLS_DEAD_LOCAL_STORE">...</BugPattern>

» <BugCode abbrew="SF">...</BugCode>

P <BugCode abbr LS" cweld="563">...</BugCode>
<Errors errors="@" missingClass ey

¥ <FindBugsSummary alloc_mbytes="455.86" priority_2="3" gc_seconds="8.82" peak_mbytes="92.60" total_bugs="3" java_version="1.7.8_67"
referenced_classes="12" timestamp="Thu, 2@ Nov 2014 26:29:38 +0530" total_classes="1" num_packages="1" total_size="52"
cpu_seconds="5.78" clock_seconds="2.38" wm_version="24.65-b84">

<FileStats path="com/packt/cookbook/App.java" bugCount="3" bugHash="48eaB2@cdd53a579cd61876fa887f0ce" size="52"/>
¥<PackageStats priority_2="3" total_size="52" package="com.packt.cookbook” total_bugs="3" total_types="1">
<ClassStats priority 2="3" sourceFile="A&pp.java" bugs="3" class="com.packt.cookbook.App" interface="false" size="52"/>
«/PackageStats>

» <FindBugsProfile»...</FindBugsProfile>
</FindBugsSummary»
<ClassFeatures/»
<History/>

</BugCollection>

When the findbugs goal of the FindBugs plugin is run, it analyzes the bytecode and reports
errors to an output file in the XML format. Unlike Checkstyle and the PMD plugins, it does not
generate a default site report unless configured differently.

M As FindBugs works on bytecode, the project needs to be compiled
Q before the FindBugs analysis can be run. Otherwise, you will not
find any FindBugs defects!

FindBugs also provides several options that allow you to specify the classes to be included/
excluded from analysis, specify the rules to be run, and to fail when errors crop up during the
build. Let's briefly discuss some examples that describe the basic usage of the FindBugs plugin:

» Filter bugs to report: This plugin allows us to specify classes and methods that can be
included or excluded from reporting:
<plugins>

<grouplds>org.codehaus.mojo</grouplds>

<artifactId>findbugs-maven-plugin</artifactIds>

<version>3.0.1-SNAPSHOT</versions>

<configurations>
<excludeFilterFiles>findbugs
exclude.xml</excludeFilterFile>
<includeFilterFile>findbugs-
include.xml</includeFilterFiles>

126

Chapter 6

</configurations
</plugin>

» Bug detectors to run: We can also specify which detectors to run. This can be done in
the following manner:

<plugins>
<grouplds>org.codehaus.mojo</groupld>
<artifactId>findbugs-maven-plugin</artifactIds>
<version>3.0.1-SNAPSHOT</version>
<configurations>
<visitorssFindDeadLocalStores,UnreadFields</visitorss>
</configurations
</plugin>

There's re...

You can also launch the FindBugs GUI to view the report in a graphical format:

1. To do this, run the following Maven command:

mvn compile findbugs:findbugs findbugs:gui

2. Observe the FindBugs screen:

=

FindBugs - Project with Violations

File Edit View HNavigation Designation Help

4 App.java in com.packt.cookbook BV
Class name filter: 4
19 return a * b; -
Group bugs by: | Caleqory| Bug Kind ‘ Bug Paﬂem| 22 ¥
=1 Bugs (3) 2z public int diwide(int a2, int b) {
4 [Dodgy cads (3) 23 intc=a/b;
¢ [Dead local store (2) 2: return e;]
¢ [Dead store to local variable (2) 26 '
O Dead store to ain methodA() 27 public boolean checkValue(int i) | =
 Dead store to a in copyPasteMsthod() 25 boolean status = false;
¢ [Switch case falls through (1) 29 switch(i) [
¢ [Switch statement found where default cas 30 case 3: status = true; break: 1
O [switch statement found in checkValue 31 case T: status = false:; break;
3z }
1] Il] [» 33 return status;
aw
34 }
No cloud selected ‘ Enable cloud plugin... | a5
36 public void methodA() [
37 int & = 3;7
3 int b = 2;
‘ | 39 int ¢ =a+b;
a0 System.out.printlnc): =
\ \ | Find | | Next ‘ ‘ Previous

PS4

Switch statement found where default case is missing
At App.java:lines 29-31]

In method com.packi.cookbook.App.checkValue(int) [Lines 28 - 33]

va

case

Bug kind and pattern: SF - SF_SWITCH_NO_DEFAULT

Switch statement found where default case is missing
This method contains a switch statement where default case is missing. Usually you need to provide a default

Because the analysis only looks at the generated bytecode, this waming can be incorrect triggered if the
default case is atthe end of the switch statement and doesnt end with a break statement.

|nttp:iffindbugs.sourceforge.net

@UNIVERSITY OF

Code Quality Plugins

Generating source references with the

Maven JXR plugin

You may have observed the following warnings when running the PMD or Checkstyle plugin:

[INFO] --- maven-pmd-plugin:3.2:pmd (default-cli) @ project-with-
violations ---

[WARNING] Unable to locate Source XRef to link to - DISABLED

[INFO] --- maven-checkstyle-plugin:2.13:checkstyle (default-cli) @
project-with-violations ---
[INFO]

[INFO] There are 36 checkstyle errors.
[WARNING] Unable to locate Source XRef to link to - DISABLED

The plugins attempt to link the violation to the specific lines in the cross-reference of the
source. As they are unable to find this cross-reference, they display the warning.

To generate this cross-reference, we need to use the Maven JXR plugin.

How to do it...

Use the following steps to generate source references with the Maven JXR plugin:

1. Open the project for which you want to run the cross-reference.
2. Run the following Maven command:

mvn jxr:jxr
3. Observe the output:

[INFO]

[INFO] --- maven-jxr-plugin:2.5:jxr (default-cli) @ project-
with-violations ---

4. Browse the target/site folder.

128

Chapter 6

C:wprojectshapache—maven—cookhooksproject—with—violationsstargetisite>tree ~f xp

Folder PATH listing
Jolume serial number is B4BE-Ei184
= “PROJECTS“APACHE-MAVEN-COOKBOOKS\PROJECT-UITH-VIOLATI ONS~TARGET~SI TE~XREF
allclasses—frame.html
index.html
overviev—frame._ html
overview—summary.html
stylesheet.css

om
| —

ackt
IJ———-clzmklzmuk
App.html
package—frame .html
package—summary.html

5. Open the contents of the xref folder in the browser:

« cC fn file:///C:/prajects/apache-maven-cookbook/project-with-violations/target/site/xref/index.html
All Classes Package e e
Packages Project with Violations 1.0-SNAPSHOT Reference

com.packt cookbook
Packages

com.packt.cookbook

Package
All Classes

App Caopyright © 2014 All nights reserved.

When the jxr goal of the Maven JXR plugin is run, it generates a cross-reference of all the
source files of the project. The format is similar to Javadoc, but on clicking on the class, you
get to see the source code with the line numbers:

«=>2C N file:///C:/projects/apache-maven-cookbook/project-with-violations/target/site/xref/index.html
View Javadoc
All Classes
1 package com.packt.cookbook;
Packages 2
g 3
4 * Hello world!
com.packt cookbook 5
&
7 public class App
8 {
] public int add{int a, int b) {
plz] int ¢;
11 return a + b;
All Classes I } ’
13
ADQ 14 public int subtract(int a, int b) {
15 return a - b;
16 }
17
18 public int multiply(int a, int b) {
19 return a * b;
2 A

Code Quality Plugins

There's more...

Once the cross-reference exists, code quality tools, such as PMD and Checkstyle, link to this
reference automatically by using the following steps:

1. Run the following Maven command:

mvn jxr:jxr checkstyle:checkstyle

2. Open the Checkstyle report in the browser:

wverity Category Rule Message Line|
Errorjavadoc JavadocPackage Missing package-info java file.
Error regexp RegexpSingleline Line has trailing spaces. 7
Error blocks LefiCurly '{’ should be on the previous line. £
Error design DesignForExtension Method 'add’ is not designed for extension - needs to be abstract, final or empty 9
Error javadoc JavadocMethod Missing a Javadoc comment. 9
Error Misc FinalParameters Parameter a should be final. 9
Error 11sc FualParameters Parameter b should be final. 9
Error destgn DesignForExtension Method 'subtract’ 1s not designed for extension - needs to be abstract. final or empty. 14
Error javadoc JavadocMethod Missing a Javadoc comment. 14
Error M1sc FinalParameters Parameter a should be final. 14

You can now see the line numbers against each of the violations, with the link to the line
number in the cross-referenced source code.

Analyzing code with the Maven SonarQube

plugin

Each of the code analysis tools we have seen in the previous sections identify specific issues
in the code. While Checkstyle looks for violations in coding guidelines, PMD identifies common
coding errors, and FindBugs detects bug patterns.

You could have your project configured to run all the three. In addition, you could also run
plugins to identify coverage. You could also do all these and more by doing a SonarQube
analysis of the project.

SonarQube is a platform to manage code quality. It is a web-based application, where rules,
alerts, thresholds, and other metrics can be configured. It provides various ways to analyze
code. The results of the analysis can then be viewed in a web application. SonarQube also
provides several paid plugins, such as SQALE, and for specific languages, such as Cobol
and C++.

130

Chapter 6

Getting ready...

Let's briefly discuss some basic requirements for using the Maven SonarQube plugin:

1.

ok 0N

Visit the download page for SonarQube at http://www.sonarqube.org/
downloads/.

Download the latest release.
Unzip the ZIP file to a folder of your choice.
Based on the platform, start the server by following the instructions.

Confirm that the server is running by visiting the web page at http://
localhost:9000/ (assuming it's a default installation).

How to do it...

Use the following steps to analyze the code with the Maven SonarQube plugin:

1.
2.

Open the Maven project for which you want to do SonarQube analysis.
Run the following Maven command:

mvn sonar:sonar

Observe the output as shown in the following screenshot:

B ECL

PO EEEEEEHD DD GO G
g
o e (e m - e (e
Y bl |, v
& |
5o

B S
50 & O

=
iy
oy
oy
=
iy
iy
Ly
iy
Ly

http://www.sonarqube.org/downloads/
http://www.sonarqube.org/downloads/

Code Quality Plugins

4. Visit the Sonar web page at http://localhost:9000:

€ - C A [localhost9000 Far.) g,
T —

Since you are able to read this, it means that you have A

Projects ~ Measures Issues Qualily Profiles

Welcome to SonarQube Dashboard

Name Version LOCs Technic
WIS successfully started your SenarQube server. Well donel! - De
Demamiarzie If you have not removed this text, it also means that you have —
Compare not yet played much with SonarQube. So here are a few [Project with Violations 1.0-SNAPSHOT 64 0.9
\\} pointers for your next step: 1 results
mbe » Do you now want to run analysis on a project? I I
“« »

» Maybe start customizing dashboards?

» Or simply browse the complete documentation?

» If you have a question or an issue, please visit the Get
Support page.

N

Size: Lines of code Color: Rules compliance 0.0% s 100.0°

Project with Violations

] @

4| | 3

5. Click on the project link:

Dashboards Projects + Measures Issues Quality Profiles

@Proleﬂwnh Violations

Dashboard Version 1.0-SNAPSHOT - Nov 212014 06:04 | Time changes... v

39.5%
30 lines
2 blocks
1 files

Complexity

1.9 rfunction
13.0 /class 2
13.01s1ile 0

Total: 13

1 2 4 8

'® Functions ' Files

3.7%

4.7% line coverage
0.0% branch coverage

Hotspots
lssues Lines of code Classes Issues A\ Blocker 0
Time Machine 64 1 17 2 & Critical 0
76 lines 1 packages . & Major 16 # G
43 statements 7 functions Technical Debt ® Minor 1 1
Jetls 1 files 0 accessors 0.9 days T
Components w |nfo 0
Issues Drilldown
Design Documentation Comments Package tangle index Dependencies to cut
Libraries 12.5% docu. API 1.5% 0.0% 0 between packages
8 public API 1 lines > 0 cycles 0 between files
(Etmss T undocu. API Y
Compare
N Unit Tests Coverage Unit test success
5“""‘1-"39\‘l Duplications g

100.0%

0 failures
0 emors

1tests A
15 ms A

132

Chapter 6

The sonar goal of the Maven SonarQube plugin sets in motion a series of steps to do various
analyses of the project. Based on the configuration, the Sonar plugin performs Checkstyle
analysis, FindBugs analysis and PMD analysis, as well as detects code coverage, code
duplication, design issues and code complexity.

It sends the output to a database and generates reports that can be viewed from the web
page by the user.

As you can see from the dashboard, it has generated the unit test report along with coverage
information. Clicking on the link will take the user to details of the coverage.

Dashboards Projecls Measures Issues Qualiy Profiles Login
[E Project with Violations

Dashboard Coverage

Hotspots 3.7%

ez A com packt cookbook 37% | RN 37%

Time Machine

TOOLS

Components

Issues Drilldown

Design
Libraries
Clouds Project with Violations
Compare 2 com.packt.cookbook. App
N Coverage Duplications |ssues Source Raw @
sonarqube\'

3.7% by unit tests Line coverage: 4.7% (2/43) Branch coverage: 0.0% (0/11)

Full source Uncovered lines v

return a + b}

public int subtract(int &, int b) {
return @ - b}

public int multiply(int a, int b) {
return @ * bj

public int divide(int a, int b) {
int ¢ = a / b;
return c;

Code Quality Plugins

Similarly, clicking on Issues gives details of the various violations:

Dashboards Projects ~ Measures lssues Quality Profiles Login

[EProject with Violations
Dashboard Profie Sonar way | Time changes -
Hotspots Severity Rule
Issues Ay Blocker 0 & System.out and System err should not be used as loggers & I
Time Machine & Critical 0 4 Statements should be on separate lines 2 |
TOOLS & Major 16 M & Switch statements should end with a default case i |
Components ¥ Minor 11 & |nsufficient branch coverage by unit tests N |
¥ Info 0 & | eft curly braces should be located at the end of lines of code N |
Design & Duplicated blocks i | -
Libraries
: com packt cookbook 17 | & B App 17
Clouds
Compare
‘\\
sonarqube\-
Se. Status Description Component Assignee Action plan Updated
& Open Move this left curly brace to the end of previous line Project with Violations Nov 20 2014
of code. com.packt.cookbook. App
& Open Replace this usage of System out or System.err by Project with Violations Nov 20 2014
a logger. com.packt.cookbook. App
& Open Replace this usage of System out or System e by Project with Violations Nov 20 2014
a logger. com.packt.cookbook.App
W Open Replace this "switch” statement by "if" statements Project with Violations Nov 20 2014
to increase readability. com.packt.cookbook. App

Each of these issues can be drilled down to the line-level details, and Sonar provides the
details, including fix suggestions.

There's more...

SonarQube provides several configuration options to specify rules to be included/excluded,
source files to be included/excluded, and so on. The configuration can be done through the
web interface, and in some cases, by means of properties, either in the Maven's settings file
or through the command line.

In addition, SonarQube provides plugins for Eclipse and IntelliJ. Once installed and configured,
these plugins report violations directly in the IDE in the specific lines. As this is not specific to
Maven, its details are outside the scope of this section.

Reporting and
Documentation

In this chapter, we will see how we can use the Maven Site plugin, as well as configure various
reports on a site. We will cover the following recipes:

>

>

Documenting with the Maven Site plugin
Generating Javadocs for a site

Generating source cross-reference for a site
Generating unit test reports for a site
Generating code coverage reports for a site
Generating code quality reports for a site
Generating selective reports

Deploying a site

Introduction

One of the most powerful features of Maven is the ability to create documentation for the
project. It is useful to have a self-documenting project that can be published to a website
without additional effort. Maven provides the ability to generate this documentation, known
as a site report, and publish it to a website.

Many Maven plugins use the Site feature to generate project documentation. In fact, Maven
itself uses the Site plugin to generate its website.

Reporting and Documentation

Documenting with the Maven Site plugin

Along with the clean and default lifecycle, Maven also consists of a site lifecycle. Like
clean, site is implemented by a Maven plugin, in this case, the Maven Site plugin.

Getting ready

Maven is set up on your system and is verified for work. To do this, refer to the first three
recipes of Chapter 1, Getting Started.

How to do it...

Use the following steps to generate documentation using the Maven Site plugin:

1. Open one of the Maven projects for which we need to generate a site report (for
instance, project-with-documentation).

2. Run the following command:

mvn site

3. Observe the output as shown in the following screenshot:

Scanning for projects...

Building mple—project 1.8-8

——— maven—site—plugin:3.3:site (default-zited> @ zimple—project ——
[WARNING] Report plugin org.apache _maven.plugins maven—project—info—reports—plug
in has an empty version.

[WARNING1

[WARNING] It is highly recommended to fix these problems hecause they threaten t
he stability of your build.

[WARNING

[WARNING] For this reason. future Maven versions might no longer support buildin
g such malformed projects.

[INFO1 configuring report plugin org.apache.maven.plugins:maven—project—info—rep
orts—plugin:

[INFO1 Relativizing decoration links with respect to project URL: http:/smaven.al
pache .o

[INFO1 Rendering site with org.apache.maven.skins:maven—default—skin:jar:1.8 ski]

n.
[INFO]1 Generating “About" report maven—project—info-reports—plugin:2.7
{INFO]zcgnerating "Plugin Management' report ——— maven—-project—info-reports—p|
ugin:z2.

[INFO1 Generating "Distribution Management" report —— maven—project—info—rep|
orts—plugi .7

[INFO1 Generati "Dependency Information'" report ——— maven—project—info—repo|
rts—plugin 7

[INFO1 Generating "Source Reposzitowry
lugin:2.7?

[INFO1 Generating "Mailing Lis ' report ——— maven—project—info-reports—plugil

' report ——— maven—project—info-reportz—p|

n-2.
[INFO1 Generating "Issue Tracking" report ——— maven—project—info—reports—plug|
in:

[INF6] Generati "Continuous Integration' report ——— maven-project—info—repol
rts—plugin

[INFO1 Generating "Project Plugin report ——— maven—project—info—reports—ply
ginz2.7

[INFO1 Generating “Project Licens rEPOPL ——— maven—project—info-reports—ply
gin=2_7

[INFO1 Generating "Project Team' weport ——— maven—project—info-reportzs—plugin
2.7

[INFO1 Generating “"Project Summar report ——— maven—project—info-reports—ply
ginz2.7

[INFO1 Generating '"Dependencies' report ——— maven—project—info—reports—plugin

2.7
[INFO1 -

136

4. Openthe index.html file generated in the target/site folder:

Chapter 7

« C [file//C/projects/apache-maven-cookbook/project-with-documentation/target/site/index.html 2| IO

Project with Documentation

Last Published: 2014-11-22 | Version: 1.0-SNAPSHOT

Project Documentation
~ Project Information
About
Plugin Management
Distribution
Management
Dependency
Information
Source Repository
Mailing Lists
Issue Tracking
Continuous
Integration
Project Plugins
Project License
Project Team
Project Summary
Dependencies

Project with Documentation

‘About Project with Documentation

A sample project for Apache maven cookbook with contents of various tags used by maven site filled in

Copyright @ 2014. All Rights Reserved.

Site is one of the Maven lifecycles. When the mvn site command is run, it invokes the
site phase of the site lifecycle. The site goal of the Maven Site plugin is bound to this
phase and is invoked.

The site goal performs a series of steps to generate the report. It uses various elements in
the pom file related to this. Let us look at the various items in the default report:

About

Plugin
Management

Distribution
Management

Dependency
Information

Source
Repository

Mailing Lists

Issue
Tracking

Continuous
Integration

Project
Plugins

Project
License

Project Team

Project
Summary

Dependencies

A sample project for Apache maven cookbook with contents of various tags used by
maven site filled in

This document lists the plugins that are defined through pluginManagement.
This document provides informations on the distribution management of this project.

This document describes how to to include this project as a dependency using various
dependency management tools.

This is a link to the online source repository that can be viewed via a web browser.

This document provides subscription and archive information for this project's mailing
lists.

This is a link to the issue management system for this project. Issues (bugs, features,
change requests) can be created and queried using this link.

This is a link to the definitions of all continuous integration processes that builds and
tests code on a frequent, regular basis.

This document lists the build plugins and the report plugins used by this project.
This is a link to the definitions of project licenses.

This document provides information on the members of this project. These are the
individuals who have contributed to the project in one form or another.

This document lists other related information of this project

This document lists the project's dependencies and provides information on each
dependency.

Reporting and Documentation

In addition to this, the site command generates reports based on the contents of the
reporting section of the pom:

<reporting>
<plugins>
<plugin>
<artifactIds>maven-project-info-reports-plugin</artifactIds>
<version>2.0.1</versions>
<reportSets>
<reportSet></reportSet>
</reportSets>
</plugin>
</plugins>
</reporting>

A number of Maven plugins can generate reports defined and configured under the
reporting element. We will see many reports in the following sections.

We have only seen what the default site command offers. The Maven Site plugin offers
various configurations to make many more customizations. Some of them are as follows:

» Create a different documentation format: The default format of the site is APT (almost

plain text), a wiki-like format

» Override the default navigation tree: This is required if you want to insert additional

content in the site

» Creating skins: This is needed if you want to style the site reports differently
Let us see how to do some of these:

1. Addthe site.xml file with the following content to the src\site folder of the
project-with-documentation project folder:
<project xmlns="http://maven.apache.org/DECORATION/1.6.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/DECORATION/1.6.
0 http://maven.apache.org/xsd/decoration-1.6.0.xsd"
name="Project with Documentation"s>

<bannerLefts>
<name>Left Banner</names
<src>images/packt.png</src>
<href>http://www.packtpub.com</href>

</bannerLeft>

<body>

138

Chapter 7

<menu name="Project with Documentation"s
<item name="Overview" href="index.html"/>
</menu>
<menu ref="reports"/>
</body>
</projects>
2. Add the image named packt .png to the src\site\resources\images folder.
3. Now, add the index. apt file in the src\site\apt folder with the following content:

Welcome to Project with Documentation. This is a maven project
created as part of apache maven cookbook by Packt Publishing.

What is Project with Documentation?

This maven project contains examples of how to use the site
feature of maven.

4. Run the following command:

mvn clean site

5. View the generated site report:

<« C [file///C/projects/apache-maven-cookbook/project-with-documentation/target/sitt 3¢ L0 L0 =

PUBLISHING
Last Published: 2015-02-22 | Version: 1.0-SNAPSHOT

Project with Welcome to Project with Documentation. This is a maven project created as part of apache
D ome nEsEon maven cookbook by Packt Publishing.
Overview
Project Documentation
¥ Project Information

Plogin Management What is Project with Documentation?

Distribution
Management
Dependency This maven project contains examples of how to use the site feature of maven.
Information
Source Repository
Mailing Lists
Issue Tracking
Continuous
Integration
Project Plugins
Project License
Project Team
Project Summary
Dependencies
» Project Reports

Mmaven

Copyright @ 2015. All Rights Reserved.

You can see a customized site page with the logo and the content that we specified.

Reporting and Documentation

Generating Javadocs for a site

Documentation for Java projects is created using Javadocs. Maven provides support not only
to generate Javadocs, but also to publish them as part of the site. Plugins configured within
the reporting element will generate content for the site. When they are configured within
the build element, they can generate reports independent of site.

How to do it...

Use the following steps to generate Javadocs for a site:

1. Open the Maven project project-with-documentation.
2. Add the following section in the pom. xm1 file:
<reporting>
<plugins>
<plugin>
<grouplds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-javadoc-plugin</artifactIds>
<version>2.10.1l</versions>
</plugin>
</plugins>
</reporting>

3. Run the following command:

mvn site

4. See the report generated:

€« X f [filey//C/projects/apache-maven-cookbook/project-with-documentation/target/site/project-reports.html
Project with Documentation

Last Published: 2014-11-22 | Version: 1.0-SNAPSHOT Project with Documentation

Project Documentation

¥ Project Information Generated Reports

~ Project Reports

: This document provides an overview of the various reports that are automatically generated by Maven ® . Each report is briefly
Bt by~ described below.
maven
Overview
JavaDocs JavaDoc API documentation.
Test JavaDocs Test JavaDoc API documentation.

Copyright @ 2014, All Rights Resarvad.

140

Chapter 7

5. Click on the JavaDocs link:

L

All Classes

C' [filey//C/projects/apache-maven-cookbook/project-with-documentation/target/site/apidoq

PACKAGE CLASS USE TREE DEPRECATED INDEX HELP

App

PREW PACKAGE MNEXT PACKAGE FRAMES NO FRAMES
Package com.packt.cookbook

Class Description

App This is a sample class for the cookbook

PACKAGE CLASS USE TREE DEPRECATED INDEX HELP

FREY PACKAGE MNEXT PACKAGE FRAMES NO FRAMES
Copyright @ 2014. All rights reserved.

We added the Javadoc plugin to the reporting section of pom. When the Site plugin runs, it
examines this section and runs the reports configured there. In this case, it found javadoc
and ran the relevant plugin to generate the Javadoc reports for the project.

Maven links the report from the site page in the Project Reports section.

What if we do not want to document the test classes, but only the source? We can configure
the plugin to do this by performing the following steps:

1. Add the following code to the reporting section where we set the value of report
element to javadoc:

<reportSets>
<reportSet>
<reports>
<report>javadoc</reports>
</reportss>
</reportSet>
</reportSets>

Reporting and Documentation

2. Run the following command:

mvn site

3. Open the resulting Site web page. Only the JavaDocs link is present on the site. The
Test JavaDocs link is no longer present.

Generating source cross

In the previous chapter, we saw how the Maven JXR plugin generates source cross-reference.
When publishing a project, it is useful to provide a way to refer to sources in addition to
Javadocs. Let us see how to make that part of the site report.

How to do it...

Use the following steps to generate source cross-reference for a site:

1. Open the Maven project project with documentation.
2. Add the following code to the reporting section of the pom.xm1 file:
<plugin>
<groupld>org.apache.maven.plugins</groupIld>
<artifactIds>maven-jxr-plugin</artifactId>
<version>2.5</version>
</plugin>
3. Run the following command:

mvn site

4. Open the generated site report:

& > C [filey//C/projects/apache-maven-cookbook/project-with-documentation/target/site/project-reports 7.7 é
Project with Documentation
Last Published: 2014-11-25 | Version: 1.0-SNAPSHOT Project with Documentatior

Project Documentation

» Project Information Generated Reports

* Project Reports

This document provides an overview of the various reports that are automatically generated by Maven = .
Each report is briefly described below.
Buill by: ™
Mmaven
Overview
JavaDocs JavaDoc API documentation,
Source Xref HTML based, cross-reference version of Java source code.
Test Source Xref HTML based, cross-reference version of Java test source code.

Copyright @ 2014. All Rights Reserved)

142

Chapter 7

Adding the Maven JXR plugin to the report ing section of pom automatically creates
the project source cross-reference. By default, both source and test cross-references are
generated. Like Javadoc, the reportSet element can be configured if we do not want a
cross-reference for test classes.

Generating unit test reports for a site

When we have unit tests for our project, it will be good to see the test reports in the site
documentation. Let us see how to do this.

How to do it...

Use the following steps to generate unit test reports for a site:

1. Open the Maven project for which you want to generate the site documentation
(for instance, project-with-documentation).
2. Add the following code in the reporting section of the pom.xm1 file:
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactIds>maven-surefire-report-plugin</artifactId>
<version>2.18</version>
</plugin>

3. Run the following command:

mvn site

Reporting and Documentation

4. Observe the generated site report:

L C M [filey//C/projects/apache-maven-caokbook/project-with-documentation/target/site/surefire-report. v
Project with Documentation
Last Published: 2014-11-23 | Version: 1.0-SNAPSHOT Project with Documentation|

Project Documentation .

» Project Information

) FrojectInforms Surefire Report
JavaDocs
Surefire Report

Buillt by: ™
maven

Summary

[Ssummary] [Package List] [Test Cases]

1 9] 0 0 100% 9]

Mote: failures are anticipated and checked for with assertions while errors are unanticipated.

If you recall, we use the Maven Surefire plugin to run tests. Surefire provides a Surefire Report
plugin. When this plugin is added to the reporting section of the pom.xml file, it includes
the test report in the site documentation.

The reports are identical, irrespective of whether JUnit or TestNG is used for unit testing.

M In addition to the format of the report for the site, TestNG generates
Q additional reports in a different format. These are available in the
target folder but are not part of the site documentation.

Generating code coverage reports for a site

Let us now include code coverage from the unit tests of our project in the site documentation.

How to do it...

Use the following steps to generate code coverage reports for a site:
1. Open the Maven project for which you want to do this (for instance, project-with-
documentation).
2. Add the following code in the <build> section of the pom.xml file:

<plugins>
<groupIds>org.jacoco</groupld>

<artifactId>jacoco-maven-plugin</artifactIds>

<version>0.7.2.201409121644</version>

<executionss>
<execution>
<id>default-prepare-agent</id>
<goals>

<goal>prepare-agent</goal>

</goals>
</executions>

</executions>

</plugin>

Chapter 7

3. Add the following code in the reporting section of the pom.xm1 file:

<plugins>

<groupldsorg.jacoco</groupIld>
<artifactId>jacoco-maven-plugin</artifactIds>
<version>0.7.2.201409121644</version>

</plugin>

4. Run the following Maven command:

mvn

test site

5. Observe the site report as shown in following screenshot:

Last Published: 2014-11-23

Project Documentation
¥ Project Information
~ Project Reports
JavaDocs
JaCoCo Test

W

Bull by
m

& = C i [filey//C/projects/apache-maven-coakbook/praject-with-documentation/target/site/project-reports.html |

Project with Documentation

| Version: 1.0-SNAPSHOT

Generated Reports

This document provides an overview of the various reports that are automatically generated by Maven m . Each report is

briefly described below.

Overview
JavaDocs JavaDoc API documentation.
JaCoCo Test JaCoCo Test Coverage Report.

Project with Documentation

Copyright @ 2014. All Rights Reserved.

Reporting and Documentation

The JaCoCo unit test coverage report shows up in site documentation on account of the
following issues:

» Asthe prepare-agent goal of the JaCoCo plugin is added to the build section,
Maven runs the JaCoCo agent

» Asthe test goalis run, Maven runs the test and the agent analyzes the tests
for coverage

» Asthe JaCoCo plugin is added to the reporting section of the pom. xm1l file, the
coverage report is generated and linked to the site documentation

» Asyou can see, the same plugin is added to the build and reporting section and
does different things

If you were to use Cobertura instead of JaCoCo to generate test coverage, you could do
the following:
1. Remove the lines related to JaCoCo in the build and reporting sections.

2. Add the following code to the reporting section of the pom. xm1 file:
<plugins>
<grouplds>org.codehaus.mojo</groupld>
<artifactIds>cobertura-maven-plugin</artifactId>
<version>2.6</versions>
</plugin>

3. Run the following Maven command:

mvn site

146

Chapter 7

4. Open the site documentation:

Project with Documentation

Last Published: 2014-11-23 | Version: 1.0-SNAPSHOT Project with Documentation

Project Documentation

» Project Information Ge he rated Reports

~ Project Reports
JavaDocs

C This document provides an overview of the various reports that are automatically generated by Maven @ . Each report is
_ briefly described below.
Bull by —
maven
Overview
JavaDocs JavaDoc API documentation.
Cobertura Test Coverage Cobertura Test Coverage Report.

Copyright @ 2014. All Rights Reserved.

You will notice two things:

» We didn't need to specify anything in the build section
» We didn't need to run the test goal explicitly; the Maven Cobertura plugin did this.

Generating code quality reports for a site

We have seen how to use various code quality tools to perform static code analysis. Let us
now see how we can update our site documentation with reports from these tools.

How to do it...

Use the following steps to generate code quality reports for a site:

1. Open the project for which we want to generate the site report.

2. Add the following code to the reporting section of the pom. xm1 file:

<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactIds>maven-pmd-plugin</artifactIds>
<versions>3.3</version>

</plugin>

<plugins>
<groupIlds>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactIds>
<version>2.13</versions>

</plugin>

Reporting and Documentation

<plugins>
<grouplds>org.codehaus.mojo</groupld>
<artifactId>findbugs-maven-plugin</artifactIds>
<version>3.0.0</versions>

</plugin>>

3. Run the following Maven command:

mvn test site

4. Open the generated site report:

€« C [filey//C/projects/apache-maven-cookbook/project-with-documentation/target/site/project-reports.html w0 N =
Project with Documentation
Last Published: 2014-11-22 | Version: 1.0-SNAPSHOT Project with Documentation

Project Documentation

» Project Information

D T |Generated Reports
JavaDocs
JaCoCo Test

Surefire Report. This document provides an overview of the various reports that are automatically generated by Maven . Each report is briefly
CPD described below.
PMD
Checkstyle
FindBugs
Overview
JavaDocs JavaDoc API documentation.
JaCoCo Test JaCoCo Test Coverage Report.
Surefire Report Report on the test results of the project.
CPD Duplicate code detection.
PMD Verification of coding rules.
Checkstyle Report on coding style conventions.
FindBugs Generates a source code repoert with the FindBugs Library.

Copyright & 2014. All Rights Ressrvad.

For each of the code quality tools specified in the reporting section of the pom. xml file, the
site goal runs the specified tool, generates the report, and links to the site documentation.

Clicking on each of the links takes the user to the specific report.

If you have chosen to use SonarQube for analysis and want to link the Sonar report to the site
documentation, then you can do the following:

1. Add the following code in the reporting section of the pom. xm1 file:
<plugins>
<grouplds>org.codehaus.sonar-plugins</groupId>
<artifactId>maven-report</artifactIds>
<version>0.1l</versions>
</plugin>

148

Chapter 7

2. Generate the site by running the following Maven command:

mvn test site

3. Open the site report:

Project with Documentation

Last Published: 2014-11-23 | Version: 1.0-SHAPSHOT Project with Decumantatior

Project Documentation

Sonar

Redirecting to http://localhost:9000/project/index/com. packt.cookbook: project-with-documentation

FindBugs
Sonar

BUit by
Mmaven

A new Sonar link is present in Project Reports, which automatically redirects to the default
Sonar installation. The link can be customized to the appropriate URL, if it is different.

Generating selective reports

We have seen that by default the site command generates some Project Information. Some
of it, for instance Mailing Lists, may be nonexistent or irrelevant to the project. Let us see
how we can avoid generating these. The Maven Project Info Reports plugin is the plugin that
provides the standard reports from pom. It can be configured to exclude specific reports.

How to do it...

Use the following steps to generate selective site report:

1. Open the project for which you want to generate the site report.
2. Add the following code to the reporting section of the pom.xm1 file:
<plugin>
<groupld>org.apache.maven.plugins</groupIld>
<artifactIds>maven-project-info-reports-plugin</artifactIds>
<version>2.7</version>
<reportSets>
<reportSet>
<reports>
<report>dependencies</report>
<reports>project-team</report>
<reports>license</reports>
<report>scm</report>

Reporting and Documentation

</reports>
</reportSet>
</reportSets>
</plugin>
3. Run the following Maven site command:

mvn test site

4. Open the generated report:

Project with Documentation

Last Published: 2014-11-23 | Version: 1.0-SNAPSHOT Project with Documentation

Project Documentation . -
~ Project Information
e e Project Information
Project Team
Project License

Source Repository This document provides an overview of the various documents and links that are part of this project’s general information. All of
» Project Reports this content is automatically generated by Maven o on behalf of the project.
Buil by
maven

Overview

Dependencies This document lists the project's dependencies and provides information on each dependency.

Project Team This document provides information on the members of this project. These are the individuals who have
contributed to the project in one form or another.

Project This is a link to the definitions of project licenses

License

Source This is a link to the online source repository that can be viewed via a web browser.
Repository

Copyright § 2014. All Rights Reserved.

We explicitly specified the reports that we wanted to see in Project Information. Due to this,
only those reports are generated and displayed.

This allows us to avoid generating and displaying reports that are not applicable to the project.

Deploying a site

Once a site report is generated, it needs to be published. While this can be done manually,
Maven also provides facilities to do this. Let us see how.

Getting ready

To publish a site, you need to have access to the web server where the site has to
be deployed.

150

Chapter 7

How to do it...

To deploy a site, use the following steps:

1. Add the following code to your pom. xm1l file. This could also be added in
settings.xml:

<distributionManagement >
<site>
<id>myorg</id>
<urls>scp://www.myorg.com/project/</urls>
</site>
</distributionManagement>

2. For the corresponding ID, add the relevant username and password in your
settings.xml file:
<serverss
<servers>
<id>myorg</id>
<username>username</username>
<password>password</password>
<filePermissions>664</filePermissions>
<directoryPermissions>775</directoryPermissions>
</server>
</servers>

3. Run the following Maven command:

mvn site-deploy

When the site-deploy goal is run, Maven first builds the site. Then, it uses the entry set in the
distributionManagement element to determine how the site needs to be deployed. The first
part of the URL is the protocol to be used to transfer the file. In this case, it is scp. It uses the
credentials specified in the settings.xml file and transfers the file to the destination.

There's more...

If you want to test your site before deploying, you can easily do so in the following way:

1. Run the following Maven command:

mvn site:run

Reporting and Documentation

2. Open the browser and goto http://localhost:8080:

« C M [localhost203

Project with Documentation

Last Published: 2014-11-24 | Version: 1.0-SNAPSHOT

w0 g =

Project with Documentation

Project Documentation

© T et About Project with Documentation

Plugin Management
Distribution
Management A sample project for Apache maven cookbook with contents of various tags used by maven site filled in
Dependency
Information
Source Repository
Mailing Lists
Issue Tracking
Continuous
Integration
Project Plugins
Project License
Project Team
Project Summary
Dependencies
b Project Reports

Buill by
maven

Copyright @ 2014. All Rights Reserved.

The run goal of the Maven Site plugin deploys the site in a jetty server, which is started by
default by port 8080. This allows you to view the site report and verify it before publishing.

152

Handling Typical
Build Requirements

In this chapter, we will cover the following recipes:

» Including and excluding additional resources

» Including and excluding source files and folders
» Configuring Maven to search for plugins

» Working in offline mode

» Controlling the verbosity of the Maven output

» Using the Maven Help plugin

» Using the Maven SCM plugin

» Generating changelogs for a site

Introduction

In previous chapters, we have seen how to set up Apache Maven to build software projects.
We have also seen how to configure it to analyze code quality and code coverage. We have
seen how to generate and publish project documentation.

As we use Apache Maven, we will encounter requirements that are not generic, but at the
same time, not rare. In many projects, there would be a need to include additional source or
resource folders. We will see how Maven allows us to do this. We would also want to get more
verbose output from Maven to help troubleshoot when things go wrong. We will also see to
what extent we can get the Maven build working without the Internet. We will also see how
Maven works with software configuration management (SCM) systems and allows SCM
changes to be part of project documentation.

Handling Typical Build Requirements

Including and excluding additional resources

There are many situations where you will need to include additional resource files or folders
for compilation or testing. You might also have to exclude specific files or folders. Let us see
how we can do this.

Getting ready

Maven is set up on your system and is verified for work. To do this, refer to the first three
recipes of Chapter 1, Getting Started.

How to do it...

1. Open one of the Maven projects for which we need to include or exclude files or
folders; for instance, project-with-include-exclude.

2. Add the following to the build section of your pom file:

<resources>
<resources
<directoryssrc/resources/xml</directory>
<includes>
<include>*.xml</include>
</includes>
</resource>
<resources
<directoryssrc/resources/json</directory>
<includes>
<include>include.json</include>
</includes>
<excludes>
<excludes>exclude.json</exclude>
</excludes>
</resource>
</resources>

3. Run the following command:

mvn resources:resources

Chapter 8

4. Observe the output:

[INFO] --- maven-resources-plugin:2.6:resources (default-cli) @
project-with-include-exclude ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] Copying 2 resources

[INFO] Copying 1 resource

5. View the contents of the resources folder:

= PP ECLS vaApACNe—MAVEN - CO0KDO0KWPPO JECL WILN-LNC LUNE—EXC LUGE \GPC 7L PEe

rCces

Folder PATH listing

Jolume serial number iz B4B8-E184

> \PROJECTS~APACHE-MAVEN—COOKBOOK\PROJECT—WITH-INCLUDE-EX CLUDE~SRCRES OURCES
Json

exc lude . json
include. json

»xm1
one.xml
two . xml

6. View the contents of the build output directory:

rmaven-cookbook » project-with-include-exclude » target » classes

s

Marne Date modified Type
com 22-02-201503:34 PM File folder

IL]] include.json 22-02-2015 03:34 PM JSOM File
anexml 22-02-201503:34 PM (ML File

two.xml 22-02-201503:34 PM (ML Fi

The resources goal of the Maven Resources plugin copies all the resources required by the
source to build the output directory. This goal is bound to the process-resources phase,
which is part of the default lifecycle.

m

By default, the goal copies over the contents of src/main/resources. When the
resources tag is specified in the pom file, it copies the contents of the directories specified
there, based on the include and exclude filters specified.

Handling Typical Build Requirements
In our specific example, we did three things:

» Included all the XML files in the src/resources/xml folder
» Included a specific file in the src/resources/json folder

» Excluded a specific file in the src/resouces/json folder

What if we need to copy test resources selectively? For this, we would need to do the following:

1. Add the following in the build section of your pom file:

<testResources>
<testResources
<directoryssrc/resources/xml</directorys>
<includes>
<include>*.xml</include>
</includes>
</testResource>
<testResources
<directoryssrc/resources/json</directory>
<includes>
<include>include. json</include>
</includes>
<excludes>
<exclude>exclude. json</exclude>
</excludes>
</testResources>
</testResources>

2. Run the following command:

mvn resources:testResources

156

Chapter 8

3. View the contents of the test-classes folder:

kbook » project-with-include-exclude » target » test-classes » v O
" Mame Date modified Type
| com File folder
[[3 include,jsan JSON File
7 oneaml XML File
7 twoaml XML File

This will now copy over the specified test resources to the test output directory (target/
test-classes).

We saw that the resources and testResources goals copied resources to classes and
test-classes respectively. What if we need to copy these to specific folders, For instance,
xml files to the xm1 folder and json files to the json folder? The add-resource and add-
test-resource goals of the Build Helper Maven plugin come to our assistance here.

1. Update the pom file with the following code:
<plugins>
<groupIds>org.codehaus.mojo</groupIld>
<artifactIds>build-helper-maven-plugin</artifactIds>
<version>1.9.1</versions>
<executionss>
<execution>
<id>add-resource</id>
<phase>generate-resources</phase>
<goals>
<goal>add-resource</goal>
</goals>
<configurations>
<resources>
<resources
<directoryssrc/resources/xml</directory>
<targetPath>xml</targetPath>
</resource>
<resources
<directoryssrc/resources/json</directory>
<targetPath>json</targetPath>
<includes>

Handling Typical Build Requirements

<include>include.json</include>

</includes>

<excludes>
<excludesexclude.json</exclude>

</excludes>

</resource>
</resources>
</configurations>
</executions>
</executions>
</plugin>

2. Run the following command:

mvn compile
3. Examine the target/classes folder now.

You will see the xml and json subfolders with their respective content.

Including and excluding source files

and folders

As per Maven conventions, all project sources should be in the src folder. However, there
may be legacy projects that are organized differently and may have more than one source
folder. Also, in some projects, we might generate sources dynamically from tools such as
wsdl2java. In such cases, Maven needs to be told about these additional source folders.
Note that such projects may not work well in IDEs.

How to do it...

Use the following steps to include and exclude source files and folders in your Maven project:

1. Open the Maven project named project-with-additional-source.
2. Add the following section in the pom file:

<plugins>
<groupIds>org.codehaus.mojo</groupIld>
<artifactIds>build-helper-maven-plugin</artifactIds>
<version>1.9.1</versions>
<executionss>
<execution>
<id>add-source</id>
<phase>generate-sources</phase>
<goals>
<goal>add-source</goal>
</goals>

158

Chapter 8

<configurations>

<gsources>
<sourcessrc/main/source</sources

</sources>

</configurations>

</executions>
</executions>
</plugin>

3. Run the following command:

mvn compile

4. See the output generated:

[INFO] --- build-helper-maven-plugin:1.9.l1l:add-source (add-source)
@ project-with-additional-source ---

[INFO] Source directory: C:\projects\apache-maven-cookbook\
project-with-additional-source\src\main\source added.

5. View the target/classes folder:

Directory of C:-sprojectssapache—maven—cookbooksproject—with-additional—-sourcest
argetsclassesscomspacktscookbook

38-11-2814 14:59 <DIR> -

38-11-2814 14:59 <DIR> .-

38-11-2014 14:5% 398 AdditionalSource.class
38-11-2814 14:59% 551 App-class

2 File<s> 741 hytes

We had an additional source folder called src/main/source. We specified this in the
configuration section of the Build Helper Maven plugin. We also bound the add-source
goal of the plugin to the generate-sources phase of the default lifecycle.

As part of the default lifecycle, the generate-sources phase is run by Maven prior to the
compile goal. This invokes the add-source goal of the plugin, which adds the additional
folder and its contents for compilation.

In a similar way, additional test folders can be added to the build. The configuration would be
identical to the earlier case, except for the execution section, which would be as follows:

<executions
<id>add-test-source</id>
<phase>generate-test-sources</phase>
<goals>
<goal>add-test-source</goals>

Handling Typical Build Requirements

</goals>
<configurations>
<sources>
<sourcessrc/main/source</sources
</sources>
</configurations>
</execution>

We specify the add-test -source goal instead of add-source and bind it to the
generate-test-sources phase.

There's more...

The Build Helper Maven plugin provides a number of other goals that meet specific project
requirements. Here are some of them:

» attach-artifact: Thisis used to attach additional artifacts to be installed and/or
deployed, besides the project artifact. This would be done by configuring the plugin
as follows:

<plugins>
<grouplds>org.codehaus.mojo</groupld>
<artifactIds>build-helper-maven-plugin</artifactIds>
<version>1.9.1l</versions>
<executionss>
<execution>
<idsattach-artifacts</id>
<phase>package</phase>
<goals>
<goal>attach-artifact</goal>
</goals>
<configurations>
<artifacts>
<artifacts>
<file>some file</file>
<types>extension of your file </type>
<classifier>optional</classifier>
</artifacts>
</artifacts>
</configurations>
</executions>
</executionss>
</plugin>

160

Chapter 8

» maven-version: This is used to set a property containing the current version of
Maven, which can be used as required. To use the Maven version number in the
manifest of the project JAR, we will configure the plugin as follows:

<builds>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</grouplds>
<artifactIds>build-helper-maven-plugin</artifactIds>
<version>1.9.1</versions>
<executionss>
<execution>
<ids>maven-version</id>
<goals>
<goals>maven-version</goal>
</goals>
</executions>
</executions>
</plugin>
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-jar-plugin</artifactId>
<version>2.2</version>
<configurations>
<archives>
<manifestEntries>
<Maven-Version>${maven.version}</Maven-Versions>
</manifestEntries>
</archives>
</configurations>
</plugin>
</plugins>
</builds>

Configuring Maven to search for plugins

You will recall that in the section on using the Maven JaCoCo plugin, to generate code
coverage we had to explicitly specify the projectId and artifactId values of the plugin
to it from the command line. However, for most other plugins, we specified the plugin name
without additional information.

We will see why we had to do this and how to avoid it.

Handling Typical Build Requirements

How to do it...

Open the settings file (specifically the settings.xml file in your home directory).

Add the following section:

<pluginGroups>
<pluginGroup>org.jacoco</pluginGroup>
</pluginGroups>
3. Run the following command on the same project for which you ran JaCoCo earlier:

mvn clean jacoco:prepare-agent test jacoco:report
4. Observe the output:

[INFO]

[INFO] --- jacoco-maven-plugin:0.7.2.201409121644:report (default-
cli) @ project-with-tests ---

[INFO] Analyzed bundle 'Project with Tests' with 1 classes

There are two types of Maven plugins, which are as follows:

» Plugins maintained by the Maven team itself (let us call them official plugins).
These are in the default plugin groups org.apache.maven.plugins and org.
codehaus.mojo.

» All other plugins (let's say third-party plugins).

All official plugins have the same groupId, namely org.apache.maven.plugins. They
also have a convention for artifactId: maven-${prefix}-plugin, where prefix
stands for the plugin prefix, the short name to refer to the plugin.

The prefix used to reference the plugin can be customized as well. The prefix can be specified
directly through the goalPref ix configuration parameter on the Maven-plugin-plugin of
the plugin's pom file.

So, when we run mvn clean, Maven looks for the maven-clean-plugin in the org.
apache.maven.plugins group.

What about third-party plugins? pluginGroups lets Maven know the groupId where it
should search for additional plugins. So in the earlier case, Maven searched for plugins in
the org. jacoco group.

162

Chapter 8

Third-party plugins should be named differently from official plugins. The conventional way
to define the artifact1d for third-party plugins is $ {prefix}-maven-plugin. When
specified in this way, Maven automatically identifies the shortcut name for the plugin. In the
earlier case, as the artifactIdis jacoco-maven-plugin, the shortcutis jacoco.

There's more...

Maven will always search specified pluginGroups before it searches the following
default groups:

» org.apache.maven.plugins

» org.codehaus.mojo
Maven takes the first match for the shortcut that it finds. For instance, if there is a clean

shortcut in a user-specified plugin in pluginGroups, it will take precedence over a Maven
Clean plugin.

Working in offline mode

There might be situations where a Maven project needs to be built without access to the
Internet. Let us see how Maven supports this, as well as the caveats.

How to do it...

1. Open a project that you want to build offline.
2. Run the following command:

mvn dependency:go-offline

Handling Typical Build Requirements

3. Observe the output:

=sprojectshapache—maven—cookbookssimple—project>mvn dependency-go—offline
[INFO1 Scanning for projects...

[INFOQ1

[INFO1

[INFO1

[INFO1

[INFO1

[INF0O1 >>> maven—dependency-plugin:2 _8:go—offline {default—clid > :=resolue—plugi)
s B simple—project >>»

[INFOQ1

[TNF01 ——— maven—dependency-plugin:2 _8:resolve-plugins (resolve-plugins) @ simpl
e—project ———

[INFO]1 Plugin Resolved: maven—install-plugin—2.4.jar

[INFO1 Plugin Dependency Rezolve maven—plugin—api-2.8. 6

[INFO1 Plugin Dependency Reszolue maven—project—2 6_ja

[INFO1 Plugin Dependency Resolve maven—model-2.8.6. jar

[INFO1 Plugin Dependency Resolve maven—artifact-manager-2.8.6. jar
[THNFO1 Plugin Dependency Resolue maven—artifact-2_B_6. jar

[INFO1 Plugin Dependency Resolve plexus—utils—3.8.5. jar

[INFO1 Plugin Dependency Resolved: plexus—digest—1.8.jar

[INFO1 Plugin Resolved: maven—clean—plugin—2.5.jar

[INFO1 Plugin Dependency Reszolue maven—plugin—api-2_8._6_jar
[INFO1 Plugin Dependency Resolve plexus—utils—3.08. jar

[INFO1 Plugin Resolved: maven—compiler—plugin-3.1.jar

[INFO1 Plugin Dependency R 1 maven—plugin—api-2.8.9. jar
[INFO1 Plugin Dependency maven—artifact-2.8.9. jar

[INFO1 Plugin Dependency maven—core—2.0.9. jar

[INFO1 Plugin Dependency maven—toolchain—-1.8. jar

[THNFO1 Plugin Dependency maven—shared—utils—BA.1._jar
[INFO1 Plugin Dependency maven—shared—incremental-—: 1 1.jar
[INFO1 Plugin Dependency plexus—compiler—api-2.2

[INFO1 Plugin Dependency

[INFO1 Plugin Dependency plexus—compile —Jjavac—

[INFO1 Plugin Dependency plexus—container—default—1.5.5. jar
[INFO1 Plugin Resolved: maven—jar—-plugin—2.4.jar

[THNFO1 Plugin Dependency Resoluved: maven—plugin—api-2._8._

[INFO1 Plugin Dependency maven—project—2.0.6.j

[INFO1 Plugin Dependency maven—model-2_.8.6. jar

[INFO1 Plugin Dependency maven—artifact—-2.8. 6 Jar

[INFO1 Plugin Dependency maven—archiver-2 _5_ Jar

[INFO1 Plugin Dependency plexus—archive

[INFO1 Plugin Dependency commons—lang—2.1. jar

[THNFO1 Plugin Dependency : plexus—utils—3.8. jar

[INFO1 Plugin Resolved: maven—site— plug1n 3.3

[INFO1 Plugin Dependency Resolve i xec—1.1.jar
[INFO1 Plugin Dependency maven—core—3.8. ja

[INFO1 Plugin Dependency maven—model-3_@_jar

[INFO1 Plugin Dependency maven—plugin—api—3.

[INFO1 Plugin Dependency maven—settings—3.6. jar

[THNFO1 Plugin Dependency maven—settings—builder-3_8._jar
[INFO1 Plugin Dependency maven—archiver-2.4.2_ jar

[INFO1 Plugin Dependency doxia—sink-api-1.4.jar

[INFO1 Plugin Dependency doxia—logging—a; -4.jar

[INFO1 Plugin Dependency doxia—core-1_4. jar

[INFO1 Plugin Dependency doxia—module—xhtml—i.4.jar
[INFO1 Plugin Dependency doxia—module—apt-1.4.jar

[INFO1 Plugin Dependency doxia—module—xdoc-1.4. jar

[INFO1 Plugin Dependency doxia—module—fml-1.4. jar

[INFO1 Plugin Dependency doxia—module—markdown—1.4.jar
[INFO1 Plugin Dependency Resolved: servlet—api—2.5

4. Run the following command:

mvn -o clean package

Observe that the build is completed successfully without any network connection.

The go-offline goal of the Maven Dependency plugin downloads all the required
dependencies and plugins for the project, based on the pom file. The —o option tells Maven to
work offline and not check the Internet for anything.

164

Chapter 8

However, it is not without its issues. On a brand new local repository, the of £1ine option will
not work with the following error:

[ERROR] Failed to execute goal org.apache.maven.plugins:maven—resources—plugin:2
.b:resources C(default—resources? on project simple-project: Execution default-re
cources of goal org.apache.maven.plugins:maven—resources—plugin:2.6:resources fa
iled: A required class was missing while executing org.apache.maven.plugins:mave
n—resources—plugin:2_b6:resources: Lorgssonatypesplexusshbuildsincremental BuildCo

realm = pluginorg.apache .maven.plugins :maven—resources—plugin:=2.6
LERROR 1 strategy = org.codehaus .plexus.classworlds _strategy_SelfFirstStrategy
[ERROR] urls[@] = file:rC:/Users-/raghu/.m2/repositorysorgsapache/maven-plugins/m
auen—reéuurces—plugln/2 6/mauen—reéuurces—plugln—2 6. Jar

This is a known problem or limitation with the Maven Dependency plugin. The required
project has to be built online once to download anything that is missed out by the plugin.
Subsequently, the project can be built offline. This is typically not required, as most
organizations use a repository manager, such as Nexus or Artifactory, if they do not allow
direct Internet access.

R If your project uses SNAPSHOT dependencies, then Maven will need the
~ Internet to look for updates to the dependencies. To avoid this, you can set
Q the updatePolicy to never, but this would be counterproductive as you
will not get the latest version of the dependency.

Another way to run Maven in offline mode is to specify the of £1ine parameter as true in the
settings file. Once this is done, no attempt is made by Maven to connect to the Internet.

1. Add the following in the settings file:

<offlinestrue</offline>

2. Run a Maven build:

mvn clean package

Observe that the build is completed successfully without connecting to the Internet.

Handling Typical Build Requirements

Controlling the verbosity of the Maven

output

Sometimes, the output from Maven might be too verbose and we may want to only see the
errors. At other times, the information displayed by Maven may be insufficient and we want to
see more details. Let us see how we can control this.

How to do it...

1. Open a Maven project.
2. Run the following command:

mvn -g clean package

3. Observe the output:

C:projectssapache—maven—cookbooksimple—project>mun —g clean package

: B, Skipped: B, Time elapsed: B.81 sec

Tests run: 1, Failures: B. Errors: @, Skipped: 8

C:~projectssapache—maven—cookbookssimple—project>

4. Now run the following command:

mvn -X clean package

5. Observe the output:

166

Chapter 8

Excluded: org.apache.maven:maven—project:jar:2.8.6
org.apache .maven:maven—settings: ja B.6
org.apache .maven:maven—profile:jar:2.8.6
org.apache .maven:maven—artifact—manager:jar:2.8.6
org.apache .maven:maven—-repository—metadat ar:2.8.6
org.apache .maven:maven—-plugin—registry: ja .6
Exclude org.codehaus .plexus iplexus—container—default: jar:1.8-alpha-?

Excluded: classworlds:classworlds:jar:1i.1-alpha-2
oryg.apache .maven maven—-model: jar:2
org.apache .maven:maven—artifact
org.apache .maven:maven—core:jar a.6

Excluded: org.apache.maven:maven—plugin—parameter—documenter:jar:2.8.6

Excluded: org.apache.maven:maven—error—diagnostics:jar:2.8.6
org.apache .maven:maven—plugin—descriptor: jar:2.08.6
org.apache .maven:maven—monitor: jar

[DEBUG] Configuring mojo org.apache.maven.plugins imaven—jar—plugin:2.4:jar from
hlugin realm ClassRealmlplugin>org.apache.maven.plugins:maven—jar—-plugin:2.4, pa)
*ent: sun.misc.Launcher$AppClassLoader®33d626a4]

[DEBUG] Configuring mojo ‘org.apache.maven.plugins:maven—jar—plugin:2.4:jar’ wit
1 basic configurator ——>

[DEBUG] {f> classesDirectory = C:sprojectssapache—-maven—cookbook~simple—projec
~targetwclasses

[DEBUG] (f> defaultManifestFile = C:“projectssapache—maven—cookbook sinple—pro
jectstargetsclasses“META—-INF~MANIFEST .MF

f>» finalName = simple-project—1.8-SNAPSHOT

<f> forceCreation = false

(f> outputDirectory = C:\projects:apache-maven—cookbhook\simple-—project

\target

[DEBUG]1 f> project = MavenProject: com.packt.cookbook:zimple—project:1.8-SNHAP

HOT @ C:sprojectssapache—maven—cookhookssimple—projectspom.xml

[DEBUG] {f> session = org.apache.maven.execution.MavenSessionP2alabcee

[DEBUG]1 f> skiplfEmpty false

[DEBUG] <f> useDefault ifestFile = false

[DEBUG] —— end configuration ——

[DEBUG] islUpZ2date: false (Destination C::projects™apache—-maven—cookhbook zimple—p|

o jecttargetszimple—project—1.B-SNAPSHOT. jar not found.>

[IMF0O]1 Building jar: C:sprojects“apache—maven—cookbook™zimple—projectstargetssim|

hle—project—1.8-SNAPSHOT . jar

[DEBUG] adding directory META-INF~

[DEBUG] adding entry META-INF/MANIFEST.MF

[DEBUG] adding directory com~

[DEBUG] adding directory comspackts

[DEBUG] adding directory comspackt/cookbook~

[DEBUG] adding entry coms/packt/cookbook-App.class

[DEBUG] adding di META-INF/maven/

[(DEBUG] adding di ry META-INF/maven/com.packt .cookhooks
adding directory META-INF-/mavenscom.packt.cookbookssimple—project/
adding entry META-INF/mavenscom.packt.cookbookszimple—project pom.xml
adding entry META-INF/mavenscom.packt.cookbookszimple—project/pom.proper|

656 =
2014-11-38T17:09:34+85:38
13M/159M

C:sprojectssapache—maven—cookbookssimple—project>

Maven provides different levels of logging. The typical levels are DEBUG (detailed messages),
INFO (information messages), and ERROR (error messages). Specifying a level displays all
messages at and above that level. For instance, specifying the INFO level displays messages
at the INFO and ERROR levels.

By default, Maven logs all INFO level messages to the screen.

The -g parameter tells Maven to be quiet and not display anything other than ERROR level
messages on the screen. So the only display is the output from tests.

On the other hand, the -X parameter tells Maven to display all messages at the DEBUG level
and above. This gives a lot of information, which is useful for troubleshooting issues.

Handling Typical Build Requirements

There's more...

Instead of viewing the Maven output on the screen, you could redirect it to a file to be viewed
later. To do this, run the following command:

mvn -1 simple-project-log.txt clean package

The command will be completed with no output on the screen. The simple-project-log.
txt file will contain all the log messages. You can use a combination of -1 along with —-q or
-X to redirect the appropriate level of logging to the file.

Alternately, the output can be redirected to a file:

mvn clean package > simple-project-log.txt

Using the Maven Help plugin

Maven provides a -h command-line flag to display various command-line parameters that it
supports. However, there is a Help plugin that helps you get other information.

How to do it...

1. Open the simple Maven project.
2. Run the following command:

mvn help:effective-pom

3. Observe the output:

isprojectshapache—maven—cookbookssimple—project>mvn help:effective—pom
[INFO1 Scanning for projects...

LINFO1

LINFO1

[INFO1 Building mple—project 1.8-SHNAPSHOT

LINFO1

[INF0O1 —— maven—help—plugin:2.2:effective—pom {(default-cli> @ simple—-project ——

[INFO1
ffective POMs, after inheritance. interpolation. and profiles are applied:

Generated hy Maven p Plugin on 2814-11-3@TA!
8 k i

he .orgs/plugil aven—he lp—

Effective PO project
*com.packt.coo imple—project

project xmlns="http://maven.apache.org-FOM-4.8.8" xmlns:xsi="http:/ " wuw.uwl.org/
B81 -BMLEchema—instance" xsi:schemalocation="http://maven.apache.org/FON-/4.8.8 h
tp:/smaven.apache .orgsxsd/maven—4.8.08.xsd">

<mode lVersion>4.8.8<{/modelVersion>

{groupld>comn.packt.cookbook{ groupld>

{artifactId>simple—project{/artifactId>

{version>l.B-SHAPSHOT{ /version>

{name >simple—proiect{/name>

168

Chapter 8

4. Run the following command on a project with a profile (for instance, project-with-
profile):

mvn help:all-profiles

5. Observe the output:

[INFO] --- maven-help-plugin:2.2:all-profiles (default-cli) @
project-with-profile ---

[INFO] Listing Profiles for Project: com.packt.cookbook:project-
with-profile:jar

:1.0-SNAPSHOT

Profile Id: dev (Active: false , Source: pom)

6. Run the following command:

mvn -help:active-profiles

7. Observe the output:

Active Profiles for Project 'com.packt.cookbook:project-with-
profile:jar:1.0-SNAPSHOT':

The following profiles are active:

8. Now run the following command:

mvn -Pdev help:active-profiles

9. Observe the output:

Active Profiles for Project 'com.packt.cookbook:project-with-
profile:jar:1.0-SNAPSHOT':

The following profiles are active:

- dev (source: com.packt.cookbook:project-with-profile:1.0-
SNAPSHOT)

The Maven Help plugin provides different goals. These are also supported by IDEs, and are
as follows:

» effective-pom: This displays the pom file that will be used by Maven after applying
inheritance, interpolation, and profiles. This is useful to know the final pom file when
it is needed for troubleshooting.

Handling Typical Build Requirements

>

all-profiles: This goal displays all the profiles that are available for the project. It
indicates whether the profiles are active or not.

active-profiles: This goal displays the list of active profiles. We explicitly
enabled the dev profile (which was not active by default), so it showed up in the list
of active profiles.

The Maven Help plugin provides a few other goals as well. A notable one is the describe
goal, which is used to get details of any plugin.

1.

[INFO1 ——— maven—-help—plugin:2._2:describe {default-cli> @ standalone—pom ———
[INFO] org.jacoco:jacocomaven—plugin:@.7.2.201489121644

dame :

Description: The JaGoCo Maven Plugin provides the JaCoCo runtime agent to
your tests and allows basic report creation.

aroup Id: org.jacoco

irtifact Id: jacoco—maven—plugin

Jersion: B.7.2.201409121644

aoal Prefix: jacoco

[his plugin has 18 goals:

jacoco:check
Description: Checks that the code coverage metrics are being met.
Implementation: org.jacoco.maven.CheckMojo
Language : java
Bound to phase: verify

Available parameters:

To understand this, let's use an instance and run the following command:

mvn help:describe -DgroupId=org.jacoco
-DartifactId=jacoco-maven-plugin -Ddetail=true

Observe the results:

JaCoCo :: Maven Plugin

1
‘Q The describe goal does not need you to have a Maven project. You

are just getting some help information for a particular plugin!

Using the Maven SCM plugin

Maven provides a mechanism to interact with SCM systems in a vendor-independent way.
Typically, a Maven project is checked in an SCM. Using the Maven SCM plugin, you can
perform a number of SCM-related activities.

170

Chapter 8

Getting ready

The Maven project that we want to use the plugin with should be in an SCM. Maven supports
a number of SCM providers. We will use Git to illustrate this.

How to do it...

1. Add the following code to your pom file:

<scm>

<connection>scm:git:https://bitbucket.org/maruhgar/apache-
maven-cookbook</connections>

<developerConnection>scm:git:https://maruhgarebitbucket.org/
maruhgar/apache-maven-cookbook</developerConnections>
<url>https://bitbucket.org/maruhgar/apache-maven-
cookbook</urls>
</scm>

2. Run the following command:

mvn scm:status

3. Observe the output in Windows:

FINFO] ——— maven—scn—plugin:l.?_2:status {default—cli> @ project—with—documentat

Executing: cmd.exe % /C "git rev-parse ——show—toplevel™
Working directory: C:isprojectssapache—maven—cookbhooksproject—with—documen

Executing: cmd.exe ~¥ ~C "git status —porcelain ."

Working directory: C:sprojectssapache—maven—cookbhooksproject—with—documen

modified status for project—with—documentation/pom.xml

Handling Typical Build Requirements

When the status goal of the Maven SCM plugin is run, it uses the information in the scm tag
of the pom file to get the SCM details. It uses this information and invokes the corresponding
scm command to get the status information. In the preceding example, it isthe git status.

1
‘\Q The command-line version of the relevant SCM client must be

installed and available in the Maven path for this to work.

There are three entries in the scm tag:

» connection: This is the connection information to access the repository. This is
typically in the following form:

<service name>:<scm implementations:<repository urls

o service name: This would be an SCM
0 scm implementation: This would be one of the supported SCMs
0 repository url: This would be a URL for the repository
» developerConnection: This is similar to any connection, except that this may

need authentication or have additional privileges. Typically, the connection access
would be read-only, while the developerConnection access would be read-write.

» url: This is the repository URL.

You will also notice that the appropriate shell command is used based on the operating
system, which is cmd . exe in the case of Windows and sh in the case of Linux.

There's more...

The Maven SCM plugin provides a number of other commands for various SCM operations,
such as add, remove, checkin, checkout, update, diff, branch, and tag.

Bootstrap is an interesting option to checkout and build a project with:

1. Create a new Maven project (or open the bootstrap-project file).
2. Add a valid Maven project in the scm section:

scm>
<connection>scm:git:https://github.com/maruhgar/mvn-examples</
connection>
<urls>https://github.com/maruhgar/mvn-examples</url>

</scm>

172

Chapter 8

3. Add the following entries in the build section:

<builds>
<pluginss>
<plugins>
<groupIds>org.apache.maven.plugins</groupId>
<artifactIds>maven-scm-plugin</artifactIds>
<version>1.9.2</version>
<configurations>
<goals>install</goals>
<goalsDirectory>test-properties</goalsDirectory>
</configuration>
</plugin>
</plugins>
</builds>

4. Runthe Maven command:

mvn scm:bootstrap
5. Observe the results:

nprojectshapache—maven—cookbookybootstrap—project>mun scm:-hootstrap
[INFO]1 Scanning for projects...

LINFQ1

LINFO1

[INFO1 Building Bootstrap Project 1.8-SNAPSHOT

—— maven—scm—plugin:1.9.2:hootstrap (default-cli> @ hootstratp-project —
Removing C:sprojectssapache—maven—cookhookshootstrap—projectstargetscheck

Executing: cmd.exe ~¥ ~C "git clone https:/“github.con/maruhgar/mun—examnp
les C:inprojectssapache—maven—cookbooks\hootstrap—projectistargetscheckout"
[INFO1 Working directory: GC:sprojectswapache—maven—cookbookM\hootstrap—projectstal

et

[INF?] Executing: cnd.exe ¥ /C "git ls—remote https:/sgithub.con/maruhgar/mun—e
amples

[INFO1 Working directory: GC:sUsersraghusAppDatasLocalsTemp

[INFO1 EXﬁcuting: cnd.exe ¥ #C "git pull https:/sgithub.com/marvuhgar/mun—exampl
5 master

[INFO1 Working directory: G:sprojectswapache—maven—cookbook“\hootstrap—projectstal
rget~checkout

[INFO1 Executing: cmd.exe ~8% ~C "git checkout"

[INFO1 Working directory: G:sprojectswapache—maven—cookbook“\hootstrap—projectstal
rget~checkout

[INFO]1 Executing: cmd.exe ~¥ ~C "git ls—files"

[INFO1 Working directory: G:sprojectswapache—maven—cookbook“\hootstrap—projectstal
get~checkout

[INFO]1 &canning for projects...

[INFO1

LINFQ1 = ——

[INFO]1 Building test-properties 1.8-SNAPSHOT

[INFO1

LINFQ1

[INFO1 —— maven—resources—plugin:2.6:resources (default-resources)? @ test—prope

[—

ties

[WARNING] Using platform encoding (Cpl252 actually} to copy filtered resources,
i.e. build is platform dependent?

[INFO]1 skip non existing resourcelirectory C:sprojects“apache—-maven—cookhook-hoo
r?ﬁggg—project\target\checkout\test—prnperties\src\main\resources

Handling Typical Build Requirements

Our Maven project has checked another Maven project, using the information in the scm
section, and run the specified goal on this. We specify a goalsDirectory element because
the SCM contains a number of projects and we want to execute the goals for a specific project,
in this case test-properties

Generating changelogs for a site

Now that we have seen the Maven SCM plugin in action, we can see how we can use this
feature to generate a log of project changes as part of the site report.

How to do it...

1. Open the Maven project project-with-documentation.
2. Add the following entry in the reporting section:
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-changelog-plugin</artifactId>
<version>2.3</version>
</plugin>
3. Run the following command:

mvn site

4. Observe the output:

[INFO] Generating "Change Log" report --- maven-changelog-
plugin:2.3

[INFO] Generating changed sets xml to:
C:\projects\apache-maven-cookbook\project-with-documentation\
target\changelog.xml

[INFO] Executing: cmd.exe /X /C "git whatchanged
"--since=2014-11-06 02:45:57 +0

000" "--until=2014-12-07 02:45:57 +0000" --date=iso --
C:\projects\apache-maven-cookbook\project-with-documentation"

174

5. Observe the generated reports:

Chapter 8

L C i [filey//C/projects/apache-maven-cookbook/project-with-documentation/target/site/changelog.html el €

Project with Documentation

Last Published: 2014-12-06 | Version: 1.0-SNAPSHOT

Project Documentation
» Project Information
~ Project Reports
JavaDocs
Source Xref
Test Source Xref
Change Log
File Activity
Developer Activity
JaCoCo Test
Surefire Report
CPD
PMD
Checkstyle
FindBugs
Sonar

Built by: ™ ..
Mmaven

Project with Documentation

-8

‘Change Log Report

Total number of changed sets: 1

Changes between 2014-11-06 and 2014-12-07

Total commits: 3
Total number of files changed: 3

2014-12-06
08:15:25

2014-11-23
08:33:36

Raghuram Bharathan project-with-documentation/pom.xml = v

<raghu@innoventestech.com> a7d448de525abdd5d562715ce07ccd4378c0f47 &
Added entries for changelog

Raghuram Bharathan project-with-documentation/pom.xml = v

<raghu@innoventestech.com:> 0e4d3bs5f8e907ceeco0f26dob0aebac332117dcf

Updated with additional reports

When the site command is run, Maven uses the information in the reporting section of

the pom file to generate various reports. It finds an entry for the Maven Changelog plugin and
generates the corresponding changelog report.

This is essentially the SCM log for the project, with details such as timestamp, author, and

details of change.

Multi-module Projects

In this chapter we will cover the following recipes:

>

Understanding project inheritance

Understanding project aggregation

Combining inheritance and aggregation

Performing multi-module dependency management
Performing multi-module plugin management
Selectively building modules

Reporting for multi-module projects

Introduction

Except for simple projects, most real-life projects have more than one module. Each of them
can be developed independently. Some modules might depend on others. A project that uses
these modules would want to ensure that it builds successfully with the appropriate versions
of all the modules.

As we look at multiple modules, each module may use a number of dependencies. To avoid
dependency hell, it is important that the versions of dependencies used by each module are
managed well. There is also an opportunity to optimize on the dependencies and plugins to
reduce the repetition of build scripts.

Multi-module Projects

Understanding project inheritance

There are times when you might want a project to use values from another . pom file. You may
be building a large software product, so you do not want to repeat the dependency and other
elements multiple times.

Maven provides a feature called project inheritance for this. Maven allows a number of
elements specified in the parent pom file to be merged to the inheriting project. In fact, the
super pom file is an example of project inheritance.

Getting ready

Maven is set up on your system and is verified to work. To do this, refer to Chapter 1,
Getting Started.

How to do it...

1. Open a project that has inheritance; project-with-inheritance in our case. This has a
subfolder named child, which is the project that inherits from the parent.

2. Update the parent pom file as follows:

<groupId>com.packt.cookbook</groupIds>
<artifactIds>project-with-inheritance</artifactIds>
<packagings>pom</packaging>
<version>1.0-SNAPSHOT</version>

3. Create the pom file for child as follows:

<parent>
<groupId>com.packt.cookbook</groupIds>
<artifactIds>project-with-inheritance</artifactIds>
<version>1.0-SNAPSHOT</version>

</parent>

<modelVersion>4.0.0</modelVersion>

<artifactIdschild</artifactIds>

<packaging>jar</packaging>

<name>Child Project</name>

4. Run the following Maven command in the child subfolder:

mvn clean package

178

Chapter 9

5. Observe the output:

r A T T T T T T T3

We specified a parent element in the pom file of child. Here, we added the coordinates of
the parent, namely groupId, artifactId, and version. We did not specify the groupId
and version coordinates of the child project. We also did not specify any properties
and dependencies.

In the parent pom file, we specified properties and dependencies.

Due to the relationship defined, when Maven runs on the child project, it inherits groupId,
version, properties, and dependencies defined in the parent.

Interestingly, the parent pom file (project-with-inheritance) is oblivious to the fact that
there is a child project.

However, this only works if the parent project is of the pom type.

How did Maven know where the parent pom is located? We did not specify a location in the
pom file. This is because, by default, Maven looks for the parent pom in the parent folder of
child. Otherwise, it attempts to download the parent pom from the repository.

Multi-module Projects

There's more...

What if the parent pom is not in any repository? Also, what if it is in a different folder from the
parent folder of the child? Let's see what happens:

1. Open a child project, where the parent project is not in the parent folder butin a
subfolder (in our case, parent):

hild

| pom.xml
SPC

ain

L —Jjava
L——tum

| I—

ackt
i———cuukhuuk

App.java

| —

ackt
i———cuukhuuk

AppTest. java

pom.xml

2. Update the pom file of the child project as follows:
<parent>
<groupId>com.packt.cookbook</groupIds>
<artifactIds>parent</artifactIds>
<version>1.0-SNAPSHOT</version>
<relativePaths>../parent/pom.xml</relativePath>
</parent>

3. Build the child project:
mvn clean package

Maven now determines the location of the parent pom by virtue of the relativePath
element, which indicates the folder where the parent pom is located. Using this, it builds the
child project successfully.

180

Chapter 9

Understanding project aggregation

A key difference between inheritance and aggregation is that, aggregation is defined with a
top-down approach, whereas inheritance is defined the other way around. In Maven, project
aggregation is similar to project inheritance, except that the change is made in the parent
pom instead of the child pom.

Maven uses the term module to define a child or subproject, which is part of a larger
project. An aggregate project can build all the modules together. Also, a Maven command
run on the parent pom or the pom file of the aggregate project will also apply to all the
modules that it contains.

How to do it...

1. Open a project that has aggregation; in our case project-with-aggregation.
This has a subfolder named aggregate-child, which is the module that is
aggregated by the parent project.

2. Update the parent pom as follows:
<groupId>com.packt.cookbook</groupIds>
<artifactIdsproject-with-aggregation</artifactIds>
<packagings>pom</packaging>
<version>1.0-SNAPSHOT</version>

3. Add the module section and specify the child:

<modules>
<module>aggregate-child</module>
</module>

4. Run the following Maven command in the parent folder:

mvn clean package
5. Observe the output:

C:\projects\apache-maven-cookbook\project-with-aggregation>mvn
clean package

[INFO] Scanning for projects...

[INFO] Reactor Build Order:
[INFO]

[INFO] Aggregate child Project

Multi-module Projects

[INFO] project-with-aggregation

[INFO] Reactor Summary:

[INFO]

[INFO] Child ProjecCt ... eieerereeeoeecoaoasesosoossoananssas
SUCCESS [2.866 sl

[INFO] project-with-aggregationcciieeeeeeencnccns
SUCCESS [0.004 sl

We specified the child project as a module in the aggregator pom. The child project is a
normal Maven project, which has no information about the fact that there exists an
aggregator pom.

When the aggregator project is built, it builds the child project in turn. You will notice the word
Reactor in the Maven output. Reactor is a part of Maven, which allows it to execute a goal
on a set of modules. While modules are discrete units of work; they can be gathered together
using the reactor to build them simultaneously. The reactor determines the correct build order
from the dependencies stated by each module.

There's more...

As in the case of inheritance, what the module is, is not a subfolder of the aggregator project,
but a sibling.

1. Update the module section as follows:

<modules>
<module>../aggregate-child</module>
</module>

2. Build the aggregator project:

mvn clean package

182

Chapter 9

Maven now determines the location of the module by virtue of the path specified, which
indicates the folder where the parent pom is located. By convention, the module name is
expected to be identical to the folder name.

Combining inheritance and aggregation

By using the project inheritance feature of Maven, we can share common build attributes such
as properties and dependencies across all children. We can also aggregate modules and
build them together.

When project inheritance is used, the parent is not aware of the child. In the case of project
aggregation, each module is not aware of the aggregation.

We will now see how to combine and get the benefits of both.

How to do it...

1. Open a multi-module project; in our case, simple-multi-module. This has a
subfolder child, which is the module that is aggregated by the parent project.
2. Update the parent pom as follows:
<groupId>com.packt.cookbook</groupIds>
<artifactId>simple-multi-module</artifactId>
<packaging>pom</packaging>
<version>1.0-SNAPSHOT</version>

3. Add the module section and specify the child:

<modules>
<modules>child</module>

4. Update the child pom to specify the parent element:

<parent>
<groupId>com.packt.cookbook</groupIds>
<artifactIds>simple-multi-module</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>

5. Run the following Maven command in the parent folder:

mvn clean package

Multi-module Projects

6. Observe the output:
[INFO] Reactor Summary:
[INFO]

[INFO] simple-multi-modulecciititiieeeneeenccannnns
SUCCESS [0.162 sl

[INFO] Child Project ... ieieeeeeeeeeeeeeeaoaocasaoanaannas
SUCCESS [2.411 s]

We have specified the parent element in the child pom to indicate who the parent is.
We have also specified the child project as a module in the parent pom. Thus, both the
relationships—inheritance and aggregation—are defined.

When we build the parent project, it automatically builds the child by virtue of the modules
element. At the same time, the child project can be built independently as well.

There's more...

The child project need not necessarily be a subfolder of the parent project. If it is elsewhere,
as we have seen in the earlier recipes, it can be one of the following:

» relativePath: relativePath of the parent element should point to the
appropriate location of the parent

» module: The module element should contain the appropriate path to the
child project

Performing multi-module dependency

PELEL T

Dependency management is a mechanism to centralize dependency information. When there
are a set of projects (or modules) that inherit a common parent, all information about the
dependency can be put in the parent pom and the projects can have simpler references to
them. This makes it easy to maintain the dependencies across multiple projects and reduces
the issues that typically arise due to multiple versions of the same dependencies.

184

Chapter 9

How to do it...

1. Open a multi-module project (simple-multi-module).

2. Add a dependency for junit in the dependencyManagement section:
<dependencyManagement >
<dependencies>
<dependencys>
<groupId>junit</groupld>
<artifactId>junit</artifactIds>
<version>3.8.1l</versions>
<scope>test</scope>
</dependency>
</dependencies>
</dependencyManagement >

3. Update the dependencies section of the child project as follows:
<dependencies>
<dependency>
<groupld>junit</groupId>
<artifactId>junit</artifactId>
</dependency>
</dependencies>

4. Run the following command:

mvn clean test
Ensure that the build completes successfully.

5. Run the Maven command to check the dependency:

mvn dependency:tree
6. Observe the results:

[INFO] --- maven-dependency-plugin:2.8:tree (default-cli) @
simple-multi-module

[INFO] com.packt.cookbook:simple-multi-module:pom:1.0-SNAPSHOT
[INFO]

Multi-module Projects

[INFO]
[INFO] --- maven-dependency-plugin:2.8:tree (default-cli) @ child

[INFO] com.packt.cookbook:child:jar:1.0-SNAPSHOT
[INFO] \- junit:junit:jar:3.8.1l:test

Dependencies that are specified within the dependencyManagement section of the parent
pom are available for use to all the child projects. The child project needs to choose the
dependencies by explicitly specifying the required dependencies in the dependencies
section. While doing this, the child projects can omit the version and scope information so
that they are inherited from the parent.

You may ask, "Why have the dependencyManagement section when child projects inherit
dependencies defined in the parent pom anyway?" The reason is, the parent centralizes
dependencies across several projects. A child project typically needs only some of the
dependencies that the parent defines and not all of them. The dependencyManagement
section allows child projects to selectively choose these.

There's more...

The dependencyManagement section also helps address any surprises of Maven's
dependency mediation. Dependency mediation is what determines what version

of dependency will be used when multiple versions of an artifact are encountered.
However, dependencyManagement takes precedence over dependency mediation and
ensures that dependency mediation does not pick a version over the one specified in
dependencyManagement.

It should be noted that dependencies on different versions are error prone and
dependencyManagement cannot always save them from library version incompatibilities.

Performing multi-module plugin management

In multi-module projects, pluginManagement allows you to configure plugin information that
can be used as required by child projects. The parent pom can define the configurations for
various plugins used by different child projects. Each child project can chose the plugins that
it needs for the build.

186

Chapter 9

How to do it...

Open a multi-module project (simple-multi-module).

Add a configuration for the Maven build helper plugin in the pluginManagement
section to copy additional resources:

<pluginManagement >
<plugins>
<plugins>
<groupld>org.codehaus.mojo</groupld>
<artifactIds>build-helper-maven-plugin</artifactIds>
<version>1.9.1</versions>
<executionss>
<execution>
<ids>add-resource</id>
<phase>generate-resources</phase>
<goals>
<goal>add-resource</goals>
</goals>
<configurations>
<resources>
<resource>
<directorys>src/resources/xml</directory>
<targetPath>xml</targetPath>
</resource>
<resource>
<directorys>src/resources/json</directory>
<targetPath>json</targetPath>
<includes>
<include>include.json</include>
</includes>
<excludes>
<excludesexclude.json</exclude>
</excludes>
</resource>
</resources>
</configurations>
</executions>
</executionss>
</plugin>
</plugins>
</pluginManagement >
</build>

Multi-module Projects

3. Run the following command to build the project:

mvn clean test
Note that the additional resources are not getting copied in the child project.

4. Now, use the corresponding plugin in the child project:

<builds>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</groupIld>
<artifactId>build-helper-maven-plugin</artifactId>
</plugin>
</plugins>
</builds>

5. Build the project again.
Observe the output:
[INFO] Copying 2 resources to xml

[INFO] Copying 1 resource to json

We defined the Maven build helper plugin to copy resources from additional folders in the
pluginManagement section of the parent pom. It is not available to the child pom until the
child uses the plugin. When the child project did not define the plugin, the plugin definition in
the parent pom had no effect. When the child project defined the plugin, it took effect and the
additional resources got copied over.

If a plugin is used as part of the build lifecycle, then its configuration in the
pluginManagement section will take effect, even if not explicitly defined by the child. Let us
see how this happens:

1. Define the Maven compiler plugin in pluginManagement of the parent pom:

<pluginManagement>
<plugins>
<plugin>
<groupIds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-compiler-plugin</artifactIds>
<version>3.2</version>
<configuration>

188

Chapter 9

<sources>1l.8</sources
<target>1.8</target>
</configurations>
</plugin>
<plugins>
</pluginManagement >

2. Without adding the plugin to the child pom, run the following command using Java 7:

mvn clean test
3. Observe the error:

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-
compiler-plugin:3.

2:compile (default-compile) on project child: Fatal error
compiling: invalid tar

get release: 1.8 -> [Help 1]

What happened here? Even though the child pom did not define the Maven Compiler plugin,
the configuration for the Maven Compiler plugin in the pluginManagement section of the
parent pom took effect because the compile goal was part of the build lifecycle. As the
configuration stipulated a Java 8 target, the compilation failed.

What if we do not want to inherit specific plugin configurations? Maven provides a way to do
this. Let us see how:

1. Update the preceding Maven Compiler plugin configuration as follows:

<pluginManagement >
<pluginss>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactIds>
<versions>3.2</version>
<inherited>false</inherited>
<configurations>
<sources>1l.8</sources
<target>1.8</target>
</configurations>
</plugin>
<plugins>
</pluginManagement >

2. Now run the following using Java 7:

mvn clean package

Multi-module Projects

3. Observe that the project compiles without errors, though the plugin configuration
specified Java 8.

This is because the configuration was not inherited to the child module as we set the
inherited elementto false.

Selectively building modules

When a project has a number of modules, there may be situations when we might want to
selectively build modules. One such situation could be because the module might run only on
specific machines. Another reason could be that a module may have long-running tests that
may make sense only in test servers.

Let us see how we can selectively build modules by using the profile feature of Maven.

How to do it...

1. Open a multi-module project that has two modules (two-multi-module), namely
common-one and dev-two.

2. Inthe parent pom, add one project to the modules section:

<modules>
<module>common-one</module>
</modules>

3. Define a profile and include both modules:

<profiles>
<profile>
<id>dev</id>
<modules>
<module>common-one</modules>
<module>dev-two</module>
</modules>
</profiles>
</profiles>

4. Runthe Maven command to build with the dev profile:

mvn -P dev clean test

5. Observe the result:

190

Chapter 9

alalalalalals
=

ITZTTZTZTLTZTLE

I

Run the Maven command to build without profile:

mvn clean test

7. Observe the result:

[INFO] Reactor Summary:
[INFQ1]

[INFO] two—multi-module SUCCESS
[INFO] First Child Project SUCCESS

When you have multiple modules and you want to control when specific ones should be built,
the simplest way to achieve this is to define specific profiles and define modules within each
of them. In our example, we created a dev profile to build both modules, common-one and
dev-two. The default Maven build builds only the common -one module.

What we achieved is the ability to exclude or skip specific modules from build as required. As
you saw, a profile can only extend the list of modules, so it cannot actually blacklist a module.

M Similarly, we could define pluginManagement and
Q dependencyManagement within profiles so that these take
effect only for the profiles.

There's more...

Maven also provides command-line options to build modules selectively. Here are some of
them with examples based on the two-multi-module Maven project:

» -pl -projects: Thisis a comma-separated list of projects to be built. An example
for this is as follows:

mvn clean package -pl common-one

Multi-module Projects

» —am: This stands for - -also-make: This builds projects required by the list if the
project list is specified:

mvn clean package -pl common-one -am

» —amd: This stands for - -also-make-dependants. This builds projects that depend
on projects on the list (if project list is specified):

mvn clean package -pl common-one -amd

» -rf:This stands for -resume - from. This resumes build from a specific project
(useful in the case of failures in a multi-module build):

mvn -Pdev clean package -rf dev-two

Reporting for multi-module projects

When we talk about generating a site report for a multi-module project, we refer to generating
this for each module of the project and the parent project. In the case of the site report for a
multi-module project, a couple of factors need to be taken into account. The first one is to test
if the links between the parent and the modules work correctly. The other is to check if certain
site reports can be aggregated instead of being reported individually for each module.

How to do it...

1. Open a multi-module project (two-multi-module) with two modules, one and two.

2. Add the following command to the reporting section of the parent pom for
checkstyle:
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-checkstyle-plugin</artifactIds>
<version>2.13</version>
<reportSets>
<reportSet>
<id>aggregate</id>
<inheriteds>false</inheriteds>
<reports>
<report>checkstyle-aggregate</report>
</reportss>
</reportSet>
</reportSets>
</plugin>

192

Chapter 9

3. Runthe command to generate site report:

mvn test site

4. Click on the Checkstyle link in the site report:

€« C' [filey//C/projects/apache-maven-cookbook/multi-module-reporting/target/staging/checkstyle-aggregate.html bie

multi-module-reporting

Last Published: 2014-12-13 | Version: 1.0-SNAPSHOT multi-module]

Modules

First Child Project
Second Child Project ChECkSter RESI.“tS
Project Documentation
» Pr t Informati
- p:.gjsﬁmne;é:?@f en The following document contains the results of Checkstyle m 5.7,
JavaDocs
Source Xref
Change Log
File Activity s
Developer Activity
Surefire Report ummarv
Checkstyle
BUil by — A o Q
Mmaven
2 0 a 48
Files
i & Q
com/packt/cookbook/App.java a 0 37
com/packt/cookbook/Two.java a 11

When the site goal is run for a multi-module project, it generates the site report for all the
modules in addition to the parent module. All the reports are separately generated for each
module. However, plugins such as Checkstyle provide an option to generate aggregated
report across all the modules of the project. This allows us to get a consolidated view of the
Checkstyle violations across all the modules of the project.

\ Other reporting plugins such as FindBugs, PMD, and Cobertura
~ support multi-module reporting. However, not all of them support the
Q aggregation of reports. Other reporting plugins that allow aggregated
reporting are Javadocs and JXR.

Though the site report generated for a multi-module project includes links to each child

module, the links will not work correctly, as each module report is in the target/site folder
of the respective module.

Multi-module Projects
Let's see how we can verify that the modules are correctly linked in the report:

1. Adda distributionManagement section in the parent pom:
<distributionManagement>
<site>
<idspackt</id>
<urlsfile:///C:/fullsite</url>
</site>
</distributionManagement >
2. Run the following command to generate site report:

mvn test site

3. Run the following command to stage the site:

mvn site:stage -DstagingDirectory=C:/fullsite

4. Open the folder:

Local Disk (C:] v fullsite v O Search fullsite
MName : Date modified Type Size
J apidocs 13-12-2014 17:51 File folder
| css 13-12-214 17251 File folder
J images 13-12-2014 17:51 File folder
| one 13-12-214 17251 File folder
J two 13-12-2014 1T7:51 File folder
) wref 13-12-201417:5 File folder
& changelog 13-12-2014 17:51 Chrome HTML Do... 6 KB
@ checkstyle 13-12-2014 17:51 RSS File KB
& checkstyle-aggregate 13-12-2014 17:51 Chrome HTML Do... 21 KB
© dependencies 13-12-201417:51 Chrome HTML Do... 7TKB
[dependency-cenvergence 13-12-201417:5 Chrome HTML Do... KB
© dependency-info 13-12-201417:51 Chrome HTML Do... 8 KB
[dependency-management 13-12-201417:51 Chrome HTML Do... TKE
€ dev-activity 13-12-201417:51 Chrome HTML Do... 6 KB
ﬁ distribution-management 13-12-2014 17:51 Chrome HTML Do... TEB
& file-activity 13-12-2014 17:5 Chrome HTML Do... 6 KB
& index 13-12-2014 17:51 Chrome HTML Do... TKB
& integration 13-12-2014 17:51 Chrome HTML Do... TKB
G' issue-tracking 13-12-2014 17:51 Chrome HTML Do... TEB
WA 13 47 And4 4T7Ed . LITRAL A0 D

You will notice that the site data for both the modules are now subfolders of the project site
folder. Opening the index page of fullsite will allow us to navigate to each module site and

ensure that the links are working:

€« X M [filey//C/fullsite/index.html

multi-module-reporting

Last Published: 2014-12-13 | Version: 1.0-SNAPSHOT

Modules
First Child Project
Second Child Project
Project Documentation
¥ Project Information
About
Plugin Management

About multi-module-reporting

Multi-module reporting

multi-medule-reperting

Chapter 9

Distribution
Management
Dependency
Information
Dependency
Convergence
Source Repository
Mailing Lists
Issue Tracking
Continuous
Integration
Project Plugins
Project License
Project Modules
Dependency
Management
Project Team
Project Summary
Dependencies

» Project Reports

Built by ™ .
Mmaven

Project Modules

This project has declared the following modules:

First Child Project One of the child project to illustrate multi-module
reporting

Second Child

Project

The second module in the multi-module project to report
reporting

10

Java Development
with Maven

In this chapter, we will cover the following recipes:

» Building a JAR project

» Generating an executable JAR

» Generating a JAR of the source code
» Generating a JAR of the test classes
» Building a WAR project

» Building an EAR project

» Building a pom project

» Running a web project with Jetty

» Running a web project with Tomcat

Introduction

Maven is primarily a build tool for Java projects. Java projects can generate different types of
binaries. Typically, the output of a Java project is a JAR file. For web applications, Java classes
combined with other type of files result in a WAR or EAR file as well. Maven provides plugins
and lifecycle phases to generate various types of binary artifacts for Java projects.

Java Development with Maven

Building a JAR project

The default type of artifact generated by Maven is JAR. If the packaging element is absent,
or specified as jar, Maven considers it a JAR project. A JAR project combines all the source
classes along with the necessary project resources to a single file. This JAR file can be
distributed for it to be used elsewhere.

Getting ready

Maven is set up on your system and is verified for work. To do this, refer to Chapter 1,
Getting Started.

How to do it...

1. Open a simple Maven project, in our case simple-project.
2. \Verify that the type is absent or set to jar:

<modelVersion>4.0.0</modelVersion>
<groupId>com.packt.cookbook</groupIds>
<artifactIds>simple-project</artifactId>
<packaging>jar</packaging>

3. Run the following Maven command:

mvn clean package
4. Observe the output:

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ simple-project

[INFO] Building jar: C:\Users\Deepa\Documents\apache-maven-
cookbook\simple-project\target\simple-project-1.0-SNAPSHOT.jar

The package option is part of Maven's default lifecycle. When Maven is run with the package
option, it runs all the phases up to and prior to it, in order. Maven first compiles the project,
runs the tests, and then, based on the packaging type, invokes the suitable plugin to package.
In our case, as we specified the packaging as jar, Maven used the jar goal of the Maven
JAR plugin to create a JAR artifact in the target folder.

198

Chapter 10

See also

>

The Generating an executable JAR recipe in this chapter

Generating an executable JAR

The JAR artifact generated by Maven works well when used as a dependency in another
project. However, it cannot be run as an executable without manually specifying the main
class and explicitly specifying the dependencies that the project uses in the classpath.

What if we want to create an executable JAR for the project? This may be useful when the
JAR needs to be tested or the project is a simple tool that should be invoked without
additional effort.

How to do it...

1.
2.

3.

Open a simple Maven project (project-with-executable-jar):
Add the following section in the pom file:

<builds>
<pluginss>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-jar-plugin</artifactId>
<version>2.6</versions>
<configurations>
<archives>
<manifest>
<addClasspath>true</addClasspath>
<mainClass>com.packt.cookbook.App</mainClass>
</manifest>
</archives>
</configurations>
</plugin>
</plugins>
</builds>

Add the plugin configuration to copy over the dependencies to the target folder:
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactIds>
<version>2.9</versions>

<executionss>

Java Development with Maven

<execution>
<id>copy-dependencies</id>
<phase>package</phase>
<goals>

<goal>copy-dependencies</goals>

</goals>
<configurations>
<outputDirectory>${project.build.directory}</

outputDirectory>
<excludeArtifactIds>junit</excludeArtifactIdss>

</configurations>
</executions>
</executions>
</plugin>

4. Run the following command:
mvn clean package
5. Observe the target folder:

ssprojectssapache maven—cookhbooksproject—with—executable—jar>dir target
UJolume in drive C has no label.
Uolume Serial Mumber iz B4BE-E184

Directory of C:sprojects“apache—maven—cookhook“project—with—executahle—jarstarg

classes
278,758 logback-classic—1.1.2.jar
427,729 logback-core-1.1.2.jar
maven—archiver
maven—status
3.836 project—with—-executabhle—jar—-1.8-SNAPSHOT. jar

32,121 s1fdjapi—1.7.7.jar
surefire—reports
test—classes

6. Run the generated JAR file:
java -jar project-with-executable-jar-1.0-SNAPSHOT.jar

7. Observe the output:

C:\projects\apache-maven-cookbook\project-with-executable-
jar\target>java -jar project-with-executable-jar-1.0-
SNAPSHOT. jar

06:40:18.437 [main] INFO com.packt.cookbook.App - Hello World

200

Chapter 10

We have made the following configurations to the Maven JAR plugin in our pom file:

» Added classpath: This adds all the dependant JARs to the manifest classpath section

» Specified the main class: This information is again updated in the manifest

We also added the copy-dependencies goal of the Maven Dependency plugin to copy over
the required dependencies to the folder where the executable JAR is generated.

When we then run the executable JAR, it uses the manifest file to determine the main class as
well as the dependencies, loads them, and runs.

Let us look at the manifest file generated:

anifest-Version: 1.8

Built-By: raghu

Build-Jdk: 1.7.8_67

Class-Path: slf4j-api-1.7.9.jar logback-classic-1.1.2.jar logback-core
-1.1.2_jar

Created-By: Apache Maven 3.2.3

Main-Class: com.packt.cookbook.fpp

Archiver-Version: Plexus Archiver

Evidently, for this to work, the executable JAR should be accompanied by the dependencies
that it uses. In the Creating an assembly recipe in Chapter 11, Advanced Maven Usage,

we will learn how to create an assembly with all the dependencies, which can be distributed
more easily.

Generating a JAR of the source code

For many projects, it is useful to generate a JAR of the source code along with the artifact.
The source thus generated can be imported to IDEs and used for browsing and debugging.
Typically, the artifacts of most open source projects are accompanied by sources

and Javadocs.

How to do it...

1. Open a project for which you want to generate and attach the source code
(project-with-source-code).
2. Add the following plugin configuration to the pom file:

<build>
<plugins>

201

Java Development with Maven

<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-source-plugin</artifactIds>
<versions>2.4</version>
<executionss>
<execution>
<id>attach-sources</id>
<phase>package</phase>
<goals>
<goal>jar-no-fork</goal>
</goals>
</executions>
</executions>
</plugin>
</plugins>
</build>

3. Run the following Maven command:

mvn clean package

4. Observe the output:

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ project-with-
source-attached ---

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-source-attached\target\project-with-source-attached-1.0-
SNAPSHOT.jar

[INFO]

[INFO] --- maven-source-plugin:2.4:jar-no-fork (attach-sources) @
project-with-source-attached ---

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-source-attached\target\project-with-source-attached-1.0-
SNAPSHOT-sources.jar

202

Chapter 10
5. Examine the target folder:

Directory of C:vprojectswapache—maven—cookbooksproject—with—source—attachedstar
et

g8-12-2014 @%9:48 <DIR> .

g8-12-2014 @%9:48 <DIR> ..

g8-12-2014 @%9:48 <DIR> classes

B-12-2814 @%:40 <DIR> maven—archiver

B-12-2814 B9:39 <DIR> maven—status

B-12-2814 ©9:48 project—uwith—source—attached-1.8-SNAPSHOT—s0

wrces . jar

B-12-2814 @A%:4A project—uwith—source—attached-1 .B-SNAPSHOT _ja

8-12-20014 @7:-44 surefire—reports
B-12-2814 @7:40 test—classes

We added the Maven Source plugin to the pom file. We also configured the plugin to run the
jar-no-fork goal during the package phase. The goal creates a JAR of the project source
code and makes it available along with the project artifacts.

The jar-no-fork goal is used to bind the goal to the build lifecycle. To run the plugin and
create the JAR independent of the lifecycle, the jar goal can be used as follows:

mvn source:jar

Subsequent phases (such as install) install the source artifact along with the
project artifact.

There's more...

What if we want to attach the Javadoc instead of (or in addition to) sources? Let us do this:

1. Add the following plugin to the pom file:
<plugins>
<groupIds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-javadoc-plugin</artifactIds>
<version>2.10.1</version>
<executionss>
<execution>
<id>attach-javadocs</id>
<phase>package</phase>
<goals>
<goals>jar</goal>
</goals>
</executions>
</executions>
</plugin>

203

Java Development with Maven

2. Build the aggregator project:

mvn clean package
3. Observe the output:

LINFUO1 —— maven—Jar—-plugin:=Z.4:jar <detawlt—jar} UV project—with—source—-attached

[INFO]1 Building jar: C:wprojectssapache—maven—cookbooksproject—-with—source—attac
E?ﬂﬁgﬁrget\pruject—uith—suurce—attached—i.E—SHHPSHOT.jar

[INFO1 —— maven—source—plugin:2.4:jar-no—fork (attach—sources» @ project—with—=s
urce—attached —-—

[INFO]1 Building jar: C:sprojectszsapache—maven—cookhbooksproject—with—source—attac
Eiﬂ;g?rget\pruject—uith—suurce—attached—i.E—SHHPSHOT—suurces.jar

[INFO1 —— maven—javadoc—plugin:2.18.1:jar <(attach—-javadocs)? @ project—with—sour
e—attached ——

[INFO1

ovading source files for package com.packt.cookhbook...

onstructing Javadoc information...

tandard Doclet version 1.7.8_67

wilding tree for all the packages and classes...

enerating C:sprojectswapache—maven—cookhookproject—uwith—source—attached target
apidocsscom~packtscookhook>App.html. ..

enerating C:wprojectssapache—maven—cookbooksproject—with—source—attached \target
napidocshcomvpacktscookbook \package—frame _html. ..

Maven runs the jar goal of the Maven Javadoc plugin in addition to the jar-no-fork goal
of the Maven Source plugin. Both the JARs are now created, in addition to the project artifacts,
and are now available for distribution.

sl .
‘Q Besides sources, the test sources and test Javadocs can also be

generated and attached, if relevant to the project.

Generating a JAR of the test classes

There could be situations when you would want to use the test classes and resources of a
project as a test dependency in another project. This is typically the case in multi-module
projects, where a module depends on another module. There could be utility code in the test
classes of a module that can be reused in another module.

One way to achieve this would be by creating a separate project to hold these classes.
However, that is cumbersome and may be confusing as well.

Maven provides another way to achieve this.

204

Chapter 10

How to do it...

1. Open a project for which you want to create a test JAR (project-with-test-jar).

2. Add the following plugin configuration to the pom file:

<builds>
<pluginss>
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactIds>maven-jar-plugin</artifactId>
<version>2.5</version>
<executionss>
<execution>
<goals>
<goal>test-jar</goal>
</goals>
</execution>
</executionss>
</plugins>
</plugins>
</build>

3. Run the following Maven command:

mvn clean package

4. Observe the output:

[INFO] --- maven-jar-plugin:2.5:jar (default-jar) @ project-with-
test-jar ---

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-test-jar\tar

get\project-with-test-jar-1.0-SNAPSHOT.jar
[INFO]

[INFO] --- maven-jar-plugin:2.5:test-jar (default) @ project-with-
test-jar ---

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-test-jar\tar

get\project-with-test-jar-1.0-SNAPSHOT-tests.jar

205

Java Development with Maven

5. Examine the target folder:

Directory of C:osprojectssapache—maven—cookbooksproject—uwith—test—jarstarget

L8-12-20014 18:89 <DIR> -
18-12-2014 <DIR> ..
<DIR> classes
<DIR> maven—archiver
<DIR> maven—status
project—with—test—jar—1.8-SHAPSHOT—tests. jar

18—12-2814 project—with—test—jar—1.B-SHAPSHOT . jar
18—12-2814 <DIR> surefire—reports

18-12-2@14 __ <DIR> test—classes

We specified a test-jar goal to the Maven JAR plugin. This asks Maven to generate a JAR of
test classes and resources. This JAR can be installed along with the project artifact. It can also
be specified as a dependency in another project as follows:

<dependenciess>
<dependencys>
<groupId>com.packt.cookbook</groupIds>
<artifactIdsproject-with-test-jar</artifactIds>
<version>1.0-SNAPSHOT</version>
<type>test-jar</type>
<scope>test</scope>
</dependency>
</dependencies>

M One thing to note though is the test JAR does not bring its transitive test-
Q scoped dependencies with it if you add a dependency on this. These
dependencies, if required, need to be specified by hand.

Building a WAR project

So far, we have been building projects that generate a JAR artifact. When it comes to web
applications, we typically create WAR artifacts. Maven supports the building of WAR artifacts.
The packaging type .war indicates to Maven that it is a WAR artifact. Maven automatically
invokes the corresponding lifecycle bindings.

206

Chapter 10

How to do it...

1. Run the following command from the command prompt:

mvn archetype:generate -DinteractiveMode=false
-DgroupId=com.packt.cookbook -DartifactId=simple-webapp
-DarchetypeArtifactId=maven-archetype-webapp

2. Observe the output:

[INFO1 Using following parameter
maven—archetype—webapp:1.8
[INFO1

INFO1 Parameter: groupld, Value: com.packt.cookbook
INFO1 Parameter: packageMame. Ualue: com.packt.cookbook

INFO1 Parameter: package, Ualue: com.packt.cookbook

INFO1 Parameter: artifactld, Value: simple—wehapp

INFO1 Paramet basedir, Ualue: C:“projects

INFO1 Parameter: version, Ualue: 1.8-5HNAPSHOT

INFO1 project created from 0ld <1.x> Archetype in dir: C:sprojectsssimple—wehap

3. Open the created pom file:

<modelVersion>4.0.0</modelVersion>
<groupId>com.packt.cookbook</groupIds>
<artifactId>simple-webapp</artifactIds>
<packaging>war</packaging>
<version>1.0-SNAPSHOT</version>
<name>simple-webapp Maven Webapp</names>
<urlshttp://maven.apache.org</urls>
<builds>

<finalName>simple-webapp</finalName>

</build>

4. Runthe command to build the project:

mvn clean package

207

Java Development with Maven
5. Observe the output:

[INFO1

[INFO] —— maven—war-plugin:2._.2:war <(default—war) 0 simple-wehapp ——

[INFO1 Packaging wehapp

[INFO]1 Assembling webapp [simple-webhappl in [C:sprojectssapache—-maven—cookhookss
imple—wehappstarget~zimple—wehappl

[INFO] Processing war project

[INFO]1 Copying wehapp resources [C:isprojectssapache—maven—cookbookssimple—webapp
“ercwmainswebappl

[INFO]1 UWebhapp asszembled in [35 msecs]

[INFO1 Building war: C:sprojectssapache—maven—cookhookssimple—webapphtargetssimp
le—webhapp.war

[INFO1 WEB-INF-weh.xml already added, skipping

6. Check the target folder:

[Directory of C:\projects\apache-maven-cookbook\simple-webapp\

target

18-12-2014 20:52 <DIR>

18-12-2014 20:52 <DIR> ..

18-12-2014 20:52 <DIR> classes
18-12-2014 20:52 <DIR> maven-archiver
18-12-2014 20:52 <DIR> simple-webapp
18-12-2014 20:52 2,226 simple-webapp.war

We used the Maven Archetype plugin to bootstrap a simple web project. This generated a pom
file along with other contents for a web application. When you examine the pom file, you will
notice that the packaging type is set to war.

Maven uses this information to invoke the war goal of the Maven plugin to create a WAR of
the project contents.

Also, observe that we specified the £ inalName element. Maven uses this to create the name
of the WAR artifact. In the absence of this element, Maven uses the default name, which
would have been simple-webapp-1.0-SNAPSHOT.war.

There's more...

The Maven WAR plugin can be used in many ways. The default option creates a WAR file.
During development, we would want to speed up things by generating the WAR file in exploded
form. To do this, perform the following steps:

1. Openthe simple-webapp project.

2. Run the following command:

mvn war:exploded

208

Chapter 10

3. Examine the content of the target folder:

ssprojectssapache—maven—cookbookszimple—webapp target>tree ~f simple—webapp
older PATH listing
olume serial number iz B4BH-E184
:\PROJECTS~APACHE-HAVEN-COOKBOOK~\SIMPLE-WEBAPP~TARGET ~5 IMPLE-WEBAFP

index.jsp

maven—feather.png

ETA—INF

HEB—INF

weh.xnl

lasses

om
L—rpackt
i———cnnkhnnk
App.class

1ib
logbhack—classic—1.1.2. jar
logback-—core—1.1.2. jar
slfdj-api-1.7.9.jar

Building an EAR project

Maven provides support to generate Java EE Enterprise Archive (EAR) files. These can be
deployed in application servers such as JBoss, WebLogic, and WebSphere.

How to do it...

1. Run the following command from the command prompt:

mvn archetype:generate -DgroupId=com.packt.cookbook
-DartifactId=simple-ear -DarchetypeArtifactId=wildfly-javaee7-
webapp-ear-archetype -DarchetypeGroupId=org.wildfly.archetype
-DinteractiveMode=false

209

Java Development with Maven

2. Observe the result:

[INFO1 Using following parameters for creating project from Archetype: wildfly—j
vaee?—wehapp—ear—archetype:-8_.2_A_Final

Parameter: groupld. Ualue: com.packt.cookbook

Parameter: artifactld, Ualue: simple—ear

Parameter: version,. Ualue: 1.8-SNAPSHOT

Parameter: package. Ualue: com.packt.cookhbook

Parameter: packagelnPathFormat, Ualue: comspackt-cookhook

Parameter: version. Ualue: 1.0-SHNAPSHOT

Parameter: package, Ualuw com.packt._.cookbook

Parameter: groupld. Ualue: com.packt.cookbhook

Parameter: artifactId. Value: simple—ear

Parent element not overwritten in C:isprojectssszimple—earszimple—ear—ejhsp

Parent element not overwritten in C:isprojectssszimple—earszimple—ear—webp
m.xml
[WARMING]1 CP Don’t override file C:sprojectssimple—earssimple—ear—webh srcimain,
pehapps\HWEB-INF~templatessdefault .xhtml
[INFO1 Parent element not overwritten in C:vprojectsssimple—earssimple—ear—earp
om.-xml
[INFO]1 project created from Archetype in dir: C:nprojectsssimple-ear
LINFQ]
[INFO1 BUILD SUCCESS

3. Build the generated project:

mvn clean package

4. Observe the generated output:

SUCCESS
SUCCESS 5.899 s1

WAR Module SUCCESS 2.114 =1
EAR Module . . SUCCESS B.887 =1

5. Open the target folder:

projects simple-ear simple-ear-ear » target Search target

-~

P Marne Date modified Type

maven-archiver 28-02-2015 0746 e folder
simple-ear-ear 28-02-2015 0746 e folder

application.xml 28-02-2015 07:46 dL File

simple-ear-ear.ear 28-02-2015 0746 EAR. File

Chapter 10

We used the Maven Archetype plugin to bootstrap a simple EAR project. It generated a multi-
module project, which has an EJB module, web module, and a EAR module along with the
aggregate pom file. When you examine the pom file of the EAR module, you will notice that the
packaging type is set to ear.

Once built, Maven builds all the modules. In the EAR module, it uses the packaging
information to invoke the ear goal of the Maven EAR plugin to create a EAR of the
project contents.

Building a pom project

There are many reasons why you may want to make a pom file available as an artifact. One
reason is the aggregate project. An aggregate project must have the pom packaging type.
Another reason could be a pom, which can be imported as a dependency. Whatever the
reason, Maven provides support to build a pom project.

How to do it...

Open a simple pom project (simple-pom-project).

Observe the packaging type:

<groupId>com.packt.cookbook</groupIds>
<artifactIds>simple-pom-project</artifactId>
<packaging>pom</packaging>
<version>1.0-SNAPSHOT</version>
<description>Simple pom project</descriptions>

3. Build the project:

mvn clean package
Note that only the clean goal is run.

4. Run the following command:

mvn clean install

Java Development with Maven

5. Observe the output:

ssprojectshapache—maven—cookbookssimple—pom—project>men install
Scanning for projects...

[INFO1 —— maven—-install-plugin:2.4:install <(default—install) @ simple-pom—proje
t ——
[INFO]1 Installing C::\projectssapache—maven—cookbook:simple—pomn—projectspom.xml t

C:nsof twaresmavenscomspacktscookhooksimple—pom—projects1 .@—SNAPSHOT\simple—po
—project—1.8-8SNAPSHOT . pom

NFO1
[INFO1 BUILD SUCCESS

The following are the default bindings for the pom packaging type:
» package: site:attach-descriptor: This attaches a descriptor to the site
report, if applicable
» idinstall: install:install: This installs the project in the local repository
» deploy: deploy:deploy: This deploys the project to the remote repository

As we can see, Maven does not run any other goals for the pom packaging type. However, if it
sees module elements, it invokes the specified Maven goals on all the defined modules.

Also, various configurations, including pluginManagement and dependencyManagement,
get inherited by all of the child projects.

What if you had a reason to compile some source files or run some tests even though the
packaging type is pom? This may not be a usual scenario, but it can be done by explicitly
invoking the relevant plugin goals in the following way:

1. Open the simple pom project (simple-pom-project).

2. Run the following command:

mvn clean compiler:compile compiler:testCompile surefire:test
jar:jar

Chapter 10

3. Observe the output:

swprojectssapache—maven—cookbookssimple—pom—project>mvn compiler:compile compil
ritestCompile surefire-test jar:jar
[INFO1 Scanning for projects...

[INFO1

[INFO]1 —- maven—compiler—-plugin:3.l:compile {default—-cli} B simple—pom—project
[INF0O1 Changes detected — recompiling the module?

[INFO1 Compiling 1 source file to C:sprojectssapache—maven—cookhookssimple—pom—p
ro jectstargetsclazses

[INFO1

[INFO]1 —— maven—compiler—plugin:3.1l:testCompile <default—cli> @ zimple—-pom—proj
ct ——

[INFO]1 Changes detected — recompiling the module?

[INFO1 Compiling 1 source file to C:szprojectssapache—maven—cookhookssimple—pom—p
0 ject \targettest—classes

[INFO1

[INFO1 —- maven—surefire-plugin:2.14.1:test {(defawlt—-cli> @ simple—pom—project

[INFO1 Surefire report directory: C:zprojectssapache—maven—cookbookssimple—-pom—p
ro ject\targetsuref ire—reports

ests pun: 1. Failures: B, Errors: B, Skipped: @, Time elapsed: B.B62 sec
ezults :
ests pun: 1, Failures: B, Errvors: B, Skipped: @
[INFO1
[INFO1 —— maven—jar-plugin:2.5:jar (default—cli> @ simple-pom—project ——
[INFO1 Building jar: C:sprojects>apache—maven—cookbook:simple-pom—-projectstarget
simple—pom—project—1.@-SHMAPSHOT . jar
]

INFO1
[INFO1 BUILD SUCCESS

We now explicitly invoke the following goals:

» compiler:compile: This compiles the source files
» compiler:testCompile: This compiles test files
» surefire:test: This runs tests

» Jjar:jar: This creates a JAR artifact

Maven does not prevent us from doing this.

Java Development with Maven

Running a web project with Jetty

When developing web applications, it is good to have a quick way to check if the application
deploys successfully without errors. IDEs allow users to hot-deploy applications. Maven
provides a mechanism to quickly run the project using Jetty. Jetty is a popular open source
application server that can be used to deploy web projects. The Maven Jetty plugin allows
applications to be deployed to Jetty and runs them as part of the Maven build process.

Open a simple web project (simple-web-project).
Run the following Maven command:

mvn org.eclipse.jetty:jetty-maven-plugin:run

3. Observe the result:

. Command Prompt - mvn org.eclipsejetty;jetty-maven-pluginrun =~ =

[INFO]
[INFO] —— Jjetty—maven—plugin:7.2.1.v28140689 :run (default-—cli> @ simple—webapp

'814 12 20 B7:4B8:24.468:INF0: imain: Logging initialized BE28%1ms
1 Configuring Jetty for project: simple—webapp Maven Webapp
webAppSourceDirectory not set. Teying srcmain“webapp
Reload Mechanic: automatic
Classes = G:iwprojects™apache—maven—cookbookssimple—wehappstargetsclasses
Context path = ~
Imp directory = C:\projectshapache—maven—cookbookssimple—webappstargetstm

Weh defaults = orgseclipsesjettyswebapprsuwebdefault.xml
Web overrides = none
weh.xml file = file:/C:/projectssapache—maven—cookbook/simple—webapp-src/
ainswehbapp/WEB-INF uebh.xml
[INFO1 Webapp directory = G:ivprojectssapache—maven—cookhbhookssimple—webapphsrcima
in“~webapp
2@14-12-20 B7:48:24 _538: INFO-ueau.Seruer'maln- Jetty—2.2.1._v20148689
2A14-12-20 87:48:24.976:INFO:/-main: Warning: Mo org.apache.tomcat.JarScanner se
in ServletContext. Falling back to default JarScanner implementation.
2014-12-20 A7:40:25_226:INF0:pejsh.ContextHandler:main: Started o.e.j.m.p.Jettyll
ebAppContextBcf2ebdb{/.file: C:/projects apache—maven—cookbook simple—webhapp-src
main-webapp . AUAILABLE>{file: C: projects apache—maven—cookhook /simple—wehapp-s
rc./mainswehappsy
2014-12-20 @7:40:25.226:YARN:cejsh.RequestLogHandler:main: ?'RegquestLog
2@14-12-20 @7:-40:25 257 :INFO:oe js .ServerConnector:main: Started ServerConnectord
2aa3873{HTITP/1.1>{P.A.A.B:8A80>
2A14-12-20 B87:408:25.273:INF0:o0ejs .Serverimain: Started BE3784ns
[INFO] Started Jetty Server

Chapter 10

4. Access the web application from the browser by going to http://localhost :8080.

/B tocelhosteoeo x Y}

- C M | [localhost:8080

Hello World!

Buillt by ™
maven

The Maven Jetty plugin allows web applications to be deployed and tested using Jetty. The

run goal is bound to the package phase. Maven runs all the phases prior to it. Jetty deploys

the webapp from its sources; the webapp does not have to be built into a WAR. It looks for the

relevant parts of the web application in the default Maven locations. Here are some instances:
» resources in src/main/webapp

» classesin target/classes

» web.xml in src/main/webapp/WEB-INF

Jetty uses default values to start the server.

As Jetty is not an official Maven plugin, we have explicitly specified groupId
(org.eclipse.jetty)and artifactId (jetty-maven-plugin)
A\l instead of the short plugin prefix. To use the short plugin prefix, add the

~ following in the settings file:
<pluginGroup>org.eclipse.jetty</pluginGroup>

Then, Maven can be invoked as follows:

mvn jetty:run

The Maven Jetty plugin provides several goals and configurations to help develop
web applications.

1. Run the WAR file:

mvn jetty:run-war

Java Development with Maven

Jetty now builds the WAR file and then runs it:

[INFO1 ——— jetty—maven—-plugin:?.2.1.v20148687 irun—war (default-clid> @ simple—weh

pPp

B14-12-20 @7:58:52.878:INFO: main: Logging initialized B5593ms

[IMNF0O1 Configuring Jetty for project: simple—webapp Maven UWehapp

[IMF0O1 Context path = ~

[INFO1 Tmp directory = C:sprojectshapache—maven—cookhookhsimple—wehapphtargetstm

[INFO1 Web defaults = org-reclipsersjettyswebappsuwehdefault.xml
[INFO1 Weh overvidez = none
B14-12-280 B7:58:52 _95%6:INF0:p0ejs.Server:main: jetty—7.2_1.v28148607
B14-12-28 B7:58:53 _472:INF0O:/:main: Warning: Mo org.apache_tomcat.JarScanner se
in ServletContext. Falling bhack to default JarScanner implementation.
B14-12-28 B7:58:53_753:INF0:0ejzh.ContextHandler:main: Started o.e.j.m.p.Jettyll
ebHpplontextEoc¥LabZbl /T 1le: /Ci/projectssapache—maven—cookbook s 1mple—webapp-ta|
rgetszimple—webhapps . AVAILABLEX{C:“projectsrapache—maven—cookhook s imple—webhapp-t
argetssimple—webapp.war>
EWIG—LZ—2W B/-9B:93. /od-WHAN:06.18N. ReQUES T LOGHANO e F-madn - f REqUes T Loq

2. Run the exploded WAR file:

mvn jetty:run-exploded
Jetty now builds the WAR file, explodes it, and then runs it:

B14-12-20 B8:-03:31 _.666:INFO:-oejz . Server:main: jetty—?_2.1_v20148060%9

B14—-12-20 B8-83:32 _BB7:INFO:-:/:main: Warning: Mo org.apache.tomcat.JarScanner se
in ServletContext. Falling bhack to defawult JarScanner implementation.

A14-12-280 B8:A3:32 _369:INFO:-oejish.ContextHandler:main: Started o.e.ji.m.p.Jettyll

=hAppContext@F1516dV3dL file- C: projectssapache—maven—cookbook /s i1mple—webapp-ta
pgetseimple—wehapps, AUAILABLEX<{C:-“projectssapache—maven—cookhookssimple—wehapp™t
argetwsimple—webapp?

EHLI— 1220 BB-B3:-3Z.J0F -WHAM-06,JsN. RegUestLLOgHAana e -Mmadin - fReques Loy

There are some other goals that can be used as well:

» Jjetty:deploy-war: This deploys an existing WAR file without building it
» jetty:start: This starts the Jetty server
» jetty:stop: This stops the Jetty server

» Jjetty:run-forked: This runs the Jetty server in a Java virtual machine process
different from Maven

Running a web project with Tomcat

Tomcat is a popular open source application server. The Maven Tomcat plugin supports the
ability to build and deploy Maven projects in Tomcat. In fact, there are two Maven Tomcat
plugins, one for Tomcat 6 and another for Tomcat 7.

Let us look at how to run a web project with Tomcat 7. The steps will be identical for Tomcat
6, except that the plugin would be tomcat6-maven-plugin instead of tomcat7-maven-
plugin, and the plugin prefix would be tomcaté6 instead of tomcat?7.

Chapter 10

How to do it...

Open a simple web project (simple-web-project).
Run the following Maven command:

mvn org.apache.tomcat.maven:tomcat7-maven-plugin:run
3. Observe the result:

[INF0O1 <<{<{ tomcatY-maven-plugin:2.1:prun (default-cli> € process—classes @ simple
wehbapp <<

LINFO]

[INFO]1 ——— tomcat?—maven—-plugin:2_1:run {default-cli> @ simple-webapp ——

[INFO]1 Running war on http:--localhost 8888 simple—webapp

[INF0O] Creating Tomcat server configuration at GC:sprojectsswapache—-maven—cookbook
simple—webappstargetstomcat

[INFO]1 create webapp with contextPath: /simple—-wehapp

ec 20, 2014 2:51:49 PM org.apache.coyote.AbstractProtocol init

INFO: Initializing ProtocolHandler ["http-hio—86@8A'"]

ec 20, 2014 2:51:49 PM org.apache.catalina.core.StandardService startInternal
INFO: Starting service Tomcat

ec 20, 2814 2:51:49 PM org.apache.catalina.core.StandardEngine startInternal
INFO: Starting Servlet Engine: Apache Tomcat-7.8.37

ec 20, 2814 2:51:5%0 PM org.apache.coyote _AbstractProtocol start

INF(O: Starting ProtocolHandler [“http-bio-8B88"]

4. Browse to the deployed webapp by visiting http://localhost:8080/simple-
webapp:

. localhost: 3080/ simple-we | 3
. L

) C f® localhost
Hello World!

Buill by ™ g
ven

The Maven Tomcat plugin allows web applications to be deployed and tested using Apache
Tomcat. The run goal is bound to the package phase. Maven runs all the phases prior to it.

Tomcat uses default values to start the server.

Java Development with Maven

As this is not an official Maven plugin, we have explicitly specified the
groupld (org.apache.tomcat.maven)andthe artifactId
M (tomcat7-maven-plugin)instead of the short plugin prefix. To use the
short plugin prefix, add the following in the settings file:
<::§ <pluginGroup>org.apache. tomcat .maven</pluginGroup>
Then Maven can be invoked as follows:

mvn tomcat7:run

The Maven Tomcat7 plugin also supports goals to start and stop Tomcat, which can be used
when running integration tests.

It also supports the creation of an executable JAR using embedded Tomcat. Let us see how
to do this:

1. Open the web project for which you want to create an executable JAR (project-
with-executable-webapp).
2. Add the following plugin and configuration:
<plugins>
<plugin>

<groupId>org.apache.tomcat .maven</groupld>

<artifactId>tomcat7-maven-plugin</artifactId>

<versions>2.l</version>

<executionss>

<execution>
<id>tomcat-run</id>
<goals>
<goals>exec-war-only</goal>
</goals>
<phase>package</phase>
<configurations>
<path>/</path>
</configurations>
</executions>
</executions>
</plugin>
</plugins>

3. Run the following command:

mvn clean package

Chapter 10

4. Run the JAR created in the target folder:

java -jar project-with-executable-webapp-1.0-SNAPSHOT-war-exec.jar

5. Observe the output:

isprojectssapache—maven—cookhbooksproject—with—executahle—wehappstarget>java —ja
» project—with—executahle—webapp—1.8-5NAPSHOT —war—exec.jar

ec 20, 2014 3:48:16 PM org.apache.covyote.fAbstractProtocol init
IMNFO: Initializing ProtocolHandler ["http-hioc—8880"1]

ec 208, 2014 3:48:16 PM org.apache.catalina.core.StandardService startInternal
INFO: Starting service Tomcat

ec 20, 2014 3:48:16 PM org.apache.catalina.core.StandardEngine startInternal

INFO: Starting Servlet Engine: Apache Tomcat/7.8.37

ec 280, 2014 3:48:18 PM org.apache.catalina.util.SessionldGenerator createSecure
andom
INFO: Creation of SecureHandom instance for session ID generation wsing [SHA1FRHN
1 took [171]1 milliseconds.

ec 20, 2014 3:48:18 PH org.apache.coyote . AbstractProtocol start
IMNFO: Starting ProtocolHandler [“http—-hio-BBAEA"1

What we have now is a distributable web application using embedded Tomcat.

1
‘\Q There is a bug due to which we need to use version 2.1 of the plugin

rather than 2.2 for this to work.

Advanced Maven Usage

Let us look at the following recipes in this chapter:

» Creating an assembly

» Running a custom executable

» Running an ANT task

» Determining updates to Maven plugins

» Determining updates to Maven dependencies
» Controlling the constraints

» Generating unique builds

» Releasing a Maven project

Introduction

In this chapter, we look at using features of Maven that may not be required on a regular basis
or for projects. These range from assembling your project for distribution to releasing your
project. These are not typical build tasks, but essential elements of a project lifecycle.

Creating an assembly

A typical project requirement is to aggregate the project output along with its dependencies,
modules, and other files into a single distributable archive. An assembly is a group of files,
directories, and dependencies that are assembled into an archive format and distributed.
Maven provides prefabricated assembly descriptors to build these assembilies. The
descriptors handle common operations, such as packaging a project's artifact, along with
the dependencies.

Advanced Maven Usage

Getting ready

Maven should be set up on your system and verified to work. To do this, refer to Chapter 1,
Getting Started.

How to do it...

1. Open a Maven project for which you want to generate the assembly; in our case,
project-with-assembly.
2. Add the following plugin and configuration to the pom file:
<plugins>
<artifactId>maven-assembly-plugin</artifactIds>
<version>2.5.3</versions>
<configurations>
<descriptorRefss>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archives>
<manifest>
<mainClass>com.packt.cookbook.App</mainClass>
</manifest>
</archives>
</configurations>
<executionss>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</executions>
</executionss>
</plugin>

3. Run the following Maven command:
mvn clean package

4. Observe the output:

[INFO] --- maven-assembly-plugin:2.5.3:single (make-assembly) @
project-with-assembly ---

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-assembly\target\project-with-assembly-1.0-SNAPSHOT-jar-with-
dependencies.jar

222

Chapter 11

5. Run the created distribution JAR:

C:\projects\apache-maven-cookbook\project-with-assembly\
target>java -jar project-with-assembly-1.0-SNAPSHOT-jar-with-
dependencies.jar

07:13:25.660 [main] INFO com.packt.cookbook.App - Hello World

We made the following changes to the pom file:

» We chose jar-with-dependencies, one of the prefabricated assembly
descriptors provided by the Maven Assembly plugin. This creates a single JAR with all
the dependencies of the project.

» We also used the archive configuration to specify the main class of the project. This
is to make the JAR file executable.

» We then specified when the single goal of assembly should be run, namely, the
package phase.

When Maven ran, it used the preceding configurations to assemble a JAR with dependencies
in the package phase. We could run this as a normal executable JAR.

Besides predefined descriptors, the Maven Assembly plugin also allows us to create custom
descriptors that can have fine-grained control over the contents of the assembly.

The Assembly plugin can also build an assembly from a multi-module project, where the
modules can be part of the final assembly.

While opening the JAR file, you would have observed that all the dependant JARs have been
unpacked as well.

5 | £ Ci\projects\apache-maven-cookbook\project-with-assembly\target\project-with-assembly-1.0-SNAPSHOT-jar-with-dependencies.jar,
MName Size Packed Size Modified Created Accessed
J ch 1296 575 582 064 2014-04-02 1410
, com 623 382 2015-02-28 08:09
EEE 22492 5542 2015-02-28 08:09
Jorg 64 889 27944 2014-12-16 22:57

223

Advanced Maven Usage

This is due to the default configuration for the predefined descriptor. Let us see how to create
the same distribution but retain dependant JARs as they are. To do this, we will now use one

Maven JAR plugin, which uses a custom class loader to load dependant JARs within the
parent JAR:

1. Open the project for which you want to create an executable with unpackaged
dependant jars (project-with-one-jar).
2. Add the following plugin in the pom file:
<plugin>
<groupld>org.dstovall</groupId>
<artifactIds>onejar-maven-plugin</artifactIds>
<version>1.4.4</version>
<executionss>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goals>one-jar</goals>
</goals>
</executions>
</executions>
</plugin>

3. Add the JAR plugin to specify the main class for the executable JAR:
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-jar-plugin</artifactId>
<configurations>
<archives>
<manifest>
<mainClass>com.packt.cookbook.App</mainClass>
</manifest>
</archives>
</configuration>
</plugin>

4. Add the following code as the plugin binaries are not in the central Maven repository:
<pluginRepositories>
<pluginRepositorys>
<id>onejar-maven-plugin.googlecode.com</id>

<urls>http://onejar-maven-plugin.googlecode.com/svn/
mavenrepo</urls>

</pluginRepository>
</pluginRepositoriess>

224

Chapter 11

5. Run the following command:

mvn package

6. Run the generated executable and observe the result:
java -jar project-with-one-jar-1.0-SNAPSHOT.one-jar.jar

06:57:45.995 [main] INFO com.packt.cookbook.App - Hello World

7. Open the created JAR file:

C\projects\apache-maven-cookbook\project-with-one-jar\target\project-with-one-jar-1.0-SNAPSH
File Edit View Favorites Tools Help

$ o= v o o= X A

Add Extract Test Copy Move Delete Info

¥ | £ Chprojectsi\apache-maven-cookbook! project-with-one-jaritarget' project-with-one-jar-1.0-SMAPSHOT.one-jar jary

Mame Size Packed Size Meodified Created
70 459 34825 2010-07-1509%:58
. doc 1781 911 2010-07-1509:49
)ik 730 600 631 204
. main 2 889 1839
. META-INF 102 92
J srC 93 073 24770 2010-01-20 20:17
L wersien 23 25 2010-07-15 0%:59
__|Onelar.class 1046 594 2010-07-1509:58

We can see that in contrast to the assembly JAR, the executable JAR is created
without unpacking the libraries (dependencies) involved.

8. Navigate to the 1ib folder in the JAR:

5 . Chprojects\apache-maven-cookbook\project-with-one-jar\target\project-with-one-jar-1,0-3NAPSHOT. one-jar.jariliby
MName Size Packed Size Modified Created
£ logback-classic-1.1.2,jar 270730 245276 2013-02-28 08:03

| £flogback-core-1.1.2.jar 427729 377872 2015-02-28 08:05

| £ sIfdj-api-1.7.9,jar 32121 28036 2015-02-28 0&05

The dependant JARs are stored in the 1ib folder.

» The Generating an executable JAR recipe in Chapter 10, Java Development
with Maven

225

Advanced Maven Usage

Running a custom executable

There are many situations when you want Maven to run a specific executable on your
computer. A simple use case would be to run the JAR that you created. Another case would be
to have Maven run commands that are not provided as plugins (for instance, create a native
Windows installer).

Maven provides support to run any executable system in a separate process along with Java
programs in the same virtual machine on which Maven runs. The Maven Exec plugin provides
this support using the exec goal (to run in a separate process) and the java goal (to run Java
programs in the same process).

How to do it...

Open a simple Maven project (simple-project).
Run the command:

mvn clean package exec:java -Dexec.mainClass="com.packt.cookbook.
App n

3. Observe the results:

LINFO1
[IMFO]1 —— exec—maven—plugin:=l.3.2:java ¢(default-cli> @ simple-project ——

[WARNING] Warning: killAfter is now deprecated. Do you need it 7 Please comment
on MEREC—6_
Hello World?

We wanted to run the JAR file that we had created in the project. To do this, we called the
java goal of the Maven Exec plugin. We provided the plugin with the required parameter
(mainClass) so that it knew which main class needed to be run.

There's more...

You could integrate the running of the executable as part of the project lifecycle. Let us do this
for our example:

1. Open the project (let's call it project-with-exec).

2. Add the following code to the pom file:

<plugins>
<groupIds>org.codehaus.mojo</grouplds>
<artifactIds>exec-maven-plugin</artifactIds>
<version>1.3.2</version>

226

Chapter 11

<executionss>
<execution>
<idshello-world</id>
<phase>package</phase>
<goals>
<goals>java</goals>
</goals>
</executions>
</executions>
<configurations>
<mainClass>com.packt.cookbook.App</mainClass>
</configurations>
</plugins>

3. Run the following command:

mvn clean package

4. Observe the result:
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ project-with-
exec ---

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-exec\target\

project-with-exec-1.0-SNAPSHOT.jar
[INFO]

[INFO] --- exec-maven-plugin:1l.3.2:java (hello-world) @ project-
with-exec ---

[WARNING] Warning: killAfter is now deprecated. Do you need it ?
Please comment

on MEXEC-6.

06:25:26.005 [com.packt.cookbook.App.main()] INFO com.packt.
cookbook.App - Hell

o World

The project is run during the package phase based on the configuration that we specified in
the plugin.

227

Advanced Maven Usage

The same can be done for non-Java executables; we need to invoke the exec goal instead of
the java goal.

1
‘Q Running system executables makes the build nonportable,

SO use it with care.

Running an ANT task

ANT is a popular build automation tool that provides a great degree of flexibility. It also
provides tasks, such as echo and touch, that are not available in Maven. There might be
advantages in combining ANT tasks with Maven to achieve certain goals, though it is best to
avoid it until it's inevitable.

Maven provides a mechanism to run arbitrary ANT tasks by way of the Maven AntRun plugin.
Let us see how to use this to run an ANT task in our project.

How to do it...

1. Open a project for which you want to run ANT tasks (project-with-ant).

2. Add the following plugin configuration to the pom file:
<plugin>
<artifactIds>maven-antrun-plugin</artifactId>
<versions>1l.8</version>
<executionss>
<execution>
<phase>package</phase>
<configurations>
<targets>

<echo message="Calling ant task in package
phase"/>

</target>
</configurations>
<goals>

<goal>run</goals>
</goals>

</executions>
</executions>
</plugin>

3. Run the following Maven command:

mvn clean package

228

Chapter 11
4. Observe the output:

[INFO1

[INFO1 —— maven—jar—plugin:2._4:jar {(default—-jar> @ project—with—ant ———

[INFO1 Building jar: C::projectssapache—maven—cookbook“project—with—ant\target*p|
o ject—with—ant—1.8-SNAPSHOT. jar

[INFO1]

[INFO1 —— maven—antrun—-plugin:l.8:run {(default?> @ project—with-ant ——

[INFO1 Executing tasks

ain:

[echo]l Calling ant task in package phase
[INFO]1 Executed £
[THFE(11 ———

We configured the Maven AntRun plugin to run an ANT target during the package phase. In
the ANT target, we specified a simple echo task, which outputted a string we wanted.

Instead of the echo task, we could write more complex tasks. The Maven AntRun plugin also
provides a means for ANT tasks to refer to Maven properties, class paths, and others.

There's more...

It is good practice to separate ANT tasks to a separate ANT build script (build.xml) and
invoke the same from Maven. Let us see how to do this:

1. Create a simple ANT build script, build.xml, and add the following contents:

<project name="project-with-ant" default="echo" basedir=".">
<description>
Simple ant task to echo a string
</description>

<target name="echo">
<echo message="Hello World"/>
</target>
</projects>

2. Replace the target configuration in the pom file as follows:
<target>
<ant target="echo"/>
</target>
3. Runthe Maven command:

mvn clean package

229

Advanced Maven Usage

4. Observe the output:

LINFUI ——— maven—jJar-plugin:£.4-jar Ldetault—jar) ¢ project-with—-ant —-——
[INFO]1 Building jar: C:sprojects“apache—-maven—cookbook\project—with—antstargetsp
o ject—with—ant—1.8-8SNAPSHOT. jar

LINFO1

[INFO1 —— maven—antrun—-plugin:i.8:run (default> @ project—with—-ant ——

[INFO]1 Executing tasks

[echo] Hello Yorld
[INFO1 Executed tasks

The result is the same, but now the ANT scripts are separated from Maven.

Determining updates to Maven plugin AntRun

In our build scripts, we explicitly specify the version of the Maven plugins that we use. This is
required in order to create reproducible builds. In the absence of the version, Maven gives a
warning such as the following:

[WARNING] Some problems were encountered while building the effective
model for

com.packt.cookbook:project-with-exec:jar:1.0-SNAPSHOT

[WARNING] 'build.plugins.plugin.version' for org.codehaus.mojo:exec-
maven-plugin is missing. @ line 42, column 17

[WARNING]

[WARNING] It is highly recommended to fix these problems because they
threaten the stability of your build.

[WARNING]
[WARNING] For this reason, future Maven versions might no longer support

building such malformed projects.

Over a period of time, there could be updates to these plugins. It would be good to know if
there are any so that we can suitably update the plugin versions. Let us see how we can
do this.

How to do it...

1. Take a project for which you want to check the plugin update (project-with-
exec).

2. Change the version of the plugin to an older one:

<artifactIdsexec-maven-plugin</artifactIds>
<versions>l.2</versions>

230

Chapter 11

Run the following command:

mvn versions:display-plugin-updates

Observe the output:

[INFO] --- versions-maven-plugin:2.0:display-plugin-updates
(default-cli) @ proj

ect-with-exec ---

[INFO]

[INFO] All plugins with a version specified are using the latest
versions.

oo

[WARNING] The following plugins do not have their version
specified:

[WARNING] maven-clean-pluginccecceeveeeccee... (from
super-pom) 2.5

[WARNING] maven-compiler-pluginccccecceeseoe... (from
super-pom) 3.1

oo

[WARNING] Project does not define minimum Maven version, default
is: 2.0

[INFO] Plugins require minimum Maven version of: 2.2.1
[ERROR] Project does not define required minimum version of Maven.

[ERROR] Update the pom.xml to contain

[ERROR] <prerequisites>
[ERROR] <maven>2.2.l</maven>
[ERROR] </prerequisites>

[INFO] Require Maven 2.2.1 to use the following plugin updates:

[INFO] maven-jar-plugincceeeeeeeetccccccccccsssscsccccens
certeeees 2.5

[INFO] maven-site-pluginciiiiiiiti ittt tss e nens
ceeeeees 3.2

[INFO] org.codehaus.mojo:exec-maven-plugin

ceserevecrssscssrssscvssses 1.3.2

231

Advanced Maven Usage

The display-plugin-updates goal of the Maven Versions plugin downloads the metadata
for all the plugins specified in the pom file and then produces a report. The report reveals a
number of things that are of interest.

>

Aprerequisites tagis absent. The prerequisites tag in the pom file specifies
the minimum version of Maven that is required to build the project. In the absence
of this, Maven takes the minimum version as 2. 0. There is a risk of nonreproducible
builds if different developers use different versions of Maven. Hence, it is a good
practice to specify a minimum version by using this tag.

There is a warning about plugin versions not being defined. As we have seen, plugins
in the pom file don't need to be specified explicitly unless they need to be configured.
Now, Maven still uses various plugins for execution (such as clean, resources,
compile, test, and so on) and it needs to determine the version to be used. It uses
the version specified by the super pom, which is fine in most cases. However, the
Versions plugin alerts us that this is the case, so we can take action as appropriate.

There is a difference in plugin versions based on the Maven version. The report
specifies different versions of various plugins based on the Maven version used. This
is all the more reason why it is important to specify a prerequisite.

As the output indicates, if we specify that we need at least the 2.2 .1 version of Maven, then
we can see that there is a newer version of the Maven Exec plugin, whichis 1.3 .2.

There's more...

Let us now specify the prerequisites element in the pom file and see how it affects the
output of the goal:

1.

232

Add the following to the pom file:

<prerequisitess>
<mavens3.2.5</mavens

</prerequisitess>

Run the following command:

mvn versions:display-plugin-updates
Observe the output:

[INFO] --- versions-maven-plugin:2.0:display-plugin-updates
(default-cli) @ project-with-exec ---

INFO]

INFO] The following plugin updates are available:

INFO] org.codehaus.mojo:exec-maven-pluginccceee..

1.2 -> 1.3.2
INFO]

We now see that the plugin reports a plugin update based on the prerequisite that
we specified.

Chapter 11

It is difficult to determine if there are updates to plugins that we do not explicitly define in the

pom file. For instance, as per the output from the preceding command, which
is as follows:

[WARNING] The following plugins do not have their version
specified:

[WARNING] maven-clean-pluginccceeeeeercccccccces
super-pom) 2.5

[WARNING] maven-compiler-pluginceeeeeesccccccccns
super-pom) 3.1

[WARNING] maven-deploy-pluginccceeeeerccccccccns
super-pom) 2.7

[WARNING] maven-install-pluginccceeeerecccccccns
super-pom) 2.4

However, as of writing this book, the latest version of the Maven Clean plugin is 2.6.1,

that of the Maven Compiler plugin is 3.2, and so on. The version that the super pom has

is the version that must have been the latest when it was created. The versions of these
dependencies become important when bugs or newer features are present in the newer
versions. In this case, we do want to get the newer version of these plugins. It is easy to get

these by explicitly specifying the version of the plugins in the pom file.
Add the following to the pom file:

<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-clean-plugin</artifactIds>
<version>2.5</version>

</plugin>

<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactIds>
<version>3.l</version>

</plugin>

233

Advanced Maven Usage

Now, re-run the previous command and note the output:

[INFO] The following plugin updates are available:

[INFO] maven-clean-plugincieeeeeeeesesesccccoocssscscsscscs 2.5 ->
2.6.1
[INFO] maven-compiler-plugineeeeeeeeeeeeeeececccossscccocncns 3.1
-> 3.2
[INFO] org.codehaus.mojo:exec-maven-pluginccceeeeeeeecces 1.2 ->
1.3.2

Determining updates to Maven

dependencies

We use a number of third-party libraries to build our projects. As you recall, we specify the
groupld, artifactId, and version elements of each of these dependant libraries in
our pom file. There may be many occasions when there are updates to these libraries and
new versions are released. It will be good to have a mechanism to get notified about these
releases and update the project build file suitably.

How to do it...

1. Take a project for which you want to check for a dependency update, simple-
project, which we had created using the quick-start archetype.

2. Run the following command:
mvn versions:display-dependency-updates
3. Observe the output:
[INFO] --- versions-maven-plugin:2.l:display-dependency-updates
(default-cli) @
simple-project ---
[INFO] artifact junit:junit: checking for updates from central

[INFO] The following dependencies in Dependencies have newer
versions:

[INFOI FURZE:FURLE « e vt vvneee e et eeneeeeeeeeennnaeeeeennnnnns
3.8.1 -> 4.12

Chapter 11

The display-dependency-updates goal of the Maven Versions plugin uses the metadata
of each of the maven dependencies to determine the latest version of each dependency. If it
does not match the current version, it displays a report about the difference.

We have already seen earlier that SNAPSHOT versions are handled differently by Maven, and it
automatically checks and updates these dependencies for each build as per the configuration.
If the version number of the SNAPSHOT changes (1. 0-SNAPSHOT to 1.1-SNAPSHOT), then
the Versions plugin indicates that.

There's more...

The Maven Versions plugin provides several other goals to manage updates to dependency
and plugin versions. This includes automatically changing the versions to the latest release
versions, replacing SNAPSHOT with release versions, and so on.

Controlling the constraints

One of the requirements for a build tool is to be able to generate repeatable builds. In

a project, the build tool should behave identically for all team members. While a project
guideline can be made on the version of Java or Maven to be used, it would be easier if it
could be enforced automatically.

This is where the Maven Enforcer plugin comes in.

How to do it...

1. Open asimple project (project-with-enforcer).
2. Add the following plugin configuration:
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactId>maven-enforcer-plugin</artifactIds>
<version>1.3.1l</versions>
<executionss>
<execution>
<idsenforce-versions</id>
<goals>
<goals>enforce</goals>
</goals>
<configurations>

235

Advanced Maven Usage

<rules>
<requireMavenVersions
<version>3.2.3</versions>
</requireMavenVersion>
<requireJavaVersions>
<version>1l.8</version>
</requireJavaVersions>
</rules>
</configurations>
</execution>
</executions>
</plugin>

3. Build the project using Java 7 and Maven 3.2.3:

mvn clean package.

4. Observe the output:

[INFO1 —— maven—enforcer—plugin:1.3.1:enforce (enforce—versions? @ project—with
enforcer ——
[WARNING] Rule B8: org.apache.maven.plugins.enforcer.RequireMavenVersion failed w
ith message:
Detected Maven Uersion: 3.2.3 is not in the allowed range 3.2.5.
[WARNING] Rule 1: org.apache.maven.plugins.enforcer.RequiredJavalersion failed wi
h message:
Detected JDK Uerszion: 1.7.8-67 iz not in the allowed range 1.8.

NFO

[INFO1 BUILD FAILURE

LINFO1

[INFO]1 Total time: B.821 s

[INF0O1 Finished at: 2815-81-12T@A6:36:26+85:308

[INF0O1 Final Memory: 6M-s154M

LINFO1

[ERROR] Failed to execute goal org.apache _maven.plugins:-maven—enforcer—-plugin:l.

3.1:enforce (enforce—versions? on project project—with—enforcer: Some Enforcer »
Look abhove for specific messages explaining why the rule faile

The Enforcer plugin uses the rules configuration and validates the project against the rules. If
it finds violations, it reports the error(s) and does not proceed with the build.

In the preceding example, our project had two issues:

» The Maven version: We were using version 3.2.3 but we had specified 3.2.5 in
the rules

» The Java version: We were using Java 7 but we had specified Java 8 in the rules

236

Chapter 11

There's more...

The Maven Enforcer plugin has several other rules to enforce various constraints. A couple of
them are as follows:

» require0S: This ensures the project can be built only on specific operating systems
» requireFilesExist: This ensures specific files exist for the project to build

It is also possible to implement custom enforcer rules. One such is available at https://
github.com/ferstl/pedantic-pom-enforcers

Generating unique builds

As we have seen, we use a SNAPSHOT version to specify that the project is under
development. In the course of development, we will create several builds for the project. In
many situations, it will be useful to distinguish one such build from another. One could be
when we use continuous integration. Another would be when a tester needs to log defects
against a build.

It would be nice if there was a way to generate a unique build number to identify a build in the
case of SNAPSHOT versions.

How to do it...

1. Open the project for which you want to have a build number (project-with-
build-number).
2. Add the following plugin configuration:
<plugins>
<grouplds>org.codehaus.mojo</grouplds>
<artifactIds>buildnumber-maven-plugin</artifactIds>
<version>1l.3</version>
<executionss>
<execution>
<phase>validate</phase>
<goals>
<goal>create</goals>
</goals>
</executions
</executionss>
<configurations>
<shortRevisionLength>5</shortRevisionLength>

237

https://github.com/ferstl/pedantic-pom-enforcers
https://github.com/ferstl/pedantic-pom-enforcers

Advanced Maven Usage

238

</configurations>
</plugins>
Add the following to use the unique build number created:
<finalName>${project.artifactId}-${project.version}-
r${buildNumber}</finalName>
Add the SCM configuration for the project:

<scm>

<developerConnection>scm:git:https://bitbucket.org/maruhgar/
apache-maven-cookbook</developerConnections>

<url>https://bitbucket.org/maruhgar/apache-maven-cookbook</
urls

</scm>

Build the project:

mvn clean package

Observe the output:

[INFO] --- buildnumber-maven-plugin:l.3:create (default) @
project-with-build-nu
mber ---

[INFO] ShortRevision tag detected. The value is '5'.

[INFO] Executing: cmd.exe /X /C "git rev-parse --verify --short=5
HEAD"

[INFO] Working directory: C:\projects\apache-maven-cookbook\
project-with-build-n

umber
[INFO] Storing buildNumber: 0950d at timestamp: 1421244408851
[INFO] Storing buildScmBranch: master

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ project-with-
build-number --

[INFO] Building jar: C:\projects\apache-maven-cookbook\project-
with-build-number

\target\project-with-build-number-1.0-SNAPSHOT-r0950d.jar

Chapter 11

The Maven Build Number plugin provides three ways to generate a unique number, namely by
using SCM, a sequential build number, or a timestamp.

In the preceding example, we used SCM as it is easy to map the build against the
corresponding SCM version. We used git and specified the SCM details in the SCM tag of the
pom file.

We also specified to the Maven Build Number plugin to use five characters and create the
short revision, as a typical git revision is a long hash value. We also configured the plugin to
run during the validation phase of the lifecycle.

We used the generated Build Number in the name of the generated artifact, by appending it
along with the version number.

Now, each time a new check-in is done and the build is completed, an artifact with a unique
name is generated. Based on the requirement, each such artifact can be archived or traced to
a corresponding source.

Releasing a Maven project

The ultimate goal of any project is the release. After development is complete and bugs are
fixed, it is time to release the project. Different projects are released in different ways. Web
projects are released by deploying them to the web server. Other projects may be packaged into
executable JARs. Still others may be packaged as executables or installers. If the project is a
library or a dependency used in other projects, then it needs to be made available suitably.

As we have seen before, we use the SNAPSHOT version during development. When the project
has to be released, this version now needs to be replaced with a concrete version.

One of the most advanced features of Maven is its support to do a project release. Let us
explore this.

How to do it...

Open a project for which you want to do a release (project-with-release).
Verify if the SCM details are present in the pom file:

<scm>

<developerConnection>scm:git:https://bitbucket.org/maruhgar/
apache-maven-cookbook</developerConnection>

<urlshttps://bitbucket.org/maruhgar/apache-maven-cookbook</
urls

239

Advanced Maven Usage

<tag>HEAD</tag>

</scm>

3. Add the plugin definition in order to specify the latest version of the plugin:
<plugins>

<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-release-plugin</artifactId>
<version>2.5.1</version>

</plugins>

</plugins>

4. Run the following Maven command:

mvn release:prepare -DpushChanges=false

By default, changes made by the plugin are pushed to the repository. If you do not
want that, set the pushChanges configuration option to false.

5. Choose the default values when prompted.

isprojectssapache—maven—cookbooksproject—with-release*nun release:prepare —Dpus
hChanges=false
[INFO1 Scanning for projects...
LINF(1
[INF0O1
[INFO1 Building Project with release 1.B-SNAPSHOT
NF0 1

[INFO1 Uerlfylng that there are no local modifications...

[INFO1 ignoring changes on: *=\pom.xml.next, *=*\prelease.properties, *\pom.xnl
branch, *pom.xml.tag,. *pom.xmnl.backup, *pom.xml.releaseBackup

[INFO1 Executing: cmd.exe -8 ~C "git status"

[INFO1 Working directory: C:\projects“apache—maven—cookhooksproject—with—release

[INFO1 Checking dependencies and plugins for snapshots ...

Jhat is the release version for "Project with release"? <com.packt.cookbook:proj
ect—with-releaze) 1.8: :

Jhat is SCM release tag or label for "Project with release'? {(com.packt.cookbook
-pruJect with—release? pruJect—u1th—releaue—1 [HE-

Jhat is the new development version for "Project with release'? {(com.packt.cookh
pok:project—with-release? 1.1-SNAPSHOT: =

[INFO1 Transforming ’‘Project with release’...

[INFO1 Not generating release POMs

[INFO]1 Executing goals ‘clean verify’...

You could choose the default values for the release version, the SCM tag and new
development version, or provide your values.

240

Chapter 11

6. Observe the output:

Checking in modified POMs...
Executing: cnd.exe ~& ~C "git add — pom.xml"
Working directory: C:vwprojectssapache-maven—cookhooksproject—with-release

Executing: cmd.exe ~# ~C "git rev—parse ——show—toplevel"

Working directory: C::wprojectssapache-maven—cookhooksproject—with-release
Executing: cmd.exe -8 ~C "git status ——porcelain ."

Working directory: C:hprojectssapache—maven—cookhook project—with—release

[WARNING] Ignoring unrecognized line: 7?7 project—with-—release-spom.xml.releaseBac
ku
[WARNING] Ignoring unrecognized line: 7? project—with—releaserelease.properties

[INF0O1 Executing: cmd.exe ~% ~C "“git commit ——verbose —-F C:“UserssraghusAppData™
Local“~Temp*maven—-scm—1831156722 .commit pom.xml'
[INFO1 Yorking directory: C:sprojectssapache—-maven—cookbooksproject—with-release

[INFO]1 Tagging release with the label project—with-release-1.8..

[INFO1 Executing: cmd.exe % ~C "git tag -F C: \Uﬂerﬂ\Paghu\ﬂppbata\anal\Temp\ma
ven—scm—211129783 .commit project—with-release-1.8"

[INFO] Working directory: Ciwprojectssapache—maven—cookbooksproject—with—release

[IMFO] Executing: cmd.exe ~/® ~C "git ls—files"
[INFO] Working directory: Ciwprojectshapache—maven—cookbooksproject—with—release

TPanofqulng 'Project with release’ ...

Mot Pem001ng release POMs

Checking in modified POHQ...

Executing: cnd.exe ~& ~C "git add — pom.xml"

Working directory: C:vwprojectssapache-maven—cookhooksproject—with-release

Executing: cmd.exe ~# ~C "git rev—parse ——show—toplevel"

Working directory: C::wprojectssapache-maven—cookhooksproject—with-release
Executing: cmd.exe -8 ~C "git status ——porcelain ."

Working directory: C:hprojectssapache—maven—cookhook project—with—release

[WARNING] Ignoring unrecognized line: 7?7 project—with-—release-spom.xml.releaseBac
ku
[WARNING] Ignoring unrecognized line: 7? project—with—releaserelease.properties

[INFO1 Executing: cmd.exe ~#% ~C “git commit ——verbose —-F C:“UserssraghusAppData™
Local“Temp*maven—scm—1435754747 .commit pom.xml'
[INFO1 Yorking directory: C:\projects“apache-maven—cookbooksproject—with-release

[INFO1 Release preparation complete.
01

Maven runs a number of commands that modify the pom file. Then, it checks in the
changes into the repository.

7. Now run the following command:

mvn release:perform -Dgoals=package -DlocalCheckout=true

By default, the perform goal of the Maven Release plugin runs the deploy goal to
deploy the project to the specified repository. If you do not have a remote repository
to deploy to, or want to run a different goal as part of the release, you can specify

it using the goals configuration. In the preceding case, we have set it to run the
package goal.

241

Advanced Maven Usage

Also, to do the release, Maven checks out the tag created by the prepare goal from
the repository. If you want Maven to check out the local copy instead, you could do so
by setting the 1ocalCheckout configuration to true.

8. Observe the output:

wprojectssapache—maven—cookbooksproject—with—release>mvn release:perform —Dgoalp
lz=package —DlocalCheckout=true

[INFO] Scanning for projects...

[INFO1]

[INF0O]1 Building Project with release 1.1-SHAPSHOT

[INFO] —————————————
[INFO1]

[INFO] —— maven—release-plugin:2_5.1:perform (default—cli> @ project—with—relea

e
[INFO] Performing a LOCAL checkout from scm:git:file:~ /- C:%projectssapache—maven
cookhookproject—with—release

[INFO]1 Checking out the project to perform the release ...

[INF0O]1 Executing: cmd.exe ~¥ ~C “git clone ——bhranch project—with-release—1.8 fil]
et/ /Civprojectesapache—maven—cookbhookyproject—with—release C:ivprogjectsrapache—m|
ven—cookbooksproject—with—-releasestargetscheckout"

[INFO1 Working directory: C:ivprojectsrapache—-maven—cookbook\project—with—release
target

[INFO]1 Performing a LOCAL checkout from scm:git:file: s~ C:xprojectssapache—maven
cookbook

[INF0O]1 Checking out the project to perform the releasze ...

[INFO]1 Executing: cmd.exe ~¥ ~C “git clone ——bhranch project—with-release—1.8 fil
e /7 /Ciprojectshapache—maven—cookbook C:sprojectssapache—maven—cookbooksproject
with-release~target~checkout"

[INF0O]1 Working directory: C:projectszrapache—maven—cookbookvwproject—with-release
target

[INF0O]1 Executing: cmd.exe ~% ~C "git ls—remote file:-/rsC:\projectsapache maven—|
ookbook™

[INF0O]1 Working directory: C:iUserssraghusAppDatasLocalsTemp

[INFE] Executing: cmd.exe ~% ~C "git fetch file:/ /C:\projectssapache—maven—cook

oo
[INFO]1 Working directory: C:vprojectssapache—-maven—cookhooksproject—with—release
targetscheckout

[INFO] Executing: cmd.exe ~% ~C "git checkout project-with-release-1.8"

[INFO]1 Yorking directory: C:\projectsapache—maven—cookbooksproject—with-release
targetscheckout

[INF0O1 Executing: cmd.exe ~8 /G “git ls—Ffiles"

[INFO] Working directory: C:vprojectssapache—-maven—cookhooksproject—with—release
targetscheckout

[INFO] Invoking perform goals in directory C::projectsapache—-maven—cookbookpro
ject—with—releasestargetscheckoutsproject—with—release

[INFO]1 Executing goalsz °‘package’...

9. Ensure that the release binaries are created in the target/checkout/project-
with-release/target folder:

ssprojectssapache—maven—cookbooksproject—with—releasestargetscheckoutproj
ith—release“target >dir

Uolume in deive C has no labhel.

Uolume Serial Mumber is B4B8-FE184

Directory of C:projectshwapache—maven—cookbooksproject—with-releaszestarget
out*project—with—releasestarget

5-@1-2815 13:83 <DIR> R

5—@1-2@15% 13:83 <DIR> .-

5—@1-2@15% 13:83 <DIR> apidocs

5—@1-2@15% 13:83 <DIR> classes

L-@1-2815 13:83 <DIR> Javadoc—bundle—options

S-01-2815 13:83 <DIR> maven—archiver

S-01-2815 13:83 <DIR> maven—status

L-@1-2815 13:83 project—with—release—1.8—-javadoc. jar
L-@1-2815 13:83 283 project—with—release—1.8—sources.jar
L-@1-2815 13:83 project—with—release—-1.8. jar
L-81-281% <DIR> surefire—reports

L-81-2815 . SD!R) test:classes

242

Chapter 11

There are two steps to making a release—prepare and perform.
When the prepare goal of the Maven Release plugin is run, it does the following:

» Checks there are no uncommitted changes
» Checks that the project does not have any SNAPSHOT dependencies

» Changes the version of the SNAPSHOT project; you will be prompted to confirm or
override the default

» Adds a tag element to the scm element and computes the value (by default, HEAD)

» Runsthe verify goal to ensure that the changes do not break anything

» Commits the modified pom to the SCM

» Tags the code in SCM with a version name (you will be prompted to confirm or
override the default):

ommit Ydc?2V1F16cab94 7/ ErA1156be7292FA9anAY
uthor: Raghuram Bharathan <raghuli .Com>
ate: Thu Jan 15 12:51:33 2815% +@538

[maven—release-—pluginl] prepare for next development iteration

ommit ceab883chb4cB2dP?cdd7efBanlBbBBeedabBhlde?
uthor: Raghuram Bharathan <raghulii LCcom¥
ate: Thu Jan 15 12:51:32 2815% +@538

[maven—release—pluginl] prepare release project—with-—release-1.8

» Bumps the version in the pom to the new SNAPSHOT value (from 1. 0-SNAPSHOT;
this would be 1.1-SNAPSHOT); you will be prompted to confirm or override this

» Commits the modified pom to SCM

As you can see, once the goal is met, you will have an updated SCM with a tag with the
release version and the HEAD with the next SNAPSHOT version. A release.properties file
is also created. It contains information that is needed for the perform goal.

sprojectssapache—maven—cookhbooksproject—uwith—release>dir

Uolume in drive G has no lahel.

Uolume Serial Mumber is B4B8-E184

Directory of C:sprojectssapache—maven—cookbooksproject—-with-release

4-01-2815 208:17 <DIR> .

4-@A1-2815 20:19 <DIR> .-

4-@A1-2815 20:17 989 pom.xml

4-@91-2815% 268:16 891 pom.xml.releaseBackup
4-@1-2815% 208:17 842 release.properties
4-01-2815 20:82 <DIR> spc

4-@1-2815 20:17 <DIR> target

3 File(s) 2,642 bytes

243

Advanced Maven Usage

The second platform does as follows:

» The perform goal uses the information in release.properties to check out from
the SCM tag that was created earlier

» It then runs the specified goal on the checked-out project (by default, deploy)
» This generates the release binaries

Once the build is successful, release . properties and other backup files created by the
Release plugin are removed.

Index

A code, analyzing
with Checkstyle plugin 121-124
aggregator project 47 with FindBugs plugin 125, 126
ANT task with PMD plugin 118-121
running 228-230 with SonarQube plugin 130-134
Apache Maven. See Maven code coverage, analyzing
Artifactory 20 with Cobertura plugin 115-117
assembly with JaCoCo plugin 112-115
creating 221-225 code coverage reports
generating, for site 144-146
B code quality reports

generating, for site 147, 148

build automation tools command-line options, Maven 51, 52

Ant 2 command-line options, modules
Make 2 -am 192
Build Helper Maven plugin, goals -amd 192
attach-artifact 160 -pl -projects 191
maven-version 161 -rf 192
about 191
C compilation
changelogs about 66

skipping, of test sources 74

enerating, for site 174, 175 .
g g ! compile phase 20

Checkstyle plugin !
about 121 COMPI.leI.'
used, for analyzing code 121-124 cmOd'Tymgi used by Maven 67, 68
checksumPolicy element 97 ompiler plugin
clean lifecycle 44, 45 Java version, specifying for 69, 70

Clean plugin using 66 . o, .
additional folders/files, deleting 65, 66 complex project, transitive dependencies

. o . ; references 88
(rjljarllitilrc])gn’,:S;gs;;ﬁ:af”v;ogg?gj|rectory 64,65 cgnfiguraftions, Maven JAR plugin
using 62, 63 in pon”.n file 201
constraints

controlling 235, 236
Copy/Paste Detector (CPD) 118

Cobertura plugin
about 115
used, for analyzing code coverage 115-117
used, for generating test coverage 146, 147

245

custom enforcer rules
reference link 237

custom executable
running 226, 227

D

default lifecycle

about 44

phases 45
dependencies

downloading, to folder 92, 93

installing, manually 101, 102

managing, Eclipse IDE used 103-105

managing, IntelliJ IDEA used 108, 109

managing, NetBeans IDE used 106, 107
dependency download errors

handling 97-99
dependency hell

avoiding 91, 92
dependency management 184
dependency scopes

compile 87

import 88

provided 87

runtime 87

system 87

test 87
display-dependency-updates goal 235
display-plugin-updates goal 232
documentation

generating, with Site plugin 136-138

E

EAR files 209
EAR project
building 209-211
Eclipse
about 26

existing Maven project, importing in 30-32

new Maven project, creating in 26-30
URL, for downloading 26

used, for managing dependencies 103-105

used, for running Maven goals 80, 81
Enforcer plugin 236

246

Enforcer plugin, rules
requireFilesExist 237
requireOS 237

executable JAR
generating 199-201

existing Maven project, importing
in Eclipse 30-32
in IntelliJ IDEA 40-42
in NetBeans 34, 35

F

Failsafe plugin

used, for running integration tests 75, 76
filtering

performing, resources used 78, 79
FindBugs plugin

about 125

used, for analyzing code 125, 126
folder

dependencies, downloading to 92, 93

G

Git setup link
URL 88

goals, JaCoCo plugin
prepare-agent 113
report 113

go-offline goal 164

H

Help plugin
using 168, 169
Help plugin, goals
active-profiles 170
all-profiles 170
effective-pom 169
HTTP Proxy Server
Maven, running behind 22, 23

IDE 25
in-project repository 102
install-file goal 102

integration tests
running, Failsafe plugin used 75, 76
Intelli) IDEA
about 36
existing Maven project, importing in 40-42
Maven, customizing in 38, 39
new Maven project, creating in 36-38
URL, for downloading 37
used, for managing dependencies 108, 109
used, for running Maven goals 82-84

J

JaCoCo plugin

about 112

used, for analyzing code coverage 112-115
jar-no-fork goal 203
JAR, of source code

generating 201-204
JAR, of test classes

generating 204-206
JAR project

building 198
Java Development Kit (JDK)

about 2

modifying, used by Maven 15, 16
Javadocs

generating, for site 140-142
Java Runtime Environment (JRE) 2
Java SE Downloads

URL 4
Java version

about

specifying, for Compiler plugin 69, 70
Jetty

web project, running with 214-216
jetty server 152
JUnit 20, 72
JXR plugin

source references, generating with 128-130

L

lifecycles, Maven
clean 44, 45
default 44, 45
site 44, 45

Linux

Maven, installing on 11-14
localRepository element 48
location

modifying, of Maven repository 20, 21

Mac 0S X

Maven, installing on 8-10
Make 2
Maven

about 1

command-line options 51, 52

configuring, for searching plugin 161, 162

customizing, in IntelliJ IDEA 38, 39
goals 44

installing, on Linux 11-14

installing, on Mac OS X 8-10
installing, on Microsoft Windows 2-7
lifecycle 44

phases 44, 45

properties, using in 57, 58

running, behind HTTP Proxy Server 22, 23

settings configurations 48-50

simple project, building with 19, 20

simple project, creating with 16-18

URL 4
Maven Central Repository 1
Maven dependencies

updates, determining to 234, 235
Maven goals

running, Eclipse used 80, 81

running, Intelli) IDEA used 82-84

running, NetBeans used 81, 82
Maven output

verbosity, controlling of 166, 167
Maven plugins

updates, determining to 23-234
Maven profile

about 53

activating 55-57

adding 54

deactivating 55-57

Global profile 53

Per Project profile 53

Per User profile 53

241

Maven project
releasing 239-243
Maven repositories
local 20
location, modifying of 20, 21
mirrors 20
remote 20
Maven settings 48
Maven version 236
Microsoft Windows
Maven, installing on 2-7
modules
about 181
building, selectively 190, 191
multi-module dependency management
performing 184-186
multi-module plugin management
performing 187-189
multi-module projects
reporting for 192-195

NetBeans
about 32
existing Maven project, importing in 34, 35
new Maven project, creating in 32-34
URL 32
used, for managing dependencies 106, 107
used, for running Maven goals 81, 82
new Maven project, creating
in Eclipse 26-30
in IntelliJ IDEA 36-38
in NetBeans 32-34
Nexus 20

0

offline element 49
offline mode
working in 163-165
Oracle Java download page
URL 8

218

P

package phase 20
phases, default lifecycle

compile 45

deploy 45

install 45

integration-test 45

package 45

process-resources 45

test 45

validate 45

verify 45
placeholders 47
platform-independent builds

source encoding, specifying for 59
pluginGroups element 163
pluginManagement element 186
pluginRepositories element 50
PMD plugin

about 118

used, for analyzing code 118-121
pom file 46, 47
POM project

building 211, 212
profile feature

used, for building modules 190, 191
project aggregation

about 181, 182

combining, with project inheritance 183, 184
project inheritance

about 178-180

combining, with project aggregation 183, 184
project working directory 62
properties

using, in Maven 57, 58
proxies element 49

relativePath element 184
report, of dependencies

obtaining 88-90
repositories element 50
repositories, for release version 97
repositories, for snapshot version 97

resources site documentation

excluding 154, 155 Sonar report, linking from 148
including 154, 155 site lifecycle 44, 45
used, for performing filtering 78, 79 Site plugin
Resources plugin configurations, for customizations 138, 139
about 76 documenting with 136-138
using 76, 77 SNAPSHOT dependencies 94-96
software configuration management
S (SCM) 153
SonarQube plugin
SCM plugin URL, for downloading 131
operations 172-174 used, for analyzing code 130-134
using 170, 171 Sonar report
scm tag, entries linking, from site documentation 148
connection 172 source cross-reference
developerConnection 172 generating, for site 142, 143
url 172 source encoding
scope, of dependency specifying, for platform-independent
selecting 86-88 builds 59
selective reports source references
generating 149, 150 generating, with JXR plugin 128-130
servers element 51 sources
settings configurations, Maven excluding 158, 159
localRepository element 48 including 158, 159
mirrors element 49 standard directory layout 23
offline element 49 Surefire plugin
pluginRepositories element 50 used, for running unit tests 71
proxies element 49
repositories element 50 T
servers element 51
Simple Logging Facade for Java (slf4j) 87 test coverage
simple project generating, Cobertura plugin used 146, 147
building, with Maven 19, 20 TestNG
creating, with Maven 16-18 URL 72
site using 72
changelogs, generating for 174, 175 test phase 20
code coverage reports, generating test resources
for 144-146 copying, selectively 156-158
code quality reports, generating for 147, 148 tests
deploying 150, 151 skipping 74
Javadocs, generating for 140-142 test sources
source cross-reference, generating compilation, skipping of 74
for 142, 143 Tomcat
testing, before deployment 151 web project, running with 216-219

unit test reports, generating for 143, 144

249

U

unique builds
generating 237-239
unit test reports
generating, for site 143, 144
unit tests
running, Surefire plugin used 71
unused/undeclared dependencies
detecting 100
updates
determining, to Maven
dependencies 234, 235

determining, to Maven plugin 230-234

'}

validate phase 20
verbosity

controlling, of Maven output 166, 167

W

WAR plugin 208

WAR project
building 206-208

web project
running, with Jetty 214-216
running, with Tomcat 216-219

250

open source

community experience distilled

PUBLISHING

Thank you for buying
Apache Maven Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home

to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Maven Build Customization
ISBN: 978-1-78398-722-1 Paperback: 270 pages

Discover the real power of Maven 3 to manage your Java
projects more effectively than ever

1. Administer complex projects customizing the
Maven framework and improving the software
lifecycle of your organization with "Maven friend
technologies".

Maven Build , .
. . 2. Automate your delivery process and make it fast
Customization and easy.

3. An easy-to-follow tutorial on Maven customization
and integration with a real project and
practical examples.

Apache Maven 3 Cookbook
ISBN: 978-1-84951-244-2 Paperback: 224 pages

Over 50 recipes towards optimal Java software
engineering with Maven 3

1. Grasp the fundamentals and extend Apache
Maven 3 to meet your needs.

2. Implement engineering practices in your
application development process with
Apache Maven.

Apache Maven 3
Cookbook

3. Collaboration techniques for Agile teams
with Apache Maven.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Learning Apache Maven 3
[Video]
ISBN: 978-1-78216-666-5 Duration: 01:59 hours

Get to grips with the basics and concepts of building a
real world Java Application with Apache Maven

Leaming Apache 1. A practical example-driven approach to learning
Maven 3 Apache Maven 3.

Kapila Bogahapitiya 2. Grasp the fundamentals and extend Apache
Maven 3 to meet your needs.

3. Learn to use Apache Maven with Java, Enterprise
Frameworks, and various other cutting-edge
technologies.

Apache Maven Dependency
Management
ISBN: 978-1-78328-301-9 Paperback: 158 pages

Manage your Java and JEE project dependencies with
ease with this hands-on guide to Maven

1. Improve your productivity by efficiently managing
dependencies.

Apache Maven Dependency 2. Learn how to detect and fix dependency conflicts.
Management
3. Learn how to share transitive relations and to

visualize your dependencies.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introduction
	Installing Maven on Microsoft Windows
	Installing Maven on Mac OS X
	Installing Maven on Linux
	Changing the JDK used by Maven
	Creating a simple project with Maven
	Building a simple project with Maven
	Changing the location of the Maven repository
	Running Maven behind an HTTP proxy server
	Understanding the standard directory layout

	Chapter 2: IDE Integration with Maven
	Introduction
	Creating a new Maven project in Eclipse
	Importing an existing Maven project in Eclipse
	Creating a new Maven project in NetBeans
	Importing an existing Maven project in NetBeans
	Creating a new Maven project in IntelliJ IDEA
	Importing an existing Maven project in IntelliJ IDEA

	Chapter 3: Maven Lifecycle
	Introduction
	Understanding the Maven lifecycle, phases, and goals
	Understanding the pom file
	Understanding Maven settings
	Understanding command-line options in Maven
	Understanding Maven profiles
	Adding a new Maven profile
	Activating/deactivating a Maven profile
	Using properties in Maven
	Specifying source encoding for platform-independent builds

	Chapter 4: Essential Maven Plugins
	Introduction
	Using the Maven Clean plugin
	Using the Maven Compiler plugin
	Changing the compiler used by the Maven Compiler plugin
	Specifying the Java version for the
Compiler plugin
	Using the Maven Surefire plugin to run unit tests
	Using the Maven Failsafe plugin to run integration tests
	Using the Maven Resources plugin
	Filtering using resources
	Using Eclipse to run Maven goals
	Using NetBeans to run Maven goals
	Using IntelliJ IDEA to run Maven goals

	Chapter 5: Dependency Management
	Introduction
	Choosing the scope of dependency
	Getting a report of dependencies
	Getting into dependency and avoiding dependency hell
	Downloading dependencies into a folder
	Understanding SNAPSHOT dependencies
	Handling dependency download errors
	Detecting unused/undeclared dependencies
	Manually installing dependencies that are not available in a repository
	Dependency management using Eclipse
	Dependency management using NetBeans
	Dependency management using IntelliJ IDEA

	Chapter 6: Code Quality Plugins
	Introduction
	Analyzing code coverage with the Maven JaCoCo plugin
	Analyzing code coverage with the Maven Cobertura plugin
	Analyzing code with the Maven PMD plugin
	Analyzing code with the Maven Checkstyle plugin
	Analyzing code with the Maven FindBugs plugin
	Generating source references with the Maven JXR plugin
	Analyzing code with the Maven SonarQube plugin

	Chapter 7: Reporting and Documentation
	Introduction
	Documenting with the Maven Site plugin
	Generating Javadocs for a site
	Generating source cross-reference for a site
	Generating unit test reports for a site
	Generating code coverage reports for a site
	Generating code quality reports for a site
	Generating selective reports
	Deploying a site

	Chapter 8: Handling Typical Build Requirements
	Introduction
	Including and excluding additional resources
	Including and excluding source files
and folders
	Configuring Maven to search for plugins
	Working in offline mode
	Controlling the verbosity of Maven output
	Using the Maven Help plugin
	Using the Maven SCM plugin
	Generating changelogs for a site

	Chapter 9: Multimodule Projects
	Introduction
	Understanding project inheritance
	Understanding project aggregation
	Combining inheritance and aggregation
	Performing multimodule dependency management
	Performing multimodule plugin management
	Selectively building modules
	Reporting for multimodule projects

	Chapter 10: Java Development with Maven
	Introduction
	Building a JAR project
	Generating an executable JAR
	Generating a JAR of the source code
	Generating a JAR of the test classes
	Building a WAR project
	Building an EAR project
	Building a pom project
	Running a web project with Jetty
	Running a web project with Tomcat

	Chapter 11: Advanced Maven Usage
	Introduction
	Creating an assembly
	Running a custom executable
	Running an ANT task
	Determining updates to Maven plugin
	Determining updates to Maven dependencies
	Controlling the constraints
	Generating unique builds
	Releasing a Maven project

	Index

