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Preface

The study of crystal and its growth has a long tradition. The art of crystal growth is
now well developed to manufacture various high quality crystals for electronics, but
its scientific understanding is still developing. The modern technologies and obser-
vation methods of the atomic scale make possible and also require the microscopic
understanding of the growth mechanisms to control the quality of the product.

Since the crystal growth is a typical example of a system far from equilibrium
which involves the first-order phase transition, its comprehension involves many dis-
ciplines. In these two decades novel theoretical contributions are given from the field
of statistical physics: Kosterlitz-Thouless phase transition of the surface roughness
in equilibrium surface structure, and the microscopic solvability criterion for the se-
lection of the dendritic crystal growth.

This note tries to give the concise and precise overview on the fundamental scien-
tific aspects of crystal growth from the simplest phenomenological argument to the
latest discoveries. Technology and art of crystal growth are omitted in this book.
Important coupling of the hydradynamics to the crystal growth are beyond the ca-
pability of the author and are not touched upon.

The note is based on my introductory lectures on the fundamental and physico-
mathematical aspects of the crystal growth given at a winter school of Japanese
Association of Crystal Growth and in graduate courses in many universities in Japan;
Keio, Ochanomizu, Hokkaido, Kyoto and so on.

I am especially grateful to H. Miiller-Krumbhaar. From discussions and a long-
lasting collaboration with him, I learned most of the fundamental theorics of crystal
growth described in this book. The collaborations and enlightening discussions with
C. Misbah, E. Brener, D. Temkin and M. Uwaha arc also deceply acknowledged.
To M. Uwsaha I am thankful for his reading through and giving comments on the
manuscript. I am also indebted to T.Ohta, K. Wada, M.Kitamura, who have invited
me to their universities and given chances to teach the courses which cventually
resulted in this book. Lastly I dedicate my heartful appreciation to late Prof. R.
Kubo, who introduced me to the fascinating world of statistical physics.

Yukio Saito
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1 Introduction

We are living in the age of informatics; In computers a mass of information is handled
in high speed by integrated circuits built on a semiconductor crystal. By means of
a laser light emitted from semiconductor crystals, information written in a compact
disc at high density is read out. Through the optical fiber runs information as the
optical signal with high density and in the extremity of speed. In this information
technology, semiconductor crystals with high quality are required. There are also
many other crystalline materials utilized in our life; steal for cars, quartz in watch,
sugar and salt and so on. To fabricate crystals under our control we have to know
the mechanism of crystal growth.

There are also various crystals grown in nature; minerals, gems as diamonds, snow
etc. They contain information about the history how and the environment in which
they are grown: Snow is called a letter from the sky, diamond a letter from deep in
the earth. In order to understand their messages we have to know the dynamics of
crystal growth.

Crystal has an ordered arrangement of atoms or molecules in microscopic scale.
The microscopic regularity shows up in the symmetry as is observed in various diffrac-
tion patterns. Also the regular arrangement of atoms brings about the symmetry in
crystalline shape: Some crystals take simple forms as polyhedra as shown in Fig.1.1,
reflecting their symmetry. Some crystals have complicated forms as dendrite, as
shown in Fig.1.2 and in Fig.1.3. They are complex in the sense that all the snow
flakes, for example, look similar with six arms but none of them are completely the
same. We want to know how the crystal shapes are determined. The difference in
crystal shape should be brought about by the difference in the controlling mecha-
nisms of the growth dynamics. The relation between the growth mechanism and the
resulting growth morphology is to be explored.

There are many textbooks and monographs on crystal growth [74, 48, 120, 85]. I
intend to give in this book a concise but precise overview on the fundamental theories
on crystal growth from the viewpoint of statistical physics, especially on the recent
developments in the pattern formation in the diffusion field. In Part I, the ideal growth
formulae are derived from a thermodynamical point of view. "Ideal” here means that
all the thermodynamic driving force for the phase transition is invested for the crystal
growth. The growth formula thus gives the maximum growth velocity. In reality there
are many hindrances against the growth. The largest effect takes place at the crystal
surface, where the growth process takes place. In Part II, the equilibrium structure
of the crystal surface is studied microscopically, and the surface phase transition of
roughening is discussed. For an atomically smooth surface, surface kinetics governs
the crystal growth and the growth laws in this situation is discussed in Part III, For
an atomically rough surface, material transport or the heat conduction controls the
crystal growth. In this case, macroscopic morphology of the crystal surface is strongly
influenced, and complex pattern formation is induced. The topic will be discussed in
Part IV.



1. Introduction

Figure 1.1: Polyhedral crystals of (a) NaCl [79] and (b) quartz. (Courtesy by
[.Sunagawa).

Figure 1.2: Dendritic crystals of (a) snow and (b) ice. (Courtesy by Y.Furukawa).

sy

Figure 1.3: Irregular dendrites of (a) MnQs (Courtesy by N.Osada) and (b) Au on
Pt(111) [41].



Part I ,
Ideal Growth Laws

Crystal growth is an example of a dynamical first order phase transition. A stable
phase, crystal, grows out from a metastable phase, melt or vapor. The driving force
for the growth is the chemical potential difference of the stable and the metastable
phases. The simple assumption of the linear response that the growth velocity is
proportional to the driving force gives an ideal linear growth laws. When the crystal
is finite, or when the interface deforms, the surface tension has to be included in the
thermodynamics of the crystal growth. Surface tension plays an important role in
the determination of the shape of a finite sized crystal, or the deformation of the flat
interface.

2 Melting and Solidification: First-Order Phase
Transition

At low temperatures almost all the materials order in crystalline form where atoms
are arranged regularly. (Fig.2.1a). This is the configuration with the minimum in-
teraction energy E of atoms or molecules. At a high temperature atoms break the
regular structure since it is less free and with little entropy. In an irregular arrange-
ment as in liquid (Fig.2.1b) and in gas (Fig.2.1c), molecules move more freely and
thus gain the entropy in spite of the energy cost. For a given temperature T and
pressure p, the equilibrium state is determined by the second law of thermodynamics

@@®
Q Q

(a) (b) (c)

Figure 2.1: Arrangement of atoms (a) in a crystal, (b) in a liquid and (¢} in a gas
phase.
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Figure 2.2: Equilibrium phase diagram Figure 2.3: Isobaric variation of the

in the temperature T and the pressure Gibbs free cunergies of the liquid, Gg,

p phase space. and of the crystal Gg as functions of
temperature.

[121] such that the Gibbs free energy G = E — T'S + pV is minimized. Here V is
the volume of the system. At low temperatures with small values of T' the entropy
S contributes less than the enthalpy H = E + pV and the crystal with low H is
realized (Fig.2.2). At high temperatures, on the other hand, the entropy S gives the
dominant contribution and the configuration with a large S has the low free energy
G: the liquid or gas phase is realized. Two phases can coexist on a coexistence curve.

We consider in the following a liquid-crystal phase transition as an example. Iso-
baric variation of the Gibbs free energies of liquid and crystal, G|, and Gg respectively,
are shown in Fig.2.3 as functions of temperature T. At a low temperature Gy, lies
higher than Gg showing that the crystal is stabler than the liquid, but on increasing
the temperature, Gy, decreases faster than Gs due to the large entropy Sy, of liquid
compared to Sg of crystal. At a melting point Ty(p), G1, and Gs cross with each
other

Gs(Tw,p) = Gr(Tm, p), (2.1)

and the liquid becomes stabler for T > Ty.

On heating the crystal under a constant pressure, its temperature first increases,
as shown in Fig.2.4. At a melting point Ty the temperature stops increasing and the
applied heat is consumed to change the state of the matter from crystal to liquid. Since
the absorbed heat does not appear explicitly as a temperature rise, it is called the
latent heat L. The first law of thermodynamics says that the applied heat changes into
the work pdV done to the environment and the increment of the internal energy dF.
Since the pressure is kept constant, the heat changes into the enthalpy H = E + pV:
dH = dE + d(pV) = dE + pdV. Thus the latent heat observed at a melting point
corresponds to the enthalpy difference of the two phases as L = Hy,(Tu, p)— Hs(Tu, p),
with Hg and Hj, being the enthalpy of the crystal and liquid phases respectively.
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T,

Ty

Q=1

- ] —

Figure 2.4: Isobaric variation of the temperature due to the heating, for example, by
an electric current I under the voltage V. At the melting temperature Ty, crystal
starts to melt, and until the completion of melting, system absorbs the latent heat L.

Since Gibbs free energies of both phases are equal at the melting point, G = Hg —
TmSs = G = Hi, — TuS1, the latent heat is proportional to the entropy difference
AS = SL - Ss:

L = Hy — Hg = TyAS. (2.2)
According to thermodynamics {121], entropy S is the temperature derivative of the
Gibbs free energy as S = —(0G/9T),. Thus the phase transition with a latent heat
is associated with a discontinuity in the slope of the Gibbs free energy

oG, 0G5 L
(W)p - (F’F> =Ty (23)
Ehrenfest named this type of phase transition with a discontinuity in the first deriva-
tive of G as a first-order phase transition .

3 Crystal Growth from the Melt

Now let us cool the liquid to a temperature T below the melting point Tyy. The
Gibbs free energy of a crystal Gg(T,p) is lower than that of a liquid G(T,p) as
shown in Fig.2.3, and the true equilibrium state is a crystalline phase. However, the
whole liquid cannot instantaneously turn into the crystal. We often experience that
the liquid is supercooled for a long while near the melting point. Eventually, a small
crystalline nucleus is formed in the liquid, and then it grows. The crystal grows by the
advancement of a crystallization front. The evolution is driven by the second law of
thermodynamics so as to minimize the Gibbs free energy at a given temperature and
pressure [121]. The driving force of the crystal growth is the difference of the Gibbs
free energies of the liquid and of the crystal phases: AG(T,p) = GL(T,p) — Gs(T, p).
Since it vanishes at the melting point Ty, one can expand AG up to the first order
of the undercooling AT =Ty — T as

AG~ (%TqL-)p(T—TM)— (%%)IJ(T—TM) - L?,—:f. (3.1)
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Configuration

Crystal Liquid

Figure 3.1: Schematics of the potential surface in configuration space. Crystal phase
corresponds a stable phase, liquid a metastable phase, and in between is the diffusion
activation encrgy.

In the last equality we used the relation (2.3).

Under this chemical driving, the crystal grows. For a liquid molecule to be in-
corporated into the crystalline order, it has to change the configuration. But around
the liquid molecule there is a high density of other molecules and they hinder the
free motion of the molecule. It can mainly vibrate around its average position with a
frequency v, which is of the order of that of the lattice vibration. In order for a liquid
molecule to change the configuration drastically, it has to overcome the energy barrier
E, of the molecular diffusion, as is shown in Fig.3.1. At a temperature T a molecule
acquires the energy fluctnation F4 with a probability proportional to the Boltzmann
weight exp(—Eq/kpT), where kg is the Boltzmann constant. Therefore, the crystal-
lization rate per unit time is given as vexp(—Eq4/kgT). There is, however, a counter
effect, namely the melting of a crystal molecule into the liquid state. Since the Gibbs
free energy per molecule, called chemical potential 4 = G/N, is higher in the liquid
phase than in the crystal phase, u > pg, the rate of melting is smaller than that of
crystallization by a factor exp(—Ap/ksT). Here Ap is the difference of the chemical
potentials between the liquid and the crystal phases: Ap = p (T, p) — ps(T,p). By
the crystallization of one molecule, the solidification front increases its height by a
molecular height a. Thus the growth rate is given as

- (-]
= I el | 2
v auexp( kyT)[ exp "aT (3.2)
In terms of the liquid viscosity 7 or the diffusion constant D one can describe the
formula as
o (1o ()] = K [ e (-55)]
V = — - =K|l—-¢ - . .
T 1 —cxp T exp T (3.3)

where the Einstein-Stokes relation [56]

va® exp (———) =D= (3.4)
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is used. Here K = kpT/6ma’n is called the kinetic coefficient. The linear growth law
(3.2) or (3.3) is called the Wilson-Frenkel formula for the melt growth [196, 63], and
for the small undercooling AT it is approximated as

Ve K2 o KpAT, (3.5)
ksT

where Ky = Kl/kgTTy with [ = L/N being the latent heat per molecule. At small
undercooling AT, the growth rate is proportional to the undercooling.

The growth rate thus obtained is an ideal one and valid only when the interface
is atomically rough and the whole surface is accessible for the crystallization. In the
actual crystal growth the roughness of the interface controls the growth rate. Also
the derivation of Eq.( 3.2) lacks the consideration of latent heat and of the associated
temperature increase near the interface. The effect of heat transport is important
in determining the growth rate and the morphology of the crystal, but that will be
discussed later in Part III.

The Wilson-Frenkel formula says that the growth velocity V should drop drasti-
cally at low temperatures, since the liquid viscosity 7 increases exponentially. In a
molecular dynamics simulation of the crystal growth of the simple molecule system
(39], on the other hand, the growth rate is not limited by the mobility of the atoms in
the bulk liquid: The kinetic coefficient K in Eq.(3.5) is found to be proportional to
the temperature. Explanation is given such that the precursor of the crystalline order
is already formed in the liquid phase near the interface, and the collective motion of
the liquid facilitates the crystal growth without the activation barrier [137]. Thus,
general and microscopic consideration on the kinetic coefficient seems worth to be
studied.

4 Vapor Growth

Crystal can grow not only from a melt but also from a gas phase, as shown in Fig.4.1.
For instance, the snow is a crystallized water from the vapor (Fig.1.2a), whereas the
ice is the one grown from the liquid water (Fig.1.2b). In a semiconductor industry,
vapor deposition of a thin film on the substrate is an important technology to fabricate
materials with a controlled design and new functions. Molecular beam epitaxy (MBE)
or atomic layer epitaxy (ALE) are among these modern technologies.

For a gas phase an ideal gas is a good approximation due to its low density. At
a temperature T and a pressure p, the velocity distribution of a monatomic ideal gas
follows the well known Maxwell distribution [121}

m 32 mv
P(v)dv = (W) exp ( = T) dv, (4.1)

where v = (v, vy, v,) is the velocity of an atom and m is its mass. In a unit time,

f= / dv, / dv, / dv,njv,|P(v) = Tmﬁ (4.2)
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Figure 4.1: Vapor atoms depositing on a flat surface.

number of atoms impinge on a unit crystal surface normal to the z-direction as shown
in Fig.4.1, and try to crystallize. Here n = p/kgT is the average number density of
gas atoms.

Inversely, there are some atoms desorbing from the crystal surface at a finite
temperature T. The desorption flux is independent of the deposition flux from a
gas phase, but is a function of the temperature. If the crystal is in the gas with a
saturation pressure, pe(T’), the deposition rate balances with the desorption rate:
The desorption flux from the crystal fy., is equal to the deposition flux feq of & gas at
a saturation pressure pe(T"). Assuming that an atom is cubic with a linear dimension
a, the net atomic flux in an atomic area o2 contributes to the crystal growth, and the
atomic height increases by a. The growth rate is thus written as

QUp = Peq)
iV 27rkaT'

Here 2 is the specific volume of a single molecule 2 = 3. This linear growth law is
called the Hertz-Knudsen’s formula [77, 116].

Since the chemical potential of an ideal gas is written as ug(T,p) = pe(T,po) +
kT In(p/po) [121], the chemical potential difference of the gas and the crystal is
written as Ap = pa(T,p) — ps(T) = pe(T,p) — p6(T, Peo(T)) = kpT In(p/peq), or
P = Peqe®*/*8T. Thus the Hertz-Knudsen formula is represented as

V=0a*f - fu)= (4.3)

V= e [Cx"(k;ql*) ] K[e"p (chT) ] R)ilztr (44)

The growth rate V' is proportional to the driving force Ay for small Ay. The kinetic
coefficient K is now obtained as K = Qf,,. The relation (4.4) is valid only in the
ideal situation of a rough surface with the fast transport of materials in the gas phase.
For a smooth and flat surface, the growth law should be modified as will be described
in Part IIL
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5 Solution Growth

It is technically hard to crystallize a material with a high melting temperature, but
by solving it into some solution crystallization becomes easier at low temperatures.
For example, NaCl melts at 800°C and melt growth has to be performed at a high
temperature. If it is solved into hot water, the solution becomes supersaturated by
evaporation and a large crystal can be grown even at a room temperature.

In the case of solution growth, there should be a solute atom in front of the inter-
face to crystallize. The probability to find a solute atom af a certain crystallization
point with a unit volume a® is e3¢ for a solution with a concentration ¢. This atom
is oscillating around the average position with a frequency v, and tries crystalliza-
tion. In the solution, however, the solvent molecule makes some chemical bonding
with the solute molecules. Thus, for the solute molecules to be incorporated into
the crystalline structure, the solvent molecules have to be desolved from the solute.
For this desolvation process there is an energy barrier Egesl. Among v trials of so-
lidification, the rate which overcomes the desolvation energy barrier is given by the
Boltzmann weight exp(—Egeea/ksT). Then the velocity of erystallization is given by
Very(€) = 0v(ca®) exp{— Eueso1/k5T). There is an inverse process of melting of crystal
molecules. Its rate is determined by the temperature, and should balances the crys-
tallization from the solution with the equilibrium concentration Ceq: Vinel = Very(Ceq)-
The net rate of crystallization is

E [>:1s]
V = Viry(€) = Vinat = va'exp (— ch Tl) (€ — Ceq)- (5.1)
B

The chemical potential of a dilute solution with a concentration ¢ is expressed as
taot(T, €} = paat{T, €0} + kpT In{c/cy). The chemical potential of the crystal is equal
to that of a solution with an equilibrium concentration coq as ps(T) = psor(T, Coq)-
Then the excess chemical potential of the supersaturated solution is written as

Al = poar(T, €) — ps(T) = kpTln - x kpT' (i - 1) . (5.2)
Ceq Ceq
The growth rate is expressed in terms of the chemical potential difference Ay as
Ap Ay
= — ) -1 =~ K—. 5.3
V=K ["XI’ (kBT) 1] KT (53)

The kinetic coefficient is now defined as K = ua“ceq exp(— Egesol [k 8T').

The linear growth law (5.2) is valid only in an ideal case when the interface is rough
and the whole interface contributes to the growth. Actually by the solidification the
number of solute molecules in front of the interface decreases, and to compensate this
solute deficiency, molecules have to be transported from the far end of the solution.
By including this diffusional material transport, we reach to the different growth law.
But the detail will be discussed later in Part VI.
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Exercise: If the transport of materials in the ambient phase is important, it in-
troduces a length scale [ which characterizes the effective range for the material to
be incorporate from the environment. Find in this case the growth formula of an
[100]-face of a crystal with a unit cell a; X ag x a3.

Answer: The number of atoms to be incorporated on a unit of [100]-face with an
area aqag is given by casasl with a solute concentration ¢. Since the interface advances
a height ay by the crystallization of onc atom, the growth rate is described as

Vi = Qe Faesa/ksT (0 _ ¢ ), (5.4)

where Q = a;asa3 is the volume of the unit cell [23].

6 Equilibrium Shape

So far we considered the growth of a crystal with a flat and infinitely large interface.
If the interface deforms, the interface area changes and the associated energy change
has to be considered. Also in the carly stage of crystal growth, it starts from a
small embryo. During growth embryo size increases, and the cnergy cost at the
interface changes. Thus the interface energy has cffects both on the crystal shape
and the growth dynamics. In this section we focus on its effect on the crystal shape
in equilibrium [200, 121, 6]. Even though the realization of equilibrium shape is
difficult due to its long relaxation time, there arc some experiments with very small
crystals 78, 79, 136], or with a crystal with fast material transport [147].

Due to the energy cost at the interface, a crystal nucleus with a finite size and
shape cannot coexist with a mother phase at a bulk transition point, where the
chemical potentials of two phascs are equal: Au = 0. Finite Ay is necessary to
compensate the energy increase at the interface and to keep the small nucleus in the
stationary state.

Let us assume that z = {(z,y) describes the phase boundary between the crystal

Figure 6.1: Crystal surface.
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and liquid phases (Fig.6.1). Then the free energy gain by the solidification of Ng
atoms is given as

|4 A
Go = No(s — ) = —GAu = == [ dedy(a,v), (6.1)

where Q and V' are the atomic volume and total volume of the crystal cluster, re-
spectively, and the volume integration is taken over the crystal phase (z < {(z,y)).
The bulk free energy G} is negative for supercooled melt (us < ur). There is an en-
ergy increase due to the formation of an interface. The interface free energy per area
¥(P2,py) is a function of orientation of the interface n = (~py, —py, 1)/4/1 + p% + p2

where p, = 0(/0z and p, = 8(/0y are the interface gradients. The total surface free
energy is written as

G, = [dAr(pzp) = [ dudyf(p.,p). (62)

Since the projection of the surface area dA in z-direction is equal to the area drdy
in zy-plane as n,dA = dzdy, the free energy density f per unit area in zy-plane in

Eq.(6.2) is given as
F@e,4) = YP2s2y) /1 + P2 + PL. (6.3)

The equilibrium state is determined by the stationarity condition of the total free
energy G = Gy + G,. The change of the bulk free energy G, by the small variation
of the interface height §((z,y) is written as

_ Ap _
6Gy = -2 / 8¢z, y)drdy = —2) f s¢dzdy, (6.4)

where we introduce a parameter A = Au/2Q. On the other hand, the surface free
of 5 ]

energy varies as
of
/ dzdy [ + 6_171, Dy

90 f o of
/ dzdys¢ [ 555 " 5 apg] ., (6.5)
where partial integration is performed to derive the last equality. By imposing the
stationary condition

6G,

/d dy af 95¢ af%
3, oz apy 8y

§Gy+8G, =0 (6.6)
for arbitrary variation 6((z,y), one gets the Euler-Lagrange equation
d0f 9 0f _
R Y 5o = (6.7)
The solution of this equation is
af af
= =T, and — = =Ay. 6.8
0p; Opy Y (68)
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It shows that variables x and p. are conjugate as well as y and p, are, and f(p,,py)
behaves as a potential function. The Legendre transformation introduces the new

potential of of
9=1f- " ap f+ Azpe + Aypy, (6.9)
which is a function of z and y variables as
& ¢
dg = df + d{Azp;) + d(dyp,) = A %dx + —B—ydy = Ad(. {6.10)

On integration one gets g{(—Az, —Ay) = A{. The potential ¢ is thus equal to the shape
¢ as ;
g
C=X=X+xpr+ypy. (6.11)
By rearrangement, it reduces to

¢ = aps = ypy _ ¥(P:,py)
\/1 + pZ + p? A

(6.12)
Since the normal vector to the interface is given by n = [1 + p2 + p2]~/2(~p,, —p,, 1),
the point r = {z, y, () on the interface satisfies the relation

(r.n)zlzm.

A= A (6.13)

The analogous formula holds for a one-dimensional interface of a two-dimensional

Figure 6.2: Wulff plot and equilibrium shape.
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Figure 6.3: Local coordinate system; z axis in normal direction, and z; and z, in the
local principal directions.

system. Actual realization of a one-dimensional interface is a step on a crystal surface
with the step free energy f(n). The equilibrium shape is determined by the relation

2%
(r-n)= An (6.14)
where €22 = a? is an atomic area.

Since the Lh.s. of Eq.(6.13), h = (r-n), is the vertical length from the crystal center
to the interface with orientation n, Eq.{6.13) shows that the length h is proportional
to the surface tension v(n). By using this relation one can draw the equilibrium shape
of a crystal as shown in Fig.6.2 (Wulff plot) [200]. Draw a line from a center O to the
direction n with a radial length proportional to the surface tension y(n), and then
draw a plane perpendicular to it through the end point: The crystal surface can be
a part of this plane. By varying the orientation n, the envelope of the perpendicular
planes gives the equilibrium shape.

Another way to represent the equilibrium shape is its relation with the interface
stiffness. In three dimensions, we choose the local coordinate (z,, 2, z) such that z
axis is in the normal direction of the interface, and z;, z axes in the local principal
directions with principal radii of curvatures, R; and R, (Fig.6.3). Then the profile of
a crystal near this point i8 approximately given as

zf _ o

2Ry 2R,
with 7, = Rif;, 7o = Rof,. Here the angles 8; and 8, are the deviation of the normal
direction as shown in Fig.6.3. Then the slopes are p; = 82/9z; = —z;/R; = —6; with

(6.15)
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i = 1 and 2. Equation (6.7) can be expressed as

Ap &8 df  Ap 2 ap; 0% _
kD +Z§i‘:6pi T N> dz; Opidp; O (6.1

i=1 i=1j=1

Here f = v(61,02)4/1 + 0% + 63, and the surface stiffness at 21 =22 =6; =0, =0 is
*fF _ f _ o 9y

= = Yi; = 6," - .1
opiop; 80,08, ~ 19~ 1% .50, (6.17)
The curvature is 3 )
WD _ _ .
% T, bij. (6.18)
Thus Eq.(6.16) reduces to the relation
Ap |
=y 2= .1
O =R + T (6.19)

If the surface tension is isotropic, then 4;; = v6;; and the crystal nucleus is spherical
with the critical radius
R. ==, (6.20)

obtained from Eq.(6.19) with R = Ry = R.. This radius corresponds to the crit-
ical radius of a three-dimensional nucleus in equilibrium with the undercooling or
supersaturation, Ayu.

Exercise 1: In two dimensions the interface is defined by the arc length s and the
angle @ of the normal vector n from y axis. (Fig.6.4)

(1) From Eq.(6.14), show that the point (2,y) on the interface satisfics the relation
z(s) = B(8)siné + 5'(8) cos § (6.21)
y(s) = B(0)cosd — F'(8)sin 8 (6.22)

with #'(8) = dB/df and A = Ap/Qs.

Figure 6.4: Geometry of a step at a site r with a normal vector n. s is the arc length
and 6 is the angle of thc normal vector.
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(2) Find the relation

i
A== 6.23
P (6.23)
with the step stiffness
f=0+— il 6.24)
a6? (6.
and the radius of curvature p = ds/d8.
Answer:
(1) Since n = (sin#,cosd) from Fig.6.4, Eq.(6.14) can be written as
— s g B
(r-n)—zs1n0+yc050_-):. (6.25)
By differentiating both sides by s, one obtains
dx dy dé p'de
T m0+a—cosl9+(zc0s6 ysm0)———— Th (6.26)
From the geometry shown in Fig.6.4,
dz = dscosf, dy = —dssiné, (6.27)
and one gets
ﬂl
zeosf — ysinb = T (6.28)

Solving (6.25) and (6.28), the desired relations

—

6.21) and (6.22) are obtained.
(2) Differentiating Eq.(6.28) with s, one gets

dz dy . : do 3" de
%cose -C-i-gsme (msm()+ycos&)ds =

Inserting the values of dz/ds and dy/ds from Eq.(6.27) and by using the relation
(6.25), one gets the relation

BB _ o2y sin?0
T = Cos 8 +sin“6 = 1. (6.30)

By rearrangement, the desired result (6.23) is obtained.

(6.29)

Exercise 2: Draw the equilibrium shape of a two-dimensional crystal with a tension

B(6) = Bo(1 + €cos4h). (6.31)
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B=1 - 0.06 cos40 B=1 + 0.06 cos46
(a) (b)

Figure 6.5: Polar plot of the step free energy § = fo(1 + £cos48) in a dashed curve,
and the equilibrium shape in continuous curve. (a) &€ = 0.06, and (b) £ = —0.06.

Answer: From Eqgs.(6.21-6.22), the shape is determined by the parametric represen-
tation;

é\—z = (1 + €cos48)sind — 4€sindf cosd

o

ﬁiy = (1-+ &cos4f)cosf + 4€sin 48 sin 6. {(6.32)
0

The shape is plotted in Fig.6.5. For € > 0, the direction # = 0 corresponds to the
maximum of the surface free energy 4 and to the minimum of the stiffness 4. The
equilibrium shape has a pointed corner there because the curvature is large.

Exercise 3: Often a lattice model is used for a simple description of a crystal shape.
The space is divided into a regular lattice and each lattice site can be empty or
be occupied by a crystal atom. For an occupied site an Ising spin variable S; = 1 is
associated, and for an empty site 5; = —1. There is cohesion between the neighboring
crystal atoms. If the bond from a crystal atom is not connected to the other atom,
this broken bond causes an energy cost J. This energetics can be represented by the
Ising ferromagnetic Hamiltonian [121]:

H=-LY 58+ % (6.33)

<ij>

Here z is the coordination number, and z = 4 for a square lattice model. There the

critical point is exactly known to be at {149)
keT, . 1

J  In(v2+41)

=1.1346--- (6.34)
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Figure 6.6: Equilibrium shape of 2D Ising model at various temperatures below T¢.
Normalized temperatures are T/T.=0.1 (outermost) to 0.9 (innermost) with temper-
ature differences 0.1.

The exact form of the interface free energy (6} is also known at a temperature T as
a function of the orientation angle  from the (01) direction as [L59)

'I[:—% = | cosf|sinh~!(a| cos8|) + | sin §|sinh ™! (| sin 8]) (6.35)
with 2
2 1 - )
a=— 6.36
b(1+\/sin220+b2005220 (6.36)
and
_ 2sinh(J/kpT) (6.37)
~ cosh®(J/kpT)’ '

Draw the equilibrium shape of a square Ising crystal at various temperatures by using
this interface energy [159, 7].

Answer: Using the parametric representation, (6.21) and (6.22), the profile is ob-
tained straightforwardly as shown in Fig.6.6. On increasing the temperature the
shape becomes isotropic and the size becomes small.

7 Growth Shape

According to the general formalism of nonequilibrium thermodynamics, velocity of the
time evolution of a dissipative system is proportional to the thermodynamic driving
force given by the gradient of the free energy [142]. Thus the time evolution of the
interface z = {(z, y,t) is written by

o(z,y,t) KQ G

8t keT 8C(z,y,t) )
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Figure 7.1: Growth shape by Wulff plot using kinetic coefficient K.

In equilibrium Eq.{7.1) reduces to the stationarity condition (6.6) for the equilibrium
shape. By choosing the local coordinate such that the z axis is oriented in the interface
normal n, one obtains the evolution from Egs.(6.4-6.5) and (6.16-6.18) as

K(n) 1| a2
Vo= o n -+ ), (72)
where we show explicitly the possibility that the kinetic coefficient K depends on
the orientation n. The growth law (7.2) is similar to the ideal growth formulae,
{3.5),{4.4) and (5.3), but the chemical driving force Ay is modified by the curvature
effect. At the pointed part with positive curvatures, Ry > 0 and 12, > 0, the growth
rate decreases by the surface tension effect. This is called the Gibbs-Thomson effect.

For a sufficiently large crystal the radius Ry and Ry are very large, and the last
term related to the interface stiffness may be neglected. Without it and assuming
that Ag is constant all over the interface, one can casily integrate Eq.(7.2) up to the
time ¢ as o L K(n)A;zt .

(0m) = [ Viar = =22, (7.3
where r is a point on the interface oriented in n direction. Eq.(7.3) is similar to the
equilibrium shape Eq.(6.13), with the interface tension y(n) being replaced by the
kinetic cocfficient K (n) [46]. Therefore, we can draw the growth shape of a crystal by
the Wulff plot of K'(n) instead of the ¥(n), as shown in Fig.7.1. Also one can derive the
relation between the local curvature and the kinetic stiffness Ky; = K6;;40°K/86;86;.
In an isotropic case, the erystal grows spherically with its radius given by

Ap

R=K-—rt. 4
Koot (7.4)
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H the orientation n—dependence of the kinetic coeflicient K is so strong such that a
corner appears in the kinetic Wulff plot, the Gibbs-Thomson term with surface tension
is no more negligible. The growth shape with both surface tension and kinetics are
generally treated by Miiller-Krumbhaar et al. [142] and by Uwaha [184].



Part 11
Statistical Mechanics of Surface

So far the ideal growth formulae of the crystal are discussed in a macroscopic, ther-
modynamic sense. In this and the next parts, we consider the microscopic aspects of
crystal growth. Since the growth takes place at the crystal surface, it is quite natu-
ral to imagine that the surface structure influences the growth. From a microscopic
model of the surface configuration, a surface phase transition, a roughening transition
[43, 194, 195}, is found: At low temperatures surface is flat and smooth, whereas at
high temperatures it is rough in the atomic scale. The roughening phase transition
induces the faceting transition in the equilibrium crystal shape.

8 Position of Crystallization: Kink Site

Before considering the crystallization in an atomic level, we have to identify when or
in what situations an atom is said to be crystallized. In the gas phase an atom is free
and makes no bond with other atoms. In a crystal it makes z bonds with neighboring
atoms to lower the energy. An energy gain for each connected bond is set —2J. For
N crystallized atoms, there are totally 2N/2 bonds, and the total cohesive energy
is —JzN, or —Jz per each crystal atom. After melting all the atoms become free
without any bond connections, and the energy is zero. By assuming that the work
associated to the volume change is negligible, the enthalpy variation by the melting
or the latent heat per atom is given by [ = 2J.

If an atom freely moving in the gas phase impinges on the crystal substrate and
makes a bond of z/2 nearest neighbors with the crystal substrate, there is an energy
gain of zJ, and the atom can be regarded to be crystallized. The problem then is when
an atom will acquire z/2 bonds. On a completely flat crystal surface, the adsorbed
atom cannot make so many bonds. But on a crystal surface, there are various defects
as shown in Fig.8.1. A flat portion is called a terrace. When the heights of two
consecutive terraces differ, there is a step between them. A step can be straight as
it runs in a closed packed direction. It can also bent and change the orientation at
a kink position. When an atom impinges on a flat terrace, the atom makes only a
few bonds with the underlying atoms. The bond connection is so weak that the atom
can meander on.the surface. This atom is called the adsorbed atom, or adatom for
short, and performs surface diffusion. During meandering, the adatom may come in
contact with an uprising step. Then step provides some additional bonds parallel to
the terrace, but the number of bonds is still in short of z/2. The adatom can slide
along the step edge by edge diffusion, and may reach to the kink position where there
are z/2 nearest neighbors. At this kink site, the atom is really said to be crystallized.
The striking feature of the kink site is that it never disappears by crystallization or
melting; it only slides along the step. For the fast crystallization, therefore, it is
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step overhang

@ adatom
step

cluster

Figure 8.1: Surface configuration with terraces bounded by a step with kinks.

desirable to have many kink sites or steps on the surface. But the surface with many
steps and kinks is rough with many broken bonds, and it has high surface energy.
The surface cannot be rough at low temperatures where only the minimum energy
configuration is allowed. The rough surface is possible only at high temperatures. The
roughness of the surface is expected to change drastically at a certain temperature.
Since the surface roughness controls the growth mode of the crystal, the roughening
phase transition of the surface will be discussed in the next section.

Exercise: In a lattice gas model for crystal growth, a density variable n; at a
lattice site ¢ takes a value 1 when the site is occupied by an atom, or it is 0 when the
site is empty. If a broken chemical bond from a crystal atom costs an energy J, the
interaction energy is expressed as

H=J 3 [l —n))+{(1—n)n;] - Apd n;, (8.1)
7> :

where < ij > means the summation over the nearest neighbor sites pairs, and Ay is
the chemical potential gain by crystallization. Show that the Hamiltonian (8.1) can
be transformed to the two-dimensional Ising Hamiltonian

H] = —1 z S,'SJ' - st‘ (82)
2 <iF> i

Here an Ising spin variable S; = 2n; — 1 takes values +1 or ~1, and the field is
H = Ap/2 [128].



22 Part II. Statistical Mechanics of Surface

(a) (b)

Figure 9.1: Surface configuration with steps observed by scanning tunneling micro-
scope (STM). (a) Si(111) [192] and (b) Si(001) faces [178]. (Courtesy of M.G. Lagally).

9 Surface Roughening

We study the equilibrium configuration of the crystal surface in contact with the
ambient gas phase, which is realized on the vapor-crystal coexistence curve in equi-
librium phase diagram (Fig.2.2). Along this curve the chemical potentials are the
same for crystal and gas phases. The temperature variation affects only the surface
free encrgy associated to the surface configuration or its roughness. At low tempera-
tures the crystal is polyhedral, as shown in Fig.1.1, enclosed by atomically flat faces
with low Miller indices, called facets, since these faces have low cnergies. But the
flat face has only a single possible configuration, and has no entropy. If atoms jump
out from the flat face and sticks on it, there is an entropy gain S connected to the
possible numbers of positions for atoms to be taken out and to be put on. But there
is an energy cost E, and the equilibrium configuration at a finite temperature T is
the one which minimizes the free cnergy F = E — T'S. Thus the surface structure is
determined by compromising two contributions, £ and S [194, 195, 146].

9.1 Monte Carlo Simulation

In order to understand the atomic structure of the crystal surface, it is good to see the
surface configuration: Seeing is believing. Recent development of various microscopes
as scanning tunneling microscope (STM) and others make it possible to see the surface
structure in an atomic level, as shown in Fig.9.1. Theoretically, it is also possible to
produce atomic configurations of the surface by using various computer simulation
methods. One method is the Monte Carlo simulation [25, 76], which produces various
microscopic configurations stochastically under the influence of thermal fluctuation.
Equilibrium configurations of a surface are obtained by this method as shown in
Fig.9.2 [194].

By way of solid-on-solid (SOS) model for the crystal growth (Appendix A9.1),
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Figure 9.2: Surface configurations by Monte Carlo simulation; Parameters are the
temperatures kgT/2J. [194]

Monte Carlo simulation procedure is now explained [69]. Crystal surface configuration
is assumed to be described by the integer height variables {h} = {h(1), -, h(N)}
on a square lattice with N = L2 lattice sites. With the thermal fluctuation, the
configuration {h} is realized stochastically with a probability P ({h},t) at time ¢.

The height k() at site i changes to another height 4/(i) with a transition prob-
ability w(h(:) — Rh'(:)) per time. Then the time variation of the probability P in a
small time increment At is given by

P(R(L)-+-h(@) - R(N), £ + A8) = P (h(1)- - h(i) - h(N), 1)
—f:w(h(z) = WD) AtP (h(1)---h(i)---h{N),t)
i=1

N
+ Y w (R (8) — h(i)) AtP (A(1)-+- B (5)- - h(N),t). (9.1)

i=1
The second term represents the probability decrease due to the probability escape
from {h} to other configurations, and the third term represents the increase due to
the probability income from other configurations to {h}. In the continuous time limit,
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At — 0, one obtains the master equation of the probability;
aP ({h},¢ N
——(ét—}—l Zw (h{t) = K (1)) P({h} t)+Zw W{@) = h(0))Y P{{h}i,1).
(9.2)
Here {4} is a configuration different from {h} only by a height at the site 4, In order
to realize thermal equilibrium asymptotically (t — o0), the Boltzmann distribution

Poy=Z"exp {—%—2] (9.3)

should be a stationary solution of the master equation. Here H({A}) is the Hamilto-
nian defined as

H({R}) =T 3 [R{i) - R(H)|+ AuZh i)y = E({h}) + AuZh(z) (9.4)
<ij>
with J being the energy cost of a broken bond, Ay = ug — ps the chemical potential
difference between the gas and the crystal phases. If the transition probability w
satisfies the detailed balance condition;

w0 = KO Pl _ [_w{h}i)—mm]
w(i (@) = h(0) . Pl (R)) knT

the equilibrium is confirmed. The crystallization rate at the site ¢ is chosen to depend
ounly on the chemical potential difference as

) (9.5)

‘ A

w{h(t) = h(i) + 1) = exp ( a ) (9.6)
kpT

The evaporation rate at the site ¢ is determined from the detailed balance condition

(9.5) as

e gy 2 Pl = 1) o (_AE

w(h@) - i) =1) = W w(h(i) = 1 — h{i)) = exp ( k;,»T) . (9.7
Here AE = E(h{i) — 1) — E(h(3)) is the variation of the hond energy associated
to the lowering of the height h(d), and is given by AE = —2J(n — z/2) with n
being the number of nearcst neighbor sites with heights lower than A{:) and z is
the coordination number. Surface configurations with corresponding n are shown in
Fig.9.3 for a one-dimensional example {(z = 2). Since the maximum of n is z, the
maximum evaporation rate is proportional to ¢*//*37 . Thus by choosing

Atme b (9.8)

eAnlksT 4 p2J/kaT

the transition rate wA¢ in Eq.(9.1) never exceeds unity.
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i i i
n=0 Ji 2
AE=2J 0 -2J

Figure 9.3: Configurations of a one-dimensional interface (z = 2) before evaporation
of the shaded top atom on the ¢-th column. n means the number of nearest neighbor
sites with the height lower than h;, and AF is the variation of the bond energy.

The real configuration change of the simulation is performed as follows: Select
a lattice site ¢ randomly, and calculate n and various transition probabilities wAt.
Then, create a random number v which is uniformly distributed between 0 and 1. If
u lies between 0 and Ate®*/*sT | the height h(i) is increased by 1. If u lies between
Ate®#/k8T and At(eA#/k8T 4 ¢~8E/kBTY the height h(i) is decreased by 1. Otherwise,
the height does not change. After trying the height variation N times, every site has
been tried once on average to change its height, and the one Monte Carlo step (MCS)
is said to have been performed. The time increases by At. See the sample program
in Appendix A9.2.

The average height at the m-th MCS is defined as

N

(h(m)) = 1 3 hlism), (99)

i=1

where h(é;m) represents the height at a site ¢ at m-th MCS. In equilibrium where
Ap = 0, the height should remain constant, and the thermal average of height is

obtained by
1 Mo+M

(h) =37 Y (R(m). (9.10)
m=My
Other quantities are calculated similarly.

In some cases, the Monte Carlo procedure can be regarded not merely a math-
ematical algorithm to obtain equilibrium quantities, but also as a physical process
of relaxation dynamics. For example, the SOS simulation so far explained can be
regarded as to mimic a crystal growth from a homogeneous ambient gas phase. In
order to incorporate the kinetic coefficient K, the time increases At/K after one
MCS. The growth rate (5.2) with additional curvature correction is obtained from
the simulation by

V(t) = 5 (R(m+ 1)) = ((m))), (911)
where the time is t = mAt/K.
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At very low temperatures (kg7 < J) with a small supersaturation, the time
increment At defined in Eq.(9.8) is so small that configuration change occurs very
seldom. In order to circumvent the difficulty and alter the configuration efficiently,
the waiting time method is often used. Details are found in references {69, 188, 88].

Simulation results of the equilibrium configuration are shown in Fig.9.2 [70]. At
low temperatures, the surface is flat with few bumps and holes, whereas at high
temperatures the surface is rough. Thus the change of the surface configuration by
temperature is obvious. This surface structure change is in fact a phase transition,
which takes place at a critical temperature. For the real understanding of the phase
transition, one needs analytical theory on it.

9.2 Mean Field Theory by Jackson; a-Parameter

For an analytical study on the roughening transition, we start from the simplest
model, where the interface is assumed to consist of a single layer between the semi-
infinite crystal and the vacuum phases [43, 90]. The interface layer is divided into a
two dimensional lattice cells, and each cell site can be occupied by a crystal atom or
can be empty. Between the neighboring crystal atoms a cohesive energy of attraction
is assumed.

If the layer is almost empty, the layer belongs to the vacuum phase and the crystal
phase terminates sharply before the interface layer: The crystal has a sharp interface.
If the interface layer is almost fully occupied, the layer belongs to the crystal, and
the crystal terminates sharply after the interface layer. Ounly when the half of the
layer is empty and the other half is occupied by crystal atoms, the interface layer
belongs neither to the crystal nor to the vacuum phase. In this case the interface can
be regarded to be rough. Burton, Cabrera and Frank treated the square lattice case
exactly [43], because the model is equivalent to the exactly soluble Ising ferromagnet
as (8.1) or (8.2). Jackson later treated the same model in the mean field approxima-
tion [90], and estimated the roughening temperature Tk , and compared it with the
melting temperature Ty. Here [ summarize briefly the latter mean-field treatment.

The interface layer consists on N cell sites, and each cell site has 2, nearest neigh-
bor sites in the layer. When there are Ng crystal atoms on the interface layer, the
energy increase is estimated as follows: Among 2, neighbors of cach crystal atom,
(1 — Ng/N)z, of them are expected to be empty in the mean ficld approximation.
Therefore, the total energy cost E is proportional to the total number of broken
crystal bonds as

E = JZs(l—Ns/N)Ns. (912)

The entropy S is obtained as the logarithm of the numbher W of the microscopically
different configurations. Since W is the number of ways to choose Ng sites from N
lattice points to locate crystal atoms, it is easily obtained as W = N1/[Ngl(IV — Ng)!].
By using the Stirling’s formula In N1 =~ NIn N ~ N, the entropy is obtained as

S=kplnW x kg [NIn N — Ngln Ng — (N — Ng)In(N — Ng)]. (9.13)
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¥Y=Ns/N

Figure 9.4: Free energy F as a function of the parameter ¥ = Ng/N at various
temperatures. Below the roughening temperature Ty, F has double minima, whereas
above Ty it has a single minimum.

The dependence of the free energy F = E —TS on the parameter ¥ = Ng/N is shown
in Fig.9.4 at various temperatures. By minimizing the free energy F', we obtain the
equilibrium value of the parameter ¥, or the degree of crystallinity of the interface.
At a temperature below the roughening temperature

=)
" 2kp’

there are two minimum points in ¥ — ¥ diagram, showing that the interface is almost
empty (¥ « 1) or is almost full (¥ ~ 1). At high temperatures there is a single
minimum at the intermediate value ¥ = 0.5; The interface is rough.

Since the coupling energy J is related to the latent heat per molecule by ! =
zJ with z being the bulk coordination number, the roughening temperature can be
expressed as

Tr (9.14)

2l
Tg = Dok (9.15)
The comparison of the melting temperature Ty and the roughening one Ty yields the
following parameter
a= % (= ﬁ) (9.16)
zk BTM TM ’

which is readily evaluated by using experimental data. If @ < 2 the melting point
Ty is higher than the roughening temperature Tg and the interface at Ty should be
rough. If @ > 2, on the other hand, Ty is below the roughening temperature and
the interface is flat. The parameter « is called the Jackson’s @ parameter [90], and is
used to classify the material for surface roughening or to guide experiments.
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This model is equivalent to two dimensional Ising ferromagnet defined in (6.31),
and the exact solution is known [149]. The singularities in thermodynamic quantities
are well studied, and for example, the specific heat shows a logarithmic divergence.
But the single layer model of interface cannot correctly describe the roughening tran-
sition. In this model the height difference at two separated points is 0 or 1 by
definition, and the interface is always flat. If the interface is really rough, heights
at two distant points should be uncorrelated and fluctuate strongly to diverge at
infinite separation. Burton, Cabrera and Frank extended the model with multiple
layers and analyzed it in the Bethe approximation [43]. They found no singularity in
the free energy, meaning the absence of phase transition when the height fluctuation
increases. The Bethe approximation is better than a simple mean field approxima-
tion, but as for critical phenomena the same qualitative behavior is expected since
both approximations neglect the effect of fluctuation. For the analysis of the true
roughening transition, one should include the possibility of arbitrary height differ-
ence at two separated points. The thermal fluctuation influences strongly on the
phase transition, and one needs sophisticated method as variational [163] or renor-
malization group method {114, 49, 146]. The critical behavior of the phase transition
turns out to be quite different from that of the single-layer Ising model. However, the
transition temperature is quantitatively not much different from the two-dimensional
Ising model, and thus the Jackson’s a-parameter is used as a convenient criterion for
surface roughening.

9.3 Mean Field Argument in terms of Steps

We now look the surface roughening from another point of view, in terms of steps on
a crystal surface. For a rough surface there are two- dimensional nuclei, where the
inside terrace is one atomic height higher or lower than the exterior one, as shown in
Fig.9.5. For a nucleus with the perimeter step length L, the energy cost is E = JL/a
due to the broken bonds. Here a is the linear size of the atom.

As for the entropy, one counts the possibility of step configurations with a fixed
perimeter length L. A step looks quite similar to a polymer with L/a segments. Each
segment should be oriented in one of the z, directions of nearest neighbor connection.
The first segment can be put in one of z, possible orientations. From the second
segment on, it can be in one of z, — 1 orientations, because it cannot fold back on
the previous segment. Then the entropy is approximately given by S = kpln(z, —
1)!/e = kg(L/a)In(z, — 1). Here we have neglected such restrictions that the step
loop should be closed and cannot cross itself. The free energy is then obtained as
F = [J - kpTin(z, — 1)](L/a) = BL, with § being a step free energy per length.
At a low temperature below the roughening temperature Tg = J/kgIn(z, — 1), g is
positive and the state which minimizes the free energy F' contains no step (L = 0):
The surface is flat. At a high temperature (T > Tg) L = oo corresponds to the state
of the minimum free energy and the surface becomes rough with an infinitely long
step running. In this case the step-step interaction becomes important and the step
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Figure 9.5: (a) A two-dimensional nucleus bounded by a step with length L. (b) Top
view of a step loop.

free energy is shown to remain zero.

9.4 Short Summaries of Roughening Transition

In order to understand the roughening phase transition correctly, the mean field
approximation is insufficient and the fluctuation effect has to be considered carefully.
Treatments by the variational method [163] and by the renormalization group theory
[114, 49, 145, 146] are described in Appendices A9.3-4 in detail, and here we give a
short summary of the renormalization results. There are also some exactly soluble
models of the surface structure [187, 93] which shows the roughening transition, as is
described in Appendix A9.5. The result is also summarized here.

In the SOS model the interfacial configuration is described by the height variable
h{r) at a two-dimensional site r. Below the roughening temperature 7% the interface
is flat and the height fluctuation is small such that the height difference correlation

G(r) = ((Mr + x) — h(ro))?) (9.17)

at two separate points remains finite. On the other hand, above Tx the interface is
rough and the height fluctuation is so large that G(r) diverges as r — 00. According to
the renormalization group calculation [146], G(r) diverges logarithmically above Tg.
Below Ty the height fluctuate logarithmically at short distances within the correlation
length €, but for large distances r > £ the fluctuation remains constant:

Inr, forr < ¢
G(r) ~ { Ing, forr>¢. (9.18)
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The correlation length diverges at the roughening point Tx as

£~ exp[\/TRC__zT]. (9.19)

Within the scale of correlation length £, the surface is rough, as Eq.(9.18) shows.
This means that steps with a perimeter length up to £ can be excited by thermal
fluctuation. By denoting the step frec energy per length as §, the total step free
energy B¢ of a step with a length £ should be of the order of the thermal energy k5T
Therefore, the step free energy 3 is given by

C
-1

Br~E~ Cxp[ m] (9'20)
The singularity of the step free energy is an essential one, whose derivatives of arbi-
trary order vanish at the transition point Ty and therc is no divergence in derivatives,
such as in specific heat. Above Tr, the correlation length £ is infinitc and thus § = 0.

There are some special models of a crystal surface, which are exactly soluble
(187, 93]. They arc mapped onto the inverted F-model, a special case of a six-vertex
model [129]. The step free energy is shown to have the same singularity with that
predicted by the renormalization group method, Eq.(9.20).

The Monte Carlo simulations also show that the height difference correlation func-
tion G{r) diverges logarithmically above Ty, and it saturates below Ty [127, 164).

10 Step Fluctuation in Equilibrium

Above the roughening temperature the crystal surface is rough and there are kinks
everywhere on the surface. In this case the growth formula of Hertz and Knudsen
may be valid, if the transport is sufficiently fast. Below Tg the surface is flat and
there is no thermally excited kinks. Then, how can the crystal grow?

When an atom impinges on a flat surface from the ambient gas phase as shown
in Fig.8.1, the adatom moves around the surface before it evaporates back into the
gas. If an adatom meets other adatoms during surface diffusion, they make bonds
and form a cluster to gain cnergy. The cluster is stabler than the isolated adatom.
Further coalescence of adatoms makes the cluster larger to form a nucleus as shown
in Fig.9.5. Around this two-dimensional cluster or crystal nucleus there is a step and
kink positions. Thus the two-dimensional nucleus provides the kink sites for the
crystal growth. This mechanism of growth is called the two-dimensional nucleation
and growth.

There is another mechanism of erystal growth. The molecular arrangement of the
crystal is not always perfect, but sometimes there are defects. Among them is the
screw dislocation, a line defect where the molecular arrangement is shifted in two
consecutive lattice planes. When the screw dislocation ends up at the erystal surface,
it produces a step running from the dislocation line (Fig.10.1). If there are many
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() ()

Figure 10.1: Spiral growth by a screw dislocation.

Figure 10.2: Spiral on SiC.(Courtesy of I.Sunagawa.)

kinks on a step, the meandering adatoms meet the step, are incorporated in the kink
sites, and the step advances. But since one end of the step is pinned by the screw
dislocation, the step winds up around the dislocation in a spiral form. This spiral
step never disappears but grows to supply the kink position. This mode of growth is
called the spiral growth (Fig.10.1 and 10.2). The nucleation and spiral growths are
two main mechanisms for the growth of the crystal with flat faces. Growth laws of
the two modes, nucleation and spiral growths, will be described later.

First we calculate the kink density on the step. Since the kinks are related to the
change of orientation of the step, it is related to the step fluctuation, too. Nowadays
step fluctuation can be observed by various atomic-level microscopes as scanning
tunneling microscope (STM) {178, 192, 86, 41], atomic force microscope (AFM),
reflection electron microscope (REM) [4, 125, 126] and so on. STM and REM obser-
vations are shown in Fig.9.1 and Fig.10.3, respectively. From these observations one
can derive the microscopic information of step stiffness and energy parameters.

Let us consider a simple model of the step running, on average, in z direction,
as shown in Fig.10.4. By denoting a lattice constant a, the step position is written
as y(1) at £ = fa. When the step runs in the next position z = (i 4 1)a, its height
y(% + 1) can be the same with the previous one, or can be up or down by a single unit
and form a kink. The total energy of a step running from z = 0 to 2 = L is written
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(b)

Figure 10.3: (a) A step train and (b) an isolated step observed by reflection electron
microscope (REM) [4].

as
H=J,~ +J Iz/;w (10.1)

i=1
with J,, J, being the energy cost of a broken bond in z and y directions respec-
tively. Slncc the height difference (y(¢) — y(i — 1)) /a between neighboring positions
takes only three values, 0 or 1, one can easily calculate the partition function at a
temperature T' as

L/
H J, + Jeln| L, Lfa
- _ Yy z -
Z = [,.;1 exp ( T exp ( k[;T) [1 + 2exp(— . (10.2)
Therefore, the step free energy per length is obtained as
kgTIn Z ( J,
LR J—kT1[12 ( )]) .
Bo 7 pTin |1+ 2exp | —3-7 (10.3)
¥ ¥(i)
yi-1)
Iy I
0 (i-)a ia L x

Figure 10.4: Solid-on-solid model of a step running on average in z-direction.
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The density of a kink is also obtained as

_ 2exp(—Jy[keT)
(Inl) = 1+ 2exp(-—-Jz/BkBT).

(10.4)

J. thus corresponds to the kink energy. At a finite temperature, there is a finite
density {|n|) of kinks on a step, and thus the adsorbed atoms reached to the step
can be easily crystallized at kink sites. If J, = J, = J, the step free energy density
Bo vanishes at a temperature Tp = J/{kgln2). This is said to be the roughening
transition temperature of this model.

The correlation function of the step height difference at a separation z defined as

z/a

z/a
G(z) = ((y(=) - 9(0))*) = ((;[y(i) y(a - 1) Zan,)2 (10.5)

characterizes the roughness of the step. Since the height difference an; at two neigh-
boring sites i and ¢ — 1 has no correlation with those at other positions, the step
fluctuation is easily calculated as

r/a
G(z) = a? ;(n?) = az(n?). (10.6)

The height correlation diverges in proportional to the separation z as z increases,
and the step is rough at any finite temperatures. In the present model, (n?) = (|n|)
and the coefficient in Eq.(10.6) is proportional to the kink density (10.4).

We can relate the step stiffness 3 of Eq.(6.24) to the step fluctuation. In a coasse-
grained continuum model, the total step free energy is written as

= [ as8(0(9) = [z 0(5) 1+ (%) (10.9)

Here s denotes the arc length along the step, and 8(s) is the angle between the normal
vector n and y axis as tan# = —dy/dz. See Fig.6.4. As the step is rough, the step free
energy [ is expected to have no singularity in the orientation #-dependence. Thus,

for a small step fluctuation, one can approximate #— = dy/dz, /1 + (dy/dz)? =
1+ §(dy/dz)?, B(8) = fo + $(d*8/d6?)8%. Then the integrand in Eq.(10.7) can be
expanded up to the second order of the derivative dy/dz as

Fao = [ deloo + 3P(327, (10.8)

where § = +/3" is the step stiffness in § = 0 direction [60, 61]. From this deformation
free energy Fu.p, the thermal expectation of the slope fluctuation is easily calculated
by the equipartition as ((dy/dz)®) = kpT/f. Since the slope at different positions
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are uncorrelated, the height difference correlation function G(z) is casily calculated

(/ dyd) /(( ) kZT:v. (10.9)

Comparison of Eq.10.9) with the previous microscopic result (10.6) indicates that the
stiffness (7 is related to the height difference fluctuation as

B_ kBT . _k_BZ].'FQCXp(—Jx/kBT)
“a{n?) 2  exp(—J,/kpT)

(10.10)

We choose the zero of the y coordinate to the average position of the step as
{y(x)) = 0. Then the step fluctuation is characterized by the width w defined by
w? = (y(z)?). In order to calculate w, it is convenient to transform the step fluctuation
in Fourier modes:

=Y y(g)e'™, (10.11)

where ¢ = 2am/L with the integer m = —o0, -, 00. Herc we assume the periodic
boundary condition: y(0) = y(L). The mode amplitude is obtained by

1 L —iqx *
yla) = Z/o y(z)e"dr =y (=q). (10.12)
The step frce energy Fi.p is written in terms of the Fourier modes as
sttp ﬁOL + o Z(] |y (1013)

The thermal average of the fluctuation of cach mode is obtained from cquipartition

as
kgT

2y _ 5B 10.14
(¥ i (10.14)
and the step fluctuation width w is calculated as
kpT — 1 kgT (L )2 = 1 kgT
2 Z 2 B v B 3 L1
w ~ (ly(q)l > Lﬂ P q2 Lﬂ (27r = m2 12[3 ( )

Reflecting the roughness of the step, its width w diverges for a long step as L1/2.

Exercise 1: Show that a step pinned at both ends, y(0) = y(L) = 0, fluctuates twice
larger than a periodic step, and has the step fluctuation

w®=—=1L. (10.16)
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The formula can be used to analyze the fluctuation of an isolated step shown in
Fig.10.3b to obtain the step stiffness 3 [4].
Answer: Step fluctuation is decomposed into sine-modes as

y(z) = y(g)singz (10.17)
q
with ¢ = #m/L and m is the positive integer as m = 1,2, -+, co. The amplitude y(q)
is obtained by s
2
wq) = f/o y(z) sin gzdx. (10.18)
From the ortho-normal condition
2 L . « ’ 2 L 7
I /0 sin gz sing'zdx = 7 /0 €08 qT €08 ¢ TdT = by, (10.19)
the step free energy is written as
Fstep = gLE q2y(q)2 (1020)
q
From the equipartition, the thermal average of the amplitude fluctuation is obtained
as
2kpT
2 B
= —. 10.21
(@7 =7 e (10.21)

The step width w is then calculated as

ut = 7 [t = 5 T

2 oo 1
ksT (£> Lokl (10.22)
Lﬂ T m=1 m 6/3
Exercise 2: If the tilting field H, is applied on the step model (10.1), the Hamiltonian
is written as

L |y(i) — y(i - 1 Lja) -
a = a a
and the step is tilted such that the height at the right end {y(L/a)) differs from the
fixed height at the left end y(0).

(1) Calculate the free energy F as a function of H,.

(2) Calculate the average slope p = {(y(L/a) — ¥(0))/L = {n) as a function of H,
and show that for small H,; slope p is proportional to H, as

_

p Fa’

with the step stiffness obtained by Eq.(10.10). The stiff step resists tilting
against the tilting field.

(10.24)
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(3) Show that the free energy of a tilted step with a slope p defined by the Legendre

transformation F\(p) = F(H,) + LH,p/a behaves as

L -
F(p) = F(0) + §,Hp2 (10.25)
for small slope p.
Answer:

(1) By defining n; = (y(i) — y(i — 1)) /a, the height difference at both ends is rep-
resented as y(L/a) — y(0) = az,-llf n;. The partition function is calculated

as
Lja
sl Jy + Je|n| — Hin
Z = oxp | -y e >
[ng—:l p< kBT
LJ, I H, ]L/“
= - 1 —=2 Yeosh—4| . .
exp( ak;;T)[ +2exp( k‘nT) costhT (10.26)

The free cnergy F is then obtained as

: L
F=—kyThZ="> (J,, _ k5Tl [1 4 9068 T gogh ) L (10.27)
a k‘HT

(2) The average of the height difference is calculated as

oF 2%e~I+/kaTsinh(H,/kpT)
L — = —-0— = . 2
(wLfo) =90 = ~agm = b T eon(H kg 7). 02
The slope is then obtained as
207/ Tsinh(H,/kgT)  H, 2c70:/T H, (10.29)
P=7 + 2e~7=/*sTcosh(H,/kgT) ~ kgT 1+ 20-J</kaT ~ Ba’ )
(3) Since Lp = —adF(H,)/0H,, the free energy F(p) is calculated as
N OF(H) _ - . L,oos
t
o o L
~ H/[F'(0) + HF"(0)] = F(0) + 5 hv". (10.30)

In the last cquality we used the approximation (10.29) for small p and the
relation F'(0) = —(L/a)dp/0H, = —L/fa®. The result (10.30) agrees with the
free energy of a step with a constant slope p = dy/dz calculated from Eq.(10.8).
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Exercise 3: Consider the simiMr lattice model for the step but the step height dif-
ference between the neighboring sites, n = (y(¢ + 1) — y(4))/a, can take arbitrary
integer values from —oo to oco. Then calculate the step free energy and the roughen-
ing temperature. This roughening temperature agrees in fact with an exact transition
temperature of a square Ising ferromagnet. Also calculate the height difference cor-
relation function (n?) and the step stiffness B.

Answer: The partition function is calculated as

) Z ( l:';,)r/a = exp (—%) (coth%) L/a, (10.31)

where the parameters a, and oy are defined as

Z=exp(

Oy = ICJ;; (10.32)
Then the step free energy per length (, is obtained as
’ﬁ% = —% =ay—In coth%f. (10.33)
At the roughening point, fy = 0 and thus
ayp = coth%. (10.34)
It is straightforward to transform (10.33) in a symmetric form as
sinha, gsinhay g = 1. (10.35)

This is the relation to give the transition temperature of the square Ising ferromagnet
with the nearest neighbor interactions, J, and J, in z and y directions respectively
(193]. For an equal coupling, J, = J, = J, the transition temperature is at T =
J/kgIn(v/2 + 1), in agreement with Eq.(6.34).

Fluctuation of a step is calculated as

2e7 %= 1
2y — = 10.36
n) (1—e)2 "~ 2sinh’a,/2’ ( )
and the stiffness as kol 2T
5_ #*Bd  ZKB 20z
4= o) = o b3 (10.37)
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(a) ®)

x);y W\ y

Figure 11.1: (a) Vicinal face and (b) the top view of step configuration.

11 Step-Step Interaction induced by Entropy

Consider now a surface with a small inclination, which is called a vicinal face. A
vicinal face consists of terraces of a low indexcd singular face and steps separating
these terraces, as shown in Fig.11.1.  We consider for simplicity that steps arc
running in 2 direction with a mutual separation ¢. The slope of this vicinal face is
then |0z/9y| = a/¢, where a is the step height. The surface normal makes an angle
¢ with z-axis:

= arctan2 ~ 2 (11.1)

|¢| = arc A,

for a small tilting. In a unit projected area in zy-planc, there are 1/¢ steps running
and the surface free cnergy f is written as

1) = 20 < oy 4 20

o (11.2)
where () is the surface free encrgy per unit arca, o is that of a flat terrace, and 8(¢)
is the step free encrgy per length for a vicinal face with a tilting ¢. At the absolute
zero temperature, T = 0, the step runs straight and fa is equal to Jy of the energy
of the broken bond. At a finite temperature, a single step fluctuates and the step
free encrgy decreases as Eq.(10.3). For a vicinal face, there are many other steps and
they cannot cross with cach other becanse of the large energy cost for a configuration
with overhangs. Thus the fluctuation of a step is limited by the neighboring steps,
and the entropy is reduced, or the step free energy is enhanced.

We consider the same step model proposed in the previous section. Since the kink
formation costs an additional energy J,, the probability that a step meanders plus or
minus y direction is equal to the Boltzmann weight,

exp(—J./kpT)
Pk =

T 14 2exp(—Jo/kpT)’ (11.3)
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Then meandering of a step in y-direction can be regarded as a trajectory of a one
dimensional Brownian motion with a “time” xz/a: At each time step Brownian particle
meanders to plus or minus in y directions with a probability px and remains there
with a probability 1 — 2px. Then after z/a time steps, particle deviates from the
original position about (Ay/a)? ~ (z/a)px. If the step fluctuates a separation ¢,
then it collides with the other steps on average. The collision takes place at every
length of Az ~ apx'(£/a)?. This means in a unit length there are (Az)~! collisions,
and the step looses the entropy. The step free energy increases by about kgT. Thus
the step free energy f(¢) per unit length can be estimated as

CkBT exp(—Jx/kBT)
a 14 2exp(—J,/kgT)

B(®) = Bo + ckaTrr =~ o + ¢ = fo+ fod?, (114)
where fy is the step free energy of an isolated step obtained in the previous section,
and the second term represents the contribution from the step interaction with ¢
being some constant. The coeflicient f; is inversely proportional to the stiffness of
an isolated step as B, o« (ksT)?/B(0). It reflects the fact that the step interaction is
brought about by the step fluctuation.

Exercise:(Gruber-Mullins model [72]) In order to treat the entropy reduction by
the step confinement more quantitatively, we consider a step confined between two
walls. For simplicity we consider every length in unit of lattice constant a here. The
wall is located at y = 0 and y = 24, so that the step height y(i) at the site with the
z-coordinate ¢ can take values only from 1 to 2¢ — 1. The system has the interaction
Hamiltonian (10.1). The partition function is transformed in terms of the transfer
matrix 7' as

20—1

zZ = exp( kBT) z z T (y(1),9(2)) - T (y(L), y(1))

y(1)=1  y(I)=

exp (—EL:—T) T, (11.5)

Here Tr means the trace of the matrix, and 7" is the symmetric (2¢ — 1) x (2¢ — 1)
transfer matrix.

(1) Show that T is explicitly written as

1 B0 0 0

) B1 B O 0

TheY=0 B 1 B - 0 (11.6)
0 - - 0B 1

by using the abbreviation of the Boltzmann factor as B = e~ J=/*sT,
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(2) If onc knows the cigenvalues g, (k= 1 ~ 2¢ — 1) of T, the trace is easily

calculated as
201

T =Y i (11.7)
k=1

For a long step, L — oo, only the largest cigenvalue g; gives the dominant
contribution, and the free energy F is obtained by

F=—kgTlnZ=L[Jy~kgTlny]. (11.8)
By denoting the cigenvectors as ¥ = (¢(1),9(2), - - -, ¥(2€ — 1)), explicitly write
down the cigenvalue equation T = pyp.

(3) Since the cigenvalue equation corresponds to the wave equation with a fixed
boundary condition, the eigenvector 9, is written as

d(m) = sm%" (k=1---20-1). (11.9)

Find the corresponding ecigenvalue .

{4) Find the step free energy per length B(¢) of a vicinal face with an angle (11.1),
and show that for small ¢ or large €, f(¢) can be expanded as

B(d) = o + B26". (11.10)

Answer:
(2) For m = 1---(2¢ — 1), cigenvalue cquations are written as
Bp(im+1) = 2¢p(m) +9p(m — 1} + (2B + 1 — w)yp(m) =0, (11.11)
and 9(0) = ¢¥(20) = 0.
(8) From the simple trigonometry, one obtains the cigenvalues

wk

=1+ 2Bcos
s + Bcos%

(11.12)

fork=1~2¢-1
(4) Step free energy is calculated as

F kgTInZ
po) = p=-tp =

J, - kgTn [1 + 2exp(—

Jy—kgTln [1 + 2exp (—-ki;%) o8 1]

Je QkHTCXp(—'Jx/k'ET) ( 1)
k,,T)] T Zoxp(—d. fhpT) ' T ® 20
Bo + Bag’, (11.13)

Q

It
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where [ is given in Eq.(10.3) and

m*kpT 2exp(—J,/ksT) _ n*(kgT)?
8a 1+ 2exp(—J./ksT)  8a26(0) '

P2 = (11.14)

In the last equation, the lattice parameter o is explicitly written again. If the
neighboring steps are allowed to fluctuate, the exact calculation shows [3] that

Wz(kBT)2

pe= 6a26(0)

(11.15)

Exercise 2:

(1) Show that when the height of the vicinal face deviates z(x,y) from the mean
position, the surface free energy is described by [146]

H= [ dedy [%An (%)2 N 1:,“ (25)2] (11.16)

with two surface stiffness constants

=~ (11.17)
and (nkT)?
~ s

Here f is the stiffness of the steps running on average in z direction with the
separation £ in y direction. a is the jump in the terrace height at the step.

(2) Show that the width of a single step fluctuation is proportional to the logarithm
of the system size L as )
w? = (h?) = g—‘; L, (11.19)
by using the surface free energy (11.16),

Answer:

(1) When steps are straight and aligned regularly as in Fig.11.2(a), the vicinal face
#(z,y) = 0 is tilted from the terrace face by an angle ¢o = arctan(a/{). The
step fluctuation induces height fluctuation, and we consider two independent
modes of step fluctuation as follows.

Let every step deforms locally at a position z in y direction by h(z), while
keeping the step separation ¢y constant, as shown in Fig.11.2(b). This step
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Figure 11.2: (a) Flat vicinal face, (b) step bending deformation, and (c) step dilata-

tion.

deformation corresponds to the height increment z(z,y) = h(z)a/{,. For a step
segment of length dz, the energy increase is given by

éﬁ (dh) (11.20)

with the step stiffness 3. In the interval dy in y direction, there are dy/f, steps
and the energy increase in an area element dzdy is obtained as

16\ (02\? dy 1. (0z\°
where .
- _xb B
FL = 2~ e (11.22)

The second mode of step deformation is the compression or dilatation of the
step train, as shown in Fig.11.2(c). When the straight steps shift in y direction
and one of the terrace width increases from 4 to £, the tilt angle of the vicinal
face there in y direction changes by an angle d¢ = arctan(dz/dy). This portion
is inclined from the terrace face by an angle ¢ = arctan(a/¢). Three angles
¢, Po, 6¢ are related as ¢p = ¢ + ¢, and for a small tilt relations are reduced

to P

e a Z

—=— - 11.23

¢ by Oy ( )
Now we calculate the energy change caused by the step compression. As is
explained in the main text of the section, the step collision induces the energy
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(2)

increase. For a step separation £, the collision takes place along the step for
every length of L, determined from the relation €3 ~ kgTL./B. The energy
increase by each collision is of the thermal energy ksT. In an area dzdy, there
are dy/{y steps and each step makes dz /L, collisions, and thus the total energy
increase is proportional to

dzdy _ (IcBT)2

T—
ks L, eo ﬂfa

dzdy. (11.24)

The precise calculation [3, 161] shows that the energy increase is #%/6 times
larger than the above estimation. Therefore, the terrace width variation leads
the energy increase of

7% (kpT)? _m(ksT) | (1 19z\* 1
5 3 43 g)&w=5"7 éo—aay —@| e
_ (nkgT)? | 3 97 3 [8z\° 0z
=% Bady + fod? \ 3y 3y dzdy. (11.25)
Since the average orientation of the whole vicinal face is fixed,

/0 gidy_z(L)—z() 0 (11.26)

AE"

and the linear term in the slope 9z/dy is irrelevant in the free energy (11.25).
By neglecting the third order term of the slope in (11.25), we get

2
1 =
with

_ (nkT)? _ (mkpT)?
B>~ Bad

®o- (11.28)

By summing up two contributions, (11.21) and (11.27), we get the Hamiltonian
(11.16). Note the strong anisotropy of the surface stiffness. For a small tilt
angle ¢o 7, diverges whereas %) vanishes. This drastic difference of two surface
stiffness constants is observed recently in He [158]. The product %, %), remains
finite though: B

oo i(WkBT)2¢O _ (1rkBT)2
’7J.7|| - a¢0 ﬁas - a4 .
From the free energy (11.16), the Fourier-transformed height %(¢.,q,) has the
correlation kT

(12(gz, g)I*) = m (11.30)

(11.29)




44 Part [I. Statistical Mechanics of Surface

The height-difference correlation function of the vicinal face is then calculated

as
(G(r) = 50))2) = 2 / G e g )Y = cosqr) = — 2T _mr = Sy
T e el RN
(11.31)

Since the height z(z,0) is related to the step deformation h{z) as #(z,0) =
h(z)a/l, the correlation function of the step deformation is shown to diverge
for large separation along the step as

2 _ & 2 _ &
{((h(z) — M0))*) = E((z(z,ﬂ) —2(0,0))%) = ﬁlnx. (11.32)

One can also calculated the height fluctuation at a point r for a finite system
of size L? as
kBT a2

—==—Il=_—hlL (11.33)
273 /A 2n?

This result is translated in the step width as

(2(r)?) =

2 kgT 1%

==L =_—<InL 11.34
@ 2m,[A17) 27 ( )
The width of a step in a step train diverges weaker than that of an isolated step
due to the confinement effect of neighboring steps.

w? = (h?) =

12 Faceting Transition

We now study the effect of surface roughening on the crystal shape in equilibrium.
The equilibrium shape is determined by Andreev’s formulation as Eqs.(6.8) and
(6.11). Therefore, once the free energy f is known, the equilibrium shape can be
calculated.

Below the roughening temperature Ty, the steps on a vicinal surface with an
inclination angle ¢ in y-direction (Fig.11.1a} has the step free energy (11.4) or

B(®) = Bo + B29°. (12.1)
Then the surface free energy per zy projected unit area, (11.2), is represented as
¥(¢) ¢)|¢f ﬁol(bl ﬂ2|¢|3
f(o) = P =%+ r (12.2)

Here we have used the symmetry consideration that the surface with positive and
negative tilt have the same density of steps and should have the same f. Thus f
has a cusp singularity at ¢ = 0 as shown in Fig.12.1a. The vicinal face with a slope
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Figure 12.1: (a) Surface free energy f per zy projected area, and (b) the faceted
equilibrium shape near y = 0 below the roughening temperature T.

Py = 0z/0y = tan ¢ = ¢ is located at a distance y apart from the center, where y is
given by Eq. (6.8) as

_af 1 4

“W=go=2 (Bo + 3247) sgn(). (12.3)
Here sgn(¢) represents the sign of the slope ¢. Since A, fo and §, are positive for
T < Tg, the slope is positive for ¥ < 0 and negative for y > 0. Let us consider the
region of y > 0 and ¢ < 0. (See Fig.12.1.) Then Eq.(12.3) is solved for ¢ as

Aa
¢= —\/%(y - %) (12.4)

for y larger than yo = fy/Aa. The height z is determined from Eq.(6.11) as

A=f+ Aypy =Y — 2a_1ﬂ2|¢|3. (12.5)
The crystal shape is then written as
2}32 Aa 3z 3/2
gy = 22 T - 12.
zT Aa (3ﬂ2> =) (126)

for y > yo. Here z5 = /A For y < —yy, ¢ is positive and the profile is similar to
Eq.(12.6) with only a replacement of y to ~y. Therefore, between —yy and gy the
shape consists of a facet face, and then it continues to the smooth curved faces with
the exponent 3/2, as shown in Fig.12.1b [160]. The facet size 2y, is proportional to
the step free energy density, f;. Near the roughening point T, 8 and thus y, vanish
smoothly as yp ~ exp[—c/+/Tg — ]. This extinction of the facet face is called the
faceting phase transition, and is equivalent to the roughening transition of the face.

There are experimental studies on faceting transitions of “He crystals in superfiuid
liquid. The transition temperature is determined to be Tp=1.3K for (0001) face. The
roughening temperatures of other faces are also determined {68.



Part I11
Kinetics-Limited Growth

In this part, the growth laws governed by the surface kinetics on a flat crystal surfaces
arc studied. When the crystal grows with a flat surface, the growth is controlled by
the incorporation of atoms to steps and kinks provided by the two-dimensional nuclei
[12} or screw dislocations (62]. Since the step density depends on the growth condition,
the growth law is different from the ideal ones.

13 Step Advancement by Surface Diffusion

We consider the crystal growth from the vapor phase at a relatively low temperature
where a crystal surface is flat. Atoms deposited on the surface diffuse around on the
surface before they reach steps. The advancement of a step in the surface diffusion
field of adsorbed atoms is studied systematically by Burton, Cabrera and Frank [43)].

We assume that the adsorption site on a crystal surface forms a square lattice with
a lattice constant a. From the ambient gas phase f atoms deposit on a surface per unit
area in a unit time interval. Thercfore, on a lattice sitc (z,y) with atomic area 1y =
a%, fQaAt atoms are deposited in a time interval At. The adsorbed atom vibrates
with a frequency v of the lattice vibration around the averaged adsorption site, and
tries evaporation or surface diffusion.  Due to the coupling with the underlying
crystal atoms, the adatom has an energy lower than in the free state by F.q, and the
evaporation takes place with the probability exp(—E.q/kpT) during v trials per unit
time. The lifetime until the evaporation is estimated as

7= v exp(Eaq /k5T). (13.1)

By denoting the adatom density as ¢(z,y), the probability that a lattice site (z,y) is
occupied by an adatom at a time ¢ is ¢(z, y;t)$22. The number of adatoms evaporating
within a time interval At is given by ¢{z, y;t)Qa - At/7.

On the other hand, an adatom hops to one of the neighboring sites during its
lifetime. For the random walk of the adatom from one adsorption site to the other
it has to cross over the activation cnergy or energy barricr Ey4, and the probability
of hopping to the neighboring site is w = vexp(—F./kpT). The number of atoms
coming from the four neighboring sites during the time At is wAiQq[c(s + a,y;t) +
z—a,y;t)+clz,y+ a;t) + c(z,y — a;t)], while the number of atoms escaping from
the site (z,y) is wAtQqdc(z,y; ). Combining all these processes, the variation of the
number of averaged atoms at the site (z,y) during the time interval At is written as

A
ez, yit + A = oz, ;1) + FQaAL — ¢z, y;t)Qg—T—t

+wAt[c(z+a,y; t)+e(z —a,y;t) + oz, y+a;t) + oz, y—a; t) —de(z, y; t)]. (13.2)
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After dividing Eq.(13.2) by Q,At¢, take the continuum limit At — 0 and @ — 0 and
leave up to the second derivative of the space. Then one obtains the diffusion equation
including the contribution of deposition flux f and the desorption lifetime as

dc(z, 1) _ o2 c
i~ DVt f -2 (13.3)
Here
D, = wa® = va® exp(—FE.a/kpT) (13.4)

is the surface diffusivity.

How far can the adsorbed atom meander while it resides on the surface? During
the time ¢, an adatom makes wt jumps on average. Since it can jump to four ncarest
neighbors with the same probability, the average position (r(¢)) remains the same with
the original one, {r(0)). But the deviation {(r(t) — r(0))?) increases in proportional
to the number of jumps. Since it hops a distance @ in a single jump, the deviation
is written as ((r(t) — r(0))?) = wta® = Dyt. Therefore, during its lifetime 7 on the
surface, an adatom meanders in the range

2, = /Dy, (13.5)

which is called mean displacement of the adsorbed atom or the surface diffusion
length.

During the surface diffusion an adatom reaches a step and then crystallizes by
being incorporated in the kink sites. Let us consider the advancement of an isolated
step running on average in the z-direction. Usually the step advances so slowly
compared to the relaxation of the adatom density ¢ that the stationary distribution
of ¢ can be realized: The time derivative in Eq.(13.3) is disregarded. If the step is
straight in the z-direction, the concentration variation takes place only in y-direction,
and the diffusion equation is simplified as

¢ ¢—co
Digz =5 (13.6)
where ¢ = f7 is the concentration far from the step. The solution is easily obtained
as

¢ — Coo = A€xp (—lxﬂ) (13.7)

with the surface diffusion length z,. Since the step is rough at finite temperatures as
shown in gsection 10, the kinetics of adatom incorporation is expected to be very fast.
In the extreme case, the step can grow with only an infinitesimal driving as ¢(0) = ceq.
From this local equilibrium boundary condition at the step, the integration constant
A is determined to be A = coq — ¢, and the diffusion field is obtained as

e150) = e = (o = cwesp (<), (139

8
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Figure 13.1: Concentration distribution around the step at y = 0.

as ig depicted in Fig.13.1.

The net number of atoms impinging to the step at y = 0 from the right (y > 0)
is wQe [c(z,0;1) — (z,0;1)] = wa® 6c(x,g)/6y|y=+0, and that from the left (y < 0)
is wlg [c(z, —a;t) — (2, 0;1)] = —wa® 0c(z,y)/0yl,~_o Here y = +0(—0) means in
front ( in the back ) of the step. Since these deposited adatoms crystallize at a kink
site on a step, and step advances a distance & by each crystallization, the advancement
rate of a straight step is obtained as

o (), (§) Jon (), -(§) ) o

By inserting the density profile (13.8), the step velocity is obtained as

2D,
Yo = (COO - COQ)QQ Z = (f - feq)QQ * st' (13.10)

Here foq = Coq/7 18 the cquilibrium deposition flux. The result (13.10) can be inter-
preted as follows: The adsorbed atoms landed on a surface within a distance of their
mean displacement z, from a step will evertually meet the step during their lifetime,
and be incorporated to it. Therefore, f x 2z,a atoms impinged in a surface region
of a step length e within a distance z, from the step will crystallize at a step in a
unit time. As an inverse process, foq X 22,0 atoms melt back from the step onto the
surface. Since each crystallized atom pushes the step ahead by a distance a , the
advance rate is given as vp = (f2x,a ~ foq22,a) X a in agreement with the result of
the detailed calculation (13.10).

So far we considered an isolated step on a singular flat surface. When the surface
is tilted with a small angle, there arc many steps arranged periodically: The vicinal
surface consists of a step train. When the separation £ between periodic steps is
smaller than the diffusion length z,, the diffusion field of neighboring steps overlaps
and competes. A single step gets a contribution only from the small range around
itself with a width €. Therefore the advance velocity will decrease to v = (f —
fea)a* = vy x (€/2z,). Of course, when the step separation ¢ is wider than the
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surface diffusion length z,, each step advances with a velocity vy as if it is an isolated
single step. In a more precise treatment, the solution of the diffusion equation (13.3)
is written as c(y) — ceo = Aexp(—y/7.) + Bexp(y/z.) within a region 0 < y < £. By
taking into account the local equilibrium boundary conditions at neighboring steps,
o(y = 0) = ¢(y = £) = ceq, the integration constants A and B are determined, and
the concentration is obtained as

cosh [(2y — £) /2
cosh(¢/2z,)

o2, ¥;1) = Coo — (Coo — Ceq) (13.11)

From the material conservation (13.9), the advance velocity of a step is given as

v={f- feq)a2‘2xstanh (%) = vptanh (21;) . (13.12)

If the step separation £ is much larger than the diffusion length z,, the advance rate v is
equal to the isolated step v in (13.10). If £ is smaller than z,, then the approximation
tanh(€/2z,) ~ £/2z, holds and the velocity is approximated as v & (f — foq)a?¢, as
already stated.

Exercise: Derive Eq.(13.12).
Answer: By imposing a local equilibrium boundary conditions at y = 0 and y = £,
one gets

€0)—Co = A+B=Ceq—Co

ef) — o = Ae7Y™ 4 Be'™ = coq — Cons (13.13)
and the integral constants are obtained as
ot/
A=(ceq— coe)m (13.14)
and o—t/2m,
B = (Ceq — cm)m. (13.15)

By putting these results, one gets (13.11). From BEq.(13.9), we get the velocity
(13.12).

14 Advancement of a Circular Step

When a two-dimensional crystal nucleus grows in a diffusion field, the encircling step
expands and the total step free energy increases. In order for the nucleus to achieve
further expansion, this energy cost has to be overcome. How will then the step
advancement rate be modified from the straight step?
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The chemical potential of the bulk crystal ug agrees with that of the adsorbed
atoms with the density c.q in equilibrium: pg = paa(ceq). If & circular nucleus with a
radius p is in equilibrium with adatoms, the radius corresponds to the critical one since
it does not grow or shrink. Then the chemical potential pra4(ceq(p)) for adatom with
density c.q(p) should satisfy the critical condition (6.14): Ap = frag(Ceq(p)) — s =
BQ2/p. Here the step free energy § is assumed isotropic. Since the ideal solution
approximation (5.2} is applicable for a dilute adatom system, the chemical potential
difference is written in terms of adatom density as

_ AN _ ,@92 ~ B8
Coq{P) = Coq €XP (ETT) = Coq €XD (pkBT) R Coq (1 + T (14.1)

The last approximation is valid for a step with a small curvature £ = 1/p. The curved
step needs a higher equilibrium concentration than the straight step does in order to
remain in equilibrium. The effect is called the Gibbs-Thomson effoct.

The adatom density far from the nucleus is determined by the deposition flux
88 Coo = f7. When the density ¢, I8 higher than the equilibrium value ceq{p), the
circular nucleus with a radius p grows. The density distribution around the circular
nucleus is expected to be symmetric and to depend only on the radius r. The diffusion
equation is simplified as

de(r;t) _(92_c+_1_§ €=
ot T"\orr ror T

(14.2)

For the slow growth, the stationary approximation dc/dt = 0 is expected to hold.
The exact solution of ¢ is described in Appendix Al4. Here I derive the circular step
advancement in approximation.

The radius of the nucleus p is assumed large. Since the step advancement is
controlled by the diffusion field around the step, the radial variable r in Eq.(14.2) is
also large, and the second term, r~'8¢/8r, may be neglected compared to the first
term, 0%¢/8r%. The stationary density distribution is obtained as

_ [ AR forr > p
C(T) = Coo = { Ane(r—p)/z. for v < p (143)

with 2, = v/D,7 being the surface diffusion length defined in Eq.(13.5). The adatom
density relaxes to ¢ far outside (r 3> p) and far inside (r < p) of the cluster. By
imposing the local equilibrium condition ¢{p) = c.q(p) at the circular step, the integral
constant Ay is determined as Ay = ¢eq(p) — co- Then the step advancement velocity
in the radial direction is obtained as

dc 2D,a?
vp) = Dsa2 (—‘ ~ A ) = (Coo = Co (p))
ol 97,0 Z, :

xp(9/ pkpT) — 1 y
= ,,0(1_‘“"13(1%::) )zvo(l—%), (14.4)

dc
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where v = 2D,0(co0 — Ceq)/Ts i the velocity of the straight step (13.10), and

- ﬂQZ - ﬂng
P koT(cofCeq — 1) koT(f [ foq — 1)

is the critical radius corresponding to the deposition flux f or Eq.(6.14). Therefore,
the nucleus with critical radius p. does not grow or shrink, the one with radius g > p.
grows, and the one with p < p. shrinks. The correct calculation in Appendix Al4
leads to the same conclusion.

(14.5)

15 Growth Rate by Spiral Growth Mechanism

The growth rate V of a crystal by spiral growth mechanism is now ready to be
calculated. The step is running out from the center of the screw dislocation. As
the crystallization proceeds, the initially straight step turns round the dislocation,
and the curvature at the center increases, as shown in Fig.10.1. But it should be
smaller than the critical one, k. = 1/p.. Otherwise, the crystal melts back due to
the Gibbs-Thomson effect. Therefore, the curvature at the center is just the critical
one in the steady state. The simplest form of the spiral is that of Archimedes,
represented in the two-dimensional polar coordinate (r,¢) as 7 = a¢ with a to be
determined. As is explained in the last paragraph of Appendix Al5, the curvature
at ¢ — 0 is calculated to be k = 2/a. Therefore, the parameter a should be 2p,. in
order to satisfy the boundary condition. The step separation ¢ for large r is given as
the radius difference by one turn, or A¢ = 2x rotation as

£=gq- 21 = 4np.. (15.1)

The more sophisticated calculation is described in Appendix Al5 [44]. It shows
that the asymptotic step separation for large r is

¢~ 19p,. (15.2)

In both cases, step separation £ increases in inversely proportional to the driving force,
¢~ Ap~', Since the advancement velocity v(£) of a step train is given by Eq.(13.2),
the time T required for the step to wind up one turn is given by £/v(¢). During this
time T the crystal surface grows a height ¢ in the normal direction, and its growth
rate of the crystal is then given as

(0% = (F - 1.0 £
V= v(Z)z = 0*(f — feq) 7 tanh (2%) , (15.3)
and the dependence on the driving force Ay is shown in Fig. 15.1.

For a low vapor pressure p, the step separation £ is larger than the surface diffusion
length z,, and tanh(€/2z,) ~ 1. The growth rate is approximately given by V =
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S/ feq-1 = exp(AhsT) - 1

Figure 15.1: Growth velocity V' versus driving force o = exp(Au/ksT) — 1 for the
spiral growth.

a3(f — feq)22./¢ proportional to the square of the driving force (p — peq)? ~ Ap?.
Thus, at low vapor pressure growth follows the parabolic law, different from the
linear growth law of Hertz-Knudsen. When the vapor pressure p increases, the driving
force for the crystal growth Ay becomes large, and the critical radius p, and the step
separation ¢ becomes small. For ¢ <« z,, the approximation tanh(¢/2z,) = ¢/2z;
holds, and the growth rate reduces to the Hertz-Knudsen formula given in Eq.(4.4):
Vik = a*(f — foq) = 63(p = Peq)/V2rmkgT: There are many steps and kinks on the
surface, and the growth rate V' reduces to that of a rough surface.

16 Two-Dimensional Nucleation and Growth

Spiral mechanism governs the growth of an imperfect crystal under a small driving
force. When the supersaturation increases, nucleation becomes important. Also for
a perfect crystal without dislocation, nucleation controls the crystal growth. In this
section the growth rate of a crystal by nucleation mechanism is studied {12, 80, 69].
The formation of a two-dimensional (2D) nucleus increases the free energy as

2
—Au%-i—%rpﬁ: ~Ap-n+ fy/4rnQe = G(n), (16.1)
where p is the radius of the 2D nucleus, Ay = pg ~ pts the chemical potential gain
by the crystallization, 2 the arca of a nucleating atom, g the step free energy per
length and assumed to be isotropic here. Therc are n = mp?/Qy atoms in the circular
nucleus of radius p. G(n) has a maximum as shown in Fig.16.1 at the critical nucleus
size n.:

TE _ wf

Tie = %~ BRE

(16.2)
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0 n. X

Figure 16.1: Free energy cost G(n) of the formation of the two-dimensional circular

nucleus with the size n.
w,(n)
+D
w_(n+l)

Figure 16.2: Variation of the cluster size n by capturing or by evaporating a single
adatom.

The maximum value of the free energy barrier is

7%
G. = G(n.) = Apn, = A (16.3)
Let us consider the distribution C(n,t) of the cluster of a size n at time ¢. In
equilibrium thermal fluctuation allows the formation of nucleus of a cluster size n
with the Boltzmann weight C%(n) = c. exp(—~G(n)/kpT), where ¢o, is the density
of isolated adatoms: ¢,, = fr. Note that the equilibrium density of infinitely large
nucleus i8 infinite. During the steady growth of a crystal, in fact, a large nucleus
disappears by the completion of a layer and the density of an infinitely large cluster
in a steady state should be zero C(n — o0) = 0.
The size variation of the nucleus is assumed to take place by capturing or cvapo-
rating a single adatom as shown in Fig.16.2. The rate equation is written as

aC(n) _
at
where w.(n) is the rate of capture of a single adatom by the nucleus with the size

n and w_(n) is the rate of evaporation of an atom from the nucleus of size n. The
detailed balance condition

wi(n—1DC(n—1)+w_(n+1)C(n+1) —w(n)C(n) —w_(n)C(n), (16.4)

wi(n)C%(n) = w_(n+ 1)C%n + 1) (16.5)
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confirms the approach to equilibrium. Then the ratio of the capture and evaporation
rates is obtained as
wy(n) _ C°(n+1) _ expl-G(n +1)/ksT]
w_(n+1) C%n) exp[—-G(n)/kpT)

(16.6)

In a steady state, dC(n)/8t = 0 but there is a net flow J of the cluster growth sup-
ported by the constant supply of particles from the smallest size and their annihilation
at the largest size. J is then independent of the cluster size as

Cn) Cn+1)
Co%(n)  Co%(n +1)

J=w(n)C(n) —w_(n+1)C(n + 1) = wy(n)C(n) [ . (16.7)
For n = 1 there are plenty of isolated adatoms and one assumes that C(1) = C%(1).
As for the boundary condition at n = oo, the infinitely large nucleus disappears by
the completion of a monatomic layer and thus C{co) = 0. Then by using the relation

> J _&X[Clm) Cr+1)]  CQQ) Cloo)
Emmmm”gk%ff%+J‘mm‘m@rL (16:8)
the nucleation flux J is obtained as
oo 1 -1
J= LZ=:1 _——w+(n)CO(n)] . (16.9)

Since C%(n)~! = ¢! exp|G(n)/kpT) has the maximum at the critical nucleus size n. of
Eq.(16.2) and w,.(n) varies slowly in proportional to the surface area as w4 (n) ~ n'/2,
the dominant contribution to the summation in Eq.(16.9) comes near n.. For small
Ap, n. is so large that the summation can be replaced by the integration as

1 1 Ge + 162(n = n)?
; we(MC(n) ~  we(ne)Ceo fdnexp ( T
= ! Gc 27(kBT
 we(ne)eoo (kyT) el (16.10)

Here G, is the maximum of the free encrgy cost given in Eq.(16.3) and G® is the
second derivative of the activation free energy at n. as

o _ &G
dn?

1
) = -—Q-ﬂ TQn 3% = —

Al

¢ 27(Qgﬂ2.

(16.11)

Therefore, the nuclecation rate is written as

J & Zwy(ne)Coo exp (—G./kpT) (16.12)
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with the Zeldovich factor

7o J16P _ Ap? '/2_( Ap )“2 (16.13)
TV orkgT  \4n2QkpT 32 “ \dnkgTn.) ‘

Since the adatom capture by the nucleus takes place at the periphery of the nucleus,
w4 (n.) is proportional to the perimeter length as (80, 69]

dn

wiln) = 2 2

Ap’

27,

~ v0,+—§2— = QZSQQf (16.14)

T

where vp . = 22,8 f i3 the step advance rate by atom incorporation in Eq.(13.10). If
there ig a direct incorporation of atoms from the ambient gas phase, this contribution
should be included in vg 4 [69]. Thus

_ 22,0 fea Au)l/2 ( GC)
J = - (kBT exp YT/ (16.15)

When the nucleation rate J is large, nucleation starts at various places on a crystal
surface and those nuclei spread with the advance velocity v, coalesce and complete
a single layer. This mode of layer growth is called the multinucleation growth. We
now calculate the normal growth rate V of the crystal in this situation. On a flat
surface it takes a time T for the completion of a single layer growth. During this time
interval T', nucleation occurs with the rate J per unit area and time. At a time ¢
after the nucleation started, its radius is vt and occupies the area w(vt)2. Therefore,
during T the area scanned by nuclej is calculated as

T nd
/0 (Sm(ut)dt = ST, (16.16)

where S is the total area. When the scanned area (16.16) coincides with the total
area S, the single layer growth is completed, and thus the time T is determined by

%JvQT:’ =1 (16.17)

After this time T the crystal surface moves up a distance a, and the normal growth
rate by the two-dimensional nucleation mechanism is given by

2\ 1/3
V= % =a (”{;’ ) , (16.18)

Since the advance rate of the step is given in Eq.(13.10) or

v =220 fi [exp (ki—’;,) - 1] , (16.19)
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f/fuq- 1 = exp(aksT) - 1

Figure 16.3: Schematic diagram of the growth velocity V by the two-dimensional
nucleation.

the normal growth rate is

) 7rceq(22> 173 ] ( 2Ap1 )
22829 foq (—3 exp 3%pT
1/6 2/3 2
X (ﬂ) exp (Ali) _ 1] exp [ -0
kT kgT 3AukpT

o\ A\ 20
2z592fcq(7rc§ 2) (lm—’;) exp<——3Zk:T>. (16.20)

Vv

Q

The last approximation is obtained for small supersaturation Ay where co & Ceq,
and the result is schematically shown in Fig.16.3. Since V is proportional to the
exponential of Ap~!, it is very small for small Ap. The rate V becomes observable
only when G.(Ap) is of the order or smaller than the thermal energy kpT;

W/}QQQ
kT’
For large enough Ay, the nucleation barrier vanishes, and the growth rate is V ~
(Ap)'/% exp (4Ap/3kyT), larger than the linear growth law V o e2#/*sT — 1, This
result is incorrect. For large Ay, the critical nuclear size n. becomes so small that
n. < 1, and the crystal surface hecomes kinetically rough. Then the growth rate
should be that of the rough surface or the Hertz and Knudsen formula (3.4).

At the thermal roughening temperature Tp and above, the step free energy [
vanishes, and the energy barrier G. disappears. Tlus the growth mode varies from
the nucleation controlled exponential type, V ~ exp(—C/Au) below the roughening
transition temperature Ty, to the normal growth rate V ~ Ay above Tg. This is
used for the criterion to determine the roughening temperature in the Monte Carlo

Ap>Ape = (16.21)
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R/7k+d

02

Bp/KT
Figure 16.4: Growth rate R versus chemical potential difference of the SOS model.
Numbers aside the curves represent inverse temperatures, 6J/kgT. kT here is the
deposition rate, and d is the atomic height. The dashed lines are the growth rates
calculated from the two-dimensional nucleation model [70]
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Figure 16.5: Growth rate of He crystal near and below the roughening temperature
Tg = 1.23K (a) in the normal and (b) in the semi-logarithmic plots [198]. H here is
proportional to the chemical potential difference Ap.

simulation as is shown in Fig.16.4 [70], and in the experiment on He as shown in
Fig.16.5 [198].
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Exercise: When the nucleation rate J is very slow or the step advancement velocity
v i very fast, there is only a single nucleus during the layer growth. Then the normal
growth rate V differs from multinucleation case. Calculate the normal growth rate V'
of a surface with an area S. This growth mechanism is called the single nucleation
growth.

Answer: When a single nucleus is created, it spreads over the whole surface S
quickly before further nuclei are formed on the same level. The time T necessary for
the completion of the normal growth of a height a satisfies the relation

JST =1. (16.22)

The growth rate is obtained as

12
V=2 2 08T = 2.0 fSce ( A ) exp [ (16.23)

Ap 7374
T kgT )

" ApkgT

If one plots InV versus 1/Ay, the slope by a single nucleation mechanism is threc
times larger than that by a multiple nucleation mechanism. This crossover is gaid to
be observed in polymer crystallization [81, 179].

17 Asymmetry in Attachment Kinetics

In the treatment of adatom diffusion, Burton, Cabrera and Frank (BCF) [43} assumed
the fast kinetics at the step such that the local equilibrium is realized there. Also
they assumed the symmetry in the attachment kinetics of adatoms from the upper
and lower terraces at the step. However, the incorporation rate of an adatom from
an upper terrace needs not to be same with that from a lower terrace as shown in
Fig.17.1 [172, 190]: From the upper terrace an adatom has to break many chemical
bonds with the underlying substrate atoms when it crosses over the step down to
the crystallization position. From the lower terrace, on the other hand, an adatom

-

(a) (b) (c)

Figure 17.1: Asymmetry in the incorporation of an adatom (a) from the upper and
(b) from the lower terraces, called Schwoebel effect. (¢) The potential energy profile
of the adsorbed atom.
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can simply make additional bonds with the step atoms before it reaches kink sites.
Additional energy barrier for the crystallization makes the kinetic coefficient from
the upper terrace K_ smaller than that from the lower terrace K. This asymmetry
in attachment kinetics at the step is first studied by Schwoebel and Shipsey and is
called the Schwoebel effect [172].

17.1 Schwoebel Effect

We consider the step down configuration, where the step is running on average in z
direction at y = 0 and the terrace in front at ¥ > 0 is lower than the terrace in the
back y < 0. Since the step is thermally rough, the step advance rates, vy and v_,
by the adatom incorporation from the upper and the lower terraces respectively are
linearly proportional to the supersaturation as

A2, ) . (17.1)

vy = Ky | 4 — Coq — Coq——K
+ + ( + eq — Ceq kgT
Here the Gibbs-Thomson effect of curvature is included. The Schwoebel effect means

that the kinetic coefficients are different: K, # K.
We now restrict ourselves in the extreme and the simple case that

K. =0 and K, =00 (17.2)

In this case, there is no crystallization from the upper back terrace. Since the crystal-
lization takes place by the atom incorporation only from the lower terrace, it is called
a one-gided model. Furthermore, the kinetics from the lower front terrace is assumed
extremely fast such that the local equilibrium is realized: The adatom density in front
of the step ¢, is equal to the equilibrium value c.q with the Gibbs-Thomson effect

or = (1 + %n) . (17.3)

As in the BCF model, the atoms are deposited on the crystal surface with a flux f,
the adsorbed atoms then diffuse on the surface with a surface diffusion constant D,,
and then evaporates back into an ambient vapor after a life time 7. For a straight
step its advance velocity vg is calculated to be

Vo = (f — feq)%s522, (17.4)

where foq = Ceq/T i8 the equilibrium deposition flux, z, = /D, is the surface diffusion
length and (1, the atomic area. The velocity vp is half of that given in (13.10) in BCF
theory, since there is a contribution only from the front terrace. Eq.(17.4) shows that
the step incorporates atoms deposited in the range z, in front of the step.

We now consider the stability of the straight step [8]. If the step is pushed forward
at some part by fluctuation, the region to incorporate adatoms expands radially as
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(a) (b) ()

Figure 17.2: Capturing region of adsorbed atoms of a one-sided model in front of
a step (a) for a straight step and (b) for a curved step. (¢) Capturing region for a
symmetric model for a curved step.

is shown in Fig.17.2. The area of the capturing region increases approximately by a
factor 1+ z,/2p, and the velocity increases with the same factor. Thus the step with
a curvature k = 1/p has a velocity higher than the straight one by

dvg = vp - %n. (17.5)

The bump is accelerate compared to the straight part and is pushed further forward.
The diffusion causes a destabilization of a step profile.

Competing with this destabilization is the stabilization effect by the step stiff-
ness. Since the equilibrium density increases at a curved part, the deposition flux to
maintain equilibrium at a curved step increases as fo (1 + Q2x/kpT), and the driv-
ing force or the supersaturation decreases correspondingly. The velocity of a bump
decreases by )

bv, = —feq%nxsm. (17.6)
Both destabilizing and stabilizing effects are, in the first order approximation, propor-
tional to the curvature, as is apparent in Eq.(17.5) and (17.6). Since the diffusional
instability increases with the velocity v, the instability wins eventually by increasing
the deposition rate. The instability takes place when dvq + v, = 0. The critical
deposition rate f, is determined from the Eqs. (17.4-17.6) as

209,
.’L‘skBT '

fe = feq (1 + (17.7)

Exercise: Explain that in the BCF model where K, = K_ = 0o, the step instability
does not take place.
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Answer: Consider a part of a step pushed forward with a positive radius p as
shown in Fig.17.2c. The velocity contribution from the lower terrace increases as
v; = vo(1 + 2,/2p), but that from the upper terrace decreases as v_ = vp(1 — z,/2p).
The total velocity v, + v = 2v; remains independent of the step deformation in the
stationary approximation.

17.2 Structure of an unstable step

In order to describe the profile of a destabilized step, one has to treat the problem
quantitatively and analytically. First we treat the stability of a straight step in a
linear analysis {8, 186]. The step deformation y = ({z,t) is decomposed in Fourier
modes. In the linear analysis there is no coupling among modes, and the consideration
of a single mode with a wavenumber g¢ is sufficient:

({z,t) = vot + e cosgz. (17.8)

Here vy is the velocity of a straight step moving in ¥ direction. If the amplification
rate w, of the deformation is negative, the amplitude of the deformation diminishes
and the straight step recovers. On the contrary, if w, is positive, the mode amplitude
increases and the straight step is unstable.

The normal direction of this deformed step (17.8) is given by

n= _(__(’K_/.Q‘T_’ll_ ~ (gage” singz, 1), (17.9)
1+(3¢/0z)?
the curvature is 5% 102°
- é/ T o qzaqe‘dct €08 ¢, (1710)

T T+ @C/02yP7
and the growth velocity is obtained as

v = (0,8¢/8t) = (0, vg + weae’" cosqr). (17.11)
Therefore the normal velocity is written up to the first order of a, as
Uy = (0 V) = vg + weaue” cos gz. (17.12)

The adatom density c{(z, y; ¢) is also modified with a wavenumber ¢ in z direction.
For y — o0, the modification should decay and thus the density is written as

(T, Y3 1) = Coo + (Coq = Coo)e W0/ 4 G 6! cos gre eV (17.13)

in front of the step. The first two terms are the density distribution around the
straight step. Since the density satisfies the diffusion equation in the stationary
approximation,
Coo — C
Vic+ ;‘22— =0, (17.14)
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Figure 17.3: Dispersion relation of a step deformation with Schwoebel effect.

q

the damping coefficient A, in y direction satisfics the relation —¢? + Ag —-z; =0or

Ay =g+ 232, (17.15)

From the local equilibrium condition at the step, Eq.(17.3), the density deviation dc,

is obtained as
8, = —aq <c°° - o _ Cealel) 5 ) (17.16)

kBT

where the curvature & is approximated in the linear approximation (17.10). From the
continuity boundary condition

', = Dsgn = D, (g; ne + Z—;n,,> , (17.17)
one obtains the relation
05" (vo + waage™* cos qz) ~ D, [—& ~(lmwt)fee _ A Seget! cos qxe"‘“(("’“‘)]
D, a
~ a:_,,(cw — Coq) (1 - z—:c”"‘ cos qz) — DA bc,e” cos gz. (17.18)

By comparing the zeroth order term in a4, one obtains the velacity vy of the straight
step (17.4). From the first order of a,, the dispersion relation between w, and ¢ is

obtained as
. Coo — Ceq _ Coo — ceq Ceqﬂgﬂ
wy = —Dyfky [___—:EE A, ( o ko T )]
Cou 3
= up(A, — ;') ~ D,Q3A, k“ng, (17.19)
B

which is shown in Fig.17.3. The first term corresponds the diffusional destabilization
or évy in (17.15), and the second term corresponds to the energetic stabilization or
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b, in (17.6) for long wavelength or small ¢ (< z,). The dispersion relation (17.19)
can be further rearranged as

Wy = —lhg " Vg {17.20)
with the mobility c
=D Q2Aqk e“T(> 0) (17.21)

and the restoring force

- g2 _ksT (f _
= 0 () (- a)

= k BT.’E f 4
J e .
Berg® + —=— 0, (feq )q + (17.22)
where the long wavelength limit, gz, < 1, is used in the last approximation. The ef-
fective stiffness G is the force constant for the step recovery modified by the diffusion
destabilizing effect as

3 P xskBT f 2 f c f
ﬁeﬂ. ﬁ {1 2ﬂ92 (feq 1)} 'Bff - fcq : (17-23)

Here f, is the critical deposition rate defined in the previous subsection, {17.7). At the
instability point f., the effective stiffness vanishes, and the step looses the restoring
force to the straight form. Equation (17.23) shows that the step stiffness depends on
the deposition rate f. For small f f.5 is large and the step is stiff, while for large
f it is soft. This variation of the step stiffness is observed in the experiment on Si
[125, 126].

Near the instability point f., we have a small parameter
f c ™ f
f [ f eq )
For positive ¢, the dispersion relation for long wavelength has a positive maximum
at g of order €'/ as shown in Fig.17.3. The maximum value of w, is of order €.
This mean that near the instability point, the step modulation has a large spatial
extension of order ¢~'/2, and relaxes slowly in a time of order ¢~2. In the weakly
nonlinear case the dynamics of an unstable step can be analyzed by rescaling the
variables and extract slow dynamics [199, 13]. One scales space and time as follows;

14

€= (17.24)

X = )z,
Y = y/z
T = ét/r, (17.25)

and introduce a dimensionless field v and an interface position ¢, which are expanded
in terms of € as

Qa(c — Coo) = Ug + €U1 + XUz + - -+

%ﬁ = ¢H=cHy+H, +--- (17.26)
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The diffusion equation is described in these variables as
euxx + vyy —u=20. (17.27)

Here and later in this section, the subscript X or ¥ means the derivative by them.
The boundary conditions are written as

Ve(l+e)+ e Hyr = uy — fux Hy {(17.28)

E GQHXX
2 1+ S(Hx )22

where V, = QQgceqfi /kpT'z, is the step velocity at the critical point f.. By comparing
each order of €, one obtains the solutions and relations as

Uy = —Vy(1 +€) — (17.29)

0(60) : Uy = A06~Y, A() = —VC (1730)
O()):  uy = Age™, % =1+ Ho(X,T) (17.31)
]
2 v 1 v A 1o 1
O(C )Z U2:A26 +—A1,XxY6 , —:H[)+—H0 +—~H[),XX+H1
2 Agy 2 2
(17.32)
1 _ 1 -
0(63) : Ug = A3C-Y + §A2,xxYC Y + gAl,XXXX(Yz + Y)e Y,
A 1 1 1
3= ZHZ4 ZH}+ H + HoH, + ~Hy xx + H,. (17.33)
Ay 2 6 2

To fulfill the boundary conditions (17.28) and (17.29) consistently at the order
O(e%), Hy should satisfy the differential equation as

1 0Hy _10°H, 39'Hy 1 (6H0>2 (17.34)

TV.oT T 20x% '8axt 2\ax

The linear part rcpresents the dispersion relation (17.20-17.22) in this unit. The
nonlinear term (0Hy/8X)? is the lowest possible term compatible with the transla-
tional symmetry of the system. There cannot be terms containing Hy such as HE
or Hy0H,/8X since the evolution should be independent of the absolute position of
the step itself. The equation (17.34) is called the Kuramoto-Sivashinsky equation
{118, 177] and is known to have spatio-temporal chaos, as shown in Fig.17.4. The
front has many hills and valleys. Valleys shift randomly to the left or to the right,
collide with cach other and annihilate. A hill widely spread splits and a new valley is
formed randomly. The same chaotic behavior is observed in the Monte Carlo simu-
lation of the step advancing in the adatom diffusion field, as shown in Fig.17.5 [170)].
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from the diffusing adsorbed atoms {170]. It shows the spatio-temporal chaos similar

Figure 17.5: Monte Carlo simulation of the time evolution of an unstable step growing
to Fig.17.4.



Part IV
Diffusion-Limited Growth:
Pattern Formation

So far we considered the effect of surface structure and surface kinetics on the crystal
growth. But there are other processes which controls the growth. Crystallization
proceeds in the following sequences:

1. Atoms to be crystallized are transported to the crystal surface (= chemical
diffusion),

2. they arc incorporated in the crystal at the surface (=surface kinetics),

3. and the released latent heat should be transported away from the crystal surface
(= heat conduction).

If all these processes are fast enough, ideal growth laws can be realized. But in
reality, the slowest process governs the growth rate as a whole, and the deviation
from the ideal linear growth laws explained in part I is expected. For the crystal
with an atomically flat interface, the second, surface kinetic process is the slowest
one and it controls the growth. The growth law is found to differ from the ideal one,
a8 explained in Part III. For rough surfaces, kinetics is fast, but still the growth is
different from the ideal behavior when the transport processes (1) and (3) are slow.
In this part we consider the crystal growth and its morphology, when the growth is
controlled by chemical or heat diffusion processes.

Diffusion field induces instability in the growing interface, as, for example, shown
in the previous section 17. This diffusional instability causes variety of patterns in the
growth shape of the crystal. Examples are the fractal structure of the diffusion-limited
aggregation (Fig.1.3), dendrite in the melt or solution growth (Fig.1.2), lamellar
structure in the cutectic growth (Fig.26.2). These topics are studied in the present
part.

18 Diffusion Equation

Since the mass or energy is conserved, the material or heat transport follows a diffusion
equation [122]. To consider the problem concretely, we consider the crystal growth
from the undercooled melt where the heat conduction evacuates the produced latent
heat from the crystal surface. Since the melt is cooled at a temperature T,, below
the melting temperature Ty, the Gibbs free energy of the crystal per volume Gg is
lower than that of the melt Gy, as (3.1) or

TM — Too

AG=G,—-Gs=1L
L s Ty

, (18.1)
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Figure 18.1: Temperature profile around the flat interface of the crystal growing in
the supercooled melt.

where L is the latent heat per volume. This AG drives the material to crystallize. By
the crystallization, however, the latent heat L released at the interface heats up the
crystal surface to a temperature T, higher than the far field value T,,. Therefore, the
driving force of crystallization at the interface reduces to AG; = L(Ty — Ti)/Tu. For
many metals or some plastic materials, the interface is rough at the melting point and
thus the growth rate is proportional to AG;, following the Wilson-Frenkel formula
(3.5) or

Vo =Kr(Ty - T3) (18.2)

with the kinetic coefficient K'r. The remaining supercooling T; — T,,, drives the heat
transport and prohibits the interface from being heated up by the latent heat. The
heat transport in liquid is described by the heat conduction equation

or
C,,E = kV?T, (18.3)
where C,, is the gpecific heat per volume, k is the thermal conductivity. When the
crystal grows with a normal velocity V;, the latent heat LV is produced per unit area
in unit time. This heat should be transported away by the heat flow in the normal
direction n as
LV, = —k(n- V)T = —k0,T. (18.4)

Here we restrict ourselves to the one-sided model such that the heat is transported
only in the liquid. Extension to the two-gided or symmetric models is straightforward.
The driving force AG = L(Ty — Tw)/Tu is partitioned into the kinetic part AG;
and the transport part AG; = L(T; — T )/Tw. The interface temperature T; is so
determined that the velocity determined from the kinetics (18.2) agrees with that
from the transport (18.4).

The fundamental equations (18.2-18.4) is derived for the melt growth where the
heat conduction controls the growth. Similarly, in the solution chemical diffusion
controls the growth of crystal. In order to generalize the situation and to take up
the essential features of the problem, we scale variables in dimensionless form. The
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dimensionless diffusion field is defined as

T(X, t) —Tw

u(x,t) = Ljc,

(18.5)

and it follows the diffusion equation

g—’t‘ = DV?u (18.6)

with the thermal diffusivity D = k/C,. Boundary conditions are the conservation law

V, = —Do,u, (18.7)

and the Wilson-Frenkel law at the interface
Vi = K'(A — u; — di), (18.8)

where K' = Kp(L%/C,Ty) is the new kinetic coefficient, which will be denoted K

hereafter.
Tu —To

L/Cy
is the dimensionless undercooling, which is the undercooling normalized by the tem-

perature increasc caused by the latent heat production. u; = (T; — T) /LC; 1 is the
value of the diffusion field at the interface,

A= (18.9)

=7 Tu
LLJC,

d (18.10)

is the capillary length proportional to the surface stiffness 4, and & is the curvature.

For the rough interface with many steps and kinks, the kinetics is expected to be
very fast. In the limit of X' — 00, the local equilibrium is realized at the interface as

u = A — dx, (18.11)

instead of the Wilson-Frenkel law (18.8). In this case, the crystal growth is totally
governed by the diffusion.

19 Flat Interface

When the crystal grows steadily with a macroscopically flat interface in z direction,
the growth velocity V is cxpected to depend on the undercooling A. In the coordinate
frame comoving with the crystal (z,y,2' = 2 — V't), the diffusion equation (18.6) is
transformed as 1

L

Dot

2 Ju

ks 1
PPl (19.1)
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where oD
Ip==— .
D=7 (19.2)
is the diffusion length. For a steadily growing crystal, the diffusion field does not vary
in time in the moving frame, du/8t = 0, or
2 du
2 —_——=
Viu+ 1,97 0. (19.3)
Taking the origin of 2’ coordinate on the flat interface, the diffusion field is solved
as

u(2) = Aexp (—7—;) (19.4)

under the far field condition (2’ = 00) = 0. The diffusion length {5 is the thickness
of the diffusion layer, and characterizes the spatial variation of the diffusion field.
From the conservation boundary condition (18.7) one obtains the relation
V=—-D0yu= D?—A = AV. (19.5)
D
Thus, A = 1. From the kinetic boundary condition (18.8), the growth velocity is
determined as
V=KA-1). (19.6)
Since u; = A = 1, the interface temperature in the conventional unit is T; =
T + L/C, by utilizing Eq.(18.5): The interface is heated up by the latent heat.
Since T; should be colder than the melting temperature Ty for the crystal to grow,
A has to be larger than 1. Even though the melt is supercooled at A > 0, the crystal
with a flat interface cannot grow steadily for A < 1. The latent heat released heats up
the interface so high that the heat conduction cannot transport it quick enough with
small supercooling. In the case of local equilibrium (K = o0), the time-dependent
solution of the one dimensional problem is exactly obtained, and the growth velocity
decreases as t~1/2,

Exercise: We consider the crystal growth with a flat interface under the local equi-
librium condition. When the interface is moving in z direction as z = ((t), the
growth velocity is shown [99] to decreases as t~'/2 by assuming the scaling form for

the diffusion field as
z

(1) Show that the time-dependent diffusion equation (18.6) is transformed to the
ordinary differential equation for u(w) with a new variable w = 2/{(t) as

Xy =0 19.
+ o (19.8)
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(2) If u depends only on w, then show that

((t) = V4DPt (19.9a)
u(w) = 2Pe’ /: e P dw, (19.9b)

where P is defined by the relation
A = VrPePerfe(V P), (19.10)

with the error function defined by
erfe(VP) = 72_1; /; e dz. (19.11)

Eq.(19.9a) shows that the interface velocity decreases to zero as ¢ o< ¢=1/2.
Answer:
(1) By changing variables, derivatives are related as

du(z/¢(t))  dwdu 2 du

Ou(z/((t)) _ Owdu _ldu

dz T dzdw  Cdw (19.13)
02 1 d?
—"(g!f(—t)) = ?d—w';, (19.14)

where ¢ = d¢/dt. Tnserting the relations (19.12-19.14) in the diffusion equation
(18.6), one easily ends with (19.8).

(2) By rearrangement, Eq.(19.8) can be written as

¢ _dPufdw®
D wdu/dw 2P

(19.15)

The first term depends only on time ¢ and the middle tcrm only on w, and thus
should both be constant, which is set 2. From the first equation, (¢ = 2DP,
the interface advances in proportional to ¢/2 as in (19.9). Integrating the second
equality, one gets

d
In ﬁ = —Pw? + const (19.16)

or d
Ez% = Ce~Pv, (19.17)
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With the far field condition, u(oo) = 0, it is integrated as

u(w) = —C/oo e P du. (19.18)

w

From the local equilibrium condition (18.11) at the interface, z = {(t) or w = 1,
the integral constant C' is determined as

C [7

—_ bt - Pw? -2 ]
A= c/l e P dw = -2/ Serfe(VP) (19.19)

The conservation law (18.7) is now written as

. -r
{=-DC <e—”w2 %%) = —DCe—C—. (19.20)
w=1

By inserting (19.15) and (19.19) in (19.20) one gets (19.10).

20 Spherical Crystal

When the crystal grows in a spherical shape, it emits heat in all directions, and it may
sustain steady growth. But it will be shown that the steady growth is not possible in
this case either. We study the time evolution of the radius R and its radial velocity
R= dR/dt, as shown in Fig.20.1. From the symmetry the diffusion field  is expected
to depend only on the radial variable r in a spherical coordinate. Then the diffusion

equation is written as
1 du 0 290

'D‘a_t = (—6—73 + ;57:) u=0. (20.1)
In the last equality the stationary approximation is used, where the relaxation of

diffusion field is very quick compared to the shape variation of the crystal. The
stationary distribution of the diffusion field takes the form

u(r) = Afr (20.2)

Figure 20.1: Crystal growth in spherical shape.
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with an integration constant A. The far field condition u = 0 at r — oo is satisfied in
(20.2). The growth velocity V' is determined by two ways, from Eq.(18.7) and (18.8),

as
DA A 2
V_F~R(A—E—ﬁ>. (20.3)

Here the relation of the curvature k = 2/R with the radius of the sphere R is used.
The integration constant A is then determined as

R*A —2d/R)
A= ——n 2 .
R+D/K ° (20.4)
and the growth velocity as
anr D(A - 2d/R) A ( pc)
_— = = = 1 _ — .
dt v R+ D/K K-'+R/D R (205)

If the crystal radius R is smaller than the critical radius p. = 2d/A, sphere cannot
grow. If R is greater than p., the sphere can grow. For small radius, p. <« R <« D/K,
the kinetics resistivity & ~! against the growth is dominant, and the growth velocity
KA(1 — p./R) corresponds to that obtained phenomenologically in Eq.(7.2). When
the sphere grows large with R > D/K, the diffusional resistivity R/D becomes
dominant and the growth rate varies as

D pe 1D D 1 D
moA(1-P 12 Y Zali-2 AlN .
v RA<1 R krT ) R [1 R (pCJ’ K)] (20.6)

For sufficiently large sphere as R > p., the growth rate V = R is inversely propor-
tional to the radius R, and by intcgration one gets

R%(t) = ADt + R¥(0). (20.7)

Asymptotically as t — oo, the radius increases in proportional to ¢!/2, and the velocity
decreases as V = R o« t~'/2. Thus the steady growth of sphere is impossible.

21 Parabolic Crystal

In the analysis so far, neither the planar nor the spherical crystals can grow steadily if
the diffusion controls the growth. Is there any shape which allows the steady growth
of a crystal? Ivantsov [89] has shown exactly that the needle crystal with a parabolic
tip can grow steadily, if the crystal interface is in local equilibrium with infinitely
fast kinetics and the surface tension is neglected, namely the crystal interface is the
isotherm at the melting temperature Ty.
If the parabolic crystal grows steadily as
2% 4 g2 2

=Vt — (21.1)

z=Vi-—p¢ 2R
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Figure 21.1: Crystal growth in parabolic needle shape. The latent heat is emitted
dominantly near the tip.

as shown in Fig.21.1, its height increases in proportional to the elapsed time Af,
whereas the width increases only in proportional to v/At. Therefore, the growth
takes place mainly at the tip region, and the latent heat is emitted at the tip. The
total amount of the latent heat released from the tip of parabolic dendrite down to the
tail with a radius r is Lxr?V per time. The height of the dendrite is r2/2R and the
surface area is proportional to r3/ R, precisely calculated to be 7r3/3R. Therefore the
average heating per area is 3LV R/r, which decreases for a long parabola at r — oo.
Heat will not accumulate and a steady growth is allowed in this shape.

We now treat the problem more quantitatively. When the crystal is growing
steadily in z direction with a velocity V', one transforms as usual to the moving frame
of reference as (z,y, 2’ = z— V't). For the present shape it is convenient to transform
further to the parabolic coordinate (Fig.21.2)

E = Tr— zlv
no= T+,
6 = arctan(y/z) (21.2)

with 7 = /2% + 52+ 2%. (See Appendix A21). Then the diffusion equation in the
steady state is described as

__1 (_a_ %4__(?_ ?.E).}._.]L_a?_u_*.i__l (gﬁ_f@.)—o (213)
n+€\on" oy " o€ 06) " g ol Ipn+e\"on “oE) T '
where Ip = 2D/V is the diffusion length defined in {19.2).
By denoting the interface as n = n;(£,4,t), the conservation boundary condition
(18.7) is written as
o mi+ &0 ( du O 0u i+ EOm 6u)
—tD i ar “an 3

m+¢ (21.4)

2t = e

9 T v ot "oy T BE 9 e 0698
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z =const

n=const
Figure 21.2: Parabolic coordinate.

and the local equilibrium condition (18.11) is written as
u(ni) = A, (21.5)

since there is no capillary effect (d = 0).

The paraboloid crystal of revolution (21.1) corresponds to the interfacial shape
with a constant n as 7; = R. Due to the symmetry, the field » depends only on 7,
and the diffusion equation reduces to

a du 1 ou
gy (1) + 1 (73) =© 9

wn)=A+C /R "l oy, (21.7)

It is easily solved as

Here the local equilibrium boundary condition (21.5) is used. From the far field
condition that u(n — 00) = 0, the integration constant C is determined as

A

C= " Temhdy

(21.8)
From the continuity boundary condition (21.4) with 7; = R and 87;/0¢ = an; /00 =
dn; /0t = 0, one gets the relation

du
R= —lDRa—n. (21.9)

Inserting Eq.(21.7) and (21.8) into the relation (21.9), one gets the Ivantsov relation

A = (R/lp)ef/ A " le o dy = PePE\(P) (21.10)
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with the Peclet number P defined as

RRV

= =3 (21.11)

Here E)(P) = [§°z 'e "dx is the exponential integral function [1]. In two dimen-
sions, one obtains the steadily growing parabolic crystal

I

z
—vt = 21.12
povt=—o 4 (21.12)

with the Ivantsov relation

= VrPelerfe(vV/P) (21.13)

with the error function defined in (19.11) [83]. (See Exercise). For a small supercool-
ing A, Peclet number P is small and the Ivantsov relation is approximated as

An { P(-InP ~05772--.)  for 3 dimensions (21.14)

vrP for 2 dimensions,

and for high supercooling as A — 1, the Peclet number P is large and the Ivantsov
relation is approximated as

A { 1-1/pP for 3 dimensions (21.15)

1-1/2P for 2 dimensions,

Horvay and Cahn [83] extended the Ivantsov solution to the elliptic paraboloid:

z—Vt—2 (* +a y2)+§ (21.16)

R
with the aspect ratio (ratio of « axis to y axis) a. The undercooling A and Peclet
number P = VR/2D is related as

A= —-P / \/w[w

For a = 1 the shape becomes the three-dimensional paraboloid of revolution and
the Ivantsov relation (21.10) is reproduced. For a = 0 the system reduces to the
two-dimensional problem, and Eq.(21.17) reduces to Eq.(21.13).

The Ivantsov solution indicates that the steady growth is possible in the form of a
parabolic dendritic crystal. But the Ivantsov relation (21.10) shows that the growth
velocity V and the tip radius R are not determined uniquely for a given undercooling
A. It only determines the product VR ~ P. On the contrary, experiments show that
for a given A, V and R are determined uniquely. There is some factor missing in the
analysis by Ivantsov.

e vdw Pev

_/ \/(P+w (P + a?w)

dw. (21.17)
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Exercise: Find the Ivantsov relation (21.13) for a two-dimensional dendrite, when
the surface tension is absent.
Answer: Take the 2D parabolic coordinate

(=r—?, o=@
' 21.18
n=r+2, #=3(n~-¢) (21.18)
with 7 = V22 + 22 = (£ + 1) /2, the diffusion equation in steady state is written as
Ou g Ou Ou ,0u
o (Vi) Ve (65 ) s (o -eg) =0 o

Boundary conditions at the surface 5 = 7; are expressed as the local equilibrium
condition

u(m) = A, (21.20)
and the continuity condition
o n.~+§%__ Bu 01 Bu
i+ £ TR T Ip n.an 536 ) (21.21)

By taking the parabolic shape as 7; = p, the diffusion field « depends only on 7 from
the symmetry and the diffusion equation becomes simple:

2 (VigE) + g = (21.22)

The solution which satisfies the far field condition u(p — oo} = 0 and the local
equilibrium condition {21.20) at i = p is obtained as

The continuity boundary condition, (21.21), is written as

ou o\ 2g=eliv

—_—_—. 1.2
on = ST e Tdy (21.24)

= —lp—

By changing the integration variable to & = /9/lp and using the Peclet number
P = p/lp, Eq.(21.24) is transformed to the desired result:

A =2vPe? f; e dz = VaPe erfc(VP) (21.25)

with the error function (19.11).
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(2) (b) ©

Figure 22.1: Isotherm distribution in the supercooled liquid around the interface (a)
for a flat interface, (b) for a deformed interface without capillarity, (¢) and for an
interface with Gibbs-Thomson effect included.

22 Stability of a Flat Interface

In the section 19 we discussed the steady growth of a flat interface and found that
for A < 1, no steady state is possible. If the interface remains to be flat, the growth
will slow down, and the growth velocity becomes zero even with a finite driving force.
Another possible scenario of the time evolution of the flat interface is that it looses
stability and deforms. We now study the latter possibility.

In order to discuss the extreme case of the diffusion limited growth, we assume
hereafter an infinitely fast kinetics at the interface, K’ — oo, and the local equilibrium
condition (18.11), or

u = A — dr. (22.1)

First we give a qualitative explanation on the stability of the interface. If the flat
interface moves steadily with a velocity V', the diffusion field « varies from A to 0 in
a length scale of diffusion length Ip = 2D/V. The isotherm u = const lies parallel to
the interface 2’ = z — V¢ = 0 as schematically shown in Fig.22.1a. When a part of
the interface advances faster than the other by some fluctuation, what will happen to
this pointed part? First we neglect the small effect of surface tension or capillarity.
Then at the interface the diffusion field u; takes a constant value A, irrespective of
its deformation. Near the pointed part the isotherm u; = A pushes forward other
isotherms, and the isotherm density becomes high here, as shown in Fig.22.1b. The
high density of isotherm means the steep slope of Vu, and the heat flux —DVu
increases and releases the latent heat quickly. The pointed part can grow faster than
the undeformed part, and the deformation is enhanced: The flat interface becomes
unstable. This instability is first studied analytically by Mullins and Sekerka, and is
called Mullins-Sekerka instability [141, 122].

So far we considered the interface instability when the crystal is growing in the
supercooled melt and the heat is transported through the liquid. If the crystal is
supercooled and the melt is hot, what will happen for the interface deformation?
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(a) (®)

Figure 22.2: Isotherm distribution when the crystal is supercooled. (a) A flat inter-
face, and (b) a deformed interface without capillarity.

Since the crystal is supercooled, the latent heat is released through the crystal. For a
flat interface isotherms in the crystal are running parallel to the interface, as shown
in Fig.22.2a. If a part of the crystal grows fast at some point by fluctuation, the
separation between isotherms near the pointed part increases and the isotherm density
decreases (Fig.22.2b). The slope of the isotherm decreases, and the latent heat is
less effectively transported. Thus the growth rate there decreases, and the interface
recovers the flat profile. In this case the interface is stable against fluctuation. There
is an asymmetry and the instability occurs when the interface is propagating in the
region where the transport is taking place.

We now consider the effect of surface tension on the stability of a flat interface.
The surface tension lowers the degree of supercooling at the pointed part with positive
curvature (k > 0) as (22.1) and shown in Fig.22.1c. Since the driving force at the
pointed part decreases, the growth rate there decrcases. Thus the surface tension acts
as a stabilizing factor for the flat interface. The total stability is determined by the
competition between the diffusional destabilization and the energetic stabilization.

We now describe the stability in the linear analysis. The interface is assumed to
be deformed sinusoidally with a wavelength A = 27 /q as

((z,y;t) = Vit + agexpw,t) cos(gz). (22.2)

The amplification rate w, determines the stability of the flat interface: When w, is
negative, the interface is stable, whereas when w, is positive, it is unstable. Since
the interface deformation influences the diffusion field u, it also has an additional
variation to that of the flat interface in Eq.(19.4) as

z—Vt)

u(z,y,2;t) = Aexp [— it I ] + bug exp{wyt) cos(gz) exp [—A,(z — Vt)]. (22.3)

Here A, should be positive, since the far field u(z — oo) will not be affected by the
interface deformation and the deviation should decay in z direction. By inserting
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q

I9m qs\

Figure 22.3: Dispersion relation of a sinusoidal deformation of a flat interface.

(22.3) in the diffusion equation (18.6) and by considering the terms containing cos gz,

one gets the relation

wy | 27, 2 2
Dt — Tt (224)

From the local equilibrium condition (22.1) with the curvature k ~ —8%z/822, A
should be equal to A and the deformation amplitude du, and a, are related as

Sup = (%A - doqz) aq. (22.5)

In the linear analysis the anisotropy in surface energy « gives no contribution and dy
denotes the isotropic part of the capillary length defined in (18.10). From the energy
conservation or continuity equation (18.7), one gets the relation that A =1 and

P R
% = (ln + (2 - dod?) A, (22.6)

From Eq.(22.4) and (22.6) the damping in z direction is determined as

2 1 2d dZq?
Ay === 5dog” +ql /1~ o 7 (22.7)
lD 2 lD 4

and the amplification rate as
2 2 2 4
G (g T B B g
lD lD 4 l[) 2

D
which is depicted in Fig.22.3. For slow growth, the diffusion length Ip = 2D/V is
large; Ip/dp > 1. For a deformation with a wavelength less than Ip or ¢lp > 1, the
dispersion relation (22.8) is approximated as

Wq 2 5
— (= - . 22.
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For wavenumbess ¢ larger than the stability value

[ 2
I = Eof_r)’ (2210)

the deformation damps down by the negative amplification rate w,. For the small
wavenumbers ¢, however, the capillarity is not strong enough to stabilize the flat
interface, and w, is positive. In terms of the wavelength, the mode with a modulation
wavelength longer than the stability length

A = 2 = 2'51} @2@ {22.11)

is amplified. The most unstable mode has the wavenumber
I =0/ V3 (22.12)

with the amplification rate
2

a8 is shown in Fig.22.3. So far we considered the one-sided model. If the diffusion
constant in the crystal is the same with that in the liquid phase, namely in the
symmetric model, the stability length is given by A, = 27+/dolp.

Exercise: Crystal in a spherical shape is growing in a static diffusion field V24 =0
with the local equilibrium boundary condition {18.11}. Discuss its stability against
the deformation as

r(8,¢) = R(t) + aim(t)Yim(0, ¢) (22.14)

with Y}, a spherical harmonics in spherical coordinates {r,4, ) {140]. The Laplacian
in spherical coordinate is expressed as

G Lo (,0Y, 1 af. 0\ 1 &
T or289r 0 Orj)  r?sing 94 06 ]~ 12sinf 0¢?
18 {,0 1.
and spherical harmonics Y}, are cigenfunctions of the angular part A with an eigen-
value —I{l + 1) as

Also in the linear approximation the curvature (6, ¢) can be represented as
2 1
K(8,¢) = = {4+ 2} = Dam Y8, ¢} {22.17)

R R



22, Stability of a Flat Interface 81

Answer: The diffusion field is modified from Eq.(20.2) as

A
u(r,8,¢) = ~+ Ut (7, 1) Yin (8, ). (22.18)
Since the field u(r, 8, ¢) should satisfy the diffusion equation in the static approxima-
tion V2u =0 or 5 55
v 2 Uim _ -
o <r o ) 11+ 1)8upn, = 0, (22.19)

the deformation amplitude which decays far from the crystal is solved as

duyy, = (22.20)

PO

The local equilibrium boundary condition (18.11) at the interface (22.14) is explicitly
written as
1 Qim

w=a(z-F
in the linear approximation, and two parameters A and B are determined as

B 2 1
Yin) + poeg¥im = A =d [ = (0 +2)(t = Dawm¥in| (2221

2d
A=R (A - E) (22.22)
B=R'A-(I+2)(I-1)d o = R [A - &%M] Qi (22.23)
The continuity equation(18.7) is expressed as
Vo = R+ i Yim. (22.24)
From the zeroth order, one gets the growth velocity
: 1 2d DA Pe
=D={A-=)|=—7[1-=). .
R DR< R) p (1 R) (22.25)
From the linear order in g, the modulation velocity is obtained as
D
U = ﬁ(l - 1) [A - %(12 + 3l + 4)} Aim = WimQim- (2226)

For small radius R when w;, < 0, the deformation amplitude a;, decays and the
spherical shape is stable. For large radius when wy,, > 0, the deformation grows and
the spherical shape becomes unstable. The critical radius for the I-th mode is given
from the relation w;,,, = 0 as

d 1243 +4

R()= S +314+4) = p—o T2,

A 2
Since the ! = 1 model is marginal as wy,, = 0, the [ = 2 mode is destabilized first at
the radius R seven times of the critical nucleation radius p. = 2d/A. Thus a small
sphere loses stability in the shape, and starts to deform.

(22.27)
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Figure 23.1: Fractal dendrite of Au deposited on Ru [86].

23 Fractal Dendrite

If there is no surface tension {dy = 0), the dispersion relation {22.8) reduces to

Wg 3

which is positive for all deformation wavenumbers g. The interface is always unstable,
and it is most unstable for the largest |g| or the finest structure of deformation. From
Eq.(22.27) the spherical crystal is also unstable for any size if there is no capillarity
effect. Therefore, one expects that the very fine and irregular structure will be realized
for the crystal growing in the diffusion field without the surface tension. This kind
of structure is actually observed in the vapor deposition on a very cold substrate, as
shown in Fig.1.3a [41] and Fig.23.1 [86]. The adsorbed atom can diffuse randomly on
the substrate, and its life time is very long on a cold substrate. In the meanwhile,
the adatom collide with another adatom, coagulates and stop moving. Since the
substrate is so cold that the once coagulated atoms never dissociate again to search
for energetically more favorable position, the surface energy cannot play its role to
stabilize the interface morphology. The irregular structure so grown is self-similar
and called fractal, and is intensively studied recently [189, 10]. There are many
other examples of fractal objects as aggregates grown by clectrochemical deposition
[130, 21] and bacteria colonies {132, 22]. We summarize the fractal theory relevant to
crystal growth, and discuss fractal-to-compact crossover for the aggregate growing in
a diffusion field of a finite density [191, 185].

23.1 Diffusion-limited Aggregation (DLA)

The irregular aggregate is first studied theoretically in the computer [197}. An im-
mobile crystal particle is placed at some point as a seed, and a randomly diffusing
gas particle is released far from the sced. When the gas particle comes into contact
with the seed particle, it freezes and is incorporated into the aggregate. Then, the
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Figure 23.2: Diffusion-limited aggregation (DLA) grown in computer [150]. There
are (a) 6 x 10%, (b) 6 x 10° and (c) 6 x 10° particles in each cluster.

next gas particle is released far from the aggregate, and performs the random walk.
After it makes contact with the aggregate, it freezes, and a new particle is released
again. By iterating this procedure, the aggregate grows by incorporating atoms one
by one. The grown aggregate is called the diffusion-limited aggregate (DLA), and
its structure is shown in Fig.23.2. It is irregular, ramified and very open. The part
looks similar to the whole by enlargement, and there is no characteristic length in
the structure except the lower and upper cutoff lengths, the atomic and the system
sizes. This self-similar object is called fractal. If there are N(r) atoms in a region
with a radius r, the number of atoms in the radius br is N(br) = b”*N(r). By taking
b=r"1, then

N(r) =P N(1) (23.2)

and Dy is called the fractal dimension. If the object fills the d dimensional space
homogeneously with a finite density, Dy = d and it is called compact. DLA is, on
the contrary, fractal with D; = 1.71 in d = 2 dimensions, and with D; = 2.49 in
d = 3 dimensions [134]. Since there are N ~ rP number of particles in a radius r,
the aggregate density is

n(r) ~ % ~rPrd (23.3)

which becomes zero asymptotically for r — oco. It means that the aggregate has many
open spaces. Zero asymptotic density is quite imaginable because the aggregate grows
from a diffusion field of zero density: There is only a single gas particle during the
whole growth simulation. Also a particle can walk forever until it comes to contact
to the aggregate, and it means that the aggregate grows very slowly, V' — 0. The
diffusion equation thus reduces to the Laplace equation VZu = 0. The diffusion
length Ip = 2D/V is infinity, and the surrounding field as well as the aggregate have
no characteristic length in the DLA growth.



84 Part IV, Diffusion-Limited Growth: Pattern Formation

0 Fractal Iy Compact 7

Figure 23.3: Schematic behavior of an aggregation density n(r) growing in a diffusion
field of a finite gas density n,. The diffusion length Ip is the characteristic length
scale of the crossover between the fractal and compact structure.

23.2 PFractal-to-Compact Crossover of an Aggregate in a
Finite Gas Density

In a real experiment an aggregate grows from a gas with a finite density n,, whose
time evolution follows the diffusion equation. The growth rate of the aggregate V
should no vanish, and the relation between the velocity V' and the gas density n, is
of interest [185].

To realize the steady growth casily, we consider a unidirectional growth of an
aggregate from a linear seed, similar to the “fractal forest” shown in Fig.1.3b. In
front of the crystal, there are gas particles with an average density n, and they are
making random walks on a square lattice to the nearest neighbor site. When a gas
particle comes into contact to a seed or to an aggregate grown from it, it freezes
and becomes a member of the aggregate. The time scale is so chosen that in a
unit time every gas particle makes one diffusional jump on average. By taking the
lattice parameter as a unit of length, the diffusion constant D is 4. The aggregate
front A{t) is defined as the height of newly crystallized particle, and the veloeity V
is obtained from the time variation of A{(t). Since the gas particle is incorporated in
the aggregate instantaneously and irreversibly, the density in front of the aggregate
vanishes. It relaxes back to the given density n, within the distance of diffusion length
{p = 2D/V. Within this length, the gas density is low and the situation looks similar
to the DLA growth: A gas particle sticks to the aggregate randomly and never melt
back. Therefore, the grown aggregate has a fractal structure. But, since the aggregate
grows from a gas with a finite density n,, the material conservation does not allow the
aggregate density to diminish as n{r) ~ rP~¢ like the fractal object in the previous
subsection does. For large distance r — oo, the aggregation density should saturate
to n,, as shown in Fig.23.3. A crossover of the aggregation density from the power
law decay (23.3) to saturation takes place within a characteristic length Ip, and the
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Figure 23.4: Irreversible and unidirectional solidification of aggregate from a gas with
finite density: (a) n, = 0.08, and (b) ny = 0.1 [185].
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Figure 23.5: Velocity of the sggregate front v versus the gas density n,, showing
the power law dependence v ~ nj with v = 1/(d — Dy} in d = 2 dimensions with
Dy = 1.71 [185].

relation

5409 (23.4)

is expected. There should be a crossover from the fractal to compact structure at
the length scale of order Ip. This gives the relation between the aggregate growth
velocity V' and the gas density ny as

V ~ gt ~nffmP0, (23.5)

In two dimensional system {d = 2), Monte Carlo simulation shows that the aggregate
congists of many branches of irregular dendrites, and the separation between branches
decreases as the gas density n, increases, as shown in Fig.23.4. This is compatible with
the decrease of the characteristic length as n, increases. The growth velocity of the
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aggregate V is found to increase in powers of the gas density n, with the exponent
compatible with the fractal dimension Dy = 1.71 in two dimensions, as shown in
Fig.23.5. The scaling (23.5) is recently confirmed in the deposition experiment of
silver metal leaves from AgNOj solution [139].

24 Capillary Effect and Regular Dendrite

Without the surface tension, the crystal profile is shown to take a random and irregu-
lar form. In reality, most metals and some plastic crystals growing in a free and open
space takes a regular dendritic form with a stable tip oriented in a special crystallo-
graphic direction, as shown in Fig.24.1 [84]. The tip of the dendrite is parabolic and
the tip radius R and the growth velocity V satisfies the Ivantsov relation {21.10) with
the undercooling A (Fig.24.2) [84]. In experiments the undercooling A determines
R and V uniquely, contrary to the Ivantsov solution where an infinite degeneracy is
expected. Capillarity may select a unique operating point among multitude of possi-
bilities. It introduces a new characteristic length, the capillary length d = 5C,Tu/L?
of (18.10). It is intrinsic, since it is determined only by the material parameters and
every other length as p or Ip is expected to be scaled with d.

Since the main interest lies in the interface structure, it seems advantageous to
integrate out the diffusion field and to derive the interface dynamics. Many local
models for the evolution of the interface profile were proposed, and gave contributions
to understand the problem of the velocity selection [40, 17, 18, 100, 101]. But the true
interface dynamics is nonlocal even in quasi-stationary approximation, as explained in
detail in Appendix A24.1. We summarize the results of recent studies on the nonlocal
model.

24.1 Velocity Selection by Microscopic Solvability

Due to mathematical simplicity, the analysis is mainly done on two dimensional
dendrite [124, 105, 33, 156]. The capillary length is defined in terms of the two-
dimensional surface stiffness 4. The surface tension 7 is assumed to have four-fold
rotational symmetry reflecting the erystalline order of, such as, succinonitrile.

B(8) = Bo(1 + €cosdb). {24.1)

For positive €, # = 0, £x/2, and 7 corresponds to the maximum of the surface
tension, and to the corners in equilibrium shape (Fig.6.5). The surface stiffness is
expressed as

*p

B=0+ 55 = Po(1 — 15¢c0s48), (24.2)

and the capillary length (18.10) is then written as

d = do(1 — ecos 46) {24.3)
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Figure 24.1: Dendrite of succinonitrile [84].
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with dp being the magnitude of the capillarity length and e = 15€ the strength of the
anisotropy. Oricentations 8 = 0, £7/2, = correspond to the minimum of the stiffness
and the capillary length.

By including the capillarity, the stability length appears, for example, A, =
2m4/dpln /2 in the one-sided model. When the tip radius p is smaller than A, the
tip is unable to grow further duc to the capillary effect, and the interface turns to
be flat. When p is larger than A, the tip is unstable to the deformation due to the
Mullins-Sckerka instability. Thercfore, the dendrite tip radius is expected to be of
order A,. Then, one introduce a dimensionless parameter

= @ = @ = 2D(2io = ———dov, , (24.4)

P pP vp 2D?
which is called the stability parameter. Since the capillary length dy is small, this
is small, and one may try the cxpansion of the profile in powers of . However, as
the capillary effect is contained in the Gibbs-Thomson condition, it is coupled to the
curvature &, the highest derivative of the interface profile as ox ~ —09%2/8z2%. In
this case, normal perturbation fails and one has to use a singular perturbation [16].
There are many theoretical works on the dendrite theory which are summarized in
many reviews (124, 105, 33, 156].

In solving the nonlocal interface cquation, houndary conditions has to be con-
sidered appropriately. Far down the dendrite tail, the curvature is so small and the
profile should approach to the Ivantsov parabola. By integrating the interface profile
from the tail to the tip, one gets in general a finite slope © at the tip and the solution
cannot be extended symmcetrically to the other side of the tail. Slope at the tip can
vanish only for special choice of the growth velocity v or the stability parameter o.
This is called the solvability condition {124, 105, 33, 156], and is sketched in a little
more detail in Appendix A24.2. Here T summarize the main conclusions.

1. Without surface anisotropy € = 0, there is no steady state for the dendritic
growth.

2. With an anisotropy € # 0, the symmetric dendrite grows steadily with its tip
oriented in the direction of the stiffness minimum 6 = 0.

3. The stability parameter o is found to depend only on an anisotropy parameter
¢, but is independent of the undercooling A. For small ¢, ¢ is approximately
proportional to €71 and thus vp? remains constant for various undercooling A:

vp? = 2Ddy/o(€) oc e /1. (24.5)

The value of o(e) for the one-sided model is shown to be twice as large as
that of the symmetric model [138]. By combining with the Ivantsov relation,
vp = 2DP(A), the growth rate is obtained as v & P?. For d = 2 it reads as
v~ A" at small undercooling where the approximation (21.14) holds.
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a) b)

Figure 24.3: Simulation of the dynamical evolution of the dendritic crystal at (a)
¢ = 0 (isotropic surface energy), and ¢ = 0.10. The isotropic surface energy (a) shows
the tip splitting, and the anisotropic one grows stably in (b) [165].
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Figure 24.4: The stability parameter o dependent on the anisotropy parameter ¢ at
two different undercoolings A = 0.25 and A = 0.50 [165].

This result is confirmed by the numerical simulation by solving the diffusion equa-
tion in a quasi-stationary approximation by the boundary element method and inte-
grating the shape evolution [165], as explained in Appendix A24.3: For € = 0, the
dendrite tip splits as it develops in time (Fig.24.3a), and for ¢ > 0 the tip stable den-
drite grows as shown in Fig.24.3b. The parameter g = dov/2DP? is found to depend
on anisotropy € but is independent of the supercooling A, as shown in Fig.24.4.

In the three-dimensional experiment of succinonitrile dendrite growing in its melt
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Figure 24.5: The stability parameter ¢ at various undercooling A’s for succinonitrile
[84].

(Fig.24.1) [84], the relation V R? = const is found to be satisfied as shown in Fig.24.2
and Fig.24.5. The strong anisotropy dependence of V R? is, however, not observed
experimentally. There is some argument that anisotropy is not necessary in the
mode selection {71], but at least it seems plausible that the dendrite grows in the
direction of the stiffness minimum, since the minimum stiffness means less effective in
suppressing deformation and the deformation grows fastest in that direction. If there
is no preference in orientation, the growing tip is very susceptible to the orientation
fluctuation, and may split or form irregular dendrite.

The chaotic behavior of the isotropic interface is already found in the Kuramoto-
Sivashinsky equation discussed in section 17. There is another example of tip insta-
bility in an isotropic system, a viscous finger problem [162, 152]: A viscous fluid is
confined in a narrow gap between two glass plates of a Hele-Shaw cell [75]. When the
fluid with low viscosity (like air) is pushed into the fluid with high viscosity (like wa-
ter), the meniscus between two fluids is unstable and forms finger-like pattern, known
as the viscous finger. The problem is formulated similar to the dendritic growth. One
essential difference between the two problems is that the surface tension is isotropic
in the viscous finger problem, whereas it is anisotropic in the crystal growth. The
pattern realized in the radial Hele-Shaw cell shows a branched ramified structure as
shown in Fig.24.6 [152]. By engraving a line groove in some portion on one glass
plate of a Hele-Shaw cell, the tip stability is realized as shown in Fig.24.7a [131].
The fluid dendrite thus obtained satisfies the relation vp? = constant as shown in
Fig.24.7b, until the tip radius p becomes too small. This experiment clearly shows
the importance of the anisotropy in stabilizing the dendrite tip [19].

So far, theories and simulations dealt with two-dimensional(2D) dendrite growth.
Recently, solvability condition is successfully applied to the three-dimensional (3D)
dendrite [14, 36]. The surface free energy (6, #} now has an orientation dependence
on two Euler angles, # and ¢ of the normal vector to the surface. In the theory, a
cubic anisotropy

(8, 4) = 1 + &4 cos* § + 3sin’ § + sin” 8 cos 4¢) (24.6)
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Figure 24.6: Viscous finger pattern in a radial Hele-Shaw cell [152].
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Figure 24.7: (a) Viscous finger with a groove linc cut on one glass plate. Along
the groove grows a tip-stable parabolic dendrite, whereas other tips are unstable to
splitting. (b) Log-log plot of the tip radius of the fluid dendrite versus tip speed [131).
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is assumed. The selection problem is solved in two stages: Near the dendrite tip, the
shape is perturbed as

2
-_r 4008
z= 2R+A4r cos4d¢ + (24.7)

with r? = 2% + y%. The growth rate V and the tip radius R is found to satisfy the
same relations ag in the 2D case: the Ivantsov relation

A
VR =2DP(A) ~ ~1—, (24.8)
for small supercooling A, and the solvability scaling relation
vz = 2D% - (24.9)

70}

Therefore, the anisotropy dependence of the velocity V' and the tip radius R is ex-
pected to be the same with the 2D case [14)].

The analysis near the tip cannot be extended to the dendrite tail straightforwardly,
since the correction A47? cos 4¢ grows faster than the unperturbed Ivantsov paraboloid
—r2/2R [36]. But the correction form indicates that four fins extend in the directions,
¢ =0, n/2, m, 3x/2. When one looks far down the dendrite, the crystal interface is
almost parallel to z axis, and the diffusion field hardly varics in z direction; 8%u/82? ~
0. Then the evolution of the dendrite fin in the tail region is essentially controlled by
the two dimensional diffusion [36]. The four fins that have started to grow near the
tip develop into two-dimensional parabolic dendrites in zy cross section. For example,
down at a height z(< 0) from the tip, a dendrite growing in « direction takes a form

y2

20’
where p and v are the selected values of radiug and velocity of the 2D dendrite. Here
the time ¢ is replaced by the height |z| divided by the 3D growth velocity V, since
the profile at a height z develops to that at a height 2 — Vdt after a time dt in the
steady state

Between the two extreme asymptotics, Egs. (24.7) and (24.10), an intermediate
asymptotics is found [36] until the arm length exceeds the 2D diffusion length. In
this intermediate region four fins affect their growth mutually. At a height |z| from
the tip, the total cross-sectional area of fins should be that of the Ivantsov paraboloid
for the steady growth. If the fin protrudes a distance z with a width y, then the area
is about zy ~ |z|. Even though z and y depends on the time |z|, the dimensionless
parameter of the system

= [z|% (24.10)

9 2
vp dz d*z
= 222 24.11
%= 5pa; ™ da (dy?) (24.11)
may remain constant [5]. By assuming the profile & ~ |2|* and y ~ |z|'™%, g5 is
calculated as o9 ~ {2375, If 0, remains constant, then & = 3/5, and the arm length
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Figure 24.8: (a) Xenon dendrite and (b) tip contour compared with a power law fit
to parabola and z ~ 2197 [26].

z grows as 7 ~ |2|*% and the arm width y increases as y ~ |2|%5. This behavior
is originally found in the two-dimensional Hele-Shaw flow problem numerically and
analytically [5], and later applied to the dendritic growth [36]. The profile of the fin
in 2z cross-section is written as z ~ z%3 in this intermediate region. The profile
is recently observed in the experiment of Xenon dendrite as shown in Fig.24.8 {26].
When the arm length exceeds the 2D diffusion length, the final aymptotics sets in
and the arm length grows with a constant velocity. For the details, see the references
[14, 36].

24.2 Tip Stability and Sidebranches

With an anisotropy ¢ in the surface tension, the parabolic crystal with a tip radius R is
found to grow steadily with a velocity V in the supercooled melt with the supercooling
A. V and R are uniquely determined from both the Ivantsov relation VR = 2DP({A)
and the solvability condition VR? = 2Ddyo~'(¢). However, the dendrite is growing
in the environment with fluctuations, for instance, created by thermal noise or by
hydrodynamic convections. Is the tip stable against these fluctuations? Another
problem is the origin of the sidebranches. According to the solvability theory, the tip
of the selected dendrite is almost parabolic without sidebranches. How, then, are the
sidebranches created in experiments?

If the crystallizing front is flat, Mullis-Sekerka instability takes place and the
front is unstable. It is most unstable against the fluctuation with the wavenumber
gm = 1/2/(3dolp) with the exponential amplification of the amplitude with the rate
W = 20¢5 /3, as explained in the section 22. But actually the dendrite tip is curved

parabolic as \
xr

= =yt — — 24.12

=@ =vt-g (2412)
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2
z=vi-%
P

Figure 24.9: Trajectory z = £(z) of the deformation on the interface, which is alway
perpendicular to the interface profile, 2 = {{z).

in two dimensions. Since the interface deformation grows in the normal direction
n = (n,,n,) x (—d¢/dz,1) as shown in Fig.24.9, the node of deformation follows the
trajectory z = &(z)

¢ n. d¢ —)__p
% ( dz) - (24.13)
or, by integration,
z)=phz+C. (24.14)

When the initial deformation at ¢ = 0 is given at position (zo, —z3/2p) on the
interface, the integration constant C' is determined as C = ~z3/2p — pInzo. At time
t, the deformation has been propagated at the site (x, {(z)) determined by crossing
point of () and £(x) as

(24.15)

Asymptotically for large ¢, x increases as /2pvf, but its height 2z = ((z) increases
slowly as p/2-In¢. The vertical scparation between the dendrite tip at (0, vt) and the
deformed position at = (/2ptf, p/2Int) increases as vt. Though the deformation
amplifies with the rate w,,, it is convected down with a velocity » and the tip remains
stable. This is called the convective stability of the dendrite tip. Down convected
noise is amplified to form sidebranches. If this scenario is correct and sidebranches
are originated from the random noisc at the tip, sidebranches on the different side
of the dendrite arc cxpected to be uncorrelated. By measuring the correlation the
noise origin of sidebranches is confirmed [54]. The external oscillatory flow imposes
systematic fluctuation at the dendrite tip, and the synchronized formation of side-
branches is observed [28]. Of course, the tip stability depends on the amplitude of the
initial noisc. If the initial noise is too strong, the deformation is strongly amplified.



24. Capillary Effect and Regular Dendrite 95

30 T T T
Ayg-te 8=025—0

_(:o) 050 —o J

20+ .
?

I ! AN
10k .

L A

— E‘

0 L. L L

0 005 010 015 0.20

Figure 24.10: The sidebranch periodicity A near the dendrite tip is proportional to the
wavelength of the most unstable mode \,, ~ p+/0, irrespective of the undercooling A
and the anisotropy ¢ [165].

When the deformation amplitude becomes larger than the tip radius p before the
deformation is convected down the length of order p, the dendrite tip splits [37). In
fact, the fractal structure is realized for NH,Cl dendrite growing in a Hele-Shaw cell
when a bottom glass is cut rough randomly [82].

We now study the sidebranch formation more quantitatively. The convected de-
formation amplifies and becomes a sidebranch with a periodicity A about that of the
most unstable mode,

Am = 2—75 = 2%‘/%\/(1011) = 27('\/30\/5- (24.16)

In the numerical simulation, the wavelength X of the sidebranch is defined by dividing
the growth rate v by the number of sidebranches produced per unit time. The ratio of
the sidebranch periodicity A to py/g was fount to be independent of the supercooling
A and the anisotropy € as shown in Fig.24.10 [165].

As the perturbation slides down along the side of the dendrite z = —z?/2p, the

normal velocity v, decreases as v, = —v(8¢/dz)~ ~ vy/p/|2|, as shown in Fig.21.1.

Then the local diffusion length increases as Ip(z) = 2D/v,(2) ~ lp4/|2|/p as well as
the most unstable wavelength

22\ ! 1/2
/\m(Z) ~ /\m(O) —ﬁ_’_ ~ lD(z) . (2417)
The periodicity is expected to increase as the sidebranching is convected down the
shaft of the dendrite. Along with the variation of the periodicity )..(2), the amplifi-
cation rate wpy(2) = 20,(2)gm(2)/3 of the most unstable mode varies while the
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Figure 24.11: (a-h) The time scquence of the disturbance amplification near the tip of
the dendrite to the sidebranch. (i) The maximum curvature £y versus the arc length
s [157]. & is proportional to the noise amplification.

perturbation is convected down.

— 22}"(‘2)(]"1(2) ~ v p 3/4
onl?) = T R ) (m) : (24.18)

Therefore, when the perturbation is convected down to a height |2] during a time
t = |z|/v, the deformation is totally amplified by a factor A;

. /)3/4 1/4 (2/3)1/4 —1/2 |Z| 1
~ O ~ C ~ - - - . 4.19
A~ exp [/0 wm(z)dt] CXp [ W (())Z cxXp 5 Ied (2 )

Precise expressions of A arc obtained for the two-dimensional dendrites [155, 11], and
for the three-dimensional axisymmetric dendrite [123]. If the initial perturbation is
the thermal noise at the dendrite tip, it is found to be too small to explain the observed
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position of the first sidebranch. On applying a noise near the tip by a localized heat
pulse, the noise amplification to the sidebranch (24.19) is studied experimentally
[157]. The maximum of the curvature on the sidebranch is found to increase as
k1 ~ exp(as'/*) during the noise is convected down the dendrite till the arc length s,
as shown in Fig.24.11.

As explained in the previous subsection, there is the latest theory of the three-
dimensional non-axisymmetric dendrite with four fins formed a little down the tip
(36]. Since the profile of the fin z = {(z) ~ 23 has a slope as 8¢/dz ~ z*"° which
is milder than that of the parabolic dendrite 8¢ /0z ~ z'/2, the convective effect is
small and the dendrite is more susceptible to the noise. At the height [2|, the most
unstable mode has the short wavelength A, (2) ~ z!/%, the large amplification rate
wm(2) ~ 2735, and the large total amplification factor A ~ exp [00‘1/232/5]. The
more precise formula is given by Brener and Temkin {38]. The amplification factor A
increases steeply along the fin compared to the parabolic case, (24.19). The first side
branch is in fact observed on the fin of the Xenon dendrite at the position expected
from the thermal initial noise [26).

24.3 Dendrite in a Channel

For the case of a free dendrite, the anisotropy of the surface energy is shown to
stabilize the dendrite tip. When the crystal grows in a channel with non permeable
walls, interaction with the channel walls through the diffusion field allows stable
stationary patterns even for a system without anisotropy [104]. The wall provides the
effective anisotropy in the system and the steady growth of a symmetric finger-shaped
crystal is possible if the dimensionless supercooling is large, A > 1 [31]. Due to the
global conservation of the cnergy, the width w of a symmetric finger in a channel
of width A should be equal to AX; w = AAX. If A is small, the symmetric finger
is far from the wall and it cannot maintain the stable form. Therefore, A should
be larger than 1/2. For a fixed supercooling A, the growth velocity v varies as a
function of the channel width A as shown in Fig.24.12. The result is obtained by
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Figure 24.12: Growth velocity » versus the channel width A [31, 35].



a8 Part 1V. Diffusion-Limited Growth: Pattern Formation

UG
Figure 24.13: Asymmetric finger along the wall [35].

the extension of the numerical simulation described in Appendix A24.3. Velocity v
has a maximum, and it decreases for a large channel width A. For an infinitely wide
system, as we discussed section 24.1, the isotropic dendrite cannot grow steadily with
a finite velocity. When the width becomes too wide, the finger splits to have shorter
period. Solvability theory by Brener, Geilikman and Temkin [31] found the maximum
velocity v ~ (D/do)(A — )72 at the channel width A ~ do{A — 1)7%/2 Tt is natural
to assume that the state with a maximum velocity is selected and realized.

In the simulation, however, the asymmetric dendrite is observed which grows along
the wall, as shown in Fig.24.13 [35]. In the simulation a mirror boundary condition is
used: u({z,y) = u(—=2,y) = u(A —z,y) for the diffusion field and {(z,y) = {(~z,y) =
¢(A = z,y) for the interfacial profile with 0 < z < A/2. This asymmetric dendrite
along the wall thus really means a double-finger structure with its mirror image at
negative z. This structure is called “doublon” for short [87]. In a time-dependent
simulation model {87, the doublon is also found in the system with periodic boundary
conditions. If two fingers are growing side by side, one generally anticipate that the
one which steps little ahead by fluctuation wins the competition against the other
by gaining more diffusion field supply. In the present situation, when one wins, the
periodicity A increases and the growth rate v decreases according to Fig.24.12. The
one ahead is caught up by the nearby finger. Thus the doublon can survive as a stable
profile even at A < % Recent solvability analysis shows that the doublon grows with
the velocity v proportional to v ~ (D/dg)A® without an anisotropy {15].

24.4 Morphology Diagram

From the findings in the previous subsections, an isotropic crystal (if it exists) can
grow radially outward with a doublon structure in an open space. Since the separation
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Figure 24.14: (a) Equilibrium shape of a crystal coexisting with lattice gas atoms in
a closed system. Simulation results (symbols) for different Ay are compared with the
theoretical results drawn by curves. Time evolution of a crystal in an open system
are depicted at different driving forces; (b) dendritic shape at Ap/ksT = 10, and (c)
irregular structure with tip splittings at Au/kpT = 12 [166].

between two double-fingers widens as they grow, the space should be filled by new
fingers developed from sidebranches. The structure as a whole should have a spherical
and convex envelope, and is called the compact seaweed (CS) structure [34] or dense
branched morphology(DBM) [20]. With an anisotropy, dendrites grow in directions
of stiffness minimum. When the dendrite tips are separated radially, the secondary
arms from the sidebranches fill the space with a concave envelope. This is called the
compact dendrite (CD) [34].

The morphological transition from CD to CS pattern is first obtained in the Monte
Carlo simulation of a crystal growth from a lattice gas [166], as is shown in Fig.24.14.
The growth is similar to the DLA growth from a finite density gas, but with an
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Figure 24.15: Morphological transition from (a) dendrite, (b) intermediate, and (c¢)
dense branched morphology (DBM) of a hexatic liquid crystal [151]. Undercoolings
are (a) A = 0.24, (b) 0.45 and (¢) 0.63.

interfacial energy included. The interaction is the same with the Ising model (6.33)
such that a broken bond from a crystal atom costs an energy J. When the gas atom
diffuses and touches the crystal interface, it tries crystallization. If it crystallizes, there
is a chemical potential gain —Ap but has to pay an cnergy cost (2/2 — n)J if the
crystallized site has n nearcst neighbor crystal atoms among z coordination number.
These energy changes should be taken into account in the Boltzmann weight as is
described in the subsection 9.1. One also has to consider the melting process from
the crystal surface to satisfy the detailed balance.

In a closed system where the total number of gas and crystal atoms is fixed, an
cquilibrium shape is realized as is shown in Fig.24.14a. In an open system, the gas
atom is fed from a particle reservoir with a fixed density at a distance far from the
growing crystal. Then the crystal grows steadily. For small Ap as Ap/kpT = 10,
the crystal grows in diagonal [11] direction in a regular dendritic form, as shown
in Fig.24.14b. At a larger Ay as Au/kpT = 12, the crystal grows in an irregular
form with concave cnvelope, as shown in Fig.24.14c¢. Thus simulation clearly shows
a crossover in the growth morphology. There are many similar simulation works on
the morphological transitions [175, 176]. There is also an experimental observation of
the morphological crossover in the growth of columnar hexagonal crystal, as shown
in Fig.24.15 [151].

Analytical studics are also performed on the dynamical selection of morphology
[34]. It is natural to assume a maximum velocity criterion that the pattern with
maximum velocity is sclected. With this hypothesis, Brener, Temkin and Miiller-
Krumbhaar have derived the morphological phase diagram in the phasc space of the
supercooling A and the anisotropy e, as shown in Fig.24.16 [34]. Since they didn’t
considercd doublons in an isotropic or weakly anisotropic region, CS structure can
appear only for A > 1/2. By considering the double-finger structure, the crossover
between the CS and CD structure is expected to take place at A ~ /20,

At small undercooling A and small anisotropy €, the noise is expected to be
important and induce tip splitting. When the tip is destroyed, the structure becomes



25. Unidirectional Solidification from the Solution 101

4, %

1
Y IS ‘
£ |Frs -7
g S
g1 7 ]
a 2|/ i
2 |/ FD i e(d)

! CD
0 anisotropy 1

Figure 24.16: Morphological phase diagram in the phase space of the undercooling
A and the anisotropy strength ¢. CS: compact seaweed, cquivalent to DBM, CD:
compact dendrite, FS: fractal seawced, and FD: fractal dendrite [34].

fractal for a short length scales, as is described in the subsection 23.2. These struc-
tures are called fractal seaweed (FS) and fractal dendrite (FD) in their morphology
diagram, Fig.24.16. For the details, refer the original paper [34].

25 Unidirectional Solidification from the Solution

An example in which the growth pattern is controlled by the material diffusion is
the alloy crystal growth from solution. Solution of a binary alloy is encapsulate in
a thin Hele-Shaw cell, a thin rectangular parallelepiped cell (Fig.25.1). One end of
the cell is kept hot and the other end is kept cold to impose a temperature gradient

vV

crystal solution
[ S V Coo
cold S~ hot

Figure 25.1: Unidirectional crystal growth from solution in a Hele-Shaw cell. Solution
is placed in a narrow gap between two glass plates, heated at one end and cooled at
the other end. The cell is pulled steadily in the cool region, facilitating the steady
growth of the crystal.
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Figure 25.2: Equilibrium phase diagram of a binary alloy. The liquidus temperature
Ti. decreases from the melting temperature Ty of the pure A material by increasing
the concentration ¢ of B atoms.

over the sample. When the cell is pulled in the cold side, the solution is crystallized
unidirectionally. The crystal-liquid interface lies normal to the pulling direction.

Since the liquid is hot and the crystal is cold, the latent heat is released in the cold
crystal. In this case, the heat diffusion will not induce instability of the flat interface
as explained in the section 22. But there is a slow material transport which controls
the crystal growth. The solubilities in the liquid and crystal are diffcrent, as is shown
in the phase diagram Fig.25.2. The component less soluble in the crystal is expelled
in the liquid and should be transported far away down by the diffusion. The other
component, more soluble in the crystal should be supplied far away from the liquid
by the diffusion. This material diffusion causes the similar interface instability as
the heat transport did in the melt growth, and leads pattern formation with periodic
structure. To summarize, in the unidirectional growth heat conduction stabilizes the
interface and the chemical diffusion causes the instability.

Since the heat conduction is faster than the material diffusion, and the heat con-
ductivity in the crystal and liquid are almost the same, one often uses the approxi-
mation that the thermal gradient Gt is the same in both phases. When the sample
is sandwiched in a thin cell, the heat conduction is mediated by the cell wall, and
the thermal conductivitics in both crystal and liquid phases are the same. Then the
temperature distribution is simply described as

T(2) =Ty + Gr=. (25.1)

25.1 Fundamental Equations

We consider the phase diagram of AB alloy as shown in Fig.25.2. By including B
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Figure 25.3: Concentration distribution drawn in a heavy line at the vertical axis
representing the temperature T and the height z simultaneously from the relation
T =Ty + Grz. Here Ty = Ty — meoo/k.

atoms with a concentration ¢, the melting temperature decreases from that of the
pure A atoms, Tyy. At a temperature T' below Ty, the crystal phase is stable when
the concentration c¢ is less than ¢s(T), and the liquid phase is stable when ¢ is more
than ¢;,(T"). Between these two concentration, ¢s(T) < ¢ < ¢.(T), the crystal and
liquid phases coexists. Phase separation between the crystal and the liquid phases
takes place, and a crystal with a concentration ¢g(T") coexists with liquid with a
concentration ¢r,(T"). The liquidus line is well approximated by a line

TL = TM - mcL(T) (252)
with a slope m. The partition ( or segregation) coefficient k is defined as the concen-
tration ratio between the coexisting two phases as

_ &(T)
CL(T) ’

(25.3)

and the miscibility gap is defined as
Ac = e (T) — es(T). (25.4)

By pulling the two-dimensional cell with the solution of concentration co, to the
low temperature side with a constant velocity V, the steady crystallization takes
place. From the global conservation of material, the concentration of the crystal alloy
should also be ¢, as denoted in the equilibrium phase diagram, Fig.25.3. First we
consider the case when the surface is flat at 2 = 0. Since the material diffusion in the
crystal is negligible, the concentration in the crystal should be ¢, = ¢J. Assuming
that the local equilibrium is satisfied at the interface, the liquid concentration at the
interface i8 ¢} = c/k and an interface temperature is
MCoo

To=Tu - p

(25.5)
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A concentration difference is created in the liquid at the interface ¢f and far from
there ¢,,. The concentration variation follows the diffusion equation

de Jdc

=V =+ DV, 25.6

%= "3 (25.6)
with D, being the chemical diffusion constant, and the first term on the r.has. is due
to the fact that the laboratory frame is comoving with the erystal with the velocity
V.

When the interface deforms as

z=((z,t), (25.7)
the temperature at the interface varies as
T, =T+ GrC. (25.8)

Since the Hele-Shaw cell is thin, we can neglect variation of physical quantities in the
directions of the thickness, y-direction. The equilibrium concentration ¢, oq of liquid
at the interface temperature 7; is determined from Eq.{25.2) with the Gibbs-Thomson
curvature effect included as

50
T = Ty (1 - %—n) ~MC (25.9)

with L being the latent heat per volume. By assuming a local equilibrium at the
interface, cr(x, () = 1., the liquid concentration at the interface is determined from
Eq.(25.8-25.9) as 5

CL(II?.C) = —]T - TH—E—h - 7—7{4 (2510)
From the local equilibrium assumption, the concentration in the crystal ¢s(z,¢) is
given by cs(z, () = ker(z, ¢) with the cquilibrium segregation cocfficient &£. On crys-
tallization, excess mass V,,(c,‘(x,C) —es(z,0)) is expelled from the erystal per unit
time, and this excess mass bas to be transported by chemical diffusion flux — D, 8¢/n.
The mass conservation reads as

dc

V,;(C[, —CS) —-D —é;; (2511}

We now introduce a dimensionless diffusion ficld in the liquid by

€ — Coo € — Cxo
. — = 256.12
w(z, z,1) Y 1o’ ( )
which satisfics the far field condition u(z,2 — o) = 0. For a flat interface (( = k =
0), u is 1 at the crystal-liquid boundary. The diffusion cquation reduces to
1 0u 2 0u

=2 2 5.13
Do~ 1,5 + V-u (25.13)
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with the diffusion length I, = 2D./V. When D, is very large, the diffusion field u
relaxes to steady state du/dt = 0 quickly during the slow growth of a crystal. The
field u follows the steady state equation

——+ Vi =0, (25.14)

The local equilibrium condition (25.11) is written in this dimensionless form as

g, =1 —ds - i (25.15)
Iy
A chemical capillary length q
FTu
d= .
iLAC (25.16)
characterizes the surface effect, and a thermal length
mAc
Iy = .
=G (25.17)

characterizes the scale of the temperature variation. Since the concentration of the
solid at the interface is

uis = k(uir — 1), (25.18)
the material conservation (25.11) is written as
3}
Valk + (1 — K)uir) = —Doas. (25.19)
on
Here V,, is the normal growth velocity given by
d
Vo= (V + EC) n,. (25.20)

25.2 Stability of a Flat Interface

When the flat interface is growing steadily in z direction with a velocity V, the
diffusion equation has a solution

ug(2) = e~ %/1p, (25.21)

which satisfies the boundary condition up{z = 00) = 0 and ue{z = 0) = 1. When the
interface deforms to
z = ((2,t) = a;e” cos gz, (25.22)

the diffusion field also deforms as

u(z, 2,t) = uo(z) + Are”e cos gze M2 (25.23)



106 Part IV. Diffusion-Limited Growth: Pattern Formation
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V=V,

V<V,

Figure 25.4: Dispersion relation of the interface modulation during the unidirectional
solidification.

Here A, is proportional to a,, and the damping rate in z direction, A,, should satisfy
the diffusion equation in quasi-stationary approximation (25.14) ag

—2A
Ip

Ay =15+ /g2 + 15 (25.24)

From the local equilibrium condition (25.15) A, is determined as

T+A2—¢g*=0

or

A, = (2 _1_ dq2) a,. (25.25)
Ip

By inserting these results in the material conservation (25.19), one obtains the dis-
persion relation

W, 2 1 2\?2 2 1
F"c = (l;,‘ +y¢+ 17,2) (E - dqz) - (l—D—) +5(1 —k) (E + dq2) , (25.26)
which is depicted in Fig.25.4. For slow pulling velocity V, w, is negative and the
deformation decays in time. The flat interface is stable. When the pulling rate V is
larger than the critical value V,, the maximum value of w, becomes positive, and the
flat interface becomes unstable against those deformations with wavenumbers with
wg > 0. At the critical velocity V., the maximum of w, becomes zero: w, = dw,/0q =
0. (See Fig.25.4.) Since V, is small, the diffusion length [, = 2D/V is large such that
the relation Ip, It > d holds, and the wavenumber for the most unstable mode is
expected as large as ¢lp >> 1. Then the dispersion is approximated as

W, _2_>2 (3_1)_ 3 9
D~ k(lp +q b dg’. (25.27)
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Figure 25.5: Neutral curve of the unidirectional solidification.

The critical velocity V; is obtained as
Vo2 1,3 (wd\” 1 3 oka)P 1
D, lp. It "Ipe\lpe/) ~Ir'2 I’

and the critical wavenumber is

ok \\/3 k)3
I

For V > V., w, is positive for some regions of wavenumbers, and the flat interface is
unstable for these sinusoidal modes with wavevectors within this region. The locus
of wy(g, V') = 0 represents the neutral curve ¢ = gn(V') as shown in Fig.25.5.

The neutral curve is shown to be closed at the upper critical velocity V,. When the
pulling velocity is too fast, the diffusion length becomes of the order of the capillary
length, It > lp ~ d, and the interface is stabilized by the capillarity. This is called
the absolute stability. For glp < 1, the dispersion relation is simplified as

w, 2% (1 Ip %)2_(d+lo)h)q4'

(25.28)

Ir

T (25.30)

D.~ lpit 2

At the upper critical velocity

V. 2 1 [i+2
R T g 25.31
D. Ipa. dk _ \ dkip ' (25.31)

the maximum value of w, vanishes: w, = dw,/8¢ = 0. For the velocity higher than
Va, wq always stays negative. The critical wavenumber is given by

g o [k(1 +2k)d%] " (25.32)
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25.3 Eckhaus Instability

When the interface deforms sinusoidally as z = {(z,t) + (*(z,t) = [ Re(a.e%")dg, the
Fourier transform a,(t) develops as

— =Wy, (25.33)

in the linear approximation. Here w, is determined from the dispersion relation
(25.26). When the pulling velocity V is a little larger than the critical value V.,
the interface is unstable for the sinusoidal modes with w, > 0. Around the critical
wavelength g., wg is expanded as

wy = w, — C(g — ¢.)? (25.34)
with we = wy,, and C = —%(6211.:/6q2)qc i8 positive. w. is proportional to V —V,. From
Eq.(25.33) and (25.34), the time evolution of the interface ((z,t) can be approximated
as

¢ (z,1) d ?
— T = Wel — - — e . 25.35
5 wel —C | e =4 | ¢ (25.35)

Near the critical point V,, the unstable mode has the wave numbers around g¢., and
the deformation is expressed as

¢ = A(x, t)elr (25.36)
with the slowly varying complex amplitude A(z,t). It satisfies the linear equation

0A 5PA

— =wA+C—. 25.37

ot At C o ( )
As w, is positive, the deformation A increases, but then the nonlinearity should come
into play. Since the system is invariant by the transversal translation x — x + ¢
and the spacc inversion x — —z, one gets the nonlinear amplitude equation of the
Landau-Ginzburg type,

2
%—’? =w.A+ 0‘37/3 — o |AlPA. (25.38)
There is a systematic derivation of the Landau coefficient «; by the reductive per-
turbation method [199]. To specify the meaning of the Landau coefficient a;, we
consider the amplitude of the critical mode: A(z,t) = A(t). If @;> 0 the third
order term acts as to limit the amplitude A. The amplitude increases gradually as
A~ w2~ (V — V)Y2 from sero near the critical point, as shown in Fig.25.6. The
transition is similar to the second order phase transition in equilibrium case, and is
called supercritical. If o; < 0, one needs still higher order terms to obtain a finite
amplitude of deformation. For example, with the fifth-order term A° with negative
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Figure 25.6: Schematics of the modulation amplitude of the interface ncar the insta-
bility. For a positive Landau coefficient ¢, the bifurcation from the planar to the
modulated interface is supercritical, whereas for a negative ¢ it is subcritical.

coefficient, the amplitude jumps to a finite value at V, with the hysteresis. The tran-
sition is similar to the first-order phase transition in equilibrium, and the bifurcation
is called subcritical. We consider hereafter only the supereritical case with o > 0.

One can easily find that there is a stationary solution to Eq.(25.38) in the form
of a single sinusoidal mode as

Ag(z) = AT, (25.39)
Its amplitude A, is determined as

Agzwn--C(q—qc)2 _ Wy

: 25.40
‘ o o (25.40)

In the domain of w, > 0 where the flat interface is unstable, a stationary profile
of the interface is possible which is deformed sinusoidally as z = Re(A.e'") with ¢
dependent amplitude A,. But what periodicity is selected? Are all these nonlinear
solutions stable?
We consider now the linear stability of the stationary statc against the modifica-
tion:
A(z,t) = A7 [1 4 ¢(x, 1)) (25.41)

with a complex modification £ For small £, the modification can be written as
14 € ~ ef ~ e™¢e™E This means that the real part Ref represents an amplitude
modification to A,, and the imaginary part Im§ represents a phase modulation. By
inserting Eq.(25.41) to Eq.(25.38), and taking the first order of ¢, one gets

o€ ot 9%

5=C [2i(q ~a)5 + 5}—2} — a1 A2(E + ). (25.42)

This linear equation can be analyzed by using the Fourier transformation as

£(,t) = ™ (B1c'%* + Bpe™9) (25.43)
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with real By and B,. By comparing coefficients for ¢/9* and ¢7*9%, we get the linear
equation for By and B; as

QB = C[-2Q(g—¢.) - Q% Bi — [we ~ Cla— 4’| (Bi + Ba)
1B, C [QQ(Q —q.)— QQ] By - [wc -C(g~ Qc)z] (Bi+ Bp). (25.44)

Here alA?I is replaced by the corresponding term by Eq.(25.40). On requiring that
B, and B, has nontrivial solution, the eigenvalue cquation

Q+20Q(q - ¢.) + CQ* + we — Clg — ¢.)* we — C(q — ¢.)*
We — C(q - qc)2 - QCQ(Q - ‘Ic) + CQ2 +w, — C(q - QC)2

02 +20 Q7+ Qh — (0 - ] 2 +20°* [QE - 3Q7 + S0~ 0’|
=0 (25.45)

il

is derived. Here @2, = w,/C. Eigenvalucs are obtained as

Qe = —C[Q% — (¢ — 4 + Q) £ CVIQ2 — (4 — @) +4Q2(g — ¢.)2. (25.46)
For a long wavelength modulation with a small wavenumber @, once gets
0~ —20 [QQm = (- )] + 0(Q%) ~ —2w,
_ Q?n - 3(q B QE)z

0, ~ —Cc2in 1 T2 25.47

: = (1= ap (2547

with corresponding cigenmodes; By = By = B_ and By, = —B|4y = By, or
& = B_e%tcosQr and & = iB,e™'sinQr. Therefore, — mode corresponds to

the amplitude modulation and + mode corresponds to the phase modulation. Since
2_ < 0 for w, > 0, amplitude modulation always damps out. On the contrary, 2,
can be positive for those modes with wavenumbers ¢ in the region
2 2 12n We

m>(q_ql~‘) > 3 ‘30

The phase modulation destabilizes the stationary solution. Within the region (25.48)
near the neutral line ¢ = gn(V), the phase diffusion coefficient is negative and the
phase diffusion mode increases. This is called the Eckhaus instability [55]. Neutral
curve ¢ = ¢y(V) is determined from the condition w, = 0. With Eq.(25.34), then,
gn+ = g t Jw./C. From Eq.(25.48) the Eckhaus boundary is obtained as ¢gg+ =
¢ £ 75(gn.+ — g:), as depicted in Fig.25.7.

In the analysis the dispersion relation, Eq.(25.34), is agsumed to have a maximum
at the critical wavenumber ¢. even in the supercritical regime V' > V.. In reality,
the most unstable wavenumber ¢, shifts rapidly depending on V. Therefore, the
approximate Eckhaus boundary can be written around the most unstable mode as
ge+ = Gm * 715((11\:,1 — ¢m). Brattkus and Misbah calculated the Eckhaus boundary
more precisely, which is quite different from parabola [29].

(25.48)
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Figure 25.7: The sinusoidal modulation with wavenumbers ¢ inside the region E is
unstable against the phase diffusion, and this is called Eckhaus instability.

25.4 Fully Nonlinear Behavior

Near the critical point where the surface deformation is small, the amplitude equation
(25.38) with c; > 0 describes the crystal shape correctly. When the Landau coeffi-
cient ¢ is negative, or the system is far from the critical point, the deformation is no
more small and the full nonlinearity has to be considered. In such a case, numerical
simulation i8 appropriate to study the large interface deformation [183, 106, 167].
We extend the simuylation algorithm explained in Appendix A24.3 to the periodically
modulated surface structures under a constant temperature gradient. For a small ve-
locity near the critical velocity V., the cellular structure appears as shown in Fig.25.8a.
On increasing the pulling velocity, the cell groove deepens and the surface takes the
form of cusp arrays, as in Fig.25.8b. Further increase of the pulling velocity sharpens
the tip and the dendrite array is formed as in Fig.25.8¢c. Here the dendrite structure is
controlled by the anisotropy of the surface tension and the tip radius,and the velocity
satisfies the solvability condition (24.5). The simulation results qualitatively agrees
with the experimental sequences of morphology changes as shown in Fig.25.9.

(a) (b) (c)

LN N N

Figure 25.8: Interface structures in unidirectional solidification obtained by simula-
tion: (a) arrays of cells (V/V, = 1.01), (b) of cusps (V/V. = 1.15), and (c) of dendrites
(V/V.=176)
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(a) 48

Figure 25.9: Interface structures in unidirectional solidification of succinonitrile in
acetone. (a) Arrays of cells, (b) of cusps and (¢) of dendrites [180].

L] ()

Figure 25.10: Tilted unidirectional solidification in the pivalic acid-cthanol system.
Crystal axis is ¢ = 40.5° . The velocity in pm/s are (a) 0.5, (b) 1.0, {¢) 2.75 and (d)
10.0 [182].
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Figure 25.11: Tilted unidirectional solidification at various pulling velocities obtained
by simulation. The crystal axis is ¢ = 17° off from the direction of the temperature
gradient. The tilt angle ¢ of the tip profile is (a) 4.3°, (b) 8.7°, (¢) 12.5°, (d) 14.2°
and (e) 16.7° [148].

In directional solidification there are two tip stabilizing effects, the thermal gradi-
ent and the surface stiffness. What will happen when two anisotropies prefer different
orientations: the temperature gradient forces the crystal to grow in the 2 direction,
but the capillarity prefers another direction with a tilt angle 9. It means that the
capillary length depends on the orientation % of crystal axis, and is written as

d=4do[l —ecosd(d — )] (25.49)

at the point with the angle 6 of the interface normal to z axis.

Tilted unidirectional solidification is observed experimentally {73, 182, 27, 2, 144].
Figure 25.10 shows interface structures at various pulling rates for the pivalic acid-
ethanol system [182]. On increasing the pulling rate, the interface tilts from the
direction of the temperature gradient, and approaches to that of the crystalline axis.
Since the tilting increases by increasing the velocity, the surface kinetics is supposed
to be relevant. Also from the linear stability analysis, the anisotropy in the surface
stiffness is found to be irrelevant for the tilting [51, 202). But the recent numerical
simulations of the unidirectional solidification with local equilibrium assumption [2,
148] show that the tilting is possible when the crystalline axis is off-angled from the
pulling direction. The simulation in Fig.25.11 shows that for small pulling velocity
V the cell tip is oriented close to 2 axis, the orientation of temperature gradient,
but for large V the dendritic crystal is oriented close to the crystalline axis. Thus
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the experimental tendency of large tilt angle at fast pulling can be reproduced by
the surface stiffness, too. More studies are necessary to identify the real mechanism
of crystal tilting, whether it is due to the anisotropy in capillarity or to that in the
kinetics.

26 FEutectic Growth

For some alloy system such as Pb-Sn, the phase diagram looks as shown in Fig.26.1.
Due to the mixing entropy the melting temperature of an alloy often decreases from
the pure material. When two liquidus lines of AB alloy decrease down from the pure
A and from the pure B melting temperatures by mixing the other component, they
meet at some concentration of B species ¢g and the temperature Tg. At Tg, the
liquid solution with the concentration cg coexists with two crystals, phase o with
concentration ¢§(< cg) and phase # with concentration ¢§(> cg). This triple point is
called the eutectic point. At this eutectic point the melting temperature is minimum.

If one grows this eutectic alloy unidirectionally in a Hele-Shaw cell, what kind
of structure appears? Starting from the liquid with the eutectic concentration cg,
crystallization of e or 3 phase alone cannot satisfy the material conservation. « and
(3 phases should appear simultaneously. It may intuitively expected that o and
phases appear alternatively as lamellae parallel to the growth direction: When the
crystal is growing in pusitive z dircctions, the symmetry in z and —z directions yields
that the of phase boundary is expected to align in z direction and perpendicular to
the liquid-crystal interface in x direction. This is the structure found in experiment
(91] at low pulling velocity, as shown in Fig.26.2 [108]. The problem to be posed is
the selection of the periodicity A. There is a detailed calculation by Jackson and

T
]
T
A L
A
L+
+B
T
El"a g
a+f
Ac
0 ™ cp P 1

Figure 26.1: Equilibrium phase diagram of an eutectic AB allay.
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|

Figure 26.2: Lamellar growth of eutectic crystal, CBry- C2Clg [108]

Hunt, which is reproduced in Appendix A26 [91]. Here a phenomenological discussion
is given on the periodicity selection.

26.1 Lamellar Structure

Since the thermal diffusivity is larger than the chemical diffusivity, the temperature
gradient Gt = dT'/dz can be assumed constant. By choosing the origin of z axis at the
point where the temperature is at the eutectic value T, the temperature distribution
is described as

T(z) = Tx + Grz. (26.1)

The liquid (z > 0) is hot and the crystal (z < 0) is cold. We consider the simplest
cage that a crystal is growing from a solution with eutectic concentration cg. When
the crystal takes a lamellar structure with a periodicity A, the ratio of @ phase n and
that of 8 phase 1 — 7 should satisfy the conservation relation

ce = 1c§ + (1 —1)c (26.2)
or 2
_G&—ce
=" (26.3)
with the miscibility gap
Ac=cf —cg. (26.4)

Since cf is smaller than cg, B atoms are expelled out from the a crystal into the liquid
by crystallization, and the liquid concentration ¢f in front of a phase increases above
cg. On the contrary, in front of the # phase, B atoms are sucked up by 5 crystal and
the liquid concentration c‘z decreases below cg during crystallization. As is apparent
from the magnified phase diagram Fig.26.3 with metastable liquid branches, deviation
of the liquid concentration from the eutectic value means that the supercooling at the
interface under the local equilibrium assumption. The crystal concentration c§ and



116 Part IV. Diffusion-Limited Growth: Pattern Formation
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Figure 26.3: Phase diagram near the eutectic temperature Ty with metastable
branches of coexistence curve.

cg correspondingly differ from those at the eutectic temperature, but their differences
are small and do not modify the conclusion essentially.

Since the concentration in front of each crystal is different from that at 2 — o0
or cg, the concentration diffusion takes place. The diffusion flow compensates the
material deficit or surplus produced by the crystallization. In front of the « crystal,
Un(cf ~ &) = vp(cg — §) of B atoms are expelled from the unit surface per unit time.
This excess is transported by the diffusion flow —D.8c/0n. However, the material
does not need to be transported up to z — oo: It is sufficient to be transported
only to the necighboring lamellae of 3 phase, where the material is deficient. Since
the concentration difference in liquid in front of the a and § phases is ¢ff — c€ for a
separation of A/2, the growth rate is determined as

oy ~ 0., 5

(cp — §)v = QuD, YRR (26.5)
If the interface is flat, the direction of material diffusion z is orthogonal to the growth
direction z and the diffusion does not contribute to the growth. Actually, the interface
is curved, and the contribution to growth appears. This is taken into consideration
in Eq.(26.5) by the factor Q,. Its detailed form is explained in Appendix A26. In
consideration of the material conservation in front of the § phase, we get the similar
formula with coefficient (Jg. In the steady state where the growth velocity of a and
3 phases are the same, the coefficients should satisfy the relation (1 —9)/Q, = n/Qs
due to the conservation (26.2).

The liquid-crystal interface is curved in order to satisfy the mechanical force bal-
ance at the triple point, where three phases, liquid, « crystal, and 3 crystal phases,
meet (Fig.26.4). The force balance in z and z directions is described as:

Via SiN 8 + Yigsinbs = Yop (26.6a)

Va €088, = 1,508 04. (26.6b)

Here 7y, is the surface tension between the liquid and the « phases which is agsumed
isotropic for simplicity, and so on. In equilibrium the liquid-« (3) crystal interface is
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(1-mA n

Figure 26.4: Interface profile near the triple point for the cutectic growth.
part of a circle with a radius R, (Rg), and the angle 0, ( 85 ) is related to R, (Rs )
and the periodicity A as
2R, sinf, = nA, 2Rgsinfs = (1— n)A, (26.7)

as is evident from Fig.26.4.
The interface temperature is given by the concentration deviation from the cutec-
tic values and also by the Gibbs-Thomson curvature effect as

’YLQTE 1

T = Tg — mq(cf — cg) — I T, (26.8a)
Tg 1

TP = Ty + mp(cf — cg) — TA2E (26.8b)
Ly Rp

Here my = |dT,/dcf| and mg = |dT;/dcf) are the absolute slopes of the liquidus lincs
for @ and 8 phases, L,, Lg are latent heats of o and J phases, respectively.
By adding Eq.(26.8a) and (26.8b), liquid concentration difference is written as

AT“ AT‘B Y. ,,TF 1 T /;TF 1
- = - — . 26.
- ( e | g ) (m,,La R Y npls By (26.9)

Here the interface supercoolings are defined as AT = Tf, — 7* and AT? = T — T%.

We consider the simplest case where crystal phases o and 3 arc symmetric: ¢ =
1/2,me=mg=m,0, =03=6,1=1/2, Qo =Qp =Q, V1o = Mg =7, AT* =
AT? = AT, and ¢§ — ¢§ = Ac/2. By using the capillary length d = v, T/ LmAc,
the interface supercooling is written from Eqs.(26.5) and (26.9) as

AT =T (tl[)i + axg) , (26.10)
In A

which consists of two contributions; Diffusional one ATp = TrapA/Ip and the kinetic

one ATk = Traxd/)\. Here Iy = 2D. /v is the diffusion length, and material parame-

ters are represented as ap = mAc/4QTx. ax = 4sindmAc/Ty. The relation between

AT and A is shown in Fig.26.5.
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Figure 26.5: Minimum undercooling hypothesis for the selection of the eutectic lamel-
lar periodicity.

In order to determine the lamellar periodicity A, the minimum supercooling hy-
pothests is used by Jackson and Hunt: 8AT/3X = 0. Then the periodicity is deter-

mined as )
_ /?ﬁ‘/ PO |
Am = . ip N\/WQW {pd. (26.11)

This yiclds the relation between the pulling velocity v and the periodicity An as

vA} = Ded

= SQs—m0 = const, (2612)

Also the interface undercooling ATy, is determined as

T LB e
slope = -0.4

1001 ope = -0.49 ]
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Figure 26.6: Variation of the average interlamellar spacing A with the growth velocity
v for the carbon tetrabromide (CBry)- hexachloroethene (CoClg) cutectic system [174).
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/ d
AT,, = 2Tg+/apax ™ (26.13)
D
and it satisfies the relation with the pulling velocity » as
AT2  2sin . d
v =0 (mAc) D= const. (26.14)

The full nonlinear analysis by computer simulation [107, 95, 98, 96] also show
that the interface undercooling has the minimum as a function of the periodicity, and
that the Jackson and Hunt theory provides the accurate position of the minimum
undercooling [96]. The scaling relations, (26.12) and (26.14), are also shown there
(98, 96]. These relations are also confirmed by experiments, as shown in Fig.26.6
(174, 203].

26.2 Parity Breaking and Oscillation

On increasing the pulling velocity V' or on varying the liquid concentration from the
eutectic value, the lamellar structure is found to be modified.
For slow pulling rate, the phase boundary between o and § phases align parallel
to the temperature gradient. On suddenly increasing the pulling rate by a factor 4,
the periodicity selected by the minimum undercooling condition should be half of the
initial one, as Eq.(26.12) tells. But such a large structural variation is not possible
topologically. The numerical simulation using the boundary element method in the
stationary code found that the parity (left-right symmetry) will break for large pulling
rate [52, 95, 97]: The af or S« triple point shifts transversally along the liquid-crystal
interface, and the o phase boundary tilt from the temperature gradient, as shown
in Fig.26.7a. The tilting is found later in many experiments (Fig.26.7b) [57, 58].

p= 22.8°
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X/A i 104} pum
LR LTI 4]

(a)

Figure 26.7: Parity broken lamellae in eutectics obtained (a) by simulation and {97]
(b) by experiment of CBr,—C2Clg [57].
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Figure 26.8: Periodic oscillation of lamellae in off-eutectic alloy (a) by the experiment
of Al-CuAly, and (b) by simulation [204].

This tilting is different from that discussed in the previous section 25.3. There the
tilting is enforced by the tilting of crystalline axis from the growth direction and the
parity is externally broken. Herc the system has the left-right parity symmetry, but
the realized state breaks the parity spontancously.

By shifting the far ficld concentration ce from the eutectic value g, system shows
the nonstationary structure, as periodic oscillation shown in Fig.26.8a [204]. The
linear stability analysis showed the instability of the oscillatory motion of the triple
point {53, 94]. There is a model simulation which shows the oscillatory behavior, and
the result is in good agreement to the experiment as shown in Fig.26.8b [204].

27 Diffusion Effect on Polyhedral Crystal: Berg
Effect

So far it is assumed that the surface kinetics is infinitely fast and the local equilibrium
is realized at the interface in order to stress the diffusion cffect on the front instability.
This approximation is not far from reality for an ice crystal growing in water [65, 66).
The prism face of ice in water is rough, and the heat transport controls the growth.
On the other hand, for snow growing from the water vapor, the approximation does
not hold since the surface of the snow is sharp and faceted. The kinctics is slow and
has to be properly taken into account.

If the interface is atomically rough, the kinetic coefficient K in Eq.(18.8) is finite
but not singular. The growth shape can be anisotropic but is nonsingular and smooth.
The orientation dependence of K leads to the new scaling relation of the dendritic
growth rate and the tip radius [32, 33, 50, 169]. When the preferred orientations of
the surface tension and of the kinetic coeflicient are different, rich variety of growth
shapes with dynamical shape transitions is expected [45]
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(a) (b}

Figure 27.1: (a)Electrostatic potential around metallic polygon. The metal surface is
equipotential. (b) Concentration field distribution around the square crystal growing
steadily with a constant normal gradient ¢, = dc/9n along the surface.

If the interface is atomically flat, the kinetic coefficient K is singular, and the
crystal is expected to take polyhedral morphology covered with flat facets of singular
surfaces. The growth of these singular surfaces is governed by the surface kinetics
discussed in Part III. However, material has to be transported to the growing interface
by the diffusion, and the diffusion also influences the growth form. One has to consider
both the kinetic and diffusion processes in this situation.

First we consider the concentration distribution around the polyhedral crystal
growing from the solution. It is determined by Eq.(18.6-18.8). Usually, crystal growth
rate is small for kinetic-controlled growth, and one can assume the stationary condi-
tion that the diffusion field quickly adjust its distribution around the given crystal
morphology: 8u/8t = 0. Thus the diffusion fleld u satisfies the Laplace equation

Viu=0 (27.1)

ingtead of the diffusion equation (18.6). An analogy holds between the concentra-
tion distribution u(r) and the electrostatic potential ¢(r). Far from the crystal,
the concentration distribution reflects the isotropic nature of the system and equi-
concentrations are asymptotically spherical. If the concentration is assumed constant
on the polyhedral face, u(r) corresponds to electrostatic potential ¢(r) around the
metallic polyhedron, and looks as shown in Fig.27.1a. Near the corner of the polyhe-
dron, the spacing between consecutive equi-concentrations are narrow, and the normal
growth rate determined by Eq.(18.7) or V,, = —D.0c/dn is larger at the corner than
at the center. Then the polyhedral face cannot remain flat. To keep the polyhedral
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Figure 27.2: Concentration distribution around the growing NaCl crystal from water
solution [24].

face flat, there should be concentration difference on the surface, especially between
those at the corner and at the center.

If we assume the constant normal gradient on a flat but bounded surface, the
concentration at the corner should be higher than that at the center, as shown in
Fig.27.1b. This was shown analytically in two dimensions [173]. Experimentally, the
concentration profile around the polyhedral crystal is observed by Berg as shown in
Fig.27.2, and the concentration difference along the surface is observed. This. effect
is called the Berg effect {24]. The distribution of the supersaturation along the flat
surface is also measured [42].

If the face is really flat and the concentration varies on it, the kinetically controlled
growth rate (18.8) varies from position to position, and it is impossible to keep the face
flat. To realize a steady growth, the kinetic coeflicient should vary along the surface.
This is possible when a macroscopically flat surface contains many microscopic steps
and is in fact a vicinal face. Then the kinetic coefficient depends on the concentration.
For example, at the corner of the crystal where the supersaturation is high, the two-

Figure 27.3: Formation of snow dendrite by simulation [201].
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dimensional nucleation supplies steps toward the center of the face [119]. The step
advancement velocity v decreases near the center where the supersaturation is low,
but if the step density is high and the step separation ¢ is small, the normal growth
rate R = av/{ can be kept constant over the surface.

If the supersaturation at the corner is too high or the crystal has grown too
large, the difference in supersaturations at the corner and at the center becomes too
large to keep the constant normal growth rate over the flat face. The corner starts
to grow faster than the center, and the instability sets in [47, 119]. This initiation
of the corner instability is analyzed numerically, and the corner instability and its
size dependence is found, if the nucleation controls the kinetics [119]. Also by using
the boundary element method the growth of a kinetically-controlled two-dimensional
crystal is simulated. The circular crystal becomes polygonal, and then produces the
faceted arm from the corner of polygon, similar to the snow growth, as shown in
Fig.27.3 [201]. For the sidebranch formation of a faceted dendrite, however, more
studies seem necessary.



Part V
Appendices

A9 More on Surface Roughening
A9.1 Solid-on-solid (SOS) model

In order to focus on the temperature dependence of the surface structure, the solid-on-
solid (SOS) model is often used [112, 43]. The model picks up the freedom of surface
height 2(7) such that no vacancy in the crystal, no overhangs at the surface and no
crystal clusters in the vapor are allowed. Here ¢ is the site in a d-dimensional hyper-
cubic lattice with 2d nearest neighbors, and the crystal occupies d + 1 dimensional
space. In a unit of an atomic sizc a, the height h(?) = 2(:)/a takes integer values,

h(i) = —o0,---,—1,0,1--+,00. Since the height difference between neighboring sites
costs energy, the Hamiltontian H is written as
H=J Y |h(i) = h()P. (A9.1)
<ij>

Here the model with p = 1 is called the (absolute) SOS model, the model with p =2
the discrete Gaussian (DG) model. The latter is convenient to treat analytically. If
the height takes only two values, h(i) = 0,+1, the model corresponds to the Ising
model.

As to measure the surface roughness, the height difference correlation function
[49]

Glryj) = ((h(i) = h(3))*) (A9.2)
is used. When the surface is flat, heights are strongly correlated and G remains finite
even for r;; — co. When the surface is rough, heights at different positions fluctuate
independently, and G{r — o0) diverges. In an Ising model, G can at most be 1, and
the surface can never be rough in this sense.

A9.2 Monte Carlo simulation of the SOS model

This appendix contains a source list of an example program of Monte Carlo simulation
explained in Section 9.1. It is hoped that it provides a first step for the reader to
get familiar with the simulation and to develop one’s own program. Random number
generator is copied from the reference [67).

program sos

c Monte Carlo simulation of 2D-sos model for roughening

parameter (lxmx=128,1ymx=128)
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dimension ih{lxmx,lymx),prob(6)
read (*,*} 1x,ly,loop,temp,field,iseed

(o]

O o060 000606006000

ih(ix,iy); solid height

lxmx,lymx; maximum linear size in x- and y-direction
1x,1ly ; actual linear size of the system

prob(k); transition probability

k=1 for crystallization
=2-6 for desorption with k-2 neighbours

temp; temperature, {(coupling J=1)
field; chemical potential difference

loop; loop number for small accumulation and averaging
igeed; seed of the random number

mag; magnitude of height sum

nnex; nearest neighbor energy

call ranint(iseed)

call init(lxmx,lymx,Ix,ly,ih)

write(*,*) ’1x,ly,loop,temp,field;’
write(*,*) 1x,ly,loop,temp,field
write(*,*) ’ilp,mag,nnex’

call engy(lxmx,lymx,lx,ly,ih,mag,nnex)
call prbini(prob,temp,field)

--------- monte carlo loop

do 10 ilp=i,loop

do 11 inlp=1,1xx*ly

call mc(lxmx,lymx,1lx,ly,ih,prob,mag,nnex)
continue

write(*,*)~ilp,mag,nnex

continue

------ check the final height and exchange energy
call engy(lxmx,lymx,lx,ly,ih,magl,nnexl)
write(*,*) mag,magl,nnex,nnexi

stop

end

subroutine init{(lxmx,lymx,lx,ly,ih)

initiallization

dimension ih(lxmx,lymx)
do 200 iy=1,ly
do 200 ix=1,1x
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ih(ix,iy)=0
200 continue

return

end

subroutine mc{lxmx,lymx,1lx,ly,ih,prob,mag,nnex)

dimension ih{lxmx,lymx),prob(6)

isum=0

ix=randm()*1x+1

iy=randm()*1ly+1

ixp=ix+l

ixm=ix-1

if(ixp.gt.1x) ixp=ixp-1x

if(ixm.1t.1) ixm=ixm+lx

iyp=iy+1

iym=iy-1

if(iyp.gt.ly) iyp=iyp-ly

if(iym.1t.1) iym=iym+ly
if(ih(ixp,iy).1t.ih(ix,iy)) isum=isum+l
if (ih(ix,iyp).1t.1h(ix,iy)) isum=isum+l
if(ih(ixm,iy) .1t.ih(ix,iy)) isum=isum+1
if(ih(ix,iym) .1t.1h(ix,iy)) isum=isum+l
trpr=prob(1)+prob(isum+2)

trtr=randm()

L ittt adsorption
if(trtr.1lt.prob(1)) then
ih(ix,iy)=ih{ix,iy)+1
jbup=0
if(ih(ixp,iy).1t.ih(ix,iy)) jbup=jbup+1l
if(ih(ix,iyp).1t.ih(ix,iy)) jbup=jbup+l
if(ih(ixm,iy).1t.ih(ix,iy)) jbup=jbup+1l
if(ih(ix,iym).1t.ih(ix,1iy)) jbup=jbup+i

mag=mag+1
nnex=nnex+2*jbup-4
return
endif

L ettt desorption

if(trtr.1t.trpr) then
ih(ix,iy)=ih(ix,iy)-1
mag=mag-1
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nnex=nnex+4-2*igum
return
endif

o e e otherwise
return
end

subroutine engy(lxmx,lymx,1x,ly,ih,mag,nnex)

e o e e
c energy calculation
<= ' --
dimension ih(lxmx,lymx)
mag=0
nnex=0
do 100 ix=1,1x
ixp=ix+l

if(ixp.gt.1x) ixp=ixp-lx

do 100 iy=1,1y

iyp=iy+l

if(iyp.gt.1ly) iyp=iyp-ly

mag=mag+ih{ix,iy)

nnex=nnex+iabs(ih(ix,iy)~ih{ix,iyp))+iabs(ih(ix,iy)~ih{izp,iy))
100 continune

return

end

gubroutine prbini{prob,temp,field)

dimension prob(6)

ef=exp(field/temp)+exp(4./temp)

prob{1)=exp(field/temp)/ef

do 10 nn=2,6

prob{(nn)=exp(2.*(nn~4.)/temp)/ef
10 continue

return

end

subroutine ranint(ix)
common /rand/ m,j -
dimension m(521),ia(521)
do 10 i=1,521
1x=69069%ix

10 ia(i)=sign(l,ix)
do 20 j=1,521
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ip=mod ((j~1)%32,521)+1

m(j)=0

do 30 i=1,31

ii=mod (ip+i-2,521)+1

m(j)=2*m(j)+(ia(ii)~-1)/(-2)

ij=mod(ii+488,521)+1
30 ia(ii)=ia(ii)*ia(ij)

ii=mod (ip+30,521)+1

ij=mod (ii+488,521)+1
20 ia(ii)=ia(iid*ia(ij)

=0

return

end

function randm()
common /rand/ m,j
dimension m(521)
ip=521

iq=489

j=i+1

if(j.gt.ip) j=1
k=j+iq

if(k.gt.ip) k=k-ip
m{j)=ieor(m(k),m(j))
randm=n(j)*0.4656612e-9
return

end

A9.3 Continuous Gaussian model

If the height variable h(%) does not take the discrete integer values but takes contin-
uous values, and the encrgy is given by (A9.1) with p = 2, the model is called the
continuous Gaussian model. The partition function and correlation function of the
model can be calculated straightforwardly.

The partition function is defined as

Z= H,-’L/_: dh(i) exp [—J )y (_"(Z)k;B;fU)_)f . (A9.3)

One can introduce the Fourier transformation as

i) = == e T (g (A9.4)
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with wavenumbers ¢ = 2rn/L and n = —(L - 1)/2,---,0,1,.--,L/2. Here L is the
linear dimension of the system such that N = L?. The coefficient h(q) is given by

h(g) = % 3 ehi). (A9.5)

In terms of h(q), the partition function is written as

Z=1], /_: dh(q) exp [—% ¥ IZ—E)%’;] = [;4/27Go(g). (A9.6)

Here Gy(g) is the lattice Green’s function defined by

ksT 1 . ksT 1

Gold) = 57 T =)~ 27 @

(A9.7)

where § is a vector connecting nearest neighbor sites. Surface free energy is obtained
as

N d
F= —lkBTEIn [27Go(q)] = ——=ksT / ~d—qdln 27Go(q). (A9.8)
2 P 2 (27)
In the last equality, the summation is replaced by the integration for a large sys-

tem size N as &, = N [T, d%/(27)%. The height difference correlation function is
calculated for large r as [115]

G = <[h(r>—h(o>1”>=%z<lh(q)l>1—cosqr>—2 [ Lo - cosan)

kaT ! ro L 4 const + or'=%  ford#2
~ J 24-17d2T(df2) 2-d (A9.9)
L] -
mlnr+const ford=2,

where I'(d/2) is the Gamma function {1]. The d-dimensional surface with d < 2
is always rough because the height difference correlation function diverges for two
separate points, r — oo. On the contrary, for d > 2 the surface is always smooth.

A9.4 Variation approximation

Continuous Gauss model shows that the surface is rough in two dimensions. In the
real crystal with d = 2, the surface can be both smooth and rough. The discrepancy
is due to the neglect of the discreteness in the surface position in the continuous
Gaussian model. The height should be quantized in unit of atomic size a. For
analytical treatment on the phase transition and critical phenomena, a modification
is introduced in the model Hamiltonian as

H=JY [h(i) - h())* - UZcos(27rh(z)) (A9.10)

<ij>
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Figure A9.1: Convexity of exponential function.

where the height variables h(¢) are continuous, but the additional one-body potential
with a small positive coefficient U prefers the height to take integer values.

We here study the phase transition of the model (A9.10) by means of the varia-
tion method [59]. The theory depends on the convexity of the exponential function;
e~(a+b)/2 < (e~ 4e7)/2. This inequality is obvious from Fig.A9.1. When the stochas-
tic variable z is distributed according to the probability Pr(z), the average (z} is given
by (z) = [ Pr(z)zdz, and the inequality is generalized to e~'® < (e~%).

For a thermodynamic system with a Hamiltonian Hp, the canonical probability is
defined by

- H
Pr= Z;'exp (_EOT) (A9.11)
with " F
- _toy ——9
Zy = Trexp( kBT) exp ( kBT) . (A9.12)
When the true system is described by the Hamiltonian
H=Ho+V, (A9.13)
one can show that
VYo ( V) (Fo) ( H0+V)
exp ( ot S (exp T Yo = exp T Trexp T
) (-5r)
- Lo LI A9.
exp (kBT exp T (A9.14)

Therefore, the true free energy F satisfies the following inequality

If we make an appropriate choice of Hy which minimizes F*, then it should be a
good approximation to the true free energy F. In order to make the configuration
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summation tractable, we choose the effective Hamiltonian Hy as

= -kBTZ '28'2 (A9.16)

where g—dependent parameters G(g) are to be determined to find a minimum F*.
With this choice of Hp, the probability Pr given by Eq.(A9.11) is Gaussian with
(h()) = 0 and {|A()?) = G(q).

Fy is calculated straightforwardly and is equal to (A9.8) with the replacement of
Go(g) by G(q). {Ho)o is simply NkgT/2. In (H)o, the average of the first term is
easily calculated as

o 20 =0 = g7 TN~ = 53 2 (a0

Since there are only first and second order cumulants for a Gaussian distribution, the
term containing the one-body potential can be calculated by using the relation

(cos 2mhYg = Re(e® ) = exp |i2n(h)o — 21r)

(h%) } = exp [—2%2(h2)0] (A9.18)
with ! .
(h%)o = N E(lhd?)o =3 3 Glg). (A9.19)
q q
The approximate free energy F* is obtained as

Fr B+ {(H—-Ho
ksT kgT
NU [

—%;ln 2rG(g)] + %;c%((% ~ T P |

i

I

7('2
S el -5
(A9.20)

If one calculates the higher order term (V™)y, it is proportional to U™, and the present
approximation is good for a small perturbation U/. To minimize, F* is differentiated
by G(q) as

AF/ksT) 11 1 1  2rU 22 -
O UM [ Eow] <o om)

Since the last term is independent of the wave number ¢, the g-dependent coupling

G(q) has the form
1 K

Golg) T+ K2 Pt

G(q) = (A9.22)
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Figure A9.2: Determination of the correlation length ¢ or the parameter 7 = (n/¢)?
at various temperatures t = nkpT/4J.

where K~ ! = 2J /kpT, and the correlation length £ is determined as

K—I£—2 — (27r)2U exp [_2,”_2 L’r dlq K ]

kaT Y
42U (2 TP
By denoting z = (n€)7%, t = nK/2 = mkpT/4J, Eq.(A9.23) is transformed as
2U ¢z !
== (1 H) = f(2). (A9.24)

Two curves y = ¢ and y = f(x) are depicted in Fig.A9.2 at various temperatures t.
The intersection of these two curves gives the solution of Eq.(A9.24). The slope of
f(z) at £ = 0 changes drastically at ¢ = 1, since

W) W, (1 Ly (e Y
w - T\ T i) (A9.25)

For small U and ¢ > 1 there is only a trivial solution z = 0, but for ¢t < 1 there is
another nontrivial solution near z ~ 0. For small z, the solution is approximated as

J AR AN In(J/2U)

For ¢ < 1 the free encrgy F™ for z # 0 is smaller than that for x = 0, and the state
with a finite £ is stabler than the state with £ = 0o. Therefore, the phase transition
takes place at t = 1 or

4
kaTe = —J. (A9.27)
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The height difference correlation function is calculated by

i gdg
G(r) = 2 —=Gg)(1 — e )= =
(r) / Eret@ — e~ [nmwm/c) P +E?
kgT .
~ mln[mm(r,{)}. {A9.28)

Above the roughening temperature Tp = 4J/7kp or t > 1, there is only a solution
2 =0 (or ¢ = 00), and the height fluctuation diverges at r -+ oco: The surface is
rough. On the other hand, for T < Tg or ¢t < 1, £ is finite and the height correlation
function saturates as

-1
Glr> &) ~ % g (10 ~ (1 %-R) (A9.20)

for r — o00.
Below Tg the surface height fluctuates within a range of £. This means that the

steps of a length of order £ can be thermally generated. The step energy g is then of
the order kgT/¢ as

o~ P o[- (49.30)

It approaches zero as well as its all derivatives by T on approaching the roughening

point T — Tx: It has an essential singularity at Tr. For T" > Ty the correlation
length £ = co and § = 0.

A9.5 Renormalization group theory on roughening

In the variation method (Appendix A9.4), only the lowest order of perturbation U
is considered. The renormalization group method takes the cffect of higher order
perturbation systematically [113, 114, 145, 146].

By coarse graining the two-dimensional space, one gets the Hamiltonian in a
continuum space limit as

L L 2
H= / dzdy [%(Vz)2 —Vcos QTTZ] = / dzdy [%(Vh)2 - Vcos(?vrh)} .

{A9.31)
Here the lattice parameter ¢ is notified explicitly, and the height 2(z,y) is normalized
as h{z,y) = z{z,y)/a. L is the linear dimension of the system. Coupling constants in
(A9.31) are related to the microscopic parameters in (A9.10) as follows: the surface
stiffness is here denoted by v = 2J/a? and the strength of the one-body potential by
V=U/d
The height h(r) is expanded in Fourier series with wavevectors ¢ between the
lower, g, = 7/L, and the upper, A = 7/a, cutoffs.

hir) = 3 h@e¥= 3 Th@+ 3 ePh(p)

9:<g<A ge<q<b—1A b=1A<p<A

h<(r) + h>(r). (A9.32)

il
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In Eq.(A9.32) the height variable is decomposed in the short wavelength component
h>(r) and the long wavelength component h<(r). The full Hamiltonian consists
of a term which contains only long wavelength components, that with only short
wavelength components and that with mixed components as

H(h{g), i(p))

Hi 41+ = 20 P+ T A

ge<q<biA b-lA<p<A

L
Vv / dudy cos[2n(h< + B>)]. (A9.33)

The potential term with the coeflicient V' is denoted here H,, for short. In the
renormalization method, the short wavelength component h”>(r) is integrated out
and its effect on the long wavelength component £<(r) is systematically studied. The
renormalized Hamiltonian H< contains only the long wavelength variables £<(r), and
is defined by

exp (— -I%;) = Trre M/ksT = Hb-1A<p<A/ dh(p) exp [ ————“(h(kq}z;l(p))] .
(A9.3)

Here Tr” is the trace over the short wavelength component h(p). Actually, the renor-
malized Hamiltonian H< is calculated up to the second order of V. The thermal
average (---) is defined as that by the short wavelength mode with unperturbed
Hamiltonian Hg as
(o) = Tx” - -exp(—Hg /keT)
)= Tr” exp(—Hg [kpT)

It is actually a Gaussian average with (h(p)) = 0 and the height correlation {|h(p)|?) =
kpT [vya?p?.

Average of the term containing the mixed part H., is expanded in the cumulant
as

Hon \y _ Hm\y L L], Hn ) Hin \\2
{exp (—m)> = exp [—((kBT)) +3 {<(EB_T) ) <(Fﬁ)> } + ] . (A9.36)
The first order of V' can be calculated as

H(l) —_ 2 < >
T = kBT/ndostr(h + 1))

= — /dzr [cos(2mh=){cos(2mh)) — sin(2wh<){sin(27xh”>)}]

(A9.35)

= 7 T/dzrcos(27rh< exp [—27r ((r”) )]
B

— 2 <
= k;;T/d 7 o8 2rh<(r). (A9.37)
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Here the effective potential strength V is
V =V exp [-2n%9(0)] = Vb-kaT/e" (A9.38)

with the height correlation function of the short wavelength defined by

. ksT A d%p
_ > > — 0P oy B _p U
90) = PORON= S (e gz 1 e
ksT
Srva? Jo(Ar)ln b, (A9.39)

which decays very fast for r > n/A due to the asymptotic behavior of the Bessel
function Jp. The second order term H? is calculated as follows:

(2) 2
_;—t? = ';‘ (k_\%) /dzr/d%l [{cos 2zh - cos 2mhy) — (cos 27h){cos 27hy )]

B B

2
~ % (EV_T) /d27/d2T1(Sin 2rh< sin 2xh{){(27h> - 27hT)
B
2
= (kiv?) /dr/dng(r ~ 1) [cos 2n(h< + hS) — cos 2m(h< ~ AS)],
B

(A9.40)

where the notation A = h(r) and hy, = h(ry) is used. Since g(r — ;) is almost zero
for [r — 1] > w/A, the integrand gives contribution only for 7; ~ r. The first term
produces the higher harmonics cos2z(h< + h{) =~ cos4xh<, and is irrelevant for
further discussion. The second term is expanded as

ﬂkBT
ya?

/aﬂrlJo(Alr —ri|)cos2a(h< — h{) = const — 4n°A*A ( ) (VR<)2, (A9.41)
where A i8 a complicated but a smooth function in the region of interest [146]. Eqs.
(A9.40) and (A9.41) shows that the second order perturbation gives the renormaliza-
tion of the surface tension. The final form of the renormalized Hamiltonian has the
same form with the original one as

H<

I 52 _
/ dzdy [7;—(Vh<)2 - Vcos(27rh<)]

L/b 7a? - _
/ dzdy [—2—(Vh<)2 — Vb2 cos(zwh<)] , (A9.42)

where z = bZ and y = b3. The coupling constant is renormalized from the original
ones, ya% and U = V(n/A)?, to

2
¥a? = ya? + %(—Z;{i Inb (A9.43)
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Figure A9.3: The renormalization group flow diagram in X = 2ya?/7kpT and
Y = 4U/nkpT phase space. The temperature variation of a real system takes place
along the dashed line. At low temperatures to the right of the separatrix, the po-
tential strength Y increases by rcnormalization and the surface is smooth. At high
temperatures to the left of the separatrix, Y vanishes by renormalization and the
surface is rough.

and

AN 92— wkpT /02 mkgT
U=V|—) =0 """ 2U+ U2~ —5|Inb (A9.44)
A Yo

with X = 2va?/nkpT. Therefore, by coarsening the system with the scale € = Inb,
variables X and Y = 4U/7kgT are renormalized as

dX _ AR/X)Y?

- = m% (A9.45a)
ay 1

= =2(1-<)Y. .

o 2 ( X) Y. (A9.45b)

Eqs.(A9.45a,b) are called the renormalization group cquations. There is a special fixed
point X* =1, Y* = 0, and it will be shown that the critical behavior is controlled
around-this point. Therefore, one can assume that the function A is constant with
its argument at X* = 1 as A(2) = A = 0.398. The flow by renormalization in XY
plane is obtained by

dy 4X -1

X A Y
or after integration the renormalization trajectory is obtained by hyperbola as

(A9.46)

%(X R (A9.47)

The flow by renormalization is shown in Fig.A9.3. ThelineY =0 for X < 1is
a line of fixed points. The separatrix C = 0 or VAY/2 = 1 — X corresponds a
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critical curve, and terminates at the end of fixed points at X* = 1, Y* = 0. Below
the separatrix, the strength of the periodic potential U is renormalized to zero, and
the surface is rough in a large scale. Since the physical system has fixed values of
surface tension ypa? and the potential Uy, the temperature variation occurs along
aline Y/X = 2Up/v0? = const. This line crosses the critical line C = 0 at the
roughening temperature

2 vV 1
ksTr = —10a” + g—AUg = —2-70a2 [1 + —tc] (A9.48)
T m T 2

with t, = 2v/AUp/va®. Due to the potential Up the stiffness o is modified to
the effective one Yer = 7o(1 + ¢./2), and correspondingly the microscopic coupling
J = 70a2/2 to the effective one J.g = Yera?/2. The roughening temperature is given
as kBTR = 4Jeﬁ/7r.

When the temperature is off from Tx, the parameter C is represented as

At + 1)
A

with t = (T — Tr)/Twx- For T < Tj, the potential strength Y initially decreases by
renormalization until Y,, = v/C, and then Y increases again. The final increment of
Y means the enhancement of the pinning potential U to fix the height to an integer
value. The surface is smooth. The correlation length ¢ is determined as a length scale
until Y reaches to the order unity:

1 XdY o0 2dY s

C (A9.49)

e=Inéx = = . A9.50
¢ v AX -1)Y  MEVAYVYZ=C  2,/ltt. ( )
Thus the correlation length £ diverges at the roughening temperature Ty as
T
¢ ~ exp [g(ltltc)"‘”]
ex _C {A9.51)
P\VIR-T| |
The step free energy J is obtained as
B~ exp |- (A9.52)
PITVER=TI |

A9.6 Exact solution of surface roughening: Body-centered
solid-on-solid (BCSOS) model

There is an exact solution on the phase transition of the (100) surface of a body-
centered cubic (bee) crystal (Fig.A9.4a). There are eight nearest neighbors for each
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(d)

Figure A9.4: (a) Body-centered cubic (bce) lattice. (b) (100) face of the bee lattice
with the nearest neighbor bonds shown by dashed lines, and the 2nd nearest neighbor
by solid lines. (c) Six possible configurations of surface heights. (d) The corresponding
six vertices [187].
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atom in the bec crystal. On looking down the (100) face nearest neighbor bonds
form a square lattice (Fig.A9.4b). The solid-on-solid model assumes that the surface
configuration is described by the height of the column on this square lattice. In a
bee crystal the nearest neighboring heights differ by odd numbers in a unit of half
the lattice constant. When the nearest neighbor interaction marked by dashed lines
in Fig.A9.4b is attractive and very strong, the height difference is restricted only
to unity. Then for a square plaquette there are 6 possible configurations, as shown
in Fig.A9.4c. When one draws a vertical line through the middle of an edge, and
draw an arrow such that, when one follows the arrow direction, the right stays higher
than the left. Then there are six vertex configurations as shown in Fig.A9.4d, and
the model is equivalent to the six vertex model [129]. Among four edges from a
vertex, two arrows flows inwards and the other two arrows go outwards. The model
is originally introduced to explain the residual entropy of ice. In ice, each water
molecule is surrounded by four neighboring water molecules by the hydrogen bonds.
On the bond connecting two oxygen atoms, a hydrogen atom can be located near one
of them. For each oxygen atoms, two hydrogen atoms lie close to it and two others
stay away from it. The vertex in Fig.A9.4d represents the oxygen, and the arrow on
the edge indicates that the hydrogen lies close to the oxygen. Thus the rule that the
number of incoming and the outgoing arrows are the same is called the ice rule [153].

We now impase a second neighbor interaction, —J, and —~J, in z and y directions
respectively, which are shown by solid lines in Fig.A9.4b. The interaction energies
€1 ~ g¢ for vertex configurations 1 to 6 are then given as

a1=e=dy—Jyy @a=a=J—Jy, and e =¢=-J;—J,. (A9.53)
For an isotropic case, J, = J, = ¢/2 > 0, the configuration energies are ¢, = g9 =
e3 = €4 = 0 and €5 = g6 = —¢&. This is called the F model, and the exact solution is

known [129]. The transition temperature is known to be
ﬁ"sﬂ = (n2)! 14427 .. | (A9.54)
and the singular part of the surface free energy behaves as

Fiing % exp(—a|l — T/Tr|™"/?), (A9.55)

with & = n2/4v/In4. Step energies in [10] and [11] directions are also known as

Buy _ 22 {l
e JI-tl2
+ i(—l)"[l + (n — 1) tanh({n — 1)X) — n ta,nh(n)\)]}
n=1
E[m] 4
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Figure A9.5: Step energies of BCSOS model in two orientations,[10] (solid line) and
[11] (dotted line). For comparison, step energies of the Ising model is also shown.
Dashed line in [10] direction and dash-dotted line in {11] direction. Crosses represent
the difference of the step energies in two directions [187).

# 21l + (n = ) tanb((n = Y - (1= ) tan((n = P
(A9.56)

with
A=—Int+2In(1+4v1—1) (A9.57)

and t = 4dexp(—2¢/kpT). At low temperatures, kpT < €, the step energy is
anisotropic, Eqi1) > Ejg). At high temperatures, kT > ¢, it becomes isotropic. Near

the roughening temperature where ¢t — 1 and A = 2y/1 — ¢t = 2v/In44/Tx /T — 1, step

energies behave as Epy & Ejjg & eA™32 exp(—n2/2)) = exp(—~a/4/1 — T/Tg). They
approach zero as T — Ty — 0, as is shown in Fig.A9.5. The equilibrium shape of
facets and the crystalline shape arc also obtained [92].

Similar correspondence to the F model is found for the (100) and (110) faces of
face centered cubic (fee) erystal [93].
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A14 Advance Rate of a Circular Step

Detailed calculation of the advance rate of a circular step is given in the paper by
Burton, Cabrera and Frank [43],.and here I reproduce the calculation.

The adatom density or the diffusion field around a circular nucleus with a radius
p depends only on the radial variable r as u(r) = ¢(r) — cw due to the symmetry, and
the diffusion equation is written as

Py ldu
e (A14.1)

in the stationary approximation. The solution which has no singularity at the origin
and at infinity is written as

Io(r/z.)
" u(p)lsz/w_s) forr<p )
u(r) = .
u( )—K—O—(L/ﬁ)- for r >
PP Ro(ofz.) &

Here Iy and K, are the modified Bessel function of the zeroth order. The v-th order
ones, Iy, and Ky, satisfy the ordinary differential equation

ETL (2 + v*)w = 0, (A14.3)

and I;,(z) is finite at 2 — 0 and K, (2) is finite at |z| — oo and |arg(z)| < 5. For
v =0, they can be expanded around z = 0 as

2 2\ 2
Io(2) 1+%wj%?(%)-w~ (Al4.4)

Ko(z)

2 2\ 2
[ln( )+v] Io(z) + (1,)2’1 +(1 +%)(2—1!)2— (%) 4. (A14.5)

with Euler’s constant v = 0.57721 56649 - . .. Their asymptotic forms for z — oo are

In(z) ~ %[1+é+m] (A14.6)
mwf~¢z P-§+ ] (A14.7)

By differentiation, the following relations hold;

I(z) = I(2), Ky(2) = ~Ki(z), I(2)Ki(2)+ Ni(2)Ko(2) = % (A14.8)



142 Part V. Appendices

The local equilibrium is expected around a circular nucleus;

u(p) = Ceq(p) — Coo- (A14.9)

On the other hand, the advance velocity of the step is derived from the material
conservation as

ac|t u(p) [K’(p/:z: ) Ii(p/x )] u(p) K1Ip + I, Ky
— Ds 2 7 — DSGQ—— ’0 s) _ 1o s — —Dsa2 Ailo+ 1o
v(p) * 5 . z, | Ko(p/zs) Io(p/xs) z, Koly
1 1 D,a? 1
= ——Dsaw(p) — =% u(p). Al4.10
v ol Kol ~ 0 Kalolelatpfay ) (A1410

When the radius p is larger than z,, the approximation Ko(p/z,)lo(p/zs) = 2s/2p
holds from Eq.(A14.6) and (A14.7), and v(p) is obtained as

D,a? 1 2D,a* Ba?

= = o — Co =2 o0 — Coq — Coq——== | . Al14.11
op) = = (e — ) = ( O I
For the straight step with p — o0, the advance velocity reduces to vy as

2D,a?

v(p > 00) = (Coo — Coq) = V0. {A14.12)

s

Then the velocity of a circular step is approximated as

v(p) = v (1 - %) , (A14.13)
where p, is the critical radius of the two-dimensional nucleation defined in (6.23) as

Cq _fa’ _ pa?
Coo — Ceq ]CBT - A/l

pe = (A14.14)
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A15 Advance Velocity of a Spiral Step

There are various ways to represent the spiral curve. One way is to use an arc length
s along the spiral and the angle 6 of the normal vector n from the y axis as shown in
Fig.Al15.1a.

g =46(s). (A15.1)

From Fig.Al5.1a it is obvious that the radius of the curvature p is related to the

variation of the arc length ds and the associated angle change df as ds = pdf, and

the curvature is given as

L_d (A15.2)

p ds ‘
The same spiral can be represented by the polar coordinate (r, ¢) with its origin

at the spiral center as

¢ = ¢(r). (A15.3)
Figure A15.1b shows that the variation of an arc length ds is written as
ds = /(dr)? + (rdg)? = dry/1+ (r¢/)?, (A15.4)

where the prime means the derivative by r: ' = d/dr. There is still another possibility
of representing the spiral by the angle 1 between the radial vector r and the tangential
vector ¢ of the spiral (Fig.A15.1c) [44]:

b = (). (A15.5)

(® (b) (©)

Figure A15.1: Three ways of representing a curved spiral. (a) By arc length s and the
angle # of the normal vector n making with y axis. (b) The polar coordinate (r, ¢).
(c) The length 7 of the radial vector r and the angle ¢ of the tangential vector t and
r. Angles are related as ¢ = 6 + ¢.
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Figure A15.2: A spiral steadily rotating with an angular velocity w. @ is the local
velocity in the radial direction, and v is velocity normal to the spiral.

As is clear from Fig.A15.1¢, the three angles are related as
P=¢+4. {A15.6)
Also from Fig.A15.1c it is evident that the relation
r¢’ = —tany (A15.7)
holds. Then the curvature £ is written as
K_l_fiﬁ__ dy—dé  sing
pods g it 7

When the spiral is advancing steadily, the spiral looks as if it is rotating steadily.
By denoting the radial velocity at a point (r, ¢) as ©, the point on the curve at a polar
angle ¢ moves to

+ 1 cos . (A15.8)

ry = r(2) + ddt (A15.9)

after a time d¢. Since the movement locks like a steady rotation with an angular
velocity w, the angle ¢(r1,t) on a spiral at time ¢ should rotate to ¢(r,t) after a time
elapse dt:

${ry, 1) + wdt = ¢(r,1). {A15.10)

{See Fig.A15.2). Inserting {A15.9) into {A15.10) and expanding in terms of a small
variable dt, radial velocity ¥ is written as

j=-

W
5 (A15.11)
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The normal component of the step velocity should be
- T W,
v(r) = dcos (¢ +8- 5) = ~ sin 4, (A15.12)

and this velocity should coincide with the velocity given by the step curvature as

w(r) = vo (1 - %‘-) . (A15.13)

From Eq.(A15.7-A15.8) and {A15.12-A15.13), the spiral 4 = 1(r) should satisfy the
first order differential equation

(A15.14)

Boundary conditions are set at » — 0 and at 7 — o0o: At r — oo, the spiral looks
like a circle and the angle ¢ — 7/2. At r — 0, the radius of the curvature decreases,
but it should be larger than p., because if the radius is smaller than p., the crystal
melt back as is evident from Eq.(A15.13). Therefore, at r = 0 the curvature is p..
From (A15.8) v should approach zero as » — 0 in order to obtain a finite x. Then
sin/r ~ fr ~ dy/dr, and at r — 0 the relation 1/p. ~ 2dyp/dr holds. Therefore,
Y ~ r/2p, for small 7.

Since the angle 9 satisfies the first order differential equation (A15.16) the solu-
tion contains only one integral constant. Thus two boundary conditions cannot be
satisfied in general. The solution exists only for some special values of w. Thus,
Eq.(A15.14) is the eigenvalue equation to determine the eigenvalue w. From the
numerical calculation, the eigenvalue is obtained to be

w = 0.33v/ pe. {A15.15)

The period T for one turn of the spiral is T = 2r/w. Since the advance velocity of
the step is vo asymptatically at r — 00, the step separation A = ya7" is calculated as

A= 3’5’—“ ~ 19p.. (A15.16)

The step separation of a steadily growing spiral is 19 times larger than the critical
radius p. of the two-dimensional nucleation.
From the relation (A15.7), the polar angle ¢ for r — 0 is determined from the
relation r¢f = —¢ & —7[2p, to be
r
o 15.17
oy (A15.17)
This is the Archimedes’s spiral turning right. The spiral turning left is written as
¢ = r/2p., This is used to obtain the formula (15.1).
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A21 Parabolic Coordinate

The Cartesian coordinate (z,¥, z) and the parabolic coordinate (¢,7, ) are related
as

. 1
= \/Ef_icosqb, y= \/Egsmﬁ z= 5(17—5), (A21.1)
where r = V2?7 £ yZ + 22 = %(n + £). Inverse relation is written as

E=r+z, n=r-—2z, ()S:arctan%. {A21.2)

The line element is represented in both coordinate as

(ds)® = (dz)? + (dy)* + (d2)* = (hydn)® + (hed€)? + (hydg)? (A21.3)

h,,-—-‘/ﬁ%}—{, hfz‘/"—;;—g, hy = y/nE. (A21.4)

The gradient vector of the field is

Vu — ou +6 +3un
= By b
417

Bu 4 B i?_’zﬁ .
T\ nreoe ‘/;aﬂ (A2L5)

with basis vectors (Z, ¢, ) and ({ , f),d)) in each coordinate system. The basis vector
2 is related to those of parabolic coordinate as
1 1 .

with

The Laplacian is written as

4 3 { Bu 8 [ ou 1 8%
n+£[3n( )*6& (555)]+%W' (A2L7)

By denoting the interface as n = 7:(£, ¢), the unnormalized tangential vectors are
written as

on; . P

tr = hy i+ bl (A21.8)
o,

t2 = h, aﬁ; 71+ hy. (A21.9)

The normal vector is then obtained as

1 on;
n=N|—f- L On

5_1‘9”’] [ 4n 7 A o F@A]
Ry he B hy 00 Vnre Vn+£0£ nE B9

(A21.10)
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with NV being determined from the normalization condition [n| = 1.
The interface velocity of the dendrite in laboratory frame is written as v =V 3 +
nhyt . By using 2 and n given in Eq.(A21.6) and (A21.10), one obtains the interface

normal velocity as
va= NV (2 4+ L) o (A21.11)
"= 2m2 T onZae ) ) ‘

which is explicitly presented in Eq.(21.3).
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A24 Dendritic Growth

A24.1 Boundary integral equation for the diffusion-controlled
growth

In a steady state approximation, the diffusion equation in the moving frame is written

as
2 du
2 —_——
u=v u+l 97 0, (A24.1)

where 2/ is a new coordinate 2 = 2z — vt and Ip = 2D/v is the diffusion length.
Hereafter in this section we drop the prime on z. By using the adjoint operator L
defined by

2 Gg
l 611
the Green’s theorem says that the integral over the region Q4 enclosed by the periphery
T'; satisfies the relation:

Lig(r,r)) = Vig - (A24.2)

[ du fotr,r) Laute) - (e g, m}

= fdf‘x { (r,r)—— ( 1) (rl)agé;‘r;) 0 —n,.9(r, r;)u(rl)] (A24.3)

When u(r}? satisfies the diffusion equation (A24.1) and ¢ is a Green’s function of the
operator L as .
Lig(r,ry) = —8(r — 1), (A24.4)

then (A24.3) reduces to the integral equation over the crystal-liquid interface I'gy.

15}
/dFI,SLg(r,rl)‘é% = /dfl,SLh(r,rl)u(IH) (A24.5)

Here we have used the boundary condition that far from the liquid-crystal interface,
the diffusion field and its derivative vanish: u{r — o00) = du/0n|,nec = 0. The
Green’s function ¢ is obtained by the Fourier transformation as

e-talr-r1) 1
r
9(r,m) = / QTP @+ (g — iy P+ 12 2n

— o= g (ET—_I:_‘_I) (A24.6)
D

with Ky being the modified Bessel function explained in Appendix Al4. Another
integral kernel h is obtained as

—2—n1,,g —¢(r)8(r — ry). (A24.7)

hir,t;) = i

The coefficient ¢ enters because the position r in Eq.(A24.5) lies on the boundary
T'sL. Instead of determining e(r) directly, one can impose a sum rule
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on h as
/ dly sph(r,11) = ~1. (A24.8)

The condition is easily derived by inserting the trivial solution ¥ = const of the
diffusion equation in Eq.(A24.3) [30, 165]. Equation (A24.5) relates the diffusion
field u to its normal derivative 8u/dn at the liquid-crystal interface. This relation is
used in the numerical simulation described in Appendix A24.3.

If there is a diffusion in the crystal with the diffusion constant Dg, we can obtain
another boundary integral equation similar to Eq.(A24.5) with the Green’s function
gs and an integral kernel hg. In them, the diffusion length is replaced by the diffusion
length in the solid [p s = 2Ds/v, and in hg the normal vector is replaced by ng = —n.
Due to the difference of the direction of the normal vector, the sum rule for hg is
different from (A24.8) and is written as [168]

/dFl,s[,hs(l',l'l) =0. (A24.9)

The diffusion field is continuous at the boundary; ug = u. When the heat is conducted
in the crystal as well as in the liquid, the energy conservation boundary condition
(18.7) is altered as
ou aus
w =— | D— — Dg—— | . A24.1
v ( on S on ) ( 0)
In a symmetric model where Dg = D, one gets simple relations; Ip g =lp, gs = ¢
and h—hg = —6(r—r;). By subtracting Eq.(A24.5) from the corresponding one in the
crystal, and by utilizing the above relations and the energy conservation Eq.(A24.10),
one gets

a d 1
/dfl,sw(f,l‘l) [6_25: - 6—:1] = B/drl,SLgvn
= / dC1st [hs(r, 1) — h(r, 1)} u(ry) = u(r). (A24.11)

When the crystal grows steadily in z direction with the velocity v2, the normal velocity
is v, = vn, and the integration can be transformed as [dI'ysin, = [dzr;. Also by
imposing the local equilibrium condition (18.11) or

u(r) = A — dk, (A24.12)
one obtains a simple equation

A-dk= 2 /oo dz,g(r,r1) (A24.13)
Ip J-oo

for the symmetric model. This is the relation often used in the theoretical analysis,
as will be explained in Appendix A24.2.
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A24.2 Microscopic Solvability Theory of Dendritic Growth

The solvability theory is very mathematical and its detailed explanation is out of
scope of the present notes. I sketch here briefly its main idea and the result [124, 105,
33, 156].

When the crystal is growing steadily, 8¢/8t = 0, and the diffusion constants
in solid and melt is the same (symmetric model), the profile z = ((z) of a two-
dimensional crystal is determined by (A24.13) or

A—dxk / day e~ @@ fe, (‘[z_x’ + (=) - (zl)y) (A24.14)

7rl[) lD

Here K is the modified Bessel function of the zeroth order, explained in Appendix
Al4. Without capillarity (d = 0), Ivantsov parabola (v(z) = —22/2p satisfies
Eq.(A24.14) at the supercooling A [154]. With the capillarity, the interface {(z)
deviates slightly from the Ivantsov parabola, {;yv. By using the Ivantsov relation be-
tween the supercooling A and the profile {;v and measuring the length in unit of the
tip radius p of the Ivantsov parabola, one gets the relation

O'A(.’L‘, C)K = F2(P, z, C) - Fg(P, z, Cw). (A2415)

Here P = p/lp is the Peclet number, the function I'; is defined by

Ty(P,2,() = / dzie” P~ K, (P\/(:c = &) +(((z) - ((51?1))2)

(A24.16)
and o is the stability parameter defined by

_ Gy 2Ddy _ dov

pP pv  2DP?

(A24.17)

The surface stiffness is assumed to have four-fold symmetry with the anisotropy factor
A defined as
8(9¢/0x)
T+ (3¢/an)T
€ here means the strength of the anisotropy. Since o is proportional to the small
capillary length dy, it is also small. But the usual perturbation expansion in o is not
applicable, since o couples with the highest derivative of the height or the curvature
0%((z)/02

K= —mw. (A2419)
One has to use singular perturbation method [16]. The situation is similar to the
quantum mechanics [171): In the Schrodinger equation

Alz,{)=1—€cosdf=1—-¢€+e¢ (A24.18)

n 8%

- 55 — V(@)Y = BY, (A24.20)
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the Planck constant h = 27h acts as a small parameter, but it is coupled to the highest
second derivative of the wave function ¥. The approximation to the wave function
¥ can be obtained by a singular perturbation, known as WKB approximation [171].
Up to the linear order of the deviation of the interface profile from the Ivantsov

parabola
¢(z) = Gvlz) = (1 + 9% 2(2), (A24.21)

Eq.(A24.15) is transformed to the following linear and inhomogeneous integro-differential
equation [124]

d’Z(x) (1 + x2)‘/2Z

£z dz? OREAR

e + 22 (z+2)(1 +z2)3/4
2rA P/d (x -l + Yz + 1) A1)
g
R (A24.22)

Here P denotes the principal value. For the existence of a nontrivial solution, the
inhomogeneous term in the r.h.s. should be orthogonal to the zero eigenvector Z(x)
of the adjoint operator L! as

O(0,€) = / doy :’x‘;)gq = 0. (A24.23)

This equation is an eigenvalue equation to determine the cigenvalue 0. Z(z) is ob-
tained by the WKB method, and ©(0,€) is calculated to behave approximately as

O(a,€) ~ exp (——5—3) cos (gﬂ 0027/4 ' (A24.24)

at small o and e. This equation shows that with an isotropic surface tension (¢ = 0),
© can never be 0 for finite ¢ or finite velocity. To realize steady growth, an anisotropy
¢ is necessary in the surface stiffness. For ¢ # 0 there are infinitely many but discrete
numbers of stationary solutions

o~ oge*(1+20)2 (withn=0,1,2,--+,00). (A24.25)

From the linear stability analysis around these stationary solutions, the steady state
with the minimum ¢ or the maximum velocity v is found to be stable, but the other
solutions are unstable.

The dendrite tip radius of the curvature p and the growth velocity v thus satisfy

the scaling relation

ypt = 2000 _ 2Ddo

24.
= = (A24.26)
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as well as the Ivantsov relation (21.13), which reflects the total energy conservation
and is influenced little by capillarity. The tip radius and the velocity is then deter-
mined uniquely for a given supercooling A as

_do e R -2 —7/4
= Sy~ b (A24.27)
and 2D 2D
v = —%PQ(A)J“ ~ }—2—;‘3&*57/“. (A24.28)

In the last expression in Eq.(A24.27) and (A24.28) Peclet number P(A) is approxi-
mated by its limit for small supercooling in two dimensions.

A24.3 Numerical Simulation of the Dendritic Profile

Since the dendritic pattern is quite different from the flat interface, linear and weakly
nonlinear analysis is insufficient. To find out the strongly nonlinear and far from
nonequilibrium pattern, numerical simulation is a very useful method. There arc.
various different methods to simulated the profile of the crystal [135, 102, 103, 165,
109, 110, 87]. The main problem of the simulation is the sharpness of the interface.
If one solves the bulk diffusion equation numerically, a discrete mesh is necessary.
When the interface moves, it will be off from the mesh points. Since the interface
is susceptible to the fluctnation because of the Mullins-Sekerka instability, one has
to be careful in tracing the interface motion. Also, from the microscopic solvability
analysis, the anisotropy in the system is said to be essential to stabilize the dendrite
tip. By using the mesh for the diffusion field, an artificial anisotropy from the mesh
lattice can be introduced. There are various simulation methods to circumvent these
obstacles. First we briefly summarize ideas of some proposed methods.

By assuming the steady growth of the dendrite, the diffusion equation can be
transformed to the integro-differential equation (A24.5) with the help of the Green's
theorem, as cxplained in Appendix A24.1. By solving this interface equation numer-
ically therc oceur no problems stated above, since grid points lie on the interface.
By integrating along one side of a steadily growing dendrite from the tail to the tip,
one can scarch the selected velocity such as to produce a round tip which connects
smoothly to the other side of the dendrite symmetrically [135, 102, 163]. This is the
numerical realization of the solvability criterion of a symmetric dendrite in a station-
ary code. Our simulation [165] relics on the integro-differential equation (A24.5), but
it allows the variation of the system velocity so as to sclect the final profile sponta-
neously. There are other methods which don't use boundary integral cquation. In a
phase ficld model, the interface is defined as the domain boundary of the phase field
and is treated as a diffuse object, in order to get rid of the difficulty associated to the
sharp interface [109, 110, 111, 117]. This is so far the sole model on which a three-
dimensional simulation is performed {109, 111]. The phase-field model, however, uses
a mesh to solve the diffusion equation, and the mesh-lattice anisotropy is expected
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to affect the quantitative results. Recently a new algorithm with multiple meshes are
proposed to solve the diffusion equation. These meshes are mutually shifted trans-
lationally and rotationally [87]. With this multiple-mesh method the real dynamical
evolution of the crystal interface is simulated in many systems.

Here I describe our boundary integral algorithm applied first to study the selec-
tion problem of a two-dimensional dendrite profile of a one-sided model, where the
diffusion takes place only in the liquid phase [165]. The time evolution of the crystal-
liquid interface is traced by solving the quasi-stationary distribution of the diffusion
field by the boundary element method [30]. First assume that the profile I's;.(¢) and
the frame velocity v(t) at time ¢ are given. Then modification of I'g;, and v to the
asymptotic form is performed in the following processes.

1. Calculate the diffusion field « at the boundary from the local equilibrium con-
dition (A24.12),

2. calculate the Green’s function ¢ and the integral kernel A by using the frame
velocity v,

3. solve the linear equation (A24.5) for the normal gradient ¢ = Ou/dn, since
g, h, u and Lgy, are known,

4. the normal velocity is calculated by the conservation condition as wv,(r) =
—Dq(r),

5. then evolve the crystal profile in the normal direction n by r(t+dt) = r(t)+v,ndt
to a new configuration sr.(¢ + dt) at time ¢ + dt,

6. adjust the moving frame velocity v to the tip velocity of the dendrite vy, by &
rather ad hoc relaxation v(t + dt) = v(t) — (v(t) ~ wp(t))dt/ 7,

7. and then iterate back to 1. and repeat the whole procedure until the steady
state is realized.

If the steady state is realized, the ad hoc relaxation of the frame velocity by the
procedure 6. does not affect the resulting asymptotics. To solve the linear equation
(A24.5) numerically by computer, one has to discretize the crystal front into a poly-
gon, whose corner points are denoted by r; with j = 1,..., N. The diffusion field
and the normal gradient ¢ = du/dn at a corner point r; are denoted by u; and g;
respectively. Every quantity at a point r on a polygon edge I'; between r; and rj.y
is interpolated linearly, for example, for u as

u(r) = ¢1(§)u; + da(€)uin (A24.29)

and for the position r as
r = $1(E)r; + da(é)rjps (A24.30)
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with an interpolation functions [30]

1-—- 14
s =35 we=12¢ (A2431)
with —1 < ¢ < 1. The integration along the edge I'; is written as
Yit1 _ ‘3_3_ 1
/r = L d (A24.32)

with s; = |rj3; — r;| being the length of the edge segment I';. Then the integral
equation (A24.5) can be written as a matrix equation

215 Gig; = iv: Hijuy, {A24.33)
i=1 i=1
where
ot gt
Gij=2 [ dtglr; +ou(©)s;,r) 01(O) + 2 [ deglr; - 41(8)s;-n] Z(g 3
and .
s; [t 851 [
Hy = *é]'/_l deh [r; + ¢a(E)ss, mi] 41 (€) + < L, déh[r; — 1(&)sj-1,1:] 9a(€)
(A24.35)

with g and h given in Egs.{A24.6) and (A24.7), respectively. The sum rule (A24.8)
reduces to the condition

N
Z Hy=-1 {A24.36)
i=1
and the diagonal element H; is determined from
H“,‘ = - ZH‘J - 1 (A2437)
J#i

The integration in Eq.{A24.34-A24.35) are performed by the four-point Gaussian
quadrature method [1, 30]. When the point r; happens to be one of the end points
of the linear segment I'; where the integration is performed, the Green's function g
contains the logarithmic singularity as

o(r,m) ~ exp (—%‘Di) {~ In (‘r—gi'-;—”) - 7] (A24.38)

with Buler constant . Integration then uses the Gaussian integration with a loga-
rithmic singularity [1, 30].

Since our main interest lies in the evolution of the dendrite tip, we divide the
interface into three parts along z: a tip region, a transition region and a tail region.
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Evolution of the tip region is treated fully as described. The tail region consists of
an Ivantsov parabola appropriate to the steady growth assumption with the frame
velocity v. A transition region connects the tip and tail regions smoothly.

Extension of the method to include the kinetic effect or dendrite tilting is straight-
forward. When the kinetic coefficient K(n) is finite and anisotropic, the local equilib-
rium assumption does not hold any more. Here one has to use the kinetic condition
(18.8) {50]. In the steady state the diffusion field at the interface u(r;) is decomposed

as
Un D Ju

u(r)) =A—dk — K(n) = up(ry) + —— K(n) an (A24.39)

with
ug(ry) = A — dk. (A24.40)
The integral equation (A24.5) is now modified as
D
/dr‘l,SL [g R )h] /dF1 SLhUO(l‘l). (A24.41)

The kinetic effect introduces only a small modification in the integral kernel as g —
Dh/K, which is readily calculated. The growth rate v, of the interface is obtained
from the normal gradient du/dn as in Eq.(18.7). Therefore, a simple modification of
the integral kernel G;; can include the kinetic effect [50, 169).

In the directional solidification, the surface takes various periodic structures. In
order to simulate an interface evolution with a periodic modulation with a periodicity
A, one imposes a periodic boundary condition {(z + A) = {(2) in z direction. For
numerical simulation, one period of interface is decomposed into N mesh points.
Periodic images of the interface are taken into account in the kernel as

N N
> Gigi = > Hyu; (A24.42)
=1 =1
with o N
Y Gijtmn, and  Hy= Y Hijimn (A24.43)
m=-—oo m=—od

In practice, the influence of the m-th image far from the system in consideration are
negligible. We usually take the effect of images within the range of 5/p {167, 50]. For
a dendrite in a channel with impermeable walls, the normal gradient of the diffusion
field at the wall vanishes from the symmetry: du/0n = 0. This means the existence
of mirror images at both walls: {(~z) = ((2A — z) = {(z) for a system within a
channel of width A. Then the gystem has a periodicity 2A and one can appropriately
modify Eq.(A24.42) in this case.

In the unidirectional solidification, the temperature gradient is applied on the
system. If orientations of the temperature gradient and of the crystalline axis are
different, the tilted structure appears [2, 66]. In this case the tip of the dendrite
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shifts transversally, and the locus of the tip is tilted from the temperature gradient
by an angle ¢. The system is invariant in a moving frame with a transversal velocity
v, = vtan¢ and a vertical pulling velocity v, = v. The diffusion equation in quasi-
stationary approximation reads as

it 22?0
Vou+ o\ 3> + tanqbax =0. {A24.44)

The Green’s function g and an integral kernel h are now modified to

=) -@- x,)tm] K, [Ww —nP (- cm}

1
g(r,ry) = 37 OXP [

In Ip cos¢
(A24.45)
and
h(r,r1) = 27rllD exp [_ (€=<G)~ Ez - zx)tanqb] [—(n,z + ntang)Ko (%:—O;—%)
n-(ri—r1) . (jr—r| 1
"t =11]cos ¢I“ <10 cos ¢)] ~ 58(r—r1). (A24.46)

Further discretization and numerical simulation can be performed similarly as before
[148].
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A26 Eutectic Growth Theory by Jackson and Hunt

The surface supercooling AT at the eutectic crystal front is derived by Jackson and
Hunt [91). They considered both the lamellar and rod structure of an eutectic system,
but here only the lamellar structure in two dimensions is summarized.

The eutectic crystal is growing from the liguid with a concentration c.. Con-
centrations of the crystal ¢ and § phases are ¢§ and c'g , the periodicity of lamellae
is A, and the ratio of each phases are set  and 1 — 7 respectively. The material
conservation requires the relation

Coo = €3N+ A(1 — 1), (A26.1)
and thus = (¢ — ¢o)/Ac and 1 — 77 = (coo — ¢§)/Ac with the miscibility gap
Ac=d - (>0)

The dimensionless concentration field u defined by
_ C~Cgr
=X {A26.2)
satisfies the diffusion equation in the liquid
18u _ o 20u _
Dot Viu + e 0. {A26.3)

The last equality holds in the quasi-stationary approximation. The diffusion length
in the liquid is defined by means of the chemical diffusion constant D, as

2D,

Ip = (A26.4)

In solid the material diffusion is assumed negligible (one-sided model). The thermal
diffusivity is so high in all the phases that the temperature gradient is constant as
Eq.(26.1): Gy = dT/dz = const or T{z) = Tg + Gr2.

The crystal-liquid interface is denoted as z = {{z,#). Then the material conser-
vation at the boundary yields

—l%[u(x, ¢) — ug) for 0 <z <nAin ¢ phase
_ (A26.5)
= Z?— [u(x, ¢) - ug] for n) < z < X in 3 phase,
D

where ug”? = (¢§” — cg)/Ac. The local equilibrium assumption at the interface is
written as

AT(z) = Tg-T(()=-Gx(
malAeu(z, () + ’Y?TE for0<z <A
= (A26.6)
—mgAcu(z, () + ’YL’@TEN forph <z < A,

Lg
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Here m, s = |dTy,/dc”| is the absolute slope of the liquidus lines with o and 3 crystal
phases, x is the curvatures, yio and vy arc the surface tensions between the liquid
and «a or f phase, L, and Lg arc the latent heat of o and 3 phases respectively.

From Eq.(A26.6) it is obvious that to obtain the supercooling AT at the average
interface position (¢), we have to know the average concentration field {(u) and the
average curvature (k).

The field u is expected to be modified periodically with the same periodicity A of
the interface modulation. Thus u can be expanded in a Fourier scries as

U, 2) = U+ 3. Bpe M Opltns (A26.7)

where ¢, = 2an/A. Since u has to satisfy the diffusion equation in the quasi-stationary
approximation (A26.3), the decay rate A, in z direction is found to be

An =15+ VIRT + 2. (A26.8)

The continuity equation (A26.5) is written at the average position (() as

3 AnB,et = lz [Au(z) +3 B,,c“’"”] , (A26.9)
D
where ‘ \
1= or0<z <y
Aulz) = { - for A < 2 < A (A26.10)
Since the Fourier coefficient of Au(z) is calculated as
L —ign3 2 —iAngn [2 o /\77%
= . wt . _© —iAngs 11
3 /0 dzdu(z)e )\qne sin { =], {A26.11)

the coefficient B, for n # 0 is determined as

B - 4e~ a2 gin(Ang, /2)
" IpAgn(An — 2/1p)

Assuming the slow growth such that A < Ip, the average concentration in front of
the ¢ or § phase is calculated as

(A26.12)

o _ 1 A o &\—
() = o5 [ e O = we ot Bo+ P ()

WPy = a—:l-ﬁj—)—\ /ni uw(x,{)dr = ue + By — M%P(n), (A26.13)
where - o
Pl = 3 SnTm), (A26.14)

(wn)?

n=1
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From Eq.(A26.13) one obtains

. oa_&=d_2 P _ M P@)
W = = = Lmi—n Do) (A26.15)

or
o -l —1)

A2 2P(np)
The growth velocity Eq.(A26.16) corresponds to the phenomenological expressions
(26.3) and (26.5) with @, in Eq.(26.5) at c. = cg being given as

vAc= D,

(A26.16)

_nl-n?
Qo = 2P0 (A26.17)

In order to obtain the average curvature {k), we use the relation of the force
balance at the triple point, where three phase, liquid, @ and 3, meet. (See Fig.26.4).
The surface tensions satisfy the relation (26.6a,26.6b) or:

VoSN + Yp5inls = Y8
VLo €0880 — v c0805 = 0, (A26.18)

where the angles 8, and 64 are defined in Fig.26.4. These contact angles give the
average curvature as

(k%)

1 1 b« df 2
— dey = — —d. = —giné,
77/\-/0 kdz Y /_00 s scosf n)\sm

I

8 _ 2 .
(£") =T sinfs. (A26.19)
Here we used the relation (A15.2) of the curvature &, the angle 8 of the normal vector
and the arclength s: k = df/ds. These curvatures are the same with those obtained
in Eq.(26.7) by assuming that the interface is a part of circle.

From Eq.(A26.6) the average supercooling at the interface, z = {{) is expected
to be constant for @ and § phases as (AT*) = (AT®) = AT. Then the remaining
unknown constant By is determined as

1 20P(n) (ma  my
o+ By = — — -
oo+ o ma+mﬂ[ Ip n 1l-n
1 [ 27.Te . 2v6Te
3 Ae ( L. sin 0, + —nLs sinfg || . (A26.20)
The interface supercooling AT is obtained as
AT = 1 2\ P(n)

c._.—
mzt+mz' " lp n(l—1n)
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2 MNaTE . YLalw )
0, + ——2——sinf
+(m;1 n mt;l))‘ <maﬂLa sind, + mg(l — 77)Lﬂ sinfbg
1 A Am
= AT, (E + T) . (A26.21)
Here 4 A P
AT, = ¢ LU, oy (A26.22)

n(l-nmzt+m;' Ip

is the minimum value of the interface undercooling, and

In . .
A?,,:——— do(1 — n)sin B, + daysinbs)
P [doll = n) 5 sin 8s)

is the corresponding periodicity of the lamellar structure. The capillary lengths d,
and dg are defined as

(A26.23)

SN

o1
d, = TLalE

_ mplw
= —————mn T Ac and ds

= " 26.24
mgLgAc (526.24)

These equations (A26.21-A26.24) are more general than Eq.(26.10).
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29,133
single layer model 26
variational method 129
Roughness 7,21

Scaling
form 69
relation 88,119,151
Scanning tunneling microscope 22,31
Schrodinger equation 150
Schwoebel effect 59
Screw dislocation 30,46
Segregation coefficient 103
Self-similarity 83
Separatrix 137
Sidebranch 93-97
correlation of 94
Simulation 120
by boundary element method —
Boundary element method
by Monte Carlo method — Monte
Carlo
Single nucleation growth 58
Singular face 38,120
Singular perturbation method 88,150
Six vertex model 30,139
Slow dynamics 63
Snow 2,120,123
Solid-on-solid (SOS) model 23,25,29,124
Solution growth 9,67,101
Solvability condition
for a two-dimensional system 86,88,93,
93,08,150,153
for a three-dimensional dendrite 90,92
of doublon 98
Spatio-temporal chaos 64
Spherical
crystal 71,80
harmonics 80
Spiral
growth 31,51,143
step 143
Stability

Index

length 80,88
of flat interface 77,105
of spherical crystal 80
of straight step 59
parameter 88,150
Stationary
approximation 50,61,71,141
condition 11,121
Steady state — Quasi-stationary approx-
imation
Step 20,28,30,38,41,46,59
circular 49,50,141
collision 39
confinement 39
density 123
free energy — Free enrgy of step
fluctuation 30,33
isolated 47,48
separation 51,145
stability 61
stiffness 37
train 48,49
unstahle 61
velocity
circular 50
isolated 48
train 49,51
width 34
Step-step interaction 38-41
Stiffness
effective 63
kinetic 18
parallel component 43
perpendicular component 43
of step 15,16,33-35,60
of swrface 13,14,42,68,86,113,133
Stochastic process 22
Succinonitrile dendrite 90
Sum rule 148,149
Supercooling — Undercooling
Surface
diffusion length 47,50,59
diffusivity 47



Index

kinetics 46,66,113
supercooling 157
tension 13,72,135,158
isotropic 151
Symmetric model 80,88,149,150

Tangential vector 143,146
Temperature gradient 102,115,157
Terrace 20,38,59
Thermal
conductivity 67,102,149
diffusivity 68
fluctuation 22,28
gradient 102,113
length 105
Thermodynamics
first law 4
second law 4,5
Tilted
growth 113
structure 113,155
lamellar 119
Tilting field 35
Tip
radius 75,86,88,150
splitting 64,89,95,100
stability 90,93
Transfer matrix 39
Transition probability 23
Transversal velocity 156
Triple point 114,116,159

Undercooling 68,75,86,117

Unidirectional solidification 101,114,155

Upper critical velocity 107
Vapor growth 7

Variation method 129
Velocity selection 86
Vicinal face 38,41,42,48,122
Viscosity 6

Viscous finger 90

WKB approximation 151

Weak nonlinearity 63
Wilson-Frenkel formula 7,67,68
Walff plot 13

growth shape 18

Xenon dendrite 93

Zeldovich factor 55
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