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Preface

The advances in mobile devices and positioning technologies, together with the
progress in spatiotemporal database research, have made possible the tracking
of mobile devices (and their human companions) at a very high accuracy while
supporting the efficient storage of mobility data in data warehouses. This has
provided the means to collect, store, and process mobility data of an unprecedented
quantity, quality, and timeliness. As ubiquitous computing pervades our society,
user mobility data represents a very useful, but also extremely sensitive, source of
information. On the one hand, the movement traces that are left behind by the mobile
devices of the users can be very useful in a wide spectrum of applications such
as urban planning, traffic engineering, and environmental pollution management.
On the other hand, the disclosure of mobility data to third parties may severely
jeopardize the privacy of the users whose movement is recorded, leading to abuse
scenarios such as user tailing and profiling.

A significant body of research work has been conducted in the last 15 years in
the area of mobility data privacy, along a number of important research directions
such as privacy-preserving mobility data management, privacy in location sensing
technologies and location-based services, privacy in vehicular communication
networks, privacy in location-based social networks, and privacy in participatory
sensing systems. This work has identified important privacy gaps in the use of
human mobility data and has resulted to the adoption of international laws for
location privacy protection (e.g., in EU, the USA, Canada, Australia, New Zealand,
Japan, Singapore), as well as to a large number of interesting technologies for
privacy-protecting mobility data, some of which have been made available through
open-source systems and featured in real-world applications.

The overarching aim of this book is to survey the field of mobility data privacy
and to present the fundamental principles and theory, as well as the state-of-the-
art research, systems, and applications, to a wide audience including non-experts.
Emphasis in the book is given toward coverage of the most recent directions in
mobility data privacy. The structure of the book closely follows the main categories
of research works that have been recently undertaken to protect user privacy in
the context of mobility data and applications. After the first introductory chapters,
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which cover the fundamentals around the offering of privacy in mobility data, each
subsequent chapter of the book surveys an important research problem related to
mobility data privacy and discusses the corresponding privacy threats that have been
identified and the solutions that have been proposed. The last part of the book is
devoted to state-of-the-art systems for mobility data privacy, as well as to real-world
applications where privacy-protection techniques have been applied.

We would like to note that this book is primarily addressed to computer
science and statistics researchers and educators, who are interested in topics related
to mobility privacy. We expect that the book will be also valuable to industry
developers, as it covers the state-of-the-art algorithms for offering privacy. To ease
understanding by nonexperts, the chapters contain a lot of background material, as
well as many examples and citations to related literature. By discussing a wide range
of privacy techniques, providing in-depth coverage of the most important ones, and
highlighting promising avenues for future research, this book also aims at attracting
computer science and statistics students to this fascinating field of research.

Boston, MA, USA Aris Gkoulalas-Divanis
Milan, Italy Claudio Bettini
June 2018
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Chapter 1
Introduction to Mobility Data Privacy

Aris Gkoulalas-Divanis and Claudio Bettini

Abstract The recent advances in mobile computing and positioning technologies
have resulted in a tremendous increase to the amount and accuracy in which human
location data can be collected and processed. Human mobility traces can be used
to support a number of real-world applications spanning from urban planning and
traffic engineering, to studying the spread of diseases and managing environmental
pollution. At the same time, research studies have shown that individual mobility
is highly predictable and mostly unique, thus information about individuals’
movement can be used by adversaries to re-identify them and to learn sensitive
information about their whereabouts. To address such privacy concerns, a significant
body of research has emerged in the last 15 years, studying privacy issues related
to human mobility and location information, in a number of contexts and real-
world applications. This work has led to the adoption of privacy laws worldwide,
for location privacy protection, as well as to the proposal of novel privacy models
and techniques for technically protecting user privacy, while maintaining data utility.
This chapter provides an introduction to the field of mobility data privacy, discusses
the emerging research directions, along with the real-world systems and applications
that have been proposed.

1.1 Introduction

The recent developments in mobile computing and positioning technologies, along
with the tremendous advances in information technology, have made possible the
collection, processing, storage and analysis of very detailed human location traces.
Modern mobile devices, including smartphones and wearable devices, are equipped
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with a myriad of sensors that can be used to collect detailed location-specific
readings. The tracking of mobile devices (and their human companions) can be
used to support a large number of real-world applications, such as urban planning
[2], traffic engineering [22], managing of environmental pollution [20], studying
the spread of diseases [21, 23], encouraging vehicle pooling [25], understanding
human purchasing behavior [26], and many more. At the same time, real-time
services whose offering depends on user location, have also emerged. Location-
based services and location-based social networks [13] enable users to receive high
quality services based on their current location, as well as to locate nearby friends,
geotag friends and pictures, and share their whereabouts with other users. On the
negative side, however, studies have shown that individuals’ mobility information
can be highly predictable and unique [5], thereby making it highly possible to
identify an individual based on some of his or her mobility traces. Such attacks
have led to the adoption of international laws for location privacy protection (in the
EU, US, Canada, Australia, New Zealand, Japan, and Singapore), as well as to a
plethora of novel privacy models and technical approaches proposed in the research
literature to protect user privacy under specific guarantees, while maintaining high
data utility.

This book aims to survey the field of mobility data privacy and to present the
fundamental principles and theory, as well as the state-of-the-art research, systems
and applications, to a wide audience including non-experts. Emphasis in the book is
given towards coverage of the most recent directions in mobility data privacy. The
book consists of three parts and its structure closely follows the main categories
of research works that have been recently undertaken to protect user privacy in the
context of mobility data and applications. In the sections that follow, we provide an
overview of the contents of each part of the book.

1.2 Part I: Fundamentals for Privacy in Mobility Data

The first part of the book aims to introduce the readers to the area of mobility
data privacy. Chapter 2 starts from the basics to explain why the knowledge of
an individual’s mobile traces alone, without any additional information about the
individual, is typically sufficient to perform successful re-identification attacks.
Empirical evidence and statistical models have demonstrated the existence of impor-
tant intrinsic and universal characteristics about human movement. Individuals’
mobility information can be highly predictable and unique, not only due to the
places that each person visits during their daily movement but also due to the
time associated with these visits. The more information that an attacker has for
an individual about the places he or she visited (and the respective times of visit),
the higher is the probability of re-identifying the individual. Considering human
mobility at an aggregate level, by modeling aggregate movement of people from one
place to another, allows mining important mobility patterns that can be beneficial
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in a number of real-world applications. It is important, however, that the insights
gained from the mining of mobility patterns, do not come at a cost to individuals’
privacy.

Location information can be sensed from a multitude of devices [27], including
smart devices (e.g., smart phones, smart watches, smart cars, etc.), radio-frequency
identification (RFID) devices, bluetooth devices, global-positioning system (GPS)
tracking devices, and many others. Depending on the particular use case, certain
location sensing technologies are preferred over others. Chapter 3 sheds light on
popular location sensing technologies and use cases they can support, giving more
emphasis on the use of such technologies in retail environments. The authors
discuss in detail the different techniques that are used for location sensing, such
as trilateration and fingerprinting, satellite-based location sensing, WiFi-based
location sensing, bluetooth-based location sensing, cellular tower based sensing,
etc., explaining their advantages and disadvantages. Following that, they introduce
readers to the different privacy threats that emerge from the use of such technologies,
the legal requirements associated with their use, and the technical controls that are
available to protect location data from being personally identifiable.

1.3 Part II: Main Research Directions in Mobility
Data Privacy

The second part of the book is devoted to important, emerging research directions
in mobility data privacy. Each chapter in this part of the book surveys an important
research problem related to mobility data privacy, discusses the corresponding
privacy threats that have been identified and the solutions that have been proposed.

Chapter 4 offers a survey of privacy protection in the context of location based
services. Location based services (LBS) are widely spread and commonly used
nowadays, especially by mobile users who need navigation instructions, discovery
of resources (such as nearby gas stations, restaurants, etc.), emergency services,
etc. At the same time, social network LBS are very popular among users, allowing
them to geotag and post information to their user profile in a social network, to find
nearby friends, or to engage in location-based games [9]. This chapter presents the
main privacy threats that are associated with the use of LBS, discusses regulatory
compliance and personal preferences as the main requirements for LBS privacy-
protection, and proceeds to survey state-of-the-art privacy-protection techniques
that have been proposed in the research literature [4]. An important message that
is conveyed in this chapter is that in order to decide on the privacy protection
method that should be used for a given LBS, it is important to analyze the service in
terms of the information being exchanged, the service architecture and the different
parties to which the information is exposed, as well as the necessary location data
accuracy.
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Chapter 5 presents techniques for analyzing human mobility data under provable
privacy guarantees, even when adversaries have strong prior knowledge. Instead
of focusing on location cloaking techniques and traditional k-anonymity based
approaches, the authors rely on differential privacy [7, 8] to ensure the private
information of individuals while allowing the learning of useful information about
a population of users. The chapter serves as a nice introduction to the area of
differential privacy for location data. The authors explain the properties of location
data that constitute them vulnerable to privacy threats, discuss why cloaking
techniques are inadequate to offer strong protection, and present the key variants
of differential privacy in the context of location data. Following that, they cover
differentially private algorithms that satisfy privacy guarantees while resulting in
different utilities. Using these algorithms, one can support answering COUNT
queries over a single-time snapshot of location data, continuous queries over
location streams, as well as releasing synthetic location trajectory databases. Last,
the authors introduce a framework for defining privacy and use it to protect privacy
when adversaries may know correlations within a location stream.

Chapters 6 and 7 of the book are devoted to participatory sensing applications
[3, 14, 15], where users—equipped with personal mobile devices that may have a
myriad of embedded sensors—collect sensor readings from different locations in
order to support a common objective. The delegation of these sensing tasks to vol-
unteers opens new opportunities for the timely support of large-scale crowdsourcing
tasks, but, at the same time, comes with serious risks as volunteers have to disclose
their location information to other (potentially untrustworthy) entities.

Chapter 6 provides a nice introduction to crowdsourcing applications by covering
the different classes of these applications as well as the opportunities and benefits
they offer. Following that, the authors describe the risks in which crowdsourcing
participants are exposed by participating to crowdsensing applications, and the risks
for crowdsensing applications to rely on volunteers to fulfill the sensing tasks.

Chapter 7 delves into more detail on the various attacks in the context of spatial
crowdsourcing applications, which include location-based attacks during tasking in
the push mode and collusion attacks during reporting in the pull mode. Following
that, the authors survey the state-of-the-art solutions for addressing privacy issues
in spatial crowdsourcing, covering techniques for privacy protection in the pull
mode and techniques for protection in the push mode. These techniques range from
pseudonym, clocking, and perturbation, to exchange-based and encryption-based
privacy-protection approaches.

The focus of Chap. 8 is on geospatial applications, such as thematic maps and
crowdsourced geo-information, and on location-based social networks. Geospatial
applications enable users to both consume and contribute geographic information to
the online community. The first part of this chapter is devoted to privacy challenges
in the context of geospatial applications from the crowdsourcing aspect and from
aspects related to surveillance. Following that, the second part of the chapter
focuses on the subcategory of geospatial applications that involves location-based
social networks. It covers privacy threats and protection mechanisms that have
been proposed for users of location-based social networks. The chapter provides a
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large number of references to state-of-the-art works that will be helpful for readers
interested to learn more in these areas.

Chapter 9 surveys the emerging area of privacy in the context of the connected car
ecosystem [12]. By enabling vehicles to exchange information with an underlying
infrastructure, as well as with other vehicles in their vicinity, a large number of
safety applications and services can be provisioned. At the same time, the connected
car ecosystem comes with significant privacy challenges [6], as broadcasting the
location of a vehicle discloses also the precise location of its passengers. To prohibit
such disclosures while allowing the offering of different safety applications and
services, several privacy protection approaches have been recently proposed. This
chapter discusses these approaches, giving particular emphasis to the approach of
using short-term identifiers—or pseudonyms [10]—in vehicle-to-X communica-
tions. A number of important research challenges that will pave the way for future
work in this area, are outlined in the end of the chapter.

Chapter 10 is the last chapter of this part of the book and covers privacy-by-
design1 in the context of Big mobility data analytics. In this chapter, the authors
propose the use of the privacy-by-design paradigm when developing technological
frameworks to offer sufficient privacy, without obstructing knowledge discovery.
To achieve this, they propose inscribing privacy protection into the knowledge
discovery technology by design, so that the analysis incorporates the relevant
privacy requirements from the start. The authors illustrate this idea in three
different scenarios of mobility data analytics: (a) privacy-preserving mobility data
publication to support clustering analysis, (b) privacy-preserving publication of
semantic trajectories to extract frequent sequential patterns, and (c) protection of
movement data (collected in a distributed fashion from individual vehicles) using
differential privacy, in order to support their subsequent analysis by a central station.
The presented scenarios illustrate that under suitable conditions it is feasible to reach
a good balance between data privacy and utility.

1.4 Part III: Usability, Systems and Applications

The last part of the book is devoted to state-of-the-art systems for mobility data
privacy, as well as to real-world applications where privacy-protection techniques
have been applied.

Chapter 11 discusses real-world systems and research prototypes that have
been developed for privacy-preserving mobility data management. With respect
to privacy-protection, the focus of the chapter is on systems that maintain human
mobility data in-house to a hosting organization, enabling external users to query
these data while ensuring that the returned results protect privacy [11]. Along
these lines, they present Hermes++ [16], a query engine for sensitive trajectory

1https://www.ryerson.ca/pbdce/about/.

https://www.ryerson.ca/pbdce/about/
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data that allows subscribed end-users to gain restricted access to the database to
accomplish various analytic tasks. Following that, they present Private-Hermes [17],
a benchmark framework for privacy-preserving mobility data querying and mining
methods. Private-Hermes supports privacy-preserving publishing of user mobility
data by implementing state-of-the-art algorithms for trajectory anonymization.
Last, the authors cover HipStream [24], a privacy-preserving system for managing
mobility data streams. HipStream enforces the fundamental Hippocratic principles
of limited use, limited disclosure, and limited collection of data during stream
management.

Chapter 12 presents a real-world application where the goal is to release
spatiotemporal density information, i.e., the number of individuals visiting a given
set of locations as a function of time, in a privacy-preserving way [1]. The authors
survey some fundamental approaches that have been proposed for anonymizing
and releasing spatiotemporal density, which follow different privacy models and
come with different privacy and accuracy offerings. They then demonstrate some
anonymization techniques with provable guarantees by releasing the spatiotemporal
density of Paris, France. An important finding of this work is that in order to
achieve sufficient accuracy in the release of spatiotemporal density information,
the anonymization process has to be first carefully customized to the public
characteristics of the spatiotemporal data.

Chapter 13 is devoted to context-aware computing [19] and specifically to
context-adaptive privacy mechanisms and systems [18]. Leveraging context in
privacy management is becoming increasingly important. While context-aware
systems allow for building smarter and more adaptive applications, at the same time
they pose serious challenges for personal privacy due to their extensive collection of
detailed information about individuals as well as the usual inability of individuals
to properly manage their information flows. This chapter surveys context-adaptive
privacy mechanisms that have been proposed and discusses issues around privacy
management. Context-adaptive privacy mechanisms can leverage contextual infor-
mation to determine privacy-relevant context changes in a user’s environment and
either provide context-specific privacy recommendations, or automatically adapt the
user’s privacy configuration to meet the new needs.

Chapter 14 is the last chapter of Part III and focuses on privacy threats and
solutions for location sharing applications. The chapter provides a survey of the
most popular location-based applications, describes the important privacy implica-
tions that arise from contributing information in such applications and the existing
privacy mechanisms for protecting user privacy. A number of popular location-
based applications are considered by the authors, including social applications,
transportation and travel applications, fitness applications, image sharing and loca-
tion sharing applications. Existing approaches for privacy preservation of location
sharing applications include path confusion, mix zones, fake data injection, data
perturbation, data generalization and suppression, k-anonymity, and encryption.
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1.5 Conclusion

Privacy in the context of human mobility is a very popular and widely researched
area with a broad spectrum of applications, ranging from urban planning and traffic
engineering, to studying the spread of diseases and managing environmental pollu-
tion. The recent developments in mobile computing and positioning technologies,
along with the advances in information technology, have led to a number of new
location sharing applications and systems. This chapter provided an introduction to
the field of mobility data privacy, and an overview of the main research directions,
real-world systems and applications that are covered in the remainder of this
book. These include privacy in the context of location based services, privacy in
location based social networks and geo-social applications, privacy in vehicular
communication networks, privacy in participatory sensing systems, privacy in RFID
applications, privacy-by-design to support mobility data analytics, and many more.
At the same time, real-world systems and research prototypes that have been
developed for privacy-preserving mobility data management, along with real-world
applications where privacy methods need to be selected while accounting for the
level of accuracy that is required by the application, were discussed.

Since mobility data privacy is a very active research topic, new techniques, new
results and new systems have been probably proposed and published while this
book was in production and by the time you are reading it. It is also inevitable
that some existing approaches did not find appropriate space for their presentation.
However, by providing a solid base to allow readers understand the many facets
of the privacy problems involved in mobility data management as well as the wide
spectrum of technical solutions, we believe that the material offered in this book will
guide researchers and software engineers in better understanding other solutions and
possibly proposing new ones.
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Chapter 2
Modeling and Understanding Intrinsic
Characteristics of Human Mobility

Jameson L. Toole, Yves-Alexandre de Montjoye, Marta C. González, and Alex
(Sandy) Pentland

Abstract Humans are intrinsically social creatures and our mobility is central
to understanding how our societies grow and function. Movement allows us to
congregate with our peers, access things we need, and exchange information.
Human mobility has huge impacts on topics like urban and transportation planning,
social and biologic spreading, and economic outcomes. Modeling these processes
has however been hindered so far by a lack of data. This is radically changing with
the rise of ubiquitous devices. In this chapter, we discuss recent progress deriving
insights from the massive, high resolution data sets collected from mobile phone
and other devices. We begin with individual mobility, where empirical evidence
and statistical models have shown important intrinsic and universal characteristics
about our movement: we as human are fundamentally slow to explore new places,
relatively predictable, and mostly unique. We then explore methods of modeling
aggregate movement of people from place to place and discuss how these estimates
can be used to understand and optimize transportation infrastructure. Finally, we
highlight applications of these findings to the dynamics of disease spread, social
networks, and economic outcomes.
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2.1 Introduction

Mobility has been a steering force for much of human history. The movement of
peoples has determined the dynamics of numerous social and biological processes
from tribal mixing and population genetics to the creation of nation-states and the
very definition of our living areas and identities. Urban and transportation planners,
for example, have long been interested in the flow of vehicles, pedestrians, or goods
from place to place.

With more than half of the world’s population is now living in urban areas,1

understanding how these systems work and how we can improve the lives of people
using them is more important than ever. Insights from models informed by novel
data sources can identify critical points in road infrastructure, optimize public
services such as busses or subways, or study how urban form influences its function.
Epidemiologists are also relying heavily on models of human movement to predict
and prevent disease outbreaks [13, 66] as global air travel makes it possible for
viruses to quickly jump continents and dense urban spaces facilitate human-to-
human contagion. This has made understanding human movement a crucial part
of controlling recent disease outbreaks.2 Finally, social scientists are increasingly
interested in understanding how mobility impacts a number of social processes
such as how information spreads from person to person in offices and cafes across
the world. These interactions have been theorized to impacts crime rates, social
mobility, and economic growth [6, 46] and understanding their dynamics may
improve how we live, work, and play.

The growing need to understand and model human mobility has driven a large
body of research seeking to answer basic questions. However, the lack of reliable
and accessible data sources of individual mobility has greatly slowed progress
testing and verifying these theories and models. Data on human mobility has thus
far been collected through pen and paper surveys that are prohibitively expensive
to administer and are plagued by small and potentially biased sample sizes. Digital
surveys, though more convenient still require active participation and often rely on
self-reporting [14]. Despite the development of statistical methods to carefully treat
this data [5, 26, 45] new, cheaper, and larger data sources are needed to push our
understanding of human mobility efforts further.

The evolution of technology over the past decade has given rise to ubiquitous
mobile computing, a revolution that allows billions of individuals to access people,
goods, and services through ‘smart’ devices such as cellular phones. The penetration
of these devices is astounding. The six billion mobile phones currently in use
triples the number of internet users and boast penetration rates above 100% in
the developed word, e.g. 104% in the United States and 128% in Europe.3 Even

1United Nations Department of Economic and Social Affairs—World Urbanization Prospects—
2014 Update. http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf.
2http://www.worldpop.org.uk/ebola/.
3GSMA European Mobile Industry Observatory 2011. http://www.gsma.com/publicpolicy/wp-
content/uploads/2012/04/emofullwebfinal.pdf.

http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf
http://www.worldpop.org.uk/ebola/
http://www.gsma.com/publicpolicy/wp-content/uploads/2012/04/emofullwebfinal.pdf
http://www.gsma.com/publicpolicy/wp-content/uploads/2012/04/emofullwebfinal.pdf
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in developing countries, penetration rates are of 89%4 and growing fast. These
devices and the applications that run on them passively record the actions of their
users including social behavior and information on location5 with high spatial and
temporal resolution. Cellular antennas, wifi access points, and GPS receivers are
used to measure the geographic position of users to within a few hundred meters or
less. While the collection, storage, and analysis of this data presents very real and
important privacy concerns [15, 16], it also offers an unprecedented opportunity for
researchers to quantify human behavior at large-scale. With billions of data points
captured on millions of users each day, new research into computational social
science [37] has begun to augment and sometimes replace sparse, traditional data
sources, helping to answer old questions and raise new.

In this chapter, we present an overview of mobility research in the current data
rich environment. We describe a variety of new data sources and detail the new
models and analytic techniques they have inspired. We start by exploring research on
individuals that emphasizes important intrinsic and universal characteristics about
our movement: we are slow to explore, we are relatively predictable, and we are
mostly unique. We then discuss efforts to add context and semantic meaning to
these movements. Finally, we review research that models aggregates of human
movements such as the flow of people from place to place. Throughout and at
the end of this chapter, we point out applications of this research to areas such
as congestion management, economic growth, or the spreading of both information
and disease.

2.2 New Data Sources

Traditional data sources for human mobility range from census estimates of daily
commutes to travel diaries filled out by individuals. These surveys are generally
expensive to administer and participate in as they require intensive manual data
encoding. To extract high-resolution data, individuals are often asked to recall large
amounts of information on when, where, and how they have traveled making them
prone to mistakes and biases. These challenges make it hard for surveys to cover
more than a day or week at a time or to include more than a small portion of the
population (typically less than 1%).

Mobile phones, however, with their high penetration rates, represent a fantastic
sensor for human behavior. A large fraction of location data from mobile phones
are currently in the form of call detail records (CDRs) collected by carriers when
users perform actions on their devices that make use of the telecommunications

4ITU (2013). ICT facts and figures. http://www.itu.int/en/ITU-D/Statistics/Documents/facts/
ICTFactsFigures2013-e.pdf.
5Lookout (2010). Introducing the app genome project. https://blog.lookout.com/blog/2010/07/27/
introducing-the-app-genome-project/.

http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013-e.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013-e.pdf
https://blog.lookout.com/blog/2010/07/27/introducing-the-app-genome-project/
https://blog.lookout.com/blog/2010/07/27/introducing-the-app-genome-project/
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Fig. 2.1 Mobile phones are increasingly being used to collect high-resolution mobility data. This
figure from de Montjoye et al. [15] depicts (a) a sequence of calling events made by a user at
different locations. (b) These events are localized to the area served by the closest mobile phone
tower to the use and (c) can be aggregated into individual specific neighborhoods where a user is
likely to be found at different times of the day or week

network. The location of each device at the time a call, text, or data request is
registered (Fig. 2.1) is recorded by carriers for billing, network performance, and
legal purposes. Locations are inferred either by observing the tower through which
the phone is connected or by triangulation with nearby towers. With the increasing
use of mobile phones, each individual generates tens to hundreds of these digital
breadcrumbs on a daily basis and this number is only increasing. Through specific
agreements or through open-data challenges [17], location data on millions of
users is readily available to researchers and has been used extensively to augment
and sometimes replace traditional travel surveys. This data now forms the core of
numerous new mobility studies and models some of which we describe below.

Though generally less common than CDRs, applications running on smartphones
may access even more precise estimates of a user’s position. A variety of these
sensors, from GPS to wifi, can pinpoint the location of a device to within just a
few meters and can record data every few minutes [1]. Similarly, protocols such
bluetooth and NFC allow devices to discover and connect to one another within
a few meter radius, creating ad hoc sensor and social proximity networks [21].
Some of these applications and underlying social-networks explicitly add crucial
context to mobility data. Foursquare invites users to “check-in” at specific places and
establishments, Twitter will automatically geotag tweets with precise coordinates
from where they were sent, and the Future Mobility survey app passively maintains
an activity diary [14] requiring little input from users.

Infrastructure and public services have also become much smarter and now
collect data on their usage to improve and help plan operations. Toll booths
automatically count and track cars and this data has helped create accurate and real-
time traffic estimates used by mapping and navigation services to provide better
routing information. Subways, streetcars, and busses use electronic fare systems
that record when millions of users enter and exit transportation systems to help
better predict demand. In addition to smarter public infrastructure, the ecosystem
created by digital devices has given birth to entirely new transportation services
such as Hubway, the Boston bike rental service, that collects data on every bike ride
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and has even released some publicly6 or Uber, an on-demand car service, that uses
historical usage data to balance the time a user has to wait for a car to arrive and
the time drivers spend without clients. Finally, on-board devices and real-time data
feeds from automatic vehicle location (AVL) systems power applications such as
NextBus to track the location of thousands of busses and subways across the world
to display and predict when the next bus will arrive. While smart infrastructure
comes with its own privacy challenges [35],7 vehicle and public transport data offer
additional information to urban planners and mobility modelers to better understand
these systems.

Finally, most practical mobility models need to properly account for geography
such as mountains and rivers, transportation infrastructure such as bridges and
highways, differences in density between urban and rural areas, and numerous
other factors. Thankfully, the digitization of maps has led to an explosion of
geographic data layers. Geographic information systems (GIS) have improved
dramatically while falling data storage prices have made it possible for small and
large cities to offer their public mapping data to citizens in an online, machine
readable format. The U.S. Census Bureau’s TIGERline program, San Francisco’s
OpenSF, and New York City’s PLUTO data warehouse are just a few sources that
offer huge repositories of publicly accessible geographic data on everything from
building footprints and the location of individual trees in a city. Open- and crowd-
sourced initiatives like OpenStreetMap allow anyone in the world to contribute
and download high-resolution digital maps of roads, buildings, subways, and more,
even in developing areas that may not have institutional resources to create them.
Private efforts such as Google Maps and MapBox offer high-resolution satellite
imagery, route planning, or point of interest information through free or low cost
APIs. Put together, these resources provide a digital map of the world that serves
as a rich backdrop on which to study human mobility and the infrastructure built to
facilitate it.

Put together, new sources from CDRs to public transport data, from mobile
phone applications to AVLs generate a dataset with size and richness prohibitively
expensive to match via traditional methods. Collected passively and without any
effort from the user, this data is often more robust to manipulation by conscious
or unconscious biases and provide a signal that is difficult to fake. While we are
convinced of the potential of this data, it is always important to remember that it is
not without pitfalls. It would be illusory to think that all of the old biases or hidden
variables would simply disappear because the data is large. In some cases, data
is only recorded when an individual interacts with a device which may bias when
samples are taken [47]. Similarly it is important to keep in mind that even if it covers
a significant fraction of the population this data might not be representative. Finally,
these data generally come stripped of context. We do not know why an individual

6Hubway Data Visualization Challenge (2012). http://hubwaydatachallenge.org/.
7New York taxi details can be extracted from anonymized data, researchers say (2014). http://www.
theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-
warn.

http://hubwaydatachallenge.org/
http://www.theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-warn
http://www.theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-warn
http://www.theguardian.com/technology/2014/jun/27/new-york-taxi-details-anonymised-data-researchers-warn
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has chosen to move or what they will be doing there. For these reasons, sampling
and robust statistical methods are still—maybe more than ever8—needed to use this
data to augment our current understanding of human mobility while still providing
robust conclusions. We now discuss a number of studies that aim to do just this.

2.3 Individual Mobility Models

Understanding mobility at an individual level entails collecting and analyzing sets
of times, places, and semantic attributes about how and why users travel between
them. For example, on a typical morning one may wake up at home, walk to a local
coffee shop on the way to the bus that takes them to work. After work they may
go to the grocery store or meet a friend for dinner before returning home only to
repeat the process the next day. The goal modeling this mobility is to understand
the underlying patterns of individuals using new high resolution data. While models
have been used to plan infrastructure or public transport, they have also uncovered
insights into the underlying nature of human behavior: we are slow to explore,
relatively predictable, and mostly unique.

Early modeling work draws a great amount of inspiration from statistical physics,
with numerous efforts making parallels with human mobility and random walk or
diffusion processes. One of the used data from the crowdsourced “Where’s George”
project. Named after George Washington, whose head appears on the $1 bill, the
project stamped bills asking volunteers to enter the geographic location and serial
number of the bills in order to build a travel history of various banknotes. As
bills are primarily carried by people when traveling from store to store, a note’s
movement serves as a proxy for human movement. Modeling the bills trajectories
as continuous random walks, Brockmann et al. found that their movement appears to
follow a Levy flight process [8]. This process is characterized by subsequent steps
whose angular direction is uniformly distributed, but whose step-lengths follow a
fat-tailed distribution. While small jumps are most probable, bills have a significant
probability of making long jumps from time to time. These findings are aligned with
observations that humans tend to make many short trips in a familiar area, but also
take longer journey’s now and then.

In 2008, Gonzalez et al. [23] showed that the movement of these bills does
not tell the whole story. Using a CDRs dataset of more than 100,000 users over
a 6 month period in a European country (Fig. 2.2a), they showed that the step-
length distribution for the entire population was better approximated by a truncated
power-law P(�r) = (�r + �r0)

−β exp(−�r/κ) with exponent β = 1.79 and
cutoff distances between 80 and 400 km. This suggests that Levy flights are only a
good approximation of individual’s mobility for short distances.To understand the

8Flowing data—where people run in major cities. http://flowingdata.com/2014/02/05/where-
people-run/.

http://flowingdata.com/2014/02/05/where-people-run/
http://flowingdata.com/2014/02/05/where-people-run/
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Fig. 2.2 (a) Individual mobility trajectories are passively collected from mobile devices [23].
(b) Measuring the distribution of radius of gyrations, rg within a population of 100,000 users in
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Moreover, this distribution cannot be explained by modeling each individual’s movement as
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in new locations visited over time S(t) and that the probability a location is visited next is
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return contributes to strikingly high predictability R(t) over time while (f) the number of unique
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20 J. L. Toole et al.

mechanism that gives rise to this distribution, the authors borrowed a quantity from
polymer physics known as the “radius of gyration” rg:

rg(t) =
√
√
√
√

1

N(t)

N(t)
∑

i=1

(r − rcm)2, (2.1)

where N(t) are the number of observed locations and rcm is the mean location
of the user during the observation period. In essence, the radius of gyration
is a measurement of the characteristic distance an individual travels during an
observation period t . The authors then showed that the distribution of rg in the
population is itself well approximated by a truncated power-law with r0

g = 5.8 km,
βrg = 1.65, and a cutoff of κ = 350 km (Fig. 2.2b). Simulations suggest that
the step-length distribution of the entire population is produced by the convolution
of heterogeneous Levy flight processes, each with a different characteristic jump
size determined by an individual’s radius of gyration. Put differently, each person’s
mobility can be approximated by a Levy flight process up to trips of some individual
characteristic distance rg . After this distance, however, the probability of long trips
drops far faster than would be expected from a traditional Levy flight.

Further investigation by the authors revealed the source of this behavior: the
idiosyncrasy of human movements. Unlike random processes, humans are creature
of habits and tend to returns to previously visited locations such as home or work.
The nature of these returns was also found to follow a very particular pattern. An
individual returns to a previously visited location with a probability proportional
to that location’s rank P(L) 1/L amongst all the places he or she visits. These
non-random, predictable return visits are unaccounted for in random walk and Levy
flight models and have been shown to be at the heart of deviations of observed
behavior from random processes. Additional studies [9] have found similar patterns
in both other CDRs datasets and Foursquare or Twitter check-ins.

Subsequent work by Song et al. [54] further studied how individual-specific
locations need to be taken into account in mobility models. Using a similar CDR
dataset, the authors showed three important characteristics of human behavior. First,
the number of unique locations visited by individuals S(t) scales sub-linearly with
time S(t) tμ where μ = 0.6 (Fig. 2.2c). Second, the probability an individual
returning to a previously visited locations scales with the inverse of the rank of that
location P(L) L−ζ where ζ = 1.2 (Fig. 2.2d), a phenomena labeled as ‘preferential
return’. And third, the mean displacement (�r) of an individual from a given starting
point shows slower than logarithmic growth, demonstrating the extremely slow
diffusion of humans in space. In essence, these finding pinpoint the dampening of
explorative human movement overtime. Long jumps are observed so infrequently
that they do not affect the average displacement of individuals. The authors then
propose a new model of human mobility to capture these three characteristics. The
model is as follows: starting at time t , an individual will make a trip at some
future time �t drawn from a fat-tailed probability distribution measured from
CDRs. With probability ρS−γ , the individual travels to a new, never-before visited
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location some distance �r away, where �r is drawn from the fat-tailed distribution
characterized in the previous model. With probability 1−ρS−γ an individual returns
to a previously visited location according to the inverse rank equation.

These early models do not attempt to recover periodic aspects of movement
(e.g. daily commuting) or semantic meaning of visits (e.g. to visit a friend or go
shopping), or attempt to do so. They do, however, emphasize important statistical
and scaling properties of human mobility and often successfully reproduce them.
Taken together, these models show how we slow we human are in our exploration,
returning more often than not to known places and with less long steps than
predicted by a power-law distribution.

Approaching the problem from the perspective of machine and statistical learn-
ing, another set of models has uncovered and explored another facet of human
mobility: how predictable we are. In [55], Song et al. used information theory
metrics on CDRs to show the theoretical upper-bound on predictability using three
entropy measures the entropy S, the random entropy Srand , and the uncorrelated
entropy Sunc. They then use their empirical distributions to derived an upper
bound on a user’s predictability (

∏max ,
∏rand , and

∏unc). On average, the
potential predictability of an individual’s movement is an astounding 93% and
no user displayed a potential predictability of less than 80%. To further quantify
predictability, the author introduced two new metrics. They defined regularity R(t)

as the probability a user is found at their most visited location during a given hour t ,
along with the number of unique locations visited during a typical hour of the week
N(t) (Fig. 2.2e and f). Both show strong periodicity and regularity. These quantities
have since been measured in different data sets in different cities and countries and
have been shown to be consistent among them [9].

While the previous study provided a theoretic upper bound on the predictability
of an individual, a number of statistical learning techniques have been developed to
make predictions of where an individual will be at a given time. Early work in the
area, predating even analytic computations, used Markov models and information
on underlying transportation networks to predict transitions between mobile phone
towers within cities. These models have been used to improve quality of service
of wireless networks through proper resource allocation [33, 36, 40, 58]. Later
work incorporated various trajectory estimation and Kalman filtering algorithms to
predict movements in small spaces such as college campuses [38, 43].

Temporal periodicity was used by Cho et al. [12] in their Periodic Mobility
Model and social behavior incorporated in the Period Social and Mobility Model.
At their core, these models are mixture models in two-dimensional space that learn
the probability distribution of a user to be at any given location at a given time
from previous location data. The latter also account for the location history of social
contacts. The authors used these models to estimate that as much as 30% of our trips
may be taken for social purposes. Multivariate nonlinear time series forecasting
produced similar results [19, 51] predicting where an individual will be either in
the next few hours or at a given time of a typical day. These models, however, are
all focused on predicting the geographic position of individuals at different times
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and do not attempt to understand what individuals may be doing there or any other
semantics of place.

Though acquiring semantic information about mobility is more difficult than
simply measuring geographic coordinates, it provides a much richer abstraction
to study behavior. In one of the first studies to mine the behavior of college
students using mobile phones, Eagle and Pentland [20] gave a few hundred students
smart phones that recorded not only locations, but asked users to label each place
with its function such as home or work. Applying principal component analysis
to these abstract movements from semantic place to semantic place (as opposed
to geographic movements alone), the authors found that an individual’s behavior
could be represented as a linear combination of just a few ‘eigenbehaviors’. These
eigenbehaviors are temporal vectors whose components represent activities such
as being at home or being at work. They can be used to predict future behaviors,
perform long range forecasts of mobility, and label social interactions [21, 48].
The price paid for such detailed predictions, however, is the need for semantic
information about locations. Geographic positions need to be tagged with attributes
such as home or work in order for them to be grouped and compared across
individuals.

Another approach to studying more abstract measurements of individual location
information comes from recent work by Schneider et al. [52]. The authors intro-
duced mobility motifs by examining abstract trip chains over the course of a day.
A daily mobility motif is defined a set of locations and a particular order that a
person visits them over the course of a day. More formally, these motifs constitute
directed networks where nodes are locations and edges are trips from one location
to another. For example, the motif of an individual whose only trips in a day are
to and from work will consist of two nodes with a two directed edges (one in
both directions). Counting motifs in mobility data from both CDRs and traditional
travel surveys, they find on average individuals visit three different places in a given
day. They then construct all possible daily motifs for a given number of locations
n and compute the frequencies that those motifs appear in human mobility data.
Shockingly, while there exist over 1 million ways for a user to travel between 6 or
fewer locations, 90% of people use one of just 17 motifs and nearly a quarter follow
the simple two location commute motif introduced earlier (Fig. 2.3a). The authors
found similar results in travel survey data and introduced a simple Markov model
for daily mobility patterns which reproduces empirical results.

It is tempting to hypothesize that high theoretical and practical predictability
results from high levels of similarity between individuals in a region. Perhaps the
pace of life, pull of mono-centric downtowns, or the structure of transportation
systems funnel users to the same places and route choices. de Montjoye et
al. [15] explored this hypothesis and found that, while predictable, an individual’s
movement patterns are also unique. The authors introduced unicity, Ep, as the
fraction of traces uniquely defined by a random set of p spatiotemporal points
where a trace T is a set of spatiotemporal points, each containing a location and
a timestamp. A trace is said to be uniquely defined by a set of points Ip if it is the
only trace that matches Ip in the entire dataset. Applying this measure to a CDR
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Fig. 2.3 (a) Removing geographic coordinates from locations and only focusing on a set of unique
places and the directed travel between them, mobility motifs reveal that the daily routines of people
are remarkably similar. Despite over 1 million unique ways to travel between 6 or fewer points, just
17 motifs are used by 90% of the population. Moreover, the frequency of their appearance in CDR
data matches very closely with more traditional survey methods [52]. (b) Despite this similarity
and predictability, our movement displays a high degree of unicity. Just four spatiotemporal points
is enough to differentiate a user from 95% of all others individuals [15]

dataset on 1.5 million users, the authors found that just four spatiotemporal points is
enough to uniquely identify 95% of all users (Fig. 2.3b). The authors further study
unicity when the data is coarsened spatially or temporally. They found E ∼ (v ∗ h)β

unicity decrease as a power function with the spatial (v) and temporal resolution
of the data (h) and that β ∼ −p/100. Taken together, these equations show that
unicity decreases slowly with the spatial and temporal resolution of the data and that
this decrease is easily compensated by the number of points p. High uniqueness in
human mobility traces exists across many spatiotemporal scales. These results raise
many questions about the privacy of massive, passively collected metadata datasets,
but also highlight an interesting nuance of human mobility: though individuals are
predictable, they are also unique.

Merging concepts of predictability and unicity, work by Sun et al. [57] used
temporal encounter networks to study repeated co-locations between passengers
using data from bus passengers in Singapore. Temporal encounter networks were
constructed by connecting individuals if they rode the same bus at the same time.
An average individual encountered roughly 50 people per trip and these trips were
highly periodic, occurring at intervals associated with working hours as well as daily
and weekly trips. A pair of individuals who encountered each other tended to meet
an average of 2.5 times over the course of a week. The distribution of time between
encounters reveals strong periodicity, with passengers riding the same bus to work
in the morning riding the same home, or riding the same bus at the same time each
morning. This finding illustrates the idiosyncrasies of human mobility. We not only
visit just a few places during the day, we do so at the same times and by the same
routes. Though both of these results suggest that our unicity should be low, the
previous work shows us that this is not the case.

In summary, new data sources have allowed researchers to show that, over weeks
and months, human movement is characterized by slow exploration, preferential
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return to previous visited places, exploration of daily motifs, and predictable unique-
ness. These regularities have been used to develop algorithms capable of predicting
movement with high degrees of accuracy and have been shown to mediate other
important processes such as social behavior and disease spread. Individual mobility
patterns, however, are not the only level of granularity of interest to researchers,
city planners, or epidemiologist. Aggregate movement can be either derived from
individual level model or modeled as an emergent, personified phenomena. In the
next section, we discuss works and models which aim at describing and modeling
aggregate movement and flows of many individuals from place to place.

2.4 Aggregate Mobility

Aggregated mobility is used for planning urban spaces, optimizing transportation
networks, studying the spread of ideas or disease, and much more. Perhaps the
largest component in these models are origin-destination matrices that store the
number of people traveling from any location to any other at different times or
by different means. Like many complex systems, aggregate behavior is often more
than the sum of individual parts and can be modeled separately. Additional layers of
complexity are also needed to account for and sometimes explain individual choice
of mode of transportation or route as described by the “four step model” [41, 45].

Like their individual-focused counterparts, many of these aggregate models are
inspired by physical processes. Some of the earliest techniques for estimating origin-
destination matrices are gravity models which have been used to model flows on
multiple scales, from intra-city to international [27, 45]. Borrowed directly from
Newton’s law of gravitation, the number of trips Tij taken from place i to place
j is modeled as a function of the population of each place mi and mj and some
function of the distance between them f (rij ). The intuition is that the population of
a place, it’s mass, is responsible for generating and attracting trips and thus the total
flux between the two places should be proportional to the product of the two masses
while the distance between them mitigates the strength of this connection. In the
fully parameterized version of this model, an exponent is applied to the population

at the origin and destination Tij = a
mα

i m
β
j

f (rij )
to account for hidden variables that may

be specific to local regions or populations. While the classical gravity model from
physics is recovered by setting α = β = 1, and f (rij ) = r2

ij , these parameters are
generally calibrated for specific application using survey data.

Gravity models, however, are not without limitation. First, they rely on a large
number of parameters to be estimated from sparse survey data which often leads
to overfitting and, second, they fail to account for opportunities that exist between
the two masses of people. The latter fault results in the same flow of people being
estimated between two locations whether there is an entire city or an empty desert
between them. Intuitively, one would expect that trips between places would be
affected by the intervening opportunities to complete a journey. These shortcomings
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led Simini et al. to develop the radiation model [53]. Again borrowing from physics
(this time radiation and absorption), they imagined individuals being emitted from a
place at a rate proportional to its population and absorbed by other locations at a rate
proportional to the population there. In this model, the probability that an emitted
person arrives at any particular place is a function of their probability of not being
absorbed before getting there. The model is as follows: Tij = Ti

mimj

(mi+sij )(mi+mj +sij )
,

where Ti is total number of trips originating from location i and sij is the population
within a disc centered on location i with a radius equal to the distance between
i and j . The radiation model does not directly depend on the distance between
the two places, taking instead into account the opportunities in-between them
(Fig. 2.4a). Unlike the gravity model, the radiation model is parameterless and
requires only data on populations to estimate flow. The authors showed that despite
its lack of parameters, the radiation model provides better estimates of origin-
destination flows than the gravity model for areas the size of counties or larger.

Yang et al. adapted Simini’s radiation model to correct for distortions caused at
different scales [67]. They showed the original radiation model’s lower accuracy in
urban environment is due to the relatively uniform density and small distances that
characterize cities. In dense urban areas, distances are all relatively short and an
individual may choose to visit a particular location due to hedonic attributes regard-
less of whether it is convenient to get to or not. Yang et al. subsequently introduced a
scaling parameter α in the function describing the conditional probability an individ-
ual is absorbed at a location. This single parameter was enough to correct for these
distortions and to provide a model that works on any length scale. Moreover, the
authors suggested that for urban areas, the density of points of interest (POIs) such
as restaurants and businesses is a better predictor of the absorption of a place than
its population. Iqbal et al. [31] have demonstrated an improved way to extract valid,
empirical OD matrices from call detail records (CDRs) data to validate the model.

Finally, activity-based models [5] model user intent more explicitly. They
hypothesize that all trips are made to fulfill certain needs or desires of an individual.
Travel and survey diaries are used to identify those needs for different segments
of the population and how they are typically fulfilled. This knowledge can then be
used by the model given the demographics of individuals and environmental factors.
These models are closely related to agent-based models simulating the behavior of
city residents and rely heavily on the idea of economic utility.

From a practical perspective, city planners need to know not only how many
people will go from point A to point B at a certain time of the day but also the mode
of transportation and route choice of these individuals. For example, we would like
to predict which route they will take so that we can properly estimate the stress
placed on transportation systems and potentially optimize performance. Models of
route choice typically assume that individual rationally chose the path from A to B
that minimize some cost function such as total travel time or distance. Paths can be
computed on a road network using shortest path algorithms such as the traditional
Dijkstra algorithm or A-Star, an extension that enjoy better performance thanks to
heuristics. Other information such as speed limits can also be taken into account to
estimate free flow travel times.
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Fig. 2.4 (a) The radiation model accounts for intervening opportunities, producing more accurate
estimates of flows between two places than more traditional gravity models [53]. (b) Routing
millions of trips measured from CDR data to real road networks makes it possible to measure the
importance of a road based on how many different locations contribute traffic to it, Kroad . Under-
standing how transportation systems perform under different loads presents new opportunities to
solve problems related to congestion and make infrastructure more efficient [63]
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More advanced models are needed to account for the impact of congestion as
drivers rarely encounter completely empty freeways. Incremental traffic assignment
algorithms model congestion endogenously [56]. Trips are first split into increments
containing only a fraction of total flow between two points. Trips in each increment
are then routed along shortest paths independently of all other trips in that increment
keeping counts of how many trips were assigned to each road. The travel times are
then adjusted according to a volume delay function that accounts for the current
congestion on a road where congestion is computed as the ratio between the volume
of traffic assigned to the segment and the capacity of the road (referred to as volume-
over-capacity). Trips in the next increment are then routed using updated costs until
all flow has been accounted for. In this way, as roads become more congested and
the travel time increases, drivers in later iterations are assigned to different, less
congested routes. Values of total volume on each road, congestion, and travel times
can then be validated against traffic counters, speed sensors, or data from vehicle
fleets like taxis and busses but also smartphones such as in the Mobile Millennium
project [28, 30, 32, 49].

Wang et al. [63] further explored the use of CDRs as input for these incre-
mental algorithms to estimate traffic volume and congestion. After correcting for
differences in market share and vehicle usage rates, they measure trips by counting
consecutive phone calls of individuals as they move through the city to generate
flow estimates that were then routed. Using this approach, Wang et al. show
the distribution of traffic volume and congestion to be well approximated by an
exponential mixture model. This model depends on the number of major and minor
roadways in a cities network. Using the same approach, the authors describe the
usage patterns of drivers by a bipartite usage graph connecting locations in the city
to roads used by those travelers (Fig. 2.4b). Roads can be defined by the number of
locations that contribute traffic them and places can be described by the roads used
to visit. The “function” of a road can then be classified by comparing its topological
to its behavioral importance. For example, a bridge may be topologically important
because it is the only way to cross a river, but a main street may be behaviorally
important because it attracts motorists from many different neighborhoods. Using
these measures, researchers were able to devise congestion reduction strategies that
target the 2% of neighborhoods where trip reduction will have the largest network
wide effect. They found this smart reduction strategy is three to six times as effective
as a random trip reduction strategy. Further work used this analysis to predict traffic
jams [62, 64].

Private cars, however, are not the only mode of transportation studied. Using
smartphones and AVL data, researchers have been mapping the routes followed
by public transport and even privately owned mini-buses in the developing coun-
tries [11, 18, 50]. Similarly, data on air travel has been increasingly available to
study aggregated mobilities between cities for applications in epidemiology (see
below).
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2.5 Human Behavior and Mobility

While of obvious interest to travelers, urban planners and transportation engineers,
people’s movement strongly impacts other areas. Though by no means an exhaustive
list, we highlight three areas here: social behavior, disease and information spread,
and economic outcomes. Many of these dynamics are discussed in greater detail in
further sections of this volume.

2.5.1 Mobility and Disease Spread

Human movement via cars, trains, or planes has always been a major vector in
the propagation of diseases. Consequently, the human mobility data and models
discussed so far have increasingly been used to study the propagation of diseases.
For example, CDR data has been used to map mobility patterns in Kenya helping
researchers in their fight against Malaria [65, 66]. More recently, CDR and other
data from West-Africa has been used to model regional transportation patterns to
help control the spread of Ebola.9 Finally, air travel data has become central to the
study of global epidemics when planes allow an individual to travel between nearly
any two points on the globe in a matter of hours. The global airline network therefore
often determines how potent an epidemic could be and its likely path across the
globe [3, 4, 13, 42, 44] (Fig. 2.5a).

2.5.2 Mobility and Social Behavior

Intent is a crucial element of human mobility and movement is often a means to a
social end. Despite new communications technologies making it easier than ever to
connect across vast distances, face to face interactions still play an important role
in social behavior whether it is the employees of a company commuting to a central
workplaces or friends meeting at a restaurant on a weekend. The link between social
contacts and mobility has becoming increasingly prominent in research as mobility
data is often collected through mobile phones or location-based social networks.

Using data from an online social-network, Liben-Nowell showed the probability
of being friends with another individual to decrease at a rate inversely proportional
to the distance between them suggesting a gravity model of the form discussed
above [39]. Subsequent work verified Liben-Nowell findings in other social net-
works [2, 24] while Toole et al. [59] showed the importance of taking into account
geography when studying social-networks and how information spreads through

9Cell-Phone Data Might Help Predict Ebola’s Spread (2014). http://www.technologyreview.com/
news/530296/cell-phone-data-might-help-predict-ebolas-spread/.

http://www.technologyreview.com/news/530296/cell-phone-data-might-help-predict-ebolas-spread/
http://www.technologyreview.com/news/530296/cell-phone-data-might-help-predict-ebolas-spread/
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Fig. 2.5 (a) Global air travel has dramatically increased the speed at which diseases can spread
from city to city and continent to continent [44]. (b) Mobility also adds context to social networks.
When two individuals visit the same locations can suggest the nature of a social relationship [60].
(c) Mobility and the access it provides has strong correlations with economic outcomes. Children
have dramatically different chances at upward economic mobility in certain places of the United
States than others [10]

them. Moreover, geographic characteristics can be used to predict the social fluxes
between places [29]. Conversely, social contacts are very useful in predicting where
an individual would travel next [12, 19, 61] and Cho et al. find that while 50–70%
of mobility can be explained as periodic behavior, another 10–30% are related to
social interactions.

Models such as the one proposed by Grabowicz et al. [24] or Toole et al. [60] have
subsequently been developed to incorporate this dynamic and evolve both social
networks and mobility simultaneously. For example, Grabowicz et al. incorporate
social interactions by having individuals travel in a continuous 2D space where an
individual travel’s is determined by the location of their contacts and use location as
a determinant of new social tie creation. The model is as follows: with probability
pv , an individual moves to the location of a friend, and, with probability 1 − pv ,
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they choose a random point to visited some distance �r away. But, while social
ties impact mobility, mobility can also impact social ties. Upon arriving at a new
location, the individual can thus choose to form social ties with other individuals
within a radius with probability p or random individuals anywhere in the space
with probability pc, a free parameter. A simple model is here also able to reproduce
many empirical relationships found in social and mobility data.

2.5.3 Mobility and Economic Outcomes

Mobility not only provides people with social opportunities, it also provides
economic ones. Economists and other social scientists have developed numerous
theories on the role of face to face interactions in socio-economic outcomes and
economic growth. In-person meetings are thought to unlock human capital, making
us productive [22, 34]. For example, jobs in dense cities tend to pay higher wages
than the same jobs in more rural areas even after controlling for factors such as age
and education [68] in part due to productivity and creativity gains made possible by
the rich face to face interactions that close spatial proximity facilitates. Universal
urban scaling laws have been repeatedly found showing that societal attributes
from the number of patents to average walking speed scales with population and
theoretic models have been proposed that suggest density is at the heart of these
relationships [6, 7, 46]. While density is one way to propagate these benefits,
increased mobility is another. Poorer residents of cities have for example been
shown to have better job prospects and higher chances of retaining jobs when given
a personal car instead of being constrained by public transit [25]. Finally, Chetty
et al. [10] found strong correlations between intergenerational economic mobility
and variables related to the commuting times and spatial segregation of people
(Fig. 2.5c). While we are only beginning to explore these relationships, early returns
suggest that mobility is a critical component of many economic systems.

2.6 Conclusion

In this chapter, we reviewed a number of ways new data sources are expanding
our understanding of human mobility. Applying methods from statistical physics,
machine learning, and traditional transportation modeling, reproducible characteris-
tics of human movement become visible. We explore slowly [23, 54], we are highly
predictability [19, 55], and we are mostly unique [15]. Models of aggregate flows
of people from place to place have also found success with analogies to statistical
physics validated by new data sources [53]. More accurate measurements of city-
wide traffic has made it easier than ever to assess the performance of transportation
systems and devise strategies to improve them [63]. Valuable in their own rights,
these insights have informed our understanding of other social phenomena as well,
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leading to more accurate models of disease spread, social interactions, and economic
outcomes. As cities become home to millions for people each year, the insights
gained from these new data are critical for making them more sustainable, safer,
and better places to live.
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Chapter 3
Privacy in Location-Sensing Technologies

Andreas Solti, Sushant Agarwal, and Sarah Spiekermann-Hoff

Abstract Data analysis is becoming a popular tool to gain marketing insights from
heterogeneous and often unstructured sensor data. Online stores make use of click
stream analysis to understand customer intentions. Meanwhile, retail companies
transition to locating technologies like RFID to gain better control and visibility
of the inventory in a store. To further exploit the potential of these technologies,
retail companies invest in novel services for their customers, such as smart fitting
rooms or location of items in real time. In such a setting, a company can not only get
insights similar to online stores, but can potentially also monitor customers. In this
chapter, we discuss various location-sensing technologies used in retail and identify
possible direct and indirect privacy threats that arise with their use. Subsequently, we
present technological and organizational privacy controls that can help to minimize
the identified privacy threats without losing on relevant marketing insights.

3.1 Introduction

The era of sensing technologies has already begun. We use smart devices (e.g., smart
phones, smart watches, smart cars, smart clothes) in our daily lives and we often
cannot imagine life without internet and being online every day. The acceleration
of technological progress offers ever new use cases of sensing technologies.
Organizations that heedlessly implement novel use cases as they become technically
feasible without considering the privacy implications to users or employees risk
losses in reputation and trust [6]. Therefore, it is crucial to be aware of the
privacy implications of the used technologies. Privacy risks caused by the use of
information technology are rooted in operators’ ability to permanently save and link
information about sensed individuals [76, 83]. The anxiety of the general public with
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these technologies is exemplified in newspaper articles that use the term “privacy
snatchers” [16] to refer to organisations monitoring workers or customers.

Throughout this chapter, we will look at the everyday example of how brick-and-
mortar retailers use locating technologies to gain a better understanding of their cus-
tomers. In contrast to online retailers that can tap into a rich source of information
in terms of browsing behaviour of customers through click stream analysis, brick-
and-mortar retailers are only recently investigating location-sensing technologies for
gaining similar insights about the physical movements and behaviours of customers
in shop floors. For example, radio-frequency identification (RFID) technology can
detect with which items customers interact on their shopping trip. An information
that is very interesting for retailers from a marketing perspective. Additionally,
location-sensing technologies enable novel services for customers (e.g., locating
an item, automating checkout). While such services may be interesting for the
company, they often come at the risk of compromising privacy of users. This is
especially the case, as the locating-technologies used are pervasive and do not
generally alert the users when information is collected from them. From the legal
perspective, companies need to avoid unlawful handling of privacy sensitive data.
Otherwise, they risk not only a loss in reputation and trust, but also substantial
fines. In the EU, for example, the new regulation extends the upper limit of fines
for privacy infringements to 20 million EUR, or 4% of the annual world-wide
turnover of an organisation (whichever is greater) [81]. For both organisations
and users it is, however, crucial to be aware of the interplay between different
technologies, the use cases supported, and the direct and indirect privacy threats
entailed by using these novel technologies. In this chapter, we investigate this
interplay to offer an overview and also present privacy controls that can help
to minimise the identified privacy threats without losing on relevant information.
Organisations that use these technologies have the responsibility to make customers
aware about the technologies used and the information gathered by them. The
chapter is organised as follows. Section 3.2 presents use cases that are enabled by
location-sensing technology in the retail sector. In Sect. 3.3, we introduce various
location-sensing technologies and compare them. We also list the privacy threats
that are associated to automated location-sensing. Section 3.4 exemplifies the
interplay of technology, usecases and associated privacy threats in popular scenarios
in retail. Specifically, we focus on RFID and WiFi and their combination. Last, in
Sect. 3.5, we present privacy controls. These controls minimise the possible privacy
threats using location-sensing technologies in different scenarios. We conclude this
chapter in Sect. 3.6.

3.2 Use Cases of Location-Sensing Technologies in Retail

Retailers are interested in improving their service quality to increase customer
satisfaction [72], and in maximising their profits. In this chapter, we focus on how
location-sensing technologies enable location-based services. To clarify terminol-
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ogy, location-based services belong to the general class of context-based services,
where context is defined by Abowd et al. [2] as:

“any information that can be used to characterize the situation of entities (i.e., whether a
person, place or object) that are considered relevant to the interaction between a user and
an application, including the user and the application themselves”

We restrict our analysis to location as one of the most important contextual feature
in this chapter, but also discuss features that can be derived from location-sensing
technology. For a broader discussion on context-aware systems, we refer to the
survey by Baldauf et al. about context-aware systems and their support for security
and privacy [14] and the textbook in the field of ubiquitous computing edited by
Krumm [50].

Location-sensing technologies create novel use cases to increase service quality,
or assist existing use cases by gaining more transparency about the customer
behaviour in the retail environment.

While online retailers rely on a rich information source of customer behaviour
through click-stream analysis to provide recommendations (e.g., by analysing the
online browsing and search histories), brick and mortar retailers are often blind
to their customers’ behaviour in their shops. For decades, they employed market
researchers who would follow customers around in stores to better understand the
needs of customers. With location-sensing technologies, brick and mortar retailers
can automatically gain insights into the interests of customers, and can react to their
location context. We distinguish management use cases, marketing use cases, and
operational use cases.

3.2.1 Management Use Cases

Management is typically interested in the aggregate performance of a store and
the trend of the performance over time. Several performance indicators can be
supported with location-sensing technologies. For some of them, point of sales data
needs to be integrated [18]. Generally, the behaviour before, during and after the
consumption can be defined as product information browsing, consumption and
product usage, respectively [69], and this behaviour information can be collected
using location-sensing technologies. Management use cases include any type of
analysis of this information. We briefly sketch the most important use cases here
that can be based on location-sensing:

Conversion rates One of the simplest location-based indicators are conversion
rates. For example, a measure of interest is the conversion rate of passersby
into shop visitors [17]. Another important measure is the fraction of entering
customers that purchases products. When location-sensing technologies track
customers’ behaviour in the shop, it is possible to gather more fine-grained
information and these conversion rates can be partitioned into product categories
[89]. One example is to measure the number of visitors to a store section



38 A. Solti et al.

(e.g., the area where jackets are on display) and relate it to the number of
purchases that contained the category (e.g., jackets).

Length of stay Other interesting insights that can be of managerial relevance
are length of stay of customers. This measure positively correlates with the
probability of making a purchase (e.g., through impulse buying). Being able to
automatically measure the length of stay as an indicator can help for example to
select background music that increases the length of stay [61].

Queuing times Location-sensing technologies can be used to extract waiting
times of the location data. Of particular interest are the queuing times at service
stations like the point of sales, or also fitting rooms in the context of fashion
retail. Studies show that waiting time influences perceived service quality [51].
Therefore, timely control of these measures is important to balance service
quality and resource utilisation.

Store layout optimisation The optimisation of the store layout is important to
maximise profit [55]. The layout can profit from additional location information
that is available, when customer movement patterns are analysed. Furthermore,
novel layouts can be quickly tested for operational efficiency by analysing the
changes in customer movement patterns.

3.2.2 Marketing Use Cases

For marketing purposes, we consider interactions with the customer. We exemplify
a few location-based use cases here, and refer to the survey of Adomavicius and
Tuzhilin [4] and the handbook by Ricci et al. [71] for more general recommendation
concepts.

Geofencing The idea of geofencing, that is triggering notifications based on
entering or leaving a defined area boundary (i.e., the geofence) belongs to loca-
tion based services [17]. Geofencing in retail environments resembles traditional
market places, where the passing customers heard the voices of the nearby sellers
advertising special deals, when getting closer the their booths. The difference is
that the marketing is now automated, and the customers that are detected in the
defined areas get push notifications on their smart devices.

Context-aware browsing More subtle than getting push notifications, when
entering an area, context-aware browsing changes the services offered when
browsing the web based on the context of the user [20, 29, 63]. In the retail
domain, this can for example be applied to smart screens in the store that react
on the items carried by the customer. Also the online shop offering to customers
accessing the store with their mobile devices can be adapted based on the
customer’s location. Here, changing the order of items or recommendations in
the online shop based on the shopper’s distance to the items.
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3.2.3 Operational Use Cases

Location-based sensing technology enables further use cases besides management
and marketing that support daily operations. We mention some of the more common
use cases in the following.

Preventing theft Location sensing of items in a brick and mortar retail environ-
ment can be used to trigger an alarm, when items pass the boundaries of the
defined shopping area without having checked them out before [86].

Locating products When location-sensing technology [41] is harnessed to track
the whereabouts of products, the primary novel use case is locating the products
in case a client is looking for it. This use case is often supported by RFID
technology based on passive RFID tags, as it is affordable to equip every item
with a unique identifier. In case an item is requested, the system can be asked
about the assumed position of that item, to potentially avoid a time consuming
search, when the item is not at its allocated position.

Replenishing products Location-sensing applied to products has another impor-
tant use case, which is replenishment of items. Typically, an item needs to be
replenished, when items are sold to customers and this type of replenishment
does not depend on location-sensing technologies. However, there are further
reasons for items disappearing from the sales floor, which is referred to as retail
shrinkage (e.g., stolen items). In these cases, location-sensing technologies can
help to detect shrinkage and allow more timely replenishment in that case [27].
Furthermore, if the item is only misplaced, locating technologies can prevent
unnecessary orders of available items.

Path/Layout optimization When multiple tasks need to be performed at differ-
ent locations (e.g., the items of an order need to be collected from different
positions) workers can be assisted to save time and traveled distance by optimiz-
ing their paths through the shop or back room [85]. Location-sensing technology
can assist here to adjust the proposed path to the items and the worker’s current
positions. Also customer paths can be analysed and taken into consideration for
store layout optimization [23].

Waiting time estimation Knowing the expected waiting time at a queue has a
positive influence on perceived service quality (as long as the expectations are
reliable) [51]. A good waiting time estimator in stable systems is asking the last
person that exited the queue about their waiting time. There are systems that
measure the waiting time by requiring customers to draw a number from the
system, when they enter the queue to measure the time. Location-based sensing
allows us to collect the information from the location data and enables the use
case of informing customers about their expected waiting time in front of fitting
rooms or checkout.

Automated checkout Perhaps one of the technically more advanced use cases
that use location sensing is the automated checkout of items at the point of
sale. RFID technology is an enabler for this technology, and mobile applications
installed on smart devices allow identification of customers. Recently, prototypes
for this use case have emerged [87].
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To sum up, the new use cases of location-sensing technology are manifold, and
more and more of them emerge, as combinations of different technologies and
information sources are explored. In the next section, we provide an intuition on
the methods for location sensing and compare technologies that can be used for this
purpose.

3.3 Location-Sensing Technologies and Entailed Privacy
Threats

We first introduce location sensing technologies and compare them to each other.
An organisation wanting to deploy location-sensing technologies has to be aware
of the ensuing privacy issues and legal demands. Thus, we discuss and categorise
privacy issues by focusing, in particular, on concrete privacy threats arising on the
technical level.

3.3.1 Introduction to Location-Sensing Technologies

Location sensing refers to the process of obtaining location information of a mobile
agent with respect to a set of reference positions in a predefined space [35, 56]. The
most common techniques for location sensing are trilateration and fingerprinting. In
this section, we discuss on a high level how these two techniques work and discuss
different technologies with which they can be enabled.

3.3.1.1 Locating Objects by Trilateration and Fingerprinting

Trilateration is a method to determine absolute or relative location of an object
based on measurement of distances from three known points [84]. Figure 3.1
illustrates the process where for an object the distance is known with reference
to three points X1, X2 and X3. With respect to point X1, see Fig. 3.1a, the radial
distance is r1 and based on this information the item lies somewhere on the
circumference of the highlighted circle. Then if we consider the distance from
the second point X2, as shown in Fig. 3.1b, the item can lie on either points of
intersection of the two circumferences, marked by A and B. Finally, if distance
from all the three points is considered, as shown in Fig. 3.1c, then location of the
item can be concluded, marked as B. This illustration works for location-sensing
in a 2D space. If the position of an object is to be estimated in 3D space, we need
a fourth reference point. In practice there are usually imprecisions regarding the
distance to a reference point, which affect the accuracy of the estimated position
[13, 58]. Therefore, more than three reference points are often used to increase the
accuracy.
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Fig. 3.1 Illustration for trilateration

(a) (b) (c)

Fig. 3.2 Illustration for 2-step fingerprinting. (a) and (b) depict the first step for training and (c)
shows the second step for positioning

The process of trilateration can be used in different ways to estimate the location:
For satellite-based applications, estimation is done through measuring the time
taken for a radio signal to travel from the transmitting satellites to a receiver
and then multiplying it with the speed of the wave [68]. For applications like
WiFi and Bluetooth it is done via measuring the received signal strength (RSS),
a measurement of the power present in a received radio signal [90]. Trilateration
generally works well outdoors. But due to obstacles like walls, street canyons, roofs,
floors etc. the radio signals do not propagate linearly and get attenuated indoors. As
a result, accuracy levels for location estimation goes down.

To attain better accuracy, a 2-step process called fingerprinting is used [12]. To
model the attenuation, multiple reference points are considered and parameters (like
signal strength) are calculated for these points. This step is called the training or
calibration stage. The second step is the positioning stage where the parameters
are recorded at the device’s location and these parameters are then compared to
the reference points to estimate the location. In other words, in the training step a
fingerprint for the signals is created and in the positioning stage, the parameters are
measured and compared with the fingerprints to ascertain the location. Figure 3.2
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shows the two stages of fingerprinting for radio signals (such as WiFi, bluetooth
or cellular signals). For the first stage, received signal strength (RSS) is measured
for the radios, Fig. 3.2a shows the distorted radio signal in a field that is attenuated
by obstacles. Figure 3.2b shows the training phase, where measurements at known
positions (for example in a grid) are taken and recorded. Then, in the second stage,
the RSS values are measured for a user (Fig. 3.2c) and compared with the data
collected in the training stage. Thus, by comparing the RSS data with training data,
the location is estimated.

In the following, we describe a multitude of technologies that allow location-
sensing by a system with the help of trilateration and explore their feasibility of
use. As outlined above, We will approach these technologies from the perspective
of brick-and-mortar retail shops.

3.3.1.2 Satellite-Based Location Sensing

Smart devices capable of satellite based navigation have an integrated receiver
to communicate with the satellites. The most commonly used navigation system
as of 2017 is the Global Positioning System (GPS). To get an estimation of the
position, the receiver needs to be in line of sight of at least satellites and solid
objects like buildings, caves etc. attenuate the signals drastically. Hence, satellite
navigation works well outdoors but cannot be used extensively for indoor location
tracking. Also, as there is only a receiver in the devices for satellite communication,
no information is directly transmitted to the satellites or any server. Thus to gain
location information of such a device, a retailer has to request customers to install
an app or visit their website where the device owner (customer) grants the retailer
access to the device’s location.

3.3.1.3 WiFi Based Location Sensing

WiFi technology enables devices to connect to a network wirelessly. Every network-
ing chip or interface in these devices has a unique identifier called media access
control (MAC address) which is broadcasted to wireless access points in range if
WiFi is turned ON in the device. Uniqueness of the MAC address can be used to
ascertain if a WiFi enabled device is in a proximity. For instance, it can be used
to count unique customers (with a WiFi enabled device) in stores [5]. This method
can further be extended by keeping two WiFi access points (A and B) and then
analysing the pattern of movement of customers/devices, such whether A or B has
a higher count or are customers spending more time around A or B etc. This can
further be extended if an array of WiFi access points are setup. In this case, based
on trilateration (similar to satellite-based location sensing systems) and the received
signal strength indicator (RSSI) for each connection, location can be estimated as
well as tracked [57]. Thus, by just measuring the signal strengths and the MAC
addresses, the retails can track location as well as movement of customers who
carry a WiFi enabled device without requesting the customer to install any extra
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application for such a purpose. This only works though if the WiFi is switched
ON in a device. An American fashion retailer, Nordstrom, used this technology in
2012–2013 to track the customers in 17 of its stores [24] and that hampered the
retailer’s brand-image. Though Nordstrom ended WiFi tracking after the protests,
based on the media reports, WiFi tracking is still harnessed in thousands of retail
stores around the world [48].

3.3.1.4 Bluetooth Based Location Sensing

Bluetooth beacons are low-power radio transmitters which send signals in imme-
diate vicinity using bluetooth. Martin, in his article in Harvard Business Review,
refers to beacons as the missing piece in the mobile-shopping puzzle as they allow
precise targeting of customers in a certain area [60]. Using beacons, retails can push
a message, advertisement or even coupons to a customer’s device. Similar to WiFi
based sensing, if a cluster of these beacons are used then RSSI can be analysed for
computing the location of a device [52]. In retail, beacons are currently used for
pushing offers, but places like Eldheimar museum, Iceland use bluetooth beacons
for indoor location sensing [77].

3.3.1.5 Cellular Tower Based

Trilateration or 2-stage fingerprinting can also be used based on the analysis of
RSSI from the cellular network antennas to calculate locations of devices with
cellular radios [42]. Research has shown that by just using four different location
points calculated using the RSSI, more than 90% of the individuals can be uniquely
identified[26]. Thus, just by sensing the location of a device, a few times in a day,
there is a potential to differentiate or uniquely identity that device in a database
of thousands of other devices. This method is not popular in the field of retail,
however, emergency services generally use this information to estimate location of
devices [34].

3.3.1.6 Ultrasonic Waves Based

Interestingly, even speakers/microphones present in smart devices can be used to
track the location. Using ultrasonic sounds (inaudible to humans), it is possible
to estimate distances based on the sound volume of the received signal. Thus,
unlike other technologies they use sound instead of radio signals. Based on the
arrangement, a customer’s device can either act as a transmitter if it generate the
sound signal or as a receiver if it listens to such sounds through the microphone.
However, for sensing location using this technology, retailers need to convince
their customers to install app with privileges to access the microphone and or
speakers. In the recent past, this technology was exploited to provide analytics for
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TV based advertisements [8]. In the advertisements, firstly some unique ultrasonic
sound signals were attached. Secondly, malicious apps were pushed on devices like
computers, tablets and cellphones which were listening and analysing ultrasonic
sound signals 24 hours a day. Based on the analysis of received sound signals,
the company provided rich insights like % of people watching the advertisements
etc. [8].

3.3.1.7 RFID Based Location Sensing

By analysing the RSSI of the RFID tags, it is possible to estimate the rough distance
of the tag from a reader [22]. If an array of RFID readers are used then through
trilateration, location of tags can be estimated. Such systems, tracking location in
real-time are referred to as RFID enabled Real-Time Locating Systems (RTLS) [75].
In retail, RFID tags can be added to loyalty cards, shopping baskets or even with the
items on sale (either as price tags or integrated in the items) [33].Thus, movement
of RFID tags could relate to the movement of people and provide additional insights
to the retailers. In addition to retail, RFID tags have been used in hospitals to track
movement of customers [46] and in schools to monitor the students [49].

3.3.1.8 Comparison of Technologies’ Sensing Accuracy and Prerequisites

Following Table 3.1, based on Hazas et al. paper [42], compares the discussed
technologies based on the requirements, accuracy and ability to track indoors. For a

Table 3.1 Comparison of different technologies for location tracking [43]

Tech Accuracy Indoors Whats tracked Prerequisites for customers to be tracked

Satellite 5–10 m No Devices • Device with appropriate receiver
• Application with location access internet

access
• Internet to share location information

WiFi 10–50 m Yes Devices • Device with WiFi capability
• WiFi turned on

Bluetooth 5–10 m Yes Devices • Bluetooth enabled device
• Some application with internet access to com-

municate with beacons
• Internet to share beacon information

Cell tower 50–100 m Yes Devices • Device with cellular capability
• Some application with access to internet and

network information
• Internet to share network information

Ultrasonic 1–10 m Yes Devices • App with permission to send/listen ultrasonic
signals

• Internet to share beacon information

RFID 1–10 m Yes Tagged items None
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more exhaustive analysis, survey by Liu et al. can be referred where they discuss 20
different solutions for indoor location sensing [56].

For the discussed use cases, Satellite based tracking is not the preferred option
for the retail sector as it does not performs well in indoor conditions. Similarly,
cell tower based tracking has low accuracy which makes it unattractive for the
retail purpose. For Bluetooth and ultrasonic based tracking, the customers, currently
need to install an extra application on their smart devices to enable the retailers for
tracking them. On the other hand, WiFi and RFID based tracking are two options
which do not require any extra application on customers’ smart devices for retailers
to track them. For WiFi, the main limitation is that the customers must carry a
WiFi enabled smart device with WiFi radio turned on. This is increasingly common
as many users want to connect to their home WiFis automatically and therefore
keep their WiFi access enabled on their phones. For RFID, there is finally no user
access activity required. The infrastructure can be set up and used by the retailers
without customer knowledge and involvement. For instance, attaching RFID tags to
shopping carts or simply tagging the shelved products, retailers can locate and track
the movement of customers. Thus, for this chapter, we focus on WiFi and RFID
based tracking as these technologies can potentially be used without any active
consent of the customer.

3.3.2 Associated Privacy Threats

In IT, a threat is commonly defined as a potential cause of an incident that may
result in harm of systems [44]. A privacy threat can therefore be understood as
a potential cause of an incident, which may again cause harm to an individual’s
privacy. We focus on the technical causes or activities resulting in privacy harms
without considering the impact of harm. Impact is subjective and varies on a case
by case basis, depending on the type of data involved, privacy expectations etc.
Thus, first, we discuss the different activities which lead to privacy harms. Second,
we present a general overview about how these activities materialise for RFID and
WiFi based location sensing. For further reading, we refer to extensive survey works
on the topic of privacy threats with RFID and wireless technologies [38, 45, 53, 88].

3.3.2.1 Classification of Privacy Harms

Privacy is defined as an elusive concept [74] and there is a little agreement on how
to define it [62]. As such, this makes it difficult to base the threats to privacy on
its definition. Solove [73] instead of defining privacy, discusses different activities
which lead to privacy harm and classifies them. He categorises the activities that
cause privacy harm in four high level groups which are then further classified into
16 different forms [73].



46 A. Solti et al.

Information collection relates to the process of data gathering
Surveillance—watching, sensing or recording an individual’s activities or
Interrogation—questioning or probing the individual for information

Information processing relates to the activities involving storage of the collected
information, its manipulation and the use
Aggregation—combining different pieces of information about an individual
Identification—linking the information to the identity of individuals
Insecurity—carelessness in protecting the collected information
Secondary Use—using the collected information for a different purpose
Exclusion—keeping individuals unaware about their collected information

Information dissemination relates to the activities involving revealing, sharing
or spreading information about the individuals
Breach of confidentiality—breaking a promise to keep individual’s information
confidential
Disclosure—revealing true information about an individual
Exposure—revealing intimate information such as nudity, grief etc.
Increased accessibility—easing the accessibility of information by third parties
Blackmail—threatening to disclose the information
Appropriation—faking the individual’s identity for mala fide interests
Distortion—disseminating false and misleading information about individuals

Invasion impinging privacy by other means, not necessarily with the use of
information
Intrusion—disturbing an individual’s solitude
Decisional interference—government’s unwanted incursion into an individual’s
decisions about their private life

As such, for the chapter we focus on a retail scenario and so we discuss only the
threats which are directly related to the technology. Thus, we rule out interrogation
and blackmailing as they are not directly related to RFID or WiFi. Also intrusion
and decisional interference are not considered as these are not dependent on the
use of information. We use this classification in the next section to understand the
associated privacy threats. After discussing what can cause privacy harm, let us now
focus on specific technologies, WiFi and RFID to understand how these harms are
materialised.

3.3.2.2 Realisation of Privacy Harms Using RFID and WiFi

For RFID based tracking, companies track the items with RFID tags and then later
associate with the customers. For WiFi, a customer’s device is tracked to estimate
the location. Privacy of customers is compromised not only by sensing the exact
location but also due to processing which combines other data sources as well for
rich insights about customers, for e.g. inferring preferences of customers based on
the time spent in different areas of the store. Thus, we discuss the activities described
by Garfinkel et al. [38] through which privacy can be comprised with the use of
RFID in retail through:
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Action movement of an item triggers an action, for e.g. the disappearance of items
from sensors could yield in an action of a photograph taken

Association individuals are correlated with the RFID tags they interact with, e.g.
customers are associated with items they pick in a store

Location individual’s position is tracked, e.g. in a retail store if an individual
picks an item then movement of the item can give information about location of
the individual

Inferred preferences individual’s preferences are estimated by associating the
carried RFID tags, e.g. if an individual picks up sports garments then RFID tag
of the garment can provide information about the possible preferences of that
individual

Estimation of constellation a combination of several tags used lead to a unique
digital fingerprint [91] e.g. combination of different items can lead to the
uniqueness of the shopping basket, creating unique constellation or group of
items which can differentiate individuals

Transaction transactions or relations can be inferred based on the movement of
tags from one constellation to the other, e.g. individuals shopping together can
be identified if they exchange some products during a shopping trip

“Breadcrumbs” wrong association or association of discarded items can lead to
false inference, e.g. if an individual picks up an item and later discards it then in
case another individual picks up that same item, latter can be wrongly associated
with the identity of the first individual

For WiFi based location sensing, only the customers’ devices can be tracked.
As customers are already uniquely identified based on the devices, estimation of
constellation and associations are not applicable. Similarly, transactions cannot
be identified as device exchange during a trip cannot be analysed and actions
affecting privacy are difficult to trigger. On the other hand, location of the devices
can be tracked, time spent in different sections can lead to inferred preferences.
Breadcrumb threat is still valid if different customers carry the same device at
different times (e.g. families or friends sharing a device, customers selling devices
to others etc.). The activities harming privacy by using WiFi are hence a subset of
the list discussed for RFID. Thus, the classification by Garfinkel et al. provides an
exhaustive list for the ways through which privacy can be possibly compromised
by using RFID as well as WiFi based tracking. Let us now consider some specific
scenarios where RFID and WiFi based tracking is used for the use cases discussed
in Sect. 3.2.

3.4 Analysis of Popular Location-Sensing Scenarios in Retail

We consider different scenarios that are relevant for brick-and-mortar retailers that
plan to use, or already use location-sensing technologies, and are also relevant to
customers confronted with these technologies in their daily life. We introduce the
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scenarios in order of increasing amount of accumulated location information about
customers. Therefore, we first investigate RFID-based scenarios, then turn to WiFi-
based scenarios and last consider the combination of the two technologies. The use
cases supported by these scenarios and the associated privacy threats are outlined
for each scenario.

3.4.1 RFID Locating Systems

The adoption of RFID technology in retail is the subject of a major ongoing
privacy debate. The reason is the combination of three of its technological traits
that raise consumer fears: First, humans have always been afraid of the invisible.
This invisibility is manifest in many kinds of RFID that use chips too tiny to be
recognised by the human eye, and communicate information without a line of sight
through fabrics and even walls. Second, RFID cannot be “switched off”, as other
technologies. Last but not least, RFID technology is expected to be ubiquitously
deployed and present on or embedded in all products and product components
carrying barcodes today. This means that the technology will most likely become
omnipresent in the near future.

Here, we first consider RFID data with statically installed gates and handheld
readers. On an item level, we distinguish two cases. The first case is that an RFID tag
is attached to the price tag of an item, which is typically removed after purchase. The
second case is that RFID tags are integrated into items, such that removal becomes
impossible without damaging the items. We also look at whether additional RFID
enabled interaction points are existing in the retail area. For example, interactive
smart kiosks allow customers to find more information about an item by presenting
it to an attached reader.1

3.4.1.1 RFID Without Integrated Tags and Without Interaction Points

The customer interaction with the RFID system is limited to the checkout at the
point of sales and potential reading at the exit (also electronic article surveillance
(EAS)) gate, illustrated in Fig. 3.3. Sometimes, a customer brings back an item for
returns at the customer centre. In such instances, there are additionally two data
reads (at the EAS gate, and at the point of sales). The data collected through the
RFID system in this case does not contain identifying patterns and only shows that
there were items bought and perhaps returned.

1In the context of fashion retail, these interaction points can be inside the fitting room. Typically
the users can interact there with a touch screen or also a smart mirror [7].
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Fig. 3.3 An illustration of a shopping trip with RFID readers at a point of sales and an exit gate

Supported Use Cases

This scenario shown in Fig. 3.3 does not allow for many customer specific use cases.
Nevertheless, it supports the use case of preventing theft (as outlines in Sect. 3.2.3).
The EAS gates can automatically signal that an item has passed the gate that was not
paid for to alert employees or security personnel. Additionally, as items are tagged
with RFID technology, the use case of locating products (cf., Sect. 3.2.3) becomes
possible. When the replenishment gate between back room and shop floor is RFID-
enabled, the system knows whether items are on the sales floor or in the back
room. Additionally, searching for misplaced items can be facilitated by handheld
RFID scanners that can detect hundreds of items per second. Taking inventory with
RFID technology can be sped up by handheld scanners, or fully automated (e.g.,
by robots). The use case of replenishing products (see Sect. 3.2.3) in case of retail
shrinkage is supported by the updated inventory reports.

Privacy Threats

For this scenario, a major privacy threat arises from not restricting the RFID readers
to only read the company’s tags. This may lead to surveillance and aggregation of
additional information, if there exists no mechanism to block reading of third party
tags. Processing the aggregated information could be considered as a secondary
use if the company is not transparent about it. Identifiers from the third party tags
can lead to indirect identification. This aggregated information can further reveal
more information about the individual through association of purchases with the
unauthorised tag reads [88]. For instance, consider a customer, who carries a RFID
smart card for public transportation, shops in such a store. When she leaves, not
only the items bought would be recorded but also the identifier from the RFID
smart card. This unauthorised read of the card is then a case of secondary use and
the aggregated information leads to surveillance as retailer would gain knowledge
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about her shopping pattern i.e. when all does she visits the store. Additionally, the
unauthorised tag can also be associated with the RFID tags of the bought items
providing a personal identifier for them. Companies like Integrity For You have used
such RFID chips in loyalty cards [19] which leads to the discussed threats if read by
an authorised party.

3.4.1.2 RFID with Integrated Tags

When RFID tags are integrated into items for an increased theft protection level,
they remain in the sold items without removal by the customer. In this scenario,
the retail companies should take measures to deactivate (destroy, or send to sleep)
the integrated tags after purchase [21], especially if the sold items are worn or
carried around by customers. Otherwise the tags can be used to identify customers
at later points in time or track them at other places where RFID technology is
used. It is worth noting that other stores, but also any other organisation employing
RFID-readers, can track people carrying or wearing items with enabled integrated
tags [38].

Supported Use Cases

The supported use cases are the same as in Sect. 3.4.1.1 above (i.e., preventing
theft, locating and replenishing products). However, there is a notable increase in
protection against theft in this scenario [83]. An attacker can no longer simply
remove the price tag from the product, or destroy a tag that is attached to the outside
of the product. As the tags are embedded in the products, their removal becomes
infeasible for most thieves.

Privacy Threats

The threats are similar to that discussed for the previous Sect. 3.4.1.1. However, in
the long run for customers, all threats listed in Sect. 3.3.2.1 exist as the tags can
be read by any interested party for malicious intentions. Some tags can be clipped
[47] or ripped off to ensure they are not read, but such possibilities do not exist in
all kinds of tagging. For instance, if tags are sewn-in with brand labels in garments
then ripping them off might damage the garment. Thus, it becomes difficult to block
the unwanted tag reads.

3.4.1.3 RFID with RFID-Enabled Interaction Points

When interaction points (like smart kiosks, mirrors, esp. in fitting rooms) are
equipped with RFID readers, customers can benefit from more information about
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Fig. 3.4 An illustration of a shopping trip with RFID readers at an interaction point, a POS and
an exit gate

the items of their choice [7]. The scenario is illustrated in Fig. 3.4. From a privacy
perspective, novel information can be gathered from customers. It is possible to
collect the information about items that a person was interested in, but decided to
not buy. This is the case, when the sets of items that are brought to an interaction
point overlap with the items that are finally bought by the customer. Additionally,
the number of visits to the interaction points can be inferred to a certain degree.
Prerequisite is that each subsequent visit to the interaction point has a given certain
overlap in items (e.g., in the case of smart fitting rooms).

Supported Use Cases

Besides the operational use cases mentioned in Sect. 3.4.1.1 (i.e., preventing theft,
locating and replenishing products), this scenario allows for additional managerial
and marketing use cases. The use case of capturing conversion rates (as illustrated
in Sect. 3.2.1) is partly supported in this scenario. In fact, the conversion rates of
items that customers brought to the interaction point can be computed. In this way,
it is possible to separate the items of interest that are also sold from those, that are
interesting but not sold. For marketing, the use case of context-aware browsing (see
Sect. 3.2.2) is supported. That is, the smart screens at interaction points can show the
information pages according to the products detected that a customer brings there.

Privacy Threats

In addition to the threats discussed in Sect. 3.4.1.1, through aggregation of addi-
tional RFID data from interaction points could lead to even richer inferences about
customers. The data discloses details of items that customers interact with which
could be used for other secondary uses. Items brought to the interaction point
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reveal inferred preferences i.e. types of items picked up and brought there and
possibly transactions for the customers shopping together [45]. For example, if
two customers A and B come on a shopping trip then RFID tags would be read
at interaction points as well as at the POS. Aggregated RFID tag reads can provide
information about items which customers picked and did not buy. Also, if there exist
some exchanges of items among the customers then those exchanges or transactions
can also be inferred i.e. if many tags were read for customer A at an interaction
point and then for B at a POS then either both have similar preference or they are
shopping together.

3.4.1.4 RFID Real-Time Locating Systems

RFID real-time locating systems (RTLS) enable full visibility of inventory at all
times. Usually the data is polled in periodic intervals for economic reasons. An
illustration for RFID RTLS is shown in Fig. 3.5. If a retailer deployed an RTLS, it
becomes possible to track customers indirectly by tracking moving items that are
finally checked out [54]. It is theoretically possible to classify item movements into
customer movements and employee inventory actions. For example, a large group
of items moved from one area to the other on the sales floor indicates employee
replenishment or store assortment activity. In contrast, smaller groups of items
travelling through the shop and eventually ending at the checkout counter, could
indicate customer movement. This information can be traced back to the point of
the first picked up item. If customers always carried at least one item with them on
their path, trading that item allows to reconstruct the customer’s path. Furthermore,

Fig. 3.5 An illustration of a shopping trip with RFID RTLS, a POS and an exit gate
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if the customer carries an integrated RFID tag that is technically compatible with
the RTLS, the mentioned correlation anchor is unnecessary. It can be replaced
by the integrated tag. The entire path of the customer can be traced in this case.
Note that even the RFID RTLS data of a store that itself does not offer any items
with integrated RFID tags, could potentially track customers, as they might carry
integrated tags from other organisations.

Supported Use Cases

This scenario supersedes the scenario with only limited interaction points in
Sect. 3.4.1.3. That is, many additional use cases are supported here. The manage-
ment use cases of conversion rates (see Sect. 3.2.1) extend beyond bringing an item
voluntarily to an interaction point to picking up an item. The queuing times (see
Sect. 3.2.1) of customers can be monitored indirectly by observing that items queue
in front of the point of sale. Also the store layout optimisation (see Sect. 3.2.1) can
benefit from the movement patterns of customers through the shop. The marketing
use cases mentioned in Sect. 3.2.2 are not supported directly by this scenario.
However, when interaction points exist in the store (e.g., smart kiosks) these can
offer context-aware browsing that can react on the items present. Furthermore, items
that accompanied the items on their movement paths (e.g., a second picked up item
that was again dropped) can be included in the context. All operational use cases
are supported, except the use case of automated checkout (see Sect. 3.2.3). Notably,
theft prevention (see Sect. 3.2.3) is in place and even suspicious movement patterns
can be detected. For instance, when a product suddenly disappears from the sensing
infrastructure, this might indicate a destruction of a tag. Also, locating products (see
Sect. 3.2.3) is supported to the highest degree, as the system is aware of the locations
in real time.

Privacy Threats

As this scenario supersedes the previous scenario discussed in Sect. 3.4.1.3, here
we can assume that a store is full of interaction points revealing the data. In this
scenario, analysing the movement pattern for a group of items can correlate to the
movement of customers in the store. Thus through estimation of constellations or
groups of items, location information can be inferred for the customers. Thus, in
addition to the threats discussed in previous Sect. 3.4.1.3, the processing of RFID
data threatens exclusion if customers are not made aware of location sensing pro-
cessing. Also, as the analysis for grouping the items or estimation of constellations
is based on correlations, there exists a possibility to infer distorted information.
For instance, wrong relations or transactions can be concluded between customers
if a customer picks up some item left by some other customer (“breadcrumbs”
issue) [53].
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Fig. 3.6 An illustration of a shopping trip with WiFi locating system

3.4.2 Wi-Fi Locating Systems

While RFID systems focus on the identification of (passive) tags, Wi-Fi positioning
systems allow identification of communication devices. These systems allow to
sense the location of smart phones using a cluster of Wi-Fi access points (AP),
as shown in Fig. 3.6. If customers use the wireless network of an organisation,
they leave traces with the MAC address of their device, which constitutes a unique
identifier to track the owner [25]. Even when they do not actively use a wireless
network, the communication devices often send polling requests for currently
available networks. Mostly, this happens even when Wi-Fi is set to disabled on the
devices. These polling requests can be used to locate the source device by means
of triangulation or fingerprinting [3]. To avoid the possibility of being tracked in
this way, recent device operating systems feature a random assignment of MAC
addresses for every new connection of a device to wireless networks. However, a
recent study has shown that these mechanisms are not fully functional yet, and it is
possible to track devices at least over the duration of a visit [80].

In Wi-Fi locating system, the frequency of gathered data points is determined
by the device model and its operating system. The probe request intervals range
from 10 s, when the device is active, to 500 s when the device is inactive [28]. The
granularity of the data impacts the quality of conclusions that can be drawn from it.
The more fine grained the resolution is, the more privacy sensitive the gathered data
becomes [15].
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Supported Use Cases

This scenario is the only one supporting the capturing of the conversion rates (see
Sect. 3.2.1) of passersby into customers that enter the shop. However, there is a
bias, as only the customers that have a Wi-Fi enabled device are reflected in this
rate. The length of stay (Sect. 3.2.1) of customers can be accurately measured, as
customers become visible to the system from the moment they enter a store. As
in the scenario of real-time locating systems based on RFID, the queuing times
can be extracted from the data. Wi-Fi technology can also be used in mobile apps
to support geofencing (Sect. 3.2.2), although for this particular use case Bluetooth
is the more common technology. The use case of context-aware browsing can be
supported at interaction points, by reacting to the areas that a customer visited on
their path before starting the interaction. As far as the operational use cases are
concerned, this scenario only supports path optimisation (Sect. 3.2.3) to a limited
degree, as the customer paths can be seen, but to fully understand what the customers
were looking for in their paths, further information is required. The waiting time
estimation (Sect. 3.2.3) can be supported and displayed to customers.

Privacy Threats

In general, a log for MAC addresses is maintained for technical troubleshooting.
However, the aggregation of unique MAC addresses if used for location sensing,
leads to surveillance as location can be tracked and sensed for every shopping
trip undertaken by customers if they leave Wi-Fi turned ON. Thus, this leads to
secondary use of the collected data. Moreover if there is lack of transparency
regarding the collection and processing of MAC addresses then it also leads to
exclusion. Through the tracked location, retailers can infer preferences of their
customers based on the time spent in different sections of the store. Also, MAC
addresses can provide information about the devices being used customers and
could be used for marketing, for instance is a customer using a new device or a
fairly old device, if it is expensive or relatively cheap etc. For an example of this
scenario, consider a big mall which provides free Wi-Fi. Through the collected
information, one can analyse different paths taken by customers along with the time
spent in certain areas of the mall. This information discloses probable preferences
of a customer e.g. whether she visits more of sports stores, fashion retail store
etc. Additionally, if WiFi location sensing is used by retailers then they can also
understand the movement paths of the customers in their store and time spent in
different sections similar to the mall example.

3.4.3 Analysis of Combinations of RFID and Wi-Fi

The combination of RFID and Wi-Fi data sources is of particular interest. The
scenario is illustrated in Fig. 3.7. The reason is that RFID tags are typically attached
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Fig. 3.7 An illustration of a shopping trip with RFID RTLS, Wi-Fi locating system, a POS and an
exit gate

to items, whereas Wi-Fi is associated with actors (e.g., personnel, customers) inter-
acting with items. In this way, when combining these two sources of information,
it becomes possible to not only track a moving actor, but also track the items with
which that actor is interacting. For example, the items picked up and dropped along
the path are available for analysis.

Supported Use Cases

This combination of data sources enables all the use cases outlined in Sect. 3.2.
Among others, specially tailored personalised marketing campaigns can take items
of interest into account to tailor advertisements, and provide recommendations.
Also, retailers can analyse the paths of customers for optimal shop floor layout,
estimate waiting times, etc.

Privacy Threats

For this scenario, threats are simply a combination of those discussed for RTLS
(Sect. 3.4.1.4) and Wi-Fi (Sect. 3.4.2). First of all, it leads to high level of surveil-
lance as not only the location is sensed and continuously tracked but also infor-
mation about items which are picked and carried or picked and later left are also
associated with the location data. Thus, the aggregated information discloses fine-
grained information about a customer’s shopping trip. This scenario is comparable
to the online cookies for analytics. Analytics cookies provide information about the
browser used, mouse clicks, pages visited, count of visits etc. Similarly, this scenario
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provides information about the device used by a customer, path which they took in
the store, items that were picked up and later bought, items that were picked and not
bought etc. Thus, the scale or level of surveillance is much higher as compared to
the previous scenarios.

3.5 Privacy Controls for Location Sensing Technologies

After having discussed the threats to privacy in different scenarios, we now turn to
legal requirements and technical controls.

3.5.1 Legal Requirements

For the legal requirements, we base our analysis on the upcoming EU General
Data Protection Regulation (GDPR) [81]. The GDPR supersedes the previously
applied EU Data Protection Directive [82] and raises data protection standards by
adapting rules in line with the recent technological developments. Based on the
general principles discussed in the regulation, companies should ensure overall
lawfulness, fairness and transparency for processing along with appropriate security
measures to ensure integrity and confidentiality. Personal data should be only
collected for specified and explicit purpose for establishing purpose limitation.
Then, data collection should be relevant and limited to what is essential such that
data minimisation is achieved. Next, the collected data should be kept accurate and
up to date such that accuracy is ensured. Last, the personal data should be deleted or
anonymised after the purpose has been fulfilled to assure storage limitation. While
ensuring the basic principles for processing personal data, companies have broadly
three different paths to ensure compliance: They can either (1) anonymise the data,
(2) obtain informed consent for processing or (3) perform a balancing act to check
if their processing can be considered as part of their legitimate interests.

3.5.1.1 Anonymisation

ISO defines anonymisation as a process by which personally identifiable informa-
tion (PII) is irreversibly altered in such a way that an individual can no longer be
identified directly or indirectly, either by the PII controller alone or in collaboration
with any other party [1]. For anonymisation of personal data, through the techniques
of randomisation and/or generalisation, personally identifiable part is removed
from data sets. Article 29 in their paper on anonymisation have discussed various
techniques to achieve the non-identifiability of individuals [9]. Along with the
explanation of different techniques they have also provided with strengths and
weaknesses as well as common mistakes and failures related to their use. Like
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the ISO definition, they also emphasise on the importance of irreversible non-
identifiability. If an individual can directly or even indirectly be identified in a
dataset (for instance, through a reference to an identifier such as a name, number,
location data) then that dataset has to be considered as personal data. Hence,
MAC addresses used for Wi-Fi tracking is to be considered as personal data as
individuals can be indirectly identified based on the uniqueness of the devices
carried by them. Similarly, if RFID tags can be associated with customers based
on comparison of fields like timestamps (which are also generally associated with
purchase history) then RFID data also becomes personally identifiable. To remove
the personally identifiable part, in the literature, a lot of techniques have been
defined for anonymisation for example noise addition [32], k-anonymity [78], l-
diversity [59], differential privacy [31] etc. As individuals cannot be identified in a
well anonymised dataset, it falls out of the scope of data protection and reduces the
legal obligations for the companies.

However, it is quite complicated to achieve a level of anonymisation that guar-
antees privacy. Researchers like Ohm have discussed the failures of anonymisation
in ensuring privacy [67]. There exist a number of techniques to de-anonymise data
[64] i.e. reidentifying individuals from a data set which was previously believed
to be anonymous. The complication arises from the tradeoff between utility and
privacy [70]. Higher levels of anonymisation increase privacy but in turn decrease
the utility of a dataset. Thus, it is important to attain an equilibrium where utility and
privacy parameters are well balanced [39]. If anonymisation techniques are chosen
intelligently based on the context (type of data involved) then adequate level of
privacy can be achieved while conserving useful utility of the dataset.

Anonymisation can be used in two broad ways—(1) Collecting information
which is anonymous, (2) Collecting personal information and later anonymising
it for a further purpose. For the first case, the collected information should not be
personally identifiable. Hence, if collected data is considered as anonymous then
companies should ensure that the dataset cannot be linked to existing datasets such
that it is not possible to de-anonymise the data. For the second case, if data is later
anonymised then best available techniques for anonymisation have to follow suit
[66], including a regular inspection of the dataset for potential re-identifiability. This
becomes specially important as location traces using the discussed technologies, in
general, create quite distinct traces for individuals. For instance, Montjoye et al.
found that by using only four different data points for coarse location and time
during a day per individual, 95% of the 1.5 Million individuals could be uniquely
identified [26]. Thus, location data can easily become personally identifiable.

3.5.1.2 Obtaining Consent

If a company values the utility of a dataset with personal information or if anonymi-
sation is not adequately maintaining privacy then it can try to obtain the consent for
processing from datasubjects. For obtaining consent, a company must explain, in a
transparent way, the purpose of processing along with distinguishable information
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on the possibility of withdrawing consent in the future. Being transparent is crucial
since consent must be given in an informed manner. Friedman et al. have developed
a model providing broad guidelines for informed consent provision [36, 37]. Based
on their model, there are six components to be considered:

Disclosure Providing accurate information about the processing along with
harms and benefits involved with the processing. For example, companies should
mention details like what information is collected, who will have access to it, how
long would it be stored etc.

Comprehension Understandability of the information such that individuals are
able to accurately interpret the information disclosed to them. Thus, it is not only
important to provide all the information about processing but to also ensure that
the information is easy to understand for the data subjects.

Voluntariness Ensuring that the action of giving consent is not forced on the
individuals i.e. companies should not make data processing compulsory if data
is not essential for the purpose. For instance, a marketing survey collecting
information on a Pizza delivery service should be voluntary and service of
delivering pizzas should not be affected if a customer chooses not to take part
in the survey.

Competence Mental, emotional and physical competence (capability) of the
targeted data subjects should be considered to ensure that they give an informed
consent. For example, if information is provided such that the font which is
not readable for an average individual then the consent will not be counted as
readability (vision competence) was not properly considered.

Agreement Clear options must be provided for data subjects to provide consent
for the data processing. Moreover, the GDPR adds that the process of revoking
consent should be as simple as giving consent.

Minimal distraction All the above criteria must be met in such a way that
individuals are not unduly diverted from their task at hand. For instance, if a
company asks customers to read a 50 page document before they shop in a smart
store then customers would tend to ignore the information and make uninformed
decisions. This becomes quite challenging to implement as all information
should be provided to customers and at the same time it should not distract them
from their main task. For this reason, the GDPR recommends the use of Privacy
Icons that are simpler to process by users.

After a company obtains an informed consent for processing, the customers must
then be given options to access their data as well as the possibility to rectify some
parts if logged incorrectly. Furthermore, options to erase their personal data or
withdrawing consent for further processing have to be provided, along with ensuring
adequate security in order to ensure compliance with the GDPR. In the context of
security of personal information, pseudonymisation is referred to as a recommended
technique.
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Fig. 3.8 Balancing act for legitimate interests as defined in the GDPR [81]

3.5.1.3 Legitimate Interests

Processing can also be considered lawful if done within the scope of legitimate
interests of a company [10]. Legitimate interests can only be argued when the
following three points are fulfilled:

1. The considered legitimate interests of the company are balanced against the
interests or fundamental rights and freedoms of the data subjects, as illustrated
in Fig. 3.8.

2. Processing is lawful (following other applicable legal regulations).
3. Processing represents a real and present interest. This means that data cannot

just be collected for speculative reasons (i.e. for some future use). Scenarios like
the engagement in conventional direct marketing and other forms of marketing
or advertisement or the provision of IT and network security are two examples
where the legitimate interests argument can be used as a valid legal ground for
the processing. If legitimate interests are used as a legal ground, however, then
a company needs to provide information about its data processing activity in
a transparent way. Also, customers must be given an option to object to such
processing in case they believe that their freedom is negatively affected by it.
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3.5.2 Implementation of Privacy Controls

Technical controls, available in our context, deal mainly with anonymisation to
avoid location data being personally identifiable, pseudonymisation for enhancing
security and transparency to ensure informed consent. Location anonymity is
given, when the location information is dissociated from an individual, while
pseudonymisation links location information to a pseudonym that is disconnected
from the individual [30]. Though pseudonymisation does not provide adequate
promises of privacy and is considered as personally identifiable data, it is still
considered as a recommended technique for ensuring security of personal data along
with other techniques like encryption. In the following, we discuss possible privacy
controls for the outlined scenarios in Sect. 3.4. Note that in all these scenarios,
the location sensing is taking part on the provider side and not on the user side.
Location-sensing system providers should consider implementing these controls to
minimise the associated privacy threats.

3.5.2.1 Privacy Controls for RFID Systems

Blocking Unknown RFID Reads to Ensure Data Minimisation

To ensure data minimisation, companies should collect only relevant data. Thus,
RFID tags, which are not associated with the company should not be read. This
control can simply be implemented by maintaining a whitelist of the inventory of
tagged items that the company owns or issues. More specifically, such a whitelist
includes Electronic Product Codes (EPCs) that are supposed to be in the store
according to the inventory system. This would lead to discarding the reads of
unknown or unexpected EPCs that were not deactivated by other organisations and
could potentially identify individuals. Also, the EPCs of sold items should also not
be read, if the purpose to use RFID in store was mainly to enhance the visibility of
the inventory.

Deactivating/Destroying Integrated Tags in Sold Products to Safeguard
Customers’ Confidentiality

As discussed in Sect. 3.3.2.1, through estimation of constellations, RFID tags may
provide unique personal identifiers related to customers. Thus, to prevent such
threats, companies should either destroy or deactivate the tags. A lot of different
techniques have been discussed in the literature for achieve this [11, 47].
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Securing RFID Enabled Loyalty Cards

If a company decides to put RFID tags in their loyalty cards then the deactivation of
such tags is not longer an option. Read range of 1–10 m also amplifies the associated
privacy threats. In that case, companies should ensure that the chips on the cards
are only using Near-Field Communication (NFC) [65] where the read range is
no more than 1 m and there exist ways to prevent unauthorised reads. Since, read
range for NFC is less than 1 m, it becomes comparatively difficult to read tags in an
unauthorised way.

Anonymisation of Tag Reads for RFID Enabled Interaction Points

As RFID data from RFID enabled interaction points (e.g., smart fitting rooms,
kiosks etc.) can be correlated to items that customers bought (indirectly identifying
them). Hence, RFID data has to be considered as personal data. Thus, companies
can either anonymise the data and remove any personally identifiable information
or obtain an informed consent from the customers for the processing of such
data. For ensuring that the RFID data is anonymous, temporal cloaking (e.g.,
reducing the time granularity from seconds to days) can be applied on the read
RFID enabled items suggested by Gruteser and Grunwald [40]. By making the
time information less precise, the data can be turned into k-anonymous data. k-
anonymous means that individuals’information is sufficiently imprecise in order to
make them indistinguishable from at least k − 1 other individuals. In this way, the
system can still count how often a given article type was brought to interaction
points (e.g., fitting rooms) in a broader time range (e.g., day, week). If temporal
information is cloaked to days, this measure hides the information of the number
and times of visits to the interaction points per individual, maintaining anonymity of
visitors per day. By doing this, the individual level information is lost but marketing
insights about the ratio of fitting room visits and effective sales can still be collected
on an item level. Note that in settings with a high variety of article types, it might be
possible that the assignment of the fact whether a customer was in the fitting room
could still be reconstructed (e.g., if a rare item was sold on 1 day, and there was
also one visit of that outlier item in the fitting room). In that case, it is possible to
increase time censoring to weekly, monthly, or even coarser granularity [40].

Ensuring Transparency for RFID Enabled Interaction Points

To avoid complications with the identifiability of outliers, companies can also rely
on obtaining consent from customers. In that case, informing customers about RFID
readers would be essential to ensure transparency. It can be easily achieved by using
RFID logos at customer interaction points, such as shop entries. To provide a choice,
there should be an option to use a non-RFID based interaction point. Alternatively,
the RFID readers could only read the tags after the customer has confirmed that he
or she wishes to use the underlying smart services.
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3.5.2.2 Privacy Controls for RFID Real-Time Locating Systems

The main purpose of RTLS is to analyse the movement of tagged items. Thus, unless
there is a specific purpose to identify and track customers using the technology,
substantial efforts should be made by companies to avoid identifiability of customers
in a RTLS dataset.

Discarding Historical Data to Ensure Storage Limitation and Data
Minimisation

By only storing the latest position of tags, customer behaviour cannot be recon-
structed. Furthermore, the RTLS information system should not store information
about EPC tags that have been sold, or EPCs of other stores. This can be easily
implemented with a whitelist mechanism. In this way, only the whereabouts of items
currently available for sale in the shop are recorded.

Anonymising RFID Location Data

To make this data anonymous, companies would need to destroy the linkability
between the RTLS and POS data sets. Here, the relation is not only based on
temporal information (relating RFID read timestamps with POS timestamps) but
also spatial information (relating different baskets of items moving around). For
obstructing a correlation of space and time at checkout, temporal and spatial
cloaking can be applied [30] without losing valuable information regarding position
of items. A discussion of privacy-preserving techniques with provable privacy
guarantees is presented in Chap. 5.

3.5.2.3 Privacy Controls for Wi-Fi Locating Systems

Wi-Fi based locating systems can be used for assisting customers for in-store
navigation, analysis of most crowded and least crowded parts of store etc. Paths
are uniquely identified by the MAC-address of the device which is considered as
identifiable data. Simple pseudonymisation by replacing the MAC address by an
identifier (e.g., a hash value of the address) does not suffice, as the data can still
be correlated to individual’s sales data through spatio-temporal overlaps of the
purchase and the visit of the point of sale. However, even applying temporal and
spatial cloaking for the visits on a daily basis is not enough as by looking at data
created by multiple visits of a returning customer, the anonymity of that customer
can be compromised. For example, consider the case where temporal cloaking to a
daily resolution is applied. Looking at only 1 day of records, the customer is hidden
in the anonymity of all the customers that visited that day. However, when looking
at multiple days when that customer made purchases, the customer’s identity is
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only hidden in the intersection of the sets of customers on these multiple days,
which in turn allows singling out customers. Thus, if companies are interested in
analysing location traces of identifiable customers then an informed consent must
be obtained. Otherwise, anonymisation can also be used as it also supports a number
of applications.

Anonymising WiFi Location Data

As even through spatio-temporal cloaking customers can be uniquely identified, we
suggest using new identifiers for every visit instead of a single identifier per MAC
address to disable possible linkability. Also, for anonymising location data, different
techniques are defined in literature. The approach by Tang et al. [79] ensures privacy
as individual’s data is not stored but only anonymous visits to areas are recorded.
An application of this method to Wi-Fi location-sensing technologies means to
only count visits in areas or transitions from one area to another instead of entire
uniquely identifiable paths. Further methods include the framework by Duckham
and Kulik [30], where the authors propose to obfuscate information, that is, increase
the imprecision of location information.

3.6 Conclusion

In this chapter, we first explained how location can be inferred by means of
trilateration or fingerprinting. Subsequently, we discussed potential technologies
that allow us to perform location-sensing. Then, we used the example of a brick-
and-mortar retail organisation to illustrate and discuss the use cases empowered
by location-sensing technologies. We found that many previously existing use cases
benefit from this additional form of information, while some entirely novel use cases
are only possible through location-sensing technologies.

From these use cases, we turned to the threats of privacy that location-sensing
technologies entail and exemplified them in the retail domain after an introduction
into an existing taxonomy and categorization of threats. Therefore, we discussed
popular location-sensing scenarios ranging from only collecting location data at
fixed positions to real-time locating systems that can surveil the entire store area.
Finally, we discussed controls to mitigate the identified privacy threats from the
perspective of the location-sensing system provider and presented controls that the
users have in this setting.

We live in times, where new technologies pop up at an increasing rate and
outperform previous technologies in terms of accuracy and efficiency, sometimes
by magnitudes. It is difficult to cope with the privacy implications of these novel
technologies, as even within a single technology the potential use cases become
apparent only as time progresses. Furthermore, new combinations of technologies
allow for unforeseen use cases. For example, there are first supermarkets, where the
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system fully automatically detects the picked up items and the customers’ identities
by facial recognition to entirely automate checkout and avoid queueing [87].

Therefore, adherence to existing and upcoming legislations, and responsible use
of collected data of organisations is of utmost importance. When new information
gathering systems are implemented in organisations, we need to ensure that privacy
is built in by design, because afterwards it might be too late, and privacy breaches
can dearly cost an organisation in both reputation, trust and also by legal fines. Thus,
we urge the implementers of novel technologies and the users to consider privacy
and ethics throughout their systems and processes.
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Chapter 4
Privacy Protection in Location-Based
Services: A Survey

Claudio Bettini

Abstract Location awareness has enabled efficient and accurate geo-localised
Internet services. Mobile apps exploiting these services have changed our way of
navigating and searching for resources in geographical space. This chapter provides
a classification of location based services (LBS) and illustrates the privacy aspects
involved in releasing our location information as part of a service request. It includes
a discussion about legal obligations of the LBS provider and about ways to specify
personal location privacy preferences. The chapter also provides a systematic survey
of the main approaches that have been proposed for protecting the user’s privacy
while using these services.

4.1 Introduction

A large majority of smartphone users take advantage of apps that provide Location
Based Services (LBS), from weather forecast to map based navigation and search
of nearby resources.1

LBS can be generally described as Internet based services that offer functionali-
ties enabled by the geo-localization of the device issuing the service request. They
belong to the family of context-aware services with the timestamped location and/or
the user trajectory acting as the context information. The service provisioning often
involves performing some spatio-temporal data processing that may consider the
relative distance between users, their velocities, the nearby resources, as well as
spatial constraints such as road networks, or real time events like traffic conditions.
LBS provisioning may also involve data analysis as, for example, discovering the
users’ frequent trajectories.

1Pew Research Center http://www.pewinternet.org/2013/09/12/location-based-services/.
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LBS are not exclusive to mobile devices. Indeed a LBS, for example a local
weather forecast, can also be invoked from a desktop PC obtaining the user position
by IP address geo-coding. However, there is no doubt that their huge popularity is
due to mobile users. Indeed the integration of global navigation satellite receivers
(e.g., GPS) into even the cheapest smartphone, and the availability of very effective
outdoor positioning services that combine GPS with methods based on cellular
and WiFi signal, have made LBS very effective and available to every mobile
user. Indoor positioning is less consolidated than outdoor positioning, but research
advances, exploring the use of technologies like WiFi fingerprinting, BT beacons,
UWB, ultrasound and more, are promising to reach a very high precision and new
LBS are being deployed taking advantage of indoor as well as integrated outdoor
and indoor positioning.

In order to understand the possible privacy threats in using LBS it is important to
briefly review the different types of LBS and their main properties.

4.1.1 A Classification of LBS

We can divide LBS into two broad categories according to their sharing model: (a)
personal services, and (b) social network services. The former provide information
to the user that asked for the service, and typically share the user location
information only with the service provider. The latter are intended to share the user
location information also with a group of users and to receive information based on
other users position and/or the relative distance between users.

4.1.1.1 Personal LBS

Personal LBS can be grouped as follows:

• Navigational services. They typically provide instructions to reach a destination
based on the user position.

• Resource discovery services. They provide nearby points of interest (ATM, gas
station, shop, . . . ) in response to a user location.

• Local traffic/news/weather services. They provide local information based on the
user position.

• Emergency services. They can send operators to the location from which the
request was issued (e.g., road assistance).

• Proximity marketing services. They send ads to a user based on her proximity to
shops or even items on sale.

• Location based personalization/advertising services. Different information/ads
are sent to users depending on their location.

Note that the last two groups follow a push model while the others are usually based
on a pull model.
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4.1.1.2 Social Network LBS

Social network LBS can be grouped as follows:

• Geo-SN posting/check-in services. They allow users to associate a timestamped
position to a resource that they share (e.g., a picture, video, text) or simply share
their current position (check-in). They may also offer resource discovery services
based on the density (or other property) of check-ins.

• Friend finder services. They provide information about the proximity of contacts
or other users of a Geo-SN.

• Workforce management services. They allow coordination and optimization of
mobile workers and items based on their position (e.g., taxi or packages in
logistics).

• Location based games. They engage participants in a game that involves users as
well as resources geographical positions.

The above categorization is definitely not exhaustive, but it provides a good
coverage of currently available LBS.

4.1.2 Privacy Threats in LBS

In this chapter we formally define a privacy threat as follows.

A privacy threat occurs whenever an unauthorised entity can associate with
high probability the identity of an individual with private information about that
individual.

In the context of personal LBS such a threat occurs when the information
contained in one or more requests issued by a given user can be used, possibly
associated with external information, to associate the user identity with the private
information.

In the context of social network LBS the above association can be obtained also
from requests or postings performed by individuals different from the one involved
in the threat [56].

According to some country regulation (e.g., the EU GDPR) any information that
is specifically associated with an individual should be considered private, while
other regulations refer to specific types of information. However, most guidelines
for privacy risk assessment highlight the risk involved in revealing information
on political, sexual, and religious orientation, health, financial assets, or closeness
to specific individuals or organizations. LBS services play a role in this context
because both identity and private information can be directly or indirectly released
through a single or a sequence of LBS requests. LBS requests can reveal, for
example, (a) information on the specific location of individuals at specific times,
(b) movement patterns (specific routes at specific times and their frequency), (c)
requests for sensitive services (closest temple for a specific religious worship),
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(d) personal points of interest (home, workplace, frequent visits to specific shops,
clubs, or institutions). Moreover the above information can also be used to infer
when the individual is not where it is supposed to be (absence privacy [56]), where
it is likely to be at a given hour of a given day, or when and how frequently the
individual met other individuals (co-location privacy [56]).

Unauthorised use of this information exposes the user to several types of privacy
violation risks including unsolicited advertising, discrimination, loss of reputation,
family and work related issues (with divorce and getting fired among the outcomes),
stalking and even exposure to robberies based on absence privacy violations.

4.1.2.1 Adversaries

In the privacy protection literature, as well as in the following of this chapter, the
unauthorised entity that can acquire some data exchanged as part of the LBS and that
may pose a privacy threat is often called the adversary. The LBS service provider
can be considered an adversary if he uses the acquired information in any way
different from what the user has agreed upon. An external entity that tries to break
into the communication channel or into the service provider IT infrastructure and
get LBS requests in transit or stored in a database is another adversary. In social
network LBS, a generic user can be considered an adversary, for example when
he can access a geo-localised post involving a user without his explicit consent.
As it will be clear in Sect. 4.3 many privacy protection techniques require accurate
modeling of the adversary in order to provide guarantees about their effectiveness.

4.1.2.2 Online Versus Offline Data Release

The literature on privacy protection for LBS has considered separately the problem
of protecting privacy at the time a LBS request is sent to the service, and the
problem of privately releasing data from a database where the history of requests
from different users has been stored.

The first case is named online data release and the service provider, as well as
any entity that may get access to the content of the issued requests are considered
adversaries. The second case is named offline data release and the adversaries are
the third parties or any entity that obtain data extracted from the database of requests
stored at the service provider. This can be statistical data (e.g., aggregated counts on
visited locations) or a set of individual data records. Such data is used, for example,
for profiling, mobile advertising, or to refine online marketing strategies.

Online data release is intuitively more challenging, since a mechanism should
be applied at the client side or through a trusted proxy server at the time of each
request issued to the service. This case is also characterised by a limited knowledge
available to this mechanism about the whole set of requests and about the location of
other service users; information that may be useful for some protection techniques.
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4.1.2.3 Single Versus Multiple Data Release

In both online and offline data release we should distinguish the case of a single
data release from the case of multiple data releases. In the case of tabular data (e.g.,
databases) it is well known that the privacy guarantee that a protection technique
can provide on a specific release of the data cannot be considered valid when more
data is released. Similarly for sanitised answers to database queries. Despite each
query answer may be considered privacy preserving in isolation, this is not the case
when considering them together. Intuitively this is due to the correlations between
the releases. It should be clear that this problem is present also in LBS offline data
release, since the dataset involved in each release is indeed (spatio-temporal) tabular
data.

In the case of online data release we can model a threat as a single release when
we assume that the adversary can get access only to a single LBS request, or to LBS
requests from the same user that cannot be considered correlated (someone assumes
this is the case when only sporadic requests are exposed). There are however LBS
that require frequent updates of the user location so that their spatio-temporal
correlation is clear and can lead to trajectory identification. These cases can be
classified as online multiple (or repeated/continuous) data release.

4.1.3 Analysing Privacy Threats

From the definition of privacy threat it is clear how relevant is to understand how the
information exchanged as part of the service can be used to identify the individual,
to infer private information, and to connect the two to obtain the association that
actually leads to the threat.

We have also highlighted the relevance of identifying and modeling the possible
adversaries depending on the sharing model, the service architecture, and the type of
data release. The prior knowledge that these adversaries may have could be joined
with information obtained from the LBS in order to perform a privacy violation.
When multiple adversaries may be involved, we should also consider the case of
their possible collusion.

As explained later in the chapter, most LBS privacy protection techniques
mitigate the risk of privacy threats at an additional cost in terms of computational
and communication overhead and/or decrease of service utility (when location
information is obfuscated to decrease its sensitivity). Since in LBS service utility is
usually dependent on the precision of provided location information, an important
parameter to consider when analysing LBS privacy threats is the precision, in terms
of time and location, required by the service and how the service utility degrades
when the precision decreases.

Table 4.1 reports a simplified classification of LBS in terms of required precision,
single or continuous release, need of explicit identification and main adversaries
(sharing parties). Here we only refer to online data release.
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Table 4.1 A classification of location-based services (SP = Service Provider)

LBS type Req. precision Continuous Explicit identity Adversaries

POI services High No No SP

Weather/news Low No No SP

Navigation High Yes No SP

GeoSN posts High No Yes SP, users

The service required precision is particularly important to verify the adherence to
the principle of minimization recommended by many regulators as we will explain
in Sect. 4.2.1.

Regarding re-identification, a number of LBS require authentication and profil-
ing, and in these cases we can assume that each request can be straightforwardly
associated with an individual, at least by the service provider. In GeoSN, even
in case of using pseudonyms, the information existing in public profiles is often
sufficient to re-identify individuals. For anonymous services we should carefully
consider the re-identification power of the location information transmitted as part
of the request. Continuous or repeated requests may also be exploited to re-identify
since certain frequent trajectories may be unique to individuals and joined with
external information may lead to their identity.

4.1.4 Chapter Organisation

The rest of this chapter is organised as follows. In Sect. 4.2 we discuss regu-
lation compliance and personal preferences as the main requirements for LBS
privacy preservation. In Sect. 4.3 we provide an overview of the privacy protection
techniques that have been proposed in the literature. We conclude the chapter in
Sect. 4.4.

4.2 Compliance with Data Protection Regulation and
Individual Privacy Preferences

When designing a LBS or when assessing the privacy impact of an already deployed
LBS we need to consider the requirements imposed by the data protection regulation
in the countries where the LBS is deployed. Indeed, location privacy protection,
similarly to more general privacy protection, is regulated in many countries. In
addition to adhering to legal obligations, the design and implementation of LBS
should consider also user preferences since different individuals may have very
different opinions about sharing their whereabouts with service providers and other
users. From a service provider point of view, offering personalised privacy control
and transparency through an effective interface may be a competitive advantage.
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In the following we briefly introduce these topics providing some references for
the interested reader.

4.2.1 A Legal Perspective

The regulation framework for handling geo-location data is fragmented within and
across countries, a property unfortunately shared by other types of privacy [30],
but particularly true for this type of data. A preliminary analysis of the type of
location data being handled should determine if the data is associated with a specific
individual and if it is acquired as part of network traffic data. In the first case
regulations about personal data protection apply, and in the second regulations about
data traffic in telecommunication networks also apply. In the following we provide
a brief overview of the regulation concerning personal geo-location data, mostly
focusing on US and EU.

In the recent past, some specific recommendations for geo-location services
have been issued by the EU WP29 Working party, a group of experts and privacy
regulation authorities by the EU member states [48]. However, the recommendations
did not evolve into a specific regulation but were rather considered in the general
data protection regulation. Indeed, in the EU, the principles that should guide the
design of a LBS can be extracted from the General Data Protection Regulation
(GDPR), approved in May 2016 [47]. Some general principles of the GDPR
straightforwardly apply to geo-location data; for example, privacy by design, data
portability, the need of an informed user consent (with few exceptions), and the
right of the individuals to obtain, update, and even delete their own data. Some other
principles can be relatively easily interpreted considering specifically geo-location
data; for example, the location privacy interpretation of the data minimization
principle says that the timestamped geographical position of a user should be
acquired and stored only at the precision required for the service being offered.
This is well exemplified by localised weather/news services that do not require
high precision. Indeed, in a recent recommendation on data processing at work
[49], the EU WP29 Working party states that “The information registered from
the ongoing monitoring, as well as the information that is shown to the employer,
should be minimized as much as possible. Employees should have the possibility to
temporarily shut off location tracking, if justified by the circumstances. Solutions
that for example track vehicles can be designed to register the position data without
presenting it to the employer.” Similarly to minimization, privacy by default requires
the initial location privacy settings of a LBS to be the most protective among
the ones available for the specific service. A useful starting point for browsing
information about the EU privacy legislation is the Protection of personal data web
page on the EU official website.2

2http://ec.europa.eu/justice/data-protection.

http://ec.europa.eu/justice/data-protection
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In the US, privacy is mostly regulated sector by sector. Regarding location
privacy, several U.S. states have enacted laws establishing personal rights. However,
current U.S. statute at the federal level does not provide clear protection of
geolocation information. The bill known as Geolocation Privacy and Surveillance
Act (GPS Act) has been proposed and discussed in congress. As a general principle,
the act prohibits companies from collecting or disclosing geolocation information
from an electronic communications device without the user’s consent. It provides
exceptions for parents tracking their children, emergency services, law enforcement,
and other cases. Regulations have also been proposed to specifically prohibit
development and distribution of “stalking apps,” establish an Anti-Stalking Fund
at the Department of Justice, and take other steps to prevent geolocation-enabled
violence against women. A useful starting point for browsing information about the
US is the Geolocation Privacy Legislation page on the GPS.org website.3

4.2.2 Privacy Preferences

A successful LBS should not only comply with the applicable regulation, but it
should also consider user privacy preferences, and in particular location sharing
preferences. Recent experimental studies suggest that the LBS user population has
rich location privacy preferences, with a number of critical dimensions, including
time of day, day of week, and location [5]. Clearly, another important dimension
is who the information is shared with and the precision of the temporal and spatial
information being shared. Indeed, the sensitivity of being in a location at a given
time is often dependent on the semantics associated with the place, and this can be
perceived differently by different individuals.

User preferences can also change over time, not only because users may become
more confident in the service and trust more other users or the service provider, but
because personal privacy preferences can change based on specific context (e.g.,
being on a tourist trip with respect to being at home, work or shopping).

The study in [36] also highlights differences between users in different countries
in willingness to share location at “home” and at “work” and differences in the
granularity of disclosures people feel comfortable with. Several formalisms to
represent location privacy policies have been proposed (see e.g., [54]). However,
the complexity of control mechanisms offered to LBS users has a clear trade-off
with user experience aspects. Complex policy specification interfaces may easily
lead to users relying on default settings. Examples of graphical interfaces to set
temporal and spatial privacy preferences in mobile location sharing apps can be
found in Locaccino [55] and PCube [18]. Some recent efforts have also focused on
how to minimize the user intervention in setting and updating privacy preferences
in mobile apps using machine learning and other techniques [17, 37].

3http://www.gps.gov/policy/legislation/gps-act/.

http://www.gps.gov/policy/legislation/gps-act/


4 Privacy Protection in Location-Based Services: A Survey 81

4.3 Methods and Techniques for Privacy Protection in LBS

In this section, we present and discuss basic methods and techniques for protecting
user privacy while using LBS. We restrict ourselves to methods that can be applied
online since the focus of this chapter is on providing privacy-preserving online
LBS, such as services to find points of interest (POI), friend finders in geo-social
networks, or online navigation services rather than protecting from the offline
analysis of collected data stemming, for instance, from mobility traces collected
by a mobile network operator.

Previous surveys on location privacy preserving techniques include [7, 8, 20, 31,
33, 35, 58]. In this section we present a systematized updated view of the research
literature in this field.

Protecting user privacy while using LBS implies considering the LBS provider
as one of the potential adversaries. Privacy can be protected in two fundamentally
different ways:

• Location-based k-anonymity. A first approach is to hide the identity of the user
since user anonymity would guarantee also the user privacy. Even assuming that
we adopt effective anonymization techniques for IP addresses and other general
information contained in the LBS queries, the spatio-temporal data contained
in the queries can sometimes re-identify the user. In Sect. 4.3.1 we review the
research work that has focused on avoiding this re-identification.

• Sensitive location obfuscation. Since anonymization is difficult to achieve
and sometimes LBS require user identification for using the service, a second
possibility to prevent private data leakage is to restrict the amount of private
information being released while interacting with the LBS. The potentially
sensitive information that is specifically released through LBS is the information
about the whereabouts of the user: their location at given times. The location may
be sensitive by itself (e.g., because the user was supposed to be somewhere else)
or may indirectly reveal other sensitive information (e.g., religious or political
orientation). In Sect. 4.3.2 we discuss techniques aimed at reducing the sensitivity
of the spatio-temporal data in LBS queries by obfuscating that information in
different ways while trying to preserve the quality of service.

Besides anonymization and obfuscation techniques, we discuss two other classes
of approaches: The first uses cryptographic methods while the second follows
the ideas behind differential privacy to devise techniques that provide quantifiable
probabilistic guarantees independently from the background knowledge that the
adversary may have.

4.3.1 Location-Based k-Anonymity

Anonymity is a general concept not restricted to LBS. So it is a valid question to ask
why anonymization for LBS should be different from, say, anonymously visiting
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Web pages. The answer is in the fact that location information can be used to de-
anonymize users by serving as a so-called location-based quasi-identifier [9], which
joined with some background knowledge that the adversary may have or acquire,
can reveal the user identity. For instance, consider a mobile user called Alice
searching for a hospital in her vicinity through a POI finder service. To this end,
Alice transmits “anonymously”, i.e., without explicitly specifying her true identity
in the LBS request, her IP address—as part of the TCP connection—and current
location to the LBS to enable the LBS to search for nearby hospitals. In this example,
an obvious pseudo-identifier is the IP address of the mobile device of Alice. If the
LBS provider has access to a database storing the IP-address-to-customer mapping
stored at the Internet service provider of Alice, the LBS can reveal the identity of
Alice and might as well conclude that Alice has health problems. Such an attack
exploiting the network address can be avoided by using an anonymization service
like TOR [13] based on onion routing [24], which forwards the request through a
chain of anonymization servers, each one changing the sender IP address for the next
“hop” in order not to reveal the initial sender’s IP address. However, for an LBS this
common anonymization of network addresses is insufficient since the user location
might as well serve as quasi-identifier. For instance, assume that Alice sends the
request from her home location. Using an easily available map and address book or
telephone directory, the LBS can map the home location to Alice’s identity, and if
Alice is the only person living at that place, this mapping will be unique.

A solution to this problem, which has been applied first by Gruteser and
Grunwald to LBS in [25], is the adaptation to the LBS context of the principle
of k-anonymity. In general, the principle of k-anonymity requires that the individual
(here Alice) must be indistinguishable from k − 1 other individuals such that the
probability of identifying her is 1

k
. Applying k-anonymity in the above example

requires the geographic user position to be enlarged to a cloaking region including
k − 1 other users before sending the request to the LBS. This region can be
calculated—in the simplest case—by a trusted anonymization service knowing all
user positions. Then, even in the worst case in which the untrusted LBS provider
can identify all the k users in the reported area, he can only tell that one of them
searched for a hospital, and there is only a chance of 1

k
that this user was Alice.

Obviously, one major challenge of spatial k-anonymity is the calculation of the
cloaking region defining the anonymity set containing k users. Intuitively, the size
of the area has an impact on the service precision and/or the anonymisation cost.
Many different approaches have been proposed to address this problem. Several
approaches use a hierarchical spatial partitioning like quadtrees to associate users
with cloaking areas [4, 19, 25, 45]. Other approaches use space-filling curves [23]
or nearest neighbor (NN) queries with randomization [32] to find groups of k users.

LBS queries generally include timestamps and indeed location-based quasi-
identifiers are formally defined considering spatio-temporal information [9]. This
naturally suggest defenses that generalize time as well as space leading to spatio-
temporal cloaking algorithms. An example of temporal cloaking applied in addition
to spatial cloaking is the CliqueCloak approach, which proposes to temporarily defer
LBS queries [19].
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Seeing all these different approaches, the question arises what essential proper-
ties are required by a secure LBS k-anonymity approach? While we know perfect
security is not achievable, we can summarize the important properties that should
be fulfilled:

• a cloaking algorithm satisfying reciprocity;
• a mechanism to take correlations among multiple requests into account;
• a trusted anonymizing service or a distributed approach;
• a formal proof that the mechanism is safe with respect to specific assumptions on

the adversary’s background knowledge.

The last property is the most critical simply because it is difficult to make realistic
assumptions on the adversary’s background knowledge. This is the main motivation
behind the investigation of methods based on the notion of differential privacy that
aim at solutions with probabilistic guarantees independent from the adversary’s
background knowledge. They will be discussed later on, while we now focus on
the first three properties.

4.3.1.1 Reciprocity

Considering the first property, it is reasonable to assume that the adversary knows
the algorithm for calculating the cloaking region. Then, all the spatial cloaking
algorithms should prevent the adversary to use the resulting cloaking region and
the algorithm to exclude possible locations of the individual within the region (or
equivalently exclude any of the k individuals in the anonymity set). This property
has been independently identified and named reciprocity by Kalnis et al. [32] and
inversion by Mascetti et al. [43]. Intuitively, a cloaking algorithm C satisfies this
property if each point contained in any cloaking region r computed by C is mapped
to r itself.

In the case of k-anonymity, if reciprocity is not fulfilled, the adversary could
identify the actual query issuer by executing the algorithm for each of the k users’
position and comparing the resulting cloaked region with the one actually received.

4.3.1.2 Correlation Among Multiple Requests

Besides only considering a single query, also correlation attacks based on com-
paring cloaking regions and anonymity sets from multiple subsequent queries have
been considered. Bettini et al. [9] first identified attacks based on correlating sub-
sequent requests from the same anonymous user and intersecting the corresponding
anonymity sets; They introduced the notion of Historical k-anonymity. Cloaking
algorithms satisfying this property have been designed [43], despite experimental
evaluations show that they can deal with very limited temporal sequences of requests
after which they need mechanisms to safely change pseudonyms or use other
methods to break the correlation.
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4.3.1.3 The Diversity Problem

A different form of correlation, based on observing queries from different users, also
shows the limits of the basic approaches to spatial k-anonymity. The reason follows
the motivation for the introduction of l-diversity in data privacy [40]. Bettini et al. [6]
illustrated the diversity problem in location k-anonymity by the following example
and proposed a way for a trusted anonymiser to compute anonymity sets that avoids
this problem.

Consider the LBS user Jane, that is in her office inside a building and she does
not want her identity to be associated with the LBS she is requesting. Hence she
uses a location k-anonymiser to avoid being re-identified through the coordinates of
her own office. Suppose it is known that only Jane and Tom are inside that building
at that time. Since she is happy with 2-anonymity, her location is cloaked to the
area of the whole building. Suppose that by chance, Tom also asks for the same 2-
anonymous service. Since the algorithm satisfies reciprocity the same cloaked region
is used in the two requests.Then, the LBS provider, or any adversary that can see the
anonymised queries, even if he does not know which of the two requests was sent by
Jane will know that Jane (and Tom) asked for that (sensitive) service.

A slightly different notion of location l-diversity is introduced by Bamba et al.
[4] for the case in which the location information in the LBS queries is not re-
identifying but it is sensitive information.

Consider the LBS user Bob searching for a nearby taxi through a POI finder.
Assume that Bob is currently located at a hospital. Even if there are k − 1 other
patients at the hospital, a LBS query from Bob’s current location (the hospital)
would reveal that Bob might have health problems. The problem here is that all k

users are located at the same sensitive location (hospital).
To avoid such inference, their PrivacyGrid approach applies spatial cloaking so

that l different symbolic addresses (e.g., hospitals and other types of locations) are
within the same cloaking region.

4.3.1.4 Trusted Anonymiser or Distributed Anonymization

Using a centralized service to calculate a cloaking region containing k potential
users requires this service to be trusted, and introduces a potential bottleneck
and single-point of failure with respect to availability and—more importantly—
privacy. In particular, a compromised anonymization service reveals all true user
positions. Therefore, decentralized approaches for spatial k-anonymity based on
Hilbert space-filling curves have been proposed by Ghinita et al. [22, 23], to
calculate anonymity sets distributedly between a set of “peers”. Further distributed
peer-to-peer approaches have been proposed, e.g., based on measuring the distance
to other peers using WiFi signal strength and a scheme for distributively calculating
the cloaking region by peers without revealing precise location information to other
peers [29].
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Among the proposals that do not require a trusted anonymiser, Kido et al. [34]
proposed to locally generate, for each LBS query, a set of position dummies (fake
locations) as the locations of other users and sending them to the LBS together with
the true location. This is equivalent to issue multiple LBS queries for each original
query. The results form the service are then locally filtered to retain only the ones
related to the correct user location. The intention of the authors is to achieve a form
of k-anonymity using k − 1 dummies, but the limited local knowledge does not
guarantee that the generated fake positions are actual position of other potential
users. Moreover, the adversary may use public information about geographical and
street network constraints to exclude some of the dummy positions. The SybilQuery
technique by Shankar et al. [51] follows the same approach, but it improves the
quality of the dummies by using locations with similar traffic conditions, exploiting
a database containing historic traffic, and traffic restrictions like one-way streets.
However, the technique has similar limits.

4.3.2 Protecting Location Information by Obfuscation and
Perturbation

In contrast to the anonymization techniques discussed in the previous section,
obfuscation techniques do not try to hide the identity of the user. Indeed, there
are several LBS requiring authentication and others for which the identity may be
easily derived from other information in the request. Instead, these techniques aim at
blurring or perturbing the location information contained in LBS requests because
of its potential sensitivity.

As an example, the precision of location information can be decreased by trans-
lating precise point coordinates to geographic regions; Analogously, the precision
of the temporal information usually associated with location can be decreased
by converting precise timestamps into time intervals. Note that, as opposed to
anonymity approaches, in this case the location is not enlarged in order to include
other potential users, but to decrease the sensitivity, for example by including
different types of semantic locations. This is a fundamental difference between the
two protection approaches.

Although most approaches reduce precision by using areas that contain the user
location, some approaches also reduce accuracy by sending a fake location, which
might be specified very precisely, e.g., as a point coordinate, but deviates from the
true user location.

Sending to a LBS inaccurate location and time information may impact the
quality of service (QoS) of the LBS. For instance, searching for the nearest
restaurant through an LBS might yield different (imprecise) results when given a
larger obfuscation area rather than the precise position of the user. However, the
QoS of the final result can be improved by post-processing imprecise or inaccurate
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results returned by the LBS by the same agent that performed the obfuscation, as
for example, the app on the user’s smartphone.

As a positive property compared to anonymization, obfuscation typically
does not require an additional trusted infrastructure like, for instance, a trusted
anonymization service as used by the centralized k-anonymity approaches discussed
above. Instead, obfuscation (and answer filtering) can be performed on the user
device alone, possibly assisted by some locally available information like maps.

Similarly to anonymity, an obfuscation defense should satisfy reciprocity, i.e.,
we must assume that the adversary knows the obfuscation algorithm, and it should
be proved that this knowledge would not lead to any privacy leak. For instance,
assume a naive deterministic obfuscation algorithm that simply creates a circular
area centered at the true user position. Obviously, in this example an adversary
can simply revert the obfuscation since the distribution of the user position is very
skewed with a 100% chance of the user being at the center of the circle. Therefore,
one of the challenges in designing a defense is to devise an algorithm withstanding
attacks calculating the probability density function of the user location.

Jensen et al. [31] provide a good survey of obfuscation based techniques. In the
following we summarise these techniques by grouping them as follows:

• Query enlargement techniques
• Dummy based techniques
• Coordinate transformation techniques

4.3.2.1 Query Enlargement Techniques

We group in this class all techniques that instead of including a specific location
(and time) as part of the LBS query, they include a geographical area (and a time
instant/interval) often called obfuscation area.

Ideally, the distribution of the user position within the spatio-temporal obfusca-
tion area should be uniform not to give the adversary any hint about where the user
might be located. However, this is not trivial to achieve since spatial constraints
like streets, buildings, lakes, or forests might increase or decrease the probability of
users being located in some parts of the obfuscation area. Correlations with other
queries could also rule out some spatio-temporal areas.

A representative obfuscation approach based on transforming user positions in
circular areas by applying a set of operators is the one proposed by Ardagna et al.
[3]. The obfuscation operators can enlarge the circle, shifting the center of the circle,
and shrinking the circle; the effects of applying these operators on the probability
distribution of the user position is analyzed. Randomness can be introduced, for
instance, by shifting the circle into a random direction. That work has been also
extended by the authors considering background knowledge such as maps that might
assist an adversary to find locations within the obfuscation area where the user might
be located with higher probability. The obfuscation area is adapted, for instance, by
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increasing the radius of the circle, to compensate for the constraints given by a map
leading to a non-uniform distribution over the obfuscation area.

Damiani et al. [12] also considered background knowledge in their obfuscation
approach modeling the fact that positions are not uniformly distributed. Beyond this,
they also considered the semantics of locations for calculating obfuscation areas,
leading to different sensitivity of locations from a user’s perspective. For instance, a
user might not want to disclose that he is currently in a hospital, thus, the obfuscation
area should include other non-sensitive locations leading to a low probability of the
user being located in a hospital.

Spatial k-Group-Nearest-Neighbor (kGNN) queries over obfuscated location
information are in the focus of [27]. Such a kGNN returns the “meeting point”
minimizing the aggregated distance to all group members. For instance, an LBS
could propose a restaurant minimizing the travel distance of a geographically
distributed group of people. The privacy objective here is not to reveal the precise
location to the LBS nor to other group members. To this end, each group member
obfuscates his location by a rectangular area, which is sent to the LBS. Given
imprecise locations of all group members, the LBS can only calculate a candidate
set for the kGNN. This candidate set is post-processed by each group member
sequentially to calculate the final kGNN.

A computational method that can be used both for anonymization and obfus-
cation through query enlargement has been presented by Mascetti et al. [42].
The method is agnostic about the semantics of the generalization function (for
anonymity the semantics concerns the number of candidate individuals in the region,
for obfuscation it may be the size of the area, the type of the area, the number
of different pubs, etc...). Moreover, as opposed to most reciprocity-safe methods
for finding generalized regions, it does not partition the space but uses an efficient
bottom-up approach to find for each LBS query its generalised spatial region, called
Safebox.

The trade-off between QoS and privacy as achieved by obfuscation is studied
by Cheng et al. in [1]. Obviously, the definition of QoS essentially depends on the
service offered by the LBS. In this work, the authors consider spatial range queries
as a primitive frequently used by LBS. The authors assume that both the location
of the query issuer as well as the locations of the queried objects, are obfuscated.
In that case, answers to the range query are probabilistic, since some obfuscated
locations might overlap with the queried range, and a precise answer by the LBS
about the object being inside or outside the queried range is not possible.

4.3.2.2 Dummy Based Techniques

The idea of generating fake user positions proposed by Kido et al. [34] for k-
anonymity can also be used to hide a possibly sensitive user location. The generation
algorithm in this case has a different goal: the fake position should not resemble the
position where another potential user is located, but it should be a non-sensitive
location where the actual user could be. For example, instead of reporting a medical
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facility, the address of a grocery store across the street (or a set of such locations)
is reported as the current location in the LBS query. Several dummy generation
algorithms in this category are proposed by Lu et al. [39].

Related to dummy locations is the approach proposed by Duckham and Kulnik
[14]; They show how to apply obfuscation to graph models. Graph vertices model
locations, including the current user location, while edges model connections
between locations such as roads, which can also have a weight to model some notion
of distance. In their approach, the current location is obfuscated by sending as part
of the LBS query a set of vertices representing dummy locations plus the actual
location. Clearly, the more elements are contained in the set, the more imprecise is
the obfuscated location. The LBS answers to proximity queries asking for the closest
resource by performing computations on the graph model. The authors propose
a negotiation protocol by which the LBS can ask for a smaller set of candidate
locations in order to improve the quality of service.

Finally, the SpaceTwist approach by Yiu et al. [61] addresses the location privacy
problem in answering k-Nearest-Neighbor (kNN) queries with a dummy-based
progressive retrieval technique. Indeed, it generates a single dummy location called
anchor and communicates only that location to the LBS. The distance of the dummy
location from the real one is a parameter and it determines the achieved level of
privacy. The SpaceTwist algorithm incrementally queries the LBS about the nearest
objects for the same given anchor. These results are then filtered on client-side to
find the actual k nearest neighbors for the true user position.

4.3.2.3 Coordinate Transformation Techniques

Another obfuscation method that has been explored is coordinate transforma-
tions [26]. Instead of creating obfuscation areas or dummy locations, coordinate
transformations change the complete coordinate reference system using geometric
transformations such that transformed coordinates cannot be interpreted by the
adversary with respect to a “real-world” location on earth. However, the transforma-
tion should still allow for the LBS to answer the queries. For example, a friend finder
service should still be able to evaluate proximity, i.e., the transformation should, at
least approximately, preserve the distance. For instance, in [26] the authors outline
how to use coordinate transformations for implementing basic spatial queries such
as position queries, spatial range queries, and to detect spatial events such as “on
entering area” or “on meeting” events. The idea is that the LBS managing mobile
user positions performs query processing on transformed coordinates, while the
transformation rules serve as shared secret between a user and other users or services
with whom the user wants to share his location.

The essential challenge for coordinate transformation approaches is that an
adversary can exploit background knowledge like maps and spatial distributions
of locations to revert the transformation, i.e., to find the original location on earth
given the transformed coordinates. In [38], the authors analyze distance preserving
transformations as proposed in privacy preserving data mining. They conclude



4 Privacy Protection in Location-Based Services: A Survey 89

that approximate locations of users can be inferred based only on partial relative
distance information and publicly available background knowledge about mobile
object distributions. A specific attack to LBS protected by distance preserving
transformations has been shown to be practical by Mascetti et al. [41].

4.3.3 PIR and Cryptographic Approaches

Private information retrieval (PIR) and cryptographic methods, namely, encryption,
cryptographic hashing, secret sharing, and secure multi-party computation have
also been considered to implement privacy-aware LBS. The basic objectives of
these approaches are the same as for the approaches discussed above, namely,
anonymity and sensitive location protection. However, by applying proven crypto-
graphic methods, these approaches strive for stronger, provable privacy guarantees.
The essential challenge is to allow for efficient processing of spatial queries at
the LBS provider, although location information is not available in plain text
to the provider (encryption and hashing methods), or despite the computational
complexity of the cryptographic method (private information retrieval, secure multi-
party computation).

Ghinita et al. in [21]. apply the concept of Private Information Retrieval (PIR)
to an LBS implementing spatial nearest neighbor (NN) queries. The general idea of
PIR is to privately retrieve data from a database without revealing which information
has actually been requested. Applied to spatial NN queries, the goal is to retrieve
the objects (POIs) nearest to the query issuer without revealing to the LBS which
spatial region has actually been queried by the user. A naive solution would be to
query the whole database, i.e., all POIs, however, obviously the overhead would be
very high. Informally, PIR reduces this overhead by sending an encrypted query to
the LBS not revealing what entry has been queried, but allowing the LBS to return a
result significantly smaller than the whole database to the client, which then can be
used by the client to calculate the value of the actually queried database entry. For
mapping POIs to database entries, the authors use space-filling curves to preserve
the spatial proximity required by NN queries. Khoshgozaran and Shahabi [33]
provide a comprehensive survey of PIR approaches to LBS privacy preservation.
Despite the solid theory, the PIR techniques have not yet been proven practical and
scalable mainly for efficiency reasons.

In the application area of social network LBS, and in particular friend-finders,
secure multi-party computation (SMC) has been used to implement protocols for
computing proximity [62]. More generally, the basic objective of SMC is to jointly
calculate a known function (e.g., proximity) by n participants, each participant
providing a secret input to the function (e.g., position), without revealing the secret
input to the other participants.

A cryptographic approach targeting location privacy in friend-finder services
has been proposed by Mascetti et al. in [44]. The objective of this approach is
to allow participants to issue queries to a central service for finding all friends
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within a given distance, while hiding to the service provider any information about
their position and proximity of other users. Their method also allow the user to
control the precision of the location information released to friends. To this end,
proximity is computed by using a combination of cryptographic hash functions
and SMC exploiting the commutative property of an encryption function. Location
information is encrypted at different levels of granularity so that, according to
privacy preferences, friends will only be able to infer the user’s position with a
given approximation. The system has been implemented in a prototype app, called
PCube, that has been available both for iOS and Android devices.

Another cryptographic approach is based on the concept of secret sharing. The
basic idea of secret sharing is to split a secret into a number of shares, say n.
The secret can be revealed if a certain number of shares, say t , are known (so-
called (t, n)-threshold scheme [50]). This concept is applied in [57] to implement a
distributed location service managing locations of a user population and providing
a set of LBSs with location information. To this end, locations—which can be
geographic or symbolic locations—are defined as secrets. n shares are generated
per location and distributed among n different servers. Consequently, in order to
reveal the location, an adversary has to break into t servers, thus, avoiding a single
point of failure. Moreover, by using a multi-secret sharing scheme, this approach
supports providing location information of different precision levels, corresponding
to a multi-secret, to different LBSs querying the location service.

4.3.4 Differential Privacy Approaches

Considering the difficulty of providing formal privacy guarantees independent from
background knowledge for anonymity and obfuscation based approaches as well as
the costs and applicability limitations of cryptographic approaches, a new type of
methods has been proposed inspired by the success of the differential privacy notion
in statistical databases.

Differential privacy has been introduced by Dwork [15] in statistical databases
as a general method for the privacy preserving analysis of tabular personal data. The
intuitive idea behind differential privacy is the following: Given two databases that
differ only for the second including an additional record about an individual that is
not present in the first, the information separately extracted from the two databases
with a differential privacy method will not be significantly different. In other words
the result of the analysis will be independent from the presence of information about
the specific individual, hence it cannot be used in any way to violate her privacy.
The way this result is achieved is by probabilistically inserting noise in the data.
We refer to the original paper and to the rich literature on this topic, including other
contributions in this book, for a formal definition and technical properties.

Differential privacy had a significant impact also on location privacy with natural
applications to the offline analysis of location data, as in answering counting
queries on a large dataset of user positions [11]. He et al. have also shown how
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to use differential privacy methods to synthesize mobility data based on raw GPS
trajectories of individuals while ensuring strong privacy protection [28].

4.3.4.1 Differentially Private Methods for LBS

A more challenging task has been adapting the principles of differential privacy to
online data release in LBS. (D, ε)-location privacy, illustrated by Elsalamouny and
Gambs [16] results from adapting the adjacency relation in the standard differential
privacy to the domain of locations. Two locations are considered “adjacent” if
the distance between them is less than a predefined value D. In this context, a
mechanism satisfies(D, ε)-location privacy if the (log of) the ratio between the
probabilities of obtaining a certain output, from any two adjacent locations is at
most ε. This property guarantees that the distinguishability between the location of
the user and all the points that are adjacent is always restricted to a certain level
quantified by ε.

A similar extension of differential privacy introduced by Andres et al. [2] is
ε-geo-indistinguishability in which the bound on the distinguishability between
two arbitrary positions increases linearly with the distance d between them. This
means that the (logarithm of) the ratio between the probabilities of obtaining a
certain output from two locations is at most d, which provides a low level of
distinguishability (i.e., high privacy) between neighboring positions. In contrast, a
higher level of distinguishability (i.e., low privacy) occurs for points that are further
apart.

Analogously to the original differential privacy proposal, the way to achieve these
properties is by inserting noise. In the LBS case this is done by probabilistically
determining a fake location that replaces the real location when performing the
LBS query. Different randomization functions can be used as long as they allow
to prove the desired differential properties [16]. In the original proposal of ε-geo-
indistinguishability planar Laplacian noise is used. The investigation of alternative
randomization functions with more favorable trade-offs between privacy and utility
is an active research area.

Finally, analogously to what we have seen for anonymity and obfuscation,
differential privacy methods also have to deal with multiple (sequential) release
of data and, more generally, with correlations that an adversary may exploit. A
composition theorem for differential privacy says that we should consider the sum
of the ε values associated with each release in the sequence. When considering
LBS that require frequent or continuous queries this seems to imply that we would
quickly reach unacceptable values of ε. A result consistent with what has been
experimentally observed with the spatial cloaking for anonymity. An Interesting
work on protecting locations from temporal correlations under differential privacy
has been done by Xiao et al. [59, 60].
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4.3.4.2 Analysing Trade-Offs Between Protection and Utility

The major critic to differential privacy is on the practical utility of the resulting
mechanisms since keeping the ε parameter low happens at the expenses of the
utility of the resulting query answers, which in the domain of LBS is the quality
of service. A number of research efforts are directed to investigate this problem
[10]. A natural question that still has no clear answer is what value of ε provides
a good level of privacy. More theoretical work considers as good values close to 1,
while applications seem to use quite higher values.

As part of research on finding optimal trade-offs between privacy and utility,
Shokri [52] proposes a game theoretic approach to find an optimal location protect-
ing mechanism while respecting each individual user’s service quality requirements.
Protection is achieved by a combination of differential privacy and distortion
functions.

The application of game theory cited above for finding optimal trade-offs
between privacy and quality of service has also been extended to deal with multiple
releases, i.e., sets of queries that may reveal location traces [53].

4.4 Conclusions

In this chapter we provided a classification of the many location based services that
are being offered today, and we illustrated the privacy threats that their users may
face when using these services.

An important message that we would like to convey is that in order to understand
if a given privacy protection method is adequate for a given service, it is necessary
to carefully analyse the service in terms of the information being exchanged, the
service architecture and the different parties to which the information is exposed,
as well as to evaluate the requirements in terms of location data accuracy in
order not to degrade the service quality. We also highlighted the importance of
modeling the adversaries in terms of their access to LBS queries (single or multiple
queries, sporadic or continuous) and in terms of the prior knowledge that they may
have or acquire, including the knowledge of the privacy preserving algorithm and
parameters.

In this chapter we also briefly reviewed the legal framework and personal privacy
preferences as hard and soft requirements to be considered in the design of a
defense technique. Finally, we provided a survey of the technical solutions proposed
for on-line protection of LBS queries, hence focusing on techniques that aim to
protect personal data before they reach the service provider, as opposed to offline
techniques that aim at protecting the release of datasets from LBS providers to third
parties, typically for statistical analysis. Other chapters in this book provide a deeper
coverage of some of the approaches illustrated in Sect. 4.3 when applied to specific
categories of LBS.



4 Privacy Protection in Location-Based Services: A Survey 93

Overall, we can conclude observing that the online location privacy protection
problem is a very challenging one, especially if considering the protection of
trajectories as revealed by sequences of correlated LBS queries. The difficulty is
mostly due to the uniqueness property of human trajectories [46] and to modeling
realistic assumptions about the prior knowledge of the adversary.

Despite the protection proposals based on the notion of differential privacy have
the advantage of providing provable probabilistic guarantees independent from the
adversary’s knowledge, their utility in terms of quality of service for many LBS is
still to be demonstrated. An interesting research direction would be considering new
probabilistic methods to insert location noise based on specific LBS deployment
contexts, user preferences, and adversary model. Some of the research results
obtained by the anonymization and obfuscation approaches may turn out to be
applicable.
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Chapter 5
Analyzing Your Location Data
with Provable Privacy Guarantees

Ashwin Machanavajjhala and Xi He

Abstract The ubiquity of smartphones and wearable devices coupled with the
ability to sense locations through these devices has brought location privacy into
the forefront of public debate. Location information is actively collected to help
improve ad targeting, provide useful services to users (e.g., traffic prediction), or
study human mobility/activity patterns and correlate them to the health of individ-
uals. In this chapter, we highlight the privacy concerns in large-scale collections
of location data from user-centric mobile devices and explain how simple cloaking
based techniques might be ineffective. This motivates the need for algorithms that
collect and analyze location data with formal provable privacy guarantees. We
discuss the state of the art in specifying formal privacy guarantees for location data,
as well as algorithms that achieve these formal privacy guarantees. We conclude
with open research directions in this area.

5.1 Introduction

The advancement of location-sensing technology such as GPS together with mobile
devices has brought forth numerous location-based applications to track, record
and share individuals’ locations. Long sequences of detailed location records
about individuals are passively collected by organizations or actively shared by
individuals. Analysis of this giant collection of location data for the benefits of
individuals, business and society has been the focus of many research studies and
applications. For instance, the human location patterns learned from taxi trips can
help the discovery of important crossroads in a road network [54] and encourage
vehicle pooling [45]. Location data has also been found predictive of human
purchasing behavior [3], emergency behavior following large-scale disaster [47],
and epidemiological patterns [50], and hence improves existing prediction models in
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many fields. These location-based studies can potentially enhance our understanding
of human behavior and foster the development of tools to facilitate our life. To
realize these potentials, location data has to be made available to the interested
researchers or analysts. However, this data releasing process may reveal sensitive
properties of individuals.

What are the special properties about location data of individuals compared
to general tabular databases that make privacy protection challenging? The first
property is that individuals’ location data are highly identifiable. Montjoye et al.
[14] showed using mobility data of 1.5 million individuals over a period of
15 months that approximately 95% of the individuals in this dataset can be
uniquely identified by 4 spatio-temporal points, and the uniqueness of the location
data decays insignificantly as their spatial and temporal resolution coarsens. The
second property of location data is that individual’s location patterns exhibit high
predictability. Song et al. [46] found a more than 90% potential predictability in the
future whereabouts of each individual despite heterogeneous travel patterns among
the population.

Based on these properties, what kind of privacy guarantees can we hope to
achieve when releasing location trajectories? A good notion of privacy for location
data should consider adversaries with background knowledge. Even if the adversary
knows a small set of location points visited by an individual, these points can help
the adversary uniquely identify this individual from the location data, and infer
the other sensitive locations visited by this individual. Moreover, since location
trajectories are highly predictable, adversaries can leverage correlations between
points in a user’s trajectory to infer sensitive information even if the locations are
coarsened [1, 28, 40, 55], or perturbed [4]. For instance, sensitive locations such as
home and work addresses can be discerned easily based on the frequency with which
locations are visited [5, 21], and perturbed locations can be reconstructed based
on temporal correlations within the sequence of locations [53]. Next, linking these
location records of individuals to public information can further reveal more about
these individuals such as their health status based on their visits to hospitals. Ma
et al. [35] showed that an adversary can infer an extended view of a user including
the true identity in an anonymous trace with a small amount of side information
with high probability. Thus, it is important to consider adversaries with background
knowledge (about points in the trajectory as well as other side information) when
quantifying the privacy loss of a method for sharing location trajectories. Finally,
many applications (especially in upcoming IoT applications) require users to share
their locations multiple times, or even periodically. For every release to be useful,
more information about individuals must be disclosed each time. Hence, any method
for sharing locations must be able to provide privacy guarantees across multiple
releases and not just one release. A graceful degradation of privacy protection is
highly desired over multiple releases.

Traditional location privacy preserving practices are mainly based on anonymiza-
tion. For instance, k-anonymity removes identifiers and coarsens data values
such that each individual is indistinguishable from k − 1 others. However, these
practices fail to achieve the privacy desiderata discussed above. It is well known
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that k-anonymous releases do not protect against adversaries with background
knowledge [38]. Besides, k-anonymous releases do not guarantee privacy under
composition; i.e., two k-anonymous release can be combined to learn the sensitive
locations of an individual exactly. Moreover, many anonymization algorithms are
susceptible to attacks like the minimality attack [51], where the decisions made by
the anonymization algorithm reveal information to the attacker. Therefore, in this
work, we will present a formal framework that allows the releases or analysis of
location data of individuals with provable privacy guarantees that can achieve these
desiderata.

The rest of this chapter is organized as follows. Section 5.2 describes an
important provable privacy notion that satisfies all these desiderata, known as
differential privacy, and presents several variants of differential privacy for location
data and corresponding algorithms for these variants. Section 5.3 introduces a
more general privacy framework, Pufferfish privacy, which can capture all the
variants of differential privacy for location data discussed in Sect. 5.2, explain the
privacy semantics underlying these notions, and allow new and rigorous privacy
definitions to be created based on the needs of different applications. A general
algorithm to ensure Pufferfish privacy is also presented. However, not all the
privacy definitions instantiated under Pufferfish privacy can guarantee privacy under
composition. Hence, we present a special class of privacy notions instantiated under
this framework, called Blowfish privacy, in Sect. 5.4. This privacy class guarantees
privacy under composition, and allows users to tune privacy-utility tradeoffs by
specifying privacy policies. We conclude in Sect. 5.5 with a discussion of challenges
and some open research directions.

5.2 Differential Privacy

Differential privacy was first introduced in 2006 [15] as a promise to ensure
the private information of an individual while allowing the learning of useful
information about a population. This promise has quickly arisen as the state of
the art privacy definition with a rich class of mechanisms satisfying it. Unlike
anonymization, this privacy guarantee specifies a provable property of the privacy-
preserving mechanisms and satisfies many of the privacy desiderata discussed in the
previous section. In this chapter, we define differential privacy (Sect. 5.2.1), discuss
variants of this definition in the context of location data (Sect. 5.2.2), and survey
algorithms for differentially private release of location data (Sect. 5.2.3).

5.2.1 Definition and Properties of Differential Privacy

Let I be the set of all possible database instances, and let each database instance
be a collection of record values/tuples. The variable r is used to represent a record
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Table 5.1 Table of notation

I The set of possible database instances

D A database instance belonging to I
T The domain of tuples/record values in the database

t A tuple/record value, a value in T
H The set of all individuals. H = {h1, h2, . . .}
ri The record associated with individual hi

Data A random variable representing the true dataset (which is unknown to the
adversary)

tuples(Data) The tuples in the database (record values without explicit reference to the
identities of individuals)

records(Data) The identities and record values of individuals in the data

M A privacy mechanism: a deterministic or randomized algorithm (ofter used
in the context of a privacy definition)

Nnp The set of neighboring databases for unbounded differential privacy

Nn
np The set of neighboring databases for bounded differential privacy

σi ri ∈ records(Data): The statement that the record ri belonging to
individual hi is in the data

S Set of potential secrets. Revealing s or ¬s may be harmful if s ∈ S

Spairs Discriminative pairs, Spairs ⊆ S × S

D The set of evolution scenarios: a conservative collection of plausible data
generating distributions

θ A probability distribution. The probability, under θ , that the data equals
Di is Pr(Data = Di |θ)

Σ The spatial domain with distance metric d(·)

and is associated with an individual hi in the population H. Let T be the domain
for the record variable r , and a tuple t ∈ T be a value taken by a record. The data
curator will choose a privacy definition and a privacy mechanism (algorithm) M
that satisfies that privacy definition. Then the data curator will apply M to the data
to obtain a sanitized output ω ≡ M(Data), where Data is the random variable
representing the true database instance owned by the data curator which is unknown
to the adversary. We use records(Data) to denote the set of records in Data and
t(Data) to denote the record values (tuples). These notations and the key notations
from the rest of this chapter is summarized in Table 5.1.

An algorithm satisfies differential privacy if adding, removing or changing a
record in terms of the input does not significantly alter the output of the algorithm.
More formally:

Definition 5.1 (Differential Privacy [15, 16]) Given a privacy parameter ε > 0,
a randomized algorithm M satisfies ε-differential privacy if for any outputs ω ∈
range(M) and all pairs of datasets D and D′ in I that differ in one record (i.e.
D can be derived from D′ by either adding or deleting one record), the following
holds:
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Pr[M(D) = ω] ≤ exp(ε) Pr[M(D′) = ω], (5.1)

where the probability only depends on the randomness in M.

In this definition, the number of individuals in the database is unknown, and hence
this definition is also known as unbounded differential privacy. When the number
of the individuals is known in the database, the neighboring databases are defined
as a pair of databases that differ in the value of only one individual’s record, and
the remaining individuals all have the same record values. This is also known
as bounded differential privacy or indistinguishability. We represent the set of
neighbors for unbounded differential privacy by Ndp, and the set of neighbors for
unbounded differential privacy by Nn

dp, where n is the number of records in the
database.

Intuitively, changing an individual’s record value to the database for bounded
differential privacy (or adding or removing an individual’s record for unbounded
differential privacy) has little impact on the distribution of the output of a random-
ized algorithm. The parameter ε is usually known as the privacy budget. When ε is
small, the output distributions of M are similar regardless of whether an individual’s
record value was used in the computation. The definition only applies to randomized
algorithms, since it is easy to see that deterministic algorithms cannot satisfy this
definition.

Laplace mechanism is an important building block for designing differentially
private algorithms.

Definition 5.2 (The Laplace Mechanism) Given any function f : I → R

k , the
Laplace mechanism is defined as:

ML(D, f (·), ε) = f (D) + (η1, . . . , ηk), (5.2)

where ηi are i.i.d random variables drawn from Lap(Δf/ε), and Δf is the l1-
sensitivity of the query f .

The l1-sensitivity of the query f is a key concept for the Laplace mechanism,
defined as the maximum difference in the query output between any two neighboring
databases. Formally,

Definition 5.3 (l1-Sensitivity) The l1-sensitivity of a function f : I → R

k is

Δf = max
D,D′∈I,(D,D′)∈Ndp( or Nn

dp)
||f (D) − f (D′)||1, (5.3)

where ||x − y||1 denotes the l1 norm of the difference between vectors x and y, and
is defined as

∑

i |x[i] − y[i]|.
Intuitively, the Laplace mechanism adds noise that is large enough to hide the

maximum difference in the query output between any two neighboring databases
such that adversaries cannot distinguish the neighboring databases from the noisy
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output. Besides Laplace mechanism, there are many other algorithmic building
blocks for differential privacy. Readers may refer to [18] for more details.

An important property of differentially private algorithms is that their composi-
tion also satisfies differential privacy.

Theorem 5.1 (Sequential Composition [15, 16]) Let D ∈ I be an input database.
Let M1(·) and M2(·, ·) be algorithms with independent sources of randomness that
satisfy ε1- and ε2-differential privacy, resp. Then an algorithm that outputs both
M1(D) = ω1 and M2(ω1,D) = ω2 satisfies (ε1 + ε2)-differential privacy.

If the second algorithm M2 does not access the raw data (ε2 = 0), but only
applies on the output of the first algorithm, the provable privacy guarantee of the
first algorithm after applying M2 is unchanging. Formally,

Theorem 5.2 (Post-processing [15, 16]) Let D ∈ I be an input database. Let
M1(·) be an algorithm that satisfies ε-differential privacy. Then if an algorithm
M2 is applied to the output of M1(·), then the overall mechanism M2 ◦ M1(·) also
satisfies ε-differential privacy.

All steps in the post-processing algorithm do not access the raw data, and hence
they do not affect the privacy analysis. While it seems intuitive that postprocessing
the output of a privacy algorithm should not result in additional privacy loss, there
are some privacy metrics, like k-anonymity, that do not satisfy the postprocessing
theorem.

Theorem 5.3 (Parallel Composition [15, 16]) Let D ∈ I be an input database.
Let H1, . . . ,Hp be disjoint subsets of individuals H; D ∩ Hi denotes the dataset
restricted to the individuals in Hi . Let Mi be mechanisms that each ensure εi-
differential privacy. Then the sequence of Mi (D∩Hi ) ensures (maxi εi)-differential
privacy.

These composition properties are very useful in proving the privacy guarantees
of complex algorithms. Sequential composition theorem allows us to decompose
an algorithm into a few sequential components, and then analyze each component
separately. The parallel composition theorem enables us to analyze an algorithm
that works on disjoint partitions of the data. The postprocessing theorem ensures
that we only need to analyze the steps in the algorithm that actually touch the private
database. Then the overall privacy guarantee of an algorithm over the entire database
can be established with the two theorems above. These composition theorems are
also very important, as they can address the impossibility result by Dinur and Nissim
[51] that a database of size n can be reconstructed with high accuracy from the
answers to n log(n)2 statistical queries even if each answer is perturbed with up to
o(

√
n) error. Differential privacy conforms to this negative result as the privacy

guarantee degrades as the number of sequential accesses to the data increases
(according to the sequential composition result). Nevertheless, unlike k-anonymity,
the privacy degradation is gradual and can be theoretically quantified. We would
like to note that the sequential composition theorem holds (a) in the worst case and
(b) even when the next query or differential private mechanism in the sequence is
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chosen adversarially and adaptively based on the answers to the previous queries.
There are more sophisticated but advanced composition theorems [18]. When the
queries are not adaptively chosen, tighter bounds on the privacy loss are known
[18, 23, 32].

There are other privacy axioms which differential privacy and other good
provable privacy notions can satisfy [36]. These properties make differential privacy
an appealing choice for many privacy-aware applications and research.

5.2.2 Variants of Differential Privacy for Location Data

Differential privacy has arisen as a popular choice for privacy sensitive applications
that use location data. We map the differential privacy definition to location data
as follows. Consider Σ as the spatial domain for the location data with a distance
metric, denoted by d(·). The spatial domain is usually a set of latitude-longitude
coordinates, or a discretized 2-dimensional space, e.g. a uniform grid over a map.
A location database D ∈ I consists of individuals with their location data. Each
individual hi ∈ H has a variable ri to represent his or her location trajectories. If the
events are recorded at regular time intervals, known as regular trajectories, ri[j ] for
j = 1, 2, . . ., represents the j th event of individual hi which takes a location value
from the spatial domain Σ at time point j . Otherwise, each event has a temporal
dimension in addition to the space domain, where privacy notions and techniques
for regular trajectories can be adapted accordingly.

We will focus on regular trajectories and bounded differential privacy in this
section. Neighboring databases for bounded differential privacy Nn

np differ in the
record value/tuple for the record ri of a single individual hi ∈ H in the database. We
can define neighboring databases in multiple ways for location data of individuals,
and they result in distinct privacy notions with different levels of privacy protection.
We describe these in detail below: (1) ri can differ in one event with two different
location values; or (2) differ completely in all the events of a single individual; or
(3) differ in a short window of consecutive events. Therefore, these choices result in
three key variants of differential privacy with details shown below.

• Event-differential privacy (Event-DP): In event-differential privacy, neighbor-
ing databases differ in only one single location (at a single time) of a single
individual. Intuitively this definition ensures that the output of an algorithm is
insensitive to changing one location at one time point. More formally,

Definition 5.4 (Neighboring Databases for Event-DP) Databases D and D′
are neighbors for event-DP if they differ in a single record ri which takes values
t in D and t ′ in D′ such that

|t | = |t ′|, and if t[j∗] �= t ′[j∗], then ∀j �= j∗, t[j ] = t ′[j ] (5.4)
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Algorithms designed under this privacy notion are commonly applied in the
scenarios where each individual has one or few sensitive events in the database.

• User-differential privacy (User-DP): In user-differential privacy, neighboring
databases differ in the record of a single individual. Intuitively, this definition
ensures that the output of an algorithm is insensitive to changing locations of an
individual at any time point. More formally,

Definition 5.5 (Neighboring Databases for User-DP) Databases D and D′ are
neighbors for user-DP if they differ in a single record ri which takes values t in
D and t ′ in D′ such that

t �= t ′ (5.5)

This protection is applicable to scenarios where the entire location sequences are
released [10, 26, 37, 39, 56].

• Window-differential privacy (w-event privacy/Window-DP): This window-
level protection takes in a privacy parameter w to specify how the neighboring
databases differ. Intuitively, this definition ensures that the output of an algorithm
is insensitive to changing of a window of w consecutive events of a single
individual. More formally,

Definition 5.6 (Neighboring Databases for w-Event Privacy) Databases D

and D′ are neighbors for window-DP (or w-event privacy) if they differ in a
single record ri which takes values t in D and t ′ in D′ such that

∀j1 < j2, if t[j1] �= t ′[j1] & t[j2] �= t ′[j2], then j2 − j1 + 1 ≤ w

Hence, any pairs of neighbors that differ in an event window of length at most
w are considered window-level neighbors. This variant is typically used in the
streaming setting [29]. When the window size w is 1, this definition is equivalent
to the event-level differential privacy.

In summary, these variants of differential privacy ensure the output of an
algorithm is insensitive to different levels of changes in location data. Based on
the levels of changes, user-DP offers the strongest privacy protection, following by
w-event privacy and event-DP. User-DP is preferred over other variants when we
would like to protect the properties of the entire location trajectory, for instance, to
protect the home locations of an individual since it can reappear many times, or to
protect the routines of an individual. w-event privacy suits the scenarios where short
activities of an individual such as in a day or an hour require protection. Event-DP
is applicable for one-time release of a single event of an individual. Moreover, by
the sequential composition theorem, an event-DP algorithm simultaneously ensures
both w-event DP and user-DP, albeit with a much larger value of ε. If an algorithm
ensures ε-event DP, then it also satisfies (w · ε,w)-event DP, and (T · ε)-user-DP
where T is the maximum possible number of events per individual in the database.
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Finally, user-DP implies that only a finite number of queries can be answered, while
a potentially infinite number of queries could be answered under event/window-DP.

5.2.3 Differentially Private Algorithms for Location Data

We have seen three variants of differential privacy for location data. Given the
same query, algorithms that satisfy these different privacy guarantees can result in
different utilities. Thus, in addition to tuning ε, one can navigate the privacy-utility
tradeoff space by using these variants of differential privacy. We illustrate with the
example of point queries. A point counting query across time asks for the number
of events in D that occur at location l ∈ Σ , denoted by f (D, l), (across all time),
where Σ is the spatial domain.1 Under event-DP, the l1-sensitivity of f (D, l) is just
1 as neighboring databases differ in at most one location of an individual, and hence
the count for location l is affected by at most 1. Adding noise drawn from Lap(1/ε)

satisfies ε-event-DP and the error in terms of the l2 norm of the difference between
the noisy answer and the true count is

√
2/ε in expectation. On the other hand,

under user-DP, the l1-sensitivity of f (D, l) is T , where T is the maximum possible
number of events per individual in the database. To ensure ε-user-DP, the noise
added to the query is drawn from Lap(T /ε), and hence the answer has an expected
error of

√
2T/ε. Similarly, to ensure w-event privacy, adding noise from Lap(w/ε)

to f (D, l) is sufficient. This noise results in an expected error
√

2w/ε, which is
smaller than the error under user-DP, but larger than event-DP.

There are many interesting queries for location data, but we will focus on three
important settings: (a) answering counting queries on a single snapshot in time;
(b) answering counting queries in a streaming fashion; (c) synthesizing location
trajectory databases. We will present corresponding algorithms for each setting.

5.2.3.1 Answering Counting Queries on a Single Snapshot in Time

In a snapshot location database, each individual has a single location. Hence, all
the three variants of differential privacy described in Sect. 5.2.2 provide equivalent
privacy protections. In this setting, besides point counting queries, range counting
queries are commonly asked. A range counting query asks for the number of
individuals in D within rectangle R ⊆ Σ , denoted by f (D,R). We represent a
set of counting queries by {f (D, li)}i , where li ∈ Σ , and represent a set of range
counting queries by {f (D,Ri)}i , where Ri ⊆ Σ . A naive way to answer all possible
point and range counting queries is to first obtain a differentially private answer to
all point counting queries, i.e, {f (D, l)}l∈Σ , using the Laplace mechanism. Then
each range counting query can be answered by adding up all noisy counts of points

1The domain is assumed to be discrete, otherwise it can be discretized.
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falling into the rectangle R. The summation step is a post-processing step which
does not require the original data, and hence does not change the privacy guarantee.
However, this approach injects too much noise to query answers. The expected error

for this algorithm is
√

8|R|
ε2 , and it can easily dominate the true count, especially

when the range queries span large sparse rectangles.
To improve the query accuracy, many prior work [13, 25, 42, 43, 48, 56] proposed

quad-tree based solutions. A quad-tree denoted by T is built from the partitioned
spatial domain, where each node of the tree, v, is associated to a sub-region, denoted
by dom(v) and a noisy count for the number of events in D falling into that region,
denoted by c̃(v). The set of children of a node v is a partition of the region associated
to v. The counts stored in T can be used to answer all possible range counting
queries. Given range rectangle R, we first traverse T from the root and initiate the
query answer 0. As traversing downwards, each node v is examined whether its
associated region intersects with the query rectangle R. The count of v is considered
only when dom(v) intersects with R. If dom(v) is fully contained in R, the answer
is incremented by c̃(v). If dom(v) partially intersects R and v is not a leaf node,
then every child of v that is not disjoint with R will be visited. If dom(v) partially
intersects q and v is a leaf node, then we inspect the data points in dom(v), and the
answer is incremented by the number of points contained in q. In this way, a range
counting query associated with a large rectangle can be answered with few nodes
and hence this approach gives a smaller amount of noise.

Given a fixed tree height h, the l1 sensitivity for answering all counts in T is
2(h + 1). By the Laplace mechanism, adding noise drawn from Lap(2(h + 1)/ε)

to the count of each node in T satisfies ε-DP. As both sensitivity and hence the
amount of noise depends on the tree height h, existing work has made tremendous
effort in improving the accuracy by exploring privacy budgeting strategy [13],
correlations between noisy counts [13, 25] and pruning tree nodes [42, 43, 48]
where the maximum tree height h is given, or by designing algorithms independent
of h [56].

• Optimizations with a given maximum tree height h. Most of the prior work
proposed algorithms [13, 25, 42, 43, 48] with the maximum tree height given.
The first key optimization with a given maximum tree height is to distribute
different privacy budget to each level of the tree [13] by applying the sequential
and parallel composition of DP mechanisms. The intuition behind is that the
nodes at a higher level have larger counts and hence are more resistant to
perturbation while nodes at a lower level with smaller counts are less prone
to noise. The baseline method that adds noise drawn from Lap(2(h + 1)/ε)

to all nodes is equivalent to uniform budgeting by split ε uniformly across
each level. Cormode et al. [13] aim to improve the total error injected to the
tree T with given height h, by considering the total error as the sum of the
node variances. The variance of the Laplace mechanism with parameter εi is
V ar(Lap(εi)) = 2/ε2

i . Since the noise is independently generated in each

node, the total variance is Err(q) = ∑h
i=0 2ni/ε

2
i , where ni is the number



5 Analyzing Your Location Data with Provable Privacy Guarantees 107

of nodes at height i contributed to the query q and εi is the privacy budget
assigned to the nodes at height i. This error is minimized with the constraint

that
∑h

i=0 εi = ε when εi = 2(h−i)/3ε 21/3−1
2h+1/3−1

. This strategy corresponds
to a geometric budgeting strategy where nodes at higher level receive smaller
budgets, and the budget increases geometrically downwards the tree. Another
popular optimization technique considers the consistency correlation between
the noisy counts, thus to further reduce the total variance of the noise injected
to the tree counts [13, 25]. The last optimization [42, 43, 48] is to prune nodes
that have small counts and hence their descendants in the tree. This approach can
introduce biased noise, but can reduce the total amount of noise with respect to
the true counts.

• Private partition without the maximum tree height. Another research direc-
tion explores spatial partition without the specification of the maximum tree
height. A recent work [56] adds a constant amount of noise (regardless of the
maximum tree height) to a bias count of each node. If this noisy count is
bigger than the threshold, this node will be further partitioned. After obtaining
this partition, only the leaf nodes are published with their noisy counts. The
intermediate nodes obtain their counts by summing up the counts of all the leaf
nodes under them. This approach is the first algorithm that does not require the
maximum tree height as an input. The constant amount of noise instead of height-
dependent noise largely improves the accuracy of the query answer. The details
of this algorithm can be referred to [56].

There are other data-dependent methods, such as kd-tree to partition the spatial
domain based on other mechanisms. These algorithms can be referred to [13].

5.2.3.2 Answering Counting Queries in a Streaming Fashion

For infinite sequences of locations, stream counting queries have been well studied
and are defined as a sequence of counting queries (f (D[j ], l))j=1,2,... for location
l ∈ Σ in database D at time stamp j = 1, 2, . . . . Event-DP is a special case
of w-event privacy where w = 1. User-DP does not apply here, as there is no
bound on the maximum possible length of the sequence. However, an (ε/2)-user-DP
mechanism can be applied to disjoint subsequences of the stream prefix, where each
subsequence has a length w. This ensures (ε, w)-event privacy, but this approach is
not optimal.

Kellaris et al. [29] proposed a sliding window methodology. The overall mech-
anism denoted by M which takes an input stream with prefix D[1 : j ] can be
decomposed into j sub-mechanisms M1, . . . ,Mj . Let each Mk for k ∈ [1 : j ]
generate independent randomness to achieve εk-event-DP. If for all 0 ≤ j2−j1 ≤ w,
∑j2

k=j1
εk ≤ ε, then the overall mechanism M satisfies w-event privacy. This means

that if the sum of privacy budgets per sliding w-window is no more than ε, the
overall mechanism ensures (ε, w)-event privacy.
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With this sliding window methodology, two baselines were given by [29]: (1)
uniformly allocating ε/w budget to each event so that the sum of the budget per
sliding window is always ε; (2) publishing a single event with privacy budget ε for
every w timestamps. The first baseline does not work well if w is large as each event
is given a small budget. The second baseline approximates the other unpublished
counts from the released one. If the released count is very different from the others,
the overall estimation is very poor. In order to address these shortcomings, the same
work [29] proposed to skip publications of counts that are similar to previously
released ones.

In the new solutions, each sub-mechanism Mj has two parts Mj,1 and Mj,2. The
first part Mj,1 differentially privately computes the distance between the current
count and the preceding released counts. If the distance is small, the publication of
this count is skipped; otherwise then the second part Mj,2 releases the noisy count
with part of the remaining budget available for the current sliding window. There
are two ways to deal with the privacy budget for events within a window: (1) budget
distribution, and (2) budget absorption. Both schemes assign some budget ε1/w to
Mj,1 for computing distance differentially privately at time stamp j , and use the
remaining budget ε2 for publishing counts, where ε2 = ε − ε1. We will see how the
publication budget ε2 is spent within each sliding window.

• Budget Distribution: The publication budget ε2 is distributed in an exponen-
tially decreasing fashion to the timestamps where a publication is decided to
occur. Formally, at each timestamp, remaining budget is computed as εrm =
ε2 − ∑j−1

k=j−w+1 εk,2, where εk,2 is the privacy budget assigned to each of the
last w − 1 aggregated statistics. Then a Laplace noise with a budget of εrm/2
is added to the query output. If a publication is skipped, its budget is saved and
spent in timestamps falling outside the active window. If there are m publications
per window, the sequence of budget can be ε2/2, ε2/4, . . . , ε2/2m.

• Budget Absorption: This scheme uniformly distributes the publication budget
to all timestamps. If it decides not to publish at a timestamp based on the noisy
distance, the corresponding budget becomes available for future publication. If it
decides to publish at a timestamp, it absorbs all the budget that became available
from the previous skipped publications. This allows higher accuracy for the
current statistics. To ensure the total budget within a window not exceeding the
maximum ε2, after the absorption of budgets from previous timestamps, the same
amount of budget must be nullified from the immediate succeeding timestamps.

Both mechanisms satisfy w-event privacy. There are no theoretic guarantees that
they can do better than the baseline methods, but the experiments in [29] show
their superiority over the baselines in most of their settings. In general, this sliding
window methodology highly depends on the choice of w for both privacy and utility.
It remains an interesting question that what w should be set for each application.

The algorithms discussed so far can achieve w-event privacy (and hence event-
DP) in a streaming setting. There are more event-DP algorithms [6–8, 11] developed
for streaming setting. Among them, only PeGaSus [11] can simultaneously support



5 Analyzing Your Location Data with Provable Privacy Guarantees 109

a variety of stream processing tasks—counts, sliding windows, event monitoring—
over multiple resolutions of the stream, and outperform the other solutions spe-
cialized to individual queries. These event-DP algorithms can also be extended to
user-DP algorithms when each user has a limited number of contributions to the
streaming data. If each user contributes a count of 1 at most l times to the entire
streaming setting, then an ε-event-DP algorithm can automatically guarantee lε-
user-DP. This assumption is valid for certain scenarios. For instance, in a hotel,
most customers stay there for a few days. There are also algorithms that summarize
or sample user’s information so that their contributions to the streaming data is
bounded [20], but may result in poorer data quality.

5.2.3.3 Synthesizing Location Trajectory Databases

Synthetic location databases are important for applications and research in city/-
traffic planning, epidemiology, and location-driven advertising, especially when the
analysis cannot be limited to a set of counting queries. The synthetic data also keeps
the same format of the true data such that data analysts do not have to adapt to a new
tool for exploring the private data. Synthesizing location databases corresponds to a
non-interactive setting. Under this setting, we learn a model first from the original
ground truth and then generate a synthetic database from the model. Depending on
the privacy definition, the sensitivities of the queries used to compute the sufficient
statistics of the model will change. We will focus on user-DP here for databases of
location sequences, but the techniques presented can be extended for event/window-
DP. Counting queries for sub-sequence of locations are common queries used for
building the model. If the entire sequence per user is short and fixed, e.g. home
location and work location, the l1-sensitivity for the sub-sequence counting queries
is small, and hence the privacy budget can be split over different sets of queries.
Related work can be found in [37, 39, 56]. On the other hand, if sequences are long,
a Markov process is commonly considered [10, 26, 56] to model the correlation
between the events. Formally,

Definition 5.7 (Markov Process) A sequence of locations (l1l2 · · · ln) ∈ Σn is
said to follow an order � Markov process if for every � ≤ j < n, l ∈ Σ

Pr[li+1 = l|l1 · · · li] = Pr[li+1 = l|li−�+1 · · · li]. (5.6)

We refer to the probability Pr[li+1 = l|li−�+1 · · · li] as a transition probability
of the Markov process. The collection of transition probabilities for all x =
li−�+1 · · · li ∈ Σ� can be estimated using the set of all �- and �+1-gram counts, i.e.

Pr[li+1 = l|li−�+1 · · · li] = f (D,xl)
f (D,x)

, (5.7)

where f (D, x) denotes the number of occurrences of x in the database D. Starting
symbols (�) and stopping symbols (⊥) are prepended and appended (respectively)



110 A. Machanavajjhala and X. He

to the original trajectories to capture the starting and stopping probabilities in the
Markov process. The synthesis of a trajectory begins with a starting symbol (�).
Based on the transition probabilities from the Markov process, a next location is
sampled continuously till reaching the stopping symbol (⊥). This model requires
to maintain all �-gram counts for 1 ≤ � ≤ h, where h − 1 is the maximum order
of Markov process considered. A prefix tree T of heights h is used to store these
counts, where nodes in T are Σ1 ∪ . . .∪Σh, and edges connected each �-gram x to
� + 1-gram xl for all l ∈ Σ .

To ensure user-DP, prior approaches add noises drawn from a Laplace distri-
bution to parts of the prefix tree T [10, 56]. These prior work performed well for
small domain, and can be applied to continuous spatial domains by discretizing
locations (e.g. via a uniform coarse grid). However, they failed to scale to realistic
location sequences that span large geographical regions. Though a sufficiently fine
discretization of the spatial domain can capture all the mobility patterns in the data,
this discretization results in very large domain sizes (of several tens of thousands),
and hence making the model fitting procedure very slow and overfitting the data.
Moreover, the amount of noise added to ensure differential privacy also grows with
the number of nodes in the tree. On the other hand, if a coarse discretization of the
space is used for a small prefix tree, then much of the spatial correlation information
in the original trajectories is lost. Hence, He et al. [26] proposed an end-to-end
system, named Differentially Private Trajectories (DPT) to address these challenges.
The schematic overview of this system is shown in Fig. 5.1.

DPT discretizes the spatial domain at multiple resolutions to capture different
step sizes (see Step 1 in Fig. 5.1). Every resolution has a prefix tree (Step 2). Within
each resolution, only movements from each grid cell to neighboring cells in one
step are allowed. Though there is a larger number of prefix trees, each prefix tree
has a much smaller branching factor, thus resulting in a big reduction in the number
of counts maintained by the model. DPT uses a novel model selection algorithm
(Step 3) to set the tree heights and to prune unrealistic resolutions in a differentially
private manner. The following steps add noises drawn from the Laplace distribution
to the chosen prefix trees (Step 4), and prune adaptively these noisy trees (Step 5) to
further improve utility. In the last sampling step (Step 6), a novel postprocessing
strategy is applied by DPT to restore the directionality of synthetic trajectories
which could be lost due to the noise added to the private model. Based on these
optimizations, this end-to-end system can synthesize trajectories spanning large
geographical areas with significantly more utility than the prior work [10] and is
orders of magnitude faster. These synthetic trajectories have been shown mirroring
the original trajectories on three utility metrics—distribution of diameter (i.e.,
distance traveled), conditional distributions of destinations given starting regions,
and frequent patterns. However, synthetic trajectories cannot join with other datasets
due to the absence of join keys. Prior work [16] has shown that non-interactive
setting can have more error than an interactive setting, main due to the difficulty
of supplying utility that has not yet been specified at the time the data synthesis is
carried out. Moreover, additional efforts have to be applied to synthetic trajectories
such that they are realistic and satisfying real-world constraints.



5 Analyzing Your Location Data with Provable Privacy Guarantees 111

Fig. 5.1 DPT framework overview

In summary, from these prior work [4, 10, 13, 19, 26, 29, 37, 39, 49, 53, 56], we
see that differential privacy has been well explored for location data. Applications
considered various forms of neighboring databases and hence different algorithms.
However, it is not clear that (1) what information is protected via the different
specification of neighboring databases; and (2) which algorithms can be used to
protect against adversaries with prior background knowledge. Moreover, the algo-
rithms presented so far are designed mainly for counting queries. For location-based
services that require location information at a particular time stamp, even event-
DP, the weakest privacy notion seen so far, is too strong to provide good accuracy.
Hence, we will first see how to quantify the privacy guarantees of algorithms
through the lens of secrets and adversaries using a more general framework called
Pufferfish in Sect. 5.3. Then, we will show how to design algorithms for location-
based services that can achieve both accuracy and provable privacy guarantees
named as Blowfish Privacy under this framework in Sect. 5.4.2.
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5.3 Pufferfish Privacy

In this section, we summarize the Pufferfish privacy framework [31] that generalizes
differential privacy, helps understand the privacy semantics underlying privacy
definitions, and create new privacy definitions customized to the requirements of
an application. In Sect. 5.3.1, we introduce how the Pufferfish framework defines
privacy in terms of secrets and (the prior knowledge available to) adversaries, rather
than neighboring databases. In Sect. 5.3.2, we show that variants of differential
privacy are instantiations of the Pufferfish framework, and explain under what
assumptions about secrets and adversaries each of these variants ensure semantic
privacy guarantees. Finally, in Sect. 5.3.3, we describe algorithms for general
Pufferfish privacy definitions.

5.3.1 Definition of Pufferfish Framework

Pufferfish framework requires domain expert to specify three components: (1) a
set of potential secrets S, (2) a set of discriminative pairs Spairs ⊆ S × S, and
(3) a collection of data evolution scenarios D. The specification of these three
components in this framework gives a rich class of privacy definitions.

• The set of potential secrets S represents the information that data curator would
like to protect. A secret can be specified as a statement such as “Bob is at location
l ∈ T ”, “Bob is not at location l ∈ T ”. In general, a domain expert should
add a statement s to the potential secrets S if either the claim that s is true or
the claim that s is false can be harmful. The resulted S forms a domain for the
discriminative pairs, a subset of S × S.

• The set of discriminative pairs Spairs , is a subset of S × S. The role of Spairs

is to tell how to protect the potential secrets S. For any discriminative pair
(si, sj ) ∈ Spairs , we would like to guarantee that adversaries are unable to
distinguish between the case where si is true of the actual data and the case where
sj is true of the actual data. For this reason, si and sj must be mutually exclusive,
but not necessarily exhaustive (it could be the case that neither is true). One
example of a discriminative pair is (“Bob is at location l1”, “Bob is at location
l2”), where l1 �= l2, or (“Bob is at location l1”, “Bob is not at location l1”), where
l1, l2 ∈ T . The set of changes for neighboring databases shown in Sect. 5.2.2 are
examples for the set of discriminative pairs.

This specification allows highly customizable privacy guarantees. For
instance, many location-based applications such as OpenPaths [41] and
Airbnb [2] state in their policies that user’s location information will only be
shared or collected at coarse granularity. This property can be specified by pairs
of secrets, such as (“Bob is at location l1 ∈ T ”, “Bob is at location l2 ∈ T ),
where l1 is 21 miles away from l2. Or if users are fine with releasing their
location at city-level, but not at any street level within a city [34], this privacy



5 Analyzing Your Location Data with Provable Privacy Guarantees 113

preference can be expressed via a set of discriminative pairs Spairs that exclude
pairs of secrets like (“Bob is at Durham”, “Bob is at New York”), but includes
pairs of secrets with nearby places, such as (“Bob is at a cafe in Durham”, “Bob
is at home in Durham”).

• The evolution scenarios D can be viewed as a set of conservative assumptions
how the data evolved (or were generated) and about knowledge of potential
adversaries. Note that assumptions are absolutely necessary—privacy definitions
that can provide privacy guarantees without making any assumptions provide
little utility beyond the default approach of releasing nothing at all [17, 30].
In order to release useful information about the database, the domain expert
should be able to identify a reasonable set of assumptions. In many cases, they
already do this informally [44]. Formally, D is represented as a set of probability
distributions over I (the possible database instances). Each probability distri-
bution θ ∈ D corresponds to an adversary that we want to protect against and
represents that adversary’s belief in how the data were generated (incorporating
any background knowledge and side information). For D ∈ I, we use the
notation Pr(Data = D|θ) to represent the probability, under θ , that the true
database is D. Below we give some examples of possible choices of D and their
interpretations.

Example 5.1 (No Assumptions) D can consist of all possible probability distri-
butions over database instances (i.e. including those with arbitrary correlations
between records). This corresponds to making no assumptions.

Example 5.2 (Independent Individuals but Markov Model-Based Events) Sev-
eral work [49, 53] consider that individuals are independent, but the events per
individual are correlated by Markov model. The individuals in the database are
independent of each other, that is, D consists of all θ for which

Pr[Data = {r1, . . . , rn|θ}] = f1(r1) × f2(r2) × . . . × fn(rn) (5.8)

for arbitrary f1, f2, . . . , fn. The correlation within the events of an individual is
modeled by a transition matrix or a class of transition matrices Pθ for D, where
each (l1, l2)th entry of this matrix specifies the probability an individual hi being
at location l2 at time stamp j given the previous (j − 1)th event, i.e. Pr(ri[j ] =
l2|ri[j − 1] = l1).

Readers may refer to [31] for more examples of data evolution scenarios.

To use the Pufferfish framework, the domain expert simply does what he or she
does best, and is no longer required to be a privacy expert. After specifying the
assumptions explicitly, the corresponding Pufferfish privacy instance is formally
stated as follows.

Definition 5.8 (Pufferfish Privacy [31]) Given a set of potential secrets S, a set
of discriminative pairs Spairs , a set of data evolution scenarios D, and a privacy
parameter ε > 0, a potentially randomized algorithm M satisfies ε-Pufferfish
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(S,Spairs ,D) privacy if (i) for all possible outputs ω ∈ range(M), (ii) for all pairs
(si, sj ) ∈ Spairs of potential secrets, (iii) for all distributions θ ∈ D for which
Pr(si |θ) �= 0 and Pr(sj |θ) �= 0, the following holds:

Pr[M(Data) = ω|si, θ ] ≤ eε Pr[M(Data) = ω|sj , θ ] (5.9)

Pr[M(Data) = ω|sj , θ ] ≤ eε Pr[M(Data) = ω|si, θ ], (5.10)

where Data is a random variable representing the true dataset (which is unknown
to the adversaries).

5.3.2 Relation to Differential Privacy

Recall that the definition of differential privacy is based on neighboring databases
by changing an individual’s record. This definition is a condition of a randomized
algorithm—the output of the randomized algorithm is insensitive to the change of
an individual’s record to the database. In this definition, there is no mention or
assumption of data evolution scenarios known by the adversaries. In this section,
we would like to show how to understand and analyze differential privacy in the
framework of Pufferfish.

Consider the following specifications. Let H = {h1, h2, . . . , hN } be the set
of all individuals in a population of size N . Define σi be the statement ri ∈
records(Data) (i.e. “records ri belonging to individual hi is in the data”, and let
σ(i,t) be the statement ri ∈ records(Data) ∧ ri = t(i.e. “record ri belonging to
individual hi has value t and is in the data”). Let the set of secrets and the set of
discriminative secret pairs be specified respectively as

S = {σi,t : hi ∈ H, t ∈ T } ∪ {¬σi : hi ∈ H} (5.11)

Spairs = {(σi,t ,¬σi) : hi ∈ H, t ∈ T } (5.12)

This specification of secret pairs aim to prevent an adversary from distinguishing
whether the record ri associating with hi is in the data and has the value t v.s. the
record about individual hi is not in the data, for any individual hi in the population
H, and any possible tuple value t ∈ T . Consider the data evolution scenario D

where all individuals are independent (including their presence/absence in the data
and their tuple values if present in the data). This distribution can be specified as

Pr[Data|θ}] =
∏

ri∈records(Data)

fi(ri) Pr[σi]
∏

ri /∈records(Data)

(1 − Pr[σi]), (5.13)

where fi(ri) is the distribution for the value taken by record ri of an individual hi ,
and Pr[σi] is the probability of the record of an individual being in the data.
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Theorem 5.4 ([31]) With the choices of S and Spairs defined in Eqs. (5.11)
and (5.12), and the set of data evolution scenarios D as specified in Eq. (5.13),
unbounded ε-differential privacy is equivalent to ε-Pufferfish(S,Spairs ,D).

The variants of differential privacy for location data described in Sect. 5.2.2 can
all be described under this framework. For instance, event-DP can be shown to be
equivalent to a Pufferfish instantiation where: (1) the set of secrets are properties
of an individual’s location at a single time point; and (2) adversaries may know
arbitrary prior knowledge about an individual’s location at each time point, but do
not know correlations across time points (or across trajectories). On the other hand,
user-DP can be shown to be equivalent to an instantiation where: (1) the set of
secrets are properties of the entire trajectory; and (2) adversaries may have arbitrary
prior knowledge about a user’s trajectory (including correlations across time points),
but assume that there are no correlations across trajectories.

This means that event-DP algorithms are susceptible to attacks when adversaries
know constraints or correlations between consecutive locations in a trajectory.
Consider a single user’s location sequence, and consider adversaries who know
that the individual stayed at the same location for a long period of time, e.g.
at home in the evening. Event-DP that adds noise with standard deviation about
1/ε to the histogram counts of locations over time cannot hide the evidence
of that location. While user-DP does protect against such attacks, it may be an
overkill. We can use Pufferfish to design new privacy definitions that match such
adversaries. For instance, if one wants to hide properties of individual time points,
but handle correlations, one could use the same secrets as Event-DP, but handle
more complex adversaries as defined in Example 5.2. Let’s name this privacy Event-
MarkovAdversary-Privacy. There are algorithms like the Markov Quilt Mechanism
described next, that can ensure more privacy than event-DP, and more accuracy than
user-DP, helping us better tradeoff privacy and utility.

5.3.3 Algorithms for Pufferfish Privacy

We first present a special algorithm for location data which consider adversaries with
assumptions shown in Example 5.2, that individuals are independent but sequences
of events are correlated and are modeled by Markov model. Then, we will present a
general algorithm for Pufferfish privacy.

5.3.3.1 Markov Quilt Mechanism

Markov Quilt Mechanism was proposed by Wang et al. [49]. This mechanism
applies Event-MarkovAdversary-Privacy and considers counting queries (with l1-
sensitivity of 1) over a location database over a period of time. Based on the
definition of the adversary in Event-MarkovAdversary-Privacy, the sequence of



116 A. Machanavajjhala and X. He

locations in the location trajectory can be modeled as a Bayes net, a chain X1 →
X2 → . . . XT , where each event Xi only depends on its previous event Xi−1. Based
on this correlation, the impact of Xi on Xi+1 is more significant than the impact of
Xi on Xi+k when k is large. Thus it is sufficient to add noise proportional to the
number of events that are highly correlated with the event at each time point. The
notion of Markov Quilt is based on the set of highly correlated events for a given
event. The size of the Markov Quilt depends on the strength of the correlation, and
not on the total size of the trajectory. Hence, unlike user-DP which would add noise
proportional to the length of the trajectory, Markov Quilt mechanism will add noise
proportional to the size of the Markov Quilt which could be much smaller, thus
protecting against adversaries who know correlations as well as ensuring low error.
The details of this mechanism can be referred to [49].

5.3.3.2 General Algorithm for Pufferfish Privacy

In the Laplace mechanism for differential privacy, the noise to the query output
is proportional to the l1-sensitivity defined in Eq. (5.3), which is the worst case
distance between f (D1) and f (D2) where D1 and D2 are neighboring databases
that differ in the value of a single individual. The corresponding concept for a pair
of neighboring databases in Pufferfish framework are all possible pairs of databases
that differ in a given pair of discriminative secrets (si, sj ) ∈ Spairs . Hence, Wang
et al. [49] consider the two distributions given a secret pair (si, sj ) ∈ Spairs , i.e.

μi,θ = Pr(f (Data) = ·|si, θ)

μj,θ = Pr(f (Data) = ·|sj , θ)

and apply Wasserstein distance to measure the relevant distance between distribu-
tions μi,θ and μj,θ . Wasserstein distance is formally defined as below.

Definition 5.9 (∞-Wasserstein Distance [49]) Let (X , d) be a Radon space, and
μ, ν be two probability distribution on X with finite p-th moment. The ∞-
Wasserstein distance between μ, v with d(x, y) = |x − y|:

W∞(μ, ν) = inf
γ∈Γ (μ,ν)

max
(x,y)∈A

|x − y|, (5.14)

where A = {(x, y)|γ (x, y) �= 0} is the support of γ , and Γ (μ, ν) is the set of all
couplings γ over μ and ν.

Intuitively, γ ∈ Γ (μ, ν) is a way to shift probability mass between μ and ν, and
W∞(μ, ν) can be interpreted as the maximum “distance” that any probability mass
moves while transforming μ to ν in the most optimal way. Wang et al. [49] proposed
a general mechanism for Pufferfish framework Pufferfish framework (S,Spairs ,D)
with privacy budget ε and query f . This mechanism first computes the generalized
sensitivity, defined as
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ΔW∞(f,S,Spairs ,D) = max
(si ,sj )∈Spairs

max
θ∈D | Pr(si |θ) �=0,Pr(sj |θ) �=0

W∞(μi,θ , μj,θ )

(5.15)
This generalized sensitivity iterates over all possible secret pairs in Spairs and data
evolution scenarios θ ∈ D and computes the inf-Wasserstein distance between the
distributions given each secret and θ . Similar to Laplace mechanism, Wasserstein
mechanism adds noise that is proportional to the general sensitivity of the given
function can guarantee ε-Pufferfish privacy. Here is the formal statement.

Definition 5.10 (Wasserstein Mechanism) Given any function f : I → R

k , the
Wasserstein mechanism is defined as :

MW(D, f (·),S,Spairs ,D, ε) = f (D) + (η1, . . . , ηk), (5.16)

where ηi are i.i.d random variables drawn from Lap(ΔW∞(f,S,Spairs ,D)/ε).

Wang et al. [49] showed that Wasserstein mechanism provides ε-Pufferfish
privacy in the framework (S,Spairs ,D). This mechanism is also shown with
a smaller sensitivity parameter than the l1-sensitivity of query f under group
differential privacy if f is L-Lipschitz query [49], and hence can result in higher
accuracy for query f .

5.4 Blowfish Privacy

Though Pufferfish framework provides a wide variety of privacy definitions, the
domain experts are required to specify adversarial knowledge as sets of complex
probability distributions, and this framework does not always result in composable
privacy definitions [31]. Hence, we introduce a simple but useful class of privacy
definitions named Blowfish privacy [22, 27] that addresses limitations of the general
framework of Pufferfish. The definition and properties of Blowfish privacy are
presented in Sect. 5.4.1. We also show in Sect. 5.4.2 algorithms for special instances
of Blowfish privacy and also a general algorithm for Blowfish privacy.

5.4.1 Definition and Properties of Blowfish Privacy

The key building block of an instantiation of Blowfish privacy is named policy
graph. A policy graph is a graph representation of Spairs , pairs of domain values
in T that an adversary must not be able to distinguish.

Definition 5.11 (Policy Graph [22, 27]) A policy graph is a graph G = (V ,E)

with V ⊆ T ∪ {⊥}, where ⊥ is the name of a special vertex, and E ⊆ (T ∪ {⊥}) ×
(T ∪ {⊥}).
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An edge (u, v) ∈ E corresponds to a pair of domain values that an adversary
should not be able to distinguish between. ⊥ is a dummy value not in T , and an
edge (u,⊥) ∈ E means that an adversary should not be able to distinguish between
the presence of a tuple with value u, or the absence of the tuple from the database. If
a policy graph does not include ⊥, we can focus on databases with fixed known size.
Based on this policy graph G, we re-define the concept of neighboring databases of
differential privacy in the following way.

Definition 5.12 (Neighbors [22, 27]) Consider a policy graph G = (V ,E). Let Di

and Dj be two databases in I. Di and Dj are neighbors, denoted by (Di,Dj ) ∈
N(P ), iff exactly one of the following is true:

• Di and Dj differ in the value of exactly one entry such that (u, v) ∈ E, where u

is the value of the entry in Di and v is the value of the entry in Dj ;
• Di differs from Dj in the presence or absence of exactly one entry, with value u,

such that (u,⊥) ∈ E.

Example 5.3 (Event-DP) Recall event-DP in Sect. 5.2.2 considers neighboring
databases differ in a single event. The set of discriminative pairs for event-level
neighbors can be specified as

S

event
pairs = {(ri = t, ri = t ′)|hi ∈ H; t, t ′ ∈ Σ∗, |t | = |t ′|, (5.17)

∀j∗, if t[j∗] �= t ′[j∗], then ∀j �= j∗, t[j ] = t ′[j ]}.

Hence, the policy graph of blowfish privacy considers all possible sequence of
events as vertices V , and adds an edge to any pair of event sequences with the
same length differing in one event. This policy graph results in a set of neighboring
databases for event-DP.

Example 5.4 (Geo-indistinguishability) This is a special case of event-DP, where
discriminative pairs differ in only one event. Additionally, secrets form pairs if the
location they differ in are close to each other. More formally,

S

event,θ
pairs = {(ri = t, ri = t ′)|hi ∈ H, t, t ′ ∈ Σ∗, |t | = |t ′|, (5.18)

∀j∗, if d(t[j∗], t ′[j∗]) ≤ θ , then ∀j �= j∗, t[j ] = t ′[j ]}

This captures variants of event DP proposed in prior work like Geo-
indistinguishability [4] and (θ, ε)-location privacy [19], each discriminative secret
pair differ not only in a single event, but the difference in location value of the
event is bounded by a given distance θ . Compared to event-level discriminative
pairs S

event
pairs , Sevent,θ

pairs protects a smaller set of discriminative secret pairs with the
same privacy guarantee. This results in a sparser policy graph, as fewer pairs of
secrets are connected by an edge. It is easy to see that the policy graph for Sevent,θ

pairs

is a subgraph of the policy graph for Sevent
pairs . Correspondingly, the set of neighbors
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protected by geo-indistinguishability is a subset of neighbors protected by event-DP.
Hence, geo-indistinguishability provides a weaker guarantee than event-DP.

Besides G, Blowfish privacy policy in [27] includes IQ which denotes the
set of databases that are possible under the public constraints Q that are known
about the database. The constraints in Q makes a subset of the possible database
instances impossible, and the rest of possible database instances are denoted by IQ.
The presence of the constraints will make some neighboring databases no longer
possible. For instance, due to temporal constraints, certain sequences of locations
are impossible. Below is an example that considers such temporal constraints.

Example 5.5 (δ-Location Set Based Differential Privacy) The privacy definition
proposed by Xiao et al [53] considers temporal constraints in the database, and
these constraints are also known as the data evolution scenarios in the Pufferfish
framework. The data generation model D is represented by a hidden Markov model
(HMM) which consists of a single transition matrix Pθ and an emission probability
P e

θ . The prior distribution for an individual hi being at location l at timestamp j

given the previous (j − 1) events Pr(ri[j ] = l|lj−1 . . . l1) can be derived from Pθ

and P e
θ , and can eliminate unlikely secrets from S. The remaining possible locations

are specified by a new term called δ-location set. Formally, for any j ∈ [1, 2, . . .],
the δ-location set at time point j , is defined as a set containing minimum number of
locations that have prior distribution sum no less than 1 − δ, i.e.

ΔXj = min{l|
∑

l

Pr(ri[j ] = l|lj−1 . . . l1) ≥ 1 − δ}. (5.19)

At any time point j , a randomized mechanism M satisfies ε-differential privacy on
δ-location set ΔXj , if for any output ωj and any two locations l1 and l2 in ΔXj , the
following holds: Pr(M(l1) = ω) ≤ eε Pr(M(l2) = ω).

This privacy definition is also known as δ-location set based differential privacy,
and can be perceived as a special case of Blowfish privacy at each timestamp,
where the neighboring databases at each timestamp differ. The δ-location set
removes all impossible database instances based on the data evolution scenarios, and
hence guarantees a stronger privacy against an adversary who knows this evolution
scenario than an event-DP algorithm which assumes no correlation between events.

Readers may refer to [27] for the general version of Blowfish neighbors with
constraints. For more general policy graph with constraints, we can define Blowfish
privacy as follows.

Definition 5.13 (Blowfish Privacy [22, 27]) Let ε > 0 be a real number and policy
P = (T ,G, IQ) be a policy. A randomized mechanism M satisfies (ε, P )-Blowfish
privacy if for every pair of neighboring databases (Di,Dj ) ∈ N(P ), and every set
of outputs S ⊆ range(M), we have

Pr[M(Di) ∈ S] ≤ eεP r[M(Dj ) ∈ S] (5.20)
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If we consider policy without constraints, we simplify our notation for Blowfish
privacy as (ε,G)-Blowfish privacy.

Now the privacy guarantee is not only controlled by the privacy parameter ε, but
also by the policy graph G. Consider two databases D1 = D∪{u} and D2 = D∪{v}
that differ in one tuple. Given a mechanism M that satisfies (ε,G)-Blowfish privacy,
we have

Pr[M(Di) ∈ S] ≤ eε·dG(u,v)P r[M(Dj ) ∈ S] (5.21)

where dG(u, v) is the shortest distance between u, v in G. This implies that an
adversary may better distinguish pairs of nodes farther apart in the graph than those
that are closer. Similarly, an adversary can distinguish between u, v with probability
1, when u and v appear in disjoint components of G, where dG(u, v) → ∞. Note
that when G is a complete graph K , then (ε,K)-Blowfish privacy is equivalent to
ε-differential privacy.

Theorem 5.5 (Sequential Composition [27]) Let P = (T ,G, IQ) be a policy
and D ∈ IQ be an input database. Let M1(·) and M2(·, ·) be algorithms
with independent sources of randomness that satisfy (ε1, P ) and (ε2, P )-Blowfish
privacy, resp. Then an algorithm that outputs both M1(D) = ω1 and M2(ω1,D) =
ω2 satisfies (ε1 + ε2, P )-Blowfish privacy.

Algorithms that satisfy Blowfish also satisfy the postprocessing theorem (like
Theorem 5.2) and a restricted form of parallel composition. We refer the reader to
[27] for details.

5.4.2 Mechanisms for Blowfish Privacy

Blowfish privacy generalized (bounded and unbounded) differential privacy. In fact,
we can show that any algorithm that satisfies ε-bounded DP (or ε/2-unbounded DP)
also satisfies (ε,G)-Blowfish privacy for any policy graph G (when the definition
has no constraints Q). Thus, in the absence of constraints, differentially private
algorithms can be used to satisfy Blowfish privacy definitions. However, leveraging
the policy can lead to algorithms that provide more accuracy than DP algorithms as
we will see in the rest of this section.

5.4.2.1 Releasing Perturbed Locations

In many Location-Based Services (LBSs), an actual location needs to be shared.
While one can design event-DP algorithms using variants of randomized response
to release perturbed locations, they would have poor utility. Due to the large
domain size of locations, the probability that one would report a point close to
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the true location would be vanishingly small. On the other hand, we can develop
methods to release perturbed locations with high accuracy under Blowfish policies
corresponding to Geo-indistinguishability [4] and δ-location set differential privacy
[53]. The details of the algorithms are described below.

• Geo-indistinguishable mechanism was designed by Andres et al. [4] to ensure
ε-geo-indistinguishability. The location domain Σ is modeled as the Euclidean
plane equipped with the standard notion of Euclidean distance. For the ideal case
of the continuous plane, where Σ = R

2. Given a true location ri[j ] = l, where
l ∈ R

2 and privacy parameter ε, the mechanism would like to draw a location
l ∈ R

2 with probability function

Dε(l0)(l) = ε2

2π
e−εd(l0,l). (5.22)

It is easy to show that this mechanism satisfies ε-geo-indistinguishability. The
actual sampling process takes place in a system of polar coordinates that centered
at l. Equation 5.22 can be transformed into PDF of the polar laplacian centered in
the origin l0, where Dε,R(r) = e2re−εr , Dε,Θ(θ) = 1

2π
. Based on the PDF, the

angle θ can be drawn uniformly [0, 2π ]. For radius r , we first draw z uniformly
in [0, 1) and set r = C−1

ε (z), where Cε(r) = 1 − (1 + εz)eεz is the cumulative
function for Dε,R(r). Readers may refer to [4] for the adjusted mechanism for
discrete coordinates.

However, this mechanism is susceptible to attacks when the adversary knows
correlations across time points in a trajectory[9, 53]. Hence, this temporal
correlation-based attacks motivates the following mechanism.

• Planar Isotropic Mechanism was proposed by Xiao et al. [53] to ensure δ-
location set based differential privacy (Example 5.5), where the sequence of
locations are correlated by a Hidden Markov model. As l1-sensitivity fails to
capture the geometric sensitivity in multidimensional space, Xiao et al. [53]
proposed a new notion, sensitivity hull to bound the change in the query output
caused by the modification of an event. The sensitivity hull of a query f is defined
as the convex hull of Δf where Δf is the set of f (l1) − f (l2) for any pair l1
and l2 in δ-location set ΔX. This sensitivity hull was further transformed into
isotropic position to ensure optimal solution of K-norm Mechanism [24] for 2-
dimensional space. K-norm Mechanism is defined as below.

Definition 5.14 (K-norm Mechanism) Given a linear function F : RN → Rd

and its sensitivity hull K , a mechanism is K-norm mechanism if for any output
z, the following holds:

Pr(z) = 1

Γ (d + 1)V OL(K/ε)
exp(−ε||z − Fx∗||K), (5.23)

where Fx∗ is the true answer, || · ||K is the (Minkowski) norm of K , Γ () is
Gamma function and V OL() indicates volume.
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The releasing of location at timestamp j can be summarized as four steps: (1) the
sensitivity hull K is computed from the given δ-location set ΔX at timestamp
j , (2) the sensitivity hull K is then transformed to its isotropic position KI to
ensure the optimal solution for K-norm mechanism, (3) a sample is picked from
Ki and perturbed to z′ by K-norm mechanism; (4) finally this perturbed sample
z′ is transformed to z in the original space and published. This mechanism has
been shown in [53] with error O

( 1
ε

√
AREA(K)

)

at most, and this is the lower
bound of any mechanism that satisfies δ-location set based differential privacy.

5.4.2.2 Aggregate Perturbation for Count Queries (General Algorithms
for Blowfish Privacy)

In [22, 27], Blowfish private mechanisms were designed to answer aggregate queries
under different policy graphs. Each policy graph can instantiate a new notion of
neighboring databases. Rather than re-designing a new algorithm for each notion
of neighboring databases, [22] showed a transformational equivalence between
a large class of Blowfish private algorithms and standard differentially private
algorithms and for many policy graphs. This equivalence can be stated as follows:
for policy graph G, there exists a transformation of the workload and database
(W, x) → (WG, xG) such that Wx = WGxG, and a mechanism M is an (ε,G)-
Blowfish private mechanism for answering workload W on input x if and only if M
is also an ε-differentially private mechanism for answering WG on xG. This result
does not hold in general, but [22] showed that under a class of mechanism called
matrix mechanism, transformational equivalence holds for any policy graph.

Equivalence for Matrix Mechanism. Matrix mechanism framework was
designed for optimally answering a workload of linear queries [33]. Some
workloads W have a high sensitivity, but they can be answered with low error
by answering a different strategy query workload A such that (a) A has a low
sensitivity ΔA, and (b) rows in W can be reconstructed using a small number of
rows in A.

In particular, let A be a p × k matrix, and A+ denote its Moore-Penrose
pseudoinverse, such that WAA+ = W . The matrix mechanism is given by the
following:

MA(W, x) = Wx + WA+Lap(ΔA/ε)p (5.24)

where, Lap(λ)p denotes p independent random variables drawn from the Laplace
distribution with scale λ. The corresponding Blowfish specific sensitivity of a
workload, Δw(G) is defined as follows:

Definition 5.15 (Policy Specific l1 Sensitivity) The l1 policy specific sensitivity of
a query matrix W with respect to policy graph G is
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Δw(G) = max
x,x′∈N(G)

||Wx − Wx′||1 (5.25)

Let PG be a matrix that satisfies the following properties.

• PG has |V | − 1 rows and |E| columns.
• Let WG = WPG. Then Δw(G) = ΔWG

. i.e. the sensitivity of workload W under
Blowfish policy G is the same as the sensitivity of WG under differential privacy.

• PG has full row rank (and therefore a right inverse P −1
G ). For vector x, we let xG

denote P −1
G x.

Given such a PG, the following theorem is true.

Theorem 5.6 ([22]) Let G be a Blowfish policy graph and W be a workload.
Suppose PG exists with the properties given above. Then the matrix mechanism
given by Eq. (5.24) is both a (ε,G)-Blowfish private mechanism for answering W

on x and an ε-differentially private algorithm for answering WG on xG. Since
Wx = WGxG, the mechanism has the same error in both instances.

We illustrate the strategies proposed in [22] with the example of answer-
ing range counting queries over two dimensional location for distance-threshold
policy graphs. These graphs are based on similar secret specification as Geo-
indistinguishability, by considering the set of discriminative secrets

S

θ
pairs = {(ri[j ] = l, ri[j ] = l′) | d(l, l′) ≤ θ, l, l′ ∈ Σ, j = 1, 2, . . .}. (5.26)

Particularly for a grid-based location domain of size k ×k, this class of policy graph
Gθ

k2 is defined based on the l1-distance in the domain [k]2, where [k] denotes the set
of integers between 1 and k (inclusive). The vertices in G are the grid cells. There
is an edge u, v in E if and only if |u − v|1 ≤ θ .

Consider rectangle range counting query q([x, y], [x′, y′]). When θ = 1, the
transformed query qG1

k2
is the sum of four disjoint range counting queries in the

transformed domain. Hence, the strategy for answering the transformed query
workload would be to answer 2(k − 1) one-dimensional range count queries
under differential privacy. The error per query under (ε,G1

k2)-Blowfish privacy for

all rectangle range counting queries is O(log3 k/ε2) while the best known data
independent strategy answering the same workload with ε-differential privacy is
the Privelet strategy [52] with a much larger asymptotic error of O(log6 k/ε2) per
query.

When θ > 1, the policy graph is more complex. The algorithm proposed
leverages subgraph approximation and can achieve an error of O(log3 k log3 θ/ε2)

per query under (ε,Gθ
k2), which is still better than using Privelet (O(log6 k/ε2) per

query) when log θ is small compared to log k.
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5.5 Conclusions and Open Challenges

In this chapter, we identified desiderata that algorithms for privacy-preserving
release and analysis of location data must ensure. These include ensuring provable
privacy guarantees of an individual’s properties even when adversaries have strong
prior knowledge and satisfying composition properties that allow for a graceful
degradation of privacy even under multiple releases of the data. We described
variants of differential privacy and algorithms that satisfy these variants for the
tasks of answering queries over a single-time snapshot of location data, continuous
queries over location streams and releasing synthetic location trajectory databases.
We also presented Pufferfish, a framework for defining privacy that allows us to
reason about the privacy semantics underlying the variants of differential privacy.
We concluded by describing instantiations of Pufferfish that allow for ensuring
privacy when adversaries may know correlations within the location stream, and
described a subclass of Pufferfish, called Blowfish, that satisfies composition
theorems.

While a wide range of provable privacy definitions are available today, it is
still unclear which of these definitions are applicable to a given scenario, and
whether the algorithms satisfying these definitions allow realistic analysis of
location data with acceptable errors. There are a number of algorithms known for
geo-indistinguishability and event-DP, but these approaches constitute the weakest
privacy guarantees. More work is needed to identify practical solutions for location-
based applications under stronger privacy notions.

Location trajectories have inherent correlations, both within a single trajectory
and across trajectories. We have seen examples of the former, and some solutions
to handle these correlations when they take a specific form. However, there is little
work that acknowledges and handles correlations across individuals. For instance, it
is known that when the location trajectories of two individuals are similar, then they
are highly likely to have strong social connections [12]. Whether techniques like the
Markov Quilt mechanism for handling correlations will be applied to such cases is
an interesting open question.

All of the work presented assumes that (a) users require the same level of privacy,
and (b) users are able to specify privacy levels in terms of the privacy parameter ε.
The former is clearly not true in the real world. There is work that suggests that users
have different privacy seeking behaviors depending on their demographic attributes
as well as based on their context. Moreover, it is not clear whether or not users
will be able to express their privacy preferences in terms of an ε privacy parameter.
These challenges will motivate new interesting privacy research to further advance
the state-of-the-art techniques, and ensure their adoption in real systems.
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Chapter 6
Opportunities and Risks of Delegating
Sensing Tasks to the Crowd

Delphine Reinhardt and Frank Dürr

Abstract Mobile phones and tablets have long become ubiquitous with billions
of devices sold worldwide. Equipped with a myriad of embedded sensors, these
devices have enabled the rise of a new sensing paradigm: participatory sensing.
While different terminologies, such as crowdsensing or mobile sensing, are used
to define and refine different facets of this new paradigm, they share a common
denominator—volunteers collect sensors readings using their personal devices as
sensor platforms. The delegation of sensing tasks to a wide public offers multiple
opportunities from the perspectives of applications, end users, and participants.
However, the introduction of volunteers in the sensing loop also introduces some
risks for these stakeholders. In this chapter, we hence provide an overview of
existing applications and detail both the opportunities and risks raised by the
contributions of volunteers to the sensing process.

6.1 Introduction

Since the introduction of the paradigm of participatory sensing, different terminolo-
gies have been proposed depending on, e.g., the applied sensing modalities or the
monitored subjects. For example, opportunistic sensing [21] automatically triggers
the sensing process, and hence does not require the participants’ involvement
as compared to participatory sensing. Spatial crowdsourcing [100] especially
emphasizes location-based sensing tasks. For environment-centric applications,
urban sensing [21] and participatory urbanism [134] have been proposed, while
citizen sensing [19], people-centric sensing [4, 21], and community sensing [102]
focus on the participants and the related communities. Despite the existence of
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multiple terminologies, the underlying principle remains the same: Applications
using participants’ mobile devices as sensors (or as data sink for interfaced sensors)
collect sensor data. Without loss of generality, we use the generic term crowdsensing
applications [72] to refer to such applications within the scope of this chapter.

In parallel to the introduction of different terminologies, the enthusiasm of
researchers for this field has continuously grown. Leveraging personal mobile
devices as sensing platforms has opened the doors to the development of a myriad of
novel applications, ranging from people-centric to environment-centric applications.
We hence give different examples of these applications and highlight their common
architecture in Sect. 6.2. As compared to previous sensing paradigms, such as wire-
less sensor networks, crowdsensing applications benefit from both the deployment
of the devices at large scale and the on-board available resources. As a result, multi-
ple opportunities are offered to both application developers and end users as detailed
in Sect. 6.3. They include the possible collection of an unprecedented number of
sensor readings following the mobility patterns of contributing participants. The
participants’ mobility expands the sensing coverage and may provide additional
information about their interactions with their environment and other participants.
By contributing with their own devices, participants reduce the costs of the sensing
platforms to virtually zero for the application developers. Participants building
the crowd can also draw benefits from their contribution to these applications.
Depending on the nature of the applications and their modalities, participants may
obtain incentives for their contributions, such as additional revenues, being part of
a community, or discovering new landscapes.

Unfortunately, crowdsensing applications not only offer benefits, but may also
involve risks for all stakeholders, i.e., the participants, the application developers,
and the end users. In Sect. 6.4, we adopt the participants’ perspective and address
potential risks that they may encounter when contributing to crowdsensing applica-
tions. We especially consider the threats to the participants’ privacy and how these
threats can be mitigated by applying selected privacy-preserving mechanisms in
Sect. 6.4.1. We further consider risks in terms of additional resource consumption
and highlight different methods in Sect. 6.4.2 that can be applied to save both
battery lifetime and data volume. Next, we consider potential risks for application
developers. These risks are mainly caused by the open nature of the crowdsensing
applications. By distributing the sensing tasks to the crowd, application developers
primarily need to ensure that a sufficient number of sensor readings of satisfying
quality will be delivered in a timely manner to match the application’s requirements.
This means that potential participants must first engage in crowdsensing applica-
tions and be encouraged to contribute data on the long term. We therefore give an
overview of existing incentives targeting these goals in Sect. 6.5.1. In Sect. 6.5.2,
we further highlight different techniques applied to optimize both the quantity and
quality of delivered sensor readings. We finally adopt the perspective of end users
and discuss the associated risks in Sect. 6.6.
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6.2 Crowdsensing Background

In this section, we first introduce a common architecture for crowdsensing systems
in Sect. 6.2.1 defining the different building blocks and components that can be
found in most crowdsensing systems as well as the stakeholders involved in realizing
such a crowdsensing system. Based on this common crowdsensing architecture, we
describe a set of typical crowdsensing applications in Sect. 6.2.2 to highlight the
broad scope of application areas that benefit from the crowdsensing paradigm.

6.2.1 Crowdsensing System Architecture

Figure 6.1 shows a common system architecture typical for many crowdsensing
systems. This architecture consists of a user-facing frontend and a backend server
infrastructure detailed in the following.

6.2.1.1 Frontend: Mobile Sensors

The crowdsensing frontend is implemented by mobile devices of volunteering users
participating in crowdsensing. The major functionality of these mobile devices
is to act as mobile sensors capturing sensor data. The type of sensor data that
can be captured by mobile devices depends on the sensors integrated with the
mobile device. Considering a typical smartphone, we can observe that these
commodity devices are equipped with various sensors such as positioning sensors,
cameras, microphones, accelerometers, gyroscopes, etc. In particular their ability
to determine their position outdoors and indoors through GPS, Bluetooth (Apple
iBeacon, Google Eddystone), and cellular or Wi-Fi networks (cell id, fingerprinting)
allows for capturing location data (e.g., movement trajectories) and geo-located
sensor information tagged with positions.

Sensing Localization Data processing

Cloud Server
(Data Center)

Sensing Frontend: The Mobile Crowd Backend Server Infrastructure: The Cloud

Edge Cloud Server
(optional)

Tasking

Crowd-sensed data

Crowd-sensed
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Fig. 6.1 Crowdsensing architecture
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Besides smartphones, also other mobile devices can be utilized for crowdsensing.
In particular, wearable devices such as fitness trackers, smart watches, or smart
glasses are highly relevant for crowdsensing since they integrate sensors for
measuring personal information like the users’ heart rate. These devices can either
be stand-alone mobile devices with direct Internet connection through mobile
communication technologies, or they can be connected via short-range wireless
communication technologies like Bluetooth to another mobile device. For example,
a wearable fitness tracker device can be connected to a smartphone.

Alternatively, a crowd of mobile devices like smartphones can serve as gateways
to connect a large set of inexpensive, battery-operated fixed sensors installed in
the environment to the Internet in an opportunistic fashion [171]. To this end, the
fixed sensors only need to be equipped with energy-efficient short-range wireless
communication technologies like Bluetooth Low Energy (BLE) to send sensor data
to mobile devices passing by the sensors. The mobile devices then forward these
sensor readings to the crowdsensing backend service.

Note that in contrast to a dedicated sensor network owned by a single entity, the
sensors and mobile devices of a crowdsensing system are owned by many individual
and mostly private participants, i.e., the crowd. Thus, participants keep control over
their devices and use them concurrently for other tasks besides sensing like making
phone calls or executing other apps. This model have technical implications as
shown in Sect. 6.3.

Sensing can either be performed as a background task without requiring user
interaction, such as recording a movement trace to map a road network, or by
actively involving the user to perform certain tasks like taking a picture of a certain
building to texture a crowd-sensed 3D city model. The latter model also allows for
leveraging participants themselves as sensors. For example, participants can indicate
how safe they feel across cities in uSafe [42].

6.2.1.2 Backend Server Infrastructure

The backend server infrastructure manages the crowdsensing system and is respon-
sible for collecting, storing, and processing the gathered sensor data as required by
the specific crowdsensing application.

Processing includes the filtering and fusion of data, for example, to remove
outliers, and to increase the precision and accuracy of information. Moreover, raw
sensor data can be processed into higher-level information. For example, movement
traces collected by mobile users using GPS can be processed into a street map.
In certain scenarios, not only the sensing tasks but also processing tasks are
out-sourced to the crowd. For example, the OpenStreetMap (OSM) community
project [3] collects GPS traces from users, and users also generate maps from the
collected data, which are then uploaded again to the OSM servers.

Besides collecting and processing sensor data, the backend crowdsensing service
can also coordinate the process of crowdsensing by tasking devices. To this end, the
mobile devices might transmit device or participant information such as device/user
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positions, available sensors, remaining energy, or any other context information to
the backend server. Tasking can also be supported by the user reputation managed
in a reputation system. With this information, the backend server can task suitable
devices/participants with relevant sensing tasks like sensing the temperature in a
certain area where the mobile device is currently located [11, 137, 172, 173]. Besides
this central coordination through the backend service, distributed coordination
protocols can also be implemented to let devices coordinate sensing in an ad-hoc
fashion [172].

The backend server is typically implemented by a powerful infrastructure, often
in the “cloud” to scale with the number of participants. Local servers, often referred
to as the “edge cloud” or “fog”, can also be deployed to decrease the load onto both
the central cloud infrastructure and network as well as reduce latency [151].

The backend infrastructure can be operated by different parties like companies
offering a commercial application or service, research institutes collecting data for
their studies, or communities like the OSM project mentioned above acting in an
altruistic fashion.

6.2.2 Crowdsensing Application Examples

After the introduction of our crowdsensing architecture in Sect. 6.2.1, we next
describe examples of crowdsensing applications in order to highlight their diversity
and show the versatility of the underlying paradigm.

Due to the ability of mobile devices to sense their position, the first large class of
applications deals with collecting geographic and geo-located information about
the environment. Collected mobility traces of participants, possibly augmented
with further information like images from cameras, can be used to create outdoor
maps [3, 10] as well as indoor floor plans [6, 73, 90, 136] of a priori unknown
environments. Besides solely using participant positions to derive geographic map
information, other sensor information can be combined with positions to create
various geo-located information. One prominent example is the creation of noise
maps from geo-located noise samples captured by microphones of mobile devices
to document noise pollution in cities and along roads [13, 14, 58, 94, 114, 117, 126,
144]. Similarly, weather conditions [132] and air pollution [56, 82, 84, 94, 108, 120,
134, 156] can be captured using additional sensors attached to mobile device. A Wi-
Fi map showing the coverage and quality of wireless networks can be inferred from
crowd-sensed data [34, 70, 175]. Moreover, smart traffic systems can be supported
by monitoring the state of traffic signals [101].

Crowdsensing applications can also monitor participants’ mobility patterns. By
doing so, these applications can infer and predict the number of people present at a
certain locations in the case of large scale events like concerts or festivals [16, 154].
Similar techniques can be deployed in emergency scenarios to detect the presence of
physical and digital activities as proposed in [115]. At a smaller scale, QTime [169]
aims at optimizing the users’ waiting time at supermarket checkouts by determining
when and where the queues are the shortest. Moreover, real-time information about
public transport can be inferred based on such applications [69, 184].
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Combining location information with other crowd-sensed information can also
be used to share information within communities. For example, users can share
richer information by integrating sensor-based content [76, 125, 130]. The commu-
nities built around the applications can be further exploited to analyze and optimize
the distribution of public information using FlierMeet [80] or document prices in
local groceries [53] and petrol stations [61].

Another large class of crowdsensing applications is focusing on sensing informa-
tion about people rather than the environment. Within this class, many applications
focus on monitoring and documenting the participants’ health. Prominent examples
are fitness tracker applications monitoring physical activities including sports
activities [64–67, 83, 152, 155]. In this application area, many commercial appli-
cations are already available such as RunKeeper [71], Endomondo [68], and Nike+
Running [133]. Other applications assist in documenting eating habits and diet
behaviors [8, 54, 131, 147], or exposure to air pollution [12, 94, 127, 140, 179].
Similarly, monitoring stress conditions is a target of further applications [113].
Moreover, applications can assist patients suffering from depression and tinnitus
as proposed in [155] and [141, 142], respectively. In general, all of these approaches
relieve participants from the tedious task of manual documentation, and various
factors impacting the health of participants can be captured. This not only allows
gaining detailed insights about individuals, but also provides the data basis for
statistical analysis of whole populations of participants.

In summary, our overview of crowdsensing applications shows that the crowd-
sensing paradigm is highly versatile and can be applied in a wide range of
application domains.

6.3 Crowdsensing Opportunities

The selected set of applications described in the previous section draw different
benefits from the crowdsensing paradigm. In this section, we hence analyze and
highlight the opportunities and benefits stemming from crowdsensing from both
the global application perspective as well as the individual end user or crowd
perspective.

6.3.1 Application and System Perspective

We start by adopting the global perspective of the crowdsensing applications. The
most essential and common goal of all crowdsensing applications is to collect sensor
data. With respect to the collected sensor data, crowdsensing improves two essential
properties of the collected data, namely, their quantity and quality. Moreover,
crowdsensing not only produces data of higher quantity and quality, it also does
so at lower cost and time. In what follows, we hence discuss these different aspects
in detail.
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6.3.1.1 Data Quantity

Sensor data quantity refers to the volume of gathered data. On the one hand, the
positive effect of crowdsensing onto the volume of gathered sensor data is due to the
tremendous number of personal devices owned by the crowd of users participating
in sensing, and thus acting as data sources. The scale might become clear by
considering the following numbers for the year 2016 from [45]:

• 8 billion mobile devices and connections, where smart devices represented 46%
of the total number of mobile devices and connections. In the year 2016 alone,
429 million mobile devices and connections were added, where smartphones
accounted for most of that growth,

• 325 million wearable devices, of these, 11 million with embedded cellular con-
nection (other devices might connect to other mobile devices like smartphones
through short-range wireless communication technologies like Bluetooth).

Although these numbers are already very impressive, the growth predicted
in [45] until 2021 shows the steep gradient of the smart mobile device population:
11.6 billion mobile-connected devices, of which 74.7% will be smart devices. It
is not hard to imagine that even if only a fraction of these devices participate in
crowdsensing, they can gather an unprecedented volume of sensor data.

Moreover, the volume of sensor data captured by mobile devices also constantly
increases due to new developments in sensor technologies. For example, geographic
location belongs to one of the most important sensing modalities and illustrates
this evolution. For several years now, commodity smartphones integrate GPS
functionality measuring longitude, latitude, and altitude values, i.e., only three
values, at a maximum rate of few Hertz. In contrast, today’s mobile devices also
integrate depth sensors to capture detailed 3D point clouds. For example, Google’s
Tango tablet integrates a depth sensor with 320 × 180 points resolution at a rate
of 5 Hz. Thus, instead of few coordinates per second, a single device can capture
tens of thousands of coordinates per second, increasing the volume of sensor data
captured by each device by orders of magnitude. One might argue that professional
sensors like laser scanners produce even more data due to their higher resolution and
sampling rate. However, we need to keep in mind that with crowdsensing the total
data volume needs to be multiplied by the size of the device population participating
in sensing, which increases the amount of captured data easily by several orders of
magnitude.

6.3.1.2 Data Quality

Besides increasing the volume of sensor data, crowdsensing can also increase the
quality of sensor data. There are different aspects of data quality to be considered as
discussed next.
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Precision and Accuracy

If we talk about quality, we first need to discuss the precision and accuracy of
gathered sensor data. Precision refers to the repeatability or reproducibility of
data, whereas accuracy refers to the deviation of the sampled value from the true
value. First of all, both quality metrics depend on the sensors. Although there is
constant improvement, typically, sensors integrated with devices like smartphones
are less precise than sensors integrated into professional measuring equipment.
Taking again the example of the depth sensor of a commodity Tango tablet sensing
3D point clouds and a professional laser scanner, they differ by orders of magnitude
in both precision and accuracy. Moreover, there is another essential property of
crowdsensing to be considered, namely, the trustworthiness of personal devices.
These devices may deliver incorrect sensor readings as detailed in Sect. 6.5.2, thus
directly impacting the accuracy of reported sensor data.

So both aspects, low-quality sensors as well as trustworthiness, seem to nega-
tively impact the quality of sensed data. So how can we claim that crowdsensing
still delivers precise and accurate values? The answer is redundancy. In many
situations with a dense distribution of crowdsensing devices, many sensor values
will be reported rather than only a single value. Although individual values might be
inaccurate or imprecise (or both), by post-processing redundant samples using, for
example, statistical methods, we can improve the quality by filtering data to remove
noise or outliers. A good example are mapping approaches generating indoor floor
plans from crowd-sensed data [6, 73, 90, 136] like movement trajectories. Although
each single trajectory is imperfect since, for example, gyroscopes of cheap inertial
measurement units tend to drift, step detection and/or step length are inaccurate, etc.,
an accurate floor plan can be generated by considering all trajectories covering the
same location (and possibly further knowledge like building outlines). This example
also directly leads to another quality aspect, namely geographic coverage of data.

Coverage

Having highly precise and accurate data are often not sufficient for large-scale
applications, if these data are only available at scattered locations. Spatial-temporal
coverage of sensor data is hence a crucial quality metric. Although it might be
relatively easy to achieve high precision and accuracy with professional measuring
equipment, given the required overhead in cost for professional sensing (see
Sect. 6.3.1.3), it can only be used at few locations. In contrast, crowdsensing utilizes
many personal user devices roaming around a wide geographic area. Especially
in urban areas, this leads to high spatial-temporal coverage. It is fair to point out
that this coverage might greatly vary between, e.g., urban and rural areas or at day
and night. However, many crowdsensing applications benefit from the correlation
between user density and relevance of a location. In other words, if an area is
interesting for users, there might be numerous users located at this area. Again,
building maps based on crowdsensing is a good example. Locations visited by
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many users generate a large volume of data and can thus be mapped accurately.
Similarly, a crowdsensing system for detecting delays in public transport includes
many interested users as well as mobile sensors, since both coincide. Consequently,
crowdsensing is able in many cases to deliver more data exactly where needed. This
is also observed in peer-to-peer systems, where more resource demand from peers
coincides with more resources offered by peers.

Besides being able to provide data from large geographic areas, crowdsensing
also naturally captures data about relationships between people, and between people
and their environment. For example, social relationships can be inferred from the
pattern of people meeting. This pattern can be detected from location or proximity
data captured by positioning systems or short-range communication technologies.
As a result, the notion of coverage can be extended from the geographic domain to
other domains, such as the social domain.

Velocity

Another data quality criterion is the timely availability of data. Note that this
requirement can be orthogonal to the temporal coverage requirement. Temporal
coverage requires data to be available for any time, while timely availability means
that data should be available as fast as possible, ideally immediately. To meet the
later requirement, online sensing methods are necessary. They hence are opposed
to capturing data offline, post-processing it, and then after some time making it
available.

Due to the availability of fast mobile communication technologies and cheap
data plans (flat rates), modern mobile devices are often “always on(line)”. Thus,
sensed data can be made available online within short time, and “flows” at a high
“velocity” as streams of sensor data or streams of events. In particular, this allows
for the fast automatic reaction to situations in the physical world to control so-called
cyber-physical systems online. A popular example is a traffic management system
controlled by “floating car data” capturing the speed of cars (sensors), equipped
with mobile communication technologies to stream their position and speed on the
road network.

Variety

Another interesting feature of crowdsensing is the possibility to capture a variety of
data with the same devices. Considering again the example of a laser scanner vs.
a smartphone, the laser scanner can just capture 3D point clouds, whereas a Tango
tablet can capture as well sound (microphone), 2D images and videos (standard
camera), and possibly anything else captured by further sensors, e.g., connected
through Bluetooth like health-related data of users from a fitness tracker. In other
words, today’s mobile devices are already multi-purpose sensor platforms, and
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the trend towards wearable computing will further increase the variety of sensor
modalities that can be captured by users.

6.3.1.3 Cost and Time

Another aspect that is essentially related to the coverage quality metric is the
cost of the sensing infrastructure. Covering a large geographic area with a dense
“classic” sensor network of dedicated fixed sensors obviously implies both, large
capital investment cost for buying and installing the sensors as well as operational
cost for maintaining the infrastructure like monitoring and replacing faulty sensors,
replacing batteries of battery-powered sensors, etc. These high cost might make
the implementation of applications unattractive, or prevent them from being imple-
mented in the first place, e.g., by small start-up companies or communities with
small budget. Moreover, deploying a fixed sensor network for a new application
also takes significant time. Consequently, it slows down the speed of bringing
new sensing applications into the market. Crowdsensing systems do not suffer
from these problems since they employ a readily available base of mobile devices
from the crowd. Implementing a new crowdsensing application might be as easy
as implementing an app, putting it in an app store, and setting up a backend
system, e.g., in a cloud, to collect and process the collected sensor data. The
sensing hardware is operated and constantly replaced by newer models bought by
participants. Obviously, avoiding the time for deploying a sensing infrastructure
significantly reduces the time to market. Besides reducing the installation time,
existing applications also benefit from the fact that sensors are already deployed
as soon as unexpected events like accidents, traffic jams, or problems in public
transportation need to be monitored.

In addition to reducing both deployment cost and time, mobile applications can
be developed very quickly and easily. Powerful platforms like Android or iOS
and development environments are available. The popularity of these platforms
also has led to a large community of developers who are familiar with these tools
and platforms. Moreover, these platforms are highly popular from an end-user’s
perspective and come with app stores and marketplaces reaching billions of users.
Thus, the time to gather a critical mass of participants is minimized.

Before heading on to the user perspective, we have shown so far that crowdsens-
ing may not only deliver sensor data of potentially high-quality data at low cost,
but also at a high volume and velocity, as well as great variety. These three “V” are
known as the fundamental defining parameters of big data. Sometimes, the three
“V” are extended by two more “V”, namely, veracity (or alternatively validity) and
value. Veracity or validity refer to the uncertainty of data, which is obviously the
case for data sensed by a crowd of participants of heterogeneous trustworthiness
using commodity hardware and sensors as discussed above. Moreover, considering
the various applications introduced in Sect. 6.2.2 that are benefiting from crowd-
sensed data, it is also easy to see that the data collected by the crowd is of high value
for many applications, companies, and communities. We can therefore conclude that
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crowdsensing is a good candidate to capture high-quality big data at low cost to
provide data, for instance, to machine learning algorithms relying on large quantities
of data or the online control of cyber-physical systems relying on timely data.

Being able to deliver big data is challenging and requires processing and
storing these large volumes of data coming in at high speed. Thus, scalability
becomes a major requirement. Typically, a crowdsensing system might start small
and then dynamically grow with the popularity of the application. Investing in
a dedicated powerful backend infrastructure designed for the maximum size is
therefore not cost efficient. Cloud computing with the capability to scale resources
on demand and “pay-as-you-go” pricing models are hence good candidates to host
the crowdsensing backend. Scalability and managing big data are however not
specific to crowdsensing and generic solutions need therefore to be found.

6.3.2 Participants and Crowd Perspective

After having shown the benefits from the perspective of the crowdsensing system,
we now consider the benefits from the perspective of an individual user or a user
community, i.e., the crowd.

6.3.2.1 Personal Data

Since crowdsensing lets users collect data, it is a natural choice to collect data
about themselves. This is inline with the currently experienced movement known
as the quantified self/me, also known by other terms like life logging, where users
collect a variety of data about themselves. Technically, this movement is driven by
the various sensors embedded into smartphones or integrated into wearable devices
like fitness trackers that can capture personal information. The captured information
ranges from raw sensor data, such as heart rate to anything that can be inferred
from this data including the user’s activities, health status, lifestyle, etc. As a result,
crowdsensing applications may contribute in supporting support users belonging to
this movement.

6.3.2.2 Communities

Beyond collecting only personal information, crowdsensing allows users sharing
common interests to gather into communities. One prominent example is the
OpenStreetMap (OSM) community [3], which strives for creating highly accurate
maps from crowd-sensed GPS traces completed by crowdsourced map creation from
the collected traces or aerial images. This community acts in a purely altruistic way
creating highly detailed and precise maps covering any relevant place of the world
(see discussion about coverage above).
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Another large user community includes drivers sharing the interest to avoid traffic
jams, speed traps, etc. For example, the Waze application [170] gathers map data
and traffic information from tens of millions of users to provide a navigation service
based on crowd-sensed real-time traffic data. The monetary value of the data and
user community can be estimated by considering the price that was paid by Google
in 2013 to buy Waze: 1.1 billion USD.

6.3.2.3 User Incentives

By contributing to crowdsensing applications, participants can gain several benefits
depending on the nature of the applications and the incentive model applied. As
detailed in Sect. 6.5.1, applications can reward participants by paying for their
contributed data. However, being part of a community and being well recognized
within this community for their contributions is often already sufficient. For
example, the navigation application Waze [170] has introduced a point system for
rewarding users contributing data. Points can be earned by editing the map (adding
street names, new road recording, etc.), gas price and road reports, place photos, etc.
A user archiving the highest rank is recognized as a “Waze Royalty” showing other
users of the community that this is a highly active user.

Introducing gaming aspects and fun is also a means to motivate people to go
outside for a walk and exercise, while collecting data on the go. The popular
augmented reality game Pokémon Go by Nintendo, where players catch virtual
Pokémons located in the physical world, is a good examples showing the possibility
to engage millions of users through games.

In summary, participants can benefit from data about themselves and being part
of communities aiming at the same goal. Being an active member in a community
may further foster social interactions within it. Moreover, they may gain additional
revenues when contributing data or benefit from the data themselves within the
communities built around the applications. Depending on the applications, it may
also allow them to discover new environments or to have fun and compete with
others.

6.4 Potential Risks for Crowdsensing Participants

By registering and contributing to crowdsensing applications, participants can be
exposed to two main risks: Their privacy can be put at stake and/or they can
experience a depletion of their device’s resources depending on the underlying
design of these applications. In what follows, we describe the associated risks and
selected solutions proposed in related work to address these risks.
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6.4.1 Threats to Privacy

In absence of privacy-preserving mechanisms, participants of crowdsensing appli-
cations can reveal a wide range of information about themselves.

Starting by the registration process, participants may need to provide their real
identity and bank information, so that monetary rewards can be paid. Assuming that
participants are able to use pseudonyms, their manual search for tasks to be fulfilled
in their proximity and the corresponding download can still reveal their location.

Similarly, applications can monitor the participants’ location to dynamically
distribute sensing tasks to participants closely located to the events of interest.

Moreover, most applications studied in the survey published in [41] annotate
the collected sensor readings with time and location information and the current
participants’ location may also be identified based on the collected sensor readings.
For example, pictures, audio samples, and pollution data may include unique
features, exposing the participants’ whereabouts. Consequently, applications are
able to follow the participants’ whereabouts. Note that additional insights about
these threats can be found in the chapter entitled “Location Privacy in Spatial
Crowdsourcing” by H. To and C. Shahabi.

In both tasking and sensing steps, the participants’ locations may lead to the
identification of participants using pseudonyms based on the inference of their
home address since participants usually commute from and to this location on
a daily basis [103]. Alternatively, a cross-analysis of the participants’ mobility
patterns could lead to their re-identification based on the uniqueness of their location
traces [52].

In addition to the spatiotemporal information about the collected sensor read-
ings, the sensor readings themselves may allow to infer characteristics about the
collecting devices and/or participants [107]. Depending on the uniqueness of these
characteristics, it may lead to an identification of the participants. For instance, it has
been shown that devices can be fingerprinted, i.e., uniquely identified among others,
based on an analysis of different sets of collected sensor readings [46, 57, 159]. It is
however to be noted that the fingerprinting is usually performed in a lab setting and
according to a synthetic scenario.

Besides, participants may be distinguished based on collected accelerometer data
when walking [55] or when performing usual daily activities [104]. Additional
information about them can be inferred by analyzing the same data. It includes
participants’ gender [88, 174], height [174], weight [174], as well as current
activities [105]. A combination of these information may refine the portrait of the
contributing participants and might lead to their identification when the size of the
participants’ pool is limited.

Accelerometer data can further contribute in revealing participants’ keyboard
inputs [20, 81] or their current touch actions, such as tapping, scrolling, and zoom-
ing, in a browser by leveraging JavaScript [119]. An analysis of the participants’
keystroke patterns can also reveal their gender, estimated age, and used hand,
thus potentially leading to an identification when combined [9, 18]. Similarly, the
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characteristics of swipe gestures may contribute in determining the participants’
gender [124]. Note that the phone’s usage pattern and the installed apps may also
provide insights about both participants’ gender and age as shown in [7].

6.4.1.1 Threat Modalities

After having highlighted the potential information that can be revealed about
the participants, we consider the modalities under which their privacy can be
endangered. Like most existing systems, crowdsensing applications can be subject
to attacks mounted by external attackers.

To gain access to, e.g., the participants’ identity or their whereabouts, external
attackers can target the application server or communication happening between the
different crowdsensing stakeholders. In this case, well-established security solutions
can be applied to protect the concerned architecture components from these threats.

Since these threats are not specific to crowdsensing applications, most solutions
proposed to protect the participants’ privacy adopt an internal attacker model, in
which the administrators of the crowdsensing applications, end users, or participants
may threaten the participants’ privacy.

Multiple threat scenarios have been envisaged in this context [31]. The privacy
threats can be the result of either passive or active attacks. For example, in the
former category, participants reporting their current location at a fine granularity
may involuntarily reveal to the crowdsensing administrators the locations of others
reporting their location at a coarser granularity based on potential similarities
between the associated sensor readings. In the same category, stakeholders may also
be honest-but-curious. In this case, they do not launch any active attacks to breach
the participants’ privacy, but leverage data they have normally access to in order to
infer additional information about them.

In contrast, malicious crowdsensing administrators may deliberately distribute
selected tasks to specific participants to be able to distinguish and identify them in
the case of a selective tasking attack [153] or participants may impersonate others
to disclose sensitive data about them [77]. In addition to attacks targeting the whole
user base, specific groups of participants can be targeted depending on both the
scope and scale of the attack. For example, their selection can be based on the
participants’ physical proximity to the attacker or be random when considering a
remote attack [47, 48].

6.4.1.2 Threat Mitigation

Different solutions have been proposed to address the aforementioned threats to
privacy. In what follows, we give an overview of selected solutions targeting
different stages of the crowdsensing campaigns. For interested readers, additional
details can be found in [31, 41].
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Distribution of Sensing Tasks

Before the actual sensing step, insights about the participants can already be
disclosed to the campaign administrators when participants search for interesting
sensing tasks, e.g., in their physical vicinity or dedicated to a set of particular
sensors.

Instead of directly querying the application server, alternative solutions can be
implemented to protect the participants’ anonymity. For example, tasking beacons
including the task details can be broadcasted, so that nearby participants receiving
them will not reveal their identity to the application server.

Besides, participants can download the tasks when located in densely populated
locations [153] in order to become indistinguishable from participants sharing
the same locations. In this case, their anonymity may be ensured during the task
distribution, but further interactions within the crowdsensing systems may lead to
their identification.

To protect their location, participants can apply privacy-aware routing
schemes [95] or reduce the granularity at which their location is transmitted to
the application server by applying spatial cloaking. Assuming that participants’
groups share the same cloaked location, they become indistinguishable within this
region. To build such shared regions, different techniques can be deployed, which
mainly differ in the nature of the trusted entities. For example, a distributed and
collaborative scheme relying on other participants has been proposed in [98, 99],
while a scheme relying on a unique central entity has been introduced in [161].
In both cases, the participants would receive tasks based in their common cloaked
regions. To reduce the trust in other entities to the minimum, the network provider
can be leveraged, as it knows de facto the participants’ location and serves as
a broker [157]. By doing so, the network provider allows a distribution of the
location-based tasks without revealing the participants’ location to the campaign
administrators.

In addition to campaign administrators, honest-but-curious participants may also
become adversaries when the applications implement a bidding scheme to distribute
the tasks between the participants. Assuming that participants are able to see who is
participating in a bid, the participants’ location or interests can be revealed to other
participants. In this case, the privacy-preserving auction model based on the concept
of differential privacy [92] can be applied.

Once the tasks have been distributed to the participating devices, different
filtering methods can be applied ex ante to reduce the granularity at which both
the sensor readings and the associated location are collected.

To allow the participants to control the granularity, dedicated interfaces [40] can
be used and completed by picture-based warnings [37], which aim at increasing the
participants’ awareness about potential threats to their privacy based on their current
selected settings.
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Spatiotemporal Annotations of Sensor Readings

Post hoc methods can be further leveraged to mitigate the disclosure of location
information to the campaign administrators. These methods can be categorized
along the following categories: mixing, spatial cloaking, data perturbation, and data
aggregation.

Mixing-based solutions build on breaking the link between the devices and the
collected sensor readings annotated with spatio-temporal information. They can
further be divided between solutions focusing on mixing individual sensor readings
and those considering participants’ trajectories, i.e., series of individual sensor
readings. In the former category, mixing the sensor readings implies exchanging
sensor readings between participants. To support these exchanges, servers [153],
peer-to-peer routing [162], or ad-hoc communication [36, 39, 143] can be leveraged.
The trustworthiness of ad-hoc exchange partners can be evaluated [38] and a
minimum trust level defined by the participants using dedicated interfaces [35].
While trajectory-based solutions often follow similar principles, the consideration
of consecutive sensor readings introduces additional constraints, such as ensuring
similar mobility patterns between mixed trajectories. To cater for these constraints,
a trusted server can be used [74, 75]. Reducing the trust to such a server to the
minimum can be achieved by implementing peer-based exchanges before the server-
based processing step [129] or adopting a fully distributed solution [17]. In the
latter solution, the trust in other participants is lowered by alternatively exchanging
trajectories including or excluding sensitive locations. Besides, the chronology of
the collected sensor readings can be locally modified to additionally break the link
between both the collection time and location [25].

Like for the task distribution step, spatial cloaking can be applied to reduce the
degree of granularity at which the collection location is reported to the application.
With spatial cloaking, the participants report a coarser region that includes their
original location and can be shared with others instead of the exact collection
location. Again, different proposed solutions [5, 24, 60, 160] range from centralized
to collaborative and distributed schemes that require to trust either a third party
or other participants. In contrast, both solutions [32, 149] build on the concepts of
secure multi-party computation, so that participants only reveal their locations to
participants sharing them.

In comparison, data perturbation preserves the degree of granularity of the
location information, but the participating devices apply noise on the collected
data. By doing so, the individual sensor readings are protected, but the application
server can still compute statistical trends over the submitted data. As a result,
the privacy protection depends on the applied noise distribution. Assuming that
all participants apply the same noise distribution, malicious participants can infer
the original data by launching a brute-force attack and observing the resulting
perturbed data when knowing the original data. Therefore, different perturbation
schemes [79, 180, 185] have been proposed and build on different noise distributions
within the same crowdsensing campaign. To further enhance the privacy protection,
the noise distribution can also be adapted to previously collected sensor readings.
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An alternative method to protect the collected sensor readings before reporting
them to the application server is data aggregation. In this case, the sensor readings
collected by different participants are merged, so that individual contributions
become indistinguishable. Similarly to data perturbation, the individual data are
protected against curious application administrators, but the application sever can
still obtain aggregated results, such as averaged values, computed over participants’
sets belonging to the same aggregation group [62, 63, 109, 183].

The aforementioned privacy-preserving solutions based mixing, spatial cloaking,
data perturbation, or data aggregation can be applied before the participants report
their collected data to the application server.

Storage and Access of Sensor Readings

Alternatively, participants can retain the control over their sensor readings by
installing and managing individual repositories or use cloud-based solutions. In
addition to protecting the participants’ data against untrusted cloud providers,
cryptographic solutions, such as the one proposed in [15], allow users to grant access
rights to these data by selecting particular end users or crowdsensing campaigns.
To support this access control, different solutions have been proposed taking into
account the crowdsensing specificities [22, 23, 28, 29, 128].

In summary, we have highlighted in this section the potential risks for par-
ticipants of crowdsensing applications in terms of privacy. We have illustrated
these risks by different examples, resulting from the collection of sensor readings,
their spatiotemporal annotation, or a combination of both. We have discussed how
different stakeholders may potentially threaten the participants’ privacy and given
an overview of different privacy-preserving solutions that can be applied at different
stages of the crowdsensing campaign.

6.4.2 Resource Investment

In addition to threats to privacy, the participants’ contributions to crowdsensing
campaigns require resource investments, which range from personal to technical
investments. Participants may first invest time and physical efforts to fulfill sensing
tasks. For example, sensing tasks may not be in the participants’ direct vicinity,
and hence require them to cover an additional distance to be able to execute
them. Similarly, sensing tasks may require the participants’ involvement, e.g., by
manually triggering the data collection process. We have shown in [150] that our 207
participants of a mobile crowdsourcing platform similarly value the efforts required
to walk between two waypoints and take a picture. In addition, crowdsensing
applications can lead to increased resource consumption for the contributing
devices, especially in terms of both battery and data volume consumption.
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6.4.2.1 Battery Lifetime

Energy is one of the most critical resources to be conserved since participants
will not tolerate a significant decrease in device runtime. Smartphones acting as
mobile sensors nodes are typically recharged once per day. Thus, energy is not as
critical as for wireless sensor nodes that need to run for years from a single non-
rechargeable battery. Still, the different stages of a crowdsensing application can
contribute to reduce the battery lifetime of the participants’ device. For example,
crowdsensing applications may offer a location-based search of new sensing tasks
in physical proximity. In this case, the devices’ localization based on GPS and/or
Wi-Fi can rapidly deplete the battery. Likewise, most of the applications considered
in [41] annotate the collected sensor readings with time and location information,
hence requiring the activation of the devices’ positioning system when collecting
data. The data collection in itself also contributes to increased energy consumption,
especially when, e.g., a depth-camera used for capturing point clouds is involved
and can reduce the device runtime by hours.

Furthermore, the task distribution to the participants and the repeated trans-
mission of the collected sensor readings to the application server shrink the
available energy budget. To lower the impact of the participants’ contributions to
crowdsensing applications and hence extend the battery lifetime, energy-efficient
sensing is therefore mandatory. Several methods like scheduling sensing tasks
to only sense where and when necessary [11, 137, 172, 173], or model-driven
sensing [138] learning a model of the sensed phenomenon—e.g., spatio-temporal
model of temperature at certain locations and time—and then deriving values
from the trained model without sensing have been proposed. Additionally, sensing
activities can be scheduled in parallel to other tasks to prevent dedicated wake-
ups when the devices are in an idle state [106]. This means that the devices can
collect sensor readings during phone calls or the utilization of particular apps.
Consequently, the data collection is determined by the participants’ or devices’
behavior that may hence lead to irregular collection frequencies to the benefit of
the devices’ lifetime. A similar approach is to piggyback the transmission of both
sensing tasks and results during phone calls as introduced in [176].

6.4.2.2 Data Volume

In addition to energy consumption, additional costs for the participants can be
incurred by the necessary communication between the devices and the application
server. These costs can be a significant overhead for participants with a limited
data volume. To reduce these costs to the minimum, a solution is to schedule the
communication with the server when a Wi-Fi connection can be established, e.g.,
when the participants are at home. This solution can, however, only be applied in
delay-tolerant application scenarios. To go a step further and potentially reduce
the delay between transmissions of sensor readings to the server, a framework is
proposed in [165]. This framework optimizes the incurred communication costs for
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participants with limited data volume by offloading the data to Bluetooth and/or Wi-
Fi gateways in the participants’ proximity. Additionally, nearby participants having
subscribed to an unlimited data volume are leveraged as relays to the application
server. In the latter case, acting as relays will impact the energy budget of these
participants.

In summary, crowdsensing applications introduce overheads for the participants
in terms of time and energy. Additionally, they may reduce the devices’ battery
lifetime and incur additional costs for participants with limited data volume. These
overheads in both isolation and combination may prevent potential participants from
joining crowdsensing applications or lead to later opt outs. It is therefore of primary
importance to limit resource depletion, especially in terms of battery consumption,
to both engage new participants and maintain them in the user base.

6.5 Potential Risks for Crowdsensing Applications

For crowdsensing applications, relying on volunteers to fulfill sensing tasks offers
many opportunities as highlighted in Sect. 6.3.1. Simultaneously, this represents a
risk, as the applications are dependent on the participants and their contributions.

To be viable, applications should be supported by a sufficient number of
participants, who will be able to execute the sensing tasks and collect sensor
readings of satisfying quality. In addition to a large user base, this implies that
the participants should be located in proximity of the phenomena to be observed
and own devices equipped with the appropriate sensors as we discuss in detail in
Sect. 6.5.2.

To foster contributions in both the short- and long-term, different factors come
into play. For example, the risks for the crowd in terms of privacy and resource
depletion should be reduced to the minimum by, e.g., applying methods discussed
in Sects. 6.4.1 and 6.4.2, respectively. Indeed, we have shown in [42] that it is
important for potential participants that their privacy is respected when contributing
to a participative application. Moreover, incentives can be introduced to motivate
participants to report sensing readings. In Sect. 6.5.1, we give an overview of
existing incentive models.

Having a large user base is, however, not sufficient to ensure the applications’
sustainability: Being open systems, crowdsensing applications not only depend on
the contributions’ quantity, but also on their quality. Erroneous contributions can
result from malfunctioning devices or intentional tampering of the sensor readings
by malicious participants. To motivate participants to contribute data of good
quality, incentives may play an important role. Nevertheless, we have shown in [150]
that tasks associated to high monetary rewards lead to a greater rate of low-quality
submissions than less rewarded tasks. Moreover, applications are often running on
limited financial budgets, so that solutions aiming at minimizing the participants’
reward while maximizing the contributions’ quality have been proposed and are
presented along with other alternatives to ensure the contributions’ quality in [92].
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6.5.1 Engagement of Participants

Participants’ contributions are the sine qua none condition for the success of
crowdsensing applications. This means that potential participants do not only need
to install a crowdsensing application, but also continue to use it over a longer time
period. The initial engagement of potential participants is eased by the distribution
of the crowdsensing applications via the existing app stores. With a forecasted
number of 5 million of apps available in the Apple App Store in 2020 [135],
crowdsensing applications may however remain unnoticed to most users. To reach
the chasm, dissemination is a crucial aspect. Word of mouth can be determinant
and contribute to the adoption of applications at a larger scale, eventually leading
to build communities around the applications. Communication and marketing may
help to increase the visibility of applications, but the participants’ decision to install
and later use the applications can be influenced by different factors. In what follows,
we especially consider existing incentives that may motivate potential participants
to engage in crowdsensing applications based on the taxonomy proposed in [87].

6.5.1.1 Monetary Incentives

To motivate users to participate in crowdsensing applications and reward them
for their contributions, multiple schemes based on monetary incentives have been
proposed. Their common goal is to optimize the price paid by the applications
by taking into account different constraints, such as the quality and quantity of
the submitted contributions, the participants’ physical distribution, their privacy
protection, or their long-term engagement.

In most cases, the proposed schemes are based on dynamic pricing strategies.
For example, the so-called participants’ quality of information is introduced in [91]
and is taken into consideration in the design of reverse combinatorial auction
models. Following the same line, methods are designed to balance the incentives
and the data quality for sensing tasks decomposable into subtasks and needed
to be fulfilled within a given timeframe in [163, 177], respectively. In [93], the
authors propose an incentive scheme that computes the rewards not only based
on the quality of the reported sensor readings, but also on the resulting impact
on the participants’ privacy. The proposed incentive scheme is completed by both
aggregation and perturbation mechanisms, so that data reliability and participants’
privacy are simultaneously addressed.

The aforementioned models assume that the participants contribute the sensor
readings as expected. In contrast, the solutions introduced in [89, 123] consider
the uncertainty introduced by the open nature of the crowdsensing applications.
They integrate the risks that participants may submit the requested data at a later
time or not at all, respectively. If the participants do not deliver the data, the
incentives can be revoked and redistributed between the remaining participants as
proposed in [123]. To further reduce this uncertainty factor, participants’ profiles
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are introduced in [96]. These profiles aim at better understanding the participants’
preferences in terms of type of tasks, distance to the tasks, as well as rewards. This
allows potential campaign administrators to optimize the distribution of both tasks
and rewards.

Alternatively, participants can be rewarded by incentives whose price is known
beforehand. This, however, requires the applications to be able to estimate the
appropriate rewards a priori, so that the participants will be neither underpaid nor
overpaid. On the one hand, underpaid participants may take more time to fulfill tasks
or not fulfill them in the worst case. On the other hand, overpaying the participants
obviously impacts the campaign budget in the short term, but it may contribute to
maintain the participants’ motivation to contribute to the applications in the long
term. Consequently, the applied pricing models need to be fair with the participants,
while ensuring the collection of sensor readings of good quality.

In [150], we have analyzed the impact of newly introduced location-based
notifications in an existing and running mobile crowdsourcing application. Using
two questionnaire-based studies counting 335 users in total, we have explored the
participants’ expectations in terms of rewards and the value they attribute to invested
resources. We have shown based on the users’ answers coupled with an analysis of
the application database that rewards impact both the time to the tasks’ fulfillment
and the quality of the contributions. In this case, the observed quality is, however,
lower when the reward is higher. More generally, we have examined the impact
of demographics, incentives, and collection conditions on the willingness of 200
anonymous participants to contribute to crowdsensing applications in [33]. Our
results show that young participants sharing information online would be more
willing to continuously report sensor readings to sensing campaigns initiated by
academic institutions for a monthly reward of 50 euros on average.

6.5.1.2 Non-Monetary Incentives

Depending on the nature of the crowdsensing applications, non-monetary incentives
may also foster users’ contributions. In this case, other factors like altruism and com-
petitiveness [146] may come into play. Both monetary and non-monetary incentives
can be combined to achieve a short- and long-term participants’ involvement. To
be able to rely on altruism only, applications should usually have a goal to which
multiple potential participants can adhere and which is beneficial to the community
as a whole.

The ideal is to build communities around these applications, so that participants
not only contribute data, but also gain insights about the observed phenomena and
are able to socially exchange with others. Campaigns organized around communities
can further leverage participants located in physical proximity to fulfill tasks
requiring multiple stages as proposed in [27]. In community-based campaigns,
reputation and competition may be an additional factor to motivate users to
participate by displaying rankings of participants based on, e.g., the total number
of collected sensor readings, their quality, the number of fulfilled tasks, or the
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covered area. Showing the results of others may encourage participants to overbid
them by contributing more or better data. To reward contributing participants, virtual
rewards in the form of, e.g., badges can also be distributed. The badges attest that
the participants have reached given contributor levels. Alternatively, participants
submitting sensor readings can be allowed to access advanced features in the
application as proposed in [116].

To benefit from existing communities, we have proposed the concept of Cached-
Sensing in [34] with which users can both create and execute sensing tasks. The
sensing tasks are written on NFC tags hidden by their creator. As soon as the creator
activates a new task, it becomes available to other users, who can search for it using
the coordinates and information provided by the creator. Users who find hidden
tags, read and execute the associated sensing tasks with their device. For each
successfully fulfilled task, a new logbook entry is created for the corresponding
user. As a result, CachedSensing shares similarities with existing location-based
games, in which the players explore their environment to find different objects. For
example, users hide containers with a pen and a logbook in Geocaching, search
for QR codes in Munzee, and collaborate to virtually defend particular locations
in Ingress. CachedSensing, however, differs from existing games, as it introduces a
new component: the sensing tasks.

By merging both crowdsensing and location-based gaming paradigms, our objec-
tive is to open sensing tasks to existing gaming communities, as Geocaching.com
and Munzee count worldwide over 3 million and 300,000 players, respectively [1,
2]. To this end, we have conducted a questionnaire-based study with 337 anonymous
gamers belonging at least to one of the aforementioned communities. The results
published in [148] show that our participants would be more ready to contribute
to sensing tasks when those would be integrated into a game they are already
playing. Virtual badges and associated points have not been perceived in our sample
as an efficient incentive to motivate users to contribute data, especially within
the Geocaching community. On the contrary, some participants commented that
such incentives would even dissuade them to contribute to sensing tasks. Overall,
pleasure and social contacts seem to be more efficient motivating factors than
competition and rankings in these communities. Similar observations have been
made in other online communities, such as computer role-playing gamers and an
online tourism community [158, 168]. Moreover, our participants are overall both
greedy and altruistic: they would be ready to contribute to crowdsensing if it is fun,
but would refuse if it would serve commercial interests.

In summary, different incentive models can be introduced in crowdsensing
applications to motivate participants to contribute. Their choice depends on the
nature of the application, the involved parties (e.g., scientific community vs.
companies), the difficulty and the frequency of the sensing tasks to be executed, the
physical distribution of the participants, as well as the available campaign budget.
As shown in [148], competition may not reach the expected results in specific
communities, such as geocachers, where enjoyment would better foster participants’
contributions.
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6.5.2 Quantity and Quality of Contributions

In addition to motivating participants to contribute, crowdsensing applications need
to ensure that the reported data match their requirements in terms of quantity and
quality.

While the number of reported sensor readings is closely related to the applied
incentive model(s) (see Sect. 6.5.1), crowdsensing applications can apply different
strategies to further optimize the distribution of the tasks to participants of interest,
so that they only obtain tasks tailored to their current locations or personal interests.
By using personalized models such as proposed in [96], the answer rate may
increase as participants would be less bothered by uninteresting tasks.

Obtaining a sufficient number of data points is especially crucial in applications
requiring a large coverage over a long period of time, such as needed in the
construction of noise pollution or air quality maps. To reach these objectives,
participants can adopt several roles as proposed in [97], so that the spatiotemporal
requirements of the data collection can be fulfilled. In this case, the participants are
not only contributing sensor readings, but can also act as relays and/or uploading
agents for other participants to ensure timely reporting to the crowdsensing appli-
cation. Using a real-world deployment involving 85 participants, the relationships
between the number of participants and the coverage of specific locations based on
their characteristics are analyzed and modeled in [30]. The results confirm that a
relatively small set of participants can be sufficient to cover most of the popular
locations and provide guidelines for application developers interested in monitoring
specific locations.

Due to their open nature, crowdsensing applications may be prone to erroneous
contributions, which may result from, e.g., malfunctioning devices, non-compliant
sensing conditions, or ill-intentioned participants.

To ensure the quality of the obtained results, the participants can first be selected
based on the quality of their last contributions. For example, the k-best participants
are identified in [118] based on the expected sensing quality and resulting coverage.
In [111], the quality level of the results is defined at the time of the task creation,
and hence determines to whom the task will be distributed based on the quality level
achieved by the participants in the past. Such quality-aware selection may not only
contribute to more accurate results, but also reduce the number of participants to
whom the sensing tasks need to be distributed. As a result, this may lead to an overall
reduction of the resources invested by the participants and the associated incentives
(see Sects. 6.4.2 and 6.5.1). The same goal is pursued in [164], where resources are
saved by reducing the number of sensing participants. Spatiotemporal correlation
is then applied to obtain missing data with high accuracy. Different techniques,
such as semantic hashing, space-efficient filters, or compressing sensing, can be
implemented to balance quality and resource consumption [112].

Once the participants have been selected and the sensor readings collected,
additional methods can be applied to sort out and eliminate low-quality data.
For example, the Expectation Maximization framework introduced in [182] can
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help campaign administrators in identifying and eliminating duplicates about the
same events. In the case of both sparse and redundant data, the solution proposed
in [121] can be applied to first reconstruct missing data, before identifying correct
contributions. In absence of duplicates, further methods have been proposed to
ensure data integrity. Most of them build on attributing a reputation score to each
participant. These reputation scores can serve as weight in the computation of
summaries over all participants or as threshold defining which sensor readings
will be included or excluded from the computed summaries. They also allow for
ranking the participants in different groups based on their degree of trustworthiness
as proposed in [178]. The reputation scores mostly reflect the quality of participants’
contributions, but additional factors, such as timeliness of the results as considered
in [145], can also be taken into account in their computation. For example, the
Gompertz function is used in [85] and a voting approach supported by trustworthy
participants is presented in [139] to assess the quality of the participants’ contribu-
tions. In addition to detect incorrect contributions, the solution introduced in [26]
proposes to correct them using spatio temporal compressive sensing techniques.

In the aforementioned solutions, assessing the participants’ trustworthiness
requires to link their identity/device with their contributions. By doing so, their
identity is hence linked with the spatiotemporal annotation of the sensor readings,
thus putting the participants’ location privacy at stake (see Sect. 6.4.1). To address
both a priori conflicting aspects, namely reputation and privacy, we have first
proposed a framework based on periodic pseudonyms and a transfer of reputation
between these pseudonyms based on blind signatures in [43, 44]. Our framework is
agnostic to the applied reputation algorithm. Further solutions addressing the same
challenge have been later proposed in [78, 86, 110, 122, 166, 167, 181].

In summary, applications can minimize the risks of suffering from a lack of data
by optimizing the participants’ selection based on their personal characteristics.
This ex-ante selection can also take into consideration the quality of the reported
data, so that the tasks are predominantly distributed to reliable participants. To
ensure the quality of the results, post-ante mechanisms should be applied to recover
missing data and eliminate erroneous contributions. Participants having contributed
data of good quality should be rewarded by a good reputation score, which can be
considered in the distribution of both incentives and future tasks.

6.6 Potential Risks for End Users

After having adopted the perspectives of both participants and campaign admin-
istrators, we finally consider the perspective of end users. End users can include
the participants and the campaign administrators, but also any person or group of
persons interested in the collected sensor readings. For example, end users can be
scientists interested in monitored phenomena or friends and family of contributing
participants.
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While end users do not directly contribute data to the crowdsensing applica-
tions at the same level as participants, they still play an important role in the
crowdsensing ecosystem. Depending on the application scenarios, end users may
directly contribute to the sustainability of the crowdsensing applications by, e.g.,
sponsoring the incentives distributed to the participants. Moreover, large end user
bases may indirectly encourage participants to contribute to the applications, as the
insights drawn from the collected data may benefit a large community. Like for the
participants, crowdsensing applications, hence, need to be attractive for end users.

By consuming data collected by the participants, end users may, however,
disclose information to the campaign administrators or the participants about
themselves. Their queries to the application server or their subscription to different
data streams may reveal their current locations or personal interests. To preserve
their privacy against the campaign administrators, tokens can be distributed by
the application server to the end users, who can use them directly to query
the participants having collected the data as proposed in [59]. Alternatively, the
matching between the data collected by the participants and the queries submitted
by the end users can be done without revealing them to the campaign administrators
by using the solutions introduced in [49–51]. Consequently, the privacy of both
participants and end users are simultaneously protected against the campaign
administrators.

In summary, the interactions of the end users with the crowdsensing applications
may endanger their privacy in absence of protection mechanisms. Since end users
contribute to the viability of these applications, their privacy needs to the protected.

6.7 Conclusions

In this chapter, we have shown that a crowd of participants with personal, sensor-
equipped devices can deliver “big data” of high volume, velocity, variety, veracity,
and value without investing into a dedicated sensor network or the operational cost
for maintaining this sensing infrastructure. We have introduced a common system
architecture for crowdsensing applications showing the basic building blocks of
crowdsensing systems. Through various application examples, we have highlighted
that crowdsensing has multiple application areas including commercial and non-
commercial (community) applications.

Besides showing the benefits of crowdsensing, we also have identified and
discussed its risks and challenges. In order for crowdsensing to be accepted by
participants, their privacy must be protected, and resources of personal devices
and participants must be preserved. Otherwise, the participants will not participate
in these applications, thus posing a serious problem for the adoption of the
crowdsensing paradigm at large scale. Moreover, users have to be motivated to
participate in crowdsensing, e.g., by giving them suitable incentives. On the other
side, the applications need to ensure a minimum quality of the users’ contributions.
Although novel concepts for better protecting the participants’ privacy, increasing
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the efficiency of crowdsensing, or ensuring both quantity and quality of sensed
data are still subject to ongoing research, already existing results in these research
areas lead us to the conclusion that the risks and challenges of crowdsensing can be
successfully tackled to make crowdsensing a useful and practical concept to provide
data to a broad range of applications.
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Chapter 7
Location Privacy in Spatial
Crowdsourcing

Hien To and Cyrus Shahabi

Abstract Spatial crowdsourcing (SC) is a new platform that engages individuals
in collecting and analyzing environmental, social and other spatiotemporal infor-
mation. With SC, requesters outsource their spatiotemporal tasks (tasks associated
with location and time) to a set of workers, who will perform the tasks by physically
traveling to the tasks’ locations. However, current solutions require the locations of
the workers and/or the tasks to be disclosed to untrusted entities (SC server) for
effective assignments of tasks to workers.
This chapter first identifies privacy threats toward both workers and tasks during
the two main phases of spatial crowdsourcing, tasking and reporting. Tasking is
the process of identifying which tasks should be assigned to which workers. This
process is handled by a spatial crowdsourcing server (SC server). The latter phase
is reporting, in which workers travel to the tasks’ locations, complete the tasks and
upload their reports to the server. The challenge is to enable effective and efficient
tasking as well as reporting in SC without disclosing the actual locations of workers
(at least until they agree to perform a task) and the tasks themselves (at least to
workers who are not assigned to those tasks).
This chapter aims to provide an overview of the state-of-the-art in protecting
users’ location privacy in spatial crowdsourcing. We provide a comparative study
of a diverse set of solutions in terms of task publishing modes (push vs. pull),
problem focuses (tasking and reporting), threats (server, requester and worker), and
underlying technical approaches (from pseudonymity, cloaking, and perturbation to
exchange-based and encryption-based techniques). The strengths and drawbacks of
the techniques are highlighted, leading to a discussion of open problems and future
work.
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7.1 Introduction

The increase in computational and communication performance of mobile devices,
coupled with the advances in sensor technology, leads to an exponential growth
in data collection and sharing by smartphones. Exploiting mobility of such a
large volume of potential users, a new mechanism for efficient and scalable data
collection has emerged, namely, spatial crowdsourcing (SC) [13]. SC has numerous
applications in domains such as environmental sensing (iRain [1]), smart cities
(TaskRabbit), journalism, and crisis response (MediaQ [15]). With SC, requesters
and workers typically register with a crowdsourcing server that acts as a broker
between parties, and often also plays a role in how tasks are assigned to workers. A
requester issues one or more tasks to the server (i.e., the platform). The server then
assigns the task to a worker. We refer to this phase as tasking (or task assignment).
After tasking, workers travel to the locations of the tasks, perform them and report
the results to the server. This phase is referred to as reporting.

Both tasking and reporting phases often require workers and requesters to reveal
locations of workers and tasks to potentially untrusted entities (server, other workers
and other requesters). Several studies (e.g., [5, 13, 14, 30]) focus on effective tasking
by maximizing the number of assigned tasks while minimizing workers travel
distances, for which they require workers to reveal their locations and requesters
to disclose their tasks’ locations to the server. Similarly, reporting spatial tasks
would enable the server to infer the workers’ locations since they must have
visited the locations of the tasks. However, disclosing individual locations has
serious privacy implications. Leaked locations often lead to a breach of sensitive
information such as an individual’s health (e.g., presence in a cancer treatment
center), alternative lifestyles, political and religious preferences (e.g., presence in a
church). Knowing user locations, an adversary can stage a broad spectrum of attacks
such as physical surveillance and stalking, and identity theft [25]. Particularly,
in [36], the authors show that hackers can stalk users in Waze—a popular SC
application—by generating fake events such as accidents. Consequently, mobile
users may not agree to engage in spatial crowdsourcing if their privacy is violated;
thus, ensuring location privacy is key to the success of SC.

The first step of the tasking phase is task publication. There are two modes of task
publication in SC: push (e.g., iRain) vs. pull (e.g., TaskRabbit). With the pull mode,
the server publishes the spatial tasks and online workers can choose any spatial
task in their vicinity without the need to coordinate with the server. With the push
mode, online workers send their locations to the server, which then assigns to every
worker his nearby tasks (posted by requesters). Each mode shares similar challenges
and has its own unique challenge. The common challenges are that a worker should
know a task location only if he plans to perform the task; likewise, only requesters
who have tasks performed by the worker should know his location. Furthermore, the
unique challenge with the push mode is that the server must match workers to tasks
without compromising their privacy. This requires strategies to ensure effective task
assignment without revealing locations of tasks and workers. On the other hand, the
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Table 7.1 Attacks on SC
users

Tasking Reporting

Push [12] [27]

Pull [Sect. 7.3.2] [27, 36], [Sect. 7.3.2]

unique challenge with the pull mode is to enable every worker to request tasks,
perform them and subsequently post the results to the server without revealing
his location and identity. Finally, providing privacy protection simultaneously both
tasking and reporting phases introduces another set of challenges to both push and
pull modes.

Among the two modes of task publishing, privacy protection in the push mode is
more challenging because tasking in the push mode is more complex than that of the
pull mode. Countermeasure studies in the pull mode have been the main focus in the
past decade with an emphasis on a special class of SC, named participatory sensing
(PS). PS usually assumes the pull mode of task publication (workers choose tasks);
therefore, the main privacy threats to workers occur during reporting. Meanwhile,
the most recent studies in SC have focused on the push mode (server assigns
tasks to workers); for this reason, main privacy breaches occur during tasking [12].
Consequently, the existing studies in SC can be classified into two groups: (1)
preserving privacy during reporting in the pull mode [2, 27, 37], and (2) preserving
privacy when tasking in the push mode [8, 10, 12, 22, 26, 31, 32, 35, 38].

In this chapter we study the privacy threats to workers and requesters1 in SC,
during both tasking and reporting phases with either push or pull mode. Throughout
this chapter we also identify three major drawbacks of the existing studies. First,
they solely focus on protecting privacy during either phase of tasking or reporting,
but not both. Second, most of these studies ensure privacy for workers only. To
elaborate, we perform a set of simple attacks on TaskRabbit to demonstrate that
locations of workers and requesters can be learned during both tasking and reporting
phases. Third, despite the fact that most studies focus on either reporting in the
pull mode or tasking in the push mode, privacy threats to SC users may also occur
in other scenarios. Table 7.1 shows that there have been known attacks under the
tasking and reporting phases with either the push or pull mode of task publishing.
We demonstrate such threats in Sect. 7.3.2 via another set of attacks on TaskRabbit.
These observations open some new research questions such as: how do we protect
location privacy of both workers and tasks, simultaneously, during both the tasking
and reporting phases of SC, and what are the promising privacy techniques to be
used?

There have been recent surveys in privacy-preserving participatory sensing [4,
24] and mobile crowdsourcing [21]. Unlike these surveys, which provide an
overview of a broad range of related problems, this chapter provides an in-depth
study of the privacy challenges and the solutions proposed in the prior studies.

1Task locations can indirectly reveal requesters’ location, i.e., requesters often post tasks in the
proximity of their locations.
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The remainder of this chapter is organized as follows. In Sect. 7.2 we introduce
spatial crowdsourcing and compare it with related concepts. Section 7.3 illustrates
potential privacy risks to both workers and requesters. Section 7.4 summarizes
existing solutions addressing the privacy concerns in both the tasking and reporting
phases of SC. Finally, we present our conclusions and future research directions in
Sect. 7.5.

7.2 Spatial Crowdsourcing

In this section we define spatial crowdsourcing and present two modes of task
publishing, push vs. pull, with the push mode recently being dominant in the
research community. Thereafter, we differentiate SC from the related topic of
participatory sensing, which usually assumes the pull mode of task publication.

7.2.1 Generic Framework

Spatial crowdsourcing (SC) [13] is a type of online crowdsourcing where perform-
ing tasks requires workers to physically be present at the locations of the tasks,
termed spatial tasks. A spatial task is a query to be answered at a particular location
and must be performed before a deadline. An example of a spatial task is taking
a picture of a particular dish in a restaurant. This means that the workers need
to physically travel to the location of the restaurant in order to take the picture.
A worker is a carrier of a mobile device who will perform spatial tasks for some
incentives.

Spatial crowdsourcing has gained popularity in both the research community
(e.g., [13, 32]) and industry (e.g., TaskRabbit, Gigwalk). A recent study [34]
distinguishes SC from related fields, such as generic crowdsourcing, participatory
sensing, volunteered geographic information, and online matching. Research efforts
have focused on different aspects of SC, including task assignment, task scheduling,
privacy, trust and incentive mechanism.

7.2.2 Task Assignment: The Focus of Spatial Crowdsourcing

The main challenges of spatial crowdsourcing are due to the large-scale, ad hoc
and dynamic nature of the workers and tasks. To continuously match thousands
of SC campaigns, where each campaign consists of many spatiotemporal tasks
with millions of workers, a server must be able to run efficient task assignment
(aka tasking). According to [13], there are two types of tasking modes based
on how workers are matched to tasks—server-assigned tasks (SAT) and worker-
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selected tasks (WST)—which are also known as push and pull modes, respectively.
Depending on the choice of a particular mode, the focus of privacy protection is
either at the tasking or the reporting stage of SC.

With the pull mode, the server publicly2 publishes the spatial tasks, and online
workers autonomously choose tasks in their vicinity without coordinating with the
server. One advantage of the pull mode is that the workers do not need to reveal their
locations to server. However, one drawback of this mode is that the server does not
have any control over the allocation of spatial tasks; this may result in some spatial
tasks never be assigned, while others are assigned redundantly. Another drawback
of the pull mode is that workers choose tasks based on their own objectives (e.g.,
choosing the k closest spatial tasks to minimize their travel cost), which may not
result in a globally optimal assignment. Examples of the pull mode are TaskRabbit
and Waze.

With the push mode, requesters post tasks that include locations, while online
workers send their locations to the server, which assigns tasks to nearby workers.
The advantage of this mode is that unlike the pull mode, the server has the big
picture and can assign to every worker his nearby tasks while maximizing the overall
task assignment. However, the drawback is that locations of both tasks and workers
should be sent to the server for effective assignment, which can pose privacy threats.
Examples of the push mode include Uber, iRain [30] and MediaQ [15].

Most SC studies assume the push mode and thus emphasize privacy protection
during the tasking phase. With the pull mode, the main focus of privacy protection
is shifted to the reporting phase, which has been well studied in the context of
participatory sensing (e.g., [2, 12, 27, 35, 37]). With participatory sensing, the
goal is to exploit the ability of mobile users to collect and share data using
their sensor-equipped phones for a given campaign. Most studies on participatory
sensing focus on small campaigns with a limited number of workers; hence,
they do not have issues of task assignment. However, with SC, the focus is on
devising a scalable, generic and multipurpose crowdsourcing framework, similar to
Amazon Mechanical Turk, but spatial, where multiple campaigns can be handled
simultaneously. Therefore, the main challenge with SC is to devise an efficient
approach to assign tasks to workers given the large scale of an environment.

7.3 Privacy Threats

There have been known attacks on SC applications, such as location-based attacks
during tasking in the push mode [12] and collusion attacks during reporting in the
pull mode [36] (see Table 7.1). Despite the fact that most studies have solely focused
on one of the two major threats, privacy risks to SC users may occur in the other

2Exact geographical coordinates of the tasks may not be published; instead, their cloaked locations
or representative names are provided.
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scenarios: reporting in the push mode and tasking in the pull mode. In this section
we present a threat model which characterizes the full spectrum of privacy threats to
workers and requesters during both tasking and reporting phases with either push
or pull mode. Next, we illustrate the privacy risks on TaskRabbit.

7.3.1 Threat Model

As the privacy threats vary according to the modes of task publishing, we discuss
possible threats associated with each mode.

7.3.1.1 Privacy Threats with the Push Mode

With the push mode, the server takes as input the perturbed locations of both workers
and tasks to perform effective task assignment; hence, there is a serious privacy
threat from the server which might become a single point of attack. Figure 7.1a
depicts the threat model for the push mode of spatial crowdsourcing. The first row
means that locations of workers and tasks are protected from the server at all the
time. The role of the server is to create the assignment links between the workers
and the requesters so that they can establish a direct communication channel among
themselves. Each worker-requester pair cooperatively decides whether to accept
the assignment from the server. If yes, they send a consent message to the server,
confirming that the worker will perform the requester’s tasks. This agreement is
illustrated by the first reporting link in Fig. 7.1a. We argue that to preserve location
privacy during both tasking and reporting phases, task locations need to be protected
from the server. Otherwise, the completion of a task reveals that some workers

Fig. 7.1 Threat models in spatial crowdsourcing. W and R denote workers and requesters,
respectively. The dotted circles surrounding them denote that they are protected from an untrusted
entity shown in the first column. After tasking and reporting, the assignment and reporting links
between W and R represent the established connections during each phase. The dashed links
indicate connections that are oblivious to the corresponding malicious entity. (a) Push mode. (b)
Pull mode
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must have visited the task’s location. In restrictive privacy settings, workers and
requesters can also be malicious to each other. Hence, to ensure minimum disclosure
among them, only workers who aim to perform the tasks should know the tasks’
locations (see the second row in Fig. 7.1a). Likewise, a requester should only know
the workers’ locations once her tasks are matched to and then performed by those
workers (see the third row in Fig. 7.1a).

We emphasize the minimum disclosure of location information for both workers
and tasks. The reason for this is twofold. First, the server knows only the assignment
links between workers and tasks. Due to such links, the assigned workers (or
tasks) may infer that there exist nearby tasks (or workers). These disclosures are
unavoidable in the push mode of SC. Second, the disclosure of workers’ locations
to their corresponding requester is inevitable at the reporting phase per definition
of SC. It is worth mentioning that this threat model is restrictive; hence, weaker
variants exist. For example, most existing studies in the push mode assume that
workers are trusted [10, 12, 22] and task locations are public [8, 26, 32, 35, 38].

7.3.1.2 Privacy Threats with the Pull Mode

With the pull mode, despite the fact that workers do not need to send their locations
to the server, the locations can still be learned during both tasking and reporting
phases. As long as a worker connects to the server to either request some tasks
or report results, he may reveal to the server patterns of where and when the
connections were made and what kind of tasks he wants to perform. Consequently,
in [27], the authors show that linking multiple requests or reports of the worker
may allow an adversary to trace him since the worker’s location information can be
tracked through several stationary connection points (e.g., cell towers). In addition,
the worker’s location trace can be inferred by both the server and requesters since
he must be in the vicinity of the tasks in order to perform them. Figure 7.1b depicts
the proposed threat model for the pull mode. To preserve privacy and identity of
the workers from the server, both assignment links and reporting links should be
secure during tasking and reporting phases, respectively. This is because if the
connections are discovered by the server, which already knows the locations of
tasks, the server learns the locations of workers since they must have visited the
locations of the performed tasks. Hence, the workers must request tasks without
revealing their identity to the server; once the tasks are performed, the workers
must also disassociate their connections with the performed tasks while uploading
task content to the server. Similar to the push mode, both workers and requesters
themselves can be hostile to one another. Thus, the privacy threats from workers
and requesters (rows 2 and 3 in Fig. 7.1a) are similar to those in the push mode
(rows 2 and 3 in Fig. 7.1b), except the difference in the assignment links of the two
second rows. The reason for this is that the requester is oblivious to the requests
between the worker and the server during tasking.
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Fig. 7.2 Screenshots of TaskRabbit web application from worker Bob. (a) Task locations. (b) Task
price. (c) Task status. (d) Performed tasks

7.3.2 Case Study of TaskRabbit

We show that an adversary can perform harmful attacks on a typical SC application
without much effort. TaskRabbit is a pull-based3 online and mobile marketplace that
matches workers with requesters, allowing requesters to find immediate help with
everyday tasks including, but not limited to, cleaning, moving, and delivery. In the
following we discuss the aforementioned threats to TaskRabbit users. Note that the
following attacks on TaskRabbit.com were conducted in October 2014; the website
has been updated since then.

We first show the breach of task location during tasking. We signed up as a
worker account and searched for delivery tasks in Los Angeles; 2381 spatial tasks
were found. We obtained various information about a particular task by clicking
on it, such as description, price, task status and cloaked locations. Although each
location is cloaked in a circle with a radius of half a km4 (Fig. 7.2a) to protect task
locations from workers, the actual drop-off and pick-up locations were mentioned
in the task description, i.e., “Please pick up a box of mini-muffins from (S) promptly
at 8 am on Tues, 9/4, and drive them straight to me at (D).” It is also worth noting
that task requests often contain sensitive information, such as health status of the
requesters. An example of a sensitive task is one with title “super easy task deliver
a bag to the doorstep of a sick friend.” Nonetheless, these privacy risks are due to
the disclosure of task content, which is beyond the scope of this study.

We then show the leak of worker location during tasking and reporting. To
gain a competitive advantage, a worker may wish to not disclose locations of his
visits to other workers and requesters. The task status (Fig. 7.2c) infers that the
worker, referred to as Bob, was at the pick-up and drop-off locations of the task
during the 1-h period between his assigned time and his completed time. The risk
of precisely inferring Bob’s locations is even higher for time-sensitive tasks such
as delivery and help at home, which requires him to meet requesters in-person

3We present the privacy threats to a pull-based SC system only; however, some of these privacy
threats also occur in push-based SC such as iRain.
4We obtained this information via JavaScript code.
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Table 7.2 Three tasks requested by requester Alice

Task description Corresponding JavaScript

Quick post-party dishwashing clean up
needed

“radius” : “0.5”, “geo_center” : {“lat” : “33.xxxxxx”,
“lng” : “-118.xxxxxx”}

Take down light Christmas decorations “radius” : “0.5”, “geo_center” : {“lat” : “33.xxxxxx”,
“lng” : “-118.xxxxxx”}

Put up 20 yard sale signs in
Mid-Wilshire area

“radius” : “0.5”, “geo_center” : {“lat” : “33.xxxxxx”,
“lng” : “-118.xxxxxx”}

We replaced six digits after the decimal point of “geo_center” by ‘x’ to protect the privacy of the
requester

at a specific place and time. This inference attack shows that TaskRabbit does
not guarantee privacy protection for the pull mode in Sect. 7.3.1, which says that
Bob’s locations are private to the server and only requesters who have their tasks
performed by Bob should know his locations. In addition, one can also see much
more information about Bob, including his previously performed tasks (Fig. 7.2d)
and all reviews from the requesters who hired him. These associations between Bob
and his performed tasks indicate that the assignment links and reporting links are
known to the server.

Among Bob’s requesters, we randomly picked one named Alice. We further show
that her home location can be learned by tracking her task requests. We searched
for household tasks that Alice requested in the past; three of them are shown in
Table 7.2. These tasks were in the proximity of each other and likely situated at
her home. Our hypothesis is that the tasks’ locations were randomly cloaked such
that the cloaking regions covered the actual location of the tasks. The location
must be in the overlapped area using triangulation. We validated our hypothesis by
confirming that the location of another task, whose location was known, is within
the overlapped region. This attack suggests that the more task requests are posted,
the more accurately their locations can be learned. This simple attack is against the
threat model, which states that the locations of Alice’s tasks should only be revealed
to the workers who performed her tasks.

7.4 Privacy Countermeasures

In this section we survey some state-of-the-art approaches addressing the privacy
issues in spatial crowdsourcing. We first categorize the studies into two groups:
tasking in the push mode and reporting in the pull mode. Subsequently, each
subgroup is further classified according to the applied techniques. Within each
subgroup we identify one key paper shown in boldface to be presented in depth
while follow-up studies are briefly discussed. An overview of these studies is
presented in Table 7.3. The table shows that the studies solely focus on location
privacy of workers and assume that the locations and content of tasks are public.
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Table 7.3 Overview of problem focuses (Re: reporting, Ta: tasking); privacy techniques used (Ps:
pseudonym, Cl: cloaking, Pt: perturbation, Ex: exchange-based, En: encryption-based); threats (W:
worker, T: requester, S: server); trusted third party (TTP); optimization type (ST: single task, MT:
multiple tasks). x and (x) represent primary and secondary aspects, respectively

Phase Techniques Protection Threats TTP Opt. type

Paper Re Ta Ps Cl Pt En Ex W T W R S Yes No ST MT

Shin et al.
2011 [27]

x x x (x) (x) x N/A N/A x x x

Boutsis et al.
2013 [2]

x (x) x x N/A (x) N/A x x x

Zhanget al.
2016 [37]

x x x N/A N/A x x x

Kazemi et al.
2011 [12]

x (x) x x (x) x x x

Vu et al.
2012 [35]

x x (x) x (x) (x) x x x

Sun et al.
2017 [28]

x x x x x x

Pham et al.
2017 [20]

x x x x x x x

To et al.
2014 [32]

x x x (x) (x) x x x

Gong et al.
2015 [8]

x x x (x) (x) x x x

Zhang et al.
2015 [38]

x x x (x) (x) x x x

To et al.
2016 [31]

x x x (x) (x) x x x

Pournajaf et
al. 2014 [22]

x x x (x) x x x

Hu et al.
2015 [10]

x x x (x) x x x

Shen et al.
2016 [26]

x x x (x) (x) x x x

Liu et al.
2017 [17]

x x x x x x

Liu et al.
2017 [16]

x x x x x x x

Moreover, the server is regarded as a primary threat in all studies, while some
consider workers and requesters as secondary adversaries. We also notice that the
most recent studies focus on the push mode, which requires privacy protection
during tasking. This problem is considerably more challenging when compared to
the problem of privacy-preserving reporting in the pull mode.
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7.4.1 Protection in the Pull Mode

Privacy protection in the pull mode has been studied in the context of participa-
tory sensing. In this section we highlight recent studies that often focus on the
reporting phase of the pull mode. They use either pseudonymity [27] or exchange-
based techniques [2, 37]. The pseudonymity method disassociates the connections
between one’s uploaded data and his/her identity while the latter exchanges workers’
crowdsourced data and location information before uploading them to a server so
that the server is uncertain about locations of individual workers.

7.4.1.1 Pseudonymity Techniques

Shin et al. [27] propose a privacy-preserving framework for the pull mode as
illustrated in Fig. 7.3. A requester submits a task to a registration authority (RA) that
will verify the task before sending it to a task service (TS). Also, a worker connects
to TS through an anonymizing network such as Tor to request new tasks, referred to
as a task subset. After receiving the requested tasks, the worker chooses which tasks
to accept. He then performs the tasks and uploads the corresponding task reports to
a report service (RS) via an anonymous service (AS). In this framework, RA and AS
are trusted while TS, RS and requesters can be hostile. TS and RS can be considered
as services performed by the server.

This study [27] provides privacy protection in both tasking and reporting phases.
During tasking, the role of the anonymizing network is to disassociate the worker
and his requested tasks, depicted by the first and the third assignment links in
Fig. 7.1b. To preserve privacy during reporting, a worker typically sends his task
report to RS via AS, which routes the report through multiple servers so that the
server (i.e., TS and RS) cannot associate multiple locations (i.e., IP addresses) with

Fig. 7.3 A framework for privacy protection during tasking and reporting in the pull mode.
Dashed entities are malicious, while others are trusted
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the identity of the same worker. Consequently, the server is oblivious to the first
reporting link in Fig. 7.1b. More recently, there has been closely related work in
participatory sensing that enables workers to hide their locations and data ownership
by passing the collected data through a random neighboring worker multiple times
before uploading the data to the server [11].

7.4.1.2 Exchange-Based Techniques

Pseudonymity techniques are ad hoc and do not provide quantifiable privacy
protection. For more sensitive tasks that require strong privacy guarantee, k-
anonymity [29] is used in [27] to ensure that each report is anonymized with k − 1
reports generated by other workers with similar sensitive information. However,
such techniques may not be applicable to SC because the worker location is part
of the report. To address such a problem, Boutsis and Kalogeraki [2] propose
the exchange-based technique to obscure the workers by exchanging their reports
between them before disclosing the sensitive information to an untrusted server (i.e.,
server). Such a technique can be used as AS in Fig. 7.3, aiming to protect the first
reporting link in Fig. 7.1b from the server.

To provide a quantifiable privacy guarantee, in [2] the authors use location
entropy as the measure of privacy or the attacker’s uncertainty. The study aims
to make all workers’ trajectories as equiprobable to contain sensitive locations by
maximizing the location entropy of an individual’s trajectories to be defined later. To
maximize the location entropy, trajectories with sensitive locations are distributed
among multiple workers. Particularly, each worker’s mobile phone identifies the k

most frequently visited locations as sensitive data from a local trajectory database.
A trajectory is selected for exchange if removing the trajectory increases the entropy
of the database, computed as follows.

Hi =
∑

locij ∈L

P r(locij )log(P r(locij )))

where L is the set of locations and Pr(locij ) is the fraction of total visits to location
j that belongs to user i. Consequently, an attacker will not be able to identify
sensitive locations or identities of the workers.

For each worker, the trajectories that contain locations with high frequency
are exchanged with other workers since removing high-frequency trajectories
(trajectories that contain sensitive locations) makes the frequency of the locations in
L more homogeneous and thus increases the entropy. Furthermore, as other workers
may not be trustful, not only the set of high-frequency trajectories are exchanged
but also another set of trajectories that do not contain the sensitive locations. This
guarantees that neighboring workers are not able to associate the worker with
his sensitive data. Consequently, both frequent and non-frequent trajectories are
selected and forwarded to individual workers so that no worker can be certain about
the sensitivity of any trajectory.
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A drawback of computing entropy locally is that the exchange decisions can
be suboptimal due to the lack of a global view of all workers. This is because
individual workers try to maximize their own entropy regardless of each other,
which goes contrary to the fact that exchanging trajectories alters the location
entropy of multiple workers. Thus, the exchange-based technique should consider
the entropy with respect to all workers as opposed to individual workers. Therefore,
Zhang et al. [37] introduce a similar framework, but here workers coordinate with
each other to exchange their sensing data, including locations before uploading to
the server. As a result, all sensitive locations are equally likely visited by any worker
so that the actual trajectory of each worker cannot be learned. However, unlike [2]
where entropy is computed for a single worker, here entropy is calculated for all
workers.

Although the exchange-based technique is simple and does not rely on a trusted
server, the actual location information is still uploaded to the server. Therefore, this
approach is vulnerable to background knowledge attack. For instance, if the server
knows that only worker wi visits a particular location where a report was uploaded,
the server is certain that wi actually made the report.

7.4.2 Protection in the Push Mode

While preserving privacy during reporting in the pull mode has been largely studied
in the context of participatory sensing (a recent survey can be found in [4]), recent
SC studies focus on the more challenging phase of tasking. These studies generally
assume the push mode. We emphasize that focusing on the tasking step in the push
mode is the correct approach, given that SC workers have to physically travel to the
task location. The completion of a task discloses the fact that some worker must have
been at that location, and this is unavoidable in SC. Focusing on tasking also makes
sense from a disclosure volume standpoint. During the assignment, all workers are
candidates for participation; therefore, locations of all workers are exposed, absent a
privacy-preserving mechanism. Nevertheless, after task request dissemination, only
a few workers will participate in task completion, and only if they give their explicit
consent (see the threat model for the push mode in Sect. 7.3.1).

Various techniques have been proposed to protect location privacy of workers
during task assignment in SC, including cloaking (hide the accurate location in a
cloaked region) [10, 13, 22, 35], perturbation (distort the actual location information
by adding artificial noise) [8, 31, 32, 38] and encryption [26, 27].

7.4.2.1 Cloaking Techniques

The studies in this category generally implement spatial k-anonymity by generating
a cloaking region (CR) for each worker, which includes k − 1 other workers. To
guarantee strong privacy protection, peer-to-peer spatial k-anonymity [3] has been
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adopted in these studies. In the following we first present a simplified version
of tasking without constraints. Next, we survey some recent studies that consider
real-world constraints, such as the travel budget of each worker and a worker’s
willingness to perform tasks.

Task Assignment Without Constraints

In [27], each worker requests a task subset of size p at a time; however, choosing
an appropriate value of p is not trivial. Large p may lead to not only high
communication overhead between workers and TS, but tasks are also unnecessarily
disclosed to the workers. In contrast, small p may result in some tasks that will
never be accepted by any worker. One reason for this is that a worker can browse
far-away tasks that he cannot complete before the tasks’ deadlines. This redundant
disclosure incurs additional privacy threats to the requesters of those tasks.

In order to minimize such disclosure, Kazemi and Shahabi [12] propose a privacy
framework that enables each worker wi to query the server for a set of nearby spatial
tasks. Particularly, the server needs to distribute a set of spatial tasks to workers
such that each worker is assigned a subset of tasks that are closer to him than to
any other worker. Without privacy protection, the server can construct a Voronoi
diagram of the workers, including a set of cells where each cell belongs to a worker,
and any spatial task in the cell is closer to the worker than to any other worker.
Once the server computes the Voronoi diagram of the workers, it forwards to each
worker all the spatial tasks lying inside the corresponding cell. However, in such a
scenario, an adversary may infer the worker’s identity by associating the query to
query location (i.e., the location from which the query is issued. This is referred to as
location-based attack. Consequently, the framework aims to protect worker identity
from location-based attacks by disassociating a query from the query location.5 The
framework named PiRi (partial-inclusivity and range independence) has both query
formation and query selection.

Query Formation

In the query formation step, each worker wi computes his Voronoi cell by
communicating with his neighboring peers [3]. The worker forms his CR, where
his location is blurred among k − 1 other peers (with k = 3, the solid-lined
rectangle in Fig. 7.4a). The worker can send the CR along with the radius r (i.e.,
the smallest enclosing circle of wi’s Voronoi cell) to the server to retrieve all the
tasks which lay inside his Voronoi cell. However, the range query is dependent on
the size of the worker’s Voronoi cell (range dependency), which is a potential for
information leaks. Considering an extreme scenario where the server knows the

5However, this study assumes that workers trust one another. Hence, a more recent study [35]
solves a similar problem as in [12] without the assumption of trusted workers.
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Fig. 7.4 Examples of range dependency and all-inclusivity. (a) Query formation. (b) Range
dependency leak. (c) All-inclusivity leak

workers’ locations, it also knows their Voronoi cells and therefore the radius r for
each of them. Consequently, the server can easily identify the query issuer (i.e, the
set of all workers in the CR with radius r). Figure 7.4b depicts such a scenario,
where w1 (black-filled circle) cloaks himself with w2, and sends the CR along with
radius r1 to the server (see the size of r1 as compared to r2). The server, knowing
the location of the workers, and hence their Voronoi cells (i.e., r1, and r2), relates
the query with radius r1 to its query location (i.e., the location of a worker with the
Voronoi cell of the same radius).

In order to avoid the range dependency leak, each worker wi should cloak not
only his location but also his range query among k − 1 other peers. In other words,
instead of forming his range query with radius ri , the worker forms his query
with radius rmax–the maximum radius among all the k peers inside the CR. This
guarantees the k-anonymity at all times. In Fig. 7.4a, R1 (the dotted line rectangle)
shows the query region formed by rmax .

Query Selection

Once all workers have formed their query regions, they can send them out to the
server. However, the server can utilize the gathered information (i.e, query regions)
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from all workers to attack the system (all-inclusivity leak). Figure 7.4c illustrates
such scenario, in which workers w1..3 participate in the system. The figure shows
that w1 cloaks himself with w2. Similarly, w2 forms a cloaked region with w1.
Subsequently, both w1 and w2 form identical query regions. The figure also depicts
that w3 cloaks himself with w1. Accordingly, the server can easily identify w3 by
relating it to the query region R3, since w3 appears only once (i.e., R3) in all the three
submitted query regions to the server. This indicates that the more workers submit
queries to the server, the more information the server has to infer the workers’
identities. To prevent this leak, the authors attempt to minimize the number of
queries submitted to the server while assigning the nearby tasks to every single
worker.

Since there is a large overlap among the query regions of the workers, a worker
can share his result received from the server with all the peers whose Voronoi cells
lay completely inside his query region. The problem is how to select the group of
representative workers, formally stated as follows. Given a set of workers W , and
a set of spatial tasks T , let R and V be the set of query regions and Voronoi cells
for the set W , respectively, where Ri corresponds to the query region for worker wi ,
and Vi is the Voronoi cell for wi . The problem is to find a set C ⊆ R that covers
the entire set V with minimum cardinality. This problem is shown to be NP-hard
by reduction from the minimum set cover problem [12]. One well-known approach
for solving the set cover problem is a greedy algorithm that picks a representative
worker whose query region covers the largest number of uncovered Voronoi cells
from V . However, this approach is applicable only in a centralized setting, where a
global knowledge of the environment is available. To address this issue, the greedy
heuristic is extended to support the distributed environment. Particularly, a voting
mechanism is devised to select the set of representative workers, whose CRs are
sent out to the server. These query results will later be shared with the rest of the
workers. This step has been shown to prevent the all-inclusivity leak [12].

Task Assignment with Constraints

In [12, 35], spatial tasks are distributed to the corresponding nearest workers. This
objective may not necessarily fit SC applications as workers often have various
constraints that need to be considered. For example, they may be willing to
perform tasks that are far away, but within their daily travel routes. To capture such
constraints, each worker wi has a cloaked area ai and a limited travel budget bi ,
which denotes the maximum distance he is willing to travel [22]. Given the cloaking
regions of a set of workers, the objective of the server is to match a set of spatial
tasks to the workers such that task assignment is maximized while satisfying the
travel budget constraint of each worker.

As travel cost (often measured by the distance between tasks and assigned
workers) is an important performance metric in SC, in the following we first present
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Fig. 7.5 Distance estimation methods. (a) Centroid-point method. (b) Expected probabilistic
method

two methods for estimating the travel cost from the cloaked areas of the workers.
Thereafter, we present the problem of spatial task assignment with cloaked locations
(STAC) [22].

Distance Estimation

Given the cloaked area ai of the workers, STAC proposes two methods for
estimating the expected distances between pairs of workers wi and tasks tj , named
d̂i,j . The baseline method approximates the worker location as the centroid of his
cloaking area as depicted in Fig. 7.5a. Another method uses the travel budget of the
worker to prune the cloaking area (i.e., the dashed area in Fig. 7.5b), resulting in a
shrunk area that contains only accessible locations of the worker. Consequently, d̂i,j

is estimated by the distance between the task location and shrunk areas.
Next, we present a two-phase optimization approach to STAC. The first phase,

denoted as G-STAC, globally optimizes task assignment using cloaked locations
of the workers. The second phase, referred to as L-STAC, locally optimizes the
assignment of individual workers using their own exact locations.

Global Optimization

Given a set of workers and a set of spatial tasks, G-STAC aims to achieve a particular
goal of task coverage with the minimum travel cost. G-STAC is formally defined as
follows.
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min T C =
∑

i∈W

∑

j∈T

d̂i,j xi,j

s.t. T U =
∑

j∈T

∑

i∈W xi,j

kj

≥ gm

∑

j∈T

d̂i,j xi,j ≤ bi

where task cost (T C) is the total distance traveled by all workers, while task
coverage or utility (T U ) is the total covered fraction of tasks. d̂i,j is the estimated
distance between worker i and task j , xi,j = 1 means worker i is assigned to task
j , otherwise xi,j = 0, kj is the required coverage of tj (i.e., the number of workers
to perform tj ) while g ∈ (0, 1] indicates the required fraction of coverage for a task.
The last constraint guarantees that wi’s travel distance is within his budget bi .

G-STAC is shown to be NP-hard by reduction from the minimum set cover
problem. Therefore, a greedy algorithm is proposed that iteratively selects the most
cost-effective worker-task pair and updates T U until either the coverage goal is
achieved or the travel budgets of all workers are spent. A worker-task pair is cost-
effective if the ratio of expected distance to the expected coverage contributed by
this worker is small.

Local Optimization

The output of G-STAC is the best mapping of tasks to workers, which is sent
to workers as suggested assignments. However, a worker may be assigned tasks
whose locations exceed his travel budget, or nearby tasks are not assigned to him
because their distance has been estimated as being farther away. Thus, the local
refinement phase (L-STAC) is performed by individual workers’ devices for more
coverage and lower travel cost. A caveat is that selecting the closest tasks for
each worker may result in over-coverage for some tasks, while the others remain
unperformed. Consequently, in addition to minimizing the travel cost, L-STAC also
tries to minimize the change in the local optimization when compared to the global
optimization. L-STAC is formally defined as follows.

min T Ci =
∑

j∈T

di,j yi,j

s.t. |yi − xi | < ε

∑

j∈T

yi,j

kj

≥
∑

j∈T

xi,j

kj

∑

j∈T

di,j yi,j ≤ bi
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where for each worker wi , xi and yi are the binary assignment vectors of the global
and local phases of STAC, respectively. The first constraint, |yi−xi |, is the Hamming
distance between xi and yi , which is bounded by a threshold ε aiming to keep
minimum changes in the local assignment. The second constraint ensures that wi’s
contribution to the task coverage is not decreased when compared to his contribution
in the global phase. In the same fashion, L-STAC is NP-hard by reduction from the
minimum set cover problem; thus, another greedy algorithm has been proposed to
solve L-STAC.

Recently, Hu et al. [10] extended the travel budget constraint in [22] to a spatial
region, represented by a rectangle R, within which the worker is willing to travel.
Similar to [12], workers employ the peer-to-peer cloaking technique [3] to cloak
their locations among k − 1 other workers. Also, each worker’s cloaking area must
contain his spatial region R, otherwise the cloaking area is extended to cover R.
Observing that workers’ cloaking areas often contain multiple spatial regions of
other workers, to reduce the communication overhead, only some cloaking areas
that could cover all the workers’ spatial regions will be sent to the server. This
technique limits the disclosure of information when compared to sending all the
workers’ cloaking areas to the server [22].

The cloaking techniques used in [10, 22] are intuitive; nevertheless, their privacy
guarantee is weak. Such obfuscation-based techniques do not provide rigorous
privacy protection and are prone to homogeneity attack [18] when all k workers are
at the same location. Also, the value k needs to be specified to guarantee the desired
level of privacy protection. Unfortunately, choosing an appropriate k value can be
difficult because k-anonymity does not consider the frequency of user visits. To
elaborate, a location may be visited by many workers—those who have a dominant
contribution to the location (i.e., home or office) are most likely to be the subject of
attack. Consequently, one with a background knowledge of who visits the location
the most can easily perform such an attack.

7.4.2.2 Perturbation Techniques

Methods in this category use differential privacy (DP) to protect workers’ locations
during task assignment [8, 31–33, 38], which overcomes the aforementioned issues
of the obfuscation technique. DP has emerged as the de facto standard with strong
protection guarantees rooted in statistical analysis. It provides a semantic privacy
model as opposed to a syntactic model in other sanitization techniques (e.g., k-
anonymity, l-diversity). DP has been adopted by major industries for various tasks
without compromising individual privacy, e.g., discovering users’ usage patterns
with Apple [9] or crowdsourcing statistics from end-user client software with
Google [7]. DP ensures that an adversary is not able to reliably learn from the
published sanitized data whether or not a particular individual is present in the
original data, regardless of the adversary’s prior knowledge.
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The authors in [32] propose system model, privacy model and performance
metrics, followed by two main steps that preserve privacy and identity of workers:
sanitization of workers’ locations and task assignment on the sanitized data.

System Model

To protect location privacy of workers participating in spatial tasks, the server must
only have access to data sanitized according to ε-differential privacy [6] (ε is privacy
loss or privacy budget). Figure 7.6a shows the system architecture. Workers send
their locations (Step 0) to a trusted cellular service provider (CSP) which collects
updates and releases a private spatial decomposition (PSD) according to privacy
budget ε mutually agreed upon with the workers. The PSD is accessed by the server
(Step 1), which also receives tasks from a number of requesters (Step 2). When
the server receives a task t , it queries the PSD to determine a geocast region (GR)
that encloses with high probability workers close to t . Next, the server initiates a
geocast communication [19] process (Step 3) to disseminate t to all workers within
GR. According to DP, sanitizing a dataset requires the creation of fake locations in
the PSD. If the server is allowed to directly contact workers, then failure to establish

Fig. 7.6 Differentially
private framework for spatial
crowdsourcing. (a) System
architecture. (b) Worker PSD
using adaptive grid

2. Task Request t

Requesters
Workers

SC-Server

Worker 

Database
1. Sanitized ReleasePSD

4. Consent

Cell Service 

Provider

GR

0. Report Locations3. Geocast {t,GR}

(a)

(b)



7 Location Privacy in Spatial Crowdsourcing 187

a communication channel would breach privacy, as the server is able to distinguish
fake workers from real ones. Using geocast is a unique feature of the framework
which is necessary to achieve privacy protection. Geocast can be performed either
with the help of the CSP infrastructure, or through a mobile ad hoc network where
the CSP contacts a single worker in the GR, and then the message is disseminated
on a hop-by-hop basis to the entire GR. The latter approach keeps CSP overhead
low and can reduce operation costs for workers. Upon receiving request t , a worker
wi decides whether to perform the task or not. If yes (Step 4), she sends a consent
message to the server (or requesters) confirming wi’s availability. If wi is not willing
to participate in the task, then no consent is sent, and no information about the
worker is disclosed.

Privacy Model and Assumptions

The objective of the framework is to protect both the location and the identity of
workers during task assignment. Once a worker consents to a task, the worker
herself may directly disclose information to the task requester (e.g., to enable a
communication channel between worker and requester). However, such additional
disclosure is outside the scope of this work, as each worker has the right to disclose
his or her individual information. Instead, the focus of the framework is on what
happens prior to consent, when worker location and identity must be protected from
both task requesters and the server. This privacy model is a weaker version of the
restrictive model in Fig. 7.1a since task locations are public.

Workers cannot trust the server, especially as there may be many such entities
with diverse backgrounds, e.g., private companies, non-profits, government orga-
nizations, academic institutions. On the other hand, the CSP already has a signed
agreement with workers through the service contract, so there is already a trust
relationship established, as well as mutually-agreed upon rules for data disclosure.
Furthermore, the CSP already knows where subscribers are, e.g., using cell tower
triangulation, so worker location reporting does not introduce additional disclosure.
In addition, having the CSP expose a PSD release of the user location dataset can
benefit applications beyond crowdsourcing. For instance, the PSD can be shared
with law enforcement agencies for public safety, or with commercial organizations
to increase the revenue of the CSP. Therefore, there is sufficient motivation for the
CSP to provide such a location sanitization service.

However, the CSP has no expertise, and perhaps no financial interest, to host
an SC service, which needs to deal with a diverse set of issues such as interacting
with various task requester categories, managing profiles (e.g., some workers may
only volunteer for environmental tasks), etc. The role of the CSP is to aggregate
locations from subscribed workers, transform them according to DP, and release the
data in sanitized form to one or more servers for assignment. As multiple servers
can use the same PSD, it is practical for the CSP to provide PSDs for a small fee,
e.g., a percentage of the workers’ payment, or a tax incentive in the case of a public-
interest SC application.
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Design Goals and Performance Metrics

Protecting worker location significantly complicates task assignment and may
reduce the effectiveness and efficiency of worker-task matching. Due to the nature
of DP, it is possible for a region to contain no workers, even if the PSD shows a
positive count. Therefore, no workers (or an insufficient number thereof) may be
notified of the task request, and the task may not be completed. Alternatively, the
GR may comprise workers who are a long distance away from the task location,
whereas nearer workers are not included. Finally, in the non-private case, only one
selected worker, whose location and identity is known, is notified of the task request.
With location protection, redundant messages need to be sent, increasing overhead.
We focus on the following performance metrics:

• Assignment success rate (ASR). Due to PSD data uncertainty, the server may
incorrectly assign workers to tasks (e.g., no worker is reached, or task is too far
and workers do not accept it). ASR measures the ratio of tasks accepted by a
worker to the total number of task requests.

• Worker travel distance (WTD). The server is no longer able to accurately evaluate
worker-task distance, hence workers may have to travel long distances to tasks.
The challenge is to keep the worker travel distance low, even when exact worker
locations are not known.

• System overhead. Dealing with imprecise locations increases the complexity of
assignment, which poses scalability problems. A significant metric to measure
overhead is the average number of notified workers (ANW). This number affects
both the communication overhead required to geocast task requests, as well as
the computation overhead of the matching algorithm, which depends on how
many workers need to be notified of a task request.

Sanitization of Workers’ Locations Using Adaptive Grid

The first step in the proposed framework consists of building a PSD (at the CSP
side) to be used later for task assignment at the server. Building the PSD is an
essential step because it determines how accurate the released data is, which in turn
affects ASR, WTD and ANW. Worker location data are sanitized at the CSP using a
PSD, named adaptive grid (AG) [23]. PSD is a sanitized spatial index, where each
index node contains a noisy count of the workers rooted at that node. Figure 7.6b
shows a snapshot of an adaptive grid with four level-1 cells A,B,C,D. Constructing
a differentially private AG requires two steps. First, the noisy counts N ′ of A,B,C,D
are computed by adding calibrated random Laplace noise [6]. Second, based on the
noisy counts, level-1 cells are further split into level-2 cells. Cell D, which has
a higher noisy count of 200 is partitioned according to a 3 × 3 grid, while the
granularity for other cells is 2 × 2. Thereafter, AG adds to each level-2 cell (ci ,
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i = 1 . . . 21) calibrated random Laplace noise. Finally, their corresponding noisy
counts nci

are published together with the structure of the AG.
Although AG yields small errors for general spatial queries, it is not directly

applicable to SC due to its rigidity in choosing parameters. Specifically, the
granularity m2 of the level-2 grid is too coarse, leading to large geocast areas and
high communication overhead. Thus, the AG method is extended to address the
specific requirements of the SC framework. Particularly, a heuristic is proposed to
increase the granularity m2 in order to decrease overhead, but only to the point
where there is at least one worker in a cell [32].

Task Assignment on Sanitized Data

On top of the noisy data, to ensure that task assignment has a high success rate,
analytical models that consider task completion rate, worker travel distance and
system overhead are developed. When a request for a task t is posted, the server
queries the PSD and determines a geocast region GR where the task is disseminated.
The goal is to obtain a high success rate for task assignment, while at the same time
reducing the worker travel distance WTD and request dissemination overhead ANW.

Acceptance Rate and Analytical Utility Model

Travel distance is critical in SC, as workers need to physically visit the task
locations. A worker is more willing to accept nearby tasks [13], so acceptance rate is
modeled as a decreasing function of travel distance. Also, we denote by acceptance
rate (AR) the probability pa(1 ≤ pa ≤ 1) that a worker agrees to complete a task for
which he has received a request. Thereafter, an analytical utility model is developed
that allows the server to quantify the probability that a task request disseminated in a
certain GR is accepted by a worker. Intuitively, the utility depends on the AR and on
the worker count w̄ estimated to be enclosed within the GR. A server will typically
establish an expected utility threshold EU which is the targeted success rate for a
task (this is a system goal, rather than an outcome). Generally, EU is considerably
larger than an individual worker’s pa , so the GR must contain multiple workers.

We define X as a random variable for the event that a worker accepts a received
task: P(X = True) = pa and P(X = False) = 1 − pa. Assuming w independent
workers, X ∼ Binomial(w, pa). We define the utility of a geocast region covering
w workers as:

U = 1 − (1 − pa)w (7.1)

U measures the probability that at least one worker accepts the task. The utility
definition can be extended to the case of redundant task assignment, where multiple
workers are required to complete a task [31].



190 H. To and C. Shahabi

Geocast Region Construction

The third step in the framework is the construction and dissemination of GR. By the
nature of the DP protection model, fake entries may need to be created in the worker
PSD. Thus the server cannot directly contact workers, not even if pseudonyms are
used, as establishing a network connection to an entity would allow the server
to learn whether an entry is real or not, and this breach privacy. To address this
challenge, the geocast mechanism was introduced for the task request dissemination.
Geocast is a routing and addressing method, which is used to deliver information to
all devices situated within a geographical area. Once a PSD partition is identified
by the analytical model outlined above, the task request is geocast to all the workers
within that partition.

Particularly, given task t , the GR construction algorithm must balance two
conflicting requirements: determine a region that (1) contains sufficient workers
such that task t is accepted with high probability, and (2) the size of the geocast
region must be small. The input to the algorithm is task t as well as the worker
PSD, consisting of the two-level AG with a noisy worker count for each grid
cell. The algorithm chooses as initial GR the level-2 cell that covers the task, and
determines its U value. As long as utility is lower than threshold EU, it expands
the GR by adding neighboring cells. Cells are added one at a time, based on their
estimated increase in GR utility. Following the task localness property, we take
into account the distance of each candidate neighboring cell to the location of t ,
and give priority to closer cells. The algorithm stops either when the utility of the
obtained GR exceeds threshold EU, or when the size of GR is larger than a particular
threshold; hence, utility can no longer be increased. The GR construction algorithm
is a greedy heuristic, as it always chooses the candidate cell that produces the highest
utility increase at each step. The experimental results show that workers’ location
privacy is protected without compromising performance, and the extra travel cost is
tolerable—a 20% increase when compared to the non-private case.

Next, we present various extensions of the worker PSD, followed by an approach
toward PSD for moving workers.

Extensions and Enhancements of Worker PSD

There have been recent studies that adopt the privacy model used in [32], assuming
a trusted CSP and differentially private location sanitization. Particularly, Gong et
al. [8] propose a framework that can protect the workers’ location privacy when
allocating tasks to the workers. Similar to [32], they develop analytical models and
task allocation strategies that balance privacy, utility, and system overhead. In [8],
the CSP not only aggregates workers’ locations but also their reputation information,
which is used to provide quality control over the reports. Consequently, a new
structure called reputation-based PSD is proposed to partition the space based on
both reputation and location information.
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Another work studies reward-based spatial crowdsourcing that enables task
assignment with optimized reward allocation (Zhang et al. [38]). The authors also
reuse the privacy framework introduced in [32], in which the server and workers
are connected by a trusted CSP. However, unlike [32] that uses the adaptive grid
to releases a sanitized location view to the server, this study constructs a contour
plot to represent the spatial distribution of workers aiming to introduce less noise
than the prior technique. The contour plot is used to perform task assignment. The
objective of task assignment is to find the minimum radius r to ensure that the ASR
of a task is equal to expected utility threshold EU, i.e., the probability that at least
one worker performs the task is no less than the threshold.

Protection for Dynamic Workers’ Locations

Previous perturbation techniques [8, 32, 38] assume a static scenario where workers’
locations do not change. However, SC systems receive continuous requests for task
assignment. Hence, it is important to keep track of the whereabouts of moving
workers and to release a sequence of worker PSDs that allow effective spatial
task assignment over multiple timestamps. The challenge is that as workers move,
new snapshots of sanitized worker locations must be disclosed to maintain task
assignment effectiveness. However, access to sequential releases gives an adversary
more powerful attack opportunities. To counter such threats, differential privacy
requires more noise injection, which in the worst case may reach amounts that
are proportional to the length of the released location history (i.e., the number of
disclosed snapshots). Clearly, such large noise would render the data useless, since
SC is likely to be a continuously offered service in practice. A recent study [31]
extends [32] to address the challenge of moving workers by investigating privacy
budget allocation techniques across consecutive releases, and employing post-
processing techniques based on Kalman filters to reduce the inaccuracy introduced
by addition of noise.

7.4.2.3 Encryption Techniques

In this section we discuss studies that use encryption-based approaches. In [27]
the identity and location (i.e., IP address) of workers are hidden from TS through
multiple Tor relays using Onion encryption. However, Tor does not try to protect
against an attacker who can see or measure both traffic going into the Tor network
and also traffic coming out of the Tor network—for example, the end-to-end timing
correlation attack. Thus, to prevent TS from performing a timing attack by linking
multiple task requests, the workers connect to TS at random intervals. Furthermore,
during tasking the workers make sure that TS does not tamper the task request from
RS; otherwise, the workers can report TS as fraudulent to RS.
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Shin et al. [27], however, focus on the pull mode, which likely results in
suboptimal task assignment. Therefore, a recent study [26] proposes a secure task-
assignment protocol to protect worker location privacy in the push mode. The
privacy framework used in [26] is similar to [32] (Fig. 7.6a), except the CSP is
replaced by a privacy service provider (PSP)—a semi-honest (i.e., honest-but-
curious) third party to provide privacy functionality and collect encrypted data from
workers, including encrypted location reports. With the framework, the server needs
to perform worker-task matching in the encrypted domain. Particularly, given a task,
the server communicates with PSP in the encrypted domain to find the worker with
minimum travel cost to the task. The travel cost is evaluated in terms of worker-task
distance and the degree of interest of the worker to the task.

The advantage of the proposed protocol is twofold. The framework is not relying
on a trusted-third-party and is robust to semi-honest adversaries. Also, the privacy
guarantees hold for moving workers. However, when compared to the cloaking
and perturbation techniques, cryptographic-based approaches may incur higher
computation overhead. In addition, the semi-honest adversary model is restrictive
in terms of privacy protection and may not always hold in the real-world SC
applications. That is, server and PSP may not follow the specified protocol, or
requesters can be malicious. Thus, a stronger privacy protocol that is resilient to
malicious adversary model needs to be developed.

7.5 Conclusion and Future Directions

With the popularity of mobile devices, spatial crowdsourcing is rising as a frame-
work that enables human workers to solve tasks in the physical world. With
spatial crowdsourcing, requesters outsource a set of spatiotemporal tasks to a set of
workers, i.e., individuals with mobile devices that perform the tasks by physically
traveling to the specified locations of interest. However, current solutions require a
worker to disclose his location to the server and/or to other requesters even before
accepting a task—or a requester to disclose his tasks’ locations, which can be used to
infer his own location, to untrusted entities. In this chapter we identified the privacy
threats to both workers and requesters in the two main phases of crowdsourcing:
task assignment and task reporting.

We surveyed some of the most notable solutions proposing various privacy
techniques, ranging from pseudonym, cloaking, perturbation to exchange-based
and encryption-based approaches. These studies have shown encouraging results
in protecting the privacy of both workers or requesters in spatial crowdsourcing.
However, protecting the privacy of workers and requesters simultaneously using
rigorous privacy guarantees such as differential privacy is still an open problem.
Another promising direction is to consider powerful adversaries with knowledge
about temporal correlations of a moving user’s locations or collusion between
workers and the server; for example, some workers may work for the SC company
or the company may use driverless cars.
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Chapter 8
Privacy in Geospatial Applications and
Location-Based Social Networks

Igor Bilogrevic

Abstract The use of location data has greatly benefited from the availability of
location-based services, the popularity of social networks, and the accessibility of
public location data sets. However, in addition to providing users with the ability
to obtain accurate driving directions or the convenience of geo-tagging friends and
pictures, location is also a very sensitive type of data, as attested by more than a
decade of research on different aspects of privacy related to location data.

In this chapter, we focus on two domains that rely on location data as their
core component: Geospatial applications (such as thematic maps and crowdsourced
geo-information) and location-based social networks. We discuss the increasing
relevance of geospatial applications to the current location-aware services, and
we describe relevant concepts such as volunteered geographic information, geo-
surveillance and how they relate to privacy. Then, we focus on a subcategory
of geospatial applications, location-based social networks, and we introduce the
different entities (such as users, services and providers) that are involved in such
networks, and we characterize their role and interactions. We present the main
privacy challenges and we discuss the approaches that have been proposed to
mitigate privacy risks in location-based social networks. Finally, we conclude with a
discussion of open research questions and promising directions that will contribute
to improve privacy for users of location-based social networks.

8.1 Introduction

The rate at which new online data is being generated is unprecedented. It is
believed that 90% of all of the online data has been produced over the past 2
years [127]. Such data is used in various domains, including healthcare, research,
agriculture, logistics, urban design, energy, retailing, crime reduction and business

I. Bilogrevic (�)
Google, Zurich, Switzerland
e-mail: ibilogrevic@google.com

© Springer Nature Switzerland AG 2018
A. Gkoulalas-Divanis, C. Bettini (eds.), Handbook of Mobile Data Privacy,
https://doi.org/10.1007/978-3-319-98161-1_8

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98161-1_8&domain=pdf
mailto:ibilogrevic@google.com
https://doi.org/10.1007/978-3-319-98161-1_8


196 I. Bilogrevic

operations [133]. In particular, location data is extremely useful for transportation,
mapping, urban design, environmental monitoring and advertisement. For instance,
mobility patterns of hundreds of millions of users have been mined in order to
analyse the Chinese economy [55]; in another case, location data from cell-phone
users, as well as buses and taxi drivers, has been used to better understand city
dynamics and environmental issues [90]; similarly, location information has been
mapped to crime statistics [71] and used for poverty prediction [62]. In yet another
instance, location data was used for disaster relief and coordination [111, 146].

Location is one among several aspects of a person’s context, such as the time,
the activity, the objects or the people in proximity of a person. In order to infer
the context, people use their senses. Similarly, mobile devices require sensors to
determine their context, and often also communication with third-party service
providers and other devices. By being aware of their context, mobile devices can
provide users with a multitude of services that enrich their experience and simplify
their everyday activities. For example, location awareness enables devices to provide
relevant and timely driving and walking directions, or to obtain local weather
forecasts. In addition to services that use location as their core functionality, more
recently location data became very relevant for online social networks, by enabling
users to share their locations with their social circles, by adding location information
to shared media (i.e., geo-tagging) or co-presence with other people.

Location-based services are extremely popular. In the U.S., 90% of smartphone
owners reported using their devices to obtain information related to their loca-
tion [98]. Similarly, one of the largest (in terms of number of registered users) online
social networks that uses location data has reported having surpassed one billion
monthly active users [35]. In addition to being very popular among users, location
data is often processed by service providers in order to enhance their services; a
recent report stated that location is among the top-3 identity-related data sources
used for personalization [126]. Therefore, location data is not only valuable to the
users, but also to the service providers and third parties, as they frequently use it in
order to drive their revenues.

In addition to being valuable, location is also a sensitive type of data [10, 79],
as it can be used to reveal aspects of one’s life that go beyond the location itself.
Research has shown that location traces can be used to infer one’s home/work
places [48, 56], political affiliations [65], activities [140], interests [94] and social
networks [9, 83]. Hence, being able to control the access to and flow of location data
is of paramount importance for the users. Currently both Google and Facebook, two
of the largest online service providers, allow their users to manage privacy settings
and controls, enabling them to decide who can see their information and how it is
used to personalize online services [34, 46]. For example, Google enables its users
to see, correct and delete location data about them. Similarly, Facebook allows its
users to decide how location check-ins and other social features (such as friend geo-
tagging) work, by limiting and removing location tags [33].

In this chapter, we discuss privacy issues for two popular use-cases of location
data on mobile devices: (1) geospatial applications (such as crowdsourced mapping,
urban design, crisis and poverty thematic maps) and (2) location-based social
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networks (such as proximity-based friend finders, online dating, social and media
geotagging, as well as event planning). We begin by discussing the increasing
relevance of the geospatial applications in Sect. 8.2, which have paved the way
for the current location-based services. We cover topics such as crowdsourced
geographic data, geo-surveillance and their relevance to privacy. Afterwards, in
Sect. 8.3 we focus on a subcategory of geospatial applications, i.e., location-based
social networks (LBSNs), where we discuss their different entities and their roles.
For instance, users may be concerned with what other users know or can learn
about them, but they can also worry about how service providers and other third
parties are using their data. Next, we present the main privacy challenges and
we discuss the approaches that have been proposed to mitigate the privacy risks,
by surveying solutions from both the engineering field as well as the Human-
Computer Interaction (HCI) domain. It is crucial to consider these related but
separate aspects, as Privacy-Enhancing Technologies (PETs) are most effective
when they are intuitive and bring benefits to users [10].

8.2 Privacy in Geospatial Applications

One of the most ancient instances of geospatial applications is cartography, which
can be defined as the science of creating maps.1 Although the first examples of
maps were used to describe the stars rather than Earth’s surface [92], modern maps
are able to capture and summarize a plethora of information about the surface of our
planet and its inhabitants, such as the road networks, ocean dynamics, environmental
aspects related to natural disasters and thematic maps of economic indicators. For
instance, road maps have been widely used to help people decide on the optimal
way to reach their destinations, whereas thematic maps—which associate a specific
type of information, such as poverty or crime levels, with a geographic region2—are
routinely employed as tools to inform and guide policy and political efforts [71].

The increase in availability of different types of maps has benefited from a wider
accessibility of public geographic information and geodemographic databases [25].
For example, several countries make census data publicly available to download
and use.3 In the U.S., such data contains anonymized information, at a block-
level resolution, about citizens’ incomes, education levels, housing and general
demographics, including ethnicity, gender, age and sex.4 In addition to census data,
some countries have started releasing geo-referenced statistics related to public
safety aspects, such as crime rates. In the U.S. and U.K., for instance, police

1http://www.merriam-webster.com/dictionary/cartography, last retrieved Dec. 4, 2016.
2https://www.census.gov/geo/maps-data/maps/thematic.html, last retrieved Dec. 4, 2016.
3http://unstats.un.org/unsd/demographic/sources/census/wphc/default.htm, last retrieved Dec. 4,
2016.
4http://www.census.gov/data/data-tools.html, last retrieved Dec. 4, 2016.

http://www.merriam-webster.com/dictionary/cartography
https://www.census.gov/geo/maps-data/maps/thematic.html
http://unstats.un.org/unsd/demographic/sources/census/wphc/default.htm
http://www.census.gov/data/data-tools.html
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departments have been releasing such data on interactive websites as of 1999 and
2005 [71], respectively. In Sect. 8.2.2 we discuss in more detail the role of thematic
maps and the inherent privacy issues.

Technological advances have undoubtedly helped to expand the accessibility
of geo-referenced data, which has evolved in terms of both quantity and quality
of the information it conveys. Currently, high-resolution satellite imagery can be
accessed online for free from both governmental sources5 and private companies
such as Google,6 Microsoft7 and Esri.8 With the advent of Web 2.0 and the
mobile revolution of the past decade, which dramatically changed the way Internet
users exchange information, interact and generate online content, the creation and
curation of geographic data was no longer limited to the subject experts (such
as geographers and cartographers). In fact, more and more people without a
formal training in any of those fields started contributing geographic information
through open access platforms [88], such as OpenStreetMap9 and Wikimapia.10 In
Sect. 8.2.1 we discuss the benefits and disadvantages, from a privacy standpoint, of
crowdsourced geospatial systems for both users and service providers.

So far, we have described how technological advances—amount of publicly-
accessible data, technological advances and crowdsourced contributions—have
increased both the coverage and detail of cartography in the past decades. By
changing the way people interact with and search for geo-referenced data, such
an evolution has also altered another important dimension for both offline and
online users, which is privacy. In fact, each of the three aforementioned advances
have had a distinct and yet complementary effect on the erosion of user privacy.
First, the increase in the availability of geo-referenced data has potentially exposed
demographic and social elements, such as gender, income and housing, to anyone
with an Internet connection, anywhere in the world. In the era of big data, such abun-
dance and availability has made it possible for researchers to develop algorithms
that combine different sources of geo-referenced data to predict socio-economic,
environmental and safety-related outcomes with high accuracy [62, 69, 71, 88].
Second, the increase in quality of the data that is collected (through, for example,
high-resolution satellite imagery, widespread use of mobile devices and ZIP-code-
level statistics) has amplified the effect on the erosion of privacy by pinpointing
more accurately the spaces and places in which people live and interact. Third,
if on the one hand citizen-contributed geographic information has dramatically
increased the speed and coverage of geographic and sociographic data, it also added
more uncertainty in the veracity of such data—especially in regions where more
traditional data collection methods, such as surveys, are scarce and rare [62].

5http://earthexplorer.usgs.gov/, last retrieved Dec. 4, 2016.
6https://www.google.com/earth/, last retrieved Dec. 4, 2016.
7https://www.bing.com/maps/, last retrieved Dec. 4, 2016.
8https://www.arcgis.com/features/index.html, last retrieved Dec. 4, 2016.
9https://www.openstreetmap.org/, last retrieved Dec. 4, 2016.
10http://wikimapia.org/, last retrieved Dec. 4, 2016.

http://earthexplorer.usgs.gov/
https://www.google.com/earth/
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http://wikimapia.org/
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In the next subsections, we discuss privacy in geospatial applications from three
different but related perspectives. First, in Sect. 8.2.1 we focus on the crowdsourcing
aspect, by elaborating the ways in which such data is collected and how it could
impact both the users that contributed it, as well as those it pertains to. Then, in
Sect. 8.2.2 we discuss aspects related to surveillance and privacy, two elements
that are increasingly relevant to users due to the increase in quantity and quality
of geo-referenced data and big-data processing algorithms. In particular, we cover
governmental surveillance and the privacy of socioeconomic and environmental
factors, such as poverty.

8.2.1 Volunteered and Contributed Geographic Information

The Web 2.0 has made it possible for online users to generate and curate content on
the Internet at an unprecedented scale. Geographic and geo-referenced data are two
very popular types of data that have benefited from such a technology. Online social
networks such as Facebook and Twitter have more than one billion mobile daily
active users [36], and many of those users routinely share their exact location with
other users of these services [15], by means of geo-tagged media content, check-
ins to places and geo-referenced posts and tags (more about this in Sect. 8.3). In
addition to contributing location information to online social networks, users are
also voluntarily adding, updating and deleting geographic information from other
types of platforms, such as online mapping ones. One notable example of such a
platform is OpenStreetMap, where maps are “created by people like you and free to
use under an open license.”11

In both of these scenarios (social networks and online mapping), users are
contributing geographic or geo-referenced data to a service. When users choose to
add a geographic reference to a picture they post on a social network, they are aware
that they are sharing location data with other users. Similarly, when a contributor on
OpenStreetMap adds a new Point of Interest (POI) to a place, she or he knows that
it is her or his responsibility to be as accurate and truthful as possible. In addition
to such explicit choices to either attach location data or to contribute geographic
information, there are more implicit ways in which users of online services are
contributing geographic information, sometimes without even being aware of it. For
instance, mobile apps that require access to location information are able to infer
the coarse position even if users do not grant such access, simply due to the way IP
addresses are shared by users or assigned by network operators [131].

Volunteered geographic information (VGI) is an expression first formulated by
Goodchild [11, 45] in order to define the practice of generating geographic infor-
mation by those who are not trained in geospatial data collection and analysis, and
whose information may not be as accurate as those generated by official agencies.

11http://www.openstreetmap.org/, last retrieved Dec. 4, 2016.

http://www.openstreetmap.org/
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More recently, geographers have started distinguishing between “volunteered” and
“contributed” geographic information (CGI) [50, 66]. According to Harvey [50],
one can define the two expressions in the following way:

Definition 8.1 Volunteered geographic information, or VGI, is crowd-sourced
information with clarity about purposes and abilities to control collection and reuse.
VGI refers to geographic information collected with the knowledge and explicit
decision of a person.

Definition 8.2 Contributed geographic information, or CGI, refers to geographic
information that has been collected without the immediate knowledge and explicit
decision of a person using mobile technology that records location.

The difference between VGI and CGI relies in the way data is collected from
the users: if it is an “opt-in” approach, then the data is volunteered, whereas if it is
an “opt-out” approach, the data is contributed. Such a distinction is fundamental in
order to better understand the differences in data quality and biases that could derive
as a result of crowdsourced geographic data.

From a privacy standpoint, such a distinction between CGI and VGI is also
very relevant. The opt-in approach of CGI makes sure that users have the choice
whether or not to contribute data and that they are aware of it. Control over and
awareness of data collection practices are two crucial aspects that affect the way
people interact with online services [10, 117]. Usually, the higher is the offered
control and transparency, the more comfortable are users with sharing information
with the online platforms, especially because location data is one of the most
sensitive types of personal data [10, 79]. In contrast to VGI, CGI is much less
transparent when it comes to data collection, possible re-use and controls, because
users may not be aware that such data is being collected at all [11]; a mobile device
that is turned on and is connected to the Internet can continuously gather detailed
data about the surroundings, such as radio identifiers (WiFi SSIDs, cellular antenna
IDs, Bluetooth IDs), user identifiers (MAC adresses) and its position (GPS, WiFi
trilateration). Based on results from such prior works in geography and privacy,
Table 8.1 illustrates the differences between CGI, VGI and official geographic data
curators and producers, with respect to different data and privacy properties. We
define each of these properties as follows:

• Quality: It refers to the ability to ensure data-provenance [50]—attributes that
allow one to assess the origin of the data as well as the processes used to
collect and prepare it—as well as the trust in the contributors’ accuracy when
reporting geographic data. For example, geographic information produced by
official entities is usually able to ensure both data-provenance and is assumed
to be more trustworthy than data produced by an individual.

• Coverage: It refers to both the extent and detail contained in geographic
information. For instance, the coverage provided by VGI contributors can be
quite different depending on the region of the world that it pertains to. For
example, regions in North America have a better coverage than those in southern
Asia and Africa [84].
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• Freshness: It refers to the update frequency of the geographic information. For
instance, CGI data can be continuously collected and re-used, whereas official
data relying on periodic surveys and census is usually more stale.

• Legal liability: It refers to the liability in case some geographic information
offered by a service breaches contractual obligations or agreements, which could
happen if, for example, a certain guarantee of accuracy was promised but not
delivered [11].

• Transparency: It refers to the clear and open disclosure of data collection
practices, processing and limits. For example, the presence of a privacy policy or
informative content, describing the extent and use purposes of the data collection,
contribute towards transparency.

• Control: It refers to the ability of users who engage with a service to be able to
control the extent to which they are contributing information. It includes opt-in
approaches, selective and granular information sharing and the ability to request
information about oneself to be removed from the service. For example, opt-in
approaches provide users with the choice of whether to contribute information to
the service, whereas opt-out approaches usually require users to either accept all
the conditions or not to use the service at all [50].

• User benefits: It refers to the presence of clear benefits for users, which derive
from contributing geographic information to the service provider. For example,
rescue operations after a natural disaster (such as the 2010 earthquake in
Haiti [88]) have greatly benefited the affected population, as well as relatives,
friends and organizations that were able to better monitor the evolution of the
situation and to better prioritize the rescue efforts.

From Table 8.1 we notice that there is no single method that has the highest
score in each of the aforementioned properties. With respect to privacy properties,
the VGI method has clearly the highest aggregate score. However, it falls short in
the data properties as data quality, coverage and legal liability, which are usually not
satisfied. On the contrary, CGI has high score in data properties, thanks to the large
number of samples that can be collected and their ubiquity. However, it falls short in
the privacy properties, as the data collection methods, re-use practices and controls

Table 8.1 Properties of different methods for geographic content generation

Data properties Privacy properties

Method Quality Coverage Freshness Legal liability Transparency Control User benefits

VGI − − + −− ++ ++ ++

CGI + ++ ++ −− −− −− +

Official ++ + −− ++ + −− ++

We assign scores on a 4-point scale from the lowest (−−) to the highest (++), reflecting the
extent to which each method offers every listed property. For example, “Coverage” of VGI may
be limited due to the lack of sufficient geographic data about certain regions but it may integrate
environmental data collected from sensors which can enhance its value in specific cases (such as
natural disasters or air quality monitoring)
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are less prominent or in some cases nonexistent. In one instance, according to a
CNET news report, locations of laptops, cell-phones and WiFi devices have been
released on the Internet without an adequate privacy protection and unbeknownst to
the users who generated it [86].

Although the modern concept of “personal privacy” has been introduced in 1890
by Warren and Brandeis [134], it is not until the early 2010s that location privacy
received a significant attention in the U.S. legislation [66]. The introduction of the
bills in the U.S. Congress (such as the Location Privacy Protection Act, Geolocation
Privacy and Surveillance Act, Electronic Communications Privacy Act Amend-
ments, and Online Communications and Geolocation Protection Act [100]) have
prohibited actions such as the unlawful acquisition and disclosure of geo-location
information to government agencies and the unlawful acquisition and disclosure
of geo-location information from electronic communication media without users’
consent [66, 100].

8.2.2 Geo-Surveillance and Big Data

The availability of modern technologies and large amounts of data (“big data”) have
undoubtedly benefited both society and individual citizens, but it has also enabled
a more detailed and granular insight into their social and personal lives. On the one
hand, CGI and VGI have had a positive effect on society and helped save thousands
human lives [111, 146], as they enabled organizations and governments to respond
in a fast way to coordinate relief efforts in cases of natural disasters, thanks to
the almost real-time updates to online maps by private citizens and organizations
operating both in the affected areas and outside [88]. Similarly, the availability of
detailed satellite imagery and street-level views on cities and neighborhoods have
enabled a better distribution of limited resources for city planners and managers,
improving the living conditions of their citizens [68, 69]. On the other hand,
however, they have opened new surfaces for possible threats and attacks to citizens’
privacy through surveillance [22] and inference [62, 71, 72].

8.2.2.1 Geo-Surveillance and Privacy

Surveillance has always been an important instrument to achieve security and safety
for authorities and governments. Nowadays, the availability of inexpensive mobile
devices equipped with miniaturized sensors (such as GPS, microphone, gyroscopes,
accelerometers, etc.) has enabled the collection of vast amounts of detailed mea-
surements about the physical and social environments. For example, GPS traces
or cell-tower identifiers can be used to infer one’s home/work locations [31, 44];
Bluetooth and WiFi interface identifiers can be recorded and processed to infer
social circles of their owners, by only relying on co-presence [9]; such information
can be complemented by mining conversations recorded by mobile devices [136];
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accelerometer readings on smartphones and smartwatches can be used to infer
passwords and PIN codes [82, 96], whereas data related to throughput can be used
to determine the most likely trajectory that a user has traveled [113].

In addition to citizen-owned devices (such as smartphones and other mobile
devices), people’s behavior can be monitored through more conventional surveil-
lance means such as closed-circuit television (CCTV), red-light and thermal
cameras, as well as biometric systems and RFID tags. In 2015, it was estimated
that there were 245 million active CCTV cameras worldwide, which are used
for purposes including traffic monitoring, crime prevention, property and home
surveillance [26]. For example, judicial authorities in the U.K. have tagged over
600 adults and about 6000 juveniles with RFID chips, in order to assess compliance
with bail conditions [124]. Similarly, the U.S. Department of Homeland Security
(DHS) is using RFID-based documents to facilitate the entry and exit from the U.S.,
which can be read from up to 30 ft away.12 Uteck [124] argues that although there
is no right not to be observed, surveillance assaults human dignity and can change
behavioral patterns [38, 101]. In particular, as surveillance becomes “permanent in
its effects, even if it is discontinuous in its action” [38], it “disturbs the victim’s
daily activities, alters her routines, destroys her solitude, and often makes her feel
uncomfortable” [112].

Crampton [22], a geography scholar, explores the role of geospatial information
systems (GIS) in geo-surveillance, which can be defined as the surveillance of
geographic activities [23]. He studies how mapping and GIS are used in recent-
day surveillance and security, by broadly applying Faucault’s historical method
on “governmentality”, which describes how people have governed themselves
and others [39]. Within that framework, Crampton argues how the rationales for
geo-surveillance can be traced back to the nineteenth century, when they were
directly concerned with “governing (counting, measuring, and establishing norms)
individuals and populations in their distributions across territories”. Crampton
argues that when privacy is contrasted with security, the balance points in favor
of the latter in times of threat, and sometimes in favor of the former in times
of peace [22]. Moreover, he also argues that opposing surveillance by appealing
to privacy (or civil rights) is problematic because the latter can be defined in
different ways. For instance, [22, 116] report that after the attacks of September
11, 2001, Attorney General John Ashcroft stated on National Public Radio that
“we’re not sacrificing civil liberties. We’re securing civil liberties”. Crampton also
makes an additional point in his essay, where he argues that civil liberties are
increased for people who are “normal” in their behavior, but they are reduced for the
others. Norms, in this sense, are determined by computing statistical averages and
likelihoods of behavior, both at the individual as well as the group levels. Thematic
maps, which we discuss in the next section, have emerged after such behavioral
norms and statistics have been established.

12https://www.dhs.gov/radio-frequency-identification-rfid-what-it, last retrieved Dec. 4, 2016.

https://www.dhs.gov/radio-frequency-identification-rfid-what-it
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8.2.2.2 Thematic Maps, Big Data and Privacy

Thematic maps are usually designed to illustrate a specific type of data (such as
socioeconomic, environmental or health data) related to a geographic area and for a
single purpose.13 In contrast, reference maps usually show a multitude of data types
(such as political, geographical and geologic) together on the same map [119]. For
example, Fig. 8.1 shows both kinds of maps: on the top, a thematic map illustrates
the poverty rates of the total U.S. population in 2014, by County [123], whereas
the map on the bottom depicts a reference map of the same geographic region. In
the former, the county borders serve only as visual enhancements for the poverty
information the map conveys, whereas in the latter, the data related to political
boundaries, geological information and demographics serves its own purpose [119].

As shown in Fig. 8.1, thematic maps can be used to convey different types of
geo-referenced data, with varying degrees of privacy sensitivity for the citizens.
Information related to financial information, physical safety and health is usually
considered to be more sensitive than data related to generic demographics such as
age and gender [10, 79]. In the late 1990s and early 2000s, authorities in the U.S.
and U.K, respectively, started releasing information related to crime statistics at
a regional level through online crime maps [71]. For instance, Fig. 8.2 shows an
online crime map for the region of Berkeley, California, for crimes reported by the
Berkeley police between Oct. 18–24th, 2016. As it can be seen, the map shows that
there were a total of 136 records during the time period under consideration in that
region, and it is possible to select individual records to obtain the time at which it
was reported and the place where it happened. Moreover, the interface allows the
users to filter by type of crime, region, time period, and to visualize aggregate charts
and reports.

Kounadi et al.[71] start the discussion on privacy issues related to crime maps by
describing four main issues. When exact locations are attached to crime events, (1)
the victims may fear that offenders would consider them as particularly easy targets,
(2) they would not want to help the authorities with the investigation as a result, (3)
they would be reluctant to report another similar offense to the police and finally
(4) that their address and other information could be misused [135]. One on the
first attempts to assess re-identification risks as well as to outline the implications
of sharing sensitive crime-related information was published by the UK’s public
body “Information Commissioner’s Office” (ICO) in 2012 [60]. The publications
of crime-related data has started as a result of a transparency program of the U.K.
police, which had three policy objectives [18]: (1) To improve the credibility of
crime statistics for the citizens, (2) to provide a more community-focused police
service and (3) to inform, engage and empower the public to participate in crime
prevention efforts. In the official ICO report, the authors tie the release of crime
information to the number of households and frequency of updates, in an effort to
provide anonymity for the victims, obfuscate the precise locations of the reports

13http://guides.lib.uw.edu/c.php?g=341594&p=2304475, last retrieved Dec. 6, 2016.

http://guides.lib.uw.edu/c.php?g=341594&p=2304475
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Fig. 8.1 A thematic map (top) and a reference map (bottom). The thematic maps shows
the poverty rate by county in the U.S. in 2014 [123], whereas the reference map shows
the U.S. territory by State, together with topographic, transportation and demographic
information (images: (top) https://www.census.gov/did/www/saipe/data/statecounty/maps/iy2014/
Tot_Pct_Poor2014.pdf, (bottom) https://upload.wikimedia.org/wikipedia/commons/7/7d/United_
states_wall_2002_us.jpg, last retrieved Dec. 6, 2016)

https://www.census.gov/did/www/saipe/data/statecounty/maps/iy2014/Tot_Pct_Poor2014.pdf
https://www.census.gov/did/www/saipe/data/statecounty/maps/iy2014/Tot_Pct_Poor2014.pdf
https://upload.wikimedia.org/wikipedia/commons/7/7d/United_states_wall_2002_us.jpg
https://upload.wikimedia.org/wikipedia/commons/7/7d/United_states_wall_2002_us.jpg
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Fig. 8.2 Online crime map for the region of Berkeley, California, during a 1-week period between
Oct. 18–24th, 2016. The map shows the different types of reports, such as thefts, burglaries,
assaults, vandalisms, and the place where they were reported by the Berkeley Police (image shown
with permission from crimemapping.com, http://www.crimemapping.com/, last retrieved Dec. 6,
2016)

and add statistical noise to them [71, 120]. Crime maps released by the U.K. police
website14 have to comply with such requirements. Although cime maps are being
published, Kounadi argues that the policy objectives have not been fully achieved,
in particular the one about citizen engagement and empowerment. Moreover, the
participants to their study reported being more concerned with the risk implications
of burglaries and violent crime statistics on maps than not, and they also expressed
concerns that the released locations of burglaries could be used for commercial
purposes by alarm and commercial companies (88%). However, when asked about
the presence of privacy violations as a result of the release of exact burglary
locations, one third of the participants that did not feel there were any violations.
Such a number is certainly not insignificant, and it might indicate that for some
people such information is indeed not sensitive, or it provides more benefits than
risks, or that there is still misconception about the potential of geospatial tools and
techniques [71].

Compared to other types of data that can be provided by any online user, the
crime statistics are primarily collected by the police authorities in each country,

14https://www.police.uk/, last retrieved Dec 7, 2016.

crimemapping.com
http://www.crimemapping.com/
https://www.police.uk/
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and they are usually more trusted because it should be possible to verify their
provenance, quality and truthfulness. Similarly, data related to socioeconomic
factors such as income, education and occupation is usually collected by means of
national or regional surveys by the respective governments. Often, the availability
of such data is non-uniform across different countries and regions of the world,
such as Africa or Asia [84]. One promising way to overcome the scarcity of official
statistics about socioeconomic factors is to combine them with related data from
other sources, such as satellite imagery. Jean et al.[62] have demonstrated how, by
combining high-resolution satellite imagery with the survey data, they were able to
explain up to 75% of the data related to economic factors such as average household
expenditure or wealth. Their method relies on deep neural networks trained on
both satellite images as well as existing survey data. One of the main properties
that enabled authors to achieve such results is that the satellite images showed
the shape and material of the rooftops, as well as the distance of the houses from
the urban areas. Survey data showed that such features, which are visible in the
daytime satellite images, varied roughly linearly with expenditure [62]. Moreover,
the performance of the algorithm was degrading only modestly when data from
one country was used to predict poverty in another country. As economic and
financial data are considered to be some of the most sensitive data types, the privacy
implications of fusing them with location (another sensitive data type) have only
recently started to get attention by the research community. In particular, Bilogrevic
and Ortlieb [10] have shown that, taken individually, location information was
considered as the most personally identifying type of data, as compared to other
types of data such as email address, web browsing and purchase history. However,
when combined with other types of information, the combination that includes
location was no longer considered as the most sensitive; a combination that included
information related to online behavior, rather than offline, was considered as the
most personally identifying, and thus sensitive.

Of particular concern to privacy in geospatial applications is data related to
users’ health conditions and their combination with location data, which can have
negative effects on both the services users receive as well as on the value of
their private properties [12, 14]. In many countries, medical data and records are
regulated and their access and use is subject to strict access rules [4, 30]. For
instance, in the U.S. the Privacy Rule in the Health Insurance Portability and
Accountability Act (HIPAA) of 1996, which went into full effect in 2003 [12],
applies to any individual’s past, present and future data about both physical and
mental health. It establishes limits to use of such data and defines which types of
health data are considered “protected health information” (PHI).15 For example, PHI
includes patients’ names, geographic identifiers that define a region smaller than
a State (street, city, county, last three ZIP-code digits, etc.), dates (except years),
telephone numbers, email addresses, vehicle identifiers, IP addresses, biometric

15https://www.hipaa.com/hipaa-protected-health-information-what-does-phi-include/, last retri-
eved Dec. 4, 2016.

https://www.hipaa.com/hipaa-protected-health-information-what-does-phi-include/
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data and images. In 2013, HIPAA was updated to cover additional entities, such
as business associates, and it reinforced the need to disclose data breaches that
previously would have been unreported [12]. Moreover, it increased penalties in
case of PHI violations. Together with HIPAA, the recent legislation on location data
has helped strengthen protections around two of the most sensitive data types [9],
and to increase transparency in case of data breaches and leaks. In addition to
HIPAA, independent institutional review boards (IRBs) are committees that have
been formally created to approve, monitor, and review biomedical and behavioral
research involving humans. In particular, such committees often perform a risk-
benefit analysis to determine if a study should be conducted [97].

What is exempt from official IRB oversight are services that do not collect health
data, and process non PHI data, such as search queries entered by online users on
a search engine, in order to infer aggregate health-related trends. One such service
is Google Trends,16 which can be used to assess the popularity of different search
terms over time and space. The precursor to Trends was Google Flu Trends, a service
which provided flu prediction models based on patterns extracted from search
queries, active between 2008 and 2015. Shortly after the launch of Google Flu
Trends, the Electronic Privacy Information Center (EPIC) and the Patient Privacy
Rights wrote a letter to the then Google CEO Eric Schmidt,17 expressing concerns
over the anonymity of the search queries and asking clarifications about the methods
used to anonymize them. As of 2015, Google no longer publishes models directly,
but it rather provides “Flu and Dengue signal data directly to partners”, which
include the Center for Disease Control and Prevention (CDC) [47].

So far, we have discussed how privacy concerns in geospatial applications have
intensified and spread across multiple dimensions, fueled by the development of
new mobile and Internet technologies, sensors, and interaction methods that allowed
more and more data and people to contribute geographic information. In the next
section, we focus on a more recent and very relevant subcategory of geospatial
services that have received a large amount of attention and scrutiny by the privacy
research community, i.e., Location-Based Social Networks (LBSNs).

8.3 Privacy in Location-Based Social Networks

Before online social networks became extremely popular over the first decade of the
2000s, Internet users relied on bulleting board systems (BBSs) instant messaging
(IM) and forums in order to socialize online and exchange content [115]. Initially,
online social networks such as Classmates.com 18 and Friendster19 allowed users to

16https://www.google.com/trends/, last retrieved Dec 7, 2016.
17https://epic.org/privacy/flutrends/EPIC_ltr_FluTrends_11-08.pdf, last retrieved Dec 7, 2016.
18http://www.classmates.com/, last retrieved on Dec. 14, 2016.
19http://www.friendster.com/, last retrieved on Dec. 14, 2016. Friendster is no longer active as of
Jun. 14, 2015.

Classmates.com
https://www.google.com/trends/
https://epic.org/privacy/flutrends/EPIC_ltr_FluTrends_11-08.pdf
http://www.classmates.com/
http://www.friendster.com/
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search for other users they knew either by name or by affiliation to a group (such as
school class or personal interests), but not much more. Later on, more recent social
networks such as LinkedIn,20 Myspace,21 Facebook,22 Gowalla23 and Foursquare24

started to integrate novel functionalities that would enable users to share more
information with the service providers, and to search for and get recommendations
about other people, places and activities. In particular, location APIs and location-
sharing activities became more and more popular among users who were using their
mobile devices to search for local content, places and people in their vicinity. By
enabling users to share contextual and geographic information with the service
providers, such social networks embraced the two concepts related to contributed
and volunteered geographic information (CGI and VGI, respectively) discussed in
the previous section: Users volunteer geographic information when they actively
check-in to venues or share their locations with other users of the network, and they
contribute information by simply connecting to the service from different places and
devices.

There are several benefits that users enjoy if they share their location with OSNs.
For instance, Foursquare users can receive location “badges” when they check-in
very frequently to places and businesses. In turn, some of these businesses then
provide incentives to users who have earned badges at their locations, in the form
of coupons, discounts or prizes. Another popular example involves friend finder and
online dating platforms. By sharing their locations, users can see other users in their
proximity and engage with them, discover interesting events happening nearby and
set location-based alerts that would inform them every time a given person is close
to them. However, there are also downsides to location sharing. Exposing one’s
location renders the person more vulnerable to stalking, burglaries, physical harm
and embarrassment [104]. For example, in 2010 three burglars relied on Facebook
status updates to determine which houses to rob, and they managed to steal $
200,000 worth of goods from 50 different locations [19]. A more comprehensive
study conducted in 2011 showed that, based on the reports of 50 ex-burglars in
England, 78% of them used Facebook, Twitter, Google Street View and Foursquare
to prepare for the robberies [27]. The bridge between the online world and the
physical one is clearly stated in the precise definition by Zheng of a location-based
social network [144]:

A location-based social network (LBSN) does not only mean adding a location to an
existing social network so that people in the social structure can share location-embedded
information, but also consists of the new social structure made up of individuals connected

20https://www.linkedin.com/.
21https://myspace.com/, last retrieved Dec. 14, 2016.
22https://www.facebook.com/, last retrieved Dec. 14, 2016.
23http://mashable.com/2012/03/11/gowalla-shuts-down/#sBOot7U3xSqf, last retrieved Dec. 14,
2016. Gowalla is no longer active as of 2012.
24https://foursquare.com/, last retrieved Dec 14, 2016.

https://www.linkedin.com/
https://myspace.com/
https://www.facebook.com/
http://mashable.com/2012/03/11/gowalla-shuts-down/#sBOot7U3xSqf
https://foursquare.com/
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by the interdependency derived from their locations in the physical world as well as their
location-tagged media content, such as photos, video, and texts.

When interacting on LBSNs, users often face the question of how much location
information to attach to the content they post, concerned with the possible privacy
implications of their acts. While it is true that the platforms are usually designed
to facilitate the sharing of geo-referenced content [114], users have very different
attitudes and behavior towards sharing data online [3, 78, 118, 139]. For instance,
it has been observed that, although users state they worry about the privacy of
their data, they often reveal personal information on social networks [125]. The
discrepancy between attitudes and behavior in the privacy domain was termed as
“privacy paradox” by Barnes in 2006 [5], and is still relevant today [28]. On the one
hand, some researchers argue that one way to re-conciliate attitudes with behaviors
would be through the availability of better sharing controls and notices [6, 130]. On
the other hand, however, some scholars believe that, although a necessary condition,
better controls and notices have a limited effect on the information disclosure
behavior on social networks [2].

Attitudes and behaviors aside, measuring privacy remains an open research topic.
As opposed to network performance metrics such as throughput, latency, and error
rate, metrics for privacy are highly dependent on the specific application and context
being considered [7, 24, 54, 132]. Scholars from both the legal domain as well
as engineering have attempted to classify and create taxonomies for the different
ways in which privacy could be measured. For instance, Herrman [54] focused on
the regulatory issues regarding compliance, operational resilience and returns on
investments, whereas Wagner and Eckhoff [132] propose and categorize over 80
different privacy metrics for quantifying the privacy protection provided by privacy-
enhancing technologies (PETs). In this section, we discuss privacy metrics that
are directly related to the specific context of LBSNs and the privacy protection
techniques that are used. More details about each of these metrics can be found
in the respective paper, article or book.

In the remainder of this section, we first introduce the generic architecture of a
LBSN. Next, we discuss privacy threats and protection mechanisms in five main
categories: Location, absence, co-location, identity and demographics, and activity.
We conclude the section with a discussion of open research challenges for privacy
in LBSNs.

8.3.1 Architecture of Location-Based Social Networks

LBSNs inherit most of the standard architectural components from the traditional
online social networks, which include entities (such as people and organizations)
and resources (such as media or textual content), and relationships between them.
Additionally, location-related information (such as location updates from users,
check-ins and geotags) can be attached to both entities and resources [17, 129]. The
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service provider has a central role in enabling users to connect with each other and
the other entities that have an account. In order to join the LBSN, users and other
entities register with the service provider, which requires them to provide some
personal information such as name and email address [17]. Once the registration
is successful, usually after verifying the provided email address, users and other
entities can start interacting with each other and post content on the platform. Social
ties and group memberships are established by asking other users and groups to join
their social circles. In addition to explicitly joining social circles of other entities,
often users can also opt to simply stay up-to-date with other users’ updates and
public posts, by means of a follower-followee relationship model spearheaded by
Twitter.

Figure 8.3 shows a generic architecture of a LBSN, with a particular emphasis
on the location-related aspects. In the diagram, we can see that all registered
entities (people and organizations) can provide location-related information to the
LBSN. For instance, people can share their current location by means of a location
update and by geotagging resources such as pictures, posts, status updates and other
users. Similarly, organizations can geotag resources and other organizations (either
directly or through a hashtag coupled to a geotagged post). Users can obtain their
current location either locally, by relying on the GPS sensor on their devices, or

Fig. 8.3 System architecture of a generic Location-Based Social Network. The links represent
possible ways by which location data can be attached to the content posted by either people or
organizations (adapted from [129]). The solid and dashed lines correspond to the actions that
people and organizations can perform, respectively



212 I. Bilogrevic

remotely by providing third-party services information about their current location
context (such as the signal strengths and identifiers of nearby WiFi access points
and cell-towers) [20, 141]).

In order to better classify the different types of LBSNs, Zheng defined three
categories that capture the three main goals of a LBSN [104, 144]:

1. Geotagged-media-based: Service providers in this category allow users to attach
location information to the content they share, such as text, pictures, videos and
other types of media. For example, Twitter, Instagram, Facebook, Periscope all
allow users to geo-tag content they post.

2. Point-location-driven: Services belonging to this category allow their users to
share their current, real-time location, in order to enable a better convergence
between physical and online presence, also by enabling users to discover the
presence of friends (on the social network) that are in physical proximity.
Moreover, such services allow users to share their experience about a certain
place with other users by means of “tips” or reviews. Foursquare is an example
of such a service.

3. Trajectory-centric: A trajectory-centric service enables users to not only share
their punctual locations at different places, but also to share the route that
connects them. Recently, such services have become increasingly popular, thanks
to the availability of inexpensive activity tracking devices, such as Fitbit,25 and
to the increase in the type and number of sensors on mobile devices, which
enable users to share their physical activity with other users, to engage in virtual
competitions and to obtain virtual badges for completing activities with a certain
performance [37].

Many of the popular LBSNs belong to either one or multiple of these categories.
For instance, both Facebook and Twitter allow users to geotag content, check-
in to places and to leave messages on a business’ page or feed. Hence, it is
increasingly important to understand the different privacy implications of sharing
data on LBSNs. In the following section, we provide a systematic view of the
different types of attackers and attacks on users’ privacy in LBSNs, as well as
mitigation strategies to help limit or prevent negative consequences of such attacks.

8.3.2 Privacy Threats and Protection Mechanisms

LBSN providers collect, process and store multiple types of users’ data. By mining
users’ IP addresses, browser metadata, GPS coordinates, health data, photos, videos
and audio recordings, service providers are in a unique position to capitalize on such
wealth of information. Although there are techniques that allow online users to hide
their true IP address—by connecting to proxies, VPNs and anonymization overlay

25https://www.fitbit.com/, last retrieved Dec 16, 2016.

https://www.fitbit.com/
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networks such as Tor26—and protect their anonymity when browsing or searching
for content [32], they lose effectiveness when used for LBSNs because users of these
networks want to associate their account with the location information they provide.

For LBSN users, it is often challenging to assess the risks involved when sharing
location and other type of information with LBSNs. One of the reasons is that people
usually lack the awareness about the possible negative consequences due to the leak
of sensitive data [104].

Most LBSNs offer users means to manage their data on the platform, usually
through permission settings that allow users to specify the conditions under which
certain types of data can be used and revealed to others [17]. While it is true
that permissions are an important instrument for users to manage their privacy,
their scope is often limited to other users of the LBSNs, with the assumption that
the service provider is trusted to store and manage all of the data it collects—
which is usually explained in a privacy policy. In addition to permission settings,
Tsai et al. [122] identified different tools that can help users protect their privacy,
which include blacklisting social contacts that should not access any of the users’
information, using a restricted sharing approach where content would be visible
to only a subset of a user’s contacts, establishing “geo-fences”, which are regions
where location data should not be attached or shared with the LBSN [106], and
by using time-based rules, as time is also highly-indicative of the type of visited
place [87].

To reconciliate the different usability and privacy aspects in LBSNs, Carbunar
et al. [17] have defined a set of five requirements that a LBSNs has to satisfy
in order to preserve users’ privacy. First, the LBSN should protect users’ data
from unauthorized access. Second, the privacy protection tools should not affect
the functionality of the LBSN for the users. Third, they should enable providers
and registered entities to be able to extract aggregate statistics and information
that are relevant to their business. Fourth, privacy tools should minimize additional
investments that need to be made to support them, both for the LBSN providers as
well as for the registered entities. Fifth, such tools should minimize the additional
effort that registered entities need to devote in order to use the LBSN, hence
preserving its usability. The authors also note that some of these requirements can
be contradicting, and that it can be challenging to satisfy all of them simultaneously.

To better understand possible attacks on users’ privacy in LBSNs, in the
following we characterize the adversary and the underlying assumptions of different
mitigation strategies.

8.3.2.1 Adversaries, Threats and Solutions

We define as an adversary in a LBSN an entity (user, group, organization) that
wishes to either (1) obtain access to data or derive information about a user or entity

26https://www.torproject.org/, last retrieved Dec. 16, 2016.

https://www.torproject.org/
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to which it does not have access, (2) modify that data, or (3) impersonate other users
or entities. There are usually two types of adversaries in such systems, i.e., internal
and external.

• Internal adversary: An internal adversary is an entity that has an existing
relationship with the service provider. Examples of possible internal adversaries
include other curious users of the LBSN who may want to infer additional
information about victims by exploiting or misusing some functionality of the
LBSN. It also includes curious or malicious employees of the LBSN who may
try to access users’ data without authorization, and the LBSN itself.

• External adversary: An external adversary does not have a direct relationship
with the service provider. For instance, an external adversary could be a curious
or malicious outsider or group who wants to steal personal data about users of
the LBSN by either attacking the provider directly, or by aggregating data about
potential victims from other sources that may be related to the victims. Examples
of external adversaries include cyber-criminals, stalkers and groups who wish to
steal users’ data, or disrupt and block the service from functioning properly.

In addition to characterizing an adversary as either internal or external, privacy
protection mechanisms in LBSNs are usually developed to counter a specific
adversarial model, which can be either (a) semi-honest or (b) malicious [43, 58].
In the semi-honest model—also known as honest-but-curious—the adversary is
assumed to follow the specified protocol but may try to learn information from the
different operations it performs on the data. On the contrary, a malicious adversary
can deviate from the specified protocol in any possible way, in order to maximize its
success in reducing the users’ privacy. In some scenarios, there could be an entity
that is fully trusted by the user to execute the protocols correctly and not to reveal
any personal information to adversaries. In such a scenario, the adversarial model
can be either semi-honest or malicious, with the assumption that the trusted third-
party (TTP) does not collude with the adversary and does not reveal any information
to it.

An adversary might have several goals when conducting an attack. Vicente et
al. [129] define four distinct categories of location privacy threats for LBSN users:

1. Location privacy: A location privacy loss occurs when the exact location of a
LBSN user is revealed, and this create a significant concern for the users if it
can be linked to her identity [48, 56], as it allows adversaries to infer other
sensitive information such as the user’s home and work locations, interests,
political affiliations, and health issues [129]. We discuss location privacy threats
and protection techniques in Sect. 8.3.2.2.

2. Absence privacy: Similarly to location privacy, absence privacy allows adver-
saries to learn that a user is not at a certain place during a given period of time.
Although the possible consequences of this privacy threat are less obvious, there
have been multiple cases where knowing that a user was not at a given place
has enabled burglars to successfully rob several residences, multiple times (as
described in Sect. 8.3) [19, 27]. We elaborate on absence privacy in Sect. 8.3.2.3.
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3. Co-location privacy: A co-location privacy loss occurs when adversaries are able
to infer the co-presence of multiple users at the same location at a given time. The
type of privacy threat is of particular concern to users who either do not wish to
reveal their presence at some location they consider to be sensitive, or who do not
wish to reveal their proximity to other users. This type of threat is exacerbated
due to the fact that, if the privacy settings are not properly configured, users can
share their location and tag other users who might be unaware of this until it is too
late. Co-location privacy can be extended to include the more generic aspect of
interdependent privacy [8, 59, 95], in which the privacy of one user is threatened
by the actions of other users on the LBSN. For brevity, we refer the reader to
the individual articles for more information about interdependent privacy. We
discuss co-location privacy threats in Sect. 8.3.2.4.

4. Identity privacy: An identity privacy loss occurs when it is possible for an
adversary to link an account on a LBSN to a particular identity. Such threat is
significant in many scenarios in which users wish to preserve their anonymity
or pseudonymity with respect to other users and external parties. The loss of
anonymity on such services can have devastating consequences: In the 2015, a
data breach on a popular online dating site affected the account details of 35
million members, which resulted in hundreds of sentimental relationship being
broken [81]. We discuss identity privacy in Sect. 8.3.2.5.

In addition to these four categories of threats, a fifth category started to become
increasingly important thanks to the large growth of the number of devices capable
of capturing fitness and activity data [61]. We therefore include the activity privacy
category as well:

5. Activity privacy: An activity privacy loss occurs when an adversary is able to infer
the type of activity that a user is doing at a given time. By using large-scale social
media data, researchers have been able to accurately model the urban activities of
individuals and to predict the sequence of activities only by relying on check-ins
and geotagged posts on social media [51–53, 73, 77]. We discuss activity privacy
threats in Sect. 8.3.2.6.

In order to tackle the privacy requirements and challenges in LBSNs, the research
community has focused on several approaches based on different underlying
techniques [63, 129]. One major category of privacy-preserving techniques are
based on statistical methods that modify the reported location information in the
space and time domains [99, 121]. In that category, we can find the following
methods: (1) Query enlargement techniques [63], where instead of reporting the
exact location of the user to the LBSN provider, the reported location is expanded to
cover a larger geographic region, (2) fake or dummy location reports [121], where
the users would report a set of fake locations together with the actual location in
order to hide it among the dummy ones, and (3) progressive retrieval techniques that
enable users to retrieve information by iteratively querying the provider [128]. In
addition to statistical methods, another set of techniques rely on strong cryptography
in order to design protocols to ensure that only the intended parties are able to obtain
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Table 8.2 Categorization of different research works according to the adversary type (In: internal,
E: external), adversarial model (M: malicious, S: semi-honest, T: trusted third-party), the goal
of the adversary (L: location, Ab: Absence, C: co-location, Id: identity, Ac: activity) and the
proposed or suggested privacy protection mechanism (spatial/temporal cloaking, elimination, fake
data, cryptography)

Property [74] [49] [64] [143] [105] [40] [75] [70] [57] [102] [103] [76]

Adversary
type

E E E In/E In In/E In/E In In In/E E E

Adversary
model

M M M S S T S S S M S M

Goal L L L L Ab Ab C C C Id Id Ac

Privacy
protection

Sp. cl. Elim. N/A N/A N/A Sp&Tp.
cl.

Crypt. Crypt. Crypt. N/A N/A Sp. cl.

the information they require through secure computations, and nobody else [42].
For example, Private Information Retrieval techniques enable users to retrieve
information without revealing what they are looking for to the provider [13].

In the following, we describe some examples of different privacy threats and
proposed solutions for each of five different threat categories. Table 8.2 provides
a summary of each of the works we present according to the different adversarial
models, privacy threats and solution methodologies described (if any).

8.3.2.2 Location

Hereafter we discuss several techniques that threaten location privacy of LBSN
users, which rely on one or several of the following data sources: users’ location
trajectories, textual content, location check-ins, social relationships and photo
subjects.

With regards to location privacy, Li et al. [74] have recently conducted a study to
measure the similarity between the real mobility pattern and the disclosed locations
(through check-ins, for example) of LBSN users. Their results, based on a sample
of 30 volunteers who have been providing their actual location samples as well as
their disclosed locations on LBSNs, show that there is a substantial gap between
the mobility pattern that can be extracted from the disclosed locations and the real
mobility: Only in 16–33% of the cases, the authors were able to successfully derive
the top-2 POIs (such as home and work). One possible reason is that it has been
observed how users tend not to check-in at places considered to be “boring”, such
as home or work locations [142]. One of the implications of such a result is that even
an adversary who has access to the location check-ins of a user on the LBSN—but
not to the actual location trace—will have troubles in identifying the most visited
POIs of a user with accuracy.

In contrast to studying location traces, Han et al. [49] focus on the textual analysis
of Twitter posts in order to extract linguistic cues that can be linked to a specific
location. In particular, the authors study the text and user profile information in
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order to predict the city where the user is located. The intuition is that, for example,
users in London should be more likely to tweet about piccadilly and tube than
users in New York or Bejing. Hence, the authors focus on identifying a small set of
location indicative words (LIW) in order to increase the geolocalisation accuracy of
their machine learning algorithm, both on the regional as well as global scales. The
analysis, conducted using multi-lingual tweets, shows that it is possible to correctly
predict the city for 49% of English users, with a median error distance of just 9 km.
To preserve privacy, the authors suggest that users should reduce the usage of LIWs,
particularly gazetted terms, and to delete location-sensitive data from their profiles
(such as location and time-zone information).

In addition to the text of a post, shared media can also provide useful information
for adversaries who want to infer the location of LBSN users. For instance, Zheng
et al. [143] use the real scene captured in a photo in order to infer whether it
represents a home or vacation location. Their algorithm, based on a convolutional
neural network, examines both the scene of the pictures and their geotags in order
to infer a user’s home location within a cell of 100 × 100 m. The algorithm is able
to correctly predict the home location of a user with an accuracy of 71%, within a
70.7 m error distance. With the shrinking cost of computational resources and the
availability of machine learning models accessible on the cloud,27 it is becoming
increasingly affordable to process not just metadata but also the content of media in
order to improve the predictive performance of location-inference algorithms.

LBSNs usually allow users to establish relationships with others, either in a
symmetric (friendship) or asymmetric fashion (follower-followee). Such social
networks can also be used in order to infer the location of the users, even if they
do not reveal their location information. By studying the social relationships on
Twitter, Jurgens [64] develops an algorithm based on spatial label propagation that
is able to infer the locations of a group of Twitter users who generate 74% of all
the daily message volumes. The inference algorithm starts from a small number
of known locations from which it assigns the most likely location to users whose
location is unknown. The algorithm is able to correctly predict the location of 50%
of the users in a Twitter-based social network within 10 km. Moreover, the same
technique is also able to infer the locations of 50% of users on a different social
network (Foursquare), within a 25 km error.

8.3.2.3 Absence

As opposed to location inference, the goal of an absence inference attack is to infer
whether a user was not physically present at a place during a given period of time.
This attack can also have serious consequences in a scenario where the absence
from a place is considered as sensitive information. For example, the absence of

27https://cloud.google.com/prediction/, \https://aws.amazon.com/machine-learning/, last retrieved
Dec. 17, 2016.
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https://aws.amazon.com/machine-learning/


218 I. Bilogrevic

an employee from her workplace during work hours could lead to disciplinary
measures from the employer. In contrast to location privacy, where the privacy loss
occurs if a user can be located at a given point in time, Saini and El Saddik [105]
argue that for absence privacy, it is more appropriate to model the privacy loss during
a period of time, because the absence from one place at a given point in time does not
necessarily imply that the user was not there or in the vicinity at a different but very
close time instant. In a first attempt to formalize absence privacy, Freni et al. [40]
proposed a set of definitions and techniques to preserve absence privacy, which rely
on spatio-temporal generalization of the reported location. Such techniques rely on
a trusted third-party, which is responsible for enforcing users’ privacy preferences
through the notion of an absence privacy region, where an adversary cannot exclude
any point as a possible location of the user. By means of temporal delays when
publishing geotagged information, the authors show how the effect on the quality of
service is relatively modest (16–26 min of delay), and that it largely depends on the
amount of other users currently in a given area, as well as their posting frequency.

8.3.2.4 Co-location

One popular example of co-location privacy threat is represented by services that
offer to notify users when they are in physical proximity to other users of a LBSN,
usually referred to as “nearby friend alert” [75]. Solutions to such challenge are
mostly based on cryptographic primitives [29, 57, 70, 85, 91, 93, 145], relying
on secure multi-party computation, cryptographic hashing or either public- or
symmetric-key encryption. For instance, Li et al. [78] propose a protocol for nearby
friend alert that allows users to trade accuracy with communication overhead. Based
on the grid-and-hashing approach [110]—which partitions the space is grids and
compares the signatures of such grids between users in order to discover if they
are in the same grid—the authors design a flexible algorithm that finds an optimal
placement of such grids that reduces by more than 50% the number of required grids
as compared to a random placement, hence saving communication and computation
costs for the users and the service provider. Mascetti et al. [85] propose two
cryptographic protocols (Hide&Crypt and Hide&Hash), based on set-inclusion, that
rely on location obfuscation and encryption in order to provide secure proximity
detection functionality that preserves the location privacy of the users with respect
to other users and the service provider. Kotzanikolauo et al. [70] improve upon
existing protocols based on private-equality testing by designing a lightweight
solution that can be run on resource-constrained mobile devices. Similarly, Hu
et al. [57] propose a novel scheme relying on homomorphic encryption—a set
of cryptographic techniques allowing computations on encrypted data—and geo-
hashing to enable users to determine whether they are in proximity without revealing
their location to other users or the service provider, and to perform spatial cloaking
over encrypted geographic coordinates.
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8.3.2.5 Identity

In order to identify users on LBSNs, Rossi and Musolesi [102] developed a set
of techniques based on the study of location check-in data. By using a Bayesian
probabilistic model that relies on the sequence of check-ins, the frequency of their
occurrence and the social ties of the users, the authors are able to correctly infer
more than 90% of the identities of online users on different datasets of check-ins
from existing LBSNs. Unsurprisingly, the authors show how the more unique a
GPS position is, the more effective is their algorithm in identifying the user with
a small number of check-ins. In a follow-up work, Rossi et al. [103] characterize
the types of venues that an adversary should monitor in order to maximize its
success. The results, based on a large dataset of more than 1 million check-ins
from 17 urban regions of the U.S., show that unsurprisingly the type of venues
in the category “Residence” have the highest re-identification potential. However,
more surprisingly, the authors discover that users with a high location entropy—
which means that they visit more distinct types of venues more frequently than
other users with lower entropy—are not necessarily the hardest to re-identify. The
authors claim that this result indicates how it is the collective behavior of many users
that influences the complexity of re-identification, rather than the individual user’s
behavior.

In addition to re-identification, demographics inference can also pose a threat to
users’ privacy. In the work by Li et al. [74], the authors show that demographics
inference is quite successful as it exploits similarities between check-in traces of
different users, despite a relatively poor performance in predicting actual location
traces from check-in data. Specifically, their algorithm is able to infer features such
as age, occupation, living place, gender and education level with an accuracy of
69.2%, 53.8%, 54.5%, 73% and 76%, respectively, on a sample of over 22,000
volunteers.

8.3.2.6 Activity

An adversary might be able to infer the activity of a LBSN user from the type
of place (such as “restaurant”) that corresponds to the reported location, or from
the sequence of location reports, which can happen at different time and space
granularities. Lian and Xie [76] design and evaluate a method to infer the activity,
i.e., the type of place a user is at, based on GPS readings, time, user identification
and other contextual information. In such scenarios, one main challenge is the
scarcity of sufficient samples that can be used for the inference. In order to overcome
this, the authors propose to use data from other users’ check-ins, provided that
their check-in histories are similar. By leveraging clustering and matrix factorization
techniques, the authors show that by training on all users’ check-in data, instead of
training only on the victim’s check-in data, the prediction performance is reduced
by only up to 10% (weighted F1-score).
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In order to reduce the possible search space for the different types of places a
user is likely to visit next, Ye et al. [138] build a technique which uses a mixed
hidden Markov model for a 2-step prediction. First, the model predicts the category
of the place a user is likely to visit next, and then it predicts a location given
the category. Their approach reduces the number of possible location candidates
by a factor of 5.45 and improves location prediction accuracy by over 13% on a
dataset extracted from the LBSN Gowalla (which is no longer active [16]). More
recently, Yang et al. [137] proposed a fusion model that combines two separate
inference methods, one for spatial data and one for temporal data. Similarly to [76],
the authors rely on affinities between different users’ temporal activities and the
specificity of one activity at any given location, and they show how their solution
achieves consistently good performance on three different datasets from two LBSNs
(Gowalla and Fourquare), improving upon various baseline methods.

8.3.3 Open Research Challenges

In this section, we have described the different privacy aspects that are relevant in
a LBSN. From threat formalization, adversarial models, privacy requirements and
protection techniques, the research community has studied a wide array of problems
that have yet to find a unified framework and solution. The availability of large
amounts of digital data that we leave by interacting with online services, known
as “digital footprints” [80], coupled with the shrinking cost of computation and
cloud-based machine-learning solutions, are already enabling powerful inferences
about people’s lives and affections. In Sect. 8.3.2.2 we have described how deep
neural networks are able to enhance the performance of location inference by
processing images collected from a LBSN, which is nowadays feasible for every
adversary with a minimal cost. With more and more machine learning models
available, it is important to assess the amount of private user information that is
leaked from the model parameters themselves [108]. Hopefully, novel protection
mechanisms are being developed to provide provable privacy guarantees against
such adversaries, by combining data separation and adding statistical noise during
the training process [1]. The utility implications of such methods have yet to be fully
assessed, but it is clear that the more data about users’ location-related activities are
available, the greater is the risk of a potential misuse of such data.

A related open challenge remains the definitive measurement of privacy loss in
LBSNs [107]. Currently, there are multiple ways of measuring privacy [7, 24, 54,
132], and researchers have yet to find a unified framework for measuring it. Progress
has been achieved in the area of location privacy, where a unified framework based
on accuracy, correctness and uncertainty has been proposed and validated [109].
However, more research is needed in other dimensions of privacy in LBSNs, such
as co-location, absence, identity and activity.

No matter how effective privacy protection mechanisms can be, they would not
achieve their fullest potential unless they are delivering a coherent, simple and
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functional user experience [21, 41, 67]. Managing privacy on LBSNs is nowadays
challenging for many users, and the controls that are offered are often insufficient or
too complex for most users to manipulate [41]. To help users feel more comfortable
when sharing personal information on LBSN, better ways of presenting benefits
and controls will have to be studied and developed [122], as well as clearer privacy
policies that users can read and understand [10, 89].

8.4 Conclusion

Geospatial applications have witnessed a great revolution thanks to the development
of modern collaborative technologies that enable users to both consume and
contribute geographic information to the online community. In the first part of this
chapter, we have introduced and discussed privacy issues that arise when location
data is attached to different types of content shared with online services. We have
introduced geo-spatial applications, such as interactive thematic maps, which can
have a significant positive outcome for the people in scenarios including disaster
relief efforts, transportation and urban resource management. However, we have
also pointed out how geo-spatial information that is publicly accessible can also
represent a source of privacy concern for citizens who might not want to have their
locations associated with data that could be used in order to discriminate them or
the places in which they live. In particular, we have shown how crime maps could be
perceived both positively, when they increase transparency and awareness, as well
as negatively, when they could influence the perception of property values in certain
areas.

In the second part of this chapter, we have focused on a subcategory of geo-
spatial applications, namely location-based social networks (LBSNs), as a recent
phenomenon that has gained tremendous popularity among mobile users. To better
understand the complex interaction patterns in such services, which comprise users,
organizations and service providers, we have outlined a framework that enables
researchers and practitioners to adopt a principled approach towards privacy threats
and solutions. Such framework encompasses the network architecture, the threat
categories as well as solution approaches. Although these categories cover several
known attack goals, our analysis is not limited to the currently available solutions,
as there are still important open questions that need to be addressed. We identified
three research challenges that will benefit from a broader and systematic analysis
in order to yield benefits for the users of LBSNs: big data processing with privacy
guarantees, comparable and unified metrics across different privacy scenarios, and
improved user experience through better and easier controls for managing privacy
settings, as well as clearer notices related to the use and collection of users’ data on
LBSNs.
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Chapter 9
Privacy of Connected Vehicles

Jonathan Petit, Stefan Dietzel, and Frank Kargl

Abstract By enabling vehicles to exchange information with infrastructure and
other vehicles, connected vehicles enable new safety applications and services.
Because this technology relies on vehicles to broadcast their location in clear text,
it also raises location privacy concerns. In this chapter, we discuss the connected-
car ecosystem and its underlying privacy threats. We further present the privacy
protection approach of short-term identifiers, called pseudonyms, that is currently
foreseen for emerging standards in car-to-X communication. To that end, we discuss
the pseudonym lifecycle and analyze the trade-off between dependability and
privacy requirements. We give examples of other privacy protection approaches for
pay-as-you-drive insurance, sharing of trip data, and electric vehicle charging. We
conclude the chapter by an outlook on open challenges.

9.1 Introduction

A lot of research on location privacy has focused on privacy of transportation
systems and, particularly, of vehicles. As cars become more and more equipped
with information and communication technology, they facilitate recording, storage,
transmission, and processing of location data. Protecting driver privacy despite this
information exchange is a particular challenge, because location information often
has special semantics that can be leveraged by adversaries interested in tracking. For
example, vehicles follow certain mobility patterns rather than moving randomly.
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This behavior allows to predict future positions and, thereby, allows to link even
otherwise perfectly anonymous position data. In addition, linked (and unlinked)
location samples may be correlated with user-specific points of interest, such as
their known home or work addresses. Finally, location samples may not be perfectly
anonymous—but rather pseudonymous—in order to support information integrity
or authenticity requirements.

Douriez et al. [4] provide an illustrative example for how knowledge of location
traces can negatively affect privacy, even when data is seemingly anonymized.
New York City’s taxi and limousine commission (TLC) published purportedly
anonymized historical data of yellow cab trips in New York City. The published
information consists of pick-up and drop-off locations and times, together with other
data, such as, the distance, duration, fare, and tip for millions of trips. Although the
published information did not contain any direct identifiers, people quickly started to
de-anonymize the published data and link trips to individuals using freely available
information. For instance, public pictures of celebrities entering cabs were linked to
trip information using the pictures’ meta information.

Linking these taxi trips is just one example that used a—relatively speaking—
small data set. Under the term “connected vehicle,” car manufacturers, fleet
operators, and public authorities are preparing to exploit the numerous benefits
of always knowing where each vehicle is located at every point in time. Such
data is often called floating car data (FCD) and basically consists of data records
with timestamp, position, vehicle identifier or pseudonym, speed, heading, and
potentially other data about a single vehicle or about large numbers of vehicles.
Using FCD, logistics operators can track their fleet, rental cars can be prevented
from leaving their allowed operation region, city-wide traffic can be analyzed and
optimized, and vehicles on a colliding trajectory can warn their drivers to break—to
name just a few of the many possible applications.

Car-to-car (C2C) communication—also called vehicle-to-vehicle (V2V)
communication—characterizes a particular flavor of a connected car where cars
use short-range radio communication or cellular networks to communicate FCD
to other vehicles in their vicinity. In contrast to other FCD applications, C2C
communication is particularly interesting from a privacy perspective, because the
foreseen information exchange largely relies on broadcasts: all vehicles frequently
make their current FCD information known to all vehicles within their vicinity
openly, that is, without any encryption. The underlying message formats have been
standardized in both the EU, where they are called cooperative awareness message
(CAM) [8], and in the US, where they are called basic service message (BSM) [36].

As has been done for the taxi data set, a large body of work has repeatedly shown
that even anonymized or pseudonymized position samples can often be linked
[11, 15, 20, 32, 42]. Once linked, the information reveals complete vehicle trips. In
many circumstances, it may also be attributed to specific vehicles or drivers using
known information about their home or work places. These works point out how
badly weak privacy protection in connected cars could influence drivers’ privacy
and, consequently, market acceptance of such systems.



9 Privacy of Connected Vehicles 231

In general, it depends a lot on the particular scenario and application whether
FCD is only communicated to close-by vehicles or gathered in global databases.
Likewise, application requirements dictate whether data is used and stored tem-
porarily or retained more permanently. But no matter what the particular application
at hand is, it is clear that the frequent exchange of location information by connected
cars creates privacy issues that need to be investigated and solved before their
widespread deployment. Therefore, research and standardization have early on
worked on privacy solutions to better protect location privacy for connected cars
in a multitude of scenarios.

In this chapter, we will provide an overview of solutions and challenges in many
common applications of car-to-X (C2X) communication. We will mostly focus
on technical solutions while being aware that complementing protection must be
established at a regulatory and policy level to provide clear rules on when and
how location data from connected cars may be used. Section 9.2 will introduce a
system model for connected cars that provides the basis for our further discussion.
Section 9.3 discusses attacker models for connected cars to show how location
privacy may be infringed. Next, we discuss privacy protection mechanisms for
vehicle-to-vehicle communication in Sect. 9.4, and we discuss solutions for other
vehicular services—such as pay-as-you-drive (PAYD) insurance, traffic analysis,
and electric vehicle charging—in Sect. 9.5. We conclude this chapter with an
outlook on open challenges in Sect. 9.6.

9.2 System Model

Nowadays, vehicles increasingly connect with other vehicles, other road users,
infrastructure, and Internet services. Interconnecting these systems has the poten-
tial to increase safety, efficiency, and comfort. But at the same time, making
detailed information from a car’s sensors available can uncover many details of
the drivers’ lives. In this section, we give an historic overview of the connected
car ecosystem and discuss example applications. We also present representative
information exchange paradigms, and we introduce dependability requirements,
which render the trade-off between privacy and fitness for safety applications a
particular challenge.

9.2.1 The Connected Car Ecosystem

The vision of “connected cars” today subsumes many different ideas, applications,
and communication paradigms. The first application scenarios evolved around the
idea to automate emergency calls in cases of accidents. Basically, cars were to
be equipped with mobile communication units, positioning devices, and crash
sensors. Once an accident was detected, all necessary and useful information would
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be automatically transmitted to emergency responders. Systems that implement
such kinds of applications have since been proposed and built by numerous car
manufacturers, and they have been mandated by the European Parliament under the
name “eCall” to be implemented in all new cars starting in 2018 [33].

The EU’s eCall initiative has met resistance by numerous privacy-conscious
groups, which demonstrates the fundamental conflict of many connected car
applications. If implemented properly, automatic emergency calls can, ultimately,
help to save lives. To better help emergency responders, it is beneficial to acquire as
much sensor information as possible about the accident’s nature and the current state
of involved passengers. On the other hand, many questions need to be addressed
properly in order to avoid privacy issues. Some examples are:

• Who is allowed to access sensor information?
• Under what circumstances is sensor information transmitted?
• What measures need to be taken to avoid unauthorized access?
• How can tracking during normal driving be prevented?

These questions can—and should—be answered by legislation. But even when
access is legally prohibited, collecting and transmitting sensor information remains
possible. Therefore, it is important to discuss technical means to protect driver
privacy and enforce data collection restrictions.

The emergency call application is just one example that demonstrates the trade-
off between application utility and privacy requirements. In general, the connected
car ecosystem can be coarsely subdivided into four categories:

1. safety applications,
2. driving efficiency and traffic management applications,
3. vehicular services, and
4. comfort and multimedia applications.

Safety applications aim to make driving safer and to reduce accidents or to
provide better help in case of accidents. Some safety applications, such as the
eCall discussed above, connect the vehicles to the service providers’ backend
infrastructure. Other applications depend on frequent exchange of sensor infor-
mation directly between vehicles without involvement of additional infrastructure.
Essentially, vehicles exchange broadcast messages to acquire a detailed view of
their surroundings. This overview can be used to warn when drivers undertake
dangerous driving maneuvers that may lead to crashes, and it can inform drivers
about dangers that are not yet in the driver’s field of view. Example applications
are forward collision warning, intersection collision avoidance, and emergency
electronic brake lights [18, Ch. 2]. Usually, safety applications use two types of
information dissemination. Frequent sensor updates are pushed to all vehicles in
the direct vicinity, which is typically assumed to be about 100 m in cities and up
to 1000 m in highway scenarios. In addition, warnings about specific events may
be transmitted to regions of affected vehicles with lower frequency, namely, only
when the reported events occur. Besides connecting vehicles, safety applications
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can benefit from including other road users, such as pedestrians or cyclists, in the
information exchange.

Efficiency applications provide support for navigation decisions and improve
traffic flow. The simplest—and likely most privacy-preserving—example are tradi-
tional navigation systems, which use offline maps only. More advanced navigation
systems may incorporate up-to-date traffic information from a centralized server
to calculate better routes. At first, traffic information originated from manual
observations using video surveillance or inductive loops that count vehicle flow.
The acquired information was centrally managed and passively downloaded by
individual vehicles. In recent years, navigation system providers have started to
directly source information from each vehicle that uses their system. Indeed,
navigation systems often come with a cellular data contract included, which is used
to upload current location tracks to a centralized server, as well as to download
current traffic predictions for requested routes. Current research aims to take live
navigation one step further by calculating route recommendations that optimize
the whole city’s traffic flow rather than individual travel times [e.g., 2]. The more
navigation systems use up-to-date sensor information, the higher their potential to
infringe on user privacy. The potential danger to driver privacy is twofold: First,
drivers that upload their current velocity, time, and location to improve travel
time predictions may be subject to detailed surveillance of their whereabouts.
Second, requests for current travel time information for specific routes may reveal
the driver’s destination to the navigation system provider. Sometimes, the way in
which collected information affects drivers is surprising: in 2011, a manufacturer of
navigation systems sold their gathered traffic information to the local police, which
used it to optimize positioning of speed traps [25].

Under the term vehicular services, we subsume all kinds of applications that
provide additional services based on location information. An increasingly popular
example are pay-as-you-drive (PAYD) insurance models. In these models, drivers
agree to base their insurance plan on real driving behavior rather than on surveys
and statistical information. Some of these tariffs base their prices mainly on driven
distance, but other influence factors, such as driving style or dangerous maneuvers
can also be conceived to influence pricing. Besides insurance models, electric
vehicle charging is another domain that introduces new information exchange
patterns, which may influence driver privacy. For maximum convenience, drivers
should be able to recharge their vehicles on arbitrary and widely available charging
stations. One foreseen mode of operation is that the charging stations automatically
detect the connected vehicle and, once the transaction is authorized, bill the
consumed amount of energy to the driver’s regular electricity plan.

Finally, comfort and multimedia applications generally aim to connect vehicles
to the Internet. Usually relying to roadside infrastructure or cellular data con-
nections, these applications aim to provide software downloads, updates, video
streaming, or social applications to the drivers and passengers. Again, frequent
requests for Internet content may enable infrastructure providers to track individual
vehicles.
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Fig. 9.1 The connected car ecosystem

Figure 9.1 shows an overview of the connected car ecosystem. To enable a wide
range of applications, connected cars may exchange information with a wide range
of potential communication partners, including

• infrastructure providers, such as, road-side units (RSUs) and traffic management
centers (TMCs),

• providers of centralized services,
• other vehicles in their direct surrounding (using one-hop communication),
• other vehicles further away (using multi-hop or relayed communication),
• pedestrians, and cyclists (the latter two being especially vulnerable road users).

The transmitted information is often very detailed, especially when it targets
safety applications. For example, very detailed timestamped location traces are
required to calculate vehicle trajectories for crash avoidance warnings. Explicit
identities of drivers, however, are typically not transmitted, as we will discuss in
more detail in Sect. 9.4. Rather, short-term pseudonymous identifiers are used to
link individual messages without directly referring to particular vehicles or drivers.
Whether the transmitted information constitutes personal information, therefore, is
subject to ongoing discussion in different legislations. In the USA, for instance, no
federal law exists that governs such information, but existing recommendations and
standards such as [6] would not regard most information transmitted by connect cars
as personally identifiable. Contrarily in the European Union, the new general data
protection regulation [27], which takes effect in 2018, specifically notes that even
pseudonymous data falls under privacy regulations.
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9.2.2 Information Exchange Paradigms

Researchers and practitioners have come up with a wide range of potential
applications for connected cars, which require dissemination of different kinds
of information with distinct granularity and frequency within certain regions or
towards centralized servers. At the same time, the vehicular communication environ-
ment poses complex challenges for successful information transmission. Vehicles
move at high speeds, which makes direct wireless communication between vehicles
difficult. Also, cars roam within large areas, which makes complete wireless
coverage by infrastructure, such as mobile network base stations, difficult. Finally,
high vehicle density, such as found in traffic jams, poses scalability challenges for
both vehicle-to-vehicle and vehicle-to-infrastructure communication.

As a result of these diverse requirements and challenges, a wide range of
specialized information exchange protocols have been proposed [17, 38]. Here, we
consider three representative categories of information exchange protocols, which
imply different types of privacy properties and requirements:

• infrastructure-based networks,
• direct vehicle-to-vehicle communication, and
• information dissemination in geographic regions.

Infrastructure-based networks are often used for traffic optimization applica-
tions. Vehicles are either equipped with cellular network access, such as UMTS
or LTE modems, or they use Wifi-style communication with dedicated road-side
units. In these scenarios, information is typically collected by one or few centralized
servers. As a result, information transmitted using infrastructure-based networks can
be protected by encryption against overhearing by unauthorized entities, such as
other cars or pedestrians. But since information is centrally collected, the operators
of the infrastructure and servers can potentially access information from all vehicles
that use the system.

Direct vehicle-to-vehicle communication is a core building block for many
safety applications. Vehicles periodically broadcast information about their current
location, time, velocity, heading, as well as a number of statistical parameters
of their vehicle (e.g., length, width, type). These messages are transmitted up to
ten times per second. They are received by all vehicles within wireless range,
which is estimated to be between 100 and 1000 m, depending on the environment.
Receiving vehicles do not forward these frequent updates, hence limiting their
distribution to the direct wireless communication range. The received information
is used to build a detailed, up-to-date virtual representation of the vehicles’ direct
surroundings. Based on this virtual representation, safety applications can calculate
trajectories and issue warnings about potential collisions. While the message content
does not contain direct identifiers, such as license plate numbers, all messages are
signed using short-term cryptographic keys to fulfill dependability requirements.
We will discuss signing strategies in more detail in Sect. 9.2.3. This direct type of
information exchange potentially allows to build very detailed location tracks. But
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in contrast to infrastructure-based communication, messages—and consequently,
location traces—can only be observed by close-by vehicles.

Geographic dissemination is used in all situations where information is useful
for all vehicles within a certain geographic region. Warning all approaching vehicles
about the end of a traffic jam or an accident is a typical example. These messages
are forwarded using a number of proposed information dissemination and routing
protocols (such as [9]) to eventually reach all vehicles within the pre-defined region.
In contrast to direct communication, geographic messages are only triggered when
specific events, such as accidents, occur. Therefore, geographically disseminated
messages unlikely provide sufficient detail for longer location traces. They can,
however, be observed by a larger number of vehicles, and they may contain personal
information about sending vehicles.

9.2.3 Dependability Requirements

In this section, we focus specifically on dependability requirements for mes-
sages that are used for safety applications, as the tension between dependability
requirements and drivers’ privacy requirements renders protocol design for vehicle-
to-vehicle communications particularly challenging. We regard dependability as an
overarching design goal that encompasses security features, such as information
integrity and accountability; safety requirements, such as required message fre-
quency and real time constraints; and legal issues, such as liability requirements.
Schaub et al. [37] presented a number of requirements for privacy-preserving pro-
tocol design. Here, we survey those requirements that are, at first sight, particularly
contradictory to privacy requirements. We will discuss in Sect. 9.4 how thoughtful
protocol design approaches can jointly support these seemingly contradictory
requirements.

Real Time Constraints Many applications, including safety applications, require
information transmission with low latency and high frequency. Due to their high
relative speeds, vehicles may only have a short window to transmit information
before they move out of their mutual communication range. In addition, safety
applications may need to react quickly in order to prevent accidents, so information
should be transmitted with low delay. Finally, safety applications may need to
process a number of messages to detect vehicle trajectories or otherwise correlate
information. Therefore, information should be transmitted with high frequency to
provide sufficient information for trajectory detection.

Linkability In order to process several messages and determine trajectories that may
lead to collisions, safety applications may need to link several messages from the
same vehicle. If all messages appear to stem from different vehicles, applications
may not be able to deduct sufficient information about dangerous situations, as
shown by Lefèvre et al. [24].
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Authentication Many connected car applications require authentication of partici-
pants to prevent unauthorized use. Some applications may be subject to membership
fees and may want to avoid that freeloaders use their services without paying.
For safety and other vehicle-to-vehicle applications, it may be desirable to exclude
adversaries from the network that try to inject or modify messages in the network.
Besides authenticating vehicle identities as message senders, authentication may
also pertain to specific properties, such as to identify police cars or other vehicle
attributes like length, permissible load weight, and so forth.

Accountability Closely related to the authentication requirement is accountability.
In certain situations, such as when malicious messages lead to accidents, attacks
on connected car applications may constitute crimes. Under those circumstances, it
may be desirable to be able to identify and hold liable the individuals that committed
those crimes.

Restricted Credential Use When vehicles use credentials, such as asymmetric
cryptographic key pairs, it may be desirable to restrict their usage in time and to
avoid parallel use. Credentials may be issued for a certain validity period only, and
that period should be confirmable by message recipients. Preventing parallel use is a
paramount feature to avoid so-called Sybil attacks [3] where a single vehicle could
otherwise simultaneously transmit messages under multiple identities. Such Sybil
attacks may otherwise lead to false warnings or manipulated navigation decisions.

Revocation In cases where credentials were used to conduct crimes or otherwise
interfere with correct system operation, it may be desirable to revoke credentials
before their originally intended usage period is over.

Obviously, these dependability requirements influence driver privacy. Many
requirements call for identification of the driver’s identity under certain circum-
stances. Or they may necessitate to transmit certain attributes or pseudonymous
identities that reduce the potential search space for adversaries that aim to link
information to identities.

9.3 Attacker Model

The previous sections illustrated the privacy risks of location tracking and re-
identification. In order to understand who can perform such attacks on privacy, we
have to define the privacy attacker model. We distinguish three types of attackers
[31, 32]:

Local observer: An attacker that is in the vicinity of the target vehicle and
can collect its broadcast messages or simply stalk it.

Mid-sized observer: An attacker that does not have a full coverage of the area but
rather has sniffing stations located at deemed-strategic spots.
This type of attacker collects floating car data (FCD) and
may employ algorithms to try and fill their gaps to obtain a
real-time location tracking.
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Global observer: An all-seeing attacker that has universal coverage and can
collect every broadcast messages.

Protection against a local observer is counter-intuitive, as the main benefit of
FCD is to create local awareness. Therefore, neighboring entities (e.g., vehicles,
pedestrians, and cyclists) must be able to track a vehicle in order to avoid collision
or create a platoon for example.

The mid-sized attacker is likely to be interested in a zone-level tracking, i. e.,
knowing in which region a target is instead of an exact street. More sophisticated
mid-sized attackers may use forms of re-identification to fill gaps in recorded
FCD data. To that extend, the attacker may use computer vision or fingerprinting
techniques that are able to distinguish communication devices based on their radio
properties [13].

To defend against mid-sized observers, an objective is to harden inferences (e.g.
medical condition, relationships, religion). Indeed, the goal of the attacker is to
guess movements within gaps in coverage in order to reconstruct tracks (and gain
similar knowledge as a global observer). Therefore, by using so-called pseudonyms
as short-term identifiers and enforcing change of pseudonyms (see Sect. 9.4), we
create more uncertainty, making it harder to perform location tracking. The global
observer is even more challenging to prevent, because it can be seen as a constant
local observer. So the goal is to create gaps in tracks to shift her toward a mid-sized
observer.

Attacks on FCD have already been demonstrated. Petit et al. [32] presented an
attack that can be mounted by a mid-sized observer who installs sniffing stations
in order to track a target vehicle at a road-level and at a zone-level. This work
demonstrates why pseudonyms are mandatory to preserve privacy, and it gives a
cost model for frequent pseudonym change strategy.

Wiedersheim et al. [42] analyzed how effectively a global observer can create
location profiles. That is, it determined the maximum length of tracks for the same
vehicle. Utilizing an approach based on multi-target tracking, the authors found that
linking samples under different pseudonyms for the same vehicle can be surprisingly
successful under various system setups. Bissmeyer et al. [1] also demonstrated that
by solely using the content of cooperative awareness message (CAM) [8] messages
they were able to accurately recreate individual vehicles’ paths.

Thus, even if pseudonyms are mandatory, one can see that the key question
is how to change them so that linking pseudonyms consumes prohibitively time-
consuming, requires massive amounts of data, or is computationally infeasible. In
the following section, we will delve further into the details of how pseudonyms are
used and how their lifecycle can influence or prevent different types of attacks.

9.4 Privacy Protection Using Pseudonyms

Pseudonyms are a wide-spread strategy to combine authentication and account-
ability requirements with suitable privacy protection. In connected car systems,
pseudonyms are the predominant solution to combine dependability and privacy
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requirements of safety and efficiency applications in car-to-car communication.
Pseudonyms’ main feature is to prevent trivial linking of all messages from an
individual car. In contrast to completely anonymous transmissions, pseudonyms can
help to provide authentication and accountability under well-defined circumstances,
despite maintaining driver privacy. They allow to link messages that have been sent
with the same pseudonym and only break linkability when a vehicle changes its
pseudonym. This is important to allow local tracking of vehicles, e.g., to calculate
their trajectories. Given a suitable pseudonym scheme, a car’s transmitted messages
could, for instance, remain completely anonymous and unlinkable until proof for
mischievous behavior is brought forward, whereafter the originator of all messages
could be identified.

Combining the seemingly contradictory requirements of anonymity (or
pseudonymity), linkability for dependability, and accountability, often requires
the combination of complex cryptographic primitives, and many such proposals
have been discussed in literature [30]. In addition, standardization for vehicle-
to-vehicle communication in both the USA [21] and in Europe [7] include
pseudonym architectures. Basically, they all follow a similar lifecycle: Each vehicle
is first assigned cryptographic credentials—e.g., an elliptic-curve digital signature
algorithm (ECDSA) key pair—that are bound to its long term identity, such as a
license plate or the car holder’s identity. The key pairs can be generated locally
and, together with their identifying attributes, are signed by a trusted authority. To
prevent trivial privacy leakage, the long term identity is, however, not used to sign
outgoing messages. Rather, the vehicle periodically uses its long term identity to
obtain one or more certificates for short term credentials, again this can be ECDSA
key pairs. These certificates are issued by another trusted authority, and they attest
the holder’s authenticity but not their identity. Vehicles then use their short term key
pairs to sign outgoing messages. Receivers can verify the signature and attached
certificate without learning the sender’s identity. In cases of misuse, the short term
keys’ certificates can be used in cooperation with authorized authorities to prevent
issuing fresh certificates.

While similar from a bird’s eye perspective, many different proposals with
distinct features and restrictions exist for each step of the pseudonym lifecycle.
Petit et al. [30] provide a comprehensive survey including details on individual
pseudonym schemes. Here, we provide an overview of the canonical pseudonym
lifecycle.

9.4.1 Canonical Pseudonym Lifecycle

Today, many different proposals for pseudonym schemes exist, and their implemen-
tations vary greatly in the used cryptographic primitives. Petit et al. [30] identifies
the following generic steps of a pseudonym’s lifecycle, as shown in Fig. 9.2.



240 J. Petit et al.

Fig. 9.2 Abstract pseudonym lifecycle

Pseudonym Issuance First, vehicles contact a centralized authority to obtain one or
more pseudonyms. Vehicles typically use their long term identifier to authenticate
towards the pseudonym provider. The long term identity can be a form of an
electronic license plate that is issued by the same authorities that also manage
vehicle registrations. To prevent privacy issues at the Public Key Infrastructure level,
another authority acts as pseudonym provider. Usually, more than one pseudonym
is requested at once. Pseudonyms are then stored locally in the cars; as part of their
certification attributes, they may contain a maximum permitted usage period in order
to avoid parallel pseudonym use and pseudonym reuse.

Pseudonym Use Vehicles then use pseudonyms to sign all outgoing messages. Like-
wise, vehicles use the attached signatures and pseudonymous certificates to verify
the authenticity of received messages. The major challenge during pseudonym use
is scalability: Vehicles may be required to perform hundreds, perhaps thousands,
of signature verifications per second, and they may need to generate ten or
more signatures per second. As some pseudonym schemes require computationally
expensive cryptographic primitives, it is a challenge to implement sufficiently fast
cryptographic processors [35].

Pseudonym Change To prevent the creation of detailed location traces, vehicles
should change pseudonyms frequently. One challenge of pseudonym change is scal-
ability: The more often vehicles change their pseudonyms, the more pseudonyms
need to be acquired and stored for future use. In terms of privacy, a major challenge
is when to perform pseudonym change such that adversaries cannot match the old
with the new pseudonym. If, for instance, a sole vehicle changes its pseudonym on
an empty road, it is trivial for adversaries to match both pseudonyms.
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Accountability and Revocation Finally, it may be desirable to hold drivers account-
able for their messages in certain well-defined scenarios. For instance, vehicle-to-
vehicle messages may prove involvement in accidents, or it may prove injection of
manipulated messages. Depending on legislative requirements, pseudonym schemes
should support mechanisms that reveal drivers’ identities under these circumstances.
Ideally, revealing identities should be technically restricted to the scenarios required
by law. That is, underlying cryptography—rather than laws and regulations alone—
should prevent unlawful pseudonym resolution.

From a privacy perspective, strategies for pseudonym change and mechanisms
for accountability and revocation are the most challenging aspects of the pseudonym
lifecycle. In the following, we discuss these aspects in more detail.

9.4.2 Pseudonym Change Strategies

When pseudonyms are used to sign messages, messages signed with the same
pseudonym can be linked to each other. To achieve privacy, it is therefore necessary
to frequently change pseudonyms. It is a difficult challenge, however, to decide
in what context and how frequently to change pseudonyms. This difficulty arises,
because pseudonym change affects both dependability and privacy. Certain safety
applications may require to determine short vehicle trajectories in order to work
correctly [24]. For instance, consider an application that warns about potential
collisions. To determine whether two vehicles would collide if the drivers do not
alter their routes, trajectories are an important source of information. If pseudonyms
are changed during intersection crossing, the application will necessarily regard
messages signed with the new pseudonyms as originating from a different vehicle.
As a result, both false warnings and omitted warnings may occur, which signifi-
cantly reduces the application’s dependability.

In addition, frequent pseudonym change may affect scalability. When
pseudonyms are changed frequently—perhaps even after each message—,
significant communication capacity, as well as storage and computational capacity
is required in order to manage and certify each car’s fresh pseudonym pool. From a
scalability standpoint, it is, therefore, beneficial to change pseudonyms with lower
frequency.

Interestingly, it is also desirable from a privacy standpoint to curate pseudonym
changes rather than performing them frequently at will [14]. If only a single
vehicle is present on a road segment, it is very likely that an adversary can link
its messages despite frequent pseudonym changes. Therefore, it is desirable that
vehicles change their pseudonyms in situations where sufficient other vehicles
are present, which increase the size of the anonymity set. Also, vehicles should
change their pseudonyms within an agreed time period that is preceded by a silence
period. That way, attackers can only observe a larger set of pseudonyms before
and after the change period, which makes it harder to correlate pseudonyms of
individual vehicles. This concept of synchronizing pseudonym change in time and
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location is known as mix zones [12]. Mix zone placement is complicated by the
contradicting requirements of safety applications. For example, intersections are
good candidates for ideal mix zone locations, because vehicle density tends to be
high in the vicinity of intersections and vehicles change directions there. But as
discussed above, intersections are also points with high accident potential where
safety applications can benefit from analyzing trajectories. It is a topic of ongoing
research where (geographically) and how to implement mix zones for vehicular
communication.

9.4.3 Accountability and Revocation

In some situations, it may be desirable to resolve pseudonyms. For example,
pseudonyms may help to determine whether drivers were involved in an accident
or in a crime scene. Moreover, resolving identities can help to identify people that
misuse vehicular communication for their own benefit or to disturb normal system
operation. When such misuse is detected, resolved identities can be used to revoke
other active pseudonyms of the same user or to invalidate their long term identity.
Whether and to what extent such pseudonym resolution and revocation functionality
should be implemented is a topic of active debate, and it is a question that cannot
be answered technically. Here, we give an overview of technical solutions that can
be implemented to support a pseudonym resolution and revocation mechanism that
prevents misuse by network operators and authorities.

The simplest solution for pseudonym resolution is to keep a mapping from all
issued pseudonyms to their corresponding long term identity at a centralized entity.
This implementation, however, would allow operators of the centralized service to
reveal identities at will. More advanced resolution mechanisms, as proposed in the
US by the Crash Avoidance Metrics Partnership (CAMP), are based on the idea to
distribute pseudonym resolution authority over several entities to avoid misuse by
individuals. For example, pseudonym distribution can be distributed over regional
pseudonym authorities, so that these distributed authorities need to be contacted for
pseudonym resolution. Similarly, secret sharing techniques can be used to encrypt
pseudonym-identity links such that at least k out of n authorities need to cooperate
before a pseudonym’s corresponding identity can be decrypted.

Once pseudonyms are linked, it depends on the pseudonym lifetime how their
revocation should be implemented. If pseudonyms are restricted to short lifetimes
anyways, the central authority can simply revoke the vehicle’s long term identity in
order to prevent further misuse. Otherwise, so-called certificate revocation lists can
be used to revoke individual pseudonyms before they expire. These lists contain—
usually in an efficiently encoded form—the identifiers of all pseudonyms that
are to be revoked. It is, however, challenging to implement timely and scalable
dissemination of such certificate revocation lists.
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9.5 Privacy Protection for Vehicular Services

In the previous section, we discussed how pseudonyms can improve privacy in
safety-oriented vehicle-to-vehicle communication. In other scenarios, where FCD is
collected, stored, and processed in backend systems, different solutions are required
for privacy protection. Here, application-specific privacy protection designs are
required, which are engineered individually on a case-by-case basis following a
privacy-by-design approach.

Exemplarily, we will discuss solutions for three increasingly common example
applications: pay-as-you-drive (PAYD) insurance, collection of trip data for traffic
analysis, and automated charging for electric vehicles.

9.5.1 Pay-as-You-Drive Insurance

Troncoso et al. [40, 41] discussed the concept of so-called pay-as-you-drive (PAYD)
insurance and its implications for drivers’ privacy. The basic idea of PAYD systems
is that you can earn an additional discount on your car insurance fee by adhering
to certain rules laid out in your insurance policy. You may, for example, only drive
a certain maximum distance per year or not speed more often than twice a year.
Rather than relying on statistical information, your insurance company verifies that
you comply with these rules before granting you the discount.

First, the authors surveyed a number of PAYD insurance providers and conclude
that a common approach is to install a tracking device in the car that monitors
driving behavior and reports this data via cellular network to a central database
where it is evaluated for compliance. This architecture is shown in Fig. 9.3 (left).

In order to check eligibility for the discount, the insurance company evaluates
the data sent by the vehicles. Some of the surveyed companies also evaluate the data
for secondary purposes or provide access to third parties, typically in anonymized
or aggregated form. Obviously, this approach requires substantial trust of users in
insurance companies to handle the data correctly and keep it secure from malicious
access.

The authors therefore propose an alternative scheme called PriPAYD, which is
illustrated in Fig. 9.3 (right). It basically relies on a trustworthy black box being
installed in the car, which will—locally and offline—determine the appropriate
insurance fee and report it to the insurance company. The company then uses the
aggregated data for billing, and therefore, no position information leaves the car.
Both the insurance company and the user, however, have to trust the black box to
correctly calculate the fee. Both would have a rational interest in cheating with the
box, the insurance company to raise the fee, the driver to lower it.

Therefore, PriPAYD foresees an audit mechanism, which enable both parties to
verify that the correct fee was calculated. The black box inside the car records all
data necessary for calculating the insurance fee, such as, distance driven, speeds,



244 J. Petit et al.

Fig. 9.3 Pay-as-You-Drive insurance models, once with the classical, privacy-invasive model
(left) and once with the PriPAYD model that ensures no user data is inadvertently leaked (right)

GPS positions, and so forth, in encrypted form on a removable storage device, such
as, a USB stick. The encryption key is split into two key shares ks1 and ks2; one is
given to the driver, and the other one is sent to the insurance company. In case of a
dispute, both parties have to combine the key shares and to decrypt the raw data in
order to verify whether the correct fee was calculated.

Kargl et al. [22, 23] report on an architecture for enforcement of privacy policies
relying on trusted computing mechanisms that provide a different approach to build
generic systems that can enforce privacy policies of arbitrary kinds which is also
suitable for PAYD insurance scenarios.

9.5.2 Privacy-Preserving Sharing of Trip Data

Next, we want to focus on another common privacy problem in transportation
systems. Municipalities and other organizations are often interested in trip data.
Especially, they want to find out which vehicles went from which origin to which
destination. Knowing how many vehicles travel from one part of the city to another
at certain times of the day is very useful for, amongst others, road capacity planing.
So far, inductive loops or manual traffic counts are often used to get this kind of
data. But using connected vehicles, the vehicles themselves could report where they
are traveling to provide more detailed and accurate information.

Most people will happily contribute to such a data collection in anonymized
form, but may feel uneasy with the idea that every trip they do is recorded and may
potentially be deanonymized based on their specific origin-destination pairs. One
potential solution to the problem is to report trip origins and destinations in coarser
detail. For instance, a vehicle may only report to have driven from on district of the
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town to another. Ideally, the granularity would be determined such that your own trip
becomes k-anonymous with k other trips with same origin-destination pairs. If many
vehicles do similar trips, you can report more precise data, but if you are the only
one going from place A to place B, you will reduce the level of detail accordingly.

Mechanisms like this and similar ideas have been proposed based on a central
proxy that collects all the data and then adjusts the spatial and temporal granularity
of data accordingly [16]. Eliminating the need for a central trusted entity, Förster
et al. [11] propose a distributed scheme that achieves the same goal. The distributed
scheme consists of three phases:

1. Participants establish location- and time-specific keys, both at the start and
destination of their trips. They do this by exchanging key shares with other
nearby vehicles, eventually converging towards the same keys for certain spatial
and temporal granularity levels. The scheme assumes a global spatial and
temporal granularity hierarchy to be a pre-defined system parameter. The authors
show via simulations that the success rate of this decentralized key agreement
scheme is reasonably close to the theoretically achievable maximum.

2. Participants upload copies of their trip reports with different accuracy levels,
encrypted with the appropriate keys from step 1, to the trip database. The system
defines a decentralized, non-interactive secret sharing scheme by which each
vehicle additionally uploads one share of each key to a central database.

3. Traffic authorities query the trip database. If, for a certain temporal and spatial
granularity level, enough key shares have been uploaded, they will be able to
reconstruct this key and can decrypt the corresponding reports. This is true only if
at least k vehicles have uploaded trip reports for the same origin-destination pair,
and thus, provided key shares to the corresponding location- and time-specific
key. Therefore, the scheme naturally ensures k-anonymity. Obviously, the chance
of collecting sufficient key shares for decryption increases with coarser spatial
and temporal resolution.

The interesting aspect of this scheme is that, while the application requires central
collection of mobility data, the scheme itself does not require trust in any central
entity to ensure privacy. Establishing keys locally among neighboring cars using
direct car-to-car communication together with a secret-sharing-scheme is sufficient
to provide a fully de-centralized privacy protection mechanism that only reveals data
if k-anonymity can be maintained.

9.5.3 Privacy-Preserving Charging of Electric Vehicles

Another domain of connected vehicles is communication of electric vehicles
with charging infrastructure. The ISO/IEC norm 15118 [34] defines standards for
smart charging where vehicles communicate with the road-side charging units and
backend systems in order to authenticate the vehicle, control the charging process,
and digitally sign the charging bill in order to automate payment.
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Fig. 9.4 POPCORN protocol for privacy-preserving charging of electric vehicles

Figure 9.4 illustrates a privacy-preserving variant of the ISO’s protocol called
POPCORN. The norm itself foresees the electric vehicle (EV), charging station
(CS), the mobility operator (MO), and the electricity provider (EP) as acting entities.
POPCORN in its full version adds a payment handler (PH) and dispute resolver
(DR). EV uses a communication link to CS to authenticate via MO with whom it
has a contractual relationship to settle the bills incurred during charging. During
charging, V will periodically digitally sign partial bills that CS will forward to MO
and EP after charging completed. Finally, MO will use the billing information to
pay EP.

While this high degree of automation is very convenient from a usability point
of view—the driver just plugs the car in and out of the charging station and
everything else happens automatically—, the norm lacks a proper treatment of
privacy concerns. Particularly, MO and EP will both learn about every charging
process, including the location of the CS and thus the EV. Hence, they are in
the position to generate fine-grained mobility traces, particularly if one assumes
widely spread charging stations and frequent vehicle charging. Current discussions
on inductive charging, where an enhanced version of ISO 15118 will be used, will
foster this trend.

Höfer et al. [19] have taken these privacy concerns as a motivation to first conduct
a privacy impact assessment (a PIA) to clearly identify the privacy shortcomings of
the standard. They furthermore propose a step-wise reengineering of the protocols.
The result is a privacy-enhanced version of ISO 15118, which they call POPCORN.

As illustrated in Fig. 9.4, POPCORN applies group signatures (GS) and anony-
mous credentials (AC) to build a protocol that is functionally identical with the
original ISO protocol in that drivers can plug in and out from the charging station
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and everything else happens automatically in the backend systems. At the same time,
vehicles will remain anonymous to the CS and EP, and the MO will not learn where
its customers have been charging. So location privacy is fully provided except in the
case of payment irregularities where a trusted dispute resolver will be provided with
encrypted evidence that can be used to link vehicles to a charging process.

In an initialization phase, EVs get equipped with credentials for the GS and
AC schemes. When an EV connects to a CS (1.), it creates an AC proof that it
is eligible to charge and provisioning of electricity starts. The EV will periodically
receive meter readings from the CS which it signs with its GS credentials (2.). When
charging ends, the CS provides a receipt to the EV (3.) and the EP (4.). Here, it is
important to note that receipt in step 3 contains the recipient of the payment in
encrypted form that only the PH can decrypt and that the receipt in step 4 does not
reveal the identity of the EV or details on the MO (this would only be deducible
through the GS by the DR which is the group manager for the GS). EV forwards the
receipt augmented with its contract ID to the MO (5.) which will send the receipt to
the user for information purposes (6.) and will trigger the payment via the PH (7.).
Here, MO does not learn the recipient of the payment, this is only revealed to the
PH when it decrypts Enc(EP). On the other hand, PH will not receive details about
the EV involved in this payment and therefore the scheme achieves unlinkability
of payments. Payment is then forwarded to the EP (8.) and the process ends. If EP
detects unpaid bills, it can trigger dispute resolution (D1.) by sending the (group-)
signed meter readings, receipt and other proof data to DH. As key distribution center
of the group signature scheme, DH (and only DH) is able to reveal the identify from
the signed meter readings and can inform MO about the missing payment (MO) to
further investigate and resolve the issue.

Fazouane et al. [10] verified the protocol using a model-checking approach
to formally verify the privacy properties of POPCORN, thereby identifying one
collusion attack that the original paper missed to notice and proposed a fix to the
protocol to resolve the issue.

POPCORN and its enhanced version illustrate how existing protocols that have
deficiencies in location privacy can be re-engineered to come up with functionally
equivalent solutions that provide strong privacy guarantees.

9.6 Open Challenges and Conclusion

In this chapter, the connected-car ecosystem and its underlying privacy threats were
discussed. We presented the privacy protection approach of short-term identifiers,
called pseudonyms, and discussed its lifecycle. Then, we analyzed the trade-off
between dependability and privacy requirements before presenting examples of
other privacy protection approaches for pay-as-you-drive insurance, sharing of trip
data, and electric vehicle charging.

Despite the large body of work on location privacy protection for FCD in
vehicular systems, researchers have not yet found the optimal solution to jointly
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maximize privacy, dependability, and utility. In this section, we highlight a couple
of open challenges and give directions to address them.

Pseudonym Change Strategy As discussed earlier in this chapter, pseudonym
changes have to be carefully orchestrated to be efficient against location tracking by
mid-sized and global attackers. Privacy is context-dependent, and so should be the
pseudonym change strategy. Depending on the activity performed or the area passed
by, the pseudonym change strategy can be more or less effective. For example, grid-
style road network patterns offer a higher intrinsic level of privacy than other road
networks because of its high density of intersections [28]. Therefore, researchers
should define a context-adaptive pseudonym change system. For example, Emara,
Woerndl, and Schlichter [5] proposed a scheme that adapts the strategy according
to the density of neighboring vehicles and the user privacy preferences. This work
could be extended by also considering the type of road network.

Impact of Privacy Protection Lefèvre et al. [24] were the first to investigate
the impact of privacy protection techniques on safety applications. Their impact,
however, extends beyond safety applications. For example, pseudonym changes
and silent periods can affect the computation of estimated travel time (which is an
important metric for traffic planning) [43]. Thus, one should take a holistic approach
on privacy and perform a comprehensive analysis of its impact, individually for each
application and also on the whole communication stack, as noted by Schoch et al.
[39]. The impact of pseudonymity on safety raises the question of its impact on FCD
utility as a whole. Analyzing how the use of pseudonyms could affect data analyses
using collected FCD is an open research question.

Cross-Reference and Re-identification of FCD FCD are being shared between
stakeholders (e.g., original equipment manufacturers, service providers, data aggre-
gators). It is a challenge, however, to prevent cross referencing of FCD datasets
with each other and with external information that would lead to re-identification
of drivers or inference of sensitive information [26, 29]. A survey of location data
stakeholders in automotive systems should be performed in order to identify threats
and to design corresponding privacy controls.

Privacy of Automated Vehicles automated vehicles (AVs) require a rich data set in
order to fully exploit their potential. For example, AVs will form a platoon and,
thus, should share their final destinations to ensure stable groups. So, by sharing
rich data sets, the privacy concerns increase. Also, because AV cannot rely on a
human operator anymore, it is important to maximize predictability, which may
render pseudonyms less effective. Knowing how an AV reacts makes profiling (and
prediction) easier and more accurate. Therefore, sharing of AV data exhibits more
stringent privacy requirements than connected vehicle data. One challenge is to
design a privacy-preserving AV data sharing protocol while ensuring a high level
of dependability.

Research and industry are well aware of these and other issues involved in
making connected cars a success, and there are strong efforts to protect privacy
and, particularly, to ensure driver acceptance of such new technologies. At the same
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time, there are a hard challenges that need to be solved, and a constant privacy
engineering effort is required to make sure that future connected vehicles will not
become a “big brother” on wheels. With this chapter, we have provided a broad
overview on the various aspects of location privacy for connected vehicles, and we
have shown where contradictions between dependability and privacy requirements
can be solved using clever protocol designs and where further work is required.

References

1. Norbert Bissmeyer et al. “Assessment of Node Trustworthiness in VANETs Using Data
Plausibility Checks with Particle Filters”. In: Nov 2012. https://doi.org/10.1109/VNC.2012.
6407448

2. D. Cagara, B. Scheuermann, and A. L. C. Bazzan. “Traffic Optimization on Islands”. In: 2015
IEEE Vehicular Networking Conference (VNC) Dec. 2015, pp. 175–182. https://doi.org/10.
1109/VNC.2015.7385574

3. John Douceur. “The Sybil Attack”. In: Iptps ’01: First International Workshop on Peer-to-Peer
Systems Springer, 2002, pp. 251–260.

4. Marie Douriez et al. “Anonymizing NYC Taxi Data: Does It Matter?” In: Proc. of IEEE Intl.
Conf. on Data Science and Advanced Analytics (DSAA ’16) Montreal, Canada, Oct. 2016.

5. Karim Emara, Wolfgang Woerndl, and Johann Schlichter. “CAPS: Context-Aware Privacy
Scheme for VANET Safety Applications”. In: Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Networks WiSec ’15. New York, NY USA: ACM,
2015, 21:1–21:12. ISBN: 978-1-4503-3623-9. https://doi.org/10.1145/2766498.2766500

6. Erika McCallister Tim Grance, and Karen Scarfone. Guide to Protecting the Confidentiality of
Personally Identifiable Information (PII) Special Publication SP 800-122. NIST, 2010. URL:
https://doi.org/10.6028/NIST.SP.800-122

7. ETSI. Intelligent Transport Systems (ITS); Security; ITS Communications Se- curity Architec-
ture and Security Management TS 102 940. 2012.

8. ETSI. Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applica-
tions; Part 2: Specification of Cooperative Awareness Basic Service EN 302 637–2. 2013.

9. ETSI. Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applica-
tions; Part 3: Specifications of Decentralized Environmental Notification Basic Service EN 302
637–3. 2013.

10. Marouane Fazouane et al. “Formal Verification of Privacy Properties in Electric Vehicle
Charging”. In: Engineering Secure Software and Systems Springer Cham, Mar 4, 2015, pp.
17–33. https://doi.org/10.1007/9783319156187_2

11. David Förster, Frank Kargl, and Hans Löhr. “A Framework for Evaluating Pseudonym
Strategies in Vehicular Ad-Hoc Networks”. In: Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Net- works WiSec ’15. New York, NY USA: ACM,
2015, 19:1–19:6. ISBN: 978-1-4503-3623-9. https://doi.org/10.1145/2766498.2766520

12. J. Freudiger et al. “Mix-Zones for Location Privacy in Vehicular Networks”. In: Vehicular
Networks (VNs) seek to provide, among other applications, safer driving conditions. To do so,
vehicles need to periodically broadcast safety messages providing preciseposition information
. . . 2007.

13. Ryan M. Gerdes et al. “Device Identification via Analog Signal Fingerprint- ing: A Matched
Filter Approach.” In: NDSS 2006.

14. M. Gerlach and F. Guttler “Privacy in VANETs Using Changing Pseudonyms Ideal and Real”.
In: Vehicular Technology Conference 2007. VTC2007- Spring. IEEE 65th Apr 2007, pp. 2521–
2525. https://doi.org/10.1109/VETECS2007.519

https://doi.org/10.1109/VNC.2012.6407448
https://doi.org/10.1109/VNC.2012.6407448
https://doi.org/10.1109/VNC.2015.7385574
https://doi.org/10.1109/VNC.2015.7385574
https://doi.org/10.1145/2766498.2766500
https://doi.org/10.6028/NIST.SP.800-122
https://doi.org/10.1007/978 3 319 156187_2
https://doi.org/10.1145/2766498.2766520
https://doi.org/10.1109/VETECS 2007.519


250 J. Petit et al.

15. Philippe Golle and Kurt Partridge. “On the Anonymity of Home/Work Loca- tion Pairs”. In:
Pervasive Computing Springer Berlin, Heidelberg, May 11, 2009, pp. 390–397. https://doi.org/
10.1007/9783642015168_26

16. Marco Gruteser and Dirk Grunwald. “Anonymous Usage of Location-Based Services Through
Spatial and Temporal Cloaking”. In: Proceedings of the 1st International Conference on Mobile
Systems, Applications and Services MobiSys ’03. New York, NY USA: ACM, 2003, pp. 31–42.
https://doi.org/10.1145/1066116.1189037

17. H. Hartenstein and L. P. Laberteaux. “A Tutorial Survey on Vehicular Ad Hoc Networks”. In:
IEEE Communications Magazine 46.6 (June 2008), pp. 164–171. ISSN: 0163-6804. https://
doi.org/10.1109/MCOM.2008.4539481

18. Hannes Hartenstein and Kenneth Laberteaux, eds. VANET Vehicular Applica- tions and Inter-
Networking Technologies 1 edition. Chichester U.K: Wiley Feb 15, 2010. 466 pp. ISBN: 978-
0-470-74056-9.

19. Christina Höfer et al. “POPCORN: Privacy-Preserving Charging for Emobility”. In: Proceed-
ings of the 2013 ACM Workshop on Security Privacy & Dependability for Cyber Vehicles
CyCAR ’13. New York, NY USA: ACM, 2013, pp. 37–48. ISBN: 978-1-4503-2487-8. https://
doi.org/101145/25179682517971

20. Baik Hoh et al. “Enhancing Security and Privacy in Traffic-Monitoring Systems”. In: IEEE
Pervasive Computing 5.4 (Oct. 2006), pp. 38–46. ISSN: 1536-1268. https://doi.org/10.1109/
MPRV.2006.69

21. “IEEE Standard for Wireless Access in Vehicular Environments Security Ser vices for
Applications and Management Messages”. In: IEEE Std 1609.2-2016 (2016), pp. 1–289.
https://doi.org/10.1109/IEEESTD.2016.7426684

22. Frank Kargl, Florian Schaub, and Stefan Dietzel. “Mandatory Enforcement of Privacy Poli-
cies Using Trusted Computing Principles”. In: Intelligent Information Privacy Management
Symposium (Privacy 2010) Stanford University USA: AAAI, Mar 2010.

23. Frank Kargl et al. “Enforcing Privacy Policies in Cooperative Intelligent Transportation Sys-
tems”. In: ACM 15th Annual International Conference on Mobile Computing and Networking
(ACM Mobicom 2009) Poster Session Beijing, China, Sept. 2009.

24. S. Lefevre et al. “Impact of V2X Privacy Strategies on Intersection Collision Avoidance
Systems”. In: 2013 IEEE Vehicular Networking Conference Dec. 2013, pp. 71–78. https://doi.
org/10.1109/VNC.2013.6737592

25. Maija Palmer. TomTom Sorry for Selling Driver Data to Police Financial Times. 2011. URL:
https://wwwft.com/content/3f80e432719911e09b7a00144feabdc0 (visited on 01/09/2017).

26. Min Mun et al. “PDVLoc: A Personal Data Vault for Controlled Location Data Sharing”. In:
ACM Transactions on Sensor Networks 10.4 (2014).

27. On the Protection of Natural Persons with Regard to the Processing of Per sonal Data and on
the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection
Regulation) 2016.

28. Balaji Palanisamy and Liu Ling. “Attack-Resilient Mix-Zones over Road Networks: Architec-
ture and Algorithms”. In: IEEE Transactions on Mobile Computing 14.3 (2015), pp. 495–508.

29. Fayola Peters et al. “Balancing Privacy and Utility in Cross-Company De- fect Prediction”. In:
IEEE Transactions on Software Engineering 39.8 (2013), pp. 1054–1068.

30. J. Petit et al. “Pseudonym Schemes in Vehicular Networks: A Survey”. In: IEEE Communi-
cations Surveys Tutorials PP.99 (2014), pp. 1–1. ISSN: 1553-877X. https://doi.org/10.1109/
COMST.2014.2345420

31. Jonathan Petit, Michael Feiri, and Frank Kargl. “Revisiting Attacker Model for Smart
Vehicles”. In: Sept. 2014. https://doi.org/10.1109/WIVEC.2014.6953258

32. Jonathan Petit et al. “Connected Vehicles: Surveillance Threat and Mitigation”. In: Black Hat
Europe Nov 2015.

33. Regulation (EU) 2015/758 of the European Parliament and of the Council of 29 April 2015
Concerning Type-Approval Requirements for the Deployment of the eCall in-Vehicle System
Based on the 112 Service and Amending Directive 2007/46/EC 2015.

34. Road Vehicles – Vehicle to Grid Communication Interface ISO 15118. ISO/IEC.

https://doi.org/10.1007/9783642015168_26
https://doi.org/10.1007/9783642015168_26
https://doi.org/10.1145/ 1066116.1189037
https://doi.org/ 10.1109/MCOM.2008.4539481
https://doi.org/ 10.1109/MCOM.2008.4539481
https://doi.org/10 1145 / 2517968 2517971
https://doi.org/10 1145 / 2517968 2517971
https://doi.org/10.1109/MPRV.2006.69
https://doi.org/10.1109/MPRV.2006.69
https://doi.org/10.1109/IEEESTD.2016.7426684
https://doi.org/10.1109/VNC.2013.6737592
https://doi.org/10.1109/VNC.2013.6737592
https://wwwft.com/content/3f80e432 719911e09b7a00144feabdc0
https://doi.org/10.1109/COMST.2014.2345420
https://doi.org/10.1109/COMST.2014.2345420
https://doi.org/10.1109/WIVEC.2014.6953258


9 Privacy of Connected Vehicles 251

35. Carsten Rolfes et al. PRESERVE Deliverable 3.2: FOT Trial 2 Results July 31, 2015. URL:
https://www.preserve-project.eu/deliverables

36. SAE. Dedicated Short Range Communications (DSRC) Message Set Dictionary Standard
J2735. SAE, 2016.

37. F Schaub, Zhendong Ma, and F Kargl. “Privacy Requirements in Vehicular Communication
Systems”. In: International Conference on Computational Science and Engineering, 2009.
CSE ’09 Vol. 3. Aug. 2009, pp. 139–145. https://doi.org/10.1109/CSE.2009.135

38. E. Schoch, F. Kargl, and M. Weber. “Communication Patterns in VANETs”. In: IEEE
Communications Magazine 46.11 (Nov 2008), pp. 119–125. ISSN: 0163-6804. https://doi.org/
10.1109/MCOM.2008.4689254

39. Elmar Schoch et al. “Impact of Pseudonym Changes on Geographic Routing in VANETs”. In:
Security and Privacy in Ad-Hoc and Sensor Networks Springer Berlin, Heidelberg, Sept. 20,
2006, pp. 43–57. https://doi.org/101007/11964254_6

40. C. Troncoso et al. “PriPAYD: Privacy-Friendly Pay-As-You-Drive Insurance”. In: IEEE
Transactions on Dependable and Secure Computing 8.5 (Sept. 2011), pp. 742–755. ISSN:
1545-5971. https://doi.org/10.1109/TDSC.2010.71

41. Carmela Troncoso et al. “Pripayd: Privacy Friendly Pay-as-You-Drive Insur ance”. In: Proceed-
ings of the 2007 ACM Workshop on Privacy in Electronic Society WPES ’07. New York, NY
USA: ACM, 2007, pp. 99–107. ISBN: 978-1-59593-883-1. https://doi.org/10.1145/1314333.
1314353

42. Björn Wiedersheim et al. “Privacy in InterVehicular Networks: Why Sim- ple Pseudonym
Change Is Not Enough”. In: Wireless On-Demand Network Systems and Services (WONS),
2010 Seventh International Conference on IEEE, 2010, pp. 176–183.

43. Fangfang Zheng and Henk Van Zuylen. “Urban Link Travel Time Estimation Based on Sparse
Probe Vehicle Data”. In: Transportation Research Part C: Emerging Technologies 31 (June
2013), pp. 145–157.

https://www.preserve-project.eu/deliverables
https://doi.org/10.1109/CSE.2009.135
https://doi.org/10.1109/MCOM.2008.4689254
https://doi.org/10.1109/MCOM.2008.4689254
https://doi.org/10 1007 / 11964254_6
https://doi.org/10.1109/TDSC.2010.71
https://doi.org/10.1145/1314333.1314353
https://doi.org/10.1145/1314333.1314353


Chapter 10
Privacy by Design for Mobility Data
Analytics

Francesca Pratesi, Anna Monreale, and Dino Pedreschi

Abstract Privacy is an ever-growing concern in our society and is becoming
a fundamental aspect to take into account when one wants to use, publish and
analyze data involving human personal sensitive information, like data referring to
individual mobility. Unfortunately, it is increasingly hard to transform the data in a
way that it protects sensitive information: we live in the era of big data characterized
by unprecedented opportunities to sense, store and analyze social data describing
human activities in great detail and resolution. This is especially true when we work
on mobility data, that are characterized by the fact that there is no longer a clear
distinction between quasi-identifiers and sensitive attributes. Therefore, protecting
privacy in this context is a significant challenge. As a result, privacy preservation
simply cannot be accomplished by de-identification alone. In this chapter, we
propose the Privacy by Design paradigm to develop technological frameworks for
countering the threats of undesirable, unlawful effects of privacy violation, without
obstructing the knowledge discovery opportunities of social mining and big data
analytical technologies. Our main idea is to inscribe privacy protection into the
knowledge discovery technology by design, so that the analysis incorporates the
relevant privacy requirements from the start. We show three applications of the
Privacy by Design principle on mobility data analytics. First we present a framework
based on a data-driven spatial generalization, which is suitable for the privacy-
aware publication of movement data in order to enable clustering analysis. Second,
we present a method for sanitizing semantic trajectories, using a generalization of
visited places based on a taxonomy of locations. The private data then may be
used for extracting frequent sequential patterns. Lastly, we show how to apply the
idea of Privacy by Design in a distributed setting in which movement data from
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individual vehicles is made private through differential privacy manipulations and
then is collected, aggregated and analyzed by a centralized station.

10.1 Introduction

The big data originating from the digital breadcrumbs of human activities, generated
by ICT systems that we use every day, record the multiple facets of social life:
automated payment systems record the tracks of our purchases; search engines
record the logs of our queries for finding information on the web; social networks
record our connections and communications with friends and colleagues; mobile
devices record the traces of our movements. These big data are at the heart of the
vision of a “knowledge society”, where the understanding of social phenomena
is sustained by the knowledge extracted from data describing human activities
across the various social dimensions by using social mining technologies. Thus, the
analysis of our digital traces can create new opportunities to understand complex
aspects, such as mobility behaviors, economic and financial crises, the spread of
epidemics, the diffusion of opinions and so on.

The worrying side of the story is that big data contain personal sensitive
information, so that the occasions of discovering knowledge increase with the risks
of privacy violation. Indeed, when personal sensitive data are published and/or
analyzed, it must be checked if this may violate the right of individuals to have
full control of their personal sphere. It is clear that maintaining control of personal
data is increasingly difficult and it cannot simply be achieved by de-identification
(i.e., by removing the direct or explicit identifiers contained in the data, such as
name, address and phone number [33]).1 In the scientific literature and in the media,
many examples of re-identification from supposedly anonymous data have been
reported, from health records to querylogs to GPS trajectories. In the past years,
several techniques have been developed for countering privacy violations, without
losing the benefits of big data analytics technology [4, 12, 22, 28, 34]. Despite these
results, no general method exists that is able of handling both general personal data
and preserving general analytical results. Anonymity in a global sense is believed to
be a chimera, and the concern about infringement of the private sphere by means of
big data is now in news headlines of major media. Nevertheless, big data analytics
and privacy are not necessarily enemies: the goal of this chapter is exactly to show
that practical and effective services based on big data analytics can be proposed in
such a way that the quality of results can coexist with high protection of personal
data. The magic word is Privacy by Design. Here, we review a methodology for
purpose-driven privacy protection, where the purpose is a target knowledge service
to be deployed on top of data analysis. The key observation is that providing a

1This definition of de-identified data is compliant with the General Data Protection Regulation
(GDPR) [18], especially referring to Recital 26. Indeed, with the de-identification process we are
going to transform identified persons in identifiable persons.
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reasonable trade-off between a measurable protection of individual privacy together
with a measurable quality of service is unfeasible in general, but it becomes feasible
in context, i.e., if we have a previous knowledge of the desired analytical goal and
the expected level of privacy.

In this chapter, we elaborate on the above ideas the Privacy by Design paradigm,
introduced by Anne Cavoukian, in the 1990s, to deploy big data analytical services.
Firstly, we discuss the Privacy by Design principle highlighting and how it has been
embraced by the United States and Europe.
Secondly, we introduce the idea of Privacy by Design in mobility data analytics
domain and show how inscribing privacy “by design” in three different specific
scenarios assuring a good balance between privacy protection and quality of data
analysis. As first example, we present a framework based on a data-driven spatial
generalization, which is suitable for the privacy-aware publication of movement
data in order to enable clustering analysis [23]. Then, we present a method for
sanitizing semantic trajectories [25], using a generalization of visited places based
on a taxonomy of locations. The private data then may be used for extracting
frequent sequential patterns.
Lastly, we show how to apply the idea of Privacy by Design in a distributed
setting in which movement data from individual vehicles is made private through
differential privacy manipulations and then is collected, aggregated and analyzed by
a centralized station [26].

The remaining of the chapter is organized as follows. In Sect. 10.2 we discuss
the Privacy by Design paradigm and its articulation in data analytics. Sections 10.3
and 10.4 discuss the application of the Privacy by Design principle in the case
of publication of personal mobility trajectories, regarding clustering analyses and
semantic trajectories respectively, while in Sect. 10.5 we show a possible distributed
scenario for privacy preserving mobility analytics. Lastly, Sect. 10.6 concludes the
chapter.

10.2 Privacy by Design

Privacy by Design is a paradigm developed by Dr. Ann Cavoukian, the former
Ontario’s Information and Privacy Commissioner, in the 1990s, to address the
emerging and growing threats to online privacy. The key idea of this model is to
inscribe the privacy protection into the design of information technologies from the
very start. It represents a significant innovation w.r.t. traditional privacy protection
approaches since it requires a significant shift from a reactive model to a proactive
one. In other words, the idea is preventing privacy issues, instead of remedying to
them.

Given the ever growing availability and diffusion of big data and also the
impact of big data analytics on both human privacy risks and the possibility
of comprehending relevant phenomena, many companies are understanding the
necessity to consider privacy at every stage of their business and, thus, to integrate
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privacy requirements “by design” into their business model. Unfortunately, in many
contexts, it is not completely clear which are the methodologies for incorporating
Privacy by Design.

10.2.1 Privacy by Design in Law

The Privacy by Design paradigm has been recognized in legislation, and in the last
years, privacy officials in Europe and the United States are embracing this attitude.

In 2010, at the annual conference of “Data Protection and Privacy Commis-
sioners” the International Privacy Commissioners and Data Protection Authorities
approved a resolution recognizing Privacy by Design as an essential component of
fundamental privacy protection [1] and advocates the adoption of this principle as
part of an organization’s default mode of operation. In 2009, the EU Article 29 Data
Protection Working Party and the Working Party on Police and Justice released a
joint Opinion, encouraging the incorporation of Privacy by Design principles into
a new EU privacy framework [2]. In March 2010, the European Data Protection
Supervisor advocated to “include unequivocally and explicitly the principle of
Privacy by Design into the existing data protection regulatory framework” [17].
This recommendation was taken into consideration in the reform of Data Protection
Rules, entered into force on 5 May 2016. Indeed, in this new European Directive
[3], in particular in Article 20, there is an explicit reference to data protection “by
design” and “by default”.

Privacy by Design has been embraced with the same enthusiasm in the United
States. Indeed, the U.S. Federal Trade Commission hosted a series of public
discussions on privacy issues in the digital age and in a recent staff report [19]
it describes a proposed framework with three main recommendations: privacy by
design, simplified consumer choice, and increased transparency of data practices.
Moreover, in April 2011, Senators John Kerry (D-MA) and John McCain (R-
AZ) proposed their legislation entitled “Commercial Privacy Bill of Rights Act of
2011” that would require companies that collect, use, store or transfer consumer
information to implement a version of Privacy by Design when developing products.

10.2.2 Privacy by Design in Big Data Analytics and Social
Mining

Unfortunately, it is not always clear what means applying the Privacy by Design
principle and which is the best way to apply it for obtaining the desired result. In
this section, we discuss the articulation of the general “by design” principle in the
big data analytics domain.
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Our key idea is to consider privacy protection into any analytical process by
design, so that the analysis incorporates the relevant privacy requirements from the
very start, evoking the concept of Privacy by Design discussed above.

The application of the general “by design” principle in the big data analytics
domain is based on a key concept: higher protection and quality can be better
achieved in a goal-oriented approach. Indeed, the data analytical process is designed
with assumptions about:

(a) the sensitive personal data subject of the analysis;
(b) the attack model, i.e., the knowledge and purpose of a malicious party that has

an interest in discovering the sensitive data of certain individuals;
(c) the category of analytical queries that are to be answered with the data.

These assumptions are essential for the design of a privacy-aware technology.
First of all, privacy preservation techniques strongly depend on the nature of the
data to be protected, e.g., an algorithm suitable for social networking data could
not be appropriate for trajectory data. Second, a valid framework has to define the
attack model based on a specific adversary’s background knowledge and correspon-
dent countermeasure: different assumptions on the background knowledge require
different defense strategies. For example, an attacker could possess an approximated
information about the mobility behavior of an individual and exploit it to infer all his
movements. It is worth noting that a defense strategy designed for counter attacks
with approximate knowledge could be too weak in case of more detailed knowledge.
Finally, a privacy-aware solution should find an acceptable trade-off between data
privacy and data utility. Thus, it is fundamental to consider the kind of analytical
queries to be answered for understanding which data properties must be preserved.
As an example, a defense strategy for spatio-temporal data should consider that
these data might be useful for collective mobility analyses in an urban area.

Under the above hypotheses, we claim that it is possible to design a privacy-
aware analytical process able to:

1. transform the data into an anonymous version with a quantifiable privacy
guarantee, i.e., measuring the probability that the malicious attack fails;

2. guarantee that a category of analytical queries can be answered correctly, within
a quantifiable approximation that specifies the data utility, using the transformed
data instead of the original ones.

We want to point out that different legal frameworks could imply different
techniques that are considered to be sufficient for data protection. To define an
adequate anonymization level, we mainly rely on the GDPR [18]. Indeed, Privacy by
Design is compliant with the GDPR also regarding the principle of reasonableness
stated in GDPR (Article 26), where it is stated that “to determine whether a natural
person is identifiable, account should be taken of all the means reasonably likely to
be used”, where the reasonableness should consider some objective factors, such as
the costs and the amount of time required for identification, taking into consideration
the available technology and technological developments.
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In the following, we show three existing ways to apply the Privacy by Design for
the design of the same amount of analytical frameworks: one for clustering analysis,
one for the publication of trajectory data and one for computing aggregation of
movement data in a distributed setting. In the three scenarios we first analyze the
privacy issues related to this kind of data; second, we identify the attack model;
and third, we provide a method for assuring data privacy taking into consideration
the data analysis to be maintained valid. However, these are not the unique privacy-
preserving frameworks adopting the Privacy by Design principle, many approaches
proposed in the literature can be seen as instances of this promising paradigm (see
[4, 12, 27, 28, 34]).

10.3 Privacy by Design in Mobility Data Publishing

In this section, we present a framework that offers an instance of the privacy by
design paradigm concerning personal mobility trajectories, obtained from GPS
devices or cell phones [23]. It is convenient for the privacy-aware publication of
movement data, and its focus is on clustering analysis useful for the comprehension
of human mobility behavior in specific urban areas. The released trajectories are
made anonymous by a suitable process that realizes a generalized version of the
original trajectories.

In the following, we consider a mobility dataset as a collection of trajectories
D = {T1, T2, . . . , Tm} where each Ti is a trajectory represented by a sequence of
spatio-temporal points.

Definition 10.1 (Trajectory) A Trajectory or spatio-temporal sequence is a
sequence of triples T = 〈x1, y1, t1〉, . . . , 〈xn, yn, tn〉, where ti (i = 1 . . . n) denotes
a timestamp such that ∀1<i<n ti < ti+1 and (xi, yi) are points in R2.

Intuitively, each triple 〈xi, yi, ti〉 indicates that the object is in the position (xi, yi)

at time ti .

Definition 10.2 (Sub-Trajectory) Let T = 〈x1, y1, t1〉, . . . , 〈xn, yn, tn〉 be a tra-
jectory. A trajectory S = 〈x′

1, y
′
1, t

′
1〉, . . . , 〈x′

m, y′
m, t ′m〉 is a sub-trajectory of T or is

contained in T (S � T ) if there exist integers 1 < i1 < . . . < im <= n such that
∀1 ≤ j ≤ m 〈x′

j , y
′
j , t

′
j 〉 = 〈xij , yij , tij 〉.

We use g to denote the function that applies the spatial generalization to a trajectory.
Given a trajectory T ∈ D, the generalized version of T is generated by a function
g that applies the spatial generalization to the trajectory. It is represented by the
centroid sequence of areas crossed by T . More formally,

Definition 10.3 (Generalized Trajectory) Let T = 〈x1, y1, t1〉, . . . , 〈xn, yn, tn〉
a trajectory. A generalized version of T is a sequence of pairs Tg =
〈xc1 , yc1〉, . . . , 〈xcm, ycm〉 with m <= n where each xci

, yci
is the centroid of

an area crossed by T .
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The privacy by design framework presented in the following is based on a data-
driven spatial generalization of the dataset of trajectories and the obtained results
put in evidence how trajectories can be anonymized to a high level of protection
against re-identification attacks, preserving, at the same time, the possibility of
mining clusters of trajectories, which enables powerful analytic services for info-
mobility or location based services.

10.3.1 Attack and Privacy Model

Here, it is evaluated the linkage attack model, i.e., the ability to link the published
data to external information, which enables some respondents associated with the
data to be re-identified. In relational data, linking is made possible by quasi-
identifiers, i.e., attributes that, in combination, can uniquely identify individuals,
such as birth date and gender [30]. The remaining attributes represent the private
respondent’s information (PI), sometimes called sensitive attributes (SA), that may
be violated by the linkage attack. In privacy-preserving data publishing techniques,
such as k-anonymity, the goal is to find countermeasures to this particular attack
and to release person-specific data in such a way that the ability to link to other
information using the quasi-identifier(s) is limited. However, in the case of mobility
data, where each record is a temporal sequence of locations visited by a specific
person, the above dichotomy of attributes into quasi-identifiers (QI) and private
information (PI) does not hold anymore: here, a (sub)trajectory can play both the
role of QI and the role of PI. To understand this point, assume the attacker may
know a sequence of places visited by some specific person P : e.g., by shadowing P

for some time, the attacker may learn that P was in the shopping mall, then in the
gym, and then at the pub. The adversary could exploit such knowledge to retrieve
the complete trajectory of P in the released dataset: this attempt would succeed,
provided that the attacker knows that P ’s trajectory is actually present in the dataset
and the known sub-trajectory is compatible with (i.e., is a sub-trajectory of) just
one trajectory in the dataset. In this example of a linkage attack in the movement
data domain, the sub-trajectory known by the attacker serves as QI, while the entire
trajectory is the PI that is disclosed after the re-identification of the respondent.
Clearly, as the example suggests, it is rather difficult to distinguish QI and PI:
in principle, any specific location can be the theater of a shadowing action by a
spy, and therefore any possible sequence of locations can be used as a QI, i.e.,
as a means for re-identification. As a consequence of this remark, it is reasonable
to contemplate the radical assumption that any (sub)trajectory that can be linked
to a small number of individuals is a potentially dangerous QI and a potentially
sensitive PI. Therefore, in the trajectory linkage attack, the adversary M knows a
sub-trajectory of a respondent R (e.g., a sequence of locations where R has been
seen by M) and M would try to discover the whole trajectory belonging to R in
the data, i.e., learn all places visited by R. In particular, we assume the following
adversary knowledge.
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Definition 10.4 (Adversary Knowledge) The attacker has access to the
anonymized dataset D∗ and knows: (a) the details of the schema used to anonymize
the data, (b) the fact that a given user R is in the mobility dataset D and (c) a
sub-trajectory S relative to R.

This background knowledge is used in the following attack.

Definition 10.5 (Attack Model) Given the anonymized dataset D∗ and a sub-
trajectory S relative to a user R, the attacker: (i) generates the partition of the
territory starting from the trajectories in D∗; (ii) computes g(S) generating the
sequence of centroids of the areas containing the points of S; (iii) constructs a set
of candidate trajectories in D∗ containing the generalized sub-trajectory g(S) and
tries to identify the whole trajectory relative to R. The probability of identifying the
whole trajectory by a sub-trajectory S is denoted by prob(S).

10.3.2 Privacy-Preserving Technique

How is it possible to guarantee that the probability of success of the above attack is
very low while preserving the utility of the data for meaningful analyses? Consider
the source trajectories represented in Fig. 10.1a, obtained from a massive dataset

Fig. 10.1 (a) Milan GPS Trajectories, (b) characteristic points, (c) spatial clusters, (d) tessellation
of the territory, and (e) generalized trajectories
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of GPS traces (17,000 private vehicles tracked in the city of Milan, Italy, during a
week).

Each trajectory is a de-identified sequence of time-stamped locations, visited by
one of the tracked individuals or vehicles. Although de-identified, each trajectory
is essentially unique—two different trajectories seldom are exactly the same, due
to the extremely fine spatio-temporal resolution involved. Therefore, the chances of
success for this attack are not low. If the attacker M has access to a sufficiently long
sub-sequence S of locations visited by the individual R, it is possible that only a
few trajectories in the dataset match with S, possibly just one. Indeed, publishing
raw trajectory data such as those depicted in Fig. 10.1a is an unsafe practice, which
leads to a high risk of infringement on the private sphere of the tracked drivers
(e.g., guessing the home place and the work place of most respondents is very
easy). Now, assume that one wants to discover the trajectory clusters emerging
from the data through data mining, i.e., the groups of trajectories sharing common
mobility behavior, such as the commuters following similar routes in their home-
work and work-home trips. A privacy transformation of the trajectories consists of
the following steps:

1. characteristic points are extracted from the original trajectories: starting points,
ending points, points of significant turn, points of significant stop (Fig. 10.1b);

2. characteristic points are clustered into small groups by spatial proximity
(Fig. 10.1c);

3. the central points of the groups are used to partition the space by means of
Voronoi tessellation (Fig. 10.1d);

4. each original trajectory is transformed into the sequence of Voronoi cells that it
crosses (Fig. 10.1e).

As a consequence of this data-driven transformation, where trajectories are general-
ized from sequences of points to sequences of cells, the re-identification probability
already drops significantly. Further transformation can be applied to lower this
probability even more, obtaining a safe theoretical upper bound for the worst case
(i.e., the maximal probability that the linkage attack succeeds), and an extremely
low average probability. A possible technique is to ensure that for any sub-trajectory
used by the attacker, the re-identification probability is always controlled below a
given threshold 1

k
; in other words, ensuring the k-anonymity property in the released

dataset. Here, the notion of k-anonymity is based on the definition of k-harmful
trajectory, i.e., a trajectory occurring in the database with a frequency less than k.
Thus, a trajectory database D∗ is considered a k-anonymous version of a database
D if: each k-harmful trajectory in D appears at least k times in D∗ or if it does
not appear in D∗ anymore. To obtain this k-anonymous database, the generalized
trajectories, produced after the data-driven transformation, are transformed in such
a way that all the k-harmful sub-trajectories in D are not k-harmful in D∗. In the
example shown in Fig. 10.1a, the probability of success is theoretically bounded by
1
20 (i.e., 20-anonymity is achieved), but the real upper bound for 95% of attacks is
below 10−3.
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10.3.3 Analytics Quality

The above results highlight that the transformed trajectories are orders of magnitude
safer than the original ones in a measurable sense: but are they still useful to achieve
the desired result, i.e., discovering trajectory clusters?

Figure 10.2(top) and (down) listed the most relevant clusters found by mining
the original trajectories and the anonymized trajectories, respectively.

A direct consequence of the anonymization process is an increase in the
concentration of trajectories, i.e., many original trajectories are bundled on the

Fig. 10.2 10 largest clusters of the original trajectories (top) and of the anonymized trajectories
(down)
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same route; the clustering method will be influenced by the variation in the density
distribution. This change is mainly caused by the reduction of noisy data. In fact, the
anonymization procedure tends to render each trajectory similar to the neighboring
ones. This means that the original trajectories, initially classified as noise, can now
be “promoted” as members of a cluster. This phenomenon may produce an enlarged
version of the original clusters. F-measure is adopted to evaluate quantitively the
clustering preservation. This measure is usually used to express the combined
values of precision and recall and is defined as the harmonic mean of the two
measures. Here, the recall measures how the cohesion of a cluster is preserved:
if the whole original cluster is mapped into a single anonymized cluster its value
is 1; otherwise, the value tends to zero if the original elements are scattered among
several anonymized clusters. The precision indicates how the singularity of a cluster
is mapped into the anonymized version: it is 1 if the anonymized cluster contains
only elements corresponding to the original cluster, it tends to zero if there are other
elements corresponding to other clusters. The contamination of an anonymized
cluster may depend on two factors: (1) there are elements corresponding to other
original clusters or (2) there are elements that were formerly noise and have been
promoted to members of an anonymized cluster.

The immediate visual perception that the resulting clusters are very similar in
the two cases in Fig. 10.2(top) and (down) is also confirmed by various cluster
comparisons by F-measure, re-defined for clustering comparison (Fig. 10.3).

The conclusion is that in the illustrated process the desired quality of the
analytical results can be achieved in a privacy-preserving setting with concrete
formal guarantees and the protection w.r.t. the linkage attack can be quantified.

Fig. 10.3 F-measure for
comparison of the clusterings
of the anonymized dataset
versus the clustering of the
original trajectories
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10.4 Privacy by Design in Semantic Trajectories
Anonymization

In this section, we present a framework that offers an instance of the Privacy by
Design paradigm concerning mobility trajectories enriched with semantic informa-
tion, i.e., semantic trajectories introduced in [31] for reasoning over trajectories
from a semantic point of view.

In detail, a semantic trajectory is a sequence of stops and moves of an individual
during her movement. Stops are the important parts of a trajectory where the
moving object has stayed for a minimal amount of time. Moves are the sub-
trajectories describing the movements between two consecutive stops. Each location
of the stop can be attached to some contextual information such as the visited
place or the purpose—either by explicit sensing or by inference. An example of
semantic trajectory is the sequence of places visited by a moving individual such as
Supermarket, Restaurant, Gym, Hospital, Museum.

Important parts of a trajectory, i.e., stops, correspond to the set of x, y, t points of
a trajectory that are important from an application point of view. A set of important
places characterizes a semantic trajectory.

Definition 10.6 (Semantic Trajectory) Given a set of important places I, a
semantic trajectory T = p1, p2, . . . , pn with pi ∈ I is a temporally ordered
sequence of important places, that the moving object has visited.

The Privacy by Design framework presented in this section (introduced in
[25]) enables sophisticated reasoning on the scope of people’s movements by
maintaining under control the individual privacy. In particular, the released semantic
trajectories are made safe concerning the inference of sensitive information derived
from the knowledge of the reason of the individual’s movement and from the
knowledge of the place that the individual visited. The framework is based on a data
transformation that generalizes places driven by a place taxonomy, thus providing a
way to preserve the semantics of the generalized trajectories.

The results obtained with the application of this framework show how it
possible to preserve the semantics of trajectories making them useful for extracting
valid mobility semantic patterns while guaranteeing the limitation of sensitive
information inferences from the individual visits.

10.4.1 Attack and Privacy Model

The use of a domain taxonomy for generalizing places enables the identification of
sensitive and non-sensitive places. A place is considered sensitive when it allows
inferring personal information about the individual who has stopped there. For
example, a stop at an oncology clinic may indicate that the user has some health
problem. Other places (such as parks, restaurants, cinemas, etc.) are considered as
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Fig. 10.4 The places taxonomy

quasi-identifiers. The labeled taxonomy is given by the domain expert who tags each
concept with the corresponding “sensitivity” label.

In this context, the attack model considers an attacker with the following
adversary knowledge:

Definition 10.7 (Adversary Knowledge) The attacker has access to the general-
ized dataset D∗ and knows: (a) the algorithm used to anonymize the data, (b) the
privacy place taxonomy PT ax, (c) that a given user is in the dataset and (d) a quasi-
identifier place sequence SQ visited by the given user R.

In this model, the idea is to keep private all the sensitive places visited by a
given user. As a consequence, the attack model considers the ability to link the
released data to other external information enabling the inference of visited sensitive
places.

In practice, given the quasi-identifier sequence SQ, the attacker constructs a set of
candidate semantic trajectories in D∗ containing SQ and tries to infer the sensitive
leaf places related to R. Prob(SQ, S) denotes the probability that, given a quasi-
identifier place sequence SQ related to a user R, the attacker infers his/her set of
sensitive places S which are the leaves of the taxonomy PT ax. An example of
labelled taxonomy is depicted in Fig. 10.4.

10.4.2 Privacy-Preserving Technique

How to guarantee that the probability of success of the above attack is very low
while preserving the utility of the data for meaningful analyses? From a data
protection perspective it is necessary to control the probability Prob(SQ, S) and
a solution is to release a c-safe dataset, i.e., a dataset where for every quasi-
identifier place sequence SQ, we have that for each set of sensitive places S the
Prob(SQ, S) ≤ c with c ∈ [0, 1]. On the contrary, for a data utility point of view, a
data analyst might use the semantic trajectories to extract common and frequent
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human behaviors by sequential pattern mining analyses, having in this way the
possibility to reason on the semantic of the human movements. Therefore, we need a
privacy transformation that tries to minimize the cost of a trajectory generalization.
A privacy transformation of semantic trajectories consists of the following steps:

1. suppressing from the original semantic trajectories each sensitive place when, for
that given user, that place is a quasi-identifier;

2. grouping semantic trajectories in groups of a predefined size, m;
3. building a generalized version of each semantic trajectory in the group gen-

eralizing the quasi-identifier places. In each group, the quasi-identifiers of the
generalized trajectories should be identical. Sensitive places are generalized
when the quasi-identifiers generalization is not enough to get a c-safe dataset.
The generalization is performed with the support of the taxonomy PT ax.

This method generates a c-safe version of a dataset of semantic trajectories keeping
under control both the probability to infer sensitive places and the generalization
level (thus the information loss) introduced in the data. In other words, the obtained
dataset guarantees the c-safety and maintains the information useful for the data
mining tasks, as much as possible. The taxonomy defined by the domain expert is
crucial in this process. In fact, having more levels of abstraction allows the method
in finding a better generalization in terms of information loss. In order to consider
the generalization cost it is possible to use distance functions that measure the
cost to transform an original semantic trajectory into a generalized one, based on
the taxonomy. A measure might be the distance in steps from two places in the
taxonomy tree, the so called Hops-based distance.

If we consider the dataset in Fig. 10.1a, after the privacy transformation where the
probability of success is theoretically bounded by 0.3 we have an empirical upper
bound of 0.07 in average on 10,000 attacks using as background knowledge 5 places
(see Fig. 10.5).

Fig. 10.5 The empirical disclosure probability on Milano dataset
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10.4.3 Analytics Quality

Now, the point is to understand if the guaranteed privacy protection also allows
the possibility to perform some analysis based on the sequential pattern mining
extractable from the c-safe data. To evaluate this, it is necessary to measure the
quality of the sequential patterns. Figure 10.6a shows the effect of the privacy
transformation on the number of patterns extractable from the dataset after the
sanitization.The figure highlights the fact that the generalization has a double effect
on the patterns: (1) the frequency of generalized places increases, (2) the frequency
of leaf places of the taxonomy decreases. Therefore, with a high support threshold,
the difference between the patterns created and removed by the generalization phase
is positive, and this increases the size of the resulting patterns set. Figure 10.6b
depicts instead the trend of the coverage coefficient. This index measures how many

Fig. 10.6 (a) Number of patterns extracted from Milan data and (b) coverage of the patterns
varying the support threshold
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patterns extracted from the original dataset are covered at least by the patterns
extracted from the anonymized dataset with a certain level of generalization. It is
important to notice that the coverage does not measure how much the patterns are
generalized, but only if they are covered by a pattern obtained from the anonymized
dataset or not. The results highlight that the coverage guaranteed by the patterns
after the privacy transformation is not 100% but the levels are high enough to enable
analyses; in fact, by changing the support (i.e., the minimum frequency used for the
pattern extraction) the coverage is always greater than 75%.

10.5 Privacy by Design in Distributed Systems

The previous scenarios (Sects. 10.3 and 10.4) are based on centralized environments,
where the privacy preservation step is performed by a central entity; in fact, we
showed two variants of k-anonymity which can be used only by a trusted aggrega-
tion center. However, Privacy by Design paradigm can also be applied with success
to distributed systems. In this section, we discuss an instance of this case [26];
in particular, we analyze the handling of personal mobility trajectories, generated
by several vehicles distributed in a territory and collected by a central entity,
called coordinator. Streams of data updates arrive continuously at remote sites (i.e.,
vehicles), while the coordinator is responsible for computing the aggregation of
movement data on a territory by combining the information received by each node.

We show how privacy can be obtained before data leave users, ensuring the utility
of some data analysis performed at the collective level, also after the transformation.
This example brings evidence to the fact that the Privacy by Design model has
the potential of delivering high data protection combined with high quality even
in massively distributed techno-social systems.

10.5.1 Attack and Privacy Model

As in the case analyzed in Sect. 10.3, any data from which the typical mobility
behavior of a user may be inferred is assumed as sensitive information. This
information is considered sensitive for two main reasons: (1) typical movements can
be used to identify drivers even when a simple de-identification of the individual
in the system is applied; and (2) the places visited could identify distinguishing
sensitive areas such as clinics, hospitals and routine locations such as the user’s
home and workplace.

The assumption is that each node in the system is honest; in other words, attacks
at the node level are not considered. Instead, potential attacks are from any adversary
between the node and the coordinator (i.e., attacks during the communications), and
from any adversary at coordinator site, so this privacy preserving technique has to
guarantee privacy even against a malicious behavior of the coordinator. For example,
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the coordinator may be able to obtain real mobility statistic information from other
sources, such as from public datasets on the web, or through personal knowledge
about a specific individual, like in the previously (and diffusely) discussed linking
attack.

The solution proposed in [26] is based on Differential Privacy, a recent paradigm
of randomization presented in [14] by Dwork. The general idea of this model is
that the privacy risks should not increase for a respondent as a result of occurring
in a statistical database; differential privacy ensures, in fact, that the ability of an
adversary to inflict harm should be essentially the same, independently of whether
any individual opts in to, or opts out of, the dataset. This privacy model is called
ε-differential privacy, due to the level of privacy guaranteed ε, also called privacy
budget. Note that when ε grows very little perturbation is introduced and this yields
a low privacy protection; on the contrary, better privacy guarantees are obtained
when ε tends to zero. Differential privacy guarantees a record owner that any
privacy breach will not be a result of participating in the database since nothing,
or almost nothing, that can be learned from the database with his record can be
learned from the database without his data. Moreover, in [14] is formally proved
that ε-differential privacy can provide a guarantee against adversaries with arbitrary
background knowledge, thus, in this case, we do not need to define any explicit
background knowledge for attackers.

In a nutshell, the differential privacy mechanism works by adding appropriately
chosen random noise (from a specific distribution) to the true answer, then returning
the perturbed answer. The formal definition of differential privacy [14] is the
following. Here the parameter, ε, specifies the level of guaranteed privacy.

Definition 10.8 (ε-Differential Privacy) [14] A privacy mechanism A gives ε-
differential privacy if for any dataset D1 and D2 differing on at most one record, and
for any possible output D′ of A we have Pr[A(D1) = D′] ≤ eε ×Pr[A(D2) = D′]
where the probability is taken over the randomness of A.

A basic notion used by differential privacy mechanisms is the sensitivity of a
query, which provides a way to set the noise distribution in order to calibrate the
noise magnitude on the basis of the type of query.

Definition 10.9 (Global Sensitivity) [13] For any function f : D → Rd , its
sensitivity is Δf = maxD1,D2 ||f (D1) − f (D2)||1 for all D1, D2 differing in at
most one record.

Intuitively, the sensitivity measures the maximum distance between the same
query executed on two close datasets, i.e., datasets differing on one single element
(either a user or an event). As an example, consider a count query on a medical
dataset, which returns the number of patients having a particular disease. The result
of the query performed on two close datasets, i.e., differing exactly on one patient,
can change at most by 1; thus, in this case (or, more generally, in count query cases),
the sensitivity is 1.

A little variant of this model is the (ε, δ)-differential privacy [16], where the noise
is bounded at the cost of introducing a privacy loss, δ. (ε, δ)-differential privacy
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allows a small amount of privacy loss due to a variation in the output distribution
for the privacy mechanism A.

Definition 10.10 ((ε, δ)-Differential Privacy) [16] A privacy mechanism A gives
(ε, δ)-differential privacy if for any dataset D1 and D2 differing on at most one
record, and for any possible output D′ of A we have Pr[A(D1) = D′] ≤ eε ×
Pr[A(D2) = D′] + δ where the probability is taken over the randomness of A.

The questions are: How can we hide the event that the user moved from a location
a to a location b in a time interval τ? And how can we hide the real count of moves
in that time window? In other words, How can we enable collective movement data
aggregation for mobility analysis while guaranteeing individual privacy protection?
The solution that we report is based on (ε,δ)-differential privacy, and provides a
good balance between privacy and data utility.

10.5.2 Privacy-Preserving Technique

First of all, each participant must share a common partitioning of the considered
area; for this purpose, it is possible to use an existing division of the territory
(e.g., census sectors, road segments, etc.) or to determine a data-driven partition
as the Voronoi tessellation introduced in Sect. 10.3.2. Once this is accomplished,
each trajectory is generalized as a sequence of crossed areas (i.e., a sequence
of movements). For the sake of convenience, this information is mapped onto a
frequency vector, linked to the partition.

In order to perform this mapping task, we firstly need a function Move Frequency
(MF ) to compute how many times the move appears in a generalized trajectory Tg

within a given time interval.

Definition 10.11 (Move Frequency) Let Tg be a generalized trajectory and let
(lci

, lcj
) be a move. Given the temporal interval τ the move frequency function is

defined as:

MF(Tg, (lci
, lcj

), τ ) = |{(lci
, lcj

, ti , tj ) ∈ Tg : ti ∈ τ ∧ tj ∈ τ }|.

This function can be easily extended to take into consideration a set of general-
ized trajectories TG. In this case, computed information represents the total number
of movements from the cell ci to the cell cj in a time interval in the set of trajectories.

Definition 10.12 (Global Move Frequency) Let TG be a set of generalized
trajectories and let (lci

, lcj
) be a move. Let τ be a time interval. The global move

frequency function is defined as:

GMF(TG, (lci
, lcj

), τ ) =
∑

∀Tg∈TG

MF(Tg, (lci
, lcj

), τ ).



10 Privacy by Design for Mobility Data Analytics 271

The number of movements between two cells computed by either the function
MF or GMF describes the amount of traffic flow between the two cells in a specific
time interval τ . This information can be represented by a frequency vector. To define
the frequency vector, we first define vector of moves.

Definition 10.13 (Vector of Moves) Let C = {c1, c2, . . . , cp} be the set of the
cells composing the territory partition. The vector of moves M is a vector of size
s = |{(ci, cj )|ci is adjacent to cj }|, in which each element M[k] = (lci

, lcj
),

where 1 ≤ k ≤ s, is the move from the cell ci to the adjacent cell cj .

At this point, we can define the frequency vector.

Definition 10.14 (Frequency Vector) Let C = {c1, c2, . . . , cp} be the cells that
compose the territory partition and let M be its vector of moves. Given a set
of generalized trajectories TG in a time interval τ , its frequency vector f is a
vector of size s = |{(ci, cj )|ci is adjacent to cj }|, in which each element
f [k] = GMF(TG,M[k], τ ).

Unfortunately, releasing frequency of moves instead of raw trajectory data to
the coordinator is still not privacy-preserving, as the intruder may still infer the
sensitive typical movement information of the driver. As an example, the attacker
could discover the driver’s most frequent move; this information can be very
sensitive because it usually corresponds to a user’s transportation between home
and workplace. Thus, the proposed solution is based on the differential privacy
model, relying on a Laplace distribution [15]. At the end of a preset time interval
τ , each node, before sending the frequency vector to the coordinator and for each
element in the vector, extracts the noise from the Laplace distribution and adds it
to the original value in that position of the vector. At the end of this operation,
the node Vj converted its frequency vector fVj

into its private version ˜fVj
. This

ensures the respect of the ε-differential privacy. This simple general strategy has
some inconveniences: first, it could lead to a large amount of noise that, although
with small probability, can be arbitrarily large; second, adding noise drawn from
the Laplace distribution could produce negative frequency counts of moves, which
does not make sense in mobility scenarios. In order to fix these two problems, it is
possible to bound the noise drawn from the Laplace distribution, reducing to an (ε,δ)
differential privacy schema. In particular, for each value x of the vector fVj

, it is
possible to draw the noise bounding it in the interval [−x, x]. In other words, for any
original frequency fVj

[i] = x, its perturbed version after adding noise falls in the
interval [0, 2x]. This approach satisfies (ε,δ)-differential privacy, where δ measures
the privacy loss. Note that, since in a distributed environment communications need
to be quite limited, it is possible to reduce the amount of transmitted information,
i.e., the size of frequency vectors. A possible solution to this problem is reported
in [26], but this discussion is omitted here because is beyond the purpose of our
review.
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10.5.3 Analytical Quality

So far we reported the formal guarantees to individual privacy preservation, now
we have to show how individually transformed values are still useful once they
are collected and aggregated by the coordinator, i.e., they are still suitable at a
collective level for analysis. In the proposed framework, the coordinator gathers
the perturbed frequency vectors from all the vehicles in the time interval τ and
sums them movement by movement. This achieves to obtain the resulting global
frequency vector, which indicates the flow values for each possible link of the
spatial tessellation. Since the privacy transformation operates on the entries of the
frequency vectors, and hence on the flows, we report the comparison (before and
after the transformation) of two measures: (1) the Flow per Link, i.e., the directed
volume of traffic between two adjacent zones; (2) the Flow per Zone, i.e., the sum
of the incoming and outgoing flows in a zone. The following results refer to the
application of this technique on a large dataset of GPS vehicles traces, collected in
a period from 1st May to 31st May 2011, in the geographical areas around Pisa, in
central Italy. It counts for around 4200 vehicles, generating around 15,700 trips in
total. The τ interval is 1 day, so the global frequency vector represents the sum all the
trajectories crossing any link, at the end of each day. The reported results are relative
to 25th May 2011, but they are similar to ones obtained in the other working days.

Figure 10.7 shows the resulting Complementary Cumulative Distribution Func-
tions (CCDFs) of different privacy transformation varying ε from 0.9 to 0.01.
Figure 10.7-Left shows the global (approximated) Flow per Link distribution: fixed
a value of flow (x) is counted the number of links (y) that have that flow. Figure 10.7-
Right shows the distribution of sum of flows passing for each zone, i.e., Flow per
Zone: given a flow value (x) it shows how many zones (y) present that total flow.
From the distributions, we can observe that the privacy transformation preserves

Fig. 10.7 CCDFs of Flow per Link (Left); CCDFs of Flow per Zone (Right)
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Fig. 10.8 Visualization of Flow per Link (A-B) and Flow per Zone (C-D)

very well the distribution of the original flows, even for more restrictive values of
the parameter ε. Also considering several flows together, like those ones that are
incident to a given zone (Fig. 10.7-Right), the distributions are well preserved for
all the privacy transformations. These results reveal how a method which locally
perturbs values, at a collective level permits to obtain a very good utility.

Qualitatively, Fig. 10.8 shows a visual comparison of results of the privacy
transformation with the original ones. This is an example of analyses that can
be carried out with mobility data. Since the global complementary cumulative
distribution functions are comparable, it is possible to choose a very low epsilon
(ε = 0.01) with the aim to emphasize the very good quality of mobility analysis that
an analyst can obtain even if the data are transformed by using this low ε value, i.e.
obtaining a better privacy protection. In Fig. 10.8a, b each flow is drawn with arrows
with the thickness proportional to the volume of trajectories observed on a link.
From the figure it is evident how the relevant flows are maintained in the transformed
global frequency vector, highlighting the major highways and urban centers. The
Flow per Zone is also preserved, as it is shown in Fig. 10.8c, d, where the flow per
each cell is rendered with a circle of radius proportional to the difference from the
median value of each global frequency vector. The maps allow us to recognize the
dense areas (red circles, above the median) separated by sparse areas (blue circles,
below the median). The high density traffic zones follow the highways and the major
city centers along their routes. These two comparisons confirm the intuition that,
while the transformations protect individual sensitive information, the utility of data
is preserved.
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10.6 Conclusion

The potential impact of the big data analytics and social mining is high because
it could generate enormous value to society. Unfortunately, often big data describe
sensitive human activities and the privacy of people is always more at risk. The
danger is also increasing thanks to the emerging capability to integrate diversified
data. In this chapter, we have introduced the articulation of the Privacy by Design
in big data analytics and social mining for enabling the design of analytical
processes that minimize, or even prevent, the privacy harm. We have discussed
how applying the Privacy by Design principle to three different scenarios showing
that under suitable conditions is feasible to reach a good trade-off between data
privacy and good quality of the data. We believe with the Privacy by Design
principle social mining has the potential to provide a privacy-respectful social
microscope, or socioscope, needed to observe the hidden mechanisms of socio-
economic complexity.

10.7 Bibliographic Notes

In the following, we provide a quick overview of some techniques and solutions
adopted in privacy-preserving data mining for mobility data. The Privacy by Design
model was applied in data mining in several contexts [24, 27], with special treatment
to mobility data, due to their complex nature, their sensitivity and their importance
for understanding human behaviors. Privacy issue in mobility data mining and
sharing have been intensively studied in literature [8, 20, 22], and the existing
methods of privacy-aware releasing and sharing of (trajectory) data can be classified
into two main classes: (1) generalization/suppression based data perturbation, and
(2) randomization/differential privacy perturbation.

The most widely used privacy model for generalization and suppression pertur-
bation is adapted from what so called k-anonymity [30, 32], which requires that
an individual should not be identifiable from a group of size smaller than k based
on their quasi-identifies (QIDs), i.e., a set of attributes that can be used to identify
uniquely the individuals. Unfortunately, in trajectory data, it often impossible to
distinguish clearly between quasi-identifiers and sensitive attribute. In [36], Yarovoy
et al. deeply analyze the problem of quasi-identifiers in mobility data: they show
that the anonymization groups may not be disjoint. Thus there may exist objects
that can be identified explicitly by combining different anonymization groups. They
suggest that QIs may be provided directly by personal settings or found by means
of statistical data analysis. In [4], Abul et al. propose the notion of (k,δ)-anonymity
for moving object databases, where δ represents the possible location imprecision.
This is an innovative concept of k-anonymity based on co-localization, which takes
advantage of the inherent uncertainty of the whereabouts of the moving objects. The
authors also proposed an approach, called Never Walk Alone, based on trajectory
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clustering and spatial translation, and they present its improvement, Wait for Me,
in [5]. This method is very similar to the previous one, but it is based on EDR
distance (instead of Euclidean distance), which is time-tolerant, so Wait for Me
can recognize similar trajectories even if they are (slightly) shifted in time. Finally,
Domingo Ferrer and Trujillo-Rasua [12] show a solution based on perturbation and
micro-aggregation: this method k-anonymizes each location independently, using
the whole set of trajectories. Particularly, the algorithm creates clusters of locations
(close in time and space) in such a way that the locations in each group belong to
k different trajectories. The result of this transformation is that the probability that
a location of a true trajectory appears in its anonymized version is at most 1

k
while

guaranteeing that the anonymized trajectories are suitable for range query for every
value of k.

Regarding the application of Differential Privacy mechanisms to mobility data,
many works have been proposed in last years. In [35] authors provide an algorithm,
based on Markov Chain and Differential Privacy, which aims to protect the continual
location sharing of perturbed locations in the context of Location Based Services.
In particular, they select a set of locations that are highly probable for a user,
guaranteeing that the probability of these locations is similar to the other, and
chooses one of these locations to be released outside. In this case, the event protected
by Differential Privacy is a specific request to a service, instead of a specific move.
However, they do not provide guarantees if the attacker has a stronger external
knowledge w.r.t. the history of the released locations. This additional constraint is
analyzed in [7], where Andrés et al. show a technique for Location Based Services
independent from the side information of users. They use an extension of Laplace
distribution for the continuous plane and promise a privacy level which is distance-
dependent, i.e., guarantees are stronger if you get closer to the real location of the
user. A very promising research line about Differential Privacy on spatio-temporal
data is the one related to space partitioning. Ho and Ruan [21] apply Differential
Privacy to interesting locations to perform location pattern discovery, granting
protection at the user-level also when a user contributes to more than one record.
They partition the space of the data into smaller ones, in order to limit the total
number of events and, consequently, the events connected with each individual in
each dataset, in order to overcome the problem of the presence of a clear upper-
bound to the events related to a single user. In [10], Cormode et al. describe a
solution to publish differentially private spatial index (e.g., quadtrees and kd-trees)
to provide a private description of the data distribution [10]. Its main utility concern
is the accuracy of multi-dimensional range queries (e.g., how many individuals
fall within a given region). Therefore, the spatial index only stores the counts of
a specific spatial decomposition, even their solution does not store the movement
information (e.g., how many individuals move from location i to location j). In [9],
authors rely on a prefix tree of trajectories with injected Laplace noise; the prefix
tree is data-dependent, i.e., it should have a different structure when the underlying
database changes. Qardaji et al. [29] provide an adaptive uniform partition method,
considering different density-regions, i.e., depending on the total number of points
in the dataset. In Acs et al. [6], authors apply Geometrical mechanism to a partition
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of a territory, taking advantage of a Voronoi tessellation to keep track of the presence
of individuals and use clustering and sampling with Fourier-based perturbation
Finally, Cormode et al. [11] propose to publish a contingency table of trajectory
data, that can be indexed by specific locations so that each cell in the table contains
the number of people who commute from the given source to the given destination.
The purpose of this work is to address the sparsity issue of the contingency table
and presents a method of releasing a compact summary of the contingency table
with Laplace noise.
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Chapter 11
Systems for Privacy-Preserving Mobility
Data Management

Despina Kopanaki, Nikos Pelekis, and Yannis Theodoridis

Abstract The increasing availability of data due to the explosion of mobile devices
and positioning technologies has led to the development of efficient management
and mining techniques for mobility data. However, the analysis of such data may
result in significant risks regarding individuals’ privacy. A typical approach for
privacy-aware mobility data sharing aims at publishing an anonymized version of
the mobility dataset, operating under the assumption that most of the information
in the original dataset can be disclosed without causing any privacy violation. On
the other hand, an alternative strategy considers that data stays in-house to the
hosting organization and privacy-preserving mobility data management systems are
in charge of privacy-aware sharing of the mobility data. In this chapter, we present
the state-of-the-art of the latter approach, including systems such as HipStream,
Hermes++, and Private-Hermes.

11.1 Introduction

Recent advances in mobile devices, positioning technologies and spatiotemporal
database research, have made possible the tracking of mobile devices at a high
accuracy, while supporting the efficient storage of mobility data in databases. From
this perspective, we have nowadays the means to collect, store and process mobility
data of an unprecedented quantity, quality and timeliness. As ubiquitous computing
pervades our society, user mobility data represents a very useful but also sensitive
source of information. On the one hand, the movement traces of the users can aid
traffic engineers, city managers and environmentalists towards decision making
in a wide spectrum of applications, such as urban planning, traffic engineering
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and environmental pollution. On the other hand, the disclosure of mobility data
to untrusted parties may jeopardize the privacy of the users whose movement is
recorded, leading the way to abuse scenarios such as user tailing and profiling. As
it becomes evident, the sharing of user mobility data for analysis purposes has to be
done only after the data has been protected against potential privacy breaches.

In this chapter, we consider the following data sharing scenario: a data holder
(telecom operator, governmental agency, etc.) collects movement information about
a community of people. The raw movement data, capturing the location of each
individual in the course of time, is processed to generate user trajectories that are
subsequently stored in a database. Apart from the analysis that this data undergoes
within the premises of the hosting organization, we assume that at least part of the
data has to be made available to external, possibly untrusted, parties for querying
and analysis purposes. As is evident, direct publishing of this information, even if
the data is first deprived from any explicit identifiers, would severely compromise
the privacy of the individuals whose movement is recorded in the database. This
is due to the fact that malevolent end-users could potentially link the published
trajectories to sensitive locations of the individuals (such as their houses), thus
identify the users. To ensure privacy-aware sharing of in-house mobility data, a
mechanism is necessary to control the information that is made available to external
parties when they query the database, so that only nonsensitive information leaves
the premises of the hosting organization.

Recently, several methodologies have been proposed to enable privacy-
preserving mobility data sharing. Existing approaches, such as [1, 2, 9, 10, 16, 30],
aim at publishing an anonymous counterpart of the original dataset in which
adversaries can no longer match the recorded movement of each user to the
real identity of the user. A common assumption that is implicitly made in these
approaches is that most of the information stored in the original dataset can be
disclosed without causing any privacy violations. However, this assumption can
be proven unrealistic in certain data sharing scenarios. In order to avoid privacy
breaches a more conservative approach can be employed by assuming that the
majority of the information that is captured in the mobility dataset should remain
private and that the data should stay in-house to the hosting organization. This
assumption is primarily based on the following arguments:

• The data owner may be reluctant to publish the entire mobility dataset, or
conformance to certain business regulations may require that the dataset resides
in-house to the hosting organization.

• Mobility datasets typically support many types of data analysis. In order for the
anonymous dataset to be useful in practical applications, it is necessary that the
anonymization approach can offer specific utility guarantees and this, in turn,
requires knowledge of the intended workload. When data resides in-house, the
privacy preservation algorithms can support many types of data analysis (which
may be unknown apriori) by guaranteeing at the same time the privacy of the
users, whose information is recorded in the dataset.



11 Systems for Privacy-Preserving Mobility Data Management 283

• Data sharing policies may change from time to time and new types of privacy
attacks to mobility data may be identified, yielding previously released data
unprotected. In such events, it is crucial for the data owner to have knowledge of
the sensitive information that was leaked, as well as be capable of safeguarding
the data based on the new evidence. When data resides in-house, the privacy-
aware query engine can be updated to conform to the new policies and block
new types of attack. Additionally, the auditing of queries allows the data owner
to have knowledge about the extent of the data leakage by examining the history
of user queries to the database and keeping track of the returned answers.

In this chapter, we present the state-of-the-art systems which are based on
the assumption that data should stay in-house to the hosting organization in
order to ensure that no privacy violation may occur during analysis processes.
First, Gkoulalas-Divanis and Verykios [8] proposed a query engine that offers k-
anonymous answers to user queries. The engine generates fake records to guarantee
about what can be found by untrusted third parties. Based on the same notion,
Hermes++ which was proposed by Pelekis et al. [22], is a novel query engine for
sensitive trajectory data that allows subscribed end-users to gain restricted access
to the database to accomplish various analysis tasks. Hermes++ can shield the
trajectory database from potential attacks to user privacy, while supporting popular
queries for mobility data analysis, such as range queries, distance queries and near-
est neighbor queries. Hermes++ operates by retrieving real user trajectories from
the database and generating carefully crafted fake trajectories in order to reduce the
confidence of attackers regarding the information of the real trajectories in the query
result. Hermes++ achieves to (a) audit end-user queries and block an extended set
of attacks to user privacy, securing the database against user identification, sensitive
location tracking, and sequential tracking attacks, (b) generate smooth and more
realistic fake trajectories that preserve the trend of the original data, and (c) ensure
that no sensitive locations that would lead to user identification are reported as part
of the returned trajectories. The latter goal is achieved by modifying parts of the
trajectories that are close to sensitive locations, such as the houses of the users.

Moreover, we present Private-Hermes [23], a benchmark framework for privacy-
preserving mobility data querying and mining methods. The first dimension of this
benchmark with respect to privacy issues involves in-house stored data and privacy-
aware query answering. Private-Hermes incorporates Hermes [21], a query engine
based on a powerful query language for trajectory databases, which enables the
support of aggregative queries. Hermes supports a variety of well-known queries
such as range, nearest neighbor, topological, directional queries, etc. On top of this
functionality, Hermes++ audits queries for trajectory data to block potential attacks
to user privacy, supports the most popular spatiotemporal queries (range, distance,
k − NN ) and preserves user privacy by generating carefully crafted, realistic fake
trajectories. The second dimension with respect to privacy that is supported by
this benchmark involves privacy-preserving MOD publishing. Two state-of-the-art
algorithms, namely NWA [1] and W4M [2], have been integrated in Private-Hermes
to help anonymize trajectories. The objective is to support the evaluation of such
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anonymization techniques and to study their effect in the utility of the sanitized
data, when compared with queries into the original MOD.

Finally, HipStream [31] is a privacy-preserving system for managing mobil-
ity data streams. The system enforces three fundamental Hippocratic principles
introduced by Agrawal et al. [4] of limited use, limited disclosure and limited
collection of data during data stream management. Hippocratic databases extend the
functionalities of traditional databases with privacy-preserving capabilities. Service
providers have limited access to the data w.r.t. the privacy requirements that the data
owner has enforced. Queries are modified if needed from the system and data are
partially anonymized if necessary before being processed.

The rest of this chapter is organized as follows. Section 11.2 provides a
description of the background of privacy-preserving mobility data management,
highlighting the design principles of a privacy-aware trajectory query engine and
the types of attacks to user privacy that such an engine should be able to block.
Section 11.3 discusses Hermes++ putting emphasis on the auditing and the fake
trajectory generation algorithms that are implemented as part of the query engine
to support its functionality. Section 11.4 demonstrates the Private-Hermes bench-
mark framework. In Sect. 11.5, HipStream privacy-preserving system is presented.
Section 11.6 summarizes this chapter.

11.2 Background

Research in the domain of privacy-preserving data publishing has progressed along
two main directions: providing off-site publication of sanitized data and providing
on-site, restricted access to in-house data.

The first direction in privacy-preserving data publishing collects methodologies
that provide off-site publication of sanitized data. Several methodologies have been
proposed to support different data types and analysis tasks [1, 2, 13, 16, 27, 29, 30].

Hoh and Gruteser [9] present a data perturbation algorithm that is based on path
crossing. The approach identifies when two nonintersecting trajectories that belong
to different users are “sufficiently” close to each other in the original dataset and
generates a fake crossing of these trajectories in the sanitized counterpart to prevent
adversaries from tracking a complete user’s trajectory. Terrovitis and Mamoulis
[30] consider datasets that depict user movement in the form of sequences of
places that each user has visited, set out in the order of visit. They propose an
anonymization approach that suppresses selected places from user trajectories to
protect users from adversaries who hold projections of the data on specific sets
of places. Nergiz et al. [16] also rely on the sequential nature of mobility data
and propose a coarsening strategy to generate a sanitized dataset that consists of
k-anonymous [27, 29] sequences. The algorithm consolidates the trajectories of
the original dataset into clusters of k and then anonymizes the trajectories in each
cluster. Abul et al. [1] propose a k-anonymity approach that relies on the inherent
uncertainty that exists with respect to the whereabouts of the users in historical
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datasets representing user mobility. The anonymity algorithm identifies trajectories
that lie close to each other in time, employs space translation and generates clusters
of at least k trajectories. Each cluster of k trajectories forms an anonymity region
and the co-clustered trajectories can be released. In order to achieve space-time
translation, the authors proposed W4M [2], which uses a different distance measure
that allows time-warping.

In the second category, methodologies have been proposed for disclosure control
in statistical databases [3]. These approaches protect sensitive information in a
database while allowing statistical queries such as count and/or sum queries but
no other information can be made available to the inquirer. According to the
authors, addressing privacy violation problems can be classified into four main
categories: (1) conceptual, (2) query restriction, (3) data perturbation, and (4) output
perturbation. In the conceptual approach, two different data models are included.
The conceptual model explores the privacy problem at the conceptual level while
the lattice model comprises a framework for data represented in tabular form. Query
restriction approach provides answer either by restricting the size of the set of the
query or by controlling the overlap between successive queries. In the third category,
attacks can be handled through data perturbation. Queries are answered according
to a perturbed database. Essentially, a set of alteration / modification methodologies
is used aiming for the best possible result w.r.t. privacy-preservation and data utility.
Contrary, in the output perturbation approach the answer of the query is computed
and then noise is added to the answer.

A privacy-aware query engine, as a protection mechanism, was first envisioned
by Gkoulalas-Divanis and Verykios [8] (Fig. 11.1). The design principles of a query
engine that protects users’ privacy by generating fake trajectories are described. The
idea behind that work is that malevolent users who query the trajectory database
should not be able to discover (with high confidence) any real trajectories that are
returned as part of the answer set of their queries, while they can use the returned

Fig. 11.1 A big picture of the system architecture [8]
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data to support their analytic tasks. The engine allows subscribed end-users to
gain restricted access to the trajectory data in order to perform various analysis
tasks while preserving users’ privacy from several types of attacks. It supports
range, distance, k-nearest neighbor, landmark, route and queries for aggregative
statistics for both trajectory (movement) and non-trajectory (relational) data. When
a user poses a query, the engine retrieves the real trajectories r that belong to the
answer set and combine them with k − r fake trajectories in order to maintain k-
anonymity principle by ensuring that the malevolent is not able to distinguish the
real trajectories with high confidence. The necessary fake trajectories are generated
based on an interpolation technique applied on pairs of real trajectories without
though taking into consideration the time dimension.

Regarding the attacks that malevolent users may try to pursue in the original
database, they are classified in three types:

• User identification attack: the identity of the user can be exposed by ad-hoc
queries involving overlapping spatiotemporal regions.

• Sensitive location tracking attack: the malevolent user tries to map match one or
more locations in a user trajectory to known locations that can effectively expose
the identity of the user (e.g., the address of a house or a betting office). Such
locations are called sensitive for the user as they should not be disclosed to the
attackers.

• Sequential tracking attack: the user is tracked down through his trajectory by a
set of focused queries on regions that are near to each other, in terms of space and
time. The attacker can “follow” the user and learn the places that she has visited.

In the section that follows, we present Hermes++, a privacy-aware query engine,
and we pay particular attention to the specific procedures it performs in order to
block these types of attacks.

11.3 Hermes++ Query Engine

In this section, we present the architecture of Hermes++ query engine proposed by
Pelekis et al. [22] and the algorithms that deliver its functionality. In particular,
Sect. 11.3.1 provides details about Hermes++ architecture, Sect. 11.3.2 describes
the algorithm that generates realistic fake trajectories, and Sect. 11.3.3 presents the
auditing technique that is used to audit user queries and preserve the privacy in the
answers to the queries.

11.3.1 Hermes++ Architecture

Hermes++ exploits on the trajectory storage functionality and the spatiotemporal
query processing capabilities of Hermes for providing privacy-aware queries to
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Fig. 11.2 The architecture of Hermes++ [22]

end-users. More specifically, Hermes defines a trajectory data type and a collection
of operations as an Oracle data cartridge, which is further enhanced by the TB-
tree access method [26] for efficient querying on trajectory data. Hermes++ directly
utilizes this functionality at the ORDBMS level to store fake trajectories, as well
as any historical information of all the users’ queries (and the corresponding
responses), in order to avoid different types of tracking attacks (e.g., sequential
tracking). It succeeds so by the embedded auditing module, which invokes the
Hermes queries and the fake trajectory generator algorithm. Since the entire
framework is built at the ORDBMS level, end-users are also able to pose their
queries through PL/SQL (i.e. not only via the GUI). As such, from an architectural
point of view, Hermes++ acts as a wrapper over the Hermes query engine and not as
a secure middleware. Figure 11.2 illustrates the Hermes++ architectural framework.

As observed in this architecture, the two key components of Hermes++ function-
ality are the fake trajectory generator and the auditing mechanism (see the top left
part of the architecture). These components are crucial for Hermes++ performance
and will be described in detail in the sections that follow.

11.3.2 Fake Trajectory Generation

The Fake Trajectory Generation algorithm, originally presented in [22], aims to
produce trajectories that follow the trend of the input set of real trajectories,
thus minimize the potential of privacy breaches when query results are released
to the end-users. This algorithm plays a central role in the privacy-aware query
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mechanism. When a user poses a query to the database, the engine provides the
answer only if at least L real user trajectories exist in the area. Lower bounding
the number of users is a simple way to prevent answering queries whose original
result set is very small (e.g., a range query in a region with very few trajectories),
as in this case the generated fake trajectories may fail to capture the trend of the
real trajectories. Prior to releasing any real trajectory, an approach is employed
(see Sect. 11.3.3) to protect any sensitive locations in the trajectory that could be
used by malevolent end-users to identify the corresponding user. To produce the
answer set for the query, the engine generates N fake trajectories, where N is an
owner-specified threshold. The algorithm has the ability to produce fake trajectories
for different types of queries, such as range, nearest neighbor and distance queries,
while it is used by the auditing mechanism (to be presented in Sect. 11.3.3) to handle
different types of attacks from malevolent users.

The fake trajectory generation algorithm is based on the idea of the Represen-
tative Trajectory Generation (RTG for short) algorithm, introduced by Lee et al.
[12]. The main idea of this algorithm is that the resulting representative trajectory
describes the overall movement of a set of directed segments, produced after
the partitioning of a set of trajectories. The partitioned trajectories (i.e., directed
segments) are clustered according to a distance function taking into account the
parallel, perpendicular and angle distance of the segments. The outcome of the RTG
algorithm, applied on each cluster, produces a smooth (more or less) linear trajectory
that best describes the corresponding cluster. However, the original RTG algorithm
fails to consider the temporal dimension of the generated trajectory. Therefore,
fake trajectory generation algorithm transforms the RTG output by appropriately
integrating the time dimension into the fake trajectory generation process.

Algorithm 11.1 provides the details of the fake trajectory generation approach.
The algorithm takes as an input a set of line segments Si resulting from a set
of trajectories which form the answer to a user query. In the first step (line 1),
the representative trajectory is produced based on this set of line segments of
trajectories. For simplicity, in Fig. 11.3 segments are depicted as consecutive parts

Fig. 11.3 Generating a fake trajectory over a set of line segments [22]
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of trajectories; however, in the general case, they could be disconnected and
independent segments that are filtered in a way that all move towards (more or
less) the same direction. This is because RTG assumes that all segments follow
the same directional pattern. Then, RTG sweeps a rotated vertical line according to
the average direction vector towards the major axis, counting the number of line
segments that are either the starting or the ending point of a line segment.

If the resulted number is equal to or greater than a threshold MinLns, the
algorithm calculates the average coordinate of those points and assigns the average
into the set of representative trajectory; otherwise, it proceeds to the next point.
To avoid segments that are too close to each other, a smoothing parameter γ is
utilized. The final outcome of this step is the trajectory with the dotted line shown
in Fig. 11.3.

After calculating the representative trajectory, the algorithm inserts the time
dimension to each line segment and performs additional computations to adjust
it and make it more plausible. In detail, a realistic length and speed for the
3D segments of the fake trajectory are examined and required. In Fig. 11.3, the
grey solid line depicts the final fake trajectory after assigning the time dimension
to the segments and adjusting them to be more realistic. In order to achieve
this, the algorithm takes as parameter the spatiotemporal Minimum Bounding Box
(MBB), which is set by the auditing mechanism and may be either the MBB
of the user’s query parameter (in the case of range queries), or the MBB that
is formed by the whole trajectories whose parts belong to the results of user’s
query. An additional set of input parameters that is provided by the auditing
mechanism corresponds to statistical computations regarding dmin, dmax, lmin, lmax,
which are the minimum and maximum trajectories’ duration and segments’ length,
respectively, and avgUmin, avgUmax, lavg, which are the average minimum and
maximum speed, as well as, the average length of the segments, respectively. The
Timestep parameter is the duration of a line segment and is considered to be constant
indicating that the moving object transmits its location update at regular temporal
intervals. The outcome of the algorithm is a set of line segments forming a trajectory,
which are stored in the array fake_trajectory.

Having calculated the set of line segments, the algorithm computes the initial
timestamp t0 that the fake trajectory will start at (line 2). The initial timestamp
is defined as: t0 = tMBBmin + random(0, SP ), where SP = (tmax − tmin) −
random(dmin, dmax) corresponds to a value used to ensure that time t0 of the first
point of the fake trajectory will not be placed near tMBBmax. Moreover, the maximum
timestamp of the fake trajectory should not exceed tMBBmax, otherwise it will differ
from the real trajectories. In order to ensure this, the maximum timestamp tmax

of the fake trajectory is calculated (line 3) as a function of the initial timestamp
t0 and the duration of the fake trajectory (i.e., |f ake_trajectory| ∗ T ). If (tmax >

tMBBmax) then a line simplification procedure is applied to reduce the number of line
segments (lines 5–9). Douglas-Peucker algoriothm [6] compresses the generated
segments by using a polyline representation and a parameter f that corresponds
to a distance threshold, defined as a percentage of the trajectory’s length (line 6).
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The compression procedure is repeated until tmax < tMBBmax and at each iteration
parameter f is halved.

Having calculated the initial timestamp, the algorithm adjusts the maximum
length lmax of the segments that have been generated (lines 10–13) in order to
manipulate long segments that will lead to the generation of non-realistic fake
trajectories. Specifically, if lmax is greater than twice the average length lavg, then
lmax is being recalculated as a random value between lavg and the twice of lavg.
Otherwise, the algorithm sets lmax randomly between lavg and lmax. Then, the
algorithm enters a loop (line 14) and assigns the time dimension to each line segment
of the fake trajectory. The initial timestamp t0 of the first line segment has been
calculated in previous steps. The timestamp of the ending point of this segment
equals to t0 increased by the sampling rate’s duration, i.e., is equal to t0 + Timestep.
The ending timestamp of the initial segment will be the starting timestamp of the
next segment. Generally, for each line segment it holds that ti+1 = ti + Timestep,
where 0 ≤ i < |fake_trajectory|).

Algorithm 11.1 Fake trajectory generation
function FAKE-GEN(line segments Si , minimum number of points MinLns, smoothing parameter
γ , time step of sampling rate Timestep, MBB(tMBBmin, tMBBmax), dmin, dmax, lmin, lmax, lavg,

avgUmin, avgUmax
1: fake _trajectory ← RTG (Si , MinLns, γ)
2: calculate initial timestamp t0 of the fake trajectory
3: tmax ← t0 + |fake_trajectory | ∗ Timestep
4: if tmax > tMBBmax then
5: repeat
6 Douglas _Peucker(fake_trajectory, f)
7: f ← f/2
8: tmax ← t0 + |f ake_trajectory | ∗ Timestep
9: until tmax < tMBBmax
10: if lmax > 2 ∗ lavg then
11: lmax ← random (lavg, 2 ∗ lavg)

12: else
13: lmax ← lavg ∗ random (1, lmax/lavg)

14: for each pi ∈ f ake_trajectory do
15: set timestamps of the initial and final point of pi

16: calculate speed Ui of pi

17: if Ui < avgUmin or Ui > avgUmax then
18: repeat
19: l ← random (lmin, lmax)

20: calculate new speed Ui of pi

21: until Umin < Ui < Umax
22: calculate angle ϕi

23: define coords of new ending point based on l

24: map match fake_trajectory
25: return fake_trajectory

After assigning the time dimension to the current segment pi (line 15), the
algorithm proceeds to calculate the speed Ui for each segment pi (line 16) and
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checks if it lies within avgUmin and avgUmax (lines 17–21). If it is outside this
range, the algorithm calculates a random segment length l, between lmin and lmax,
such that the speed Ui of the specific segment is within the limits. As a final step, the
coordinates of the new ending point are identified based on the length of segment l

that was calculated before (lines 22–23).
Depending on the direction of the segment and its angle φi with x-axis, the

fake trajectory generation algorithm calculates the new coordinates (xt+1, yt+1),
according to the following formulas (l is the length of the line segment):

φi = arctan 2(yt+1 − yt , xt+1 − xt )

xt+1 = xt + l ∗ cos (φ), yt+1 = yt + l ∗ sin (φ)

In the case that trajectory data are related to an underlying road network, the
fake trajectory generation algorithm map-matches the generated fake trajectory with
the specific road network (line 24) by employing a state-of-the-art map-matching
algorithm [5]. This functionality of the algorithm can lead to a more realistic
representation of the fake trajectory. After calculating the new coordinates, the
algorithm proceeds to the next segment and the procedure continues until all line
segments are examined. Finally, the generated fake trajectory is returned (line 25).

11.3.3 Query Auditing

The main goal of Hermes++ query engine is to prevent the potential attacks
that may occur while a malevolent user query the database. User identification
attack is possible when the query engine answers a query involving a spatial
(or spatiotemporal) region and then another, more specific query, involving part
of this region. In this case, the attacker can breach the enforced privacy model
by identifying the differences between the created fake trajectories which, in
turn, increases her confidence regarding information about the corresponding real
trajectories. To block this type of attack, Hermes++ uses auditing to track the queries
initiated by each end-user in the system and denies answering overlapping queries.

Sensitive location tracking attack allows malevolent users to learn sensitive
locations that real users have visited, and (possibly) reveal the identity of these users.
To block these attacks, Hermes++ protects the starting and the ending location of
trajectories, as well as any other (owner-specified) location in the course of the user
trajectory that can be considered as sensitive for the user. As an example of this type
of attack, assume a query that involves region Q4, illustrated in Fig. 11.4. Since
in this region the trajectory has its end point to a sensitive location, the attacker can
map-match this location and reveal the user’s identity. The attack can succeed even if
fake trajectories are generated in this region by collecting more precise information
about the real trajectories on every focused query, which in turn increases her
confidence. To block the sensitive location tracking attack, the auditing approach
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Fig. 11.4 Sensitive location tracking and sequential tracking attacks to user privacy [22]

identifies sensitive locations of trajectories that appear in the query window and
proceeds to dislocate them so that the sensitive location is not disclosed.

Finally, in the sequential tracking attack an attacker attempts to “follow” a user
trajectory in the system by using a set of focused queries involving spatiotemporal
regions that are adjacent to each other. To block this attack, the auditing algorithm
takes the necessary measures to smoothly continue the movement of fake trajecto-
ries from neighboring regions (returned as part of previous queries of the user) to
the current region.

The query auditing approach for shielding the database against malevolent
users (to be presented in Algorithm 11.3) is based on the Hide Sensitive Location
Algorithm, originally presented in [22], that is discussed first. This algorithm (listed
in Algorithm 11.2) takes as input a set of sensitive locations SL, a set of trajectories
T and the MBB formed by user’s query. Initially, the algorithm selects all sensitive
locations SL′ that lie inside the MBB (line 1). For each trajectory of the given set
T, it defines those sensitive locations, SL′

i , that correspond to the current trajectory
(lines 2–3). For every sensitive location, SL′

i,j , it examines if fake sub-trajectories
that hide the sensitive locations have been previously computed for this trajectory
and retrieves them from History (lines 4–6). Otherwise, it computes a new synthetic
(fake) trajectory that is then stored for future reference (lines 8–13).

Algorithm 11.2 produces fake (synthetic) sub-trajectories by applying a variant
of the GSTD trajectory synthesizer, called GSTD*, proposed by Pelekis et al. [24].
GSTD* produces trajectories following complex mobility patterns based on a given
distribution of spatiotemporal focal points, to be visited by each trajectory in a
specific order. The general idea behind GSTD* is to use the focal points so as to
attract each trajectory’s movement. When a particular trajectory has reached the area
around a focal point, having at the same time completed the respective temporal
predicate, the generation algorithm changes the attracting point to the next focal
point in the list, and so on, until no focal points are left unvisited.
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Fig. 11.5 Protecting
sensitive locations of user
trajectories [22]

The idea of hiding sensitive locations of a trajectory by misplacing its route
is illustrated in Fig. 11.5. The algorithm discovers the intersection points of the
trajectory with a circle that is formed around a sensitive location by taking as radius
the distance between the sensitive location from a point where the object would have
been moved after a certain period of time tw (i.e., tw is a temporal window), if it was
moving with its current speed. The idea is to use these intersection points as the focal
points in GSTD* (line 8) (see the filled gray circles in Fig. 11.5). If the number of
focal points is greater than two (i.e. the object enters and/or leaves the circle more
than two times), the algorithm utilizes the first (entering) and the last (leaving) one.
In case where the sensitive location is either the initial or the ending point causing
the creation of only one focal point, the algorithm randomly selects another random
focal point in the perimeter of the circle (lines 9–10). After determining focal points
it produces a synthetic (fake) trajectory by applying GSTD* between the two chosen
focal points as illustrated in the figure with the dotted line (line 11). The algorithm
returns the set of trajectories that does not any longer contain sensitive locations
(line 14).

Algorithm 11.2 Hide sensitive locations
function HideSensitiveLocations(set of sensitive locations SL, set of trajectories T, user’s query
MBB, temporal window tw)
1: SL′ ← SL inside MBB
2: for each (Ti ∈ T ) do
3: SL′

i ←select the subset of SL′ that correspond to Ti

4: for each (sensitive location of Ti, SL′
i,j ∈ SL

′
i
) do

5: if (fake sub-trajectory computed in the past for this SL′
i,j ) then

6: Retrieve the fake sub-trajectory from History and update Ti

7: else
8: f ocalpoints ← Intersection(Ti , buffer(SL′

i,j , tw))

9: if (
∣
∣f ocalpoints

∣
∣ = 1) then

10: f ocalpoints ←AddRandomPointOnSurface(buffer(SL′
i,j , tw))

11: Produce a fake trajectory by applying GSTD* on f ocalpoints

12: Update the part of Ti with the fake sub-trajectory
13: UpdateHistory
14: return (T)
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Algorithm 11.3, originally presented in [22], describes the query auditing
mechanism. When a new query is submitted to the engine, the auditing algorithm
first examines if this query involves an area that (partially) overlaps with that of a
previous query, submitted by the same end-user. If this is the case, then it denies
serving the query (lines 1–2) to block a potential user identification attack. If the
previous test is negative, the auditing mechanism executes the actual query of the
user and retrieves the result set (line 3). In order to prohibit the identification of an
individual by an adversary that is able to link sensitive locations that are visited by
a user (e.g., the home of the user) with trajectories that belong to the specific query,
the Hide Sensitive Location Algorithm presented earlier is invoked (line 4).

Having protected the sensitive locations of the trajectories in the querying region,
Algorithm 11.3 commands the generation of the necessary fake trajectories for this
region (lines 11–21). To generate the requested number of fake trajectories, the
algorithm calculates a set of basic statistics (line 11) that are needed by the fake
trajectory generation approach (Algorithm 11.1), while trying to find trajectories
that follow more or less the same direction in the query region (lines 12–20).
Specifically, a step dirstep (in degrees) is randomly selected (line 13) in the range
of (0, dirstepmax

), with dirstepmax being an input parameter that defines the size of
an angular range used to divide the Cartesian plane. As illustrated in Fig. 11.6, the
algorithm selects those segments from the real trajectories that belong to the range
(dirmin, dirmax) (see the solid lines in the figure), which are set by randomly assign-
ing dirmin and then setting dirmax equal to dirmin + dirstep. Subsequently, it calls
Algorithm 11.1 on these segments and passes the query window to create one new
fake trajectory. The same process is repeated for the next range of directions, which
leads to the generation of another fake trajectory, until the 360◦ range is exceeded.
Then, the algorithm selects a new dirstep and repeats the same process, until the
requested number of fake trajectories is generated (line 21). Note that the filtering
approach on the directional property of the segments guarantees that the fake
generation algorithm will produce nice representative trajectories of the query result,
as it acts as a simple clustering methodology on the overall set of available segments.

After generating the fake trajectories, Algorithm 11.3 takes the necessary
measures to protect the privacy of the users whose movement is depicted in the

Fig. 11.6 Selecting segments
from real trajectories [22]
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query window by smoothly continuing the movement of the fake trajectories from
neighboring regions, returned as part of previous queries posed by the end-user, to
the current one. Specifically, the algorithm examines if the query posed by the end-
user has a nearby query made by the same end-user in the past, which does not
exceed a spatial sthr and a temporal tthr threshold. In case that the query has only
one such neighbor, the algorithm performs a one-by-one matching (line 23) between
the fake trajectories of MBB and MBBhist (i.e. the nearby query saved in History). In
detail, it first finds the MBB with the minimum number of fake trajectories and then
it randomly matches each one of them with fakes from the other query, by producing
pairs Pi of fake trajectories. For each pair, it examines if MBB touches MBBhist or
if they are apart. In the first case, illustrated in Fig. 11.7a, a space time translation is
performed to connect the two fake trajectories. The fake trajectory is transferred in
the x and y axes, if necessary.

Algorithm 11.3 Query auditing algorithm
function TrajAuditor (user’s query MBB, number of generated fake trajectories N, lower bound
threshold L, spatial threshold sthr , temporal threshold tthr , maximum direction step dirstepmax

, set
of sensitive locations SL, temporal window tw, Minlns, γ, Timestep)
1: if CheckHistory(user posed in the past an overlapping query w.r.t. MBB) = true then
2: Privacy threat: Overlapping queries
3: TR←SpatioTemporalRangeQuery(MBB)
4: TR← HideSensitiveLocations(SL, TR, MBB, tw)
5: if (CheckHistory(user posed in the past a nearby query w.r.t. sthr , tthr ) = true) then
6: Privacy threat: Sequential tracking attack
7: else
8: if |T R| ≤ L) then
9: Privacy threat: Lower bound threshold violation
10: else
11: CalculateStatistics (dmin, dmax, lmin, lmax, lavg, avgUmin, avgUmax)

12: repeat
13: dirstep ← random(0, dirstepmax

)

14: dirmin = random(0,360) ; dirmax = dirmin + dirstep

15: repeat
16: Si ← FilterbyDirection(dirmin, dirmax, T R)

17: FT←FT ∪ Fake_Gen(Si , MinLns, γ, Timestep, MBB, Statistics)
18: dirmin ← dirmin + dirstep

19: dirmax ← dirmax + dirstep

20: until dirmax > 360
21: until |FT | = N

22: Retrieve from History all fakes FT hist from a nearby query of the user w.r.t. sthr , tthr

23: Pmatch ← MinRandomMax(FT , FT hist )

24: for each pair Pi

(

Tj , Tk

)

ε P match do
25: if (MBB touches a historic query of the user) then
26: SpaceTimeTranslation(Pi)

27: else
28: f ocalpoints ← (Tjend

, Tkstart )

29: GSTD* (f ocalpoints )
30: Update in FT the fake trajectory that corresponds to Pi

31: FT ← HideSensitiveLocations(SL, FT, MBB, tw)
32: UpdateHistory
33: return (T R ∪ FT )



296 D. Kopanaki et al.

Fig. 11.7 Prohibiting
sequential tracking: (a) case I,
(b) case II [22]
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Then, the algorithm checks the time dimension to assure that there is no temporal
gap. If such a gap exists, the algorithm recalculates the timestamp of each point of
the fake trajectory. In the second case (illustrated in Fig. 11.7b), where a spatial
and/or a temporal gap exists between MBB and MBBhist, Algorithm 11.3 generates
a connection-trajectory (see the dotted lines) between them using GSTD*. Focal
points are the ending point of the one trajectory with the starting point of its
matching trajectory in Pi . After generating the fake trajectories, the algorithm
applies the hiding process of the sensitive locations also for these trajectories
(line 31), to conceal the fact that they are fakes.

As a last remark, TrajAuditor (Algorithm 11.3) commands the generation of the
necessary number of fake trajectories based on the parts of the real trajectories
that appear inside the query window. An alternative approach (henceforth called
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TrajFaker) would be to generate wide fake trajectories that exceed the limits of the
window the user submitted. In this case, auditing would still be applicable but not
forced, contrary to the case of TrajAuditor. TrajFaker differs from TrajAuditor in the
following steps. When a user executes a query, TrajFaker finds the trajectories that
are contained in the specific spatiotemporal window (or the k nearest neighbors in
case of k − NN queries) and then retrieves the whole trajectories and not the parts
of them that lie inside the window. Subsequently, it generates fake trajectories by
employing Algorithm 11.1 on the whole trajectories. Each generated fake trajectory
is examined to see whether it crosses the spatiotemporal window of the query and,
if so, it is included to the returning set. Otherwise, the trajectory is discarded and
the same process is repeated. All generated fake trajectories are stored in order
to participate to the generation of other fake trajectories. Finally, there are no
privacy threats with respect to sequential tracking as before, since the generated
fake trajectories are based on the whole trajectories and not parts of them, and are
stored. If an adversary tries to execute overlapping or sequential queries, the fakes
will appear in all of these queries’ answers.

11.4 Private-Hermes Benchmark Framework

Building on top of Hermes++, Private-Hermes, developed by Pelekis et al. [23],
integrates algorithms that enable the privacy-aware publishing of personal mobility
data under a common, benchmark-oriented framework and gives the ability to users
to evaluate the utility either of the fake or the sanitized trajectories via a variety
of well-known mobility data mining algorithms, i.e. various types of clustering,
frequent sequential patterns, etc. The idea is that by adding fake trajectories (that
affect the cardinality of the MOD), as well as perturbating original ones (that affects
the shape of the MOD) should not destroy the patterns hidden in the original
MOD. Such an evaluation can be done by using clustering and frequent pattern
mining techniques, appropriate for mobility data. Private-Hermes incorporates the
following state-of-the-art algorithms:

• Clustering: Private-Hermes supports TRACLUS [12], T-Optics [14], and CenTR-
I-FCM [24]. Two traditional clustering techniques, namely K-medoids [11] and
Bisecting K-medoids [28], are also included with the special feature that the user
can choose different distance functions between the trajectories (i.e. grouping
only by their starting or destination point, without taking into account the whole
route) [20].

• Trajectory representatives: related to cluster analysis, a useful requirement is
to extract a compact representation of a set of trajectories (e.g. a cluster found
through cluster analysis), in terms of “representative” trajectory. To this end,
Private-Hermes supports CenTra “centroid” trajectories [24] and TRACLUS
“typical” trajectories [12].
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• Frequent pattern mining: Private-Hermes incorporates the T-pattern mining
technique [7], which models sequences of visited regions, frequently visited in
the specified order with similar transition times, out of trajectory databases.

• Sampling: Private-Hermes supports a state-of-the-art trajectory sampling tech-
nique proposed in [25].

• Trajectory anonymization: Private-Hermes incorporates NWA [1] and W4M [2].

The above-presented functionality is integrated in the Hermes MOD engine [21]
by appropriately extending the query language with new constructs, in a fashion
origi-nally proposed by Ortale et al. [19]. This allows users to progressively analyze
the MOD and interchange between querying and mining operations. In detail,
Pivate-Hermes users are given the ability to perform:

• Querying and mining operations on Hermes: the platform is capable of exe-
cuting range and k − NN queries on Hermes as well as mining operations
using the algorithms listed above. Queries and mining operations are posed
via Private-Hermes GUI, which provides essential capabilities, including query
predicate selection, parameters selection and results projection. Graphical map
user-interaction for predicate definition is also supported.

• Privacy-aware querying on Hermes++: users are able to run range and k − NN

queries enabling Hermes++, which protects from privacy attacks. The data owner
requires that at least a certain number of trajectories are returned to the end-users
in response to their queries, for all different types of supported queries. The result
consists of a set of carefully crafted, realistic fake trajectories aiming to preserve
the trend of the original user trajectories.

• Comparison/evaluation of anonymization algorithms: as already mentioned,
Private-Hermes integrates NWA and W4M anonymization algorithms. Both
algorithms take as input trajectories which may have been extracted from
a query posed to Hermes, and transform them into anonymous equivalents,
subsequently stored in the MOD. An advantage of the platform is its ability to
design and execute benchmarks that evaluate the results from the application of
anonymization algorithms regarding the distortion over real user trajectories. The
incorporated data mining techniques can be applied, and patterns steaming from
original data with patterns resulting from anonymized data can be compared.
This can be achieved by executing queries in the original and the anonymized
data (or patterns), and comparing the results.

• Profiling end-user’s behavior to identify malevolent users: The platform supports
query auditing techniques [8], which can be used to monitor the behavior of
the end-users and build user profiles. These user profiles can be subsequently
analyzed by the data owner, as explained in [8], to help her identify suspicious
behavior of end-users in the system.

Figures 11.8 and 11.9 illustrate representative snapshots of Private-Hermes GUI.
More specifically, in Fig. 11.8a, a dataset has been extracted using a range query,
while in Fig. 11.8b the dataset has been anonymized using NWA [1]. From these
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Fig. 11.8 The result of a range query in its (a) original vs. (b) NWA anonymized version [23]

outputs, a user can compare the distortion that has been caused to the dataset due
to the anonymization algorithm. As a progressive analysis, Fig. 11.9a illustrates the
result from the application of T-Optics [14] clustering on the original dataset (i.e.
the one illustrated in Fig. 11.8a) in comparison with Fig. 11.9b, which presents the
respective result when T-Optics is applied on the anonymized dataset (i.e. the one
illustrated in Fig. 11.8b).

As for the technicalities of Private-Hermes components, illustrated in Fig. 11.10,
the user interacts with a GUI with 3D rendering capabilities developed in Java and
based on the Swing GUI widget toolkit [18]. The results from the operations that the
program supports are visualized in the 3D globe provided by NASA World Wind
[15]. To draw the charts reporting performance results, the JFreeChart library is
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Fig. 11.9 T-Optics applied on (a) the original vs. (b) the anonymized dataset [23]

used [17]. Every component and library used during the development process is
open source. Through the provided GUI, the user is able to setup his/her benchmark
or, more generally, his/her analysis scenario. Private-Hermes retrieves the necessary
data by calling the Hermes MOD engine.

The supported mobility data mining and anonymization algorithms have been
incorporated as modules of the extensible DAEDALUS’s MO-DMQL [19], while
both of these sets of algorithms exchange data (i.e. real/fake/anonymized trajectories
and mining models) directly with the database layer.
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Fig. 11.10 Private-Hermes architecture [23]

11.5 HipStream: A Privacy-Preserving System for Managing
Mobility Data Streams

The ability to build database systems able to connect individuals’ information across
different data repositories turns out to be simpler since individual information
become more ubiquitous. Consequently, the privacy provisions incorporated into
data collections and the privacy regulations that shield personal data, are debilitated.
Data owners have no guarantee that the data that are donating are not misused for
the sake of knowledge extraction since they have no control whether the privacy
policies are enforced or not.

In order to deal with the lack of systemic control over the data use, the
concept of Hippocratic management system was introduced by Agrawal et al.
[4] to guarantee privacy and security of information they manage as a founding
principle. Hippocratic databases extend the functionalities of traditional databases
with privacy-preserving capabilities. The goal is to prevent disclosure of private
information by placing data donor privacy as a main concern throughout data
collection and management. Ten fundamental principles have been proposed that
guide the behavior of Hippocratic stream data management:

• Purpose Specification: description of the purpose for which the data is collected
needs to be collected and associated with the data itself.

• Consent: the purpose for which the data is collected has the consent of the user.
• Limited collection: collect the minimum amount of data from a user that satisfies

the user’s specified purposes
• Limited use: the purposes of the collected data should not be violated by

operations carried out.
• Limited Disclosure: no personal information should be released to third parties

without data owner’s permission.



302 D. Kopanaki et al.

• Limited Retention: after the purpose of data collection is satisfied, user’s data
should be directly deleted.

• Accuracy: the information stored in the database system should be accurate and
up-to-date.

• Safety: the adoption of security measures for protecting sensitive data from
various types of attack.

• Openness: the individual whose data are recorded is allowed to access all in-
formation that is stored in the database and is related to herself.

• Compliance: data owners are able to validate that the privacy principles are
conformed.

Wu et al. [31] developed a data management system, the so-called HipStream,
which implements some of the aforementioned Hippocratic principles such as
limited collection, limited use and limited disclosure. Data streams are collected
and dropped dynamically in a system according to the data owner’s policy.
When data tuples arrive, the system is responsible to decide whether the data
should be collected to serve the query or stored for analysis purposes in order to
achieve limited collection. Controlling the access to the data w.r.t. data provider’s
preferences leads to limited disclosure. HipStream is able to preserve the privacy of
the data streams that are shared between data providers and data users. The system
guarantees not only that data providers’ defined privacy specifications are enforced
but also that the access to the data is limited. The idea behind HipStream is that
service providers are allowed to access part of the data streams which are entirely
controlled by data providers.

The architecture of HipStream is illustrated in Fig. 11.11. The basic components
of the system are Security Manager, Privacy Controller, Query Management and
Stream Manager. Through Web interface each end user has the ability to generate,
retrieve and manage protected stream data.

A data owner is first registered to the system and specifies her privacy preferences
such as who, for what purpose, under what conditions and which parts. Privacy
policies are designed based on modelling users, data to be accessed and data
accessing purposes with hierarchical categories. The preferences are then registered
into the Policy Controller which is responsible for maintaining the privacy.

Prior to the registration of a data stream to the system, the Stream Registration
acquires the purpose of the stream data and the consent of the stream owner. The
Stream Manager receives the input stream and prepares it for further processing
inside the system.

On the other hand, service providers may pose queries directly to the system
while defining at the same time the query purpose. The query is forwarded through
query getaway to the query rewriter. Query rewriter is then responsible to examine if
the privacy preferences are satisfied. In case where the policies are not met, the query
is rewritten. The query is dropped if its purpose is not in line with the authorised
purpose on using the data. At this level, limited disclosure and limited use principles
are enforced.

Next, the query is forwarded to the query manager and the stream filter. The
stream filter is in charge of enforcing limited collection principle. The records that
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Fig. 11.11 HipStream architecture [31]

are participating to the answer set are maintained while the others are dropped.
Moreover, the attributes that are not asked by any query are anonymized (i.e.
replaced by null). Query processor executes the registered continuous queries and
streams the result out to the query owner.

11.6 Conclusions

In this chapter, we presented techniques and Mobility Data Management Systems
that have been proposed in the literature able to preserve the privacy of the
users whose data are kept to the hosting organisation for analysis purposes.
Hermes++ is a privacy-aware query engine that enables the remote analysis of
user mobility data, supports a variety of popular spatial and spatiotemporal queries
and uses auditing and fake trajectory generation techniques to identify and block,
respectively, potential attacks to user privacy. On top of Hermes++, Private-Hermes
is an integrated platform for applying data mining and privacy-preserving querying
over mobility data. Finally, Hipstream, a data stream management system aiming
at preserving users’ privacy by enforcing Hippocratic principles was presented.
Limited collection, limited use and limited disclosure of data are the main privacy
requirements that the system implements.
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Chapter 12
Privacy-Preserving Release of
Spatio-Temporal Density

Gergely Acs, Gergely Biczók, and Claude Castelluccia

Abstract In today’s digital society, increasing amounts of contextually rich spatio-
temporal information are collected and used, e.g., for knowledge-based decision
making, research purposes, optimizing operational phases of city management,
planning infrastructure networks, or developing timetables for public transportation
with an increasingly autonomous vehicle fleet. At the same time, however, publish-
ing or sharing spatio-temporal data, even in aggregated form, is not always viable
owing to the danger of violating individuals’ privacy, along with the related legal and
ethical repercussions. In this chapter, we review some fundamental approaches for
anonymizing and releasing spatio-temporal density, i.e., the number of individuals
visiting a given set of locations as a function of time. These approaches follow
different privacy models providing different privacy guarantees as well as accuracy
of the released anonymized data. We demonstrate some sanitization (anonymiza-
tion) techniques with provable privacy guarantees by releasing the spatio-temporal
density of Paris, in France. We conclude that, in order to achieve meaningful
accuracy, the sanitization process has to be carefully customized to the application
and public characteristics of the spatio-temporal data.

12.1 Introduction

Spatio-temporal, geo-referenced datasets are growing rapidly nowadays. With
billions of location-aware devices in use worldwide, the large scale collection
of space-time trajectories of people produces gigantic mobility datasets. Such
datasets are invaluable for traffic and sustainable mobility management, or studying
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accessibility to services. Even more, they can help understand complex processes,
such as the spread of viruses or how people exchange information, interact, and
develop social interactions. While the benefits provided by these datasets are
indisputable, their publishing or sharing is not always viable owing to the danger of
violating individuals’ privacy, along with the related legal and ethical repercussions.
This problem is socially relevant: companies and researchers are reluctant to publish
any mobility data by fear of being held responsible for potential privacy breaches.
This limits our ability to analyze such large datasets to derive information that could
benefit the general public.

Unsurprisingly, personal mobility data reveals tremendous sensitive information
about individuals’ behavioural patterns such as health life or religious/political
beliefs. Somewhat more surprisingly, such mobility data is also unique to individu-
als even in a relatively large population containing millions of users. For instance,
only four spatio-temporal positions are enough to uniquely identify a user 95%
of the times in a dataset of one and a half million users [13], even if the dataset
is pseudonymized, i.e., identitifiers such as personal names, phone numbers, home
address are suppressed. Moreover, the top 2 mostly visited locations of an individual
is still unique with a probability of 10–50% [63] among millions of users. Notice
that the most visited locations, such as home and working places, are easy to learn
today from different social media where people often publicly reveal this seemingly
harmless personal information. Therefore, publishing mobility datasets would put at
risk our own privacy; if someone knows where we live and work could potentially
find our record and learn all of our potentially sensitive location visits. Moreover,
due to the large uniqueness of records, these datasets are regarded as personal
information under several laws and regulations internationally, such as overall in the
European Union. Therefore, their release prompt not only serious privacy concerns
but also possible monetary penalties [18].

12.1.1 Privacy Implications of Aggregate Location Data

One might argue that publishing aggregate information, such as the number of
individuals at a given location, is enough to reconstruct aggregate mobility patterns,
and has no privacy implications. Indeed, aggregated information is usually related
to large groups of individuals and is seemingly safe to disclose. However, this
reasoning is flawed as shown next. First, an attack is described that can reconstruct
even entire individual trajectories from aggregate location data, if aggregates are
periodically and sufficiently frequently published (e.g., in every half an hour).
We also illustrate the potential privacy threats of irregularly published aggregate
location data, for example, when a querier (or the adversary) specifies the spatio-
temporal points whose visits are then aggregated and released.

Consequently, aggregation per se do not necessarily prevent privacy breaches,
and we need additional countermeasures to guarantee privacy for individuals even
in a dataset of aggregate mobility data such as spatio-temporal densities.
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12.1.1.1 Reconstruction from Periodically Published Aggregate Data

The attack described in [61] successfully reconstructed more than 70% of 100,000
trajectories merely from the total number of visits at 8000 locations, which were
published every half an hour over a whole week in a large city. The attack exploits
three fundamental properties of location trajectories:

Predictability: The current location of an individual can be accurately predicated
from his previous location because consecutively visited locations are usually
geographically close. This implies that trajectories can be well-separated in
space; if two trajectories are far away in time t then they remain so in time (t +1)

assuming that t and t + 1 are not too distant in time.
Regularity: Most people visit very similar (or the same) locations every day.

Indeed, human mobility is governed by daily routines and hence periodic. For
example, people go to work/school and return home at almost the same time
every day.

Uniqueness: Every person visits quite different locations than any other person
even in a very large population, which has already been demonstrated by several
studies. For example, any four locations of an individual trajectory are unique to
that trajectory with a probability of more than 95% for one and a half million
individuals [13].

The attack has three main phases. In the first phase, it reconstructs every
trajectory within every single day by exploiting the predictability of trajectories.
This is performed by finding an optimal match of locations between consecutive
time slots, where geographically close locations are more likely to be matched.
After the first phase, we have the daily fragments of every trajectory, but we do
not know which fragments belong to the same trajectory. Hence, in the second
phase, complete trajectories are reconstructed by identifying their daily fragments.
This is feasible due to the regularity and uniqueness properties of trajectories, i.e.
every trajectory has similar daily fragments which are also quite different from the
fragments of other trajectories. Similarity of fragments can be measured by the
frequency of visits per location within a fragment. Finally, in the last phase, re-
identification of individuals are carried out by using the uniqueness property again;
a few locations of any individual known from external sources (e.g., social media)
will single out the individual’s trajectory [13]. As individual trajectories are regarded
as personal data in several regulations internationally, the feasibility of this attack
demonstrates that aggregate location data can also be regarded as personal data.

12.1.1.2 Reconstruction from Irregularly Published Aggregate Data

Another approach of releasing spatio-temporal density is to answer some counting
queries executed on the location trajectories. The querier is interested in the number
of people whose trajectories satisfy a specified condition (e.g., the number of
trajectories which contain a certain hospital). Queries can be filtered instantly by



310 G. Acs et al.

an auditor, e.g. all queries which have too small support, say less than k (i.e., only
k trajectories satisfy the condition), are simply refused to answer. However, this
approach is not enough to prevent privacy breaches; if the support of two queries
are both greater than k, their difference can still be 1. For instance, the first query
may ask for the number of people who visited a hospital, and the second query for
the number of people who visited the same hospital except locations L1 and L2. If
the querier knows that L1 and L2 are unique to John then it learns whether John
visited the hospital.

Defenses against such differencing attacks are not straightforward. For example,
verifying whether the answers of two or more queries disclose any location visit can
be computationally infeasible; if the query language is sufficiently complex there is
no efficient algorithm to decide whether two queries constitute a differencing attack
[30]. In Sect. 12.3.1, we show more principled techniques to recover individual
location visits from the answers of a given query set.

12.1.2 Applications of Spatio-Temporal Density

Spatio-temporal density data, albeit aggregated in nature, can enable a wide variety
of optimization use cases by providing a form of location awareness, especially
in the context of the Smart City concept [46]. Depending on both its spatial
and temporal granularity, such data can be useful for optimizing the (1) design
and/or (2) operational phases of city management with regard to e.g., public
transportation, local businesses or emergency preparedness. Obviously, spatial
resolution determines the scale of such optimization, e.g., whether we can tell a
prospective business owner to open her new cafe in a specific district or a specific
street. On the other hand, it is the temporal granularity of density data that separates
the application scenarios in terms of design and operational use cases.

In case of low temporal granularity (i.e., not more than a few data points per area
per day), city officials can use the data for optimizing design tasks such as:

• planning infrastructure networks, such as new roads, railways or communication
networks;

• advising on the location of new businesses such as retail, entertainment and food;
• developing timetables for public transportation;
• deploying hubs for urban logistics systems such as post, vehicle depos (e.g., for

an urban bike rental system), electric vehicle chargers and even city maintenance
personnel;

In case of high temporal granularity (i.e., several data points per area per hour)
[33], spatio-temporal density data might enable on-the-fly operational optimization
in the manner of:

• reacting to and forecasting traffic-related phenomena including traffic anomaly
detection and re-routing;
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• implementing adaptive public transportation timetables also with an increasingly
autonomous vehicle fleet [52];

• scheduling maintenance work adaptively causing the least amount of disturbance
to inhabitants;

• promoting energy efficiency by switching off unneeded electric equipment on-
demand (cell towers, escalators, street lighting);

• location-aware emergency preparedness protocols in case of natural disasters or
terrorist attacks [7].

These lists of application scenarios are not comprehensive. Interestingly, such an
aggregated view on human mobility enables a large set of practical applications.

12.2 Privacy Models

Privacy has a multitude of definitions, and thus different privacy models have been
proposed. In terms of privacy guarantee, we distinguish between syntactic and
semantic privacy models. Syntactic models focus on syntactic requirements of the
anonymized data (e.g., each record should appear at least k times in the anonymized
dataset) without any guarantee on what sensitive information the adversary can
exactly learn about individuals. As opposed to this, semantic models1 are concerned
with the private information that can be inferred about individuals using the
anonymized data as well as perhaps some prior (or background) knowledge about
them. The commonality of all privacy models is the inherent trade-off between
privacy and utility: guaranteeing any meaningful privacy requires the distortion
of the original dataset which yields imprecise, coarse-grained knowledge even
about the population as a whole. There is no free lunch: perfect privacy with
maximally accurate anonymized data is impossible. Each model has different
privacy guarantees and hence provide different accuracy of the (same) data.

12.2.1 Syntactic Privacy Models

One of the most influential privacy model is k-anonymity, which was first introduced
in computer science by Sweeney [53], albeit the same notion had already existed
before in statistical literature. In general, for location data, k-anonymity guarantees
that any record is indistinguishable with respect to spatial and temporal information

1In our context, semantic privacy is not analogous to semantic security used in cryptography, where
ciphertexts must not leak any information about plaintexts. Anonymized data (“ciphertext”) should
allow partial information leakage about the original data (“plaintext”), otherwise any data release
would be meaningless. Such partial leakage should include the release of useful population (and
not individual specific) characteristics.
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from at least k − 1 other records. Hence, an adversary who knows some attributes
of an individual (such as few visited places) may not be able decide which record
belongs to this person. Now, let us define k-anonymity more formally.

Definition 12.1 (k-Anonymity [53]) Let P = {P1, . . . , P|P|} be a set of public
attributes, and S = {S1, . . . , S|S|} be a set of sensitive attributes. A relational table
R(P,S) satisfies k-anonymity iff, for each record in r in R, there are at least k − 1
other records in R which have the same public attribute values as r .

k-anonymity requires (syntactic) indistinguishability of every record in the
dataset from at least k − 1 other records with respect to their public attributes.
Originally, public attributes included all (quasi)-identifiers of an individual (such
as sex, ZIP code, birth date) which are easily learnable by an adversary, while
the sensitive attribute value (e.g., salary, medical diagnosis, etc.) of any individual
should not be disclosed. Importantly, the values of public attributes are likely to be
unique to a person in a population [23], and hence can be used to link multiple
records of the same individual across different datasets, if these datasets share
common public attributes. In the context of location data, where a spatio-temporal
point (L, t) corresponds to a binary attribute whose value is 1 if the individual
visited location L at time t and 0 otherwise, such distinction of public and sensitive
attributes is usually pointless. Indeed, the same location can be insensitive to one
person while sensitive to another one (e.g., a hospital may be an insensitive place
for a doctor, who works there, and sensitive for a patient). Therefore, in a location
dataset, k-anonymity should require that each record (trajectory) must be completely
identical to at least k − 1 other trajectories in the same dataset. Syntactically
indistinguishable trajectories/records form a single anonymity group.

k-anonymity can be achieved by generalizing and/or suppressing the location
visits of individuals in the anonymized dataset. Generalization can be performed
by either forming clusters of similar trajectories, where each cluster has at least k

trajectories, or by replacing the location and/or time information of trajectories with
a less specific, but semantically consistent, one. For example, cities are represented
by their county, whereas minutes or hours are represented by the time of day
(morning/afternoon/evening/night).

A relaxation of k-anonymity, called km-anonymity, was first proposed in [54].
This model imposes an explicit constraint on the background knowledge of the
adversary, and requires k-anonymity with respect to this specific knowledge. For
example, if the adversary can learn at most m location visits of an individual,
then, for any set of m location visits, there must be at least 0 or k records in the
anonymized dataset which contain this particular set of visits. Formally:

Definition 12.2 (km-Anonymity [54]) Given a dataset D where each record is
subset of items from a universe U. D is km-anonymous iff for any m items from
U there are 0 or at least k records which contain these items.

In our context, universe U represents all spatio-temporal points, and an individ-
ual’s record has an item from U if the corresponding spatio-temporal is visited by
the individual.
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Table 12.1 Examples for k- and km-anonymity, where each row represents a record, public and
sensitive attributes are not distinguished, and temporal information is omitted for simplicity

(a) Original (b) 2-anonymous (c) 22-anonymous

No. Locations No. Locations No. Locations

1 {LA} 1 {West US} 1 {LA}

2 {LA, Seattle} 2 {West US} 2 {LA, Seattle}

3 {NYC, Boston} 3 {NYC, Boston} 3 {West US}

4 {NYC, Boston} 4 {NYC, Boston} 4 {West US}

5 {LA, Seattle, NYC} 5 {LA, Seattle, West US} 5 {LA, Seattle, West US}

6 {LA, Seattle, NYC} 6 {LA, Seattle, West US} 6 {LA, Seattle, West US}

7 {LA, Seattle, NYC, Boston} 7 {LA, Seattle, West US} 7 {LA, Seattle, West US}

22-anonymity requires fewer generalizations and hence provides more accurate data at the cost of
privacy

If m equals the maximum number of location visits per record, then km-
anonymity boils down to standard k-anonymity. However, the rationale behind
km-anonymity is that the adversary is usually incapable of learning more than a few
locations visits per individual (e.g., most people publicly reveal only their home
and working places on social media, in which case m = 2 if temporal data is
disregarded). Clearly, requiring indistinguishability with respect to only m instead
of all location visits of an individual requires less generalization and/or suppression
thereby providing more accurate anonymized data. This is also illustrated in
Table 12.1.

We must note that many more different syntactic privacy models (e.g., �-diversity
[39], t-closeness [37], (L,K,C)-privacy [42], etc.) have been proposed to mitigate
the deficiencies of k-anonymity. We refer the interested reader to [21] and [56] for
more details on privacy models and their usage. In this chapter, we only consider
syntactic anonymization schemes which rely on k- or km-anonymity.

12.2.2 Semantic Privacy Models

Most syntactic privacy models, such as k-anonymity, aim to mitigate only identity
disclosure, when the adversary re-identifies a record in the dataset (i.e., infer the
exact identity of the record owner). Although re-identification is clearly undesirable
and explicitly addressed by most legal regulations worldwide, it is not a necessary
condition of privacy violations. That is, locating the anonymity group of a person
(e.g., using his home and working places), the group itself can still leak a person’s
visited places no matter how large the group is. For instance, each of the k trajectory
may contain the same sensitive place, which means that the person also passed this
place. The real culprit is the lack of uncertainty about the individuals’ presence
in the anonymized dataset; even a knowledgeable adversary, who may know that
a person’s record is part of the original dataset, should not be able learn if this
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record was indeed used to generate the anonymized data. Another common pitfall
of syntactic privacy models is the lack of composability; the privacy of independent
releases of the same or correlated datasets should not collapse but rather “degrade
gracefully”. However, this does not hold for k-anonymity: the composition of k-
anonym datasets, where k can be arbitrarily large, can only be 1-anonym (i.e., the
anonymity guarantee completely collapses), which is also demonstrated in [22].
Composability is a natural requirement of any privacy model in the era of Big
Data where many different pieces of personal data get anonymized and published
about people by many different stakeholders independently. These different pieces
may be gathered and combined by a knowledgeable adversary in order to breach
individuals’ privacy. Next, we present a model which addresses these concerns.

Intuitively, differential privacy [15] requires that the outcome of any computation
be insensitive to the change of any single record inside and outside the dataset.
It allows a party to privately release a dataset: with perturbation mechanisms, a
function of an input dataset is modified, prior to its release, so that any information
which can discriminate a record from the rest of the dataset is bounded [16].

Definition 12.3 (Differential Privacy [16]) A privacy mechanism A guarantees
(ε, δ)-differential privacy if for any database D and D′, differing on at most one
record, and for any possible output S ⊆ Range(A),

Pr[A(D) ∈ S] ≤ eε × Pr[A(D′) ∈ S] + δ

or, equivalently, PrO∼A(D)

[

log
(

Pr[A(D)=O]
Pr[A(D′)=O]

)

> ε
]

≤ δ.

Here, ε is typically a modest value (i.e., less than 1), and δ is a negligible function
of the number of records in D (i.e., less then 1/|D|) [16].

We highlight two consequences of the above definition which are often over-
looked or misinterpreted. First, differential privacy guarantees plausible deniability
to every individual inside as well as outside of the dataset, as an adversary, provided
with the output of A, can draw almost the same conclusions about any individual
no matter if this individual is included in the input of A or not [16]. Specifically,
Definition 12.3 guarantees that every output of algorithm A is almost equally
likely (up to ε) on datasets differing in a single record except with probability
at most δ. This implies that every possible binary inference (i.e., predicate) has
almost the same probability to be true (false) on neighboring datasets [15]. For
example, if an adversary can infer from A(D) that an individual, say John, visited
a hospital with probability 0.95, where D excludes John’s record, then the same
adversary infers the same from A(D′) with probability ≈ e±ε × 0.95 + δ, where
D′ = D ∪ {John’s record}. This holds for any adversary and inference irrespective
of the applied inference algorithm and prior (background) knowledge.2 That is, the

2The inference algorithm and background knowledge influences only the probability of the
conclusion, which is 0.95 in the current example.
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privacy measure ε and δ are “agnostic” to the adversarial background knowledge
and inference algorithm.

Second, Definition 12.3 does not provide any guarantee about the (in)accuracy of
any inference. There can be inferences (adversaries) which may predict the hospital
visit of John quite accurately, e.g., by noticing that all records, which are very
similar to John’s record (such as the records having the same age and profession
as John), also visited a hospital [11], while other inferences may do a bad job of
prediction as they cannot reliably sort out the records being similar (correlated) to
John’s record. Definition 12.3 guarantees that the accuracy of any inferences, no
matter how sensitive are, remain unchanged (up to ε and δ) if John’s own record is
included in the anonymized data. In other words, differential privacy allows to learn
larger statistical trends in the dataset, even if these trends reveal perhaps sensitive
information about each individual, and protects secrets about individuals which can
only be revealed with their participation in the dataset.3 Learning such trends (i.e.,
inferences which are generalizable to a larger population in interest) is the ultimate
goal of any data release in general.

Therefore, the advantage of differential privacy, compared to the many other
models proposed in the literature, is twofold. First, it provides a formal and
measurable privacy guarantee regardless what other background information or
sophisticated inference technique the adversary uses even in the future. Second,
following from Definition 12.3, it is closed with respect to sequential and parallel
composition, i.e., the result of the sequential or parallel combination of two
differential private algorithms is also differential private.

Theorem 12.1 ([40]) If each of A1, . . . ,Ak is (ε, δ)-differential private, then their
k-fold adaptive composition4 is (kε, kδ)-differential private.

Composition property has particular importance in practice, since it does not
only simplify the design of anonymization (sanitization) solutions, but also allows
to measure differential privacy when a given dataset, or a set of correlated datasets,
is anonymized (and released) several times, possibly by different entities.

There are a few ways to achieve DP and all of them are based on the
randomization of a computation whose result ought to be released. Most of these
techniques are composed of adding noise to the true output with zero mean and
variance calibrated to desired privacy guarantee which is measured by ε and δ. A
fundamental concept of these techniques is the global sensitivity of the computation
(function) [16] whose result should be released:

Definition 12.4 (Global Lp-Sensitivity) For any function f : D → R

d , the Lp-
sensitivity of f is Δpf = maxD,D′ ||f (D) − f (D′)||p, for all D,D′ differing in at
most one record, where || · ||p denotes the Lp-norm.

3These secrets are the private information which discriminate the individual from the rest of the
dataset and should be protected.
4Adaptive composition means that the output of Ai−1 is used as an input of Ai , that is, their
executions are not necessarily independent except their coin tosses.
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The Gaussian Mechanism [16] consists of adding Gaussian noise to the true
output of a function. In particular, for any function f : D → R

d , the mechanism
is defined as G(D) = f (D) + 〈N1(0, σ ), . . . ,Nd(0, σ )〉, where Ni (0, σ ) are
i.i.d. normal random variables with zero mean and with probability density function
g(z|σ) = 1√

2πσ 2
e−z2/2σ 2

. The variance σ 2 is calibrated to the L2-sensitivity of f

which is shown by the following theorem.

Theorem 12.2 ([16]) For any function f : D → R

d , the mechanism A

A(D) = f (D) + 〈G1(σ ), . . . ,Gd(σ )〉

gives (ε, δ)-differential privacy for any ε < 1 and σ 2 ≥ 2(Δ2f )2 ln(1.25/δ)/ε2,
where Gi (σ ) are i.i.d Gaussian variables with variance σ 2.

For example, if there are d possible locations and f returns the number of visits
per location (i.e., the spatial density), then Δ1f equals the maximum number of all
visits of any single individual in any input dataset, where Δ2f ≤ Δ1f . If Δ2f

is “too” large or ε and/or δ are “too” small, large noise is added providing less
accurate visit counts. Also notice that the noise variance is calibrated to the worst-
case contribution of any single individual to the output of f , which means that
the count of popular locations visited by many individuals can be more accurately
released than less popular locations with smaller counts. Indeed, all location counts
are perturbed with the same magnitude of noise, hence the signal-to-noise ratio is
higher for larger counts providing smaller relative error.

12.3 Releasing Spatio-Temporal Data

Suppose a geographical region which is composed of a set L of locations visited by
N individuals over a time of interest with T discretized epochs.5 These locations
may represent a partitioning of the region (e.g., all districts of the metropolitan area
of a city). The mobility dataset D of N users is a binary data cube with size N ·|L|·T ,
where Di,L,t = 1 if individual i visited location L in epoch t otherwise Di,L,t = 0.
That is, each individual’s record (or trajectory) is represented by a binary vector with
size |L| × T . The spatio-temporal density of locations L is defined by the number
of individuals who visited these locations as a function of time. More precisely,
there is a time series XL = 〈XL

0 , XL
1 , . . . , XL

T −1〉 for any location L ∈ L, where

XL
t = ∑N

i=1 Di,L,t and 0 ≤ t < T . XL denotes the set of time series of all locations
L and is referred to as the spatio-temporal density of locations L in the sequel.

In general, any data release is modelled by the execution of data queries. For
example, if the querier is interested in the spatio-temporal density of locations

5An epoch can be any time interval such as a second, a minute, an hour, etc.
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SL ⊆ L at time ST ⊆ {0, 1, . . . , T − 1}, then the query Q(SL, ST ) is computed
as Q(SL, ST ) = ∑

L∈SL,t∈ST

∑N
i=1 Di,L,t = ∑

L∈SL,t∈ST
XL

t . This gives rise to at
least three approaches for the privacy-preserving release of spatio-temporal density:

Approach 1: compute any query Q on the original data D (or XL) and release
only the anonymized query result Q̂(SL, ST );

Approach 2: anonymize the mobility dataset D into D̂, then release D̂ which can
be used to answer any query Q as Q̂(SL, ST ) = ∑

L∈SL,t∈ST

∑N
i=1 D̂i,L,t ;

Approach 3: compute the density XL from the original mobility data D as XL
t =

∑N
i=1 Di,L,t , and release the anonymized X̂L, where X̂L can be used to answer

any query Q.

In Approach 1, a querier can adaptively (i.e., interactively) choose its queries
depending on the result of previously answered queries. By contrast, in Approach
2 and 3, the released data are used to answer arbitrary number and type of queries
non-interactively (i.e., the queries are independent of each other). In fact, Approach
1, 2 and 3 only differ in their adversary models: Approach 2 and 3 are instantiations
of Approach 1 in the non-interactive setting where the possibly adversarial querier
must fix all queries before learning any of its results. Specifically, Approach 2 is
simply consists of answering N ·|L|·T binary queries at once, where a query returns
an element of the cube D. Similarly, in Approach 2, |L ·T | queries can represent the
elements of every time series, where all queries are answered together. As detailed in
the sequel, the decreased number of queries as well as the non-interactive answering
mechanism is the reason that Approach 3 usually outperforms Approach 1 and 2 in
practice as long as the only goal is to release XL as accurately as possible meanwhile
preserving the privacy of individuals. Hence, we will detail a specific solution of
Approach 3 in Sect. 12.3.3 and briefly review the rest in Sects. 12.3.1 and 12.3.2.

12.3.1 Approach 1: Anonymization of Specific Query Results

12.3.1.1 Syntactic Anonymization

Privacy breaches may be alleviated by query auditing which requires to
maintain all released queries. The database receives a set of counting queries
Q1(SL1 , ST1), . . . ,Qn(SLn, STn), and the auditor needs to decide whether the
queries can be answered without revealing any single visit or not. Specifically, the
goal is to prevent the full disclosure of any single visit of any spatio-temporal point
in the dataset.

Definition 12.5 (Full Disclosure) Di,L,t is fully disclosed by a query set
{Q1(SL1 , ST1), . . . ,Qn(SLn, STn)} if Di,L,t can be uniquely determined, i.e., in
all possible data sets D consistent with the answers c = (c1, . . . , cn) to queries
Q1, . . . ,Qn, Di,L,t is the same.
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As each query corresponds to a linear equation on location visits, the auditor can
check whether any location visit can be uniquely determined by solving a system of
linear equations specified by the queries. To ease notation, let x = (x1, . . . , xN ·|L|·T )

denote the set of all location visits, i.e., there is a bijection α : [1, N]×L×[1, T ] →
[1, N · |L| · T ] such that xα(i,L,t) = Di,L,t . Let Q be a matrix with n rows and
N · |L| ·T columns. Each row in Q corresponds to a query, which is represented by a
binary vector, indexing the visits that are covered by the query. The system of linear
equations is described in matrix form as Qx = c. Hence, the auditor checks whether
any xi can be uniquely determined by solving the following system of equations:

Qx = c

subject to xi ∈ {0, 1} for 1 ≤ i ≤ N · |L| · T
(12.1)

In general, this problem is coNP-hard as the variables xi have boolean values [34].
However, there exists an efficient polynomial time algorithm in the special case
when the queries are 1-dimensional, i.e. there is a permutation of x where each query
covers a subsequence of the permutation. Typical examples include range queries.
For instance, if locations are ordered according to their coordinates on a space-filling
Hilbert curve, then range queries can ask for the total number of visits of locations
(over all epochs) that are geographically also close. In the case of 1-dimensional
queries, the auditor has to determine the integer solutions of the following system
of equations and inequalities:

Qx′ = c

subject to 0 ≤ x′
i ≤ 1 for 1 ≤ i ≤ N · |L| · T

(12.2)

Notice that the variables in Eq. (12.2) are no longer over boolean data and hence
Eq. (12.2) can be solved in polynomial time with any LP solver [55]. The integer
solutions of Eq. (12.2) equals the solutions of Eq. (12.1) for 1-dimensional location
queries [34].

In the general case, when the queries are multi-dimensional, the auditor can
also solve Eq. (12.2), and the final solutions are obtained by rounding: x̂i = 1 if
x′
i > 1/2 and x̂i = 0 otherwise. In that case, x̂ ≈ x for sufficiently large number of

queries [14]. In particular, if each query covers a visit with probability 1/2, then
O(|x| log2 |x|) queries are sufficient to recover almost the whole x (i.e., dataset
D). Even more, only |x| number of deterministically chosen queries are enough to
recover almost the entire original data [17]. In fact, these reconstruction techniques
are the best known attacks against a database curator who answers only aggregate
counting queries over boolean data.

Therefore, equipped with the original data x, the auditor can check whether any
of the above attacks would be successful by comparing x with the reconstructed
values x̂ (or x′). If so, the auditor refuses to answer any of the n queries.

The above query auditing techniques have several problems. First and foremost,
refusing to answer a query itself can leak information about the underlying dataset
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(i.e., D) [44]. This would not be the case if refusal was independent of the
underlying dataset (e.g., auditing is carried out without accessing the true answers
c). Second, they can be computationally expensive. Indeed, using the solver in [55]
the worst-case running time is O(n|x|4) if |x| � n. Finally, most query auditing
schemes assume that the adversary has either no background knowledge about
the data, or it is known to the auditor. These are impractical assumptions which
is also demonstrated in Sect. 12.1.1.1, where the adversary reconstructed complete
trajectories from aggregate location counts exploiting some inherent characteristics
of human mobility.

12.3.1.2 Semantic Anonymization

An alternative approach to query auditing perturbs each query result with some
random noise and releases these noisy answers. In order to guarantee (ε, δ)-
differential privacy, the added noise usually follows a Laplace or Gaussian distri-
bution. If the noise is added independently to each query answer, then the error is
O(

√

n log(1/δ)/εN) [16], where N is the number of individuals and n is the number
of queries. This follows from the advanced composition property of differential
privacy [16]. Therefore, Ω̃(N2) queries can be answered using this approach with
non-trivial error (i.e., it is less than the magnitude of the answer). We note that at
least Ω(

√
N) noise is needed per query in order to guarantee any reasonable notion

of privacy [14, 16]. There also exist better techniques that add correlated noise to the
answers. For instance, the private multiplicative weight mechanism [26] can answer
exponentially many queries in N with non-trivial error, where the added noise scales
with O(

√

log(T |L|) · log(1/δ) · log(n)/εN)1/2.
In contrast to query auditing described in Sect. 12.3.1, the above mechanisms can

answer queries in an on-line fashion (i.e., each query is answered as it arrives) and
run in time poly(N, T |L|) per query. Moreover, the privacy guarantee is independent
of the adversarial background knowledge (see Sect. 12.2.2). On the other hand,
they distort (falsify) the data by perturbation, which may not be desirable in some
practical applications of spatio-temporal density. Another drawback is that they are
data agnostic and may not exploit some inherent correlation between query results
which are due to the nature of the location data. For example, query results usually
follow a publicly known periodic trend, and adding noise in the frequency domain
can provide more accurate answers [5].

12.3.2 Approach 2: Anonymization of the Mobility Dataset

12.3.2.1 Syntactic Anonymization

In general, anonymizing location trajectories (i.e., the whole cube D) while
preserving practically acceptable utility is challenging. This is due to the fact that
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Fig. 12.1 Never-Walk-Alone anonymization. Original dataset (city of Oldenburg in Germany)
with 1000 trajectories (left) and its anonymized version (NWA from [2]) with k = 3 where the
distance between any points of two trajectories within the same cluster is at most 2000 m (right)
(image courtesy of Gábor György Gulyás)

location data is typically high-dimensional and sparse, that is, any individual can
visit a large number of different locations, but most of them typically visit only a
few locations which are quite different per user. This has devastating effect on the
utility of anonymized datasets: most k-anonymization schemes generalize multiple
trajectories into a single group (or cluster) and represent each trajectory with the
centroid of their cluster [2, 43, 47]. Hence, every record becomes (syntactically)
indistinguishable from other records within its cluster. This generalization is often
implemented by some sophisticated clustering algorithm, where the most similar
trajectories are grouped together with an additional (privacy) constraint: each cluster
must contain at least k trajectories. Unfortunately, such approaches fail to provide
sufficiently useful anonymized datasets because of the curse of dimensionality [6]:
any trajectory exhibits almost identical similarity to any other trajectory in the
dataset. This implies that the centroid of each cluster tend to be very dissimilar
from the cluster members implying weak utility. Moreover, as the distribution
of the number of visits of spatio-temporal points are typically heavy-tailed [45],
projection to low dimensions and then clustering in low dimension also loses almost
all information about the trajectories. This is illustrated by Fig. 12.1 which shows the
result of a state-of-the-art anonymization scheme, referred to as Never-Walk-Alone
(NWA) [2], on a synthetic dataset with 1000 trajectories.6 This scheme groups k co-
localized trajectories within the same time period to form a k-anonymized aggregate
trajectory, where k was set to 3 in our experiment and the greatest difference between
any spatial point of two members of the same cluster is set to 2000 m. Figure 12.1

6We used a subset of a larger synthetic trajectory dataset available on https://iapg.jade-hs.de/
personen/brinkhoff/generator/.

https://iapg.jade-hs.de/personen/brinkhoff/generator/
https://iapg.jade-hs.de/personen/brinkhoff/generator/
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shows that even with modest values of k, the anonymized dataset provides quite
imprecise spatial density of the city.

To improve utility while relaxing privacy requirements, km-anonymity has
also been considered to anonymize location trajectories in [48]. However, most
anonymization solutions guaranteeing km-anonymity has a computational cost
which is exponential in m in the worst-case, hence this approach is only feasible
if m is small. This drawback is alleviated in [3], where a probabilistic relaxation
of km-anonymity is proposed to release the location visits of individuals without
temporal information. In theory, temporal data can also be released along with the
location information if the m items are composed of pairs of spatial and temporal
positions. However, care must be taken as the background knowledge of a realistic
adversary cannot always be represented by m items (e.g., it perhaps also knows the
frequency of m items of a targeted individual).

Another approach improving on k-anonymization is p-confidentiality [10];
instead of grouping the trajectories, the underlying map is anonymized, i.e., points of
interest are grouped together creating obfuscation areas around sensitive locations.
More precisely, given the path of a trajectory, p bounds the probability that the
trajectory stops at a sensitive node in any group. Supposing that (1) the background
knowledge of the adversary consists of stopping probabilities for each location in
a single path and (2) sensitive locations are pre-specified by data owners, groups
of locations are formed in such a way that the parts of trajectories entering the
groups do not increase the adversary’s belief in violating the p-confidentiality.
Trajectories are then anonymized based on the above map anonymization. The
efficiency and utility of this solution is promising, however, in cases where the
adversarial background knowledge cannot be approximated well (or at all), semantic
privacy models such as differential privacy is preferred.

12.3.2.2 Semantic Anonymization

A more promising approach is to publish a synthetic (anonymized) mobility dataset
resembling the original dataset as much as possible, while achieving provable
guarantees w.r.t. the privacy of each individual. The records in both datasets follow
similar underlying distributions, i.e., after modeling the generator distribution of
the original dataset, random samples (records) are drawn from a noisy version of
this distribution. A few solutions exist in literature where the generator distribution
is modeled explicitly and noised to guarantee differential privacy. For example,
DP-WHERE [41] adds noise to the set of empirical probability distributions
which is derived from CDR (Call-Detail-Record) datasets, and samples from these
distributions to generate synthetic CDRs which are differential private. Although
this synthetic dataset can also be used to compute spatio-temporal density, it
is usually not as accurate as perturbing the generator distribution of the spatio-
temporal density exclusively [4]. Indeed, the accurate model of more complex data
(such as the original mobility data) is also more complex in general (i.e., have larger
number of parameters), which usually requires increased perturbation.
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Some other works generate synthetic sequential data using more general data
generating models such as different Markov models [8, 9, 29]. These approaches
have wide applicability but they are usually not as accurate as a specific model
tailored to the publicly known characteristics of the dataset to be anonymized. We
illustrate this important point by the following example. DP-WHERE is designed
for CDR datasets, and provides more accurate anonymized CDR data than a simple
n-gram model [8]. For example, DP-WHERE models the distribution of commute
distances per home location and then generates a pair of home and working places as
follows. First, a home location is selected, which is followed by picking a distance
from the (noisy) distribution of commute distances. Finally, a working place is
selected which has this distance from the selected home location. This approach
results in more accurate representation of home and working places than using the
noisy occurrence counts of different pairs of home and working places like in [8].
This is because commute distances are modeled by an exponential distribution [41],
and its single rate parameter can be estimated by the median of the empirical data
(i.e., commute distances). Therefore, in DP-WHERE, the probability of a particular
pair of home and working location depends on their distance, while in an n-gram
model, it depends on the occurrence count of this pair in the original dataset.
For instance, New York, as a home location, occurs equally likely with LA and
Philadelphia, as working places, in an n-gram model, if these pairs have the same
frequency in the original dataset. By contrast, in DP-WHERE, New York is much
more likely to co-occur with the geographically closer Philadelphia than with LA.
The moral of the story is that achieving the best performance requires to find the
most faithful model of the data whose accuracy does not degrade significantly due
to additional perturbation.

12.3.3 Approach 3: Anonymization of Spatio-Temporal Density

A simple k-anonymization of time series XL releases XL
t only if XL

t ≥ k. However,
as it is detailed in Sect. 12.1, this still allows privacy violations through various
reconstruction attacks. Hence, releasing spatio-temporal density with provable
privacy guarantees, such as differential privacy, is preferred in many practical
scenarios.

Within the literature of differential privacy, a plethora of techniques have been
proposed to release 1- and 2-dimensional range queries (or histograms) while
preserving differential privacy [5, 12, 26, 28, 35, 36, 38, 49, 59, 60, 62, 64] and
they are also systematically compared in [27]. Indeed, interpreting query results (or
bin counts in a histogram) as location counts, these techniques are directly appli-
cable to release spatial density without temporal data. In theory, low-dimensional
embedding, such as Locality-sensitive hashing (LSH) [50], may allow to use any of
the above techniques to release spatio-temporal density.

Another line of research addresses the release of time series data with the guaran-
tees of differential privacy. This is challenging as time series are large dimensional
data whose global sensitivity is usually so large that the magnitude of the added
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noise is greater than the actual counts of the series for stringent privacy requirement
(i.e., ε < 1 and δ ≤ 1/|N | where N is the number of records). Consequently, naively
adding noise to each count of a time series often results in useless data. Several
more sophisticated techniques [19, 31, 51] have been proposed to release time series
data meanwhile guaranteeing differential privacy. Most of these methods reduce the
global sensitivity of the time series by using standard lossy compression techniques
borrowed from signal processing such as sampling, low-pass filtering, Kalman
filtering, and smoothing via averaging. The main idea that the utility degradation
is decomposed into a reconstruction error, which is due to lossy compression, and
a perturbation error, which is due to the injected Laplace or Gaussian noise to
guarantee differential privacy. Although strongly compressed data is less accurate,
it also requires less noise to be added to guarantee privacy. The goal is to find a good
balance between compression and perturbation to minimize the total error.

There are only a few existing papers addressing the release of spatio-temporal
density specifically. Although data sources (and hence the definition of spatio-
temporal density) vary to a degree in these papers, the commonality is the usage
of domain-specific knowledge, i.e., the correlation of data points at hand in both
the spatial and the temporal dimension. This domain-specific knowledge helps
overcome several challenges including high perturbation error, data sparsity in the
spatial domain, and (in some of the cases) real-time data publication. In the context
of releasing multi-location traffic aggregates, road network and density are utilized
to model the auto-correlation of individual regions over time as well as correlation
between neighboring regions [20]. Temporal estimation establishes an internal time
series model for each individual cell and performs posterior estimation to improve
the utility of the shared traffic aggregate per time stamp. Spatial estimation builds
a spatial indexing structure to group similar cells together reducing the impact of
data sparsity. All computations are lightweight enabling real-time data publishing.
Drawing on the notion of w-event privacy [32], RescueDP studies the problem
of the real-time release of population statistics per regions [57]. Such w-event
privacy protects each user’s mobility trace over any successive w time stamp inside
the infinite data grouping algorithm that dynamically aggregates sparse regions
together. The criterion for regions to be grouped is that local population statistics
should follow a similar trend. Finally, a practical scheme for releasing the spatio-
temporal density of a large municipality based on a large CDR dataset is introduced
in [4]. Owing to the complexity of its scenario and the innovative techniques used,
we present this work in detail in Sect. 12.4.

12.4 A Case-Study: Anonymizing the Spatio-Temporal
Density of Paris

In this section, we present an anonymization (or sanitization) technique in order to
release the spatio-temporal density with provable privacy guarantees. Several opti-
mizations are applied to boost accuracy: time series are compressed by sampling,



324 G. Acs et al.

Fig. 12.2 IRIS cells of Paris (left) and Voronoi-tesselation of tower cells (right)

clustering and low-pass filtering. The distortion of the perturbation is attenuated
via further optimization and post-processing algorithms. A striking demonstration
shows that the achieved performance is high and can be practical in real-world
applications: the spatio-temporal density of the city of Paris in France, covering
roughly two million people over 105 km2, is anonymized using the proposed
approach.

The specific goal is to release the spatio-temporal density of 989 non-overlapping
areas in Paris, called IRIS cells. Each cell is defined by INSEE7 and covers about
2000 inhabitants. L denotes the set of all IRIS cells henceforth, and are depicted in
Fig. 12.2 based on their contours.8 We aim to release the number of all individuals
who visited a specific IRIS cell in each hour over a whole week. Since human
mobility trajectories exhibit a high degree of temporal and spatial regularity [24],
1 week long period should be sufficient for most practical applications. Therefore,
we are interested in the time series XL = 〈XL

0 , XL
1 , . . . , XL

167〉 of any IRIS cell
L ∈ L, where XL

t denotes the number of individuals at L in the (t + 1)th hour of
the week, such that any single individual can visit a tower only once in an hour. We
will omit t and L in the sequel, if they are unambiguous in the given context. XL

denotes the set of time series of all IRIS cells in the sequel.
To compute XL, we use a CDR (Call Detail Record) dataset provided by a large

telecom company. This CDR data contains the list of events of each subscriber (user)
of the operator, where an event is composed of the location (GPS coordinate of the
cell tower), along with a timestamp, where an incoming/outgoing call or message is
sent to/from the individual. The dataset contains the events of N = 1,992,846 users
at 1303 towers within the administrative region of Paris (i.e., the union of all IRIS
cells) over a single week (10/09/2007–17/09/2007). Within this interval, the average
number of events per user is 13.55 with a standard deviation of 18.33 (assuming that

7National Institute of Statistics and Economics: http://www.insee.fr/fr/methodes/default.asp?
page=zonages/iris.htm.
8Available on IGN’s website (National Geographic Institute): http://professionnels.ign.fr/
contoursiris.

http://www.insee.fr/fr/methodes/default.asp?page=zonages/iris.htm
http://www.insee.fr/fr/methodes/default.asp?page=zonages/iris.htm
http://professionnels.ign.fr/contoursiris
http://professionnels.ign.fr/contoursiris
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an individual can visit any tower cell only once in an hour) and with a maximum at
732. Similarly to IRIS cells, we can create another set of time series XC, where XC

t

denotes the number of visits of tower C in the (t + 1)th hour of the week.
To map the counts in XC to XL, we compute the Voronoi tessellation of the

towers cells C which is shown in Fig. 12.2. Then, we calculate the count of each
IRIS cell in each hour from the counts of its overlapping tower cells; each tower cell
contributes with a count which is proportional to the size of the overlapping area.
More specifically, if an IRIS cell L overlaps with tower cells {C1, C2, . . . , Cc}, then

XL
t =

c
∑

i=1

X
Ci
t × size(Ci ∩ L)

size(Ci)
(12.3)

at time t .

Algorithm 12.1 Anonymization scheme

Input: XT - input time series (from CDR), (ε, δ)-privacy parameters, L - IRIS cells, � - maximum
visits per user
Output: Noisy time series X̂L

1: Create X
C

by sampling at most � visits per user from XC

2: Compute the IRIS time series X
L

from X
C

using Eq. (12.3)

3: Perturb X
L

into X̂L //see Algorithm 12.2
4: Apply smoothing on X̂L

The rationale behind this mapping is that users are usually registered at the
geographically closest tower at any time. Notice that this mapping technique might
sometimes be incorrect, since the real association of users and towers depends on
several other factors such as signal strength or load-balancing. Nevertheless, without
more details of the cellular network beyond the towers’ GPS position, there is not
any better mapping technique.

12.4.1 Outline of the Anonymization Process

The aim is to transform the time series of all IRIS cells XL to a sanitized version
X̂L such that X̂L satisfies Definition 12.3. That is, the distribution of X̂L will be
insensitive (up to ε and δ) to all the visits of any single user during the whole week,
meanwhile the error between X̂L and XL is small.

The anonymization algorithm is sketched in Algorithm 12.1. First, the input
dataset is pre-sampled such that only � visits are retained per user (Line 1). This
ensures that the global L1-sensitivity of all the time series (i.e., XL) is no more than
�. Then, the pre-sampled time series of each IRIS cell is computed from that of the
tower cells using Voronoi-tesselation (Line 2), which is followed by the perturbation
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of the time series of all IRIS cells to guarantee privacy (Line 3). In order to mitigate
the distortion of the previous steps, smoothing is applied on the perturbed time series
as a post-processing step (Line 4).

12.4.2 Pre-sampling

To perturb the time series of all IRIS cells, we first compute their sensitivity, i.e.,
Δ1(XL). To this end, we first need to calculate the sensitivity of the time series of
all tower cells, i.e., Δ1(XC). Indeed, Eq. (12.3) does not change the L1-sensitivity
of tower counts, and hence, Δ1(XC) = Δ1(XL).

Δ1(XC) is given by the maximum total number of (tower) visits of a single
user in any input dataset. This upper bound must universally hold for all possible
input datasets, and is usually on the order of few hundreds; recall that the maximum
number of visits per user is 732 in our dataset. This would require excessive noise
to be added in the perturbation phase. Instead, each record of any input dataset is
truncated by considering at most one visit per hour for each user, and then at most �

of such visits are selected per user uniformly at random over the whole week. This
implies that a user can contribute with at most � to all the counts in total regardless
of the input dataset, and hence, the L1-sensitivity of the dataset always becomes �.

The pre-sampled dataset is denoted by X, and Δ1(X
C
) = Δ1(X

L
) = �.

In order to compute the L2-sensitivity Δ2(XL), observe that, for any t , there is
only a single tower whose count can change (by at most 1) by modifying a single
user’s data. From Eq. (12.3), it follows that the total change of all IRIS cell counts

is at most 1 at any t , and hence Δ2(X
L
) ≤ Δ2(X

C
) = √

� based on the definition
of L2-norm.

12.4.3 Perturbation

The time series X
L

can be perturbed by adding G(
√

2� ln(1.25/δ)/ε) to each count
in all time series (see Theorem 12.2) in order to guarantee (ε, δ)-DP. Unfortunately,
this naive method provides very poor results as individual cells have much smaller
counts than the magnitude of the injected noise; the standard deviation of the
Gaussian noise is 95 with ε = 0.3 and δ = 2 · 10−6, which is comparable to the

mean count in X
L

.
A better approach exploits (1) the similarity of geographically close time series,

as well as (2) their periodic nature. In particular, nearby less populated cells are first
clustered until their aggregated counts become sufficiently large to resist noise. The
key observation is that the time series of close cells follow very similar trends, but
their counts usually have different magnitudes. Hence, if we simply aggregate (i.e.,
sum up) all time series within such a cluster, the aggregated series will have a trend
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close to its individual components yet large enough counts to tolerate perturbation.
To this end, the time series of individual cells are first accurately approximated by
normalizing their aggregated time series (i.e., the aggregated count of each hour is
divided with the total number of visits inside the cluster), and then scaled back with
the (noisy) total number of visits of individual cells.

Algorithm 12.2 Perturbation

Input: Pre-sampled time series X
L

, Privacy budget ε, δ, Sensitivity Δ1(X
L
) = �

Output: Noisy time series X̂L

1: Ŝi := ∑167
t=0 X

i

t + G(2
√

2� ln(2.5/δ)/ε) for each i ∈ L

2: E := Cluster(L, Ŝ)

3: for each cluster E ∈ E do
4: X

E := 〈∑i∈E X
i

0,
∑

i∈E X
i

1, . . . ,
∑

i∈E X
i

167〉
5: X̂E := FourierPerturb(X

E
, ε/2, δ)

6: for each cell i ∈ E do
7: X̂i := Ŝi · (X̂E

t /||X̂E ||1)
8: end for
9: end for

In order to guarantee differential privacy (DP), the aggregated time series are
perturbed before normalization. To do so, their periodic nature is exploited and
a Fourier-based perturbation scheme [5, 51] is applied: Gaussian noise is added
to the Fourier coefficients of the aggregated time series, and all high-frequency
components are removed that would be suppressed by the noise. Specifically,
the low-frequency components (i.e., largest Fourier coefficients) are retained and
perturbed with noise G(

√
2� ln(1.25/δ)/ε), while the high-frequency components

are removed and padded with 0. As only (the noisy) low-frequency components are
retained, this method preserves the main trends of the original data more faithfully
than simply adding Gaussian noise to XL, while guaranteeing the same (ε/2, δ/2-
DP. Further details of this technique can be found in [4].

The whole perturbation process is summarized in Algorithm 12.2. First, the
noisy total number of visits of each cell in L is computed by adding noise

G(2
√

2� ln(2.5/δ)/ε) to
∑167

t=0 X
i

t for cell i (Line 1). These noisy total counts are
used to cluster similar cells in Line 2 by invoking any clustering algorithm aiming
to create clusters with large aggregated counts overall (i.e., the sum of all cells’ time
series within the cluster has large counts) using only the noisy total number of visits
Ŝi as input. The output E of this clustering algorithm is a partitioning of cells L.
When clusters E are created, their aggregated time series (i.e., the sum of all cells’
time series within the cluster) is perturbed with a Fourier-based perturbation scheme
[5] in Line 5. Finally, the perturbed time series of each cell i in L is computed in
Line 7 by scaling back the normalized aggregated time series with the noisy total
count cell i (i.e., with Ŝi). Since Line 1 guarantees (ε/2, δ/2)-DP to the total counts

(Δ1(X
L
) = √

�), it follows from Theorem 12.1 that Algorithm 12.2 is (ε, δ)-DP as
the Fourier perturbation of time-series is (ε/2, δ/2)-DP in Line 5 [4].
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Fig. 12.3 Algorithm 12.1 before improvements (ε = 0.3, δ = 2 · 10−6, � = 30). (a) Large counts.
(b) Small counts around local minimas

12.4.4 Improvements: Scaling and Smoothing

The result of the above perturbation technique, which is illustrated in Fig. 12.3, still
suggests a large error on average. The difference between X̂ and X is the result
of two errors: the sampling error (between X and X) is attributed to pre-sampling,
whereas the perturbation error (between X̂ and X) is due to the perturbation scheme

presented in Algorithm 12.2. Indeed, since X
i

is the pre-sampled time series of cell
i, X̂i (Line 6 of Algorithm 12.2) will be a scaled down version of the original time
series Xi due to the fact that the � visits per individual are sampled uniformly at
random.

As illustrated by Fig. 12.3a, sampling error mainly distorts large counts: although
the noisy counts are close to the counts of the truncated (pre-sampled) time series
between 9:00 AM and 11:00 PM, it is still far from the original count values. This
significantly increases the mean relative error. In addition, as Fig. 12.3b also shows,
noisy counts also deviate from pre-sampled as well as from original counts around
the local minimas (close to 4:00 AM every day), which further deteriorates the
relative error.

To alleviate these errors, two further improvements are proposed in [4], which
are also illustrated in Fig. 12.4: first, the perturbation of total cell counts (Line
1 in Algorithm 12.2) is improved, which is used in cell clustering (Line 2 in
Algorithm 12.2) and scaling (Line 6 in Algorithm 12.2). The main idea is that the
real scaling factor

∑167
t=0 Xi

t (in Line 1 of Algorithm 12.2) is approximated by a
more accurate technique: the relative frequency of each tower is first estimated by
sampling only a single visit per user, then the perturbed relative frequencies are
multiplied with the (perturbed) total number of visits of the original data X to obtain
an estimation of

∑167
t=0 Xi

t . The relative frequencies have L2-sensitivity 1, while the
L2-sensitivity of the total number of visits is

√
753 < 27.44. Hence, the relative

error of this new estimation becomes small, as the relative frequencies of towers
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Fig. 12.4 Algorithm 12.1 after improvements (ε = 0.3, δ = 2 · 10−6, � = 30). (a) Scaling. (b)
Smoothing

require very small noise, while the total number of visits is incomparably larger
than its L2-sensitivity. The result of scaling with this more accurate scaling factor is
shown in Fig. 12.4a. Finally, in order to diminish perturbation error of small counts,
counts between 0:00 and 6:00 AM are smoothed out through non-linear least-square
fitting as a post-processing step (Fig. 12.4b).

12.4.5 Time Complexity

The pre-sampling step has a complexity of O(�N) and the computation of XL (see
Eq. (12.3)) needs O(T |C||L|) steps in the worst case. In the perturbation algorithm
(Algorithm 12.2), the clustering of time-series runs in O(T |L|2) and the Discrete
Cosine Transform can be implemented with Fast Fourier Transform that has a
complexity of O(T log T ). Therefore, the overall complexity is O(|L|T log T +
T |L|2 + T |C||L| + �N) disregarding the post-processing step (in Line 4 of
Algorithm 12.1).

12.4.6 Results

The error between the anonymized and original time series is measured by two
metrics: the mean relative error (MRE) and the Pearson Correlation (PC), where

MRE(X, X̂) = (1/n)
∑n−1

i=0
|X̂i−Xi |

max(γ,Xi)
.9 The Pearson correlation measures the linear

correlation between the noisy and the original time series (i.e., whether they have
similar trends), and it always falls between −1 and 1.

9The sanity bound γ mitigates the effect of very small counts and is adjusted to 0.1% of
∑n−1

i=0 Xi

[58].
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Fig. 12.5 Mean relative error and Pearson correlation of each IRIS cell (ε = 0.3, δ = 2·10−6, � =
30). (a) Naive Gaussian Perturbation (Avg. MRE: 1.01, PC: 0.47). (b) Algorithm 12.1 (Avg. MRE:
0.17, PC: 0.96)

The MRE and PC of individual IRIS cells are illustrated by color maps
in Fig. 12.5. This figure shows that the presented anonymization (Fig. 12.5b)
scheme outperforms the naive Gaussian Perturbation Algorithm (Fig. 12.5a) when

G(
√

2� ln(1.25/δ)/ε) is added to each count in X
L

without any further optimization.
Moreover, Algorithm 12.1 can also provide practical utility for most cells with
strong privacy guarantee. Specifically, the average MRE over all cells is only 0.17
with ε = 0.3, δ = 2 · 10−6 and � = 30.

12.5 Summary and Conclusions

In this chapter, we gave an overview of the privacy models and anonymization/san-
itization techniques for releasing spatio-temporal density in a privacy-preserving
manner. We first illustrated the privacy threats of releasing spatio-temporal density
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and described two attacks that can recover individual visits or even complete
trajectories merely from spatio-temporal density. Then, we reviewed the mainstream
privacy models, and distinguished syntactic models (such as k-anonymity) and
semantic models (such as differential privacy). As spatio-temporal density is a
function of the raw mobility data, we identified three main approaches to anonymize
spatio-temporal density: (1) anonymize and release the results of queries executed
on the original mobility data, (2) anonymize and release the original mobility data
(i.e., location trajectories) used to compute the spatio-temporal density, and (3)
anonymize and release the spatio-temporal density directly which is computed from
the original mobility data.

The first approach relies on query auditing, or query perturbation using dif-
ferential privacy. Query auditing is computationally expensive, and disregards the
background knowledge of the adversary. Although query perturbation is inde-
pendent of the adversarial background knowledge and runs in polynomial time,
it ignores some inherent characteristics of human mobility which could further
diminish perturbation error. Also, unlike query auditing, perturbation is non-
truthful, i.e. releases falsified location data.

The second approach can use either a syntactic or a semantic privacy model to
anonymize trajectories. Syntactic anonymization techniques providing k-anonymity
suffer from the curse of dimensionality and provide inaccurate data in general.
km-anonymization has smaller error but guarantees weaker privacy and/or has
exponential time complexity in m. In addition, all syntactic privacy guarantees
can be violated with appropriate background knowledge, which is difficult to
model in practice. Semantic anonymization using differential privacy is much more
promising, but again, they use perturbation which is non-truthful. In addition,
anonymizing trajectories usually provides less accurate density estimation than
anonymizing the spatio-temporal density directly. Indeed, density can be modelled
accurately with a model which requires less perturbation than the model of complete
trajectories. Although some trajectory anonymization techniques have larger time
complexity, these are not serious concerns in case of one-shot release.

As the last approach provides the largest accuracy in practice, we detailed the
operation of such an anonymization process and showed its performance in a real-
world application. This demonstration also shows that differential privacy can be a
practical model for the privacy-preserving release of spatio-temporal data, even if it
has large dimension. We also showed that, in order to achieve meaningful accuracy,
the sanitization process has to be carefully customized to the application and public
characteristics of the dataset. The time complexity of this approach is polynomial
and also very fast in practice.

As a conclusion, it is unlikely that there is any “universal” anonymization/san-
itization solution that fits every application and data, i.e., provides good accuracy
in all scenarios. In particular, achieving the best performance requires finding the
most faithful model of the data, such that it withstands perturbation. In case of
spatio-temporal density, clustering and sampling with Fourier-based perturbation
are seemingly the best choices due to the periodic nature and large sensitivity of
location counts.
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Finally, we emphasize two important properties of semantic anonymization
and query perturbation with differential privacy. First, unlike all other schemes,
including query auditing and syntactic trajectory anonymization, differential privacy
composes and the privacy loss can be quantified and gracefully degrades by multiple
releases. This is crucial if the data gets updated and should be “re-anonymized”, or,
there are other independent releases with overlapping set of individuals (e.g., two
CDR datasets about the same city from two different telecom operators). Second,
privacy attacks may rely on very diverse background knowledge, which are difficult
to capture. For example, not until the appearance of the reconstruction attack in
Sect. 12.1.1.1 was it clear that individual trajectories can be recovered merely from
spatio-temporal density. Only differential privacy seems to provide adequate defense
(with properly adjusted ε and δ) against even such sophisticated attacks.

Nevertheless, there are still many interesting future directions to further improve
performance. First, the data generating distribution can be implicitly modeled using
generative artificial neural networks (ANNs) such as Recurrent Neural Networks
(RNNs) [25]. Generative ANNs have exhibited great progress recently and their
representational power has been demonstrated by generating very realistic (but
still artificial) sequential data such as texts10 or music. The intuition is that, as
deep ANNs can “automatically” model very complex data generating distributions
thanks to their hierarchical structure, they can potentially be used to produce
realistic synthetic sequential data such as spatio-temporal densities. Second, current
approaches release the spatio-temporal density only for a limited time interval. For
example, the solution described in Sect. 12.4 releases the density for only a single
week. To release density over multiple weeks, one need to use a the composition
property of differential privacy which guarantees (kε, kδ)-DP for k-fold adaptive
composition based on Theorem 12.1. These are still quite large bounds if we wish
to release the density in the whole year with k = 52. Fortunately, tighter bound has
been derived recently, building on the notions of Concentrated Differential Privacy,

which guarantees
(

O(ε
√

k), δ
)

-DP after k adaptive releases [1].
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Chapter 13
Context-Adaptive Privacy Mechanisms

Florian Schaub

Abstract Sensing and context awareness are integral features of mobile computing
and emerging Internet of Things systems. While context-aware systems enable
smarter and more adaptive applications, they also cause privacy concerns due to the
extensive collection of detailed information about individuals and their behavior,
as well as the difficulties for individuals to understand and manage information
flows. However, context awareness also holds significant potential for supporting
users in managing their privacy more effectively. Context-adaptive privacy mech-
anisms can inform users about how changes in context may impact their privacy,
recommend privacy-preserving actions tailored to the respective situation, as well as
automate certain privacy configuration changes for the user. This chapter provides
an overview of research on context-adaptive privacy mechanisms, including an
introduction to context-aware computing and the context dependency of personal
privacy; a discussion and model for operationalizing context awareness for privacy
management, including privacy-relevant context features; as well as an overview
of existing context-adaptive privacy mechanisms with various applications. The
chapter concludes with a discussion of research challenges for context-adaptive
privacy mechanisms.

13.1 Introduction

Context awareness is an essential aspect of mobile computing and the emerging
Internet of Things. Today’s smartphones, vehicles and other “smart” devices include
a multitude of sensors that allow devices and respective applications to determine
physical location, orientation, ambient noise, light levels, and many other context
features; as well as collect this information periodically or continuously. Such
context information can be leveraged to infer user behavior, activities, mobility
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patterns, emotions or mood, as well as learn a user’s interests and preferences.
Situational awareness gained this way facilitates the adaptation of systems and
applications to align with the user’s context and appropriately support the user in
their activities.

While context-awareness enables smarter and more adaptive technology, the
extensive collection of sensor, context and mobility data has implications for
personal and information privacy as discussed in prior chapters. The increased
sensing, processing, and sharing of detailed information about users and their
context further make it inherently difficult for individuals to determine who has
access to information, let alone effectively control information flows. This creates
inherent user interaction and usability challenges for solutions that aim to provide
users with effective information and controls for privacy management.

Sensing and context-aware systems are often collecting data continuously [87,
122]. At the same time, the number of situations and entities potentially requiring
privacy decisions and configuration increase constantly. This creates a scaling
issue for privacy self-management [141], as it becomes unrealistic to correctly
specify privacy settings for each system or situation in advance. Furthermore,
the shift towards recording mundane activity and mobility information rather
than specific events makes it difficult to grasp potential privacy implications of
information collection [87]. Yet, advances in data mining and information retrieval
make formerly ephemeral activities more accessible [1, 25, 80, 87, 141] and
facilitate profiling through discovery of new patterns and knowledge by combining
information from multiple sources [43]. Users may have inconsistent mental models
of the capabilities and data practices of systems [117], which hampers their ability
to predict what information is actually collected or to whom it is disclosed [2].
Long-term privacy implications of decisions and actions are typically hard to foresee
without appropriate support [120], yet, typically “decisions about privacy must be
made individually, in isolation, and far in advance” [141]. Users may also not realize
that data access once authorized is still active in other situations, or that information
collection may occur in unanticipated contexts [10, 19].

However, context awareness and privacy do not have to be mutually exclusive.
Prior chapters presented and discussed methods to mitigate privacy issues associated
with context and mobility data collection in multiple domains. Furthermore,
context awareness can also be leveraged to actively protect privacy and support
users in managing their privacy more effectively [128]. Context-adaptive privacy
mechanisms can inform users how changes in context may impact their privacy,
recommend privacy-preserving actions tailored to the respective situation, as well
as automate certain privacy configuration changes for the user.

In this chapter,1 we first introduce context-aware computing in more detail
(Sect. 13.2), before discussing how context information can be leveraged in privacy
management (Sect. 13.3). We further provide an overview of different types of

1Parts of this chapter have appeared in the author’s doctoral dissertation [123] and a prior
article [128]. This chapter provides an expanded and revised overview of research on context-
adaptive privacy mechanisms.
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existing or proposed context-adaptive privacy mechanisms (Sect. 13.4) and discuss
research challenges in this domain (Sect. 13.5).

13.2 Context-Aware Computing

Context awareness in technology has been studied extensively. Subsequently, we
provide a brief introduction to context awareness and context-aware computing from
the perspective of ubiquitous computing research.

13.2.1 Defining Context Awareness

In 1987, as part of a critique of the artificial intelligence paradigm of planning, Such-
man argued that computer systems should respond to the settings in which they are
used [144]. Schilit and Theimer first introduced the term context-aware computing
in relation to human-computer interaction and ubiquitous computing [129, 130].
They named the current location, other persons in the vicinity, and nearby resources
as important aspects of context.

Schmidt [132] distinguishes multiple categories of context-aware computing
applications. Context-adaptive systems are systems that perform actions when
certain context conditions are met. Adaptive and context-aware user interfaces
dynamically adjust to services and resources available in the current context and
make them available to the user. Context-aware resource management dynamically
maps system functions onto context features and available services. Context-
awareness can further facilitate the management of interruptions based on situa-
tions. Schmidt’s sharing context category encompasses applications that exchange
context information between different systems or users. The category metadata
generation and implicitly user-generated content reflects the idea that context
information can serve as metadata to enrich created information or even as implicitly
generated content on its own. For instance, location and mobility data collected
via smartphones, connected vehicles or sensing infrastructure with the goal of
improving traffic prediction models, maps, or localization accuracy. In context-
aware computing, multiple context factors are typically combined to increase the
accuracy of collected context information [14] and infer the current situation [1].

The diversity of context-aware applications raises the question what constitutes
context. Dey defines context as “any information that can be used to characterize
the situation of entities (i.e., whether a person, place, or object) that are considered
relevant to the interaction between a user and an application, including the user
and the application themselves” [44]. Abowd and Mynatt identified five general
dimensions to describe context [1]:

• Who. What persons and entities are present in the user’s or system’s proximity.
• What. What are the current activities of the user, present entities, and systems.



340 F. Schaub

• Where. What is the current location of the user, the system, or the application.
• When. What is the point in time to which the context relates to.
• Why. What are the user’s reasons and intentions behind an activity.

Context-aware applications might examine the first four dimensions (who, what,
where, when) in order to determine the user’s intentions (why) and initiate system
actions that support and satisfy these intentions [45, 46]. While the employed terms
suggest that context is mainly based on physical aspects, context information can
encompass physical, social, emotional, as well as informational aspects [46]. For
example, the who dimension can also extend to virtually present entities or services.
Thus, an entity can be any person, application, service, or object of relevance [44].
Baldauf et al. [13] distinguish between physical, virtual, and logical sensors.
Physical sensors measure real-world phenomena, such as temperature, pressure,
light intensity, or radio signal strength. Virtual sensors provide access to digital
information, such as calendar data, emails, contacts, or social media posts. Logical
sensors combine output from multiple sensors and information sources, also called
sensor fusion [133], to obtain higher-level abstractions of the current context.

Consequently, a context-aware application can leverage such context information
to provide the user with information or services that are relevant to the user’s
activities in a specific context [44]. A context instance can be described as a
situation [134], which is defined as a set of states of relevant context features or
entities [44]—a snapshot of a specific context configuration. Different situations
can be distinguished by their specific set of values for the relevant context features.

Context information can exist at different levels of abstraction and interpretation.
Situations composed of sensor-based cues can be seen as low-level context requiring
further interpretation to be useful [21]. High-level context can be obtained through
context reasoning and interpretation of available sensor information and, thus,
enriching situations with semantic interpretations. An advantage of this view on
context is that it becomes possible to distinguish between low-level and high-level
context changes. Thus, applications, including context-adaptive privacy mecha-
nisms, can adapt to high-level context changes, while ignoring low-level context
changes that do not affect the higher level interpretation.

Situations do not exist in isolation. By viewing context as a process rather than a
state, an information space can be modeled as a directed state graph, in which each
node represents a different situation and the edges between the nodes are annotated
with the conditions of the context change [38]. Modeling such relations can reduce
the search space for situation recognition [21], but also requires knowledge of the
changing conditions and potential situations.

An important aspect of context-aware computing is the quality of obtained
context information. Sensor information can be inaccurate, incomplete, and noisy.
Therefore, context-aware applications and systems must take uncertainty into
account, e.g., by assigning confidence metrics to context values that represent
the estimated likelihood of the value reflecting reality [59, 133]. The assessment
of context quality makes it possible to measure improvements in context quality,
e.g., with multi-sensor fusion, or to infer high-level context under consideration of
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potential ambiguities of the low-level context [21, 45]. Many context-aware systems
reason over uncertain context by combining different reasoning approaches that
support uncertainty [21].

13.2.2 Modeling Context

Context frameworks and middleware have emerged to ease development of context-
aware applications and reuse of context information [74]. Most context frameworks
support sensor fusion and aggregation of context information, as well as interpre-
tation of raw context data. Many context-aware systems and context middleware
follow a similar layered conceptual approach [13, 74], as depicted in Fig. 13.1.
Context data is retrieved from physical and virtual sensors. Context processing
components interpret the retrieved sensor data. As a first step, logical sensors may
combine context information from multiple sources. Reasoning and interpretation of
context information provide semantic interpretations or support the transformation
of context data into different representations. A context management layer retains
historical context information and provides interfaces for applications to access and
process context information. Applications either pull context information from the
context system or subscribe to specific context updates and events.

Context models are an integral part of context-aware systems. Context models
reduce the complexity of context-aware applications by separating representa-
tion and evaluation of context information from application logic. They govern
preprocessing, interpretation, and representation of context information, improve
extensibility of context-aware applications [21] and facilitate exchange and reuse
of context information. Formal context models further enable consistency checking
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Fig. 13.1 Conceptual view of a context-aware system based on the layer models by Baldauf et
al. [13] and Knappmeyer et al. [74]
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and support inference of high-level context knowledge [21]. A basic context item
can be modeled with five parameters [13]: its semantic data type (e.g., location
or temperature), the current context value, a time stamp when the context item
was acquired, the source it was acquired from (e.g., sensor id), and a confidence
value that reflects the uncertainty of the measured context item. Bettini et al. [21]
further note that a comprehensive context model should be able to represent
context information on different abstraction levels, model relations and dependen-
cies between context information, and support efficient reasoning with uncertain
information. Furthermore, context history should be stored to support adaptation,
modeling formalisms should ease modeling of real world concepts and support
efficient context provisioning. Many models also distinguish between primary
and secondary context [21]. Primary context information serves to index context
situations and enables efficient access, while additional information is considered
secondary context. Often location and time are used as primary context [1, 21].

While many different context models have been proposed, existing context
models are characterized by a small set of major categories [21, 143]. Key-value
models are basic context models that represent context as key-value tuples. They
provide a flat view on context data. Hierarchical markup models can represent
hierarchical data structures. Hierarchical markup models are typically represented in
an XML dialect, such as RDF [143]. Object-oriented context models can be realized
in object-oriented programming languages. Such models also enable hierarchical
representation of context information, and additionally enable encapsulation [143].
They can combine representation and processing of context information, which can
provide advantages for application-specific context models but reduces reusability.

These basic modeling approaches have a number of limitations according to
Bettini et al. [21]. Due to pre-defined schemas, such models are limited in the
variety of context information they can capture and have limited capabilities
for expressing relationships and dependencies between context items. Quality of
context information can be included but is often not expressive. Typically, basic
models are also limited in terms of consistency checking, reasoning, and inference
of high-level context abstractions.

Graphical modeling approaches, such as the Unified Modeling Language (UML)
or the more specialized Context Modeling Language (CML) [58, 59], combine
expressiveness and formality with ease of specification [143], especially for the
modeling of relationships between context items. Ontological models leverage
knowledge representation methods to describe relationships between context items,
as well as the semantics of those relationships and context items. The formaliza-
tion of context semantics enables consistency checking, the inference of context
abstractions, and the derivation of new knowledge from asserted facts with semantic
reasoning tools [21]. Ontological models facilitate knowledge sharing and interop-
erability between different context systems, because semantics of context items are
represented in the models. Ontological context models can be described in OWL
DL [21].
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While ontological context models are most expressive [143], they may not be
well suited for the representation of dynamic context information and correspond-
ing adaptation preferences, due to performance limitations of online ontological
reasoning and inadequate support for uncertainty [21]. As a consequence, Bettini
et al. [21] advocate a hierarchical hybrid model that utilizes different context
representations with varying levels of formal specification on different layers.
The first layer performs low-level sensor fusion of raw sensor data. The second
layer provides a basic context representation, e.g., based on markup or RDF, and
supports efficient context reasoning to infer context abstractions. A third layer
defines context semantics in an ontological model. Applications can choose the
context representation layer that is most suitable to their requirements. For instance,
Henricksen et al. combine CML with OWL to enable reasoning on uncertain
information as supported by CML with OWL’s semantic reasoning capabilities [58].

In addition to a context model, context-aware adaptation typically also requires
the modeling of user characteristics and preferences to enable personalized adap-
tation. User characteristics can be integrated into a context model [67] or be
maintained in a separate user model [31, 111]. Depending on the application,
relevant user characteristics may include personal characteristics, the user’s role,
user preferences, user tasks and social relations [67, 111].

13.2.3 Privacy Protection in Context-Aware Systems

Context information in itself is often privacy sensitive, because it not only supports
context-aware adaptation but can also facilitate undesired user profiling [2, 4, 64,
87]. Privacy risks of mobility data have been discussed in detail in the chapters
“Privacy risks and inferences with mobility data” by Gambs and “Privacy in
location-sensing technologies” by Solti et al. To address these risks of mobility
and context data collection, privacy protections for context information have been
studied extensively [22, 62]. Especially privacy of location information has received
considerable attention as discussed in multiple chapters in Part II of this book. Here,
we provide a short introduction on mechanisms and research directions for privacy
protection in context-aware systems.

General privacy protection approaches can be applied to and adapted for context-
aware systems. This includes strict access control, obfuscation of data through
generalization or addition of noise, anonymization and de-identification methods,
as well as private information retrieval and privacy-preserving data mining [22].
Privacy engineering and privacy by design principles facilitate the design of
context-aware applications and systems that can meet both data quality and privacy
requirements [40]. Heiber and Marrón [56] propose a privacy threat modeling
framework for context-aware systems, which consists of a data model, an adversary
model, and inference rules. The data model describes what context information is
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available and the adversary model defines what information the adversary could
gain access to. The inference rules are a set of rules that the adversary can
apply to obtain data, for example, linking or matching of context items. The
framework enables evaluation of the amount of information that could be potentially
gained by adversaries with varying capabilities against previously defined privacy
requirements for the context-aware system or application.

Privacy extensions for context models and systems have been proposed to protect
privacy-sensitive context information [13], typically centering on access control.
For instance, the CML privacy extensions [60] enable expression of ownership of
context facts, object types, fact types, and situations, as well as corresponding usage
preferences. Rei is a privacy policy language for the CoBra context middleware [69].
Rei privacy policies govern actions by defining rights, prohibitions, dispensations,
and domain-dependent policies. Available actions are pre-defined in an ontology.
For example, location sharing is defined by an action that describes what to share
(the location) with whom (a set of recipients). Corresponding privacy policies
govern what entity can perform this action. The info spaces approach [68] supports
access control and privacy management. An info space has a user, or a group of
users, a user agent that handles privacy enforcement for the user, an owner that
defines permissions for the info space, and a set of information objects, which are
subject to authorization. Privacy policies are enforced in the info space system when
accordingly tagged information crosses info space borders.

The info space approach further introduces support for adapting the granularity
of context information. Similarly, Wishart et al. [154] extend CML with granu-
larity support by representing granularity for specific data types as a hierarchical
ontology. In their approach, privacy preferences are evaluated first, then granularity
preferences are applied to the context information instance before disclosure. They
later added dynamic discovery and processing of context sources with declarative
rules [155] in order to form a complete privacy-aware context management system
based on context ownership [60], privacy and granularity preferences, and dynamic
handling of disclosure requests. Pareschi et al. [113] propose semantic aggregation
based on local context in order to provide high quality of service while preserving
privacy. Information from individual users is aggregated into stereotypes in order
to enhance privacy by generalizing quasi-identifiers in order to reduce information
that could identify the individual. Sheikh et al. [138] draw a connection between the
quality of context and its privacy sensitivity. They propose that applications should
only receive context information with a granularity that corresponds to the required
quality of context.

Bettini and Riboni [22] caution that while hierarchical context models inherently
support generalization of context facts—for instance generalizing location data
to the city or region level—hierarchical levels of specificity are not necessarily
expressions of sensitivity and that continuous data streams pose further challenges
for maintaining privacy. Potential solutions are discussed in multiple chapters in this
book.
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13.3 Leveraging Context in Privacy Management

Privacy expectations and privacy behavior in social interactions have been shown
to be subject to dynamic adaptation processes [6, 11, 101]. This dynamism of
privacy is often not sufficiently supported in computing systems. Many systems
and applications allow a priori configuration of static privacy settings, but do
not support dynamic adaptations of those settings to meet the user’s privacy
expectations in different situations. Context-aware systems, however, have the
ability to dynamically adapt to changes in the user’s context, environment, and
activities. Such context awareness also holds significant potential for dynamically
supporting users in managing their privacy [123, 128].

13.3.1 Privacy is Contextual and Dynamic

Throughout their days, individuals constantly adjust their privacy expectations and
their sharing behavior based on their activities and surroundings [149]. For example,
the amount of information revealed in a conversation depends on who one is
talking to, the topic of the conversation, and who else is around. Individual privacy
expectations and perceptions of privacy infringement are highly contextualized and
shaped by individual, social, and cultural expectations and norms [6, 103, 109].

13.3.1.1 Contextual Integrity

Marx introduced the notion of personal border crossings to characterize privacy
violations [103]. He argues that privacy expectations are shaped by cultural and
individual boundaries. Natural borders (e.g., walls and clothes) limit what can be
perceived by others. Social borders reflect expectations in the roles of persons, e.g.,
lawyers and doctors keeping client and patient information confidential. Spatial
and temporal borders separate disjoint events and episodes of life. They reflect the
expectation that such events are not linked. Ephemeral and transitory borders reflect
the expectation that fleeting moments are not recorded. If such borders are breached
privacy expectations are being violated and the action that caused the breach is
perceived as privacy infringing. For instance, when a user’s location traces are used
to infer socio-economic status or behavior patterns for targeted advertising.

Nissenbaum expands this perspective by framing privacy as contextual
integrity [108, 109]. Privacy expectations are shaped by context-relative norms
of information flow. The context considered in contextual integrity is elaborate and
nuanced, going beyond the primarily sensor-oriented context common in context-
aware systems. Context-relative norms of information flow are characterized by
contexts, actors, attributes, and transmission principles [109].
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Contexts—in the framework of contextual integrity—encompass the general
institutional and social circumstances of a situation (e.g., healthcare, education,
family, religion, etc.), the activities in which actors engage, as well as the purposes,
goals, and values associated with those activities. Nissenbaum notes that individuals
often engage in multiple such contexts at the same time which can be associated with
different, potentially conflicting informational norms. For instance, talking about
private matters at work in a specific society and culture [109].

Actors are senders, receivers, and information subjects who participate in
activities and contexts. Actors have specific roles and capacities depending on
the context. Roles define relationships between various actors, which express
themselves through the level of intimacy, expectations of confidentiality, and power
dynamics between actors [109]. Informational norms regulate information flow
between actors.

Attributes describe the type and nature of the information being collected, trans-
mitted, and processed. Informational norms render certain attributes appropriate or
inappropriate in certain contexts. The concept of appropriateness in Nissenbaum’s
framework serves to describe what are acceptable actions and information practices.

Transmission principles constrain the flow of information between entities.
They are associated with specific expectations. Typical transmission principles are
confidentiality, reciprocity or fair exchange of information, and whether an actor
deserves or is entitled to receive information.

Context-relative norms may be explicitly codified or only implicitly established.
Common types of norms are morals, conventions of etiquette, rules, and procedures.
Information flows that violate respective norms are perceived as privacy violations
by individuals. Furthermore, technology may affect moral and political factors, e.g.,
power structures, fairness, or social hierarchies; as well as impact goals and values
in a specific context.

The aspect of informational norms is also apparent in the concept of collective
information practices proposed by Dourish and Anderson [48]. In their view,
information flows not only transmit information but also serve as social boundaries,
which help to define identity, membership, and affiliation in social groups. The
acceptance and utilization of the same information practices shapes a group’s
identity.

13.3.1.2 Privacy Regulation Theory

Contextual integrity provides a framework for understanding privacy expectations in
social contexts, and identifying privacy issues of information technology. Because
privacy expectations vary with context, privacy regulation in social interactions
occurs in a continuous adaptation process in which individuals balance their
personal privacy needs with their desire for disclosure [149]. Understanding this
process is essential for designing context-adaptive privacy mechanisms to effec-
tively support it.
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Altman’s privacy regulation theory [11] describes privacy as a dynamic, dialec-
tic, and non-monotonic process. In this process, individuals regulate what they
disclose (outputs) and what level of potential intrusion they are willing to accept
(inputs) based on internal changes (e.g., changes in personal preference, past
experiences, or new knowledge), as well as external changes in the environment
and current context. In social interaction, adjustments rely on verbal, paraverbal,
and nonverbal behavioral mechanisms, such as revealing or omitting information
(verbal), changing intonation and speaking volume (paraverbal), or using posture
and gestures to non-verbally express and control personal space and territory.

A critical part of Altman’s theory is the distinction between desired privacy
and achieved privacy. Individual privacy preferences and privacy expectations may
differ from the level of privacy obtainable in a given situation with the available
privacy control means. If achieved privacy is lower than desired privacy, privacy
expectations are violated and the individual feels exposed. Achieving more privacy
than desired causes social isolation. Thus, the privacy regulation process aims for
an optimal privacy level in which desired and achieved privacy are aligned.

Validation studies have shown that Altman’s theory can be considered a realistic
model of individual privacy adaptation behavior [101]. Despite its focus on privacy
regulation in social interactions, Altman’s theory suggests itself for application
to privacy regulation in interactions with information technology, primarily to
identify tensions affecting individual dynamic privacy regulation in the presence
of technological systems [26, 92, 112].

Lehikoinen et al. extend Altman’s theory for privacy in ubiquitous comput-
ing [92]. Focused on the bidirectional, dialectic nature of the privacy regulation
process, they map Altman’s inputs and outputs to different interaction patterns in
ubiquitous computing environments. When interacting with an interactive envi-
ronment or others’ personal devices, the inputs are determined by those technical
components, own outputs are partially dependent on the sensing capabilities of those
components. When the user’s personal device interacts with other devices or the
environment, inputs and outputs are digital information. Lehikoinen et al. further
introduce the concept of leaking to describe situations where the actual outputs
exceed desired privacy [92]—a case of importance in information systems where
individuals may not be fully aware of their outputs, i.e., what information about
them is being sensed or communicated. Romero et al. focus on the dialectic aspect of
the privacy regulation process [118]. They propose additional phases (collaboration,
signaling, joint understanding) before the actual boundary regulation in order to
better capture the influence of technology support in mediated communication in
contrast to Altman’s verbal, paraverbal, and nonverbal regulation mechanisms.

13.3.2 Operationalizing Context Awareness for Privacy

Altman’s privacy regulation theory significantly influenced reasoning about privacy
and has been found to be a realistic model to describe privacy regulation from an
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individual’s perspective [101]. Altman’s theory, as well as Nissenbaum’s frame-
work of contextual integrity, recognize that privacy regulation is a dynamic and
dialectic process. Perception and awareness of the given situation shape a person’s
privacy concerns and expectations, together with personal privacy preferences,
individual knowledge and experiences, as well as cultural and social background
and constraints. This privacy decision making process results in a consciously
or subconsciously desired privacy level, which is put into practice with available
means of privacy control. Subsequently, the individual may receive feedback on
the effectiveness of the exercised control, i.e., what level of privacy was actually
achieved. Such feedback in turn leads to internal adjustments of individual privacy
concerns, expectations, and preferences.

Context-adaptive privacy mechanisms can mirror aspects of a user’s cognitive
privacy regulation processes in order to provide privacy adaptation and privacy deci-
sion making support specific to the user’s situation. For the sake of operationalizing
privacy regulation theory for context-adaptive privacy mechanisms, the dynamic
regulation process can be coarsely divided into three inter-related phases [128]:

• Awareness. Awareness of privacy-relevant processes and information flow shape
individual privacy concerns [16]. An individual becomes aware of a contextual
aspect or change in her environment that potentially necessitates regulative
action to maintain a desired level of privacy (e.g., another person appears that
could overhear a private conversation). The recognition of context changes as
potential privacy risks depends on the individual’s perception. However, with
modern sensing technologies, a user’s awareness and privacy perception is likely
incomplete [87, 92], because sensors and information flows may not be apparent.
Potential consequences are wrongly formed mental models and misconceptions
about afforded privacy in a given context.

• Decision. Based on contextual and situational awareness, personal preferences
and experiences, as well as cultural background and social motivations, an
individual decides whether to decrease or increase exposure in the changed
situation (e.g., including or excluding the new person from the conversation).
Privacy decisions often need to be made based on incomplete information and are
subject to cognitive biases and decision heuristics [6, 7], as well as susceptible to
framing and manipulation [5, 6].

• Control. Once the individual formed a privacy decision, the decision needs to
be mapped onto controls available in the current context. Available controls
are determined by the means at disposal for asserting control (e.g., a door that
can be closed to prevent eavesdropping) as well as the prevalent socio-cultural
expectations and norms, which may restrict available controls (e.g., closing
a door may be considered inappropriate in some cultures [135]). Although
deciding on a regulation action and acting upon it are closely related, we
argue that decision and control should be considered separately. Consciously
or subconsciously forming an intention for a desired level of privacy (desired
privacy) is an internal process, while the ability to implement the desired
privacy is subject to external contextual constraints in a given situation (achieved
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Fig. 13.2 Context-adaptive privacy mechanisms align context-aware system capabilities with the
cognitive privacy regulation process in order to support privacy decision making and regulation

privacy). The results of performed control actions can be potentially perceived
and verified by the user or the system and thus influence future awareness and
subsequent regulation decisions [11].

In social interactions, these phases may overlap and influence each other. For
instance, control actions may lead to awareness about their effectiveness, which
may potentially require re-evaluation and re-adaptation. The regulation process
runs continuously, resulting in micro-level privacy adaptations, such as adjusting
what degree of information is revealed in a conversation, as well as macro-level
adaptations, such as moving to a different, more private location.

Context-adaptive privacy mechanisms can support privacy regulation by support-
ing the different phases of this cognitive process on the system level, as shown in
Fig. 13.2. Context-aware systems for privacy align well with the cognitive privacy
regulation process. An individual combines situational awareness with individual
preferences and experiences to make informed decisions on how to regulate privacy
boundaries. Such decisions are implemented through actions, and personal prefer-
ences are adapted by learning from positive and negative experiences. Similarly,
a context-adaptive privacy mechanism can leverage context awareness, elicited
privacy preferences, and previous decisions to predict the user’s privacy preferences
and desired level of privacy for a given situation. Context-triggered changes in
privacy expectation can either be addressed by automatically reconfiguring privacy
controls and settings to the changed needs, or by suggesting privacy actions suitable
for the current context to the user. This may include suggestions for more restrictive
privacy configuration, but could also lead to a more permissive configuration [128].
Oppermann and Zimmermann [111] similarly distinguish three components of
context-adaptive systems: the sensory function for obtaining relevant information,
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the inference function guiding adaptation, and the effector function implementing
adaptations in the system.

Context-adaptive privacy mechanisms can further tailor what information and
recommendations they provide to the user’s current situation and information needs
in order to optimally support privacy decisions without getting in the way of
the user’s activity or overburdening them with irrelevant privacy information or
settings [124]. Interaction strategies may be constrained by application require-
ments that determine the appropriateness and opportunities for user interactions
in order to avoid disrupting the user’s primary activities. Awareness of the user’s
context and preferences also offers the potential for integrating privacy regulation
tasks into the user’s primary activities. Output modalities and the presentation of
recommendations can be tailored to the user’s primary context and activity. Thus
privacy management has the potential to become a natural by-product of using a
system rather than a burdensome configuration task [91].

The level of automation should further align with the expectations of individual
users. For instance, some users may be content with largely automated adaptations
of their privacy settings, while others may prefer explicit awareness and control.
Automation preferences may also be different for different situations. For instance,
most people would likely not object to their location being automatically shared
with emergency services in the case of a severe car crash, but may have diverse
preferences for everyday situations.

In behavioral privacy regulation, individuals leverage combinations of different
privacy mechanisms to achieve a desired privacy level, depending on the envi-
ronment and context [11]. Similarly, technical privacy control mechanisms often
function as systems, which are combined and configured according to applica-
tion needs and privacy requirements. Rather than merely preventing information
exchange, control mechanisms should enable users to form and maintain realms of
exclusion within a certain socio-technological context [142], which would facilitate
interaction with specific desired people, devices, or systems without interference.

13.3.3 Privacy-Relevant Context Features

Context-adaptive privacy mechanisms aim to identify and adapt to privacy-relevant
changes in context. This requires maintaining a context model composed of privacy-
relevant context features. Much research has been conducted to gain a deeper
understanding of what contextual factors affect privacy perceptions, concerns, and
behavior.

In contrast to general-purpose context models and context systems, a privacy
context model constitutes a high-level abstraction of context that focuses on
privacy-relevant context features only, in order to most effectively support dynamic
adaptation of privacy mechanisms. In practice, context-adaptive privacy mecha-
nisms can act as a consumer of more detailed context information provided by a
context middleware.
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Adams and Sasse identified information sensitivity, information receivers, and
information usage as key factors for privacy perceptions [8]. The framework of
contextual integrity provides a more generalized perspective on those factors as
actors, attributes, and transmission principles [109]. In order to support privacy
decision making of individual users, a privacy context model should provide a user-
centric perspective on context [126]. Therefore, we can distinguish between the user,
the environment (including other entities), as well as activities that link the user to
other entities.

13.3.3.1 User Features

The user is characterized by privacy-sensitive items, which are potentially exposed
in the current situation. Privacy-sensitive items loosely correspond to attributes
defined by the contextual integrity framework [109]. Privacy-sensitive items can
either be information sources or disturbance endpoints, corresponding to Altman’s
outputs and inputs [11].

Information sources potentially reveal information about the user, this could be
the user’s behavior, presence or activity that can be observed, e.g., by sensors, or
digital information created by or about the user. Information sources can reveal time-
variant or static information [116]. For time-variant information, an observer’s scope
is limited by the observation window. While an observer may be able to predict past
or future values of an information source, the prediction scope is bounded in relation
to the observation scope. Other information is static, such as a name, social security
number or fingerprint. Once disclosed, they are known to the observer, and can only
be changed with substantial effort.

Some information sources can further provide information at different levels of
granularity and abstraction [8, 57, 68, 154]. For example, location can be provided
as exact geo coordinates, as an address, on a street level, city level, or region
level. Changes in information granularity are privacy relevant, because coarser
information increases the difficulty for an observer to derive the exact information
and thus potentially affords higher anonymity or privacy. In the contextual integrity
framework, granularity adjustments are considered as a transmission principle for
restricting information flow [109]. How granularity is specified depends on the
semantic type of an information source. If granularity is expressed numerically,
the scale must be mapped to a generalization function for the specific information
source, which then transforms the original information into a version with the
respective specificity. If specificity is expressed by class identifiers ( e.g., street or
city for location), a partial order of semantics between classes, e.g., provided by an
ontology, is required in order to be able to determine if granularity is increased or
decreased.

Disturbance endpoints are an individual’s physical aspects that constitute poten-
tial targets for physical disturbances [28, 75, 126]. Any action occurring in the
user’s physical proximity can be seen as a potential disturbance. For instance, a
household robot may have no direct means to observe the user, but the device’s
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activity or presence could still be perceived as an intrusion by the individual.
Similarly, notifications in the user’s environment can disrupt the user’s solitude. The
endpoint of a disturbance can be seen as a privacy-sensitive item, as it constitutes
the connection point where the actual intrusion on an individual’s privacy occurs.
Therefore, disturbance endpoints should be included in privacy context models
for smart environments and physical spaces [126]. Intuitively, the user’s body
is a potential endpoint for physical disturbances, as the user’s senses perceive
physical privacy intrusions. The user can be disturbed by touch, sound, smell,
taste, and visual aspects [75]. In addition to the user’s body, devices that are
closely associated with the user may also be considered disturbance endpoints of
the user. This may include the user’s smartphone and its notifications but also
wearable or implanted devices. Including such additional disturbance endpoints in
privacy context models when relevant, allows to model changes of such endpoints
and resulting privacy implications. In contrast to information sources, disturbance
endpoints have typically no granularity. A disturbance endpoint is either exposed or
not. Yet, certain disturbance endpoints can be perceived more invasive than others.
For example, a vibrating phone is generally perceived less disturbing than a ringing
phone.

13.3.3.2 Environment Features

The user’s physical and virtual surroundings can be described as the user’s
environment. The environment contains context features that have an extrinsic effect
on the user’s privacy, compared to the intrinsic effects of user features. If one takes
a user-centric perspective on modeling privacy context [126], the environment and
its context features change based on the user’s actions, e.g., when the user changes
location. A different perspective can be to model physical and virtual aspects in
multiple environments of which the user can be a part [34]. In this approach a user
can participate in multiple environments at once. Chang et al. give the example of a
video conference at the office, in which the user is in the virtual environment video
conference and the physical environment office [34]. With a user-centric modeling
perspective, the environment is implicitly defined by the user’s location (the office),
but includes any virtual entities that are able to participate in the user’s physical
environment, including any communication partners in a video call [126].

While environment models for context awareness can be highly detailed, a small
number of environmental context features is most relevant for privacy. Primary
privacy-relevant context features are other entities that participate physically or
virtually in the user’s environment, as well as the observation or disturbance
channels [77], with which they are connected to the user’s information sources and
disturbance endpoints [126]. This corresponds to findings identifying receivers as a
salient factor for privacy decisions [8, 109, 114]. Modeling of other environmental
aspects, such as room layout or inanimate objects is typically not required, because
any privacy-relevant change to such environment features would be reflected by



13 Context-Adaptive Privacy Mechanisms 353

changes to the set of present entities and whether and how they can access
information sources and disturbance endpoints. For example, closing an office door
should remove people in the hallway from the model.

Entities determine the relevant actors [109] in relation to privacy. For privacy
preferences pertaining to the sharing of information, the receiving entity has been
shown to be a key factor [8, 41, 63, 66, 95, 110, 115, 139]. Patil et al. identified it
as the highest ranked factor for location sharing preferences [114]. Thus, present
entities are often considered in the modeling of privacy-relevant context [53, 126].
An entity could be a person, device, software agent, or service that participates in the
user’s environment. Both physical and virtual entities can be represented in the same
model [75, 126]. Entities in the user’s physical environment potentially forward
information to virtual entities. Virtual entities rely on physical entities in order to
participate in the user’s physical environment. For example, the user’s location can
only be observed by users of a location sharing service if some physical entity senses
the information and relays it, e.g., a smartphone with a GPS sensor.

Channels model how entities participate in the user’s environment. They define
the underlying transmission principles considered in the contextual integrity frame-
work [109]. Observation channels originate at an information source and are
connected to one or more observing entities. Disturbance channels originate from
one or more entities and end at one of the user’s disturbance endpoints. This
perspective corresponds to Altman’s inputs and outputs in the sense that inputs,
i.e., disturbances, depend on the capabilities of entities in the environments and that
the user’s own outputs also partially depend on the sensing capabilities of physically
present entities [92]. A channel can consist of multiple links between a set of entities.
Such a multi-link channel defines a directed graph between the user and multiple
hierarchically organized entities [75].

In addition to entities and channels, location [53, 66, 77, 136] and time [77, 121]
are often considered as environmental context factors when modeling privacy-
relevant context. Benisch et al. find that location, the time of the day, and the
day of the week influence privacy preferences of users [20]. Tsai et al. also
note the importances of time [146], while Massimi et al. find that location is
an important aspect in determining privacy sensitivity [104]. Location should be
considered on different levels of abstraction, including the user’s physical location
(e.g. geo coordinates), a semantic interpretation of the location (e.g., a specific
room in a building), as well as the type of the location or environment. Semantic
location information can be derived from the user’s position or other location-
specific environment cues, such as nearby WiFi access points. Kargl et al. propose
a semantic retrieval process for geographic locations [71]. The environment type
gives the location further semantic meaning [106] and describes the prevailing
social context [109]. Human association of location is based on actions rather
than coordinates [29]. Massimi et al. found that the type of environment strongly
influenced the expectations and perceptions of being recorded [104]. Home, work,
and other are common types to categorize environments [55, 95]. The environment
type can be derived to some extent from the semantic location and the user’s
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activities. Krumm et al. propose a method for deriving general semantic labels for
environments from geographic positions [81].

13.3.3.3 Activities

Dourish frames context as an interactional rather than a representational prob-
lem [47]. Grounded in an analysis of the sociological origins of context, he argues
that context arises from the user’s activity rather than being purely representational.
Thus, the relevance of context features is dynamically defined for individual users
by their activities. The same intuitively holds true for privacy in context. Depending
on activity, certain personal aspects that are shared as part of an activity, may be
considered sensitive in other activities or situations. Therefore, user’s activities have
been considered as a privacy-relevant context feature [77, 106, 121, 126]. For privacy
in ambient assisted living systems, Shankar et al. note that activity can be a crucial
discriminant [137], because such systems typically pertain to the same location—
the home—and different activities at that location are likely associated with different
preferences.

Purpose plays an important role in privacy decision making [19, 37, 65, 104].
The notion of activity can describe or be associated with purposes. An activity is an
abstract description of what the user is doing. To a certain extent, the user’s activities
reflect the user’s intentions and goals in a specific situation [109].

For context-adaptive privacy mechanisms, activities can further describe which
entities must have access to certain privacy-sensitive items of the user so that the
user can actually pursue the activity. However, activities should not be confused
with privacy preferences or privacy settings. An activity describes what the user is
doing in a situation and with whom, and is therefore part of context information;
privacy preferences describe which entities are allowed to observe or disturb that
situation.

Activity recognition is a well-researched topic of ubiquitous and pervasive com-
puting research. Recognition of complex human activities is challenging because
individuals may engage in concurrent or interleaved activities, which results in
ambiguity for interpretation [72]. Common approaches for inferring activity from
sensor data rely on machine learning or rule-based inference from different context
cues and sensors [99], including wearable sensors [30, 89]. Activity recognition
typically requires the collection of training data, which is used for relevant feature
extraction and training and validation of a recognition model for specific activities
or classes of activities [89]. Activity recognition in context-aware systems requires
the real-time processing and analysis of continuous sensor data streams [80], such
as location, body motion, or interaction with a system. Activities can be organized
hierarchically, by decomposing them into smaller actions that are easier to detect
than complex activities [66, 100]. Higher-level activities composed from a set of
actions can then be used in reasoning [100]. Knowledge about previously recognized
activity and past activities can improve activity recognition [80].
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13.4 Context-Adaptive Privacy Mechanisms

Privacy-relevant context factors can be utilized by context-adaptive privacy mech-
anisms to actively support privacy decision making or automatically configure
privacy settings in reaction to context changes. Context-adaptive privacy mecha-
nisms take context information and knowledge about the user’s privacy preferences,
expectations or concerns as inputs and determine whether privacy adaptation is
required, as well as how privacy aspects should be adapted to align with the
user’s privacy needs or which actions should be recommended to the user. While
privacy preferences may be used in the reasoning process, reasoning results need
to be translated into privacy specifications that map privacy decisions—made by
the user or the system on behalf of the user—onto configurations for privacy
controls and tools available in the current situation. The differentiation between
higher level privacy preferences for reasoning and lower level policies for enacting
preferences allows to decouple privacy reasoning from technical realization and
enforcement aspects, in order to better align with the user’s cognitive privacy
regulation process [123].

In this section, we first discuss a number of requirements for context-adaptive
privacy mechanisms before providing an overview of common approaches and
applications for context-adaptive privacy mechanisms (see Table 13.1).

13.4.1 Requirements

The process of privacy reasoning is not only subject to the internal constraints
posed by the preferences of the individual user and the external constraints posed

Table 13.1 Overview of context-adaptive privacy mechanisms

Category Approaches

Privacy context acquisition Privacy labeling of context features
and dissemination Automated analysis of privacy implications

Collaborative identification of sensors

Machine-readable privacy specification

Proactive communication of privacy information

Context-aware authentication Adapt required level of authentication to context
Context as authentication secret

Context-adaptive information Context-based disclosure policies
disclosure Limit access to context of origin

Create and enforce contextual privacy borders

Context-aware content Content hiding based on context
adaptation Content adaptation based on present entities

Privacy-friendly output modality selection

Context-adaptive privacy Predict desired level of user involvement
automation Automated blocking of disclosure and access requests
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by the given context, but must also respect additional systemic constraints posed
by system characteristics and available technology. Each of these aspects may
introduce uncertainty into the privacy reasoning process that must be taken into
account by context-adaptive privacy mechanisms. Context features represented in
the privacy context model are derived from sensor data, which can be noisy,
inaccurate, or incomplete [12]. This uncertainty needs to be reflected in privacy
context models [126]. The user model, which captures the privacy preferences of
an individual user in reference to contextual factors, is also subject to uncertainty.
Any elicited or inferred privacy preferences can only be a discrete approximation
of the user’s true privacy preferences. Even if the user explicitly states a preference,
uncertainty remains, because the user may not have been able to properly express the
desired preference with the available interaction methods, or may not even be able to
articulate a privacy preference consistently [6]. Furthermore, users’ preferences may
change over time or may only apply to specific situations. Hence, context-adaptive
privacy mechanisms need to consider uncertainty in their reasoning processes. The
confidence in the outcome of the reasoning process should reflect the uncertainty of
the considered inputs.

In order to be trusted by users, context-aware systems must be perceived as
reliable, which can be achieved with predictable and consistent behavior [35].
Following the principle of least astonishment, context-aware systems should aim
to consistently match the user’s expectations and preferences. At the same time,
reasoning results should be explainable to the user [12]. The reasoning process must
be intelligible and understandable to ensure that reasoning results are perceived as
credible by the user [49]. Therefore, context-adaptive privacy mechanisms should
align with the user’s privacy decision making, for instance by modeling it after
Altman’s privacy regulation process [11] and its three phases [128], as described
in Sect. 13.3. Furthermore, reasoning processes and their outcomes should be
accompanied by intelligible explanations that can help the user understand actions
taken by the system or recommendations provided to them [90, 93], e.g., by reducing
the complexity of rules constituting the user model [35].

In order to be able to provide meaningful decision support in previously unknown
situations and dynamically adapt to such new situations, context-adaptive privacy
mechanisms should operate under the open world assumption. User models should
be extensible in order to accommodate new situations and adapt to the individual
user’s privacy preferences over time by integrating explicit and implicit user
feedback. Users should also be enabled to inspect and adjust inferred privacy
preferences. Learning of privacy preferences and new contexts needs to occur online
during normal operation. Considering the subjective and fluid nature of privacy
preferences [6], the user model requires continuous maintenance [12] to account for
changes in preferences, to add new preferences, and to correct erroneously learned
preferences.

Furthermore, context-adaptive systems typically have to operate continuously
which has interesting consequences for context-adaptive privacy mechanisms. For
instance given a context change, a context-adaptive privacy mechanism may have to
anticipate future context changes in order to prevent infringing situations before they
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occur, as well as perform adaptations immediately when certain context features
change, e.g., remove sensitive information from a display before someone entering
a space can see it [127]. Similarly, context-adaptive privacy mechanisms need
to consider carefully when to prompt users for input. On the one hand, privacy
mechanisms should not alienate the user with unexpected autonomous actions; on
the other hand, the system should not annoy the user with copious messages and
notifications. The crucial issue is to develop a system that provides user support for
privacy management without being obtrusive or overwhelming.

13.4.2 Privacy Context Acquisition and Dissemination

A crucial aspect of any context system is the acquisition and dissemination of con-
text information. In the case of privacy mechanisms, sensing of context information
has been complemented with proactive approaches that communicate privacy-
relevant information. For instance, sending out wireless privacy beacons [76, 87]
enables devices to communicate their sensing and actuation capabilities, as well as
their data practices in machine-readable formats.

Multiple machine-readable privacy specification formats and policy languages
have been proposed [42, 82]. A well-known example is P3P [148]—the platform for
privacy preferences—which was designed to enable website operators to express a
legal privacy policy in machine-readable form. When users also specify their privacy
preferences in a machine-readable format (e.g., with APPEL [88] or XPref [9]),
a website’s data practices can be matched against the user’s personal privacy
preferences with privacy practices of visited websites and detect conflicts. Machine-
readable privacy policies, such as P3P, can be seen as labeling protocols [3]
that enhance context features, namely present services and entities, with privacy-
relevant information. Such machine-readable privacy specifications can be either
integrated with service discovery protocols or actively announced—either by the
respective entity [76, 85] (e.g., a localization system, a surveillance camera, a
smart thermostat, or a vacuuming robot) or a separate infrastructure component
or third party that gathers, aggregates and disseminates machine-readable privacy
information about devices and systems in an environment to user devices (e.g., the
user’s smartphone). Privacy proxies [85]—dedicated entities trusted by the user and
other stakeholders—can manage privacy and match user preferences with a system’s
data practices in the case of sensing systems and sensors with limited resources.

Langheinrich implemented these approaches in pawS [85]. Privacy beacons
communicate data collection and processing practices of nearby systems to the
user’s trusted device. The user’s privacy proxy obtains the respective machine-
readable privacy policies and matches them with the user’s pre-specified privacy
preferences. Yee proposes a similar architecture [156], in which a smart environment
has a dedicated privacy controller that performs policy matching between a user’s
privacy preferences and present system’s privacy policies. In case of mismatch, the
privacy controller initiates policy negotiation among the involved parties. Similarly,
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P4P [83] is a context-based negotiation framework that arbitrates between a service
provider’s P3P privacy policy and the user’s privacy preferences selected according
to the user’s context.

A challenge for approaches that rely on machine-readable privacy specifications
is that they require cooperation by the entity collecting information and translating
their natural language privacy policies into machine-readable formats. This process
is often met by resistance due to fears and uncertainty regarding the legal nature
of machine-readable formats and associated liability. As a result, even widely
popularized and standardized formats, such as P3P, lacked adoption and have been
largely abandoned [39]. However, recent advances in natural language processing,
machine learning, crowdsourcing, and static code analysis, provide the opportunity
for service operators, third parties as well as regulators to automate the analysis
of systems’ natural language privacy policies and program code to infer their
data practices [23, 27, 119, 125, 151, 152, 157]. Such analysis results could
then be encoded in machine-readable formats to support context-adaptive privacy
mechanisms.

Similar approaches can be employed to detect and identify sensors in physical
environments. Winkler and Rinner propose collaborative tagging of cameras to gain
privacy awareness with respect to video surveillance [153], i.e., individuals mark
locations and characteristics of spotted cameras in a mapping system. Korayem
et al. propose an automated method to identify computer screens from camera
images [78]. Information about identified sensors or devices and their locations can
be leveraged by context-adaptive privacy mechanisms to determine privacy risks.

How and what privacy-relevant context information is gathered ultimately
depends on the purpose and requirements of the respective context-adaptive privacy
mechanism. Furthermore, environment constraints, such as the level of trust in the
present infrastructure or the willingness and capability of other entities to cooperate
with privacy mechanisms. Next, we discuss different kinds of context-adaptive
privacy mechanisms.

13.4.3 Context-Aware Authentication

Context awareness has been proposed as an improvement for user authentication.
Sigg notes that context awareness could enable password-less authentication and
unobtrusive adaptive security [140]. He also suggests the use of ambient audio as a
location- or situation-based secret key. Bardram et al. leveraged the user’s location
in an environment as an additional factor in user authentication [15]. Langheinrich
proposed a password-free authentication scheme for RFID tags [86]. Instead of
revealing the complete tag ID, an RFID tag releases secret shares of the ID over
time, thus requiring an attacker to be in close proximity for a longer time, while
legitimate users can identify their tags efficiently by relying on simple caching
strategies. Mayrhofer and Gellersen leverage parallel motion as a context factor
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in device paring [105]. They propose a method that relies on shaking two mobile
devices together in order to derive a shared key from accelerometer data.

Gupta et al. propose what they call intuitive and sensible access control (ISAC)
as an approach to autonomously select adequate authentication methods for smart-
phones depending on the user’s context [52, 53]. For instance, password or PIN
entry may be required in public but not when the user is alone. Their approach uses
location, present Bluetooth devices, and WiFi access points as features to define
contexts of interest. How frequently users encounter a context of interest is used to
determine familiarity of context in order to identify likely “safe” locations.

Hayashi et al. propose context-aware scalable authentication (CASA) [55], which
employs a similar approach. They uses passively collected context features to
determine whether a user is at home, work or another place (other). Depending
on the user’s context, the user is either authenticated implicitly without interaction
based on the passive context features, or active authentication is required (e.g., with
PIN or password) when not at home or work.

Context-aware authentication approaches can be leveraged in context-aware
privacy mechanisms to identify and authenticate the primary user as well as other
entities detected in the environment.

13.4.4 Context-Adaptive Information Disclosure

The integration of context awareness into information disclosure and access control
mechanisms has received considerable attention. Particularly location is a fre-
quently used context feature to manage information sharing and access control. For
instance, Behrooz and Devlic propose the context-aware privacy policy language
(CPPL) [17]. With CPPL, machine-readable privacy specifications are scoped to
certain contexts, e.g., based on a where a specific system is active. CPPL facilitates
filtering of relevant privacy policies based on current context.

Jagtap et al. propose a privacy system that constrains information flow from
mobile devices with dynamic semantic reasoning over context and pre-specified
privacy preferences [66]. Their context features include user location, surroundings,
other present entities, and inferred user activity, which are associated with entity
roles. The Android-based implementation of their approach [50] supports context-
aware privacy preferences encoded as privacy policies. These policies can be used
for instance to specify under what circumstances smartphone apps should receive
correct or fake location information and other sensor data.

Context and proximity have further been used to limit access to information to the
context in which it has been collected originally [70, 73, 84]. For example, Kriplean
et al. developed an approach that makes RFID readouts only accessible to devices
that were physically present when the readout occurred [79].

The info spaces concept [61, 68] is a technical realization of Marx’s personal
border crossings theory [103]. Information spaces are defined by physical, social
or activity-based borders, which are supported by location, entity and activity
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detection as context features. Privacy preferences (encoded as privacy policies)
are enforced when accordingly-tagged information crosses such borders. This may
include granting or denying read or write access to the information, adjusting the
granularity and accuracy with which information is sensed or shared, as well as
aggregating information to obtain higher-level interpretations.

Moncrieff et al. use a context model to manage privacy in a smart home equipped
for ambient assisted living [106]. Their context features include a user’s location
(room in the house), social interactions (other present persons), hazardous activity
(e.g., leaving the kitchen stove on), and unusual periods of inactivity. Context are
matched against pre-defined privacy disclosure rules for care givers. Their policies
support different granularity levels to regulate sensor access. An active feedback
display provides occupants with information about current and past observers on
demand.

13.4.5 Context-Aware Content Adaptation

Approaches in the previous category primarily provide context-aware adaptation of
what information is disclosed or forwarded to outside parties. However, particularly
in the context of smart environments and media spaces, context awareness has fur-
ther been used to dynamically adapt content and information within the environment
in order to provide privacy protections.

An early example of context-aware content adaptation is Schmidt’s Context
NotePad, which is a PDA application that dynamically hides its content when
the user is not alone in the room and is not actively using the NotePad [131].
The TreasurePhone system [136] uses location to specify and activate preference
spheres. The user-specified preference spheres limit which information on a mobile
phone can be accessed in a certain location.

Presence and position of individual users in smart spaces can been used to implic-
itly regulate privacy and content visibility. Neustaedter and Greenberg propose a
system in which the video stream in a media space automatically stops when the
user leaves the chair or other persons enter the room [107]. The ProD system
uses access control lists to define privacy preferences for content adaptation [36].
Similarly, the Angel system [51] poses privacy restrictions on displayed content
based on the user’s activity, which is associated with user-defined privacy rules.
Marquardt and Greenberg suggest the use of proxemic interaction, which leverages
context information about present persons and devices to guide device adaptation,
for privacy management [102]. The PriCal system [127] enables context-aware
privacy adaptation on calendar wall displays. More specifically, displayed calendar
views are dynamically adapted to present persons and their privacy preferences for
each other. In addition to known persons, users can also specify privacy preferences
for unknown persons, i.e., people who are not registered system users. The system
uses case-based reasoning to learn a user’s nuanced privacy preferences based on
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users adjusting the visibility of individual calendar entries (full, busy, hidden) in
deviation from their pre-specified rules.

The ATRACO system [77] considers both physically present entities as well as
virtual entities connected via communication channels to the user’s environment
in context-adaptive privacy management. Privacy preferences describe what infor-
mation items or spaces can be accessed by whom and how, in relation to a specific
context. Changes in context trigger dynamic privacy evaluation. Privacy preferences
are pre-specified as ontology instances, which are part of a larger user profile for
dynamic adaptation of the smart environment.

When multiple output modalities are available in the user’s physical environment,
information display and means of interaction can be adapted to block observations
by undesired entities. For example, private notifications could be displayed only
on the user’s personal device, such as a smartphone, rather than on a wall display
to reduce the opportunity of visual observation channels by other entities [32].
Similarly, auditive output can be moved from speakers to earphones or translated
into a visual representation. Furthermore, observation granularity can be tied to the
physical arrangement of entities. For instance, Vogel and Balakrishnan propose a
calendar application for public displays that only displays a user’s calendar entries
if the user is close enough to the display so that the display’s content is shielded by
the user’s body [147] .

13.4.6 Context-Adaptive Privacy Automation

A major promise of context-adaptive privacy mechanisms is that they can reduce
privacy management and configuration effort for users. However, not all privacy or
information sharing decisions can or should be automated—automation and user
autonomy need to be balanced carefully. Furthermore, systems need to enable users
to correct decisions [54]. Bellotti and Edwards discuss how intelligibility of context-
aware systems can be enhanced through user involvement [18]. Depending on the
level of uncertainty about an inferred decision, a system should either provide means
for correction, require confirmation from the user, or offer the user the available
choices for selection. Multiple approaches have been proposed to leverage context
awareness in determining if and when users should be involved in privacy decisions
and when certain decisions can be automated.

The Super-Ego framework dynamically determines whether the user should
be involved in decisions about location disclosure requests [145]. A decision
engine uses a set of previous disclosure decisions from the larger user base to
decide about user involvement based on two thresholds for manual decision and
automatic decision. Location requests where the average of previous disclosure
decisions is below the manual decision threshold are denied, requests between the
manual and automatic decision threshold require user intervention, and requests
above the automatic decision threshold are granted automatically. By adjusting
these thresholds different decision strategies can be supported. Toch finds that
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mixed strategies provide the best tradeoff between accuracy and automation [145].
Similarly, SPISM [24] semi-automatically determines if for a given location request
the user’s location should be shared and at what granularity. Context information is
used in classifying the request and assigning a sharing class (no; yes with low/medi-
um/high granularity). Depending on the level of confidence in the classification
result, the system prompts the user to make the decision.

Wijesekera et al. leverage context awareness to explore opportunities for auto-
matically blocking permission requests from smartphone apps [150]. They con-
ducted a field study to determine how context of an app’s permission access affects
users’ privacy concerns. They identified the app’s visibility (is the display on, is the
user interacting with the app or not) and the request frequency as important factors
in user’s privacy preferences. In further experiments, they find that automatically
blocking requests when the screen is off is unlikely to interfere with the user
experience but enhances privacy. If an app that the user is currently not using
requests resource access a prompt should be shown to obtain the user’s consent.
Apps that are running in the background should use passive indicators, such a GPS
icon, when resources are being accessed.

13.5 Research Challenges

The variety of context-adaptive privacy mechanisms in different domains demon-
strates the benefits of leveraging context awareness to actively support and partially
automate privacy management. Context-adaptive privacy mechanisms are subject of
active research, with multiple research challenges requiring further investigation:

• Secure and trustworthy context acquisition. Context-adaptive privacy mech-
anisms and other context systems rely on the integrity and trustworthiness of
context information. Some sensors and context information can potentially be
spoofed, which could trick context-adaptive privacy mechanisms into revealing
personal information in the wrong situations. Therefore, context-adaptive privacy
mechanisms should be designed to be resilient against spoofing attacks. For
instance, by triangulating context information with different types of sensors
and context acquisition methods, sensor fingerprinting, or distributed trust
management in sensing and context infrastructures. In reasoning, confidence in
context information and uncertainty about undetected context features should be
considered.

• Protection of contextual privacy information. As discussed in Sect. 13.2.3,
context information itself can often be privacy-sensitive and needs to be ade-
quately secured, especially if systems retain context and privacy decision history.
Similarly, context-specific privacy preferences and rules should be treated as
privacy-sensitive information in their own right, as they detail what entities
are given access to what kind of information in different situations. Some
approaches rely on a trusted privacy assistant or privacy proxy [85] to aggregate
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and protect a user’s privacy information. Many of the approaches for protecting
context information, such as authentication, obfuscation and other cryptographic
techniques, can also provide opportunities for protecting privacy preference
information against information leakage.

• Privacy adaptation in heterogeneous environments. A particular challenge
for privacy mechanisms is to provide individual users with control over the
collection, dissemination, and use of their information in collaborative and shared
information ecosystems [1]. Different systems, infrastructure, sensors, services,
or devices may be controlled by different stakeholders [2]. Thus, how a specific
privacy decision can be translated into a privacy adaptation largely depends on
the control capabilities available in the given context, i.e., the level of control and
trust concerning other devices, infrastructure, and entities [75]. Thus, context-
adaptive privacy mechanisms may have to consider different adaptation strategies
within the same context as well as across contexts and systems. Furthermore,
privacy controls available within a specific environment should be discoverable
in order to facilitate privacy management and adaptation in previously unknown
environments and contexts.

• Privacy adaptation in physical environments. Context-aware adaptation of
content and information flows faces a particular challenge in physical spaces:
other persons may be able to observe content and information adaptation,
which could potentially be interpreted negatively and reveal the user’s privacy
preferences, potentially resulting in awkward situations. Thus, context-adaptive
privacy mechanisms should be designed with plausible deniability in mind.
Resulting adaptations should either be difficult to observe by others or others
should not be able to determine whether the adaptation occurred because of them.
For instance, the PriCal system [127] implements a hide-then-reveal paradigm:
Whenever a person enters a room, the calendar display is cleared instantly when
the new entity is detected and subsequently populated with content that has
been adapted to the user’s privacy preferences for the changed context. Because
the display updates every time someone enters the room, study participants did
not perceive those adaptations as specifically related to them [127]. Similarly,
ATRACO [77] adapts a photo slideshow dynamically to the user’s privacy
preferences for present persons by seamlessly filtering out photos they should
not see.

• Privacy adaptation in multi-user environments. Depending on the application
and system context, context-adaptive privacy mechanisms may have to take pri-
vacy preferences from multiple users into account. In such situations, diverging
privacy preferences have to be resolved by the system while respecting individ-
uals’ privacy preferences. Privacy preference negotiation and resolution could
occur automatically or delegate the final decision whether some information
should be disclosed to each user.

• User trust in adaptation capabilities. Context-adaptive privacy mechanisms
must be perceived as trustworthy and reliable by users in order for users to
trust the mechanisms with dynamically regulating privacy for them. This is
particularly relevant for autonomous privacy adaptation on the user’s behalf.
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Trust evaluation in inter-personal relations as well as in technical systems has
to rely on external trust signals in order to obtain information about internal
trust facets [33], thus context-adaptive privacy mechanisms need to provide
indications to users that they are functioning as configured or expected.

• Personalized Privacy Adaptation. Context-adaptive privacy mechanisms lever-
age context information to support users with privacy management. Privacy
mechanisms can further learn a user’s privacy preferences over time to not only
contextualize but also personalize privacy management. Existing personalized
privacy approaches learn from user feedback [63, 120] or derive privacy pref-
erence profiles from many users [94, 96, 98]. These approaches can further be
combined to bootstrap privacy preferences by matching a user to one of a small
set of privacy profiles [97, 98] and then leveraging user feedback and behavior
to further refine and extend the user model to account for individual nuances in
privacy preferences [123].

13.6 Summary

While context aware systems and the collection of context information pose
challenges for personal privacy, we outlined the potential for supporting privacy
management with context awareness in this chapter. Interpersonal privacy regulation
has been shown to be highly dynamic and dependent on context. We presented a
model for operationalizing context awareness by developing privacy mechanisms
that align in their way of operation with individuals’ privacy decision making
processes. Context-adaptive privacy mechanisms can leverage context awareness
to detect and determine privacy-relevant context changes in a user’s environment
and either provide context-specific privacy recommendations to the user or auto-
matically adjust and adapt privacy configurations to ensure that the user’s privacy
preferences are respected in the changed context. We further provided an overview
of privacy-relevant context features that have been shown to play a role in individual
privacy decision making, as well as an overview of existing context-adaptive privacy
mechanisms in various domains and associated research challenges. Context-
adaptive privacy mechanisms are a promising approach for reducing the user effort
in privacy management, in particular in sensor-rich environments.
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Chapter 14
Location Privacy-Preserving Applications
and Services

Ioannis Boutsis and Vana Kalogeraki

Abstract Mobile location-based applications have recently prevailed due to the
massive growth of the mobile devices and the mobile network. Such applications
give the opportunity to the users to share content with the community which is
coupled with their current geographical location. However, sharing such information
might have serious privacy implications as an adversary might monitor the system
and use such information to expose sensitive user information including user
mobility traces and sensitive locations. This problem has led both the research
community and the commercial mobile applications to develop several solutions
to handle these privacy implications so as to enable users to disclose content
without compromising their privacy. This chapter provides a survey of the state-
of-the-art location-based mobile applications, describes the privacy implications
that arise from contributing information in such applications and the respective
existing countermeasures to deal with the privacy preservation issues. Furthermore,
we describe our experiences from deploying a real-world location-based application
that aims to allow the user contribute content and protect the user’s privacy.

14.1 Introduction

Mobile applications have recently become a core part of commercial systems
targeted to end-users, as they enable users to access their services from everywhere.
Mobile applications typically provide the same features with the respective desktop
applications, but they are developed for mobile devices such as smartphones and
tablets. However, the vast majority of the mobile applications also take advantage
of the ability to acquire the user location from the mobile devices’ sensors, a
feature which is not available in traditional desktop applications, in order to generate
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personalized content, depending on the respective location, and provide a richer
experience compared to the desktop version of the service.

From the user perspective, it seems that more and more users appreciate mobile
applications that exploit the geo-location features and are willing to share their
location information with the service provider and potentially with other users,
despite their privacy concerns. This is due to the fact that location-based applications
provide additional features as they enable them to share their location with their
acquaintances, including their friends and family, and to explore content which is
related to their current location, such as weather, news, nearby places or nearby
friends.

Although users are tempted to share their location information to enjoy the
location-based services, sharing such data makes them vulnerable to several types of
privacy attacks. This is because location data constitutes sensitive user information
and the nature of the location information enables an adversary to expose a great
amount of information per user with only a small set of geo-located information.
Hence, if this data is exploited from potentially untrusted parties it can lead to severe
consequences that range from user profiling for advertising purposes to real-world
crimes such as stalking, robberies, etc.

This fact has led both the research community as well as the commercial mobile
applications to develop several privacy preservation approaches to cope with this
problem. However, as we explain in this chapter the commercial mobile applications
typically use simple approaches which are prone to attacks rather than exploiting
the complex but effective approaches that have been proposed in the research
literature.

The goal of this chapter is to provide a survey of the most popular location-
based applications and state-of-the-art privacy mechanisms. The rest of this chapter
is organized as follows. Section 14.2 presents the most popular location-based
applications and explains the benefits of sharing location-based data. Section 14.3
describes the characteristics of the shared data and the respective privacy implica-
tions that derive from these characteristics. Section 14.4 summarizes the existing
privacy mechanisms that have been developed as countermeasures. Section 14.5
gives a discussion of our experiences from employing a real-world location based
application and the privacy mechanism that we used. Finally, Sect. 14.6 concludes
the chapter.

14.2 Popular Location Sharing Applications

The first section of this chapter introduces the most popular location sharing
applications. In this chapter we focus on the following categories:

1. Social Applications
2. Transportation Applications
3. Travel Applications
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4. Fitness Applications
5. Image Sharing Applications
6. Location Sharing Applications initiated by the research community and focus on

preserving the user privacy

All the location sharing applications that are presented in this chapter have been
selected due to their popularity and constitute the most prominent location sharing
applications at the time of writing this chapter.

14.2.1 Social Applications

Social services have recently become extremely popular as they enable users
to connect and interact with their friends and family. Social services give the
opportunity to the users to create social profiles and share content such as text
posts and photos or videos with their social connections. They also facilitate the
development of online social networks by connecting a user’s profile with those of
other individuals and/or groups.

The prevalence of mobile technologies has enabled the social services to develop
mobile apps that exploit the embedded sensors in order to provide a richer
experience for the users. Hence, they allow the users to include location-embedded
information or content. Introducing location capabilities, such as geotagging,
provides additional features to the users such as letting their acquaintances know
where they are or where a specific image was captured. However, revealing the
physical location of the user can lead to significant privacy implications.

14.2.1.1 Facebook

Facebook (http://www.facebook.com) is one of the prominent location-based social
networks with 1.66 billion mobile monthly active users (as of September 30, 2016).1

It allows users to share various types of content with their designated set of users,
including posts, photos and videos and to chat through Messenger with the rest of
the Facebook users.

Each type of content which is shared by a user in Facebook from the mobile app
may be coupled with the user geo-location. Hence, except from social posts, the user
can also share her geo-location even during a chat. However, Facebook includes a
consistent indicator as a reminder when the users share their location.

In Facebook, the content published by the users can be visible by all the
users who are authenticated to access the shared content. Thus, the user has the

1http://newsroom.fb.com/company-info/.

http://www.facebook.com
http://newsroom.fb.com/company-info/
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responsibility to determine her audience and manage her privacy by assigning the
users and groups that should be available to view shared content.

14.2.1.2 Twitter

Twitter (http://www.twitter.com) is another well-known social service used by 313
million monthly active users, from which 82% are mobile.2 The idea behind Twitter
is that it allows users to send short 140-character messages called “tweets” to
interact with the community. Registered users can post and read tweets, but those
who are unregistered can only read them. Mobile users are also able to embed their
geographical location in these tweets to share the location where the tweet was
produced.

Twitter provides two levels of privacy for the tweets that can be selected by the
users: (1) Public Tweets and (2) Protected Tweets. Public Tweets, which is the
default setting, makes the tweets visible to anyone, even users that do not own a
Twitter account. On the other hand, Protected Tweets can only be visible by users
that have been authenticated from the producer of the tweet so as to protect user
privacy.

14.2.1.3 Foursquare

Foursquare (http://www.foursquare.com) is a leading location-based social network-
ing website for mobile devices with more than 50 million people using Foursquare
each month, through the web service and the mobile app.3 Foursquare allows
registered users to post their attendance at a venue (referred as “check-in”) that
can also be shared to other social networks such as Facebook or Twitter.

In Foursquare, users are encountered to be very specific with their check-ins
indicating their precise location or activity while at a venue, and they receive awards
as incentives for checking in. This enables Foursquare to collect important informa-
tion from the users that can be used to provide personalized recommendations and
business deals. Although the real-time location of the users is not shared on the
Foursquare app, all the user interaction with a venue, such as writing a tip is time-
stamped and publicly available to the community. This allows other users to infer
when the user was at a specific place. Moreover, information like checking-in at a
place might not be public, but it can be accessed by the followers of the user and
allows them to know when the user visited the venue.

Foursquare assumes that the users are aware regarding the location privacy issues
and responsible for the visibility of their geo-located posts. Hence, the users can
only protect their privacy by defining the visibility of their shared posts.

2https://about.twitter.com/company.
3https://foursquare.com/about.

http://www.twitter.com
http://www.foursquare.com
https://about.twitter.com/company
https://foursquare.com/about
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14.2.2 Transportation Applications

Another type of apps that require the location of the users are transportation apps.
These applications take advantage of the mobile sensors in order to provide real-
time navigation to the users. Hence, transportation applications need to acquire the
user real-time location frequently to propose the optimal route and to constantly
provide directions to a user to reach her destination.

14.2.2.1 Google Maps

Google Maps (http://maps.google.com) is an online service that offers satellite
imagery, street maps, panoramic views of streets, real-time traffic conditions and
route planning for traveling by foot, car, bicycle or public transportation. Moreover,
Google Maps provides an online service for the users to navigate to places that
requires sharing the real-time location of the user, captured through the sensors of
her mobile device.

Besides navigation purposes, Google Maps also collects the speed and location
information of the users anonymously. This is used to calculate traffic conditions in
real-time so as to provide better estimations for the travel times. Hence, the users
need to accept this fact in order to be able to take advantage of the Google Maps.

Google has mentioned that it permanently deletes the start and end points of
every user trip it monitors so that information about where each user came from and
went to remains private. Moreover, users can set locations that user activity will not
be captured such as their home or work.

14.2.2.2 Moovit

Moovit (http://www.moovitapp.com) is a public transit app and mapping service
that features trip planning, real-time arrival and departure times, line schedules,
alerts, and advisories that may affect the trip of the user. Moovit uses several transit
modes including buses, ferries, metro, trains, trams, and trolleybuses.

Moovit allows users to send reports actively including reasons for delays,
overcrowding, satisfaction with their bus driver, and wifi availability which is shared
with the community. Moreover, the users can also share data passively. By riding
with the ‘Live Directions’ feature active allows Moovit to collect passively and
anonymously the user speed and location data. This data is used in addition to the
public transit schedules to improve trip plan results based on current conditions.

Moovit utilizes the information gathered from the application, including infor-
mation regarding the user location and public transport preferences. They also make
anonymous, statistical use of this information in order to estimate the arrival times
of various bus lines, analyze their frequency and convey the information to third
parties for whom this information is likely to be relevant.

http://maps.google.com
http://www.moovitapp.com
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14.2.2.3 Waze

Waze (http://www.waze.com) is a navigation application that provides turn-by-turn
information to the users. The Waze app captures real-time information that translates
into traffic conditions and road structure from its users. Moreover, it enables them
to actively report to the community traffic, accidents, police traps, blocked roads,
weather conditions and much more. Waze collects and analyzes this information to
provide other Wazers with the most optimal route to their destination.

Similar to the rest of the Transportation Applications, Waze may use anonymous,
statistical or aggregated information, including anonymous location information.
Any other content that the users submit manually, such as geo-located reports, as
well as their current location during a route is publicly available to all users of
Waze. However, Waze users are able to share information as anonymous users to
preserve their location privacy, that prevents them from collecting the rewards for
their contributions. We also note, that, during navigation Waze does not share data
within 500 m from the user home to preserve user privacy.

14.2.2.4 Uber

Uber (http://www.uber.com) provides a service for hiring a private driver. It allows
users with smartphones to submit a trip request, which is automatically sent to the
nearest Uber driver, alerting the driver regarding the location of the customer. Uber
drivers typically use their own personal cars and their payment is calculated by the
Uber app.

When someone uses Uber her precise location data about the trip is collected
from the Uber app used by the Driver. Moreover, if the user permits the Uber app to
access location services of the mobile device Uber also collects the precise location
of the device when the app is running in the foreground or background.

14.2.3 Applications for Traveling

Traveling applications is another category of apps that share interactive travel-
related content including ratings and experiences for specific points of interest.
Although users may opt-out from sharing their location with the app, sharing their
experiences implicitly validates their presence.

14.2.3.1 TripAdvisor

TripAdvisor (http://www.tripadvisor.com) is one of the early adopters of user-
generated content that allows users to contribute content based on places that they

http://www.waze.com
http://www.uber.com
http://www.tripadvisor.com
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visit to advise the rest of the community based on their experience. TripAdvisor
offers advice from millions of travelers for a large variety of places including accom-
modations, restaurants and attractions. Nevertheless, all these data are implicitly
geo-located and shared publicly with the community.

TripAdvisor may collect information about the user location if the user has
instructed the device to send such information to the application or if the user has
uploaded photos tagged with location information. This location information is used
to provide relevant content and contextual advertising to the user.

14.2.3.2 Yelp

Yelp (http://www.yelp.com) uses a similar model with TripAdvisor where users
provide reviews and ratings for points of interest that can be exploited by the
community when they make decisions. In addition to reviews, Yelp can also be used
to find events, lists and to talk with other users. In Yelp every business owner can
setup a free account to post photos and messages from their customers. Nevertheless,
similar to TripAdvisor, these reviews can reveal the users’ spatiotemporal presence.

14.2.4 Fitness Applications

Several fitness applications have recently emerged due to the massive prevalence
of smartphones and wearable devices such as smartwatches and smartbands.
These devices are equipped with sensors such as GPS, accelerometer, gyrometer,
pedometer and heart rate sensor that give the opportunity to the users to capture and
share several aspects of their training including distance travelled, steps, heart rate,
calories burned, etc. Nevertheless, these applications capture massive amounts of
data from the users, especially when the users are active.

14.2.4.1 Strava

Strava (http://www.strava.com) is one of the most prominent fitness apps especially
for cyclists. It allows them to record their bike rides and runs, compare their
performance over time and share them with the community so that they compare
their performance with other users. The users can either share these data with the
community to compete with other users or preserve them in their account. However,
inevitably, users that share these data allow potentially untrusted users to access
their trajectories, including their commutes. In order to preserve user privacy for
users that share their data, Strava hides all user traces within a predefined radius
from the user’s home.

http://www.yelp.com
http://www.strava.com
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14.2.4.2 Endomondo

Another similar social fitness app is Endomondo (http://www.endomondo.com),
which allows users to track their fitness and health statistics with a mobile app.
Endomondo is focused on running and walking and encourages users to track their
workouts so as to reach their fitness goals. Similar to Strava it allows its users to
share their workouts with the community and, thus, share their mobility traces.

14.2.5 Image Sharing Applications

Another type of social location-sharing applications are Image Sharing Applica-
tions. These apps allow users to share images with their social interactions or
publicly. In addition they also give the opportunity to the user to tag the location
where an image is captured.

14.2.5.1 Instagram

Instagram (http://www.instagram.com) is one of the most prominent location shar-
ing applications with more than 500 million users.4 It allows users to share images
with geo-location with the community and interact with the shared images. In
Instagram anyone can view the images shared by the users by default. However, each
individual user can choose to make them private so that only approved followers can
see them.

14.2.5.2 Flickr

Flickr (http://www.flickr.com) provides a similar service for the users to upload their
photos and share them with the community and has been widely used by photo
researchers and by bloggers. In Flickr, each photo can be geo-located either by the
mobile device or manually by the user and the photo’s location can then be shown
on a map. In Flickr each user can set her geo-privacy to determine the users who are
allowed to access the location of the published photos.

14.2.6 Friend/Family Finder Applications

Another type of location sharing applications are the Friend/Family Finder Appli-
cations. These applications have been initiated due to the simplicity of acquiring

4https://www.instagram.com/about/us/.

http://www.endomondo.com
http://www.instagram.com
http://www.flickr.com
https://www.instagram.com/about/us/
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and sharing user location in mobile devices. Hence, they track the users in order to
notify them when there is a nearby friend and to allow their friends and family to
know where they are.

14.2.6.1 GPS Phone Tracker

One of the most popular Friend Finder application is the GPS Phone Tracking Pro
App (http://gpsphonetracker.org). It has two main features: (1) it allows users to find
their friends and navigate towards them and (2) it allows the user to find her mobile
device from the app’s website.

GPS Phone Tracker uses the geographical coordinates of the user to report her
real-time whereabouts to her friends. Once registered to the system, each friend
appears as a unique icon on the map to let the user know where each of her friends
is. However, this implies that the users are constantly tracked by the operator but
also from all their relatives.

14.2.6.2 Family Locator: GPS Tracker

Another popular app for location sharing is the Family Locator app (https://www.
life360.com/family-locator/). It allows users to create their own groups of people
such as friends or family, called “Circles”. This enables them to view the real-time
location of Circle Members and receive real-time alerts when circle members arrive
at or leave destinations. Moreover, similar to the GPS Phone tracker, it enables users
to locate their mobile devices. Again, the issue is that the users are constantly tracked
and their location is shared, providing no privacy among users in a particular circle.

14.2.7 University Initiatives

The following apps are differentiated from the above categorization because they
have been initiated by Universities. The main difference of these applications is that
they have tried to incorporate innovative techniques to provide users with features
that require their real-time location, while preserving user privacy at the same time.

14.2.7.1 PCube

PCube (http://www.everywaretechnologies.com/apps/pcube) is a location-aware
social networking app that aims to alert users when their friends are in close
proximity. Hence, it allows users to observe which of their friends happen to be
in the area.

http://gpsphonetracker.org
https://www.life360.com/family-locator/
https://www.life360.com/family-locator/
http://www.everywaretechnologies.com/apps/pcube
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Fig. 14.1 The PCube app. (a) Login. (b) Add friends. (c) Set proximity

As we mentioned above, such Friend/Family Finder apps need to constantly share
the user location to provide this functionality. However, PCube aims to preserve
user privacy for the location-based data shared by the users using a novel approach,
further described in [18]. Hence it exploits encryption techniques to encrypt the
data before leaving the device to prevent user exposure even from their servers.
Moreover, it takes advantage of the privacy preferences, set by the users, to alert
friends in proximity, but the alert received does not reveal the actual user location
with higher precision than the one she has decided.

Figure 14.1a illustrates the login screen of PCube that enables users to login
and register. After login, the user is presented with a screen which is divided into
two tabs. The first tab (Fig. 14.1b) allows the user to add friends and create social
communities while the second one (Fig. 14.1c) provides the proximity functionality
to set the radius within which her friends will be alerted that they are in close
proximity.

14.2.7.2 Locaccino

Another Friend/Family Finder app initiated by the academic community, is Locac-
cino (http://locaccino.org), that allows users to share their location with their friends.

Similar to PCube, Locaccino focuses on preserving user privacy but it uses a
different approach. Locaccino exploits a rule-based approach that allows users to
create rules rules regarding their visibility from the privacy settings. The rules can
be as simple or complex as the user wants them to be, such as setting a different

http://locaccino.org
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Fig. 14.2 The Locaccino app. (a) Map. (b) Privacy settings. (c) History

proximity for each particular user or disabling the visibility of the user for specific
hours or places.

Figure 14.2a shows the map presented to the user that presents the geo-location
shared by her acquaintances. Moreover, the user can modify the rules that will be
used to enable others to access her location, as shown in Fig. 14.2b, and the view
the history of the users that could access her location, as illustrated in Fig. 14.2c.

14.2.7.3 CrowdAlert

CrowdAlert (http://crowdalert.aueb.gr) is a location-based app, designed for
Android users that enables them to report real-world events of interest and receive
real-time alerts for nearby events, by exploiting real-time data from human users,
road sensors, bus sensors and web sources. Similar to Social and Transportation
apps it enables users to provide sparse geo-located data such as geo-located reports
for real-world events (e.g., Traffic, Floods, etc). Such data can reveal the location of
the user to the community. However, CrowdAlert is built with privacy in mind and
focuses on effectively preserving user privacy for her shared data as we describe in
detail in Sect. 14.5.

14.3 Privacy Characteristics of Location Sharing
Applications

In this section we present the types of data shared by the users in location-based
applications. Then we explain the information that can be inferred by the data and
finally we describe thoroughly the potential privacy risks that arise from exposing
such data per service.

http://crowdalert.aueb.gr
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14.3.1 Type of Data Shared

Location-based applications share different types of content but in all applications
the content is coupled with the user location that can lead to privacy implications.
The data shared in each application is illustrated in Tables 14.1 and 14.2. In the
following we enumerate the most important categorization among the different types
of data sharing in terms of privacy.

14.3.1.1 Data Density

One important categorization depends on the density of the sharing location-based
data. Applications such as Transportation applications, Fitness applications and
Friend/Family Locator applications typically share dense data that include the user
mobility, such as user trajectories. On the other hand, Social applications, Travel
applications and Image Sharing applications typically share sparse data since every
post is coupled with a specific geographical location.

Obviously, providing dense data makes the privacy preservation task even more
difficult as an adversary acquires richer information from the system. However, it
has been proved that even a small number of spatiotemporal points is enough for
user identification [7]. Hence, even sparse data might be enough for an adversary to
expose user privacy.

14.3.1.2 Visibility

We can also discriminate the applications depending on whether they allow sharing
the location-based data publicly. For instance, Social, Image Sharing and Fitness
Applications give the opportunity to the users to share their data publicly if they
want to. On the contrary, the majority of the Transportation apps allow users only
to share data privately with the service operator or anonymously. Based on this
characteristic we argue that public data are prone to exposing user privacy since all
the data are linked with a specific user identifier. Furthermore, even anonymized
data can be de-anonymized through complex data analysis [10].

14.3.1.3 Data Source

Finally, another categorization of the data is whether they are generated from the
users explicitly or they are generated by the mobile sensors. Hence, Social, Image
Sharing and Travel applications require from the users to generate the content
which is coupled with the geographical location. On the other hand, Transportation
applications and Friend/Family Locator applications produce dense data which is
extracted from the mobile sensors without requiring user interaction.
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Table 14.1 Location-based applications, data sharing and privacy mechanisms

App Type
Google play
downloads Data shared

Privacy
mechanism

Facebook Social 1,000,000,000–
5,000,000,000

Share posts with the
community
Posts may include geo-location

Visibility scopes

Twitter Social 500,000,000–
1,000,000,000

Share tweets with users
Tweets may include
geo-location

Visibility Scopes

Foursquare Social 10,000,000–
50,000,000

Share user attendance with
friends (check-in)
Share public content like public
user profile information, tips,
likes, saves, public photos,
badges/stickers, mayorships,
and lists of friends

Visibility scopes

Yelp Travel 10,000,000–
50,000,000

Users can share reviews
regarding places that include
implicit location

Disabling
location sharing

TripAdvisor Travel 100,000,000–
500,000,000

Users can share reviews and
ratings regarding places that
include implicit location
Users can share their location
with TridAdvisor to receive
relevant content and contextual
advertising

Disabling
location sharing

Moovit Transportation 10,000,000–
50,000,000

Users can passively and
anonymously transmit their
speed and location
Users can actively provide
reports including reasons for
delays, overcrowding, etc

Anonymous data
sharing

Waze Transportation 100,000,000–
500,000,000

Users can share geo-located
traffic reports that may be
viewed by all users in the
community
Waze may use anonymous,
statistical or aggregated
information

Privacy zones
Anonymous data
sharing

Google traffic
maps

Transportation 1,000,000,000–
5,000,000,000

User accurate location is shared
during navigation
Users share live traffic
conditions anonymously (speed
and location information)

Privacy zones
Anonymous data
sharing

Uber Transportation 100,000,000–
500,000,000

Share user location with
drivers, other riders, general
public, third parties

Disabling
location sharing

Strava Fitness 5,000,000–
10,000,000

Users shares bike rides, runs
Users can also share their
achievements

Privacy zones
Visibility scopes

(continued)
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Table 14.1 (continued)

App Type
Google play
downloads Data shared

Privacy
mechanism

Endomondo Fitness 10,000,000–
50,000,000

Users can shares their workouts
Users can also share their
achievements

Visibility scopes

Instagram Image
sharing

1,000,000,000–
5,000,000,000

Share images with geo-location Visibility scopes

Flickr Image
sharing

10,000,000–
50,000,000

Share images with geo-location Visibility scopes

GPS phone
tracker

Friend finder 10,000,000–
50,000,000

User shares her real-time
location with her friends

Disabling
location sharing

Family
locator—GPS
tracker

Friend finder 10,000,000–
50,000,000

User shares her real-time
location with her friends

Disabling
location sharing

Table 14.2 University initiative location based app applications, data sharing and privacy
mechanisms

Apps Type Data shared Privacy mechanism

PCube Friend finder Alerts the users about friends
who are in proximity

Rule-based scheme
encryption

Locaccino Friend finder Share user location with friends Rule-based scheme

CrowdAlert Event alerting Share public geolocated reports
with the community

Data suppression

14.3.2 Inferring Information from the Data

The problem of exposing all this data is that they reveal the user’s spatiotemporal
instance when the data are published. Assume a user that passively observes and
records the location information published by an individual user. Although the
information shared in a particular post may not reveal a lot of information when
considered individually, it can expose a large fraction of the user mobility as the user
shares more and more data with the community. The problem can become worse
when the user identifier can be linked across different applications and, thus, all
geo-located information shared across these networks can be linked to the specific
user.

The issue with sharing location-based data is that the majority of the data
typically reside at locations or along routes that are mostly visited by the individuals.
Hence, as the amount of content contributed by the user increases, the shared data
will gradually expose the user’s most frequent trajectories, important locations and



14 Location Privacy-Preserving Applications and Services 387

even the user’s physical identity, which could place a user in physical danger [15]
and lead to crimes such as stalking the user or robbing the user when she is absent
from home.

We also note that due to the nature of the data, an adversary might be able to
generate the user mobility even using sparse data. For instance assume that a user
produces a couple of geo-located posts in a social app as she commutes from her
home to work. Although these data can be very distant, the intermediate points can
easily be inferred using navigational tools. Furthermore, such information can also
be linked with posts shared previously at the same time window where the user
commutes to her work, in case that they overlap spatially.

14.3.3 Privacy Threats

The data shared in such applications enable an adversary to pose the following
three types of privacy threats [9]: (1) Tracking Threat, (2) Identification Threat
and (3) Profiling Threat. These threats originate from sharing location-based data
with potentially untrusted entities and need to be taken into consideration when
developing an application that shares the user location to be able to preserve user
privacy.

• Tracking Threat: In a location-based application an untrusted party might
extract continuous location updates that enable him to track the user in real-time.
Hence, an adversary should not be able to determine the user mobility and predict
her future location with high accuracy when leveraging the location-based data
shared by the user.

• Identification Threat: Even if the untrusted party is able to sporadically
accesses a user’s location, the untrusted party should not be able to identify the
user’s most frequently visited places, such as the user’s home and work location.
This is because an adversary can exploit such information to reveal the identity
of the user even from anonymous mobility traces.

• Profiling Threat: The user mobility traces, shared by the mobile application,
might not reveal only places that can help to identity the user but also places that
can be used by an adversary to profile the user. For instance, an adversary will be
able to profile the user when he acquires location data showing that the user has
visited religious places or attended political meetings.

Note, that, the user might explicitly share information that reveal sensitive
information (e.g., posting a geo-located tweet that he just arrived at home). Although
a privacy-concerned app will not prevent the user from sharing this information, it
should consider these privacy threats when this information can be inferred from the
shared data.
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14.4 Existing Approaches for Privacy Preservation

14.4.1 Privacy Mechanisms in Popular Location-Based
Applications

Subsequently, we present the mechanisms which are used in each popular location-
based service to prevent unauthorized parties from learning the user’s current or past
locations. The main schemes can be grouped into the following categories:

1. Visibility Scopes allow the user to select the groups of users which are allowed
to access the user’s posts and respective location.

2. Privacy Zones essentially hide the user location in specific areas to anonymize
the user.

3. Rule Based approaches where the users develop rules per user group in order
to determine the visibility of their data depending on multiple factors.

4. Anonymous Data Sharing allow the users to share location based data but the
service consider them as anonymous data, without coupling them with the user.

14.4.1.1 Visibility Scopes

The most prominent approach used in popular location-based services is the use of
visibility scopes. This approach enables the users to develop groups of users such as
friends and family manually. Then they can select for every piece of information that
they share if the information will be publicly available or determine the groups of
users that will be able to access this information. The idea behind visibility scopes
is that the users are capable of managing the visibility of their posts and evaluate
their privacy exposure.

Visibility scopes have been widely used as a privacy preservation paradigm in
multiple social location-based services such as Facebook, Twitter and Foursquare.
This is because users in these networks tend to share content with multiple users
and thus they do not focus on their privacy. Similarly, Image Sharing applications
like Flickr and Instagram depend on the users to decide who can view their photos
as well as the location of their photos.

However, this approach can lead to serious privacy issues especially when the
shared data embed the users’ geographical location. The problem with visibility
scopes is that they require constant effort from the user to preserve her privacy.
Hence, users tend to share information publicly or with users that they have accepted
as their friends, that they might have never met. Thus, as we mentioned above
sharing this information can be exploited by the community to track the user, extract
sensitive user information or profile the user.

14.4.1.2 Privacy Zones

Another well-known approach that also requires user interaction are Privacy Zones.
This approach allows the user to select one or more sensitive locations that will be
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considered by the app in order to hide information produced near these locations.
This is typically achieved using a radius around sensitive locations within which no
information will be shared with the community.

Privacy Zones have been used particularly for apps that share frequent user
locations such as the Strava fitness app and Waze. Hence, in Strava when a user
shares a bike route the data near the sensitive locations will be hidden from the rest
of the users. Similarly, Waze hides all the data within 500 m from the user’s home.

Although Privacy Zones are more sophisticated than Visibility Scopes as they
require less interaction with the user, they have one important drawback. Since the
radius is typically fixed in these apps, an adversary can easily identify the sensitive
locations with high accuracy with triangulation. However, even if the radius can be
modified, the sensitive locations will start to be exposed as the users contribute more
data.

14.4.1.3 Rule-Based Scheme

A different technique to preserve user privacy is the Rule-Based Scheme. This
approach also requires user interaction in order to determine several rules regarding
her visibility. However, these rules can be very complex, such as hiding the user
location for specific places, hours or people (e.g., hiding the user location from her
employer during work hours).

Rule-Based approaches have been used from Friend Finder applications such as
PCuble and Locaccino, that produce massive location-based data from the users as
they constantly track them. Hence, it allow them to filter the portion of the data that
each individual will be able to observe.

Rule-Based approaches constitute an improvement compared to Visibility
Scopes and Privacy Zones as they use their concepts but extend them to make
more complex decisions regarding the data that can be shared among users.

14.4.1.4 Anonymous Data Sharing

Another technique employed by the commercial location-based applications to
protect privacy for privacy-concerned users is Anonymous Data Sharing. This
approach allows users to share data with the service provider or the community
without revealing their identifiers.

Anonymous Data Sharing has been extensively used for traffic and transportation
related applications such as Moovit, Google Maps, HERE Maps and Waze. These
applications collect user data from mobile sensors, typically using a background ser-
vice, to compute real-time road conditions. Additionally, user-identified services can
also be provided in an anonymous way. For instance, Waze facilitates anonymous
contributions for privacy-concerned users. However, such alternatives are not always
attractive to end users, as they do not receive any reward for their contributions, and
from the system’s point of view, anonymous data has shown to increase spamming.
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14.4.1.5 Disabling Location Sharing

Finally, another option for the users to preserve their privacy is to completely turn
off the “Location Services” from their devices. This action prevents the mobile
operating system to give access to the location-based readings of the mobile sensors
to the applications. Similarly a user can typically reject permission to access the
location data for a particular app. This approach can be used by the users for
applications like Yelp, TripAdvisor, Uber, GPS Phone Tracker and Family Locator -
GPS Tracker, as they do not provide any other way to prevent tracking the mobility
traces of the user. However, this option is out of the scope of this chapter since it
removes all the functionality that depends on the user location, making some of
these applications ineffectual.

14.4.2 Other Approaches

Finally, several approaches have been proposed in the literature to deal with privacy
threats and preserve user privacy for location-based application. We summarize
them here for completeness but they are discussed in detail in Chap. 5.

The first set of privacy preservation approaches focuses on modifying location-
based information using a variety of mechanisms: (a) Path Confusion [8, 14] that
aim at confusing the paths of users that reside in the same region by connecting
their traces, (b) Mix Zones [11], which are generated when there are enough users
located in the same place at the same time, making it hard for an adversary to
distinguish an individual from others that reside in the same zone at the same
time, (c) Fake Data Injection [12, 20], where fake data are injected along with
real data to confuse an attacker, (d) Data perturbation [2, 25] where the goal is
to modify the original data set with some noise drawn from a selected statistical
distribution to preserve user privacy, (e) Data generalization [9, 17] that generalizes
the user location information by reducing the spatial accuracy of the user, and (f)
K-anonymity approaches [6, 16, 19] that release data that hold the k-anonymity
property.

The second set of approaches to protect user privacy focuses on maintaining the
original location-based data in a way that an adversary will not be able to extract
sensitive user information. Here we have two main categories: (a) Encryption
techniques [13, 23] that encrypt the user data before sharing them so that they
disable untrusted parties from accessing the data, and (b) Data Suppression
techniques [5, 24] where the user location is suppressed when the set of data
shared by the user can expose her privacy. That way they prevent adversaries from
exposing sensitive user information although they are capable of publishing the
original information shared by the users.
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14.5 CrowdAlert: Experiences from Deploying a
Location-Based App in a Smartcity

In this section, we discuss our experience from deploying CrowdAlert, a location-
based application, in a Smart City environment [4]. We explain our design objectives
for our privacy preservation approach and we discuss the trade-offs between privacy
and utility when publicly sharing data. Moreover, we give an overview of how our
privacy approach works and we point out the effort needed to develop an interface
that can satisfy both novice and expert users. Finally, we discuss our experience and
the knowledge that we obtained from deploying CrowdAlert.

CrowdAlert is a location-based mobile application that enables users to report
and receive information regarding unusual events in SmartCities that include
Accidents, Constructions, Traffic, Natural Disasters, etc. CrowdAlert provides great
benefits to both citizens and authorities in a SmartCity. In particular, it allows
citizens to be alerted about local unusual events in real-time, and gives the
opportunity to city authorities to identify, supervise and react if necessary, to these
events in a cost-effective manner.

14.5.1 Data Sharing in CrowdAlert

Users connect with CrowdAlert using the mobile application, which is freely
available at Google Play.5 All registered users receive real-time information for a
wide variety of events such as Accidents, Constructions, Hazards and more. This
information arrives both in the form of notifications as well as on a map-based
interface as can be seen in Fig. 14.3a. Moreover, registered users are able to report
such information through CrowdAlert, as can be observed in Fig. 14.3b and receive
questions for local information from the authorities when needed.

CrowdAlert app is designed to consider user privacy preservation, since users
share information, coupled with their personal geographical location, that can
lead to privacy exposure. Hence, we have incorporated our privacy preserving
mechanisms to allow users share data with the community without compromising
their privacy, as we explain in the following.

14.5.2 Design Objectives for Data Sharing

Before developing our privacy preservation approach we set the following design
objectives for our solution:

5CrowdAlert—http://crowdalert.aueb.gr/.

http://crowdalert.aueb.gr/
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Fig. 14.3 The CrowdAlert app. (a) Login. (b) Report. (c) Settings

1. Users should be able to post data coupled with their identifier, location and
timestamp. In CrowdAlert we allow the users to share data publicly with their
identifiers, location and timestamp as happens in other real-world applications
like Social and Transportation applications. However, users are not capable of
estimating the effect of the sharing such data on their privacy. The goal of our
approach is to alert the user before sharing location-based data that may expose
her privacy to decide whether to share it.

2. Users should be able to tune their privacy levels. Every user has a different
preference in terms of privacy levels and desired utility. However, existing
approaches are basically limited to only two options. Users can either allow the
location-based application to have access their data or accept generic, potentially
low quality levels of service such as anonymous contributions that does not allow
the users to receive any reward for their contributions. Our goal is to allow the
users to tune the privacy levels they aim to achieve when contributing data.

3. Users should keep their mobility traces locally. The majority of the privacy
protection approaches that exist in the literature [3], use a centralized approach
to analyze user mobility traces. However, such centralized approaches have
important shortcomings: (1) they are prone to different types of attacks like
eavesdropping and the possibility that the server might become malicious,
(2) they introduce additional communication costs that may degrade the user
experience that needs to wait for a response before sharing her data. Our goal is
to be able to achieve privacy preservation by evaluating the privacy exposure of
the user locally on her mobile device and share the data after deciding that they
pose no privacy risks.
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14.5.3 Trade Offs Among Privacy and Sharing

Due to our first design objective, it is clear that existing solutions to preserve user
privacy, that modify the original user data, could not be used. Since we focus on
data which is publicly available we used an approach that proactively determines
whether sharing information can expose user privacy and suppress such data.

The challenge is that users share content publicly coupled with their spatiotem-
poral instance as happens in Social Apps or Transportation Apps. Hence, users
share more data in different locations, they expose larger parts of their mobility.
In CrowdAlert we deal with the privacy preservation problem using a novel data
suppression approach that aims to balance the trade off among user privacy and
amount of shared data, based on the user preferences.

14.5.4 Privacy Problem

The problem that we deal with is how to prevent honest-but-curious adversaries
that monitor the shared geo-located, user identified data from extracting sensitive
information about the users. We define that the set of shared data effectively
preserves user privacy only if:

• An attacker cannot approximate the user trajectories, and
• The user sensitive locations such as home and work cannot be determined by an

adversary from the shared data based on their amount and frequency.

Essentially, our goal is to answer effectively the following questions:

1. How to evaluate the privacy exposure of the user trajectories from the set of the
publicly shared reports on resource-constrained mobile devices in real-time?

2. How to preserve user privacy in terms of the user’s sensitive locations when
sharing geo-located data publicly?

3. Should the user share a newly produced report without the risk of compromising
her privacy?

14.5.5 Privacy Preservation Approach

To preserve user privacy for CrowdAlert we developed our privacy mechanism
called PROMPT [5]. The core idea of PROMPT is to employ the novel geometric
approximation approach of ε-Coresets. We selected the ε-Coreset approach since
ε-Coresets can effectively reduce the computation overhead for several complex
geometric and graph problems [1]. Thus, they can be used to effectively process user
mobility in resource constrained devices. The idea of ε-Coresets is to select a small
subset that approximately represents the original data that is able to process a given
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query with up to (1+ε)-multiplicative error. This reduction allows us to perform
queries on the coreset and greatly reducing the computation time.

PROMPT is executed whenever a user desires to publish content with the
community. It exploits the user mobility traces, which are compressed and preserved
locally in the mobile device, in order to compute whether user privacy can be
exposed. Hence, we extract all user trajectories that reside near the current user
location and then we develop a coreset for each of these trajectories. Each coreset
is developed by the current user location and the set of locations that the user has
previously shared which are spatiotemporally close to the trajectory. This allow us
to compute the fraction of the trajectories that can be approximated by the shared
user data and prevent exceeding a predefined threshold, which can be modified by
the user, in order to tune her privacy levels. Hence, whenever this threshold will be
exceeded we alert the user, before sharing the data, to prevent her from exposing her
privacy.

Moreover, in PROMPT we aim to preserve privacy near the user sensitive
location; sensitive locations can be determined automatically as the most frequent
locations based on the user mobility which is available on the mobile device and
manually from the user. However, as mentioned above Privacy Zones are prone to
expose sensitive locations through triangulation. Hence, in PROMPT we allow users
to share data near sensitive locations but we aim to prevent the user from sharing a
large percentage of location-based data near her sensitive locations, compared to the
rest of the locations, to confuse an adversary regarding their importance. This can
be achieved using the entropy metric [22]. Thus, in PROMPT, we only allow users
to share data near sensitive locations when the entropy of the shared data increases.
Since entropy increases when the frequency of the locations becomes more similar,
we discourage sharing a report near a sensitive location when there already exists
a large number of location-based data contributed from that location, compared to
other locations.

14.5.6 Privacy Settings Interface

PROMPT has been integrated in a beta version of CrowdAlert to preserve user
privacy. The user interface to adjust the privacy levels of PROMPT is illustrated
in Fig. 14.3c. Since PROMPT depends on several variables, in order to allow the
users to tune their privacy levels, we allow them to select their desired privacy level
with three privacy profiles: Minimum, Medium and Maximum. This is due to several
recent surveys which state that the users often find it difficult to adjust their privacy
preferences [21]. Hence, profiles are able to simplify the privacy choices for the
users [26].

Nevertheless, we give the opportunity to advanced users to access the parameters
of our approach and fine tune their privacy. An advanced users can adjust: (1)
the maximum percentage approximation can be achieve for her trajectories before
preventing the user to share data, (2) the spatial radius to consider from the user
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sensitive locations to preserve privacy, and (3) the spatiotemporal thresholds that
are used to correlate similar user presences.

Moreover, as can be observed from Fig. 14.3c the users can also define their
sensitive locations using a map-based interface. These locations are considered
from PROMPT in addition to the most frequent locations extracted from the local
mobility traces.

14.5.7 Experiences from Our Deployment and Lessons Learnt

The development of CrowdAlert enabled us to interact with best-testers and with
the end-users that gave us important feedback which led to the re-design of
several aspects of our approach in terms of privacy preservation. There were three
significant lessons that we learned from deploying our CrowdAlert app in the real-
world that we discuss in the following.

14.5.7.1 Privacy Preservation

Our original version of CrowdAlert was developed without any privacy mechanism
as we expected users would be sharing location-based data with multiple services.
However, when we shared the app with our beta-testers this became an issue because
the app required the users to share their location as a permission upon installation.
During our discussions we understood that, although, the app acquired the user
location when the user wanted to share a public report, it was not clear to the users
whether their privacy could be exposed. Moreover, we felt that there were some
users that were extremely concerned regarding their privacy.

In order to deal with this problem we developed our PROMPT privacy preserva-
tion approach that was briefly presented above. PROMPT enables users to quantify
their privacy exposure in terms of location before sharing their data. Employing
such a mechanism made the users were more willing to share their data with the
community.

Furthermore, as mentioned above, our PROMPT approach enables the users to
tune their privacy levels. This is essential to the privacy preservation mechanism
since we realized that different users had different needs. That way we can attract
both privacy concerned users as well as users that aim to share information with the
community without prioritizing their privacy.

14.5.7.2 Data Sharing

Another important lesson was that the privacy preservation should not degrade the
utility of the application. We explored several existing solutions before developing
PROMPT, but none of them was able to preserve user privacy effectively without
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degrading system utility. The majority of the existing approaches modify user
information and, thus, were rejected since our app focuses on real-world events that
require accurate location. On the other hand since we focus on public data reports,
similar to Waze, an encryption-based approach would not provide any benefit to the
user privacy.

To deal with this problem we developed PROMPT, which is based on data
suppression to preserve user privacy. One significant benefit of PROMPT, as we
show in [5] is that it can preserve high levels of utility in terms of data sharing even
with strict privacy settings. This enables even privacy concerned users to be able to
share a lot of data without exposing their sensitive information.

14.5.7.3 User Interface

Finally, the most important lesson was that the user interface can play a fundamental
role to the users’ understanding of their privacy exposure. Our initial interface
allowed the users to modify several parameters of our PROMPT approach. Never-
theless, this freedom was also a bottleneck especially for novice users did not have
the technical knowledge to understand and set these parameters. Hence, several beta
testers complained regarding the privacy settings as they were not able to tune them
properly.

In order to deal with the above problem, we developed a new user interface where
the privacy setting was selected among three privacy profiles, as explained above.
This feature enabled the users to select their desired privacy levels even if they did
not tune every aspect of the algorithm. Nevertheless, we kept the parameter tuning
as a separate functionality that can be accessed by advanced users.

14.6 Conclusion

In this chapter we provided a survey of the most popular location-based applications
and we explained the benefits that they provide to the users. Then, we discussed the
respective privacy threats that may arise in such settings and presented the existing
privacy mechanisms. Finally, we presented our own experiences upon developing
a real-world location-based application, the privacy mechanism that we developed
and the lessons that we learnt based on the issues that we encountered.

One important message that can be extracted from this chapter is that location-
based applications can expose a great deal of sensitive user information and that the
most popular applications rely on the user to handle such issues. Although, several
approaches have been proposed from the research community, the commercial
applications use simple solutions and expect that the users are capable of quantifying
their exposure and preserve their privacy. On the other hand, we argue that popular
real-world applications should benefit from the solutions that have already been
proposed in the research literature so as to allow users to continue contributing
information without being concerned about their privacy.
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