

Gabriel Luque and Enrique Alba

Parallel Genetic Algorithms

Studies in Computational Intelligence,Volume 367

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 346.Weisi Lin, Dacheng Tao, Janusz Kacprzyk, Zhu Li,
Ebroul Izquierdo, and Haohong Wang (Eds.)
Multimedia Analysis, Processing and Communications, 2011
ISBN 978-3-642-19550-1

Vol. 347. Sven Helmer,Alexandra Poulovassilis, and
Fatos Xhafa
Reasoning in Event-Based Distributed Systems, 2011
ISBN 978-3-642-19723-9

Vol. 348. Beniamino Murgante, Giuseppe Borruso, and
Alessandra Lapucci (Eds.)
Geocomputation, Sustainability and Environmental
Planning, 2011
ISBN 978-3-642-19732-1

Vol. 349.Vitor R. Carvalho
Modeling Intention in Email, 2011
ISBN 978-3-642-19955-4

Vol. 350. Thanasis Daradoumis, Santi Caballé,
Angel A. Juan, and Fatos Xhafa (Eds.)
Technology-Enhanced Systems and Tools for Collaborative
Learning Scaffolding, 2011
ISBN 978-3-642-19813-7

Vol. 351. Ngoc Thanh Nguyen, Bogdan Trawiński, and
Jason J. Jung (Eds.)
New Challenges for Intelligent Information and Database
Systems, 2011
ISBN 978-3-642-19952-3

Vol. 352. Nik Bessis and Fatos Xhafa (Eds.)
Next Generation Data Technologies for Collective
Computational Intelligence, 2011
ISBN 978-3-642-20343-5

Vol. 353. Igor Aizenberg
Complex-Valued Neural Networks with Multi-Valued
Neurons, 2011
ISBN 978-3-642-20352-7

Vol. 354. Ljupco Kocarev and Shiguo Lian (Eds.)
Chaos-Based Cryptography, 2011
ISBN 978-3-642-20541-5

Vol. 355.Yan Meng and Yaochu Jin (Eds.)
Bio-Inspired Self-Organizing Robotic Systems, 2011
ISBN 978-3-642-20759-4

Vol. 356. Slawomir Koziel and Xin-She Yang
(Eds.)
Computational Optimization, Methods and Algorithms, 2011
ISBN 978-3-642-20858-4

Vol. 357. Nadia Nedjah, Leandro Santos Coelho,
Viviana Cocco Mariani, and Luiza de Macedo Mourelle (Eds.)
Innovative Computing Methods and their Applications to
Engineering Problems, 2011
ISBN 978-3-642-20957-4

Vol. 358. Norbert Jankowski,W�lodzis�law Duch, and
Krzysztof Gra̧bczewski (Eds.)
Meta-Learning in Computational Intelligence, 2011
ISBN 978-3-642-20979-6

Vol. 359. Xin-She Yang, and Slawomir Koziel (Eds.)
Computational Optimization and Applications in
Engineering and Industry, 2011
ISBN 978-3-642-20985-7

Vol. 360. Mikhail Moshkov and Beata Zielosko
Combinatorial Machine Learning,2011
ISBN 978-3-642-20994-9

Vol. 361.Vincenzo Pallotta,Alessandro Soro, and
Eloisa Vargiu (Eds.)
Advances in Distributed Agent-Based Retrieval Tools, 2011
ISBN 978-3-642-21383-0

Vol. 362. Pascal Bouvry, Horacio González-Vélez, and
Joanna Kolodziej (Eds.)
Intelligent Decision Systems in Large-Scale Distributed
Environments, 2011
ISBN 978-3-642-21270-3

Vol. 363. Kishan G. Mehrotra, Chilukuri Mohan, Jae C. Oh,
Pramod K.Varshney, and Moonis Ali (Eds.)
Developing Concepts in Applied Intelligence, 2011
ISBN 978-3-642-21331-1

Vol. 364. Roger Lee (Ed.)
Computer and Information Science, 2011
ISBN 978-3-642-21377-9

Vol. 365. Roger Lee (Ed.)
Computers, Networks, Systems, and Industrial
Engineering 2011, 2011
ISBN 978-3-642-21374-8

Vol. 366. Mario Köppen, Gerald Schaefer, and
Ajith Abraham (Eds.)
Intelligent Computational Optimization in Engineering, 2011
ISBN 978-3-642-21704-3

Vol. 367. Gabriel Luque and Enrique Alba
Parallel Genetic Algorithms, 2011
ISBN 978-3-642-22083-8

Gabriel Luque and Enrique Alba

Parallel Genetic Algorithms

Theory and Real World Applications

123

Authors

Dr. Gabriel Luque
E.T.S.I. Informática
University of Málaga
Campus de Teatinos
29071 Málaga
Spain
Email: gabriel@lcc.uma.es

Prof. Enrique Alba
E.T.S.I. Informática
University of Málaga
Campus de Teatinos
29071 Málaga
Spain
Email: eat@lcc.uma.es

ISBN 978-3-642-22083-8 e-ISBN 978-3-642-22084-5

DOI 10.1007/978-3-642-22084-5

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2011930858

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

To my family
Gabriel Luque

To my family, for their
continuous support

Enrique Alba

Preface

This book is the result of several years of research trying to better characterize
parallel genetic algorithms (pGAs) as a powerful tool for optimization, search,
and learning.

We here offer a presentation structured in three parts. The first one is tar-
geted to the algorithms themselves, discussing their components, the physical
parallelism, and best practices in using and evaluating them.

A second part deals with theoretical results relevant to the research with
pGAs. Here we stress several issues related to actual and common pGAs.

A final third part offers a very wide study of pGAs as problem solvers,
addressing domains such as natural language processing, circuits design,
scheduling, and genomics. With such a diverse analysis, we intend to show
the big success of these techniques in Science and Industry.

We hope this book will be helpful both for researchers and practitioners.
The first part shows pGAs to either beginners or researchers looking for a
unified view of the field. The second part partially solves (and also opens)
new investigation lines in theory of pGAs. The third part can be accessed
independently for readers interested in those applications. A small note on
MALLBA, one of our software libraries for parallel GAs is also included to
ease laboratory practices and actual applications.

We hope the reader will enjoy the contents as much we did in writing this
book.

Málaga, Gabriel Luque
May 2010 Enrique Alba

Contents

Part I: Introduction

1 Introduction . 3
1.1 Optimization . 4
1.2 Metaheuritics . 5
1.3 Evolutionary Algorithms . 7
1.4 Decentralized Genetic Algorithms . 10
1.5 Conclusions . 12

2 Parallel Models for Genetic Algorithms 15
2.1 Panmictic Genetic Algorithms . 17
2.2 Structured Genetic Algorithms . 18
2.3 Parallel Genetic Algorithms . 19

2.3.1 Parallel Models . 20
2.3.2 A Brief Survey on Parallel GAs 23
2.3.3 New Trends in pGAs . 25

2.4 First Experimental Results . 26
2.4.1 MAXSAT Problem . 26
2.4.2 Analysis of Results . 27

2.5 Summary . 29

3 Best Practices in Reporting Results with Parallel
Genetic Algorithms . 31
3.1 Parallel Performance Measures . 32

3.1.1 Speedup . 32
3.1.2 Other Parallel Measures . 36

3.2 How to Report Results in pGAs . 37
3.2.1 Experimentation . 37
3.2.2 Measuring Performance . 39
3.2.3 Quality of the Solutions . 39
3.2.4 Computational Effort . 40

X Contents

3.2.5 Statistical Analysis . 41
3.2.6 Reporting Results . 42

3.3 Inadequate Utilization of Parallel Metrics 43
3.4 Illustrating the Influence of Measures . 45

3.4.1 Example 1: On the Absence of Information 46
3.4.2 Example 2: Relaxing the Optimum Helps 47
3.4.3 Example 3: Clear Conclusions do Exist 48
3.4.4 Example 4: Meaningfulness Does Not Mean Clear

Superiority . 48
3.4.5 Example 5: Speedup: Avoid Comparing Apples

against Oranges . 49
3.4.6 Example 6: A Predefined Effort Could Hinder Clear

Conclusions . 50
3.5 Conclusions . 51

Part II: Characterization of Parallel Genetic Algorithms

4 Theoretical Models of Selection Pressure for
Distributed GAs . 55
4.1 Existing Theoretical Models . 57

4.1.1 The Logistic Model . 57
4.1.2 The Hypergraph Model . 57
4.1.3 Other Models . 58

4.2 Analyzed Models . 59
4.3 Effects of the Migration Policy on the Actual Growth

Curves . 60
4.3.1 Parameters . 61
4.3.2 Migration Topology . 61
4.3.3 Migration Frequency . 63
4.3.4 Migration Rate . 64
4.3.5 Analysis of the Results . 65

4.4 Takeover Time Analysis . 68
4.5 Conclusions . 71

Part III: Applications of Parallel Genetic Algorithms

5 Natural Language Tagging with Parallel
Genetic Algorithms . 75
5.1 Statistical Tagging . 77
5.2 Automatic Tagging with Metaheuristics 79

5.2.1 Genetic Algorithm . 79
5.2.2 CHC Algorithm . 80
5.2.3 Simulated Annealing . 80
5.2.4 Parallel Versions . 80

Contents XI

5.3 Algorithm Decisions: Representation, Evaluation, and
Operators . 81
5.3.1 Individuals . 81
5.3.2 Fitness Evaluation . 82
5.3.3 Genetic Operators . 82

5.4 Experimental Design and Analysis . 83
5.5 Conclusions . 89

6 Design of Combinational Logic Circuits 91
6.1 Problem Definition . 92
6.2 Encoding Solutions into Strings . 94
6.3 Related Works . 97
6.4 Sequential, Parallel, and Hybrid Approaches 97
6.5 Computational Experiments and Analysis of Their

Results . 102
6.5.1 Case Study 1: Sasao . 104
6.5.2 Case Study 2: Catherine . 106
6.5.3 Case Study 3: Katz 1 . 108
6.5.4 Case Study 4: 2-Bit Multiplier . 109
6.5.5 Case Study 5: Katz 2 . 110

6.6 Overall Discussion . 113
6.7 Conclusions and Future Work . 114

7 Parallel Genetic Algorithm for the Workforce Planning
Problem . 115
7.1 The Workforce Planning Problem . 116
7.2 Design of a Genetic Algorithm . 118

7.2.1 Solution Encoding . 118
7.2.2 Evaluation the Quality of a Solution 119
7.2.3 Repairing/Improving Operator . 120
7.2.4 Recombination Operator . 120
7.2.5 Mutation Operator . 122
7.2.6 The Proposed Parallel GA . 122

7.3 Scatter Search . 123
7.3.1 Seeding the Initial Population . 124
7.3.2 Improvement Method . 124
7.3.3 Parallel SS . 125

7.4 Computational Experiments and Analysis of Results 125
7.4.1 Problem Instances . 126
7.4.2 Results: Workforce Planning Performance 126
7.4.3 Results: Computational Times . 129
7.4.4 A Parallel Hybrid GA. 132

7.5 Conclusions . 134

XII Contents

8 Parallel GAs in Bioinformatics: Assembling DNA
Fragments . 135
8.1 The Work of a DNA Fragment Assembler 136

8.1.1 DNA Sequencing Process . 136
8.2 Related Literature . 139
8.3 The pGA DNA Assembler . 140

8.3.1 Solution Encoding . 140
8.3.2 Solution Evaluation . 140
8.3.3 Genetic Operators . 141
8.3.4 The Parallel Approach . 142

8.4 Experimental Validation . 143
8.4.1 Target Problem Instances . 143
8.4.2 Parameterization . 144
8.4.3 Analysis of Results . 144

8.5 Conclusions . 147

A The MALLBA Library . 149
A.1 Skeleton Interfaces . 151
A.2 Communication Interface . 152
A.3 Hybridization Interface . 154
A.4 Additional Information about MALLBA. 156

B Acronyms . 157

References . 159

1

Introduction

Be brief in your reasonings, there is no relish in long ones.

Miguel de Cervantes (1547 - 1616) - Spanish writer

Research in exact algorithms, heuristics, and metaheuristics for solving
combinatorial optimization problems is nowadays highly on the rise. The
main advantage of using exact methods is the guarantee of finding the global
optimum for the problem [1], but the critical disadvantage when solving real
problems (NP-hard) comes from of the exponential growth of the execution
time according to the instance size, as well as from the unreal constraints
they often impose to solve the problem. On the other hand, specific (ad-hoc)
heuristics tend to be very fast [2], but the solutions obtained are generally not
of high quality and difficult to export to other similar problems. In contrast,
metaheuristics offer a tradeoff between both [3, 4]: they are generic techniques
which offer a good solution (even the global optimum) usually in a moderate
run time.

Due to the fast development of computer science in the last years, increas-
ingly harder and more complex problems are being faced continuously. A
large number of metaheuristics designed for solving such complex problems
exists in the literature [3, 5]. Among them, evolutionary algorithms (EAs) are
very popular optimization methods [6, 7, 8]. They consist in evolving a pop-
ulation of individuals (tentative solutions), emulating the biological process
found in Nature, so that individuals are improved. This family of techniques
apply an iterative and stochastic process on a set of individuals (population),
where each individual represents a potential solution to the problem. To mea-
sure their quality, a fitness value is assigned to each individual. This value
represents the quantitative information used by the algorithm to guide the
search. The balance between exploration (diversification) of new areas of the
search space and exploitation (intensification) of good solutions accomplished
by this kind of algorithms is one of the key factors for their high performance
with respect to other metaheuristics. This exploration/exploitation tradeoff
can be sharpened by tuning some different parameters of the algorithms such
as the population used, the variation operators applied, or the probability of
applying them, among others.

G. Luque and E. Alba: Parallel Genetic Algorithms, SCI 367, pp. 3–13.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

4 1 Introduction

In this book we focus on parallel genetic algorithms (pGA), a class of
EA in which the tentative solutions are evaluated and evolve in parallel.
Although the use of metaheuristics allows to significantly reduce the temporal
complexity of the search process, the exploration remains time-consuming for
industrial problems. Therefore, parallelism is necessary to not only reduce
the resolution time, but also to improve the quality of the provided solutions
[6, 9, 10], since in many cases the search progress is conducted differently
when using a pGA.

In this chapter we first define some important issues for optimization prob-
lems. After that, we present a brief introduction to the field of metaheuristics
(Section 1.2) and, particularly to evolutionary algorithms (in Section 1.3). In
Section 1.4) we describe the two main existing models of decentralized pop-
ulation in GAs: cellular and distributed GAs since they are often the basis
for building parallel GAs. At the end of this chapter, a summary is offered.

1.1 Optimization

In this section, we define some basic notations used along this book. Initially,
we give a formal definition of (mono-objective) optimization. Assuming min-
imization (without any lost in generality), we can define an optimization
problem as follows:

Definition 1.1 (Optimization). An optimization problem is formalized by
a pair (S,f), where S �= ∅ represents the solution space -or search space- of
the problem, while f is a quality criterion known as the objective function,
defined as:

f : S → R. (1.1)

Thus, solving an optimization problem consists in finding a set of decision
variables values such that the represented solutions by these values i∗ ∈ S
satisfy the following inequality:

f(i∗) ≤ f(i), ∀i ∈ S. (1.2)

Assuming maximization or minimization does not restrict the generality of
the results, we can establish an equivalence between the maximization and
minimization problems as:

max{f(i)|i ∈ S} ≡ min{−f(i)|i ∈ S}. (1.3)

According to the domain of S, we can define binary optimization (S ⊆ B),
complete or discrete (S ⊆ N), continuous (S ⊆ R), or heterogeneous -or
mixed - (S ⊆ B ∪ N ∪ R) problems.

A definition of proximity or distance between different solutions of the
search space is necessary for solving an optimization problem. Two solutions

1.2 Metaheuristics 5

are close each other if they belong to the same neighborhood in the search
space. We define the neighborhood of a solution as:

Definition 1.2 (Neighborhood). Being (S,f) an optimization problem, a
neighborhood structure in S can be defined as:

N : S → S, (1.4)

such that for each solution i ∈ S a set Si ⊆ S is defined. It also holds that
if i is in the neighborhood of j, then j is also in the neighborhood of i: j ∈ Si

iff i ∈ Sj.

In general, in a complex optimization problem, the objective function often
presents an optimal solution that is an optimum only in its neighborhood,
but which is not optimal if we consider the whole search space. Therefore,
a global search method can be easily trapped in an optimal value inside a
neighborhood, thus giving rise to the concept of local optimum:

Definition 1.3 (Local optimum). Being (S, f) an optimization problem,
and Si′ ⊆ S the neighborhood of a solution i′ ∈ Si′ , i′ is a local optimum if
the next inequality is satisfied (assuming minimization):

f(i′) ≤ f(i), ∀i ∈ Si′ . (1.5)

When tackling real life optimization problems, we are usually forced to deal
with constraints. In these cases, the area of feasible solutions S is limited to
those that satisfy all the constraints. Thus, the next definition is needed:

Definition 1.4 (Optimization with constraints). Given an optimization
problem (S, f), we define M = {i ∈ S | gk(i) ≥ 0, ∀k ∈ [1, . . . , q]} as the
region of feasible solutions of the objective function f : S → R. The func-
tions gk : S → R are called constraints, and these gk are named differently
according to the value taken by i ∈ S:

satisfied : ⇔ gk(i) ≥ 0,
active : ⇔ gk(i) = 0,
inactive : ⇔ gk(i) > 0, and
violated : ⇔ gk(i) < 0,

Global optimization problem is the term used when no constraints exist,
i.e. iff M = S; in other case it is referred to as a restricted or constrained
problem.

1.2 Metaheuristics

There exist many proposal of algorithmic techniques in the literature, both
exact and approximate, for solving optimization problems (see Fig. 1.1 for

6 1 Introduction

a basic taxonomy). Exact algorithms guarantee to find the optimal solution
for all the existing (finite set of) instances. Generally, since exact methods
need exponential computation times when facing large instances of complex
problems, NP-hard problems can not be realistically tackled. Therefore, the
use of approximate technique is a rising topic in the last decades. In these
methods we lose the guarantee of finding the global optimal solution (often,
but not always) in order to find good solutions in a significantly shorter time
compared to exact methods. This lost of the guarantee of finding the optimal
solution is often practically, since in a number of metaheuristics, the theoret-
ical convergence to the global optimum is proven under some conditions.

For the last twenty years a new kind of approximate techniques has been
emerging, consisting basically in combining simple ad-hoc heuristic methods
(approximate algorithms with stochastic guided components) in higher level
search sheets in order to explore and to exploit the search space efficiently and
effectively. These methods are commonly known as metaheuristics. In [3] the
reader can find some metaheuristic definitions given by different authors, but
in general we can state that metaheuristics are high level strategies having
a given structure that plans the application of a set of operations (variation
operators) to explore high dimensional and complex search spaces.

Fig. 1.1 Classification of optimization problems.

Metaheuristics can be classified in many different ways. In [3] a classifica-
tion is given according to different properties which characterize them. One of
these classifications relies on the number of solutions: population based (work
with a set of solutions) and trajectory based (work with a single solution).
The latter starts with a single initial solution. At each step of the search
the current solution is replaced by another (often the best) solution found
in its explored neighborhood. Frequently, such a metaheuristic allows to find
a local optimal solution, and so they are called exploitation-oriented meth-
ods. On the other hand, population based methods make use of a population

1.3 Evolutionary Algorithms 7

of solutions. The initial population is enhanced through a natural (or purely
mathematical) evolution process. At each generation of the process, the whole
population or a part of the population is replaced by newly generated indi-
viduals (usually the best ones). Population based methods are often called
exploration-oriented methods. Among the best well-known metaheuristics, we
can find evolutionary algorithms (EAs) [8], iterative local search (ILS) [11],
simulated annealing (SA) [12], tabu search (TS) [13], variable neighborhood
search VNS [14], and ant colony optimization (ACO) [15].

1.3 Evolutionary Algorithms

In the seventies and eighties (with various other punctual works before),
several researchers coincided in developing, independently of each other, the
idea of implementing algorithms based on the organic evolution model in
an attempt to solve adaptive and hard optimization tasks on computers.
Nowadays, due to their stockiness and large applicability, and also to the
availability of higher computational power (e.g., parallelism), the resulting
research field, that of evolutionary computation, receives growing attention
in all important research agencies in the world.

The evolutionary computation framework [8] stands for a wide set of fami-
lies of techniques for solving the problem of searching optimal values by using
computational models, most of them inspired by evolutionary processes (evo-
lutionary algorithms). Evolutionary Algorithms (EAs) are population based
optimization techniques designed for searching optimal values in complex
spaces. They are loosely based on some biological processes that can be seen
in Nature, like natural selection [16] or genetic inheritance [17] of parental
good traits. Part of the evolution is determined by the natural selection of
different individuals competing for resources in the environment. Therefore,
some individuals are better than others. Those that are better are more likely
to survive, learn, and propagate their genetic material.

Sexual reproduction allows some shuffling of chromosomes, producing off-
spring that contain a combination of information from each parent. This is
known as the recombination operation, which is often referred to as crossover
because of the way that biologists have observed strands of chromosomes
crossing over during the exchange. Recombination happens in an environ-
ment where the selection of mates for reproduction is largely a function of
the fitness of individuals, i.e., how good each individual is at competing in
its environment.

As in the biological case, individuals can occasionally mutate. Mutation
is an important source of diversity for EAs. In an EA, a large amount of
diversity is usually introduced at the start of the algorithm by randomizing
the genes in the population. The importance of mutation, which introduces
further diversity while the algorithm is running, is a matter of debate. Some
refer to it as a background operator, simply replacing some of the original

8 1 Introduction

diversity which may have been lost, while others view it as playing a dominant
role in the evolutionary process (e.g., avoiding getting stuck in local optima).

An EA proceeds in an iterative way by successively evolving the current
population of individuals. This evolution is usually a consequence of applying
stochastic variation operators such as selection, recombination, and mutation
on the population in order to compute a whole generation of new individu-
als. The initial population is usually generated randomly, although it is also
normal to use some seeding technique in order to speed up the search by
starting from good quality solutions. A fitness evaluation assigns a value to
every individual, which is representative of its suitability to the problem at
hands. This evaluation can be performed by an objective function (e.g., a
mathematical expression or a computer simulation) or by a subjective opin-
ion, in which the best solutions are selected by an external -human- agent
(e.g., expert design of furniture or draws using interactive EAs). The stop
criterion is usually set to reach a preprogrammed number of iterations of the
algorithm, or to find a solution to the problem (or an approximation to it, if
it is known beforehand).

Individuals encode tentative solutions to the problem usually in the form
of strings (of binary, decimal, or real numbers), trees, and maybe other data
structures [18]. Every individual has an assigned fitness value as a measure of
its adequacy, so that better fitness values represent better individuals. This
fitness value is used for deciding which individuals are better and which ones
are worse.

Fig. 1.2 Example of the application of the variation operators in an EA.

In Fig. 1.2 we show an example of the application of some specific variation
operators in a population composed by four individuals. As it can be seen,
the “String” column in the upper table is the binary codification of a given

1.3 Evolutionary Algorithms 9

problem. The selection operator displayed selects the parents in terms of
the percentage of their fitness value with respect to the sum of the fitness
values of all the individuals in the population. The recombination operator
represented (the single point crossover) splits the chromosomes of the two
individuals into two different parts in a randomly chosen location, and then
it joints the parts of the different individuals in order to generate two new
offspring. Finally, the mutation in this example flips the value of a random
gene (the first one in this figure), in order to introduce some more diversity
and hopefully getting a better individual, as it is the case of the example.

Now, we analyze in detail the functioning of an evolutionary algorithm. Its
pseudo-code is shown in Algorithm 1. As it was said before, evolutionary al-
gorithms work on populations of individuals, which are tentative solutions to
the problem. The initial population is usually composed by randomly created
individuals, although problem knowledge can help creating faster EAs (e.g.,
by using a greedy initial feeding of solutions). After the generation of the
initial population, the fitness value of each individual is computed, and the
algorithm starts off the reproductive cycle. This step lies in generating a new
population through the selection of the parents, the recombination of them,
the mutation of the offsprings obtained and then, their evaluation. These
three variation operators are typical of most EAs, specially GAs, although
many EA families usually use less (e.g., evolutionary strategies ES with no
recombination) or more (e.g., decentralized EAs) operators. This new popu-
lation generated in the reproductive cycle (P ′) will be used, along with the
current population (P), for obtaining the new population of individuals for
the next generation. The algorithm returns the best solution found during
the execution.

Algorithm 1. Pseudocode for an Evolutionary Algorithm.
1: P ← GenerateInitialPopulation()
2: Evaluate(P)
3: while not Termination Condition() do
4: P ′ ← SelectParents(P)
5: P ′ ← ApplyVariationOperators(P ′)
6: Evaluate(P ′)
7: P ← SelectNewPopulation(P ,P ′)
8: end while
9: Return The best solution found;

There are two kinds of EAs depending on the replacement used, that is,
according to the combination between P and P ′ for the new generation. Thus,
being μ the number of individuals of P and λ the number of individuals
in P ′, if the population of the new generation is obtained from the best μ
individuals of the populations P and P ′ we have a (μ + λ)-EA, meanwhile
if the population of the next generation is composed only by the μ best

10 1 Introduction

individuals out of the λ belonging to P ′, we have a (μ, λ)-EA. In this second
case, it is usual that μ ≤ λ. The “plus” strategy is inherently elitist (the best
solution is always preserved) while the “comma” strategy could led to loosing
the best solution from the population.

The application of EAs to optimization (and learning) problems has been
very intense during the last decade [8]. In fact, it is possible to find this kind of
algorithms applied to solving complex problems like constrained optimization
tasks, problems with a noisy objective function, or problems which have high
epistasis (high correlation between the values to optimize) and multimodality.
The high complexity and applicability of these algorithms has promoted the
emergence of innovative new optimization and search models.

Initially, four kinds of evolutionary algorithms [19] could be differentiated.
These four families of algorithms were simultaneously developed by different
research groups in the world. Genetic algorithms (GAs) were initially stud-
ied mainly by J. H. Holland [20], in Ann Arbor (Michigan). The evolution
strategies (ES) were proposed by I. Rechenberg [21] and H.-P. Schwefel [22] in
Berlin (Germany), meanwhile the evolutionary programming (EP) was firstly
proposed by L. J. Fogel [23] in San Diego (California). Last, the fourth fam-
ily of algorithms, genetic programming (GP), appeared two decades later, in
1985, as an adaptation of N. Cramer [24] of a genetic algorithm which worked
with tree shaped genes, and it is now widely used thanks to the leading works
of J. Koza [25]. In this book, we focus on the GAs since it is maybe the most
general (the rest ones are linked to specific encodings or operators) and used
algorithms of the four families.

1.4 Decentralized Genetic Algorithms

Most GAs use a single population (panmixia) of individuals and apply oper-
ators on them as a whole (see Fig. 1.3a). In contrast, a tradition also exists
in using structured GAs (where the population is decentralized somehow),
especially in relation to their parallel implementation. The use of parallel
multiple populations is based on the idea that the isolation of populations
allows to keep a higher genetic differentiation [26]. In many cases [27], these
algorithms using decentralized populations provide a better sampling of the
search space and improve both the numerical behavior and the execution time
of an equivalent panmictic algorithm. Among the many types of structured
GAs, distributed and cellular algorithms are two popular optimization tools
(see Fig. 1.3).

On the one hand, in the case of distributed GAs (dGAs), the population
is partitioned in a set of islands in which isolated GAs are executed (demes).
Sparse exchanges of individuals are performed among these islands with the
goal of introducing some diversity into the subpopulations, thus preventing
them from getting stuck in local optima.

On the other hand, in a cellular GA (cGA) the concept of a (small) neigh-
borhood is intensively used; this means that an individual may only interact

1.4 Decentralized Genetic Algorithms 11

Fig. 1.3 A panmictic GA has all its individuals (black points) in the same popu-
lation (a). Structuring the population usually leads to distinguishing between dis-
tributed (b) and cellular (c) GAs.

with its nearby neighbors in the breeding loop. The overlapped small neigh-
borhoods of cGAs help in exploring the search space because the induced
slow diffusion of solutions through the population provides a kind of explo-
ration (diversification), while exploitation (intensification) takes place inside
each neighborhood by genetic operations.

If we think on the population of an GA in terms of graphs, being the
individuals the vertices of the graph and the relationship among them the
edges, a panmictic GA is a completely connected graph. On the other hand,
a cGA is a lattice graph, as one individual can only interact with its nearest
neighbors. A dGA is a partition of the panmictic GA into several smaller
GAs, that is, in each island we have a completely connected graph (very fast
convergence), while there exist only a few connections between the islands.

G

G

Fig. 1.4 The structured-population genetic algorithm cube.

These two traditionally decentralized GAs (dGAs and cGAs) are actually
two subclasses of the same kind of GA consisting in a set of communicating
sub-algorithms. Hence, the actual differences between dGAs and cGAs can be
found in the way in which they both structure their populations. In Fig. 1.4,

12 1 Introduction

we plot a three-dimensional (3-D) representation of structured algorithms
based on the number of subpopulations, the number of individuals in each
one, and the degree of interaction among them [28]. As it can be seen, a dGA is
composed of several large sub-populations (having >> 1 individuals), loosely
connected among them. Conversely, cGAs are made up of a large number
of tightly connected sub-populations, each one typically containing only one
individual.

This cube can be used to provide a generalized way for classifying struc-
tured GAs. However, the points in the cube indicating dGA and cGA are
only “centroids”; this means that an arbitrary decentralized algorithm could
be hardly classified as belonging to one of two such classes of structured GAs.

In a structured GA, many elementary GAs (grains) exist each, working on
separate sub-populations. Each sub-algorithm includes an additional phase
of periodic communication with a set of neighboring sub-algorithms located
in some topology. This communication usually consists in exchanging a set
of individuals or population statistics. All the sub-algorithms were initially
studied to perform the same reproductive plan, although there is a recent
trend consisting in executing GAs with distinct parameterizations in each
subpopulation, thus performing different searches in the space of solutions in
each island. This kind of (usually parallel) GAs are called heterogeneous.

From this point of view, cellular and distributed GAs only differ in some
parameters, and they can be helpful even when run in a monoprocessor. This
makes merging them in the same algorithm an interesting option, in order to
get a more flexible and efficient algorithm for some kinds of applications [28].
Additionally, any of these GAs (or EAs) can be run in a distributed way (i.e.,
suited for a workstation cluster or multicore computer), or even on a grid of
computers [29] (not to confuse with the “grid” in which individuals evolve in
the population of a cellular GA).

1.5 Conclusions

In this chapter we have presented evolutionary algorithms, which are iter-
ative techniques operating on a set of individuals composing a population;
each of these individuals represents a potential solution to the problem. This
population of individuals evolves due to the application of a set of operators
inspired in biological processes of Nature, such as natural selection and ge-
netic inheritance. As a result, the individuals of the population are improved
during the evolution. GAs are really useful tools for solving complex prob-
lems, as they work fast in large (and complex) search spaces thanks to their
ability to process multiple solutions simultaneously (concept of population).
Hence, EAs can follow different search paths simultaneously, that would be
in turn explored in parallel.

1.5 Conclusions 13

Additionally, it is possible to improve the numerical behavior of the algo-
rithm by structuring the population. The main types of GAs with structured
populations are distributed and cellular ones. In this book we focus on the
distributed case as it was briefly introduced in this chapter. For parallel algo-
rithms, this kind of coarse-grained model of search is exceptionally good and
represents a rich set of research lines. We will see in the next chapters that
even the panmictic model allows for master-slave parallel execution, thus we
will even open our range of study from coarse-grained parallelism to other
types of search such as farming and even fine-grained parallelism in modern
hardware such as graphic processing units (GPUs) or FPGAs.

2

Parallel Models for
Genetic Algorithms

The whole is more than the sum of the parts.

Aristotle (384 - 322 BC) - Greek philosopher

In the previous chapter we offered a brief introduction to metaheuristics.
Now, this chapter is devoted to genetic algorithms (GA) and their parallel
models. GAs [4, 20] are stochastic search methods designed for exploring
complex problem spaces in order to find optimal solutions, possibly using in-
formation of the problem to guide the search. Unlike most other optimization
(search, learning) techniques, a population of multiple structures is used by
GAs to perform the search along many different areas of the problem space
at the same time. The structures composing the population (individuals) en-
code tentative solutions, which are manipulated competitively by applying
them some stochastic operators to find a satisfactory, if not globally, optimal
solution.

Algorithm 2. Pseudocode of a canonical GA.
1: P ← GenerateInitialPopulation()
2: Evaluate(P)
3: while not Termination Condition() do
4: P ′ ← SelectParents(P)
5: P ′ ← Recombination(P ′)
6: P ′ ← Mutation(P ′)
7: Evaluate(P ′)
8: P ← SelectNewPopulation(P ,P ′)
9: end while

10: Return The best solution found;

In Algorithm 2, the outline of a classical GA is described. A GA proceeds in
an iterative way by successively generating a new population P (t) of individ-
uals from P (t − 1), the previous one (t = 1, 2, 3, . . .). The initial population
P (0) is generated randomly. A fitness function associates a value to every
individual, which is representing its suitability to the problem in hands. The

G. Luque and E. Alba: Parallel Genetic Algorithms, SCI 367, pp. 15–30.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

16 2 Parallel Models for Genetic Algorithms

canonical algorithm applies stochastic operators such as selection, recombina-
tion, and mutation on a population in order to compute a whole generation of
new individuals. In a general formulation, variation operators are applied to
create a temporary population P ′(t), whose individuals are evaluated; then,
a new population P (t + 1) is obtained by using P ′(t) and, optionally, P (t).
In GAs, these variations operators are typically recombination and mutation.
The stop criterion is usually set as reaching a preprogrammed number of it-
erations of the algorithm, and/or to find an individual with a given error if
the optimum, or an approximation to it, if known beforehand.

For nontrivial problems, the execution of the reproductive cycle of a sim-
ple GA may require high computational resources (e.g., large memory and
long search times), and thus a variety of algorithmic issues has been studied
to design efficient GAs. For this goal, numerous advances are continuously
being achieved by designing new operators, hybrid algorithms, termination
criteria, and so on [8]. In this chapter, we address one such improvement, con-
sisting in adding parallelism to GAs. In the field of parallel GAs (pGAs) [9],
there exists a large number of implementations and algorithms. The reasons
of this success have to do first, with the fact that GAs are naturally prone
to parallelism, since most variation operators can be easily undertaken in
parallel, and second, that using a pGA often takes us not only to use a faster
algorithm, but also to get a superior numerical performance [27, 30]. Parallel
GAs are characterized by the use of a structured population (a spatial distri-
bution of individuals), either in the form of a set of islands [31] or a diffusion
grid [32], which is the responsible of such benefits. As a consequence, many
authors do not use a parallel machine at all to run structured-population
models, and still get better results than with serial traditional GAs [30].

The goal of this chapter is to give a modern classification of the dif-
ferent models and implementations concerning parallel GAs, a field of the
evolutionary computation (EC) discipline. In addition, we will empirically
test the behavior of some of the most important proposed models, provid-
ing to the community what we hope to be a useful baseline comparison for
other researchers among the main models for parallelizing GAs existing in the
literature.

This chapter is organized as follows. First, a description of the standard
model of GA, in which the whole population is considered as a single pool of
individuals, is given. In the next section, we address the structured models, in
which the population is decentralized somehow. Later, some different imple-
mentations of parallel GAs are presented, and a pGA classification is given.
In Section 2.4, we test and compare the behavior of several parallel models
when solving an instance of the well-known MAXSAT problem. Finally, we
summarize our most important conclusions.

2.1 Panmictic Genetic Algorithms 17

2.1 Panmictic Genetic Algorithms

In the GA field, it is usual to find algorithms implementing panmictic pop-
ulations, in which selection takes place globally and any individual can po-
tentially mate with any other one in the population. The same holds for
the replacement operator, where any individual can potentially be removed
from the pool and replaced by a new one. In contrast, there exists a different
(decentralized) selection model, in which individuals are arranged spatially,
therefore giving place to structured GAs (see Section 2.2). Most other opera-
tors, such as recombination or mutation, can be readily applied to these two
models.

There exist two popular classes of panmictic GAs, having different granu-
larity at the reproductive step [33]. In the first one, called the “generational”
model, a whole new population of λ (hence λ = μ, μ being the popula-
tion size) individuals replaces the old one. The second type is called “steady
state”, since usually one (λ = 1) or two (λ = 2) new individuals are created
at every step of the algorithm and then they are inserted back into the popu-
lation, consequently coexisting with their parents. In Fig. 2.1, we graphically
explain these two kinds of panmictic GAs in terms of the number of new
individuals being inserted into the population of the next generation (λ). As
it can be seen in the figure, in the mean region (where 1 < λ < μ), there
exists a plethora of selection models generically termed as “generation gap”
algorithms, in which a given number of individuals (λ value) are replaced
with the new ones. Clearly, generational and steady state selection are two
special subclasses of generation gap algorithms.

��� ����� ���

steady state generational

Fig. 2.1 Panmictic GAs, from steady state to generational algorithms.

Centralized versions of selection are typically found in serial GAs, although
some parallel implementations have also used them. For example, the global
parallelism approach evaluates in parallel the individuals of the population
while still using a centralized selection performed sequentially in the main
processor running the base algorithm [34]. This algorithm is conceptually
the same as the sequential one, although it is faster, especially for time-
consuming objective functions. The common drawback of this approach is
the bottleneck imposed by the centralized scheme of execution. Usually, the
other parts of the algorithm are not worth to be parallelized, unless some
population structuring principle is used (see Section 2.2).

Most pGAs found in the literature implement some kind of spatial dispo-
sition for the individuals, and then parallelize the resulting chunks in a pool

18 2 Parallel Models for Genetic Algorithms

of processors [6]. We must stress at this point of the discussion that paral-
lelization is very often achieved by first structuring the panmictic algorithm,
and then parallelizing it. This is why we distinguish throughout this book
between structuring populations and making parallel implementations, since
the same structured GA can admit many different implementations. The next
section is devoted to explain different ways of structuring the populations.
The resulting models can be executed in parallel or not, but in fact some
structured models suggest a straightforward parallel implementation.

2.2 Structured Genetic Algorithms

There exists a long tradition in using structured populations in EC, espe-
cially associated to parallel implementations. Among the most widely known
types of structured GAs, the distributed and cellular ones are very popular
optimization procedures [35].

Decentralizing a single population can be achieved by partitioning it into
several subpopulations, where component GAs are run performing sparse ex-
changes (migrations) of individuals (dGAs), or in the form of neighborhoods
(cGAs). In dGAs, additional parameters controlling when migration occurs
and how migrants are selected/incorporated from/to the source/target island
are needed [31, 36]. In cGAs, the existence of overlapped small neighborhoods
helps in exploring the search space [37]. These two kinds of GAs seem to pro-
vide a better sampling of the search space, and to improve the numerical and
runtime behavior of the basic algorithm in many cases [27, 30].

The main difference in a cGA with respect to a panmictic GA is its decen-
tralized selection and variation. In cGAs, the reproductive loop is performed
inside every one of the numerous individual pools. In a cGA, one given indi-
vidual has its own pool of potential mates, defined by its neighboring individ-
uals; at the same time, one individual belongs to many pools. This structure
with overlapped neighborhoods (usually a 1- or 2-dimensional lattice) is used
to provide a smooth diffusion of good solutions across the grid. A cGA can be
implemented in a distributed memory MIMD computer [38] (e.g., a cluster or
multicore), although its more direct implementation is on a SIMD computer
(e.g., a FPGA or GPU).

A dGA is a multipopulation (island) model performing sparse exchanges
of individuals among the elementary populations. This model can be readily
implemented in distributed memory MIMD computers, which provides one
main reason for its popularity. A migration policy controls the kind of dGA
being used. The migration policy must define the island topology, when mi-
gration occurs, which individuals are being exchanged, the synchronization
among the subpopulations, and the kind of integration of exchanged individ-
uals within the target subpopulations. The advantages of a distributed model
(either running on separate processors or not) is that it is usually faster (it
reduces the required numerical steps) than a panmictic GA. The reason for

2.3 Parallel Genetic Algorithms 19

this is that the run time and the number of evaluations are potentially re-
duced thanks to its separate search in several regions from the problem space.
A high diversity and species formation are two of their well-reported features
[39].

So far, we have made the implicit hypothesis that the genetic material,
as well as the evolutionary conditions, such as selection and recombination
methods, were the same for all the individuals and all the populations of a
structured GA. Let us call these algorithm types uniform or homogeneous. If
one gives up some of these constraints and allows different subpopulations to
evolve with different parameters and/or with different individual representa-
tions for the same problem, then new distributed algorithms may arise. We
will name these algorithms nonuniform or heterogeneous parallel GAs. Tanese
did some original work in this field and was the first in studying the use of
different mutation and crossover rates in different populations [39]. A more
recent example of nonuniform algorithms is the injection island GA (iiGA)
of Lin et al. [40]. In an iiGA, there are multiple populations that encode
the same problem using a different representation size, and thus different
resolutions in different islands. The migration rules are also special in the
sense that migration is only one-way, going from a low- to a high-resolution
node. According to Lin et al., such a hierarchy has a number of advantages
with respect to a standard island algorithm. A similar hierarchical topology
approach has been recently used in [41] with some differences such as real-
coded GAs and two-way migration. The purported advantages are: no need
for representation conversion, better precision, and better exploration of the
search space using a nonuniform mutation scheme.

A related proposal has been offered by Herrera et al. [42]. Their gradual
distributed real-coded GA involves a hierarchical structure in which a higher
level nonuniform distributed GA joins a number of uniform distributed GAs
that are connected among themselves. The uniform distributed GAs differ in
their exploration and exploitation properties due to different crossover meth-
ods and selection pressures. The proposed topology is the cube-connected
cycle in which the lower level distributed GAs are rings at the corners of the
cube, and the rings are connected at the higher level along the edges of the
cube. There are two types of migration: local migration among subpopula-
tions in the same lower level distributed GA and global migrations between
subpopulations belonging to different lower level distributed GAs. According
to [43], the proposed scheme outperforms other distributed GAs on the set
of test functions that were used in the paper. A deeper explanation with de-
tails and a summary on research using heterogeneous pGAs can be found in
[44, 45].

2.3 Parallel Genetic Algorithms

In this section, our goal is to present a structured vision of the parallel models
and parallel implementations of GAs. Therefore, Subsection 2.3.1 is devoted

20 2 Parallel Models for Genetic Algorithms

to describe the parallel model used to parallelize a GA, Subsection 2.3.2
presents a classification of the parallel implementations, and Subsection 2.3.3
focuses on some of the most promising research lines in the field of pGAs.

2.3.1 Parallel Models

This subsection briefly describes the primary conceptual models of the major
parallel GA paradigms that are implemented in the literature.

Independent Runs Model

Many researchers use a pool of processors to speed up the execution of a se-
quential algorithm, just because independent runs can be made more rapidly
by using several processors than by using a single one. In this case, no interac-
tion at all exists among the independent runs. This extremely simple method
of doing simultaneous work can be very useful. For example, it can be used
to run several versions of the same problem with different initial conditions,
thus allowing gathering statistics on the problem in a short time. Since GAs
are stochastic in nature, it is very important the availability of this kind of
statistics.

Master-Slave Model

The Master-Slave model is easy to visualize. It consists in distributing the
objective function evaluations among several slave processors while the main
loop of the GA is executed in a master processor. This parallel paradigm is
quite simple to implement and its search space exploration is conceptually
identical to that of a GA executing on a serial processor. In other words,
the number of processors being used is independent of which solutions are
evaluated, except for time. This paradigm is illustrated in Fig. 2.2, where the
master processor sends parameters (those necessary for the objective function
evaluation) to the slaves; objective function values are then returned when
computed.

Fig. 2.2 Master-Slave parallel model.

2.3 Parallel Genetic Algorithms 21

The master processor controls the parallelization of the objective function
evaluation tasks (and possibly the fitness assignment and/or transformation)
performed by the slaves. This model is generally more efficient as the objective
evaluation becomes more expensive to compute, since the communication
overhead is insignificant with respect to the fitness evaluation time. However,
it tends to present a bottleneck for some dozens processors, thus usually
preventing scalability.

Distributed Model

In distributed GAs, the population is structured into smaller subpopulations
relatively isolated one from the others. Parallel GAs based on this paradigm
are sometimes called multi-population or multi-deme GAs. Regardless their
name, the key characteristic of this kind of algorithm is that (a copy of) indi-
viduals within a particular subpopulation (or island) can occasionally migrate
to another one. This paradigm is illustrated in Fig. 2.3. Note that the commu-
nication channels shown are logical; specific assignments are made as a part
of the GA’s migration strategy and are mapped to some physical network.

Fig. 2.3 Distributed model, also called multiple-deme, multipopulation, or coarse-
grained parallel model.

Conceptually, the overall GA population is partitioned into a number of in-
dependent, separate subpopulations (or demes). An alternative view is that of
several small, separate GAs executing simultaneously. Individuals occasion-
ally migrate between one particular island and its neighbors, although these
islands usually evolve in isolation for the majority of the GA runtime. Here,
genetic operators (selection, mutation, and recombination) take place within
each island, which means that each island can search in very different regions
of the whole search space with respect to the others. As said before, each
island could also have different parameter values (heterogeneous GAs [45]).
The distributed model requires the identification of a suitable migration pol-
icy. The main parameters of the migration policy include the following ones:

• Migration Gap. Since a dGA usually makes sparse exchanges of individuals
among the subpopulations, we must define the migration gap, this is the

22 2 Parallel Models for Genetic Algorithms

number of steps in every subpopulation between two successive exchanges
(steps of isolated evolution). It can be activated in every subpopulation
either periodically or by using a given probability PM to decide in every
step whether migration will take place or not.

• Migration Rate. This parameter determines the number of individuals that
undergo migration in every exchange. Its value can be given as a percentage
of the population size or else as an absolute value.

• Selection/Replacement of Migrants. This parameter decides how to select
emigrant solutions, and which solutions have to be replaced by the im-
migrants. It is very common in parallel distributed GAs to use the same
selection/replacement operators for dealing with migrants.

• Topology. This parameter defines the neighbor of each island, i.e., the is-
lands that a concrete subpopulation can send to (or receive from) individu-
als. The traditional nomenclature divides parallel GAs into stepping-stone
and island models, depending on whether individuals can freely migrate
to any subpopulation or if they are restricted to migrate to geographically
nearby islands, respectively.

Fig. 2.4 Cellular model, also called fine-grained parallel model.

Cellular Model

Like the master-slave model, the parallel cellular (or diffusion) GA paradigm
normally deals with a single conceptual population, where each processing
unit holds just a few individuals (usually one or two). That is the reason
because this model is sometimes called fine-grained parallelism. The main
characteristic of this model is the structuring of the population into neigh-
borhoods, where individuals may only interact with their neighbors. Thus,
since good solutions (possibly) arise in different areas of the overall topology,
they are slowly spread (or diffused) throughout the whole structure (popula-
tion). This model is illustrated in Fig. 2.4.

Cellular GAs were initially designed for working in massively parallel ma-
chines, although the model itself has been adopted also for distributed sys-
tems [38] and monoprocessor machines [30, 46]. This issue may be stated

2.3 Parallel Genetic Algorithms 23

clearly, since many researchers still hold in their minds the relationship be-
tween massively parallel GAs and cellular GAs, what nowadays this is mostly
not true.

Today’s graphical processing units (GPUs) and field programmable gate
array (FPGA) represent new hardware support for actually running cGAs on
massively parallel platforms [47, 48]

Other Models

It is also common to find many implementations of difficult classification in
the literature. In general, they are called hybrid parallel algorithms since they
implement characteristics of different parallel models.

(a) (b) (c)

Fig. 2.5 Hybrid parallel models: (a) cellular distributed GA, (b) distributed
master-slave GA, and (c) two level distributed GA.

For example, Fig. 2.5 shows three hybrid search architectures in which a
two-level approach of parallelization is undertaken. In the three cases the
highest level of parallelization is a dGA. In Fig. 2.5a, the basic islands per-
form a cGA, thus trying to get the combined advantages of the two mod-
els. In Fig. 2.5b, we have many global parallelization farms connected in
a distributed fashion, thus exploiting parallelism for making fast evolutions
and for obtaining separate population evolutions at the same time. Finally,
Fig. 2.5c presents several farms of distributed algorithms with a still higher
level of distribution, allowing migration among connected farms. Although
these combinations may give rise to interesting and efficient new algorithms,
they have the drawback of needing some additional new parameters to ac-
count for a more complex topology structure.

2.3.2 A Brief Survey on Parallel GAs

In this section we briefly discuss the main features of some of the most impor-
tant pGAs by presenting a structured classification, organized by the model
of parallelization (other classifications can be found in [6]).

24 2 Parallel Models for Genetic Algorithms

In Table 2.1, we provide a quick overview of different pGAs to point out
important milestones in parallel computing with GAs. These “implementa-
tions” have rarely been studied as “parallel models”. Instead, usually only
the implementation itself is evaluated.

Table 2.1 A quick survey of several parallel GAs.

Algorithm Article Parallel Model
ASPARAGOS [49] (1989) Fine grain. Applies hill-climbing if no improvement.
dGA [31] (1989) Distributed populations.
GENITOR II [50] (1990) Coarse grain.
ECO-GA [51] (1991) Fine grain.
PGA [52] (1991) Sub-populations, migrate the best, local Hill-Climbing.
SGA-Cube [53] (1991) Coarse grain. Implemented on the nCUBE 2.
EnGENEer [54] (1992) Global parallelization.
PARAGENESIS [55] (1993) Coarse grain. Made for the CM-200.
GAME [55] (1993) Object oriented set of general programming tools.
PEGAsuS [56] (1993) Coarse or fine grain. High-level programming on MIMD.
DGENESIS [57] (1994) Coarse grain with migration among sub-populations.
GAMAS [58] (1994) Coarse grain. Uses 4 species of strings (nodes).
iiGA [40] (1994) Injection island GA, heterogeneous and asynchronous.
PGAPack [34] (1995) Global parallelization (parallel evaluations).
CoPDEB [59] (1996) Coarse grain. Every subpop. applies different operators.
GALOPPS [60] (1996) Coarse grain.
MARS [61] (1999) Parallel environment with fault tolerance.
RPL2 [62] (1999) Coarse grain. Very flexible to define new GA models.
GDGA [43] (2000) Coarse grain. Hypercube topology.
DREAM [63] (2002) Framework for distributed EAs.
Hy4 [45] (2004) Coarse grain. Heterogeneous and hypercube topology.
MALLBA [64] (2004) An efficient general framework for parallel algorithms.
ParadisEO [65] (2004) A general framework for parallel algorithms.
JGAP [66] (2008) A framework for genetic algorithms and genetic programming.
apcGA [67] (2009) Fine grain.

Some coarse-grain algorithms like dGA [31], DGENESIS [57], GALOPPS
[60], PARAGENESIS [55], and PGA [52] are relatively close to the general
model of migration islands. They often include many features to improve
efficiency. Some other coarse-grain models like CoPDEB [59], GDGA [43],
and Hy4 [45] have been designed for specific goals, such as providing explicit
exploration/exploitation by applying different operators on each island. An-
other example of this class is the iiGA [40], which promotes coding and oper-
ator heterogeneity (see Section 2.2). A further parallel environment providing
adaptation with respect to the dynamic behavior of the computer pool and
fault tolerance is MARS, described by Talbi et al. in [61].

Some other pGAs execute nonorthodox models of coarse-grain evolution.
This is the case of GAMAS [58], based on using different alphabets in every
island, and GENITOR II [50], based on a steady-state reproduction.

In contrast, fine grain pGAs have been strongly associated to the mas-
sively parallel machines on which they run: ASPARAGOS [49] and ECO-GA
[51]; although recently, it is also find some implementations of fine grain al-
gorithms for distributed platforms [67]. This is also the case of models of
difficult classification like PEGAsuS [56], or SGA-Cube [53]. Depending on

2.3 Parallel Genetic Algorithms 25

the global parallelization model, some implementations, such as EnGENEer
[54] or PGAPack [34], are available.

Finally, it is worth to emphasize some efforts to construct general frame-
works for PEAs, like GAME [55], PEGAsuS, RPL2 [62], DREAM [63],
MALLBA [64], and ParadisEO [65]. These systems are endowed with “gen-
eral” programming structures intended to ease the implementation of any
model of PEA for the user, who must particularize these general structures to
define his/her own algorithm. Nowadays, many researchers are using object-
oriented programming (OOP) to create a higher quality software for pGAs,
but unfortunately some of the most important issues typical in OOP are
continuously being ignored in the resulting implementations. The reader can
find some general guidelines for designing object-oriented PEAs in [68].

All these models and implementations offer different levels of flexibility,
ranging from a single pGA to the specification of general pGA models. This
list is not complete, of course, but it helps in understanding the current “state
of the art”.

2.3.3 New Trends in pGAs

In this section, we focus on some of the most promising research lines in the
field of pGAs. Future achievements should take note of these issues.

• Tackling dynamic function optimization problems (DOP): pGAs will have
an important role in optimizing complex functions whose optima vary in
time (learning-like process). Such problems consist in optimizing a succes-
sive set of (logically different) fitness functions, each one usually being a
(high/small) perturbation of the precedent one. Industrial processes, like
real task-scheduling, and daily life tasks such as controlling an elevator or
the traffic light system can be dealt with dynamic models. Some pGAs, like
cGAs and dGAs, can face such DOP environments successfully thanks to
their natural diversity enhancements and speciation-like features [69, 70].

• Developing theoretical issues: Improving the formal explanations on the
influence of parameters on the convergence and search of pGAs will endow
the research community with tools allowing to analyze, understand, and
customize a GA family for a given problem [71, 72, 73].

• Running pGAs on geographically separated clusters: This will allow the
user to utilize sparsely located computational resources in a metacomput-
ing fashion in order to solve his/her optimization problem. A distinguished
example of such a system is to use the Web as a pool of processors to run
pGAs for solving the same problem. In particular, Grid computing [29]
and Peer-to-Peer (P2P) computing [74] have become a real alternative to
traditional supercomputing for the development of parallel applications
that harness massive computational resources. This is a great challenge,
since nowadays grid and P2P-enabled frameworks for metaheuristics are
just emerging [45, 63, 65].

26 2 Parallel Models for Genetic Algorithms

• New parallel platforms: Exploiting new hardware architectures like GPUs
and multicore computers by developing new specialized pGAs profiting
from these architectures to run more efficiently [47, 48, 75, 76, 77].

• Benchmarking soft computing techniques: At present, it is clear that a
widely available, large, and standard set of problems is needed to assess the
quality of existing and new pGAs. Problem instances of different difficulty,
specially targeted to test the behavior of pGAs and related techniques can
greatly help practitioners in choosing the most suitable pGA or hybrid
algorithm for the task in hands.

2.4 First Experimental Results

In this section, we perform several experimental tests to study the behavior of
the different parallel models described in the previous sections. Concretely, we
use a parallel distributed GA (dGA), a parallel cellular GA (cGA), a parallel
master-slave GA (MS), and a parallel distributed GA where cooperation
among the islands does not exist, i.e., the islands are completely independent
(idGA, isolated dGA). All these models are implemented on a distributed-
memory system.

Let us give some details about the implementation of the parallel cGA on
distributed systems (the rest admit a straightforward implementation on a
computer cluster). In this algorithm the whole population is divided among
the processors, but the global behavior of this parallel cGA is the same as
that of a sequential (cellular) one. At the beginning of each iteration, all the
processors send the individuals of their first/last column/row to their neigh-
bor islands (see Fig. 2.6). After receiving the individuals from the neighbors,
a sequential cGA is executed in each subpopulation. The remaining of the
algorithms has a canonical implementation and no especial issues are used.

For testing the parallel algorithms we have used the well-known MAXSAT
problem. The next subsection briefly describes the MAXSAT problem and
then we discuss the results.

2.4.1 MAXSAT Problem

The satisfiability (SAT) problem is commonly recognized as a fundamental
problem in artificial intelligence applications, automated reasoning, mathe-
matical logic, and related fields. The MAXSAT is a variant of this general
problem.

Formally, the SAT problem can be formulated as follows. Let U =
{u1, . . . , un} be a set of n Boolean variables. A truth assignment for U is
a function t : U → {true, false}. Two literals, u and ¬u, can match with
each variable. A literal u (resp. ¬u) is true under t if and only if t(u) = true
(resp. t(¬u) = false). A set C of literals is called a clause and it represents
the disjunction (or logical connective). A set of clauses is called a formula. A

2.4 First Experimental Results 27

island (i,j)

to island (i+1 mod M, j)

to island (i, j+1 mod N)

to island (i, j-1 mod N)

to island (i-1 mod M, j)

Fig. 2.6 Parallel implementation of the distribution of the cGA (M is the number
of columns and N is the number of rows.)

formula f is interpreted as a formula of the propositional calculus in conjunc-
tive normal form (CNF) so that a truth assignment t satisfies a clause C iff at
least one literal u ∈ C is true under t. Finally, t satisfies f iff it satisfies every
clause in f . The SAT problem consists of a set of n variables {u1, . . . , un}
and a set of m clauses C1, . . . , Cm. The goal is to determine whether or not
there exists an assignment of truth values to variables that makes the for-
mula f = C1 ∧ · · · ∧ Cm in CNF satisfiable. Among the extensions to SAT,
MAXSAT [78] is the most well-known one. In this case, a parameter K is
given and the problem is to determine whether there exists an assignment t
of truth values to variables such that at least K clauses are satisfied. SAT
can be considered as a special case of MAXSAT when K equals the number
m of clauses.

In the experiments we use the first instance of De Jong [79]. This instance
is composed of 100 variables and 430 clauses (f∗(optimum) = 430).

2.4.2 Analysis of Results

In this section, we study the behavior of different parallel implementations
of a GA when solving the MAXSAT problem. We begin with a description of
the parameters of each algorithm. No special configuration analysis has been
made for determining the optimum parameter values for each algorithm. The
whole population is composed of 800 individuals. In the evaluated parallel
implementations, each processor has a population of 800/n, where n is the
number of processors. All the algorithms use the one-point crossover operator
(with probability 0.7) and bit-flip mutation operator (with probability 0.2).
In distributed GAs, the migration occurs in a unidirectional ring manner,
sending one single randomly chosen individual to the neighbor subpopulation.
The target population incorporates this individual only if it is better than its

28 2 Parallel Models for Genetic Algorithms

current worst solution. The migration step is performed every 20 iterations
in every island in an asynchronous way. All the experiments are performed
on 16 Pentium 4 at 2.8 GHz PCs linked by a Fast-Ethernet communication
network. Because of the stochastic nature of genetic algorithms, we perform
100 independent runs of each test to gain sufficient experimental data.

Now, let us begin the analysis by presenting in Table 2.2 the number
of executions that found the optimal value (% hit column), the number
of needed evaluations (# evals column) and the running time in seconds
(time column) for all the algorithms: the sequential GA, the parallel master-
slave GA, the parallel isolated distributed GA, the (cooperative) parallel
distributed GA, and the parallel cellular GA (the parallel algorithms running
on 2, 4, 8 and 16 processors). We also show in Table 2.3 the speedup of these
algorithms. We use the Weak definition of speedup [6], i.e., we compare the
parallel implementation runtime with respect to the serial one (see Chapter 3
for an in depth discussion on speedup).

Table 2.2 Average Results for all the parallel GAs.

Alg. % hit # evals time Alg. % hit # evals time

Seq. 60% 97671 19.12

MS2 61% 95832 16.63 idGA2 41% 92133 9.46
MS4 60% 101821 14.17 idGA4 20% 89730 5.17
MS8 58% 99124 13.64 idGA8 7% 91264 2.49

MS16 62% 96875 12.15 idGA16 0% - -

dGA2 72% 86133 9.87 cGA2 85% 92286 10.40
dGA4 73% 88200 5.22 cGA4 83% 94187 5.79
dGA8 72% 85993 2.58 cGA8 83% 92488 2.94

dGA16 68% 93180 1.30 cGA16 84% 91280 1.64

If we interpret the results in Table 2.2 we can notice several facts. First, let
us analyze each parallel model. As we expected, the behavior of the master-
slave algorithms (MSx) are similar to the sequential version since they obtain
the same number of hits and sample a similar number of points of the search
space (they are statistically equivalent). As expected, the master-slave meth-
ods spend a lower time to find the optimum but the actual gain is very low
(see Table 2.3) for any number of processors. This happens because the exe-
cution time of the fitness function does not compensate the overhead of the
communications for these problem instances.

The idGA model allows to reduce the search time and obtains a very
good speedup (see also Table 2.3), nearby linear, but the results are worse
than those of the serial algorithms (lower number of hits), and even with 16
processors it can not find the optimal solution in any execution. This is not
surprising, since increasing the number of processors means decreasing the
population size, and the algorithm is not able to maintain enough diversity
to find the global solution.

2.5 Summary 29

Table 2.3 Weak Speedup.

Speedup
Alg. n = 2 n = 4 n = 8 n = 16

MSn 1.14 1.34 1.40 1.57
idGAn 2.02 3.69 7.67 -
dGAn 1.93 3.66 7.41 14.7
cGAn 1.83 3.30 6.50 11.65

A clear conclusion is that the distributed GAs are better than the sequen-
tial algorithm both numerically and in terms of search time, since they obtain
a higher number of hits with a lower number of evaluations, and they also
reduce the total search time. The speedup is quite good but it is always sub-
linear and it slightly moves away from the linear speedup when the number
of CPUs increases. That is, as the number of CPUs increases a small loss of
efficiency is obtained.

Numerically speaking, the cellular GAs are the best ones, since they obtain
the highest number of hits. Surprisingly, they also show very low execution
times, which are only slightly worse than those of the dGAs, which perform
a meaningful lower number of migration exchanges. This is worth of further
research since this means that numerical and real time efficiency are improved
at the same time what is a noticeable result (see [67] for more details).

2.5 Summary

This chapter contains a modern survey of parallel models and implemen-
tations of GAs. By summarizing the parallel algorithms, their applications,
classes, and theoretical foundations we intend to offer valuable information
not only for beginners, but also for researchers working with GAs or heuristics
in general.

As we have seen along this chapter, the robustness and advantages of
sequential GAs are enhanced when pGAs are used. The drawback is the
more complex analysis and design, and also the need of some kind of parallel
platform to run it.

A classified overview on the most important up-to-date pGA systems is
discussed. In this chapter, not only a survey of existing problems is outlined,
but also possible variants (apart from the basic operations) and future re-
search trends are considered, yielding what we hope is a unified overview and
a useful text. The cites in this chapter have been elaborated to serve as a
directory for granting the reader access to the valuable results that parallel
GAs are offering to the research community.

Finally, we have performed an experimental test with the most com-
mon parallel models used in the literature. We have used distributed, cel-
lular, master-slave, and independent runs models to solve the well-known

30 2 Parallel Models for Genetic Algorithms

MAXSAT. For this problem, we noticed that the master-slave model is not
suitable since the overhead provoked by the communications is not compen-
sated by the reductions in the execution time of the objective function. The
isolated dGA (or independent runs model) obtains very low execution times,
but the solution quality gets worse. The use of distributed and cellular mod-
els managed to improve both the number of hits and the search time. The
distributed version spends shorter time than the cellular one (i.e., dGA is
more efficient) since it performs a low number of exchanges, but the cellular
GA obtains the best number of hits of all the studied algorithms (i.e., cGA
is more accurate).

3

Best Practices in Reporting Results
with Parallel Genetic Algorithms

Disdain for rules is as harmful as their excessive
observation.

Juan Luis Vives (1492 - 1540) - Spanish philosopher

Most optimization tasks found in real world applications impose several
constraints that frequently prevent the utilization of exact methods. The
complexity of these problems (they are often NP-hard [78]) or the limited
computational resources available to solve them (time, memory) have made
the development of metaheuristics a major field in present research. In these
cases, metaheuristics provide optimal or suboptimal feasible solutions in a
reasonable time. Although the use of metaheuristics allows to significantly
reduce the time of the search process, the high dimension of many tasks will
always pose problems and result in time-consuming scenarios for industrial
problems. Therefore, parallelism is an approach not only to reduce the reso-
lution time, but also to improve the quality of the provided solutions. This
last holds since parallel algorithms usually run a different search model with
respect to sequential ones [35] (see also Chapter 1).

Unlike exact methods, where time-efficiency is a main measure for eval-
uating their success, there are two chief issues in evaluating parallel meta-
heuristics: how fast solutions can be obtained, and how far they are from the
optimum. We can distinguish between two different approaches for analyz-
ing metaheuristics: a theoretical analysis (worst-case analysis, average-case
analysis, ...) and an experimental analysis. Several authors [80, 81] have devel-
oped theoretical analyses of some importance for a number of heuristics and
problems. But, these theoretical achievements have a difficulty that makes
it hard their utilization for most realistic problems and algorithms, severely
limiting their range of application. As a consequence, most of metaheuristics
are evaluated empirically in an ad-hoc manner.

An experimental analysis usually consists in applying the developed al-
gorithms to a collection of problem instances and comparatively report the
observed solution quality and consumed computational resources (usually
time). Other researchers [82, 83] have tried to offer a kind of methodologi-
cal framework to deal with the experimental evaluation of heuristics. Each a

G. Luque and E. Alba: Parallel Genetic Algorithms, SCI 367, pp. 31–51.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

32 3 Best Practices in Reporting Results with Parallel Genetic Algorithms

methodological approach mainly motivates this chapter. Important aspects
of an evaluation are the experimental design, finding good sources of test in-
stances, measuring the algorithmic performance in a meaningful way, sound
analysis, and clear presentation of results. Due to the great difficulty of mak-
ing all this correctly, the actual main issues of the experimental evaluation
are simplified to just highlight some guidelines for designing experiments, and
reporting on their results. An excellent algorithmic survey about simulations
and statistical analysis is given in [84]. In that paper, McGeoch includes an
extensive set of basic references on statistical methods and a general guide
for designing experiments.

In this chapter, we focus on how the experiments should be performed, and
how the results must be reported in order to make fair comparisons between
parallel metaheuristics in general, and parallel genetic algorithms. Specially,
we are interesting in revising, proposing, and applying parallel performance
metrics and statistical analysis guidelines to ensure that our conclusions are
correct.

This chapter is organized as follows. The next section briefly summarizes
some parallel metrics such as speedup and related performance measures.
Section 3.2 discusses how to report results on parallel metaheuristics. Then,
in a later section, we perform several practical experiments to illustrate the
importance of the metric in the achieved conclusions. Finally, some conclud-
ing remarks are outlined in Section 3.5.

3.1 Parallel Performance Measures

There are different metrics to measure the performance of parallel algorithms.
In the first subsection we discuss in detail the most common measure, i.e.,
the speedup, and address its meaningful utilization in parallel metaheuristics.
Later, in a second subsection, we summarize some other metrics also found
in the literature.

3.1.1 Speedup

The most important measure of a parallel algorithm is the speedup [82, 85].
This metric computes the ratio between sequential and parallel times. There-
fore, the definition of time is the first aspect that we must face. In a uni-
processor system, a common performance measure is the CPU time to solve
the problem; this is the time the processor spends executing algorithm in-
structions, typically excluding the time for input of problem data, output of
results, and system overhead activities. In the parallel case, time is not a sum
of CPU times on each processor, neither the largest among them. Since the
objective of parallelism is the reduction of the real-time, time should defi-
nitely include any overhead activity because it is the price of using a parallel
algorithm. Hence the most prudent choice for measuring the performance of a

3.1 Parallel Performance Measures 33

parallel code is the wall-clock time to solve the problem at hands. This means
using the time between starting and finishing the whole algorithm. For a fair
comparison, then this should also be the time for the sequential case.

The speedup compares the serial time against the parallel time until a
given stopping condition is fulfilled. If we denote by Tm the execution time
for an algorithm using m processor, the standard speedup is the ratio between
the faster execution time on a uni-processor T1 and the actual execution time
on m processors Tm:

sm =
T1

Tm
(3.1)

For non-deterministic algorithms we cannot use this metric directly. For
this kind of methods, the speedup should instead compare the mean serial
execution time against the mean parallel execution time:

sm =
E[T1]
E[Tm]

(3.2)

Here we are assuming a normal distribution of time or at least that we have
many independent runs to approximate it (central limit theorem). Otherwise,
the median or other parameter could be also used.

With this definition we can distinguish among: sublinear speedup (sm <
m), linear speedup (sm = m), and superlinear speedup (sm > m). The main
difficulty with that measure is that researchers do not agree on the meaning
of T1 and Tm. In his study, Alba [85] distinguishes between several definitions
of speedup depending of the meaning of these values (see Table 3.1).

Table 3.1 Taxonomy of speedup measures proposed by Alba [85].

I. Strong speedup
II. Weak speedup

A. Speedup with solution stop
1. Versus panmixia
2. Orthodox

B. Speed with predefined effort

Strong speedup (type I) compares the parallel run time against the best-
so-far sequential algorithm. This is the most exact and standard definition of
speedup, but due to the difficulty of finding the current most efficient algo-
rithm, most designers of parallel algorithms do not use it. Weak speedup (type
II) compares the parallel algorithm developed by a researcher against his/her
own serial version. In this case, two stopping criterion for the algorithms exist:
solution quality or maximum effort. The author discards the latter because
it is against the aim of speedup to compare algorithms not yielding results of
equal accuracy. In fact, after the standard and historical use of speedup, the

34 3 Best Practices in Reporting Results with Parallel Genetic Algorithms

two compared algorithms should be making exactly the same search work,
some thing that it is clearly not interesting in most metaheuristics.

He proposes two variants of the weak speed with solution stop: to compare
the parallel algorithm against the canonical sequential version (type II.A.1)
or to compare the run time of the parallel algorithm on one processor against
the run time of the same algorithm on m processors (type II.A.2). In the first
case we are comparing two clearly different algorithms what again could raise
serious concerns on the meaning of this metric. Thus, the orthodox approach
(type II.A.2) seems the fairest way of evaluating parallel metaheuristics and
at the same time using a standard metric found in other parallel applications.

Barr and Hickman in [82] showed a different taxonomy: Speedup, Relative
speedup and Absolute speedup. The Speedup measures the ratio between the
time of the faster serial code on a parallel machine with the time of the
parallel code using m processors on a machine with similar characteristics
to the one used in the serial one. The Relative speedup is the ratio of the
serial execution time with parallel code on one processor with respect to
the execution time of that code on m processors. This definition is similar to
the type II.A.2 shown above. The Absolute speedup compares the fastest serial
time on any computer with the parallel time on m processors. This metric is
the same as the strong speedup defined by [85].

As a conclusion, it is clear that the evaluated parallel metaheuristics should
compute solutions having a similar accuracy as the sequential ones. This
accuracy could be the optimal fitness value (if known) or a relaxation of it
(e.g., 90%), but in any case the same value. Just in this case we are allowed
to compare times. The used times are average mean times: the parallel code
on one machine versus the parallel code on m machines. All this define a
sound way for comparisons, both practical (no best algorithm needed) and
orthodox (same codes, same accuracy).

Superlinear Speedup

Although several authors have reported superlinear speedup [36, 40], its ex-
istence is always controversial. Anyway, based on past experiences, we can
expect to get superlinear speedup sometimes whatever the parallel metric
program or algorithm is. In fact, we can point out several sources behind
superlinear speedup:

• Implementation source: The algorithm being run on one processor is “in-
efficient” in some way. For example, if the algorithm uses lists of data, the
parallel one can be faster because it manages shorter lists (or trees, with
a faster access). On the other hand, the parallelism can simplify several
operations of the algorithm.

• Numerical source: Since the search space is usually very large, the se-
quential program may have to search a large portion before finding the
required solution. On the other hand, the parallel version may find the

3.1 Parallel Performance Measures 35

solution more quickly due to the change in the order in which the space is
searched.

• Physical source: When moving from a sequential to a parallel machine, it
is often the case that one gets more than just an increase in CPU power
(see Fig. 3.1). Other resources, such as memory, caché, etc. may also in-
crease linearly with the number of processors. A parallel metaheuristic
may achieve superlinear speedup by taking advantage of these additional
resources (purposely or not). That is, in a parallel platform, each subpopu-
lation is a different machine and it can fit into cachés while in a sequential
execution, all the subpopulations are in the same machine, and then we
have to use the main memory to store them since they do not fit in the
caché.

Fig. 3.1 Physical source for superlinear speedup. The population (a) does not
fit into a single caché, but when run in parallel (b), the resulting chunks do fit,
providing superlinear values of speedup.

We therefore conclude that superlinear speedup is possible theoretically
and as a result of empirical tests in literature, both for homogeneous [86] and
heterogeneous [87, 88] computing networks.

36 3 Best Practices in Reporting Results with Parallel Genetic Algorithms

3.1.2 Other Parallel Measures

Although the speedup is a widely used metric, there exist other measures of
the performance of a parallel GA or general metaheuristic.

The efficiency (Equation 3.3) is a normalization of the speedup and allows
to compare different algorithms (em = 1 means linear speedup).

em =
sm

m
(3.3)

There exist several variants of the efficiency metric. For example, the in-
cremental efficiency (Equation 3.4) shows the fraction of time improvement
from adding another processor; it is also very used when the uni-processor
times are unknown. This metric has been later generalized (Equation 3.5) to
measure the improvement attained by increasing the number of processors
from n to m.

iem =
(m − 1) · E[Tm−1]

m · E[Tm]
(3.4)

gien,m =
n · E[Tn]
m · E[Tm]

(3.5)

The previous metrics indicate the improvement coming from using addi-
tional processing elements, but they do not measure the utilization of the
available memory. The scaled speedup (Equation 3.6) addresses this issue,
and allows to measure the full utilization of hardware resources:

ssm =
Estimated time to solve problem of size n · m on 1 processor

Actual time to solve problem of size n · m on m processors
(3.6)

where n is the size of the largest problem which may be stored in the memory
associated to one processor. Its major disadvantage is that performing an
accurate estimation of the serial time is difficult and it is impractical for
many problems.

Closely related to scaled speedup is scaleup, but is not based on an estima-
tion uni-processor time:

sum,n =
T ime to solve k problems on m processors

T ime to solve n · k problems on n · m processors
(3.7)

This metric measures the ability of the algorithm to solve a n-times larger
job on a n-times larger system in the same time as the original system.
Therefore, linear speedup occurs when sum,n = 1.

Finally, Karp and Flatt [89] have devised an additional interesting metric
for measuring the performance of any parallel algorithm that can help us to
identify much more subtle effects than using speedup alone. They call it the
serial fraction of the algorithm (Equation 3.8).

3.2 How to Report Results in pGAs 37

fm =
1/sm − 1/m

1 − 1/m
(3.8)

Ideally, the serial fraction should stay constant for an algorithm when using
different values of m (number of processors). If the absolute speedup value
is small in our experimental study we can still say that the result is good if
fm remains constant for different values of m, since the loss of efficiency is
due to the limited parallelism of the program. On the other side, smoothly
increments of fm with m is a warning that the granularity of the parallel tasks
is too fine. A third scenario is possible, in which a significant reduction in fm

occurs with growing values of m, indicating something akin to superlinear
speedup. If superlinear speedup occurs, then fm would take a negative value.

3.2 How to Report Results in pGAs

In general, the goal of a scientific publication is to present a new approach
or algorithm that works better, in some sense, than existing algorithms. This
requires experimental tests to compare the new algorithm with respect to the
rest. It is, in general, hard to make fair comparisons between algorithms. The
reason is that we need to ensure the same experimental settlement (computer,
network protocols, operating system, . . .), and, assuming this is correctly
done, that later can infer different conclusions from the same results depend-
ing on the metrics we use. This is specially important for non-deterministic
methods. In this section we address the main issues on experimental testing
for reporting numerical effort results, and the statistical analysis that must
be performed to ensure that the conclusions are meaningful. The main steps
are shown in Fig. 3.2.

Fig. 3.2 Main steps for an experimental design.

3.2.1 Experimentation

The first choice that a researcher must make is the problem domain and the
problem instances to test his/her algorithm. That decision depends on the
goals of the experimentation. We can distinguish between two clearly different
objectives: (1) optimization and (2) understanding of the algorithms.

38 3 Best Practices in Reporting Results with Parallel Genetic Algorithms

Optimizing is a commonly practiced sport in designing a metaheuristic
that beats others on a given problem or set of problems. This kind of exper-
imental research finishes by establishing the superiority of a given heuristic
over others. In this scenario, researchers should not be limited to establish-
ing that one metaheuristic is better than another in some way, but also to
investigate why. A very good study of this latter subject can be found for
example in [90].

One important decision is the instance used. The set of instances must
be complex enough to obtain interesting results and must have a sufficient
variety of scenarios to allow some generalization of the conclusions. Problem
generators [79] are specially good for a varied and wide analysis. In the next
paragraphs we show the main classes of instances (a more comprehensive
classification can be found in [83, 91]).

Real World Instances

The instances taken from real applications represent a hard testbed for testing
algorithms. Sadly, it is rarely possible to obtain more than a few real data for
any computational experiment due to proprietary or economic considerations.
An alternative is to use random variants of real instances, i.e., the structure of
the problem class is preserved, but details are randomly changed to produce
new instances.

Another approach is using natural instances [91], that represent instances
that emerge from a specific real life situation, such as timetabling of a school.
This class of instances has the advantage of being freely available. Specially,
academic instances must be analyzed in the existing literature to not reinvent
the wheel, and to avoid using straightforward benchmarks [92].

Standard Instances

In this class are included the instances, benchmarks, and problem instance
generators that, due to their wide use in experimentation, became standard
in the specialized literature. For example, Reinelt [93] offers the TSPLIB, a
travelling salesman problem test instances, Demirkol et al. [94] offer some-
thing similar for job scheduling problems. Such libraries allow to test specific
issues of algorithms and also to compare our results against other methods, or
CEC and GECCO instances for continuous global optimization [95, 96, 97].
The OR-library [98] is a final excellent example of results (academy plus
industry) for a large set of problem classes.

Random Instances

Finally, when none of the mentioned sources provide an adequate supply for
tests, the remaining alternative is pure random generation. This method is

3.2 How to Report Results in pGAs 39

the faster way to obtain a diverse group of test instances, but is also the
most controversial.

After having selected a problem or a group of instances, we must design
the computational experiments. Generally, the design starts by analyzing
the effects of several factors on the algorithm performance. These factors
include problem factors, such as problem size, number of constrains, etc., plus
algorithmic factors, such as parameters or components used for the search
of the optimum. If the cost of the computer experiments are low, we can
do a full factorial design, but in general, it is not possible due to the large
number of experiments: we usually need to reduce the factors. There is a wide
literature on fractional factorial design in statistics, which seeks to assess the
same effects of a fractional analysis without running all the combinations of
influencing parameters (see for example [99]). RACE [100] and SPO [101]
is also an interesting approach for validating and reducing the effort of the
researcher in experimentation.

The next step in an experimental project is to execute the experiments,
choose the measure of performance, and analyze the data. These steps are
addressed in the next sections.

3.2.2 Measuring Performance

Once that we have chosen the instances that we are going to use, and the
factors that we are going to analyze, we must select the appropriate measures
for the goal of our study.

The objective of a metaheuristic is to find a good solution in a reasonable
time. Therefore, the choice of performance measures for experiments with
heuristics necessarily involves both solution quality and computational effort.
Because of the stochastic nature of metaheuristics, a number of independent
experiments need to be conducted to gain sufficient experimental data. The
performance measures for these heuristics are based on some kind of statistics.

3.2.3 Quality of the Solutions

This is one of the most important issues to evaluate the performance of an
algorithm. For instances where the optimal solution is known, one can easily
define a measure: the success rate or number of hits. This measure can be
defined as the percentage of runs terminating with success (% hits). But this
metric cannot be used in all cases. For example, there are problems where the
optimal solution is not known at all and a lower/upper bound is also unavail-
able. In other cases, although the optimum is known, its calculation delays
too much, and the requirements must be relaxed down to find a good approx-
imation in a reasonable time. It is also a common practice in metaheuristics

40 3 Best Practices in Reporting Results with Parallel Genetic Algorithms

for the experiments to have a specific bound of computational effort (a given
number of search space points visited or a maximum execution time).

In all these cases, when optimum is not known or located, statistical met-
rics are also used. Most popular metrics include the mean and the median of
the best performing solutions, such as the fitness (a measure of the quality of
the solution) over all executions. These values can be calculated for any prob-
lem. For each run of a given metaheuristic the best fitness can be defined as
the fitness of the best solution at termination. For parallel metaheuristics it is
defined as the best global solution found by the set of cooperating algorithms.

In a problem where the optimum is known, nothing prevents us to use
both % hits and median/mean of the final quality (or of the effort). Fur-
thermore, all combinations of low/high values can occur for these measures.
We can obtain a low number of hits and a high mean/median accuracy; this,
for example, indicates a robust method, that seldom achieves the optimal
solution. An opposite combination is also possible but it is not common. In
that case, the algorithm achieves the optimum in several runs but the rest of
the runs compute a very bad fitness.

In practice, a simple comparison between two averages or medians might
not give the same result as a comparison between two statistical distribu-
tions. In general, it is necessary to offer additional statistical values such as
the variance, and to perform a global statistical analysis to ensure that the
conclusions are meaningful and not just random noise. We discuss this issue
in Subsection 3.2.5.

3.2.4 Computational Effort

While algorithms that produce more accurate solutions are important, the
speed of their computation is a key factor. Within metaheuristics, the com-
putational effort is typically measured by the number of evaluations of the
objective function and/or the execution time. In general, the number of eval-
uations is defined in terms of the number of points of the search space visited.

Many researchers prefer the number of evaluations as a way to measure
the computational effort, since it eliminates the effects of particular imple-
mentations, software, and hardware, thus making comparisons independent
from such details. But this measure can be misleading in several cases in the
field of parallel methods. For example, if some evaluations take longer than
others (for example, in parallel genetic programming [25]) or if an evaluation
can be done very fast, then the number of evaluations does not reflect the
algorithm’s speed correctly. In some cases the concept of evaluation could
even not exists (such in ACO) or blur (like in GRASP or TS). Also, the tra-
ditional goal of parallelism is not the reduction of the number of evaluations
but the reduction of time. Therefore, a researcher should usually report the
two metrics to measure the computational effort.

It is very common to use the average evaluations/time to a solution, de-
fined over those runs that end in a solution (with a predefined quality maybe

3.2 How to Report Results in pGAs 41

different from the optimal one). Sometimes the average evaluations/time to
termination is used instead of the average evaluations/time to a solution of
a given accuracy. This practice has clear disadvantages, i.e., for runs find-
ing solutions of different accuracy, using the total execution time/effort to
compare algorithms becomes hard to interpret from the point of view of
the parallelism. On the contrary, imposing a predefined time/effort and then
compare the solution quality of the algorithms is an interesting and correct
metric; what it is incorrect is to use in this same case also the run times to
compare algorithms, i.e., to measure speedup of efficiency (although works
making this can be found in literature). The reason is that imposing a number
of evaluations directly determines the search time and the speedup itself.

3.2.5 Statistical Analysis

In most papers, the objective is to prove that a particular heuristic outper-
forms another one. But as we said before, the comparison between two aver-
age values might be different from the comparison between two distributions.
Therefore, statistical methods should be employed wherever possible to indi-
cate the strength of the relations between different factors and performance
measures.

Usually, the researchers use t-test or an analysis of variance (ANOVA)
to ensure the statistical significance of the results, i.e., determining whether
an observed effect is likely to be due to sampling errors. Several statistical
methods and the conditions to apply them are shown in Fig. 3.3 [10]. Firstly,
we should decide between non-parametric and parametric tests; when the
data are non-normal and there are not many experimental data (number of
experiments < 30) should use non-parametric methods otherwise parametric
test can be used. Kolmogorov-Smirnov test is a powerful, accurate and low-
cost method to check data normality. The Student t-test is widely used to
compare means of normal data. This method can be only used when there are
two populations. In other case, we must use ANOVA test and a later analysis
to compare and sort means. For non-normal data, a wide set of methods have
been proposed (see Fig. 3.3). All of these methods assume several hypotheses
to obtain a proper behavior, e.g., they assume a linear relation between causes
and effects.

The t-test is based on the Student’s t distribution. It allows to calculate
the statistical significance of two samplings with a given confidence level,
typically between 95% (p-value < 0.05) and 99% (p-value < 0.01). The un-
derlying notion of ANOVA is to assume that every non-random variation
in experimental observations is due to differences in mean performance at
alternative levels of the experimental factors. ANOVA proceeds by estimat-
ing each of the various means and partitioning the total sum of squares, or
squared deviation from the sample global mean into separate parts due to
each experimental factor and to error.

42 3 Best Practices in Reporting Results with Parallel Genetic Algorithms

Data sets:

X1, X2, ..., Xn

Normality test

(Kolmogorov-Smirnov test)

Levene test and

Student t-test

Duncan, Student-

Newman-Keuls (SNK),

and/or Bonferroni tests

Analysis of variance

(ANOVA)

Post hoc mean comparison

tests

Tamhane tests

Mann-Witney test

Wilcoxon or Sign tests

Friedman test

Kruskal-Wallis test

Normal Variables

(Mean comparison,

Parametric tests)

Non-Normal Variables

(Median comparison,

Non-Parametric tests)

2 data

True

True

> 2 data

False

False

Equality of Variance

(Levene test)

> 2 independent data

> 2 dependent data

2 dependent data

2 independent data

Fig. 3.3 Application scheme of statistical methods.

The two analyses, t-test and ANOVA, can only be applied if the source dis-
tribution is normal. In metaheuristics, the resulting distribution could easily
be non-normal. For this case, there is a theorem that helps. The Central Limit
Theorem states that the sum of many identically distributed random variable
tends to a Gaussian. So the mean of any set of samples tends to a normal
distribution. But in several cases the Central Limit Theorem is not useful
and too general. In these cases, there are a host of nonparametric techniques
(for example, the sign test) that can and should be employed to sustain the
author’s arguments, even if the results show no statistical difference between
the quality of the solutions produced by the metaheuristics under study [102].

3.2.6 Reporting Results

The final step in an experimental design is to document the experimental de-
tails and findings, and to communicate them to the international community.
In the next paragraphs, we show the most important issues that should be
taken into account.

3.3 Inadequate Utilization of Parallel Metrics 43

Reproducibility

One necessary part of every presentation should be the background on how
the experiment was conducted. The reproducibility is an essential part of
scientific research, and experimental results that cannot be independently
verified are given little credit in the scientific community. Hence, the algo-
rithm and its implementation should be described in sufficient detail to allow
replication, including any parameter (probabilities, constants, ...), problem
encoding, pseudo-random number generation, etc. The source and character-
istics of problem instances should also be documented. Besides, many com-
puting environment factors, that can influence the empirical performance of a
method, should be documented: number, types and speeds of processors, size
and configuration of memories, communication network, operating system,
etc. We advice always including summary tables of algorithms parameters
and computational resources in every scientific problem.

Presenting Results

A final important detail is the presentation of the results. The best way to
support your conclusion is to display your data in such a way as to highlight
the trends it exhibits, the distinctions it makes, and so forth. There are many
good display techniques depending on the types of points one wants to make
(for example, see [103] or [104]).

Tables by themselves are usually a very inefficient way of showing the
results. Hence, if there is any graphical way to summarize the data and reveal
its message, it is almost to be preferred to a table alone. On the other hand,
although pictures can often tell your story more quickly, they are usually
a poor way of presenting the details of your results. Therefore, a scientific
paper should contain both pictures and tables.

3.3 Inadequate Utilization of Parallel Metrics

The objective of a parallel metaheuristic is to find a good solution in a short
time. Therefore, the choice of performance measures for these algorithms
necessarily involves both solution quality and computational effort. In this
section, we discuss some scenarios, where these metrics are incorrectly used,
and we propose a solution to these situations.

1. Computational effort evaluation: Many researchers prefer the num-
ber of evaluations as a way to measure the computational effort since it
eliminates the effects of particular implementations, software, and hard-
ware, thus making comparisons independent from such details. But this
measure can be misleading in several cases in the field of parallel meth-
ods. Whenever the standard deviation of the average fitness computation
is high, for example, if some evaluations take longer than others (parallel

44 3 Best Practices in Reporting Results with Parallel Genetic Algorithms

genetic programming [25]) or if the evaluation time is not constant, then
the number of evaluations does not reflect the algorithm’s speed correctly.
Also, the traditional goal of parallelism is not only the reduction of the
number of evaluations but the reduction of time. Therefore, a researcher
must often use the two metrics to measure this effort.

2. Comparing means vs. comparing medians: In practice, a simple com-
parison between two averages or medians (of time, of solutions quality, . . .)
might not give the same result as a comparison between two statistical dis-
tributions. In general, it is necessary to offer additional statistical values
such as the variance, and to perform a global statistical analysis to ensure
that the conclusions are meaningful and not just random noise. The main
steps are the following: first, a normality test (e.g., Kolmogorov-Smirnov)
should be performed in order to check whether the variables follow a nor-
mal distribution or not. If so, an Student t-test (two set of data) or ANOVA
test (two or more set of data) should be done, otherwise we should perform
a non parametric test such as Kruskal-Wallis. Therefore, the calculation
of speedup is only adequate when the execution times of the algorithms
are statistically different. This two-step procedure also allows to control
the I type error (the probability of incorrectly rejecting the null hypoth-
esis when it is true), since the two phases are independent (they test for
different null hypotheses).

3. Comparing algorithms with different accuracy: Although this sce-
nario can be interesting in some specific applications, the calculation of the
speedup or a related metric is not correct because it is against the aim of
the speedup to compare algorithms not yielding results of equal accuracy,
since the two algorithms are actually solving two different problems (i.e.,
it is nonsense, e.g., to compare a sequential metaheuristic solving TSP of
100 cities against its parallel version solving a TSP of 50 cities). Solving
two different problems is what we actually have in speedup if the final
accuracy is different in sequential and parallel.

4. Comparing parallel versions vs. canonical serial one: Several works
compare the canonical sequential version of an algorithm (e.g., a panmic-
tic GA) against a parallel version. But these algorithms have a different
behavior and therefore, we are comparing clearly different methods (as
meaningless such as using the search times of a sequential SA versus a
parallel GA in the speedup equation).

5. Using a predefined effort: Imposing a predefined time/effort and then
comparing the solution quality of the algorithms is an interesting and
correct metric in general; what it is incorrect is to use it to measure speedup
or efficiency (although works making this can be found in literature). On
the contrary, these metrics can be used when we compare the average time
to a given solution, defined over those runs that end in a solution (with
a predefined quality maybe different from the optimal one). Sometimes,
the average evaluations/time to termination is used instead of the average
evaluations/time to a solution of a given accuracy. This practice has clear

3.4 Illustrating the Influence of Measures 45

disadvantages, i.e., for runs finding solutions of different accuracy, using
the total execution effort to compare algorithms becomes hard to interpret
from the point of view of parallelism.

3.4 Illustrating the Influence of Measures

In this section we perform several experimental tests to show the importance
of the selected metrics in the conclusions. We use several parallel genetic algo-
rithms and one parallel simulated annealing to solve the well-known MAXSAT
problem. Before beginning with the examples, we do a brief background of the
algorithms, the problem and the configuration for reproducibility.

The Algorithms

In the experiments, we use three different parallel models of GA: independent
runs (IR), distributed GA (dGA), and a cellular GA (cGA). In the first model,
a pool of processors is used to speed up the execution of separate copies of
a sequential algorithm, just because independent runs can be made more
rapidly by using several processors than by using a single one. In dGAs [31],
the population is structured into smaller subpopulations relatively isolated
from the others. The key feature of this kind of algorithm is that individuals
within a particular subpopulation (or island) can occasionally migrate to
another one in an asynchronous manner. The parallel cGA [32] paradigm
normally deals with a single conceptual population, where each processor
holds just a few individuals. The main characteristic of this model is the
structuring of the population into neighborhood structures, where individuals
may only interact with their neighbors.

Also, we consider a local search method such as simulated annealing. A
simulated annealing (SA) [12] is a stochastic technique that can be seen as a
hill-climber with an internal mechanism to escape from local optima. For this,
moves that increase the energy function being minimized are accepted with a
decreasing probability. In our parallel SA there exist multiple asynchronous
component SAs. Each component SA periodically exchanges the best solution
found (cooperation phase) with its neighbor SA in the ring.

The Problem

The satisfiability (SAT) problem is commonly recognized as a fundamental
problem in Computer Science. The MAXSAT [78] is a variant of this general
problem. This problem can be formulated as follows: given a formula f of
the propositional calculus in conjunctive normal form (CNF) with m clauses
and n variables, the goal of this problem is to determine whether or not there
exists an assignment t of truth values to variables such that all clauses are
satisfied. In the experiments we use several instances generated by De Jong

46 3 Best Practices in Reporting Results with Parallel Genetic Algorithms

[79] (a detailed explanation of this problem can be found in the previous
chapter). These instances are composed of n = 100 variables and m = 430
clauses (f∗(optimum) = 430).

Configuration

No special analysis has been made for determining the optimum parameter
values for each algorithm. We use a simple representation for this problem:
a binary string of length n (the number of variables) where each digit corre-
sponds to a variable. A value of 1 means that its associated variable is true,
and 0 defines the associated variable as false.

In our GA methods, the whole population is composed of 800 individuals
and each processor has a population of 800/m individuals, where m is the
number of processors. All the GAs use the one-point crossover operator (with
probability 0.7) and bit-flip mutation operator (with probability 0.2). In dis-
tributed GAs, the migration occurs in a unidirectional ring manner, sending
one single randomly chosen individual to the neighbor subpopulation. The
target population incorporates this individual only if it is better than its cur-
rent worst solution. The migration step is performed every 20 iterations in
every island in an asynchronous way. For the SA method, we use a propor-
tional update of the temperature, and the cooling factor is set to 0.9. The
cooperation phase is performed every 10,000 evaluations. All experiments are
performed on Pentium 4 at 2.8 GHz linked by a Gigabit Ethernet communi-
cation network. We performed 100 independent runs of each experiment to
ensure statistical significance.

In the next subsection we present several examples of utilization of the
performance measures. We will highlight how wrong selections of metrics
affect to the achieved conclusions.

3.4.1 Example 1: On the Absence of Information

We begin our test showing the results of a SA with different number of pro-
cessors to solve an instance of MAXSAT. The results can be seen in Table 3.2.
The values showed are the number of executions that found the optimal value
(% hit column), the fitness of the best solution (best column), the average
fitness (avg column), the number of evaluations (# evals column) and the
running time (time column).

In this example, the algorithms did not find an optimal solution in any
execution. Then, we cannot use the percentage of hits to compare them: we
must stick to a different metric to compare the quality of solutions. We could
use the best solution found, but that single value does not represent the
actual behavior of the algorithms since the methods are non-deterministics.
In this case the best measure to compare the quality of results is the average
fitness. Then, we can conclude that the SA with 8 processors is better than
the same one with 16 processors. But before starting such conclusion we need
to perform a statistical test to ensure the significance of this claim.

3.4 Illustrating the Influence of Measures 47

Table 3.2 Results of Example 1.

Alg. % hit best avg # evals time

SA8 0 % 426 418.3 - -
SA16 0 % 428 416.1 - -

To assess the statistical significance of the results we performed 100 in-
dependent runs (30 independent runs is usually thought as a minimum in
metaheuristics). Also, we computed a Student t-test analysis so that we could
be able to distinguish meaningful differences in the average values. The sig-
nificance p-value is assumed to be 0.05, in order to indicate a 95% confidence
level in the results.

In this case, the resulting p-value is 0.143, i.e., there is not a significant
difference among the results. This comes as no surprise, since they are the
same algorithm, and the behavior should be similar, while only the time
should have been affected by the change in the number of processors. Thus,
if we had stated on the superiority of one of them, we would have been
mistaken. This clearly illustrated the importance of computing the p-value.

In this example, we can not measure the computational effort, since they
do not achieve an optimum. In the next example, we will use a different
stopping criterion to allow us to compare the computational effort.

3.4.2 Example 2: Relaxing the Optimum Helps

Again, we show in Table 3.3 the results of the same SA as in the previous
subsection, but for this test we consider as an optimum any solution with
f∗(x) > 420 (the global optimum has a fitness value = 430).

Table 3.3 Results of Example 2.

Alg. % hit best avg # evals time

SA8 60 % 426 418.3 60154 2.01
SA16 58 % 428 416.1 67123 1.06

For this example, we do not compare the quality of the solution since there
is not statistical difference, and therefore we focus on the computational
effort. The algorithm with 8 processors, SA8, performs a slightly smaller
number of evaluations than the SA16, but the difference is not significant (the
p-value is larger than 0.05). On the other hand, the reduction in the execution
time is significant (p-value = 1.4e−5). Thus we could have stated at a first
glance that SA8 is numerically more efficient than SA16, but statistics tell us
that no significant improvement can be drawn. However, we can state that
SA16 is better from a time efficiency point of view than SA8. These results

48 3 Best Practices in Reporting Results with Parallel Genetic Algorithms

are somewhat expected: the behavior (quality of solutions and number of
evaluations) of both methods are similar, but the execution time is reduced
when the number of processors is increased. Concluding on SA8’s numerical
superiority should have been a mistake that can be avoided thanks to the
utilization of such statistical tests.

3.4.3 Example 3: Clear Conclusions do Exist

Some authors think that you can never get conclusions. We will here that in
controlled experiments you actually can. Now, let us compare two different
algorithms: a parallel GA using the independent run model, and the SA of
the previous examples. Both, GA and SA are distributed on 16 machines.
As it occurs in the first example, none of the two methods achieve the opti-
mum solution in any independent run. Therefore, we consider the optimum
definition of the second example (fitness > 420).

Table 3.4 Results of Example 3.

Alg. % hit best avg # evals time

IR16 37 % 424 408.3 85724 1.53
SA16 58 % 428 416.1 67123 1.06

Table 3.4 shows a summary of the results for this experiment. From this
table we can infer that SA16 is better in all aspects (solution quality, num-
ber of evaluations, and time) than IR16. And, this time, these conclusions
are all supported by statistical tests, i.e., their p-values are all smaller than
0.05. Although SA16 is better than IR16, none of them are adequate for this
problem, since they two are quite far from the optimum solution, but this is
a different story.

3.4.4 Example 4: Meaningfulness Does Not Mean
Clear Superiority

Now, we compare the results obtained with the same parallel GA (indepen-
dent runs model) using two, four, and eight processors. The overall results of
this example are shown in Table 3.5.

The statistical test are always positive, i.e., all results are significantly
different from the other ones. Then we can conclude that the IR paradigm
allows to reduce the search time and obtains a very good speedup, nearby
linear, but its results are worse than those of the serial algorithms, since
its percentage of hits is lower. It might be surprising, since the algorithm is
the same in all the cases, and the expected behavior should be similar. The
reason is that, as we increase the number of processors, the population size
decreases and the algorithm is not able to keep diversity enough to find the
global solution.

3.4 Illustrating the Influence of Measures 49

Table 3.5 Results of Example 4.

Alg. % hit best avg # evals time speedup

Seq. 60% 430 419.8 97671 19.12 -

IR2 41% 430 417.7 92133 9.46 1.98
IR4 20% 430 412.2 89730 5.17 3.43
IR8 7% 430 410.5 91264 2.49 7.61

3.4.5 Example 5: Speedup: Avoid Comparing Apples
against Oranges

In this case, we show an example on speedup. In Table 3.6 we show the results
for a sequential GA against a distributed cellular GA with different number
of processors. In this example we focus on the time column (seconds). The
ANOVA test for this column (sequential vs. parallel) is always significant
(p-value = 0.0092).

Table 3.6 Result of Example 5.

Alg. % hit best avg # evals time

Seq. 60% 430 421.4 97671 19.12

cGA2 85% 430 427.4 92286 10.40
cGA4 83% 430 426.7 94187 5.79
cGA8 83% 430 427.1 92488 2.94

cGA16 84% 430 427.0 91280 1.64

As we do not know the best algorithm to this MAXSAT instance, we can-
not use the strong speedup (see Table 3.1). Then, we must use the weak defi-
nition of speedup. On the data of Table 3.6, we can measure the speedup with
respect to the canonical serial version (panmixia columns of Table 3.7). But
it is not fair to compute speedup against a sequential GA, since we compare
different algorithms (the parallel code is that of a cGA). Hence, we compare
the same algorithm (the cGA) both in sequential and in parallel (cGAn on
1 versus n processors). This speedup is known as orthodox speedup. The
speedup, the efficiency, and the serial fraction using the orthodox definition
are shown in orthodox columns of Table 3.7. The orthodox values are slightly
better than those on the panmictic ones. But the trend in both cases is sim-
ilar (in some other problems the trend could even be different); the speedup
is quite good but it is always sublinear and it slightly moves away from the
linear speedup as the number of CPUs increases. That is, when we increment
the number of CPUs we have a moderate loss of efficiency. The serial fraction
is quite stable although we can notice a slight reduction of this value as the
number of CPUs increases, indicating that maybe we can gain some efficiency
adjusting the granularity of the parallel task.

50 3 Best Practices in Reporting Results with Parallel Genetic Algorithms

Table 3.7 Speedup and Efficiency.

Alg. panmixia orthodox
speedup efficiency serial fract. speedup efficiency serial fract.

cGA2 1.83 0.915 0.093 1.91 0.955 0.047
cGA4 3.30 0.825 0.070 3.43 0.857 0.055
cGA8 6.50 0.812 0.032 6.77 0.846 0.026

cGA16 11.65 0.728 0.025 12.01 0.751 0.022

3.4.6 Example 6: A Predefined Effort Could Hinder
Clear Conclusions

In the previous examples the stopping criterion is based on the quality of
the solution. In this experiment, the termination condition is based on a
predefined effort (60,000 evaluations). Therefore, we focus on the quality of
found solutions. Previously, we used the fitness of the best solution, and the
average fitness to measure the quality of the solutions. We now turn to use a
different metric, such as the median and the average of the final population
mean fitness of each independent run (mm). In Table 3.8 we list all these
metrics for a sequential GA and a distributed GA using four processors.

Table 3.8 Result of Example 6.

Alg. % hit best avg median mm

Seq. 0% 418 406.4 401 385.8
dGA4 0% 410 402.3 405 379.1

Using a predefined effort as a stopping criterion is not always a good idea
in parallel metaheuristics if one wishes to measure speedup: in this case, for
example, algorithms could not find an optimal solution in any execution. If
we analyze the best solution found or the two averages (average of the best
fitness, avg column, and average of the mean fitness, mm column), we can
conclude that the sequential version is more accurate than the parallel GA.
But the median value of dGA is larger than this of the serial value, indicating
that the sequential algorithm obtained several very good solutions but the
rest of them had a moderate quality, while the parallel GA had a more stable
behavior. With this stopping criterion, it is hard to obtain a clear conclusion
if the algorithm is not stable; in fact, normal distribution of the resulting
fitness is hardly found in many practical applications, a disadvantage for
simplistic statistical claims.

Also, we can notice that the avg data are always better than the mm
values. This is common sense, since the final best fitness is always larger
than the final mean fitness (or equal when all the individuals converge to the
same single solution).

3.5 Conclusions 51

3.5 Conclusions

This chapter considered the issue of reporting experimental research data for
parallel genetic algorithms. Since this is a difficult task, the main issues of
an experimental design are highlighted. We do not enter the complex and
deep field of pure statistics in this chapter (not our focus), but just some
important ideas to guide researchers in their work. Readers interested in this
could benefit form using ideas and procedures from http://www.keel.es
[105].

As it could be expected, we have focused on parallel performance metrics
that allow to compare parallel approaches against other techniques of the lit-
erature. Speedup and total wall-clock time are by far the most used measures
to analyze pGAs. We stated the utilization of average times to represent the
execution of a pGA, although other measure might be used (in fact time is
not following a normal distribution and the mean could be a better value for
characterizing a pGA). This is a matter for future research. Besides, we have
shown the importance of the statistical analysis to support our conclusions,
also in the parallel metaheuristic field.

Finally, we have performed several experimental tests to actually illustrate
the influence and utilizations of the many metrics described in the chapter.

4

Theoretical Models of Selection
Pressure for Distributed GAs

My goal is simple. It is complete understanding of the
Universe, why it is as it is, and why it exists at all.

Stephen Hawking (1942 -) - English scientist

The increasing availability of clusters of machines has allowed the fast de-
velopment of pGAs [6]. Most popular parallel GAs split the whole population
into separate subpopulations that are dealt with independently (islands). A
sparse exchange of information among the component subalgorithms leads
to a whole new class of algorithms that do not only perform faster (more
steps by unit time), but that often lead to superior numerical performance
[30, 106, 107].

Many interesting parallel issues can be defined and studied in pGAs
(speedup, efficiency, etc.), but in this chapter we are interested in the un-
derlying distributed algorithm model using multiple populations, that is re-
ally the responsible of the features of the search. From the start, we want
to reinforce the difference between the model (dGA) and its implementation
(pGA). In this chapter we concentrate on the dynamics of the distributed
GA, in particular in developing a mathematical description for the takeover
time, i.e., the time for the best solution to completely fill up all the subpop-
ulations of the dGA. We first will propose and analyze several models for the
induced growth curves as an interesting contribution by themselves, and then
address the calculation of the takeover time. In this work, stochastic universal
sampling selection is considered. Also, since we only focus on selection (i.e.,
no variation operators), we expect an easy extension of the results to many
other evolutionary algorithms (EAs) different from dGAs.

In order to design a distributed GA we must take several decisions. Among
them, a chief decision is to determine the migration policy: topology (logical
links between the islands), migration rate (number of individuals that un-
dergo migration in every exchange), migration frequency (number of steps
in every subpopulation between two successive exchanges), and the selec-
tion/replacement of the migrants. The values of these parameters have an
important influence on the algorithm behavior. In general, decisions on these
choices are made by experimental studies. Therefore, it would be interesting
if we could provide an analytical basis for such decisions.

G. Luque and E. Alba: Parallel Genetic Algorithms, SCI 367, pp. 55–71.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

56 4 Theoretical Models of Selection Pressure for Distributed GAs

Several works have studied the takeover time and growth curves for other
classes of structured EAs in the past [108, 109, 110, 111, 112, 113, 114]. In
general, these works are oriented to study cellular EAs (with the important
exception of the Sprave’s one [114] that has a much broader coverage). As
a consequence, it really exists a gap in the studies about dEAs; filling this
gap will benefit to many researchers. In [115] we made a seed contribution
by analyzing the effects of the migration frequency and migration rate in the
growth curves and takeover times. We now unify and extend this by studying
the influence of the migration topology and proposing new more accurate
models.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

B
e

s
t

In
d

iv
id

u
a

l
P

ro
p

o
rt

io
n

Experimental Values

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

B
e
s
t
In

d
iv

id
u
a
l
P

ro
p
o
rt

io
n

� � at

P
e

tP
	
	�

�
11

1
)(

)0(
1

logisti
c

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

B
e

s
t
In

d
iv

id
u

a
l
P

ro
p

o
rt

io
n

}99.0::min{),(�����
t

isel
sXitp

hypergraph

?
P(t) =...

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

B
e

s
t

In
d

iv
id

u
a

l
P

ro
p

o
rt

io
n

Fig. 4.1 Sketch of our approach: study of logistic, hypergraph, and possibly other
more accurate and simple models.

In the present chapter we focus on the influence of migration rate, migra-
tion frequency, and topology in the takeover time and in the growth curves.
To achieve this goal we preset the policies of selection/replacement of the
migrants. The emigrants are selected by binary tournament while the immi-
grants are included in the target population only if they are fitter than the
worst-existing solution. In our analysis we will use the stochastic universal
sampling selection method, plus an elitist replacement; concretely, we use a
(μ + μ)-dGA. We will propose several new mathematical models for the dy-
namics of selection that allow to improve on the accuracy (low error) of the
existing models and consequently compute more accurate takeover times (see
Fig. 4.1).

This chapter is organized as follows. Section 4.1 is an introduction contain-
ing some preliminary background about previous works. In Section 4.2 we

4.1 Existing Theoretical Models 57

present the models that we use in this chapter. Section 4.3 studies the effects
of several parameters of the migration policy in the resulting growth curves;
concretely we analyze the migration frequency, the migration rate, and the
migration topology. In Section 4.4, we analyze the predicted takeover times
provided by the models. In the last section we summarize the conclusions
and give some hints on the future work.

4.1 Existing Theoretical Models

A common analytical approach to study the selection pressure of an EA is to
characterize its takeover time [116], i.e., the number of generations it takes for
the best individual in the initial population to fill the entire population under
selection only. The growth curves are another important issue to analyze
the dynamics of the dEAs. These growth curves are functions that map the
generation step of the algorithm to the proportion of the best individual in
the whole population. In this section we briefly describe the main models
found in the literature defining the behavior of structured population EAs,
since our target algorithms (dEAs) are a subclass of these.

4.1.1 The Logistic Model

Let us begin by discussing the work of Sarma and De Jong [109] for cellular
EAs. In that work, they performed a detailed empirical analysis of the effects
of the neighborhood size and shape for several local selection algorithms.
They proposed a simple quantitative model for cellular EAs based in the
logistic family of curves already known to work also for panmictic EAs [116].
In summary, the proposed equation is:

P (t) =
1

1 +
(

1
P (0)

− 1
)

e−at
(4.1)

where a is a growth coefficient and P (t) is the proportion of the best individ-
ual in the population at time step t. This model threw accurate results for
synchronous updates of square shaped cellular EAs. Recently, for the asyn-
chronous case, improved models has been proposed in [113] not following
a logistic growth. Anyway, using a logistic curve represents an interesting
precedent that however should be first validated for dEAs. In brief, we will
do so in this chapter.

4.1.2 The Hypergraph Model

On the other hand, Sprave [114] has proposed a unified description for any
non-panmictic population structured EA, that could even end in an accurate

58 4 Theoretical Models of Selection Pressure for Distributed GAs

model for panmictic populations (since they can be considered as fully con-
nected structured populations). Sprave modelled the population structure by
means of hypergraphs. A hypergraph is an extension of a canonical graph.
The basic idea of a hypergraph is the generalization of edges from pairs of
vertices to arbitrary subsets of vertices (see two examples in Fig. 4.2).

1

2

3

4

5

6

7

8

9

10

11

12

E1

E3

E4

E5

E2

1 2
3 4

5 6
7 8

13 14
15 16

9 10
11 12

Q0 Q1

Q2Q3

E2

E1

(a) (b)

Fig. 4.2 Two hypergraphs: (a) a basic hypergraph with vertices X = {1, . . . , 12}
and several edges {E1, . . . , E5} and (b) another hypergraph example that represents
a dEA with four subpopulations in a ring (E0 and E3 have been omitted for clarity).

In this work, the author developed a method to estimate growth curves and
takeover times. This method was based on the calculation of the diameter of
the actual population structure and on the probability distribution induced
by the selection operator. In fact, Chakraborty et al. [117] previously calcu-
lated the success probabilities (pselect) for the most common selection opera-
tors, what represents an interesting complement for putting hypergraphs to
work in practice.

4.1.3 Other Models

Although the logistic model is relatively well-known, and hypergraphs could
potentially play an important role in the field, they are not the only existing
models that can inspire or influence the present study. Gorges-Schleuter [110]
also accomplished a theoretical study about takeover times for a cellular ES
algorithm. In her analysis, she studied the propagation of information over
time through the entire population. She finally obtained a linear model for
a ring population structure and a quadratic model for a torus population
structure.

In a different work, Rudolph [111] carried out a theoretical study on the
takeover time in populations with array and ring topologies. He derived lower

4.2 Analyzed Models 59

bounds for arbitrary connected neighborhood structures, lower and upper
bounds for array-like structures, and an exact closed form expression for a
ring neighborhood structure.

Later, Cantú-Paz [9] studied the takeover time in dGAs where the mi-
gration occurs in every iteration, which is the lower bound of the migration
frequency value. He generalized the panmictic model presented by Goldberg
and Deb (1991) by adding a policy-dependent term. That term represents
the effect of the policy used to select migrants and the individuals that they
replace at the receiving island.

Finally, Giacobini et al. [112, 118] studied the takeover time in cellular EAs
that use asynchronous cell update policies. The authors presented quantita-
tive models for the takeover time in asynchronous cellular EAs with different
topologies.

4.2 Analyzed Models

In the present work, we just focus on the two described models: logistic and
hypergraphs. The first one (logistic) is based on biological processes and it
is well-known in the case of cellular EAs, the other type of structured EAs.
The second model (hypergraphs) possesses a unique unified-like feature for all
non-panmictic algorithms. We do not use the results of the other mentioned
works [9, 110, 111, 112] directly, since either they are linked to specialized
algorithms (non-canonical) or have a different focus (e.g., selection policy).

Let us first address the logistic case:

P (t) =
1

1 + a · e−b·t (4.2)

To strictly adhere to the original work of Sarma and De Jong for cellular
EAs, the a parameter should be defined as a constant value (a = 1

P (0)
−1). We

call this model LOG1. We propose a new variant of the logistic model called
LOG2. In this case, we consider a and b as free variables (in the previous
model LOG1 a was a constant parameter).

We now turn to consider the hypergraph approach. In fact, we present two
variants of hypergraphs: the one in which pselect (Equation 4.3) accounts only
for the probability of selection (HYP1), and the one where this probability
(Equation 4.4) accounts both for selection and for replacement (HYP2). We
introduce such distinction because in the seminal work [117] this second choice
(combining selection and replacement within a probability) is said to be more
exact (although not addressed there):

pselect1(i, M) =
i · γ

i · γ + M − i
(4.3)

pselect2(i, M) =
i

M
+

(
1 − i

M

)
pselect1(i, M) (4.4)

60 4 Theoretical Models of Selection Pressure for Distributed GAs

where M is the population size and i denotes the total number of best indi-
viduals in the population. These functions assume that the population has
only two types of individuals where the fitness ratio is γ = f1/f0 [117]. In
our experiments we preset γ = 2 (γ = fbest/favg(no best) = 2).

To end this section we introduce our new proposed models in details. In our
previous work [115], we presented a more accurate extension of the original
logistic model (freq is the migration frequency and N is the number of
islands):

P (t) =
i=N∑
i=1

1/N

1 + a · e−b·(t−freq·(i−1))
(4.5)

but this model does not include information about the topology in the dis-
tributed EA, in fact, it only works appropriately with a ring topology. There-
fore, we here propose a new extension of this model that accounts the migra-
tion topology:

P (t) =
i=d(T)∑

i=1

1/N

1 + a · e−b·(t−freq·(i−1))

+
N − d(T)/N

1 + a · e−b·(t−freq·d(T))
(4.6)

where d(T) is the length of the longest path between any two islands (diam-
eter of the topology). This expression is a combination of the logistic model
plus our previous model (Equation 4.5. In fact, in the panmictic case [116]
(d(T) = 0, freq = 0, and N = 1), this equation is the same as the logistic
one; and if the topology is the ring one (d(T) = N − 1) then this model
reduces to the expression shown in the Equation 4.5. We should notice that
since it is an extension of the logistic approach, two variants could be also
defined as we did before with LOG1 and LOG2. The first (called TOP1) in
which a is constant (a = 1

P (0)/N
− 1), and the second (TOP2) where a and b

are adjustable parameters.

4.3 Effects of the Migration Policy on the Actual
Growth Curves

In this section we experimentally analyze the effects of the migration policy
over the growth of the best individual copies in dEAs. In this aim we begin
by performing an experimental set of tests for several migration topologies,
frequencies, and rates. First, we describe the parameters used in these exper-
iments, and later we analyze the results.

4.3 Effects of the Migration Policy on the Actual Growth Curves 61

4.3.1 Parameters

We have performed several experiments to serve as a baseline data set for
evaluating the mathematical models. In these experiments we use different
values of migration topologies (island, star, and fully connected), frequencies
(1, 2, 4, 8, 16, 32, and 64 generations) and rates (1, 2, 4, 8, 16, 32 and 64 in-
dividuals). In general, researchers use some of these values to configure theirs
dEAs. Notice that a low frequency value (e.g., 1) means high coupling, while
a high value (e.g., 64) means loose coupling (large gap). First, we analyze
every parameter separately (the rest of parameters are kept constant) and
latter, we study all them together. In the experiments, we use a (μ + μ)-dEA
with 8 islands (512 individuals per island), and stochastic universal sampling
selection.

For all tests, we use randomly generated populations with individual fitness
between 0 and 1023. Then we introduce a single best individual (fitness =
1024) in a uniformly randomly selected island. For the actual curves we have
performed 100 independent runs.

MSE(model) =
1
k

k∑
i=1

(modeli − experimentali)2 (4.7)

In order to compare the accuracy of the models we proceeded to calculate
the mean square error (Equation 4.7) between the actual values and the
theoretically predicted ones (where k is the number of points of the predicted
curve). The MSE gives the error for an experiment. But we also define a
metric that summarizes the error for all the experiments, thus allowing to
perform a quantitative comparison between the different models easily. We
initially studied several statistical values (mean, median, standard deviation,
etc.) but finally we decided [115] to use the ‖ · ‖1 (1-norm, Equation 4.8
where E is the number of experiments) that represents the area below the
MSE curve.

‖model‖1 =
E∑

i=1

|MSE(model)| (4.8)

4.3.2 Migration Topology

Let us begin by analyzing the curves that have been obtained in the exper-
iments. Fig. 4.3 contains the lines of the actual takeover time for different
migration topologies: ring, star, and fully connected ones (we preset moderate
migration rate (8 individuals) and frequency (16 generations)). This figure
shows that the migration topology mainly influences the number of plateaus
(continuous to discrete increment in proportion of the best individual) . First,
all the topologies have a small step (the islands having the best initial solution
converge quickly) and when migration occurs, the best individual proportion
increases again attending to the number of neighbors of the island.

62 4 Theoretical Models of Selection Pressure for Distributed GAs

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Step

B
e

s
t

In
d

iv
id

u
a

l
P

ro
p

o
rt

io
n

Ring

Star
Fully Connected

Fig. 4.3 Actual growth curves for several migration topologies (100 independent
runs).

Once we have understood the basic regularities behind, our goal is to find
a mathematical model that allows an accurate fitting to all these curves.

Fig. 4.4 Comparison between actual/predicted values with LOG1 and LOG2.

We begin this task by trying to use the mentioned logistic and hypergraph
models. Let us first address the logistic case. We plot its accuracy in Fig. 4.4.
We can quickly arrive to the conclusion that for fully connected topology

4.3 Effects of the Migration Policy on the Actual Growth Curves 63

(the most similar to panmictic-like scenario), the error is small, what means
good news for a logistic fitting. However, for other topologies (specially for
ring topology), they turn to be very inaccurate. LOG2 allows a fitting with a
smaller error than LOG1, but it still seems harmful, since the actual plateaus
shown in Fig. 4.3 are ignored both in LOG1 and LOG2.

Our first clear conclusion is that the basic logistic model, even when en-
hanced, cannot be used for dEAs, as the existing literature also claims for
other non canonical cellular EAs [110, 111, 112, 113].

Therefore, we now turn to consider the hypergraph approach. When the
hypergraph model is put to work, we can notice a clear improvement over
the logistic models, obtaining a very accurate curve fitting prediction with
respect to the actual growth curves (Fig. 4.5). As expected, HYP1 generates
a slightly worse fit than HYP2, because HYP1 is not accounting for the
replacement effects.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Step

B
e

s
t

In
d

iv
id

u
a

l
P

ro
p

o
rt

io
n

Ring-Actual
Ring-HYP1
Ring-HYP2
Star-Actual
Star-HYP1
Star-HYP2
Complete-Actual
Complete-HYP1
Complete-HYP2

Fig. 4.5 Comparison between actual/predicted values with HYP1 and HYP2.

To end this section we test our proposed models: TOPx. In Fig. 4.6 we
plot the behavior of such models. Both models, TOP1 and TOP2, are very
accurate and they have a similar behavior. They two are equally or even more
precise than any other existing model, in particular with respect to the basic
logistic and hypergraph variants.

4.3.3 Migration Frequency

In the previous section we set the migration frequency to 16 generations.
Now we perform several experiments with different values of the migration

64 4 Theoretical Models of Selection Pressure for Distributed GAs

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Step

B
e

s
t

In
d

iv
id

u
a

l
P

ro
p

o
rt

io
n

Ring-Actual
Ring-TOP1
Ring-TOP2
Star-Actual
Star-TOP1
Star-TOP2
Complete-Actual
Complete-TOP1
Complete-TOP2

Fig. 4.6 Comparison between actual/predicted values with TOP1 and TOP2.

frequency: 1, 2, 4, 8, 16, 32, and 64 generations (we preset moderate migra-
tion rate (8 individuals) and ring topology). Fig. 4.7 contains the lines of the
actual takeover time for different migration frequencies. This figure shows
that, for low frequency values, the dEA resembles the panmictic case [116].
This is common sense since there exists high interaction among the subal-
gorithms. However, for higher frequency values (slightly coupled search), the
observed behavior is different: the subpopulations in the islands having the
best solution converge quickly, and then the global convergence of the algo-
rithm stops progressing (flat lines) until a migration of the best individual
takes place. The observed effect is that of a stairs-like curve. The time span
of each step in such a curve is governed by the migration frequency. The
higher the migration frequency value, the largest the span of the plateau.

4.3.4 Migration Rate

After analyzing the topology and migration frequency, we proceed in this
subsection to study the influence of the migration rate over the takeover
regime. As done before, we first compute the proportion of the best individual
in a dEA when utilizing the following values of the migration rate: 1, 2, 4,
8, 16, 32, and 64. The rest of the parameters are similar to the presented in
Subsection 4.3.1.

In Fig. 4.8 we plot the way in which the migration rate influences the selec-
tion pressure. From this figure we can infer that the value of the migration rate
determines the slope of the curve. The reason is that, when the migration rate
value is high, the probability of migrating the best individual increases, and
then the target island converges faster than if the migration rate were smaller.

4.3 Effects of the Migration Policy on the Actual Growth Curves 65

A complete analysis of migration rate and frequency can be found in [115].

4.3.5 Analysis of the Results

In the previous subsections, we analyzed the effects of the migration fre-
quency, rate, and topology over the growth curves of a dEA. However, these
studies only consider one parameter while the rest of them are fixed. Now, in
this subsection we will try to answer a common sense question: are the results

Fig. 4.7 Actual growth curves for several migration frequencies.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

B
e

s
t

In
d

iv
id

u
a

l
P

ro
p

o
rt

io
n

individuals: 1
individuals: 2
individuals: 4
individuals: 8
individuals: 16
individuals: 32
individuals: 64

Fig. 4.8 Actual growth curves of a dEA for several migration rates (100 indepen-
dent runs).

66 4 Theoretical Models of Selection Pressure for Distributed GAs

somehow biased by the utilization of the selected parameters? Therefore, To
extend the previous studies we now analyze the effects of all the parameters
together.

} } } } } } }Freq =1 Freq =2 Freq =4 Freq =8 Freq =16 Freq =32 Freq =64

Rate=16

Rate=32

Rate=64

Rate=4

Rate=8

Rate=2

Rate=1

Fig. 4.9 Error (MSE) and ‖ · ‖1 between the actual and predicted growth curves
for star topology and all the values of migration rate and frequency. In the right
graph, Lx means LOGx, Hx means HYPx, and Tx means TOPx.

Let us now proceed with the fitting of these curves with all the considered
mathematical models. In Fig. 4.9 (left) we show the error for a star topology
and any combined values of the migration frequency and rate. To interpret
the left graph you must notice that the first seven points of a line correspond
to the error incurred by the associated predictive model for the seven different
values of the migration rate at the same frequency, and that there exist seven
groups of such points, one for each migration frequency from 1 to 64 (from
left to right in the horizontal axis).

We can see in Fig. 4.9 some behavioral patterns of the models with re-
spect to the final MSE error they exhibit. First, we observe that the logistic
behavior is very stable and very accurate for all configurations. Both logistic
variants have similar behavior although LOG1 is slightly worse than LOG2.
Second, the hypergraph model obtains low error for larger frequency values,
while their inaccuracy is more evident for smaller values of the migration

4.3 Effects of the Migration Policy on the Actual Growth Curves 67

frequency (tight coupling). Even our proposed TOPx model also is some-
what sensitive to low frequency values, but it is quite stable and accurate for
larger values of migration frequency. Both, the HYPx and the TOPx mod-
els seem to perform a cycle: reduction/enlargement (respectively) of error as
the migration rate enlarges (for any given frequency). The ‖ · ‖1 summarizes
quantitatively the MSE results in a single value per model (Fig. 4.9 right).
Although the HYPx models are very accurate for lager frequency values, they
show high errors for smaller values, thus making the ‖ · ‖1 metric larger than
the rest. The HYPx models are not as robust as expected. Also, LOGx obtain
very accurate results and are only worse than the TOPx models. Clearly, our
TOP2 obtains the lowest overall error.

} } } } } } }Freq =1 Freq =2 Freq =4 Freq =8 Freq =16 Freq =32 Freq =64

Fig. 4.10 Error (MSE) and ‖ · ‖1 between the actual and predicted growth curve
for fully connected topology and all the values of migration rate and frequency.

In figures 4.10 and 4.11 we show the error for fully connected and ring
topologies, respectively. First, we notice that the behavior of the models is
very similar to that showed previously for the star topology (Fig. 4.9), i.e.,
HYPx models are the most inaccurate, while LOGx are quite precise and they
only are outperformed by TOPx models. On the other hand, the behavior of
the models showed in Fig. 4.11 (ring) is quite different from previous ones.

68 4 Theoretical Models of Selection Pressure for Distributed GAs

} } } } } } }Freq =1 Freq =2 Freq =4 Freq =8 Freq =16 Freq =32 Freq =64

Fig. 4.11 Error (MSE) and ‖ · ‖1 between the actual and predicted growth curve
for ring topology and all the values of migration rate and frequency.

We can notice that in the case of low values of the migration frequency,
most of the models obtain a large error (with the exceptions of LOG2 and
SUM2 models). In general, the second variant of logistic and our proposed
models are always better than the first one. The LOGx models show a stable
behavior for any frequency, but while LOG1 is always very inaccurate, the
LOG2 performs well, and it is only worse than TOP2 model. The TOPx
and HYPx models reduce their errors as the migration frequency enlarges,
although the TOPx models are always more accurate than the HYPx ones.
In both figures, TOP2 is again the overall most accurate model.

4.4 Takeover Time Analysis

In the previous sections we have studied the effects of the migration gaps and
migration rate over the takeover growth curves. Now, we analyze the effect of
these parameters over the takeover time itself. Fig. 4.12 contains the value of
the actual takeover time for different migration frequencies, rates, and topolo-
gies. We can notice that the takeover value increases for higher frequencies
and smaller rates, as expected from a loosely coupled set of subalgorithms.
However, the rate effect over the takeover time is smoother (less influential)

4.4 Takeover Time Analysis 69

than the frequency one. Also, the takeover value increases depending on the
diameter of the topology, e.g., the ring topology has the largest diameter
(d(T) = N − 1) and then its convergence is slower.

0 5 10 15 20 25 30 35 40 45 50
10

1

10
2

10
3

Different Configurations

T
a

k
e
o

v
e
r

T
im

e

Ring
Star
Complete

} } } } } } }Freq =1 Freq =2 Freq =4 Freq =8 Freq =16 Freq =32 Freq =64

Fig. 4.12 Actual takeover time values for all configurations.

Once we have observed the effect of the migration rate and frequency over
the actual takeover time, we analyze the predicted values provided by the
models. Fig. 4.13 shows the mean error of the predicted takeover time with
all the models. To find these takeover time values, we numerically iterate the
formula until it reaches 1. Specially interesting is the case of LOGx models,
that obtain a very accurate fitting of the growth curves but are quite inaccu-
rate to predict the takeover time. On the contrary, the HYPx models obtains
the best predictions of the takeover values, but they are not useful to calcu-
late the growth curves as shown before. Our proposed models, TOPx, obtain
slightly worse prediction than HYPx for the takeover time, but in general
these differences are not significant. Also, we can notice that the predictions
of the models are quite sensitive to the topology; the longest the migration
topology diameter, the largest the error of models.

Finally, we conclude this section by showing a closed equation for the
takeover time calculation for the new models presented in this chapter (TOPx
models) and an evaluation of its accuracy. The formula of takeover time
(Equation 4.9) is derived from the growth curve equation (Equation 4.6) of
these models, finding the convergence time of the last island that receives
the best individual, i.e., finding the t value for which the second term of the
equation is evaluated to N−d(T)

N
− ε:

t∗ = freq · d(T) − 1
b
· Ln

(
1
a
· ε

N − d(T) − ε · N

)
(4.9)

70 4 Theoretical Models of Selection Pressure for Distributed GAs

(a) (b) (c)

Fig. 4.13 Error between actual and predicted values of takeover time for (a) fully
connected, (b) star, and (c) ring topologies.

where t∗ is the takeover time value, freq is the migration frequency, N is the
number of islands, d(T) is the topology diameter, and ε is the the expected
level of accuracy (a small value near zero).

In Fig. 4.14 we show the error obtained when we use the above formula to
estimate the takeover time given the values of migration frequency, migration
rate, and migration topology. The predicted values are quite accurate and the
mean error is very low. We also can observe that the errors obtained with the
Equation 4.9 are significant smaller than the ones obtained when the TOPx
growth models are iterated.

(a) (b) (c)

Fig. 4.14 Error between actual and predicted values (with Equation 4.9) of
takeover time for (a) fully connected, (b) star, and (c) ring topologies.

4.5 Conclusions 71

4.5 Conclusions

In this chapter we have performed an analysis of the growth curves and
takeover regime of distributed genetic algorithms. We compared the well-
known logistic model, a hypergraph model, and a newly proposed model.
A second variant of each model has been also developed for the shake of
accuracy.

In this chapter we have shown how the models appropriately captured the
effects of the most important parameters of the migration policy: migration
frequency, rate, and topology. We have observed that the migration topol-
ogy affects to the number of plateaus, the migration frequency establishes the
size of these plateaus, and the migration rate indicates the slope of the growth
curves. These mathematical models have also allowed to study the impor-
tance of the different migration parameters in the takeover time. The main
conclusion is that the influence of the migration rate is negligible when a
medium/large migration frequency value is used.

Although every model has its own advantages, either simplicity (LOGx),
extensibility (HYPx), or accuracy (TOPx), TOP2 is the model that better
fits the actual observed behavior of the algorithms, and its predicted takeover
time does not show significant differences with respect to the rest.

As a future work we plan to check the results presented in this chapter
on additional selection methods and structured models of GAs (e.g., cellular
GAs). Other interesting open research line (in which we are already working)
is to get an statistical model of the dGA and then use it to complete the
proposed models of this chapter with that information in order to obtain
a more accurate mathematical description. The preliminary results are very
promising [71]. Another important future work is to apply these mathematical
model to help the method during the search. For example, these models can be
used to build an self-adaptive method where some migration parameters could
be adjusted automatically (online during the search) to adapt the behavior
of the technique to the search space of the problem based on a theoretical
prediction on what will happen in the next few iterations.

5

Natural Language Tagging with
Parallel Genetic Algorithms

Evolution is cleverer than you are.

Francis Crick (1916 - 2004) - English scientist

This is the first in a series of four chapters focused to illustrating how pGAs
can be applied in a wide set of difficult tasks with success. The target domains
will be Natural Language, hardware design, scheduling, and Bioinformatics,
all of them hot topics in present research. Part-of speech (POS) tagging
or simply “tagging” is a basic task in natural language processing (NLP).
Tagging aims to determine what is the most likely lexical tag for a particular
occurrence of a word in a sentence. There are many NLP tasks which can
be improved by applying disambiguation to the text [119]. The ambiguity of
syntactic analysis or partial parsing –a kind of analysis limited to particular
types of phrases– is highly simplified in the absence of lexical ambiguity. Many
partial parses work on the output of a tagger [120] by testing the appearance
of regular expressions of tags, which define the searched patterns. For instan-
ce, the word can can be a noun, an auxiliary verb or a transitive verb. The
category assigned to the word will determine the structure of the sentence in
which it appears and thus its meaning.

Let us consider some examples, taken from newspaper headlines, in which
the meaning is dramatically altered when different tags are assigned to some
words:

Soviet virgin lands short of goal again

British left waffles on Falkland islands

Teacher strikes idle kids

We can observe that the meaning of the sentences is very different depend-
ing on the words marked in italic being noun, verb or adjective.

Other important applications of tagging are information retrieval [121]
and question answering. It refers to mechanisms, such as those used by Web
search engines, for easily access information items. For example, before iden-
tifying the documents relevant for the requested information, an informa-
tion retrieval system needs to represent those documents according to some

G. Luque and E. Alba: Parallel Genetic Algorithms, SCI 367, pp. 75–89.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

76 5 Natural Language Tagging with Parallel Genetic Algorithms

criterion, such as the set of terms which characterize them. Tagging and par-
tial parsing can be very useful here to perform such an organization and
obtain the representative terms, usually composed of more than one word,
such as nominal phrases.

Tagging is also useful in question answering, which aims to answer a user
query, usually with a noun phrase, such as a date, location, etc. Tagging the
query helps to identify the entities the user is looking for.

Moreover, tagging is a difficult problem by itself, since many words belong
to more than one lexical class. To give an idea, according to [122], over 40% of
the words appearing in the hand-tagged Brown corpus [123] are ambiguous.

Because of the importance and difficulty of this task, a lot of work has
been carried out to produce automatic taggers. Automatic taggers, usually
based on Hidden Markov Models, rely on statistical information to establish
the probabilities of each scenario. The statistical data are extracted from
previously hand-tagged texts, called corpus. These stochastic taggers [119,
124] neither require knowledge of the rules of the language nor try to deduce
them, and thus they can be applied to texts in any language, provided they
can be previously trained on a corpus for that language.

The context in which the word appears helps to decide which is its more
appropriate tag, and this idea is the basis for most taggers. For instance,
consider the sentence in Fig. 5.1, extracted from the Brown corpus. The
word questioning can be disambiguated as a common name if the preceding
tag is disambiguated as an adjective. But it might happen that the preceding
word to be ambiguous, so there may be many dependencies which must be
resolved simultaneously.

This the therapist may pursue in later questioning .
DT AT NN NNP VB RP RP VB .
QL MD VBP NNP RB NN

RB JJ JJ
NN JJR
FW
IN

Fig. 5.1 Tags for the words in a sentence extracted from the Brown corpus. Un-
derlined tags are the correct ones, according to the Brown corpus. Tags correspond
to the tag set defined in the Brown corpus: DT stands for determiner/pronoun, AT
for article, NN for common noun, MD for modal auxiliary, VB for uninflected verb,
etc.

The statistical model considered in this work amounts to maximize a global
measure of the probability of the set of contexts (a tag and its neighboring
tags) corresponding to a given tagging of the sentence. Then, we need a
method to perform the search of the tagging which optimizes this measure
of probability.

5.1 Statistical Tagging 77

The aim of this chapter is to design a parallel GA to tackle this problem.
We check and compare different (parallel and serial) metaheuristic algorithms
to perform such a search, such as a genetic algorithm (GA), a non-traditional
genetic algorithm: CHC method, and a simulated annealing (SA). One of the
advantages of using an evolutionary algorithm (EA) as the search algorithm
for tagging is that these algorithms can be applied to any statistical model,
even if they do not rely on the Markov assumption (i.e., the tag of a word only
depends on the previous words), as it is required in classic search algorithms
for tagging, such as the widely used Viterbi [125]. Genetic algorithms have
been previously applied to the problem [126, 127], obtaining accuracies as
good of those of typical algorithms used for stochastic tagging. CHC is a
non-traditional genetic algorithm, which presents some particular features:
CHC guarantees the survival of the best solutions found, does not allow the
mating of similar solutions, and uses specialized operations.

One of the aims of this work is to investigate if the particular mechanisms
of CHC for diversity can improve the selection of different sets of tags. From
previous work [128], it has been observed that words incorrectly tagged are
usually those which require one of their more rare tags, or which appear
in an infrequent context. We plan to use a quality function based on the
probability of the contexts of a sequence of tags assigned to a sentence. A
priori, it should be difficult for a GA to find appropriate tags within high
probability contexts. CHC allows simultaneously changing several tags of
the sequence, which can hopefully lead to explore combinations of tags very
different from those of the ancestors and then to better results. Thus, it is
interesting to study what is more advantageous; the smooth exploration of
the GA or the more disruptive one of CHC. We have also compared the
results of the GAs with those obtained from SA, in order to ascertain the
suitability of the evolutionary approach compared with other optimization
methods.

For most tagging applications, the whole process of search is time con-
suming, what made us to include a parallel version of the algorithms. We
also compare the results of our approaches with the ones of Viterbi, a classi-
cal method for solving this problem, in order to test the accuracy of all our
methods in a wider spectrum of techniques.

The rest of the chapter proceeds as follows: Section 2 describes the kind of
statistical models to which our algorithms can be applied. Sections 3, 4 and
5 describe briefly the GA, CHC, and SA algorithms, and Section 6 discusses
the parallel version of these algorithms. Section 7 presents the details on how
the algorithms are applied to tagging. Section 8 describes and discusses the
computational results, and Section 9 draws the main conclusions of this work.

5.1 Statistical Tagging

Statistical tagging, probably the most extended approach nowadays, is based
on statistical models defined on a number of parameters, which take their

78 5 Natural Language Tagging with Parallel Genetic Algorithms

values from probabilities extracted on tagged texts. The goal of these models
is to assign to each word of a sentence the most likely lexical tag accord-
ing to the context of the word, i.e., according to the tags of other words
surrounding the considered one. Therefore, we can collect statistics on the
number of occurrences of the contexts resulting of assigning their different
valid part-of-speech to the considered word, and then choose the more likely
one. However, the surrounding words may also be ambiguous, and thus, we
need some kind of statistical model to select the “best” tagging for the whole
sequence according to the model. More formally, the part-of-speech tagging
problem can be stated as

t1,n = arg maxt1,n
P (t1,n|w1,n) (5.1)

where arg maxxf(x) is the value of x which maximizes f(x), and t1,n is the
tag sequence of the words w1,n which compose the sentence being tagged.

If we assume that the tag of a word only depends on the previous tag, and
that this dependency does not change throughout the time, we can adopt a
Markov Model for tagging. Let wi the word at position i in the text, ti the
tag of wi, wi,j the words appearing from position i to j, and ti,j the tags for
the words wi,j . Then, the model states that

P (ti+1|t1,i) = P (ti+1|ti) (5.2)

If we also assume that the probability of a word appearing at a particular
position only depends on the part-of-speech tag assigned to that position, the
optimal sequence of tags for a sentence can be estimated as:

t1,n = arg maxt1,n
P (t1,n|w1,n) =

=
∏n

i=1 P (wi|ti)P (ti|ti−1)
(5.3)

Accordingly, the parameters of the Markov model tagger can be computed
from a training corpus. It can be done by recording the different contexts
of each tag in a table called training table. This table can be computed by
going through the training text and recording the different contexts and the
number of occurrences of each of them for every tag in the tagset.

The Markov model for tagging described above is known as a bigram tag-
ger because it makes predictions based on the preceding tag, i.e. the basic
unit considered is composed of two tags: the preceding tag and the current
one. This model can be extended in such a way that predictions depend on
more than one preceding tag. For example, a trigram model tagger makes its
predictions depending on the two preceding tags.

Once the statistical model has been defined, most taggers use the Viterbi
algorithm [125] (a dynamic programming algorithm) to find the tag sequences
which maximize the probability according to the selected Markov model.

We here offer an alternative approach to tagging which can be used in-
stead of the Viterbi algorithm. This approach relies on using evolutionary

5.2 Automatic Tagging with Metaheuristics 79

algorithms, which include a number of search templates based on the pro-
duction of offsprings and the survival of the fittest. These heuristic techniques
provide us a general method that can be applied to any statistical model. For
example, they can be applied to perform tagging according to the Markov
model described above or not. In this days, they can also be applied to other
models for which there is no known efficient algorithm. For instance, they
can be applied to a model which has been proven to improve the results over
a Markov one [129], in which the context of a word is composed of both,
the tag of the preceding words and also the tag of the following words. The
potential problem in using evolutionary algorithms (EAs) is that many of
them do not guarantee to reach the optimum solution but a reasonably good
approximation, according to the resources assigned (time and memory). In
addition, the probability of error can be systematically decreased in EAs by
increasing the number of points explored with a fine tuning of the algorithm
parameters.

According to these considerations, we are going to explore different meta-
heuristic techniques for tagging. The statistical model we consider amounts
to maximize a global measure of the probability of the set of contexts (a tag
and its neighboring tags) corresponding to a given tagging of the sentence.
The contexts considered are very general and widely applicable since they are
composed of a certain number of tags on the left and another on the right of
the word at the considered position.

5.2 Automatic Tagging with Metaheuristics

We here introduce the proposed algorithms to solve the tagging problem.
We have used three different methods: a canonical GA, a non-traditional GA
called CHC, and a SA which is a trajectory method. We have also developed
parallel version for the these algorithms. All of them will be used as automatic
taggers and their performance will be compared to highlight their relative
strengths in this task.

5.2.1 Genetic Algorithm

Genetic Algorithms (GAs) [130] are stochastic search methods that have been
successfully applied in many real applications. A GA is an iterative technique
that applies stochastic operators on a pool of individuals (tentative solutions).
A fitness function allocates a real value to every individual indicating its
suitability to the problem. Traditionally, GAs are associated to the use of a
binary representation, but nowadays you can find GAs that use other types
of representations. A GA usually applies a recombination operator on two
solutions, plus a mutation one that randomly modifies the individual contents
to promote diversity and thus reaching new portions of the search space not
implicitly present in the previous generations.

80 5 Natural Language Tagging with Parallel Genetic Algorithms

5.2.2 CHC Algorithm

CHC [131] is a variant of a genetic algorithm with a particular way of pro-
moting diversity. It uses a highly disruptive crossover operator to produce
new individuals maximally different from their parents. It is combined with
a conservative selection strategy which introduces a kind of inherent elitism.
The main features of this algorithm are:

• The mating is not restricted to the best individuals, but parents are ran-
domly paired in a mating pool. However, recombination is only applied if
the Hamming distance between the parents is above a certain threshold
(incest prevention).

• CHC uses a half-uniform crossover (HUX), which exchanges half of the
differing genes.

• CHC guarantees survival of the best individuals selected from the set of
parents and offsprings.

• Mutation is not applied directly. Instead, CHC uses a re-start mecha-
nism when the population remains unchanged after a given number of
generations.

5.2.3 Simulated Annealing

Simulated Annealing (SA) [12] is a stochastic search technique that can be
seen as a hill-climber with an internal mechanism to escape from local op-
tima. In SA, the solution s′ is accepted as the new current solution s if δ ≥ 0
holds, where δ = f(s′)−f(s). To allow escaping from a local optimum, moves
that decrease the energy function are accepted with a decreasing probability
exp(δ/T) if δ < 0, where T is a parameter called the “temperature”. The
decreasing values of T are controlled by a cooling schedule, which specifies
the temperature values at each stage of the algorithm, what represents an im-
portant decision for its application. Here, we are using a proportional method
for updating the temperature (Tk = α · Tk−1, where α indicates the decrease
speed of the temperature).

5.2.4 Parallel Versions

A parallel EA (PEA) is an algorithm composed of multiple EAs, regardless of
their population structure. Each component (usually a traditional EA) sub-
algorithm includes an additional phase of communication with a set of subal-
gorithms [10]. In this work, we have chosen a distributed EA (dEA) because
of its popularity and because it can be easily implemented in clusters of ma-
chines. In distributed EAs (also known as Island Model) there exists a small
number of islands performing separate EAs, and periodically exchanging in-
dividuals after a number of isolated steps (migration frequency). Concretely,
we use a static ring topology in which the best individual is migrated, and

5.3 Algorithm Decisions: Representation, Evaluation, and Operators 81

Sent. This the therapist may pursue in later questioning
Ind. 1: DT AT NN NNP VBP IN JJ VB
Ind. 2: DT AT NN MD VB RB RB NN
Ind. 3: QL AT NN NNP VB FW JJ JJ

Fig. 5.2 Potential individuals for the sentence in Fig. 5.1.

asynchronously included in the target population only if it is better than the
local worst-existing solution.

The parallel SA (PSA) is also composed of multiple asynchronous SAs.
Each component SA, starts off from a different random solution and ex-
changes the best solution found (cooperation phase) with its neighboring SA
in the ring.

5.3 Algorithm Decisions: Representation, Evaluation,
and Operators

The first step in designing a metaheuristic is to define the data structure
included into the individuals which compose the population. Genetic opera-
tors on them must also be defined, as well as a selection policy based on a
measure of the individual quality, or “fitness”.

5.3.1 Individuals

Tentative solutions here are made of sequences of genes. Each gene corre-
sponds to each word in the sentence to be tagged. Fig. 5.2 shows some ex-
ample individuals for the sentence in Fig. 5.1.

word tag index int bin

0 1 2 3 4 5 · · ·
This DT QL 0 000
the AT 0 000
therapist NN 0 000
may NNP MD 1 001
pursue VB VBP 0 000
in RP NNP RB NN FW IN 5 101

...

Fig. 5.3 Integer and binary codings of a possible selection of tags chosen for the
words of a sentence extracted from the Brown corpus. The selected tags appear
underlined.

Each gene represents a tag and additional information useful in the eval-
uation of the solution, such as counts of contexts for this tag according to

82 5 Natural Language Tagging with Parallel Genetic Algorithms

the training table. Each gene’s tag is represented by an index to a vector
which contains the possible tags of the corresponding word. The composition
of the genes depends on the chosen coding, as Fig. 5.3 shows. In the integer
coding the gene is just the integer value of the index. In the binary coding
the gene is the binary representation of the index. As in the texts we have
used for experiments the maximum number of tags per word is 6, we have
used a binary code of 3 bits.

The chromosomes forming the initial population are created by randomly
selecting from a dictionary one of the valid tags for each word, with a bias to
the most probable tag. Words not appearing in the dictionary are assigned the
most probable for its corresponding context, according to the training text.

5.3.2 Fitness Evaluation

The fitness of an individual is a measure of the total correctness probability
of its sequence of tags, according to the data from the training table. It is
computed as the sum of the fitness of its genes,

∑
i f(gi). The fitness of a

gene is defined as
f(g) = log P (T |LC,RC) (5.4)

where P (T |LC, RC) is the probability that the tag of gene g is T , given that
its context is formed by the sequence of tags LC to the left and the sequence
RC to the right (the logarithm is taken in order to make fitness additive).
This probability is estimated from the training table as

P (T |LC, RC) ≈ occ(LC, T, RC)∑
T ′∈T occ(LC, T ′, RC)

(5.5)

where occ(LC, T, RC) is the number of occurrences of the list of tags
LC, T, RC in the training table, and T is the set of all possible tags of gi.

A particular sequence LC, T, RC may not be listed in the training table,
either because its probability is strictly zero (if the sequence of tags is forbid-
den for some reason) or, most likely, because there is insufficient statistics.
In these cases we proceed by successively reducing the size of the context,
alternatively ignoring the rightmost and then the leftmost tag of the remain-
ing sequence (skipping the corresponding step whenever either RC or LC
are empty) until one of these shorter sequences matches at least one of the
training table entries or until we are left simply with T . In this latter case we
take as fitness the logarithm of the frequency with which T appears in the
corpus (also contained in the training table).

5.3.3 Genetic Operators

For the GA, we use a one point crossover, i.e. a crossover point is randomly
selected and the first part of each parent is combined with the second part
of the other parent thus producing two offsprings. Then, a mutation point is

5.4 Experimental Design and Analysis 83

randomly selected and the tag of this point is replaced by another of the valid
tags of the corresponding word. The new tag is randomly chosen according
to its probability (the frequency at which it appears in the corpus).

The CHC algorithm applies HUX crossover, randomly taking from each
parent half of the tags in which they differ and exchanging them.

Individuals resulting from the application of the genetic operators along
with the old population are used to create the new one.

5.4 Experimental Design and Analysis

We have used as the set of training texts for our taggers the Brown [123]
and Susanne [132] corpora, two of the most widespread in linguistics. For
the Brown corpus we have used a training set of 185,056 words, and a test
set of 2421 words. For the Susanne corpus we have used a training set of
3213 words and a test set of 2510 words. The CHC algorithm has been run
with a crossover rate of 50%, without mutation. Whenever convergence is
achieved, 90% of population is renewed. The GA applies the recombination
operator with a rate of 50%, and the mutation operator with a rate of 5%.
In the parallel version, the migration occurs every 10 generations. We made
preliminary tests with different parameter settings for determining the best
values for each algorithms. The analysis of other specific operators is deferred
for a future work.

Table 5.1 Tagging accuracy obtained with the CHC algorithm for two test texts.
PS stands for Population Size.

Integer Binary
Context PS = 32 PS = 64 PS = 32 PS = 64

Seq. Par. Seq. Par. Seq. Par. Seq. Par.

Brown
1-0 91.02 91.74 91.35 91.55 94.98 95.32 94.67 94.62
2-0 91.31 91.31 91.83 92.18 95.35 95.35 95.18 95.03

Susanne
1-0 91.43 91.19 92.32 92.68 94.35 95.01 93.61 94.41
2-0 93.42 93.75 93.53 93.56 94.37 94.82 93.96 94.31

Tables 5.1, 5.2, and 5.3 show the results obtained with CHC, GA, and
SA algorithms, using both, integer and binary codings. The two upper rows
correspond to the Brown text with two different contexts (1-0 is a context
which considers only the tag of the preceding word and 2-0 considers the tag
of the two preceding words) and the two lower rows are the results for the
Susanne text. The two texts contain 2500 words approximately. Figures rep-
resent the best result out of 30 independent runs. The globally best result for
each row appears in boldface. Integer stands for the integer representation
and Binary for the binary representation with a code of 3 bits. For CHC

84 5 Natural Language Tagging with Parallel Genetic Algorithms

Table 5.2 Accuracy obtained with the GA for the two test texts. PS stands for
Population Size.

Integer Binary
Context PS = 32 PS = 64 PS = 32 PS = 64

Seq. Par. Seq. Par. Seq. Par. Seq. Par.

Brown
1-0 95.83 96.01 94.34 94.95 93.15 93.02 92.97 93.02
2-0 96.13 96.41 95.14 95.42 94.86 94.82 94.54 94.89

Susanne
1-0 96.41 96.74 95.46 96.25 95.12 95.32 94.96 94.54
2-0 97.32 97.32 96.91 97.01 95.39 95.43 95.34 95.39

and GA, measures have been taken for two population sizes. Furthermore,
sequential and parallel versions with 4 islands are analyzed. In evolutionary
algorithms, the population size of each island is the global population size
divided by the number of islands.

Looking at Table 5.1, the first conclusion is that the binary coding always
achieves a higher accuracy with respect to the integer one. This suggests that
the integer representation is not appropriate for CHC, probably because the
low number of genes of the latter interferes with the CHC mechanism to avoid
crossover between similar individuals. Regarding the parallel executions, we
can observe that the parallel version usually provides more accurate results,
particularly for a population of 32 individuals, because for such a small popu-
lation the higher diversity introduced by parallelism is beneficial. In general,
the accuracy obtained for Brown text is better than for Susanne text, prob-
ably because the statistics provided by the Susanne corpus are poorer1 and
the CHC mechanism for diversity is limited by these data. Anyway, the best
results are always obtained using binary coding and parallel executions for
any instance.

Table 5.2 shows the results obtained with the GA. In this case, the integer
representation provides the best results. Again, parallel versions improve the
sequential results, obtaining the best results when the population is com-
posed of 32 individuals. We can observe that for this algorithm, the accuracy
increases when the context is larger. The same trend was observed before for
CHC, but not so conclusively as for the GA. Also, we can notice that, unlike
the previous results for CHC, the results for Susanne text are more accurate
than the ones for Brown text.

Table 5.3 presents the data obtained with the SA algorithm. The SA al-
gorithm performs 5656 iterations using a Markov chain of length 800 and
with a decreasing factor of 0.99. In the parallel version, each SA component
exchanges the best solution found with its neighbor SA in the ring every 100
iterations. We can observe that SA always provides worse results than any of
1 Due to the small size of the Susanne corpus, and thus of the training set used,

and also due to the large tagset of Susanne corpus.

5.4 Experimental Design and Analysis 85

the evolutionary algorithms, thus proving the advantages of the evolutionary
approach. Anyhow, the parallel SA is still better in accuracy than the se-
quential version, as we also noticed for CHC and GA. In general, the results
obtained for this algorithm are very poor, indicating that SA is not able to
solve this problem adequately.

Table 5.3 Accuracy obtained with the SA algorithm for the two test texts (best
result out of thirty independent runs).

Integer Binary
Context Seq. Par. Seq. Par.

Brown
1-0 91.41 91.83 91.25 91.58
2-0 91.92 92.28 91.68 91.72

Susanne
1-0 91.03 91.87 89.79 90.53
2-0 92.31 92.31 91.31 91.74

Table 5.4 presents the best value and the average for the configuration
which provides the best results of each algorithm, i.e., parallel implementa-
tion using integer coding for GA and SA, and binary one for CHC. We do
not show the standard deviation because the fluctuations in the accuracy of
different runs are always within the 1% interval, claiming that all the algo-
rithms are very robust. Also, we include the results of the Viterbi method
(as said before, a typical algorithm widely used for stochastic tagging) to
perform a comparison between our evolutionary approach and a classical
tagging method. The results of this algorithm have been obtained with the
TnT system [133], a widely used trigram2 tagger.

First we compare our algorithms, and latter, we compare our results with
the Viterbi ones. We can observe in Table 5.4 that the GA has reached the
globally best results for all the test texts and contexts, though the differences
are small. This proves that the exploration of the search space given by
the classical crossover and mutation operators are powerful enough for this
specific problem.

Now, we compare the Viterbi method against the GA (which obtains the
best results of all our approaches). Viterbi obtains the best results for the
Brown corpus, although the difference of accuracy with respect to GA is
around 1%. However, for the Susanne corpus, with provided poorer statistics,
the GA results outperform Viterbi’s one. In this way, the heuristic nature of
the genetic algorithm is illustrated as useful for tagging where traditional
algorithms have low accuracy.

After these results another finding that is worth mentioning is that the
accuracy obtained with the parallel versions of GA, around 97%, is a very
2 It considers the previous two tags for deciding on the current tag.

86 5 Natural Language Tagging with Parallel Genetic Algorithms

Table 5.4 Comparison of the results of all the algorithms for the two test texts.

GA-Int CHC-Bin SA-Int Viterbi
Context Best Mean Best Mean Best Mean Best

Brown
1-0 96.01 95.26 95.32 94.91 91.83 90.95 97.04
2-0 96.41 96.23 95.35 94.80 92.28 92.14 97.48

Susanne
1-0 96.74 96.51 95.01 94.72 91.87 91.43 96.36
2-0 97.32 96.84 94.82 94.38 92.31 91.45 96.53

good result [124] according to the statistical model used. We must take into
account that the accuracy is limited by the statistical data provided to the
search algorithm. Moreover, the goal of the model is to maximize the prob-
ability of the context composed by the tags assigned to a sentence, but it is
only an approximate model. The correct tag for a word is not always the most
probable one (though most times it is), and the algorithm is conditioned by
this fact, but sometimes it is not the one which provides the most probable
context either, and it is just in these cases when the tagger fails.

Table 5.5 Execution times of the different versions of the algorithms (in seconds).

GA-Int CHC-Bin SA-Int Viterbi
Context Seq. Par. Seq. Par. Seq. Par. Seq.

Brown
1-0 12.31 7.02 20.48 9.60 5.84 2.98 0.47
2-0 47.93 21.19 60.92 26.44 17.32 7.93 0.47

Susanne
1-0 10.86 6.32 17.28 8.03 4.37 1.85 1.21
2-0 75.12 24.31 123.94 58.31 32.12 10.42 6.53

Let us now analyze Table 5.5, the average execution time for the configura-
tions of the GA, CHC, and SA algorithms, the ones providing the best results
for each of them, also including the execution time of the Viterbi method. We
can observe that the execution time increases with the size of the context.
We can also observe that GA is faster than CHC. Probably, this is due to
two reasons: first, binary codings are slower than integer ones, because they
require a decodification step prior to apply the fitness function, and second,
CHC needs additional computations to detect the converge of the population
or to detect incest mating. SA is the fastest of our algorithms. The reason of
this is that the SA operates on a single solution, while the rest of the methods
are population-based and in addition they execute more complex operators.
The table also shows that the parallel implementation reduces the execution
time considerably (between 42% and 78%), and this reduction is increasingly
beneficial for larger contexts.

5.4 Experimental Design and Analysis 87

If we compare our approach with the Viterbi algorithm we can observe
that the classical tagging algorithm is rather fast compared to the rest of
our proposed algorithms, though the differences for the Susanne corpus are
smaller. Viterbi, and in general any specific algorithm for a problem, will
always be more efficient than an evolutionary algorithm, which is a general
technique that can be applied to any variant of the problem. However this
generality provides some important advantages, such as the applicability to
extensions of the model, such as contexts with tags on both sides, in our case.
Another advantage concerning the execution time is that there exists parallel
versions of the evolutionary algorithm which highly reduce the execution
time without requiring addition design effort. In this way the evolutionary
algorithm can reach generality and efficiency at the same time.

Table 5.6 Accuracy and execution times obtained with the GA for the two test
texts using two new contexts.

Seq Par
Context Best Mean Time Best Mean Time

Brown
1-1 96.72 96.41 56.92 96.78 96.56 19.98
2-1 96.43 96.22 210.36 96.43 96.27 67.28

Susanne
1-1 98.36 98.11 77.14 98.59 98.39 21.25
2-1 97.78 97.31 283.49 98.01 97.64 78.17

Finally, in order to offer a through analysis, we have also tested our best
algorithm (a GA using integer coding) with two more complex contexts (1-1
and 2-1). Table 5.6 shows the results of these experiments. Viterbi can not
applied in this case because this algorithm is designed to search the data
sequence which maximizes the observed data according to a Markov model,
i.e. a model in which the current state only depends on the previous one.
If we consider tags on the right of the word being tagged, our model is not
a Markov process any more and Viterbi can not be applied. This alone is
a strong reason to further research with metaheuristics. As we saw before,
the parallelism allows to improve the accuracy and, at the same time, the
execution time is reduced considerably (see Table 5.5). In this case, we observe
that the increase of the length of the context (from 1-1 to 2-1) provokes a
larger execution times.

Though what we propose in this chapter is a search method valid for
different tagging models, and thus our goal is not to compete with other
models, in order to give an idea of the quality of the particular model that we
have used, we present a comparison with the accuracy results of other systems
evaluated on the same corpus. This corpus is the Wall Street Journal section
of the Penn Treebank [134]. We have used a training set of 554923 words and
a test set of 2544 words. Table 5.7 compares our results, obtained with the

88 5 Natural Language Tagging with Parallel Genetic Algorithms

GA and the integer representation, with the results obtained by Pla & Molina
[135] and Halteren et al. [136]. Pla & Molina proposed a lexicalized HMM
taking into account a set of selected words empirically obtained. However, the
results shown in Table 5.7 correspond to the non-lexicalized model, because
we do not use lexicalization. Halteren et al. propose a combination of different
methods for tagging using several voting strategies. The figure which appears
in the table for this work corresponds to the results for a single method,
which is an HMM. These results confirm the conclusions obtained in the
previous experiments. We can observe that in general, our approach has a
better behavior when it uses a more complete information, i.e., using a higher
context or using tags on the right of the word being tagged. In fact, our
general method outperforms the results presented by [135] when right tags
are used. Also it is able to find the best known solution [136] using 1-1
contexts.

We can observe that our general approach offers competitive results with
respect to the specific methods presented in [135] and [136]. Nevertheless,
the quality of our results can be improved by introducing in the model the
refinements proposed by the other works, such as lexicalization, combination
of different models, etc. Moreover, our method allows extending those mod-
els with new features such as right-hand contexts, what can lead to further
improvements.

Table 5.7 Comparison with other systems tagging the Wall Street Journal section
of the Penn Treebank.

Context GA-Int Pla & Molina
Halteren, Zavrel

& Dalelans

1-0 95.79 96.13 -
2-0 96.39 96.44 96.63
1-1 96.63 - -

The obtained results show that a generic metaheuristic such as our genetic
algorithm is able to solve the tagging problem with the same accuracy as an
specific method which was designed for this problem. In addition, GAs can
perform the search of the best sequence of tags for any context-based model,
even if it does not fulfill the Markov assumption. Thus, it is a general method
with a proved high quality, and even still able of a later hybridization with
problem-dependant operations to yield more accurate results (future line of
research).

5.5 Conclusions 89

5.5 Conclusions

This chapter compares different optimization methods to solve an important
natural language task: the categorization of each word in a text. The op-
timization methods considered here have been a genetic algorithm (GA), a
CHC algorithm, and a simulated annealing (SA). We have compared their
results with a widely used method for tagging such as Viterbi.

Results obtained allow extracting a number of conclusions. The first one
is that the integer coding performs better than the binary one for the GA
and the SA, while the binary one is the best for the CHC algorithm. Paral-
lelism has also proved to be useful, always throwing the more accurate results
even with small populations, and reducing the execution time of all the algo-
rithms. The GA has been found to be better than CHC, indicating that the
exploration of the search space achieved by the classical genetic operators
is powerful enough for this problem. The two evolutionary algorithms have
outperformed SA. Also, we have observed that our evolutionary approach is
able of outperform classical algorithms such as Viberti in some cases. These
results showed that a metaheuristic such as our genetic algorithm is able to
solve the tagging problem with the same accuracy as the Viterbi method (an
specific method for this problem) with additional scenarios for application
forbidden to such specific techniques.

For the future, it could be interesting to investigate other genetic operators
for the evolutionary algorithms considered herein, as well as other kinds of
metaheuristic methods for tagging.

6

Design of Combinational Logic Circuits

Computers are useless. They can only give you answers.

Pablo Picasso (1881 - 1973) - Spanish painter

The previous chapter faces a problem related to the Natural Language.
To show the versatility of pGAs, we focus now on a very different domain:
hardware configuration. In concrete, we apply this metaheuristic to design
combinatorial circuits. There are several standard graphical aids widely used
by humans to design combinational logic circuits (e.g., Karnaugh Maps [137,
138], and the Quine-McCluskey Method [139, 140]). Despite their advantages,
these methods do not guarantee that an optimum circuit can be found given
an arbitrary truth table. Additionally, some of these methods (e.g., Karnaugh
Maps) have some well-known scalability problems, and can be used only in
circuits with very few inputs (normally no more than five or six).

In this chapter, we see the design of combinational logic circuits as an
optimization problem in which we aim to find Boolean expressions that pro-
duce the outputs required given a set of inputs (as defined by the truth table
of a circuit). Seen as an optimization problem, the design of combinational
circuits has several interesting features:

• It is a discrete optimization problem in which the decision variables are
either integers or binary numbers (as in this chapter). The solutions pro-
duced are Boolean expressions that can be graphically depicted.

• The size of the search space grows very rapidly as we increase the number
of inputs and/or outputs of a circuit.

• Since it is required to produce circuits that match exactly all the outputs
of the truth table given over all the inputs provided, this problem can be
considered as having (a usually large number of) hard equality constraints.

• Several parameters of the problem may be modified in order to produce
different variations whose degree of difficulty may be higher than that of
the original problem. For example, we may vary the types of gates available
and the number of inputs that each of them may have.

Because of its complexity, the design of combinational circuits has been
tackled with a variety of heuristics (mainly evolutionary algorithms) in the
last few years [141, 142]. Despite their good results on small and medium-size

G. Luque and E. Alba: Parallel Genetic Algorithms, SCI 367, pp. 91–114.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

92 6 Design of Combinational Logic Circuits

circuits, heuristics tend to be victims of the “dimensionality curse”. Over the
years, however, a different goal was envisioned for evolutionary algorithms
applied to the solution of combinational logic circuits. The new goal aims to
optimize (small and medium-size) circuits (using a certain metric) such that
novel designs (since there is no human intervention) can arise. Such novel
designs have been shown in the past in a number of studies [141, 142, 143,
144]. In fact, some researchers have pointed out the usefulness of extracting
design patterns from such evolutionary-generated solutions. This could lead
to a practical design process in which a small (optimal) circuit is used as a
building block to produce complex circuits.

This chapter presents a comparative study among a traditional genetic
algorithm, simulated annealing, and three heuristics powered by local search
capabilities. The rationale behind adopting these approaches is to determine
if the design of combinational logic circuits (operating on a binary encoding)
can benefit from local search strategies that are not included in a traditional
genetic algorithm. For the study, we use both serial and parallel versions
of each algorithm, so that we can analyze if the use of parallelism brings
any benefits in terms of performance, other than the obvious computational
speedup [145].

The remainder of the chapter is organized as follows. In Section 6.1 we
provide the statement of the problem of interest to us. In Section 6.2, we
briefly discuss the matrix encoding adopted to represent a combinational
logic circuit in the heuristics compared. Section 6.3 briefly describes the most
relevant previous related work. In Section 6.4, we provide a brief description
of the approaches adopted in our study. Section 6.5 contains the examples
and the results of the comparative study. Then, there is a further discussion
of the results in Section 6.6. Finally, we provide some conclusions and possible
ideas of future research in Section 6.7.

6.1 Problem Definition

The problem of interest to us consists of designing a circuit that performs
a desired function (specified by a truth table), given a certain specified set
of available logic gates. This problem is treated, however, as a discrete opti-
mization problem.

In circuit design, it is possible to use various criteria to be minimized.
For example, from a mathematical perspective, it is possible to minimize the
total number of literals or the total number of binary operations or the total
number of symbols in an expression. The minimization problem is difficult
for all such cost criteria.

The complexity of a combinational logic circuit is related to the number
of gates in the circuit. The complexity of a gate generally is related to the
number of inputs to it. Because a logic circuit is a realization (implementa-
tion) of a Boolean function in hardware, reducing the number of literals in

6.1 Problem Definition 93

the function should reduce the number of inputs to each gate and the number
of gates in the circuit—thus reducing the complexity of the circuit.

Thus, our overall measure of circuit optimality is the total number of gates
used, regardless of their kind. This is approximately proportional to the total
part cost of the circuit. Obviously, this minimization criterion is applied only
to fully functional circuits (i.e., those that completely match the outputs
defined in the corresponding truth table), since it is evidently irrelevant to
attempt to minimize infeasible circuits. A feasible circuit is one that produces
exactly all the outputs required for each set of inputs, as indicated in its truth
table. To exemplify this, let’s consider the Sasao circuit [146]. In this case,
we have as a solution the following Boolean expression: F = (WX + (Y ⊕
W)) ⊕ ((X + Y)′ + Z). So, in order to check feasibility of this circuit, we
have to replace each of its inputs (Z, W, X and Y) by each of the sets of
values depicted in truth table of this circuit [146]. So, in row 1, we have Z=0,
W=0, X=0, Y=0. By replacing these values in F (as defined before), we
obtain that F=1. This is precisely the value indicated at the end of row 1.
Thus, our circuit matches its first output. This same procedure has to be
repeated for each of the rows. If the circuit doesn’t match any of its required
values (e.g., if the output is 1 when it’s required to be 0), the circuit is
considered to be infeasible.

AND

OR

NOT

XOR

WIRE

INPUT 2INPUT 1
GATE

 I 1

 I 2

TYPE OF

OUTPUTSINPUTS

 I 1 I 2

Fig. 6.1 Matrix used to represent a circuit. Each gate gets its inputs from either
of the gates in the previous column. Note the encoding adopted for each element
of the matrix as well as the set of available gates used.

Two popular minimization techniques used by electrical engineers are the
Karnaugh Map [137], which is based on a graphical representation of Boolean
functions, and the Quine-McCluskey Procedure [139, 140], which is a tabular

94 6 Design of Combinational Logic Circuits

method. Both of these methods are mechanical in nature. Karnaugh Maps are
useful in minimizing the number of literals with up to five or six variables. The
Quine-McCluskey Procedure is useful for functions of any number of variables
and can easily be programmed to run on a digital computer. Generally, several
Boolean function with a minimum number of literals can be obtained for a
given truth table using either method, based on the choices made during
the minimization process. All minimum functions with the same number of
literals yield circuits of the same complexity; hence, any of them can be
selected for implementation.

Note that the algebraic simplification process depends entirely on one’s
familiarity with the postulates and theorems and one’s ability to recognize
their application. Of course, this ability varies from individual to individual.
Depending on the sequence in which the theorems and postulates are applied,
more than one simplified form of the expression may be obtained. Usually all
such simplified forms are valid and acceptable. Thus, there is (in the general
case) no single, unique minimized form of a Boolean expression. However,
the solutions that will be shown later on (in Section 6.5) as corresponding
to human designers, are really the best solution (based on the minimization
of the number of gates, which is our optimization criterion) chosen from a
set produced by individuals who can be considered as “expert designers” of
combinational logic circuits. Nevertheless, this does not mean that a human
cannot improve any of the solutions that we will provide, mainly if we consider
that the global optimum of all of the problems adopted remains unknown.

6.2 Encoding Solutions into Strings

In order to allow a fair comparison, all of the heuristics compared in this
chapter adopted a matrix to represent a circuit as in our previous work [141,
147] (see Fig. 6.1).

More formally, we can say that any circuit can be represented as a bidi-
mensional array of gates Si,j , where j indicates the level of a gate, so that
those gates closer to the inputs have lower values of j. (Level values are in-
cremented from left to right in Fig. 6.1). For a fixed j, the index i varies with
respect to the gates that are “next” to each other in the circuit, but with-
out being necessarily connected. Each matrix element is a gate (there are 5
types of gates: AND, NOT, OR, XOR and WIRE1) that receives its 2 inputs
from any gate at the previous column as shown in Fig. 6.1. It is important
to clarify that the number of rows and columns of the matrix used to encode
a circuit are values defined by the user. Given a circuit to be optimized, we
suggest to use the following procedure in order to define the matrix size (i.e.,
number of rows and columns) to encode it:

1 WIRE basically indicates a null operation, or in other words, the absence of gate,
and it is used just to keep regularity in the representation used. Otherwise, we
would have to use variable-length strings.

6.2 Encoding Solutions into Strings 95

1. Start with a square matrix of size 5 (i.e., number of rows = number of
columns = 5).

2. If no feasible solution is found using this matrix, then increase the number
of columns by one, without changing the number of rows.

3. If no feasible solution is found using this matrix, then increase the number
of rows by one, without changing the number of columns.

4. Repeat steps 2 and 3 until a suitable matrix is produced. In each case,
at least 10 independent runs (using different random seeds for the initial
population) must be performed in order to determine feasibility. If none
of these runs produces at least one feasible solution, then it is considered
that “no feasible solution was found”.

As we will see in Table 6.1 from Section 6.5, it is normally the case that
for small circuits a matrix of 5 × 5 is sufficient. However, in two of our case
studies reported in Section 6.5, we reached a matrix size of 6×7. This situation
normally arises with circuits having several outputs, although in some cases,
such as in the 2-bit multiplier described in Section 6.5, even a 5 × 5 matrix
is enough to find the best-known circuit. The above guidelines have been
successfully adopted with a variety of circuits in some of our previous work
[141].

A chromosomic string encodes the matrix shown in Fig. 6.1 by using
triplets in which the 2 first elements refer to each of the inputs used, and
the third is the corresponding gate from the available set.

The matrix representation adopted in this work was originally proposed
by Louis [148, 149]. He applied his approach to a 2-bit adder and to the
n-parity check problem (for n = 4, 5, 6). This representation has also been
adopted by Miller et al. [142, 150] in the so-called Cartesian Genetic Pro-
gramming with some differences. For example, the restrictions regarding the
source of a certain input to be fed in a matrix element varies in each of the
three approaches: Louis [148] has strong restrictions, Miller et al. [150] have
no restrictions and we have relatively light restrictions. Although our repre-
sentation allows the case with no restrictions, we decided to keep its original
restrictions as to allow a fair comparison with some of our previous work.

It is worth emphasizing that the use of matrix-based encodings such as
the one adopted here results particularly useful for designing combinational
logic circuits, since they do not allow bloat (i.e., the uncontrolled tree growth
normally associated with traditional genetic programming [151]) [141, 142].

The following formula is used to compute the fitness of an individual x for
all the heuristics compared in this chapter:

fitness(x) =
{∑p

j=1 fj(x) if f(x) is not feasible∑p
j=1 fj(x) + w(x) otherwise (6.1)

where p is the number of entries of the truth table (normally, p = 2n, being
n the number of inputs of the truth table, but p can also be assigned a
certain value directly, in case the truth table has “don’t cares”), and the

96 6 Design of Combinational Logic Circuits

value of fj(x) depends on the outcomes produced by the circuit x encoded
(whenever the solution produced matches the corresponding entry of the
truth table at location j, a value of one is assigned to fj(x); otherwise, a
value of zero is assigned). The function w(x) returns an integer equal to the
number of WIREs present in the circuit x encoded. The solutions produced
are Boolean expressions which will be made of Boolean operators (AND,
OR, NOT, XOR) and of variables which take only binary values (either zero
or one). The solutions (i.e., the circuits obtained) will be expressed in two
forms: (1) through its Boolean expression(s) and (2) by showing its graphical
representation. In order to understand both, the Boolean expressions and the
graphical representations of the circuits, the reader must rely on the symbols
shown in Fig. 6.2. Note that the AND operator is assumed by default in the
Boolean expressions. Thus, AB must be interpreted as: A AND B.

OR

XOR

NOT

AND

Fig. 6.2 Symbols used to represent a circuit. In the first column, we show the
graphical symbol for each gate. In the second column, we show the mathematical
symbol adopted in the Boolean expressions. In the third column, we show the name
of each of the Boolean operators adopted.

In words, we can say that our fitness function works in two stages [141]:
first, it maximizes the number of matches (as in Louis’ case). However, once
feasible solutions (i.e., the circuit generated by the solution computes the
objective truth table) are found, we maximize the number of WIREs in the
circuit. By doing this, we actually optimize the circuit in terms of the number
of gates that it uses.

Thus, we can say that our goal is to produce a fully functional design (i.e.,
one that produces all the expected outputs for any combination of inputs
according to the truth table given for the problem) which maximizes the
number of WIREs.

6.4 Sequential, Parallel, and Hybrid Approaches 97

6.3 Related Works

Despite the considerable amount of work currently available on the use of
genetic algorithms, genetic programming and evolution strategies to de-
sign combinational logic circuits in the last few years (see for example
[141, 142, 148]), there have been few attempts to compare different heuristics
in this problem. Here, the main motivation for such a comparative study is to
analyze whether certain types of heuristics (namely, hybrid approaches and
local search methods) could be more suitable for this type of problems than
the use of traditional genetic algorithms.

Previous work has found, among other things, that designing combina-
tional logic circuits is highly sensitive to the encoding [148, 152, 153], and
to the degree of interconectivity allowed among gates [154]. There have also
been studies on the fitness landscapes of these problems that finally rate
the problem as being quite difficult for an evolutionary algorithm [155, 156].
However, this sort of analysis has been conducted only on a single type of
heuristics (e.g., a genetic algorithm [141], an evolution strategy [142], simu-
lated evolution [152], the ant colony [157, 158], or particle swarm optimization
[159, 160]). Additionally, given the scalability problem associated with the
design of combinational logic circuits using evolutionary algorithms, the use
of parallelism seems a capital issue [161]. Remarkably, however, few studies
available in the literature have considered parallelism in the past. Thus, we
also consider in this chapter the use of parallel versions of the algorithms com-
pared as to analyze the way in which parallelization affects the exploration
of the search space in the specific domain of our interest.

6.4 Sequential, Parallel, and Hybrid Approaches

In this chapter, we compare five heuristics for the design of circuits:

1. A genetic algorithm (GA) with binary representation such as the one de-
scribed in [141, 147]. The main motivation for using this approach was our
previous experience (and relative success) applying this heuristics to de-
sign combinational logic circuits [141]. Genetic Algorithms (GAs) [4, 162]
are stochastic search methods that have been successfully applied in many
real applications of high complexity. A GA is an iterative technique that
applies stochastic operators on a pool of individuals (tentative solutions).
An evaluation function associates a value to every individual indicating
its suitability to the problem. A GA usually applies a recombination op-
erator on two solutions, plus a mutation operator that randomly modifies
the individual contents to promote diversity. In our experiments we use
the uniform crossover (UX) and the Bit-Flip mutation. The UX consists
in creating two offspring with each allele in the new offspring taken ran-
domly from one parent. The Bit-Flip mutation works by probabilistically
changing every position (allele) to its complementary value. For full details

98 6 Design of Combinational Logic Circuits

about this operators see [4, 35, 130]. The pseudo-code of the GA adopted is
shown in Fig. 6.3. In all the pseudo-codes, the evaluation phase represents
that the fitness function (Eq. 1) is evaluated on the respective population.

1 t = 0
2 initialize P(t)
3 evaluate structures in P(t)
4 while not end do
5 t = t + 1
6 C(t) = selectFrom(P(t-1))
7 C’(t) = recombine(C(t))
8 C’(t) = mutate(C’(t))
9 evaluate structures in C’(t)

10 replace P(t) from C’(t) and P(t-1)
11 endwhile
12 return best found solution

Fig. 6.3 Scheme of the GA adopted.

2. A CHC [131] which is a variant of the genetic algorithm with a particular
way of promoting diversity. It uses a highly disruptive crossover operator
to produce new individuals maximally different from their parents. It is
combined with a conservative selection strategy which introduces a kind
of inherent elitism. Fig. 6.4 shows a scheme of the CHC algorithm, whose
main features are:

• The mating is not restricted to the best individuals, but parents are
randomly paired in a mating pool C(t) (line 6 of Fig. 6.4). However,
recombination is only applied if the Hamming distance between the
parents is above a certain threshold, a mechanism of incest prevention
(line 8 of Fig. 6.4).

• CHC uses a half-uniform crossover (HUX), which exchanges exactly
half of the differing parental genes (line 9 of Fig. 6.4). HUX guarantees
that the children are always at the maximum Hamming distance from
their two parents.

• Traditional selection methods do not guarantee the survival of best
individuals, though they have a higher probability to survive. On the
contrary, CHC guarantees survival of the best individuals selected from
the set of parents (P (t− 1)) and offspring (C′(t)) put together (line 11
of Fig. 6.4).

• Mutation is not applied directly as an operator.
• CHC applies a re-start mechanism if the population remains unchanged

for some number of generations (lines 12-13 of Fig. 6.4). The new pop-
ulation includes one copy of the best individual, while the rest of the
population is generated by mutating some percentage of bits of such

6.4 Sequential, Parallel, and Hybrid Approaches 99

best individual. The main motivation for using CHC was to see if the
use of a highly disruptive crossover operator would have a positive effect
on a genetic algorithm when optimizing combinational circuits.

1 t = 0
2 initialize P(t)
3 evaluate structures in P(t)
4 while not end do
5 t = t + 1
6 select: C(t) = P(t-1)
7 for each pair (p1,p2) in C(t)
8 if ‘incest prevention condition’
9 add to C’(t) HUX(p1,p2)

10 evaluate structures in C’(t)
11 replace P(t) from C’(t) and P(t-1)
12 if convergence(P(t))
13 re-start P(t)
14 endwhile
15 return best found solution

Fig. 6.4 Scheme of the CHC algorithm.

3. A simulated annealing (SA) algorithm. The simulated annealing algorithm
was first proposed in 1983 [12] based on a mathematical model originated
in the mid-1950s. SA [163, 164] is a stochastic relaxation technique that
can be seen as a hill-climber with an internal mechanism to escape local op-
tima. It is based in a cooling procedure used in the metallurgical industry.
This procedure heats the material to a high temperature so that it becomes
a liquid and the atoms can move relatively freely. The temperature is then
slowly lowered so that at each temperature the atoms can move enough to
begin adopting the most stable configuration. In principle, if the material
is cooled slowly enough, the atoms are able to reach the most stable (op-
timum) configuration. This smooth cooling process is known as annealing.
Fig. 6.5 shows a scheme of SA. First at all, the parameter T , called the
temperature, and the solution, are initialized (lines 2-4). The solution s1
is accepted as the new current solution if δ = f(s1) − f(s0) > 0. Stag-
nations in local optima are prevented by accepting also solutions which
increase the objective function value with a probability exp(δ/T) if δ < 0.
This process is repeated several times to obtain good sampling statistics
for the current temperature. The number of such iterations is given by
the parameter Markov Chain length, whose name alludes the fact that
the sequence of accepted solutions is a Markov chain (a sequence of states
in which each state only depends on the previous one). Then the temper-
ature is decremented (line 14) and the entire process is repeated until a

100 6 Design of Combinational Logic Circuits

frozen state is achieved at Tmin (line 15). The value of T usually varies
from a relatively large value to a small value close to zero. Here, we are
using the Fast SA scheme (Tk = T0/(1+k)) for updating the temperature.
Considering the well-known success of simulated annealing in a variety of
optimization problems (both on combinatorial and on continuous search
spaces), the main motivation to adopt it in this problem was clearly to
see if its local search capabilities would be better than the global search
capabilities of a genetic algorithm in the design of combinational logic
circuits.

1 t = 0
2 initialize(T)
3 s0 = Initial Solution()
4 v0 = Evaluate(s0)
5 repeat
6 repeat
7 t = t + 1
8 s1 = Generate(s0,T)
9 v1 = Evaluate(s0,T)

10 if Accept(v0,v1,T)
11 s0 = s1
12 v0 = v1
13 until t mod Markov Chain length == 0
14 T = Update(T)
15 until ’loop stop criterion’ satisfied
16 return best found solution

Fig. 6.5 Scheme of the Simulated Annealing (SA) algorithm.

4. Finally, we define two hybrid algorithms. In its broadest sense, hybridiza-
tion refers to the inclusion of problem-dependent knowledge in a general
search algorithm [130] in one of two ways: strong hybrids, where problem-
knowledge is included as problem-dependent representation and/or oper-
ators, and weak hybrids, where several algorithms are combined in some
manner to yield the new hybrid algorithm. First, we define a weak hy-
brid called GASA1, where a GA uses SA as an evolutionary operator. The
figure and the pseudo-code of this approach is shown in Fig. 6.6. In the
main loop of this method after the traditional recombination and muta-
tion operators are applied (lines 7 and 8), several solutions are randomly
selected (according to a low probability) from the current offspring and
they are improved using the local search algorithm (line 9). The rationale
for this sort of hybridization is that, while the GA locates “good” regions
of the search space (exploration), SA allows for exploitation in the best
regions found by its partner. Evidently, the motivation in this case was to
see if by taking the best of these two heuristics (i.e., the genetic algorithm

6.4 Sequential, Parallel, and Hybrid Approaches 101

and simulated annealing), we could produce another heuristic which would
perform better than any of the two approaches from which it was created.

GENETIC ALGORITHM

HYBRID ALGORITHM

Initial
Population

Selection

SIMULATED
ANNEALING

Improve

Replace

Reproduction

1 t = 0
2 initialize P(t)
3 evaluate structures in P(t)
4 while not end do
5 t = t + 1
6 C(t) = selectFrom(P(t-1))
7 C’(t) = recombine(C(t))
8 C’(t) = mutate(C’(t))
9 C’(t) = applySA(C’(t))

10 evaluate structures in C’(t)
11 replace P(t) from C’(t) and P(t-1)
12 endwhile
13 return best found solution

(a) (b)

Fig. 6.6 Model of Hybridization 1 (GASA1).

5. A second weak hybrid scheme called GASA2, which executes a GASA1
until the algorithm completely finishes. Then the hybrid selects (by tour-
nament [4]) some individuals from the final population and starts a SA
algorithm over them. The main motivation for this approach was to see
if simulated annealing could use its local search capabilities to improve
solutions generated by another approach, and which would presumably be
close to the global optimum. The pseudo-code of this approach is shown
in Fig. 6.7.

As we described in Chapter 2.5, a parallel EA (PEA) is an algorithm
having multiple component EAs, regardless of their population structure. In
this chapter, we have chosen a kind of decentralized distributed search. In
this parallel implementation separate subpopulations evolve independently in
a ring with sparse asynchronous exchanges of one individual with a certain
given frequency. The selection of the emigrant is through binary tournament
in the evolutionary algorithms, and the arriving immigrant replaces the worst
one in the population only if the new one is better than this current worst
individual.

For the parallel SA there also exist multiple asynchronous component SAs.
Each component SA periodically exchanges the best solution found (cooper-
ation phase) with its neighbor SA in the ring.

Although many other hybrid approaches for optimization exist (see for
example [165, 166, 167, 168, 169]), we decided to adopt only the approaches
previously described because the optimization problem of our interest is dis-
crete, subject to a (usually large) set of equality constraints and in which the

102 6 Design of Combinational Logic Circuits

decision variables are actually binary numbers. Most of the hybrids (partic-
ularly those involving simulated annealing) that we found in the literature
have been applied either to combinatorial optimization problems (in which
the decision variables are permutations of integers), or to global optimization
problems (in which the decision variables are real numbers). In fact, although
many heuristics have been applied to the design of combinational logic circuits
(e.g., [141, 142, 152, 157, 159, 160]), no hybrid approach has been previously
adopted in this problem, to the authors’ best knowledge, mainly because of
the peculiar features of this problem (when seen as an optimization task).
As previously discussed, the approaches adopted for our comparative study
were carefully designed to tackle the problem of our interest. However, this
is not to say that these are the only approaches that can be applied to the
design of circuits, since many other heuristics and many other hybrids may
be designed for that purpose.

6.5 Computational Experiments and Analysis of Their
Results

We compare our binary GA with respect to SA, CHC, GASA1 and GASA2
both in serial and parallel versions. In Table 6.1 we summarize the features
of the problem instances that we use in our experiments.

GASA1

SA

SA

SA

SA

SA
T
O
U
R
N
A
M
E
N
T

T
O
U
R
N
A
M
E
N
T

1 t = 0
2 initialize P(t)
3 evaluate structures in P(t)
4 while not end do
5 t = t + 1
6 C(t) = selectFrom(P(t-1))
7 C’(t) = recombine(C(t))
8 C’(t) = mutate(C’(t))
9 C’(t) = applySA(C’(t))

10 evaluate structures in C’(t)
11 replace P(t) from C’(t) and P(t-1)
12 endwhile
13 for i = 1 to MAX do
14 sol = selectTournament(P(t))
15 applySA(sol)
16 endfor
17 return best found solution

(a) (b)

Fig. 6.7 Model of Hybridization 2 (GASA2).

6.5 Computational Experiments and Analysis of Their Results 103

Table 6.1 Features of the circuits. size = matrix size in rows × columns, codesize
= length of the binary string, BKS = best-known solution (i.e., the fitness value
of the best solution reported in the literature for the corresponding circuit).

name inputs outputs size codesize BKS

Sasao 4 1 5 × 5 225 34 [146]
Catherine 5 1 6 × 7 278 67 [170]
Katz 1 4 3 6 × 7 278 81 [146]
2-bit multiplier 4 4 5 × 5 225 82 [146]
Katz 2 5 3 5 × 5 225 114 [171]

Since our main goal was to analyze the behavior of different heuristics and
the impact of parallelism, no particular effort was placed in fine-tuning the
parameters for each of the circuits tried. The population sizes, mutation, and
crossover rates used correspond to the values previously reported for a tradi-
tional (binary) GA [147]. In all the evolutionary algorithms, the population
is composed of 320 individuals for the first case study, while 600 individuals
are used for the other four. All experiments use a crossover rate of 60% and a
mutation rate of 50% of the chromosome length. The CHC method restarts
the population (an uniform mutation (pm = 0.7) is applied to the 35% of the
population) whenever convergence is detected. The hybrid GASA1 uses the
SA operator (100 iterations for the first and third case studies and 500 iter-
ations for the rest) with probability 0.01, i.e., this improvement process only
is applied to approximately one of each 100 solutions of the current offspring.
The second hybrid (GASA2) executes a SA (with 3000 iterations for the first
instance and 10000 for the rest) when GASA1 finishes. The migration in
dEAs occurs in a unidirectional ring manner, sending one single individual
(chosen by binary tournament) to the neighboring sub-population. The target
population incorporates this individual only if it is better than its presently
worst solution. The migration step is performed every 20 iterations in every
island in an asynchronous way. The selected migration policy configuration
allows to maintain a global good diversity, and to lead the global search to
good regions of the search space. The asynchronous communications that we
used provokes that the communication overhead was insignificant. Since we
want to compare against the sequential EAs, dEAs use the same population
size, but now the whole population of the sequential EA is split into as many
subpopulations as processes involved in the parallel computation. Our par-
allel algorithms are composed of eight subpopulations. Finally, the number
of iterations of the SA has been chosen in order to compute a similar num-
ber of evaluations as to the GA, and the Markov chain length is preset to
max iter/10. We performed 20 independent runs per algorithm per circuit
per version (either serial or parallel) using the parameters summarized above.

104 6 Design of Combinational Logic Circuits

The most relevant aspects that were measured in this comparison are the
following ones: best fitness value obtained (we call this opt), the number of
times that the approach found the best fitness value (we call this hits), the
average final fitness (called avg), and the average number of fitness function
evaluations required to find the best fitness value reported (#evals).

A short note regarding the stopping criteria adopted is in place. Each
algorithm stops when reaching the target fitness or a maximum (predefined)
number of generations. At the end of each generation, the algorithm checks
if the stopping criterion is satisfied, i.e., if the current generation number
exceeds the predefined limit or if an end signal has been received (for parallel
executions).

6.5.1 Case Study 1: Sasao

Our first case study has 4 inputs and one output. Our comparison of results
for this case study is shown in Table 6.2. In this case both GASA1 and
GASA2 were able to converge to the best known solution for this circuit
(which has 7 gates and a fitness of 34) [146]. The best solution found is: F =
(WX + (Y ⊕ W)) ⊕ ((X + Y)′ + Z). Note that both, GASA1 and GASA2,
required the highest number of evaluations to reach their best fitness value,
but their final solution was significantly better than the solutions found by
the other algorithms. Also note that the parallel versions of GASA1 and

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Generation Step

F
ea

si
bl

e
S

ol
ut

io
ns

 P
er

ce
nt

ag
e

GA−Seq
GA−Par
GASA1−Seq
GASA1−Par
GASA2−Seq
GASA2−Par

Fig. 6.8 Percentage of feasible solutions per generation for the circuit of the first
case study.

6.5 Computational Experiments and Analysis of Their Results 105

GASA2 increased the average fitness value and the number of hits. However,
the average number of fitness function evaluations to find the best fitness
value did not decrease in the parallel versions of GASA1 and GASA2, as
it occurred for the parallel versions of the traditional GA, CHC, and SA.
Finally, we observed that the average fitness value of parallel SA was slightly
worse than the value of the serial version, which indicates that the parallel
algorithm behavior is not adequate for this instance. Interestingly, SA was the
only approach whose average fitness did not increase when using parallelism.

Table 6.2 Comparison of results for the first case study.

Algorithm sequential parallel
opt hits avg #evals opt hits avg #evals

GA 31 10% 15.8 96806 33 5% 18.1 79107
CHC 27 5% 15.1 107680 32 5% 16.4 75804
SA 30 35% 15.6 70724 31 5% 15.2 69652

GASA1 34 10% 23.2 145121 34 20% 25.5 151327
GASA2 34 10% 24.2 147381 34 30% 27.8 155293

Another aspect that is worth analyzing is the percentage of feasible so-
lutions that each algorithm maintains along the evolutionary process. Such
a percentage gives an idea of how difficult is for each approach to reach
the feasible region and to maintain feasibility. Fig. 6.8 shows the (average)
percentage of feasible solutions present in the population over time (i.e., gen-
erations) for each of the algorithms compared. It is particularly interesting
to note how the parallel version of GASA2 starts increasing its percentage
of feasible solutions rather quickly and reaches 100% feasibility in less than
100 generations. It is also worth commenting on the GA, which was never
able to reach a feasibility rate of 100% (in any of its two versions). All the
other approaches were able to reach 100% feasibility, but much later than the
parallel version of GASA2. Thus, we can conclude that, in this case study,
GASA2 was the best overall solver in its two versions. GASA2 produced the
highest average fitness, the highest number of hits and was the fastest to
reach the feasible region and to reach 100% feasibility.

Table 6.3 Comparison of the best solutions found for the first case study by
GASA2, the n-cardinality genetic algorithm (NGA) [147], a human designer (HD
1) who used Karnaugh maps and theorems from Boolean algebra, and Sasao [172],
who used this circuit to illustrate his circuit simplification technique based on the
use of ANDs & XORs.

GASA2 NGA HD 1 Sasao

7 gates 10 gates 11 gates 12 gates

106 6 Design of Combinational Logic Circuits

Just to give an idea on how good is the solution found by GASA2, we
show in Table 6.3 a comparison of the best solution found by GASA2 with
respect to existing approaches for the first problem. This second comparison
is only in terms of the Boolean expression found. Note that the n-cardinality
GA (NGA) used the same parameters as its binary counterpart. We can see
that GASA2 found a solution significantly better than the other approaches
with respect to which it was compared (the n-cardinality GA, Sasao’s sim-
plification technique based on the use of ANDs & XORs [172], and a human
designer using Karnaugh maps).

6.5.2 Case Study 2: Catherine

Our second case study has 5 inputs and one output and our comparison
of results is shown in Table 6.4. Again, GASA2 found the best solution,
but in this case, the parallel version produced a slightly better result (opt
column) than its serial counterpart. The best solution found for this case
study is: F = ((A4)′(A2A0 + A1)(A2 + A0))′((A2A0 + A1)(A2 + A0) + A3).
Note also that the average fitness was increased both for GASA1 and GASA2
in their parallel versions. Furthermore, it is worth noticing that in this case
the use of parallelism decreased the average number of evaluations required
to find the best possible fitness value produced by each of the algorithms
under study. Except for CHC, all the other approaches improved their average
fitness when using parallelism. Another important detail is that the sequential
SA outperformed the GA in locating a larger final best fitness value with a
significant reduction in evaluations, although the SA obtained a worse average
fitness than the GA.

Table 6.4 Comparison of results for the second case study.

Algorithm sequential parallel
opt hits avg #evals opt hits avg #evals

GA 60 5% 36.5 432170 62 10% 41.0 345578
CHC 58 15% 29.8 312482 61 5% 28.9 246090
SA 61 5% 33.1 175633 62 5% 34.2 154064

GASA1 63 40% 45.1 694897 65 5% 50.6 593517
GASA2 64 10% 47.3 720106 65 10% 52.9 609485

Fig. 6.9 shows the (average) percentage of feasible solutions present in the
population over time (i.e., generations) for each of the algorithms compared.
Again, the parallel version of GASA2 starts increasing its percentage of feasible
solutions rather quickly. In this case, it reaches 100% feasibility in less than 300
generations. The second best performer in this case was the parallel version of
GASA1, reaching 100% feasibility in about 500 generations. The sequential
version of the GA was the only approach unable to reach 100% feasibility.

6.5 Computational Experiments and Analysis of Their Results 107

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Generation Step

F
ea

si
bl

e
S

ol
ut

io
ns

 P
er

ce
nt

ag
e

GA−Seq
GA−Par
GASA1−Seq
GASA1−Par
GASA2−Seq
GASA2−Par

Fig. 6.9 Percentage of feasible solutions per generation for the circuit of the second
case study.

Table 6.5 Comparison of the best solutions found for the second case study by
GASA2, the n-cardinality genetic algorithm (NGA) [147], and a human designer
(HD 1) who used Karnaugh maps and theorems from Boolean algebra.

GASA2 NGA HD 1

9 gates 10 gates 12 gates

To give an idea on how good is the solution found by GASA2, we show in
Table 6.5 a comparison of the best solution found by GASA2 with respect to
the solutions found by other approaches. GASA2 improved the best solution
found both by the NGA and by a human designer (using Karnaugh maps).
Clearly, GASA2 was the best overall performer in this case study as well. It
is also important to mention that the best solution found by GASA2, which
has 9 gates, is not the best possible solution for this circuit (there is another
one with only 7 gates: F = (A + BC)(D ⊕ E)(B + C) ⊕D), which has been
obtained with genetic programming [170]. However, as indicated before, no
attempt was made to fine-tune the parameters of the algorithms used as to
achieve a better solution.

108 6 Design of Combinational Logic Circuits

6.5.3 Case Study 3: Katz 1

Our third case study has 4 inputs and 3 outputs and the comparison of
results is shown in Table 6.6. In this case, both GASA1 and GASA2 found
the best solution reported in the literature for this circuit [146], which has
9 gates and fitness 81. However, note that GASA2 had a better hit rate (in
the parallel version). The best solution found is: F1 = ((D ⊕B) + (A⊕C))′,
F2 = ((D ⊕B) + (A⊕C))(C ⊕ ((A⊕C) + (A⊕B)))⊕ ((D ⊕B) + (A⊕C)),
F3 = (C ⊕ ((A ⊕ C) + (A ⊕ B)))((D ⊕ B) + (A ⊕ C)). In this case, the
use of parallelism produced a noticeable increment in the average fitness of
GASA1 and GASA2, but the best solution was only rarely found. It is also
interesting to see how GASA1 and GASA2 both have a computational cost
of twice that of the traditional GA. Also note that, as in the previous case
studies, in this one the use of parallelism decreased the average number of
evaluations required to find the best possible fitness value produced by each of
the algorithms under study. All the approaches improved their average fitness
when using parallelism. The behavior of parallel SA was slightly different to
the rest of algorithms for this instance, always showing a very small number
of evaluations at the price of a medium-low hit rate.

Table 6.6 Comparison of results for the third case study.

Algorithm sequential parallel
opt hits avg #evals opt hits avg #evals

GA 71 10% 51.2 552486 76 15% 54.5 498512
CHC 64 20% 47.3 362745 70 5% 49.3 252969
SA 67 15% 46.3 194573 71 5% 51.3 197315

GASA1 78 35% 70.0 1090472 81 5% 76.1 963482
GASA2 78 5% 69.3 1143853 81 10% 77.9 1009713

Fig. 6.10 shows the (average) percentage of feasible solutions present in the
population over time (i.e., generations) for each of the algorithms compared.
Interestingly, the sequential version of the GA was the approach that reached
the feasible region more quickly in this case study, being able to reach 100%
feasibility before generation 200. The sequential version of GASA2 was the
second best performer. However, all the approaches were able to reach 100%
feasibility before generation 500, which is an indicative of the fact that the
search space of this problem is not as rough as that of the previous case stud-
ies. Once more, GASA2 can be considered the best overall performer, since it
produced the highest average fitness and was able to reach more consistently
(in its parallel version) the best-known solution for this case study.

When performing a comparison of these results with respect to other ap-
proaches (Table 6.7), it is worth indicating that GASA2 again improved on
the best solution found by two human designers (one using Karnaugh maps
and the other one using the Quine-McCluskey method), and by the NGA.

6.5 Computational Experiments and Analysis of Their Results 109

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Generation Step

F
ea

si
bl

e
S

ol
ut

io
ns

 P
er

ce
nt

ag
e

GA−Seq
GA−Par
GASA1−Seq
GASA1−Par
GASA2−Seq
GASA2−Par

Fig. 6.10 Percentage of feasible solutions per generation for the circuit of the third
case study.

Table 6.7 Comparison of the best solutions found for the second case study by
GASA2, the n-cardinality genetic algorithm (NGA) [147], a human designer (HD
1) who used Karnaugh maps and theorems from Boolean algebra and a second
human designer (HD 2) who used the Quine-McCluskey method.

GASA2 NGA HD 1 HD 2

9 gates 12 gates 19 gates 13 gates

6.5.4 Case Study 4: 2-Bit Multiplier

Our fourth case study has 4 inputs and 4 outputs and the results are shown
in Table 6.8. In this case, GASA2 found the best solution reported in the
literature for this circuit [146], which has 7 gates and a fitness value of 82.
The best solution found for this case study is: C3 = (B0A1)(B1A0), C2 =
(A1B1) ⊕ (B0A1)(B1A0), C1 = (B0A1) ⊕ (B1A0), C0 = A0B0. The use of
parallelism for this instance produced only a slight increase in the average
fitness of GASA1 and GASA2, but allowed GASA2 to converge to the best
solution reported in the literature. In fact, all the approaches improved their
average fitness when using parallelism. It is also interesting to see how GASA1
and GASA2 both have a computational cost much higher than the traditional
GA. Note however, that the parallel version of the parallel GA was able to
converge to a better solution than the parallel version of GASA1, although the
average fitness of the GA was still slightly below GASA1. The GA obtained

110 6 Design of Combinational Logic Circuits

better results (opt and avg columns) than the other pure algorithms (SA
and CHC), but it required a higher number of evaluations.

Table 6.8 Comparison of results for the fourth case study.

Algorithm sequential parallel
opt hits avg #evals opt hits avg #evals

GA 78 15% 71.8 528390 81 5% 76.3 425100
CHC 76 5% 72.7 417930 80 10% 74.2 246090
SA 77 5% 68.6 268954 77 10% 69.3 234562

GASA1 78 25% 74.1 711675 80 20% 76.9 852120
GASA2 80 10% 75.4 817245 82 20% 78.7 927845

Fig. 6.11 shows the (average) percentage of feasible solutions present in
the population over time (i.e., generations) for each of the algorithms com-
pared. In this case, the parallel version of GASA2 was, once more, the fastest
approach to reach both the feasible region and a 100% feasibility (this was
achieved before generation 200). The second best performer in terms of feasi-
bility was the sequential version of the GA, which reached 100% by generation
400. However, its sequential counterpart was the worst performer. Note also
that in this case study, all the approaches were able to reach 100% feasibility.
GASA2 was again the best overall performer. In its parallel version, GASA2
was the only approach able to reach the best-known solution for this case
study.

We show in Table 6.9 a comparison of the best solution found by GASA2
with respect to other approaches previously used to design the circuit of the
fourth case study. This second comparison is only in terms of the Boolean
expression found. In this case, GASA2 again improved on the best solution
found by two human designers (one using Karnaugh maps and the other
one using the Quine-McCluskey method), by the NGA and by the cartesian
genetic programming of [150]. It should be mentioned that Miller et al. [150]
considered their solution to contain only 7 gates because of the way in which
they encoded their Boolean functions (the reason is that they encoded NAND
gates in their representation). However, since we considered each gate as
a separate chromosomic element, we count each of them, including NOTs
that are associated with AND & OR gates. It is also worth noticing that
Miller et al. [150] found their solution with runs of 3,000,000 fitness function
evaluations each, much longer than ours (inefficiently).

6.5.5 Case Study 5: Katz 2

Our fifth case study has 5 inputs and 3 outputs. Note that despite the size of
the truth table, a 5×5 matrix was also adopted in this case. Our comparison
of results is shown in Table 6.10. In this case, both GASA1 and GASA2 found

6.5 Computational Experiments and Analysis of Their Results 111

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Generation Step

F
ea

si
bl

e
S

ol
ut

io
ns

 P
er

ce
nt

ag
e

GA−Seq
GA−Par
GASA1−Seq
GASA1−Par
GASA2−Seq
GASA2−Par

Fig. 6.11 Percentage of feasible solutions per generation for the circuit of the
fourth case study.

the best solution reported in the literature for this circuit [171], which has
7 gates and a fitness value of 114. The Boolean expression of best solution
found for this case study is: S0 = E′ + DC, S1 = A′ + BC, S2 = C ⊕ BC.
Note that GASA2 has a slightly better average performance than GASA1.
The use of parallelism for this instance produced only a slight increase in the
average fitness of GASA1 and GASA2 and also helped these two algorithms
to increase their hit rate. In fact, the use of parallelism increased the average
fitness of all the approaches compared. It is also worth noticing that the use
of parallelism helped the GA to converge to the best-known solution for this
circuit, although its hit rate was low (5%).

Fig. 6.12 shows the (average) percentage of feasible solutions present in the
population over time (i.e., generations) for each of the algorithms compared.

Table 6.9 Comparison of the best solutions found for the fourth case study by
GASA2, the n-cardinality genetic algorithm (NGA) [147], a human designer (HD
1) who used Karnaugh maps and theorems from Boolean algebra, a second human
designer (HD 2) who used the Quine-McCluskey method and Miller et al. [150],
who used cartesian genetic programming.

GASA2 NGA HD 1 HD 2 Miller et al.

7 gates 9 gates 8 gates 12 gates 9 gates

112 6 Design of Combinational Logic Circuits

Table 6.10 Comparison of results for the fifth case study.

Algorithm sequential parallel
opt hits avg #evals opt hits avg #evals

GA 113 5% 100.20 933120 114 5% 102.55 825603
CHC 102 5% 89.35 546240 104 10% 90.76 540632
SA 111 10% 94.85 280883 112 5% 98.64 256234

GASA1 114 10% 101.94 1013040 114 20% 104.52 1010962
GASA2 114 20% 106.75 1382540 114 35% 106.90 1313568

In this case, the parallel version of the GA was the best performer (reaching
100% feasibility before generation 200), closely followed by both the sequen-
tial and the parallel versions of GASA1 (which reached 100% feasibility be-
fore generation 300). The worst performer was the sequential version of the
GA. However, all the approaches were able to reach 100% feasibility. GASA2
was also the best overall performer in this case, reaching the highest average
fitness. GASA2 also converged more consistently to the best-known solution.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Generation Step

F
ea

si
bl

e
S

ol
ut

io
ns

 P
er

ce
nt

ag
e

GA−Seq
GA−Par
GASA1−Seq
GASA1−Par
GASA2−Seq
GASA2−Par

Fig. 6.12 Percentage of feasible solutions per generation for the circuit of the fifth
case study.

We show in Table 6.11 a comparison of the best solution found by GASA2
with respect to other approaches previously used to design the circuit of the
fourth case study. This second comparison is only in terms of the Boolean

6.6 Overall Discussion 113

expression found. In this case, GASA2 matched the solutions produced by
a multiobjective genetic algorithm [173] and an approach based on particle
swarm optimization [171]. Note that all of these approaches performed about
one million fitness function evaluations each.

Table 6.11 Comparison of the best solutions found for the fifth case study by
GASA2, the multiobjective genetic algorithm (MGA) [173], and particle swarm
optimization [171] (PSO).

GASA2 MGA PSO

7 gates 7 gates 7 gates

6.6 Overall Discussion

After this study, a few general conclusions can be inferred from our results.
First, the hybridization of a genetic algorithm with simulated annealing seems
to be beneficial for designing combinational logic circuits, at least when com-
pared to pure separated GA and SA algorithms. From the two hybrids con-
sidered, GASA2 had the best performance. This is apparently due to its use
of simulated annealing over the final population of GASA1, which allows to
focus the search on more specific regions (something hard to do with the
traditional genetic operators).

On the other hand, despite our belief that the highly disruptive recom-
bination operator of CHC would be beneficial in circuit design, our results
indicate that this approach has the worst overall performance of all the heuris-
tics tried. Apparently, the mating restrictions of CHC (incest prevention) and
its restart process were not sufficient to compensate for the lack of diversity
due to its elitist selection, and the approach had difficulties to converge to
feasible solutions.

SA also presented poor results compared to the hybrids and the GA. Al-
though, in several problems, SA obtained similar final best fitness values as
to the GA, its average fitness is often lower than the other methods. The rea-
son for this is that SA rapidly finds a local optimum from which it can not
escape, in spite of the internal mechanism explicitly added to the algorithm
to avoid them. However, this method gets fairly accurate results with a fewer
number of evaluations than the other algorithms.

Finally, we also found that, in most cases, the use of parallelism improves
the average fitness of the approaches compared. This is something interest-
ing, since it constitutes an additional motivation to parallelize the heuristics
adopted to design combinational logic circuits. However, it was also found
that this increase in the average fitness of the approaches was normally ac-
companied by a decrease in the hit rate. In other words, some consistency (or
robustness) was sacrificed at the expense of achieving solutions of a higher
quality.

114 6 Design of Combinational Logic Circuits

6.7 Conclusions and Future Work

The comparative study conducted in this chapter has shown that the hy-
bridization of an evolutionary algorithm with simulated annealing may bring
benefits when designing combinational logic circuits. Emphasis is placed on
the fact that the GA hybridized is using binary encoding. Additionally, the
use of parallelism also brought benefits in terms of the quality of solutions
produced, but it did not necessarily improve the hit rate (i.e., the number of
times that an algorithm converged to its best found solution). Note also that
the use of parallelism tended to decrease the average number of evaluations
required by each algorithm to achieve their best possible fitness value. Never-
theless, a more in-depth study of the impact of parallelism in combinational
circuit design remains as an open research area.

As part of potential future works, for example, it is interesting to use a
population-based multiobjective optimization approach (the so-called MGA
proposed in [146]) hybridized with a SA. Intuitively, this sort of approach
should produce better results when hybridized, since by itself is a very pow-
erful search engine for combinational circuit design. However, this approach
will be quite time-consuming, and then, the utilization of parallel platforms
will be needed to obtain results in a reasonable time.

7

Parallel Genetic Algorithm for the
Workforce Planning Problem

I work quickly to live calmly.

Monserrat Caballé (1933 -) - Spanish opera singer

Decision making associated with workforce planning results in difficult
optimization problems, this is so it involves multiple levels of complexity. In
fact, the workforce planning problem that we tackle in this chapter consists of
two sets of decisions: selection and assignment. The first step selects a small
set of employees from a large number of available workers and the second
(decision) assigns this staff to the tasks to be performed. The objective is to
minimize the costs associated to the human resources needed to fulfill the
work requirements. An effective workforce plan is an essential tool to identify
appropriate workload staffing levels and justify budget allocations so that
organizations can meet their objectives.

The complexity of this problem does not allow the utilization of exact
methods for instances of realistic size. As a consequence, in this chapter
we firstly propose a parallel genetic algorithm (GA) and we compare its
performance with respect to another parallel metaheuristic: a parallel scatter
search (SS). Two kinds of instances have been used to test our approaches.
In “structured” ones, there exists a relationship between the tasks duration
and the time that a worker can be assigned to them. On the other hand,
this constraint is not considered in “unstructured” ones any more, turning
these instances more difficult to solve. The development of these methods has
the goal of providing a tool for finding high-quality solutions to structured
and unstructured instances of the workforce planning problem (WPP). A
preliminary set of results with these two algorithms, where the scatter search
approaches outperformed the genetic algorithms [174, 175], have led us to
begin to work on the hypothesis that the improvement operator of SS could be
the key component provoking these enhancements. Therefore, in this chapter
we present a new hybrid genetic algorithm in which this operator is applied
(with certain probability) in its operator pool. The results will confirm our
guess and represent a new state of the art tool for this benchmark.

The organization of this chapter is as follows. In next section we show
a mathematical description of the WPP. In Section 7.2 and Section 7.3 we

G. Luque and E. Alba: Parallel Genetic Algorithms, SCI 367, pp. 115–134.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

116 7 Parallel Genetic Algorithm for the Workforce Planning Problem

describe the parallel genetic algorithm and the parallel scatter search, respec-
tively. Then, in Section 7.4 we analyze the results of these algorithms for the
solution of the WPP, and finally, we give some hints on future works and
conclusions in Section 7.5.

7.1 The Workforce Planning Problem

The following description of the problem is taken from Glover et al. [176].
A set of jobs J = {1, . . . , m} must be completed during the next planning
period (e.g., a week). Each job j requires dj hours during the planning period.
There is a set I = {1, . . . , n} of available workers. The availability of worker i
during the planning period is si hours. For reasons of efficiency, a worker must
perform a minimum number of hours (hmin) of any job to which he/she is
assigned and, at the same time, no worker may be assigned to more than jmax

jobs during the planning period. Workers have different skills, so Ai is the set
of jobs that worker i is qualified to perform. No more than t workers may be
assigned during the planning period. In other words, at most t workers may
be chosen from the set I of n workers and the subset of selected workers must
be capable of completing all the jobs. The goal is to find a feasible solution
that optimizes a given objective function.

We use the cost cij of assigning worker i to job j to formulate the op-
timization problem associated with this workforce planning situation as a
mixed-integer program. We refer to this model of the workforce planning
problem as WPP:

xij =
{

1 if worker i is assigned to job j
0 otherwise

yi =
{

1 if worker i is selected
0 otherwise

zij = number of hours that worker i is assigned to
perform job j

Qj = set of workers qualified to perform job j

Minimize
∑
i∈I

∑
j∈Ai

cij · xij (7.1)

Subject to
∑
j∈Ai

zij ≤ si · yi ∀i ∈ I (7.2)

∑
i∈Qj

zij ≥ dj ∀j ∈ J (7.3)

7.1 The Workforce Planning Problem 117

∑
j∈Ai

xij ≤ jmax · yj ∀i ∈ I (7.4)

hmin · xij ≤ zij ≤ si · xij ∀i ∈ I, j ∈ Ai (7.5)∑
i∈I

yi ≤ t (7.6)

xij ∈ {0, 1} ∀i ∈ I, j ∈ Ai

yi ∈ {0, 1} ∀i ∈ I

zij ≥ 0 ∀i ∈ I, j ∈ Ai

In the model above, the objective function (Equation 7.1) minimizes the
total assignment cost. Constraint set (Equation 7.2) limits the number of
hours for each selected worker. If the worker is not chosen, then this con-
straint does not allow any assignment of hours to him/her. Constraint set
(Equation 7.3) enforces the job requirements, as specified by the number of
hours needed to complete each job during the planning period. Constraint
set (Equation 7.4) limits the number of jobs that a chosen worker is allowed
to perform. Constraint set (Equation 7.5) enforces that once a worker has
been assigned to a given job, he/she must perform such a job for a minimum
number of hours. Also, constraint (Equation 7.5) does not allow the assign-
ment of hours to a worker that has not been chosen to perform a given job.
Finally, constraint set (Equation 7.6) limits the number of workers chosen
during the current planning period.

The same model may be used to optimize a different objective function.
Let ĉij be the cost per hour of worker i when performing job j. Then, the
following objective function minimizes the total assignment cost (on hourly
basis):

Minimize
∑
i∈I

∑
j∈Ai

ĉij · zij (7.7)

Alternatively, pij may reflect the preference of worker i for job j, and
therefore, the following objective function maximizes the total preference of
the assignment:

Maximize
∑
i∈I

∑
j∈Ai

pij · xij (7.8)

When preference values are used, other objective functions may be formu-
lated. For instance, it may be desirable to maximize the minimum preference
value for the set of selected workers. In this chapter, we assume that the
decision maker wants to minimize the total assignment costs as calculated
in Equation 7.1.

As pointed out in [177], this problem is related to the capacitated facil-
ity location problem (CFLP) as well as the capacitated p-median problem
[178, 179]. In fact, our location-allocation problem reduces to a CFLP if
the complicating constraints (Equations 7.4-7.6) are relaxed in a Lagrangean
manner. In the context of the CFLP, implied bounds are typically added

118 7 Parallel Genetic Algorithm for the Workforce Planning Problem

to strengthen the linear programming (LP) relaxation of the mixed-integer
programming formulation. The equivalent bounds for the WPP formulation
are:

xij − yi ≤ 0 ∀i ∈ I, j ∈ Ai (7.9)

Also in the case of the CFLP, an aggregate capacity constraint is usu-
ally added to the problem formulation in order to improve some Lagrangean
bounds. Even in the case of an LP approach this surrogate constraint can be
helpful; it can be used for generating possibly violated lifted cover inequali-
ties. The form of such a constraint for the WPP model is:

∑
i∈I

si · yi ≥
∑
j∈J

dj (7.10)

The difficulty of solving instances of the WPP with an optimization
method is related to the relationship between hmin and dj . In particular,
problem instances for which dj is a multiple of hmin (referred to as “struc-
tured”) are easier to handle than those for which dj and hmin are unrelated
(referred to as “unstructured”).

7.2 Design of a Genetic Algorithm

A genetic algorithm (GA) [162] is an iterative technique that applies stochas-
tic operators on a pool of individuals (the population). Every individual in
the population is the encoded version of a tentative solution. Initially, this
population is randomly generated. An evaluation function associates a fitness
value to every individual indicating its suitability to the problem.

The genetic algorithm that we have developed for the solution of the WPP
follows the basic structured shown in Fig. 7.1. The population size for GAs
used in this work is 400 individuals. This value and the specific values of
the parameters in the following sections as well have been obtained after
preliminary experimentation.

Within the basic structure of the GA for solving the WPP, we have added
context information through a special solution representation and crossover
operators with improving and repairing mechanisms.

7.2.1 Solution Encoding

Solutions are represented as an n × m matrix Z, where zij represents the
number of hours that worker i is assigned to job j. In this representation, a
worker i is considered to be assigned to job j if zij > 0. A solution using this
representation is showed in Fig. 7.2. Therefore the following relationships are
established from the values in Z.

7.2 Design of a Genetic Algorithm 119

Generate (P(0))
t := 0
while not Termination Criterion(P(t)) do

Evaluate(P(t))
P’(t) := Selection(P(t))
P’(t) := Recombination(P’(t))
P’(t) := Mutation(P’(t))
P(t+1) := Replacement(P(t), P’(t))
t := t+1

return Best Solution Found

Fig. 7.1 Basic GA structure.

1 2 3 4 5 6 7 8 9

1 20 00 04 13 00 00 00 09 12

2

3

4

5

6

7

8

00 12 07 00 32 00 00 17 00

00 00 00 00 00 00 00 00 00

00 00 00 12 12 04 21 00 08

00 00 00 00 00 00 00 00 00

10 04 00 00 26 00 00 04 12

08 00 07 15 22 00 00 06 00

00 00 00 00 00 00 00 00 00

Tasks

W
o
rk

e
rs

Worker 1 is assigned to

task 8 during 9 hours

Worker 5 is not assigned

to task 9

Worker 8 is not

selected

Fig. 7.2 An example of a solution using the representation presented in this work.

xij =
{

1 if zij > 0
0 otherwise

yi =
{

1 if
∑

j∈Ai
zij > 0

0 otherwise

7.2.2 Evaluation the Quality of a Solution

Solutions are evaluated according to the objective function (7.1) plus
a penalty term. The additional term penalizes violations of constraints
(equations 7.2, 7.3, 7.4 and 7.6). The penalty coefficients that are multi-
plied by the constraint violations are p2, p3, p4, and p6. Values for these
coefficients have been set up to 50, 50, 200, and 800, respectively. Before the
fitness value is calculated, new trial solutions undergo a repairing/improving
operation that makes sure that constraint of Equation 7.5 is satisfied. This
operator also ensures that no worker is assigned to a job that he/she is not
qualified to perform.

120 7 Parallel Genetic Algorithm for the Workforce Planning Problem

7.2.3 Repairing/Improving Operator

The purpose of this operator is to repair trial solutions in such a way that
they either become feasible with respect to the original problem or at least
the infeasibility of these solutions is reduced. The operator performs the 4
steps outlined in Fig. 7.3.

In the first step, this operator repairs solutions with respect to the min-
imum number of hours that a worker must work on any assigned job. The
repair is done only on those qualified workers that are not meeting the min-
imum time requirement. In mathematical terms, if 0 < zij < hmin for i ∈ I
and j ∈ Ai, then zij = hmin.

The second step takes care of assignments of workers to jobs for which they
are not qualified to perform. A value of zero is given to the corresponding
entry in Z. Using our notation, if zij > 0 for i ∈ I and j /∈ Ai, then zij = 0.

The third step considers that a worker is feasible if he/she satisfies con-
straints of equations 7.2 and 7.4. This step attempts to use up the capacity
slack of feasible workers. The slack time for worker i (i.e., si −

∑
j∈Ai

zij)
is equally divided among his/her current job assignments. This allows for a
higher utilization of the workers that are currently assigned to jobs and thus
facilitating the satisfaction of constraint of equation 7.6.

1. Eliminate violations with respect to hmin

2. Eliminate violations with respect to
assignments of unqualified workers

3. Load feasible workers
4. Reduce infeasibility

Fig. 7.3 Repairing/improving operator.

The last step starts with a partial order of the workers in such a way
that those which provoke the largest constraint violation with respect to
constraints (7.2) and (7.4) tend to appear at the top of the list. This is not
a complete order relationship because the operator accounts for a certain
amount of randomness in this step. Once the partial order is established,
a process of reducing the infeasibility of workers is applied. The process of
reducing the violation of constraints (7.2) and (7.4) is only applied if it does
not provoke new violations of constraints (3) and (5).

7.2.4 Recombination Operator

A special recombination operator has been designed for the solution of WPP.
The operator employs a parameter ρc that may be interpreted as the prob-
ability that two solutions exchange their current assignments for worker i.
The process is summarized in Fig. 7.5 and an example is showed in Fig. 7.4.

7.2 Design of a Genetic Algorithm 121

Fig. 7.4 An example of application of the crossover operator.

for (i = 1 to n) do
if rand() < ρc then

for (j = 1 to m) do
z1

ij ↔ z2
ij

endfor
endif

endfor

Fig. 7.5 Crossover operator.

Given two solutions Z1 and Z2, the recombination operator in Fig. 7.5
selects, with probability ρc, a worker i. In the experimentation section, this
value is set up to 0.8. If the worker is selected, then the job assignments of
solution Z1 are exchanged with the assignments of solution Z2. The rand()
function in Fig. 7.5 generates a uniform random number between 0 and 1.

1 2 3 4 5 6 7 8 9

1 20 00 04 13 00 00 00 09 12

2

3

4

5

6

7

8

00 12 07 00 32 00 00 17 00

00 00 00 00 00 00 00 00 00

00 00 00 12 13 04 21 00 08

00 00 00 00 00 00 00 00 00

10 04 00 00 26 00 00 04 12

08 00 07 15 22 00 00 06 00

00 00 00 00 00 00 00 00 00

Tasks

W
o

rk
e

rs

1 2 3 4 5 6 7 8 9

1 20 00 04 13 00 00 00 09 12

2

3

4

5

6

7

8

00 12 07 00 32 00 00 17 00

00 00 00 00 00 00 00 00 00

00 00 00 12 22 04 21 00 08

00 00 00 00 00 00 00 00 00

10 04 00 00 26 00 00 04 12

08 00 07 15 13 00 00 06 00

00 00 00 00 00 00 00 00 00

Tasks

W
o

rk
e

rs

Fig. 7.6 An example of application of the mutation operator. In each step of this
operator, the current task assignment (dark-gray color) is randomly exchanged with
the task assignment of other qualified worker (light-gray color).

122 7 Parallel Genetic Algorithm for the Workforce Planning Problem

7.2.5 Mutation Operator

In addition to the crossover operator described before, our GA implemen-
tation includes a mutation operator. This mechanism operates on a single
solution by exchanging the job assignments of two workers. The job exchange
occurs with probability ρm, as shown in Fig. 7.7. An example of this operator
is showed in Fig. 7.6.

Given a solution Z, the mutation operator considers all workers and jobs
that the workers are qualified to perform. A random worker k is chosen from
the list of qualified workers and the exchange of job assignments is performed.
For the experiments, we set up ρm to 0.2. As before, the rand() function
returns a uniform random number between 0 and 1.

7.2.6 The Proposed Parallel GA

A parallel GA (pGA) [6] is a procedure that consists of multiple copies of an
implementation (typically serial) of a genetic algorithm. The individual GAs
include an additional communication phase that enables them to exchange
information. A pGA is characterized by the nature of the individual GAs
and the type of communication that is established among them. Our partic-
ular implementation is a distributed GA (dGA), which allows for an efficient
exploitation of machine clusters. Typically, dGAs consist of a small number
of independent GAs that periodically exchange information. Each individual
GA operates on a considerably large population. Since we want to compare
against the sequential GA, pGAs use the same population size, but now the
whole population of the sequential GA is split into as many subpopulations
as processes involved in the parallel computation.

To fully characterize a dGA, the migration policy must be established,
which is related to the connection topology of the set of individual GAs.
The policy dictates when migration occurs, the number and identity of the
individuals that will be exchanged and also determines the synchronization
scheme. Our implementation uses a unidirectional ring topology, where each
GA receives information from the GA immediately preceding it and sends

for (i = 1 to n) do
for (j ∈ Ai) do

k = random worker |k �= i and k ∈ Qj

if rand() < ρm then
zij ↔ zkj

endif
endfor

endfor

Fig. 7.7 Mutation operator.

7.3 Scatter Search 123

generate P
build RefSet from P
while not end do

generate subsets S from RefSet
for each subset s in S do

recombine solution in s to obtain xs

improve xs

Update RefSet with xs

if convergence(RefSet)
generate a new P
build Refset from P and the old RefSet

Fig. 7.8 Basic SS structure.

information to the GA that is immediately after it. At each migration opera-
tion (which is carried out every 15 generations), one single solution is selected
from the population (via binary tournament) and sent to the corresponding
neighbor. The newly reached solution replaces the worst individual in the
target population only if it is better.

7.3 Scatter Search

Scatter Search (SS) [180] is also a population-based metaheuristic that uses a
reference set to combine its solutions and construct others. The method gen-
erates a reference set from a population of solutions. Then a subset is selected
from this reference set. The selected solutions are combined to get starting
solutions to run an improvement procedure. The result of this improvement
can motivate the updating of the reference set. A pseudo-code of the scatter
search is showed in Fig. 7.8. The procedures involved by the SS method are
the following:

• Initial population creation: The first step of this technique is to generate
an initial population which is the base set to build the Reference Set. This
population must be a wide set of disperse (non similar) solutions. How-
ever, it must clearly also include good quality solutions. A simple method
to create this population is to use a random generation one (disperse so-
lutions) and then improving some of the solutions to obtain high quality
ones. However, other several strategies could be applied to get a population
with these properties using problem (heuristic) information.

• Reference Set update and creation: The SS operates on a small set of so-
lutions, the RefSet, consisting of the “good” solutions found during the
search. The “good” solutions are not limited to those with the best objec-
tive values. By “good” solutions we mean solutions with the best objective
values as well as disperse solutions (to escape local optimality and diversify
the search). In general, the RefSet is composed of two separate subsets: one

124 7 Parallel Genetic Algorithm for the Workforce Planning Problem

subset for the best solutions (RefSet1) and another for diverse solutions
(RefSet2). This reference set is created from the initial population and
updated when a new solution is generated. Also, this set is partially reini-
tialized when the search has stagnated. In our experiments, we use an small
RefSet composed of eight solutions (|RefSet1| = 5 and |RefSet2| = 3).

• Subset generation: This procedure operates in the reference set to produce
a subset of its solutions as a basis for creating combined solutions. In this
work, we generate all 2-elements subsets (28 subsets) and then we apply
the solution combination operator to them.

• Solution combination: It transforms a given subset of solutions into one or
more combined solution vectors.

• Improvement method: This procedure transforms the current solution into
an enhanced solution.

To solve the WPP with SS, we have used the same representation, fitness
evaluation, repairing operator, and crossover operator that we used with GA
implementation (Sections 7.2.1, 7.2.2, 7.2.3, and 7.2.4, respectively). These
operators have been utilized because they perform an exhaustive and struc-
tured search but with new ideas extending SS. The rest of implementation
issues are described in the next subsections.

7.3.1 Seeding the Initial Population

In our case, the initial population is composed of 15 random solutions which
are later enhanced by the improvement method described in the next subsec-
tion and then inserted into the initial population. As in the GA, we want to
remark here that the entire parameterization of SS has been tuned properly
after preliminary experimentation.

7.3.2 Improvement Method

A special improvement operator has been designed for the solution of the
WPP. The operator employs a parameter ρi that may be interpreted as the
probability that a worse solution replaces a better solution in the improve-
ment method. The process is summarized in Fig. 7.9.

for (i = 1 to MaxIter) do
Z′ = generate neighbor from Z
if fitness(Z′) < fitness(Z) or

rand() < ρi then
Z = Z′

endif
endfor

Fig. 7.9 Improvement operator.

7.4 Computational Experiments and Analysis of Results 125

Given a solution Z, the improvement operator generates a neighbor (we
use the mutation operator described in Section 7.2.5). If this new solution Z′

is better than the original solution Z, we accept that solution and the process
is repeated for MaxIter iterations. This method also accepts a worse solution
by means of a probability defined by ρi. As before, the rand() function re-
turns a uniform random number between 0 and 1, and fitness() returns the
objective fitness value achieved by a solution. Our SS algorithm will perform
50 iterations of this process and the probability of accepting a worse solution
(ρi) is 0.1 to escape from local optima.

7.3.3 Parallel SS

Several parallel implementations of the basic scheme of SS have been proposed
in the literature [181]. We are interested in obtaining a parallel method which
allows us not only to reduce the execution time but also improve the solu-
tion quality. Hence, we rule out the master-slave model since its numerical
performance is the same as the sequential one.

We have used a distributed model, i.e., we have several sequential SS run-
ning in parallel that periodically exchange information (one single solution
from RefSet). The connection topology is the same as in the pGA. Binary
tournament is used for choosing the migrant, which promotes high quality
solutions from RefSet1 likely to be selected. In the target SS algorithm, the
method for updating the RefSet is applied in order to insert the migrant
solution.

In this method, the number of evaluation performed in each step is related
to the number of subsets generated. Therefore, we reduce the number of
subsets generated by each independent SS so that the computational effort
is the same as the sequential version. In concrete, the number of subsets
generated is the number of subsets of the serial version (a predefined value)
divided by the number of islands. In this case, we choose the subset randomly,
but we do not allow the same subset to be selected two or more times.

7.4 Computational Experiments and Analysis of
Results

In this section we first present the problem instances used. Then, we analyze
the behavior of the algorithms with respect to, on the one hand, their ability
to find accurate solutions and, on the other hand, the time needed to reach
these solutions.

The algorithms in this work have been implemented in C++ and executed
on a cluster of Pentium 4 at 2.8 GHz with 512 MB of memory which run
SuSE Linux 8.1 (kernel 2.4.19-4GB). The interconnection network is a Fast-
Ethernet at 100 Mbps.

126 7 Parallel Genetic Algorithm for the Workforce Planning Problem

7.4.1 Problem Instances

In order to test the merit of the proposed procedure, we generated artificial
problem instances. Given the values of n, m, and t the problem instances
were generated with the following characteristics:

si = U (50, 70)
jmax = U (3, 5)
hmin = U (10, 15)
Category(worker i) = U (0, 2)
P (i ∈ Qj) = 0.25 · (1 + Category(worker i))
dj = max

(
hmin, U

(
s̄·t
2·m , 1.5·s̄·t

m

))

where s̄ =
∑

i si

n
and

∑
j dj

s̄·t ≤ α
cij = |Ai| + dj + U(10, 20)

The generator establishes a relationship between the flexibility of a worker
and his/her corresponding cost (salary). That is, workers that are able to
perform more jobs are more expensive. We solve 10 structured plus other 10
unstructured problems which have been called s1 to s10 and u1 to u10, re-
spectively. The ten unstructured problems were generated with the following
parameter values: n = 20, m = 20, t = 10 and α = 0.97.

Note that the problem generator uses α as the limit for the expected rela-
tive load of each worker. The set of ten structured problems was constructed
using the same parameter values but hmin was set to 4 and the dj values
were adjusted as follows: dj = dj − mod(dj , 4), where mod(x, y) calculates
the remainder of x/y. All twenty instances were generated in such a way
that a single value for the total number of available hours (si) is drawn and
assigned to all workers.

7.4.2 Results: Workforce Planning Performance

The resulting workforce plannings computed by both GA and SS approaches
are analyzed in this section. All the algorithms stop after 800,000 function
evaluations have been computed. This guarantees that they all are able to
converge. The configuration setting is showed in Table 7.1. These values were
obtained experimentally. Values in the tables are average results over 30
independent runs. Since we deal with stochastic algorithms, we have carried
out an statistical analysis of the results which consists of the following steps.
First a Kolmogorov-Smirnov test is performed in order to check whether the
variables are normal or not. Since all the Kolmogorov-Smirnov normality tests
in this work were not successful, we use a non-parametric test: Kruskal-Wallis
(with 95% of confidence).

We here remark that the parallel versions of GA and SS have been executed
not only in parallel, but also on a single processor. The first reason that
motivates these experiments is to check that the parallel search model is

7.4 Computational Experiments and Analysis of Results 127

Table 7.1 Parameter settings.

parameter GA SS

Population size 400
Initial Pop. = 15

RefSet = 8
ρc 0.8 -
ρm 0.2 -

Subset generated - all 2-elements subsets (28)
ρi - 0.1

Table 7.2 GA results for structured and unstructured problems.

Prob. Seq. GA
pGA-4 pGA-8

KW31 p. 4 p. KW2 1 p. 8 p. KW2

s1 963 880 879 − 873 873 − +
s2 994 943 940 − 920 922 − +
s3 1156 1013 1015 − 1018 1016 − +
s4 1201 1036 1029 − 1008 1003 − +
s5 1098 1010 1012 − 998 1001 − +
s6 1193 1068 1062 − 1042 1045 − +
s7 1086 954 961 − 960 953 − +
s8 1287 1095 1087 − 1068 1069 − +
s9 1107 951 956 − 984 979 − +
s10 1086 932 927 − 924 926 − +
u1 1631 1386 1372 − 1302 1310 − +
u2 1264 1132 1128 − 1153 1146 − +
u3 1539 1187 1193 − 1254 1261 − +
u4 1603 1341 1346 − 1298 1286 − +
u5 1356 1241 1252 − 1254 1246 − +
u6 1205 1207 1197 − 1123 1116 − +
u7 1301 1176 1179 − 1127 1121 − +
u8 1106 1154 1151 − 1123 1128 − −
u9 1173 950 938 − 933 935 − +
u10 1214 1160 1172 − 1167 1163 − +

independent of the computing platform. As expected, the corresponding tests
included in the KW2 columns of Tables 7.2 and 7.3 indicate that no statistical
difference exists between them (“−” symbols). In effect, this confirms that
they are the same numerical model. As a consequence, in order to compare
sequential vs. parallel versions of each algorithm, we have considered only
the results of the parallel executions of pGA and pSS (i.e., we do not use the
1p. columns) and therefore the statistical test just involves three datasets
(column KW3). In the second place, running parallel models in a single CPU
will allow us to perform the execution time analysis of the algorithms properly
(see Section 7.4.3 for the details). The result of the best algorithm for each
instance is marked in boldface. Let us discuss them in separate sections.

GA Results

The first conclusion that can be drawn from Table 7.2 is that any pGA con-
figuration is able to solve the considered WPP better than the sequential GA,
and statistical confidence exists for this claim (see “+” symbols in column

128 7 Parallel Genetic Algorithm for the Workforce Planning Problem

Table 7.3 SS results for structured and unstructured problems.

Prob. Seq. SS
pSS-4 pSS-8

KW31 p. 4 p. KW2 1 p. 8 p. KW2

s1 939 896 901 − 861 862 − +
s2 952 904 905 − 916 913 − +
s3 1095 1021 1019 − 1005 1001 − +
s4 1043 1002 991 − 997 994 − +
s5 1099 999 1007 − 1009 1015 − +
s6 1076 1031 1034 − 1023 1022 − +
s7 987 956 942 − 941 933 − +
s8 1293 1113 1120 − 1058 1062 − +
s9 1086 948 950 − 952 950 − +
s10 945 886 891 − 915 909 − +
u1 1586 1363 1357 − 1286 1280 − +
u2 1276 1156 1158 − 1083 1078 − +
u3 1502 1279 1283 − 1262 1267 − +
u4 1653 1363 1356 − 1307 1305 − +
u5 1287 1176 1192 − 1175 1169 − +
u6 1193 1168 1162 − 1141 1136 − −
u7 1328 1152 1151 − 1084 1076 − +
u8 1141 1047 1039 − 1031 1033 − +
u9 1055 906 908 − 886 883 − +
u10 1178 1003 998 − 952 958 − +

KW3). The unstructured problem u8 stands for the exception but it can be
ruled out since the Kruskal-Wallis test is negative (“−” symbol in column
KW3), thus indicating that the algorithms are not statistically different from
each other. Specially accurate solutions have been computed by the pGA in
unstructured instances u1, u3, and u9, where the reductions in the planning
costs are above 20%.

If we now compare pGAs among them, Table 7.2 shows that pGA-8 found
the best solutions for 13 out of 20 WPP instances, while pGA-4 was only
able to find the best plannings in 6 out of 20. This holds specially for the
structured problems where pGA-8 gets the best workforce plannings in 8
out of 10 instances. However, it is also noticeable that differences between
solutions from pGA-4 and pGA-8 are very small, thus showing that both
algorithms have a similar ability for solving the WPP.

SS Results

We can start analyzing the results of SS (Table 7.3) in the same way as GA
results and state the same conclusions, i.e., parallel SS configurations always
get the best solutions versus SS for all the WPP instances and also with sta-
tistical confidence (“+” symbols in column KW3). There are some particular
instances in which pSS was able to reduce the planning costs significantly
with respect to the sequential SS, e.g. s8, from 1293 down to 1048 (reduction
of 18%) or u4, from 1653 down to 1305 (reduction of 21%). Averaging over
structured and unstructured instances, the best pSS configuration reduces
WPP costs of sequential SS in 8.35% and 14.98%, respectively.

Turning to compare pSS-4 and pSS-8 between them, Table 7.3 shows that
no conclusion can be draw concerning the structured problems since both

7.4 Computational Experiments and Analysis of Results 129

algorithms get the best solutions for 5 out of 10 instances. However, pSS-8
always reaches the best workforce planning in the case of the unstructured
problems, so (as with pGA-8) we can conclude a slight advantage of pSS-8
over pSS-4.

GA vs. SS

In this section we want to compare both GA and SS approaches for solv-
ing WPP. Since there are many different problem instances and analyzing
them thoroughly would hinder us from drawing clear conclusions, we have
summarized in Table 7.4 the information of Tables 7.2 and 7.3 as follows: we
have normalized the resulting planning cost for each problem instance with
respect to the worst (maximum) cost obtained by any proposed algorithm,
so we can easily compare without scaling problems. Then, values in Table 7.4
are average values over all the structured and unstructured WPP instances.

A clear conclusion that can be reached is that all SS configurations out-
perform the corresponding GA ones, that is, considering all structured and
unstructured WPP instances, SS gets better solutions than the GA. It is
worth mentioning differences between sequential approaches in structured
problems (normalized average is reduced from 0.9994 down to 0.9410) and
eight island based parallel algorithm in unstructured problems, where pSS-8
normalized costs are 4.4% lower than pGA-8 ones. These results allow us to
conclude that SS is a more promising approach for solving this workforce
planning problem. Although it can be explained because of the search model
of SS by itself, we want to thoroughly discuss this fact. We conjecture that
the improvement operator of SS could be responsible for such enhancements
since adjusting the number of iterations that it performs was the most sen-
sitive parameter in the preliminary experimentation. We will investigate on
this in Section 7.4.4. Now, let us continue with our analysis, this time from
the wall-clock point of view.

7.4.3 Results: Computational Times

In order to have a fair and meaningful values of the metrics when dealing with
such stochastic algorithms, we need to consider exactly the same algorithm

Table 7.4 Average results for structured and unstructured problems.

Problems s1 - s10 u1 - u10

Algorithm GA SS GA SS

Sequential 0.9994 0.9410 0.9896 0.9744

4 Islands
1 p. 0.8858 0.8743 0.8885 0.8605
4 p. 0.8847 0.8747 0.8879 0.8598

8 Islands
1 p. 0.8783 0.8677 0.8735 0.8308
8 p. 0.8776 0.8663 0.8718 0.8292

130 7 Parallel Genetic Algorithm for the Workforce Planning Problem

Table 7.5 Execution time (in seconds) for structured and unstructured problems.

4 Islands 8 Islands
KW6Sequential 1 CPU 4 CPUs 1 CPU 8 CPUs

Pbm GA SS KW2 GA-4 SS-4 KW2 GA-4 SS-4 KW2 GA-8 SS-8 KW2 GA-8 SS-8 KW2

s1 61 72 + 62 74 + 17 19 + 66 77 + 9 10 + +
s2 32 49 + 32 53 + 9 14 + 37 58 + 6 8 + +
s3 111 114 − 113 118 + 29 31 + 115 127 + 15 17 + +
s4 87 86 − 93 84 + 24 23 − 95 87 + 13 13 − +
s5 40 43 − 41 45 + 13 12 − 46 47 − 9 7 + +
s6 110 121 + 109 122 + 34 33 − 114 128 + 18 18 − +
s7 49 52 + 53 47 + 16 14 + 57 55 − 9 8 + +
s8 42 46 − 45 48 − 13 13 − 48 50 − 7 7 − +
s9 67 70 + 73 71 − 21 19 + 76 74 − 13 10 + +
s10 102 105 + 105 101 + 28 28 − 109 106 + 16 15 − +
u1 95 102 + 98 108 + 29 29 − 102 111 + 16 16 − +
u2 87 94 + 89 95 + 28 26 + 92 99 + 15 14 − +
u3 51 58 + 55 55 − 17 17 − 59 59 − 10 11 + +
u4 79 83 + 79 86 + 26 24 + 86 92 + 15 15 − +
u5 57 62 + 62 62 − 21 18 + 63 68 + 12 10 + +
u6 75 111 + 72 115 + 20 30 + 70 119 + 13 16 + +
u7 79 80 − 81 81 − 24 24 − 89 83 + 15 14 − +
u8 89 123 + 88 118 + 23 35 + 92 123 + 14 20 + +
u9 72 75 − 78 77 − 22 22 − 85 80 + 13 12 − +
u10 95 99 + 96 96 − 25 28 − 99 101 + 13 17 + +

and then only change the number of processors, because comparing against
the sequential versions would lead to misleading results [6]. This way, we have
also executed parallel versions of both GA and SS also in a single CPU as
shown in Table 7.5, where we include the average execution times at which
the best solution is found during the computation of all the algorithms over
30 independent runs. The same statistical tests have been performed as in
the previous section.

If we analyze the execution times of those algorithms being run on a single
CPU, it can be seen that sequential optimizers are faster than the monopro-
cessor execution of any of their parallel version. In order to provide this claim
with confidence, we include in column KW6 the result of the statistical test
using all the results computed with one single CPU. The “+” symbols in this
column indicate that all the execution times are different with statistical sig-
nificance. This holds for 17 out of 20 instances and 15 out of 20 ones in GA and
SS, respectively. The overload of running the several processes of the parallel
versions on a single CPU is the main reason for their lower execution. How-
ever, sequential algorithms for instances s6 and u8 in GAs and s4, s7, s10, u3,
and u8 in SS obtain longer execution times than the parallel versions with 4
islands. The point here is that a trade-off exists between the overload due to
the number of processes and the ability of the algorithms to easily reach the
optimal solution. While the former issue tends to increase the computational
time, the latter is a way of reduce it. Results in both tables point out that the
computing overload is a very important factor because sequential algorithms
usually perform faster than parallel algorithms on one processor.

Analyzing the absolute execution times, one can see the GAs generally get
lower execution times than SS algorithms when the computing platform is

7.4 Computational Experiments and Analysis of Results 131

Table 7.6 Parallel efficiency and serial fraction for structured and unstructured
problems.

pGA-4 pSS-4 pGA-8 pSS-8
Problem η sf η sf η sf η sf

s1 0.91 0.032 0.97 0.009 0.91 0.012 0.96 0.005
s2 0.88 0.041 0.94 0.018 0.77 0.042 0.90 0.014
s3 0.97 0.008 0.95 0.016 0.95 0.006 0.93 0.010
s4 0.96 0.010 0.91 0.031 0.91 0.013 0.83 0.027
s5 0.78 0.089 0.93 0.022 0.63 0.080 0.83 0.027
s6 0.80 0.082 0.92 0.027 0.79 0.037 0.88 0.017
s7 0.82 0.069 0.83 0.063 0.79 0.037 0.85 0.023
s8 0.86 0.051 0.92 0.027 0.85 0.023 0.89 0.017
s9 0.86 0.050 0.93 0.023 0.73 0.052 0.92 0.011
s10 0.93 0.022 0.90 0.036 0.85 0.024 0.88 0.018
u1 0.84 0.061 0.93 0.024 0.79 0.036 0.86 0.021
u2 0.79 0.086 0.91 0.031 0.76 0.043 0.88 0.018
u3 0.80 0.078 0.80 0.078 0.73 0.050 0.67 0.070
u4 0.75 0.105 0.89 0.038 0.71 0.056 0.76 0.043
u5 0.73 0.118 0.86 0.053 0.65 0.074 0.85 0.025
u6 0.90 0.037 0.95 0.014 0.67 0.069 0.92 0.010
u7 0.84 0.061 0.84 0.061 0.74 0.049 0.74 0.049
u8 0.95 0.015 0.84 0.062 0.82 0.031 0.76 0.042
u9 0.88 0.042 0.87 0.047 0.81 0.031 0.83 0.028
u10 0.96 0.013 0.85 0.055 0.95 0.007 0.74 0.049

composed of just one CPU. However, these differences vanish and even get
reversed when we move to actually parallel computing platforms (see columns
“4 CPUs” and “8 CPUs” in Table 7.5). In general, execution times are very
similar and differences are not statistically significant in many cases (see “-”
symbols in columns KW−2).

Two metrics have been used in order to enrich our understanding of the
effects of parallelism on the parallel algorithms of this work: the parallel
efficiency (η) and the serial fraction (sf) [89]. If we consider that N is the
number of processors and sN is the speedup (sN = t̄1 CPU/t̄N CPUs), the two
metrics can be defined as:

η =
sN

N
=

t̄1 CP U

t̄N CPUs

N
, (7.11)

sf =
1

sN
− 1

N

1 − 1
N

. (7.12)

Table 7.6 includes the resulting values of the metrics. Values of the par-
allel efficiency show that all the parallel versions of GA and SS are able to
profit quite well from the parallel computing platform. Averaging over all
the problems, pGA-4 gets an η value of 0.87, while pSS-4 obtains 0.90. If we
consider now the parallelization based on 8 islands, pGA-8 reaches a paral-
lel efficiency of 0.79 whereas pSS-8 achieves a value of 0.85 (also averaging
over all the problems). From these average values we can conclude that pSS
algorithms profit better from the parallel platform than pGAs although the
latter ones are faster in terms of absolute running times.

132 7 Parallel Genetic Algorithm for the Workforce Planning Problem

Table 7.7 Hybrid GA results for structured and unstructured problems.

Prob. Seq. hGA PhGA-4 PhGA-8 KW3

s1 913 870 867 +
s2 959 912 920 +
s3 1056 1021 1001 +
s4 1007 999 997 +
s5 1103 998 1006 +
s6 1084 1040 1034 +
s7 954 933 933 +
s8 1295 1077 1067 +
s9 985 948 952 +
s10 934 903 891 +
u1 1375 1361 1280 +
u2 1193 1176 1098 +
u3 1509 1204 1187 +
u4 1670 1342 1286 +
u5 1189 1173 1170 +
u6 1193 1174 1128 +
u7 1288 1163 1106 +
u8 1076 1055 1041 +
u9 927 894 883 +
u10 1205 1086 998 +

If we compare the parallel efficiency of the algorithms when the number
of processors increases, it can be seen in Table 7.6 that there is a reduction
in the values of this metric and the average values presented previously also
support this claim. Here, the serial fraction metric plays an important role.
If the values of this metric remain almost constant when using a different
number of processors in a parallel algorithm, it allows us to conclude that
the loss of efficiency is because of the limited parallelism of the model itself
and not because our implementation. For example in the instance s5 with
pGAs: the parallel efficiency is reduced by 15% (from 0.78 in pGA-4 down to
0.63 in pGA-8) while the serial fraction is almost the same (0.089 in pGA-4
against 0.080 in pGA-8), confirming the previous hypothesis that the loss of
efficiency is due to the implementation parallel model.

7.4.4 A Parallel Hybrid GA

We suggested in Section 7.4.2 that the better workforce planning perfor-
mance reached by the SS algorithm did lie in the improvement operator
used. In order to further investigate this fact, we have developed a new hy-
brid genetic algorithm (hGA) in which the SS improvement method has been
incorporated into the GA main loop as an evolutionary operator. Specifically,
the local search algorithm is applied just after the recombination and mu-
tation operators by using a predefined probability which has been set up to
ρh = 10

population size
. The experiments conducted in the following go towards

validating the previous claim, so neither the parallel versions are executed
on a single processor nor the computational times are presented: only the
workforce planning performance is studied for the new hGA, the GA, and
the SS. The results of the new hGA are included in Table 7.7. The stopping

7.4 Computational Experiments and Analysis of Results 133

Table 7.8 Average results for structured and unstructured problems.

Problems s1 - s10 u1 - u10

Algorithm GA SS hGA GA SS hGA

Sequential 0.9989 0.9405 0.9202 0.9735 0.9744 0.9309
4 Islands 0.8842 0.8743 0.8691 0.8877 0.8590 0.8626
8 Islands 0.8771 0.8658 0.8641 0.8711 0.8284 0.8294

condition of all these algorithms is the same as in the previous experiments:
reaching a predefined number of function evaluations. In the parallel versions,
the hGA also follows the island model described in Section 7.2.6.

Let us start analyzing the workforce planning performance for the struc-
tured instances. As it happened with the GA, the sequential hGA is always
outperformed by its two parallel versions. These performance improvements
range from 1% in s4 to 21.3% in s8 (6.46% on average over all the structured
instances). Concerning PhGA-4 and PhGA-8, the latter computes the high-
est performance workforce planning in 6 out of the 10 structured instances,
but now differences are smaller (0.75% on average). The diversity introduced
by the parallel models is clearly the responsible for this results. The expla-
nation for this claim concerns the loss of diversity provoked by the newly
introduced improvement operator and, consequently, the parallel hGA mod-
els counteract to some extent the increasingly chance of getting trapped in a
local minimum.

In the case of the unstructured instances, the previous claims are even
more evident. Here, PhGA-8 gets the best planning performance in 10 out
of the 10 instances, and with statistical confidence (“+” symbols in the last
column). With respect to the sequential hGA, a noticeable reduction has
been reached in u3 and u4 (27.12% and 29.86%, respectively). Averaging
over all the instances, PhGA-8 has been able to reduce the planning costs
a percentage of 12.6%. Comparing the two parallel versions, differences now
are not that smaller, e.g. reaching almost 9% in u10 (from 1086 down to 998).
We can therefore conclude that diversity is even more decisive when solving
the unstructured version of the WPP with the new hybrid GA.

In order to compare this new proposal against the previously presented
algorithms we have followed the same approach as in Section 7.4.2: we have
normalized with respect to all the maximum (worst) values, thus avoiding
scaling problems. The results are presented in Table 7.8. Note that the values
for GA and SS are different from those included in Table 7.4 since the values
used for normalization have changed.

If we have a look at the sequential versions of the three algorithms, it
can be noticed that hGA outperforms GA and SS in both structured and
unstructured instances. This also holds for the parallel models with 4 island
in the structured instances. However, the pSS is the best parallel algorithm
with 4 islands when solving the unstructured instances (an average value of
0.8590 against 0.8877 of GA and 0.8626 of hGA). The resulting values of

134 7 Parallel Genetic Algorithm for the Workforce Planning Problem

the normalized workforce planning performance in the parallel models with 8
islands keep the same behavior: parallel hGA improves upon both parallel GA
and parallel SS in the structured instances whereas SS is the best approach in
the unstructured ones. The point here is that the differences are tighter. We
can conclude that the hGA can profit from using the improvement operator
because it always outperforms the GA approach. Concerning SS, hGA is able
to always reach improved workforce plannings in the sequential case and in
the structured instances.

Summarizing, we can conclude that hGA is the best algorithms among
all the sequential algorithms used. Concerning parallel versions, a clear con-
clusion is that parallel versions always outperforms serial ones. Among the
parallel methods, pGA is the worst while the pSS achieves the best accuracy,
obtaining a slightly better performance than phGA.

7.5 Conclusions

In this chapter we have addressed and solved a workforce planning problem.
To achieve this goal we have used two metaheuristics: a parallel GA and a
parallel SS. The development of these parallel versions of a genetic algorithm
and a parallel scatter search aims at tackling problems of realist size.

The conclusions of this work can be summarized attending to different
criteria. Firstly, as it was expected, the parallel versions of the methods have
reached an important reduction of the execution time with respect to the
serial ones. In fact, our parallel implementations have obtained a very good
speedup (nearly linear). In several instances, we have noticed a moderate loss
of efficiency when increasing the number of processor from four to eight. But
this loss of efficiency is mainly due to the limited parallelism of the program,
since the variation in the serial fraction was negligible.

Secondly, we have observed that the parallelism did not only allow to re-
duce the execution time but it also allowed to improve the quality of the
solutions. Even when the parallel algorithms were executed in a single pro-
cessor, they outperformed the serial one, proving clearly that the serial and
the parallel methods are different algorithms with different behaviors.

Thirdly, we have noticed that SS results outperformed GA ones for both
kind of instances. The search scheme of the SS seems to be more appropriate
to the WPP than the GA one. We have studied if the improvement operator
used by SS is beneficial to this problem, and demonstrated that a hybridiza-
tion of GA with this local search mechanism provokes an improvement in the
quality of the solutions. This hybridization has allowed to ameliorate the per-
formance of the “pure” GA in both kind of instances, whereas it was only able
to outperform GA in the structured ones and SS only in the serial version.

As future work, a potential line of research is to apply these techniques
to tackle instances ten times (or more) larger than those solved here (i.e.,
n ≈ m ≈ 200). This is a really challenging set of instances for new works in
this area.

8

Parallel GAs in Bioinformatics:
Assembling DNA Fragments

We used to think that our future was in the stars, now we
know it is in our genes.

James Watson (1928 -) - American scientist

In this chapter, we deal with a quite recent and important domain in
Computer Science: Bioinformatics. In concrete, we solve the DNA fragment
assembly problem using a parallel GA. DNA fragment assembly is a tech-
nique that attempts to reconstruct the original DNA sequence from a large
number of fragments, each one being several hundred base-pairs (bps) long.
The DNA fragment assembly is needed because current technology, such as
gel electrophoresis, cannot directly and accurately sequence DNA molecules
longer than a few thousands bases. However, most real genomes are much
longer. For example, a human DNA is about 3.2 billion bases in length and
cannot be read at once.

The following technique was developed to deal with this limitation. First,
the DNA molecule is amplified, that is, many copies of the molecule are
created. The molecules are then cut at random sites to obtain fragments that
are short enough to be sequenced directly. The overlapping fragments are
then assembled back into the original DNA molecule.

The assembly problem is therefore a combinatorial optimization problem
that, even in the absence of noise, is NP-hard: given k fragments, there are
2kk! possible combinations. This chapter reports on the design and implemen-
tation of a parallel distributed genetic algorithm to tackle the DNA fragment
assembly problem. The pGA will then act as a DNA assembler, a hot topic
in present research [182, 183].

The remainder of this chapter is organized as follows. In the next section,
we present background information about the DNA fragment assembly prob-
lem. Section 2 presents a brief review of existing assemblers. In Section 3,
we discuss the operators, fitness functions [184], and how to design and im-
plement a parallel genetic algorithm (GA) for the DNA fragment assembly
problem. We analyze the results of our experiments in Section 4. We end this
chapter by giving our final thoughts and conclusions in Section 5.

G. Luque and E. Alba: Parallel Genetic Algorithms, SCI 367, pp. 135–147.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

136 8 Parallel GAs in Bioinformatics: Assembling DNA Fragments

8.1 The Work of a DNA Fragment Assembler

We start this section by giving a vivid analogy to the fragment assembly
problem: “Imagine several copies of a book cut by scissors into thousands of
pieces, say 10 millions. Each copy is cut in an individual way such that a piece
from one copy may overlap a piece from another copy. Assume one million
pieces get lost and the remaining nine million are splashed with ink: try to
recover the original book.” [185]. We can think of the DNA target sequence
as being the original text and the DNA fragments are the pieces cut out from
the book. To further understand the problem, we need to know the following
basic terminology:

• Fragment: A short sequence of DNA with length up to 1000 bps.
• Shotgun data: A set of fragments.
• Prefix: A substring comprising the first n characters of fragment f .
• Suffix: A substring comprising the last n characters of fragment f .
• Overlap: Common sequence between the suffix of one fragment and the

prefix of another fragment.
• Layout: An alignment of collection of fragments based on the overlap

order.
• Contig: A layout consisting of contiguous overlapping fragments.
• Consensus: A sequence derived from the layout by taking the majority

vote for each column (base) of the layout.

To measure the quality of a consensus, we can look at the distribution of the
coverage. Coverage at a base position is defined as the number of fragments
at that position. It is a measure of the redundancy of the fragment data. It
denotes the number of fragments, on average, in which a given nucleotide in
the target DNA is expected to appear. It is computed as the number of bases
read from fragments over the length of the target DNA [186].

Coverage =
∑n

i=1 length of the fragment i

target sequence length
(8.1)

where n is the number of fragments. TIGR uses the coverage metric to ensure
the correctness of the assembly result. The coverage usually ranges from 6 to
10 [187]. The higher the coverage, the fewer the gaps are expected, and the
better the expected result (easier problem).

8.1.1 DNA Sequencing Process

To determine the function of specific genes, scientists have learned to read
the sequence of nucleotides comprising a DNA sequence in a process called
DNA sequencing. The fragment assembly starts with breaking the given
DNA sequence into small fragments. To do that, multiple exact copies of
the original DNA sequence are made. Each copy is then cut into short

8.1 The Work of a DNA Fragment Assembler 137

1. Duplicate and

2. Sonicate

3. Sequence

4. Call Bases

CCGTAGCCGGGATCCCGTCC

CCCGAACAGGCTCCCGCCGTAGCCG

AAGCTTTTTCCCGAACAGGCTCCCG

CCGTAGCCGGGATCCCGTCC

CCCGAACAGGCTCCCGCCGTAGCCG

AAGCTTTTCTCCCGAACAGGCTCCCG

5. Layout

AAGCTTTTCTCCCGAACAGGCTCCCGCCGTAGCCGGGATCCCGTCC

6. Call Consensus

Fig. 8.1 Graphical representation of DNA sequencing and assembly [188].

fragments at random positions. These are the first three steps depicted
in Fig. 8.1 and they take place in the laboratory. After the fragment set
is obtained, the standard assemble approach is followed in this order:
overlap, layout, and then consensus. To ensure that fragments overlap,
the reading of fragments continues until the coverage is satisfied. These
steps are the last three steps in Fig. 8.1. In what follows, we give a brief
description of each of the three phases, namely overlap, layout, and consensus.

138 8 Parallel GAs in Bioinformatics: Assembling DNA Fragments

Overlap Phase - Finding the overlapping fragments.
Usually, overlaps are available offline before starting this work. This phase

consists in finding the best or longest match between the suffix of one se-
quence and the prefix of another. In this step, we compare all possible pairs
of fragments to determine their similarity. Usually, the dynamic program-
ming algorithm applied to semiglobal alignment is used in this step. The
intuition behind finding the pairwise overlap is that fragments with a signif-
icant overlap score are very likely next to each other in the target sequence.

Layout Phase - Finding the order of fragments based on the computed sim-
ilarity score.

This is the most difficult step because it is hard to tell the true overlap
due to the following challenges:

1. Unknown orientation: After the original sequence is cut into many frag-
ments, the orientation is lost. The sequence can be read in either 5’ to
3’ or 3’ to 5’. One does not know which strand should be selected. If one
fragment does not overlap with another, it is still possible that its reverse
complement might have such an overlap.

2. Base call errors: There are three types of base call errors: substitution,
insertion, and deletion. They occur due to experimental errors in the elec-
trophoresis procedure. Errors affect the detection of fragment overlaps.
Hence, the consensus determination requires multiple alignments in high
covered regions.

3. Incomplete coverage: It happens when the algorithm is not able to assemble
a given set of fragments into a single contig.

4. Repeated regions: Repeats are sequences that appear two or more times in
the target DNA. Repeated regions have caused problems in many genome-
sequencing projects, and none of the current assembly programs can handle
them perfectly.

5. Chimeras and contamination: Chimeras arise when two fragments that are
not adjacent or overlapping on the target molecule join together into one
fragment. Contamination occurs due to the incomplete purification of the
fragment from the vector DNA.

After the order is determined, the progressive alignment algorithm is ap-
plied to combine all the pairwise alignments obtained in the overlap phase.

Consensus Phase - Deriving the DNA sequence from the layout.
The most common technique used in this phase is to apply the majority

rule (it assigns the base with more repetitions in each position) in building
the consensus.

8.2 Related Literature 139

Example: We next give an example of the fragment assembly process.
Given a set of fragments {F1 = GTCAG, F2 = TCGGA, F3 = ATGTC, F4 =

CGGATG}. First, we need to determine the overlap of each pair of the fragments
by the using semiglobal alignment algorithm. Next, we determine the order
of the fragments based on the overlap scores, which are calculated in the
overlap phase. Suppose we have the following order: F2 F4 F3 F1. Then, the
layout and the consensus for this example can be constructed as follows:

F2 -> TCGGA
F4 -> CGGATG
F3 -> ATGTC
F1 -> GTCAG

Consensus -> TCGGATGTCAG

In this example, the resulting order allows to build a sequence having
just one contig. Since finding the exact order takes a huge amount of time, a
heuristic such as Genetic Algorithm can be applied in this step [184, 189, 190].
In the following section, we discuss several existing algorithms for the DNA
fragment assembly problem. �
From a combinatorial optimization viewpoint, the whole process which results
in the construction of the consensus sequence is similar to that of a tour in
the Travelling Salesman Problem (TSP). This is because each fragment would
have to be in a specific fragment ordering sequence in order for the forma-
tion of a consensus sequence to take place. The main difference between TSP
and DNA fragment assembly is that there would not be a proper alignment
between the first and the last fragments in the consensus sequence that is
comparable to the connection between the first and the last cities in the TSP
solution. Therefore, many equivalent solutions to TSP are thus nonequivalent
in our context. Other important difference is that, while the ordering is the
final solution to TSP, in our case, this ordering is only an intermediate step
(final consensus is still needed) and then several different orderings can pro-
duce equivalent results. Other minor differences can be found between both
problems due to the challenges described previously (unknown orientation,
incomplete coverage, etc.).

8.2 Related Literature

Originally, the assembly of short fragments was done by hand, which is in-
efficient and error-prone. Hence, a lot of effort has been put into finding
techniques to automate the sequence assembly. Over the past decade a num-
ber of fragment assembly packages have been developed and used to sequence
different organisms. The most popular packages are PHRAP [191], TIGR as-
sembler [192], STROLL [193], CAP3 [194], Celera assembler [195], EULER
[185], and PALS [196]. These packages deal with the previously described

140 8 Parallel GAs in Bioinformatics: Assembling DNA Fragments

challenges, but none of them solves them all. Each package automates frag-
ment assembly using a variety of algorithms. The most popular techniques
are greedy-based.

Also, some metaheuristic methods have been applied to this problem, like
SA [197], GA [184, 197], and VNS [198]. These methods obtain quite accu-
rate result for small/medium instances but they have some difficulties to solve
real-world problem instances. Therefore, some enhanced techniques were pro-
posed such as parallel [197], and hybrid methods [199].

8.3 The pGA DNA Assembler

In this section, we describe our parallel GA used to solve the DNA fragment
assembly problem. First, we show the main details about the representation,
fitness evaluation, and operators. Then, we discuss the parallel model used.

8.3.1 Solution Encoding

We use the permutation representation with integer number encoding. A
permutation of integers represents a sequence of fragment numbers, where
successive fragments overlap. A tentative solution in this representation re-
quires a list of fragments assigned with a unique integer ID. For example,
8 fragments will need eight identifiers: 0, 1, 2, 3, 4, 5, 6, 7. The permuta-
tion representation requires special operators to make sure that we always
get legal (feasible) solutions. In order to maintain a legal solution, the two
conditions that must be satisfied are (1) all fragments must be presented in
the ordering, and (2) no duplicate fragments are allowed in the ordering. For
example, one possible ordering for 4 fragments is 3 0 2 1. It means that frag-
ment 3 is at the first position and fragment 0 is at the second position, and
so on.

8.3.2 Solution Evaluation

A fitness function is used to evaluate how good a particular solution is, i.e.,
to define the objective for the optimization process. It is applied to each
individual in the population and it should guide the genetic algorithm towards
the optimal solution. In the DNA fragment assembly problem, the fitness
function measures the multiple sequences alignment quality and finds the
best scoring alignment. Parsons, Forrest, and Burks mentioned two different
fitness functions [184].

Fitness function F1 - it sums the overlap score (w) for adjacent frag-
ments in a given solution. When this fitness function is used, the objective
is to maximize such a score. It means that the best individual will have the
highest score.

8.3 The pGA DNA Assembler 141

F1(l) =
n−2∑
i=0

w(f [i], f [i + 1]) (8.2)

Fitness function F2 - it not only sums the overlap score for adjacent
fragments, but also sums the overlap score for all other possible pairs.

F2(l) =
n−1∑
i=0

n−1∑
j=0

|i − j| × w(f [i], f [j]) (8.3)

This fitness function penalizes solutions in which strong overlaps occur
between non-adjacent fragments in the layouts. When this fitness function is
used, the objective is to minimize the overlap score. It means that the best
individual will have the lowest score.

The overlap score in both F1 and F2 is computed using the semiglobal
alignment algorithm.

8.3.3 Genetic Operators

In order to generate a new population, GA applies three operators: recom-
bination, mutation, and selection/replacement. In the following paragraphs,
we explain the operators used in this work.
Recombination Operator

Two or more parents are recombined (or crossed over) to produce one or
more offspring. The purpose of this operator is to allow partial solutions to
evolve in different individuals and then combine them to produce a better
solution. It is implemented by running through the population and for each
individual, deciding whether it should be selected for recombine using a pa-
rameter called recombination rate (Pr). A recombination rate of 1.0 indicates
that all the selected individuals are used in the recombination operator. Thus,
there are no survivors. However, empirical studies have shown that better re-
sults are achieved by a recombination rate between 0.65 and 0.85, which
implies that the probability of an individual moving unchanged to the next
generation ranges from 0.15 to 0.35.

For our experimental runs, we use the order-based recombination opera-
tor (OX) and the edge-recombination operator (ER). These operator were
specifically designed for tackling problems with permutation representations.

The order-based operator first copies the fragment ID between two ran-
dom positions in Parent1 into the offspring’s corresponding positions. It then
copies the rest of the fragments from Parent2 into the offspring in the rela-
tive order presented in Parent2. If the fragment ID is already present in the
offspring, then we skip that fragment. The method preserves the feasibility
of every string in the population.

Edge recombination preserves the adjacencies that are common to both
parents. This operator is appropriate because a good fragment ordering con-
sists of fragments that are related to each other by a similarity metric and

142 8 Parallel GAs in Bioinformatics: Assembling DNA Fragments

should therefore be adjacent to one another. Parsons [190] defines edge re-
combination operator as follows:

1. Calculate the adjacencies.
2. Select the first position from one of the parents, call it s.
3. Select s′ in the following order until no fragments remain:

a. s′ adjacent to s is selected if it is shared by both parents.
b. s′ that has more remaining adjacencies is selected.
c. s′ is randomly selected if it has an equal number of remaining adjacen-

cies.

Mutation Operator
This operator is used for the modification of single individuals. The reason
we need a mutation operator is for the purpose of maintaining diversity in
the population. Mutation is implemented by running through the whole
population, and for each individual, deciding whether to select it for
mutation or not, based on a parameter called mutation rate (Pm). For our
experiments, we use the swap mutation operator. This operator randomly
selects two positions from a permutation and then swaps the two fragment
positions. Since this operator does not introduce any duplicate value in
the permutation, the resulting solution is always feasible. Swap mutation
operator is suitable for permutation problems like ordering fragments.

Selection operator
The purpose of the selection is to weed out the bad solutions. It requires a
population as a parameter, processes the population using the fitness func-
tion, and returns a new population. The level of the selection pressure is very
important. If the pressure is too low, convergence becomes very slow. If the
pressure is too high, convergence will be premature to a local optimum.

In this work, we use ranking selection mechanism [200], in which the GA
first sorts the individuals based on the fitness and then selects the individuals
with the best fitness score until the specified population size is reached. Note
that the population size will grow whenever a new offspring is produced by
recombination or mutation because we consider a temporary population in
every step made of the old population and the new one. The use of rank-
ing selection is preferred over other selections such as fitness proportional
selection [116].

8.3.4 The Parallel Approach

This section introduces the parallel models that we use in the experiments
discussed in the next section.

A parallel GA (PGA) is an algorithm having multiple component GAs,
regardless of their population structure (Chapter 2). A component GA is
usually a traditional GA with a single population. Its algorithm is augmented

8.4 Experimental Validation 143

with an additional phase of communication code so as to be able to dissemi-
nate its result and receive results from the other components [6].

Different parallel algorithms differ in the characteristics of their elemen-
tary heuristics and in the communication details. In this work, we have chosen
a kind of decentralized distributed search because of its popularity and be-
cause it can be easily implemented in clusters of machines. In this parallel
implementation, separate subpopulations evolve independently in a ring with
sparse exchanges of a given number of individuals with a certain given fre-
quency. The selection of the emigrants is through binary tournament [116] in
the component genetic algorithms, and the arriving immigrants replace the
worst ones in the population only if the new one is better than this current
worst individuals.

8.4 Experimental Validation

In this section we analyze the behavior of our parallel GA. To measure the
quality of its results, we will compare its performance with respect to other
algorithms presented in the literature (GA, SA, and parallel SA) [197]. We
have selected these methods since they represent both population and tra-
jectory based metaheuristics.

Firstly, the target problem instance used is presented. Then, we show the
parameterization of the methods and, finally, experiments performed are in-
cluded at the end of this section.

8.4.1 Target Problem Instances

A target sequence with accession number BX842596 (GI 38524243) was used
in this work. It was obtained from the NCBI web site1. It is the sequence of a
Neurospora crassa (common bread mold) BAC, and is 77,292 base pairs long.
To test and analyze the performance of our algorithm, two problem instances
were generated by GenFrag [201]. The first problem instance, 842596 4, con-
tains 442 fragments with average fragment length of 708 bps and coverage 4,
while the second one 842596 7, contains 773 fragments with average fragment
length of 703 bps and coverage 7.

These instances are very hard, since they were generated from very long
sequence using a small/medium value of coverage and a very restrictive cut-
off. The combination of these parameters is known to produce very complex
instances. For example, longer target sequences have been solved in the liter-
ature [194], however they used a higher coverage. The coverage measures the
redundancy of the data: the higher the coverage, the easier the problem. The
cutoff value is the minimum overlap score between two adjacent fragments
required to join them in a single fragment. The cutoff, which we have set
1 http://www.ncbi.nlm.nih.gov/

144 8 Parallel GAs in Bioinformatics: Assembling DNA Fragments

to thirty (a very high value), provides one filter for spurious overlaps intro-
duced by experimental error. Instances with these features have been only
solved adequately when target sequences vary from 20k to 50k base pairs
[184, 202], while here, we are considering instances with 77k base pairs. We
evaluated each assembly result in terms of the number of contigs assembled
and the percentage similarity of assembled regions with the target sequence.
Since we obtain fragments from a known target sequence, we can compare
our assembled consensus sequence with the original target.

8.4.2 Parameterization

To solve this problem, we use a sequential GA, a sequential SA, several dis-
tributed GAs (having 2, 4, and 8 islands), and several parallel SAs (having
2, 4, and 8 components).

Since the results of GA and SA vary depending on the different parameter
settings, we previously performed a complete analysis to study how the pa-
rameters affect the results and the performance of algorithms. From these pre-
vious analyses, we conclude that the best settings for our problem instances
of the fragment assembly problem is a population size of 512 individuals, with
F1 as fitness function, OR as crossover operator (with probability 1.0), and
with a swap mutation operator (with probability 0.3). The migration in dGAs
occurs in a unidirectional ring manner, sending one single randomly chosen in-
dividual to the neighbor sub-population. The target population incorporates
this individual only if it is better than its present worst solution. The migra-
tion step is performed every 20 iterations in every island in an asynchronous
way. For SA we use a Markov chain of length total number evaluations/100
and a proportional cooling scheme with a decreasing factor of 0.99. Each
component SA exchanges, every 5000 evaluations, the best solution found
(cooperation phase) with its neighbor SA in the ring. Because of the stochas-
tic nature of the algorithms, we perform 30 independent runs of each test
to gain sufficient experimental data. A summary of the conditions for our
experimentation is found in Table 8.1.

8.4.3 Analysis of Results

Table 8.2 shows all the results and performance metrics for all data instances
and algorithms described in this chapter. The table shows the fitness of the
best solution obtained (b), the average fitness found (f), average number of
evaluations (e), and average time in seconds (t). The statistical test for the
time column are always positive, i.e., all times are significantly different from
each other. The statistical test for the evaluation column reveals that there
exists a significant difference in the number of visited points between the
sequential algorithm and the parallel versions, i.e., the parallel model allows
to change the behavior of the method, and for this problem, that change is
beneficial: a significant reduction in the effort for computing a solution.

8.4 Experimental Validation 145

Table 8.1 Parameter Settings.

Genetic Algorithms

Independent runs 30
Popsize 512
Fitness function F1
Crossover OR (1.0)
Mutation Swap (0.3)
Cutoff 30
Migration frequency 20 iterations
Migration rate 1

Simulated Annealing

Independent runs 30
Fitness function F1
Move operator Swap
Cutoff 30
Markov chain length total number evaluations

100

Cooperation phase 5000 evaluations

Table 8.2 Results for the two problem instances.

842596 4 842596 7
Algorithm b f e t b f e t

GA

Sequential 33071 27500 810274 74 78624 67223 502167 120

LAN
n = 2 107148 88653 733909 36 156969 116605 611694 85
n = 4 88389 74048 726830 18 158021 120234 577873 48
n = 8 66588 58556 539296 8.5 159654 119735 581979 27

SA

Sequential 41893 36303 952373 58 81624 76303 897627 91

LAN
n = 2 79406 74238 929146 27 120357 101374 782915 51
n = 4 83820 76937 931673 15 134917 118724 819218 28
n = 8 80914 75193 915393 7 126934 116290 825397 15

Let us now discuss some of the results found in the table. First, for both
instances, it is clear that the parallel version outperforms the serial one.
Both, parallel GA and parallel SA, yield better fitness values and are faster
than the sequential GA and SA, respectively. The parallel GA solutions are
more accurate than the parallel SA ones, while the sequential version of SA
outperforms the sequential GA version. The SA execution is faster than the
GA one, because the GA executes an additional time-consuming operator
(order-based crossover). Let us now go in deeper details on these claims.

For the first problem instance, the parallel GAs sampled less points in
the search space than the serial GA, while for the second instance the serial
algorithm is mostly similar in the required effort with respect to the parallel
ones. The parallel SAs reduce the number of evaluations in both instances.

Increasing of the number of islands or components (and CPUs) results in
a reduction in search time, but it does not lead to a better fitness value.

146 8 Parallel GAs in Bioinformatics: Assembling DNA Fragments

Table 8.3 Speed-up.

842596 4 842596 7
Algorithms n CPUs 1 CPU Speedup n CPUs 1 CPU Speedup

GA
n = 2 36.21 72.07 1.99 85.37 160.15 1.87
n = 4 18.32 72.13 3.93 47.78 168.20 3.52
n = 8 8.52 64.41 7.56 26.81 172.13 6.42

SA
n = 2 27.41 52.35 1.92 51.33 84.69 1.65
n = 4 14.89 55.12 3.74 27.76 89.38 3.22
n = 8 7.10 51.75 7.29 14.63 90.26 6.17

This is a negative behavior of the GA. For the second problem instance,
the average fitness was improved by a larger number of CPUs. However, for
the first problem instance, we observed a reduction in the fitness value as
we increased the number of CPUs. This counterintuitive result clearly states
that each instance has a different number of optimum from the point of view
of the accuracy.

In the parallel GA, the best tradeoff is for two islands (n = 2) for the two
instances, since this value yields a high fitness at an affordable cost and time.
In the case of parallel SA, the optimum configuration is obtained when it
uses four components.

Table 8.3 gives the speed-up results. As it can be seen in the table, we
always obtain an almost linear speedup for the first problem instance. This
is a very good result. For the second instance we also have a good speedup
with a low number of CPUs (two and four components); eight islands make
the efficiency decrease to a moderate speedup (6.42 for parallel GA and 6.22
for parallel SA). The speed-ups obtained by parallel GA are always better
than the parallel SA ones.

Table 8.4 Final number of best contigs.

Algorithms 842596 4 842596 7

GA

Sequential 5 4
n = 2 3 2

LAN n = 4 4 1
n = 8 4 2

Average 4 2.25

SA

Sequential 5 4
n = 2 5 3

LAN n = 4 4 2
n = 8 5 2

Average 4.75 2.75

Finally, Table 8.4 shows the best global number of contigs computed in
every case. This value is used as a high-level criterion (the more important

8.5 Conclusions 147

one) to judge the whole quality of the results since, as we said before, it is
difficult to capture the dynamics of the problem into a mathematical (fitness)
function. These values are computed by applying a final step of refinement
with a greedy heuristic commonly used in this application [202]. We have
found that in some (extreme) cases it is even possible that a solution with
a better fitness than other one generates a larger number of contigs (worse
solution). This is the reason for still needing research to get a more accurate
mapping from fitness to contig number. The values of this table confirm again
that all the parallel versions outperform the serial versions, thus advising the
utilization of parallel metaheuristics for this application in the future. Also,
GA outperforms SA on average for sequential and parallel versions, since in
the first problem, average contig is 4 for GA versus 4.75 of SA, and for the
second is 2.25 for GA versus a higher 2.75 of SA.

8.5 Conclusions

The DNA fragment assembly is a very complex problem in Bioinformatics.
Since the problem is NP-hard, the optimal solution is impossible to find for
real cases, except for very small problem instances. Hence, computational
techniques of affordable complexity such as metaheuristics are needed.

The sequential Genetic Algorithm we used here solves the DNA fragment
assembly problem by applying a set of genetic operators and parameter set-
tings, but does take a large amount of time for problem instances that are
over 15K base pairs. Our distributed version has taken care of this short-
coming. Our test data are over 77K base pairs long. We are encouraged by
the results obtained by our parallel algorithms not only because of their low
waiting times, but also because of their high accuracy in computing solutions
of even just 1 contig (the optimal solution in Nature). This is noticeable since
it is far from trivial to compute optimal solutions for real-world instances of
this problem.

We also faced to solve the DNA fragment assembly with a local search
method, the simulated annealing. In this case, the results confirm that the
parallelism helps to improve solutions and to reduce runtime also for this
metaheuristic. On its own, separate SA executions are faster than GA ones,
but generally, they lead to a worse fitness value.

A future open research lines, we can advise to analyze other kinds of paral-
lel models created as extensions of the canonical skeletons used in this chap-
ter. To curb the problem of premature convergence for example, we could
propose a restart technique in the islands. Another interesting point of re-
search would be to incorporate different algorithms in the islands (heteroge-
neous pGA), such as greedy or problem-dependent heuristics, and to study
the effects this could have on the observed performance. Other interesting
research line is testing the algorithmic approach with more realistic instances
(for example, noisy cases [203]).

A

The MALLBA Library

mallba1 [64, 204] is an effort to develop an integrated library of skeletons
for combinatorial optimization including exact, heuristic and hybrid tech-
niques. Sequential and parallel execution environments are supported in a
user-friendly and, at the same time, efficient manner. Concerning parallel
environments, both Local Area Networks (LANs) of workstations and Wide
Area Networks (WANs) are considered.

All algorithms in the mallba library are implemented as software skele-
tons (similar to strategy pattern [205]) with a common internal and public
interface. A skeleton is an algorithmic unit that, in a template-like manner,
implements a generic algorithm. The algorithm will be made particular to
solve a concrete problem by fulfilling the requirements specified in its inter-
face. This permits fast prototyping and transparent access to parallel plat-
forms. In the mallba library, every skeleton implements a resolution tech-
nique for optimization, taken from the fields of exact, heuristic and hybrid
optimization.

All this software has been developed in C++. This language provides a
high-level oriented-object set of services and, at the same time, it generates ef-
ficient executable files, what is an important issue for an optimization library.
The skeleton design in mallba is based on the separation of two concepts:
the features of the problem to be solved and the general resolution technique
to be used. While the particular features related to the problem must be
given by the user, the technique and the knowledge needed to parallelize the
execution of the resolution technique is implemented in the skeleton itself,
and is completely provided by the library. Thus the user does not program
neither the resolution technique nor its parallelization. It is very common that
the problem is represented by a complex function to be optimized and the
details on how to manipulate tentative solutions (e.g. merge, cut, or interpret
parts of them). Basically, the resolution technique is the algorithm defining

1 Source code and examples can be found at
http://neo.lcc.uma.es/software/mallba/index.php

150 A The MALLBA Library

the steps to proceed to the optimization of the problem. Almost every op-
timization technique exhibits a traditional three stage process, namely: (1)
generating initial solutions (2) an improvement loop and (3) testing a stop
condition. The way in which different skeletons do this work is really different
and varied in the actual spectrum of optimization search and learning.

Skeletons are implemented as a set of required and provided C++ classes
which represent object abstractions of the entities participating in the res-
olution technique (see Fig. A.1). The provided classes implement internal
aspects of the skeleton in a problem-independent way. This internal set of
classes is called the Solver part of the skeleton. In general, for each algo-
rithmic technique several sequential resolution patterns are provided, all of
them grouped in the class Solver Seq (for example, the iterative and re-
cursive patterns showed in Fig. A.1). The parallel patterns are grouped in
the classes Solver Lan and Solver Wan. In the figure are depicted resolu-
tion patterns which use the master-slave paradigm, independent runs, and
replicate data. Those classes are completely implemented and provided in
the respective skeletons. The required classes specify information related to
the problem. For the whole skeleton to work, it is required that these classes
get completed with problem-dependent information. This conceptual separa-
tion allows us to define required classes with a fixed interface but without
an implementation, so that provided classes can use required classes in a
generic way. The fulfillment of the required classes would make the skeleton
applicable to virtually any problem specified.

AlgorithmicTechnique.hh

Required

Provided

Problem

Solution

Specific
Classes

Setup

Solver

Problem methods

Solution methods

Specific Classes
methods

AlgorithmicTechnique.req.cc

Main.cc

Instance of
Solver

AlgorithmicTechnique.pro.cc

Solver::run()

Solver_Seq

Solver_Lan

Solver_Wan

Solver_Seq_Recursive Solver_Seq_Iterative

Solver_Lan_Master_Slave Solver_Lan_Independen_Runs Solver_Lan_Replicated

Fig. A.1 Architecture of a mallba skeleton. The horizontal line stands for the
separation between the C++ classes the user must fulfill (upper part) and the
classes that the skeleton already includes in a fully operational form (lower part).

The fact that the user of a mallba skeleton only needs to implement the
particular features of the problem to be solved, i.e., to fill in the required

A.1 Skeleton Interfaces 151

classes with an specific problem-dependent implementation, helps the cre-
ation of new programs with a very small effort.

Next, we will introduce and discuss the external interface of a skeleton.
Two kinds of users will want to work with this interface: the user who wants
to instantiate a new problem, and the user who wants to implement a new
skeleton and incorporate it to the mallba library. Also in the next subsec-
tions, we will discuss the communication and the hybridization interfaces.
The aim is to explain first what a final user must consider, then what a
skeleton programmer needs to know about the parallel issues and, finally,
how to merge skeletons to yield new optimization procedures. Descriptions
from these different points of view are needed since the potential users and
researchers using the library will have a different level of interaction with
this software (see Fig. A.2), depending on his/her goal (e.g., to instantiate a
problem, to change the communication layer, or to create new skeletons for
new techniques).

Skeleton
Programmer

Final
User

Execute

Skeleton.pro.cc

Auxiliar
Libraries

Skeleton.hh

Skeleton.req.cc

Skeleton
filler

MainSkeleton.cfg +

Fig. A.2 Interaction of the different user types and the files conforming a mallba
skeleton. Usually, the skeleton filler and the final user are the same.

A.1 Skeleton Interfaces

From the user’s point of view, two major aspects must be considered: the
problem to be solved and the resolution technique to be used. The user will be
responsible for adequately describing the former. As to the latter, rather com-
plete descriptions are provided by the library. The user addresses these two
aspects by selecting the skeleton and implementing its problem-dependent
aspects. Later, since LAN and WAN implementations exist, the user will be
able to execute the resulting program on sequential or parallel environments.
Notice however that the same unique description made by the user will be

152 A The MALLBA Library

used in any of the environments. Fig. A.2 shows the interaction of different
kinds of users (namely, final user, programmer and internal filler) with the
different parts conforming a skeleton. Although there are three profiles, this
does not mean that it is needed three different users to use mallba library.
The same user can take care of the tasks at any profile level.

mallba already includes a large set of solvers ready for utilization. Ex-
tending them is quite direct, and creating new solvers is conceptually guided
by the class hierarchy design. Parts of existing skeletons can be easily reused
to construct new ones. Each skeleton could have its own configuration file to
avoid recompilation when parameters change.

Apart from some illustrative examples, mallba does not contain any com-
plete implementation of specific problems. On the contrary, it provides the
generic code the user has to customize. In this way, a single implementation
–abstract yet efficient– can be reutilized in different contexts. The user do
not need to have a deep knowledge about parallelism or distributed comput-
ing; these aspects are already included in the library. Let us get deeper in
our understanding of the provided and required C++ classes conforming a
skeleton.

Provided Classes:

They implement internal aspects of the skeleton in a problem-independent
way. The most important provided classes are Solver (the algorithm) and
SetUpParams (setup parameters). Provided classes are implemented in the
files having the .pro.cc extension (see Fig. A.2).

Required Classes:

They specify information related to the problem. Each skeleton includes
the Problem and Solution required classes that encapsulate the problem-
dependent entities needed by the solver method. Depending on the skeleton
other classes may be required. Required classes are implemented in the files
having the .req.cc extension (see Fig. A.2).

A.2 Communication Interface

Providing a parallel platform has been one of the central objectives in
mallba. Local networks of computers are nowadays a very cheap and pop-
ular choice in laboratories and departments. Moreover, the available com-
putational power of Internet is allowing the interconnection of these local
networks, offering a plethora of possibilities for exploiting these resources.

To this end (i.e., using mallba onto a network of computers), it is neces-
sary to have a communication mechanism allowing executing skeletons both
in LAN and WAN. Since these skeletons are implemented in a high-level lan-
guage, it is desirable for this communication mechanism to be also high-level;

A.2 Communication Interface 153

besides, some other network services could be needed in the future would be
needed such as the management of parallel processes.

The needed set of services is generically termed middleware, and it is res-
ponsible for all basic communication facilities. Several steps were followed
to construct this system: first, related existing systems were studied and
evaluated; then, a service proposal was elaborated; finally, the middleware
was implemented in C++.

The detailed review of existing tools included both systems based in the
message-passing paradigm and systems for the execution and management
of distributed objects and programs. PVM, MPI, Java RMI, CORBA and
Globus, as well as some other specific libraries, were evaluated [206]. The
main conclusion was the need for an own system, adapted to the necessities
of this library, but based on an efficient standard, capable of being valid in
the future.

Meeting all these criteria can be, almost exclusively, possible by using MPI
as the base for developing a communication library. Efficiency was a major
goal in this work, and hence this decision; besides, MPI (in both MPICH and
LAM/MPI, the two well-known implementations of the standard) is becoming
increasingly popular, and has been successfully integrated in new promising
systems such as Globus.

Although there is no theoretical drawback in using MPI directly, a light
middleware layer termed NetStream (see Fig. A.3) was developed. With this
tool, a mallba programmer can avoid the large list of parameters and inter-
act with the network in the form of stream modificators, that allows advanced
input/output operations to look like basic data exchanges with streams. By
using << and >> operators the programmer can develop LAN and WAN skele-
tons by feeding data and net operations in an easy way.

Skeleton

NetStream

MPI

Send(msg)

Receive(msg)

Skeleton

NetStream

MPI

Send(msg)

Receive(msg)

NETWORK

Fig. A.3 NetStream communication layer on top of MPI.

Then, NetStream allows skeletons exchanging data structures efficiently,
keeping a high abstraction level and ease of use. For this latter purpose,
the number of parameters in the resulting methods has been minimized,

154 A The MALLBA Library

and a large number of services has been implemented. These services can be
classified into two groups: basic services, and advanced services. Among the
basic ones we can mention:

• Send-Reception of primitive data types: int, double, char, strings,
etc. both in raw format and packed (for efficiency purposes when used
on a WAN). This can be done using input/output streams from/to the
network.

• Synchronization services: barriers, broadcasts, checking for pending
messages, etc. As in the C++ standard, these services are available by
means of manipulators, i.e., methods that alter the behavior of a stream,
feeding it as if they were data.

• Basic management of parallel processes: querying a process ID or
the number of processes, establishing and retrieving the IDs of processes
at the ends of a stream, etc.

• Miscellaneous: starting and stopping the system (using static class meth-
ods (singleton pattern [205]) rather than instances methods), etc.

Among the advanced services implemented we can cite the following:

• Management of groups of processes: this allows skeletons to be ar-
ranged in parallel optimization regions. Available methods allow manip-
ulating communicators and intercommunicators between groups, in the
MPI sense. This organization could be important for certain distributed
algorithms, especially in the case of hybrid algorithms.

• Services to acquire the on-line state of the network: this C++ meth-
ods are provided to allow working with a model of both communication
links and the state of machines involved in the execution, all this under
a real time basis, during the run of a skeleton. Basically, these services
endow the skeleton programmer with C++ methods to check the delays in
any link of the LAN or WAN for different packet sizes, plus the error rate
(noise) in the link, and the load of a workstation in the net. Furthermore,
independent clients in C, C++ and Java have been developed in addition
to the mentioned one in order to make NetStream a stand alone com-
munication layer for optimization and other applications at a minimum
complexity and overhead.

All these services provide high-level programming and will ease taking
on-line decisions in WAN algorithms, although we are still at the stage of
developing “intelligent” algorithms that use this information to perform a
more efficient search.

A.3 Hybridization Interface

In this section we discuss the mechanisms available in mallba to foster com-
binations of skeletons in the quest for more efficient and accurate solvers. This

A.3 Hybridization Interface 155

raises the question of constructing efficient hybrid algorithms. In its broad-
est sense, hybridization [130] refers to the inclusion of problem-dependent
knowledge in a general search algorithm in one of two ways [207]:

• Strong hybridization: problem knowledge is included as specific non-
conventional problem-dependent representations and/or operators.

• Weak hybridization: several algorithms are combined in some manner
to yield the new hybrid algorithm.

The term “hybridization” has been used with diverse meanings in different
contexts. Here, we refer to the combination of different search algorithms
(the so-called weak hybridization). As it has been shown in theory [208] and
practice [130], hybridization is an essential mechanism for obtaining effective
optimization algorithms for specific domains. For this reason, there exist in
mallba several tools for building such hybrid skeletons. This contrasts with
other optimization libraries that let the programmer alone when building new
algorithms from existing ones.

Due to the fact that the algorithmic skeletons will be reutilized and com-
bined both by mallba end-users and by specialists, it is necessary to specify
in a standard and unified fashion the way these skeletons can interact. For
this reason, the notion of a skeleton state was proposed. The state of skele-
ton is its connection point with the environment. By accessing this state, one
can inspect the evolution of the search, and take decisions regarding future
actions of the skeleton. For this latter reason, it is mandatory to have not
only the means for inspecting the state, but also for modifying it on the fly.
Thus, either a user or another skeleton can control the future direction of the
search. This is done with independence of the actual implementation of the
skeleton, a major advantage in any large-scale project.

The advantages of using a state is that combining skeletons has a low
cost, despite the fact that uniformly defining the state is not trivial, and
constitutes an open research topic [209]. This proposal is articulated around
the two basic classes we mentioned before: StateVariable and StateCenter.
The StateVariable class allows defining and manipulating any information
element within the algorithm skeleton. The latter is the connection point that
provides access to the state itself.

On the basis of these classes, constructing a hybrid algorithm is very easy:
one has to simply specify the behavior pattern by means of the appropriate
manipulation of the states of the skeletons being combined. As an example of
the flexibility of this model we have developed meta-algorithms that define
the way in which n component skeletons interact each other. One simply
has to specify the precise algorithm involved to instance this meta-algorithm
to a concrete working hybrid skeleton; the behavior pattern is the same no
matter which these component algorithms are. This philosophy of “make
once instance many” can serve to produce different algorithms with the same
underlying search pattern at a minimum cost.

156 A The MALLBA Library

A.4 Additional Information about MALLBA

Now, we show some lists of information about the methods available in this li-
brary and its utilization to solve some problems. These lists are not complete,
they only show the most representative items in each category.

Algorithms Already Implemented in MALLBA

(Most of the listed algorithms have also parallel versions)

• Genetic algorithms (including distributed and cellular versions, and non-
traditional techniques such as CHC and μCHC).

• Simulated annealing.
• Evolutionary strategies.
• Differential evolution.
• Particle swarm optimization (continuous and discrete versions).
• Ant colony systems (including a specialized version for dynamic environ-

ments).
• Multi-objetive methods: NSGA-II, PAES, . . .
• Hybrid algorithms: GASA, CHCES, DEPSO, . . .

Applications Solved Using MALLBA

• Natural language tagging.
• Design of combinatorial circuits.
• Bioinformatic problems: DNA fragment assembly and microarray of data.
• Telecommunication problems: radio network design, terminal assignment,

sensor networks, VANET, MANET, . . .
• Scheduling problems: workforce planning problem, minimum tardy task

problem, traffic light controllers, . . .
• Continuous benchmark problems: rastrigin function, sphere function, fre-

quency modulation sound problem, Rosenbrock, CEC 2005/2008 stan-
dards, GECCO 2009/2010 standards, . . .

• Classical optimization problems: travel salesman problem, vehicle route
problem, p-median, onemax, maxsat, . . .

B

Acronyms

ACO Ant Colony Optimization
ANOVA Analysis of Variance
cEA Cellular Evolutionary Algorithm
CFLP Capacitated Facility Location Problem
CHC Cross generational elitist selection, Heterogeneous

recombination and Cataclysmic mutation
dEA Distributed Evolutionary Algorithm
DOP Dynamic Optimization Problem
DPX Double Point Crossover
EA Evolutionary Algorithm
EP Evolutionary Programming
ES Evolution Strategy
FAP Fragment Assembly Problem
GA Genetic Algorithm
GASA Hybrid method which combines a genetic algorithm

with a simulated annealing
GP Genetic Programming
HUX Half-Uniform Crossover
ILS Iterative Local Search
LAN Local Area Network
MAXSAT Maximum Satisfiability Problem
MPI Message Passing Interface
MOGA Multi-Objective Genetic Algorithm
NSGA Non-Stationary Genetic Algorithm
pGA Parallel Genetic Algorithm
PSO Particle Swarm Optimization
TS Tabu Search
SA Simulated Annealing
SS Scatter Search
SPX Simple Point Crossover
SIMD Single Instruction, Multiple Data
UX Uniform Crossover
VNS Variable Neighborhood Search
WAN Wide Area Network
WPP Workforce Planning Problem

References

1. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms
and Complexity. Dover Publications, New York (1998)

2. Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms
for the vehicle routing problems. Annals of Operations Research 41, 421–451
(1993)

3. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, Reading (1989)

5. Alba, E., Chicano, J.F., Dorronsoro, B., Luque, G.: Diseño de códigos cor-
rectores de errores con algoritmos genéticos. In: Actas del Tercer Con-
greso Español sobre Metaheuŕısticas, Algoritmos Evolutivos y Bioinspirados
(MAEB), Córdoba, Spain, pp. 51–58 (2004) (Spanish)

6. Alba, E., Tomassini, M.: Parallelism and Evolutionary Algorithms. IEEE
Transactions on Evolutionary Computation 6(5), 443–462 (2002)

7. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strate-
gies, Evolutionary Programming, Genetic Algorithms. Oxford University
Press, New York (1996)

8. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Com-
putation. Oxford University Press, Oxford (1997)

9. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms, 2nd edn.
Book Series on Genetic Algorithms and Evolutionary Computation, vol. 1.
Kluwer Academic Publishers, Dordrecht (2000)

10. Alba, E. (ed.): Parallel Metaheuristics: A New Class of Algorithms. Wiley,
Chichester (2005)

11. Lourenco, H.R., Martin, O., Stützle, T.: Iterated Local Search. In: Hand-
book of Metaheuristics, pp. 321–353. Kluwer Academic Publishers, Dordrecht
(2002)

12. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated An-
nealing. Science 220, 671–680 (1983)

13. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht
(1997)

14. Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers & Op-
erations Research 24(11), 1097–1100 (1997)

160 References

15. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge
(2004)

16. Darwin, C.: On the Origin of Species by Means of Natural Selection. John
Murray, Londres (1859)

17. Mendel, G.: Versuche ber Pflanzen-Hybriden. Verhandlungen des Natur-
forschedes Vereines in Brnn 4 (1865)

18. Alba, E., Cotta, C.: Evolución de Estructuras de Datos Complejas. Informática
y Automática 30(3), 42–60 (1997)

19. Hussain, T.S.: An introduction to evolutionary computation. CITO Re-
searcher Retreat, Hamilton, Ontario (1998)

20. Holland, J.H.: Outline for a logical theory of adaptive systems. Journal of the
ACM 9(3), 297–314 (1962)

21. Rechenberg, I.: Cybernetic solution path of an experimental problem. Tech-
nical report (1965)

22. Schwefel, H.-P.: Kybernetische Evolution als Strategie der Experimentellen
Forschung in der Strmungstechnik. PhD thesis, Technical University of Berlin
(1965)

23. Fogel, L.J.: Autonomous automata. Industrial Research 4, 14–19 (1962)
24. Cramer, N.L.: A representation for the adaptive generation of simple sequential

programs. In: Grefenstette, J.J. (ed.) Proc. of the First International Confer-
ence on Genetic Algorithms and their Applications, Carnegie-Mellon Univer-
sity, Pittsburgh, PA, USA, pp. 183–187. Spartan Books, Washington (1985)

25. Koza, J.R.: Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge (1992)

26. Wright, S.: Isolation by distance. Genetics 28, 114–138 (1943)
27. Alba, E., Troya, J.M.: Improving flexibility and efficiency by adding paral-

lelism to genetic algorithms. Statistics and Computing 12(2), 91–114 (2002)
28. Alba, E.: Análisis y Diseño de Algoritmos Genéticos Paralelos Distribuidos.

PhD thesis, Universidad de Málaga (1999)
29. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infras-

tructure. Elsevier, Amsterdam (2004)
30. Scott Gordon, V., Darrell Whitley, L.: Serial and parallel genetic algorithms

as function optimizers. In: ICGA, pp. 177–183 (1993)
31. Tanese, R.: Distributed genetic algorithms. In: Schaffer, J.D. (ed.) Proceedings

of the Third International Conference on Genetic Algorithms (ICGA), pp.
434–439. Morgan Kaufmann, San Francisco (1989)

32. Spiessens, P., Manderick, B.: A massively parallel genetic algorithm: Imple-
mentation and first analysis. In: Belew, R.K., Booker, L.B. (eds.) ICGA, pp.
279–287. Morgan Kaufmann, San Francisco (1991)

33. Syswerda, G.: A study of reproduction in generational and steady-state genetic
algorithms. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms, pp.
94–101. Morgan Kaufmann, San Francisco (1991)

34. Levine, D.: Users guide to the PGAPack parallel genetic algorithm library.
Technical Report ANL-95/18, Argonne National Laboratory, Mathematics
and Computer Science Division, January 31 (1995)

35. Alba, E., Troya, J.M.: A survey of parallel distributed genetic algorithms.
Complexity 4(4), 31–52 (1999)

36. Belding, T.C.: The distributed genetic algorithm revisited. In: Eshelman, L.J.
(ed.) Proceedings of the Sixth International Conference on Genetic Algorithms
(ICGA), pp. 114–121. Morgan Kaufmann, San Francisco (1995)

References 161

37. Baluja, S.: Structure and performance of fine-grain parallelism in genetic
search. In: Forrest, S. (ed.) Proceedings of the Fifth International Confer-
ence on Genetic Algorithms (ICGA), pp. 155–162. Morgan Kaufmann, San
Francisco (1993)

38. Maruyama, T., Hirose, T., Konagaya, A.: A fine-grained parallel genetic algo-
rithm for distributed parallel systems. In: Forrest, S. (ed.) Proceedings of the
Fifth International Conference on Genetic Algorithms (ICGA), pp. 184–190.
Morgan Kaufmann, San Francisco (1993)

39. Tanese, R.: Parallel genetic algorithms for a hypercube. In: Grefenstette, J.J.
(ed.) Proceedings of the Second International Conference on Genetic Algo-
rithms (ICGA), p. 177. Lawrence Erlbaum Associates, Mahwah (1987)

40. Lin, S.C., Punch, W.F., Goodman, E.D.: Coarse-grain parallel genetic algo-
rithms: Categorization and a new approach. In: Sixth IEEE Symposium on
Parallel and Distributed Processing, pp. 28–37 (1994)

41. Sefrioui, M., Périaux, J.: A hierarchical genetic algorithm using multiple mod-
els for optimization. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoe-
nauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp.
879–888. Springer, Heidelberg (2000)

42. Herrera, F., Lozano, M., Moraga, C.: Hybrid distributed real-coded genetic
algorithms. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.)
PPSN 1998. LNCS, vol. 1498, pp. 603–612. Springer, Heidelberg (1998)

43. Herrera, F., Lozano, M.: Gradual distributed real-coded genetic algorithms.
IEEE Transactions on Evolutionary Computation 4(1), 43–63 (2000)

44. Luna, F., Alba, E., Nebro, A.J.: Parallel Heterogenous Metaheuristics. In:
Alba, E. (ed.) Parallel Metaheuristics, pp. 395–422. Wiley, Chichester (2005)

45. Alba, E., Luna, F., Nebro, A.J., Troya, J.M.: Parallel heterogeneous genetic
algorithms for continuous optimization. Parallel Computing 30(5-6), 699–719
(2004), Parallel and nature-inspired computational paradigms and applica-
tions

46. Alba, E., Troya, J.M.: Cellular evolutionary algorithms: Evaluating the influ-
ence of ratio. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer,
M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 29–38.
Springer, Heidelberg (2000)

47. Vidal, P., Alba, E.: Cellular Genetic Algorithm on Graphic Processing Units.
In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010),
pp. 223–232 (2010)

48. Vidal, P., Alba, E.: A MultiGPU Implementation of a Cellular Genetic Algo-
rithm. In: 2010 IEEE World Congress on Computational Intelligence, IEEE
CEC 2010, pp. 1–7 (2010)

49. Gorges-Schleuter, M.: ASPARAGOS an asynchronous parallel genetic opti-
mization strategy. In: Proceedings of the Third International Conference on
Genetic Algorithms (ICGA), pp. 422–427. Morgan Kaufmann Publishers Inc.,
San Francisco (1989)

50. Whitley, D., Starkweather, T.: GENITOR II: A distributed genetic algorithm.
Journal of Experimental and Theoretical Aritificial Intelligence 2, 189–214
(1990)

51. Davidor, Y.: A naturally occuring niche and species phenomenon: The model
and first results. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth
International Conference on Genetic Algorithms (ICGA), pp. 257–263 (1991)

162 References

52. Mühlenbein, H., Schomish, M., Born, J.: The parallel genetic algorithm as a
function optimizer. Parallel Computing 17, 619–632 (1991)

53. Erickson, J.A., Smith, R.E., Goldberg, D.E.: SGA-Cube, a simple genetic
algorithm for ncube 2 hypercube parallel computers. Technical Report 91005,
The University of Alabama (1991)

54. Robbins, G.: EnGENEer - The evolution of solutions. In: Proceedings of the
Fifth Annual Seminar Neural Networks and Genetic Algorithms, London, UK
(1992)

55. Stender, J. (ed.): Parallel Genetic Algorithms: Theory and Applications. IOS
Press, Amsterdam (1993)

56. Ribeiro-Filho, J.L., Alippi, C., Treleaven, P.: Genetic algorithm programming
environments. In: Stender, J. (ed.) Parallel Genetic Algorithms: Theory and
Applications, pp. 65–83. IOS Press, Amsterdam (1993)

57. Mej́ıa-Olvera, M., Cantú-Paz, E.: DGENESIS-software for the execution of
distributed genetic algorithms. In: Proceedings XX conf. Latinoamericana de
Informática, pp. 935–946 (1994)

58. Potts, J.C., Giddens, T.D., Yadav, S.B.: The development and evaluation of an
improved genetic algorithm based on migration and artificial selection. IEEE
Transactions on Systems, Man, and Cybernetics 24(1), 73–86 (1994)

59. Adamidis, P., Petridis, V.: Co-operating populations with different evolution
behavior. In: Proceedings of the Second IEEE Conference on Evolutionary
Computation, pp. 188–191. IEEE Press, Los Alamitos (1996)

60. Goodman, E.D.: An Introduction to GALOPPS v3.2. Technical Report 96-
07-01, GARAGE, I.S. Lab. Dpt. of C. S. and C.C.C.A.E.M., Michigan State
Univ., East Lansing, MI (1996)

61. Talbi, E.-G., Hafidi, Z., Kebbal, D., Geib, J.-M.: MARS: An adaptive parallel
programming environment. In: Rajkumar, B. (ed.) High Prformance Cluster
Computing, vol. 1, pp. 722–739. Prentice-Hall, Englewood Cliffs (1999)

62. Radcliffe, N.J., Surry, P.D.: The reproductive plan language RPL2: Motiva-
tion, architecture and applications. In: Stender, J., Hillebrand, E., Kingdon,
J. (eds.) Genetic Algorithms in Optimisation, Simulation and Modelling. IOS
Press, Amsterdam (1999)

63. Arenas, M., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter,
B., Preuß, M., Schoenauer, M.: A framework for distributed evolutionary
algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp.
665–675. Springer, Heidelberg (2002)

64. Alba, E., Almeida, F., Blesa, M., Cotta, C., Dı́az, M., Dorta, I., Gabarró, J.,
León, C., Luque, G., Petit, J.: Rodŕıguez C., Rojas A., and Xhafa F. Effi-
cient parallel LAN/WAN algorithms for optimization. The MALLBA project.
Parallel Computing 32(5-6), 415–440 (2006)

65. Cahon, S., Melab, N., Talbi, E.-G.: ParadisEO: A Framework for the Reusable
Design of Parallel and Distributed Metaheuristics. Journal of Heuristics 10(3),
357–380 (2004)

66. Helseth, A., Holen, A.T.: Impact of Energy End Use and Customer Interrup-
tion Cost on Optimal Allocation of Switchgear in Constrained Distribution
Networks. IEEE Transactions on Power Delivery 23(3), 1419–1425 (2008)

References 163

67. Luque, G., Alba, E., Dorronsoro, B.: An Asynchronous Parallel Implemen-
tation of a Cellular Genetic Algorithm for Combinatorial Optimization. In:
Genetic and Evolutionary Computation Conference (GECCO 2009), pp. 1395–
1401. IEEE Press, Montreal (2009)

68. Alba, E., Troya, J.M.: Gaining new fields of application for OOP: the par-
allel evolutionary algorithm case. Journal of Object Oriented Programming
(December 2001) (web version only)

69. Alba, E., Saucedo, J.F., Luque, G.: A Study of Canonical GAs for NSOPs. In:
Alba, E., Saucedo, J.F., Luque, G. (eds.) MIC 2005 Post Conference Volume
on Metaheuristics - Progress in Complex Systems Optimization, ch. 13, pp.
245–260. Springer, Heidelberg (2007)

70. Alba, E., Luque, G., Arias, D.: Impact of Frequency and Severity on Non-
Stationary Optimization Problems. In: 6th European Workshop on Evolution-
ary Algorithms in Stochastic and Dynamic Environments (EvoSTOC 2009),
Tubingen, Germany, pp. 755–761. Springer, Heidelberg (2009)

71. Luque, G., Alba, E., Dorronsoro, B.: Selection Pressure and Takeover Time of
Distributed Evolutionary Algorithms. In: Genetic and Evolutionary Computa-
tion Conference (GECCO 2010), pp. 1083–1088. IEEE Press, Portland (2010)

72. Chicano, F., Luque, G., Alba, E.: Elementary Landscape Decomposition of the
Quadratic Assignment Problem. In: Genetic and Evolutionary Computation
Conference (GECCO 2010), pp. 1425–1432. IEEE Press, Portland (2010)

73. Whitley, D., Chicano, F., Alba, E., Luna, F.: Elementary Landscapes of Fre-
quency Assignment Problems. In: Genetic and Evolutionary Computation
Conference (GECCO 2010), pp. 1409–1416. IEEE Press, Portland (2010)

74. Oram, A.: Peer-to-peer: Harnessing the power of disruptive technologies (2001)
75. Van-Luong, T., Melab, N., Talbi, E.-G.: GPU-based Island Model for Evolu-

tionary Algorithms. In: Genetic and Evolutionary Computation Conference
(GECCO 2010), pp. 1089–1096. IEEE Press, Portland (2010)

76. Wilson, G., Banzhaf, W.: Deployment of cpu and gpu-based genetic program-
ming on heterogeneous devices. In: GECCO 2009: Proceedings of the 11th
Annual Conference Companion on Genetic and Evolutionary Computation
Conference, pp. 2531–2538. ACM, New York (2009)

77. Tsutsui, S., Fujimoto, N.: Solving quadratic assignment problems by genetic
algorithms with gpu computation: a case study. In: GECCO 2009: Proceed-
ings of the 11th Annual Conference Companion on Genetic and Evolutionary
Computation Conference, pp. 2523–2530. ACM, New York (2009)

78. Garey, M.R., Johnson, D.S.: Computers and Intractability. A guide to the
Theory of NP-Completeness. Freeman, San Francisco (1979)

79. De Jong, K.A., Potter, M.A., Spears, W.M.: Using problem generators to
explore the effects of epistasis. In: 7th ICGA, pp. 338–345. Kaufman, San
Francisco (1997)

80. Graham, R.L.: Bounds on multiprocessor timing anomalies. SIAM Journal of
Applied Mathematics 17, 416–429 (1969)

81. Karp, R.M.: Probabilistic analysis of partitioning algorithms for the traveling
salesman problem in the plane. Mathematics of Operations Research 2, 209–
224 (1977)

82. Barr, R.S., Hickman, B.L.: Reporting Computational Experiments with Par-
allel Algorithms: Issues, Measures, and Experts’ Opinions. ORSA Journal on
Computing 5(1), 2–18 (1993)

164 References

83. Rardin, R.L., Uzsoy, R.: Experimental Evaluation of Heuristic Optimization
Algorihtms: A Tutorial. Journal of Heuristics 7(3), 261–304 (2001)

84. McGeogh, C.: Toward an experimental method for algorithm simulation. IN-
FORMS Journal on Computing 8(1) (1995)

85. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performace.
Information Processing Letters 82, 7–13 (2002)

86. UEA CALMA Group. Calma project report 2.4: Parallelism in combinatorial
optimisation. Technical report, School of Information Systems, University of
East Anglia, Norwich, UK, September 18 (1995)

87. Alba, E., Nebro, A.J., Troya, J.M.: Heterogeneous Computing and Parallel
Genetic Algorithms. Journal of Parallel and Distributed Computing 62, 1362–
1385 (2002)

88. Donalson, V., Berman, F., Paturi, R.: Program speedup in heterogeneous
computing network. Journal of Parallel and Distributed Computing 21, 316–
322 (1994)

89. Karp, A.H., Flatt, H.P.: Measuring Parallel Processor Performance. Commu-
nications of the ACM 33, 539–543 (1990)

90. Hooker, J.N.: Testing heuristics: We have it all wrong. Journal of Heuris-
tics 1(1), 33–42 (1995)

91. Eiben, A.E., Jelasity, M.: A critical note on experimental reseeach method-
ology in ec. In: Congress on Evolutionary Computation 2002, pp. 582–587.
IEEE Press, Los Alamitos (2002)

92. Darrell Whitley, L.: An overview of evolutionary algorithms: practical issues and
common pitfalls. Information & Software Technology 43(14), 817–831 (2001)

93. Reinelt, G.: TSPLIB - A travelling salesman problem library. ORSA - Jorunal
of Computing 3, 376–384 (1991)

94. Uzsoy, R., Demirkol, E., Mehta, S.V.: Benchmarks for shop scheduling prob-
lems. European Journal of Operational Research 109, 137–141 (1998)

95. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimiza-
tion benchmarking 2009: Presentation of the noiseless functions. Technical
Report Technical Report 2009/20, Research Center PPE (2009)

96. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A.,
Tiwari, S.: Problem definitions and evaluation criteria for the cec 2005 special
session on real-parameter optimization. Technical Report KanGAL Report
2005005, Nanyang Technological University, IIT Kanpur, India (May 2005)

97. Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M.,
Yang, Z.: Benchmark functions for the cec 2008 special session and compe-
tition on large scale global optimization. Technical report, Nature Inspired
Computation and Applications Laboratory, USTC, China (2007)

98. Beasley, J.E.: OR-library: distributing test problems by electronic mail. Jour-
nal of the Operational Research Society 41(11), 1069–1072 (1990)

99. Montgomery, D.C.: Design and Analysis of Experiments, 3rd edn. John Wiley,
New York (1991)

100. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm
for configuring metaheuristics. In: GECCO, vol. 2, pp. 11–18 (2002)

101. Bartz-Beielstein, T., Preuss, M.: The future of experimental research. In:
GECCO 2009: Proceedings of the 11th Annual Conference Companion on Ge-
netic and Evolutionary Computation Conference, pp. 3185–3226. ACM, New
York (2009)

References 165

102. Golden, B., Stewart, W.: Empirical Analisys of Heuristics. In: Lawlwer, E.,
Lenstra, J., Rinnooy Kan, A., Schoys, D. (eds.) The Traveling Salesman
Problem, a Guided Tour of Combinatorial Optimization, pp. 207–249. Wi-
ley, Chichester (1985)

103. Cleveland, W.S.: Elements of Graphing Data. Wadsworth, Monteray (1985)
104. Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press

(1993)
105. Alcalá-Fdez, J., Sánchez, L., Garćıa, S., del Jesus, M.J., Ventura, S., Garrell,

J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., et al.: KEEL: a soft-
ware tool to assess evolutionary algorithms for data mining problems. Soft
Computing-A Fusion of Foundations, Methodologies and Applications 13(3),
307–318 (2009)

106. Andre, D., Koza, J.R.: Parallel genetic programming: A scalable implementa-
tion using the transputer network architecture. In: Angeline, P.J., Kinnear Jr.,
K.E. (eds.) Advances in Genetic Programming 2, ch. 16, pp. 317–338. MIT
Press, Cambridge (1996)

107. Alba, E., Troya, J.M.: Influence of the Migration Policy in Parallel dGAs with
Structured and Panmictic Populations. Applied Intelligence 12(3), 163–181
(2000)

108. Sarma, J., De Jong, K.A.: An analysis of the effect of the neighborhood
size and shape on local selection algorithms. In: Ebeling, W., Rechenberg,
I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 236–
244. Springer, Heidelberg (1996)

109. Sarma, J., De Jong, K.: An Analysis of Local Selection Algorithms in a Spa-
tially Structured Evolutionary Algorithm. In: Bäck, T. (ed.) Proceedings of
the 7th International Conference on Genetic Algorithms, pp. 181–186. Morgan
Kaufmann, San Francisco (1997)

110. Gorges-Schleuter, M.: An Analysis of Local Selection in Evolution Strategies.
In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela,
M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Compu-
tation Conference, vol. 1, pp. 847–854. Morgan Kaufmann, Orlando (1999)

111. Rudolph, G.: Takeover Times in Spatially Structured Populations: Array and
Ring. In: Lai, K.K., Katai, O., Gen, M., Lin, B. (eds.) 2nd Asia-Pacific Con-
ference on Genetic Algorithms and Applications, pp. 144–151. Global-Link
Publishing (2000)

112. Giacobini, M., Tettamanzi, A., Tomassini, M.: Modelling Selection Intensity
for Linear Cellular Evolutionary Algorithms. In: Liardet, P., et al. (eds.) Ar-
tificial Evolution, Sixth International Conference, pp. 345–356. Springer, Hei-
delberg (2003)

113. Giacobini, M., Alba, E., Tomassini, M.: Selection Intensity in Asynchronous
Cellular Evolutionary Algorithms. In: Cantú-Paz, E. (ed.) Proceedings of the
Genetic and Evolutionary Computation Conference, Chicago, USA, pp. 955–
966 (2003)

114. Sprave, J.: A Unified Model of Non-Panmictic Population Structures in Evolu-
tionary Algorithms. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao,
X., Zalzala, A. (eds.) Proceedings of the Congress of Evolutionary Computa-
tion, vol. 2, pp. 1384–1391. IEEE Press, Mayflower Hotel (1999)

115. Alba, E., Luque, G.: Growth Curves and Takeover Time in Evolutionary Al-
gorithms. In: Deb, K., et al. (eds.) Genetic and Evolutionary Computation
Conference (GECCO 2004), Seattle, Washington, pp. 864–876 (2004)

166 References

116. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used
in genetic algorithms. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algo-
rithms, pp. 69–93. Morgan Kaufmann, San Francisco (1991)

117. Chakraborty, U.K., Deb, K., Chakraborty, M.: Analysis of Selection Algo-
rithms: A Markov Chain Approach. Evolutionary Computation 4(2), 133–167
(1997)

118. Giacobini, M., Tomassini, M., Tettamanzi, A., Alba, E.: The Selection Inten-
sity in Cellular Evolutionary Algorithms for Regular Lattices. IEEE Transac-
tions on Evolutionary Computation 5(9), 489–505 (2005)

119. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Pro-
cessing. MIT Press, Cambridge (2000)

120. Pla, F., Molina, A., Prieto, N.: Tagging and chunking with bigrams. In: Proc.
of the 17th Conference on Computational Linguistics, pp. 614–620 (2000)

121. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval.
Addison-Wesley, Reading (1999)

122. DeRose, S.J.: Grammatical Category Disambiguation by Statistical Optimiza-
tion. Computational Linguistics 14, 31–39 (1988)

123. Nelson, F.W., Kucera, H.: Manual of information to accompany a standard
corpus of present-day edited american english, for use with digital computers.
Technical report, Dep. of Linguistics, Brown University (1979)

124. Charniak, E.: Statistical Language Learning. MIT Press, Cambridge (1993)
125. Forney, G.D.: The viterbi algorithm. Proceedings of The IEEE 61(3), 268–278

(1973)
126. Araujo, L.: Part-of-speech tagging with evolutionary algorithms. In: Gelbukh,

A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 230–239. Springer, Heidelberg
(2002)

127. Araujo, L., Luque, G., Alba, E.: Metaheuristics for Natural Language Tagging.
In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 889–900. Springer,
Heidelberg (2004)

128. Alba, E., Luque, G., Araujo, L.: Natural language tagging with genetic algo-
rithms. Information Processing Letters 100(5), 173–182 (2006)

129. Erik, F.: Tjong Kim Sang. Memory-based shallow parsing. J. Mach. Learn.
Res. 2, 559–594 (2002)

130. Davis, L. (ed.): Handbook of Genetic Algorithms. Van Nostrand Reinhold,
New York (1991)

131. Eshelman, L.J.: The CHC Adaptive Search Algorithm: How to Have Safe
Search when Engaging in Nontraditional Genetic Recombination. In: Rawlins,
G.E. (ed.) FOGA, pp. 265–283. Morgan Kaufmann, San Francisco (1991)

132. Sampson, G.: English for the Computer. Clarendon Press, Oxford (1995)
133. Brants, T.: Tnt: a statistical part-of-speech tagger. In: Proceedings of the Sixth

Conference on Applied Natural Language Processing, pp. 224–231. Morgan
Kaufmann Publishers Inc., San Francisco (2000)

134. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated
corpus of english: The penn treebank. Computational Linguistics 19(2), 313–
330 (1994)

135. Pla, F., Molina, A.: Improving part-of-speech tagging using lexicalized hmms.
Nat. Lang. Eng. 10(2), 167–189 (2004)

References 167

136. van Halteren, H., Daelemans, W., Zavrel, J.: Improving accuracy in word
class tagging through the combination of machine learning systems. Comput.
Linguist. 27(2), 199–229 (2001)

137. Karnaugh, M.: A map method for synthesis of combinational logic circuits.
Transactions of the AIEE, Communications and Electronics I(72), 593–599
(1953)

138. Veitch, E.W.: A chart method for simplifying boolean functions. In: Proceed-
ings of the ACM, pp. 127–133. IEEE Service Center, Piscataway (1952)

139. McCluskey, E.J.: Minimization of boolean functions. Bell Systems Technical
Journal 35(5), 1417–1444 (1956)

140. Quine, W.V.: A way to simplify truth functions. American Mathematical
Monthly 62(9), 627–631 (1955)

141. Coello Coello, C.A., Christiansen, A.D., Hernández Aguirre, A.: Use of Evo-
lutionary Techniques to Automate the Design of Combinational Circuits. In-
ternational Journal of Smart Engineering System Design 2(4), 299–314 (2000)

142. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the Evolutionary De-
sign of Digital Circuits—Part I. Genetic Programming and Evolvable Ma-
chines 1(1/2), 7–35 (2000)

143. Pérez, E.I., Coello Coello, C.A., Aguirre, A.H.: Extracting and re-using de-
sign patterns from genetic algorithms using case-based reasoning. Engineering
Optimization 35(2), 121–141 (2003)

144. Miller, J., Kalganova, T., Lipnitskaya, N., Job, D.: The Genetic Algorithm as a
Discovery Engine: Strange Circuits and New Principles. In: Proceedings of the
AISB Symposium on Creative Evolutionary Systems (CES 1999), Edinburgh,
UK (1999)

145. Alba, E., Luque, G., Coello, C., Hernández, E.: Comparative study of serial
and parallel heuristics used to design combinational logic circuits. Optimiza-
tion Methods and Software 22(3), 485–509 (2007)

146. Coello Coello, C.A., Hernández Aguirre, A., Buckles, B.P.: Evolutionary Mul-
tiobjective Design of Combinational Logic Circuits. In: Lohn, J., Stoica, A.,
Keymeulen, D., Colombano, S. (eds.) Proceedings of the Second NASA/DoD
Workshop on Evolvable Hardware, pp. 161–170. IEEE Computer Society, Los
Alamitos (2000)

147. Coello Coello, C.A., Christiansen, A.D., Hernández Aguirre, A.: Automated
Design of Combinational Logic Circuits using Genetic Algorithms. In: Smith,
D.G., Steele, N.C., Albrecht, R.F. (eds.) Proceedings of the International
Conference on Artificial Neural Nets and Genetic Algorithms, pp. 335–338.
Springer, University of East Anglia (1997)

148. Louis, S.J.: Genetic Algorithms as a Computational Tool for Design. PhD
thesis, Department of Computer Science, Indiana University (August 1993)

149. Louis, S.J., Rawlins, G.J.: Using Genetic Algorithms to Design Structures.
Technical Report 326, Computer Science Department, Indiana University,
Bloomington, Indiana (February 1991)

150. Miller, J.F., Thomson, P., Fogarty, T.: Designing Electronic Circuits Using
EAs. Arithmetic Circuits: A Case Study. In: Quagliarella, D., Périaux, J.,
Poloni, C., Winter, G. (eds.) Genetic Algorithms and Evolution Strategy in
Engineering and Computer Science, pp. 105–131. Morgan Kaufmann, San
Francisco (1998)

168 References

151. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming.
An Introduction. On the Automatic Evolution of Computer Programs and Its
Applications. Morgan Kaufmann Publishers, San Francisco (1998)

152. Al-Saiari, U.S.: Digital circuit design through simulated evolution. Master’s
thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Ara-
bia (November 2003)

153. S�lowik, A., Bia�lko, M.: Design and Optimization of Combinational Digital
Circuits Using Modified Evolutionary Algorithm. In: Rutkowski, L., Siek-
mann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI),
vol. 3070, pp. 468–473. Springer, Heidelberg (2004)

154. Vassilev, V.K., Miller, J.F., Fogarty, T.C.: Digital Circuit Evolution and Fit-
ness Landscapes. In: 1999 Congress on Evolutionary Computation, vol. 2, pp.
1299–1306. IEEE Service Center, Piscataway (1999)

155. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the Evolutionary Design of
Digital Circuits—Part II. Genetic Programming and Evolvable Machines 1(3),
259–288 (2000)

156. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information Characteristics and
the Structure of Landscapes. Evolutionary Computation 8(1), 31–60 (2000)

157. Abd-El-Barr, M., Sait, S.M., Sarif, B.A.B., Al-Saiari, U.: A modified ant
colony algorithm for evolutionary design of digital circuits. In: Proceedings of
the 2003 Congress on Evolutionary Computation (CEC 2003), pp. 708–715.
IEEE Press, Canberra (2003)

158. Coello Coello, C.A., Zavala Gutiérrez, R.L., Garćıa, B.M., Aguirre, A.H.: Ant
Colony System for the Design of Combinational Logic Circuits. In: Miller, J.,
Thompson, A., Thomson, P., Fogarty, T.C. (eds.) Evolvable Systems: From
Biology to Hardware, pp. 21–30. Springer, Edinburgh (2000)

159. Coello Coello, C.A., Hernández Luna, E., Hernández Aguirre, A.: Use of Parti-
cle Swarm Optimization to Design Combinational Logic Circuits. In: Tyrrell,
A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp.
398–409. Springer, Heidelberg (2003)

160. Venu, G.: Gudise and Ganesh K. Venayagamoorthy. Evolving digital circuits
using particle swarm. In: Proceedings of the INNS-IEEE International Joint
Conference on Neural Networks, Porland, OR, USA, pp. 468–472 (2003)

161. Gordon, T.G.W., Bentley, P.J.: On evolvable hardware. In: Ovaska, S., Sz-
tandera, L. (eds.) Soft Computing in Industrial Electronics, pp. 279–323.
Physica-Verlag, Heidelberg (2003)

162. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University
of Michigan Press, Ann Arbor (1975)

163. Aarts, E., Korst, J.: Selected topics in simulated annealing. In: Ribero, C.C.,
Hansen, P. (eds.) Essays and Surveys un Metaheuristics. Kluwer Academic
Publishers, Boston (2002)

164. Laarhoven, P.J.M., Aarts, E.H.L. (eds.): Simulated annealing: theory and ap-
plications. Kluwer Academic Publishers, Norwell (1987)

165. Chelouah, R., Siarry, P.: Tabu search applied to global optimization. European
Journal of Operational Research 123(2), 256–270 (2000)

166. Fan, S.-K., Liang, Y.-C., Zahara, E.: Hybrid simplex search and particle swarm
optimization for the global optimization of multimodal functions. Engineering
Optimization 36(4), 401–418 (2004)

References 169

167. Hedar, A.-R., Fukushima, M.: Hybrid simulated annealing and direct search
method for nonlinear unconstrained global optimization. Optimization Meth-
ods and Software 17(5), 891–912 (2002)

168. Hedar, A.-R., Fukushima, M.: Heuristic pattern search and its hybridiza-
tion with simulated annealing for nonlinear global optimization. Optimization
Methods and Software 19(3-4), 291–308 (2004)

169. Kvasnièka, V., Posṕıchal, J.: A hybrid of simplex method and simulated an-
nealing. Chemometrics and Intelligent Laboratory Systems 39, 161–173 (1997)

170. Serna Pérez, E.: Diseño de Circuitos Lógicos Combinatorios utilizando Progra-
mación Genética. Master’s thesis, Maestŕıa en Inteligencia Artificial, Facultad
de F́ısica e Inteligencia Artificial, Universidad Veracruzana, Enero 2001 (2001)
(in Spanish)

171. Luna, E.H.: Diseño de circuitos lógicos combinatorios usando optimización
mediante cúmulos de part́ıculas. Master’s thesis, Computer Science Section,
Electrical Engineering Department, CINVESTAV-IPN, Mexico, D.F., Mexico
(February 2004) (in Spanish)

172. Sasao, T. (ed.): Logic Synthesis and Optimization. Kluwer Academic Press,
Dordrecht (1993)

173. Coello Coello, C.A., Aguirre, A.H.: Design of combinational logic circuits
through an evolutionary multiobjective optimization approach. Artificial Intel-
ligence for Engineering, Design, Analysis and Manufacture 16(1), 39–53 (2002)

174. Alba, E., Laguna, M., Luque, G.: Workforce planning with a parallel genetic
algorithm. In: Arenas, M.G., Herrera, F., Lozano, M., Merelo, J.J., Romero,
G., Sánchez, A.M. (eds.) IV Congreso Español de Metaheuŕısticas, Algoritmos
Evolutivos y Bioinspirados (MAEB 2005 - CEDI 2005), Granada, España, pp.
919–919 (2005)

175. Alba, E., Luque, G., Luna, F.: Parallel metaheuristics for workforce planning.
In: NIDISC 2006-IPDPS 2006, p. 246. IEEE Press, Los Alamitos (2006)

176. Glover, F., Kochenberger, G., Laguna, M., Wubbena, T.: Selection and Assign-
ment of a Skilled Workforce to Meet Job Requirements in a Fixed Planning
Period. In: MAEB 2004, pp. 636–641 (2004)

177. Laguna, M., Wubbena, T.: Modeling and Solving a Selection and Assignment
Problem. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Next Wave in
Computing, Optimization, and Decision Technologies, pp. 149–162. Springer,
Heidelberg (2005)

178. Aardal, K.: Capacitated Facility Location: Separation Algorithm and Com-
putational Experience. Mathematical Programming 81, 149–175 (1998)

179. Klose, A.: An LP-based Heuristic for Two-stage Capacitated Facility location
Problems. Journal of the Operational Research Society 50, 157–166 (1999)

180. Glover, F., Laguna, M., Mart́ı, R.: Fundamentals of scatter search and path
relinking. Control and Cybernetics 39(3), 653–684 (2000)

181. Garćıa-López, F., Melián-Batista, B., Moreno-Pérez, J., Moreno-Vega, J.M.:
Parallelization of the Scatter Search. Parallel Computing 29, 575–589 (2003)

182. Nebro, A.J., Luque, G., Luna, F., Alba, E.: DNA fragment assembly using a
grid-based genetic algorithm. Computers & Operations Research 35(9), 2776–
2790 (2008)

183. Minetti, G., Alba, E., Luque, G.: Seeding Strategies and Recombination Op-
erators for Solving the DNA Fragment Assembly Problem. Information Pro-
cessing Letters 108(3), 94–100 (2008)

170 References

184. Parsons, R., Forrest, S., Burks, C.: Genetic algorithms, operators, and DNA
fragment assembly. Machine Learning 21, 11–33 (1995)

185. Pevzner, P.A.: Computational molecular biology: An algorithmic approach.
The MIT Press, London (2000)

186. Setubal, J., Meidanis, J.: Fragment Assembly of DNA. In: Introduction to
Computational Molecular Biology, ch. 4, pp. 105–139. University of Campinas,
Brazil (1997)

187. Kim, S.: A structured Pattern Matching Approach to Shotgun Sequence As-
sembly. PhD thesis, Computer Science Department, The University of Iowa,
Iowa City (1997)

188. Allex, C.F.: Computational Methods for Fast and Accurate DNA Fragment
Assembly. UW technical report CS-TR-99-1406, Department of Computer Sci-
ences, University of Wisconsin-Madison (1999)

189. Notredame, C., Higgins, D.G.: SAGA: sequence alignment by genetic algo-
rithm. Nucleic Acids Research 24, 1515–1524 (1996)

190. Parsons, R., Johnson, M.E.: A case study in experimental design applied to
genetic algorithms with applications to DNA sequence assembly. American
Journal of Mathematical and Management Sciences 17, 369–396 (1995)

191. Green, P.: Phrap, http://www.mbt.washington.edu/phrap.docs/phrap.html
192. Sutton, G.G., White, O., Adams, M.D., Kerlavage, A.R.: TIGR Assembler: A

new tool for assembling large shotgun sequencing projects. In: Genome Science
& Technology, pp. 9–19 (1995)

193. Chen, T., Skiena, S.S.: Trie-based data structures for sequence assembly. In:
The Eighth Symposium on Combinatorial Pattern Matching, pp. 206–223
(1998)

194. Huang, X., Madan, A.: CAP3: A DNA sequence assembly program. Genome
Research 9, 868–877 (1999)

195. Myers, E.W.: Towards simplifying and accurately formulating fragment as-
sembly. Journal of Computational Biology 2(2), 275–290 (2000)

196. Alba, E., Luque, G.: A new local search algorithm for the dna fragment as-
sembly problem. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS,
vol. 4446, pp. 1–12. Springer, Heidelberg (2007)

197. Luque, G., Alba, E.: Metaheuristics for the DNA Fragment Assembly Problem.
International Journal of Computational Intelligence Research 1(1-2), 98–108
(2005)

198. Minetti, G., Alba, E., Luque, G.: Variable neighborhood search for solving the
dna fragment assembly problem. In: CACIC 2007, Corrientes y Resistencia,
Argentina (October 2007)

199. Minetti, G., Alba, E., Luque, G.: Variable Neighborhood Search as Genetic
Operator for DNA Fragment Assembling Problem. In: Eighth International
Conference on Hybrid Intelligent System (HIS 2008), pp. 714–719. IEEE Press,
Barcelona (2008)

200. Whitely, D.: The GENITOR algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best. In: Schaffer, J.D. (ed.) Pro-
ceedings of the Third International Conference on Genetic Algorithms, pp.
116–121. Morgan Kaufmann, San Francisco (1989)

201. Engle, M.L., Burks, C.: Artificially generated data sets for testing DNA frag-
ment assembly algorithms. Genomics 16 (1993)

References 171

202. Li, L., Khuri, S.: A comparison of dna fragment assembly algorithms. In: Inter-
national Conference on Mathematics and Engineering Techniques in Medicine
and Biological Sciences, pp. 329–335 (2004)

203. Minetti, G., Alba, E.: Metaheuristic Assemblers of DNA strands: Noiseless and
Noisy Cases. In: 2010 IEEE World Congress on Computational Intelligence,
IEEE CEC 2010, pp. 1–8 (2010)

204. Alba, E., Luque, G., Garcia-Nieto, J., Ordóñez, G., Leguizamón, G.:
MALLBA: a software library to design efficient optimisation algorithms. In-
ternational Journal of Innovative Computing and Applications 1(1), 74–85
(2007)

205. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

206. Alba, E., Cotta, C., Dı́az, M., Soler, E., Troya, J.M.: MALLBA: Middleware
for a geographically distributed optimization system. Technical report, Dpto.
Lenguajes y Ciencias de la Computación, Universidad de Málaga, internal
report (2000)

207. Cotta, C., Troya, J.M.: On Decision-Making in Strong Hybrid Evolutionary
Algorithms. In: Mira, J., Moonis, A., de Pobil, A.P. (eds.) IEA/AIE 1998.
LNCS, vol. 1416, pp. 418–427. Springer, Heidelberg (1998)

208. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

209. Daida, J.M., Ross, S.J., Hannan, B.C.: Biological Symbiosis as a Metaphor
for Computational Hybridization. In: Eshelman, L.J. (ed.) Sixth Interna-
tional Conference on Genetic Algorithms, pp. 328–335. Morgan Kaufmann,
San Francisco (1995)

	Cover
	Studies in Computational Intelligence 367
	Parallel Genetic Algorithms
	ISBN 9783642220838
	Preface
	Contents
	Part I: Introduction
	1Introduction
	Optimization
	Metaheuristics
	Evolutionary Algorithms
	Decentralized Genetic Algorithms
	Conclusions

	2Parallel Models forGenetic Algorithms
	Panmictic Genetic Algorithms
	Structured Genetic Algorithms
	Parallel Genetic Algorithms
	Parallel Models
	A Brief Survey on Parallel GAs
	New Trends in pGAs

	First Experimental Results
	MAXSAT Problem
	Analysis of Results

	Summary

	3Best Practices in Reporting Resultswith Parallel Genetic Algorithms
	Parallel Performance Measures
	Speedup
	Other Parallel Measures

	How to Report Results in pGAs
	Experimentation
	Measuring Performance
	Quality of the Solutions
	Computational Effort
	Statistical Analysis
	Reporting Results

	Inadequate Utilization of Parallel Metrics
	Illustrating the Influence of Measures
	Example 1: On the Absence of Information
	Example 2: Relaxing the Optimum Helps
	Example 3: Clear Conclusions do Exist
	Example 4: Meaningfulness Does Not Mean Clear Superiority
	Example 5: Speedup: Avoid Comparing Apples against Oranges
	Example 6: A Predefined Effort Could Hinder Clear Conclusions

	Conclusions

	Part II: Characterization of Parallel Genetic Algorithms
	4Theoretical Models of SelectionPressure for Distributed GAs
	Existing Theoretical Models
	The Logistic Model
	The Hypergraph Model
	Other Models

	Analyzed Models
	Effects of the Migration Policy on the Actual Growth Curves
	Parameters
	Migration Topology
	Migration Frequency
	Migration Rate
	Analysis of the Results

	Takeover Time Analysis
	Conclusions

	Part III: Applications of Parallel Genetic Algorithms
	5Natural Language Tagging withParallel Genetic Algorithms
	Statistical Tagging
	Automatic Tagging with Metaheuristics
	Genetic Algorithm
	CHC Algorithm
	Simulated Annealing
	Parallel Versions

	Algorithm Decisions: Representation, Evaluation, and Operators
	Individuals
	Fitness Evaluation
	Genetic Operators

	Experimental Design and Analysis
	Conclusions

	6Design of Combinational Logic Circuits
	Problem Definition
	Encoding Solutions into Strings
	Related Works
	Sequential, Parallel, and Hybrid Approaches
	Computational Experiments and Analysis of Their Results
	Case Study 1: Sasao
	Case Study 2: Catherine
	Case Study 3: Katz 1
	Case Study 4: 2-Bit Multiplier
	Case Study 5: Katz 2

	Overall Discussion
	Conclusions and Future Work

	7Parallel Genetic Algorithm for theWorkforce Planning Problem
	The Workforce Planning Problem
	Design of a Genetic Algorithm
	Solution Encoding
	Evaluation the Quality of a Solution
	Repairing/Improving Operator
	Recombination Operator
	Mutation Operator
	The Proposed Parallel GA

	Scatter Search
	Seeding the Initial Population
	Improvement Method
	Parallel SS

	Computational Experiments and Analysis of Results
	Problem Instances
	Results: Workforce Planning Performance
	Results: Computational Times
	A Parallel Hybrid GA

	Conclusions

	8Parallel GAs in Bioinformatics:Assembling DNA Fragments
	The Work of a DNA Fragment Assembler
	DNA Sequencing Process

	Related Literature
	The pGA DNA Assembler
	Solution Encoding
	Solution Evaluation
	Genetic Operators
	The Parallel Approach

	Experimental Validation
	Target Problem Instances
	Parameterization
	Analysis of Results

	Conclusions

	AThe MALLBA Library
	BAcronyms
	References

