

J. Stanley Warford

Computing Fundamentals

vieweg-it

The Efficiency of Theorem Proving Strategies
by David A. Plaisted and Yunshan Zhu

Applied Pattern Recognition
by Dietrich W. R. Paulus and Joachim Hornegger

SAP® R/3® Interfacing using BAPls
by Gerd Moser

Scalable Search in Computer Chess
by Ernst A. Heinz

The SAP® R/3® Guide to EDI and Interfaces
by Axel Angeli, Ulrich Streit and Robi Gonfalonieri

Optimising Business Performance
with Standard Software Systems
by Heinz-Dieter Knoll, Lukas W. H. Kuhl,
Roland W. A. Kuhl and Robert Moreton

ASP - Application Service Providing
by SeN Education B.V.

Customer Relationship Management
by SeN Education B.V.

Data Warehousing
by SeN Education B.V.

Electronic Banking
by SeN Education B.V.

Mobile Networking with WAP
by SeN Education B.V.

Efficient eReporting with SAP EC®
by Andreas H. Schuler and Andreas Pfeifer

Interactive Broadband Media
by Nikolas Mohr and Gerhard P. Thomas

Sales and Distribution with SAP®
by Gerhard Oberniedermaier and Tamara Sell-Jander

Efficient SAP R/3-Data Archiving
by Markus Korschen

Computing Fundamentals
by J. Stanley Warford

www.vieweg-it.de

J. Stanley Warford

Computing
Fundamentals

The Theory and Practice
of Software Design with
BlackBox Component Builder

Edited by Karlheinz Hug

aI
vleweg

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

MACOS is a trademark of Apple Computer Inc. MS Windows is a trademark of Microsoft Corporation.
BlackBox and Component Pascal are trademarks of Oberon microsystems.

Many of designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks.

1 st edition December 2002

All rights reserved
© Springer Fachmedien Wiesbaden 2002

Originally published by Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden in 2002.

Vieweg is a company in the specialist publishing group BertelsmannSpringer.

www.vieweg.de

No part of this publication may be reproduced, stored in a retrieval system or
transmitted, mechanical, photocopying or otherwise without prior permission
of the copyright holder.

Cover design: Ulrike Weigel, www.CorporateDesignGroup.de

Printed on acid-free paper.

ISBN 978-3-528-05828-9 ISBN 978-3-322-91603-7 (eBook)
DOl 10.1007/978-3-322-91603-7

Foreword

The world of computing has always had one corner stone of particular interest to
many, from educators to practitioners: languages. And programming languages in
particular. Over the years, we have seen new languages come-and, much less fre
quently, old languages go. It is always tempting to focus on "the one" language of
fashion of the day. In this very readable and instructive textbook, Stan Warford has
done the unusual-and risky-by taking the programming language Component
Pascal that is far from mainstream, although it does have roots that are among the
strongest in the field.

Given that the concept of formal language, whether at the level of architecture,
design, or implementation language, is central to our discipline, it is important that
students continue to be exposed to a wide variety of languages. No single language
does everything perfectly, or even well, and students need to understand this funda
mental tradeoff. The same holds for frameworks and programming models that need
to be designed to allow harmony between the natural ways of a language and the
needs to a framework for a particular domain.

I had the privilege of being one of the key designers of this language, together
with my friends at Oberon microsystems. One thing we knew back the early 1990s,
when we started this etlort, was that a language alone wasn't any good anymore. So
we co-designed the language Component Pascal and the environment BlackBox
Component Builder, which unites an application framework, a development envi
ronment, and an application runtime environment-in many ways bringing together
the advantages of highly dynamic languages and systems like Lisp or Smalltalk and
those of statically checked languages like Modula-2, Oberon, Java, and now C#.

Stan succeeds in providing a highly original introduction to programming. One
that alternates between the high-level aspects of immediate user impact, such as dia
logs and views, and the low-level concepts of core programming, such as loops and
recursion. As a result. students are always able to anchor what they learn in applica
tion scenarios that make immediate sense. The ability to create functional programs
quickly, while not deviating to adopt an arsenal of "dirty tricks", will help keep stu
dents motivated. The clean underlying approach and overall structure will at the
same time lead to a deep understanding of principles and rigor.

Clemens Szyperski
Redmond, July 2002

Editor's Note

What do you say after "Hello World"? Everyone who teaches programming has an
answer. For Stan Warford, the question is meaningless, because in his book and lec
tures, he does not start with "Hello World" or even sequential 10, Rather, he starts
with modules, interfaces, and the construction of dialog boxes, Yet his book is not
one of those "click-here-and-then-click-there" lightweights, which merely describe
the user interface of some currently popular development system, He sticks to all the
classical topics-like structured algorithms, searching and sorting, stacks, lists, and
trees-which should be part of any serious course in computing. However. he does
not do this job in an old-fashioned way but with a unique approach introducing all
the modem things we did not have ten years ago (at least not in introductory books):
GUIs, components, frameworks, UML, design by contract, design patterns. He gets
all this together with solid theoretical basics like grammars, EBNF, verification,
GCL, complexity. He explains every notion and every line of his example programs
thoroughly. The text-simple, clear sentences-is accompanied by numerous fig
ures drawn carefully, so that every student will easily understand even complicated
facts.

These are only a few reasons why I like Stan's book, I liked it since I first saw a
preliminary version. At that time I was working on my own book "Module, Klassen,
Vertrage", which is the first German language book using Component Pascal and
BlackBox. I even considered abandoning my book, because what could I say that
Stan did not already say in his? Fortunately, with the help of my colleague Helmut
Ketz at Reutlingen University, I found an approach for my book that complements
Stan's approach. Then I got a chance to help publish this book, for which I am most
grateful. Thank you Cuno Pfister and Wolfgang Week at Oberon microsystems and
Reinald Klockenbusch at Vieweg!

Now this is the first English language book using Component Pascal and Black
Box. Since both our books fit together well. we have prepared an online service for
the readers of both books, which is available at

http://userserv,fh-reutlingen,de/-hug

It includes a glossary in English and German covering topics of both books. May it
serve you well'

Karlheinz Hug
Reutlingen, September 2002

Preface

This book is the outgrowth of an introductory computer science course taught at
Pepperdine University. The course, as well as the book, is primarily for majors in
computer science who intend a more in-depth study later, and secondarily for non
majors who desire a strong background in computers so they can deal with them
effectively in their chosen fields.

For years we had followed the common practice of basing the course on the pro
gramming language Pascal. The emergence of many ideas in the field of software
engineering led us to reevaluate the goals of the introductory course and how they
could be etfectively achieved. Rather than to simply append the new ideas onto the
old approach we found that a paradigm shift was necessary, which had the effect of
changing both the content and the organization of the course. Those ideas as
reflected in this book include:

• Frameworks

• Graphical user interfaces

• Object-oriented languages

There is an interrelationship between all these ideas. Each idea gains a measure of
force in conjunction with the others, so that the whole is more than the sum of its
parts.

Frameworks

A framework consists of a complete programming environment including a text edi
tor and all the other tools needed to write and execute programs. The BlackBox
framework is an exceptionally powerful but simple framework for software develop
ment. Power and especially simplicity are desirable attributes for teaching introduc
tory programming. Like all good frameworks, BlackBox is platform independent, so
that students and teacher need not complete their work with the same operating sys
tem. Furthermore, the cost of the framework for academic use is free, with the com
plete development system availabk for downloading from the Internet.

A framework is more than a collection of code libraries that provide an applica
tion programming interface for the developer. Like many development environ
ments, the BlackBox framework does not require the programmer to write the event
loop for the graphical user interface (GU!). Unlike most systems, however, which
generate the event loop with code skeletons for the programmer to fill in to handle
interaction events, the BlackBox framework is the main program and the program-

The ideas iJehilld this hO(lk

x Computing Fundamentals

mer's application is simply an extension of the framework. The event loop is hidden
and there is no handwaving to explain confusing code skeletons. The benefit of this
arrangement is that students learn distributed control from the outset, which is an
important aspect of object-oriented programming.

Another advantage of the BlackBox framework for teaching programming princi
ples is its use of design by contract, which is also prominent in the Eiffel system.
The idea is that every service provided by a method or procedure has preconditions
that must be satisfied by the client. If the preconditions are met the method or proce
dure is guaranteed to function correctly, satisfying the postcondition. The documen
tation of the framework reflects this philosophy by specifying preconditions and
postconditions for its services. Furthermore, the ASSERT statement is a primitive in
the programming language, so that students can specify their own pre- and postcon
ditions in their programs. There is a correspondence between pre- and postcondi
tions of the framework and the Hoare triple of formal methods. Our introductory
sequence requires a concurrent course in formal methods and integrates those topics
with the programming course based on this book. The formal methods material is
segregated in optional starred sections for the benefit of those whose curriculum
does not include this requirement.

Graphical user interfaces

Using an object-oriented framework in the first year caused a reassessment of the
entire issue of input/output. As it turns out, there is a natural one-to-one replacement
of old topics with new ones. In place of interactive 110, where the program prompts
the user for input with a command line interface, is dialog box 110. In place of file
110 is window 110.

The BlackBox framework provides a Forms subsystem, which enables the stu-

Distributed control

Optional starred sections.ff)r
f{Jrmal methodl' material

dent to program a GUI. A form is a component that is implemented with the model
view-controller (MVC) design pattern to produce a dialog box. The beauty of the Dialog hoxes

framework is that students can begin programming immediately with dialog boxes
without having to know the details of the MVC design pattern. The services pro-
vided by the Forms subsystem are so simple and so powerful that the programs we
formerly assigned using Pascal with interactive input are longer than the equivalent
programs with a dialog box. Programming with a GUI from the outset in the intro-
ductory course motivates students, because they learn how to produce programs
with a professional appearance.

The simplicity of using the Forms subsystem with BlackBox is in marked con
trast to the equivalent task of programming with Java's AWT or Swing library of
classes. Programming with the Forms subsystem requires no concept of listeners or
of layout management. An input field of a dialog box is simply mapped by the
framework to an exported variable. Consequently, the chapter on dialog boxes can
immediately follow the chapter on variables.

In BlackBox, files take a secondary role to the GUI and are available at a lower
level of abstraction than are windows. Although it is possible to perform file 110 in
BlackBox this text replaces it with scanning from and writing to the focus window.
The user achieves the corresponding file operation by selecting Open or Save from
the File menu, which hides the mechanisms of file 110. BlackBox provides a scanner Windol\' 110

that is powerful for experienced programmers to use but proved too difficult to
understand for beginners. This book uses a scanner designed for the introductory
course that can scan integers, reals, characters, strings, one-dimensional arrays of
integers and reals, and two-dimensional arrays of integers and reals. Window lIO
requires slightly more understanding of the MVC design pattern and is introduced
later than dialog boxes.

Object-oriented languages

There is a debate among computer science educators about the placement of object
oriented (00) programming in the first year of instruction. Some argue that students
should program with objects from the outset even to the exclusion of procedural pro
gramming, while others advocate a more gradual mixed approach. To a certain
extent, the choice is dictated by the language and development environment chosen
to teach the concepts. For example, if you teach Java, which attempts to be purely
00, in the introductory course then it is impossible to construct a function that is not
also a method even if inheritance or polymorphism are not used. Languages like
C++ or Ada are, by design, mixed languages. That is, they are not pure 00 lan
guages but have procedural features as well.

The BlackBox framework is based on a new language named Component Pascal.
Because it is a derivative of Oberon/L, much evolution has occurred since Pascal
was designed. The pedigree of the language is

Pascal ~ Modula --+ Oberon ~ Oberon-2 ~ Oberon/L ~ Component Pascal

Unlike C++ and Ada, which added object-orientation onto an existing procedural
language, Component Pascal is designed with no backward-compatibility require
ments. However, like C++ and Ada, Component Pascal is by design a mixed-para
digm language with procedural and 00 features.

The BlackBox framework lends itself to a gradual, mixed approach in the exposi
tion of software design. For example, the dialog boxes provided by the Forms sub
system require procedural programming even though the subsystem is itself based
heavily on objects. The approach taken in this book is more evolutionary than revo-

Preface Xl

lutionary. Its goal is to move the student through successively higher levels of TiIe gOllf ,,(riIis hook

abstraction, starting with procedural programming and concluding with 00 pro-
gramming.

Some computer science educators claim that it is harmful to teach procedural
decomposition to beginning programmers. They maintain that all data structures
should be objects and that a pure object-oriented (00) language should be used.
Otherwise, you force students into the dreaded paradigm shift experienced by sea
soned professionals when they switch to object orientation. Whether the dreaded
paradigm shift occurs depends on how late in the student's academic career the shift
is required. When recursion was new, we taught it late, and it was a shift. Now we
teach it the first year and it is simply another tool. Scheme advocates maintain that
recursion, along with the functional paradigm, should be taught at the outset, though
most others incorporate it as one of many tools.

xii Computing Fundamentals

Certainly. object orientation belongs in the first year so the dreaded paradigm
shift will not occur. But whether inheritance and polymorphism (which are the tools
of 00 design) should be taught at the outset is debatable. This book has abstraction
as a theme. and students progress from lower levels of abstraction (procedural) to
higher (00). This progression has the advantage of teaching the abstraction process.
which is a more general concept than object orientation. 00 programming is still
taught in the first year, minimizing the paradigm shift. In my experience, students
can learn procedural programming first without harm as long as they are not steeped
in it for an extended period of time before progressing to 00.

Like most languages designed by Niklaus Wirth, Component Pascal is small,
simple, elegant, yet powerful. Component Pascal has many features to recommend
it:

• Modules-The module is the basic unit of compilation. Variables can be glo
bal to a module, which eliminates the necessity of the confusing static feature
of C++ and Java.

• Interfaces-Unlike header files in C++, the interface is created automatically
by the compiler. The framework automatically keeps track of consistency
between compiled and recompiled modules.

• Memory protection-The C++ language provides explicit pointers but cannot
insure against memory leaks. The Java language does not provide explicit
pointers, but guarantees memory protection with its automatic garbage collec
tion. Component Pascal is unique in that it provides both explicit pointers as
well as automatic garbage collection.

• Object-oriented-Component Pascal is fully object-oriented with polymor
phism and single inheritance.

• Dynamic linker/loader-The compiler generates fast native code. There is no
virtual machine or byte code intermediate language. Modules are loaded on
demand within the framework.

Unfortunately, Component Pascal also has one major weakness that prevents its
widespread use as a language in the typical introductory Computer Science course.
Namely, C++ is entrenched in the professional software development world, Java is
entrenched in the Web world, and universities are pressured to produce graduates
with specific skills in those two languages. The pressure in the introductory course
comes internally from teachers of the upper-level courses who want their students to
already have C++ and Java skills. Those teachers get the pressure externally from
industry. which wants university graduates with those skills.

There was a time in computer science education when programming languages
for the introductory course were determined not by industry pressure but by peda
gogical and technical considerations. Whether those days are gone forever or will
reappear after the supply of computer science graduates finally matches the extreme
employment demand remains to be seen.

At Pepperdine University, students study Component Pascal during the first
year-that is. two semesters-from this book. The second year they study C++ -
again for two semesters. The third year they are introduced to the functional para
digm with Common Lisp. the declarative paradigm with Prolog, and the concurrent
paradigm with Java. Java is the primary language of instruction throughout the third

and fourth years. This curriculum provides the benefit of Component Pascal in the
introductory course while at the same time giving students the skills demanded by
industry.

Resources

One of the best features of BlackBox is that the complete development system is
available from Oberon microsystems at

http://www.oberon.ch/

and is free for educational use. The on-line documentation contains the defining lan
guage report and a sequence of tutorials (although geared to the experienced pro
grammer, not the typical introductory computer science student). The educational
version has the full programming capability of the developer version. At the time of
this writing, Oberon microsystems does not supply the current IA version of Black
Box for Macintosh operating systems. However, an older Macintosh version is still
available at Oberon microsystems' ftp server

ftp://www.oberon.ch/BlackBox/Mac/REL132/BB132A.HQX

Note that the above URL begins with f tp: / / instead of the usual http: / /. Sup
port for the Macintosh development environment is no longer available, and some
interfaces have been changed in the transition from the 1.3 family to IA. However,
none of the programs in this book use any of the changed interfaces. and all pro
grams work as described on both MSWindows and MacOS. Documents are fully
exchangeable between installations of the two releases.

All the programs in this book. as well as a set of lecture slides in PDF format. are
available electronically at

ftp://ftp.pepperdine.edu/pub/compsci/comp-fund

Also at this site is a paper presented at an ACM SIGCSE conference that gives a few
more details of our experience using BlackBox in the first-year course.

Acknowledgments

The designers of the BlackBox framework deserve congratulations for the sheer
technical excellence of their product. Many people contributed useful suggestions
and corrections to this manuscript in its various stages of development including Bill
Bunch, Leighton Cowart, Reinhard Dietrich, Peter Fogg. Stephan Gehring, Dominik
Gruntz. Rick Miltimore. Bernhard Treutwein. Wolfgang Weck. Russ Yost, and Bren
nan Young. as well as countless students at Pepperdine University who endured pre
vious beta versions. [especially thank two individuals who had a large influence on
the content-Professor John Motil, whose constructive criticisms of early versions
of the scanners in the PboxMappers module improved them considerably, and Pro-

Preface xiii

xiv Computing Fundamentals

fessor Dung "Zung" Nguyen, who provided many of the ideas for the data structure
specifications and the object-oriented design patterns. At Vieweg, Professor Karl
heinz Hug has been most helpful in the publication process.

Stan Warford
Malibu, July 2002

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Contents

Foreword v

Editor's Note vii

Preface ix

The BlackBox Framework 1

The BlackBox framework I, The Component Pascal language 2,
Cross-platform capability 3, Graphical user interface 5, Object
oriented language and system 6, Project folders 6, The text
subsystem 8, Encoding BlackBox documents 9, Exercises 13,
Problems 14

Languages and Grammars 15

Languages 15, Grammars 17, A grammar for identifiers 18, A
grammar for signed integers 19, A context sensitive grammar 21,
The parsing problem 22, A grammar for algebraic expressions 23,
Extended Backus-Naur form 24, Component Pascal syntax 26,
Exercises 27

Modules and Interfaces 29

Modules 29, Interfaces 30, Compilers 31, Programs 32, Comments
34, Reserved words 34, Identifiers 34, Exporting and importing
procedures 36, Statements 37, Syntax errors 38, Documentation
files 40, Program style 41, Proper procedures 42, Exercises 45,
Problems 46

Variables 49

Real variables 49, Assignment statements 50, Real output 50, Real
expressions 51, Integer variables 53, Integer expressions 54,
Mixed expressions 57, Function procedures 60, Character
variables 62, The PboxStrings module 64, Character arrays 65,
Guarded command language 68 Exercises 71, Problems 72

XVI Computing Fundamentals

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Dialog Boxes 75

Numeric input from a dialog box 75, Numeric output to a dialog
box 81. Records 82, String output to a dialog box 84, Problems 84

Selection 87

Boolean expressions and types 87. IF statements 92. Flowcharts
94, IF statements with an ELSE part 94. Boolean variables 96.
Selection with strings 99. Using IF statements 101, Radio buttons
103. The CASE statement 106. Guarded commands 107 Exercises
109, Problems III

Abstract Stacks and Lists 113

Stacks 114, Evaluating postfix expressions 114, Translation from
infix to postfix 115, The stack abstract data structure 119, The trap
window 122, The stack abstract data type 124, The list abstract
data structure 130, The list abstract data type 138, Queues 143,
Design by contract 144. Formal specifications 145 Exercises 147.
Problems 148

Nested Selections 151

Nested IF statements 151, IF statements with an ELSIF part 153.
Assertions and invariants 156. Dead code 161, Using nested IF
statements 164, The guarded command if statement 165 Exercises
167, Problems 171

The MVC Design Pattern 175

Objects 175, Models, views. and controllers 179, UML class
diagrams 181, The iterator design pattern 182, The factory design
pattern 183. Output to a new window 185, Input from the focus
window 190, Creating menu selections 194. Dialog boxes from
programs 195, Exercises 197. Problems 197

Chapter 10 Loops 201

The WHILE statement 20 I. The eot technique 202, Execution
counts 204, Execution time estimates 206, Loop invariants 208,
Using the Pbox scanners 209, Computing the average 211, Finding
the largest 212, Real Expressions 213, The bisection algorithm
214, Stepwise refinement 217, The structured programming
theorem 222, The FOR statement 222, U sing FOR Statements 224,
The guarded command do statement 227 Exercises 228. Problems
230

Chapter 11 Nested Loops 239

Printing a box of characters 239. Statement execution count 240.
Printing a triangle 242, A multiplication table 245. Exercises 247,
Problems 249

Chapter 12 Proper Procedures 251

The run-time stack 251. Parameters called by value 252. A bar
chart program 256, Implementing preconditions 259. Call by value
261. Call by reference 263. Call by result 265, Using parameters
268. Using global variables 269. Exercises 272, Problems 274

Chapter 13 Function Procedures 277

The bisection algorithm 277, Advantages of function procedures
280, Function procedure calls 280, A factorial function 281, A
function to compute wages 284, Using function procedures 287,
Exercises 288. Problems 289

Chapter 14 Random Numbers 293

A random number module 293, Random reals 294, Random
integers 296, The REPEAT statement 298, Rolling a pair of dice
299, Random number generators 300. Schrage's algorithm 305
Exercises 308, Problems 309

Chapter 15 One-Dimensional Arrays 313
Array input/output 313, Using arrays 316. Memory allocation for
arrays 318, Open arrays 319. A problem-solving technique 321.
The rotate left problem 322. Call by constant reference 326,
Finding the largest value 328. Exchanging the largest with the last
330, Initializing in decreasing order 331, Character arrays 333,
Specifications for arrays 337 Exercises 340, Problems 344

Chapter 16 Iterative Searching and Sorting 349

Searching 349, The sequential search 350, Tool dialog boxes 353,
The binary search 357, The selection sort 360. Exercises 362.
Problems 364

Chapter 17 Stack and List Implementations 367
Stack ADS implementation 367, Stack class implementation 371,
List ADT implementation 374. Problems 380

Contents xvii

xviii Computing Fundamentals

Chapter 18 Two-Dimensional Arrays 381

Matrix input/output 381, Printing a column 384, Finding the
largest in a row 386, Matrix multiplication 387, Using two
dimensional arrays 392. Exercises 393. Problems 393

Chapter 19 Recursion 399

Definition of recursion 399. A recursive factorial function 400.
Thinking recursively 404, Recursive addition 405, A recursive
greatest common divisor function 407. A recursive binomial
coefficient function 409, Reversing an array 415. Permutations
417, Towers of Hanoi 419, Mutual recursion 422, The cost of
recursion 423, Exercises 424, Problems 426

Chapter 20 Recursive Searching and Sorting 433

Recursive binary search 433, The Merritt sort taxonomy 435,
Merge sort and quick sort 436, Insertion sort and selection sort 437,
Quick sort 439, Correctness of quick sort 446 Merge sort 448, In
place merge sort 452, Complexity of the sort algorithms 457,
Exercises 459, Problems 460

Chapter 21 Linked Lists 463

Pointer data types 463, Pointer assignments 465, Using pointers
467, Linked lists 469, Class assignments 474, A circular linked list
ADT 477, A circular doubly-linked list 488, Record assignment
490, A linked list class 492, Design trade-offs with linked lists 506.
Unloading 508, Exercises 509, Problems 511

Chapter 22 Binary Trees 515

Abstract binary trees 515, A binary search tree ADT 519. A binary
search tree class 521, Exercises 529, Problems 530

Chapter 23 Inheritance and Polymorphism 533

Data abstraction 533, Computation abstraction 536, Class
abstraction 538, A shape class 540, Control guards 546. A shape
class implementation 548. Behavior abstraction 551, Inheritance
552, Polymorphism 555, An abstract shape class implementation
559. Unified Modeling Language 562, Class composition 564, A
Pizza class 565, An alternate design of the Pizza class 572, Class
composition versus inheritance 573, Records versus pointers 574.
Private versus public 576. Abstract objects and methods 578.
Exercises 579. Problems 580

Chapter 24 The State Design Pattern 581

Binary search trees 581, Linked lists 592, Problems 60 I

Appendix A Component Pascal Syntax 603

Index 605

Contents XIX

.., Chapter1
1iI~

The BlackBox Framework

Computers, as useful as they are, have no innate intelligence. Any intelligent behav
ior that a computer exhibits is a reflection of the program that resides in its memory.
That program was conceived, designed, and written by one or more human beings.
How friendly a program is to the user, or how useful, or how frustrating is deter
mined largely by the quality of the program design. When we marvel at the power of
computers we are paying tribute to programs that are designed well. And when we The software design problem

blame the computer for making a mistake that blame must inevitably fall on a per-
son--either the designer, the programmer, or someone who earlier entered incorrect
data into the system. Computers are so new to the human scene that getting them to
work efficiently and effectively is a great challenge. Reports of computer failure in
the popular press attest to the fact that developing computer systems that are both
error free and easy to use is difficult.

The BlackBox system provides the human software designer a tool to develop The purpose ()(the BlackBox

such systems. This chapter introduces the BlackBox framework and its text sub- system

system and shows how to encode your BlackBox documents for electronic transmis-
SIOn.

The BlackBox framework

The BlackBox framework is a powerful tool based on modern software design prin
ciples. The framework has many characteristics, four of which are:

• The Component Pascal language

• Cross-platform capability

• Graphical user interface

• Object-oriented language and system

A framework consists of a complete programming environment including a text edi
tor and all the other tools needed to write and execute programs. Part of the frame
work is a programming language. In the BlackBox framework, the programming
language is Component Pascal. The Component Pascal language is nearly identical
to the Oberon-2 language, which is used in systems other than BlackBox. This book
is an introduction to both the BlackBox framework and the Component Pascal lan
guage.Those features of the language that you will learn will be applicable to other
systems that incorporate Oberon-2. However, much of the power of the program
ming environment is derived from the framework. Although they will be similar, the

Four characteristics of the
BlackBoxframe\\'{)/'k

2 Chapter I The BlackBox Framework

features of the framework that you learn will not in general be applicable to other
programming environments.

The Component Pascal language

The programming language Component Pascal is the newest descendent in the
Algol family of languages. Algol stands for algorithmic language. It was designed in
1960 and had a major impact on programming languages. Although several short- The Algollangllage

comings surfaced later after extensive experience, it quickly gained a reputation as a
simple and elegant language. Two members of the committee that designed the lan-
guage were John Backus and Peter Naur. They devised a method for specifying the
grammatical rules of the language. Their specification method is still used for many
programming languages including the Component Pascal language.

Another member of the Algol design committee was Niklaus Wirth, a professor
of computer science at ETH Zurich, the Swiss Federal Institute of Technology. He
proposed some changes to the language that were eventually incorporated into a dia
lect called Algol-W. He made more substantial changes in that language with his
design in 1970 of the popular Pascal programming language. Wirth named Pascal The PI/seal language

after Blaise Pascal, a French religious thinker, mathematician, and physician who
lived in the seventeenth century. Pascal is credited with inventing the Pascaline, a
calculating machine that used gears and dials to represent and manipulate numeric
values. Wirth's two design goals for the Pascal language were that it be a good vehi-
cle for teaching structured programming and that it be easy to implement on the
computers of that day. He was especially successful in meeting the teaching goal for
the language, because it quickly gained widespread use in universities around the
world.

Not content with the success of Pascal, Niklaus Wirth improved on his design in
1979 with the language Modula-2, so called because of its ability to subdivide a pro- The i'v/mlll/1l-2 lallgllage

gram into modules. With Pascal, a large program must be written as if it were a sin-
gle document. The concept of dividing a program into modules is like the concept of
dividing a book into chapters. In the same way that a chapter of a textbook collects
similar topics under one subheading, a module collects similar program parts under
one "compilation unit". To show the power of Modula-2 Wirth designed an entire
computer, which he called Lilith, based solely on that language.

The Oberon project was begun in 1985 at ETH. By this time computer hardware
and its associated software had become powerful and complex. With the complexity
came difficulty in software design and programming. A primary goal of the Oberon
project was to develop a programming language that would be simple to learn and
use, but powerful enough to solve complex problems. Wirth's philosophy of pro
gramming languages is that a complex language is not required to solve a complex
problem. On the contrary. he believes that languages containing complex features
whose purposes are to solve complex problems actually hinder the problem solving
effort. The idea is that it is difficult enough for a programmer to solve a complex
problem without having to also cope with the complexity of the language. Having a
simple programming language as a tool reduces the total complexity of the problem
to be solved.

The Oberon language incorporated a modem software design technique known

as object-oriented programming, while maintaining the successful features of modu
larity from Modula-2 and structure from Pascal. In 1992, Wirth and H. P.
Mossenbock added a few features to the original Oberon language which resulted in

Cross-platform capability 3

the language Oberon-2, named after the second largest moon of the planet Uranus. The Oheron·2 11lngLU/f(e

Inspiration for the name came from the Voyager 2 space probe whose small com-
puter controlled the spacecraft's data acquisition and transmission system.

In 1997, the Oberon microsystems company made a few additional changes to
Oberon-2, some of which make the language more consistent with the popular Java
language. and some of which made the language more useful in a framework envi-
ronment. They named the new language Component Pascal. The word "component" The COlllponent Pascal

in the name of the language is to emphasize the suitability of the language for writ- 11lllKllllge

ing objects that are components of containers. An example of a component is a
spreadsheet object that is contained in a word processing container. Because this is
an introductory book, it will not be able to delve into those advanced features of
component programming. But it is good to know that with Component Pascal you
will be learning a language that is capable of solving industrial strength problems.
Unlike Pascal, the primary goal of Component Pascal is not a teaching goal. How-
ever, Component Pascal has its roots in Pascal, and because of that it is an excellent
language to learn principles of software development. Because the difference
between Oberon and Component Pascal is so small, Niklaus Wirth is considered to NiklllllS Wirth is the designer

be the designer of Component Pascal. afthe Component Pascal

If you have experience with Pascal you will notice many similarities with Com- language

ponent Pascal. There may even be a few features that you miss. If so, remember that
missing features do not equate to less power. If you have no prior programming
experience you will surely not miss a thing, and you may even have the advantage of
not having to unlearn some old ways of thinking.

Cross-platform capability

Imagine a country in which the same company that owned the local electrical power
plant also owned the local appliance factory. The company designs the electrical
wall outlet to accommodate the appliances that it makes in its factory. If you buy a
toaster from the company there is no problem plugging it into the electrical outlet,
because the same company that makes the outlet makes the appliance, and it designs
the plug on the toaster to fit the outlet on the wall.

Suppose that another company moves into the neighborhood and sets up a com
peting electrical power plant and a competing appliance factory. The new company
thinks that it can provide a better wall outlet and corresponding plug in its appli-
ances. so it makes them differently from the first company. Unfortunately, a plug The cOIll[!atihilirr isslIe

from the first company will not fit a wall socket from the second company and vice
versa. This situation forces people to choose who they will get their electric power
from and commits them to buy their appliances from the same company.

Now suppose that a third company moves to town and is not interested in setting
up a local power plant, but is only interested in making appliances to sell to custom
ers of both the other companies. To do so this third company will have to design its
appliances to be compatible with both types of outlets. Each appliance will come in
two models--{)ne model with a plug compatible with the first company's outlet and

4 Chapter 1 The BlackBox Framework

another model with a plug compatible with the second company's outlet.
The scenario described above is certainly not optimal for the third company. If

the first two competing companies would simply standardize on their outlet design
the third company would only need to manufacture one model of its appliance,
which it could sell to either type of customer. Manufacturing costs would be lower
because of increased economy of scale and customers would benefit from the lower
prices.

This scenario is not much different from the world of computing today. Every
computer is controlled by an operating system. Like the wall outlet designed by the
power plant, each operating system has its own standards to which applications must
adhere. There are at least three different widespread operating systems with three
different standards-various Microsoft Windows operating systems, MacOS, and
UNIX. The standard specified by an operating system is called an application pro
gramming interface, or API for short. An operating system's API is a specification to
which programmers must adhere if they want their programs to operate with that
operating system. The API of each of these operating systems is different from the
others. Consequently, if you write a program that you want to use with Windows98
it will not work on a computer that is running the MacOS or UNIX.

A remarkable feature of the BlackBox framework is its cross-platform capability.
Of all the software development environments on the market at the time of this writ
ing, BlackBox and the various Java systems are the most successful in providing a
programmer with the ability to write a complex general-purpose program that will
work with little or no modification on any of the above three operating systems. It is
as if an additional company moved into town and supplied a converter to be posi
tioned between the wall socket and the appliance plug.

The appliance company is now free to make only one kind of appliance that will
work with both customers. It only needs to include the converter with its appliance.
Similarly, the programmer is now free to write only one program that will work with
any operating system. The BlackBox framework is the converter between the com
puters as shown in Figure 1.1.

Windows MacOS I

(a) Multiple versions without the BlackBox
framework.

Windows MacOS

t t
BlackBox

(b) One program with the BlackBox
framework.

The applicatioll programming
in te Ijizce (A P l)

Cross-platform capahilin'

Figure 1.1
The cross-platform capability
of BlackBox.

Graphical user interface

The cross-platform capability of BlackBox would not be that remarkable if it were
confined to the programming language Component Pascal. Programs written in all
the older languages mentioned previously have the capability to run on different
computers with their different operating systems. However, such portable programs
based on a language instead of a framework do not have the capability of providing
the user with the graphical user interface (GUI) of modem operating systems.
Instead, such programs execute in what is called a command-line interface. If you
have experience with the DOS operating system you know how a command line
interface works. The user is presented with a prompt character on the left side of the
screen-usually the % character-and must type a command to instruct the operat
ing system to perform a task.

The GUI was invented by the Xerox company and later popularized by Apple
with its Macintosh computer. A GUI is characterized by input that is controlled by a
mouse as well as the keyboard. Rather than having to memorize and enter com
mands from the keyboard the user simply makes selections from a menu bar at the
top of the screen or from a dialog box that pops up in the middle of the screen. Each
operating system has its own GUI with its own look and feel.

The real advance made by the BlackBox framework is not just its portability
across operating systems, but the fact that its portability adopts the GUI of the host
operating system and is not limited to a command-line interface. This book assumes
you have access to and are familiar with either the Microsoft Windows operating
system or the Macintosh. The BlackBox system can be installed under either system
and every program described in this book will run under both MSWindows and the
MacOS. BlackBox is impressive because the same program will produce a dialog
box that conforms to the MSWindows GUI if it is executed on a MSWindows
machine and to the MacOS GUI if it is executed on a Macintosh. Figure 1.2 shows
an example of dialog boxes that were developed on a Macintosh and a MSWindows
machine. Each dialog box maintains the style of its host GUI. Furthermore, the pro
gram that performs the processing for both dialog boxes is identical. The program
mer who develops a program for one machine need not change the program for it to
run on the other machine.

D~(WQge$(=El

Hour, 137.9

Rate ;::11=2.=25===::::::;

1/ Compute Wage. I
Wages:: $464.27

(a) A Macintosh dialog box developed

in the BlackBox framework.

H..... 1379

Rata 112.25

1[~~uIe~]1
Wag"" 1~.27

(b) A MSWindows dialog box

developed in the BlackBox framework.

Graphical user interface 5

The graphical user intetjace
(CUI)

Figure 1.2
The same dialog box with

two different operating
systems.

6 Chapter I The BlackBox Framework

Object-oriented language and system

Object-oriented languages are based on the concept of abstraction. In computer sci-
ence, abstraction is the subdivision of a system into layers in which the details of AhstracTion is the hiding o(

one layer of abstraction are hidden from layers at a higher level. A computer scien- dewils.

tist uses abstraction as a thinking tool to understand a system, to model a problem,
and to master complexity.

An example of levels of abstraction that is closely analogous to computer sys
tems is the automobile. Like a computer system, the automobile is a man-made
machine. It consists of an engine, a transmission, an electrical system, a cooling sys
tem, and a chassis. Each part of an automobile is subdivided further. The electrical
system has, among other things, a battery, headlights, and a voltage regulator.

People relate to automobiles at different levels of abstraction. At the highest level
of abstraction are the drivers. Drivers perform their tasks by knowing how to operate
the car: how to start it, how to use the accelerator, and how to apply the brakes, for
example. At the next lower level of abstraction are the backyard mechanics. They
understand more of the details under the hood than the casual drivers do. They know
how to change the oil and the spark plugs. They do not need this detailed knowledge
to drive the automobile. At the next lower level of abstraction are the master
mechanics. They can completely remove the engine, take it apart, fix it, and put it
back together again.

The history of the development of programming languages is a progression from
lower levels of abstraction to higher levels. Early programming languages required
the programmer to know details of the computer system that are hidden from the
programmer using modem programming languages. Object-oriented languages are
the latest step in this evolution. In the same way that automobile drivers no longer
need to be master mechanics to use their automobiles, programmers can use the
capabilities of software objects to produce graphical user interfaces without know
ing many of the details that would be visible in older languages.

Programming languages have evolved through four levels of abstraction.

• Type and Statement abstraction Thejrillr levels ofahstraclio/l

• Structure and Procedure abstraction in progrumming languages

• Class abstraction

• Behavior abstraction

The last two levels encompass object-oriented programming. Chapter 23 describes
each of the levels in detail. This book mirrors the historical development of pro
gramming languages. It presents software design first using type and statement
abstraction. then structure and procedure abstraction, then class abstraction, and
finally behavior abstraction. Component Pascal is a particularly good language to
learn for this journey, because it provides all four levels of abstraction in one lan
guage.

Project folders

All software development systems have some pattern of organization for storing
program and documentation files. These patterns vary from one framework to the

next. This section describes the way you should organize your files in the BlackBox
framework in order to work the problems in this book. It assumes you know the
commands to create directories or folders on the hard drive in your computer.

The first task in setting up the BlackBox framework is to acquire it and install it.
Fortunately, this powerful system is available free for personal and educational use
from the Swiss company Oberon microsystems. The Preface gives instruction for
downloading it from the World Wide Web.

After downloading the software, execute the installation program. Then, simply
follow the installation instructions on the screen, which should result in a folder
named BlackBox on your hard drive.

The BlackBox folder will have many subfolders within it, including folders
named Form, Text, and Sql, which are examples of subsystems of the framework.
Form is the subsystem that enables you to write dialog boxes, Text makes possible
the creation and modification of text documents such as program listings and docu
mentation, and Sql is a database subsystem that you may wish to investigate, but
which is beyond the scope of this book. You can see that there are many other sub
systems that have been installed in the BlaekBox folder.

To hand in the problems from this book to your instructor, you need to establish
your own project folder alongside Form, Text, and Sql. Assume that the typical class
contains fewer than 100 students. Each student is assigned a unique two-digit num
ber. Say you are the 99th student on the roster and are assigned the number 99 on the
first day of class. You should then create a new project folder named Hw99 within
the BlaekBox folder. Hw stands for homework, and Hw99 is the folder that will con
tain your homework assignments. (The folder names described here may differ
somewhat from the names your instructor prefers.) Figure 1.3 shows the placement
of this project folder among some other folders.

Now that you have created your Hw99 project folder, you should create six sub
folders named Code, Doeu, Mod, Rsre, Sym. and Ene. The first five names are spe
cial names that the BlackBox framework recognizes. Their contents will be as
follows.

• Mod-the programs you write with the text editor

• Code-the machine language version that the Component Pascal translator
will create from your programs in Mod

• Sym-the symbol table that the Component Pascal translator will create from
your programs in Mod

• Doeu-the documentation you write with the text editor that accompanies the
programs in the Mod folder

• Rsre-the resources that you create with the Form subsystem that accompany
the programs in the Mod folder

The last folder, Ene, is not standard for the BlackBox framework but is recom
mended for completing the programs in this book. Ene stands for encode. As
explained later in this chapter, to hand in your homework electronically you will
need to store your work in a standard encoded form. Ene will be a convenient folder
in which to place your encoded assignments before transferring them electronically
to your instructor.

Project folders 7

Folder names lvith speciill
meaning to the BlackBox
fiwnework

8 Chapter 1 The BlackBox Framework

The text subsystem

After creating your project folder with its subfolders, you should execute the Black
Box program and explore its on-line help system. You may notice that when you
execute BlackBox, a window labeled Log is displayed. You will normally want to
keep the Log window visible as you work. In the help system you will find a table of
contents of the help subjects that are available for your perusal. Locate the topic
named User Manuals, which contains the following links, similar to links on a
World Wide Web browser: Framework, Text Subsystem, Form Subsystem, Dev Sub
system, and Custom Commands. Clicking on one of these links will bring up a doc
umentation window appropriate to the topic on which you clicked. You can click on
the Text Subsystem link to learn how to use the text editor to create and modify doc
uments. Its capabilities are similar to those of word processors.

This book will use the same notation that the on-line help system uses to indicate

Figure 1.3
The homework project folder.

a menu selection. A right arrow will indicate the selection of a topic from a list of The right arrow menu

menu items from the menu bar at the top of the window. For example, to create a cul1\'elltion

new text document, you select the New command from the menu bar item labeled
File. The arrow notation indicates this selection as File-..;.New. Another documenta-
tion convention is the definition of the modifier key. If you are using a MSWindows Th~ modifier kev

machine the modifier key is the key labeled Crrl. If you are using a MacOS machine
the modifier key is the key labeled option.

Two features of the text subsystem are especially nice for writing programs-the
Undo command and the Drag and Drop feature. After you have performed several
operations such as inserting and deleting text in a text document experiment with
Edit-'>Undo and Edit-'>Redo. You will discover that the Undo command can reverse
not only the previous operation, but all operations up to the one after the most recent
File..-;o.Save command.

Figure 104 shows the Drag and Drop feature. Figure IA(a) shows the selection of
a stretch of text, which you are probably familiar with from your word processing
experience. With Drag and Drop, you can put the arrow cursor in the selection, press
the mouse button, and while the button is pressed drag the selected text to an inser
tion point at some other part of the document. Figure 1.4(b) shows the result of drag
ging the text to the second line and releasing the mouse button. Note that the original
text has been moved from the first line and no longer appears there. If you want to

duplicate the selected text, press the modifier key as you are releasing the mouse
button. Figure IA(c) shows the result of this action. Note that the first line contains
the original selection of text, which has been duplicated on the second line. This fea-

Encoding BlackBox documents 9

ture is useful in programming when you must type several lines of text that are iden
tical except for a few small differences. After typing the first line you can simply
duplicate the whole line and enter the difference on the duplicated lines rather than
type them all from scratch.

El

untitled I

When r.'~=~ciJui'$iI of.""-"r-~, etc~
~~ .. ~ . " '~.~

A ose is B rose, etc.

(a) Selecting a stretch of text.

untitled I.

-,
un'ltl." t !lIB

::::~;lR~~ti·~~ is • roi.

When in the course of humon eYents, etc, 1-
A ros.T(Jht~"';=-~ IS. ~ ~ ".. . .. ~ '''y

~ {;-

(b) Drag and drop the selection. (e) Drag and drop with copy.

Encoding BlackBox documents

You will eventually use the text subsystem to create programs written in the Compo
nent Pascal language. After you write your programs and test them, you will need to
hand them in to your instructor electronically. Before you hand them in you must
encode them in a format that is safe for transmission via email over a network. The
BlackBox framework has a special encoding feature that is designed for such trans
missions. To describe how to use the encoding system, this section will explain how
to encode a document that you create with the text subsystem.

Suppose you have a document such as a personal letter that you have entered
using the features of the text editor. Select File-Save As to save your document. In
the dialog box from the Save As command, manipulate the controls so the document
will be saved in the folder named Doeu within the folder named Hw99 (assuming
your assigned number is 99) that you have previously installed in your BlaekBox
folder. If you are using MacOS, check the dialog box to make sure the Format con
trol specifies Document. If you are using MSWindows, check the dialog box to
make sure the Save As type control specifies Document. Unlike the MacOS system,
MSWindows will append the suffix .ode to the end of a document file. Make up a
name for your document and save it. Let us suppose for the time being that you
name your document Letter. Figure 1.5 shows the dialog box just before the save.

Now that you have saved the document close the document window. The Log
window should still be showing somewhere on the screen. If you have previously
closed the Log window you can bring it back up again by selecting Info-+Open Log.

Figure 1.4
The Drag and Drop feature.

10 Chapter I The BlackBox Framework

I~ Docu ;1 eMadnlOsllHD

I ~
I untilled I fje<1

Hi Dad. I Desktop I
Please send money_ I New 0, 1 Loye.
Your doughter

. ... _.w _ _

S81.1e As I Cancel I
c I letter I II SlIue I

DSlolionery Fonnol: I Document :;1

Hi Dad.
Please send money.
Love,
Your Daughler

(a) MacOS.

Fio_ ILotter

s.;.., aojype: ~I D~-'CIJ-men-t~('-:odc-:-I ----"--::1 :=:1

(b) MSWindows.

·1 .i-

t YCancoI
I
t

Now click on the Log window to make sure it is the active window. An active win-

Figure 1.5
Saving a document.

dow such as this is called the focus window. Enter the following line of text in the The foclIs window

Log:

Hw99IDocu/Letter

if you are using a Macintosh or

Hw99/0ocU/Letter.odc

if you are using a MSWindows machine. If you are an experienced MSWindows Do IlOt lise the /Jack slash

user you may be tempted to substitute back slash characters for the forward slashes character.

shown above. Resist that temptation. The forward slash will work fine even with
MSWindows and the back slash character will cause grief for users of other systems
when you exchange documents between your computers. Now select that line of text
in your Log as shown in Figure 1.6.

With the text highlighted, select Tools-+Encode File List. There are other encode Always select Encode File

options under the Tools menu, but in a class based on this book you should never List

select them. To grade your homework efficiently, your instructor always needs you

Encoding BlackBox docllments 11

II(!4Aa,mmCIMIfflM

..:.J

to select the Encode File List option. If you select any of the other encode options
you will probably be giving your instructor extra unnecessary work. If you have
made all the correct entries so far. the result of selecting Tools-Encode File List
will be a new window that contains the encoded file similar to that shown in Figure
1.7.

.11:11)(

SldCoder Decode .. ,1 .,J fuRnNCT7fTVMtv9~
lA< .. QE 58fTuPE.51V.;,QlKrqKKrGrtumdGLW
fPdPMHfP9fQb19h009vR70NbvMoedhI,;JRiioec
E.0I:,SlVVyql.bnayKmKKqOomC5XzET1.PuP.Mt
wwCk2Iq9.,E.ct.K3pmWluOpoKq\iCbHliYpeCh.
9N9ntOOQOrG4704D.CbB,708T1 U k73 T .l2,6 k(
E8U.U,.JFAOz.UYrO.V,zDGH9B70M799PS1NPJI.
PUQ,7N1 PRD90dPNZP1 PcUXDJ9X1 xhiZimxng.
70NbvM,kVkk.Um, .. Unp3.6F6.IS0.G,O.e. 2 .. AUl
GhlghA70,cwS.O.L30.53,6.C6.QiiQ8CJuaLqHK'
lu.6FS.O.O .. 676 16.6 ,SAXhKE .SoA5UTyB4.4 ,DE
2Tm.mrijZ92T,eUXDF sET' ,UEU .. W.O A"U.Rfn
-- erd 01 ef1coding --

t

The first line of the encoded file should begin with

StdCoder.Oecode

and the last line should be

--- end of encoding ---

If your encode window does not begin and end with these lines, you need to review
the above procedure and try it again.

Now it is time to save your encoded file. With the encode window similar to Fig
ure 1.7 in focus. select File-Save As. In the dialog box from the Save As command.
manipulate the controls so the document will be saved in the folder named Enc
within the folder named Hw99. If you are using MacOS. verify that the Format con
trol specifies Text. If you are using MSWindows, verify that the Save As type control
specifies Plain Text. Select a name for your encoded file according to the guidelines
specified by your instructor. For example. she may assign a two-digit number to
each assignment. If this document is to be handed in as the first assignment she may
specify that you name the document A01 as Figure 1.8 shows.

Figure 1.6
Entering a file list to be
encoded.

Figure 1.7
The result of selecting
Tools-Encode File List.

12 Chapter I The BlackBox Framework

lin

StdCod«".Dof>Ccd~ .,1 ,F F~vt ... T

! l ~~p~~~.;.~~~~:;:;;~:~
E .Ok ,'T'y{~ ql ,Ofl~)(:nKKqGomC::XzE
qxOk2km9 , ,E .cUGpm WLuOp()l<q'VCbH
9N9ntC8!pI"G47C40'(bB, 708T I U k

! 0.4 ,vcZphZpiV7ibf..E .Ot .U1UzSdd3Y

Ii (jg"'Nx~UYgVh1b3hchqnh""Bg"'OC

cjpho,YcZRiX3.5011.85 .. Cll.U2V.l
,M",dOUnpZGh~hA70.c"'5 O.L3O.5
916 IE EL4lu_bfb G 0 €.7€. 166 b€.S
2UEe.6 .. OS45ULbl ,6V7t.o,jR4'5EU8

CjllSliCOdt, .. ,
--- fnd of ~""od;1l9 ---

--"I 1 Ak ... QE 58fTuPE,ST\"

tPdPMHfP9fGlbt9hOO9vt

EOk ,5TWyqlbnayKmKK(
wwOk2l<j9,E.cUGpmV\4..1
9N9ntQaqor047040.CbE
EBUU,..FAOI.U.YrOV,1
PffO,7N1 PRD90dPNZP1; .
70NbvM,kVkk: .Urn, .. U~.:;
GhighA70,cVl'5.0LJD.S::
lu.6F6.G.O .. 676.16.66A)
2Tm mnijl92T ,eUXCF sf Fie.n:an-

.--__ ---=' ~=E=n=c =' ;,=-1 __ ---" a Macintosh HO

~
Saue Rs

I ROt

o Stationery

(a) MacOS.

JAOl

fj~rt

Desktop

New t:l I

, Cancel 1

0::£:;1
Format: <-I T;.:e,,"H.;..t ___ ',",~"oJ1

••• end 01 encoding --.

Save ... t/PO:I PI.in T .,t(·t><1

• a

(b) MSWindows.

It is possible to encode many documents into one file. To encode several docu
ments simply list the name of each one you want to include in the Log window. Sep
arate the names with spaces or tabs, or put each name on a separate line. Then.
instead of highlighting a single file name as in Figure 1.6. highlight the entire list of
names. When you select Tools-Encode File List. all the listed files will be encoded
into one window, which you can then save to a file. This technique will be useful for
your homework submissions because you will typically need to hand in more than
one file for each assignment.

Now that the document is saved in your Ene folder you will need to hand it in
electronically, The procedure for doing this will vary depending on the particular
networks and computer systems that are used at your institution.

If you ever receive an encoded document you must first open it. Select
File-Open. If you are using MacOS, put a check in the check box labeled "more
files", If you are using MSWindows, change the control labeled Files of type: to

Figure 1.8
Saving the encoded
document.

specify All Files. These settings will make the encoded files visible in the dialog Decoding II doc/llI/elli

box. When you open the encoded file a window should appear similar to Figure 1.7.
With that window in focus, select Tools-Decode. The files will be decoded and

placed in folders with the same names as the ones they came from. If you do not
have folders in your BlackBox folder with the same names from which the encoded
files come, the decode command will create folders with those names on your disk
before storing the files. For example, when you encoded

Hw99/Docu/Letter

you specified that the file named Letter in the folder named Docu in the folder named
Hw99 was to be encoded. When the recipient decodes your file, his disk may not
have a folder named Hw99 in his BlackBox folder. When he selects Tools--+Decode
the framework will create a new folder named Hw99 in his BlackBox folder, and will
create a new folder named Docu in the Hw99 folder. It will then decode the file and
place it in the Docu folder, giving it the name Letter.

Exercises

At the end of each chapter in this book is a set of exercises and problems. Work the
exercises on paper by hand. The problems are programs to be entered into the com
puter and submitted electronically.

1. Identify the following acronyms.

(a) Algol (b) ETH (e) API (d) GUI

2. (a) Who devised a method for specifying the grammatical rules of the Algol language'?
(b) How did the Pascal language get its name')
(e) How did the Oberon-2 language get its name')
(d) Who designed the Component Pascal language')
(e) What is the significance of the name Component in Component Pascal')

Problems

3. Create the project folder for the problems you will write for this book. Create the six
subfolders within the project folder as described in this chapter. Read briefly the docu
mentation in the on-line help titled Text Subsystem in the User's Guide. Write a docu
ment with the BlackBox text editor. Include your name. address. and a description of
your favorite hobbies. Include more than one font style and more than one color of text.
Experiment with the drag-and-drop and multiple undo features of the text subsystem.
Store your document in your Doeu folder. Use the Encode File List command to
encode your document. Store the encoded document in your Ene folder. Submit your
assignment electronically as specified by your instructor.

4. Your instructor has placed an encoded document for you to retrieve electronically.
Retrieve it. decode it. read it. and follow the instructions contained in the document.

Exercises 13

., Chapter2
W~

Languages and Grammars

Two attributes of a programming language are its syntax and semantics. A computer
language's syntax is the set of rules that a program listing must obey to be declared a
valid program of the language. Its semantics is the meaning or logic behind the valid
program. When you begin your study of the Component Pascal programming lan
guage in the next chapter you will need to know the language's syntax to be able to
write programs that the computer will accept.

Three common techniques to describe a language's syntax are:

• Grammars

• Regular expressions

• Finite state machines

This chapter introduces grammars. A variation of a grammar is used to describe the
syntax of Component Pascal. Space limitations preclude a presentation of regular
expressions and finite state machines. Later sections present finite state machines in
a context other than describing a language's syntax.

Languages

SV/1{lIX 1I1ld sl!Il/(//1{ics

Tl!cilniqlles/(Jr descrihing (/

languuge's syntax

Every language has an alphabet. Formally, an alphabet is a finite, nonempty set of ..III Ili{'/whn

characters.

Example 2.1 The alphabet for the language of real numbers that are not written in
scientific notation is the set

(0,1,2,3,4,5,6,7,8,9, +, -,.J

When you write a real number, such as -23.7, you use only the characters from the
alphabet. If you attempt to write a real number using some other character not in the
alphabet, such as -2y.7, then the sequence of characters that you write cannot be a
valid real number. I

Example 2.2 Another example of a language is the language of expressions that
you are familiar with from algebra. Examples of some valid algebraic expressions
are:

16 Chapter 2 Languages and Grammars

axb c x (x + y) cxy+x
(x - y) x (x + yl (x - y) I (x + y) (- (- (- «(b»»)

The expression a @ b is not valid because the character @ is not in the alphabet of
the language of algebraic expressions. The alphabet for the language of algebraic
expressions using only lowercase variable letters is:

{a. b. c. d, e, f. g, h. i. j, k. I, m, n, o. p, q, r, s. t. u. v. w, x, y. z, (,), +, -. x. !} I

The alphabet specifies which characters are legal to use in the language. To make
a sentence in the language you join two or more characters together to form a string.
The operation of joining them together is called concatenation. In Example 2.1 the COl/carel/ulion

string -23.7 is the concatenation of the individual characters -, 2, 3, ., and 7.
Concatenation applies not only to individual characters in an alphabet to con

struct a string, but also to strings to construct bigger strings. In Example 2.2 the
string c x y is concatenated with the string + x to produce the string c X y + x.

The length of a string is the number of characters in the string. The string c x y + The lenglh ora sIring

X has a length of five. The string of length zero, called the empty string, is denoted
by the Greek letter £ to distinguish it from the English characters in an alphabet. Its
concatenation properties are

£x = x£ = x The l'mptv string

where x is a string. The empty string is useful for describing syntax rules.
In mathematics terminology, £ is the identity element for the concatenation oper-

ation. In general, an identity element, i, for an operation is one that does not change Idel/lil\' elelllenlS

a value, x, when x is operated on by i.

Example 2.3 One is the identity element for multiplication because

l·x=x·l=x I

If T is an alphabet, the closure of T, denoted P, is the set of all possible strings The c/osllre ofull ulF/whet

formed by concatenating elements from T T* is extremely large. For example, if T is
the set of characters and punctuation marks of the English alphabet, P includes all
the sentences in the collected works of Shakespeare. in the English Bible. and in all
the English encyclopedias ever published. It includes all strings of those characters
ever printed in all the libraries in all the world throughout history, and then some.
Not only does it include all those meaningful strings, it includes meaningless ones
as well.

Example 2.4 Here are some elements of P for the English alphabet:

To be or not to be, that is the question.
Go fly a kite.
Here over highly toward?
alkeu jfoj ,9nm20mfq23jk I?x!jeo I

Example 2.5 Some elements of P where T is the alphabet of the language for real
numbers are

·2894.01
24
+78.3.80
--234--
6 I

You can easily construct many other elements of 1'* with any of the alphabets in
the previous examples. Because strings can be infinitely long, the closure of any
alphabet has an infinite number of elements.

What is a language? In the examples of 1'* that were just presented, some of the
strings are in the language and some are not. In Example 2.4, the first two strings are
valid English sentences; that is, they are in the language. The last two strings are not
in the language. A language is a subset of the closure of its alphabet. Of the infinite A lallguage

number of strings you can construct from concatenating strings of characters from
its alphabet, only some will be in the language.

Example 2.6 Consider the following two elements of 1'* where T is the alphabet
for Example 2.2.

axb c x «x + y)

The first element of 1'* is in the language of algebraic expressions, but the second is
not, because it has a syntax error. It is illegal to have a left parenthesis without a
matching right parenthesis. I

Grammars

To define a language, you need a way to specify which of the many elements of 1'*
are in the language and which are not. A grammar is a system that specifies how you
can concatenate the characters of alphabet T to form a legal string in a language.
Formally, a grammar contains four parts:

Grammars 17

• N, a nonterminal alphabet Thef'l!Ir I'"rts o(a gramlllar

• T, a terminal alphabet

• P, a set of rules of production

• S, the start symbol, an element of N

An element from the nonterminal alphabet, N, represents a group of characters
from the terminal alphabet, T. A nonterminal symbol is sometimes a single descrip
tive word that begins with an uppercase letter to distinguish it from a terminal sym
bol. You see the terminals when you read the language. The rules of production use
the nonterminals to describe the structure of the language, which may not be readily
apparent when you read the language.

Example 2.7 In the English language. the nonterminals include Verb. Adverb,

18 Chapter 2 Languages and Grammars

Noun, Adjective, Preposition, and Subject among others, A valid English sentence is

Computer science is fun.

The word is is a Verb. Because Verb is a nonterminal you do not see it in the sen
tence. In other words, even though is is a Verb you would never see the sentence

Computer science Verb fun. I

Every grammar has a special nonterminal called the start symbol, S. Notice that NTh" start Sl"IlIho/

is a set, but 5 is not. 5 is one of the elements of set N. The start symbol, along with
the rules of production, p, enables you to decide whether a string of terminals is a
valid sentence in the language. If, starting from 5, you can generate the string of ter-
minals using the rules of production, then the string is a valid sentence.

A grammar for identifiers

The Component Pascal programming language has a rule for naming things. The
rule is that the first character of the name must be a letter or underscore character
and the remaining characters, if any, can be letters, or digits, or underscores in any
combination. The name is called a Component Pascal identifier. Grammar A in Fig
ure 2.1 specifies these rules for a Component Pascal identifier. Even though an iden
tifier can use any uppercase or lowercase letter, or digit, or the underscore character,
to keep the example small this grammar permits only the letters a, b, and c and the
digits 1, 2, and 3.

N
T
P

{Identifier, Letter, Digit}
{a, b, c, 1,2, 3}
the productions

1. Identifier -? Letter
2. Identifier -? Identifier Letter
3. Identifier -? Identifier Digit
4. Letter -? a
5. Letter -? b
6. Letter -? c
7. Digit -? 1
8. Digit -? 2
9. Digit -? 3

5 Identifier

This grammar has three nonterminals, namely, Identifier, Letter, and Digit. The
start symbol is Identifier, one of the elements from the set of nonterminals. The rules

Figure 2.1
Grammar A for Component
Pascal identifiers.

of production are of the form The min olproilllCti(l11

A-?w

A grammar for signed integers 19

where A is a nonterminal and w is a string of terminals and nonterminals. The sym
bol ~ means "produces." You should read production rule number 3 in this gram
mar as, "An identifier produces an identifier followed by a digit."

The grammar specifies the language by a process called a derivation. To derive a Dl'rimti()lls

valid sentence in the language, you begin with the start symbol and substitute for
nonterminals from the rules of production until you get a string of terminals.

Example 2.8 Here is a derivation of the identifier cab3 from Grammar A:

Identifier ~ Identifier Digit Rule 3
~ Identifier 3 Rule 9
~ Identifier Letter 3 Rule 2
~ Identifier b 3 Rule 5
~ Identifier Letter b 3 Rule 2
~ Identifier a b 3 Rule 4
~ Letter a b 3 Rule I
~cab3 Rule 6 I

Next to each derivation step is the production rule on which the substitution is
based. For example, Rule 2,

Identifier ~ Identifier Letter

was used to substitute for Identifier in the derivation step

Identifier 3 ~ Identifier Letter 3

The symbol ~ means "derives in one step." You should read this derivation step as
"Identifier followed by 3 derives in one step Identifier followed by Letter followed
by 3."

Analogous to the closure operation on an alphabet is the closure of the derivation
operation. The symbol ~* means "derives in zero or more steps." You can summa- ClosLlr~ ()fth~ deri\'(/tiOlI

rize the previous eight derivation steps as operatioll

Identifier ~* cab 3

This derivation proves that cab3 is a valid identifier, because it can be derived
from the start symbol, Identifier. A language specified by a grammar consists of all
the strings derivable from the start symbol using the rules of production. The gram
mar provides an operational test for membership in the language. If it is impossible
to derive a string, the string is not in the language.

A grammar for signed integers

Grammar B in Figure 2.2 defines the language of signed integers, where d represents
a decimal digit. The start symbol is I, which stands for integer. F is the first charac
ter, which is an optional sign, and M is the magnitude.

20 Chapter 2 Langllages and Grammars

N= (I, F, M)
T (+, -, d)
p = the productions

I.I-7FM
2. F -7 +
3. F -7 -
4. F -7 E
5. M -7 d M
6. M -7 d

S

Sometimes the rules of production are not numbered and are combined on one
line to conserve space on the printed page. You can write the rules of production for
this grammar as

I-7FM
F-7+I-IE
M-7dldM

where the vertical bar, I, is the alternation operator and is read as "or." Read the last
line as "M produces d, or d followed by M."

Example 2.9 Here are some derivations of valid signed integers in this grammar:

~FM ~FM ~FM

~FdM ~FdM ~FdM

~FddM ~Fdd ~FddM

~ Fd dd ~dd ~FdddM

~ odd d ~Fdddd

~+dddd I

Note how the last step of the second derivation used the empty string to derive dd
from Fdd. It used the production F -7 E and the fact that Ed = d. This production rule
with the empty string is a convenient way to express the fact that a positive or nega
tive sign in front of the magnitude is optional.

Some illegal strings from this grammar arc ddd+, +-ddd, and ddd+dd. Try to
derive these strings from the grammar to convince yourself that they are not in the
language. Can you informally prove from the rules of production that each of these
strings is not in the language')

The productions in both of the example grammars have recursive rules in which a
nonterminal is defined in terms of itself. Rule 3 of Grammar A defines an Identifier
in terms of an Identifier as

Identifier -7 Identifier Digit

and Rule 5 of Grammar B defines M in terms of M as

Figure 2,2
Grammar B for signed
integers.

A context sensitive grammar 21

M~dM

Recursive rules produce languages with an infinite number of legal sentences. To
derive an identifier, you can keep substituting Identifier Digit for Identifier as long as
you like to produce an arbitrarily long identifier. Like all recursive definitions. there
must be an additional nonrecursive rule to provide the basis for the definition. Other
wise the sequence of substitutions for the nonterminal could never stop. The nonre
cursive rule M ~ d provides the basis for M in Grammar B.

A context sensitive grammar

The production rules for the previous grammars always contained a single nontermi
nal on the left side. Grammar C in Figure 2.3 has some production rules with both a
terminal and nonterminaI on the left side.

N= {A,B,C}
T (a, b, c)
p = the productions

l.A~aABC

2.A~abC

3.CB ~BC
4. b B ~ b b
5. bC~bc
6. cC ~cc

S A

Example 2.10 Here is a derivation of a string of terminals with this grammar:

A ~aABC Rule I
~aaABCBC Rule I
~aaabCBCBC Rule 2
~aaabBCCBC Rule 3
~aaabBCBCC Rule 3
~aaabBBCCC Rule 3
~aaabbBCCC Rule 4
~aaabbbCCC Rule 4
~aaabbbcCC Rule 5
~aaabbbccC Rule 6
~aaabbbccc Rule 6

An example of a substitution in this derivation is using Rule 5 in the step
aaabbbCCC ~ aaabbbcCC. Rule 5 says that you can substitute c for C, but only if
the C has a b to the left of it. I

In the English language, to quote a phrase out of context means to quote it with
out regard to the other phrases that surround it. Rule 5 is an example of a context-

Figure 2.3
Grammar C. a context
sensitive grammar.

22 Chapter 2 Languages and Grammars

sensitive rule. It does not permit the substitution of C by c unless C is in the proper
context, namely, immediately to the right of a b.

Loosely speaking, a context-sensitive grammar is one in which the production Context sensitil'e grammars
rules may contain more than just a single nonterminal on the left side. In contrast,
grammars that are restricted to a single non terminal on the left side of every produc-
tion rule are called context-free. (The precise theoretical definitions of context-sen-
sitive and context-free grammars are more restrictive than these definitions. For the
sake of simplicity, this chapter will use the previous definitions, although you should
be aware that a more rigorous description of the theory would not define them as we
have here.)

Some other examples of valid strings in the language specified by this grammar
are abc, aabbcc, and aaaabbbbcccc. Two examples of invalid strings are aabc and
cba. You should derive these valid strings and also try to derive the invalid strings to
prove their invalidity to yourself. Some experimentation with the rules should con
vince you that the language is the set of strings that begins with one or more a's, fol
lowed by an equal number of b's, followed by the same number of c's.
Mathematically, this language, L, can be written

{ n n nl L= abc n>O}

which you should read as "The language L is the set of strings anbncn such that n is
greater than 0." The notation an means the concatenation of n a's.

The parsing problem

Deriving valid strings from a grammar is fairly straightforward. You can arbitrarily
pick some nonterminal on the right side of the current intermediate string and select
rules for the substitution repeatedly until you get a string of terminals. Such random
derivations can give you many sample strings from the language.

Suppose we tum the problem around, however, and start with some given string
of characters from the language's alphabet that is supposed to represent a valid sen
tence. You must determine if the string of terminals is indeed valid. But, the only
way to determine if a string is valid is to derive it from the start symbol of the gram
mar. So, you must attempt such a derivation. If you succeed, you know the string is a
valid sentence. The problem of determining whether or not a given string of terminal
characters is valid for a specific grammar is called parsing, and is illustrated sche
matically in Figure 2.4.

Parsing a given string is more difficult than deriving an arbitrary valid string. The
parsing problem is a form of searching. The parsing algorithm must search for just
the right sequence of substitutions to derive the proposed string. Not only must it
find the derivation if the proposed string is valid, but it must also admit the possibil
ity that the proposed string may not be valid. If you look for a lost diamond ring in
your room and do not find it, that does not mean the ring is not in your room. It may
simply mean that you did not look in the right place. Similarly, if you try to find a
derivation for a proposed string and do not find it, how do you know that such a der
ivation does not exist?

A grammar for algebraic expressions 23

Derivation ~(Grammar)--1 Valid sentence 1
(a) Deriving a valid sentence.

Proposed
sentence (Grammar >--

(b) The parsing problem.

A grammar for algebraic expressions

Derivation
or

"Not valid"

To see some of the difficulty a parser may encounter, consider Grammar D in Figure
2.5, which describes an algebraic expression. Nonterminal E represents the expres
sion. T represents a term and F represents a factor.

N
T
p

{E,T,F}
{+, x, (,), a}
the productions
l.E~E+T

2.E~T

3. T~Tx F
4.T~F

5. F ~ (E)
6.F~a

S E

Suppose you are given the string of terminals

(axa)+a

and the production rules of this grammar and are asked to parse the proposed string.
The correct parse is

E ~E+T Rule I
==>T+T Rule 2
==>F+T Rule 4
==>(E)+T Rule 5
==>(T)+T Rule 2
==>(TxF)+T Rule 3
==>(FxF)+T Rule 4
==>(axF)+T Rule 6
==>(axa)+T Rule 6

Figure 2.4
The difference between
deriving an arbitrary sentence
and parsing a proposed
sentence.

Figure 2.5
Grammar D, a grammar for
algebraic expressions.

24 Chapter 2 Languages and Grammars

=}(axa)+F
=}(axa)+a

Rule -+
Rule 6

The reason this could be difficult is that you might make a bad decision early in the
parse that looks plausible at the time, but which leads to a dead end. For example,
you might spot the "C' in the string that you were given and choose Rule 5 immedi
ately. Your attempted parse might be

E =}T Rule 2
=}F Rule 4
=} (E) Rule 5
=} (T) Rule 2
=}(TxF) Rule 3
=}(FxF) Rule 4
=}(axF) Rule 6
=}(axa) Rule 6

Until now, you have seemingly made progress toward your goal of parsing the
original expression, because the intermediate string looks more like the original
string at each successive step of the derivation. Unfortunately, now you are stuck,
because there is no way to get the + a part of the original string. After reaching this
dead end, you may be tempted to conclude that the proposed string is invalid. but
that would be a mistake. Just because you cannot find a derivation, does not mean
that such a derivation does not exist.

One interesting aspect of a parse is that it can be represented as a tree. The start
symbol is the root of the tree. Each interior node of the tree is a nonterminal, and
each leaf is a terminal. The children of an interior node are the symbols from the
right side of the production rule substituted for the parent node in the derivation. The
tree is called a syntax tree, for obvious reasons. Figure 2.6 shows the syntax tree for
(a x a) + a with Grammar D, and Figure 2.7 shows it for dd with Grammar B.

Extended Backus-Naur form

The technique of using a grammar to specify the syntax rules of a programming lan
guage is sometimes called Backus-Naur Form (BNF) after John Backus and Peter
Naur who developed it in the late 1950's. Backus was instrumental in the design of
the Fortran language as was Naur for the Algol 60 language. An extended version of
the system for specifying language syntax has come into use that is called Extended
Backus-Naur Form (EBNF). The production rules are a bit simpler when written
with EBNF because there is no need for the empty string E, and there are usually not
so many recursive production rules.

A minor difference in notation is that the equals sign = is sometimes used in
place of the right arrow ~ when writing the production rules. An alternate notation
is to use the two colons followed by the equals sign ::= to signify the same thing.
More significantly. however. EBNF adds the following three operations:

E + T

I I
T F

I I
F a

~
(E)

I
T

~
T x F

I I
F a

I
a

Figure 2.6
The syntax tree for the parse
of (a x a) + a in Grammar D.

I
~
F M

I~
E d M

d

Figure 2.7
The syntax tree for the parse
of dd in Grammar B.

Extellded Backus-Naur form 25

• Alternation-select one of several alternatives

• Optional-include zero or one time

• Repetition-include zero or more times

The alternation symbol is the vertical bar I. The vertical bar was used previously to
select between two complete productions of the grammar. However, in EBNF the
bar is used within a single production rule. The notation for specifying that a symbol
is optional is to enclose it in square brackets []. To specify that it can be included
even more than once enclose it in curly braces ().

Example 2.11 The second and third production rules of Grammar A are recursive.
That is. Identifier appears on both sides of the production arrow and is thus defined
in terms of itself.

I. Identifier -7 Letter
2. Identifier -7 Identifier Letter
3. Identifier -7 Identifier Digit

As shown in Example 2.8 in the derivation of cab3, the effect of the recursive defini
tion is to allow an unlimited number of letters or digits in the identifier. From the
first production rule, Identifier must begin with Letter. These three production rules
can be written in EBNF with one rule as

Identifier -7 Letter (Letter I Digit)

In English, you should read this as. "An identifier is a Letter followed by zero or
more occurrences of a Letter or a Digit:' I

Example 2.12 The production rules of Grammar B included one with the empty
string to signify that the leading + or - sign is optional. The six production rules

l.I-7FM
2. F -7 +
3. F -7-
4. F -7 £

5. M -7 d M
6.:vI -7 d

can be conveniently written in only one EBNF rule as

I-7[+I-]d(d}

which you should read in English as. "An I is an optional + or -, followed by one d.
followed by zero or more occurrences of d." I

The r"ree (}llI'ILlriolls ()r ERNF

26 Chapter 2 Languages and Grammars

Component Pascal syntax

The Component Pascal syntax is specified by EBNF and is given in Appendix A. It
is also available in the BlackBox on-line documentation under Component Pascal
Language Report.

There are a few notational differences from the above examples. The production
arrow ~ is written as an equals sign =. A more significant difference follows from
the problem that the square brackets [], curly braces { } and vertical bar I used in
the EBNF system are all valid characters in the language. So there must be some
way to distinguish whether, for example, a square bracket [is an EBNF optional
operator or a Component Pascal terminal symbol. The report makes the distinction
by enclosing the symbol in double quotes" "if it is a Component Pascal terminal.
Other terminals in the language are the words written in all uppercase letters.

Example 2.13 Referring to the production rules in Appendix A, here is a deriva
tion that proves the string of terminals

IF alpha < 3 THEN DoBeta END

is a valid Statement. The derivation assumes that alpha and DoBeta have previously
been shown to be valid Ident's, and that 3 has previously been shown to be a valid
Integer.

Statement ~ IF Expr THEN StatementSeq END
~ IF SimpJeExpr Relation SimpleExpr THEN StatementSeq END
~ IF Term Relation SimpleExpr THEN StatementSeq END
~ IF Factor Relation SimpleExpr THEN StatementSeq END
~ IF Designator Relation SimpleExpr THEN StatementSeq END
~ IF Qualident Relation SimpleExpr THEN StatementSeq END
~ IF Ident Relation SimpleExpr THEN StatementSeq END
~* IF alpha Relation SimpleExpr THEN StatementSeq END
~ IF alpha < SimpleExpr THEN StatementSeq END
~ IF alpha < Term THEN StatementSeq END
~ IF alpha < Factor THEN StatementSeq END
~ IF alpha < Number THEN StatementSeq END
~ IF alpha < Integer THEN StatementSeq END
~* IF alpha < 3 THEN StatementSeq END
~ IF alpha < 3 THEN Statement END
~ IF alpha < 3 THEN Designator END
~ IF alpha < 3 THEN Qualident END
~ IF alpha < 3 THEN Ident END
~* IF alpha < 3 THEN doBeta END

Figure 2.8 shows the corresponding syntax tree for this derivation. The dashed line
from Ident to alpha indicates that more than one derivation step is hidden in the tree
and corresponds to ~* in the above derivation. I

Statement

IF Expr THEN StatementSeq END

~ I
SimpleExpr Relation SimpleExpr Statement

I I I I
Term < Term Designator

I I I
Factor Factor Qualident

I I I
Designator Number Ident

I I ,
Qualident Integer DoBeta

I
Ident 3

,
alpha

Unlike Grammar C, the production rules in Appendix A always have a single
nonterminal on the left side. So it would appear from the production rules that the
Component Pascal language is context free. However, it is not. The language report
contains additional rules that must be followed to write a valid Component Pascal
program. Following the grammar rules is a necessary but not sufficient condition for
writing a valid program. That is, if you write a valid program you must conform to
the grammar rules. But if you follow the grammar rules it does not automatically
fOllow that you have written a valid program.

Exercises

1. What is the identity element for the addition operation on integers?

2. Derive the following strings with Grammar A in Figure 2.1 and draw the corresponding
syntax tree.

(a) abc123 (b) a1b2c3 (c) a321bc

3. Derive the following strings with Grammar B in Figure 2.2 and draw the corresponding
syntax tree.

(a) -d (b) +ddd (c) d

Exercises 27

Figure 2.8
The syntax tree for the
derivation in Example 2.13.

28 Chapter 2 Languaxes and Grammars

4. Derive the following strings with Grammar C in Figure 2.3.

(a) abc (b) aabbcc (e) aaaabbbbcccc

5. For each of the following strings, state whether it can be derived from the rules of
Grammar D in Figure 2.5. If it can. draw the corresponding syntax tree.

(a) a + (a)

(d) a x (a + a) x a

(b) ax(+a)

(e) a - a

ee) a x (a + a)
(f) « (a)))

6. For the grammar of Component Pascal in Appendix A. draw the syntax tree for State
mentSeq from the following strings, assuming that 51, 52. 53 and 54 are each valid
Statements and C 1 and C2 are each valid Exprs.

(a) (b) (e) (d)

IF C1 THEN IF C1 THEN IF C1 THEN 81 ;
51 51 ; IF C2 THEN WHILE C1 DO

END; IF C2 THEN 51 IF C2 THEN
52 52 ELSE 52

ELSE 52 END;
53 END; 53

END S3 END
END; ELSE
54 54

END

7. For the Component Pascal grammar in Appendix A, draw the syntax tree for Statement.

(a) Alpha:= 1

(b) Alpha:= Alpha' 3

(e) Alpha:= (Beta < 1)

(d) Alpha:= «Beta < 1) or (Gamma> 24))
(e) Alpha (Beta)

(f) Alpha (Beta, 24)

.., Chapter3
1iI~

Modules and Interfaces

The BlackBox framework consists of tools to help the software designer write appli
cation programs. Typical applications present dialog boxes and menu options to the
user. When the user enters data into a dialog box and clicks a button with the mouse
or makes a menu selection, a program that the software designer wrote is activated.
The framework maintains the necessary connections between the programs and the
actions of the user. To accomplish the required connections the BlackBox frame
work uses three collections:

• Modules

• Classes

• Procedures

Each of these collections groups various items together into a single unit. This chap
ter shows how to organize simple procedures into modules. Later chapters show how
to use classes.

Modules

The module is the outermost collection of classes, procedures, and data. Every Com
ponent Pascal program you write must be contained within a module, which is also
known as a compilation unit. Figure 3.1 shows one possible organization of a mod
ule. It is a collection of some data, a procedure, and a class. A procedure groups data
and program statements together.

In Figure 3.1, the word Data I represents data that is contained in the module but
is not contained in a procedure. Data that is not contained in a procedure or a class is
called global data in contrast to local data, which is. Data3 is local to Class3, and
Data3a is local to Procedure3a.

The two lines in Procedure2 represent program statements. The program state
ments are grouped so they can be executed as if they were a single statement. A class
can collect several procedures together as well as data. Many combinations of col
lections are possible. Figure 3.1 shows that some procedures may have data while
others may not. You can also put procedures inside other procedures, but we will not
have occasion to do so in this book. Putting procedures inside a class is the organiza
tion required for the design technique called object-oriented programming (OOP).
The latter part of this book describes principles of OOP.

Module

Datal

Procedure2

Class3

Data3

Procedure3a

Data3a

Procedure3b

Figure 3.1
A module containing a
procedure and an object.

30 Chapter 3 Modules alld Illterfaces

Interfaces

The BlackBox framework is a collection of modules that you will use to write your
programs. Your programs will consist of procedures that are contained within a
module that you will write. The modules of the framework all fit together and coop
erate to provide services for the programmer's module. A programmer thinks of a
particular module in the framework as providing a service for him in much the same
way that a professional, sayan attorney, provides a service for her customers. The
terminology from the commercial world is often carried over to computer science.
In the same way that the attorney provides a service to her clients. a module in the
framework is a server that provides a service to the programmer's module. which is The cliem/server \'ie\\'
the client.

Figure 3.2 shows the relationship between the client module. which you will
write, and the server module, which is provided by the framework. The interaction
between the two modules is governed by specific rules or protocols that are defined
by the server module in its interface. The interface of a module is a list of all the The illlt'rtcice allli its purpose
items that are exported by the module. Its purpose is to describe the rules that a cli-
ent module must follow to use its services. You should develop the skill of reading
the interface of a module to determine the rules to be followed when requesting its
services.

Client
module

Interface

I-
___ R_e_q_u_e_st_t_o_r __ .. o •.

mice .

Items
exported

Server
module

Items
hidden

The server module can export many kinds of items including data, procedures,
and classes. The client module has access to the items exported by the server. Any
items that are not exported by the server are hidden from the client and are not
accessible. If the server is written well, knowledge about the items that are hidden
will not be needed anyway by the client to perform its task. The hiding of detail is

Figure 3.2
The interface between a client
module and a server module.

the essence of ahstraction, and is an important idea in software design. The server The essence olahstractioll

module is darkly shaded in Figure 3.2 to indicate that its details cannot be seen by
the client. This concept is so important that the representation of a server module as
a "black box" whose details are hidden is the inspiration for the name of the Black-
Box framework.

If you want to use a module but you are not sure of the exported items, the frame
work provides a convenient way for you to view the module's interface. You simply
type the name of the module. highlight it in a stretch of text, and select Info---'>Inter
face from the menu bar. For example, Figure 3.3 shows how you could view the
interface of a module named StdLog, which you will use for your first program. The

name of the module. StdLog. has been typed in the Log and selected. With this
stretch of text in the focus window, Info-Client Interface is selected from the menu
bar. The result is a new window with the text shown in Figure 3.4.

You can always tell when you are inspecting an interface by the hrst word DEFI
NITION in the listing. The items listed between DEFINITION and END are the items
exported by the module. This module exports many items, six of which are shown
here-the procedures Bool, Char. Int, Ln, Real, and String. Your first program will
use procedure String from module StdLog.

DEFINITION StdLog;

PROCEDURE Bool (x: BOOLEAN);
PROCEDURE Char (ch: CHAR);
PROCEDURE Int (i: LONGINT);
PROCEDURE Ln;
PROCEDURE Real (x: REAL);
PROCEDURE String (IN str: ARRAY OF CHAR);

END StdLog.

Compilers

A computer can directly execute statements only if they are written in the language
that the machine can understand. Languages for machines are written in a complex
code that is difficult for humans to read or write. The code is called machine lan
guage. So a Component Pascal statement must first be translated to machine lan
guage before executing. The function of the compiler is to perform the translation
from a program written in Component Pascal to machine language. The compiler
also generates the interface between the program and the rest of the framework.
Running a program is a three-step process:

• Write the program in Component Pascal. called the source program.

• Invoke the compiler to translate. or compile. the source program from Compo
nent Pascal to machine language. The machine language version is called the

object program and is stored in the code file. The interface is stored in the
symbol hie.

Compilers 31

32 Chapter 3 Modules and [lite/faces

• Execute the object program.

If you want to execute a program that was previously compiled, you do not need
to translate it again. You can simply execute the object program directly. If you ever
delete the object program from your disk you can always get it back from the source
program by compiling again. But the translation can only go one way. If you ever
delete the source program you cannot recover it from the object program.

The Component Pascal compiler is software, not hardware. It is a program that is
stored in a file on your disk. In the BlackBox framework, the compiler is located in
the development subsystem, abbreviated Dev. Like all programs, the compiler has
input, does processing, and produces output. Figure 3.5 shows that the input to the
compiler is the source program and the output is the object program and the inter
face.

Input Processing Output

(Compil" <,----_
When you write the source program. it wilI be saved in a file on disk just like any

other document would be. The text files you wrote in the first chapter were saved in
files stored in the Docu folder. You should save your Component Pascal source pro
grams in the Mod folder. When you invoke the compiler. it will produce the code file
for the object program, and the framework wilI save it in the Code folder. The com
piler will also produce the interface. which the framework will save in the Sym
folder. Both the object program and the interface are created automaticalIy by the
compiler from your source program. Most other programming languages require the
programmer to write not only the source program. but the interface as well. If you
have used such a language before, having the interface produced automatically
might take some getting used to. The way in which BlackBox manages the inter
faces of the modules is a major benefit over other development systems.

Programs

Figure 3.6 is a program that outputs a message to the Log. To run this program, you
should first select File-New and type the listing in the untitled document window
as it is shown in the figure. Be particularly careful about the punctuation marks.
There are several differences in the program that you should type compared to the
program in Figure 3.6.

Every module must have a name. In Figure 3.6 the name of the module is
Hw90Pr0380. When you develop software for a large project that requires many
modules, it is important to have a consistent naming convention for your modules
and your files. In the process of studying from this book. you wilI be writing many

Figure 3.5
The compiler as a program.

modules and so will need a consistent naming system. The guidelines for naming the
modules in this chapter are a system that is appropriate for programs that are written
as assignments in a class. Your instructor may have different guidelines for you to
follow.

MODULE Hw99Pr0380;
(* Stan Warford *)
(* June 12, 2002 *)

IMPORT StdLog;

PROCEDURE PrintAddress*;
BEGIN

StdLog.String("Mr. K. Kong"); StdLog.Ln;
StdLog.String("Empire State Building"); StdLog.Ln;
StdLog.String("350 Fifth Avenue"); StdLog.Ln;
StdLog.String("New York, NY 1 0118-011 0"); StdLog.Ln

END PrintAddress;

END Hw99Pr0380.

Chapter I described a system where each student in the class is assigned a unique
two-digit number. The name of the module in Figure 3.6 is appropriate for a student
who has been assigned the number 99. The first part of the name Hw99 consists of
the letters Hw, which stands for homework, followed by the assigned student num
ber. The second part of the name Pr0380 assumes that this program is a homework
assignment as specified in Chapter 3, Problem 80. You must be careful to distinguish
between uppercase and lowercase letters. In the name Hw99Pr0380, Hand P are
uppercase, while wand r are lowercase. When you type a program for an assignment
use your assigned number in place of 99, the chapter from which the assignment is
taken in place of 03, and the problem number in place of 80.

After you have entered the text, select File-Save As to save the file as a docu
ment (not Ascii or Plain Text). Manipulate the controls of the dialog box so the doc
ument will be saved in the folder named Mod within the folder named Hw99 that you
previously installed in your BlackBox folder. Name the file Pr0380 when you save it.
Note that the first part of the module name Hw99 is the name of your folder con
tained in the BlackBox folder. while the second half of the module name Pr0380 is
the name of the file that is within the Mod folder that is within your folder.

You can see from Appendix A how Figure 3.6 conforms to the structure for a
module. The EBNF syntax rule for Module from the appendix is

Programs 33

Figure 3.6
Sending output to the Log.

MODULE Ident " ;" [ImportList] DeclSeq [BEGIN StatementSeq] [CLOSE StatementSeq] END Ident " . "

In this program Ident is Hw99Pr0380, there is an ImportList containing StdLog, the
declaration sequence DeclSeq corresponds to the procedure named PrintAddress
with its own BEGIN and END, there is no BEGIN StatementSeq part, and there is no
CLOSE StatementSeq part. Notice how the module must terminate with a period.

34 Chapter 3 Modules and Interfaces

Comments

The documentation section at the beginning of the module in Figure 3.6 is enclosed
in comment brackets, (* and *). The compiler ignores everything between the brack
ets. The only purpose of the documentation section is to provide information to a
human reader. The comments in this module list the programmer's name and the
date the program was written. You can write a comment anywhere that a blank space
can occur and not affect the program execution. All your modules should contain a
documentation section with at least your name and the date you wrote the program.
In the BlackBox framework, documentation about how to use a module is placed in
the Docu file, which is described later.

Reserved words

Figure 3.6 has five reserved words-MODULE, IMPORT, PROCEDURE, BEGIN,
and END. Reserved words have special meaning to the Component Pascal compiler.
The reserved word MODULE indicates to the compiler the start of a Component Pas
cal module. The reserved word IMPORT tells the compiler that another module, Std
Log in this case, will be used by this module. PROCEDURE indicates the beginning
of a procedure declaration. BEGIN indicates the start of a list of Component Pascal
statements, and END indicates the end of the list. Component Pascal has 40 reserved
words. They are:

ABSTRACT
ARRAY
BEGIN
BY
CASE
CLOSE
CONST
DIV
DO
ELSE

ELSIF
EMPTY
END
EXIT
EXTENSIBLE
FOR
IF
IMPORT
IN
IS

LIMITED
LOOP
MOD
MODULE
NIL
OF
OR
OUT
POINTER
PROCEDURE

These are terminal symbols in the grammar in Appendix A.

Identifiers

RECORD
REPEAT
RETURN
THEN
TO
TYPE
UNTIL
VAR
WHILE
WITH

The name of the module is Hw99Pr0380 and the name of the procedure in the mod
ule is PrintAddress. Both names are Component Pascal identifiers determined arbi
trarily by the programmer. You could just as easily call the procedure OutputName
instead of PrintAddress. In that case. the first line of the listing after the documenta
tion section would be

PROCEDURE OutputName*;

Items other than modules and procedures can be named by Component Pascal
identifiers. Regardless of the item named, you must follow the rules for devising an
identifier. Component Pascal identifiers may contain only letters, digits, and under-

COl1lpOl1el1t Pascal's reserved
words

score characters. and they must start with a letter or underscore character. The EBNF
syntax rule for Ident from the appendix is

(Letter I "_ ") {Letter I "_" I Digit}

An identifier can consist of more than one word. but the words may not be separated
by a space. If an identifier contains more than one word you should capitalize the
first letter of the word to make it easily readable.

Example 3.1 Here are five legal Component Pascal identifiers:

New York DC9 quantityOnHand hoursWorked

Notice how much easier it is to read the identifier quantityOnHand instead of quanti
tyonhand.

I

Component Pascal distinguishes between uppercase and lowercase characters in
identifiers or reserved words. So. hours and Hours would be detected by the com
piler as different identifiers. Reserved words may not be used as Component Pascal
identifiers.

Example 3.2 Here are some illegal Component Pascal identifiers:

7Eleven Tax% home-Address TO

The first is illegal because it does not begin with a letter. The second and third have
characters other than letters or digits. The last is illegal because it is a reserved word.

I

Unlike Standard Pascal and Oberon-2, Component Pascal allows the underscore
character in its identifiers. The rule to allow the underscore character is provided
mainly for compatibility with the widespread Java and C++ programming lan
guages.

Example 3.3 Here are some legal Component Pascal identifiers that use the
underscore character.

I

To write a Component Pascal program you must make up identifiers to name
items. You should get in the habit of using mnemonic identifiers. that is. identifiers
that remind the human reader about the meaning of the item you are naming. Print
Address is a good name for the procedure in module Hw99Pr0380 because the pro
gram prints an address on the Log. The program would execute exactly the same if
you wrote

PROCEDURE Xyz*;

Identifiers 35

36 Chapter 3 Modules and Interfaces

But that would be horrible style, because the identifier indicates nothing about what
the program does. Even worse would be

PROCEDURE Payroll*;

for this module, because that would indicate to the human reader that the program
has something to do with a payroll problem, which it does not. When you use a pro
gram from this book as a model for your own program, do not blindly copy the iden
tifiers if they are not appropriate to your problem. Instead, make up your own
mnemonic identifiers.

Exporting and importing procedures

In the same way that a large company is subdivided into several departments, a large
software project is subdivided into several modules. For a company to function
effectively, people within a department must be able to communicate with people in
other departments. Similarly, for a large program to function effectively, communi
cation must take place between entities in different modules. It is the responsibility
of the software designer to specify how the communication between modules is to
take place.

To maintain an orderly flow of work, most companies place some restriction on
the lines of communication between departments. For example, a manufacturing
worker usually is not allowed to walk in to the legal department and ask the com
pany's attorneys about the latest legal issues the company is dealing with. Indeed,
some of the information in the legal department might be privileged information that
should be kept hidden from production workers.

In the same way that information is hidden between departments of a company,
information can be hidden within a module. In Component Pascal, hiding informa
tion within a module is the default rule. That is, all items are hidden within a module
and are not accessible to other modules unless the programmer makes them accessi
ble. When a module exports an item, it gives permission for another module to use
it. If a module wants to use an item that another module has exported, it must import
the item.

The line

IMPORT StdLog;

in Figure 3.6 indicates to the compiler that module Hw99Pr0380 wants to import all Importil1g u lIl()d/ll~

of the items exported by module StdLog. Module StdLog, whose interface is shown
in Figure 3.4, contains a collection of procedures that output messages to the Log.

The asterisk after the name of the procedure PrintAddress' is called an export Exportil1g II m()d/ll~

mark. The asterisk indicates to the compiler that this procedure is to be made avail-
able to other modules that want to import it. We will see later that items other than
procedures can be exported and imported.

Statements

The statement

StdLog.String("Mr. K. Kong")

causes the phrase Mr. K. Kong to be printed on the Log. This statement is using the
procedure named String from the module named StdLog. If module Hw99Pr0380
had not imported module StdLog, this statement would produce an error. To execute
a procedure from an imported module, you must type the name of the module fol
lowed by a period followed by the name of the procedure you want to execute.

Following the name of the procedure String are a pair of parentheses (). Within
the parentheses is the parameter "Mr. K. Kong". The procedure prints the content
between the double quote to the Log. It is permitted to use single quotes instead of
double quotes. Hence the statement

StdLog.String('Mr. K. Kong')

would produce the same output to the Log. If you want a double quote to be printed
to the Log you must enclose the phrase by single quotes and vice versa.

Example 3.4 The statement

StdLog.String(,He said, "Hello". How are you?')

prints the phrase

He said, "Hello". How are you?

to the Log. I

The statement

StdLog.Ln

executes the procedure named Ln from the module StdLog. Unlike procedure String
from the same module, this procedure has no parameter. Procedure Ln sends the cur
sor in the Log to the beginning of the next line, which causes the second Std
Log.String to place its parameter below the first one.

You can see from Figure 3.4 that module StdLog exports six procedures. Module
Hw99Pr0380 uses two of them-String and Ln. There are no parentheses following
Ln indicating that this procedure has no parameters. String does have parentheses
following it. The item

IN str: ARRAY OF CHAR

Statements 37

that is contained between parentheses is called the signature of procedure String. sIr Sigllllltlrcs. jiJrlI/(/1
is the name of the parameter and ARRAY OF CHAR is its type. sIr is called the for- {Jarametas and aCllllll

mal parameter. It matches the actual parameter "Mr. K. Kong" in the procedure call. {Jurameters

38 Chapter 3 Modules and Interfaces

The meaning of IN in the signature is described later. The parameters in the interface
are guidelines for the use of the procedure in the importing module. The type
ARRAY OF CHAR in the formal parameter list indicates that the actual parameter
must be an array of characters, which is what "Mr. K. Kong" is.

You can get more extensive information about a documented module from the
framework by highlighting the module name and selecting Info--Documentation.
You should try this now to inspect the documentation of module StdLog.

All the lines between BEGIN and END in module Hw99Pr0380 are called execut
able statements, because they perform an operation when the program executes.
Component Pascal has the following II executable statements:

assignment if return
case loop while
exit procedure with
for repeat

We will consider them in later chapters. The StdLog.String statement is an example
of a procedure statement, or procedure call. IMPORT is an example of a nonexecut
able statement. It has an effect during the compile phase as opposed to the execute
phase.

You may have noticed in procedure PrintAddress that a semicolon appears after
each StdLog statement except for the last one. This production rule from Appendix
A for a statement sequence

StatementSeq = Statement (";" Statement)

shows that semicolons are used to separate two statements. For example, use the
semicolon after the first StdLog.String statement to separate it from the following
StdLog.Ln statement. Then use the semicolon after the StdLog.Ln statement to sepa
rate it from the following StdLog.String. The reserved word END, however, is not a
statement. Therefore, you do not need a semicolon separator after the last Std
Log.Ln. The general rule to remember is

• Do not place a semicolon before an END.

Syntax errors

Now that the program has been written and saved in the Mod folder, it is time to
attempt a compile. With the source window in focus select Dev--Compile And How to cOlllpile [/ Component

Unload to translate the program. If your program has no errors, the compiler will Pascal program

create the object program and the interface and store them on your disk. But how
does the compiler determine where to store them? It examines the name of the mod-
ule, scanning it from left to right. It assumes the first letter of the module name is the
first letter of the project folder. Then it assumes that every letter and digit after the
first character up to but not including the first uppercase letter is also part of the
project folder. The rest of the module name is taken to be the name of the file where
the object program and the interface are to be stored. The object file is stored in the
Code folder and the interface is stored in the Sym folder.

Example 3.5 The module in Figure 3.6 is named Hw99Pr0380. The programmer
saved it in the file BlackBoxJHw99/Mod/Pr0380. When this module was compiled by
selecting Dev~Compile And Unload. the compiler scanned the name Hw99Pr0380
from left to right until it reached the uppercase P. It determined that the project
folder was Hw99 and that the name of the file is Pr0380. Therefore. it stored the
object file in BiackBoxJHw99/Code/Pr0380 and the interface in BiackBoxJHw99/Symi
Pr0380. In the end there were three files. all named Pr0380. in three different fold
ers-the source file in the Mod folder. the object file in the Code folder, and the
interface in the Sym folder. I

When you try to execute a program. two types of errors are possible:

• Syntax error-The program does not compile.

• Logical error-The program compiles but produces incorrect results.

The production rules of the grammar can only indicate possible sources of syntax
errors, not logical errors. Remember from Chapter 2 that they are not even perfect at
specifying all the syntax rules of the Component Pascal language.

Figure 3.7 illustrates a syntax error. When a program does not compile. no object
program can be generated, and it is impossible to test for logical errors. Errors,
whether syntax or logical, are called bugs. Getting the errors out of your program is
called debugging. Can you spot the bug in Figure 3.7?

MODULE Hw99Pr0381;
(* Stan Warford *)
(* June 12, 2002 *)

IMPORT StdLog;

PROCEDURE PrintAddress*
BEGIN

StdLog.String("Mr. K. Kong"); StdLog.Ln;
StdLog.String("Empire State Building"); StdLog.Ln;
StdLog.String("350 Fifth Avenue"); StdLog.Ln;
StdLog.String("New York, NY 1 0118-011 0"); StdLog.Ln

END PrintAddress;

END Hw99Pr0381.

If you try to compile this module the following error message will be printed on
the Log:

compiling "Hw99Pr0381"
one error detected

The compiler will also place a marker symbol in the window of your source text that
indicates where it detected the error and will give a more detailed description of the
error. Clicking the error marker causes the marker to expand to reveal an error mes
sage. On MSWindows. the error message is also displayed at the bottom of the win-

Syntax errors 39

Figure 3.7
This procedure has a bug.

40 Chapter 3 Modules and Interfaces

dow. You can then figure out what the error was and make the correction with your
text editor. After you make any changes you should select File--Save to save your
changed file then Dev--Compile And Unload again. It is not necessary to remove
the error marker symbols in your text before attempting another compile. The com
piler automatically removes all error markers before it attempts a translation. Repeat
the correction process until you get a successful compilation. When you succeed, a
message on the Log will inform you of the translation it made.

Documentation files

Now that you have a program written and translated, you need to provide a way for
the user to execute your program. In the BlackBox framework, user documentation
is stored in the Docu folder. Figure 3.8 shows the documentation for module
Hw99Pr0380.

ill (Hw9~~'U38~__ _ _ _ _ _ __ _ _ _ _I!II~LE!

Stan Warford
June 12, 2000
Assignment 1
Chapter 3, Problem l1li

This module contains a procedure that illustrates string
output to the log. To execute the procedure click on the
commander bunon below.

o Hw99PIOJOO.PrlntAddress

To create user documentation you select File--New and enter a description of the
program and instructions for the user on how to use it. The document in Figure 3.8 is

Figure 3.8
Documentation for module
Hw99Pr0380, It is stored as
file Pr0380 in the Doeu folder.

not compiled. So, the comments contained in it do not need to be enclosed in com- Do not use commellt hrackets
ment brackets (* and *) as are the comments in the source listing. in your Docujiie.

The instructions for the user shown in the figure include a commander button that
the user should click to execute the program. Many of the programs you will write
with this book can be conveniently executed by providing the user with a com-

mander button in the user documentation. To insert the commander button select The commander halloll

Tools--Insert Commander with your insertion cursor in your documentation win-
dow at the location where you want the button. (Be careful to not select the option
Controls--Insert Command Button, which sounds similar but is quite different.)

Following the commander button you place the command to be executed. A com
mand is a procedure that is exported by a module. The syntax is identical to that
used in a module to execute an imported procedure. Namely, following the com
mander button you place the name of the module followed by a period followed by
the name of the exported procedure.

This documentation should be saved as a file named Pr0380 in BlackBoxlHw99/
Docu. We now have four files all named Pr0380 stored in four different folders as
shown in Figure 3.9. You write and save the source program in the Mod folder and
the documentation in the Docu folder. The BlackBox system creates and stores the
object program in the Code folder and the interface in the Sym folder.

Mod

Pr0380
Source program

Code

Pr0380
Object program

BlackBox

Hw99

Docu

Pr0380
Documentation

When you click the commander button the following text should appear on the
Log.

Mr. K. Kong
Empire State Building
350 Fifth Avenue
New York, NY 10118-0110

. Even the modules that you write have interfaces. Figure 3.10 shows the interface
for module Hw99Pr0380. As the programmer of the module Hw99Pr0380, you do
not write the interface. The compiler produces it automatically. The interface in Fig
ure 3.10 was produced by highlighting the text Hw99Pr0380 in some document and
selecting Info-Interface (after the module was compiled). You do not need to type
the name of the module in the Log to select it. For example, you can select the name
of your module in your source code document to bring up its interface. The export
marks are omitted in the interface because they would be redundant. Every item
listed in the interface is an exported item.

DEFINITION Hw99Pr0380;

PROCEDURE PrintAddress;

END Hw99Pr0380.

Program style

Some computer languages are line-oriented. that is, each statement must be written
on a separate line. Listing 3.11 shows that Component Pascal is not line-oriented.
The behavior of the object program does not depend on the spacing or indentation
style of the source program. The program in Listing 3.11 produces the same output
as the one in Listing 3.6.

Program style 41

Figure 3.9
The files associated with a
BlackBox program.

Figure 3.10
The interface for the program
in Figure 3.6.

42 Chapter 3 Modules and Interfaces

MODULE Hw99Pr0382;
(* Stan Warford *)
(* June 18, 2002 *)

IMPORT StdLog;

PROCEDURE PrintAddress
BEGIN StdLog.String ("Mr. K. Kong"); StdLog.Ln;
StdLog.String
("Empire State Building"); StdLog.Ln
; StdLog.String ("350 Fifth Avenue"); StdLog.Ln;
StdLog.String
("New York, NY 1 0118-011 0"); StdLog.Ln
END PrintAddress; END Hw99Pr0382.

One good habit to cultivate when learning to program is to adhere to a consistent
standard of style. You should follow either the style of the programs in this book, the
style specified by your instructor or employer, or a consistent style from some other
source. The document titled Programming Conventions in the BlackBox on-line
help system has detailed guidelines for Component Pascal programming style. The
style conventions in this book have only a few differences from the published guide
lines. The most noticeable difference is that the guidelines specify that all comments
be in italic. Both this book and the published guidelines recommend that all
exported procedures in a module be in a bold font.

The computer does not require such neatness for the program to work. However,

Figure 3.11
This module compiles
without error.

just getting the program to work correctly is not sufficient. Good style is necessary The illlportance ,,{good strie

because people, as well as computers, must read your programs. You would not
write a business letter without the paragraphs indented consistently. Nor should you
write a program that way. Although you may want to rebel at first against such seem-
ingly trivial details, you will find in the long run that they are not restrictive at all. In
fact just the opposite is true-these rules are liberating.

The situation is similar to that of a new driver on the road for the first time. Think
of how many restrictive rules there are-speed limits, yield signs, stop signals. and
so on. New drivers may feel hampered and may worry about all the rules they need
to remember. But experienced drivers do not even consciously try to remember the
rules. They know them subconsciously. What's more, the rules liberate them from
fear of an accident. Programming standards will liberate your mind to think con
structively. The standards will take care of the details, freeing you to take care of the
problem.

Proper procedures

The next two modules introduce the concept of a programmer-defined procedure,
which will be discussed in more detail in later chapters. Procedures are useful when
your program has a task that it needs to perform more than once. Programmers
working with procedures must first define the task in the procedure declaration part

111,'11 inv()ke or cali the procedure when the task needs to be executed. The program

III Figure 3.12 outputs a pattern on the Log.

MODULE Hw99Pr0383;
IMPORT StdLog;

PROCEDURE PrintPattern*;
BEGIN

StdLog.String("@"); StdLog.Ln;
StdLog.String("@ @"); StdLog.Ln;
StdLog.String("@@@"); StdLog.Ln;
StdLog.String("@@@@"); StdLog.Ln;
StdLog.String("@"); StdLog.Ln;
StdLog.String("@@"); StdLog.Ln;
StdLog.String("@@@"); StdLog.Ln;
StdLog.String("@@@@"); StdLog.Ln;
StdLog.String("@"); StdLog.Ln;
StdLog.String("@ @"); StdLog.Ln;
StdLog.String("@@@"); StdLog.Ln;
StdLog.String("@@@@"); StdLog.Ln

END PrintPattern;

END Hw99Pr0383.

The exported procedure PrintPattern in Figure 3.12 outputs a pattern of asterisks
without using another procedure. The pattern is a repetition of three smaller patterns

in the shape of a triangle. The module in Figure 3.13, on the other hand, collects the
statements that print a single triangle into another procedure that is not exported.

The programmer declared the procedure and gave it the name PrintTriangle. She then
called the procedure three times to produce the final pattern.

In Figure 3.13, PrintTriangle is an identifier that names the procedure. Figure 3.14

shows that procedures PrintTriangle and PrintPattern are both nested in module
Hw99Pr0384. The StdLog.String statements in region (I) belong to procedure Print
Triangle. The procedure call statements in region (2) belong to the procedure Print
Pattern.

When PrintPattern is invoked the first statement in region (2) is executed. It is a

call to procedure PrintTriangle defined earlier in the listing. and causes execution to
jump to the first statement of region (l). The computer then executes all the state
ments of region (I). After it executes the last statement of region (I), it transfers exe
cution to the statement after the one that made the call in the calling procedure. At
this point the first triangle has been printed.

Proper procedures 43

Figure 3.12
This procedure prints three
triangles to the Log.

44 Chapter 3 Modules and Interfaces

MODULE Hw99Pr0384;
IMPORT StdLog;

PROCEDURE PrintTriangle;
BEGIN

StdLog.String("@"); StdLog.Ln;
StdLog.String("@ @"); StdLog.Ln;
StdLog.String("@ @ @"); StdLog.Ln;
StdLog.String("@ @ @ @"); StdLog.Ln

END PrintTriangle;

PROCEDURE PrintPattern*;
BEGIN

PrintTriangle;
PrintTriangle;
PrintTriangle

END PrintPattern;

END Hw99Pr0384.

Next, the computer executes the second statement in region (2), which is another
call to procedure PrintTriangle. So, the statements in region (1) execute again. Simi
larly, the third statement in region (2) makes them execute a third time. In general, a
procedure call causes control to jump to the previously defined procedure. After the
procedure executes, control returns to the statement after the calling statement. Fig
ure 3.15 shows the order in which statements are executed in a module that has
ProcedureP2, which is exported, making two procedure calls to ProcedureP 1, which
is not exported.

Because PrintTriangle is an identifier, the programmer determined it arbitrarily.
The program would produce the exact output if the programmer wrote

PROCEDURE WriteTriangle

in the definition of the procedure, and then called it with

WriteTriangle

in the main program. The only requirement is that the name in the procedure defini
tion match the name in the procedure call. Of course, the identifiers you choose for
the names of your procedures should be mnemonic.

Procedures are useful when you need to perform the same task at several different
points in a program. They are also useful in structuring a program into levels of
abstraction, even if the task is only performed once. Although this program uses a
procedure to output text to the Log, later programs will use procedures to process
data as well.

The StdLog.String and StdLog.Ln statements are procedure calls. They differ
from PrintTriangle in two respects. First, they are imported from a framework mod
ule as opposed to being user-defined procedures. Their declaration part is hidden

Figure 3.13
This procedure prints three
triangles to the Log using a
procedure.

Hw99Pr0384

PrintTriangle

PrintPattern

Figure 3.14
Procedures PrintPattern and
PrintTriangle nested in
module Hw99Pr0384.

ProcedureP2

Call

Call

(a) The first call
transfers control to the
procedure. The
procedure executes.

ProcedureP I

(---

ProcedureP2

\. Call r--------

Call

(b) The procedure
returns control to the
statement following the
first call.

ProcedureP I

(~~

ProcedureP2

Call

\~~

Call

(e) The second call
transfers control to the
procedure. The
procedure executes
again.

from the programmer, although their interface is available on-line. This is in contrast
to a programmer-defined procedure, which must be declared within the program
mer's module.

Second, StdLog.String calls include a string parameter enclosed in parentheses.
The declaration part needs this information to do its task. It needs the string to know
what to output to the Log. Programmer-defined procedures can also have parame
ters. Later chapters will explain how to define procedures with parameters.

Figure 3.16 shows the interface for module Hw99Pr0384. Only the exported pro
cedure PrintPattern shows in the interface. Because procedure PrintTriangle is not
exported, it does not appear in the interface.

DEFINITION Hw99Pr0384;

PROCEDURE PrintPattern;

END Hw99Pr0384.

Exercises

1. Define the following terms.

(a) module (b) global data tel local data

Exercises 45

ProcedureP I

(r---

ProcedureP2

Call

\ Call ---..---

(d) The procedure
returns control to the
statement following the
second call.

Figure 3.15
The order of execution when
a procedure has two
procedure calls.

Figure 3.16
The interface for the module
in Listing 3.13.

46 Chapter 3 Modules and Inteifaces

2. What is an interface" What is its purpose"

3. What is the essence of abstraction~

4. What is the function of a compiler~

5. State whether each of the following Component Pascal identifiers is valid. For those
that are not valid. explain why they are not.

(a) hourlyWage
(d) one Name
(g) Acme-Tool

(b) last 1
(el 1stOne
(h) A

(e) WITH
(I) %Profit

6. State whether each of the following Component Pascal identifiers is valid. For those
that are not valid, explain why they are not.

(a) amountOnHand
(d) BY
(g) tools/Bolts

(b) 2Day
(e) Soc-Sec-Num
(h) i

(e) superCallifragiliistic
(I) John Smith

7. Find all the syntax errors in the following Component Pascal procedure. Assume that
module StdLog has been imported correctly.

PROCEDURE PrintString; •
BEGIN

StdLog.String ('Is this wrong?'); StdLog.Ln;
StdLog.String ('Maybe it's right'); StdLog.Ln

END;

8. Find all the syntax errors in the following Component Pascal procedure. Assume that
module StdLog has been imported correctly.

PROCEDURE PrintString ';
BEGIN

StdLog.String ("This can't be wrong!); StdLog.Ln;
StdLog.String ("Or can it?"); StdLog.Ln

END;

9. Inspect the interface of module TextViews, and answer the following questions about
the procedures that are listed in it.

(a) Does procedure SetCtrlDir have a parameter list?
(b) Does procedure Deposit have a parameter list"
(e) What is the signature of procedure SetDir? What is the name of its formal parame
ter? What is its type?

Problems

10. Write a Component Pascal program to output the following two-line message on the
Log;

She said, "Hi there.
What's up?"

Use two StdLog.String procedure calls for the second line to print both the single and
the double quote marks. Test your program by inserting a commander button in a docu
mentation file to execute the procedure.

11. Write a Component Pascal program to output to the Log your name and address suit
able for use as a mailing label. Test your program by inserting a commander button in a
documentation file to execute the procedure.

12. Using a procedure that is not exported to output a single pattern. write a Component
Pascal program to output the following triple pattern on the Log:

+
+++
+++++
+++

+
+
+++
+++++
+++

+
+
+++
+++++
+++

+

Test your program by inserting a commander button in a documentation file to execute
the exported procedure.

Problems 47

r.tp Chapter 4
1iI~

Variables

Every Component Pascal variable has three attributes:

• A name

• A type

• A value

A variable's name is an identifier determined arbitrarily by the programmer. A vari
able's type specifies the kind of values it can have. Variable names and types are
declared in the declaration sequence, which must be placed before the executable
statements of a procedure. Unlike a variable's name and type, a variable's value does
not in general appear in a program listing. The value is contained in main memory
during execution of the program.

Real variables

Figure 4.1 shows how to declare real variables in a program. The output of proce
dure Rectangle is:

The width is 3.6
The length is 12.4

MODULE Pbox04A;
IMPORT StdLog;

PROCEDURE Rectangle*;
VAR

width: REAL;
length: REAL;

BEGIN
width := 3.6;
length := 12.4;
StdLog.String("The width is "); StdLog.Real(width); StdLog.Ln:
StdLog.String("The length is "); StdLog.Real(length); StdLog.Ln

END Rectangle;

END Pbox04A.

The three olln/mles oFo
l'(Iriah/e

Figure 4.1
A procedure that sets the

value of two real variables

and outputs them to the Log.

50 Chapter 4 Variables

The modules in Chapter 3 have names that begin with Hw99 to illustrate how you
should name your modules if you are student number 99 in a class of many students.
Beginning with this chapter, most modules will be named according to the chapter
number of the book. Hence, the name of the module in Figure 4.1 is Pbox04A,
where Pbox04 represents Chapter 4 of programming with BlackBox using Compllt
ing Fundamentals. and A is the first program in the chapter. Pbox04B will be the
name of the next module in this chapter, and so on. If you are studying this book as
part of a class, you should continue to use your assigned number with the conven
tion you learned in Chapter 3.

As Figure 4.1 shows, the declaration sequence begins with the reserved word
VAR and contains a list of all variables used in the procedure. width is the first vari-
able's name, and REAL is its type. The type REAL means the variable's value will be \~lrillhle.\· otlype REAL

a real number, with a fractional part indicated by a decimal point. The name and
type of a variable are separated by a colon.

Notice how semicolons are used in a declaration sequence. One of the EBNF
alternatives for a declaration sequence is

VAR {YarDecl ";"}

which shows that semicolons serve to terminate a variable declaration. They do not
separate one variable declaration from the following variable declaration. The semi
colon that terminates the variable declaration

length: REAL;

is necessary even though it occurs before BEGIN. which is not a statement.

Assignment statements

Unlike names and types, the values of the variables are usually not visible in the pro
gram listing (although they are in this program). Instead, they exist in main memory
during program execution. An assignment statement sets the value of a variable. The
assignment statement

width := 3.6;

sets the value of the variable width to 3.6. The := symbol is called the assignment The iI.ISigllll/l'lll \I'/IIh,,! is

symbol. You should read this statement in English as "width gets 3.6." Do not say I,mllollilced "gels ".

"width equals 3.6:' The equals symbol, =, has a different meaning in Component
Pascal from the assignment symbol, :=.

The name of a \ariable must be on the left side of the assignment symbol, and an
expression must be on the right side. A numeric value such as 3.6 is an example of a
real expression.

Real output

Figure 3.4 shows the interface for the StdLog module. The specification for proce-

Real expressions 51

dure Real in the StdLog module is

PROCEDURE Real (x: REAL);

The parameter x in the interface is the formal parameter. It has type REAL. The types FOnlllll parameters

of the formal parameters tell you what is allowed in the actual parameters. In the
program in Figure 4.1 the first call to StdLog.Real is

StdLog.Real(width)

The actual parameter in the procedure call is width. Actual parameter width corre- Actual parameters

sponds to formal parameter x. The procedure call adheres to the specification given
in the interface, because the type of actual parameter width corresponds to the type
of formal parameter x-both are REAL. The value for x that you give to procedure
Real is the value that you want to print on the Log.

Real expressions

The four real operations in Component Pascal are addition, subtraction, multiplica
tion, and division, indicated symbolically by +, -, *, and I as summarized in Figure
4.2. They have the same precedence you are familiar with from algebra. The opera
tors * and I have a higher precedence than + and -. When parentheses are present in
the expression, the contents of the parentheses are evaluated first.

Operator Meaning

+ Addition

Subtraction

* Multiplication

/ Division

Example 4.1 Two examples of expressions and their evaluations without paren
theses are

4.0 • 5.5 + 6.0
22.0 + 6.0
28.0

4.0 + 5.5 * 6.0
4.0 + 33.0
37.0

The multiplication operation is performed first because it has higher precedence
than addition. I

Example 4.2 An example with parentheses is

Figure 4.2
The real operators.

52 Chapter 4 Variables

4.0 • (5.5 + 6.0)
4.0 x 11.5
46.0

The addition is perfonned before the multiplication because the addition is within
parentheses. I

An operator p is associative if (a p b) P c == a p(b pc) . For example, + is asso- Associiltil'e "peratol'.\'

ciative, because (a + b) + C == a + (b + c) . However, - is not associative, because it
is not the case that (a - b) - c == a - (b - c). If two operators of the same prece-
dence are adjacent, the evaluation is done from left to right. This rule makes a differ- Leli-to-right rule

ence if an operator is not associative.

Example 4.3 Two examples of the left-to-right rule are

11.5 - 3.0 - 4.5
8.5 -4.5
4.0

25.0 / 10.0 / 5.0
2.5/5.0
0.5

Notice the difference that this rule makes in the results. If you first subtract 4.5 from
3.0 to get -1.5, and then subtract that from 11.5, you get 13.0, which is different
from the correct value of 4.0. Similarly, if you first divide 10.0 by 5.0 to get 2.0, and
then divide 25.0 by 2.0, you get 12.5, which is different from the correct value of
0.5. I

MODULE Pbox04B;
IMPORT StdLog;

PROCEDURE Rectangle';
VAR

width, length: REAL;
area, perim: REAL;

BEGIN
width := 3.6;
length := 12.4;
StdLog.String("The width is "); StdLog.Real(width); StdLog.Ln;
StdLog.String("The length is "); StdLog.Real(length); StdLog.Ln;
area := width' length;
perim := 2.0 • (width + length);
StdLog.String("The area is "); StdLog.Real(area); StdLog.Ln;
StdLog.String("The perimeter is "); StdLog.Real(perim); StdLog.Ln

END Rectangle;

END Pbox04B.

Figure 4.3 shows how to use a real expression in a complete program. The output
on the Log of this program is

Figure 4.3
Using real expressions in a
program.

The width is 3.6
The length is 12.4
The area is 44.64
The perimeter is 32.0

Integer variables

Figure 4.4 shows how to declare an integer variable in a program. You should check
the interface for module StdLog to see the specification for procedure Int. The output
of the program is:

You have 39 cents in change.

MODULE Pbox04C;
IMPORT StdLog;

PROCEDURE Change';
VAR

cents: INTEGER;
BEGIN

cents := 39;
StdLog.String("You have "); StdLog.lnt(cents);
StdLog.String(" cents in change."); StdLog.Ln

END Change;

END Pbox04C.

Computers store integer values in main memory dit1'erently from real values. To
store an integer, the computer has two storage compartments-one for the sign of
the number and one for its magnitude. However. to store a real value, the computer
uses binary scientific notation with four storage compartments-one for the sign of
the exponent (the power of 2). one for the exponent, one for the sign of the value,
and one for the magnitude.

Because of this dit1'erence in the way the computer stores integer and real values.
Component Pascal puts some restrictions on how you use them in a program. The
procedure in Figure 4.5 illustrates the fact that you cannot assign a real value to an
integer variable. The procedure has an assignment incompatibility error and will not
compile.

You can, however, assign an integer value to a real variable. Component Pascal
will convert the integer value to the corresponding equal real value before making
the assignment.

Example 4.4 If you declare x to have type real then the assignment statement

x:= 5

is legal even though 5 is an integer value. Component Pascal converts the integer
value 5 to the real value 5.0 before making the assignment to x. I

Integer variables 53

Figure 4.4
A procedure that sets the
value of an integer variable
and outputs it to the Log.

54 Chapter 4 Variables

MODULE Pbox04D;
IMPORT StdLog;

PROCEDURE Error';
VAR

i: INTEGER;
BEGIN

i :=2.7;
StdLog.String("The value of i is "); StdLog.lnt(i); StdLog.Ln

END Error;

END Pbox04D.

Integer expressions

Integer values, which do not have fractional parts, are used for counting whole
objects. For example, if you need to keep track of the number of employees who
work for your company, you could have a variable, numEmpl, of type integer whose
value represents the number of workers the company has. numEmpl could never
have a value like 234.6, because you cannot have 0.6 of an employee. Figure 4.6
summarizes the integer operations.

Operator Meaning

+ Addition

Subtraction

* Multiplication

DIV Division

MOD Modulo

Addition, subtraction. and multiplication for integer values are similar to the
same operations for real values, but division is different. In integer division, denoted
by the operator DIV, a fractional part cannot be included in the result. Instead, the
fractional part is discarded, or truncated.

Example 4.5 The real expression 14.0/3.0 evaluates to 4.667, but the integer
expression 14 DIV 3 evaluates to 4. Further examples of DIV are:

15 DIV 3 = 5
14DIV3=4
13DIV3=4
12DIV3=4
11 DIV 3 = 3 I

Figure 4.5
A procedure that tries to
assign a real value to an
integer variable. This
procedure has a bug.

Figure 4.6
The integer operators.

Another integer operator related to integer division is the MOD operator. MOD
stands for modulus, which is the remainder when you divide one integer by another.

Example 4.6 The expression 14 MOD 3 evaluates to 2, because you get a remain
der of 2 when you divide 14 by 3. Further examples of MOD are:

15 MOD 3 = 0
14 MOD 3 = 2
13 MOD 3 = I
12MOD3=0
11 MOD 3 = 2 I

The DIV and MOD operators of Component Pascal are related by a mathematical
equation. The equation is based on the following two facts.

• m div n is the quotient of m .;- n .

• m mod n is the remainder of m .;- n.

Let q represent the quotient and r represent the remainder, so that

q m div n

r m mod II

Then the relationship between div and mod is expressed mathematically as

m = q'lI+r O::;r<1I

Example 4.7 For m = 14 and II

q and r are calculated as

q m div n = 14 div 3 = 4

r m mod II = 14 mod 3 = 2

3 as in Example 4.5 and Example 4.6 above,

The mathematical relationship with these numbers is

14 = 4·3 + 2

You can see that for the given divisor II = 3, the remainder r will always satisfy the
inequality 0 ::; r < 3 . In Example 4.6, the remainders when you divide by 3 are lim
ited to the values 0, I, and 2, which are all less than 3. I

The relationship between div and mod as expressed by the equation and the
accompanying inequality assumes that neither the dividend m nor the divisor II are
negative. If either or both of them are negative. then one or the other (or both) of the
quotient q and remainder r will be negative as well. Component Pascal has a rule
that describes precisely the results of the operations in that case. However, as pro
grams in this book never use negative quotients or divisors you can safely ignore

Integer expressions 55

56 Chapter 4 Variables

that situation.
The procedure in Figure 4.7 uses integer expressions to compute the change in

dimes, nickels, and pennies for a given number of cents with American currency.
(There are 100 cents in a dollar, a dime is a IO-cent coin, a nickel is a five-cent coin,
and a penny is a one-cent coin.) Integer variables are appropriate for this problem,
because you cannot have a fraction of a coin. The output to the Log from procedure
MakeChange is

You have 39 cents in change.
Dimes: 3
Nickels: 1
Pennies: 4

MODULE Pbox04E;
IMPORT StdLog;

PROCEDURE MakeChange';
VAR

cents: INTEGER;
dimes, nickels, pennies: INTEGER;

BEGIN
cents:= 39;
StdLog.String("You have "); StdLog.lnt(cents);
StdLog.String(" cents in change."); StdLog.Ln;
dimes := cents DIV 10;
cents := cents MOD 10;
nickels := cents DIV 5;
pennies := cents MOD 5;
StdLog.String("Dimes: "); StdLog.lnt(dimes); StdLog.Ln;
StdLog.String("Nickels: "); StdLog.lnt(nickels); StdLog.Ln;
StdLog.String("Pennies: "); StdLog.lnt(pennies); StdLog.Ln

END MakeChange;

END Pbox04E.

The first assignment statement computes the number of dimes by dividing the
amount of change by 10 with the DIV operator. Notice that DIV does not round off
the value to 4, which would be the incorrect number of dimes for the change. The
second assignment statement gives cents a new value, the remainder of the change
after the three dimes have been accounted for. The values for nickels and pennies are
computed similarly.

Component Pascal provides two procedures for processing integers-INC and
DEC, which stand for increment and decrement respectively. INC(v) adds I to inte
ger variable v, INC(v, n) adds n to variable v. DEC(v) subtracts I from variable v, and
DEC(v, n) subtracts n from variable v. Figure 4.8 summarizes the equivalent assign
ment statements.

You might be wondering why you would bother with these functions when it
would be just as easy to use the assignment statements directly. The reason is that

Figure 4.7
The number of dimes,
nickels. and pennies required
for a given amount of change.

Procedure Meaning

INC(v) v:= v + I

INC(v, n) v:= v + n

DEC(v) v := v - I

DEC(v, n) v:= v - n

the functions are designed to make use of special increment and decrement features
of the computer hardware. The equivalent assignment statements may require more
storage for the object program and the resulting object program may run slower than
if you use the increment and decrement functions.

Mixed expressions

Component Pascal numeric expressions are similar to the mathematical expressions
that you learned in algebra, but they have one important difference. Algebra usually
makes no distinction between expressions for real values and expressions for integer
values. However, because computers store integer values and real values with differ
ent internal codes, Component Pascal makes an important distinction between real
and integer expressions.

Component Pascal permits you to use integer values in real expressions, though it
does not permit you to use real values in integer expressions. This feature is another
example of automatic conversion from integer to real values, as described in the dis
cussion of Figure 4.5. When you use an integer value in a real expression, the com
piler converts it to the equivalent real value before translating the expression to
machine language.

Example 4.8 Suppose dollars is a real variable and cents is an integer variable.
The assignment

dollars := dollars + cents / 100.0

is legal even though dollars and 100.0, which are reaL are in the same expression as
cents, which is integer. Because the division operator is I, not DIV, the compiler
expects both operands to be real. Though the 100.0 operand is already real, the cents
operand is integer, so the compiler converts it to real. Then the addition takes place
between the two real operands. I

Example 4.9 The expression

dollars MOD 100

would be illegal if dollars is a real variable, because MOD expects its operands to be
integers. There is no automatic conversion from real to integer, only from integer to
~. I

Mixed expressions 57

Figure 4.8
The increment and decrement
functions for integers.

58 Chapter 4 Variables

These ideas may be a little confusing at first because the symbols for addition,
subtraction, and multiplication are the same for real expressions as they are for inte
ger expressions. (However, the symbols for division are different.) Whether an
expression with +, -, or' is an integer expression or a real expression depends on its
operands. If one or both of its operands is real, the result is real. If both operands are
integers, the result is integer. Figure 4.9 summarizes the types of results for the arith
metic operations.

Type of
Operator Operation operands

+ Addition Both integer

At least one real

Subtraction Both integer

At least one real

* Multiplication Both integer

At least one real

/ Real division Integers or reals

DIV Integer division Integers

MOD Modulus Integers

Example 4.10 Here are two examples of legal mixed expressions:

14.0/ (12 DIV 5)
14.0/2
14.0/2.0
7.0

98/3
98.0/3.0
32.667

Type of
result

Integer

Real

Integer

Real

Integer

Real

Real

Integer

Integer

In each example, Component Pascal recognizes that / is a real operator and converts
the operands to real values if necessary. I

Figure 4.9
Types of results for the
arithmetic operations.

ABS(x) is a Component Pascal function that returns the absolute value of x. It is The ABS jilllctilJII

unusual because the type that it returns depends on the type of the parameter x. If the
type of x is integer the type of the returned value is integer, and if the type of x is real
the type of the returned value is real.

Example 4.11 The function ABS(-3) returns integer 3, ABS(3) returns integer 3,
and ABS(-3.7) returns real 3.7. I

In mathematics, there is no largest integer. There is no upper limit on the value
that an integer variable can have. But all computers have finite storage capacity for
storing numeric values. Fortunately. Component Pascal allows you to store fairly
large values in your numeric variables. An value of type INTEGER can store values

in the range

-2,147,483,648 .. 2,147,483,647

If you ever need to store values larger than two billion you have the option of declar
ing a variable of type LONGINT, which can store values in the range

-9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807

You can assign an integer expression to a long integer variable. Component Pas
cal will provide automatic conversion from integer to long integer similar to how it
provides automatic conversion from integer to real. But you cannot assign a long
integer expression to an integer variable.

Example 4.12 If mylnt is an integer variable, and myLonglnt is a long integer vari
able, then

mylnt := myLonglnt

is not legal, but

myLonglnt := mylnt

is legal. I

If you ever have a long integer value that you need to assign to an integer variable

Mixed expressions 59

you can use the SHORT(x) function to do the conversion. If the type of x is long inte- The SHORT jUl/ctiol/

ger, then SHORT returns the equivalent integer.

Example 4.13 The following expression is legal.

mylnt := SHORT(myLonglnt) I

If you have a real value that you need to use in an integer expression, Component
Pascal provides a function called ENTIER(x). It takes a real value for x and returns a The ENTlERtill1ctio/l

long integer value as the truncated value of x.

Example 4.14 If dollars is a real variable and bigBilis is a long integer variable,
then

bigBilis := ENTIER(doliars)

truncates the value of dollars, converts it to a long integer. and assigns it to big Bills. If
dollars has the value 4.95, then bigBilis gets 4. You must write

bills := SHORT(ENTIER(dollars))

if bills is an integer variable. I

60 Chapter 4 Variables

If you ever need to use the maximum value of an integer, you do not need to
remember the IO-digit sequence. MAX is a built-in function that takes a type for the
actual parameter and returns the maximum value for that type, Similarly, the MIN
function returns the minimum value for a type.

Example 4.15 The statements

StdLog.String("MAX(INTEGER) = "); StdLog.lnt(MAX(INTEGER)); StdLog.Ln;
StdLog.String("MIN(INTEGER) = "); StdLog.lnt(MIN(INTEGER)); StdLog.Ln;

produce the following output on the Log:

MAX(INTEGER) = 2147483647
MIN(INTEGER) = -2147483648 I

MAX and MIN can be used with types other than integer. If you outftut the maximum
value of the real type, you will discover that it is about 1.798 x 10 08 .

MAX and MIN are unusual on two counts. First, most functions take variables or

The MAX (/lId MIN/lln('!ions
fill' tlpes

constants for their actual parameters, while MAX and MIN take a type. Second, there Th" MAX lind i'd/N Jilflctiol/S

is another form of MAX and MIN that does take variables and constants. If you sup- for ml'iahln will ('{iIlstWlts

ply the MAX function with two actual parameters, it will return the larger of the two.
Similarly, MIN will return the minimum of two actual parameters.

Example 4.16 If myData is an integer variable, the statements

myData := 7;
StdLog.String("The larger is"); StdLog.lnt(MAX(myData, 5)); StdLog.Ln;

produce the following output on the Log:

The larger is 7

because 7 is greater than 5. In this example, MAX has variable my Data for the first
actual parameter and constant 5 for the second. I

Function procedures

BlackBox provides module Math, a standard library that is documented on-line. A
few of the many functions from the interface are listed in Figure 4.10. Math.PiO
always returns the value of Jr. Math.Exp(x) raises the base of the natural logarithms,
e, to the power specified by the parameter X. Math.Ln(x) returns the natural logarithm
of x, and Math.Log(x) returns the base-l 0 logarithm. The angles of the trigonometric
functions are always expressed in radians, not degrees.

DEFINITION Math;

PROCEDURE Pi 0: REAL;

PROCEDURE Sqrt (x: REAL): REAL;
PROCEDURE Exp (x: REAL): REAL;
PROCEDURE Ln (x: REAL): REAL;
PROCEDURE Log (x: REAL): REAL;
PROCEDURE Power (x, y: REAL): REAL;
PROCEDURE IntPower (x: REAL; n: INTEGER): REAL;

PROCEDURE Sin (x: REAL): REAL;
PROCEDURE Cos (x: REAL): REAL;
PROCEDURE Tan (x: REAL): REAL;
PROCEDURE ArcSin (x: REAL): REAL;
PROCEDURE ArcCos (x: REAL): REAL;
PROCEDURE ArcTan (x: REAL): REAL;

END Math.

Function procedures 61

Figure 4.10
Some of the math functions
from the interface of the
Math module.

Component Pascal provides two types of procedures-proper procedures and Proper procedures llll/l

function procedures. The procedures in module StdLog shown in its interface in Fig- /ilflcrio/l procedures

ure 3.4 are all proper procedures. The procedures listed in the interface for module
Math are all function procedures. You can tell from an interface whether a procedure
is a function procedure by inspection of its formal parameters. If the formal parame-
ters include a colon: followed by a type to the right of the parentheses (), the proce-
dure is a function procedure. Otherwise it is a proper procedure.

Function procedures are similar to functions in mathematics, where f(x) usually
means a function of x. If you supply a value for x, the function will return a value for
f(x) . In the specification of a function procedure, the type following the parenthe
ses is the type of the value returned by the function procedure.

Example 4.17 The interface for function procedure IntPower

PROCEDURE IntPower (x: REAL; n: INTEGER): REAL

specifies that the first parameter must be compatible with real, the second parameter
must be compatible with integer, and the value returned by the function will have
type real. If alpha has type real, then the assignment

alpha := Math.lntPower(2.4, 3)

is legal. The function procedure returns the real value 13.824, which is then assigned
to alpha. The assignment would not be legal if alpha had type integer because you
cannot assign a real value to an integer variable. I

In the same way that you can assign an integer value to a real variable because of
the automatic conversion from integer to real. you can supply an integer actual

62 Chapter 4 Variables

parameter to a real formal parameter. But you cannot supply a real actual parameter
to an integer formal parameter.

Example 4.18 The assignment statement

alpha := Math.lntPower(2, 3)

is legal even though 2 is an integer and x is a real. However, the assignment state
ment

alpha := Math.lntPower(2, 3.0)

is not legal because 3.0 is a real but n is an integer. I

Loosely speaking, an arithmetic expression is a combination of real values, inte
ger values, variable identifiers, operators, functions, and parentheses. The exact syn
tax is specified in Appendix A. However, your experience from mathematics is
probably sufficient to recognize an illegal expression.

Example 4.19 The following examples are valid expressions, assuming that a and
b are real variables, and i and j are integer variables.

a' (b + 4.7)
2.1
j

2 • (3 + 4 • (i + 1))
-3.4 • Math.Sin(ABS(b))
Math.Cos(Math.PiO / 4.0)

Example 4.20 An example of an illegal expression is

a' ((b + 4.7)

I

because one of the left parentheses does not have a matching right parenthesis. I

Character variables

Component Pascal has several types that are not numeric. one of which is CHAR.
CHAR stands for character. A variable that has type CHAR can have a value that is a
single letter or punctuation mark or digit, not limited to the English alphabet. The
possible values include characters from most of the languages in the world, as spec
ified by the Unicode character standard. The character values are the ones that are
printed on the keycaps of the keyboard. Example of character values are: R, r, E, e,
$, and 4. In a Component Pascal program listing. character values are enclosed in
single quote or double quote marks.

Example 4.21 You could declare the following variables in a procedure

char1, char2, char3: CHAR;

A valid sequence of assignment statements would then be

char1 := 'b'; char2 := 'u'; char3 := 'I'

The following output statements

SId Log. Char(char3); StdLog. Char(char2); SId Log . Char(char1)

would then produce the output

lub

on the Log. I

The decimal digits are included in the Unicode character set. There is a difference
between the character '4' and the integer 4.

Example 4.22 In the previous example, the assignment statement

char1 := '4'

would be legal, but the assignment statement char1 := 4 would not, because char1
has type CHAR and 4 has type INTEGER. I

It is occasionally useful to process characters with the arithmetic operators.
Because the arithmetic operators cannot operate on characters directly, Component
Pascal provides a means for transforming between characters and integers. To per
form an arithmetic operation on a character, you first convert it to an integer, then
perform the operation on the integer, then convert the integer back to a character.
The transformation between characters and integers is based on the fact that each
character has a place on the integer number line. Figure 4.11 shows the characters
below the number line with their associated integer values above the line.

47 48 49 50 64 65 66 67 96 97 98 99

I I I I I I I I I I I I
o 2 @ A B C a b c

The integer above a character is called its ordinal value. For example, the ordinal
value of the character '8' is 66, and the ordinal value of the character '1' is 49. The
two functions that Component Pascal provides for converting between characters
and integers are ORO and CHR. ORO takes a character for its actual parameter and
returns its corresponding ordinal value. CHR takes an integer for its actual parameter
and returns the corresponding character.

Example 4.23 Suppose myCh is a variable that has type character and mylnl is a
variable that has type integer. You want to change myCh to have the value of the next
letter in the alphabet. This operation corresponds to adding I to the character, but

Character variables 63

Figure 4.11
The number line for some of
the character values.

64 Chapter" Variahles

Component Pascal does not permit addition on characters. The following statements
perform the conversion using ORD and CHR:

mylnt := ORD(myCh);
INC(mylnt);
myCh := CHR(mylnt)

A more economical way to do the same thing is to dispense with the integer variable
altogether and write the single statement

myCh := CHR(ORD(myCh) + 1)

In either case, if myCh has the value S before execution it will have the value T after
execution. I

The PboxStrings module

The BlackBox framework provides a module called Strings that has several proce
dures for operating on characters. Some of the procedures in Strings, however, are
difficult for beginning programmers to use. Consequently, this author has written a
module called PboxStrings that contains procedures similar to those contained in
Strings. The procedures are easier to use than those in Strings and are designed as an
aid to presenting the material in this book. The PboxStrings module is contained in
the Pbox project folder, which is not part of the standard BlackBox distribution.
Your instructor can give you a copy of the Pbox modules, or you can obtain them
from the author over the Internet. The URL for the World Wide Web site is

ftp://ftp.pepperdine.edu/pub/compsci/prog-bbo~

Note that this URL begins with f tp: / / and not the usual http: / /. The site con
tains not only the Pbox project folder, but also the source code for every program in
this book. You should be aware that any software you develop with the Pbox mod
ules will not be usable on a computer that does not have the Pbox project installed.

Figure 4.12 is the interface for PboxStrings. It includes function Lower. which
converts a character to lowercase, and Upper, which converts to uppercase.

DEFINITION PboxStrings;

The URL.tiJr rhe Phox I'mjecl

Figure 4.12
The interface for

PROCEDURE Lower (ch: CHAR): CHAR; PboxStrings.
PROCEDURE Upper (ch: CHAR): CHAR;
PROCEDURE ToLower (from: ARRAY OF CHAR; OUT to: ARRAY OF CHAR);
PROCEDURE ToUpper (from: ARRAY OF CHAR; OUT to: ARRAY OF CHAR);
PROCEDURE IntToString (n, minWidth: INTEGER; OUT s: ARRAY OF CHAR);
PROCEDURE RealToString (x: REAL; minWidth, dec: INTEGER; OUT s: ARRAY OF CHAR);

END PboxStrings.

Example 4.24 If myCh is a variable that has type character and value '8'. then the
statement

myCh := PboxStrings.Lower(myCh)

changes its value to 'b'. If the same variable has a lowercase value, say 'h', before
execution of the statement, its value will not be changed when the statement exe
cutes, I

Character arrays

Characters are more useful when you string them together to form words and sen
tences. In Component Pascal, you can string values together with a construction
called an array. An array is simply a collection of values, all of which must have the
same type. A character array can have a value that is a string. Figure 4.13 is an
example of a procedure that declares variable message to have type character array.
Procedure PrintString prints the text What's up, Doc? to the Log.

MODULE Pbox04F;
IMPORT StdLog;

PROCEDURE PrintString*;
VAR

message: ARRAY 128 OF CHAR;
BEGIN

message := "What's up, Doc?";
StdLog.String(message); StdLog.Ln

END PrintString;

END Pbox04F.

The individual characters that form a string are stored consecutively in the mem
ory of the computer. A special character, written OX in Component Pascal, is also
stored after the last character to serve as a marker for the end of the string. When
procedure PrintString declares the variable message to be an array of 128 charac
ters, it is declaring that the string value of message can have as many as 1?7 charac
ters, because one spot in the array must contain the last OX character. Figure 4.14
shows how the characters in variable message are stored.

I D I 0 I c I ? I ox I Id

When you declare a variable to be an array of characters you must decide how
many characters to allocate. The size of the array should be a bit larger than the

Character arrays 65

All (1/'1"11-" is a colleCliO/l or
i'll/lin. ,,/llt'ilh Ihe sUllie 1\'1'1'.

Figure 4.13
A procedure that declares a
variable with string type.

Figure 4.14
Storage of a string value in an
array or characters.

66 Chapter 4 Variahles

longest string you would expect to store in the variable. If you make all your arrays
excessively large you will be wasting memory. For example, if the array is to store
the last name of a person, 128 characters would be way too many. Perhaps 32 would
be more reasonable, because few people have last names with more than 31 charac
ters.

The procedure StdLog.String can take as its actual parameter a variable of type
character array as well as a string. In Figure 3.6 the actual parameter of Std
Log.String is the string "Mr. K. Kong", but in Figure 4.13 the actual parameter of Std
Log.String is the variable message that has type character array.

Chapter 2 introduced the concatenation operation on strings of letters. Compo-
nent Pascal uses the + symbol for concatenation when it is placed between strings or Thl! + sYm/)()/ fiJI'

character arrays. Figure 4.15 shows a procedure whose output is identical to that of COI1CllII!I1(lIiOI!

the procedure in Figure 4.4. It uses the + symbol to concatenate several strings.

MODULE Pbox04G; Figure 4.15
IMPORT StdLog, PboxStrings; A procedure that uses the +

PROCEDURE Change';
VAR

cents: INTEGER;
centString: ARRAY 16 OF CHAR;
message: ARRAY 64 OF CHAR;

BEGIN
cents := 39;
PboxStrings.lntToString(cents, 1, centString);
message := "You have" + centString + " cents in change.";
StdLog.String(message); StdLog.Ln

END Change;

END Pbox04G.

Figure 4.12 shows the interface for PboxStrings. Proper procedure IntToString has
three formal parameters-n, minWidth, and s. Notice that s is preceded by the

operator to concatenate
strings. It imports the
PboxStrings module.

reserved word OUT. A formal parameter preceded by OUT is designed to change the Tile lIleaning 0/ OUT in II

value of its actual parameter. In this program, the actual parameter is centString. fi))'/))({II'0/,wnetcr list

Procedure IntToString will change the value of centString when it executes.
Here is how the program works. The variable declaration in procedure Change of

Figure 4.15 declares cents to have type INTEGER. During execution, the first
assignment statement gives the value 39 to cents. Then the IntToString statement
makes a string image of the value. The second parameter in an IntToString call spec
ifies the minimum field width. This IntToString call specifies a minimum field width
of one because the value displayed on the Log will appear in the middle of a sen
tence. Because the field width will expand, if necessary, to fit all the digits into the
display, this technique guarantees proper spacing within the sentence. Figure 4.16
shows the value of centString after the call to IntToString is completed.

The next statement concatenates the string "You have" with the value of cent
String. then concatenates that with the string" cents in change.", and assigns the
result to the character array message. Finally, StdLog.String prints the value of mes-

3 9 lox I

sage to the Log.
Suppose you specify a field width of 2. anticipating that the value of the variable

will require exactly two digits to display. If the value is 39, as in Figure 4.15, the
output will be unchanged. But if the value is 8 instead of 39 and you still specify a
field width of 2, the output would be

You have 8 cents in change.

with an extra space before the 8. If you specify a field width of I, the spacing will
always be correct in the sentence regardless of how many digits are required to dis
play the value.

Procedure RealToString works like IntToString except that it has four parameters
instead of three-x, minWidth, dec, and s. x is the real value for which you want the
string display. minWidth and s are the minimum field width and the resulting string
as with procedure IntToString. dec allows you to specify how many places past the
decimal point you want to include. RealToString rounds off fractional values as you
would expect.

Example 4.25 Suppose amtOwed is a variable that has type real and value 84.376.
It represents a dollar amount, and you want to display the value to the nearest cent,
which is two places past the decimal point. Assuming that message and doliarString
are arrays of characters, the following statements

PboxStrings.ReaIToString(amtOwed, 1, 2, doliarString);
message := "You owe" + doliarString + "dollars.";
StdLog.String(message); StdLog.Ln

will produce

You owe 84.38 dollars.

on the Log. I

It is sometimes necessary to assign one character array that has a string value to
another character array. Component Pascal executes the assignment by copying
every value in the array regardless of the number of characters in the string.

Example 4.26 Suppose myString and yourString are both declared as follows.

VAR
myString, yourString: ARRAY 16 OF CHAR;

If myString has previously been given the value "Short", then the assignment state-

Character arrays 67

Figure 4.16
The value of centString.

68 Chapter 4 Variables

ment

yourString := myString

makes 16 copies as shown in Figure 4. I7(a), even though the string has only five
characters. I

(a) yourString:= myString

myString I S I h I 0 I r I I OX I
t t t t t t

yourString I S I h I 0 I r I t I OX I
(b) yourString:= myString$

The problem of unnecessary character copies occurs because you must allocate
more memory than is required by most of the string values stored in the array. Com-

Figure 4.17
Character array assignments.

ponent Pascal provides a $ selector that you can use to eliminate the unnecessary The $ selector

character copies during array assignment. Appending the $ selector to the name of a
character array changes its designation to include only the characters from the first
position up to and including the OX.

Example 4.27 With my String and yourString declared as in Example 4.26, the
name myString$ designates the five characters "Short" plus the OX character. The
assignment

yourString := myString$

makes only six copies as shown in Figure 4.l7(b). I

* Guarded command language

The starred sections of this book are for those who have studied, or are currently
studying. formal methods. Formal methods are the mathematical foundation of most
programming languages, including Component Pascal and are increasingly impor
tant in the field of software engineering. If you have not yet learned formal methods
you may omit these sections.

The goal of the starred sections is to show the application of formal methods to
computing practice with Component Pascal. The goal is not to teach principles of J11e jJlIrl}(lse orGeL

formal methods. which is outside the scope of this book. A common language used
to analyze algorithms with formal methods is the guarded command language.
which this book abbreviates as GCL. This section introduces GCL and shows the
relationship between GCL and Component Pascal (CP).

One difference between GCL and CP are the goals and intended use of each lan
guage. The goal of GCL is to provide a convenient mathematical notation for prov
ing the correctness of programs. It is typically used by hand with pencil and paper.
The notation is. therefore. short and succinct to minimize the amount of handwrit
ing. Variable names are purposely kept short, typically only one letter long. Such a
practice is preferred in GCL but discouraged in CP where the services of a docu
ment editor permit longer. more descriptive names to be used with ease to enhance
readability.

GCL does not require a separate VAR section to declare the type of a variable.
Instead, you simply write the variable followed by a colon, followed by the symbol
for its type from Figure 4.18.

Example 4.28 A CP program that contains the variable section

VAR
cents: INTEGER;
doliarAmount: REAL;

would be written in GCL as

c: 7L
d:[R;

where the single variable name c is used in place of the longer. more descriptive
name cents and similarly with d for doliarAmount. I

Characrer arrays 69

CP GeL

INTEGER 7L

REAL [R;

Figure 4.18
Specifying type in GeL.

Fortunately, the assignment statement := is the same in both CP and GCL. The A.Isigllll1elll ill eeL
state of a computation is a list of the variables and their values. The effect of an
assignment statement is to change the state of the computation by changing the val-
ues.

Example 4.29 With the variables declared as in Example 4.28. suppose the state
of the computation is (c, 47), (d, 89.60). The assignment statement to add So/c to dol
larAmount in CP

doliarAmount := doliarAmount * 1.05

is written

Ii := d * 1.05

in GCL and changes the state to (c, 47), (d. 94.(8). I

In GCL. you can combine the type information for a variable with any expres-

70 Chapter 4 Variables

sion. This technique saves a little extra writing.

Example 4.30 The type declaration of Example 4.28 could be combined with the
assignment statement of Example 4.29 as

d: IR := d * 1.05

Alternatively, the type information could be combined with the initial state as

(c: Z, 47), (d: IR, 89.60) I

As in CP, the semicolon in GCL represents a sequence of statements. That is. the
statements are executed in order not simultaneously.

Example 4.31 The assignment statements from Figure 4.7 are written in GCL as

d := c div 10; c := c mod 10; n := c div 5; p := c mod 5 I

In addition to sequencing statements with the semicolon symbol, you can per-
form multiple assignments in GCL, a feature that is not available in CPo With multi- Mil/rip//' assignlllellt

pie assignments, the values are changed simultaneously. To translate between
multiple assignments in GCL and sequential assignments in CP you can sometimes
simply make the multiple assignments sequential and the computations will be
equivalent. However, if the first assignment in a sequence changes the value of a
variable that is in turn used in an expression on the right side of a later assignment,
the translation will be incorrect. In such a case. you will need to resort to a tempo-
rary variable in the sequential version.

Example 4.32 The multiple assignment in GCL

C, 11 := c mod 10, c div 5

is not equivalent to the CP sequence

cents := cents MOD 10;
nickels := cents DIV 5

If the initial state is (c, 39), (n, 'I), then the final state after the multiple assignment
will be (c, 9), (n, 7), because 39 div 5 is 7. However, the final state after the sequen
tial assignment will be (c, 9), (11, I). because 9 div 5 is 1. On the other hand, the mul
tiple assignment

d. c := c div 10. c mod 10

is equivalent to

dimes := cents DIV 10;
cents := cents MOD 10 I

Example 4.33 [f you want to exchange the values of x and v in GeL you can sim
ply write the mUltiple assignment

x, y:= y, x

which. for example, would change the state (x, 3), (y, 14) to (x, 14), (y, 3). However,
the corresponding sequence in CP

x:= y; y:= x

would change the state (x, 3), (y, 14) to (x. 14), (y, 14). because the modified value of
x is assigned to y instead of the original value of x. To exchange the values requires a
temporary variable, say t, to store the original value of x so that it can be assigned to
.v.

t := x; x := y; y := t I

Exercises

1. Inspect the interface of module TextViews on-line in BlackBox using the technique of
Figure 3.3, and answer the following questions about the procedures that are listed in

it.

(a) How many modules are listed in the IMPORT list of TextViews?
(b) State whether each of the following is a proper procedure or a function procedure:
Deposit, Focus. ShowRange, ThisRuler.
(e) How many parameters does ShowRange have') What are their names?
(d) How many parameters does ThisRuler have? What is the type of its returned value?

2. Evaluate the following expressions. Indicate real results in your answer with a decimal
point and integer results by not including a decimal point. If the expression is illegal,
explain why.

(a) 5.0/2.0
(d) 5.0 DIV 2.0
(g) ENTIER(8.3)
(j) ABS(6)
(m) Math.Sqrt(16.0)
(p) Math.Exp(1.0)

(h) 5/2
(e) 5 MOD 2
(h) ENTIER(8.7)
(k) Math.lntPower(3.0, 2)
(n) Math.Sqrt(16)
(q) Math.Ln(Math.Exp(4.7»

(e) 5 DIV 2
(f) 5.0 MOD 2

(i) ABS(-6.8)
(I) Math.lnIPower(3.0, 2.0)
(0) Math.Sin(O.O)

3. Evaluate the following expressions. Indicate real results in your answer with a decimal
point and integer results by not including a decimal point. If the expression is illegal,
explain why.

Exercises 71

72 Chapter -+ Variables

(a) 7.0/3.0

(d) 7.0 OIV 3.0
(g) ENTIER(7.3)

U) ABS(4)
(m) Math.Sqrt(9.0)
(p) Math.Exp(1.0)

(b) 7/3

(e) 7 MOO 3
(h) ENTIER(7.9)
(k) Math.lntPower(4.0, 2)
(n) Math.Sqrt(9)
(q) Math.Ln(Math.Exp(5.1))

(e) 7 OIV 3
(f) 7.0 MOO 3
(i) ABS(-4.8)
(I) Math.lntPower(4.0,2.0)
(0) Math.Sin(O.O)

4. Evaluate the following expressions. Indicate a character result in your answer by
enclosing it in quotes. If the expression is illegal. explain why.

(a) ORO('b') (b) CHR(50)
(d) '@' + 1 (e) ORO('@' + 1)
(g) ORO('@') + 1 (h) CHR(ORO(,@') + 1)

U) CHR(ORO(,O') + ORO('a') - ORO('A'))

(e) @ + 1

(f) ORO(@) + 1

(i) 'a' - 'A'

5. Evaluate the following expressions. Indicate a character result in your answer by

enclosing it in quotes. If the expression is illegal. explain why.

(a) ORO('B') (b) CHR(49)
Cd) 'I' + 1 (e) ORO ('I' + 1)
(g) ORO('/') + 1 (h) CHR(ORO(,/') + 1)
U) CHR(ORO(,E') + ORO('a') - ORO('A'))

(e) 1 + 1

(f) ORO(l) + 1

(il 'a' - 'A'

6. i and j are integer variables. and x is a real variable. Detennine the values of each of the
variables after the sequence of assignments statements executes. Indicate real values
with a decimal point and integer values by not including a decimal point.

(a) (b) (e)
i:= 18; j:= 14; i:= 3;
j:= i OIV 7; i :=j MOO 5; j := 18;
x:= 4.5; x:= 2.7; x:= 7.9;
INC(i); INC(j); i :=j;
x := x + i • 2 x := x + j • 2 j:= i

7. Write the mathematical relation between OIV and MOO. including the inequality. for
dividend 27 and divisor 6.

8. In Example ·U 7, (a) is x a formal parameter or is it an actual parameter" (b) is 2.4 a
formal parameter or is it an actual parameter"'

9. If myMessage and yourMessage are both declared to be ARRAY 128 OF CHAR. and
myMessage has the string value "Look ou!!". (a) how many characters are copied with
the assignment yourMessage := myMessage? (b) How many with the assignment your
Message := myMessage$"

lO. Write the equivalent CP program statements for the following GeL statements. For
each part. write the final state if the initial state is (x. I), (.I', 2), (~, 3).

(a) x. y := x + ~. v * x
(b) x. v,: := x +~ . .I" + X. ~ + \"
(e) x. \", ~ := y + 4, Y + x. : + \.

Problems

11. Write a procedure with integer variable feet and real variables inches and meters.
Assign feet and inches values and compute the equivalent length in meters. One inch is
exactly 0.0254 meters and one foot is exactly 12 inches. Use StdLog.lnt and Std
Log.Real to output the values identified appropriately. Here is a sample output to the
Log.

Feet: 4
Inches: 3.8
Meters: 1.31572

12. Work Problem II, but display the computed value for meters to two places past the
decimal. Use StdLog.lnt and StdLog.Real for feet and inches and PboxStrings.Real
ToString with a character array variable for meters.

13. Write a procedure with two real variables for the temperature in Fahrenheit and Cel
sius. Assign a value to the variable for Fahrenheit and compute the equivalent tempera
ture in Celsius. Show both temperatures on the Log with their values identified
appropriately as the values are in Problem II.

14. Work Problem 13. but display the computed value for Celsius to one place past the dec
imal. Use StdLog.Real for the Fahrenheit value and PboxStrings.RealToString with a
string variable for the Celsius value.

15. Write a procedure with two real variables for the lengths of two perpendicular sides of
a right triangle and a third variable for the length of the hypotenuse. Assign values to
the variables for the sides and compute the value for the hypotenuse. Show all three
lengths on the Log with their values identified appropriately as the values are in Prob
lem II.

16. Work Problem 15, but display the computed value for the hypotenuse to one place past
the decimal. Use Stdlog.Real for the side values and PboxStrings.RealToString with a
string variable for the hypotenuse value.

17. Write a procedure with a real variable for the radius of a circle and two additional real
variables for its circumference and area. Assign values to the variables for the radius
and compute the values for the circumference. Import the value of It from module Math
for your computations. Show all three measures on the Log with their values identified
appropriately as the values are in Problem II.

18. Work Problem 17. but display the computed values for the circumference and area to
one place past the decimal. Use Stdlog.Real for the radius value and PboxStrings.Real
ToString with a string variable for the circumference and radius values.

19. Modify the program in Figure 4.7 to make change for quarters as well as dimes, nick
els. and pennies. (A quarter is a 25-cent coin.)

20. Write a procedure with three integer variables for the number of hours, days, and
weeks. Assign a value to the variable for hours and compute the equivalent number of
days, weeks, and hours. Show all time measures on the Log with their values identified

Prohlems 73

74 Chapter -t Variables

appropriately as the values are in Problem II. For example. if the variable for hours is
assigned 4123, the output should be

Total hours: 4123
Number of weeks: 24
Number of days: 3
Number of hours: 19

r.IJ Chapter 5
I!I~

Dialog Boxes

In a graphical user interface, the user typically decides what action to execute by
selecting an option from a list of menu items at the top of the screen. If the action to
be performed requires a data value to be processed, the user is prompted to enter the
data value by entering it in a dialog box. Menu items and dialog boxes are the pre
dominant GUI methods for interacting with human users. This chapter shows how to
construct dialog boxes that manage the input, execution, and output of the program.
The dialog boxes in this chapter are activated by the commander button. Later chap
ters will describe how to install menu items, which, when selected by the user, can
initiate procedures or activate dialog boxes.

Numeric input from a dialog box

This section shows how to link elements in a Component Pascal module with a dia
log box. The dialog box allows the user to input a value in a rectangular input area
called a field. A button will be provided in the dialog box, which will cause an
exported procedure to be executed when pressed.

The process of programming a dialog box requires the following steps:

• Decide which elements belong in the dialog box.

• For each input/output element, determine the type of the corresponding vari
able.

• For each button. determine what processing must be performed.

• Write a module with each of the variables and procedures exported. Compile
the module.

• Select Controls~New Form ... and link the module to the dialog box.

• Fine tune the layout of the elements of the form.

• Write a Docu document with a commander to activate and test the dialog box.

These steps will be illustrated by an example similar to the module in Figure 4.7 in
the previous chapter. Procedure MakeChange in that program assigns the value 39 to
the variable cents, then computes the corresponding number of dimes, nickels. and
pennies, which it displays on the Log. Such a program is not too useful because the
same output is produced every time it executes. To get the number of coins for a dif
ferent value of cents you would have to modify the source program by changing 39
to whatever value you want. recompile the program. then execute it again.

The design I'rocesstiJr
programming H'ith dialog

76 Chapter 5 Dialog Boxes

It would be much better if you could present the user with a dialog box in which
she could enter the number of cents in change. Figure 5.1 shows the desired dialog
box for the user. The rectangular box, called a text field, is the input area. The user
enters the number of cents in change into the box then clicks the button labeled
Compute. Clicking the button with the mouse causes the program to print the num
ber of dimes, nickels, and pennies onto the Log.

o ~I Change For You J~8

Chonge ~

II Compute I

(a) MacOS.

* Change For You 1!I~13

Chonge ro--
IL_~~j

(b) MSWindows.

In this problem, we want three elements in the dialog box-the label Change that
identifies the text field, the text field for the user input, and the button that causes the
computation to commence. The next step in the design process is to write a program
that contains variables and procedures that correspond to the elements of the desired
dialog box. In the dialog box of Figure 5.1, the label Change and the input text field
correspond to a single element of type INTEGER. It is an integer element because
the user should not enter a value with a decimal point. The button labeled Compute
corresponds to a procedure.

The module in Figure 5.2 illustrates the next step in the design process. It is a
program containing an exported variable named change that corresponds to the label
Change and the input text field, and an exported procedure named MakeChange that
corresponds to the button labeled Compute. Later in the design process, we will link
the variable change to the text field of the dialog box. When the user enters an inte
ger in the text field of the dialog box, the BlackBox framework automatically
assigns that integer value to change. We will also link the procedure MakeChange to
the button labeled Compute in Figure 5.1. When the user clicks the button with the
mouse, MakeChange will execute.

Variable change is located within module Pbox05A but outside procedure Make
Change, unlike variable cents, which is located within procedure MakeChange.

Figure 5,1
The dialog box for inputting
an integer value shown in
mask mode.

Variables that are located within a module and not within a procedure are called glo- Ci/"h,,/ d'''//WO/ \'(/r;"I>/cs
bal variables, in contrast to those that are within a procedure, which are called local
variables. Variable cents is local to procedure MakeChange, while variable change
is global.

In Component Pascal, variables that correspond to elements of a dialog box must
be global. An attempt to export cents will cause the compiler to protest with the
error message, Illegally marked identifier. The reason for the restriction on the
exporting of variables is that local variables exist only during execution of their pro-
cedures, while global variables exist as long as their modules are loaded into main L{!(/(lin~ I/lOill/in ;nro //luin //lelllon

memory. When the dialog box of Figure 5.1 is activated, the framework loads the
module linked to it into main memory. When the user enters a value, and before she
clicks the Compute button, change gets the value she enters. At this point in time,
variable cents does not even exist. because procedure MakeChange is not executing.

Numeric input from a dialog box 77

It is only when the user clicks the Compute button triggering the execution of
MakeChange that variables cents, dimes, nickels, and pennies come into existence.

MODULE Pbox05A;
IMPORT StdLog;

VAR
change': INTEGER;

PROCEDURE MakeChange';
VAR

cents: INTEGER;
dimes, nickels, pennies: INTEGER;

BEGIN
cents := change;
dimes := cents DIV 10;
cents := cents MOD 10;
nickels := cents DIV 5;
pennies := cents MOD 5;
StdLog.String("You have "); StdLog.lnt(change);
StdLog.String(" cents in change."); StdLog.Ln;
StdLog.String("Dimes: "); StdLog.lnt(dimes); StdLog.Ln;
StdLog.String("Nickels: "); StdLog.lnt(nickels); StdLog.Ln;
StdLog.String("Pennies: "); StdLog.lnt(pennies); StdLog.Ln

END MakeChange;

BEGIN
change:= 0

END Pbox05A.

Module Pbox05A has an initialization part with an assignment statement

change:= 0

This statement belongs to the module and is not part of a procedure. The question
naturally arises, When does this statement execute? Until now, all executable state
ments belonged to procedures, and an exported procedure began execution in
response to the click of a commander by the user. Such is not the case with the state
ments in the initialization part of a module. Instead, they are executed once when the
module is loaded from disk into main memory. Figure 5.3 illustrates the loading pro
cess for this program.

Before a procedure can execute, the entire module in which it is contained must
be placed in the main memory of the computer. Figure 5.3(a) shows the situation
after the source program has been written and compiled. The compiler creates the
object program, which it stores on disk in the Code folder, and the interface, which
it stores on the disk in the Sym folder. When the user first activates the dialog box
linked to a module, the framework loads the object program for the module into
main memory. Figure 5.3(b) shows the loading into main memory that must take

Figure 5.2
A module for constructing a
dialog box to input an integer
value.

78 Chapter 5 Dialog Boxes

Disk

PboxOSlModJA
PboxOS/Code/ A
PboxOS/Sym/ A

(a) Before first execution.

Disk

Main memory

Main memory

PboxOSlModJA
Pbox05/Code/ A
PboxOS/Sym/ A

'--_____ > PboxOS/Code/A

'--____ ---.J

(bl Activating dialog box triggers load.

Disk

PboxOSlMod/ A
PboxOS/Code/ A
PboxOS/Sym/ A

Main memory

PboxOS/Code/ A

(el Subsequent executions do not require load.

place before the first execution of any procedure. Subsequent executions of the pro
cedure do not require loading, as shown in Figure S.3(c).

The statement in the initialization part of the module is executed once when the

module is loaded and before any procedures in the module are executed. The state

ment

change:= 0

assigns zero to change so it will have a default value when the dialog box is dis
played for the first time

[]~[NewFormI~8 ~ New Form t3

link I PbOH8SA LilI<: I PboxOSA

[Eii!&l Create OK

(a) MacOS. (b) MSWindows.

The fourth step in the design process is to select Controls~New Form ... , which

you should attempt only after you get your program compiled. A dialog box will
appear as shown in Figure SA. It asks the programmer for a link to the desired dia

log box. In this example. the programmer entered Pbox05A. If you have not com-

Figure 5.3
Dynamic loading in the
BlackBox framework.

Figure 5.4
The result of selecting
Controls-?New Form.

Numeric input from a dialog box 79

piled your program, the framework will have no object file with the information it
needs to make the link to the exported record. After you enter the link. click the Cre
ate button to create the dialog box for the program.

Figure 5.5 shows the box as it appears in layout mode when it is created by
selecting Controls-+New Form Layout mode is for constructing a dialog box
instead of using it. For example, if the dialog box is in mask mode, as it is in Figure
5.1, and you click the button then the procedure that the button is linked to will exe
cute. But if the dialog box is in layout mode and you click the button then the button
is simply selected and can be repositioned or resized by dragging it with the mouse.
You can distinguish visually between the modes by the background grid that appears
in layout mode but is absent in mask mode.

ft- -1l!l13

. --.--.. -.~------'"----- --1'-

i I MakeChonge I
' .. chongo , 10

(a) MacOS. (b) MSWindows.

When you select Controls-+New Form ... and click the Create button the Black
Box framework inspects the interface of the module to which the new dialog box is
linked. It inserts objects into the dialog box based on the types of the items exported
by the module. The objects in a dialog box are called controls, because they allow
the user to control the action of the computer by interacting with them via the mouse
and keyboard. In this example, the framework inspected two exported items and as a
result inserted three controls into the dialog box. The exported variable. change of
type INTEGER, caused the framework to insert two controls-a caption control that
appears as the word change in the dialog box of Figure 5.5, and a text field control
that appears as the rectangular input area. The exported procedure MakeChange
caused the framework to insert one control-a command button that appears at the
top of the dialog box.

A new dialog box created by the framework is not usually suitable for immediate
use. In this example, you would need to spruce up the appearance by capitalizing the
c in change for the caption control and changing the wording in the command button
control. In layout mode the attributes of a control are inspected and changed by
selecting the control then choosing Edit-+Part Info ... (Macintosh) or Edit-+Object
Properties ... (Windows) from the menu. Figure 5.6 shows the resulting dialog box.
called the Inspector, when the caption control is selected.

The five primary attributes of a control as displayed in Figure 5.6 are (a) the con
trol type, (b) how the control is linked, (c) the label for the control, (d) the guard for
the control, and (e) the notifier for the control. The figure shows that (a) the type of
the control is caption. (b) the control is linked to Pbox05A.change. (c) the control's
label is change, (d) there is no guard, and (e) there is no notifier. The label of the
caption is what appears to the user. To spruce up this control you would capitalize c

Figure 5.5
The dialog box shown in
layout mode .

80 Chapter 5 Dialog Boxes

*" Inspector 13

CorIrot ICapt;",

Control Coptlon
~ r-lp~oo~~~~-,c~M-ng-.---------------

labet ICharqe link I PbOH85A.chonge I r==:7l
, jGetNeI!1j g~d r----------------------

Label I chonge 111"! =:s~et:-='
Guard ~I =""'==========il __ ;;;;,;....,

Notifier

':J Option 8

':J Option Z

(a) MacOS.

= Oplwn 1

= Option ")

I Leuel _il_

:::J Option ,I

llc,,""

01(

(b) MSWindows.

in change in the label field and click the Set button to set the change. Because the
purpose of a caption control is to simply display the label in the dialog box, the link
field of a caption control serves no apparent purpose. You could eliminate the link
field in this caption control with no adverse affect on your program.

A similar inspection of the attributes of the rectangular input area shows that it is
of type text field, it is linked to Pbox05A.change, and it has no label, guard, or noti
fier. With this control, the link is crucial. When the user enters text into the rectangu
lar input area and clicks the compute button the framework recognizes the link
between the dialog box and the exported variable. It converts the text value entered
by the user into an integer value, which it gives to the integer change. The label
attribute does not apply to a text field control.

The push button, which is a command button control, uses both the link and the
label attributes. The link specifies the procedure to be executed when the button is
pressed and the label specifies the text to be displayed on the face of the button. To
spruce up this control you would change the label to Compute.

Another way of sprucing up the box when it is in layout mode is to use the com
mands of the Layout menu, which permit you to align the controls in various ways.
Normally, a dialog box cannot be resized when it is in mask mode and the user is
entering data. In layout mode you can resize the window that contains the dialog
box, but the size of the window in layout mode does not affect the size of the dialog
box. To change the size of the dialog box you must be in layout mode and choose
Edit-tSelect Document. The entire dialog box is then selected with handles for
resizing with the mouse.

When you have finished sprucing up your dialog select File-tSave As ... to save
it. Dialog forms should always be saved in layout mode. You must save it in the Rsrc
folder of your project. Rsrc stands for resource, and the folder contains various pro
gramming resources for a project. As an example, the dialog box of Figure 5.5 was
saved with name OlgA in the Rsrc folder that was itself in the project folder named
Pbox05. Dialog boxes are stored as standard BlackBox compound documents. If
you ever want to modify the dialog box simply open the document as you would any
other file and edit it. And when you save it, be sure that it is in layout mode.

The last step in the design process is to create documentation, which is stored in

r,j:: : ... 3

rCJ_ iy,4

Figure 5.6
The dialog box for editing a
control's attributes.

AilnlYS save Jiu/og jt}l.,ns ill
Ii/\'Iillt lIIode.

Numeric output to a dialog box 81

the Docu folder as usual. The commander should be followed by a procedure from
the StdCmds module instead of a procedure from your module. Figure 5.7 shows the
documentation for this program.

0 -.c :-,,,= .,A ''''',"'C t!lEl

Programming wit~ Blac<Eo:< ~
Chapter 5
MOOULE Pbox05A
This module illustrates how to get input from
the user with a dlalJg bo>:

• "StaCmds,CpenAuxOlalog(Pbox05/RsrClDlgA', 'Chdnge For You")" ~

T

-- • •

In this example the commander was followed with the string

"StdCmds.OpenAuxDialog(,PboxOS/Rsrc/DlgA', 'Change For You')"

The StdCmds module contains the procedure OpenAuxDialog, whose purpose is to
open a dialog box in mask mode. It requires two parameters, each of which is a
string. The first parameter 'PboxOS/RsrclDlgA' specifics the file that is to be opened,
and the second parameter 'Change For You' specifies the title to appear in the title bar
of the dialog box. Figure 5.1 shows this title.

Numeric output to a dialog box

The previous example showed how to input an integer value into a dialog box. The
output was sent to the Log. The Log is for development and debugging. A commer
cial application would not use the Log for output. It is more common for the results
of a computation to be shown in a dialog box or in some other document such as a
spreadsheet document or a word processing document. Figure 5.8 shows a dialog
box that displays the output from the computation.

El ~ [Chenge For You J ~ El

Change ~

I Compute H

Oime<j:

Pennies: 4

(a) MacOS.

~ Change For You I!III~EI

Chon"" rs--
Compute I

Dime.: p
Nick.r.: p-
Porrie>: ~

(b) MSWindows.

Figure 5.7
The documentation for the

module in Listing 5.2

Figure 5.8
A dialog box that displays

output as well as input.

82 Chapter 5 Dialog Boxes

The dialog box in Figure 5.8 is a bit more complex than the one in Figure 5.1. It
has nine controls, eight of which are linked to four variables and one of which is
linked to a procedure. Figure 5.9 shows the corresponding module.

MODULE Pbox05B;
IMPORT Dialog;

VAR
d*: RECORD

change': INTEGER;
dimes-, nickels-, pennies-: INTEGER

END;

PROCEDURE MakeChange*;
VAR

cents: INTEGER;
BEGIN

cents := d.change;
d.dimes := cents DIV 10;
cents := cents MOD 10;
d.nickels := cents DIV 5;
d.pennies := cents MOD 5;
Dialog.Update(d)

END MakeChange;

BEGIN
d.change := 0;
d.dimes := 0; d.nickels := 0; d.pennies := 0

END Pbox05B.

Records

It would be possible for the module in Figure 5.9 to declare four global variables
using the same technique as does the previous module. However, when more than
one variable is to be linked to a dialog, the preferred programming style is to group

Figure 5.9
Sending output to a dialog
box.

them together in a record. A record is similar to an array in that both are collections A record ;.1 u colleet;oll (If

of values. They are different in that the collection of values in an array must all have milies. II"II;ell lieI'd /lot IIUl"<'

the same type. For example, variable message in Figure 4.13 is an array of charac- tile SUllie t'pe.

ters. Every element of the array must be a character because that is a property of
arrays.

The module in Figure 5.9 has a single exported record named d for dialog box.
As is the case for all records. the type of this variable begins with the reserved word
RECORD and ends with the word END. Between these words is a collection of four
fields, each with a name and a type. The first field is named change, has type integer, TI",jield, "j" record
and is exported with the familiar asterisk * export mark. The next three fields are
named dimes, nickels, and pennies, also have type integer, but have a different kind
of export mark. The hyphen - indicates read-only export and is for displaying values Reud,oll/' eX[iort

in a dialog box that the user is not allowed to change. You can see from the dialog

box in Figure 5.8 that the user enters a value for Change and the computer calculates
the proper number of dimes. Because the user does not enter a value for dimes, field
dimes is exported read only. Note that export marks are required for both the vari
able d and its fields. To emphasize the difference between exporting with· and with

Records 83

-, exporting with· is called read/write export. Read/,v!";le expo!"1

You refer to a field in a record in the same way that you refer to a procedure in a
module. Namely, you write the name of the record followed by a period followed by Ref~renc;llg afield ill (/

the name of the field in the record. For example, you refer to field change in record record
d by writing d.change. Records are used to group values other than those for dialog
boxes. When used for values in a dialog box, the record is known as an interactor, .-\11 imcrae!or is (/ record
because of its role in the interaction between the user and the program. lillked [() II dialog box.

As before, the button labeled Compute is linked to MakeChange. In this program,
procedure MakeChange computes the coins for the change and assigns those values
to d.dimes, d.nickels, and d.pennies. However, simply changing the value of an
interactor's field does not automatically transmit that change to the visual appear
ance of an open dialog box on the screen. Procedure Dialog.Update has the ability to
transmit the change to the screen. It is only when Dialog.Update(d) executes that the
changes to the values of d.dimes, d.nickels, and d.pennies are displayed in the dialog
box.

Figure 5.10 shows the initial dialog box in layout mode when Controls~New
Form ... is selected and linked to Pbox05B. When you group variables together into a
record the BlackBox forms creator inserts a control element called a group box that
surrounds the elements. The default value for the label of the group box is the name
of the record, which is d in the figure. Because a group box was not desired in the
final dialog box it was simply deleted while in layout mode. If you want a group box
in your dialog box you can use the Inspector to change the text that appears to the
user. You can also resize the box, and move the controls around to include or exclude
any controls you wish.

o
ill (PboI05)B I!lIiI EJ ,.. .

r:.~k_eC_h_o_ni-+-:._,.;_. _,--.. ___;....'_.,.-.,

chunge .1,"-~_9~~~~:_ .••.• -..,----'
. Ld~. " .. ~.

[c~
ditnes j J

I .

!<I.-' ,.: ...

1,; i ; I

''''''''.... /0 I
·,············.;·····_······,····_···· .. ,·······1··

I)etTlios ro--' . , ,I

nitkels

: pe,nmt;S l 4 :

.... '.

<,
._ ______ . ___ +. __ + __ ..l

(a) MacGS. (b) MSWindows.

You should experiment with the Layout menu options, which provide many use
ful tools for creating precisely positioned elements. For example, if you highlight
several controls and select Layout~Align Left all the controls you highlighted will
shift horizontally to the left until their left sides are all aligned. Another handy fea-

Figure 5.10
The default form produced by
the forms creator for the
module of Figure 5.9 .

84 Chapter 5 Dialog Boxes

ture that is not evident from the Layout menu selections is called Drag and Pick. Say
you have resized several controls and you now want them to be all the same size.
Highlight several controls that have different sizes, hold down the command key
(MacOS) or the alt key (MSWindows), and then drag to another destination control.
When you release the mouse, all selected views will be made the same size as the
destination control.

String output to a dialog box

In the previous example, the interactor contained an integer field change for input
and integer fields nickels, dimes. and pennies for output. Input and output with real
variables is similar. Sometimes it is desirable to use string output to display the
result in a way that is more conventional for the user.

For example, suppose you want to include a dollar amount as the output. You
want to prefix the value with a dollar sign $ and have the value displayed to the near
est cent, which is two places past the decimal point. To make the output look this
nice requires you to convert the real value to a string with the desired fonnat. Figure
5.11 shows a dialog box for such a scenario.

Figure 5.12 (page 85) shows the program corresponding to the dialog box of Fig
ure 5.11. Even though the output appears to be a real value, the program shows that
it is a string, because the type of d.result is an array of 16 characters. When proce
dure ComputeWages executes, it calculates wage, which is a real variable, as the
product of d.hours and d.rate. With the input shown in Figure 5.11, wage would get
the real value 462.4375. The program then calls procedure RealToString from mod
ule PboxStrings to convert the real value to a string value with two places past the
decimal point. In the actual parameter list of RealToString, 1 is the field width,
which will expand to accommodate any real value, and 2 is the number of places
past the decimal. This procedure call gives the string value "462.44" to d.result. The
next statement concatenates the dollar sign to the beginning of d.result, which finally
gets displayed with the call to Dialog.Update.

Problems

1. Design a dialog box to input an integer value for the number of feet and a real value for
the number of inches. When the user clicks a button in the dialog box. compute the
equivalent length in meters and output the results of the computation to the Log. One
inch is exactly 0.0254 meters and one foot is exactly 12 inches. Here is a sample output
to the Log.

Feet: 4
Inches: 3.8
Meters: 1.31572

2. Work Problem I. but display the computed value for meters in the dialog box.

3. Work Problem l. but display the computed value for meters in the dialog box to two
places past the decimal point. Use string output as in the program of Figure 5.12.

[J ~ IlIIageo J ===== 8

Hours 137.75
~~

Rale 112.25

" Compute Wage. I
Wages: $462.44

Figure 5.11
A dialog box with string
output for Listing 5.12.

MODULE Pbox05C;
IMPORT Dialog, PboxStrings;

VAR
d·: RECORD

hours·, rate·: REAL;
result-: ARRAY 16 OF CHAR

END;

PROCEDURE ComputeWages·;
VAR

wage: REAL;
BEGIN

wage := d.hours • d.rate;
PboxStrings.ReaIToString(wage, 1,2, d.result);
d.result :="$" + d.result;
Dialog.Update(d)

END ComputeWages;

BEGIN
d.hours := 0.0; d.rate := 0.0;
d.result := ""

END Pbox05C.

4. Design a dialog box to input a real value for the temperature in Fahrenheit. When the
user clicks a button in the dialog box, compute the equivalent temperature in Celsius
and show both temperatures on the Log with their values identified appropriately as are
the values in Problem I.

5. Work Problem 4, but display the computed value for the Celsius temperature in the dia
log box.

6. Work Problem 4, but display the computed value for the Celsius temperature in the dia
log box to one place past the decimal point. Use string output as in the program ofEg
ure5.12.

7. Design a dialog box to input two real values for the lengths of two perpendicular sides
of a right triangle. When the user clicks a button in the dialog box. compute the length
of the hypotenuse and show all three lengths on the Log with their values identified
appropriately as are the values in Problem I.

8. Work Problem 7, but display the computed value for the length of the hypotenuse in the
dialog box.

9. Work Problem 7. but display the computed value for the length of the hypotenuse in the
dialog box to one place past the decimal point. Use string output as in the program of
Figure 5.12.

10. Design a dialog box to input a real value for the radius of ~ circle. When the user clicks
a button in the dialog box. compute the circumference and area and show all three mea-

Problems 85

Figure 5.12
A program that produces
string output to a dialog box.

86 Chapter 5 Dialog Boxes

sures on the Log with their values identified appropriately as are the values in Problem
I. Import the value of 1t from module Math for your computations.

11. Work Problem 10, but display the computed values for the circumference and area in
the dialog box.

12. Work Problem 10, but display the computed values for the circumference and area in
the dialog box to one place past the decimal point. Use string output as in the program
of Figure 5.12.

13. Design a dialog box to input an integer value for the total number of hours. When the
user clicks a button in the dialog box. compute the equivalent number of days. weeks.
and hours. Show all time measures on the Log as in the following sample.

Total hours: 4123
Number of weeks: 24
Number of days: 3
Number of hours: 19

14. Work Problem 13, but display the computed values for the number of weeks. days. and
hours in the dialog box.

15. Construct a five-function integer calculator as shown in the dialog box of Figure 5.13.
The result from the dialog box is shown just after the user pressed the button labeled *.
You will need to export five procedures. one for each button.

El =1 Calculator 1=13

n E:=J G [] c:J
8 E=:J C!!.[) I MOO I

Result: 12

16. Construct a four·function real number calculator similar to the integer calculator of
Problem IS. Allow the user to add, subtract. multiply or divide two real numbers. You
will need to export four procedures. one for each button.

Figure 5.13
The dialog box for Problem
IS.

r.fJJ Chapter 6
I!I~

Selection

Some problems can be solved by a fixed computation. For example, to compute the
area of a rectangle you always multiply the length by the width. Many problems,
however, cannot be solved by a fixed computation. For instance, some businesses
sell their products at a price that depends on the quantity of the order. They charge a
lower price per ball for an order of 200 golf balls than for an order of 10 golf balls. A
program to calculate the total dollar amount of an order cannot simply multiply the
quantity by a fixed unit price if the unit price itself depends on the quantity.

This chapter describes boolean expressions and IF statements. Together these fea
tures of the Component Pascal language pennit the programmer to alter, or select,
the computation depending on the outcome of a test on one or more data values.

Boolean expressions and types

Boolean expressions always have one of two values. either true or false. The sim
plest boolean expressions use the relational operators of Figure 6.1. In mathematics
notation, the "less than or equal to" operator is s. This symbol is not available on
most keyboards, so Component Pascal programs require that you write "less than or
equal to" as the two symbols <= without a space between them. The same idea
applies to the "greater than or equal to" operator. The "not equal to" sign # resem
bles the mathematical symbol ...

Operator Meaning

Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

Not equal to

Figure 6.1
The relational operators.

88 Chapter 6 Selection

Example 6.1 An example of a boolean expression is

income> 2400

where income is an integer variable. This expression is either true or false, depend
ing on the value of income. If income has the value 2500, the expression is true. If it
has the value 2300 or even 2400, the expression is false. I

Example 6.2 In contrast to the previous example. the expression

income >= 2400

evaluates to true if income has the value 2400. I

Variables of type boolean are declared in the variable declaration part similarly to
the way numeric and character variables are declared. A boolean variable can have
one of two values, true or false.

Example 6.3 The following variable declaration part declares rich to be a boolean
variable.

VAR
rich: BOOLEAN;

The assignment statement

rich := income> 2400

gives rich the value true if income has value greater than 2400, and gives the value
false otherwise. I

The ODD function is a built-in Component Pascal function that takes an integer
parameter and returns true if the value of the integer is odd. There is no correspond
ing even function.

Example 6.4 Suppose that i is a variable of type integer that has the value 14.
Then the boolean expression

ODD(i)

has the value false, and the expression

ODD(i + 1)

has the value true. I

Boolean expressions may contain the AND operator. written &. Suppose p is the
statement "The sky is green." which is obviously false. and q is the statement "Com-

Booleall expressions alld types 89

puter science is fun," which is obviously true. Then, p & q is the statement 'The sky
is green and computer science is fun," which is false. For the entire statement p & q

to be true, p must be true apart from q, ~md q must be true apart from p. If either or
both are false, then the entire statement is false. Figure 6.2(a), the truth table for the
& operator, summarizes these ideas.

Boolean expressions may also contain the OR operator, written OR. With p and q
representing the same statements about the sky and computer science, p OR q is the
statement "The sky is green or computer science is fun." This time, the entire state
ment is true. p OR q is true if p is true, if q is true, or if they are both true. Figure
6.2(b), the truth table for the OR operator, summarizes these ideas.

One other boolean operator is the NOT operator, written -. If P is the statement Figure 6.2
"The sky is green," which is false, then - p is the statement "The sky is not green," Truth tables for the boolean
which is true. Figure 6.2(c) is the truth table for the - operator. operators.

p q P &q P q P ORq P

TRUE TRUE TRUE TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE FALSE TRUE FALSE

FALSE TRUE FALSE FALSE TRUE TRUE
(c) The - operator.

FALSE FALSE FALSE FALSE FALSE FALSE

(a) The & operator. (b) The OR operator.

Example 6.5 Suppose that i is a variable of type integer that has the value 8. Then
the boolean expression

-OOO(i)

has the value true. I

Sometimes it is possible to simplify a boolean expression that contains the -
operator with a relational operator.

Example 6.6 The boolean expression

-(numSides > 8)

first evaluates the boolean expression (numSides > 8). If numSides has the value 10,
then (numSides > 8) is true, and -(numSides > 8) is false. A simpler way to write an
equivalent boolean expression is

numSides <= 8

Suppose again that numSides has the value 10. Then numSides <= 8 is false, as it
was in the previous expression. The two boolean expressions are the same regardless
of the value of numSides. I

-p

FALSE

TRUE

90 Chapter 6 Selection

This example demonstrates that the <= operator is the inverse of the> operator.
Figure 6.3 shows the relational operators and their inverses.

Operator Inverse Operator

= #

< >=

<= >

Example 6.7 You could write the expression

-(numTrials = maxTrials)

more simply as

numTrials # maxTrials

because the # operator is the inverse of the = operator. I

A common mistake you should avoid is putting the - operator next to a relational
operator. A relational operator must be placed between two integers, reals, or char
acters and cannot be next to a -.

Example 6.8 The compiler will not accept the expression

numTrials -= maxTrials

because the equals operator cannot have the NOT operator to its left. I

Another error you should avoid is combining two relational operators with one
variable. as is frequently done in mathematics. The mathematical expression

5slI<1O

means that n is greater than or equal to 5 and less than 10. Such expressions are
common in mathematics. However. they are illegal in Component Pascal.

Example 6.9 To test if the variable numTrials is greater than or equal to 5 and less
than 10. you may be tempted to write the boolean expression as

5 <= numTrials < 10

This expression is illegal, because the same operand. numTrials, is used by both
operators. You should write it with the & operator as follows:

Figure 6.3
The inverses of the relational
operators.

Boolean expressions and types 91

(5 <= numTrials) & (numTrials < 10)

If numTrials has the value 6. this boolean expression evaluates to true AND true.
which is true. I

Two other rules, known as De Morgan's laws, can sometimes help to simplify
boolean expressions. Suppose that p and q are boolean expressions. De Morgan's
laws are

-(p OR q) = -p & -q
-(p & q) = -p OR -q

Example 6.10 As an example of the first of De Morgan's laws, you can write the
boolean expression

-((slope >= 1.0) OR (length <= 0.0))

more simply as

(slope < 1.0) & (length> 0.0)

because < is the inverse of >=, and> is the inverse of <=. I

When the Component Pascal compiler encounters a boolean expression in your
program. it gives the NOT operator the highest precedence, the AND operator the
next highest precedence, and the OR operator the lowest precedence of the three.
Figure 6.4 summarizes these precedence rules and also compares the precedence of
the boolean operators to the relational and arithmetic operators.

Operator Precedence

Highest

&, DIV, MOD, /, • j OR, +,-

=,#.<,>,<=,>= Lowest

Example 6.11 The Component Pascal compiler interprets the boolean expression

-p&q

as (-p) & q rather than -(p & q). I

Example 6.12 If alpha, beta. and gamma are integer variables, the boolean
expression

Figure 6.4
Precedence of the Component
Pascal operators.

92 Chapter 6 Selection

alpha < beta & gamma = 0

is illegal because the compiler groups beta & gamma first. The & operator expects
boolean operands. but beta and gamma are integers. You should write the expression
as

(alpha < beta) & (gamma = 0)

which is now a legal boolean expression. I

IF statements

IF statements allow you to solve problems that are not based on fixed computations.
The idea is to evaluate a boolean expression, and if that expression is true, perform a
computation. Figure 6.5 shows an example of such a conditional computation. The
dialog box is for computing the wages for an employee who may have worked over
time. Customarily, weekly wages are computed as the hourly rate times the number
of hours worked, as long as the employee does not work more than 40 hours. If the
employee works more than 40 hours, then the number of hours in excess of 40 are
paid at time and a half. That is, the hourly rate for those hours beyond 40 is 1.5 times
the normal rate.

H ~ H ~
Role ~ Role ~

Ic~.j I~ejl

"'ages' IU20.00 "'- 11660.00

(a) Without overtime. (b) With overtime.

The listing in Figure 6.6 shows an implementation of the dialog box for calculat
ing the payroll. The assignment statement

wages := d.hours * d.rate

computes wages as the product of d.hours and d.rate assuming no overtime. When
the input is 50 for the hours worked and 12 for the hourly rate as shown in Figure
6.5(b), wages gets the value 600.00. This value is not yet correct because the 10
hours beyond 40 were computed at straight time, not time and a half.

Figure 6.5
The dialog box for a payroll
calculation.

MODULE Pbox06A;
IMPORT Dialog, PboxStrings;
VAR

d': RECORD
hours', rate': REAL;
message-: ARRAY 32 OF CHAR

END;

PROCEDURE ComputeWages';
VAR

wages: REAL;
wageString: ARRAY 32 OF CHAR;

BEGIN
wages := d.hours ' d.rate;
IF d.hours > 40.0 THEN

wages := wages + (d.hours - 40.0) , 0.5 ' d.rate
END;
PboxStrings.ReaIToString(wages, 1,2, wageString);
d.message := "$" + wageString;
Dialog.Update(d)

END ComputeWages;

BEGIN
d.hours := 0.0; d.rate := 0.0;
d.message := ""

END Pbox06A.

The words IF and THEN are Component Pascal reserved words. When an IF state
ment executes, it first evaluates the boolean expression following the reserved word
IF. If the boolean expression is true, it executes the statement sequence between the
reserved word THEN and the reserved word END. Otherwise, it skips the statement
sequence. In this example. after Wages is computed as d.hours ' d.rate, the IF state
ment evaluates the boolean expression

d.hours > 40.0

which is true. because the value of d.hours is 50. So the assignment statement fol
lowing the IF statement

wages := wages + (d.hours - 40.0) , 0.5 + d.rate

executes. The value of wages is increased to reflect the extra amount (at half time)
earned in overtime.

Appendix A shows that the EBNF syntax for an IF statement is

IF statemellts 93

Figure 6.6
A payroll calculation
program. It uses an IF
statement without an ELSE
part.

IF Expr THEN StatementSeq {ELSIF Expr THEN StatementSeq} [ELSE StatementSeqJ END

The IF statement in Listing 6.6 does not have an ELSIF part. nor does it have an
ELSE part.

94 Chapter 6 Selection

Flowcharts

You can visualize the action of an IF statement with a flowchart. Figure 6.7 shows
some of the more common flowchart symbols. The start symbol corresponds to the
reserved word BEGIN, which starts the executable statements of a Component Pas
cal procedure. The stop symbol. which is the same shape as the start symbol, corre
sponds to the reserved word END. The parallelogram corresponds to input and
output statements. Rectangles correspond to processing, performed by the assign
ment statement in Component Pascal. The hexagon is a symbol that indicates the
test of some condition. It is used in several Component Pascal statements, including
the IF statement. The symbol that looks like a hamburger corresponds to the CASE
statement, a selection statement described later in this chapter. The circle is the col
lector symbol for joining lines from other flowchart symbols.

c==) ~
Start or stop Input/output Process

C=> ~ 0 c==J
Test condition Case selection Collector

Figure 6.8 is the flowchart for an IF statement without an ELSE part. The incom
ing arrow from the top points to the test condition box, which represents the boolean
expression of the IF statement. If the boolean expression is true, control branches to
the left to the processing box, which represents the statement sequence after the
reserved word THEN. If the boolean expression is false, control branches to the
right, skipping execution of the statement sequence after the reserved word THEN.
The two branches of the IF statement join at the collector symbol corresponding to
the reserved word END. Figure 6.9 is the program of Figure 6.6 in flowchart form.

Flowcharts are useful for visualizing the logic of a program. They used to be con
sidered helpful in software design. but have fallen out of favor for several reasons.
Flowcharts are fine for small programs but they require huge pages of paper for
large programs. They also require artwork and are consequently more difficult to
modify than the programs they represent. This book presents flowcharts to help you
visualize the behavior of some Component Pascal statements. As you gain experi
ence writing Component Pascal programs, however, you will not need to rely on
flowcharts to design your software.

IF statements with an ELSE part

The listing in Figure 6.10 presents a different way to compute the wage correctly. Its
output is identical to the output of Figure 6.6.

The program uses an IF statement with an ELSE part. If the boolean expression in
the IF statement is true, the statement sequence following the THEN part

Figure 6.7
The flowchart symbols.

Figure 6.8
The flowchart for an IF
statement without an ELSE

IF statements with an ELSE part 95

d.hours > 40.0

wages := wages + (d. hours - 40.0) * 0.5 * d.rate

9

wages := d.hours • d.rate

executes. After it executes, the statement sequence after the reserved word ELSE

wages := 40.0 • d.rate + (d.hours - 40.0) • 1.5 • d.rate

is skipped. If, on the other hand, the boolean expression in the IF statement is false,
the THEN part is skipped, and the ELSE part executes. The effect of the IF statement
is to select one of the two statements to execute.

There is no semicolon after the statement following the reserved word THEN. You
can see in Appendix A that there are no semicolons in the syntax definition for an IF
statement. Then why is there a semicolon after the reserved word END') That semi
colon is there to separate the entire IF statement from the following Pbox
Strings.ReaIToString. These statements are part of the statement sequence of the
body of the procedure. The EBNF description of a procedure declaration is

Figure 6.9
The flowchart for the program
of Figure 6.6.

PROCEDURE [Receiver] IdentDef [FormalParsJ ";" DeclSeq [BEGIN StatementSeq] END Ident.

and the EBNF description of a statement sequence is

Statement (";" Statement).

96 Chapter 6 Selection

MODULE Pbox06B;
IMPORT Dialog, PboxStrings;
VAR

d*: RECORD
hours*, rate*: REAL;
message-: ARRAY 32 OF CHAR

END;

PROCEDURE ComputeWages*;
VAR

wages: REAL;
wageString: ARRAY 32 OF CHAR;

BEGIN
IF d.hours <= 40.0 THEN

wages := d.hours * d.rate
ELSE

wages := 40.0 * d.rate + (d.hours - 40.0) * 1.5 * d.rate
END;
PboxStrings.ReaIToString(wages, 1, 2, wageString);
d.message := "$" + wageString;
Dialog.Update(d)

END ComputeWages;

BEGIN
d.hours := 0.0; d.rate := 0.0;
d.message := ""

END Pbox06B.

So, the statements in the statement sequence between the BEGIN and END of the

procedure are separated by semicolons. We now have three general rules for placing
semicolons:

• Do not place a semicolon after a THEN.

• Do not place a semicolon before an END.

• Do not place a semicolon before an ELSE.

Figure 6.11 shows the flowchart for an IF statement with an ELSE part. It is simi
lar to the flowchart for an IF statement without an ELSE part in two respects. Both
flowcharts have exactly one collector. and both have exactly one arrow coming in at
the top and one arrow going out at the bottom.

Boolean variables

Figure 6.12 shows the dialog box for the next program. The program determines

whether a customer qualifies for a 15% airline discount. If the customer qualifies. it
computes the discounted fare. Otherwise. it states that the customer does not qualify.

A customer qualifies by having made more than 4 flights during the previous 12

months and being 65 years of age or older.

The dialog contains a control called a check box. The user can check the square

Figure 6.10
A payroll calculation
program that uses an IF
statement with an ELSE pan.

Figure 6.11
The flowchart for an IF
statement with an ELSE part.

D c#'~= I Hirllne Dlnou" I) ~=='!!h~t 8

Fare ~
Number of flights ~

13 Older Than 65

rr Compute Discount I
Discounted ;"ere" $29750

(a) Fare with discount.

D ~ I Hirli"e Diuounl) ,~~.~ 8

Fare ~
Number of Flights ~

o Older Than 65

II Compule Distounl d
y,)U do not queiify for IjiscQunt

(b) Fare without discount.

input field to indicate whether she is older than 65. It is clear that the input field for
Fare is linked to a variable of type real. and the input field for the number of flights
is linked to a variable of type integer. But what is type of the variable to which the
check box is linked? There are two possibilities for the input of this field. Either the
box is checked or it is not checked. So, the variable to which it is linked has type
boolean. If the box is checked the boolean variable gets the value true, and if it is not
checked the variable gets the value false. The listing in Figure 6.13 shows the pro
gram for this dialog box.

Boolean variables 97

Figure 6.12
The dialog box for computing
a possible discount for an
airline fare.

The constant section is similar to the variable section, except that an equal sign Constallts

follows the identifier instead of a colon. Another difference is that in the variable
section a type is associated with each identifier, while in the constant section a value
is associated with each identifier. Constants are similar to variables in that you refer
to them by their names, which are Component Pascal identifiers. However, you can-
not change the value of a constant the way you can the value of a variable.

Example 6.13 The assignment statement

discount := 0.20

would be illegal in this program, because discount is a constant. I

Procedure FlightDiscount defines the identifier discount to be the constant 0.15
and flightLimit to be 4. The program would produce exactly the same result without
the constant section and with the expression in the IF statement changed from

IF (d.numFlights > flightLimit) & d.olderThan65 THEN

to

IF (d.numFlights > 4) & d.olderThan65 THEN

and the computation for the fare changed from

fare := (1.0 - discount) * d.fare;

98 Chapter 6 Selection

MODULE Pbox06C;
IMPORT Dialog, PboxStrings;
VAR

dO: RECORD
fare': REAL;
numFlights': INTEGER;
0IderThan65': BOOLEAN;
message-: ARRAY 64 OF CHAR

END;

PROCEDURE FlightDiscount';
CONST

discount = 0.15;
flightLimit = 4;

VAR
fare: REAL;
fareString: ARRAY 32 OF CHAR;

BEGIN
IF (d.numFlights > flightLimit) & d.olderThan65 THEN

fare := (1.0 - discount) , d.fare;
PboxStrings.ReaIToString(fare, 1, 2, fareString);
d.message := "Discounted fare: $" + fareString

ELSE
d.message := "You do not qualify for discount."

END;
Dialog.Update(d)

END FlightDiscount;

BEGIN
d.fare := 0.0; d.numFlights := 0;
d.olderThan65 := FALSE;
d.message := ""

END Pbox06C.

to

fare := 0.B5 ' d.fare;

Figure 6.13
A program to compute the
discount on an airline ticket.

So, what is the advantage of a constant section? One advantage is the ease with Th" ae/\'antages ofa COIIstallt

which you can modify the program. This program is short, and it is easy to locate the
assignment statement where it computes the discount. If you wanted to modify the
program to change the discount to 20% instead of 15%, you could find the assign-
ment statement with your text editor and change the 0.85 to 0.80. But in a large pro-
gram, the statement that performs the computation may be difficult to locate. Also,
more than one computation may need to be modified to make one change.

For example, suppose you write a big tax computation program in which a tax
rate for both businesses and individuals is 20%. These rates are used in many differ
ent computations. You do not use a constant definition part, so that the value 0.20 is
scattered in various expressions throughout the program. Now suppose that a new

tax law changes the rate for businesses to 30% but leaves the rate for individuals
unchanged. To modify the program you cannot simply use your text editor to change
every occurrence of 0.20 to 0.30, because that would change the rate for individuals
as well.

On the other hand, suppose you write the program with a constant section that
defines

CONST
businessRate = 0.20;
individual Rate = 0.20;

and use these identifiers in the appropriate expressions in the program. Then, if the
tax law changes the business rate to 30% you only need to change one value at the
beginning of the program to modify it correctly.

Another advantage of constants is the increased readability that identifiers pro
vide. In this program, the expression

(1.0 - discount) • d.fare

represents the meaning of the computation better than the expression

0.85 • d.fare

The presence of identifier discount tells the reader explicitly that a discounted fare is
being computed.

Selection with strings

Component Pascal provides a convenient feature for testing strings according to
alphabetic order. Consider the problem to determine whether string "berry" comes

Selection with strings 99

before "bear" in alphabetic order. The proper algorithm compares the first two let- The alphahetdllg algorithm
ters. Because the first b in "berry" equals the first b in "bear", you must compare the
second letters. Alas, the e in "berry" equals the e in "bear" as well, so you must go to
the third letter. Finally, the third letters are not equal. Because a is less than r, as
shown on the number line for the character values in Figure 4.11, "bear" is less than
"berry" and so comes first in alphabetic order regardless of the letters beyond the
third. Of course, the algorithm must handle words of unequal length as well. Which
comes first in alphabetic order, "batter" or "bat"?

With Component Pascal, you can use the relational operators of Figure 6.1 to
compare not only integers, reals, and individual characters, but strings of characters
as well. The comparison of two strings takes complete account of the above algo
rithm, including the case where two strings are of unequal length. Figure 6.14 shows
a dialog box, which is implemented by the program of Figure 6.15, to compare two
strings entered by the user. Regardless of whether the user enters "bear" or "berry"
first, the output indicates which comes first in alphabetic order. It also correctly han
dles the case of unequal word lengths.

100 Chapter 6 Selection

* Wo,d O,de, I!I~ EI
Erlel two WIg>

I'b",-,y--- rlb .. -,---

(a) First "berry", then "bear".

MODULE Pbox06D;
IMPORT Dialog;
VAR

d*: RECORD

* Wo,d O,d., I!I~ EI
Enter two otmgo

lb •• , ""I'.-"y---

(b) First "bear", then "berry".

string1 *, string2*: ARRAY 16 OF CHAR;
message-: ARRAY 64 OF CHAR;

END;

PROCEDURE Alphabetize*;
BEGIN

IF d.string1 < d.string2 THEN
d.message := d.string1 + " comes before" + d.string2

ELSE
d.message := d.string2 + " comes before" + d.string1

END;
Dialog. Update(d)

END Alphabetize;

BEGIN
d.string1 := ""; d.string2 := ""

END Pbox06D.

Although this program correctly alphabetizes strings whose letters are all lower
case or all uppercase, it will not always work correctly if the user enters strings that
contain both upper- and lowercase letters. Figure 6.16 shows what happens when the
user enters "bear" and "Berry". The output erroneously claims that "Berry" comes
before "bear". The origin of the problem lies in the ordering of the characters on the
number line in Figure 4.1 I. All the uppercase characters lie to the left of all the low
ercase characters. Therefore, the character B is less than the character b, and the
alphabetizing algorithm blindly concludes that "Berry" is less than "bear" without
even considering the characters beyond the first one in the string. Because every
uppercase letter is less than every lowercase letter, the program will even claim that
"Zebra" comes before "antelope'"

This program needs to be improved, and it can be with the help of module Pbox
Strings, whose interface is listed in Figure 4.12. The module contains procedure
To Lower. which is listed as

Figure 6.14
A dialog box for comparing
strings in alphabetic order.

Figure 6.15
A program to compare two
strings.

* Word [J,d., I!I~ EI
E" .. two wing<

Ibed' laell'

Figure 6.16
Erroneous output from the
program of Figure 6.15.

PROCEDURE ToLower (from: ARRAY OF CHAR; OUT to: ARRAY OF CHAR);

You supply an actual parameter for from that has already been given a string value,
and a variable for to that is initially undefined. When you call ToLower, the proce
dure will copy all the characters from from to to, converting any uppercase letters to
lowercase. Recall that OUT specifies call by result, which has the effect of changing
your actual parameter.

How does this procedure help solve the problem? You can declare two local vari
ables, say lower1 and lower2, in procedure Alphabetize and use ToLower to give them
the lowercase versions of d.string1 and d.string2 respectively. In the IF statement,
compare lower1 with lower2 instead of d.string1 with d.string2. Because lower1 and
lower2 will contain only lowercase characters, the comparison will be correct. Of
course, all this manipulation should take place behind the scenes unknown to the
user. If the user enters "bear" and "Berry" the message on the dialog box should
read

Berry comes before bear

and not

berry comes before bear

Implementation of this improvement is a problem at the end of the chapter.

Using IF statements

This section points out some aspects of I F statements that tend to give beginning
programmers problems. Some are style guidelines that have been mentioned previ
ously, while others are unique to IF statements. In the following discussion and

Using IF statements 101

throughout the remainder of the book. we will sometimes use the word code. One The H'ord code

meaning for code is what a programmer writes in a program listing. Coding an algo-
rithm means writing a program in some programming language that will execute the
algorithm on a computer. A code fragment is a few lines of code from a program
listing.

A common tendency with boolean variables is to use a redundant computation
with the equals operator. A boolean variable is a special case of a boolean expres
sion, and so can be used alone as a boolean expression in an IF statement.

Example 6.14 In the listing of Figure 6.13, you could write the test for the IF
statement as

IF (d.numFlights > flightLimit) & (d.olderThan65 = TRUE) THEN

With this test the program still works correctly. because the expression
d.olderThan65 = TRUE evaluates to true when d.olderThan65 has the value true and
to false when d.olderThan65 has the value false. But this is bad style because it con
tains a redundant computation. The more straightforward test

1 02 Chapter 6 Selection

IF (d.numFlights > flightLimit) & d.olderThan65 THEN

presented in Listing 6.13 is better. I

Boolean variables are useful because they allow Component Pascal IF statements
to be written similar to English phrases whose meaning is close to the effect of the
Component Pascal statement. In the previous example, IF (d.numFlights > flightLimit)
& d.olderThan65 THEN is much like an English phrase. You should name your bool
ean variables so that the test of an IF statement corresponds to the way you would
phrase the test in English.

Example 6.15 Suppose that exempt is a boolean variable that indicates whether a
taxpayer is exempt from a tax. Instead of writing the test

IF exempt = FALSE THEN

you should write the equivalent test

IF -exemptTHEN

because this corresponds more closely to the way you would state the test in
~~. I

It is worth repeating a point here that was made in a previous chapter: do not save
typing time by choosing extremely short identifiers at the expense of program read
ability.

Example 6.16 In the previous example, if you choose e for the identifier instead
of exempt, the test of the IF statement becomes

IF -eTHEN

which would be more difficult for a human reader to understand. I

Our last problem area concerns the unnecessary duplication of code. Suppose
you write an IF statement with an ELSE part that ha,; the following form:

IF Condition 1 THEN
Statement 1 ;
Statement 2

ELSE
Statement 3 ;
Statement 2

END

where Statement 2 is the same statement in both alternatives of the IF statement.
Condition I is a boolean expression. If it is true, Statement 1 executes. followed by
Statement 2. Otherwise, Statement 3 executes, followed by Statement 2. Regardless
of whether Condition I is true or false, Statement 2 executes. It is simpler to write

IF Condition 1 THEN
Statement I

ELSE
Statement 3

END;
Statement 2

which executes like the previous code but does not duplicate Statement:? in the code
fragment.

Radio buttons

Each test in an IF statement evaluates a boolean expression, which can have the val
ues true or false. So every test selects between two alternatives. A single CASE state
ment, however, can select between more than just two alternatives. The type of the
expression to be tested cannot be a boolean because more than two alternatives are
possible. Its type is usually integer.

Radio buttons are common controls in dialog boxes when the user is required to
make one of several choices. They are a generalization of check boxes, which
require that the user select one of two choices-either checked or not checked.
Radio buttons always come in sets of two or more. Figure 6.17 shows a dialog box
with four radio buttons. The dialog box requests that the user answer a multiple
choice question about U.S. history. It provides four choices, only one of which is
correct. A CASE statement is an appropriate way to analyze the input from this set
of radio buttons because more than two alternatives is possible.

D· .- -_._"_" (History QUIZ) 2=~,~~ 8

WhO was the flrst U.S. president?

o Abraham lincoln

~ fHbert Einstein

o George Washington

o franklin Rooseuelt

II Enter Choice I
Result: Albert Einstein is not corr8':t

Who was the first U.S. preSident?

() Abraham lincoln

C> Albert Einstein

~ George Washington

o franKlin Rooseuelt

[I Enter Choice I
Result: That is correct

The controls are called radio buttons because of their similarity to the push but
tons on old automobile radios for tuning in stations. You can only have one station
tuned in at a time. If you change the setting to a new radio station by pushing a but
ton. then any button that was previously pressed is released. Similarly, in a dialog
box with radio buttons if one button is pressed. as indicated by the solid circle, then
any button that was previously pressed is released, as indicated by the open circles.

Until now. each input/output control in a dialog box has been linked to a variable
in an exported record that has consistently been named d. It would appear from Fig
ure 6.17 that we would need five fields in d--one for each of the four radio buttons
and one for the result. Such is not the case, however. Instead. all four radio buttons
are linked to a single integer variable in d. The listing in Figure 6.1 R shows this inte-

Radio buttons 103

Figure 6.17
A dialog box with a set of
four radio buttons.

104 Chapter 6 Selection

ger as multipleChoice.

MODULE Pbox06E;
IMPORT Dialog;
VAR

dO: RECORD
multipleChoice': INTEGER;
message-: ARRAY 64 OF CHAR

END;

PROCEDURE PresidentQuiz';
BEGIN

CASE d.multipleChoice OF
0:

d.message := "Abraham Lincoln is not correct." I
1 :

d.message := "Albert Einstein is not correct." I
2:

d.message := "That is correct." I
3:

d.message := "Franklin Roosevelt is not correct."
END;
Dialog.Update(d)

END PresidentQuiz;

BEGIN
d.multipleChoice := 0;
d.message := ""

END Pbox06E.

The radio buttons are linked such that when the button for Abraham Lincoln is
pressed the value of d.multipleChoice is 0, when the button for Albert Einstein is
pressed its value is I, when the button for Washington is pressed its value is 2, and
when the button for Roosevelt is pressed its value is 3.

It is a bit cumbersome to set up the links for radio buttons compared to setting up
the links for the other controls. The problem is that when you declare multipleChoice
to be an integer in record d and create a new form linked to it by choosing Con
trols-New Form ... the BlackBox system will supply an integer input field instead
of a set of four radio buttons. You must delete the integer input field, insert four radio
buttons, then set up their proper links manually. Figure 6.19 shows this process.

Figure 6.19(a) shows the controls that are provided by the BlackBox forms gen
erator when you create a new form by selecting Controls-New Form ... and link it
to Pbox09A.d. The forms generator inserts an integer input field for the integer
d.multipleChoice. Part (b) of the figure shows the result of selecting the input field
and deleting it by pressing the delete key. Part (c) shows how to enlarge the forms
document to make room for the radio buttons. Choose Edit-Select Document to
select the forms document for enlarging. Part (d) shows the result of choosing Con
trols-Insert Radio Button. A radio button control is inserted in the forms document

Figure 6.18
A module that takes its input
from a set of radio buttons. It
uses a CASE statement.

IfesidentQuli..; ...

. ,
(a) Select the integer field provided by the
forms generator.

(e) Select the document and enlarge it to
make room for the radio buttons.

(e) Insert three more radio buttons and
arrange them.

(b) Delete the integer field by pressing the

delete key.

(d) Insert the first radio button by selecting
Controls--Insert Radio Button.

o . « Inspector» .

Control Radio Button

Radio buttons 105

Figure 6.19
The process of constructing a
dialog box with four radio
buttons .

link I PbOH07E.d.multiploChoiro [I Get NOHt I

Label lr. ronk:lin Rooseuelt I II Set
Guard ,

r
Ie--

mull
"otifierLI ____________ --', Leuel []

UptlOn U UptlOn I

I c' --= Il[ltinn ~

I 0 Franklin RooseuBIt
I c -.-.-.-.--... ---.... --.-

I '[eSidentQU_

m~ssage

(f) Set the proper links manually with the
component Inspector.

ilptinn .J.

106 Chapter 6 Selection

at some random location. Part (e) shows the dialog box after arranging the radio but
ton where you want it and inserting and arranging the other three radio buttons.

The last step is to set the proper links with the component inspector as shown in
Figure 6.l9(f). The figure shows the settings for the fourth radio button. You must
manually enter the link to the exported integer. which in this case is Pbox09A.d.muti
pleChoice. Enter the text that you want to appear next to the radio button in the label
field, which in this case is Franklin Roosevelt. Because you want the value of d.mul
tipleChoice to be 3 when this radio button is pushed, you must enter 3 for the level of
the control as shown in the inspector in part (f).

The CASE statement

The listing in Figure 6.18 shows how the CASE statement can select from more than
just two alternatives. The Component Pascal syntax for a CASE statement is

CASE Expr OF Case { .• I" Case) [ELSE StatementSeq] END

In this program, the expression Expr between reserved words CASE and OF is sim
ply d.multipleChoice. Following OF is a list of one or more cases, each case sepa
rated by a vertical bar I. This program has four cases separated by three vertical bars.
It does not have the optional ELSE part.

The Component Pascal syntax for an individual Case is

[CaseLabels {"," CaseLabels) ":" StatementSeq]

Each Case consists of one or more CaseLabels separated by commas followed by a
colon followed by our familiar StatementSeq. In this program, the case label for the
second case is I. and the statement sequence is the single assignment statement

d.message := "Albert Einstein is not correct:'

When the user selects one of the radio buttons in the dialog box of Figure 6.17
and presses the button labeled Enter Choice, procedure PresidentQuiz executes. The
first statement in the procedure is the CASE statement, which evaluates the expres
sion d.multipleChoice. Execution then skips directly to the statement sequence of the
corresponding case label skipping all other cases. Following execution of that state
ment sequence, execution skips directly to the end of the CASE statement again
skipping all other cases. In this program. suppose the user has clicked the fourth
radio button corresponding to Roosevelt. This selection causes d.mutipleChoice to
have the value 3. When the CASE statement executes, it skips directly to the assign
ment statement

d.message := "Franklin Roosevelt is not correct."

skipping all other cases.
If the value of the expression does not occur as a label of any case, the statement

sequence following the ELSE is selected, if there is an ELSE. Otherwise. the pro
gram is aborted with a trap. This program does not require an ELSE part if the levels

for the radio buttons are set up correctly. Because each level is set to have a value of
0, [,2, or 3 we are guaranteed that d.multipleChoice can have no other value.

Figure 6.20 shows the flowchart for the module in Figure 6.18. Note how the case
selection symbol has more than one alternative' arrow leaving it compared to the IF
hexagon flowchart symbol that always has two arrows leaving it.

\ Input d.multipleChoice \ ,

The CASE statemellt 1 07

Figure 6.20
The flowchart for the module
of Figure 6.18

(d.multipleChoice '\

~----------~I I I I~----------~
o 2 •

d.message := Lincoln message I I d.message:= correct message I
3

I d.message:= Einstein message I
I

I d.message:= Roosevelt message J

* Guarded commands

The Component Pascal (CP) operations of &, OR, and - correspond directly to the
Guarded Command language (GCl) operators of conjunction, disjunction, and
negation as Figure 6.21 shows. Not only are the symbols different but the prece
dence is different as well. In CP, - has the highest precedence, & has the second
highest, and OR has the lowest of the three. But in GeL. 1\ and v have the same
precedence, although ~ has higher precedence than both as in CPo Consequently,
you must be careful to place parentheses in a GCl statement where you might not
need it in a CP one.

Example 6.17 The CP boolean expression

(sum < 100) OR (a < b) & (b < c)

CP GCL

& 1\

OR v

Figure 6.21
The boolean operators in
GeL.

108 Chapter 6 Selection

causes the & operation to execute first followed by the OR operation. However, the
equivalent boolean expression in GCL is

(sum < 100) v «a < b) " (b < c))

where the parentheses are required to indicate that the " operation occurs first. I

The guarded command language is so called because several of its statements,
including the if statement, contain a phrase of the form B -. S known as a guarded
command. B is a boolean condition that must be true in order for statement S to exe
cute. In the same way that semicolons separate statements, the symbol a separates
guarded commands. In CP, every IF statement terminates with an END. In GCL,
every if statement terminates with fl, which is if spelled backward. Another differ
ence between GCL and CP is that there is no phrase corresponding to ELSE in GCL.
Instead, a guarded command is used for the ELSE part. If there is no ELSE part in
the CP statement, you must use a guarded command with the skip statement, which
does nothing when it executes.

Example 6.18 In Figure 6.6, using w for wages, h for d.hours, and r for d.rate the
CP statements

IF d.hours > 40.0 THEN
wages := wages + (d. hours - 40.0) • 0.5 • d.rate

END

are written in GCL as

if h > 40.0 -. w := w + (h - 40.0) * 0.5 * r
a h s 40.0 -. skip

fl I

If there is an ELSE part in the CP statement, you still specify what happens in the
false alternative with a guarded command in GCL.

Example 6.19 In Figure 6.7, again using w for wages, h for d.hours, and r for
d.rate the CP statements

IF d.hours <= 40.0 THEN
wages := d.hours • d.rate

ELSE
wages := 40.0 • d.rate + (d. hours - 40.0) • 1.5 • d.rate

END

are written in GCL as

if h s 40.0 -. w := d * r
a h>40.0 w:=40.0*r+(h-40.0)* 1.5*r

fl I

From these examples, you can see that GCL requires the programmer to be more
explicit in the precondition that must be true for one of the alternatives of an if state
ment to execute, In Example 6.19, you cannot tell simply by reading the code what
must be true for the false alternative to execute. You must deduce that for the false
alternative to execute the boolean expression

d.hours <= 40.0

must be false, and from that fact reason that d.hours > 40.0 must be true. On the
other hand, in GCL the guard tells you explicitly what must be true for the else part
to execute.

Exercises

1. State whether the boolean expression

ODD(num1) & (num2 <= 10)

is true or false for each of the following sets of values for the integer variables numl

and num2.

(a) numl = 6, num2 = 10
(b) numl = 5, num2 = II
(e) numl = 5, num2 = 10

2, State whether the boolean expression

(numl >5) OR (num2 <= 12)

is true or false for each of the following sets of values for the integer variables numl
and num2.

(a) numl = 20, num2 = 12
(b) numl = 7, num2 = 8
(e) numl = 2, num2 = 13

3. Write the equivalent of the following IF tests without using the - operator.

(a) IF -(num < 16) THEN
(b) IF -«numl < 20) OR (num2 >= 10» THEN
(e) IF -«num1 = 20) & (num2 > 10» THEN

4, Predict the output of the program in Figure 6.6 for the following inputs.

(a) d.hours = 38.0, d.rate = 4.75
(b) d.hours = 50.0, d.rate = 5.00
(e) d.hours = -2.0, d.rate = 10.00

5. Predict the output of the program in Figure 6.10 for the following inputs.

Exercises 109

110 Chapter 6 Selection

(a) d.hours = 36.0. d.rate = 5.00
(b) d.hours = 48.0. d.rate = 6.00
(e) d.hours = -\.0. d.rate = lO.OO

6. Predict the output of the program in Figure 6.13 for the following inputs.

(a) d.fare = 100.00. d.numFlights = 9. d.olderThan65 = false
(b) d.fare = 100.00. d.numFlights = 19. d.olderThan65 = true
(e) d.fare = 100.00. d.numFlights = 14, d.olderThan65 = true

7. Draw the flowcharts for the procedures in (a) Figure 6.10 and (b) Figure 6.13.

8. Draw the flowcharts for the following code fragments.

(a)

IF Condition 1 THEN

Statement 1
ELSE

Statement 2 :
Statement 3

END

(b)

IF Condition 1 THEN

Statement 1
ELSE

Statement 2
END:
Statement 3

9. Simplify the following code fragment. Assume that none of the statements change the
variables in Condition I.

IF Condition 1 THEN
Statement 1 :
Statement 2

ELSE
Statement 1 :
Statement 3

END

10. Rewrite the following code fragments with the correct indentation and draw their flow
charts.

(a)

Statement 1 :
IF Condition J THEN
Statement 2
ELSE
Statement 3
END:
Statement 4 :
Slatement 5

(b)
Statement I :
IF Condition I THEN
Statement 2
ELSE
Statement 3 :
Statement 4
END:
Statement 5

11. Translate the following code fragments from CP to GCL.

(a)
IF d.age > 65 THEN

rate := 0.2 • d.wages
ELSE

rate := 0.3 • d.wages
END

(b)

IF d.xCoordinate > 1000 THEN
d.xCoordinate := d.xCoordinate - 1000

END

12. Translate the following code fragments from GCL to CP.

(a)

if a;" h -> 11, b := h. a

~ a < h -> skip
fi

Problems

(b)

if j> 100 -> In:= "large"
~ j s 100 -> In:= "smal]"'

fi

13. A salesperson's commission is computed as 15% of the sales that exceed $1000. Write
a Component Pascal program to input a sales figure from a dialog box and output the
salesperson's commission in a dialog box message. Use an IF statement without an
ELSE part.

14. In a bowling tournament, participants bowl three games and receive a consolation prize
of $15 regardless of their score. Those bowlers whose three-game average exceeds 200
get an additional prize of S50. Write a program to input a bowler's three scores from a
dialog box and output his prize earnings in a dialog box message.

15. Write a Component Pascal program to input two integer values from a dialog box and
output them in numeric order in a dialog box message.

16. A student gets on the dean's list if her grade point average (GPA) is at least 3.5 (based
on a scale of 4.0 for an A, 3.0 for a B, etc.). Write a program that implements a dialog
box with input fields for the number of A's, B's, C's, D·s. and F's a student earned dur
ing a given semester and with output fields for her GPA and a message telling whether
she made the dean's list.

17. Design a dialog box with an integer input field for "Age" and a check box for "Depen
dent". If the age field is less than 21 and the check box is checked output the message,
"You qualify otherwise. "You do not qualify." in an output field in the dialog box.

18. Make the improvement described in the text to the program of Figure 6.1 S.

19. A person's last initial determines her registration period. as the table in Figure 6.22(a)
shows. Write a program using a CASE statement that asks a user to select the initial of
her last name as shown in the dialog box of Figure 6.22(b) and output the registration
period.

Problems 111

112 Chapter 6 Selectio/l

Last Registration
initial period

A,B,C 9:00

D,E,F,G 10:00

H, l,], K. L 11:00

M,N,O,P 12:00

Q,R,S 1:00

T,U,V,W 2:00

X,Y,Z 3:00

(a) Table of registration periods.

La.ti1ilial

r A.B.C

rD. E.F.G

r.tr::q:~;]

rM.N.O.P

rO.R.S

rr.u.v.w
rx. Y.Z

I Oioploy I
Regisk tino: ~

(b) Dialog box.

Figure 6.22
The information for Problem
19.

" Chapter7
1iI~

Abstract Stacks and Lists

The concept of abstraction is pervasive in many of the sciences. Although abstrac
tion has many nuances, one that is of primary importance in computer science is the
idea of hidden detail. The modules of Component Pascal provide abstraction for the
programmer. The interface of a module shows those elements of the module that are
exported and therefore available for other modules to import. All parts of the module
that are not exported are hidden details.

Two abstractions that a module can supply are the abstract data structure (ADS)
and the abstract data type (ADT). A module that supplies an ADS contains an entity
that is useful for the programmer to manipulate. An example of an ADS that your
programs have manipulated is the Log. The module StdLog permits you to send
strings, integer values, and real values to the Log. The details of how the information
gets displayed on the Log are hidden. The programmer only needs to know how to
use procedures such as String and In! that are listed in the interface of StdLog. One
characteristic of an ADS is that only one entity or data structure is provided by the
exporting module. There is only one Log in the BlackBox system.

In contrast to a module that supplies an ADS, a module that supplies an ADT
exports a type. Modules that use an ADT can declare variables to be of that type.
Because a module is free to declare more than one variable to be of the exported
type, it can have more than one data structure.

The BlackBox framework provides the programmer both kinds of entities
ADSs and ADTs. Whether it provides an ADS or an ADT depends on whether it is
designed to provide one data structure for the programmer to manipulate. or a type
so the programmer can create and manipulate as many data structures needed to
solve the problem at hand.

This chapter describes two abstractions-stacks and lists. For each of these two
abstractions. it illustrates how it could be provided as an ADS and as an ADT. These
abstractions are not part of the standard B1ackBox distribution. but are contained in
the Pbox project for use with this book. This chapter shows the power of abstraction
by allowing you to use the data structures without knowing the details of how they
are implemented. After you learn more about the Component Pascal language, later
chapters will reveal the details that are hidden behind the interfaces for these
abstractions.

Abstraction as hidden detail

Abstract data stmetllres

Ahstract data types

When to lise (/1/ ADS \'erSllS

<IIIADT

114 Chapter 7 Abstract Stacks and Lists

Stacks

A stack is also called a last in, first out (LIFO) list. It is a structure that stores values. The UFO property ora srack

Two operations access the values stored on a stack-push and pop. You can visual-
ize a stack as a spring-loaded stack of dishes in a restaurant. When the busboy puts a
clean dish on top of the stack, the weight of the dish pushes the stack. If he puts yet
another dish on top, it will push down the stack a bit further. If a waitress needs a
dish, she takes one from the top of the stack. In other words, the last dish put on the
stack is the first one out when someone retrieves a dish.

In abstract form, a stack is a list of values with the operations push for storage The (lllsh and pol' operations

and pop for retrieval. Figure 7. I shows a sequence of operations on a stack in
abstract form. In the figure, the push operation places a value on the stack. d.x is a
real variable that is not a part of the stack. The pop operation gives the value to d.x
from the top of the stack.

?//////A
(a) BEGIN

I5.Ol
~

m·o
5.0

/.

m·o
2.0

5.0

/.

Figure 7.1 m.O A sequence of operations on a
stack.

5.0

/.

I5.Ol
~
(0 Pop(d.x)

(b) Push(5.0)

m·o
5.0

/.

(g) Push(7.0)

(e) Push(2.0)

I5.Ol
~
(h) Pop(d.x)

(d) Push(4.0)

?/##//;/.
(il Pop(d.x)

(el Pop(d.x)

The figure shows the values 5.0. 2.0, and 4.0 pushed onto the stack. The first pop
operation in (e) gives the value of 4.0 to d.x. Because 4.0 was the last value in, it is
the first value out. Figure 7.1(f) shows the stack partially empty. with only 5.0. Then
7.0 is pushed onto the stack. The next pop operation in (h) gives 7.0 to d.x. Because
7.0 was the last value in. it is the first value out.

Evaluating postfix expressions

Stacks are common in computer systems. One application of stacks is in the pro
cessing of arithmetic expressions. When you write a Component Pascal expression
such as 3 + 5 in a program, the Component Pascal compiler must translate it to
machine language. Then the machine language program executes.

There are three kinds of arithmetic notation:

• Infix

• Prefix

• Postfix

3 + 5

+ 3 5

35+

Infix notation is the notation you learned as a child. The plus operator is between the
operands 3 and 5. In prefix notation. the operator precedes its operands. and in post-

Translation from injix to postfix 115

fix notation. the operator follows its operands.
The expressions you write in a Component Pascal program are infix expressions.

Unfortunately. infix expressions are difficult to evaluate when the program executes
in machine language. It is easier for the computer to evaluate a postfix expression.
Component Pascal compilers convert infix expressions to postfix. Then. when the
machine-language version of the program executes. it evaluates the postfix expres
sion.

The evaluation of a postfix expression requires a stack of operands. The algo-
rithm for evaluating a postfix expression is

• Scan the postfix expression from left to right.

• If you encounter an operand, push it onto the stack.

• If you encounter an operator, apply the operator to the top two operands of the
stack. Replace the two operands with the result of the operation.

• After scanning the entire postfix expression, the stack should have one item,
the value of the expression.

Example 7.1 Here is a trace of the evaluation for the postfix expression

I 6 + 5 2 - x

In this trace, the bottom of the stack is on the left.

Stack Expression

empty 6 + 5 2 - x
I 6 + 5 2 - x
I 6 + 5 2 - x
7 5 2 - x
7 5 2 - x
7 5 2 - x
7 3 x
21 empty

The algorithm first pushes I, then 6. It encounters the plus operator and applies it to
I and 6, replacing them with 7 on the stack. It pushes 5 and 2, encounters the minus
operator and replaces the 5 and 2 with their difference on the stack. Then it encoun
ters the multiply operator. It applies it to 7 and 3. producing the final result of 21. I

Translation from infix to postfix

A computer system must solve two basic problems to process an expression from a
Component Pascal program. First. it must translate the infix expression to postfix.
and second, it must evaluate the postfix expression. The previous algorithm showed
the evaluation of a postfix expression. The following discussion shows how to trans
late from infix to postfix.

Example 7.2 Five examples of infix expressions and their corresponding postfix

The algorithm/or em/liming
a postfix expressio/1

116 Chapter 7 Abstract Stacks and Lists

expressions are

Infix Postfix

2 + 3 2 3 +
2 x 5 + 3 2 5 x 3 +
2 + 5 x 3 2 5 3 x +
2 x 3 + 5 x 4 2 3 x 5 -+ x +
2 + 3 x 5 + 4 2 3 5 x + 4 +

You can verify that they are equivalent by evaluating the postfix expression accord
ing to the evaluation algorithm. I

Two different postfix expressions can be equivalent to the same infix expression.

Example 7.3 The postfix expressions

5 3 x 2 +

and

2 5 3 x +

are both equivalent to the infix expression

2 + 5 x 3

However. the operands of the first postfix expression (5. 3. 2) are in a different order
from the operands of the infix expression (2. 5, 3). I

One property of the postfix expressions in Example 7.2 is that their operands are
all in the same order as the operands of the equivalent infix expressions. The transla- Maintain the order of the

tion algorithm that follows has the same property. operands.

A characteristic of infix that is not shared by postfix is the precedence of the
operators. In the infix expression 2 + 5 x 3. the multiplication is performed before
the addition because mUltiplication has a higher precedence than addition. In post-
fix, however, there is no operator precedence. The order in which an operation is Postfix has no operator

performed is determined strictly by the position of the operator in the postfix expres- (lrecedencl!.

sion. That is one reason computers can evaluate postfix expressions more easily than
infix expressions.

In the translation of the preceding expressions from infix to postfix, only the
placement of the operators is ditferent. In fact. the multiplication operators occur
before the addition operators, because multiplication has a higher precedence than
addition in the infix expression. An algorithm that translates from infix to postfix
only needs to shift the operators to the right and possibly reorder them. The order of
the operands remains unchanged.

The following algorithm for translating an expression from infix to postfix uses a
stack to temporarily store the operators until they can be inserted further to the right
into the postfix expression.

Translation from infix to postfix 117

• Scan the infix expression from left to right.

• If the item is an operand, move it directly to the postfix expression.

• If the item is an operator, compare it with the operator on top of the stack:

... If the operator on top of the stack has a precedence lower than that of the
item just encountered in the infix expression or if the stack is empty, push
the item just encountered onto the stack.

... If the operator on top of the stack has a precedence higher than or equal to
that of the item just encountered in the infix expression, pop items off the
stack. Place them in the postfix expression until either the precedence of
the top operator is less than the precedence of the item or the stack is
empty. Then push the item onto the stack.

• After the entire infix expression has been scanned. pop any remaining opera
tors left on the stack and put them in the postfix expression.

Because the operands pass directly to the postfix expression, they will maintain
their order. The algorithm allows an operator to be pushed onto the stack only if the
stack top contains an operator of lower precedence. Therefore, the stack will always
have the operators with the highest precedence near the top.

Example 7.4 Here is a trace of the translation process according to the previous
algorithm:

Postfix output Stack Infix inpllt

empty empty 2 + 3 x 5 + 4
2 empty + 3 x 5 + 4
2 + 3 x 5 + 4
2 3 + x 5 + 4
2 3 + x 5 + 4
235 + x + 4
235 x + + 4
235 x + empty + 4
235 x + + 4
235 x + 4 + empty
235 x + 4 + empty empty

When the algorithm gets the multiplication operator, it compares it with the addition
operator on top of the stack. Multiplication has a higher precedence than addition.
Therefore, it puts the multiplication operator on the stack. After it sends the 5 oper
and to the postfix expression. the multiplication operator follows it. So when you
evaluate the postfix expression. you will multiply 3 by 5 before adding the result to
2. I

Another reason why postfix expressions are easier to evaluate than infix expres-

The a/goritl1mjiJr trans/(I{ing
timll infix to postfix

sions is that postfix expressions have no parentheses. Infix expressions can have Pos(fix expressions I1m'c 110

parentheses. When they do, all of the operations inside the parentheses must be per- parentheses.

formed before the operations outside. Converting an infix expression with parenthe-
ses is only slightly more complicated than converting an expression without

118 Chapter 7 Abstract Stacks and Lists

parentheses.

Example 7.5 Here are some examples of infix expressions with parentheses and
the corresponding postfix expressions.

Infix Postfix

2 7 3 + x
2 734 x + x
273 x 4 + x
273 x 4 + +

2x(7+3)
2x(7+3x4)
2x(7x3+4)
2+(7x3+4)
2x(7x(3+4)+S) 2 7 34+ x 5 + x

Again, the order of the operands is the same. You should evaluate these expressions
to convince yourself that they are equivalent. I

When a left parenthesis is detected in the left to right scan, it marks the starting
point of a substack within the main stack. It is as if a new expression is to be evalu
ated, the expression within the parentheses. The algorithm pushes the left parenthe
sis onto the stack to mark the beginning of the substack. It converts the
subexpression using the substack. When it encounters the matching right parenthe
sis, it pops the operators off the substack and places them in the postfix expression
until it reaches the left parenthesis. It discards the pair of parentheses and continues
converting.

Example 7.6 Here is an example of the translation process for an infix expression
containing parentheses:

Postfix output Stack Expression

empty empty 2 x (7 + 3 x 4) + 6
2 empty x (7 + 3 x 4) + 6
2 x (7 + 3 x 4) + 6
2 x (7 + 3 x 4) + 6
2 7 x (+ 3 x 4) + 6
2 7 x (+ 3 x 4) + 6
273 x (+ x 4) + 6
273 x (+ x 4) + 6
2 7 3 4 x (+ x) + 6
2 7 3 4 x x (+) + 6
2 734 x + x () + 6
2 734 x + x + 6
2 7 3 4 x + x empty + 6
2 7 3 4 x + x + 6
2 7 3 4 x + x 6 + empty
2 7 3 4 x + x 6 + empty empty

When the algorithm encounters the left parenthesis, it simply pushes it onto the
stack with the multiplication operator. It continues the conversion, placing the addi-

The stack abstract data structure 119

tion and multiplication operators on the stack. When it encounters the right paren
thesis, the algorithm knows it is at the end of the subexpression between the two
parentheses. It pops the multiplication and addition operators off the stack. Then the
algorithm discards the pair of parentheses and continues the conversion. I

The stack abstract data structure

Figure 7.2 is the interface of the stack data structure provided by module PboxStack
ADS. It contains five exported items--one constant and four procedures. The con
stant is named capacity and gives the maximum number of items that can be stored
on the stack. Constants are similar to variables except that their values cannot be
changed with an assignment statement.

DEFINITION PboxStackADS;

CONST
capacity = 8;

PROCEDURE Clear;
PROCEDURE Numltems 0: INTEGER;
PROCEDURE Pop (OUT val: REAl);
PROCEDURE Push (val: REAL);

END PboxStackADS.

As usual, you can view the interface by highlighting PboxStackADS in a display

YOIl cannot change tile value
(!l a constant.

Figure 7.2
The interface of the stack
abstract data structure.

of text on some window and selecting Info-+Interface. The interface gives you the InspecTing the illterfllCl!

names of all the items exported by the module. For the procedures, it gives you the
formal parameters including their types, so you will know what type the correspond-
ing actual parameters must have.

The interface does not provide you with a description of what each procedure
does, although you can usually surmise that from its name. For example, it is obvi
ous from its name that procedure Pop pops a value off a stack. In case you need
more information about the items exported from a module than what is supplied in
its interface, you can highlight the module name and select Info-+Documentation. If lll.\pectil1l; lile d(!CIIIIU:"lltalilllz

the programmer of the module has supplied corresponding documentation in the
Docu folder, a window will open the documentation in browser mode. The docu-
mentation fragments in the following discussion are available on-line by highlight-
ing PboxStackADS and selecting Info-+Documentation.

Here is the documentation for capacity.

CONST capacity
The maximum number of real values in the stack.

There is a limit to how many items the user can put on this stack. You can see from
the interface that a maximum of eight real values are allowed.

Procedure Clear has this documentation.

120 Chapter 7 Ahstract Stacks and Lists

PROCEDURE Clear
Post
The stack is cleared to the empty stack.

The word Post in the documentation indicates a postcondition. In general. the docu
mentation of a procedure in BlackBox consists of the procedure's preconditions and
postconditions. A precondition states what must be true before the procedure exe- Preconditions and

cutes in order for it to execute correctly. A postcondition states what must be true postcondition,\

after the procedure executes if all its preconditions were true beforehand. Procedure
Clear has no preconditions and one postcondition. which specifies that regardless of
the initial state of the stack it will be empty after procedure Clear executes.

The specification for procedure Numltems is

PROCEDURE Numltems 0: INTEGER
Post
Returns the number of elements in the stack.

You can tell from its signature that it is a function procedure. not a proper procedure,
and it has no parameters in its formal parameter list. When you execute Numltems, it
returns the number elements in the stack regardless of the initial state of the stack.

Procedure Pop has a precondition as well as a postcondition.

PROCEDURE Pop (OUT val: REAL)
Pre
o < NumltemsO 20
Post
An item is removed from the top of the stack and val gets its value.

The precondition requires that the number of elements in the stack be greater than 0
in order to guarantee the post condition after you execute Pop. This is a reasonable
precondition, because how can you pop an element off a stack if there are no ele
ments in the stack to begin with? The integer 20 that follows the precondition is an
error number that is displayed if the precondition is ever violated. One of the pro
gramming style convention for Component Pascal in the BlackBox framework is
that the error numbers for precondition violations begin with integer 20. The next
section gives an example that shows what happens when you violate a precondition.

The specification for procedure Push reveals that it also has a precondition.

PROCEDURE Push (val: REAL)
Pre
NumltemsO < capacity 20
Post
val is pushed onto the top of the stack.

The precondition states that the number of items on the stack must be less than the
maximum number allowed. That is, there must be room for at least one more item if
you want to push an item onto the top of the stack.

Formal parameters val in Pop and val in Push show that each of these procedures

A precondition programming
style

expects a single real actual parameter. The word OUT before a formal parameter in OUT 1J(lIwlI~[a,

The s{(/ck abstract data structure 121

the parameter list of a proceuure indicates two things:

• The value of the parameter is considered to be undefineu when the proceuure
is called .

• The proceuure will change the value of the actual parameter.

Figure 7.I(e) illustrates these two points. Before the pop operation, the value of
actual parameter val is considered undefined. After the pop operation, val has the
value 4.0 from the top of the stack. Procedure Pop changes the value of val to 4.0.

Figure 7.3 shows a dialog box that illustrates the use of the stack ADS provided
by PboxStackADS. To push a value onto the stack, the user enters a real value in the
text field and then pushes the button labeled Push. To pop a value off the stack, the
user pushes the button labeled Pop, after which the dialog box displays the value
popped in the region to the right of the Pop button. The dialog box shows the current
number of items on the stack after each push and pop operation. The button labeled
Clear Stack removes all items otT the stack. The box in Figure 7.3 shows the result
of pressing the Pop button after pushing S.O, 2.0, and 4.0. It corresponds to the state
of the stack in Figure 7 .1 (e).

Figure 7.4 is the listing of a program that implements the dialog box of Figure
7.3. It imports PboxStackADS and contains the usual record named d whose fields
are linked to the dialog box. The initialization part of the module assigns the appro
priate procedures to the procedure fields of d. Rather than initialize the default val
ues of the remaining fields of d individually, the initialization part of the module
simply calls procedure Clear, which initializes the stack and sets the proper default
values.

MODULE Pbox07A;
IMPORT Dialog, PboxStackADS;

VAR
d*: RECORD

valuePushed', valuePopped-: REAL;
numltems-: INTEGER;

END;

PROCEDURE Push';
BEGIN

PboxStackADS.Push(d.valuePushed);
d.numltems := PboxStackADS.NumltemsO;
Dialog. Update(d)

END Push;

PROCEDURE Pop';
BEGIN

PboxStackADS. Pop(d. valuePopped);
d.numltems := PboxStackADS.NumltemsO;
Dialog.Update(d)

END Pop;

«- One Stack I!lIi! Ei

Pu.h IuD

Pop 14.0

Nt.mbe! at 1Iems: p
I Clear 5 loci< I

Figure 7.3
The dialog box that goes with
the program in Figure 7 A.

Figure 7.4
A program that uses the stack
abstract data structure.

122 Chapter 7 Abstract Stacks and Lists

PROCEDURE ClearStack*;
BEGIN

PboxStackADS.Clear;
d.valuePushed := 0.0; d.valuePopped := 0.0;
d.numltems := 0;
Dialog.Update(d)

END ClearStack;

BEGIN
ClearStack

END Pbox07A.

The trap window

You can easily violate a precondition with the dialog box in Figure 7.3 by simply
pressing the button labeled Clear Stack followed by pressing the button labeled Pop.
Because Clear Stack makes the stack empty, when you attempt to execute procedure
Pop its precondition

o < NumltemsO

will be false, because Numltems will return O. BlackBox responds to this condition

Figure 7.4
Continued.

with the trap window, whose purpose is to provide information to the programmer The purpose olthe IraI'

about the cause of some error condition. Figure 7.5 shows the top part of the trap window

window generated from the above scenario.

[J,==~ITr8pJ~==08

TRAP 21 IprecondiliOil viol ... III) ~
• P~oxStedc;.oS.Pop ~~OOODEHJ • ~

Link to global ---.... P •• >4I7A.Pop 10000008,"). ~----''::':''''-itllt----- Link to
variables .~~dlnterpret".Calf'r;:~E~SE1HI. F LSE~' source code

Link to global
variables

b BOOlEAN Fr.L.:>E
1='1 ~I=

(a) MacOS

TRAP 2t (pI'HondiUon LJiol.ted)

• PboXStackADS.Pop lOOOO0076HI.
x RE!'J.. 0.0

---..... Pbox06A Pop IOOO00055HI. ---------+_
• Stdlrterpreter CallProc (000003B~Hl

• BOOLEAN
b BOOLEAN

(b) MSWindows

F!'J..SE
FALSE
1='1\10:::"1= .::.J

Link to
source code

Figure 7.5
A trap window for the stack
ADS program .

The first line of the trap window gives a description for the cause of the trap. In
this case the cause is that a precondition was violated, specifically the precondition
with error number 20. The lines with the diamond marks in front of them are the
names of the procedures that are executing when the trap occurs. You can see from
the second line in the trap window that procedure PboxStackADS.Pop was executing
when its precondition was violated. It was called by Pbox07A.Pop, which was in
turn called by Stdlnterpreter.CaIiProc, and so on. If you scroll down the trap window
you can see that the procedures you write are the last of a long line of procedures
that the framework calls before eventually calling yours. Information in the lower
procedures is useful only to the programmers of the BlackBox framework and can
be ignored.

If you ever get a trap window with a precondition violation, it is easy to read the
corresponding documentation. Simply highlight the top procedure name in the trap
window (which is possible even though the trap window is in browser mode) and
select Info-Documentation. If the programmer has supplied a corresponding Docu
file, the framework will open the documentation and you can read the specification.
In Figure 7.5, if you highlight PboxStackADS.Pop and select Info-Documentation
you will see the specification that describes the precondition for procedure Pop.

El I Ua bles I !!!lIB fI I Variables I
f'tJa)o,lJ7t'.

~"""
Pbo>d)7A !i~ele

.d Pbo)(l7 RECORD

7'
.d Pb0>dJ7A AECORO B
........... , ... 1'1..., FlEAL. , ..
v8luePopp@d REAL 0'
nUlflit8"lS INTEGR , 3

t
4:,. .~

Fold mark for collapsed fold / Fold mark for expanded fold /

(a) MacOS

The trap window 123

!!!lIB ..

, '" /..;-

_ CIX -»V.".bl., 1/II~E3
------~-- -~~-

Pbox06A

PboxOS,l. .RECORD

Fold mark for collapsed fold /

(b) MSWindows

Pbox06A

..... sluePushed

.valuePopped

numltems

Pbox06Jl.RECORD
REAL
REAL
I~TEGE~

Fold mark for expanded fold

Each procedure that is executing when the trap occurs has a leading mark. which
links to the global variables of the module, and a trailing mark. which links to the
source code of the executing procedure. When you click on the leading mark a new

..
0.0
0.0
o ..

Figure 7.6
Global variables generated
from the trap window of
Figure 7.5.

124 Chapter 7 Abstract Stacks and Lists

window is activated that shows the values of any global variables. Clicking on the Link to globall'ariables

leading mark of Pbox07A.Pop shown in Figure 7.5 produces the window shown in
Figure 7.6. The global variable in Pbox07A is record d, the interactor for the dialog
box.

Recall that a record is a collection of values, not necessarily of the same type.
Record d has three values-valuePushed of type real, value Popped of type real, and
numltems of type integer. When the window that displays d is activated you cannot
see the three fields that comprise d because they are contained in a collapsed fold. A Folds

fold is a section of text enclosed by fold marks. When the fold is expanded the text is
visible. When it is collapsed the text is invisible. You can expand and collapse the
text between fold marks by clicking on the marks. Figure 7.6 shows the fold marks
for the collapsed fold and the expanded fold which results from clicking on the
mark. You can see by inspecting the values in the expanded fold that the type of
numltems is integer and its value was 0 when the trap occurred.

Before you experiment with the link to the source code in Figure 7.5, you should
insure that the window for the source code of module Pbox07 A is not opened. When
that is the case and you click on the link to the source code in the trap window, Link to source code

BlackBox will open a window with the source code in it. It will highlight the state-
ment that was executing when the trap occurred. Figure 7.7 shows the result of
clicking the link to the source code in Figure 7.5. You can see from the figure that
not only is the window opened, but the text PboxStackADS.Pop(d.valuePopped) is
highlighted. The highlighting shows you that the call to procedure Pop was execut-
ing when the trap occurred.

Dialog Updale(d)
END Push;

PROCEDURE Pop·;
BEGIN

_ [J x

.J

The trap window not only gives you links to global variables and source code, it
also gives you the types and values of formal parameters and local variables. Unlike
global variables and source code, formal parameters and local variables are not
accessed via links, but are provided directly in the trap window. Figure 7.5 shows a
value of 0 for formal parameter x in procedure PboxADS.Pop. Local variables
include a and b in Stdlnterpreter.CaliProc, as well as many others not shown in the
figure. Much of this information is helpful when you encounter errors in your pro
gram. You should develop skill in using the information provided by the trap win
dow to correct your programs.

The stack abstract data type

Previous chapters showed how to program with several types, such as INTEGER and
REAL. Because these types are provided by the Component Pascal language, they

Figure 7.7
Source code window opened
by the link to the source code
in Figure 7.5 .

The stack abstract data type 125

are also known as primitive types. Component Pascal requires that all primitive Primitil'e types
types be indicated by spelling them with all uppercase letters. Most programming
language designers recognize that programmers will frequently need types other
than those provided by the language. Therefore, they provide a facility for program-
mers to define their own types, known as programmer-defined types. The style con- Programmer-defined t'pes

vention for programmer-defined types is to capitalize the first letter.
The dialog box for the stack abstract data structure provided only one stack for

the user to manipulate. The distinguishing feature of an abstract data type in contrast
to an abstract data structure is that a module with an ADT exports a type. Hence, the
importing module can declare several variables of the exported type, and therefore
have several data structures to manipulate. The listing in Figure 7.8 shows the inter
face of a module that provides a stack ADT.

DEFINITION PboxStackADT; Figure 7.8

CONST
capacity = 8;

TYPE
Stack = RECORD END;

PROCEDURE Clear (VAR s: Stack);
PROCEDURE Numltems (IN s: Stack): INTEGER;
PROCEDURE Pop (VAR s: Stack; OUT val: REAL);
PROCEDURE Push (VAR s: Stack; val: REAL);

END PboxStackADT.

The interface of the stack ADT shows the same constant for the capacity of a
stack and the same four procedures-Clear, Numltems, Pop, and Push. However, an
additional item is exported-the type Stack. The interface shows that the type stack
is a record, but it appears to have no fields. If you examine MODULE PboxStackADT,
you will undoubtedly see some fields in the record for the type. However, none of
them are exported. This is yet another example of hidden detail in the concept of
abstraction. The interface hides the details of the implementation of the stack. As a
programmer who wants to use the type Stack, you only need to be concerned with
the behavior of the procedures, and the specifications for using the parameters in the
parameter lists.

If you inspect the documentation of module PboxStackADT you will find that the
description of Stack is

TYPE Stack
The stack abstract data type supplied by PboxStackADT.

Stack is a programmer-defined type supplied by the module for client modules to
use. In the same way that you can declare a real variable in Component Pascal with
the code fragment

The interface of the stack
abstract data type.

126 Chapter 7 Abstract Stacks and Lists

VAR
myReal: REAL;

you can declare a stack variable with the code fragment

VAR
myStack: Stack;

The parameter lists for the stack ADT procedures are identical to those for the
stack ADS except for the addition in each one of a formal parameter of type Stack.
The additional parameter is necessary because a module that uses this ADT may
have more than one stack variable. If you want to push a value onto a stack, you
must give not only the value you want to push but the stack on which you want to
push it. Here are the specifications for Clear and Pop, which describe how formal
parameter s is used by the client module.

PROCEDURE Clear (VAR s: Stack)
Post
Stack s is cleared to the empty stack.

PROCEDURE Pop (VAR s: Stack; OUT val: REAL)
Pre
o < Numltems(s) 20
Post
An item is removed from the top of stack s and val gets its value.

Specifications for the other procedures are similar.
The formal parameters of the stack ADT show four different calling modes that

Component Pascal provides:

• Default Call by value

• IN

• OUT

• VAR

Call by constant reference

Call by result

Call by reference

Parameter val in Push uses the default call by value. Parameter s in Numltems uses
the IN mode known as call by constant reference. Parameter val in Pop uses the OUT
mode known as call by result. And parameter s in ClearStack uses the VAR mode
known as call by reference.

There are some subtle differences between these four modes that later chapters
investigate. For now, you should recognize one important property of these modes:

• In call by value (default) and call by constant reference (IN), the procedure
does not change the value of the actual parameter.

• In call by result (OUT) and call by reference (VAR), the procedure does change
the value of the actual parameter.

You can understand how this property applies to the parameters of the procedures
in the stack ADT. When you call procedure Push, you give a value for val that you
want to be pushed onto the stack. You do lIot want the procedure to change the value

The four callillg modes of
CompollellT Pascal

Changillg I'enus nOl
changing lilt' value ,,(the
acilial parameler.

The stack abstract data type 127

of val. When you call procedure Numltems. you give a stack for which you want the
number of items. You do !lot want the procedure to change the stack. These two
modes are call by value and call by constant reference. in which the actual parameter
does not change.

When you call procedure Pop. you provide a variable to receive the popped
value. You do want the procedure to change the value of the variable you provide.
When you call procedure ClearStack. you provide the stack variable that you want
to be cleared. You do want the procedure to change the stack. These two modes are
call by result and call by reference, in which the actual parameter does change.

Figure 7.9 shows a dialog box that illustrates the facility of multiple data struc
tures with the stack ADT. It lets the user manipulate two stacks labeled Stack A and
Stack B. After the user enters a value in the text box he has the option of pushing the
value onto Stack A or onto Stack B. Similarly. the box has two buttons for the pop
operation-one for popping from Stack A and one for popping from Stack B-and
two displays for the number of items in each of the stacks. The clear button clears
both stacks.

('l' Two Stacks 1!I~13

F'li<hA F'li<hB

PapA PopS

N..,."., Number

;"A: r ;"B: r I C1eOlSlock:

Figure 7.10 shows a program for the dialog box of Figure 7.9. As usual, the box
for user input of a real value corresponds to a real exported field valuePushed in the
interactor d. The real value popped and the integer number of items in stack A and B
arc exported read-only. because the program computes their values.

In contrast to the program that used the stack ADS. this program includes two
global variables in addition to the interactor d. StackA and StackS are both declared
to be of type PboxStackADT.Stack. This is possible only because the interface of
Figure 7.8 shows that Stack is a type exported by module PboxStackADT. Note how
the stacks themselves are contained in module Pbox07S as global variables, while
there is no global stack in module Pbox07A. The procedures in module Pbox07A
manipulate one stack that is contained in PboxStackADS.

Now, what happens when the user wants to push the value 3.5 onto stack A? She
enters 3.5 into the input text box and presses the button labeled Push A. The pro
grammer has linked this button to procedure PushA in module Pbox07S. The first
statement of this procedure is the call

PboxStackADT.Push(stackA, d.valuePushed)

the actual parameter stackA corresponds to formal parameter S, and actual parameter
d.valuePushed corresponds to formal parameter val. So, the value 3.5 is pushed onto
stackA. Remember that val is called by value. This operation does !lot change the
value of d.valuePushed. Also. s is called by reference. This operation does change
stackA. because it now has 3.5 on its top whereas before the call it did not.

Figure 7.9
The dialog box for
manipUlating two stacks.

128 Chapter 7 Abstract Stacks and Lists

MODULE Pbox07B;
IMPORT Dialog, PboxStackADT;

VAR
dO: RECORD

valuePushed', valuePopped-: REAL;
numltemsA-, numltemsB-: INTEGER;

END;
stackA, stackB: PboxStackADT.Stack;

PROCEDURE PushA';
BEGIN

PboxStackADT. Push(stackA. d. value Pushed);
d.numltemsA := PboxStackADT.Numltems(stackA);
Dialog.Update(d)

END PushA;

PROCEDURE PushS';
BEGIN

PboxStackADT.Push(stackB, d.valuePushed);
d.numltemsB := PboxStackADT.Numltems(stackB);
Dialog.Update(d)

END PushB;

PROCEDURE PopA";
BEGIN

PboxStackADT.Pop(stackA, d.valuePopped);
d.numltemsA := PboxStackADT.Numltems(stackA);
Dialog.Update(d)

END PopA;

PROCEDURE PopS";
BEGIN

PboxStackADT.Pop(stackB, d.valuePopped);
d.numltemsB := PboxStackADT.Numltems(stackB);
Dialog.Update(d)

END PopB;

PROCEDURE ClearStacks';
BEGIN

PboxStackADT.Clear(stackA);
PboxStackADT.Clear(stackB);
d.valuePushed := 0.0; d.valuePopped := 0.0;
d.numltemsA := 0; d.numltemsB := 0;
Dialog.Update(d)

END ClearStacks;

BEGIN
ClearStacks

END Pbox07B.

Figure 7.10
A program that uses the stack
abstract data type.

The stack abstract data type 129

The second statement in procedure PushA is

d.numltemsA := PboxStackADT.Numltems(stackA)

The statement calls function Numltems. which returns the number of items in the
stack specified by its parameter. stackA in this case. d.numltemsA gets the value
returned. Function Numltems in module PboxStackADS has no parameters. because
there is only one stack in an abstract data structure. When the programmer requests
the number of items in a stack, it is understood to be the number of items in the one
stack supplied by the ADS. With the abstract data type in module PboxStackADT,
however. the programmer must specify the stack for which the number of elements
is desired.

The last statement in procedure PushA is

Dialog.Update(d)

which, as usual. makes the change to d.numltemsA visible in the dialog box.
Figure 7.11 illustrates the difference between the stack ADS of Pbox07A and the

stack ADT of Pbox07B. With the ADS, there is only one data structure, and it is con
tained in the exporting module. When the importing procedure manipulates a stack
it always manipulates this one data structure. With the ADT, the exporting procedure
exports a type, and the data structures are contained in the importing module. When
the importing module manipulates a stack. it must specify via a parameter which
stack is to be manipulated.

PboxStackADS PboxStackADT

a TYPE
Stack' = ...

Pbox07A Pbox07B

stackA stackB

(a) Abstract data structure (b) Abstract data type

Figure 7.11
The difference between an
abstract data structure and an
abstract data type.

130 Chapter 7 Abstract Stacks and Lists

The list abstract data structure

Like a stack, a list is a data structure that stores values. A list, however, is more flex-
ible than a stack. because when you store an element in a list you are not limited to
storing it at one end of the structure. Furthermore. when you remove an element
from a list, you can remove it from any location as well. To have the capability of
storing and retrieving from any location in a list, you must have a means of specify
ing an arbitrary location in the list. Each element has associated with it an integer
called its position. The position of the first element of a list is 0. Figure 7.12 shows
the container for a list of at most eight elements. The first element is stored at posi
tion 0, and if the list were full the last element would be stored at position 7. The
previous sections described stacks as containers of real numbers. In practice, data
structures can store values of any type. In this and the following sections, the list
data structures will store values of type string.

Figure 7.13 is the interface for the list abstract data structure. As with the stack.

0 trout

tuna

2 cod

3 salmon

4

5

6

7

the list is not part of the standard BlackBox system and must be accessed from the Figure 7.12
Pbox project. The interface contains a constant capacity of eight, which is the maxi- A list that contains a
mum number of elements in the list. Even though this is an ADS as opposed to an maximum of eight strings.

ADT, a type is nevertheless exported. However, type T is not the type of the list. It is
the type of each element in the list. In this interface, type T appears as a type of some
formal parameters.

DEFINITION PboxListADS; Figure 7.13

CONST
capacity = 8;

TYPE
T = ARRAY 16 OF CHAR;

PROCEDURE Clear;
PROCEDURE Display;
PROCEDURE GetElementN (n: INTEGER; OUT val: T);
PROCEDURE InsertAtN (n: INTEGER; IN val: T);
PROCEDURE Length 0: INTEGER;
PROCEDURE RemoveN (n: INTEGER);
PROCEDURE Search (IN srchVal: T; OUT n: INTEGER; OUT fnd: BOOLEAN);

END PboxListADS.

The ADS could have been written without T by writing ARRAY 16 OF CHAR
everywhere T appears in a parameter list. One advantage of using T is that the
parameter lists are shorter because of the abbreviation that T provides. Another,
more important, advantage is for the programmer of the ADS. To change the type of
the elements stored in the list you would need to change only one line of code. For
example, to store a list of reals you would need to change only the line

T = ARRAY 16 OF CHAR;

The interface of the list
abstract data structure.

to

T= REAL;

The documentation for T is

TYPET
The type of each element in the list.

The specification for procedure Clear is

PROCEDURE Clear
Post
The list is initialized to the empty list.

It has no precondition. The post condition is that the list is cleared.

The list abstract data structure 131

Example 7.7 If you execute Clear when the list has the four elements as in Figure
7.12. then all four elements will be removed from the list. I

Procedure Length is a function that returns the length of the list. Its specification
IS

PROCEDURE Length 0: INTEGER
Post
Returns the number of elements in the list.

Example 7.8 If you call LengthO when the list has the elements as in Figure 7.12,
the function will return 4, because there are four elements in the list. I

Procedure InsertAtN inserts an element at position n, shifting the elements below
to make room for the new element. It has two preconditions.

PROCEDURE InsertAtN (n: INTEGER; IN val: T)
Pre
0<= n 20
LengthO < capacity 21
Post
val is inserted at position n in the list, increasing LengthO by 1.
If n > LengthO, val is appended to the list.

The first precondition states that the value you supply for n cannot be negative. This
is a reasonable precondition, because n is the position in the list at which element val
is inserted. Because there are no negative positions, you are not allowed to provide a
negative position. The second precondition states that the length of the list must be
less than its maximum capacity. This is a reasonable precondition, because if the list
is already filled to capacity there will be no room for an additional element.

132 Chapter 7 Abstract Stacks and Lists

Example 7.9 If the list has the elements as in Figure 7.12. and you execute

InsertAtN(2, myString)

where myString has the value "bass", then the list will be changed as in Figure
7.14(a). If instead you execute

InsertAtN(O, myString)

then the list will be changed as in Figure 7.l4(b). And if instead you execute

InsertAtN(7, myString)

a precondition is not violated. Element "bass" is inserted at position 4 at the end of
the list as shown in Figure 7.14(c). I

0 trout 0 bass 0 trout

tuna trout tuna

2 bass 2 tuna 2 cod

3 cod 3 cod 3 salmon

4 salmon 4 salmon 4 bass

5 5 5

6 6 6

7 7 7

(a) After inserting (b) After inserting (c) After inserting
at position 2. at position O. at position 7.

Procedure RemoveN removes the element from position n, shifting the elements
below to take up the room vacated by the removed element. Here is its specification.

PROCEDURE RemoveN (n: INTEGER)
Pre
0<= n 20
Post
If n < LengthO, the element at position n in the list is removed.
Otherwise, the list is unchanged.

The precondition does not allow you to supply a negative value for position n.

Example 7.10 If the list has the elements as in Figure 7.12, and you execute

RemoveN(2)

Figure 7.14
The list of Figure 7.12 after
executing the statements of
Example 7.9.

The list abstract data structure 133

then the list will be changed as in Figure 7.15(a). If instead you execute

RemoveN(O)

then the list will be changed as in Figure 7 .15(b). And if instead you execute

RemoveN(7)

a precondition is not violated. The list simply remains unchanged as shown in Fig
ure 7.15(c). I

0 trout

tuna

2 salmon

3

4

5

6

7

(a) After removing
from position 2.

0 tuna

cod

2 salmon

3

4

5

6

7

(b) Afterremoving
from position O.

0 trout

tuna

2 cod

3 salmon

4

5

6

7

(c) After removing
from position 7.

Procedures InsertAtN and RemoveN alter the content of the list. The list ADS pro
vides two procedures that allow you to query the list without altering its content.
With procedure GetElementN, you supply a position n, and it gives you the element
at that position. Procedure Search does the reverse. You give it an element, and it
returns the position of that element in the list. It includes a boolean parameter Ind,
which is set to FALSE if the element is not found in the list. In that case, the value
returned for n is not defined. Here are the specifications of GetElementN and
Search.

PROCEDURE GetElementN (n: INTEGER; OUT val: T)
Pre
0<= n 20
n < LengthO 21
Post
val gets the data value 01 the element at position n of the list.
Note: 0 is the position of the first element in the list.

PROCEDURE Search (IN srchVal: T; OUT n: INTEGER; OUT fnd: BOOLEAN)
Post

Figure 7.15
The list of Figure 7.12 after
executing the statements of
Example 7.10.

If srchVal is in the list, fnd is set to TRUE and n is set to the first position where srchVal is found.
Otherwise, fnd is set to FALSE and n is undefined.

134 Chapter 7 Abstract Stacks and Lists

Example 7.11 If the list has the elements as in Figure 7.12. and you execute

GetElementN(2, myString)

then myString will get the value "cod". Execution of

GetElementN(4, myString)

violates a precondition and generates a trap. I

Example 7.12 If the list has the elements as in Figure 7.12. myString has value
"cod", position is an integer variable, found is a boolean variable, and you execute

Search(myString. position. found)

then found will get TRUE and position will get the value 2. If you execute the same
statement when myString has value "catfish", found will get FALSE and position will
get some undefined value. Note that the position of the last element, "salmon", is 3,
not 4. because the position of the first element, "trout", is 0, not I. I

The specification of procedure Display is

PROCEDURE Display
Post
The list is output to the Log, one element per line with each element preceded by its position.

Display has no preconditions.

Example 7.13 If the list has the elements as in Figure 7.12. and you execute pro
cedure Display, the following text will be printed on the Log.

o trout
1 tuna
2 cod
3 salmon I

Figure 7.16 shows a dialog box that allows the user to manipulate a list of strings.
The state of the dialog box corresponds to a list that contains four elements as in
Figure 7.12. The user has previously entered the elements by pressing the Insert but
ton. She queried the list by asking for the location of element "salmon", which the
dialog box gives as position 3, and for the retrieval of the element at position I,
which the dialog box gives as "tuna". With each insert and deletion of an element
the current number of items is displayed.

The listing in Figure 7.17 is a program that implements the dialog box in Figure
7.16. It is a straightforward mapping from input and output values of the dialog box
to variables in the d interactor, and from the buttons of the dialog box to exported
procedures in the module.

Insert II '-___ --'18t position ~

:~ from Dosition ~

i:J!iii1hJ IS81mon I Location: At position 3

, Retrieve I E:=J String: tuna

Number of items: 4

,JiiSiii3ijJ Clear

MODULE Pbox07C;
IMPORT Dialog, PboxListADS, PboxStrings;

TYPE
String32 = ARRAY 32 OF CHAR;

VAR
dO: RECORD

insertT*: PboxListADS.T; insertPosition*: INTEGER;
removePosition*: INTEGER;
searchT*: PboxListADS.T; searchPosition-: String32;
retrievePosition*: INTEGER; retrieveT-: PboxListADS.T;
numltems-: INTEGER;

END;

PROCEDURE InsertAt*;
BEGIN

PboxListADS.lnsertAtN(d.insertPosition, d.insertT);
d.numltems := PboxListADS.LengthO;
Dialog.Update(d)

END InsertAt;

PROCEDURE RemoveFrom*;
BEGIN

PboxListADS.RemoveN(d.removePosition);
d.numltems := PboxListADS.LengthO;
Dialog.Update(d)

END RemoveFrom;

The list abstract data structure 135

Figure 7.16
The dialog box for
manipulating a list.

Figure 7.17
A program that uses the list
abstract data structure to
implement the dialog box of
Figure 7.16.

136 Chapter 7 Abstract Stacks and Lists

PROCEDURE SearchFor*;
VAR

found: BOOLEAN;
position: INTEGER;

BEGIN
PboxListADS.Search(d.searchT, position, found);
IF found THEN

PboxStrings.lntToString(position, 1, d.searchPosition);
d.searchPosition := "At position" + d.searchPosition + "."

ELSE
d.searchPosition := "Not in list."

END;
Dialog.Update(d)

END Search For;

PROCEDURE RetrieveFrom*;
BEGIN

PboxListADS.GetElementN(d.retrievePosition, d.retrieveT);
Dialog.Update(d)

END RetrieveFrom;

PROCEDURE DisplayList*;
BEGIN

PboxListADS. Display;
Dialog. Update(d)

END DisplayList;

PROCEDURE ClearList*;
BEGIN

PboxListADS.Clear;
d.insertT := nn; d.insertPosition := 0;
d.removePosition := 0;
d.searchT := "n; d.searchPosition := nn;
d.retrievePosition := 0; d.retrieveT := "";
d.numltems := PboxListADS.LengthO;
Dialog.Update(d)

END ClearList;

BEGIN
ClearList

END Pbox07C.

As an example of the mapping, consider the first line of the dialog box that
allows the user to insert an element into the list. The user must enter a string into the
first box and an integer representing the location of where to insert the string into the
second box. These two values require two fields in the d interactor, both exported
read-write because the user enters the values. The corresponding fields in the d inter
actor are

insertT*: PboxListADS.T; insertPosition*: INTEGER

Figure 7.17
Continued.

The list abstract data strucillre 137

Thl: type of insertT is PboxListADS.T, which we know from the interface in Figure
7.13 is the same as ARRAY 16 OF CHAR. This type permits the user to enter a string
of up to IS characters. The button labeled Insert is obviously linked to the procedure
named InsertAt.

How does this procedure work') Suppose that the list has the elements as in Fig
ure 7. 12 and the user has entered bass in the first box and 2 in the second box. These
actions give the value "bass" to d.insertT and 2 to d.insertPosition. When the user
clicks the button labeled Insert, procedure InsertAt executes because that is the pro
cedure to which the button is linked.

The first statement of procedure InsertAt is

PboxListADS.1 nsertA tN (d. inse rtPosition, d. insertT)

Actual parameter d.insertPosition corresponds to formal parameter n in the interface
of Figure 7.13, and actual parameter d.insertT corresponds to formal parameter val.
The procedure inserts "bass" before the element at position 2, as shown in Figure
7.l4(a).

Because of this change in the list, the number of elements needs to be updated.
The second statement of procedure InsertAt is

d.numltems := PboxListADS.LengthO

which changes the value of d.numltems to 5 to reflect the new length of the list. This
new value does not become visible to the user until the third statement of procedure
InsertAt

Dialog.Update(d)

executes.
As another example, consider execution of procedure Search For. Suppose the

user enters "salmon" in the input field adjacent to the button labeled Search as in
Figure 7.16. When she presses the button, procedure Search For executes. Its first
statement

PboxListADS.Search(d.searchT, position, found)

is a call to procedure Search in module PboxListADS with actual parameters
d.searchT, position, and found. Before the procedure call, d.searchT has the value
"salmon", and position and found are local variables that have undefined values.
During execution, procedure Search gives found the value TRUE and position the
value 3, because it found the string "salmon" at position 3 of the list. The next state
ment in procedure Search For is the IF statement

IF found THEN
PboxStrings.lntToString(position, 1, d.searchPosition);
d.searchPosition := "At position" + d.searchPosition + "."

ELSE
d.searchPosition := "Not in list."

END

138 Chapter 7 Abstract Stacks and Lists

Its purpose is to set the value of d.searchPosition. whose type is String32.
The programmer defined the type String32 earlier in the listing

TYPE
String32 = ARRAY 32 OF CHAR;

to be an array of 32 characters. String32 is a Component Pascal identifier chosen by
the programmer. The module would have worked just as well had the programmer
not defined the String32 type and declared d.searchPosition directly as

searchT*: PboxListADS.T; searchPosition-: ARRAY 32 OF CHAR

Although there is no advantage in this program to declare the String32 type. in cer
tain situations when arrays of characters are assigned to each other or compared to
each other it is necessary to do so. This book generally follows the practice of defin
ing such types from now on.

Because found has value TRUE. the THEN part of the IF statement executes and
the ELSE part is skipped. The two statements in the THEN part

PboxStrings.lntToString(position. 1. d.searchPosition);
d.searchPosition := ··At position" + d.searchPosition +

convert the integer value 3 to the string value "3", storing the string value in
d.searchPosition, then convert the string value "3" to the string value ·'At position
3 which gets stored in d.searchPosition. Finally. the last statement of SearchFor

Dialog.Update(d)

makes the value of d.searchPosition visible in the dialog box.
The workings of the other buttons are similar. You can view the dialog box as the

specification of the program. The way to specify what a program should do is to
sketch the dialog box first. You then set up the input and output values in the box to
correspond to fields of the interactor d. and the buttons of the dialog box to corre
spond to exported procedures. In the program of Figure 7.17. there is a close correla
tion between the task that must be accomplished by a button and the services
provided by the server module PboxListADS. The program consists of simply link
ing the controls of the dialog box correctly and calling the appropriate exported pro
cedure.

The list abstract data type

The listing of Figure 7.18 is the interface for the list abstract data type. You have
surely surmised by now that the difference between a list ADS and a list ADT is that
the list ADT exports the list type. which permits the importing module to declare
more than one list data structure.

Defining character array
types

The list abstract data type 139

DEFINITION PboxListADT;

CONST
capacity = 8;

TYPE
List = RECORD END;
T = ARRAY 16 OF CHAR;

PROCEDURE Clear (VAR 1st: List);
PROCEDURE Display (IN 1st: List);
PROCEDURE GetElementN (IN 1st: List; n: INTEGER; OUT val: T);
PROCEDURE InsertAtN (VAR 1st: List; n: INTEGER; IN val: T);
PROCEDURE Length (IN 1st: List): INTEGER;
PROCEDURE RemoveN (VAR 1st: List; n: INTEGER);

Figure 7.18
The interface of the list
abstract data type.

PROCEDURE Search (VAR 1st: List; IN srchVal: T; OUT n: INTEGER; OUT Ind: BOOLEAN);

END PboxListADT.

Comparing Figure 7.18 with Figure 7.13, the list ADT exports the additional type

List = RECORD END

that is not exported by the list ADS. This is the type of the list itself. You can tell
from the interface that a list is a record, that is, a collection of values which do not
necessarily have identical types. However, the fields of the exported record are not
shown in the interface. They are hidden in the black box of the implementation-yet
another example of the pervasive concept of abstraction. At this stage of our under
standing, we do not need to know how the list is implemented. We only need to
know how to use the procedures.

Apart from the type of the list that is exported, every other item in the list ADT of
Figure 7.18 is identical in name and purpose to the corresponding item in the list
ADS. The only difference in the parameter lists of the procedures in the ADT is the
addition of a formal parameter to specify on which list the operation is to be per
formed. For example, the specification of procedure InsertAtN for the list ADS is

PROCEDURE InsertAtN (n: INTEGER; IN val: T)
Pre
0<= n 20
Length() < capacity 21
Post
val is inserted at position n in the list, increasing Length() by 1.
II n > Length(), val is appended to the list.

while the specification of procedure InsertAtN for the list ADT is

140 Chapter 7 Abstract Stacks and Lists

PROCEDURE InsertAtN (VAR 1st: List; n: INTEGER; IN val: T);
Pre
0<= n 20
Length(lst) < capacity 21
Post
val is inserted at position n in list 1st, increasing Length(lst) by 1.
If n > Length(lst), val is appended to 1st.

You can see that the precoditions and postconditions are identical, except that the
postcondition for the list ADS says that val is inserted in the list. whereas the post

condition for the list ADT says that val is inserted in list 1st. The pre- and postcondi

tions for the other procedures of the list ADT are similar in the same way to those of

the list ADS.

I Insert R II Insert BILl h_"I_ib_u_t __ ..JI at position I::=J
[Remove R I I Remoue 0 J from Dosition LJ
I Search R I I Search 9 I I I location:

I Retrieue R I I Retrieue 81 ~ String:

Number of items in R: 2 Number of items in 8: 3

I Display H I I Oisploy 8 I Clear

Figure 7.19 shows a dialog box that allows the user to manipulate two lists. The
listing in Figure 7.20 is an implementation of the dialog box based on the list ADT.

MODULE Pbox07D;
IMPORT Dialog, PboxListADT, PboxStrings;

TYPE
String32 = ARRAY 32 OF CHAR;

VAR
dO: RECORD

insertI': PboxListADT.T; insertPosition': INTEGER;
removePosition*: INTEGER;
searchI': PboxListADT.T; searchPosition-: String32;
retrievePosition*: INTEGER; retrieveT-: PboxListADT.T;
numltemsA-, numltemsS-: INTEGER;

END;
listA, listS: PboxListADT.List;

Figure 7.19
The dialog box for
manipulating two lists.

Figure 7.20
A program that uses the list
abstract data type

PROCEDURE InsertAtA*;
BEGIN

PboxListADTlnsertAtN(listA, d.insertPosition, d.insertT);
d.numltemsA := PboxListADTLength(listA);
Dialog. Update(d)

END InsertAtA;

PROCEDURE InsertAtS*;
BEGIN

PboxListADTlnsertAtN(listB, d.insertPosition, d.insertT);
d.numltemsB := PboxListADTLength(listB);
Dialog. Update(d)

END InsertAtB;

PROCEDURE RemoveFromA*;
BEGIN

PboxListADTRemoveN(listA, d.removePosition);
d.numltemsA := PboxListADTLength(listA);
Dialog.Update(d)

END RemoveFromA;

PROCEDURE RemoveFromS*;
BEGIN

PboxListADTRemoveN(listB, d.removePosition);
d.numltemsB := PboxListADTLength(listB);
Dialog.Update(d)

END RemoveFromB;

PROCEDURE SearchForA*;
VAR

found: BOOLEAN;
position: INTEGER;

BEGIN
PboxListADTSearch(listA, d.searchT, position, found);
IF found THEN

PboxStrings.lntToString(position, 1, d.searchPosition);
d.searchPosition := "At position" + d.searchPosition + "."

ELSE
d.searchPosition := "Not in list."

END;
Dialog.Update(d)

END Search ForA;

The list abstract data type 141

Figure 7.20
Continued.

142 Chapter 7 Abstract Stacks and Lists

PROCEDURE SearchForB*;
VAR

found: BOOLEAN;
position: INTEGER;

BEGIN
PboxListADT.Search(listB, d.searchT, position, found);
IF found THEN

PboxStrings.lntToString(position, 1, d.searchPosition);
d.searchPosition := "At position" + d.searchPosition + "."

ELSE
d.searchPosition := "Not in list."

END;
Dialog.Update(d)

END SearchForB;

PROCEDURE RetrieveFromA*;
BEGIN

PboxListADT.GetElementN(listA, d.retrievePosition, d.retrieveT);
Dialog.Update(d)

END RetrieveFromA;

PROCEDURE RetrieveFromB*;
BEGIN

PboxListADT.GetElementN(listB, d.retrievePosition, d.retrieveT);
Dialog.Update(d)

END RetrieveFromB;

PROCEDURE DisplayListA';
BEGIN

PboxListADT. Display(listA);
END DisplayListA;

PROCEDURE DisplayListB';
BEGIN

PboxListADT.Display(listB);
END DisplayListB;

PROCEDURE ClearLists';
BEGIN

PboxListADT.Clear(listA); PboxListADT.Clear(listB);
d.insertT := ""; d.insertPosition := 0;
d.removePosition := 0;
d.searchT := ""; d.searchPosition := "";
d.retrievePosition := 0; d.retrieveT := "";
d.numltemsA := 0; d.numltemsB := 0;
Dialog.Update(d)

END ClearLists;

BEGIN
ClearLists

END Pbox07D.

Figure 7.20
Continued.

The structure of the module is characteristic of those that import a type. There are
two global variables, IistA and listS, that correspond to the two lists that are manipu
lated by the user. They are declared as

IistA, listS: PboxListADTList;

That is, each list has the type that is exported by module PboxListADT When the
user clicks the button labeled Insert A. procedure InsertAtA executes. Its first state
ment is

PboxListADTlnsertAtN(listA, d.insertPosition, d.insertT)

The first actual parameter listA corresponds to the first formal parameter 1st. This is
how the calling procedure tells the called procedure on which list the operation is to
be performed.

Queues

Queues 143

A queue is also called a first in, first out (FIFO) list. It is similar to a stack in that it The FIFO pmperty afa queue

stores values in a list in the order it receives them, but different in that data is
retrieved from the opposite end of the list. The two operation on a queue are enqueue
and dequeue, which correspond to push and pop for a stack.

You can visualize a queue as a line of people at a ticket window. When another
person comes to buy a ticket, she goes to the back of the line, corresponding to the
enqueue operation. When the clerk at the window can serve another person he helps
the person from the front of the line, corresponding to the dequeue operation. The
first person to enter the queue is the first one to be served.

I 5.0 I I 5.0 I 2.0 I

(a) BEGIN (b) Enqueue(S.O) (e) Enqueue(2.0)

5.0 2.0 4.0 I 2.0 I 4.0 I 4.0 I

(d) Enqueue(4.0) (e) Dequeue(d.x) (0 Dequeue(d.x)

I 4.0 I 7.0 I I 7.0 I
(g) Enqueue(7.0) (h) Dequeue(d.x) (i) Dequeue(d.x)

Figure 7.21
A sequence of operations on a
queue.

144 Chapter 7 Abstract Stacks and Lists

Figure 7.21 shows a sequence of operations on a queue in abstract form. It corre
sponds to the sequence in Figure 7.1 for a stack. but Push is replaced by Enqueue
and Pop is replaced by Dequeue. In the figure. values 5.0, 2.0, and 4.0 are added to
the queue. The first delete operation gives the value of 5.0 to val. Contrast this with
the first pop operation in Figure 7.1. which gives 4.0 to val. In Figure 7.21. because
5.0 was the first value in, it is the first value out.

The Pbox project does not provide a queue for you to manipulate. However, you
can simulate the behavior of a queue with the list ADS or ADT provided by Pbox.
The implementations of the queue ADS and ADT are problems at the end of this
chapter.

Design by contract

Most of the programming problems in the early part of this book require you to
write client modules. Later problems near the end require you to write server mod
ules as well. Sometimes in a commercial software development environment, the
same programmer writes the client module and the server module. However, for
large projects, it is more common for one person to program the server modules that
are imported by a different client programmer. In that situation, the interface
becomes a contract between the two programmers. The interface specifies the name
of the procedures and the number and types of their parameters. The documentation,
which always includes the interface, also states any preconditions that must be satis
fied if the procedure is to execute correctly. As with all written contracts, the specifi
cation of the precondition is in the form of a guarantee. The programmer of the
server module is making a guarantee that if the programmer of the client ensures that
the precondition is not violated then the procedure will execute correctly.

A common use of the IF statement is to prevent a trap from ever occurring in a
user's program. Such programs are sometimes called bulletproof You have probably Rulletpmo(progmllls

experienced commercial programs that are not bulletproof. The fortunate user gets a
dialog box with a message like, "Your application program has terminated because
an error of type -781 has occurred." or something else equally meaningless. The
unfortunate user must restart the computer. Programmers of client modules make
their programs bulletproof by reading the contract suppled by the interface and
using the IF statement to ensure that their programs never violate the contract. Prob-
lem 27 requires you to make the program of Figure 7.4 bulletproof using IF state-
ments in the client module. Such a program will prevent the user from ever
experiencing the trap window of Figure 7.5.

Chapter 17 shows how the ASSERT procedure implements the precondition in
the server module by bringing up the trap window when the precondition is violated.
Later in this book. you will learn how to program server modules that are imported
by client modules. When you work those problems, you will also be writing the cli
ent modules that import the server modules. You may be tempted to simplify your
programming by putting IF statements that make the program bulletproof in your
server module. That is a bad habit. You should always keep in mind that in a com
mercial software development environment. the programmer of the server is usually
not the same person as the programmer of the client.

It is the job of the programmer of the server to establish the contract in the inter
face with preconditions for the procedures. She implements the preconditions with
the ASSERT procedure. It is the job of the programmer of the client to make the
application program bulletproof. He makes it bulletproof with the IF statement. This
software practice is summarized by the design-by-contract rule, which states

• IF in the client.

• ASSERT in the server.

It may seem unnecessarily complicated for you to do in two places what you could
more easily do in one place. But, because the programmer of the server is usually
not the same person as the programmer of the client, you should get into the habit of
writing your modules according to the design-by-contract rule.

* Formal specifications

The preconditions and postconditions for procedures in BlackBox documentation

Design hy contract 145

The design-hy~col/tr(lct rllft!

correspond to the preconditions and postconditions for the Hoare triple of formal The Houre triple

methods. Formally, the three parts of a Hoare triple are:

• the precondition. P

• the statement, 5

• the postcondition, Q

which is usually written {P}5 {Q} in formal methods notation. The precondition
and postcondition are conditions that can be either true or false. The interpretation of
Hoare triple {P} 5 { Q} is, "If P is true and you execute 5, then Q is guaranteed to
be true." The statement 5 can represent a single programming statement or, more
generally, a sequence of statements. In this chapter, 5 represents the sequence of
programming statements in the implementation of the procedure. Because the inter-
face hides the implementation. you cannot see S from any of the program listings in
this chapter.

Sometimes the sequence of statements that S represents is supposed to change
some value, or set of values. or data structure. To indicate what is to be changed. S is
written as if it were a single assignment statement, even though it still represents a
set of statements in general. The left side of the assignment is a variable or set of
variables to be changed and the right side of the assignment is a question mark. The
question mark signifies that the formal specification docs not state how the values of
the variables are to be changed. It only states which variables are to be changed.

Example 7.14 The documentation of RemoveN for the list ADT

PROCEDURE RemoveN (VAR 1st: List; n: INTEGER)
Pre
0<= n 20
Post
If n < Length(lst). the element at pOSition n in list 1st is removed.
Otherwise. the list is unchanged.

The interpretatioll ora Hoore

triple

146 Chapter 7 Abstract Stacks and Lists

is written fonnally as

{O :s n /I. Length(lst) = L}

1st := ?

{(n < L = Element at n is removed /I. Length(lst) = L - I) /I. (n 2: L = 1st is unchanged)}

The letter L, called a rigid variable, is used to save the initial value of the function Rigid !'Uriab/e.!·

Length(lst) in the Hoare triple. If n is less than the initial length of the list, what-
ever the length is before execution of the procedure, and the preconditions are satis-
fied, then after execution the length of the list will be its initial value minus one. S is
the expression 1st := ? , which indicates that 1st is the data structure to be changed .•

If the documentation has no precondition, then the formal precondition is the The weakest possible
weakest possible precondition, namely true. precondition is true.

Example 7.15 The documentation of Length for the list ADT

PROCEDURE Length (IN 1st List): INTEGER
Post
Returns the number of elements in list 1st.

is written fonnally as

{true}S {Length(lst) = The length of 1st} •
In the previous examples of the Hoare triple, the symbol S stands for the state

ments in the implementation of the procedure. The abstraction of the interface hides
the details of the statements from the client program. A Hoare triple {P} S { Q} con
sisting of a given precondition P and postcondition Q, but an unknown S, is called a
formal specification. The software designer who writes the procedure treats the for- Formal specifications

mal specification as a contract. She assumes that the client program will insure that
the precondition is true, then writes the statements that will make the postcondition
true after the procedure executes.

Another use of the Hoare triple is to define the assignment statement. When used
this way, S is not hidden as it is in a fonnal specification, but is the assignment state
ment. Fonnally, the assignment statement is defined in tenns of the Hoare triple and
textual substitution, which also uses the := symbol. If E is an expression and R is a
postcondition, then the assignment statement x := E is defined as the Hoare triple

{R[x:= E]}x:= E{R} Forma/ definition of
assignmellt

where the := symbol in the precondition signifies textual substitution. Textual substi
tution of E for x in the postcondition produces the weakest precondition for the
Hoare triple.

Example 7.16 The definition of x:= x + 2 for the postcondition x> 0 IS the
Hoare triple

{x + 2 > O} x := x + 2 {x> O}

You can see that this Hoare triple is valid because if x + 2 > 0 is true before the
assignment statement executes, that is, if x> -2, then the postcondition x> 0 is
guaranteed to be true afterwards. Of course, many other Hoare triples have this same
property. For example, the Hoare triple

{x - I > O} x := x + 2 {x> O}

is also valid, because if x - I > 0 is true before execution then the postcondition
x> 0 is guaranteed to be true afterwards. Even though the second Hoare triple is
valid, it is not useful in defining the assignment statement. The precondition of the
first Hoare triple x + 2 > 0 is weaker than that of the second x - I > 0 because it
puts less of an initial restriction on x. It only requires that x be greater than -2, while
the other precondition requires that x be greater than I. I

Exercises

1. Evaluate the following postfix expressions.

(a) 2 5 I 3 + - x

(e) 2 5 + I - 3 x

(b) 2 5 + 3 - x

(d) I I I - -

2. Convert the following infix expressions to postfix.

(a) a + b - c x d (b) x x (z - y) I w

(e) F - G x (H + / x J) (d) p x (q x (r + sit) + u) + v

3. Trace the execution of the algorithm for converting the following infix expression to
postfix. Show the contents of the stack at each step of the conversion as in Example
7.6.

(a) 5 + 2 - 6 x 4 (b) 2 x (3 + 4 x 5 + 6)

4. Inspect the documentation of module TextModels and answer the following questions
about procedure Delete.

(a) What does procedure Delete do"
(b) How many preconditions does it have?
(e) What is the first precondition?
(d) How many postconditions does it have')

5. What two things does the word OUT signify when it is placed before a fonnal parame
ter?

6. Identify whether each of the following parameter passing indicators is call by value.

call by result, call by reference, or call by constant reference.

(a) IN (b) OUT (e) default (d) VAR

Exercises 147

148 Chapter 7 Abstract Stacks and Lists

7. Complete the following statements by choosing the correct option in parentheses.

(a) In call by value the procedure (does I does not) change the value of the actual
parameter.
(b) In call by result the procedure (does I does not) change the value of the actual
parameter.
(e) In call by reference the procedure (does I does not) change the value of the actual
parameter.
(d) In call by constant reference the procedure (does I does not) change the value of
the actual parameter.

8. Suppose PboxStackADS were written as a stack of strings instead of a stack of reals.
Use the style of the interface in Figure 7.13 to write the interface for such a stack.

9. Suppose PboxStackADT were written as a stack of strings instead of a stack of reats.
Use the style of the interface in Figure 7.18 to write the interface for such a stack.

10. What is the design-by-contract rule"

11. (a) What is the interpretation of the Hoare triple {P}S{Q}? (b) What is a formal
specification?

12. Write the formal specification for (a) PboxListADTClear. (b) PboxStackADT.Pop. For
part (b) you will need to use two rigid variables. one to save the initial value of the
number of elements in the stack and one to save the initial value of the top of the stack.
You may use TopO!(s) in the precondition to indicate the value of the top of stack s.
Note that PboxStackADTPop changes both s and val.

13. What is the weakest precondition for the assignment statement x := x - 5 whose post
condition is .x < 20 .,

Problems

14. Construct a four-function reverse polish notation (RPN) real calculator as shown in the
dialog box of Figure 7.22, The calculator has an internal stack and uses postfix notation
to evaluate the result. When the user presses the Enter button push the value onto the
stack and display the value in the field labeled Top. The button labeled "-" pops one
item off the stack into a temporary variable, then pops a second item off the stack into
another temporary variable. It subtracts the first from the second (notice the order).
pushes the difference onto the stack, and displays it in the field labeled Top. For exam
ple, to evaluate the postfix expression :2 3 4 + x you would perform the sequence:
type 1. press Enter. type 3, press Enter, type 4, press Enter, press +. press *. The figure
shows the dialog box just before pressing * in the above sequence. Use the abstract
data structure PboxStackADS.

15. Do Problem 14. but use the abstract data type from PboxStackADT

16. Expand your program of Problem 14 to make it a full-featured scientific calculator.
Include the trigonometric functions sine. cosine. tangent and their inverses. and the nat
ural logarithm and its inverse. Include a button for the user to enter ;r and compute the

o ~ (Calculator J _13

0.0 80

~ (::J 0
Top: 7 ()

Figure 7.22
The four-function RPN
calculator for Problem 14.

square and the square root. Get the value of lr from the Math module. Use the abstract
data structure PboxStackADS.

17. Do Problem 16, but use the abstract data type from PboxStackADT.

18. The abstract list is more general than the abstract stack, because you can insert and
remove from any location instead of only from the top. In PboxListADS, if you call pro
cedure InsertAtN and give n the value 0 then the item will always be prepended to the
front of the list. Furthermore, if you call procedure RemoveN and give n the value O.
then the item will always be removed from the front of the list. Write a program that
implements a dialog box that looks and behaves exactly like Figure 7.3. but import
PboxListADS instead of PboxStackADS. To pop a value with the procedures of Pbox
ListADS you will need to get the value with procedure GetElementN before you remove
it with RemoveN.

19. The abstract list is more general than the abstract stack, because you can insert and
remove from any location instead of only from the top. In PboxListADT, if you call pro
cedure InsertAtN and give the n the value 0 then the item will always be prepended to
the front of the list. Furthermore, if you call procedure RemoveN and give n the value
0, then the item will always be removed from the front of the list. Write a program that
implements a dialog box that looks and behaves exactly like Figure 7.9, but import
PboxListADT instead of PboxStackADT. To pop a value with the procedures of Pbox
ListADT you will need to get the value with procedure GetElementN before you remove

it with RemoveN.

20_ Implement a dialog box that looks and behaves like Figure 7.9, but with one additional
button labeled "A to B". When the user presses this button an item should be popped
off of Stack A and pushed onto Stack B. The text fields for Push and Pop should not
change. Only the fields for the number of items in Stacks A and B should change. Use
a temporary variable called temp in your procedure AToB to store the value between the
pop and push operations.

21. Implement a dialog box that looks and behaves like Figure 7.3, but with one additional
button labeled "Swap Top". If the stack contains two or more items when the user
presses this hutton, the top two items on the stack should he exchanged. Otherwise, the
stack should remain unchanged. The text fields for Push and Pop should not change,
nor should the field for the number of items change. Use two temporary variables
called temp1 and temp2 in your procedure Swap Top to store the two values between
the pop and push operations. Import module PboxStackADS.

22. Work Problem 21, bur import module PboxStackADT.

23. Implement a dialog hox that looks and hehaves like Figure 7.16. but with one addi
tional button labeled "Front to Back". If the list contains two or more items when the
user presses this button, the item at the front of the list should be moved to the back of
the list. Otherwise, the list should remain unchanged. All the text fields for the dialog
box should not change, nor should the field for the number of items change. Use a tem
porary variable called temp in your procedure FrontToBack to store the front values
between the remove and insert operations. Import module PboxListADS.

2·t, Work Problem 23, but import module PboxListADT.

Problems 149

150 Chapter 7 Abstract Stacks and Lists

25. In PboxListADS, if you call procedure insertAtN and give the n the value PboxList
ADS.capacity then the item will always be appended to the rear of the list. Furthermore,
if you call procedure RemoveN and give n the value 0, then the item will always be
removed from the front of the list. Write a program that implements a dialog box that
looks exactly like Figure 7.3, but with the Push button relabeled Enqueue, the Pop but
ton relabeled Dequeue, the Clear Stack button relabeled Clear Queue, and the window
title relabeled One Queue. The buttons must implement the FIFO policy as shown in
Figure 7.21. The type of the values stored should be PboxListADS.T instead of REAL.

26. In PboxListADT, if you call procedure insertAtN and give the n the value PboxList
ADS.capacity then the item will always be appended to the rear of the list. Furthermore,
if you call procedure RemoveN and give n the value 0, then the item will always be
removed from the front of the list. Write a program that implements a dialog box that
looks exactly like Figure 7.9, but with the Push buttons relabeled Enqueue, the Pop
buttons relabeled Dequeue, the Clear Stacks button relabeled Clear Queues, and the
window title relabeled Two Queues. The buttons must implement the FIFO policy as
shown in Figure 7.21. The type of the values stored should be PboxListADT. T instead of
REAL.

27. Inspect the preconditions of all the procedures that are called in module Pbox07A of
Figure 7.4 for the stack ADS and modify the module to insure that a trap can never
occur. If the user enters a value in a dialog box that would violate a precondition when
a button is pressed, the program should simply do nothing to the stack or the dialog
box.

28. Do Problem 27 but with module Pbox078 in Figure 7.10 for the stack ADT.

29. Do Problem 27 but with module Pbox07C in Figure 7.17 for the list ADS.

30. Do Problem 27 but with module Pbox07D in Figure 7.20 for the list ADT.

.., ChapterS
1iI~

Nested Selections

Nested boxes consist of an outer large box, inside which there is another box, inside
which there is another box, and so on to the innermost box. Figure 3.1 is a set of
nested boxes that illustrates how procedures are nested in modules, and data is
nested in procedures and modules. Nesting is closely related to the concept of The conce['1 or !1eslillg

abstraction. If the outer large box has a lid, it hides the details of the remaining
boxes that are within it. And hiding detail is the essence of abstraction.

Nested IF statements

Figure 6.11 shows that an IF statement selects one of two alternative statement
sequences, depending on the value of a boolean expression. Component Pascal
allows either of those alternative statements to contain another IF statement. An IF
statement contained in one of the alternatives of another IF statement is called a
nested IF statement.

Figure 8.1 shows the dialog box for a program that inputs a salary and calculates
an income tax from it. There is no tax at all if the salary is less than or equal to
$10,000. Otherwise, the tax is 20% on the salary between $10,000 and $30,000 and
30% on the salary that is in excess of $30,000. You can see from the figure that a sin
gle IF statement is not sufficient to compute the tax, because there are three possible
outcomes and the single IF statement shown in Figure 6.11 has only two alternatives.

o ~ [Income To") '-", .• ~ 8

Salory 150000.00

II Compute TaM

Vour t(lX is'S 10000.00

=

o '",,-~,;[Income T081'~ 8

Salary 120000,00

I Compute TOH

Your tax is $200000

O~[IncomeT8HJ~8

Salary 10900.00

II Compute TaM

No telX

The program in Figure 8.2 implements the dialog box with a nested IF statement.
After the user enters that value for d.salary and clicks the compute button, the outer
IF statement in procedure IncomeTax executes. If its boolean expression,

d.salary > minTaxable

is false, which it will be if the value of d.salary is less than or equal to 10,000.00, the

Figure 8.1
A dialog box that requires
more than two alternative
computations.

152 Chapter 8 Nested Selections

statement sequence containing the nested IF statement is skipped, and the message
string is set to the "no tax" message.

MODULE Pbox08A;
IMPORT Dialog, PboxStrings;
VAR

dO: RECORD
salary': REAL;
message-: ARRAY 64 OF CHAR

END;

PROCEDURE IncomeTax*;
CONST

lowRate = 0.20;
high Rate = 0.30;
minTaxable = 10000.00;
maxTaxable = 30000.00;

VAR
tax: REAL;
taxString: ARRAY 32 OF CHAR;

BEGIN
IF d.salary > minTaxable THEN

IF d.salary <= maxTaxable THEN
tax := (d.salary - minTaxable) , low Rate

ELSE

Figure 8.2
An income tax computation
with a nested IF statement.

tax:= (maxTaxable - minTaxable)' lowRate + (d.salary - maxTaxable) , high Rate
END;
PboxStrings.ReaIToString(tax, 1, 2, taxString);
d.message := "Your tax is $" + taxString

ELSE
d.message := "No tax."

END;
Dialog.Update(d)

END IncomeTax;

BEGIN
d.salary := 0.0;
d.message := ""

END Pbox08A.

If the boolean expression is true, the nested IF executes. It evaluates the boolean
expression

d.salary <= maxTaxable

If this boolean expression is true, it computes the tax according to the low rate, and

if it is false according to the high rate on the excess beyond maxTaxable.

Figure 8.3 is the flowchart for the listing in Figure 8.2. It shows the inner IF state
ment nested in the true alternative of the outer IF statement. You can see from the

IF statements with an ELSIF part 153

T d.salary > minTaxable F

~ d.salary <= maxTaxable ~

tax := (d. salary - minTaxable) • lowRate

9

tax := (maxTaxable . minTaxable) • lowRate
+ (d. salary . maxTaxable) • highRate

d.message := tax message from tax

9

flowchart that the nested condition

d.salary <= maxTaxable

will never be evaluated if the outer condition is false. The flowchart also shows that
each IF statement terminates with the circular collector symbol aligned vertically
with its condition. Because this program contains two IF statements, its flowchart
contains two circular collector symbols.

IF statements with an ELSIF part

The previous program had the nested IF statement in the true alternative of the outer
IF statement. Component Pascal allows you to nest an IF statement in either the true
alternative or the false alternative of the outer IF statement. Figure 8.4 shows a dia
log box that computes the letter grade from an integer score according to the tradi
tional I O-point criteria. That is. a score of 90 or more is an A, between 80 and 89 is a
B. between 70 and 79 is a C. between 60 and 69 is a D, and less than 60 is an F. The
program shown in Figure 8.5 implements this dialog box using IF statements that are
nested inside the false alternatives of the outer IF statements.

Figure 8.3
The flowchart for the
procedure in Figure 8.2.

154 Chapter 8 Nested SelectiollS

'fl.mrw _lrll)('
$cae ~

Glade I
lYour orade is B.

MODULE Pbox08B;
IMPORT Dialog;
VAR

dO: RECORD
score': INTEGER;

a.@NW_lo'xl
Scare rn--

I'four grade is C.

message-: ARRAY 64 OF CHAR
END;

PROCEDURE TestGrade';
BEGIN

IF d.score >= 90 THEN
d.message := "Your grade is A."

ELSE
IF d.score >= 80 THEN

d.message := "Your grade is B."
ELSE

IF d.score >= 70 THEN
d.message := "Your grade is C."

ELSE
IF d.score >= 60 THEN

d.message := "Your grade is D."
ELSE

d.message := "Your grade is F."
END

END
END

END;
Dialog.Update(d)

END TestGrade;

BEGIN
d.score := 0;
d.message := ""

END Pbox08B.

mCrtflmra-1a'><'
Scot. ~

I[-:G'~-J

IYour orad. Is F

You can nest IF statements to any level. The last IF statement in this program is
nested three levels deep. Each IF statement is nested in the ELSE part of its outer IF
statement.

Suppose the value of Score is 93. The boolean expression of the outer IF state

ment

Figure 8.4
A dialog box for computing a
letter grade from an exam
score.

Figure 8.5
Conversion of an integer
exam score into a letter grade.

IF statements with an ELSIF part 155

d.score >= 90

would be true, and the "Grade of A" message would be output. The ELSE part of the
outer IF statement would be skipped. Because the ELSE part is a single large nested
I F statement, none of the other boolean expressions is ever tested.

Suppose the value of d.score is 70. The boolean expression of the outer IF state
ment would be false, and the ELSE part of the outer IF statement would execute.
Now the boolean expression

d.score >= 80

of the second IF statement would be tested as false. So the ELSE part of the second
IF statement would execute. This time, the boolean expression

d.score >= 70

would be true, and the "Grade of C" message would be output. The ELSE part of the
third IF statement is skipped. Therefore, the 0 and F messages are not output.

This pattern of a succession of IF statements nested in the false alternatives
occurs so frequently in practice that Component Pascal has a special ELSIF option to
perform the equivalent processing with a single IF statement. The same procedure
can be written with a single IF statement as:

PROCEDURE TestGrade*;
BEGIN

IF d.score >= 90 THEN
d.message := "Your grade is A."

ELSIF d.score >= 80 THEN
d.message := "Your grade is B."

ELSIF d.score >= 70 THEN
d.message := "Your grade is C."

ELSIF d.score >= 60 THEN
d.message := "Your grade is D."

ELSE
d.message := "Your grade is F."

END;
Dialog.Update(d)

END TestGrade;

Y()u can think of ELSIF and the last ELSE as a list of conditions that starts with
the tirst IF condition. The boolean expressions in the list are evaluated in order. start
ing with the first. When a boolean expression is false, the next one in the list is
tested. The first boolean expression that tests true causes its alternative to execute
anLi the rest of the ELSIF alternatives in the list to be skipped.

When deciding whether to use this feature of the IF statement, you must be care
ful to distinguish between nested IF statements and sequential IF statements. which
an~ not nested. The following IF statements are sequential:

156 Chapter 8 Nested Selections

IF d.score >= 90 THEN
d.message := "Your grade is A."

END;
IF d.score >= 80 THEN

d.message := "Your grade is S."
END;
IF d.score >= 70 THEN

d.message := "Your grade is C."
END;
IF d.score >= 60 THEN

d.message := "Your grade is D.";
ELSE

d.message := "Your grade is F.";
END

In this code fragment, suppose that d.score gets the value 70 from the dialog box.
The first two boolean expressions would be false and the third one would be true.
But after d.message gets the C message, the next IF statement would execute.
Because d.score >= 60 is true, d.message would get the D message destroying the
previously stored C message. The net result would be an erroneous output of

Your grade is D.

Figure 8.6 shows the ditference in flow of control between three sequential IF state
ments and an IF statement with two ELSIF parts.

Assertions and invariants

When complex IF statements are nested it is sometimes helpful to formulate asser-
tions to keep track of what is happening in the program. An assertion is a condition Asserliolls

that is assumed to be true at a given point in a program. One example of an assertion
is the precondition P in the Hoare triple {P}S {Q} . It is a condition that is assumed
to be true for statement S to execute correctly. If P is true, then after S executes, Q is
guaranteed to be true.

Another example of an assertion is the invariant. It differs from a precondition Im'uriunls

only by its physical placement in a program and by its use in program design.
Whereas preconditions are assertions placed at the beginning point of a procedure,
invariants are typically placed within procedure code. Furthermore, preconditions
are frequently provided in the documentation of server modules as guidelines for
use by client programmers. They are especially valuable if the programmer of the
server is a different individual from the programmer of the client. Invariants. how-
ever. are usually intended as guidelines for a single programmer within a single pro-
cedure. They are hidden from the user of the module that contains the procedure.

Component Pascal provides assertions with the ASSERT procedure. ASSERT The ASSI:RT {'/Ordure

takes two parameters, a condition and an error number. The condition is a boolean
expression. That is, it is an expression that evaluates to one of two possible values,
true or false. When you execute ASSERT, it evaluates the condition. If the condition
is true nothing happens and the program continues as if the ASSERT statement were
not in the program. If the condition is false. however. the program terminates with a

Assertions and invariallts 157

(h) Nested IF statements

(a) Sequential IF statements

trap. The error number is the number that appears in the trap window.
With Component Pascal. you can use the ASSERT procedure to implement pre

conditions and invariants. Recall from Chapter 7 that one of the programming style
conventions for Component Pascal in the BlackBox framework is that the error
numbers for precondition violations begin with integer 20. Similarly. error numbers
for invariant violations should begin with integer 100.

Example 8.1 The following code fragment is the nested IF statement of Figure 8.2

with invariants. Note that the pseudocode statements in italic may summarize sev
eral statements from the original program.

Figure 8.6
Flowcharts for sequential IF
statements versus a single IF
statement with two ELSIF
parts.

158 Chapter 8 Nested Selections

IF d.salary > minTaxabJe THEN
IF d.salary <= maxTaxable THEN

ASSERT((minTaxable < d.salary) & (d.salary <= maxTaxable), 100);
tax := (d.salary - minTaxable) * lowRate

ELSE
ASSERT(d.salary> maxTaxable, 101);
tax := (maxTaxable - minTaxable) * lowRate + (d.saJary - maxTaxable) * highRate

END;
d.message := tax message from tax

ELSE
ASSERT(d.salary <= minTaxable, 102);
d.message := no tax message

END;

To see how invariants are formulated, we will begin with the simplest invariant,
which can be found just before the statement

d.message := no tax message

What condition must be true at this point in the program? In other words. what con
dition must be true just before this assignment statement executes? The boolean
expression of the outer IF statement must be false. But if the expression

d.salary> minTaxable

is false, the expression

d.salary <= minTaxable

must be true, which is the invariant shown in the code fragment.
The next invariant we will consider is the one just before the statement

tax := (d.salary - minTaxable) * lowRate

Why must d.salary be greater than minTaxable and less than or equal to maxTaxable
at that point in the program? Because to arrive at that point, the boolean expression
of the outer IF statement must be true. Then the boolean expression of the nested IF
statement also must be true. The invariant

(minTaxable < d.salary) & (d.salary <= maxTaxable)

is simply reflecting those two conditions.
The remaining invariant is just before the statement

tax := (maxTaxable - minTaxable) * lowRate + (d.salary - maxTaxable) * highRate

To arrive at this point, the boolean expression of the outer IF statement must be true
and the boolean expression of the nested IF statement must be false. Therefore, to
get to this point in the program, d.salary must satisfy

Assertions and invariants 159

(d.salary> minTaxable) & (d.salary > maxTaxable)

So why does the implementation of the invariant in the code fragment

ASSERT(d.salary> maxTaxable, 101)

seem to ignore the fact that d.salary must be greater than minTaxable?
The answer to this question involves the concept of strong versus weak invari-

ants. One invariant is stronger than another if it places greater limits on the possible Strol1g ill\"or;ol1t.\

values of a variable. In general, stronger invariants arc more helpful in analysis of
logic than weaker ones, because they give you more information. Suppose you ask
your teacher for your score on ~m exam. If she says, "You scored between 50 and
80," she is not giving as much information as if she says, "You scored between 73
and 75." The second statement places a greater limitation on the possible values of
your exam score and, therefore, gives you more information.

In this example,

d.salary > minTaxable

is a valid invariant, because it is a condition guaranteed to be true at this point in the
program. However,

d.salary > maxTaxable

is stronger because it places a greater limitation on the possible values of d.salary.
One way of visualizing strong invariants is with the number line. Figure 8.7

shows the regions of the real number line corresponding to each of the preceding
conditions. Recall from mathematics that the AND operation corresponds to the
intersection of the regions, while the OR operation corresponds to the union of the
regions. The intersection of these two regions is simply the region for

d.salary > maxTaxable

by itself, which is the stronger invariant.

Of----l·~

O---------l~~

I
minTaxable maxTaxable

d.salary > maxTaxable

d.salary > minTaxable

I

One purpose of an invariant is to document your analysis of what condition you
calculate should be true at a given point of your program. If your analysis is correct,
a call to the ASSERT procedure should do nothing. That is, in fact, what the
ASSERT procedure does. If the boolean condition in the ASSERT procedure call is

Figure 8.7
The real number line showing
the conditions d.salary >
maxTaxable and d.salary >
minTaxable.

160 Chapter 8 Nested Selectiolls

true. nothing happens and the program continues to execute. If the boolean condi
tion is false. however. the ASSERT procedure causes the program to abort with a
trap. Why would a programmer ever want his program to abort with a trap? He never
would! So why would anyone ever put an ASSERT call in his program?

The primary purpose of a call to ASSERT to implement an invariant is for testing
the correctness of your program. If the analysis of your program is correct, your
assertions will never trigger a trap and all will be well for you and the users of your
software. But if you make an error in your analysis you will have an error in your
program and it will not execute correctly. The trap will show you where your analy
sis of what should be true at that point of the program is not true after all. You can
then correct the program. Better to have a controlled abort of your program when
you are testing it than to release it for the users with an error in the program.

To write programs that work correctly, you must be able to analyze the logic of
the statements you write. Invariants will help you to think through the logic of your
programs. In the beginning, it may seem that invariants make things more compli
cated than necessary. But after some practice. you will find that you can formulate
invariants in your mind as you write your programs. That ability will make it easier
for you to write correct programs. Occasionally, it may help to write an ASSERT
call in a program to make the program easier to understand.

Example 8.2 Consider the following code fragment, where age is a variable of
type INTEGER.

IF age> 65 THEN
Statement 1

ELSIF age> 21 THEN
Statement 2

ELSE
Statement 3

END

The logic in this code is identical to that in Figure 8.6(b), where the nesting was con
sistently in the false part of the IF statements. What are the strongest invariants you
can formulate before each statement')

For Statement I. the condition age> 65 must be true. That is the strongest invari
ant you can formulate at this point of the program.

For Statement 2, the boolean expression of the outer IF statement. age> 65 must
be false. In other words, age <= 65 must be true. Furthermore. the boolean expres
sion of the ELSIF condition, age> 21. also must be true. So the strongest invariant at
this point is

(21 < age) & (age <= 65)

which corresponds to the intersection of the two regions in Figure 8.8.
For Statement 3. both boolean expressions must be false; that is. age <= 65 and

age <= 21 must be true. The strongest invariant is

Age <= 21

The purpose oFa call /()

ASSERT '0 imp/I'll/I'm lIl1

invari([/If

0 .. age> 21

.. • age <= 65

I
21 65

which corresponds to the intersection of the two regions in Figure 8.9. The final
code fragment that implements the strongest invariants is

IF age> 65 THEN
ASSERT(age > 65,100);
Statement 1

ELSIF age> 21 THEN
ASSERT((21 < age) & (age <= 65),101);
Statement 2

ELSE
ASSERT(age <= 21, 102);
Statement 3

END

.. • ..
21

Dead code

•
I

65

age <= 21

age <= 65

I

Something to avoid when you write nested IF statements is dead code. Dead code is
a statement that cannot possibly execute. If you ever discover dead code in your own
program or in a program that someone else wrote, you can be sure that it was unin
tentional. Because dead code never executes, there is never a reason to put it in a
program except by mistake. Formulating the strongest invariant can help you dis
COver dead code.

Component Pascal provides a procedure that we will use to indicate dead code.
When you execute procedure HALT, the program always terminates with a trap,
regardless of the value of any boolean expression. Like the ASSERT procedure. the
HALT procedure is used for testing large programs. If a programmer wants to view
the values of the variables at a given point of a program, she can insert a call to
HALT. When the program reaches that point. it will terminate and show the trap win
dow including the values of all the variables at the time the program was interrupted.

Dead code 161

Figure 8.S
The number line showing the
two conditions age> 21 and
age <= 65.

Figure 8.9
The number line showing the
two conditions age <= 21
and age <= 65.

Dead code

TYpical /JlllpO.'t' "ra ,'({II to
HALT

162 Chapter 8 Nested Selections

The procedure call

HALT(100)

is logically equivalent to

ASSERT(FALSE, 100)

Because the boolean expression in the above ASSERT call is always false, its execu
tion would always generate a trap. But this is precisely the behavior of the call to
HALT. The following examples use a call to HALT to indicate the strongest invariant
of dead code. In the same way that an ASSERT call with the strongest invariant will
not affect the execution of a program, a HALT call with dead code will not affect a
program. Because dead code never executes, the HALT procedure will never be
called.

Keep in mind, however, that this use of HALT would never be found in production
code because a programmer would never willfully have dead code in her program.
The following examples are designed to teach you skill in identifying dead code, so
you can root it out of your programs.

Example 8.3 Consider the following code fragment:

IF quantity < 200 THEN
Statement 1

ELSIF quantity >= 100 THEN
Statement 2

ELSE
Statement 3

END

Statement 3 can never execute regardless of the value of quantity. To see why, try to
formulate a strong invariant at the point just before Statement 3. To get to that point
in the program, you must have quantity >= 200 because the first boolean expression
must be false. You must also have quantity < 100 because the second boolean expres
sion also must be false. But it is impossible to have quantity greater than or equal to
200 and less than 100 at the same time. So Statement 3 can never execute and is
dead code. The code fragment with the strongest invariants implemented using calls
to ASSERT and HALT is

IF quantity < 200 THEN
ASSERT(quantity < 200, 100);
Statement 1

ELSIF quantity >= 100 THEN
ASSERT(quantity >= 200,101);
Statement 2

ELSE
HALT(102);
Statement 3

END I

The purpose ota call 10

HALT iT! this chapler

Do not conclude from this example that dead code is always the last statement in
a sequence of ELSIF parts. You must analyze each situation afresh. The general strat
egy to determine the strongest invariant at a given point is to list the boolean condi
tions that must be true. This may involve taking the NOT of some expressions if the
nesting is in the false part of an IF statement. The intersection of the corresponding
regions represents the strongest invariant. If the intersection at a given point is
empty, the statement at that point is dead code.

Example 8.4 Consider the following code fragment, where n has type INTEGER.

IF (15 <= n) & (n < 20) THEN
IF (n > 10) THEN

Statement 1
ELSE

Statement 2
END

ELSE
Statement 3

END

What is the strongest invariant you can formulate at each statemene The first step is
to draw a sketch of the number line with the integer values in their proper order, as
in Figure S.IO.

• 0 (15 <= n) & (n < 20)

0 • n> 10

.. 0 • • (n < 15) OR (n >= 20)

I I
10 15 20

For Statement 1, you can see from the figure that the intersection of the top two
lines corresponds to both boolean expressions being true. The strongest invariant is

(15 <= n) & (n < 20)

For Statement 2. n must be less than or equal to 10 and between IS and 20, which
is impossible. So Statement 2 is dead code.

For Statement 3, the first boolean expression must be false. From De Morgan's
law it follows that the strongest invariant is

(n < 15) OR (n >= 20)

This corresponds to the third region of Figure 8.10. which is that part of the number
line not included in the first region. The code with all the invariants implemented
with calls to ASSERT and HALT is

Dead code 163

Figure 8.10
The number line for Example
8

164 Chapter 8 Nested Selections

IF (15 <= n) & (n < 20) THEN
IF (n > 10) THEN

ASSERT((15 <= n) & (n < 20),100);
Statement 1

ELSE
HALT(101);
Statement 2

END
ELSE

ASSERT((n < 15) OR (n >= 20), 102);
Statement J

END

Using nested IF statements

I

One of the most common problems beginning programmers have is a failure to rec
ognize the appropriateness of the logic characterized by a sequence of ELSIF parts
in an IF statement.

Example 8.5 Suppose you need to perform three different computations depend
ing on the value of weight, a real variable. The following code:

IF weight> 150.0 THEN
Statement 1

END;
IF (weight> 50.0) & (weight <= 150.0) THEN

Statement 2
END;
IF (weight <= 50.0) THEN

Statement J
END

is not as efficient as the equivalent IF statement with a sequence of ELSIF parts:

IFweighl> 150.0 THEN
Statement 1

ELSIF weight> 50.0 THEN
Statement 2

ELSE
Statement J

END

For example, suppose weight has a value of 200.0. In the first code fragment, every
boolean expression must be evaluated because the IF statements are sequential. But
in the second fragment, only the first boolean expression is evaluated because the
sequence of ELSIFs is skipped. I

Another tendency when programming with ELSIF logic is to include an unneces
sary redundant test at the end.

Example 8.6 The following code fragment has a redundant test.

IF price> 2000 THEN
Statement I

ELSIF price> 1000 THEN
Statement 2

ELSIF price <= 1000 THEN
Statement 3

END

Using nested IF statements 165

The last boolean expression is redundant. In the following code fragment. you can
assert that price <= 1000 when Statement 3 executes.

IF price> 2000 THEN
Statement I

ELSIF price> 1000THEN
Statement 2

ELSE
Statement 3

END

This code fragment executes exactly the same as the previous one. but without the
extra test. The redundant test should not be included. I

* The guarded command if statement

The guarded command if statement can have more than just two guards. For exam
ple an if statement with four guards has the form

if BI -+SI
0 B2 -+ S2
0 B3 -+ S3
0 B4 -+ S4

fi

Each one of the 8's is a boolean guard that must be true for the corresponding state
ment sequence S to execute. The behavior of the GCL if statement is quite different
from the CP IF statement in two respects.

First. the CP IF statement has an optional ELSE part. Suppose the IF statement
does not have an ELSE part. the condition in the IF part is not true. and none of the
conditions in any of the ELSIF parts are true either. Then each condition will be
tested. none of the statement sequences will execute. and execution will continue
with the statement sequentially following the IF statement. However. suppose that The iF ,/(/[elllelli (/im,-!.' "hen

the above GCL if statement executes when none of the guards are true. Then the 1I(111e o(lile guwd, (ire rme.

statement aborts. which is the equivalent of a program crash or a trap in CP. In other
words. GCL has nothing equivalent to the ELSE part. and requires at least one of the
guards to be true to avoid a program abort.

166 Chapter 8 Nested Selections

Example 8.7 Suppose you want to put the values of x and y in order so that x is
guaranteed to be less than or equal to y. The GCL statement

if x> y ---? X, Y := v, x
fi

works correctly if. for example, the initial state is (x, 7), (y, 3). In that case, the guard
x> y is true and the values are exchanged making the final state (x. 3). (y, 7). How
ever, if the initial state is (x, -+). (y. 9) then no guards are true when the if statement
executes and the program aborts. I

A second difference between IF and if is the order in which the conditions are
evaluated. In CP, the conditions are evaluated in order starting with the condition of
the IF, then the condition of the first ELSIF if necessary, then the condition of the
second ELSIF if necessary, and so on. In GCL, however, you should visualize all the
guards being evaluated at the same time. If no guard is true the statement aborts. If
one guard is true its corresponding statement sequence executes. But if more than The i{statemenl selects (If

one guard is true the computer randomly picks the statement sequence of a true random Ivhen lIlore rhan one

guard to execute. In this case. it may be impossible to predict the exact outcome of guard is true.

the computation.

Example 8.8 Suppose you write the processing of Example 8.6 in GCL as

if price> 2000 ---? 51
o price> 1000 ---? 52
o price:S; 1000 ---? 53

fi

This translation from CP to GCL may seem plausible, but it is not correct. There is
no problem if the initial state is (price. 500). which guarantees that 53 will execute.
Nor is there a problem if the initial state is (price, 1500), which guarantees that 52
will execute. With both initial states exactly one guard is true so that the correspond
ing statement sequence can be determined. Suppose, however. the initial state is
(price, 2500), when the CP statement in Example 8.6 guarantees that Statement 1
will execute. The problem is that the above GCL statement has both guards
price> 2000 and price> 1000 true and so will randomly pick either 51 or 52 to
execute. I

So how do you translate a CP I F statement to a GCL if statement'? You simply use Til [rull.l/llIeji'O/l/ CP to GeL

the strongest invariant as the guard. lise rhe ,llml/gesl i"vuri,,"! liS
the gllard.

Example 8.9 The processing of Example 8.6 is correctly written in GCL as

if price> 2000 ---? 5 I
o 1000 < price:S; :WOO ---? 52
o price:S;1000---?S3

fi I

Exercises

1. (a) What is an assertion') (b) Name two kinds of assertions. (el What is dead code')

2. Draw the flowcharts for the following code fragments.

(al
IF Condition J THEN

IF Condition 2 THEN
Statement I

ELSE
Statement 2

END

ELSE
Statement 3

END

(el
IF Condition I THEN

Statement 1 ;
IF Condition 2 THEN

Statement 2
END

ELSE
Statement 3

END

(b)

IF Condition I THEN
IF Condition 2 THEN

Statement J
ELSE

Statement 2
END;

Statement 3
ELSE

Statement 4
END

(d)

IF Condition 1 THEN
Statement I

ELSE
IF Condition 2 THEN

Statement 2
END;
Statement 3

END

3. Rewrite the following code fragments with the correct indentation and draw their tlow
charts.

(a)

IF Condition I THEN
IF Condition 2 THEN
Statement J
ELSE
Statement 2
END
END

(b)

IF Condition J THEN
IF Condition 2 THEN
Statement J
END
ELSE
Statement 2
END

4. Rewrite the following code fragments with the correct indentation and draw their flow
charts.

Exercises 167

168 Chapter 8 Nested Selectiol1s

(a) (h)

IF Condition 1 THEN IF Condition 1 THEN
IF Condition 2 THEN IF Condition 2 THEN
IF Condition 3 THEN IF Condition 3 THEN
STatement 1 Statement 1
ELSE ELSE
Statement 2 STatement 2
END END
ELSE END
Statement 3 ELSE
END Statemellt 3
END END

(e) (d)
IF Condition 1 THEN IF Condition 1 THEN
Statement I Statement 1
END; ELSIF Condition 2 THEN
IF Condition 2 THEN Statement 2
Statement 2 ELSE
ELSE Statement 3
Statement 3 END
END

5. Rewrite the following code fragment with only one IF statement. Your revised code
fragment must perform the same processing as the original one.

IF Condition I THEN
IF Condition 2 THEN

Statement I
END

END;

Statement 2

6. The following code fragment makes four comparisons. Simplify it so that only two
comparisons are needed. age is a variable of type INTEGER.

IF age> 64 THEN
Slalemenl1

END;
IF age < 18 THEN

Slalemenl2
END;
IF (age >= 18) & (age < 65) THEN

Slalemenl3
END

7. Determine the output. if any. of the following code fragment. h. m. and ware variables
of type INTEGER. Hint: Rewrite with correct indentation first.

IF h > m THEN
IFw> mTHEN
StdLog.lnt(m)
ELSE
StdLog.lnt(h)
END
END

(a) Assume h = 10, m = 3, and w = 4.
(b) Assume h = 10, m = 20, and w = 15,
(e) Assume h = 10, m = 5, and w = 3,

8. Determine the output, if any, of the following code fragment. x, y. z, and q are variables
of type INTEGER. Hint: Rewrite with correct indentation tirst.

IF x > yTHEN
StdLog.lnt(y)
ELSIF x > z THEN
IF x > qTHEN
StdLog.lnt(q)
ELSE
StdLog.lnt(x)
END
END

(a) Assume x = 10, y = 5, z = O. and q = 1,
(b) Assume x = 10, y = 20, z = 5, and q = 1,
(e) Assume x = 10, Y = 10, z = 12, and q = 5,
(d) Assume x = 10, Y = 5, z = 20, and q = 15.

9, Write the strongest possible invariants just before each statement in the following code
fragments. Assume that num is a variable of type INTEGER,

(a)

IF num < 23 THEN
IF num >= 15 THEN

Statement 1
ELSE

Statement 2
END

ELSE
Statement 3

END

(el
IF num >= 60 THEN

Statement /
ELSIF num < 80 THEN

Statement 2
END

(bl
IF num >= 50 THEN

Statement 1
ELSIF num >= 25 THEN

Statement 2
ELSE

Statement 3
END

(d)
IF (num < 30) OR (num > 40) THEN

Statement 1
ELSIF num < 35 THEN

Statement 2
ELSE

Statement 3
END

Exercises 169

170 Chapter 8 Nested Selections

10. Write the strongest possible invariant just before each statement in the code fragment.
Use the HALT procedure just before each statement that is dead code. Assume that num

is a variable of type INTEGER.

(a)
IF num < 70 THEN

IF num >= 80 THEN

Statement 1
ELSE

Statement 2
END

ELSE
Statement 3

END

(e)
IF nurn > 35 THEN

Statement 1
ELSIF num > 45 THEN

Statement 2
ELSE

Statement 3
END

(e)

IF (nurn < 40) OR (nurn > 50) THEN
Statement I

ELSIF nurn > 30 THEN
Statement 2

ELSE
Statement 3

END

(b)
IF nurn >= 45 THEN

Statement 1
ELSIF nurn <= 35 THEN

Statement 2
ELSIF nurn >= 55 THEN

Statement 3
ELSE

Statement 4
END

(d)
IF (nurn < 5) OR (nurn > 9) THEN

Statement 1
ELSIF (5 < nurn) & (nurn < 9) THEN

Statement 2
ELSE

Statement 3
END

(I)
IF (40 <= nurn) & (nurn <= 50) THEN

Statement I
ELSIF (nurn < 42) OR (nurn > 48) THEN

Statement 2
ELSE

Statement 3
END

11. Write the if statement in Example 8.7 so that it executes correctly with any initial state.

12. For the GCL if statement

if age< 18--->SI

age~21--->S2

age < 65 ---> S3
fi

tell which statements could possibly execute for each of the following initial states.

(a) (age. 10) (b) (age, 19) (e) (age. 21) (d) (age, 40) (e) (age, 70)

13. For the GCL if statement

if j < 40 ---> SI
~ 20 ~ j < 60 ---> S2

fi

tell whether the statement will abort and if not. which statements could possibly exe-

cute for each of the following initial states.

(a) (j. 10) (b) (j. 30) (c) (j.50) (d) (j.70)

14. Translate each code fragment in Exercise 9 into a single GeL if statement.

Problems

15. Write a program to input three integers in a dialog box and print them in descending
order on the Log. Your program must contain no local or global variables other than the
ones for input in the dialog box. It must use no more than five comparisons and must
work correctly even if some of the integers are equal.

16. Write a program to input three integers in a dialog box and output the number that is
neither the smallest nor the largest in an output field of the dialog box. If two or more
of the numbers are equal output that number.

17. Write a program to input two integers in a dialog box and output to the dialog box
either the larger integer or a message stating that they are equal.

18. A salesperson gets a 5% commission on sales of $1000 or less. and a 10% commission
on sales in excess of $1 000. For example. a sale of $1300 earns him $80; that is. $50 on
the first $1000 of the sale and $30 on the $300 in excess of the first $1000. Write a pro
gram that inputs a sales figure in a dialog box and outputs the commission to the dialog
box. Output an error message if the user enters a negative sales figure.

19. The fine for speeding in a 45 MPH zone is $10 for every mile per hour over the speed
limit for speeds from 46 to 55 MPH. It is $15 for every additional mile per hour
between 56 and 65 MPH. It is $20 for every additional mile per hour over 65 MPH. For
example. the fine for driving 57 MPH is $100 for the first 10 MPH plus $30 for the 2
MPH in excess of 55 MPH. for a total of $130. Write a program that inputs the speed in
a dialog box as an integer and outputs the fine. or a message that there is no fine. to the
dialog box. Output an error message if the user enters a negative speed. Use the small
est possible number of comparisons.

Temperature T Message

90~ T Go swimming

80 ~ T < 90 Play tennis

70 ~ T < 80 Study

60~ T < 70 Go to sleep

T<60 Go to Hawaii

Problems 171

Figure 8.11
The table for Problem 21.

172 Chapter 8 Nested Selections

20. Design a dialog box that has two input fields-an integer field for the temperature and
a check box labeled Humid-and one output field. If the temperature is greater than 85
output the message "It is muggy" if the check box is checked or "Dry heat" if the box
is not checked. Otherwise output "Cool man".

21. Write a program to input the temperature (integer value) in a dialog box. then output
the appropriate message for a given value of temperature to the dialog box. as the table
in Figure 8.11 shows. Use the smallest possible number of comparisons.

22. The price per Frisbee depends on the quantity ordered. as the table in Figure 8.12 indi
cates. Write a program to input the quantity requested from a dialog box and output the
total cost of an order. including a 6.5% sales tax. to the dialog box. Output an error
message if a negative quantity is entered.

Quantity Price per Frisbee

0-99 $5.00

100-199 3.00

200- 299 2.50

300 or more 2.00

23. You are eligible for a tax benefit if you are married and have an income of $30,000 or
less, or unmarried and have an income of $20,000 or less. Design a dialog box that asks
for the user's marital status (check box) and income (real), then outputs a message in
the dialog box stating whether the user is eligible for the tax benefit. Output an error
message if negative input is entered.

24. A year is a leap year if it is divisible by 4 but not by 100. The only exception to this rule
is that years divisible by 400 are leap years. Design a dialog box that asks the user to
enter a positive integer for the year and displays a message that states whether the year
is a leap year.

25. The following statements are from the United States Department of Internal Revenue
Form 1040 for 1997:

Enter on line 35 the larger of your itemized deductions or the standard deduction
shown below for your filing status.

• Single-54.150

• Married filing jointly or Qualifying widow(er)-56,900

• Head of household-$6.050

• Married filing separately-$3A50.

Write a program that implements the dialog box of Figure 8.13 to output the value for
line 35. Note that the first radio button is labeled I for the user. but should have a level

Figure 8.12
The price schedule for
Problem 22.

number of 0 in your program. Output an error message on Line 35 if the amount
entered for the standard deduction is negative.

El~[lncom.T."J~8

Filing st.tus

Cl I. Single

02. Marril:ld. joint r@turn

03. Married, separate returns

@)4. Hend of household

OS. Qualifying widow(erl

Itemized deductions 1600t1.60

[I compute'

line 35: 16,J50.00

;El ==(Income To" J ~ 8

Filing status

o I. Single

02. Married, joint return

03. Married. separate returns .4. Head of household

OS. Qualifying widow(er)

Itemized deductions 1-1 000.08

[[Compute I
line 35: Negative inJl!t not o11o"Yed

26. Rewrite module Pbox08B in Listing 8.5 using a CASE statement instead of an IF state

ment. The dialog box should appear as in Figure SA without any radio buttons. Use the
fact that if d.score is in the range 70-79. for example. then d.score DIV 10 is 7.

Problems 173

Figure 8.13
The dialog box for Problem
25.

.., Chapter9
1iI~

The MVC Design Pattern

With most of the examples up to this point, the input of a program comes from a dia
log box. The output usually goes to a dialog box. but occasionally it goes to the Log.
Although input/output via a dialog box is common, it is by no means the only way to
get information into or out of a program. Input can come from the focus window,
assumed to have been created before the program executes. Also, the program can
create a new window in which to display the output.

This chapter shows how a program can get information from the focus window
and how it can create a new window on which to write its output. BlackBox uses an
effective technique for window I/O called the MVC design pattern. The MVC
design pattern is in tum based on a modem software design methodology called
object-oriented programming (OOP). OOP and the MVC design pattern are also the
underlying foundations of dialog boxes. For simple programs like those we have
encountered thus far, BlackBox has hidden the details of OOP and the MVC design
pattern. To program I/O with windows. however, requires a bit more knowledge of
both OOP and the MVC design pattern.

Objects

Recall that the difference between an abstract data structure (ADS) and an abstract
data type (ADT) is that a server module that supplies a client with an ADS supplies
only one data structure, while a server module that supplies an ADT exports a type.
The client can then declare more than one variable to have that type. An object is a
variable that has a type similar to an ADT. In object-oriented terminology, the type is
called a class, and the variable with that type is called an object. Classes and objects

The Pbox project has an implementation of a stack designed to show the differ
ence between an ADT and a class. In this chapter, there appears to be no advantage
of the class over the ADT. The two primary advantages of using a class instead of an
ADT are the object-oriented features of inheritance and class composition. Later Inheritallce and class
chapters show how to program with each of these advanced techniques. Both tech- composition

niques are pervasive throughout the BlackBox framework. For now, rather than
incorporating these techniques into your programs, you will use some objects pro-
vided by BlackBox to program window I/O. A few details of the interfaces exam-
ined below will not be clear to you until you learn how to program with class
composition and inheritance. You can easily learn the recipe of how to use the
objects to program window 1/0 without understanding all the concepts behind OOP.

176 Chapter 9 The MVC Design Pattern

But, it will be better if you try to understand as many of the OOP concepts as you
can, because they are the basis of most modem software development efforts.

The remainder of this section illustrates a few object-oriented principles by com
paring a stack class with the stack ADT from Chapter 6. Figure 9.1 is a listing of the
interface of PboxStackObj. The interface of PboxStackADT from Chapter 6 is shown
with it for comparison.

DEFINITION PboxStackObj;

CONST
capacity = 8;

TYPE
Stack = RECORD

(VAR s: Stack) Clear, NEW;
(IN s: Stack) Numltems 0: INTEGER, NEW;
(VAR s: Stack) Pop (OUT val: REAL), NEW;
(VAR s: Stack) Push (val: REAL), NEW

END;

END PboxStackObj.

DEFINITION PboxStackADT;

CONST
capacity = 8;

TYPE
Stack = RECORD END;

PROCEDURE Clear (VAR s: Stack);
PROCEDURE Numltems (IN s: Stack): INTEGER;
PROCEDURE Pop (VAR s: Stack; OUT val: REAL);
PROCEDURE Push (VAR s: Slack; val: REAL);

END PboxSlackADT.

In both interfaces, Slack is a record type, which is exported. In the stack ADT, the
formal parameter list of every procedure must include a variable s of type Slack.
because, for example, when a client calls the Pop procedure it must specify not only
the item to get the popped value but also the stack from which to pop it. After all, the
client can declare more than one stack, so it must have a way to specify the one on
which to operate. In the stack class, the specification of the data structure s is not
included with the other formal parametersfoliolVing the name of the procedure, but
stands alone enclosed in parentheses before the name of the procedure. In Compo-

Figure 9.1
The interface for
PboxStackObj and
PboxStackADT for
comparison.

nent Pascal, the formal parameter before the procedure name is called the receiver. Recein'rs
Another ditference between the ADT and the class is the physical location of the

procedures. In the ADT, the procedures are located outside the Stack record. In the

class, the procedures are located within the record. As with the stack ADT, there are
additional items in the record of the stack class that are not visible because they are
not exported. In object-oriented terminology, procedures that have receivers, and are

Objects 177

therefore contained within a record type, are called methods. Methods

Another difference between the procedures of PboxStackADT and the methods of
PboxStackObj is the presence of the method attribute NEW. Because inheritance is
possible with methods, Component Pascal requires the NEW method attribute to be
specified on all newly declared methods. The example in this section does not use
inheritance. You will not see the utility of this requirement until you study examples
in later chapters of the book that illustrate inheritance.

Example 9.1 In PboxStackObj, Stack is a class, and Pop is a method. In the decla
ration of Pop

(VAR s: Stack) Pop (OUT val: REAL), NEW;

the receiver is (VAR s: Stack). I

Figure 9.2 shows a dialog box that is implemented with PboxStackObj. It is indis
tinguishable from the dialog box of Figure 7.9. Behind the scenes, however, this dia
log box is implemented with PboxStackObj instead of PboxStackADT as is the
dialog box in Figure 7.9.

No.mber No.mber

"A: r- ina: r I Clear Slack.

The listing in Figure 9.3 uses PboxStackObj to implement the dialog box of Fig
ure 9.2. As in Chapter 3, this chapter names the modules as if the assigned two-digit
number of a student in a course is 99, and her homework folder is named Hw99. The
structure of the module is identical to the program in Figure 7.10 that uses Pbox
StackADT to implement the same dialog box. In both programs, there are two global
variables, stackA and stackS. They are declared to have type Stack, which is
exported from the server module.

The only significant ditference between these two programs is how a method is
called compared to how a procedure is called. With the ADT, to push a value onto
stackB you write

PboxStackADT.Push(d.valuePushed, stackB)

With the class, to perform the same operation you write

stackB.Push(d.valuePushed)

Figure 9.2
The dialog box for
manipulating two stacks. It is
implemented with
PboxStackObj.

178 Chapter 9 The MVC Design Pattem

MODULE Hw99Pr0980;
IMPORT Dialog, PboxStackObj;

VAR
d': RECORD

valuePushed', valuePopped-: REAL;
numltemsA-, numltemsB-: INTEGER;

END;
stackA, stackB: PboxStackObj.Stack;

PROCEDURE PushA';
BEGIN

stackA.Push(d.valuePushed);
d.numltemsA := stackANumltemsO;
Dialog. Update(d)

END PushA;

PROCEDURE PushB';
BEGIN

stackB.Push(d.valuePushed);
d.numltemsB := stackB.NumltemsO;
Dialog. Update(d)

END PushB;

PROCEDURE PopA';
BEGIN

stackAPop(d.valuePopped);
d.numltemsA := stackANumltemsO;
Dialog.Update(d)

END PopA;

PROCEDURE PopB';
BEGIN

stackB. Pop(d. valuePopped);
d.numltemsB := stackB.NumltemsO;
Dialog. U pdate(d)

END PopB;

PROCEDURE ClearStacks';
BEGIN

stackA Clear;
stackB.Clear;
d.valuePushed := 0.0; d.valuePopped := 0.0;
d.numltemsA := 0; d.numltemsB := 0;
Dialog. Update(d)

END ClearStacks;

BEGIN
ClearStacks

END Hw99Pr0980.

Figure 9.3
A program that uses a stack
class to implement the dialog
box of Figure 9.2.

Models. views. and controllers 179

The difference in syntax between these two calls illustrates a significant differ
ence in viewpoint between a procedure and a method. With the stack ADT, the pro
cedure belongs to the module. You must, therefore, prefix the procedure name with
the name of the module, separated by a period. The procedure call is PboxStack
ADT.Push. With the stack class. the method belongs to the data structure. You must,
therefore, prefix the procedure name with the name of the object, separated by a
period. The method call is stackB.Push.

A curious feature of object-oriented syntax is that the actual parameter corre
sponding to the receiver is not enclosed in parentheses. Because the receiver comes
before the method name, it seems natural that the actual parameter would come
before the method name in the call. However, a receiver contains a pair of parenthe
ses that are not included in the call. In this call to Pop. stackB is an actual parameter
along with d.valuePushed. It is not enclosed with parentheses and is separated from
Pop by a period.

The table in Figure 9.4 shows the difference in terminology between the items
associated with an ADT and those with a class. Unfortunately, terminology in the
object-oriented community is not consistent from language to language. The latest
Component Pascal language report uses the word "method" as we have here. How
ever. it does not use the words "class" or "object" in the same way as in this text.

Models, views, and controllers

The MVC design pattern was developed at the Xerox Palo Alto Research Center in
conjunction with an object oriented language called Smalltalk, and was adopted by
the designers of BlackBox. The meaning of the letters in the MVC acronym is:

• M model

• V vIew

• C controller

Procedllres helong to
modules und methods belong
to ohjl!c/s.

Procedure- Object-

oriented oriented

type class

procedure method

variable object

Figure 9.4
Object-oriented terminology.

A model is a data structure that stores data. An example of a model is the text Models

model in BlackBox. Text consists of more than just an array of characters. It also
includes the font, the size of the font usually measured in points. and various
attributes such as whether a letter is bold, italic. or underlined. All this information
must be stored for each character in the model.

Another example of a model is a dialog box in the BlackBox forms subsystem.
The user constructs a dialog box containing command buttons, radio buttons, text
fields for input and output. and captions. The forms model for a dialog box would
store data for the width and height of each control and the x- and v-coordinates for
the position of the control in the dialog box. It also stores the font information for
any text that appears in the control.

A view is the visual representation of a model in a window. In the example of a Views

text model, the view is the image of the characters. Depending on the attributes
stored in the text model, the image of a character on the screen would be displayed
in one font or another. large or small, bold or not bold. italic or not italic. underlined
or not underlined, and so on. In the example of a form. the view is the rendering of
the various control objects in the dialog box. For the text field for input or output.
depending on the values of the data stored i!l the model, it will be rendered as tall or

180 Chapter 9 The MVC Design Pattern

short, wide or narrow. near the top of the dialog box or near the bottom, and so on.
It is clear from the meaning of models and views that a view usually does not A \'i",>, call1lot exisl Ivitholll (I

exist without a model, Because a view is the visual rendering of a model on an out- modd

put device, either screen or hardcopy, it must have something to render. From a pro-
gramming perspective, you must create a model first before you can display it

A controller is an object that controls the interaction between the user and the COn/mllers

view to manipulate the modeL In the example of the text model, the user might want
to insert a word at a particular point in a sentence. She would position the cursor at
the insertion point with the mouse, click the mouse, then type the word to insert. The
controller changes the shape of the cursor when it is positioned over a text view, and
locates the position in the text model when the mouse button is clicked.

In the example of the forms model, the user might want to lengthen a text field.
She would position the cursor over the field and click the mouse to select the field,
which would then be displayed with handles for resizing. Dragging the cursor to the
rightmost handle, clicking on the handle and dragging the mouse to the right would
lengthen the field. The controller senses where the mouse is when it is clicked over
the rightmost handle. As the user drags the handle, the controller sends a message to
the model informing it to change the dimensions of the field accordingly.

The primary design concept in the MVC design pattern is that the view is sepa- The primary desigll concept

rate from the modeL One advantage of separating a view from its model is that you in the MVC desir;1I pattern

can have more than one view for a given modeL Figure 9.5 shows one text model
with two views, one of which displays the first part of the model and one of which
displays the last part

Model

View

iii (Hw99)Acme I!I~ t3

Dear Sir
ThiS letter IS to Inform you the
on the date Of March 16, 19S
;e received notice from v~

View

~ «Hw99)Acme> I!I~ t3

company that the item referr·
to 'n the memo was defectiv.-J
Than" you for your prompt a..:J

• .!J /;.

I··· Font data. size, style. etc.

The first row of boxes in the model represent the character values. One box con
tains Ln. which represents the line character. There are no lines in computer mem
ory. Instead. the line character is stored in the model when the user presses the
<return> key just as any other character is stored when the user presses its key. The
second row of boxes represents the fact that each character in the text model must
have associated with it a set of attributes. Because the precise way in which this is
accomplished need not concern us now. the boxes appear empty.

The BlackBox framework lets you open two views of one text modeL You can do
this by selecting Edit---,>View In Window (MacOS) or Window---'>New Window

Figure 9.5
The relationship between a
view and its modeL

(MSWindows). This feature is handy when you have written a long module and you
are working on a part near the end and you want to see a part near the beginning.
With two views, you do not need to continually scroll back and forth from the begin
ning of your document to the end.

UML class diagrams

Models, views, and controllers are all objects. That is. they are variables that contain
data structures and methods (procedures) that operate on the data. The programs in
the remainder of this chapter call the methods of several objects within the MVC
system. Because the MVC design pattern is an object-oriented system, the objects
are related by the two relationships of inheritance and class composition. Both rela
tionships are conveniently represented by a kind of blueprint called a Unified Mod
eling Language (UML) class diagram. Figure 9.6 is a UML class diagram for most
of the classes that are accessed to perform window VO.

Stores. Store

~
I

UML class diagrams 181

Figure 9.6
A UML diagram for some
classes in the MVC system
for text and forms.

I
Models.Model I I Views. View I I Controllers. Controller I

Lf' Lf' Lf'
Containers. Model I I Containers. View I I Containers. Controller j

~ .¢. ~

I TextMode;s.Model I
I ~----~I----~ ~ ____ I~ ____ ~ I TextControllers.Controller I I FormControllers.Controller I I FormModels.Model I

I I I TextViews.View J I FormViews.View I

t

The figure includes classes for the forms subsystem even though you do not need
to access them directly to create the dialog boxes in this book. They are included to
show that the MVC design pattern applies to containers other than text. The word
before the period in each box is the name of a module, and the word after the period
is the name of a class (type). For example, in the box labeled Containers. Mode\.
Containers is a module and Model is a class exported by the module. To perform
window VO you will need to access only four of the modules from Figure 9.6-
Views, TextModels, TextViews, and TextControliers-and one module not shown in
the figure-PboxMappers.

In a UML diagram, the triangle ~ is the symbol for inheritance. Figure 9.6 TI!~ Irial/gle is Iii" .\\I/lhol.!fJl·

shows that classes Models.Model, Views. View, and Controllers.Controller all inherit illl!ailllilce.

182 Chapter 9 The MVC Design Pattern

from Stores. Store. Stores. Store is called the superclass, and each of the other three
is called a subclass. When you inherit a characteristic from a parent, the copy of
your parent's genes give you similar characteristics and abilities as your parent. In
the same way, when a subclass inherits from its superclass, the superclass gives it a
characteristic or ability. The important ability that Stores. Store provides to its sub
classes is the ability to be saved on disk, that is, to be stored.

For example, after you design a dialog box and you want to save it in your Rsrc
folder, you select File-Save As to store it on disk. The fact that a dialog box is part
of the forms subsystem, with its model, view, and controller all being subclasses of
Stores.Store, gives it the ability to be stored on disk.

In a UML diagram, the arrow with a diamond tail .--.-.. is the symbol for
class composition. Figure 9.6 shows that class TextControliers.Controlier is com
posed of a link to TextModels.Model and another link to TextViews.View. You can
imagine why a controller needs to be composed of links to a model and a view.
Recall that a controller is an object that controls the interaction between the user and
the view to manipulate the model. Because the controller interacts with both a view
and its model, it has links to both.

The iterator design pattern

Besides models, views, and controllers, one additional kind of object is required for
window IIO-iterators. Like models, views, and controllers, iterators are objects.
That is, they are variables that contain data and methods that operate on the data.
Most data structures are storage containers for a collection of values. For example,

The arrow wirh diamond rail
is the symbol for class
compositioll.

the list data structure in Chapter 6 stores a collection of strings. An iterator for a data [terator.l·

structure is an object that traverses, or iterates over, the collection of values. (The list
ADT of Chapter 6 does not have an iterator.)

The iterators in BlackBox that are necessary for window IIO are designed to iter
ate over the character values stored in a text model. There are two kinds of iterators
for text--one for inserting text into the model, called a formatter, and one for Formatters and scanners
extracting values from the model, called a scanner. Formatters are used for window
output and scanners are used for window input. Each of these iterators has a rela-
tionship with a text model and not with any of its views.

The B1ackBox framework supplies powerful iterators for its text model. Unfortu
nately, the iterators are rather complicated and are difficult for beginning program
mers to use. Consequently, the Pbox project supplies its own version of text iterators
in the module PboxMappers. Mappers is B1ackBox terminology for what are usually
known as iterators. Figure 9.7 is the interface for PboxMappers.

In PboxMappers, Formatter and Scanner are both classes (types). The methods
that are included in their records have receivers. The first method in each is a proce
dure called ConnectTo that requires as its parameter a text model. Before you can
use a formatter or a scanner you must connect it to a text model. Once it is con
nected, any operation you perform with that iterator will affect the text model to
which it is connected.

Several of the methods for the formatter are similar to the procedures in module
StdLog that you use to send output to the Log. Writelnt is similar to StdLog.lnt.
Write Real is similar to StdLog.Real, WriteChar is similar to StdLog.Char, WriteString

The factory design pattern 183

is similar to StdLog.String, and WriteLn is similar to StdLog.Ln. In each case the

method of the formatter does the same thing as the corresponding procedure in Std
Log, but it sends the output to a text model instead of to the Log. The only other dif

ference is that Write Real allows you to specify the number of digits to insert past the

decimal point, and StdLog.Real does not.

DEFINITION PboxMappers;

IMPORT TextModels;

TYPE
Formatter = EXTENSIBLE RECORD

(VAR f: Formatter) ConnectTo (text: TextModels.Model), NEW;
(VAR f: Formatter) Writelnt (n. minWidth: INTEGER). NEW;
(VAR f: Formatter) WriteReal (x: REAL; minWidth. dec: INTEGER). NEW;
(VAR f: Formatter) WriteChar (ch: CHAR). NEW;
(VAR f: Formatter) WriteString (str: ARRAY OF CHAR). NEW
(VAR f: Formatter) WriteLn. NEW;

Figure 9.7
The interface for
PboxMappers.

(VAR f: Formatter) WritelntVector (IN v: ARRAY OF INTEGER; numltm. minWidth: INTEGER). NEW;
(VAR f: Formatter) WriteRealVector (IN v: ARRAY OF REAL; numltm. minWidth. dec: INTEGER). NEW;
(VAR f: Formatter) WritelntMatrix (IN mat: ARRAY OF ARRAY OF INTEGER;

numR. numC. minWidth: INTEGER). NEW;
(VAR f: Formatter) WriteRealMatrix (IN mat: ARRAY OF ARRAY OF REAL;

numR. numC. minWidth. dec: INTEGER). NEW;
END;

Scanner = EXTENSIBLE RECORD
eot-: BOOLEAN;
(VAR s: Scanner) ConnectTo (text: TextModels.Model). NEW;
(VAR s: Scanner) Pos 0: INTEGER. NEW;
(VAR s: Scanner) Scanlnt (OUT n: INTEGER). NEW;
(VAR s: Scanner) Scan Real (OUT x: REAL). NEW;
(VAR s: Scanner) ScanChar (OUT ch: CHAR). NEW;
(VAR s: Scanner) ScanPrevChar (OUT ch: CHAR). NEW;
(VAR s: Scanner) ScanString (OUT str: ARRAY OF CHAR). NEW
(VAR s: Scanner) ScanlntVector (OUT v: ARRAY OF INTEGER; OUT numltm: INTEGER). NEW;
(VAR s: Scanner) ScanRealVector (OUT v: ARRAY OF REAL; OUT numltm: INTEGER). NEW;
(VAR s: Scanner) ScanlntMatrix (OUT mat: ARRAY OF ARRAY OF INTEGER;

OUT numR. numC: INTEGER), NEW;
(VAR s: Scanner) ScanRealMatrix (OUT mat: ARRAY OF ARRAY OF REAL;

OUT numR. numC: INTEGER). NEW;
END;

END PboxMappers.

The factory design pattern

An interesting characteristic of some objects. particularly those in the MVC design
pattern, is how they come into existence. You can think of them as products that are

184 Chapter 9 The MVC Design Pattern

manufactured in a factory. The analogy to a factory that creates products is so close.
that the object-oriented design pattern that does the same thing for objects is called
the factory pattern. The factory design pattern is a software design technique in
which one object, the factory, creates another object. Although the terminology of a
factory to describe objects that create other objects is widespread in the OOP com
munity, BlackBox does not use that terminology. Instead. the factories of BlackBox
are called directories. When you encounter a directory in a BlackBox interface, you
should think of it as a factory that produces other objects. When you want to send
output to a new window. your program will need to create a new text model and a
new text view to display that model in a window. You will use a factory, that is, a
BlackBox directory, to create the new model and the new view.

The listing in Figure 9.8 shows the interface of module TextModels. The complete
interface is quite large. Only those parts are shown that we will need for the pro
grams in this text. If you are interested, you can view the complete interface on-line.

DEFINITION TextModels;
TYPE

Directory = POINTER TO ABSTRACT RECORD
(d: Directory) New 0: Model, NEW, ABSTRACT;

END;
Model = POINTER TO ABSTRACT RECORD (Containers. Model);

VAR
dir-: Directory;

END TextModels.

Module TextModels declares two classes (types) that we will use for window out
put. One is Model, which is declared as

Model = POINTER TO ABSTRACT RECORD (Containers. Model);

You can see in the UML diagram of Figure 9.6 that TextModels.Model is a subclass
of Containers.Model. In Component Pascal. you declare one class to be a subclass of
another by enclosing the superclass in parentheses after the word RECORD. That is
why Containers. Model is enclosed in parentheses after RECORD. The word
ABSTRACT is a record attribute that indicates the nature of the class. It need not
concern us at the moment. (You may have noticed that the font for TextModels.Model
in Figure 9.6 is bold and slanted. That font style is the UML standard for a class that
is abstract.) Also note that a Model is not just a record, but a pointer to a record. The
difference between a record and a pointer to a record can be ignored for the time
being. Chapter 21 describes pointer types in great detail.

The other class declared in TextModels is Directory. which is defined as

Directory = POINTER TO ABSTRACT RECORD
(d: Directory) New 0: Model, NEW, ABSTRACT;

END;

It is a class, because it has a method New that is bound to it with a receiver (d: Direc-

The factor.,' design pattern

Figure 9.8
The interface for TextModels.
Many items from the
interface are omitted from
this listing.

Output to a new window 185

tory). New is a function procedure as opposed to a proper procedure, because the last
part of its signature is : Model. It is a function that returns a text model. New is the
method of the factory that you call to get a newly created text model. So, it makes
sense that it would return Model.

TextModels.dir is an abstract data structure (ADS). It is an object in module Text
Models and is exported read only. There is only one dir, and any program you write
is not allowed to modify it. Its type is Directory. Note that the receiver of method
New requires a variable of type Directory. When you call New, you will use dir as the
actual parameter for the formal parameter d.

The listing in Figure 9.9 is the interface of module TextViews. As in Figure 9.8,
only a small part of the interface is shown here. The interface for TextViews is simi
lar to the interface for TextModels. View is a class that has Containers. View as its
superclass. dir is an object ADS that cannot be modified by any module that imports
TextViews. As with TextModels, dir will serve as the actual parameter for the formal
parameter d.

DEFINITION TextViews;
TYPE

Directory = POINTER TO ABSTRACT RECORD
(d: Directory) New (text: TextModels.Model): View, NEW, ABSTRACT;

END;
View = POINTER TO ABSTRACT RECORD (Containers.view)

VAR
dir-: Directory;

END TextViews.

The signature of method New in TextViews, however, is not quite the mirror
image of the signature of method New in TextModels. In module TextModels, New
returns a text model and has no formal parameters other than its receiver. In module
TextViews, New returns a text view, but it requires a text model for its parameter in
addition to its receiver. If you have followed the discussion of the MVC design pat
tern up until now, this difference should appear reasonable. Remember that a text
view cannot exist without a model. Before you can create a text view with NEW, you
must have previously created a text model. The model must be supplied to the view
factory so the factory can manufacture a new view for that model.

Output to a new window

The programs in this section will show how to use a text model, a text view, and a
formatter to create a new window containing output. Besides the factory for the
model and the factory for the view, the program will require the services of one
more procedure that is exported from module Views. Figure 9.10 shows a small part
of its interface.

Figure 9.9
The interface for TextViews.
Many items from the
interface are omitted from
this listing.

186 Chapter 9 The MVC Design Pattern

DEFINITION Views;
TYPE

View "" POINTER TO ABSTRACT RECORD (Stores. Store)
END;

PROCEDURE OpenView (view: View);
END Views.

The interface shows that type View is a subclass of Stores. Store. because
Stores. Store is contained in parentheses after the word RECORD. This is consistent
with the UML diagram in Figure 9.6. because the triangle symbol is between
Stores.Store and Views.View.

Procedure OpenView is not a method. It does not have a receiver. nor is it con
tained within the View record. It does take a view as a parameter. What kind of view?
Any kind that has Views. View as a superclass. Figure 9.6 shows that TextViews.View
is a subclass of Containers. View. which is a subclass of Views. View. So. it is legal to
supply an object of class TextViews. View as the actual parameter for formal parame
ter view in procedure OpenView. Similarly. you could supply an object of class
FormViews.View for the actual parameter. When you call OpenView. it makes a new
window appear on the screen and renders the view inside the window.

Figure 9.11 showsa window that is created by the program in Figure 9.12. Proce
dure PrintAddress creates a new text model and inserts text into the model. It then
creates a new view for the model and displays the view in the window.

MODULE Hw99Pr0981;
IMPORT TextModels, TextViews, Views, PboxMappers;

PROCEDURE PrintAddr ••• ·;
VAR

md: TextModels.Model;
vw: TextViews.View;
fm: PboxMappers.Formatter;

BEGIN
md := TextModels.dir.New();
fm.ConnectTo(md);
fm.WriteString("Mr. K. Kong"); fm.WriteLn;
fm.WriteString("Empire State Building"); fm.WriteLn;
fm.WriteString("350 Fifth Avenue"); fm.WriteLn;
fm.WriteString("NewYork, NY 10118-0110"); fm.WriteLn;
vw :z TextViews.dir.New(md);
Views.OpenView(vw)

END PrintAddress;

END Hw99Pr0981.

Procedure PrintAddress has three variables-a model md. a view vw. and a for
matter fm. Each of these variables is an object. What follows is a description of the
effect of the statements in procedure PrintAddress. Figure 9.13 shows the relation-

Figure 9.10
1be interface forVl8Ws. Many
items from the interface are
omitted (rom this listing.

Mr.K Kong
Empire State Buildlllg
350 FIlth Avenue

x

New York NY 10118-0110 ~
., I ili

Figure 9.11
The output for the program in
Figure 9.12

Figure 9.12
A program that creates a text
model and displays it in a text
view.

Output to a /lew window 187

ships between the objects as the program executes.
When the module is first loaded and before the first statement executes as shown

in part (a), md, VW, and fm are all automatically initialized to a special pointer value
called NIL. NIL is a value that represents nothing. The fact that these objects have NIL
values means that they are not connected to, or do not refer to, anything.

The statement

md := TextModels.dir.NewO

calls the factory method New to manufacture a new text model. TextModels is a mod
ule. TextModels.dir is an object (variable) of type Directory in the module. The
receiver for New requires a variable of type Directory. So, TextModels.dir is the actual
parameter that corresponds to the formal parameter d. New is a function that returns
a newly created model. md gets the new model. Figure 9.13(b) shows the effect of
executing the statement.

The statement

fm.ConnectTo(md)

establishes the relationship of the iterator object fm to the new model. ConnectTo is
one of the methods of a formatter shown in Figure 9.7. fm is the actual parameter
that corresponds to formal parameter f in the receiver, and md is the actual parameter
that corresponds to the formal parameter text in the parameter list. Figure 9.13(c)
shows the formatter connected to the model.

The statement

fm.writeString("Mr. K. Kong")

uses formatter fm to insert text into the new model. Because fm was connected to md
earlier. any text that is inserted with the WriteString method is inserted into text
model md. Method WriteLn inserts the line character into the model. Figure 9.13(d)
shows the text inserted into the model.

The statement

vw := TextViews.dir.New(md)

calls the factory method New to manufacture a new text view. TextViews.dir is the
actual parameter that corresponds to formal parameter d in the receiver of New, and
md is the actual parameter that corresponds to formal parameter text in the parame
ter list. Note how you must supply a previously created text model as a parameter to
New. You cannot create a view without a previously created model. Figure 9.l3(e)
shows the newly created view.

All the processing thus far has gone on behind the scenes. Nothing appears on the
screen until the last statement

Views.OpenView(vw)

executes. OpenView is the procedure that creates a window for view vw, as Figure

188 Chapter 9 The MVC Design Pattern

View Formatter

I vw = NIL I fm=NIL

Model

I md = NIL

(a) BEGIN

View Formatter

I vw = NIL Ep
Model

I md # NIL ~[I [

(c) fm.ConnectTo(md)

Viewvw

Model

I md # NIL

Mr. K Kong
Empire Slate BUllding
350 Fifth Av.nue
Ne", 'Iork. rN 10118-0 i 10

Formatter

Ep

(e) vw := TextViews.dir.New(md)

View Formatter

I vw= NIL I fm=NIL

Model

I md # NIL ~[I
(b) md := TextModels.dir.NewO

View Formatter

I VW= NIL IEp
Model

I md# NIL ~[IMI r I 1 K I··· [

(d) fmWriteString("Mr. K. Kong")

Viewvw

ill un.,lIed2 I!I~ E3

Mr. K. Kong

Formatter Empire State Building
350 Fifth Avenue
NawYork. NY 10118·0110 ~ . ~

Model
Ep

I md # NIL

(0 Views.OpenView(vw)

Figure 9.13
The effect of the MVC

statements in Figure 9.12

Outpllt to a new window 189

9.13(0 shows.
The program in Figure 9.12 uses a text model. a formatter, which is an iterator.

and a text view. It does not require the use of a text controller. The program is quite
short. You could simply memorize the first two statements and the last two state
ments in procedure PrintAddress as the pattern to follow when you want your pro
gram to send output to a new window. It would be a mistake, however, to ignore the
ideas of the MVC design pattern, the factory pattern. iterators, and the object-ori
ented concepts that these four statements embody. All these concepts are sound soft
ware design principles that are beginning to playa large role in modem software
development. It is a strength of the BlackBox framework that these powerful ideas
can all be provided in a system with a graphical user interface that is so easy for
even beginning programmers to use.

The program in Listing 9.14 inserts the values from two real variables into a text
model. The output of the program is shown in Figure 9.15. As in the previous pro
gram the procedure has a model object, a view object, and an iterator object for pro
cessing with text.

MODULE Hw99Pr0982;
IMPORT TextModels, TextViews, Views, PboxMappers;

PROCEDURE Rectangle';
VAR

md: TextModels.Model;
vw: TextViews. View;
fm: PboxMappers.Formatter;
width: REAL;
length: REAL;

BEGIN
md := TextModels.dir.NewO;
fm.ConnectTo(md);
width := 3.6;
length := 12.4;
fmWriteString("The width is "); fmWriteReal(width, 1, 2); fmWriteLn;
fmWriteString("The length is "); fmWriteReal(length, 1, 2); fmWriteLn;
vw := TextViews.dir.New(md);
Views.OpenView(vw)

END Rectangle;

END Hw99Pr0982.

Besides the objects for the MVC design pattern. procedure Rectangle has local
variables width and length. It gives each a real value. then uses method WriteReal to
insert their values into the text model. The parameters for PboxMappers.WriteReal
are similar to those for PboxStrings.RealToString in Figure 4.12. Namely. in the
statement

fmWriteReal(width, 1, 2)

Figure 9.14
A program that inserts real
values into a text model.

o ~ untitled :5 ~ I2l EI

The width is 3.60
rhe lengtn IS 12.40 ~

.. 11111

Figure 9.15
The output for the program in
Listing 9.14

190 Chapter 9 The MVC Design Pattern

width is the variable whose value is inserted into the text model, 1 is the field width
which will expand to accommodate the complete value if necessary, and 2 is the
number of places displayed past the decimal point.

Input from the focus window

All the programs thus far that required input have taken it from a dialog box. One
characteristic of these programs is that little input was required. For example, the
problem of computing the wage with overtime required only two numbers to be
input-the hours worked and the hourly rate. Many problems require processing
larger amounts of data, so much data that it would be impractical to ask the user to
enter it every time into a dialog box. These problems are solved by storing the infor
mation in a document. Typically, the information is created by selecting the
File-+New menu option and entering it as text. If there is too much information to
enter in a single session the data entry person can save the document in a file and
continue entering at a later time. When the information needs to be processed, the
document is opened so that the information is visible in the focus window. The pro
cedure that processes the information is then invoked by selecting a menu option.

The next program illustrates the above scenario, although the example is shown
with a small amount of data to keep things simple. Figure 9.16 shows the result of
running the program. Figure 9.16(a) shows the data to be processed in a window
titled Data. It was saved previously in file with that name and consists of text that
represents two real values. While this window was focused, the user selected the
menu option as shown in Figure 9 .16(b), which resulted in the output to the Log
shown in Figure 9.16(c). The processing simply consists of interpreting the first
value as the number of hours worked and the second value as the hourly rate then
computing the resulting wage with a possibility of overtime.

(a) The input window. (b) The menu selection (c) The output.

To get the values from the focus window requires the use of module TextControl
lers, whose partial interface is shown in Figure 9.17.

TextControliers.Controlier is a class. The UML diagram in Figure 9.6 shows that
TextControliers.Controlier is a subclass of Containers. Controller because of the trian
gle between them. Figure 9.17 shows that TextControliers.Controlier is a subclass of
Containers. Controller because Containers. Controller is contained in parentheses after
the Controller record.

Figure 9.16
The input and output of the
program in Figure 9.18.

Input from the focus window 191

DEFINITION TextControliers;
TYPE

Controller = POINTER TO ABSTRACT RECORD (Containers. Controller)
view-: TextViews.View;
text-: TextModels.Model;

END;
PROCEDURE Focus 0: Controller;

END TextControliers.

The UML diagram also shows an arrow originating at a diamond symbol on Text
Controllers. Controller and pointing to TextViews.View. That arrow represents class
composition. It indicates that TextControliers.Controlier is composed of, or contains a
reference to, TextViews.view. Figure 9.17 shows that TextControliers.Controlier has a
field named view in its record with type TextViews.View. That is the meaning of class
composition. One class is composed of a second class if the first class has a field in
its record whose class (type) is that of the second class. Furthermore, a UML dia
gram illustrates class composition by an arrow originating at a diamond from the
box of the first class and terminating at the box of the second class. Similarly, Figure
9.17 shows that TextControliers.Controlier is composed of TextModels.Model,
because it contains a field of that type as well.

Both fields TextViews.Views and TextModels.Model are exported read-only. That
means that you cannot change their values by assigning something to them. How
ever, if you have a local variable of type TextModels.Model you can assign the server
module's exported field to it. Such an assignment does not change the server mod
ules's exported field. The next program uses that technique to extract a model from a
controller.

The following program implements the processing illustrated in Figure 9.16. It
has six local variables. three of which are variables for the MVC design pattem-a
model md, a controller en, and a scanner (iterator) se. Figure 9.19 shows the effect
of the MVC statements in procedure ComputeWages.

At the beginning of the procedure, the MVC variables, md, en, and se, all have
values of NIL. Figure 9.19(a) shows that the values are NIL because there are no
arrows that link the three variables to anything. Because there is a view in the focus
window, there must be a model that already exists before the program executes.
Both the model and its view were created previously by the word processor. The
arrow from the view to its model indicates that the view contains a reference to its
model.

When function procedure TextControliers.Foeus executes in the assignment state
ment

en := TextControliers.FoeusO

the BlackBox framework detects which window is the focus window. If this window
contains the view of a text model, TextControliers.Foeus returns a controller for that
view and assigns it to en. Remember that the controller contains a reference (class
composition) to both a view and its model. When the controller gets the value from
TextControliers.Focus. the field cn.view gets a reference to the focus view, and the

Figure 9.17
The interface for
TextControliers. Many items
from the interface are omitted
from this listing.

Class composition

192 Chapter 9 The MVC Design Pattern

field en.text gets a reference to the view's text model. Figure 9.19(b) shows these
values by the arrows from the controller box.

MODULE Hw99Pr0983;
IMPORT TextModels, TextControliers, PboxMappers, StdLog;

PROCEDURE ComputeWages*;
VAR

md: TextModels.Model;
cn: TextControliers.Controller;
se: PboxMappers.Seanner;
hours, rate: REAL;
wages: REAL;

BEGIN
en := TextControliers.Foeus();
IF en # NIL THEN

md := en.text;
se.ConneetTo(md);
se.SeanReal(hours);
se.SeanReal(rate);
IF hours <= 40.0 THEN

wages := hours * rate
ELSE

wages := 40.0 * rate + (hours - 40.0) * 1.5 * rate
END;
StdLog.String("Wages: "); StdLog.Real(wages); StdLog.Ln

END
END ComputeWages;

END Hw99Pr0983.

If the window contains the view of some other kind of model such as a graphic of
some kind, TextController.Foeus returns NIL. Before proceeding, procedure Com
puteWages checks the value of en to verify that the focus window indeed contains
the view of a text model.

Now that en contains a reference to the model, the statement

md := en.text

extracts the model from en. After this statement executes, md will be the text model
whose view is displayed in the focus window. So, the only purpose of en is to test if
the focus window contains a text view. If so, it gets the view and the model from the
focus window. Now that it has given the model to md its job is done. Figure 9.l9(c)
shows the value given to md by the arrow from the model box.

The statement

se.ConneetTo(md)

establishes the relationship between the scanner se and the model md. Now that the

Figure 9.18
A program that gets its input
from the focus window.

input from the /i)clIS windo\\" 193

Cll1ltroller

en. view = NIL

en. text = NIL

Model

I md = NIL

View

o """'. Dot. ~ 0 EI
500 '2 00 ~

~
4 III

Scanner

I se = NIL

View

C II ontro er
i eJ ~ Data" 0 EI

en.view # NIL I 500 1200 ~
en.text # NIL

• lilt •
t

Model Scanner

I md = NIL I se = NIL

(a) BEGIN (b) en := TextControliers.Foeus()

View

C ontro 11 er
eJ ~",",D.t.,,08

C ontro 11 er

en. view # NIL so 0 1 2 00 ~ en.text # NIL
en. view # NIL

en. text # NIL
• "'I·"" . •

~

Scanner

I se = NIL

(c) md := en. text (d) se.ConneetTo(md)

scanner is connected to the text model, it is ready to scan the values into our vari
ables hours and rate. Figure 9.19(d) shows the connection by the arrow from the
scanner box.

When a scanner is connected to a model. it is always positioned at the beginning
of the model. Therefore, the statement

sc.ScanReal(hours)

scans from the beginning of the text model. This procedure assumes that the next
characters of text in the model represent a real value. If some other character other

View

eJ ='0010,,08

50.0 1200 r.;J

~
• l~ff 'l...:.

~

Figure 9.19
The effect of the MVC

statements in Figure 9.18

194 Chapter 9 The MVC Design Pattern

than a digit or a decimal point is encountered by the scanner, a trap will occur. The
scanner skips over any leading spaces or tabs until it encounters a string of digits
containing a single decimal point. It stops scanning when it reaches the first trailing
non digit character such as a space or the end of a line. It gives the real value to vari
able hours.

The next statement

sc.ScanReal(rate)

picks up the scan where the previous scan left off. In this scenario as depicted in Fig
ure 9.16(a), the previous scan gives the variable hours the value 50.0 and this scan
gives variable rate the value 12.00.

The remaining statements in procedure ComputeWages compute the wage and
output it to the Log.

Creating menu selections

Procedure ComputeTotal is activated by a menu selection as shown in Figure
9.16(b). The menu choices that come standard with BlackBox therefore need to be
augmented to allow the user to activate the program. A menu is a resource, in the
same way that a dialog box is a resource. You create a menu by writing a BlackBox
text document and storing it in your project's Rsrc folder. Figure 9.20 shows the
document that created the menu selections in Figure 9.16(b).

o
MENU ··Hw99·

··Pr0983- .• ·Hw99Pr0983ComputeWages··
··Pr0984·· -- -Hw99Pr0964.ComputeW.ges·

END

.'"

The menu document includes menu selections for the programs in both Figure
9.18 and in Figure 9.22 below. The content of the menu document is

MENU "Hw99"
"Pr0983" "" "Hw99Pr0983.ComputeWages"
"Pr0984" "Hw99Pr0984.ComputeWages"

END

The first line of the menu contains the word MENU followed by the title of the menu
enclosed in quotes. In this case. Hw99 is the title that appears on the menu bar at the
top of the screen. This title is appropriate if you are using this book in conjunction
with a course and your assigned two-digit number is 99. Of course, if you are devel
oping software for another user you would use a title that is more descriptive of the
selections that are available for that menu.

Figure 9.20
The menu document that
produced the menu in Figure
9.l6(b).

Dialog boxes from programs 195

Following the menu title is a line for the first selection that contains four strings.
The second and fourth strings will not concern us until later. They will always be the
empty string for now. The first field is the name of the selection that appears when
the user clicks the menu title. The third field is the command that is activated when
that selection is made. You can see from Figure 9.16(b) that the user has clicked on
the title Hw99 and as a result he may select between Pr0983 and Pr0984. These are
the selections that are enumerated in the first strings of the lines in Figure 9.20.
When he selects Pr0983, procedure Hw99Pr0983.CompuleWages executes as speci
tied by the third string in the line whose first string is Pr0983.

The last line in the menu document is END. It is possible to have one menu docu
ment produce more than one menu on the menu bar. Each menu begins with a line
containing MENU and ends with a line containing END.

Your menu document must be saved in your Rsrc folder and must be named
Menus. When BlackBox starts up, it scans all the folders named Rsrc contained in
all the project folders. If it finds a file named Menus in a Rsrc folder, it interprets the
contents as described above and installs the menu in the menu bar at the top of the
screen. If you have created or modified a new menu and you wish to install or update
it, you do not need to quit BlackBox for the sole purpose of starting it up again to
install the menu. After you have saved the menu document in the Rsrc folder simply
select Info~ Update All Menus, which will initiate the installation process.

Dialog boxes from programs

Previous chapters showed how to activate a dialog box by providing the user with a
commander in the documentation file. Although this is a common technique in the
BlackBox environment, commander buttons and documentation files are not com
mon in commercial programs for either MSWindows or MacOS. Sometimes a dia
log box is activated by a program to provide information to the user. For example, if
you are playing a computer game a dialog box may appear to provide you with
information about the progress of the game.

BlackBox provides a way for a program to activate a dialog box. Figure 9.21
shows such a scenario. It is similar to the scenario shown in Figure 9.16, except that
the results are displayed in a dialog box instead of on the Log.

(a) The input window. (b) The menu selection (e) The output.

The program in Figure 9.22 shows how to activate a dialog box. None of the
lields in the dialog box of Figure 9.21 (c) allow the user to change the displayed val-

Figure 9.21
The input and output of the
program in Figure 9.22.

196 Chapter 9 The MVC Design Pattern

ues. Consequently, the corresponding fields in the interactor d are all exported read
only. As in the previous module, this program takes its input from the focus window.
It has the usual MVC parameters to scan the input values-a model md, a controller
cn, and a scanner sc. Procedure ComputeWages is activated by the menu selection
Hw99->- Pr0984.

MODULE Hw99Pr0984;
IMPORT TextModels, TextControliers, PboxMappers,

PboxStrings, Dialog, StdCmds;
VAR

dO: RECORD
hours-, rate-: ARRAY 16 OF CHAR;
wages-: ARRAY 16 OF CHAR

END;

PROCEDURE ComputeWages*;
VAR

md: TextModels.Model;
cn: TextControliers.Controller;
sc: PboxMappers.Scanner;
hours, rate: REAL;
wages: REAL;

BEGIN
cn := TextControliers.FocusO;
IF cn # NIL THEN

md := cn.text;
sc.ConnectTo(md);
sc.ScanReal(hours);
sc.ScanReal(rate);
IF hours <= 40.0 THEN

wages := hours * rate
ELSE

wages := 40.0 * rate + (hours - 40.0) * 1.5 * rate
END;
PboxStrings.ReaIToString(hours, 1, 1, d.hours);
PboxStrings.ReaIToString(rate, 1,2, d.rate);
PboxStrings.ReaIToString(wages, 1, 2, d.wages);
StdCmds.OpenAuxDialogCHw99/Rsrc/Dlg0984', 'Payroll');
Dialog.Update(d)

END
END ComputeWages;

END Hw99Pr0984.

The procedure is identical to the one in the previous module except for its output.
There are three local variables-hours, rate. and wages-that all have type REAL.
The procedure uses the values of hours and rate that are scanned from the focus win
dow to compute the value for wages. Each of these values is converted to a string
with the desired number of places past the decimal point for display in the dialog

Figure 9.22
A program that gets its input
from the focus window and
puts its output in a dialog box.

box. The same command that is placed after a commander button in a documenta
tion tile is executed directly from the program.

StdCmds.OpenAuxDialog(,Hw99/Rsrc/Dlg0984'. 'Payroll')

As usual, the first parameter is a string that names the file where the dialog box is
stored and the second parameter is a string that gives the title of the dialog box.

When you execute the procedure the first time with given values in the focus win
dow. a new dialog box will appear with the computed values displayed. If you keep
the dialog box visible, change the values in the focus window. and select Hw99-+
Pr0984 once again, a second dialog box will not appear. Instead, the values in the
uld dialug box will simply be updated to reflect the new computation.

Exercises

I. Name the two advantages of using a class instead of an ADT.

2. When you program with objects, (a) what corresponds to the word type? (b) What
corresponds to the word procedure? (e) What corresponds to the word variable?

3. (a) What is a model? (b) What is a view? (e) What is a controller? (d) What is an itera
tor?

4. What is the primary design concept in the MVC design pattern?

S. In the interface of Figure 9.7, (a) is Scanner a module, a type. a constant, a variable. or
a procedure" (b) Is Scanner a model. a view. a controller. an iterator. or a factory? (e)
[n the line

(VAR f: Formatter) Write Real (x: REAL; minWidth, dec: INTEGER), NEW

is f an actual parameter or a formal parameter? (d) Is Formatter a model. a view, a con
troller. an iterator, or a factory')

6. In the interface of Figure 9.8. (a) is dir a module. a type. a constant. a variable. or a pro
cedure? (b) [s dir a model. a view. a controller. an iterator, or a factory?

7. In the procedure in Figure 9.12 in the line

VW := TextViews.dir.New(md)

f:l) is TextViews a module. a type. a constant. a variable. or a procedure? (b) Is dir a
lIIodule. a type, a constant. a variable. or a procedure? (e) [s New a module, a type, a
l"Onstant. a variable. or a procedure? (d) [s md a formal parameter or an actual parame
Il'(!

Exercises 197

198 Chapter 9 The MVC Design Pattern

Problems

8. Do Chapter 7, Problem 14. to construct an RPN calculator, but use the stack class from
PboxStackObj,

9. Do Chapter 7, Problem 16, to construct a full-featured scientific calculator, but use the
stack class from PboxStackObj,

10. Do Chapter 7, Problem 20. to construct a dialog box for two stacks with an "A to B"
button but use the stack class from PboxStackObj.

11. Write a Component Pascal program to output the following two-line message on a new
window:

She said, "Hi there.
What's up?"

Use two Write String procedure calls for the second line to print both the single and the
double quote marks. Test your program by inserting a commander button in a docu
mentation file to execute the exported procedure.

12. Write a Component Pascal program to output to a new window your name and address
suitable for use as a mailing label. Test your program by inserting a commander button
in a documentation file to execute the exported procedure.

13. Using a procedure that is not exported to output a single pattern, write a Component
Pascal program to output the following triple pattern on a new window:

+
+++
+++++
+++

+
+
+++
+++++
+++
+
+
+++
+++++
+++
+

Test your program by inserting a commander button in a documentation file to execute
the exported procedure.

14. Write a program that inputs an integer value for the number of feet and a real value for
the number of inches from the focus window. When the user selects a choice from a
menu item, compute the equivalent length in meters and output the results of the com
putation to the Log. One inch is exactly 0.0254 meters and one foot is exactly 12
inches. Here is a sample output to the Log.

Feet: 4
Inches: 3.8
Meters: 1.31 572

15. Work Problem 14, but display the number of feet and inches and the computed value
for meters in a dialog box.

16. Write a program that inputs two real values for the lengths of two perpendicular sides
of a right triangle from the focus window. When the user selects a choice from a menu
item. compute the length of the hypotenuse and show all three lengths on the Log with
their values identified appropriately as the values are in Problem 14.

17. Work Problem 16, but display the lengths of the two perpendicular sides and the com
puted value for the length of the hypotenuse in a dialog box.

18. Write a program to input three real numbers from the focus window. When the user
selects a choice from a menu item print them in descending order on the Log.

19. Work Problem 18. but output the three real numbers in a dialog box.

20. Write a program to input three integers from the focus window. When the user selects a
choice from a menu item output the number that is neither the smallest nor the largest
on the Log. Assume that none of the integers are equal.

21. Work Problem 20, but output the number in a dialog box.

22. Write a program to input two integers from the focus window. When the user selects a
choice from a menu item output to the Log either the larger integer or a message stating
that they are equal.

23. Work Problem 22, but output the number in a dialog box.

Problems 199

.ca Chapter 10
1iI~

Loops

A powerful feature of all computer systems is their ability to perform repetitious
tasks. Most people dislike monotonous, mechanical jobs that require little thought.
Computers have the marvelous property of executing monotonous jobs without tir
ing or complaining. A group of statements that executes repetitively is called a loop.
This chapter examines two of Component Pascal's several loop statements-the
WHILE statement and the FOR statement.

The WHILE statement

WHILE statements are similar to IF statements because they both evaluate boolean
expressions and execute a statement sequence if the boolean expression is true. The
difference between them is that after the statement sequence executes in a WHILE

statement, control is automatically transferred back up to the boolean expression for
evaluation again. Each time the boolean expression is true, the body executes and
the boolean expression is evaluated again. Figure 10.1 shows the flowchart for the
WHILE statement

WHILE CI DO
SI

END

The WHILE statement tests condition C I first. If C I is false, it skips statement
sequenc~ S I. Otherwise, it executes statement sequence S I and transfers control up
through the collector to the test again.

The flowchart shows several important properties of the WHILE statement. First,
there arc two ways to reach the condition C I-from the statement immediately pre
ceding th~ WHILE statement or from the body of the loop. If C I is true the first time,
it will be tested again after S I executes. S I must eventually do something to change
the e\aluation of C I. Otherwise. C I would be true always, and the loop would exe
cut~ ~ndlessly. Second, Figure 10.1 also shows that it is possible for statement
sequence S I to never execute. It does not execute if C I is determined to be false the
lirst til1l~.

Figure 10.1
The flowchart for the WHILE
statement.

202 Chapter 10 Loops

The eot technique

The first program that illustrates the WHILE statement computes the sum of a list of
numbers in the focus window. Each number represents the dollar balance in a cus
tomer's account. Figure 10.2 shows the input and output for this program. The input
comes from the focus window as the result of a menu selection, and the output is
displayed on the Log.

El ~ Rccount Data"", EllS El=[LogJ=ElI13

54.00 20.40 76.50 Total Is 11::090

(a) The input window. (b) The menu selection (e) The output to the Log.

Figure 1O.2(a) shows a focus window with three real values. While this window
was focused, the user selected the menu option as shown in Figure 1O.2(b), which
resulted in the output to the Log shown in Figure 1O.2(c). The processing simply
consists of adding the real values. To keep the analysis short in the following discus
sion only three numbers were totaled, but the program works equally well with any
number of values in the focus window. The program in Listing 10.3 inputs the data
from the focus window and produces the output on the Log.

As usual, sc is a variable of type PboxMappers.Scanner. sc is the object that
scans the text model for the real values. This program uses the standard pattern for
establishing the model from the focus window and linking sc to it.

The statement

sum:= 0.0

initializes variable sum to 0.0. Then the statement

sc. ScanReal(balance)

scans the first value, which in this example is 54.00. The scan has two effects. First.
because the value scanned from the model was 54.00 from the focus window, the
effect is the same as the assignment statement

balance := 54.00

Second. because there was a value that got scanned. the effect is also the same as the
assignment statement

sC.eot := FALSE

Figure 10.2
The input and output of the
program in Listing 10.3.

MODULE Pbox10A;
IMPORT TextModels, TextControliers, PboxMappers, PboxStrings, StdLog;

PROCEDURE ComputeTotal*;
VAR

md: TextModels.Model;
cn: TextControliers.Controller;
sc: PboxMappers.Scanner;
balance: REAL;
sum: REAL;
sumString: ARRAY 16 OF CHAR;

BEGIN
cn := TextControliers.FocusO;
IF cn # NIL THEN

md := cn.text;
sc.ConnectTo(md);
sum:= 0.0;
sc.ScanReal(balance);
WHILE -sc.eot DO

sum := sum + balance;
sC.Scan Real(balance)

END;
PboxStrings.ReaIToString(sum, 1, 2, sumString);
StdLog.String("Total is $");
StdLog.String(sumString); StdLog.Ln

END
END ComputeTotal;

END Pbox1 OA.

You can see from the interface of PboxMappers in Figure 9.7 that every scanner has

The eot techniqlle 203

Figure 10.3
A program to find the total of
all the data values in the focus
window. It uses the eot
technique.

a variable exported read-only called eot, which stands for end of text. If your scan- Thl! behavior of l!iJI/rom

ner attempts to scan an integer or real value from a text model but there are no more PboxMappers.ScUilIler

values left to scan, the actual parameter gets some unknown large value and sC.eot is
set to true. Otherwise, the actual parameter gets the value scanned and sC.eot is set
to false.

The next statement to execute is

WHILE -sc.eot DO

Ikc;luse sC.eot is false, -sc.eot is true. and the body of the loop executes. The first
,1"1~lllent in the statement sequence of the WHILE body is

'iUrn := sum + balance

;'1'/111); 0.0 + 54.0 to sum. The second statement in the statement sequence of the
'I'll IILE is

';< ';canReal(balance)

204 Chapter 10 Loops

which scans the next group of characters in the text, giving balance the value of
20.40 and s.eot the value of false.

Now, control returns back to the test of the WHILE loop, which is still true. So.
the statement sequence executes again. The assignment statement gives sum the
value of 54.0 + 20.4. which is 74.4. The sc.ScanReal(balance) statement gives bal
ance the value of 76.5 and sC.eot the value of false.

Control again returns back to the test of the WHILE loop. which is true again. So,
the statement sequence executes once more. The assignment statement gives sum
the value of 74.4 + 76.5, which is 150.9. This time the sc.ScanReal(balance) state
ment gives sC.eot the value true because there is no more visible text after the posi
tion of the scanner.

When control returns back to the test of the WHILE loop, the condition is false, so
the loop terminates, and the statements following the loop END execute. They con
vert the real value of sum to the corresponding string value of sumString and output
the result to the Log.

Execution counts

As consumers, we are familiar with the process of evaluating products. When you
choose between two automobiles to purchase, what factors influence your choice?
For some people, speed and road handling may be the most important factors. Oth
ers may care about fuel economy. Some may be looking for luxury and a smooth
ride. Most people are also concerned about price. These factors usually compete
with one another in the car buyer's mind. A car with much power and speed typi
cally does not have good fuel economy. One that is luxurious does not come with a
low price. In design terminology, that is a trade-off. The buyer may wish to trade off
fuel economy to gain speed and power.

The same type of problem emerges when we evaluate algorithms. Several com
peting factors are present. Usually, a gain of one property in an algorithm comes at
the expense of another. Two important properties of an algorithm are the memory The space/time trade-uff

space required to store the program and its data, and the time necessary to execute
the program. To compare several different algorithms that perform the same compu-
tation. we need a method of assessing these two properties. The following discus-
sion presents a method for estimating the time necessary to execute a program.

One way to estimate the time necessary for an algorithm to execute is to count the
number of statements that execute. If an algorithm has no IF statements or loops,
then the number of statements that execute is simply the number of executable state
ments in the program listing.

If the algorithm has a loop, however, the number of statements in the listing is not
equal to the number of statements executed. This is because the statements in the
body may execute many times, even though they appear only once in the program
listing.

Procedure ComputeTotal has 12 executable statements shown below. The declara
tions in the variable declaration part are not executable. Neither are the END
reserved words.

Statement
number
(I)
(2)
(3)
(4)
(5)
(6)
(7)

(8)
(9)
(10)

(II)
(12)

Executable statement
cn := TextControliers. Focus()
IF nc # NIL THEN
md := cn.text
sc.ConnectTo(md)
sum:= 0.0
sc.ScanReal(balance)
WHILE -s.eot DO
sum := sum + balance
sc.ScanReal(balance)
PboxStrings.ReaIToString(sum, 1, 2, sumString)
StdLog.String("Total is $" + sumString)
StdLog.Ln

Even though the listing contains 12 executable statements, more than 12 state
ments execute. Statements (8) and (9) are part of a loop and may execute more than
once. For the three real values in the focus window, statement (7) executes four
times, and statements (8) and (9) each execute three times, as shown by the trace
below.

Statement
executed sum balance sC.eot sumString
(I)

(2)
(3)
(4)
(5) 0.0
(6) 0.0 54.0 false
(7) 0.0 54.0 false
(8) 54.0 54.0 false
(9) 54.0 20.4 false
(7) 54.0 20.4 false
(8) 74.4 20.4 false
(9) 74.4 76.5 false

OJ 74.4 76.5 false
(8) 150.9 76.5 false
(9) 150.9 ? true
(7) 150.9 ? true
(10) 150.9 ,) true "150.90"
(11) 150.9 ? true "150.90"
(12) 150.9 ') true "150.90"

So, the total number of executions is one each for statements (1), (2). (3), (4), (5), (6),
(10), (11), and (12) for a total of nine. plus four for statement (7), plus three each for
statements (8) and (9) for a total of six. The grand total is therefore nine plus four
plus six, which is 19 statements executed.

If there were no data values in the foclIs window, then the trace would be as

Execution COUIllS 205

The execu/ahle sta/cmellls o(

1)rocedure COll1pute To/ul

A trace o(procedure
ComputeTorlll ",ith three data

values ill /he/ilcus ",iI/dOlt'

206 Chapter 10 Loops

shown below, and 10 statements would execute,

Statement
executed sum balance sc.eot sumString
(I)

(2)

(3)
(4)
(5) 0.0
(6) 0.0 ? true
(7) 0.0 ? true
(10) 0.0 .) true "0.00"
(II) 0.0 ? true "0.00"
(12) 0.0 ? true "0.00"

If the focus window contained n data values, then a total of 3n + 10 statements
would execute as shown in Figure 10.4.

Statement No data

values

(I) I
(2) I
(3) I
(4) I
(5) I
(6) I
(7) I
(8) 0
(9) 0

(10) I
(1\) \
(12) I

Total: to

Execution time estimates

Three data

values

I
I
I
I
I
I
4
3
3
I
\
\

19

n data

values

n + I
n
n
1
1
1

3n + 10

You can use the general expression for the statement count, 3n + 10, to estimate the
execution time for a large number of data values, given the execution time for a
small number of data values.

Example 10.1 Suppose you execute procedure ComputeTotal with 100 data values
and it takes [40 ,us (140 microseconds, which is [40 x 10-6 seconds). The problem
is to estimate how long it would take to execute the program with 1000 data values.

Assuming that each executable statement takes the same amount of time to execute,
simply form the ratio

A trace of procedure
ComplIteTotal with no data
vallles in rhefoclIs window

Figure 10.4
Statement execution count for
the procedure ComputeTotal
in Figure 10.3.

Execution time estimates 207

140 T
3x100+lO 3x1000+lO

where T is the time to execute with 1000 data values. Solving for T gives

140 T
310 3010

or T = 1359 ,us = 0.001359 s. I

The time of 0.00136 seconds is only an estimate. Each statement in procedure
ComputeTotal does not execute in the same amount of time. Remember that the
compiler must translate the Component Pascal source statements to object state
ments in machine language before it can execute. Typically, the compiler translates
one source statement to more than one object statement. It may translate one source
statement into three object statements and another source statement into five object
statements. Furthermore, even the object statements do not execute in equal amounts
of time. Under these circumstances, it is unreasonable to expect each source instruc
tion to execute in the same amount of time.

The following example shows why the estimate works so well in practice. In
dealing with large numbers of data, say hundreds or thousands for the value of n, the
additive constants are insignificant to the final result and can be ignored.

Example 10.2 In the previous example, ignoring the additive constant, 10, in the
expression can be justified because 310 is about equal to 300, and 30 lOis about
equal to 3000. Assuming that 3n + 10 is approximately equal to 3n, forming the
ratio and solving for T then yields

140
3 x 100

140
100

T
3 x 1000

T
1000

or T = 1400 ,us
mate.

0.00140 s, which is not too different from our original esti
I

Notice that when you ignore the additive constant. the coefficient of n, which is 3.
cancels in the ratio. Why is the coefficient of n unimportant in the estimate of the
execution time for 1000 data values? Because for these large amounts of data. Esrimllling [he e.reCllriOIl rilile

namely n = 100 and n = 1000. the number of statements executed is just about In ignoring rhe "ddiri\'e

directly proportional to n. That implies that doubling the number of data values will COl/srWI! wl£lrhe c(!~tJicienl.\

double the number of statements executed. hence it will double the execution time,
Or, as in this problem, multiplying the number of data values by 10 multiplies the
execution time by 10.

Although the coefficient of n is unimportant in estimating the execution time for
one algorithm with different amounts of data. it is important in comparing two dif
ferent algorithms for the same job. If one algorithm requires 4n + 5 statements to

208 Chapter IO Loops

execute, and another algorithm to do the same processing requires 7n + 5 statements
to execute, the first will execute faster than the second with the same amount of data.

Loop invariants

A loop invariant is an assertion at the beginning of a loop. Because it is an assertion,
it is a statement that is true at a specific point in a program. Figure 10.5 shows the
point at which a loop invariant is true.

Statement }
(* Location of loop invariant *)
(* Loop invariant is true. *)
WHILE Condition} DO

Statement2
END

Figure 10.5
The location of the loop
invariant for a WHILE loop.

(* Loop invariant is true and Condition) is false. *)

(a) Flowchart. (b) Source code.

You can see from Figure 1O.5(a) that there are two ways to get to the loop invariant.
You can get to it from above by executing the statement sequence Sl, or you can get
to it from below by executing the statement sequence S2 in the body of the loop.

In the program of Figure 10.3, the statement sequence SI is

sum:= 0.0;
sc. Scan Real (balance)

the condition CI is

-sc.eot

and the statement sequence S2 is

sum := sum + balance;
sc.ScanReal(balance)

For this program, the loop invariant is

Using the Phox scanners 209

• sum is the total of all the values scanned, not including the current value
scanned into balance.

To prove that a statement is a loop invariant, you must show two things:

• The statement is true initially because of the execution of 51.

• The statement is true at the end of each loop because of the execution of 52.

Now consider the proposed loop invariant for Figure 10.3. Because of the execution
of 51. sum has value 0.0 and balance has value 54.00 assuming the values shown in
Figure 10.2. But 0.0 is the total of all the values scanned, not including the 54.00
sc:mned into balance. It follows that the first part of the proof is true. To prove the
second part, consider how 52 executes. CI must be true at the beginning of 52. That
is, sc.eot must be false. But regardless of whether you get to the body of the loop
from above or from below, the statemcnt

sc.ScanReal(balance)

was just executed. So, you know that you just did a scan into balance, after which
sC.eot is false. Therefore, balance contains a valid real number. The statement
sequence 52 adds the scanned value to sum, then does a scan. So after 52 executes,
sum is once again the total of all the values scanned, not including the current value
scanned into balance. It follows that the second part of the proof is true.

Consider what must be the case when a WHILE loop eventually terminates.

• The loop invariant is true.

• The loop condition is false.

The loop condition must be false, because that is the only way the loop can termi
nate. For the program of Figure 10.3, you know that after the loop terminates sum is
the total of all the values scanned, not including the current value scanned into bal
ance and that sC.eot is true. Because sC.eot is true, you know that the current value
of balance should not be added to sum, which now contains the correct value.

This algorithm illustrates a common programming technique. Generally, when
you program with loops, you should try to formulate a useful loop invariant. Estab
lish the invariant before the loop executes the first time. Then, design the body of the
loop so that each time it executes, the loop invariant becomes true when you reach
the condition at the top of the loop from below. That is, you must write the body of
the loop in such a way to reestablish the loop invariant.

The concept of a loop invariant may seem like much ado about nothing, or it may
seem to be making a complicated point about something that appears simple. Using
loop invariants to design programs is frequently a useful design technique that you
will find aids in reasoning about your loops.

Using the Pbox scanners

Recall the rule for assignment statements that allows you to assign an integer value
to a real v,uiable, but does not allow you to assign a real value to an integer variable.
A similar rule applies to a Pbox scanner. You can scan an integer value into a real
lariable. but you cannot scan a real value into an integer variable. Here is the docu-

The IUIJp inmriilnr/iJr Figure
IIU

Prunng a loop illl'(lriallt

When (I WHILE loop
ternlinales

L/.<.;ing loop illl'UriuJlts

210 Chapter 10 Loops

mentation for Scan Real from module PboxMappers.

PROCEDURE (VAR s: Scanner) Scan Real (OUT x: REAL). NEW
Pre
s is connected to a text model. 20
Characters scanned represent a real or integer value. 21
Post
-s.eot

x gets the next real or integer value scanned.
s.eot

x gets MAX(REAL)

It shows that the text scanned can represent integer or real. If it is something else.
such as a letter, a trap will be generated with error number 21.

Example 10.3 In Figure 10.2, if the input is

54 20.40 76.50

with the first number written as an integer, the program will execute correctly. How
ever, if the input is

$54.00 $20.40 $76.50

a trap will be generated because of the dollar signs.

The documentation for Scanlnt is

PROCEDURE (VAR s: Scanner) scanlnt (OUT n: INTEGER). NEW
Pre
s is connected to a text model. 20
Characters scanned represent an integer value. 21
Post
-s.eot

n gets the next integer value scanned.
s.eot

n gets MAX(INTEGER)

It shows that the text scanned must represent an integer.

I

Example 10.4 Suppose numEmp is an integer variable that is supposed to repre
sent the number of employees in a company. and your program executes

sc.Scanlnt(numEmp)

wi th the text

147.0

Computing the average 211

in the focus window. The program will trap with error number 21 because of the
decimal point in the text. I

The documentation for both Scanlnt and Scan Real shows that when sC.eot is
true, that is, when no value is scanned because the end of text has been reached, the
actual parameter gets its maximum possible value. See Example 4.15, page 60, for
the definition of the MAX function.

If you ever stop doing a scan before the scanner reaches the end of the text model,
the remaining values are simply not scanned or processed by your program.

Example 10.5 Suppose score is an integer variable and you execute the loop

sc.Scanlnt(score);
WHILE -sc.eot & (score <= 100) DO

StdLog.String("score = "); StdLog.lnt(score); StdLog.Ln;
sc.Scanlnt(score)

END

with the input containing the text

78 94 85 73 75 200 80 79

The program will scan the first five numbers and print them on the Log. Then it will
scan the 200, but the condition will be false. because even though -sc.eot is true.
score <= 100 is false. The loop will not print the 200 to the Log, nor will it ever scan
the 80 or the 79. I

Computing the average

Suppose you want to compute the average of the balances in the accounts. You
would need not only their sum, but the number of accounts as well. The algorithm in
Figure 10.6 uses another integer variable, numAccts, to count how many data values
are in the focus window.

sum:= 0.0;
numAccts := 0;
sc.Scan Real(balance);
WHILE -sc.eot DO

sum := sum + balance;
INC(numAccts);
sc.ScanReal(balance)

END;
IF numAccts > 0 THEN

Output sum I numAccts
ELSE

Output a no accounts message
END

Figure 10.6
An algorithm to find the
average of all the data values
in the focus window.

212 Chapter 10 Loops

This algorithm illustrates a common programming technique. To determine how
many times a loop executes. initialize a counting variable. in this algorithm num
Accts. outside the loop to zero. Each time you scan a real value in the statement
sequence of the loop, increment the counting variable by one. When the loop termi
nates. the value of thc counting variable will be the number of values scanned by the
loop. Before dividing by numAccts to compute the average, you must test to make
sure that it is not zero. Otherwise your program may attempt a division by zero.
which would cause a program trap by your user.

Finding the largest

The algorithm in Figure 10.7 finds the largest number from the focus window that
contains integer values. If the input in the focus window is

73 80 -18 68 92 75

then the output is 92.

The two variables, num and largest. are integers. The algorithm works by scan
ning the first value from the text model into num. If the text model is empty the bool
ean sC.eot will be set to true. because a scan was attempted at the end of the text. In
that case, the algorithm outputs a message indicating that the focus window is
empty.

sc.Scanlnt(num)
IF sC.eotTHEN

Olltput empty window message
ELSE

largest := num
sc.Scanlnt(num)
WHILE -sc.eot DO

IF num > largestTHEN
largest := num

END
sc.Scanlnt(num)

END
Olllpllt largest

END

On the other hand. if sC.eot is false then an integer value has been scanned into
num. 73 in this example. The first statement in the ELSE part initializes largest to the
first value scanned. So now. both largest and num have the value 73. Then. the
sc.Scanlnt statement before the WHILE attempts to scan the second value from the
text model. In this example. it would scan the 80 into num and set sC.eot false.
because the scan was successfully executed before the end of text.

The first time the body of the loop executes. num is greater than largest, because
it has the value 80. So, largest gets the value 80 from num. Then, num gets the next

Figure 10.7
An algorithm to find the
largest value in the focus
window.

value from the focus window. -18. At this point. the WHILE statement is about to
execute. You should be able to formulate the loop invariant for this program.

• largest has the largest of all the values scanned, not including the current value
scanned into num.

Can you see that this loop invariant is true just before the loop executes even for the
first time?

The second time through the loop, the true alternative of the IF statement does not
execute, because the value of num, which is now -18, is not greater than the value of
largest, which is 80. Had the value of num been greater than 80, largest would have
acquired that value and would still be the largest number scanned thus far. When the
loop terminates the loop invariant will still be true. That is, variable largest has the
largest value scanned so far, except for the last value scanned into variable num.
Because no value is scanned into num when the scanner is at the end of text, largest
will contain the largest of all the integer values in the focus window.

This algorithm illustrates a common programming technique. To save a value
through successive loop iterations, declare a variable and initialize it appropriately.
In the body of the loop, update the value with an assignment statement in the alter
native of an IF statement as needed.

Real Expressions

Real Expressions 213

The loop illvarial1ttiJr Figure

10.7

You must be careful when you test real expressions in WHILE statements. Unlike Real vailles are approximate

integer values, real values have fractional parts, which the computer can store only
approximately in main memory. The approximate nature of real values can cause
endless loops if you do not design your WHILE tests properly.

Example 10.6 The following code fragment, where r is a real variable, is an end
less loop:

r:= 0.6;
WHILE r# 1.0 DO

r := r + 0.1
END

It would seem that after r is initialized to 0.6, the loop would increase it to 0.7, 0.8,
0.9, and 1.0, at which point the loop would terminate. The problem is that r is never
exactly 1.0 after those calculations. After four executions of the loop the value of r
will be approximately one. not exactly one. I

The problem in Example 10.6 is that r was tested for strict inequality. In general,
you should use the following rule for testing real values:

• Never test a real expression for strict equality. =, or strict inequality, #.

Tests for real values should always contain a less than or a greater than part.

Example 10.7 The previous example could be coded

214 Chapter 10 Loops

r:= 0.6;
WHILE r <= 0.95 DO

r:=r+O.1
END

which would increase r to 0.7, 0.8, 0.9, and 1.0, at which point the loop would termi
nate. I

The Component Pascal language does not have an operator that raises a value to a ,Hillimi"in!? the number o{

power. However, the Math library module has the function mllitiplicutions

PROCEDURE IntPower (x: REAL; n: INTEGER): REAL

For example, the expression 7 x3 where x is a real variable can be written

7 * Math.lntPower (x, 3)

Without the function, the expression would be written 7 * x * x * x, which requires
three multiplications. With the function, three multiplications are necessary inside
the function itself. Multiplication of real values is one of the most time-consuming
operations that the CPU can do. Polynomial expressions, which are sums of terms
such as 7 i , are especially time consuming when they occur in loops that execute
repeatedly. A common technique to minimize the computation time is to completely
factor such expressions to reduce the number of real multiplications required. This
technique will be used in the program in Figure 10.11.

3 ~
Example 10.8 Suppose you need to evaluate 7x + 2x" + 8x + 5. Without factor-
ing, the corresponding Component Pascal expression is

7*x*x*x+2*x*x+8*x+5

which requires six multiplications and three additions. On the other hand, if you
completely factor the expression as ((7 x + 2)x + 8)x + 5 then the corresponding
Component Pascal expression is

((7' x + 2) • x + 8) * x + 5

which requires only three multiplications and three additions. I

The bisection algorithm

A numerical method is an algorithm that calculates a value or set of values that
approximates the solution of a mathematical problem. The program in Figure 10.11
is a numerical method that computes one root of the cubic equation
x 3 _ i - 4x + 2 = a with the bisection algorithm.

Figure 10.8 is a graph of the function I(x) = x 3 - x 2 - 4x + 2. The roots of the
cubic equation are the values of x for which I(x) = O. Figure 10.8 shows that I(x)

is zero for three ditlerent values of x: (a) between -2.0 and -1.0, (b) between 0.0 and

Figure 10.8
A graph of the function

/(x) = x 3 - / - 4x + 2

The bisection algorithm 215

1.0, and (c) between 2.0 and 3.0. Although this cubic equation has three roots, cubic
equations in general can have from one to three roots. The program will determine
the root of the equation that lies between x = 2 and x = 3.

In the bisection algorithm, the variable left is a value of x that lies to the left of the
root and the variable right is a value of x that lies to the right of the root. This algo
rithm initializes left to 2.0 and right to 3.0. Then, as Figure 1O.9(a) shows, it calcu
lates the variable fleft as

fleft := flleft)

The next step is to compute the value of x that is the midpoint between left and right.
As Figure 1O.9(b) shows, the algorithm gives that value of x to the variable mid and
computes fMid as

fMid := f(mid)

The value of fMid determines whether the root lies to the left or right of mid. If fleft
and fMid have the same sign, then the root lies to the right of mid. Otherwise, the root
lies to the left of mid. In the figure, fleft and fMid have the same sign, because both
are negative. Therefore, the root lies to the right of mid.

left right left mid right

fleft
fMid ~ ,

left right

fleft ~

(a) Before the loop executes the
first time.

(b) Computation of mid and fMid. (c) Updating left and fleft.

If the root lies to the right of mid, the algorithm changes the value of left and fleft
by

left:= mid
fleft := fMid

as Figure 1O.9(c) shows. The root is still between left and right. Had the root lain to
the left of mid, the algorithm would have changed the value of right by

right:= mid

so that the root would still be between left and right.
The bisection algorithm continues to find the midpoint between left and right.

Figure 10.9
The bisection algorithm to
find a root affix).

216 Chapter 10 Loops

Each time it updates left or right, it decreases the interval between them such that the
root is still in the interval. The loop invariant is the assertion that the root is between
left and right. The loop terminates when left and right get close enough to satisfy a
tolerance limit set by the user.

Figure to. I 0 shows three executions of a program that implements the bisection
algorithm. When the user enters 0.1, the bisection method calculates the root as
2.34375. It is accurate to the nearest tenth, so the last four digits, 4375, may not be
significant. When the user enters 0.01, the loop executes more times and calculates
the root as 2.33984375, a more accurate value for the root than 2.34375. The smaller
the tolerance, the more times the loop executes and the more accurate is the value
for the root. But then the program runs longer. So there is a trade-off between the
accuracy of the solution and the execution time.

~ Pol~no,"al ~~ EJ ~ Pol~nom .. 1 ~~EJ

T dorance 10 1 T",",once 1001

l~oe>\l I~~I
Root 12.3-4375

Procedure Compute Root in Listing to.ll implements the bisection algorithm in
Component Pascal. The real value for the tolerance entered by the user is stored in
d.tolerance. As long as the length of the interval is greater than the tolerance entered
by the user, the loop executes. Each time the loop executes, the program halves the
interval, which guarantees that the loop will eventually terminate.

If the user enters zero for the tolerance, the loop will execute endlessly, because
continually halving the interval never permits it to reach zero. If the user enters a
negative tolerance, the loop will execute endlessly because the boolean expression
in the WHILE statement will always be true. The program could be improved by test
ing the tolerance for negative or zero values and not allowing them.

The loop inl'ariant for the
bisectioll all{orithm

Figure 10.10
Three executions of the
bisection algorithm of Listing
10.11.

* PolynomIal ~~ EJ

ToIer~ 10001

I~~I

MODULE Pbox10B;
IMPORT Dialog;
VAR

dO: RECORD
tolerance*: REAL;
root-: REAL

END;

PROCEDURE ComputeRoot*;
CONST

a3 = 1.0; a2 = -1.0; a1 = -4.0; aO = 2.0;
VAR

left, fLeft: REAL;
mid, fMid: REAL;
right: REAL;

BEGIN
left := 2.0;
fLeft := ((a3 * left + a2) * left + a1) * left + aO;
right := 3.0;
(* Assert: root is between left and right *)
WHILE ABS(left - right) > d.tolerance DO

mid := (left + right) / 2.0;
fMid:= ((a3 * mid + a2) * mid + a1)' mid + aO;
IF fLeft * fMid > 0.0 THEN

(* Assert: root is between mid and right *)
left:= mid;
fLeft := fMid

ELSE
(* Assert: root is between left and mid *)
right:= mid

END
END;
d.root := (left + right) / 2.0;
Dialog.Update(d)

END ComputeRoot;

BEGIN
d.tolerance := 1.0;
d.root := 0.0

END Pbox10B.

Stepwise refinement

The next example of the WHILE loop illustrates a software development technique
known as stepwise refinement. The data for this problem consists of a focus window
containing an employee ID number followed by two real values that represent the

number of hours worked per week and the hourly pay rate for that employee. The
program must output to the Log a table with the employee ID number, hours
worked. and weekly pay with the possibility of overtime. It must also determine the

Stepwise refinement 217

Figure 10.11
Computation of the root of a
polynomial equation with the
bisection algorithm.

218 Chapter 10 Loops

average salary of all the employees as well as the number of employees who earned
overtime. For example, if the focus window contains the text

"123-A6002" 35.0 13.00
"123-A6517" 45.0 10.00
"561-83882" 40.0 12.50
"561-84559" 40.0 11.00
"561-87384" 50.0 10.00

then the output to the Log should be

123-A6002
123-A6517
561-83882
561-84559
561-87384

35.0
45.0
40.0
40.0
50.0

455.00
475.00
500.00
440.00
550.00

Average wages: 484.00
Number with overtime: 2

Stepwise refinement is based on the concept of abstraction. The idea is to not be
concerned with all the details that are necessary for the final Component Pascal pro
gram, but instead to focus on the logic at a higher level of abstraction. The process
consists of a number of steps or passes at the problem. At each pass, you get to a
lower level of abstraction until you reach the final pass which produces the complete
program. What follows is a description of the passes for a stepwise refinement solu
tion for the above problem.

The first step is to determine the variables in the VAR section. Remember that
input, processing, and output are the three major parts of a program. That gives a
hint of the variables required.

lnpllt-The input consists of a sequence of lines, each one of which contains a
string and two real values. Hence you will need an array of characters, say emplD.
and two real variables, say hours and rate, for the input. You will need a scanner sc
to input their values. While it is true that you will need a model and a view to get the
input from the window, you should not be concerned with those details until the very
last pass.

Processing-To compute the average, you must compute each wage and divide
the total wages by the number of employees. Hence you will need real variables,
wages and totalWages, to store the computed wage for an individual and for the
total of all the wages. An integer variable. numEmp, will count the number of
employees. The integer variable numOvertime will keep track of the number of
employees who worked overtime.

OutPlIt-The three variables. hours, rate. and wages. will be used to output a sin
gle line in the report. aveWages will be a real variable for outputting the average
wage at the bottom of the report. The value of numOvertime will also appear at the
bottom.

The tentative variable declaration part now looks like this:

VAR
sc: PboxMappers.Scanner;
emplD: ARRAY 16 OF CHAR;
hours, rate: REAL;
wages, totalWages, aveWages: REAL;
numEmp, numOvertime: INTEGER;

In this problem, the number of variables and their types were fairly easy to deter
mine before writing the logic of the program. With some problems it is not always
possible to determine the variables beforehand. In general, you should determine the
principal variables of the program at an early stage of the stepwise refinement. Then,
augment the variable declaration part with new variables as refinement progresses.

First pass-The program in Figure 10.3 showed the technique of processing a set
of values using the eot technique. The coding pattern is to perform a scan before the
loop. In the body of the loop, process the data that was just read. After processing,
scan the model for the next values as the last statements in the loop. Using this pat
tern, the first pass is the following:

Initialize variables
Input emplD, hours, rate
WHILE -sc.eot DO

Process emplD, hours, rate
Input emplD, hours, rate

END
Compute the average
Output aveWages, numOvertime

Second pass-Each pass in a stepwise refinement solution should concentrate on
one aspect of the problem. This problem requires a table with a list of values and
summary information at the bottom. The second pass will solve the table output part
of the problem. Two kinds of lines appear in the body of the report, one for those
who worked overtime and one for those who did not. This requires an IF statement
in the body of the loop. The summary information appears once at the bottom of the
report. The output statements for the summary must therefore be after the END of
the WHILE loop. Here is the second pass:

Initialize variables
Input emplO, hours, rate
WHILE -sc.eot DO

IF employee did not work overtime THEN
Compute wages without overtime

ELSE
Compute wages with overtime

END
Output emplD, hours, wages
Input emplD, hours, rate

END
Compute the average
Output ave Wages, numOvertime

Stepwise refinement 219

220 Chapter 10 Loops

Third pass-This pass will solve the problem of computing the average and the
number who worked overtime. The average is the sum of the wages divided by the
number of employees. You can compute the sum by the technique of Figure 10.6.
That example initialized the variable sum to 0.00 before the WHILE loop. Each time
the loop executed. sum increased by the value input from the file. In this problem,
you can initialize and increase totalWages the same way.

You can compute the number of employees using numEmp as a counting vari
able. Initialize numEmp to zero before the WHILE loop. Each time the body of the
loop executes, increment numEmp by one. After the loop has terminated. the value
of numEmp will equal the number of times the loop was executed, which equals the
number of times a line was processed, which equals the number of employees.

Similarly, you can initialize numOvertime to zero before the loop. But now you
only want to increment numOvertime by one if the employee worked overtime. The
third pass is

totalWages := 0.0
numEmp:= 0
numOvertime := 0
Input emplD, hours, rate
WHILE -s.eot DO

IF employee did not work overtime THEN
wages := hours' rate

ELSE
wages := 40.0 • rate + (hours - 40.0) • 1.5 • rate
INC(numOvertime)

END
totalWages := totalWages + wages
INC(numEmp)
Output emplD, hours, wages
Input emplD, hours, rate

END
IF numEmp > 0 THEN

aveWages := totalWages / numEmp
ELSE

ave Wages := 0.00
END;
Output aveWages, numOvertime

Fourth Pass-This pass is the complete Component Pascal program shown in
Figure 10.12.

This program shows several common stepwise refinement characteristics. In
every pass except the last one, all the irrelevant details of input and output should be
suppressed. The first three passes of this example used the pseudocode statements
Inplll and Output. Only on the last pass were they converted to Component Pascal
scans and StdLog procedures with formatting details.

MODULE Pbox10C;
IMPORT TextModels, TextControliers, PboxMappers, PboxStrings, StdLog;

PROCEDURE ProcessPayroll*;
VAR

md: TextModels.Model;
en: TextControliers.Controller;
se: PboxMappers.Seanner;
emplD: ARRAY 16 OF CHAR;
hours, rate: REAL;
wages, totalWages, ave Wages: REAL;
numEmp, numOvertime: INTEGER;
outString: ARRAY 32 OF CHAR;

BEGIN
en := TextControliers.FoeusO;
IF en # NIL THEN

md := en.text;
se.ConneetTo(md);
totalWages := 0.0; numEmp := 0; numOvertime := 0;
se.SeanString(empID); se.SeanReal(hours); se.SeanReal(rate);
WHILE -se.eot DO

IF hours <= 40 THEN
wages := hours' rate

ELSE
wages := 40.0 • rate + (hours - 40.0) • 1.5 • rate;
INC(numOvertime)

END;
StdLog.String(empID);

Stepwise refinement 221

Figure 10.12
A payroll report with
summary information

PboxStrings.ReaIToString(hours, 8, 1, outString); StdLog.String(outString);
PboxStrings.ReaIToString(wages, 12, 2, outString); StdLog.String(outString);
StdLog.Ln;
totalWages := totalWages + wages;
INC(numEmp);
se.SeanString(empID); se.SeanReal(hours); se.SeanReal(rate)

END;
IF numEmp > 0 THEN

aveWages := totalWages / numEmp
ELSE

aveWages:= 0.00
END;
StdLog.String("Average wages: ");
PboxStrings.ReaIToString(aveWages, 1,2, outString); StdLog.String(outString); StdLog.Ln;
StdLog.String("Number with overtime: ");
PboxStrings.lntToString(numOvertime, 1, outString); StdLog.String(outString); StdLog.Ln;

END
END ProeessPayroll;

END Pbox10C.

222 Chapter 10 Loops

Each pass should isolate and solve one specific part of the problem. In this pro-
gram, the parts solved by each pass were the following:

• First pass input from the focus window

• Second pass output of the table

• Third pass computation of summary values

• Fourth pass Component Pascal details

The strategy here is to divide and conquer. If you have a large problem that you do
not know how to solve, divide it into smaller subproblems that you can solve. Step
wise refinement gives you a framework for dividing a problem into smaller parts.

Another tip with stepwise refinement is to work it out on your text editor, not on
paper. With each pass you can expand one pseudocode statement into several state
ments that are closer to Component Pascal, a job more easily accomplished on a
screen than on a piece of paper. At the end of the last pass, the Component Pascal
program will be on your disk ready to compile.

The structured programming theorem

Component Pascal provides several loop statements other than the WHILE statement,
one of which is the FOR statement. Theoretically, there is no reason to provide any
loop other than the WHILE. An important computer science theorem about the power
of the WHILE statement coupled with the IF statement is known as the structured
programming theorem, proved by Corrado Bohm and Guiseppe Jacopini in 1966.
They proved mathematically that any algorithm, no matter how large or compli
cated, can be written with only three control statements-sequence, which is one
statement following another, the IF statement, and the WHILE statement.

According to the structured programming theorem, Component Pascal really
does not need to provide the CASE statement, for example. You can imagine that any
program with a CASE statement could be written to perform the identical processing
using an IF statement with several ELSIF parts. By the same token, any program
with a FOR statement can be written to perform the identical processing using a
WHILE statement. Nevertheless, statements like CASE and FOR are provided, not
because of any additional power they give to the programmer, but because they are
convenient.

The FOR statement

Suppose you want to compute the sum of all the integers from I to 100. You could
use a WHILE loop, as in Figure 10.13. sum and i are variables of type INTEGER. i is
called the control variable of the loop because its value controls when the loop ter
minates.

The structured programmil1g

theorem was prlH'ed by 8011111
und jucopilli.

sum:= 0
i := 1
WHILE i <= 100 DO

sum:= sum + i
INC (i)

END
Output sum

If you execute the above algorithm. it will output 5050. which IS the sum
I + 2 + 3 + ... + 100 .

The sequence of steps

• Initialize a variable.

• Test the variable at the beginning of a loop.

• Execute the body of the loop.

• Increment the variable.

occurs frequently in programs. The FOR statement automatically initializes a con
trol variable, tests it at the beginning of the loop, and increments it after executing
the body of the loop. The program in Listing 10.14 is the above algorithm written in
Component Pascal. It finds the sum of consecutive integers between one and an end
ing value entered by the user, but it is written with a FOR loop in place of the WHILE
loop. Figure 10.15 shows the dialog box for this program.

When procedure ComputeSum executes. sum gets O. Then, the statement

FOR i := 1 TO d.num DO

executes. The words FOR, TO, and DO are Component Pascal reserved words. The
assignment statement between the reserved words FOR and TO gives an initial value
to the control variable of the FOR statement. In this statement, i. the control variable.
gets the initial value of I .

The FOR statement then compares the current value of i with the expression after
the reserved word TO. If the value of the control variable is greater than the expres
sion, the loop terminates. Otherwise, the loop body executes. In this statement, the
value of the control variable, I. is not greater than the value of the expression. 100.
The loop body executes, which adds 1 to sum.

Control returns to the top of the loop. The FOR statement automatically incre
ments the value of i with the equivalent of INC(i). It then compares the value of i with
the expression after the reserved word TO. Because the current value of i, which is 2,
is not greater than the value of the expression. which is 100, the body of the loop
executes again. The loop continues executing, with i getting the values 1,2,3, and so
on. to 100. After it executes with i having the value 100. the loop terminates.

The FOR statement 223

Figure 10.13
An algorithm for the sum of
consecutive integers with a
WHILE loop.

224 Chapter 10 Loops

MODULE Pbox10D;
IMPORT Dialog, PboxStrings;
VAR

dO: RECORD
num': INTEGER;
message-: ARRAY 64 OF CHAR

END;

PROCEDURE ComputeSum';
VAR

sum, i: INTEGER;
intString: ARRAY 16 OF CHAR;

BEGIN
sum:= 0;
FOR i := 1 TO d.num DO

sum:= sum + i
END;
PboxStrings.lntToString(d.num, 1, intString);
d.message := "Sum from 1 to " + intString + " is: ";
PboxStrings.lntToString(sum, 1, intString);
d.message := d.message + intString;
Dialog. Update(d)

END ComputeSum;

BEGIN
d.num:= 0;
d.message := ""

END Pbox1 00.

You should be able to detennine the statement execution count for this program.
A total of 2n + 7 statements execute, where n is the value input for d.num. That is
2(100) + 7 , or 207 statement executions for the computation of the sum of the first
100 integers.

The algorithm of Figure 10.14 may be a good illustration of the FOR statement,
but it is not a good solution to the problem. The fonnula, m(m + 1)/2 , gives the
sum of the first m integers directly, as will be shown later. The following simpler
algorithm solves the same problem. Assuming that the Output statement requires the
same five statements as in Figure 10.14. this algorithm requires only six statement
executions regardless of the value input for d.num.

sum:= d.num' (d.num + 1) /2
Output sum

Using FOR Statements

The EBNF definition of the FOR statement is

Figure 10.14
Computing the sum of the
first d.num integers with a
FOR loop.

EJ ===" I Sum of Intege .. J ~ 1!3

Enter Integer ~

(EJ
Sum from I to 100 is. 5050

Figure 10.15
The dialog box for the
program of Figure 10.14.

Figure 10.16
A better algorithm for the
sum of consecutive integers.

Using FOR Statements 225

FOR Ident ';:=" Expr TO Expr [BY ConstExpr] DO StatementSeq END

If you use the [BY ConstExprl option, the value of the control variable is changed
by ConstExpr instead of by one. The conTrol variable Cllll "m'e

steps other Thall I.

Example 10.9 The following code fragment

FOR i := 1 TO d.num DO
StdLog.lnt(i); StdLog.String(" ")

END

where d.num and i are variables of type integer, outputs

1 2 3 4 5

to the Log if the value of d.num is 5. But the code fragment

FOR i := d.num TO 1 BY -1 DO
StdLog.lnt(i); StdLog.String(" ")

END

outputs

5 4 3 2 1

The Component Pascal language report defines the FOR statement

FOR v := beg TO end BY step DO
statements

END

to be equivalent to

temp:= end;
v:= beg;
IF step> 0 THEN

WHILE v <= temp DO
statements;
v:= v + step

END
ELSE

WHILE v >= temp DO
statements;
v:= v + step

END
END

I

where temp has the same type as v, and step must be a nonzero constant expression. IT is possible./iJr Th~ body or
If step is not specified, it is assumed to be I. As is the case for the WHILE statement, The FOR sTaTemellT To Ile\'"r

it is possible for the body of the FOR statement to never execute. execuTe.

226 Chapter 10 Loops

Example 10.10 In the two code fragments of the previous example, if the value of
d.num is zero, neither fragment will produce any output. I

In the EBNF definition of the FOR statement, either expression Expr can have
any value-positive, negative, or zero.

Example 10.11 The code fragment

FOR i := d.num TO 5 DO
StdLog.lnt(i); StdLog.String(" ")

END

outputs

-3 -2 -1 0 1 2 3 4 5

if the value of d.num is -3. It outputs

345

if the value of d.num is 3. I

It is frequently useful to use the control variable in an expression. Although it is
legal to change the value of the control variable in the body of a FOR loop, it is
extremely bad practice to do so. If you are ever tempted to change the value of the
control variable in a FOR loop, you should redesign your algorithm using a WHILE
loop instead of a FOR loop.

Example 10.12 This code fragment

FOR i := 1 TO d.num DO
j := 2 * i - 1;
StdLog.lntU); StdLog.String(" ")

END

is legal and produces the output

1 3 5 7 9

if the value of d.num is 5. It is both legal and good practice to use i in the expression
on the right side of the assignment statement. I

Example 10.13 The code fragment

FOR i := 1 TO d.num DO
StdLog.lnt(i); StdLog.String(" ")
INC(i)

END

Do not change the value of'
tlze control mriable ill rhe
body Of(/ FOR stlitemelll.

Using FOR Statements 227

is legal but is extremely bad practice because the value of i is changed by the INC
procedure. Never do this, even though the compiler allows it! I

The control variable is limited to integer or character type. Specifically, it cannot
be of type real.

Example 10.14 The following code fragment

FOR level := 0.5 to 6.5 DO
StdLog.Real(level)

END

where level is a real variable is illegal because the control variable cannot be real. I

Example 10.15 The code fragment

FOR ch := 'a' TO 'z' DO
StdLog.Char(ch)

END

where ch is a variable of type CHAR is legal and produces the following output on
the Log

abcdefghijklmnopqrstuvwxyz I

* The guarded command do statement

The statement that corresponds to the CP WHILE statement is the do statement in
GCL. As with the if statement, the do statement uses a guarded command. The CP
statement

WHILE Cl DO
51

END

is written in GCL as

do CI ---.. 51 od

Example 10.16 The algorithm of Figure 10.6 to find the average is written in GCL
as

s := 0.0; nA := 0; sc.ScanR(b);
do ~sc.eot ---.. s:= s + b; nA := nA + I; sc.ScanR(b) od
if nA > 0 ---.. Output slnA
o nA" 0 ---.. Output a no accounts message

Ii I

The control variable Ci/lliWI

be real.

228 Chapter 10 Loops

Exercises

1. (a) What is a loop invariant" (bl What two things must you show to prove that a state
ment is a loop invariant? (e) What must be the case when a WHILE loop terminates')

2. For the algorithm in Figure 10.6 that computes the average of the accounts do the fol
lowing: (a) Draw a flowchart. (b) Determine the total statement execution count if
there are three data values. Include only the statements in the figure and ignore any
statements that would be in a complete Component Pascal procedure. (e) Determine
the total statement execution count if there are !1 data values. (d) If the algorithm exe
cutes in 50 ,LIS for 200 data values, estimate the execution time for 10,000 data values
from (cl. Use both the exact computation and the approximate computation and com
pare how close they are by computing their percentage difference.

3, For the algorithm in Figure 10.7 that finds the largest value, do the following: (a) Draw
a flowchart. (b) Determine the total statement execution count if there are three data
values. Include only the statements in the figure and ignore any statements that would
be in a complete Component Pascal procedure. (e) Determine the total statement exe
cution count if there are n data values, assuming that the body of the nested I F state
ment executes every time. This is called the "worst case" time. (d) Determine the
execution count assuming that the first number in the list is the largest. This is called
the "best case" time. (e) If the algorithm executes in 120 ,LIS for 80 data values. estimate
the execution time for 5000 data values assuming the count in part (c). Use the exact
computation. (f) Work part (e) assuming the count in part (d), (g) Give the percentage
difference between the worst case and the best case times.

4. State the loop invariant for the WHILE loop in procedure ComputeTotal in Figure 10.3.
The loop invariant will be a statement about the state of sum.

5, State the loop invariant for the WHILE loop in the algorithm to compute the average in
Figure 10.6. The loop invariant will include statements about the states of both sum
and numAccts.

6. Tell how many multiplication and addition steps are required to evaluate

ax4 + bx3 + cx2 + dx + e

Factor the expression so that it requires only four multiplication and four addition
steps.

7. Determine the output to the Log of the code fragment.

sum:= 0;
WHILE i < 9 DO

sum := sum + i;
INC(i)

END;
StdLog.String("sum = "); StdLog.lnt(sum)

for the following initial values of i.

(a) 5 (b) X (e) 9 (d) 0

8. Answer these questions for each of the Component Pascal code fragments. (I) What is
the first value added to sum') (2) What is the last value added to sum') (3) What is the

value of a at the termination of the loop? (4) How many times does the body of the

loop execute?

(a)

sum:= 0;
a:= 50;
WHILE a < 100 DO

INC(a, 2);
sum:= sum + a

END

(b)
sum:= 0;
a:= 50;
WHILE a < 100 DO

sum := sum + a;
INC(a,2)

END

(e)

sum:= 0;
a:= 50;
WHILE a <= 100 DO

INC(a, 2);
sum:= sum + a

END

9. What is the value of count after the statements are executed~

i:= 15;
count := 0;
WHILE i <= 1000 DO

INC(i,2);
INC(count)

END

10. Detennine the output to the Log of the following code fragment.

sum:= 0;
FOR i := 5 to d,num DO

sum:= sum + i
END;
StdLog.String("sum = "); StdLog.lnt(sum)

for the following values of d.num.

(a) 10 (b) 6 (e) 5 (d) ~

11. Determine the total statement execution count of the code fragment in the previous
exercise if d.num has the value n. Assume that II is greater than or equal to 5.

12. Determine the output to the Log of the following code fragment.

sum:= 0;
FOR i := 10 TO d.num BY -1 DO

sum:= sum + i
END;
StdLog.String("sum = "); StdLog.lnt(sum)

for the following values of d.num.

(a) 5 (b) 9 (e) 10 (d) II

13. If procedure ComputeSum in Figure 10.14 takes ~O ,us to execute when d.num has the
value of 100, how long does it take to execute if d.num has the value of ISO" Use both

the exact computation and the approximate computation and compare how close they
are by computing their percentage ditkrence.

Exercises 229

230 Chapter 10 Loops

14. The Component Pascal language report defines the FOR statement in terms of an
equivalent WHILE statement. (a) Using the definition, predict the output of the fol
lowing code fragment.

last := 10;
FOR i := 0 TO last BY 2 DO

StdLog.String("i = "); StdLog.lnt(i); StdLog.Ln;
StdLog.String("last = "); StdLog.lnt(iast); StdLog.Ln;
INC(last)

END

(b) Execute the code fragment. Was your prediction correct~

15. Write the algorithm of Figure 10.7 to find the largest value in GCL.

16. Write the algorithm of Figure 10.13 to find the sum of consecutive integers in GCL.

Problems

17. Write a Component Pascal program that outputs to the Log the average of a list of val
ues that are displayed in the focus window, or a statement that there are no values in the
window.

18. Write a Component Pascal program that outputs to the Log the maximum integer value
from a list of integers in the focus window. Output an appropriate message if no integer
values are in the focus window.

19. Modify the program in Figure 10.11 so that it also outputs the number of times the
WHILE loop executes. Run the modified program five times with the following toler
ances: le-2, le-3, le-4, le-5, le-6. Graph the number of times the loop executes (y
axis) versus the tolerance (x-axis). What mathematical relationship did you discover
between these two quantities? Hint: Use semilog graph paper or, equivalently, let each
x-axis division be 10 times greater than the previous x-axis division. For what values of
the tolerance. if any. will the loop never execute~

20. Modify the program in Figure 10.11 to always print the solution to four places past the
decimal point and to print an error message if the user enters a negative number or zero
for the tolerance.

21. Write a program to compute and output to a dialog box the sum of all positive even
integers less than or equal to a value entered by the user in the dialog box.

22. Write a program to compute and output to a dialog box the sum of all positive odd inte
gers less than or equal to a value entered by the user in the dialog box.

23. The focus window contains a list of integers. Write a program that counts how many
even integers there are in the window. For example. if the focus window contains

5 38 1 -45 21 -7 12 5

the program should display a dialog box that says "There are 2 even integers in the
window". You can test if an integer n is even with -OOO(n).

24. The focus window contains a list of integers. Write a program that counts how many
positive integers are in the window. For example. if the focus window contains

5 38 1 -45 21 -7 12 5

the program should display a dialog box that says "There are 6 positive integers in the
window".

25. A linear sequence is a list of integers. each of which is a constant integer increment of
the previous integer. For example,

3 6 9 12 15 18

is a linear sequence because each number is three plus the previous one. The constant
increment need not be three, however. Write a program that inputs a list of numbers
from the focus window and displays on a dialog box whether the sequence is linear,
and the constant increment if it is. For example, the dialog box for the above list should
state, "The sequence is linear with an increment of 3." The message for the sequence,

3 6 9 12 16 19

should state, "The sequence is not linear." Consider the empty list and any list with
only one integer to be not linear.

26. A geometric sequence is a list of integers, each of which is a constant integer multiple
of the previous integer. For example.

3 6 12 24 48 96

is a geometric sequence because each number is two times the previous one. The con
stant multiple need not be two, however. Write a program that inputs a list of numbers
from the focus window and displays on a dialog box whether the sequence is geomet
ric, and the integer multiple if it is. For example, the dialog box for the above list
should state, "The sequence is geometric with a multiple of 2." The message for the
sequence,

3 6 12 24 46 92

should state, "The sequence is not geometric." Consider the empty list and any list with
only one integer to be not geometric.

27. A salesperson gets a 5% commission on sales of $1000 or less. and a 10% commission
on sales in excess of $1000. For example, a sale of $1300 earns him $SO-that is $50
on the first $1000 of the sale and $30 on the $300 in excess of the first 51000. The
focus window contains a salesperson's ID number (string) and his sales amount (real)
on each line. Write a program that outputs to the Log a report containing the ID num
ber. the amount of sales. and the commission for each salesperson. At the bottom of the
report, print the ID number of the salesperson who sold the most. For example. if the
focus window contains

Problems 231

232 Chapter 10 Loops

"EM-00134" 580.00
"EM-01209" 600.00
"EM-00030" 1000.00
"EM-02238" 1200.00
"EM-09411 " 800.00
"EM-02344" 1150.00

the report on the Log should be

EM-00134 580.00 29.00
EM-01209 600.00 30.00
EM-00030 1000.00 50.00
EM-02238 1200.00 70.00
EM-09411 800.00 40.00
EM-02344 1150.00 65.00
Highest sales 10: EM-02238

28_ The price per Frisbee depends on the quantity ordered, as indicated in Figure 10.17.
The focus window contains a list of numbers that represent order quantities of Fris
bees. Write a program that outputs to the Log a report of order quantities and the cost
per order. At the bottom of the report print the total cost of all the orders. For example,
if the focus window contains

50 150 20 200 300 1 250 100

the report on the Log should be

50 250.00
150 450.00
20 100.00

200 500.00
300 600.00

5.00
250 625.00
100 300.00

Total: 2830.00

Quantity

0- 99

100-199

200 - 299

300 or more

Price per Frisbee

$ 5.00

3.00

2.50

2.00

29. An instructor determines the total score for each student according to the weights of
Figure 10.18. A total of 90 to 100 is a grade of A, 80 to 89 is a B. and so on for C, D.
and F. Each line of the focus window contains four real values that are the homework.
exam. and final exam scores in that order. Write a program that outputs to the Log a
table. each line of which contains

Figure 10.17
The price schedule for
Problem 28.

• The four values of each score

• The weighted total

• The letter grade

At the bottom of the report print the average of the weighted totals.

Score item Percent toward total

Homework 15

Exam 1 25

Exam 2 25

Final exam 35

30. The number of runs for each team in each inning of a Dodgers versus Giants baseball
game is in the focus window. The Dodgers bat first. A complete game lasts nine
innings. After the last Dodger out in the top of the ninth inning, if the Giants are ahead
they do not bat in the bottom of the ninth. The game is over and the Giants win. In that
case, no value is in the focus window for the number of Giants runs in the bottom of
the ninth, not even a zero.

If it is a tie game or if the Dodgers are ahead after their last out. the Giants bat in the
bottom of the ninth. After the last Giant out, whoever is ahead wins. If it is a tie, the
game goes into extra innings, after which the same termination conditions apply as in
the ninth inning.

Write a program that continues to input the runs for each inning until one team wins.
Announce the winner. the score, and the number of innings played. Assume there are
no input errors in the focus window. The program must not attempt to read past the end
of text. Do not use the scanner eot variable.

The loop termination condition for this problem cannot be conveniently written as a
single expression. Declare a boolean variable named over that indicates when the game
is over. Initialize it to false before entering your WHILE loop, which should execute
once for each inning. The test for termination should be on -over. The processing at the
bottom of the loop body should be a computation for determining if the game is over.

31. If a volleyball team serves the ball and wins the volley, they get I point and they get to

serve again. If they serve the ball and lose the volley, the opposing team does not get a
point. But the opposing team does win the right to serve next. The first team to get 15
points wins the game. except that they must win by at least 2 points. [I' the score is 15
to 14, play continues until one team is ahead by 2.

The focus window contains a sequence of l's and O's for a volleyball team that serves
first in a game. A I represents winning the volley and a 0 represents losing the volley.

For example, the sequence at the beginning of the file

000

Pmblems 233

Figure 10.18
The grading weights for
Problem 29.

234 Chapter 10 Loops

represents

• Winning a volley and a point

• Winning a volley and a point

• Losing the serve

• Winning the serve back

• Losing the serve

• Losing the volley and a point

after which the team is ahead, 2 to I.

Write a program that continues to scan the I 's and O's until the game is over. Output the
score and state whether the team won or lost. Assume there are no input errors in the
focus window. The program must not attempt to read past the end of text. Do not use
the scanner eot variable.

The loop termination condition for this problem cannot be conveniently written as a
single expression. Declare a boolean variable named over that indicates when the game
is over. Initialize it to false before entering your WHILE loop, which should execute
once for each input value. The test for termination should be on -over. The processing
at the bottom of the loop body should be a computation for determining if the game is
over.

32. A businessman wants to claim depreciation of an asset with the straight line method. If
the asset has a useful life of n years, then II Il of its original value is subtracted each
year. Write a program that asks for the asset's value and its useful life span in a dialog
box, and outputs a depreciation schedule to the Log using the straight line method. For
example, if the user enters 1000.00 for the value of the asset and 5 years for the lifesav
ing the report on the Log should be

0 1000.00
1 800.00
2 600.00
3 400.00
4 200.00
5 0.00

33. A businessman wants to claim depreciation of an asset with the double declining bal
ance method. If the asset has a useful life of 11 years, then 2111 times its current value
is subtracted each year. Write a program that asks for the asset's value and its useful
life-span. and outputs a depreciation schedule using the double declining balance
method. For example, if the user enters 1000.00 for the value of the asset and 5 years
for the lifesaving the report on the Log should be

0 1000.00
600.00

2 360.00
3 216.00
4 129.60
5 77.76

34. The factorial of an integer n is

n! = n·(n-I)·(n-2)· ... ·3·2·1

For example. the factorial of 4 is 24. because 4· 3 . 2 . I = 24. Zero factorial is
defined to be one. Write a program that asks the user to input a nonnegative integer in a
dialog box, then computes and outputs the factorial of that number in the dialog box.
Use an integer field in the dialog box to output the factorial. If the number entered is
negative. compute nothing and do not change any fields in the dialog box.

35. Suppose that x is a real nonzero number and n is an integer. Then x raised to the nth

power. written mathematically as x" • means

X· x' x if n > 0

1.0 if n = 0

1.0/(x·x· ... 'x) ifn<O

where there are n x's in the first and last expressions. Without using the Math module,
write a program that inputs a real number and an integer in a dialog box and raises the
real number to the power indicated by the integer. For example. if the user enters 2.0
for the real number and -3 for the power. the dialog box should display 0.125 for the
power. Use a real field in the dialog box to output the power.

36. The base of the natural logarithms, e, is approximated with four terms as

I I I I
I + -I (-1-) + -I (-1-)-(2-) + '717(1"')-;(-=27")("'3"")

Notice that the fourth term is 1/3 times the previous term. In general. the nth term is 1/
(n - I) times the previous term. Write a program that asks the user to input the number
of terms in a dialog box and outputs the approximation of e. Use two variables in addi
tional to your control variable-sum. which represents the sum computed so far, and
term, which represents the value of the current term. Initialize sum to the first term out
side the loop, and start the loop with the second term. For example, if the user enters 4
for the number of terms, the value 2.6666 ... should be output. Use a real field in the
dialog box to output the approximation of e. If the number entered is negative or zero,
compute nothing and do not change any fields in the dialog box.

37. The average or mean of Il numbers, xl' xc' ... , xtI ' is

X\+X 2 +",+Xn

11

i = (

The standard deviation. a measure of how scattered the Il numbers are. is defined as

Problems 235

236 Chapter /0 Loops

ill ')

)12: (xi-Xr

\. = \ ,-,I -"-'-.1 _-;-_
. , 11-1

when the numbers are a random sample of a population. If the numbers are all close to
each other. they will all be close to the mean, their differences from the mean will be
smaiL and the standard deviation will be smaiL

(a) The focus window contains a sequence of real values. Write a program that com
putes and outputs to a dialog box the standard deviation of the real numbers from the
definition. Display the result with four places past the decimal point, and write an error
message if there is only one value or no values in the focus window. You will need one
loop to compute the mean, followed by a second execution of ConnectTo to position
the scanner at the beginning of the text model again, followed by another loop for the
squares of the ditTerences from the mean.

(b) A mathematically equivalent formula for the standard deviation is

11
o , 2: xi-- n.r-

s i = I

n-I

(Can you derive this formula from the definitions of the mean and standard deviation?)
This formula only requires one loop. because you can accumulate the sum of the
squares at the same time you are accumulating the sum for the mean. Write a program
that computes and outputs to a dialog box the standard deviation from this fonnula
using only one loop. Display the result with four places past the decimal point, and
write an error message if there is only one value or no values in the focus window.

38. An integer greater than I is prime if the only positive integers that divide it are I and
the number itself. For example. 13 is prime because it is divisible only by I and 13,
while 15 is not prime because it is divisible by I, 3. 5. and 15. Write a Component Pas
cal program that asks the user to input a positive integer in a dialog box and then out
puts a message to the dialog box indicating whether the integer is prime.

39. Write a program that asks the user to enter a positive integer in a dialog box, then out
puts to the Log all the positive factors of that number. If the number entered is less than
I. compute nothing and output an appropriate message to the Log. For example. if the
input is 15 then the output should be

3 5 15

40. The first two Fibonacci numbers are 0 and I. The third Fibonacci number is the sum of
the first pair. 0 plus I. which is I. The fifth is the sum of the previous pair, I plus 2.

which is 3. The first seven Fibonacci numbers are

o 2 3 5 8

each number being the sum of the two previous numbers. Write a program that asks the

user to enter an integer in a dialog box. and outputs to the Log that many Fibonacci

numbers. If the number entered is less than 2, compute nothing and output an appropri~
ate message to the Log. For example, if the user enters 7 the program should output the
seven numbers listed above.

41. Implement a dialog box that looks and behaves like Figure 7.9, but with one additional
button labeled "A Gets B". When the user presses this button Stack A should be cleared
and then given a copy of Stack B. The text fields for Push and Pop should not change.
Only the field for the number of items in stack A should change. Use a temporary stack
variable called tempStack in your procedure AGetsB to first store the value of Stack B
in reverse order by popping all the items from Stack B into it. Then, clear Stack A and
copy all the items from tempS tack into it and back into Stack B. Import module Pbox~
StackADT.

42. Work Problem 41. but import module PboxStackObj.

43. Implement a dialog box that looks and behaves like Figure 7.19, but with one addi~
tional button labeled "A Gets B". When the user presses this button List A should be
cleared and then given a copy of List B. All the text fields for the dialog box should not
change. Only the field for the number of items in List A should change. Import module
PboxListADT. Use a temporary variable called temp of type PboxListADT.T in your pro~
cedure AGetsB to store the value between the retrieve and insert operations.

44. Implement a dialog box that looks and behaves like Figure 7.3, but with one additional
button labeled 'Top To Bottom". If the stack contains two or more items when the user
presses this button, the top item on the stack should be moved to the bottom of the
stack. Otherwise. the stack should remain unchanged. The text fields for Push and Pop
should not change, nor should the field for the number of items change. Use a tempo~
rary variable called temp to store the top value of the stack and another temporary vari~
able called tempStack to store the remainder of the stack in your procedure
TopToBottom. Import module PboxStackADS.

45. Work Problem 44, but import module PboxStackObj.

46. Implement a dialog box that looks and behaves like Figure 7.19, but with one addi~
tional button labeled "A Append B". If the length of List A plus the length of List B is
greater than the capacity of a list when the user presses this button, nothing should hap~
pen. Otherwise, a copy of List B should be appended to the end of List A. All the text
fields for the dialog box should not change. Only the field for the number of items in
List A should change. Import module PboxListADT. C se a temporary variable called
temp of type PboxListADT.T in your procedure AAppendB to store the value between
the retrieve and insert operations.

47. Implement a dialog box that looks and behaves like Figure 7.16, but with one addi~
tional button labeled "Reverse". When the user presses this button, all the items of the
list should be rearranged in reverse order. All the text fields for the dialog box should
not change. Import module PboxListADS. Use two local variables, i initialized to 0 and
j initialized to LengthO ~ 1. While i is less than j, switch the items at positions i and j fol~
lowed by INC(i) and DEe(j). Use a temporary variable called temp of type PboxLis~
tADS.T in your procedure ReverseA to store the value between the retrieve, remove,
and insert operations

~8. Work Problem 47, but import module PboxListADT.

Prohiems 237

_ Chapter11

1iI~
Nested Loops

Any structured statement can be nested in any other structured statement. In the
same way that an IF statement can be nested inside another IF, a loop statement can
be nested inside another loop. Such a configuration is called a nested loop.

Printing a box of characters

Procedure DrawBox in Listing 11.2 uses a nested loop to draw a box of @ symbols
with the same number of rows and columns. It prompts the user for the number of
rows in a dialog box, then creates a window that displays the box of @s. Figure 11.1
shows the input and output for the program.

M·'W'M-Io'x'

Draw Box

@@@
@@@
@@@

In Figure 11.2, the FOR loop with control variable i is called the outer loop, and
the nested loop with control variable j is called the inner loop. The first time the
outer FOR statement executes, it initializes i to 1. Then the inner loop gives the val
ues I, 2 and 3 in tum to j, causing the body of the inner loop to execute three times.
Each time the body of the inner loop executes, it inserts a single @ symbol into the
text model. The fourth time the inner FOR statement executes, it detects that the
loop should terminate.

Then fm.WriteLn executes, which inserts the line character into the text model. If
the line character were omitted in the model. all the @ symbols would be displayed
on the same line in the view. The fm.WriteLn statement is outside the body of the
inner loop, but inside the body of the outer loop.

The second time the outer FOR statement executes, it increments i to 2. The inner
loop executes exactly as before, producing another sequence of three @ symbols in
the text model. The same thing happens after i gets the value of 3.

Figure 11.1
The input and output for the
program in Figure I 1.2.

240 Chapter II Nested Loops

MODULE Pbox11A;
IMPORT Dialog, TextModels, TextViews, Views, PboxMappers;
VAR

d*: RECORD
numRows*: INTEGER;

END;

PROCEDURE DrawBox*;
VAR

md: TextModels.Model;
vw: TextViews.View;
1m: PboxMappers. Formatter;
i, j: INTEGER;

BEGIN
md := TextModels.dir.NewO;
Im.ConnectTo(md);
FOR i := 1 TO d.numRows DO

FOR j := 1 TO d.numRows DO
ImWriteChar("@")

END;
Im.WriteLn

END;
vw := TextViews.dir.New(md);
Views.OpenView(vw)

END DrawBox;

BEGIN
d.numRows := 0

END PboxllA.

Statement execution count

What is the statement execution count for this program" Procedure DrawBox has
eight executable statements:

Stateme/lt
/lumber Executable stalement
(I) md := TextModels.dir.New()

(2) fm.ConnectTo(md)
(3) FOR i := 1 TO d.numRo'tls DO

(4) FOR j:= 1 TO d.numRo'tls DO
(5) ImWriteChar("@")

(6) ImWriteLn
(7) vw := TextViews.dir.Newimd)

(8) Views.OpenView(vw)

If you trace the algorithm as descri'::~d above for d.numRows having a value of 3,

you will find that statements (I), (:2. 7 J. and (8) each execute once. The outer FOR

Figure 11.2
A procedure thai prints a box
of @ characters with nested
loops.

The (!x('cll/ahlt! .''ill/lelncnrs (~(

procedllre IJruaBox

Statement execution COllllt 241

statement (3) executes four times, and the inner FOR statement (4) executes 12
times. The body of the inner loop (5) executes nine times. Statement (6). which is in
the body of the outer loop but not in the body of the inner loop, executes three times.
A total of 32 statements execute.

What if the value of d.numRows is n in general? Statements in a nested loop are a
little more difficult to count than those in a single loop. Consider the statements in
the inner loop as if they were not nested in the outer loop.

FOR j := 1 TO d.numRows DO
fm .writeChar(U@")

END;
fm.WriteLn

(a) The FOR statement would execute 11 + I times, (b) the body would execute n

times, and (c) the WriteChar statement would execute I time. But these statements
are, in fact, the body of a loop that executes n times. So each one executes n times
the amounts just mentioned. Namely, (a) the first statement executes n(n + I)
times, (b) the body executes n2 times. and (c) the WriteChar statement executes n
times. The FOR statement of the outer loop

FOR i := 1 TO d.numRows DO

executes n + I times. Adding these terms together plus the four statements outside
the loop that each execute once, yields a total of 2n2 + 3n + 5 for the whole pro
gram. Totals for the statement execution counts when d.numRows has values of
zero, three, and n in general are summarized in Figure 11.3.

Statement

(1)
(2)
(3)
(4)

(5)

(6)
(7)
(8)

Total:

d.numRows
::;:0

I

o
o
o
I
I

5

d.numRows
::;:3

4

12

9
3
I
1

32

d.numRows
::;:n

n+l

n(n + I)

~

2
n
n
I
I

2n- + 3n + 5

The squared term in the expression for the number of statements executed is typ
ical for nested loops. It causes an estimate for the execution time that is quite differ
ent from the case where the statement count is proportional to the first power of n.

Example 11.1 Suppose it takes 400 J.1s to execute procedure DrawBox when
d.nurnRows has the value of 35. If you double the value to 70, how long will it take

Figure 11.3
Statement execution count for
the procedure DrawBox in
Figure 11.2.

242 Chapter J J Nested Loops

to execute?

Setting up the precise ratio gives

400 T

2(35)2 + 3(35) + 5
= -----c?::-----

2(70r + 3(70) + 5

As before, however, we can approximate by neglecting the lower-order terms in the
statement execution count.

400

2(35)2
=

T

2(70)2

Again, the coefficient cancels, but this time solving for T yields 400(70/35)2,
which is 400(4) . That is 1600 JlS, which is four times the original execution time,
not just double the execution time. I

Such a result is expected when you think of the output. When you double the
value given to d.numRows, you quadruple the number of @ symbols that need to be
output, because the program prints a figure in the shape of a box with an equal num
ber of rows and columns.

Printing a triangle

It is possible for the upper or lower limit of the control variable of the inner loop to
depend on the control variable of the outer loop. Suppose you change the loops of
procedure DrawBox as in Figure 11.4.

FOR i := 1 TO d.numRows DO
FOR j := 1 TO i DO

1m. WriteChar("@")
END;
fm.WriteLn

END;

The control variable of the inner loop, j, now goes from 1 to i, where i is the control
variable of the outer loop. When i has the value I, the inner loop gives j values from
1 to I. That makes the inner loop execute once. When i has value 2, the inner loop
gives j values from 1 to 2. for two executions of the inner loop. The last time, j goes
from 1 to 3 for three executions. The effect is to print a triangle of @ symbols. If
d.numRows has a value of 3. the output will be

@

@@
@@@

Figure 11.4
An algorithm for printing a
triangle of @ characters.

A trace of the program for d.numRows having a value of 3 is shown below, assum
ing that statement (4) has been modified as Figure 11.4. The trace does not show the
values of i or j that are irrelevant outside their loops.

Statement
executed
(I)
(2)

(3)
(4)
(5)

(4)
(6)

(3)
(4)
(5)

(4)
(5)
(4)
(6)

(3)
(4)
(5)
(4)
(5)

(4)
(5)

(4)
(6)

(3)
(7)
(8)

2
2
2
2
2
2
2

3
3
3
3
3
3
3
3
3

4

1
2

I
I
2
2
3

1
2
2
3
3
4

You can see by simply counting this trace that the number of statements executed is
26.

determine the statement execution count of the modified program that prints the
triangle for the general case when d.numRows has the value n, is a bit more difficult
than with the previous nested loop we analyzed. The problem is that the statements
in the inner loop do not simply execute n times more than they would execute if they
were not nested. Figure 11.5 shows how to count the number of statements executed
when d.numRows has the value zero, three, and n in general.

Printing a triangle 243

A trace of (he algorithm in

Figure 11.4 with an input of 3

244 Chapter J J Nested Loops

Statement d.numRows d.numRows d.numRows

=0 =3 =n

(I)
(2)

(3) 1 4 n + 1

(4) 0 2+3+4 2+3+4+ ... +(n+l)

(5) 0 1+2+3 1+2+3+ ... +n

(6) 0 3 n
(7) I I I
(8) 1 1 1

Notice that the body of the inner FOR statement (5) executes once when i is 1,
twice when i is 2, and three times when i is 3. Because the body statement prints a
single @ symbol, these counts correspond to the fact that the first row has I @, the
second has 2 @s, and the third has 3 @s. In general, when d.numRows has the value
n, the number of times statement (5) executes is I + 2 + 3 + ... + n . The discussion
of the procedure in Figure 10.14 in the previous chapter notes that the formula for
the sum of the first m integers is

1+2+3+ ... +m
m(m + 1)

2

where m is positive. So, the number of times statement (5) executes is n(11 + 1)/2.
Furthermore, the inner FOR statement (4) executes twice when i is 1, three times

when i is 2, and four times when i is 3. The reason statement (4) executes more fre
quently than statement (5) is the extra test it must perform after the last execution of
the body of the loop. So, the total number of times statement (4) executes in general
IS

2+3+4+ ... +(n+l)

But, this expression is equal to

- I + 1 + 2 + 3 + 4 + ... + (Il + I)

which in turn is equal to

-I +(Il+ I)[(n+ 1)+ 11
2

using the above formula for the sum of the first m integers with m = (/1 + I) . Mul
tiplying the numerator and combining terms gives a count for statement (4) of

Figure 11.5
Counting individual
statements for the algorithm
to draw a triangle.

Figure 11.6 summarizes the statement execution counts for the algorithm to print
a triangle in the cases where d.numRows equals zero, three, and /1 in general. The
interesting conclusion to this analysis is that the execution time is still quadratic in fl.
just as with the algorithm to print a square.

Statement

(1)
(2)
(3)

(4)

(5)

(6)
(7)
(8)

Total:

d.numRows

=0

o

o
o
1
1

5

d.numRows

=3

4

9

6

3
1
I

26

d.numRows

=n

/1 + I
1 2 3
2/1 + 2n

1 2 I
2n + 2n

o

n
I
I

n~+4fl+5

Example 11.2 Suppose it takes 200 J.1s to execute this program when n has the
value of 35. If you double the value to 70, how long will it take to execute')

Using the approximate ratio,

200

o
Solving for T yields 200(70/35)- = 200(4) = 800 ,us. So the quadratic nature of
the statement execution count again predicts that the execution time is four times the
original execution time when II is doubled. I

A multiplication table

Our last program in this chapter is a stepwise refinement problem that requires
nested loops. The problem is to input two numbers and output a multiplication table
for the values between the two numbers. The input will be taken from a dialog box
and the output will be to a new window as Figure 11.7 shows.

First Pass-The input is a pair of numbers. That calls for two integer variables.
d.startNum and d.endNum. The output consists of five rows for the inputs 5 and 8.
The first row is ditferent from the next four rows because it is the heading of the
table. The other four rows contain the actual products. Regardless of the specific val
ues input, the output will be one heading row and several rows of products. The inte
ger variable, i. will represent the row number and will vary from startNum to
endNum.

A multiplication table 245

Figure 11.6
Statement execution count for
the algorithm to print a
triangle.

246 Chapter 11 Nested Loops

El '" [Multlpll.atlon Table J "" i3

Starting Number ~
Ending Number E=:J

II DI.~18~ Table J

Input d.startNum, d.endNum
Output the first row
FOR i := d.startNum TO d.endNum DO

Output row with i as first number
END

El

5
6
7
8 . ,

untilled 22-- I!1JI3

5 6 8
1-

25 30 55 40
30 36 42 48
35 42 49 56
40 48 56 64 . .;:'/

Second Pass-The first row is a list of numbers from d.startNum to d.endNum.
However, it contains some extra space before the first number, which must be output
before the numbers in the first row are output. Otherwise the numbers in the first row
will not be aligned over the columns properly. The numbers themselves can be out
put with a single FOR statement.

Each row in the body of the multiplication table starts with the single value of i.
The rest of the row is the product of the number, i, with another number, j, that varies
from d.startNum to d.endNum. Expanding on the first pass, the second pass is

Input d.startNum, d.endNum
Output the space at [he beginning of the first row
FOR j := d.startNum TO d.endNum DO

Output j
END
FOR i := d.startNum TO d.endNum DO

Output i
FOR j := d.startNum TO d.endNum DO

Output i * j
END

END

Third Pass-The third pass is the complete Component Pascal module in Figure
II.S. It has several output details not in the previous passes to make the numbers in
the table line up properly. It prints each number in a field width of four. Four spaces
must precede the first heading line so the numbers in the heading will line up with
the proper columns. There is a special character constant named digitspace that you
can import from module TextModels. The amount of space occupied by a TextMod
els.digitspace is exactly equal to the amount of space occupied by a decimal digit.
Unless the font is monospaced. as Courier is. the normal space character may not
occupy the same amount of space as a decimal digit.

Figure 11.7
The input and output for a
program that displays a
multiplication table.

MODULE Pbox11 B;
IMPORT Dialog, TextModels, TextViews, Views, PboxMappers;
VAR

d*: RECORD
startNum*, endNum*: INTEGER;

END;

PROCEDURE MakeMultiplicationTable*;
VAR

md: TextModels.Model;
vw: TextViews.View;
fm: PboxMappers.Formatter;
i, j: INTEGER;

BEGIN
md := TextModels.dir.NewO;
fm.ConnectTo(md);
FOR j := 1 TO 4 DO

fm.WriteChar(TextModels.digitspace)
END;
FOR j := d.startNum TO d.endNum DO

fmWritelnt(j,4)
END;
fmWriteLn;
FOR i := d.startNum TO d.endNum DO

fm.Writelnt(i,4);
FOR j := d.startNum TO d.endNum DO

fmWritelnt(i * j, 4)
END;
fm.WriteLn

END;
vw := TextViews.dir.New(md);
Views.OpenView(vw)

END MakeMultiplicationTable;

BEGIN
d.startNum := 0; d.endNum := 0

END Pbox11 B.

This program uses a common programming convention for naming integer vari
ables that are used to process a table. i is usually used as the control variable for the
row loop, and j is usually used for the column loop. Later chapters continue this con
vention. and you should adopt it as well.

Exercises

1. Plot the totul statement execution counts for procedure DrawBox (Figure 11.2) and its
modification to print a triangle (Figure 11.4) on the same graph for values of 1/ from ()
to 6. What shape does each graph have')

Exercises 247

Figure 11.8
A program that produces the

multiplication table shown in
Figure 11.7.

,\ com'ell/ion P'" flwlIing

integer \'({riuhfcs

248 Chapter 11 Nested Loops

2. What is the total statement execution count of the code fragment

Statement 1 ;
FOR i := 1 TO d.num DO

Statement 2 ;
FOR j := 1 TO i DO

Statement 3 ;
Statement 4

END
END

if d.num has the following values') Show the count for each statement in a table similar
to Figure 11.6.

(a) 0 (b) 3 (e) n

3. What is the total statement execution count of the code fragment

Statement 1 ;
FOR i := 2 TO d.num DO

Statement 2 ;
FOR j := 1 TO i DO

Statement 3
END

END

if d.num has the following values? Show the count for each statement in a table similar
to Figure 11.6. It may help you to first write the statement counts similar to the way
they are written in Figure 11.5.

(a) 1 (b) 4 (el n

4. What is the total statement execution count of the code fragment

Statement 1 ;
FOR i := 1 TO d.num DO

Statement 2
FOR j := -i TO i DO

Statement 3
END

END

if d.num has the following values') Show the count for each statement in a table similar
to Figure 11.6. It may help you to first write the statement counts similar to the way
they are written in Figure 11.5.

(a) () (b) 3 (e) n

You may need to use this formula for the sum of odd integers.

?
I + 3 + 4 + .. + (2n - I) = n- for positive n

Problems

5. Write a program that asks the user to enter in a dialog box the number of rows and col
umns of a block of @s to be printed. Display the box in a new window. For example. if
the user enters 3 for the number of rows and 5 for the number of columns. the new win
dow should contain the following text:

@@@@@
@@@@@
@@@@@

6. Write a program that asks the user to enter in a dialog box the number of rows and col
umns of an empty block of zeros to be printed. Display the box in a new window. For
example. if the user enters 5 for the number of rows and 9 for the number of columns.
the new window should contain the text shown below. You will need to output the Text
Models.digitspace character inside the box for the right side of the box to line up prop
erly.

000000000
a a
a 0
a 0
000000000

7. Write a program that asks the user to enter in a dialog box the number of zeros on the
base of a triangle. then prints a right triangle of zeros with a vertical right side. For
example. if the user enters 5 for the number of rows. the new window should contain
the text shown below. The leading spaces must be the TextModels.digitspace character
for the right side of the triangle to be vertical.

a
00

000
0000

00000

8. Write a program that asks the user to enter in a dialog box the number of zeros on the
base of a triangle. then prints a symmetric triangle. For example. if the user enters 7 for
the number of zeros on the base the new window should contain the text

a
000

00000
0000000

allli if the user enters 8 the new window should contain the text

00
0000

000000
00000000

The leading spaces must be the TextModels.digitspace character for the triangle to be
symmetric.

Problems 249

250 Chapter I I Nested Loops

9. Write a program that asks the user to enter in a dialog box a positive one-digit integer
and prints a triangle of digits from one up to the digit entered. For example. if the user

enters .:I the new window should display

1
22
333
4444

If the user enters a number other than a positive one-digit integer the new window

should display an appropriate error message.

.ca Chapter 12
I!I~

Proper Procedures

The purpose of a called procedure is to perform a task for the calling procedure. Pro
cedure PrintTriangle in Figure 3.13 prints a single pattern and illustrates the flow of
control for procedures. Each time the calling procedure calls PrintTriangle. the pat
tern is printed, then control is passed back to the statement after the calling state
ment. When a procedure has parameters, its flow of control is identical to that of
procedure PrintTriangle. The computer executes the correct flow of control by saving
the address of the statement that made the call. When the called procedure termi
nates, the computer uses the saved address to know where to pass control back to the
calling procedure.

PrintTriangle in Figure 3.13 executes in response to the user clicking a button in
the graphical user interface. Like all procedures that execute in response to a button
click, it has no parameters. Most programs in previous chapters use procedures from
other modules that have parameters. This chapter shows how to write procedures
with parameters. It also shows the mechanism by which the computer saves the
return address when a procedure is called.

The run-time stack

To allocate a resource is to reserve it for someone's use. For example, you may allo
cate $30 from your paycheck to go to dinner with a friend on the weekend. When
you call a procedure, Component Pascal allocates on a stack a portion of main mem
ory for the procedure's use. It is called a run-time stack because the allocation takes
place during program execution, that is, during the time the program is running as
opposed to when the program is translated.

When a procedure is called. one of the items stored on the run-time stack is the
return address. The return address contains information about the location of the The rerum ",[dress
statement in the calling procedure. When the called procedure finishes its execution.
control is returned back to the calling procedure. The computer uses the return
address to determine which statement in the calling procedure to execute after it exe-
cutes the last statement in the called procedure.

In addition to the return address. the computer allocates storage for the parame
ters and for the local variables in the called procedure. Because the allocation takes
place at the time of the procedure call, neither the parameters nor the local variables
exist before the procedure is called.

Allocation takes place on the run-time stack in the following order when you call

252 Chapter 12 Proper Procedures

a proper procedure:

• Push the parameters.

• Push the return address.

• Push storage for the local variables.

We know from Chapter 6 that a stack has the LIFO property-last in, first out. We
will see that this property is especially significant for allocation on the run-time
stack.

Parameters called by value

Module Pbox 12A in Figure 12.2 has a programmer-defined procedure, PrintLine,
which the calling procedure calls twice to print two lines of asterisks. Figure 12.1
shows the commander to activate the exported procedure PrintLines and the result
ing output.

programming with BlackB»
Chapter t2
MODULE Pbox12A
ThIs module prints two lines of asterisks in :i .,ew window.
It Illustrates procedures With value p3l3Meters .

• '·PboxI2A. PrintLines"

The first statement of procedure PrintLines creates a new model md, and the sec
ond statement attaches formatter 1m to it. The next statement

PrintLine(6, 1m)

is the procedure call. The actual parameters are 6 and 1m, and they match the formal
parameters n and I. When the procedure is called, Component Pascal first allocates
storage for the two parameters. It gives the value of the actual parameter 6 to the for
mal parameter n, and a reference to the actual parameter 1m to the formal parameter
I. Then, it allocates storage for the return address and puts the value of the return
address. indicated by ral in Figure 12.2, in the storage allocated for it. Finally, it
allocates storage for the local variable i. Unlike the parameters and the return
address, no values are stored on the run-time stack for the local variables at the time
of the procedure call.

The procedure executes the FOR statement to print the first row of six asterisks.
The value of i on the run-time stack changes as the FOR statement executes. At the
end of the procedure execution, the storage for n, I, the return address, and i is deal
located. Unlike a function, control does not return to the calling statement. Instead,
control returns to the statement after the calling statement. In this case, that is the
procedure call

AII{I('aririll/rlr a proper
procedure

Figure 12.1
The output for the procedure
of Figure 12.2.

Parameters called hy value 253

MODULE Pbox12A;
IMPORT TextModels, TextViews, Views, PboxMappers;

PROCEDURE PrintLine (n: INTEGER; IN I: PboxMappers.Formatter);
(* Inserts a line 01 n asterisks to a text model with lormatter I *)

VAR
i: INTEGER;

BEGIN
FOR i := 1 TO n DO

IWriteChar("*")
END;
IWriteLn

END PrintLine;

PROCEDURE PrintLines';
VAR

md: TextModels.Model;
vw: TextViews.view;
1m: PboxMappers. Formatter;

BEGIN
md := TextModels.dir.NewO;
Im.ConnectTo(md);
PrintLine(6, 1m);
(* ra1 *)
PrintLine(5, 1m);
(* ra2 *)
vw := TextViews.dir.New(md);
Views.OpenView(vw)

END PrintLines;

END Pbox12A.

PrintLine(5, 1m)

which calls the procedure again. Storage is reallocated for n, I, the return address,
and i. This time the return address ra2. which is the address of

vw := TextViews.dir.New(md)

is stored on the run-time stack. The procedure prints a row of five asterisks. When
procedure PrintLine terminates control returns to that statement. A new view is cre
ated and opened using the now familiar MVC paradigm.

Figure 12.3 shows the details of the allocation process on the run-time stack for
Module12A. [t illustrates a prominent feature of frameworks in contrast to those
development environments that are based on libraries of procedures. Older develop
ment environments require that the programmer write what is known as a main pro
gram that always stClrts first when the application is launched. The main progrClm
calls other procedures. some of which are in the library Clnd some of which are writ
ten by the programmer. Because BlackBox is Cl frClmework, however, there is no

Figure 12.2
A procedure that prints a row
of asterisks. The parameter
specifies the number of
asterisks in the row.

254 Chapter 12 Proper Procedures

?I/////ffi.

(a) User clicks button.

rat retAddr

6 n

fm

vw

md

raO retAddr

/.

(d) FOR i := 1 TO n DO

fm

vw

md

raO retAddr

/.

(g) Return to PrintLines

raO

/.

fm

vw

md

retAddr

(b) Call PrintLines

fm

vw

md

raO retAddr

/.

(e) Return to PrintLines

~//////~

(h) Return to Stdlnterpreter.CaliProc

main program that must be written by the programmer. The framework itself is the
main program. The programmer writes procedures that are executed in response to
user actions within the graphical user interface. In Module12A, procedure PrintLines
executes in response to the click of a button by the user. The framework includes a
module named Stdlnterpreter, which in tum contains a procedure named CallProc.
Stdlnterpreter.CaliProc is the framework's procedure that calls Module12A.Print
Lines when the user clicks the button.

rat retAddr

6 n

fm

vw

md

raO retAddr

/.

(e) Call PrintLine

ra2 retAddr

5 n

fm

vw

md

raO retAddr

/.

(0 Call PrintLine

Figure 12.3
The run-time stack for
module Pbox12A in Figure

12.2.

Parameters called by value 255

Figure 12.3(a) shows the top part of the run-time stack before the user clicks the
button. A large part of the run-time stack exists below the figure and is not shown.

Figure 12.3(b) shows the run-time stack when procedure Stdlnterpreter.CaliProc
calls procedure Pbox12A.PrintLines. Remember that when one proper procedure
calls another the items pushed onto the stack are the parameters, followed by the
return address. followed by storage for the local variables. Because PrintLines has no
parameters, the only items pushed onto the run-time stack are the return address,
indicated by retAddr, followed by storage for the local variables md, VW, and 1m. The
figure shows retAddr below the local variables because retAddr was pushed onto the
stack first. It shows the value for retAddr as raO, which indicates the address of some
instruction in Stdlnterpreter.CaliProc that need not concern us.

The collection of all the items pushed onto the run-time stack when a procedure
is called is known as the stack frame. In this procedure call, the stack frame consists The slackjiwne

of the return address and storage allocated for the three local variables. The figure
indicates the stack frame by the rectangle with the thick border.

After PrintLines is called, the MVC statements

md := TextModels.dir.NewO;
Im.ConnectTo(md)

execute. They give values to the cells on the stack. Because we are not concerned
with the details of those values, the figures for the run-time stack do not indicate
what those values are.

Figure 12.3(c) shows the effect of the first call to PrintLine. Unlike the previous
call, this call has parameters as well as local variables. First, parameters n and I are
pushed onto the stack. The formal parameter is the label for the memory cell and the
value pushed is the content of the cell. Because n is called by value, the value 6 of
the corresponding actual parameter is pushed. Because I is called by constant refer
ence, indicated by IN in the formal parameter list, a reference to the corresponding
actual parameter 1m is pushed. For reasons not described here, formatters must Forlllaiters ore called /Jv
always be called by constant reference. Chapter 15 describes the concept of call by constam referellce.

constant reference. For now, we will ignore the formatter calling mechanism and
simply put a hyphen in the cell for I on the run-time stack. Second, the return
address is pushed onto the stack. Its value is ral, which Figure 12.2 shows to be the
instruction following the one that made the call. Third. storage for the local variable
i is allocated. The stack frame in this call consists of all three kinds of items-
parameters, return address and local variables.

Following the call to PrintLine, its statements execute, the first of which is

FOR i := 1 TO n DO

Whenever assignments are made to local variables or to parameters called by value,
they always change the content of the memory cells on the run-time stack. When this
statement first executes, it sets i to I. Figure 12.3(d) shows the content of the cell on
the run-time stack labeled i changed to I. As the loop progresses through the values
2, 3. 4, 5, and 6, the value in the cell changes accordingly. Each time the loop exe
cutes an asterisk is inserted into the text model.

Execution of the last line in PrintLine triggers a return from the procedure. The

256 Chapter 12 Proper Procedures

computer uscs the stored value for the return address to know which statement to
execute next. It de allocates the top stack frame and returns flow of control to the
calling procedure. In this case, ral is the return address. Figure 12.3(e) shows the
stack after the deallocation of the frame just before the statement at ra 1 is about to
execute.

The statement at ra 1 is yet another procedure call. Figure 12.3(f) shows alloca
tion on the run-time stack. This time the value of the actual parameter is 5, and the
return address is ra2, which is the address of

vw := TextViews.dir.New(md)

the instruction following the call. Procedure PrintLine executes again, this time
inserting 5 asterisks into the text model.

Figure 12.3(g) shows the deallocation from this procedure call. Following execu
tion of the MVC statements to give the text model a view and display it in a window.
control returns to Stdlnterpreter.CallProc as Figure 12.3(h) shows.

A bar chart program

The next program uses the above technique for printing a row of asterisks to print a
bar chart of data values. The input is from the focus window, which contains a list of
real values shown in Figure 12.4. Processing is initiated by a menu selection not
shown in the figure. The output is to a new window and consists of a single row for
each real value containing the real value. followed by the vertical bar character I fol
lowed by a row of asterisks equal to the real value rounded off to the nearest integer.

2.5 133 168 34.1 272
230 247 290 16' 97
0_,1 :2.1

III -111 'I"

EJ·

• m

-untitled 12 .. '·

2.6 I •••

! 3_3 I ",,"-<I-*****<f*****
16.6 I ******.ot"******"'"**

34.1 I············ .. ·••·•···••·•••··
272 I *** ... **.***"'"***************"'"
23.0 I)f)f)!-)OHf)E-'OHtlHfot'tlE-'t)!-)!-)!)f)fM-*

24.7 I ...;***"!-*"'"*************""*"'"**
29_0 I *

2.1 1-'**

Figure 12.5 shows the module that creates the output of Figure 12.4. Procedure
PrintLine uses the standard function SHORT, which is a type conversion function. If
n is a variable of type INTEGER and m is a variable of type LONGINT, then the
assignment statement

m:= n

Figure 12.4
The input and output for the
program of Listing 12.2.

MODULE Pbox12B;
IMPORT TextModels, TextViews, Views, TextControliers, PboxMappers;

PROCEDURE PrintLine (x: REAL; IN I: PboxMappers.Formatter);
VAR

i, n: INTEGER;
BEGIN

ASSERT(x >= 0.0, 20);
l.writeReal(x, 8, 1);
l.writeString(" I ");
n := SHORT(ENTIER(x + 0.5));
FOR i := 1 TO n DO

l.writeChar("*")
END;
l.writeLn

END PrintLine;

PROCEDURE PrintHistogram*;
VAR

en: TextControliers.Controller;
se: PboxMappers.Seanner;
dataValue: REAL;
md: TextModels.Model;
vw: TextViews.View;
1m: PboxMappers.Formatter;

BEGIN
en := TextControliers.FoeusO;
IF en # NIL THEN

md := TextModels.dir.NewO;
Im.ConneetTo(md);
se.ConneetTo(en.text);
se.SeanReal(dataValue);
WHILE -se.eot DO

PrintLine(dataValue, 1m);
(* ra1 *)
se.Sean Real(dataValue)

END;
vw := TextViews.dir.New(md);
Views.OpenView(vw)

END
END PrintHistogram;

END Pbox12B.

is kgal. but the assignment statement

n :=m

is not kgal. The purpose of SHORT is to convert a long integer to the equivaknt

integer value. because long integers have a greater range than integers. it is possible

A har chart progrum 257

Figure 12.5
A program that prints a bar
chan from data values in a

tile. The procedure prints a

single bar.

258 Chapter 12 Proper Procedures

that SHORT will truncate the value of the long integer. The assignment statement

n := SHORT(m)

is legal because SHORT(m) has type INTEGER.

In procedure PrintLine. the statement

n := SHORT(ENTIER(x + 0.5));

rounds off the value of real variable x and assigns it to integer variable n. The
ENTlER function returns a long integer value. The SHORT function converts it to an
integer value so the value can be assigned to n.

Example 12.1 If x has the value 2.6, then x + 0.5 has the value 3.1, ENTIER(x +
0.5) has the long integer value 3, and SHORT(ENTIER(x + 0.5)) has the integer value
3. The real value of 2.6 has been properly rounded up. I

Example 12.2 If x has the value 13.3, then x + 0.5 has the value 13.8, ENTIER(x +
0.5) has the long integer value 13, and SHORT(ENTIER(x + 0.5)) has the integer
value 13. The real value of 13.3 has been properly rounded down. I

The program reads the first value from the focus window into the real variable
dataValue. If the focus window is empty, then sC.eot will be true and the body of the
WHILE loop will never execute. Otherwise, the variable dataValue will get the first
real value in the focus window. With each loop execution the procedure PrintLine is
called. After it executes and prints a line of the histogram, the next real value from
the focus window is input into the real variable dataValue. The loop continues to
execute while real values remain to be scanned in the focus window.

Figure 12.6 shows memory allocation for the procedure. Figure 12.6(a) shows the
stack frame after the call to PrintHistogram. To keep the figure simple, the local
MVC variables in the procedure are not shown. Other than the MVC variables, data
Value is the only local variable.

With the first scan, dataValue gets 2.6 from the focus window as Figure 12.6(b)
shows. When PrintHistogram calls PrintLine, the computer allocates a new stack
frame. As usual, parameters x and f are first pushed onto the stack, followed by the
return address retAddr followed by local variables i and n as Figure 12.6(c) shows.

PrintLine converts the real value of 2.6 from x by rounding up to the integer value
3, which it gives to n. After proceeding through the FOR loop 3 times, the final value
of i is 4 as Figure 12.6(d) shows. Termination of procedure PrintLine triggers a return
to PrintHistogram. The top stack frame is deallocated as usual and the return address
ral specifies the instruction in the calling procedure to be executed next. The result
is the stack frame in Figure 12.6(e).

The scanner scans the next real value 13.3 from the focus window into local vari
able dataValue. The scan sets sC.eot to false because a real value was scanned into
the variable. The test in the WHILE loop is true. which causes the body to execute
again. So, PrintLine is called once again. Figure 12.6(0 shows the state of the run
time stack just before the call. The cell for dataValue contains the scanned value

implementing preconditions 259

EjJ dataValue

raO retAddr

/.

m.6 dataValue

raO retAddr

/.

(a) After call to PrintHistogram (b) Before call to PrintLine

n 3 n

4

ral retAddr ral retAddr

2.6 x 2.6 x

2.6 dataValue dataValue

raO retAddr retAddr

/.

(e) After call to PrintLine (d) Before return to PrintHistogram

m.6 dataValue

raO retAddr

/.

W3.3 dataValue

raO retAddr

/.

(e) After return to PrintHistogram (f) Before call to PrintLine

13.3. When the procedure is called, a stack frame identical to the top frame in Figure
12.6(c) is allocated except that the value of the formal parameter x is 13.3 instead of
2.6.

It is important to understand that between executions of PrintLine its parameters
and local variables do not exist. It would be illegal to write a statement like INC(n) in
the body of procedure PrintHistogram. It should be clear that such a statement would
be impossible to execute because n would not exist at that point in time. The error
would be detected by the compiler. which would not generate any object code.

Implementing preconditions

Procedure PrintLine can only print a bar for the histogram if the value that the calling
procedure gives it for x is not negative. It has no mechanism for printing a histogram
bar that extends to the left of the numbers in the text view. For the results to be
meaningful the user should be restricted to providing nonnegative real numbers.

One approach to solving the problem of invalid input is to have an IF statement in
procedure PrintLine that checks if x is negative and prints a histogram bar only if it is
not. The problem is, what should the procedure do if the variable is negative') Should
it do nothing and simply skip that line in th~ graph') Should it print a line with no
asterisks? Should it send an error message to the Log') The problem of how to deal

Figure 12.6
Memory allocation for
Listing 12.5. Many ",lye
variables are not shown.

260 Chapter 12 Proper Procedures

with input errors is an important one that you should always consider when you
design software.

The BlackBox framework promotes a particularly effective philosophy on how to
deal with errors. For this problem. the philosophy states that the IF statement to
guard against errors should not be in procedure PrintLin~, but should be in the calling
procedure instead. Procedure PrintLine should perform only one task, that of print
ing a histogram bar with valid data. To program it to also handle the error conditions
is not considered good design because those two tasks are not similar. Programs are
easier to read. understand. and maintain if each procedure concentrates on one pri
mary task.

The first executable statement in PrintLine

ASSERT(x >= 0.0, 20)

implements a precondition for the procedure and guarantees that the value for x to
be processed will not be negative. If it is, a trap will occur as shown in Figure 12.7
where the second number in the focus window is negative. The precondition makes
it the caller's responsibility to guard against the possibility of meaningless input.
The delegation of that responsibility to the caller allows the called procedure to con
centrate on one primary task, namely inserting one line of the histogram bar into the
text model.

EJ ~ Data ===== li!l Ei

2.6 ~133 16.3 34.1 27.2 ~.
HO 247 290 161 97
0.4 21

"=

(Trap I~, - '

TRAP 20 (precondition Violated)

• ?bOK 12BPrintLine [OOOOOOBEH[.
f PboxMoppers Formetter~fieldsm

INTEGER 34515532
,n INTEGER 38457908

REAL -133
• Pbox' 2B PrintHlstogram [000002C3H[•

. en TextC,ntroll ers.Controller[024B51 C4H) •
det.v.lue REAL -13.3
fm PboxMeppers Formetter'!fields!
md TextModels.Model [02489B84H) •
. se PboxMeppers Sconnedlfieljsl/l
vw TextViewsView NIL

• Std:nterpr".!ter.CallPro: (000005E 1 HI.
a BOOLEAN FALSE
.b BOOLEAN FALSE

You should compare the trap window in Figure 12.7 with the figure of the run
time stack in Figure 12.6(c). The trap window is essentially a view of the run-time
stack, except that the return address is not shown explicitly. and the local variables
and parameters are shown in alphabetic order preceded by a period instead of in the
order in which they actually occur on the stack. Figure 12.6(c) shows storage for x, f.
i, and n on the top stack frame in the order in which they are allocated (bottom up),
while Figure 12.7 shows storage for.t, .i, .n. and .x in alphabetic order. The trap win
dow shows the type of each parameter and local variable as well as its value when
the trap occurred. As expected, the trap window shows dataValue in PrintHistogram

and x in PrintLine to have value -13.3.

Figure 12.7
The trap generated by
violation of the precondition
of procedure PrintLine in
Figure 12.5.

Figure 12.6(c) shows that nand i have not received any values, but the trap win
dow shows some huge random values for both .n and .i. This state is typical for vari
ables that have not been assigned values. It is impossible for a variable to not have a
value. If the program has not assigned a value to a variable, it will have some ran
dom value left over by the memory cell from the last time it was allocated or from its
random state when the computer was first turned on.

Procedure PrintLine in Figure 12.5 is an illustration of good design philosophy
for establishing preconditions with your procedures. Of course, procedure PrintHis
togram is not an illustration of good design for user-friendly software because it
allows the user to experience a program trap. A bulletproof program will never crash
with a program trap. Problem 10 in this chapter challenges you to make procedure
PrintHistogram bulletproof.

In practice, procedures that are not exported do not usually contain preconditions
that are implemented by ASSERT statements. In that sense, procedure PrintLine in
Figure 12.5 is not too typical. A single module is rarely written by more than one
person. Because the same programmer who writes a nonexported procedure also
writes the procedure that calls it, the programmer does not usually need to safeguard
the called procedure against misuse. However, procedures that are exported are fre
quently used by programmers who did not write them. In those cases, the precondi
tion is the formalization of a contract between the sever module and the client
module. The ASSERT statement is frequently used to establish the precondition, and
the corresponding error message number is documented in the Docu file. The client
module then has the responsibility to ensure that the precondition is met before call
ing the procedure. This software development practice is known as Design by Con
tract and is described in Chapter 7, page 144.

Call by value

In Figure 12.5, procedure PrintLine passes its parameters by value. The program in
Figure 12.8 illustrates the fact that in call by value, the formal parameter gets a copy
of the value of the actual parameter. If a subsequent statement in the procedure
changes the value of the formal parameter. it does not affect the actual parameter.

Figure 12.10 shows the memory allocation for Figure 12.8. In procedure CallBy-

Call hv vallie 261

RUlldnJn nt/ue,)" heforc [he

first assign!l!ellt

:\ hlll!l't{Jroo{l)r(lr.:rulll doc.,

!lot Clash lrill! (lIJr()<';l"w/I

Iml'·

Desir.;:n !J,' cOlltrocr

Value. variable i gets the value of 6, which is verified by the output statement. Then III ,'aI/ hr ,',dut', tizetiJl'll/u{

the program calls procedure PassVal with the actual parameter, i. The formal param- {"'filiI/eta gets tile "u/lle oj

eter, j, gets a copy of the value of i. When the statement tile ,"tlla/ pUl'Ull/e!<'1:

INC(j)

executes in procedure PassVal. it changes the copy of the value to 7, The original
value of 6 for i in the main program does not change, The output of the program on
the log is

i = 6
j = 7
i = 6

When parameters are called by value. the called procedure has access to the val-

262 Chapter 12 Proper Procedures

ues of the formal parameters. If the value of the formal parameter is changed. the
change is not reflected in the calling procedure. Information flows from the calling
procedure to the called procedure-not in the other direction-via the value of the
parameter.

MODULE Pbox12C;
IMPORT StdLog;

PROCEDURE PassVal (j: INTEGER);
BEGIN

INC(j);
StdLog.String("j = "); StdLog.lnt(j); StdLog.Ln;

END Pass Val;

PROCEDURE CaIlByValue*;
VAR

i: INTEGER;
BEGIN

i :=6;
StdLog.String("i = "); StdLog.lnt(i); StdLog.Ln;
PassVal(i);
(* ra1 *)
StdLog.String("i = "); StdLog.lnt(i); StdLog.Ln

END CallByValue;

END Pbox12C.

W·
raO ~etAddr

/.

retAddr

6

raO retAddr

/.

(a) Before call to PassVal (b) After call to PassVal

ral retAddr

7

6

raO retAddr

/.

(c) After INCO)

W·
raO ~etAddr

/.

(d) After return from PassVal

Figure 12.8
A procedure with a parameter
called by value.

r'=6 ~
j= 7
i = 6

.!l

Figure 12.9
The output for Figure 12.8.

Figure 12.10
Memory allocation for Figure
12.8.

Call by reference

This section introduces the concept of call by reference, a technique by which a pro
cedure can not only get values from the calling statement, but can give values back
to it as well.

The program in Figure 12.11 is identical to the program in Figure 12.8 except for
one important detail. The programmer placed reserved word VAR before formal
parameter j in the formal parameter list. The reserved word VAR in a formal parame
ter list has a different meaning from its meaning in a local variable declaration. Out
side a parameter list, VAR indicates the start of the variable declaration part. In a
formal parameter list, VAR indicates that the parameter is called by reference instead
of called by value. In Component Pascal, parameters that are called by reference are
known as variable parameters.

MODULE Pbox12D;
IMPORT StdLog;

PROCEDURE Pass Ref (VAR j: INTEGER);
BEGIN

INC(j);
StdLog.String("j = "); StdLog.lnt(j); StdLog.Ln;

END PassRef;

PROCEDURE CaIiByReference*;
VAR

i: INTEGER;
BEGIN

i:= 6;
StdLog.String("i = "); StdLog.lnt(i); StdLog.Ln;
PassRef(i);
(* ra1 *)
StdLog.String("i = "); StdLog.lnt(i); StdLog.Ln

END CaliByReference;

END Pbox12D.

Figure 12.13 shows the memory allocation for Listing 12.11. When Component
Pascal allocates memory for j, it does not give a copy of the value of the actual
parameter, i, to j. Instead, it gives a reference to i. The figure indicates the reference
to i by the arrow that points from the cell allocated for j to the eell allocated for i.

When j is used in the procedure. it is as though i has temporarily taken its place.
The statement

INC(j)

has the effect of

INC(i)

Call bv reference 263

Figure 12.11
A procedure with a parameter
called by reference.

r
'7!'~!'-_I~I:1
J=7
1-::7

..:l

Figure 12.12
The output for Figure 12.11.

In cull !'.' l"et"rcilce. Ih"
j'ormed jJorwlleter gets (/

re!/:rclI("c 1(1 the (/("[["'!
{NIHltJll!rt'/:

264 Chapter 12 Proper Procedures

retAddr

raO retAddr

(a) Before call to PassRef (b) After call to PassRef

retAddr

raO retAddr

(c) After INC(j) (d) After return from PassRef

because j, during execution of the procedure, refers to i. When control returns back
to the calling program, the value of i has been modified. The purpose of call by refer
ence is to change the value of the actual parameter in the calling statement. The out
put of this program is

i = 6
j = 7
i = 7

When parameters are called by reference, the procedure has access to the values
of the variables in the calling program referred to by the parameters. In this pro
gram, procedure Pass Ref had access to the value, 6, of i in the calling program. In
that sense, information can flow from the calling program to the procedure.

When the procedure changes the value of a variable parameter, the value of a
variable in the calling program changes. In this program, when procedure PassRef
assigned a value to j, the value of i in the calling program changed. In that sense.
information can tlow from the procedure to the calling program.

In call by value. the actual parameter could be an arbitrary expression. But in call
by reference. the actual parameter must be a single variable.

Example 12.3 The procedure call

PassVal(i + 2)

where PassVal is declared as in Listing 12.~. is legal. The formal parameter, j. IS

called by value and can take the expression i + 2 as an actual parameter. I

Figure 12.13
Memory allocation for Figure
12.11.

Example 12.4 The procedure call

PassRef(i + 2)

where PassRef is defined in Listing 12.11, is not legal, because i + 2 is not a single
variable. I

Call by result

In Figure 12.11, procedure Pass Ref uses the value 6 supplied by actual parameter i.
It increments the value and gives the incremented value of 7 back to i. So, not only
does it use the initial value of j, it also changes the actual parameter that is linked to

j.

MODULE Pbox12E;
IMPORT Dialog;
VAR

d': RECORD
width', height': REAL;
area-, perim-: REAL

END;

PROCEDURE CalcRectSize (wid, ht: REAL; OUT ar, per: REAL);
BEGIN

ASSERT(wid > 0.0, 20);
ASSERT(ht> 0.0, 21);
ar := wid' ht;
per := 2.0 * (wid + ht)

END CalcRectSize;

PROCEDURE Rectangle';
BEGIN

IF (d.width > 0.0) & (d.height > 0.0) THEN
CalcRectSize(d.width, d.height, d.area, d.perim);
(* ra1 ')

ELSE
d.width := 0.0; d.height := 0.0;
d.area := 0.0; d.perim := 0.0

END;
Dialog.Update(d)

END Rectangle;

BEGIN
d.width := 0.0; d.height := 0.0;
d.area := 0.0; d.perim := 0.0

END Pbox12E.

It frequently happens that the called procedure does not need the initial value of

the formal parameter. In these situations. the initial value of the formal parameter

Call hy result 265

Figure 12.14
Computing the area and
perimeter of a rectangle with
a procedure.

o ==.(Rectengle Size) ,=, 13

Widt~ 17.0
i=====

Height I~.o

1.1 Compute I
Area: 26.0

Perimeter: 2~.O

Figure 12.15
The dialog box for the
procedure of Figure 12.1-1.

266 Chapter 12 Proper Procedllres

can be considered undefined. The passing mechanism is known as call by result, and
formal parameters are so designated by the reserved word OUT in the formal param
eter list.

The program in Figure 12.14 is a case in point. Figure 12.15 shows the corre
sponding dialog box. The module uses a procedure to calculate the area and perime
ter of a rectangle from its width and height. Procedure CalcRect has four formal
parameters. Two of the parameters are called by value and two are called by result.

d.height 4.0 d.height 4.0

d.area 0.0 d.area 0.0
d.width ;.0

d.perim 0.0

d.width ;.0

d.perim 0.0 r::;;Q'l retAddr

~
(a) Before call to Rectangle (b) Before call to CalcRectSize

retAddr retAddr

per per

ar d.width 7.0 ar

d.height 4.0 ht d.height 4.0 ht

d.width ;.0
d.area 0.0

d.perim 0.0

wd

retAddr

d.area 28.0

d.perim 22.0

wd

retAddr

/.

(c) After call to CalcRectSize (d) Before return to Rectangle

d.width 7.0 d.width 7.0

d.height 4.0 d.height 4.0

d.area 28.0 d.area 28.0

d.perim 22.0

7//////0.
d.perim 22.0 ~retAddr

/.

(e) After return to Rectangle (f) After return to framework

Because module Pbox12E implements a dialog box, it contains an interactor d,
which is a global variable. Unlike local variables and parameters, global variables
are not allocated on the run-time stack. They occupy a region of memory set aside
for the module apart from its procedures. Memory for global variables is allocated
when the module is loaded and remains in place while the stack frames are allocated
and deallocated for procedure calls and returns. As long as the dialog box in Figure

Figure 12.16
Memory allocation for the
program of Figure 12.14.

12.15 is visible in the graphical user interface, storage for the values in Pbox12E.d is
available.

Figure 12.16 is a trace of program execution. Storage for the global variables is
shown to the left of the run-time stack. The module gets values for d.width and
d.height from the dialog box. When the user presses the compute button, procedure
Rectangle executes, which tests to make sure that d.width and d.height are both non
negative then calls procedure CalcRectSize. The actual parameters~.width,

d.height, d.area. and d.perim--correspond to the formal parameters-wid, ht, ar, and
per. wid and ht are called by value. ar and per are called by result. wid gets the value
from d.width, and ht gets the value from d.height. As with call by reference, ar refers
to d.area, and per refers to d.perim. The same arrow notation is used in the figure to
indicate call by result as was used previously to indicate call by reference. Another
similarity with call by reference is that the actual parameter in call by result must be
a variable.

Procedure CalcRect uses the values of wid and ht in its computation. That infor
mation flows from the calling procedure to the called procedure. When CalcRect
assigns values to ar and per, it changes the values of d.area and d.perim in procedure
Rectangle. That information flows from the called procedure to the calling proce
dure. In general, information flows from the calling procedure to the called proce
dure when parameters are called by value, from the called procedure to the calling
procedure when parameters are called by result, and both ways when parameters are
called by reference. Figure 12.17 shows the flow of information for these three call
ing mechanisms.

(a) Call by value. (b) Call by result. (c) Call by reference.

The key question to ask in deciding whether a parameter should be called by
value, called by result. or called by reference is, Which way does the information
flow between the actual parameter and the formal parameter? If the purpose of the
formal parameter is to receive a value from the actual parameter use call by value. If
the purpose of the formal parameter is to change the value of the actual parameter,
use call by result. In this case, the initial value of the actual parameter can be consid
ered undefined. If the purpose of the formal parameter is both to receive a value
from the actual parameter and to change the value of the actual parameter, use call
by reference. In summary:

Call /Jy result 267

III ('(III In result. the jimnal
puram/!ter gets a reference to

rhe actual pllIwllcta

Figure 12.17
The flow of information for

three different calling
mechanisms.

268 Chapter 12 Proper Procedures

• Call by value

... Default

... Use when the actual parameter should not change.

... The actual parameter can be an expression.

• Call by result

... OUT

... Use when the actual parameter should change and its initial value is unde
fined.

... The actual parameter must be a variable.

• Call by reference

... VAR

... Use when the actual parameter should change and the called procedure
uses its initial value .

... The actual parameter must be a variable.

Using parameters

Any number of parameters can be in the parameter list of a procedure. The number
of parameters in the actual parameter list must equal the number of parameters in the
formal parameter list. The types must correspond as well. The violation of these
rules is a syntax error.

Example 12.5 The statement

PrintLine(6.0, fm)

where PrintLine is declared as in Figure 12.2, is illegal because the formal parame
ter, n, is an integer and the actual parameter, 6.0, is a real value. I

Example 12.6 With PrintLine declared as before, the function call

PrintLine(6)

is illegal, because there is only one actual parameter but two formal parameters. I

Remember that if x is a real variable, the assignment x := 7 is legal. The integer
value. 7. is converted to a real value. 7.0, before being assigned to x. But if i is an
integer variable. then i := 2.7 is illegal. Similarly, integer values can be actual param
eters for real formal parameters.

Example 12.7 The procedure call

CalcRectSize(42, 10, d.area, d.perim)

SwnmafT or call /Jv I'allte.

call by result. and call by

referellce

Using global variables 269

where CalcRectSize is defined as in Figure 12.14, is legal. The integer value, 42. is
automatically converted to the real value, 42.0, before being given to the formal
parameter, wid. Similarly, 10 is automatically converted to 10.0. I

It is legal to have the actual parameter be a variable with the same name as the
formal parameter. But you should realize that there are separate memory locations
for each. To keep the distinction clear between the formal parameters and actual
parameters, this book will generally avoid using the same name for both. The usual
convention will have the formal parameter serve as an abbreviation of the actual
parameter.

Example 12.8 If a procedure has a declaration with formal parameters as

PROCEDURE PrintLine (num: INTEGER; f: PboxMappers.Formatter);

and the calling procedure has a variable declared as

VAR
num: INTEGER

then the procedure call

PrintLine(num, fm)

would be legal even though the first formal parameter has the same name as the
actual parameter. I

Using global variables

The modules in this book that implement dialog boxes, such as the one in Figure 5.9
that computes the coins required for a given amount of change, use global variables
to link to the dialog box. The variable declaration from Figure 5.9

VAR
d': RECORD

change': INTEGER;
dimes-, nickels-, pennies-: INTEGER

END;

is nested within module Pbox05B but not within procedure MakeChange. Therefore,
it is a global variable.

Figure 9.3 shows another example of global variables. The declaration

stackA, stackB: PboxStackObj.Stack;

is nested within module Hw99Pr0980 and not within any of the procedures PushA,
PushB. PopA, PopB, or ClearStacks. Therefore. stackA and stackB are global vari
ables.

270 Chapter 12 Proper Procedures

MODULE Pbox12F;
IMPORT TextModels, TextViews, Views, TextControliers, PboxMappers;

VAR (* WARNING-Unnecessary global variables. Bad design. *)
cn: TextControliers.Controller;
sc: PboxMappers.Scanner;
dataValue: REAL;
md: TextModels.Model;
vw: TextViews.view;
1m: PboxMappers.Formatter;

PROCEDURE PrintLine;
VAR

i, n: INTEGER;
BEGIN

ASSERT(dataValue >= 0.0,20);
Im.writeReal(dataValue, 8, 1);
Im.writeString(" I ");
n := SHORT(ENTIER(dataValue + 0.5));
FOR i := 1 TO n DO

1m. WriteChar("*")
END;
Im.writeLn

END PrintLine;

PROCEDURE PrintHistogram*;
BEGIN

cn := TextControliers.FocusO;
IF cn # NIL THEN

md := TextModels.dir.NewO;
1m. ConnectTo(md);
sc.ConnectTo(cn.text);
sc.ScanReal(dataValue);
WHILE -sc.eot DO

PrintLine;
sC.Scan Real(dalaValue)

END;
vw := TextViews.dir.New(md);
Views.OpenView(vw)

END
END PrintHistogram;

END Pbox12F.

There is nothing to prevent you from declaring as many global variables as you
would like, and using them for whatever purpose you desire. You could even use
global variables in place of parameters to achieve the same effect. Figure 12.18
shows a module that does the same computation as the one in Figure 12.5, but with
out any parameters in procedure PrintLine. There is no real parameter x or formatter
I, and the variables dataValue and 1m (along with a host of other variables) are glo-

Figure 12,18
A procedure whose
computation is the same as
that in Figure 12.5, but
without parameters for
PrintLine.

Using global variables 271

bal. Instead of having the actual parameter dataValue being mapped to parameter x
and using x in the procedure, the procedure simply does its computation directly on
dataValue. Similarly, instead of having the actual parameter 1m being mapped to
parameter f and using I in the procedure, the procedure simply does its computation
directly on fm.

Which program do you think is better-the one in Figure 12.5 or the one in Fig
ure 12.18? Most beginning programmers think that the one in Figure 12.18 is better.
After all, it is shorter, and when you write it you do not need to bother with a param
eter list. Why use a parameter list if you can do the same job without one?

Most software designers would contend that the program in Figure 12.5 is better.
The general design rule for procedures is that you should avoid unnecessary use of
global variables. For small programs, such as the ones in this book, the problems
created by using global variables are not as evident as they are with large programs.
The advantage of using parameters and local variables in a procedure is that the pro
cedure is self-contained. Therefore, when compared to a procedure that uses global
variables, it is

• Easier to read

• Easier to modify

• Easier to use in other programs

Look at the two procedures from these programs, when they are isolated from
their environments.

Design rtlle liJl' global
I'(/riahl~.I"

PROCEDURE PrintLine (x: REAL; VAR I: PboxMappers.Formatter); PROCEDURE PrintLine;
VARVAR
i, n: INTEGER;i, n: INTEGER;

BEGINBEGIN
ASSERT(x >= 0.0, 20);ASSERT(dataValue >= 0.0, 20);
IWriteReal(x, 8, 1);lm.WriteReal(dataValue, 8, 1);
IWriteString(" I ");fmWriteString(" I ");
n := SHORT(ENTIER(x + 0.5));n := SHORT(ENTIER(dataValue + 0.5));
FOR i := 1 TO n DOFOR i := 1 TO n DO
I.WriteChar("*")fm.WriteChar("*")
END;END;
f.WriteLnlm.WriteLn

END PrintLine;END PrintLine;

Suppose the program listing were 30 pages long, and these procedures are pages
away form their calling programs. You are in the process of reading the code to find
a bug and you come across these procedures.

The first PrintLine is completely self-contained. Its statements refer only to local
variables. You can see from reading it that whatever the calling procedure supplies
for the first parameter this PrintLine procedure rounds off that value to an integer and
writes that number of asterisks to a text model to which the second parameter is con
nected. But the second PrintLine is not self-contained. What is dataValue? What is
fm? What are their types? You cannot tell for sure unless you scroll back many pages
to search for their declarations.

Furthermore. the first PrintLine is more general than the second PrintLine. You can

272 Chapter 12 Proper Procedures

copy it out of this module and paste it into another module with the assurance that it
will work correctly. The second PrintLine is not general-purpose. Its correctness
depends on its environment. You cannot place it in another module with different
global variables and expect it to work. You would need to change its environment to
make sure that dataValue and fm are declared consistently and used properly with
the procedure. Or, you would need to rename dataValue and f to match the global
variables of the environment.

An important skill for you to develop now is the ability to design good proce
dures. You should always rely on local variables with parameters to pass information
between the calling and the called procedure unless there is reason not to. When Wh~11 ro l/.I"~ a global Vllri(lh/~

must you resort to a global variable? When its value must be persistent between
invocations of the module's exported procedures.

Consider the dialog box for Figure 12.14, which computes the area and perimeter
of a rectangle. The interactor d for the dialog must be global because the dialog box
persists between invocations of the exported procedure Rectangle. Before the proce
dure executes, the dialog box exists on the screen with values entered by the user.
After the procedure executes, the dialog box persists on the screen displaying the
results of the computation. Figure 12.16 shows the values linked to the dialog box.
The local variables are deallocated when Rectangle terminates, but the dialog box
remains on the screen. Therefore, the interactor d must be global.

Another example of the proper use of global variables is the program of Figure
9.3, which manipulates two stacks. The variables stackA and stackS are not linked
directly to a dialog box. Nevertheless, the data that they store must be persistent
between invocations of PushA, PushS, PopA, PopS, and ClearStacks. After the user
pushes a value onto a stack, the stack itself with all its data should not be deallo
cated. If the stack were deallocated the value that was just pushed would be lost.

Exercises

1. Detennine the outputs to the Log of Exrl a and Exrl b.

(a)
PROCEDURE Passla (n: INTEGER);
BEGIN

n := n * 2;
StdLog.lnt(n); StdLog.String(" ")

END Pass 1 a;

PROCEDURE Exr1a*;
VAR

num: INTEGER;
BEGIN

num:= 5;
Passla(num);
StdLog.lnt(num) (* ral *)

END Exrla;

(b)
PROCEDURE Passlb (VAR n: INTEGER);
BEGIN

n := n * 2;
StdLog.lnt(n); StdLog.String(" ")

END Passlb;

PROCEDURE Exr1b';
VAR

num: INTEGER;
BEGIN

num:= 5;
Passlb(num);
StdLog.lnt(num) (' ral ')

END Exrlb;

2. For Exercise I(a), draw the memory allocation as in Figure 12.10 for the following

times:

(a) Just before the call to Pass1 a (b) Just after the call to Pass1a
(e) Just before the return from Pass 1 a (d) Just after the return from Pass 1 a

3. For Exercise I(b), draw the memory allocation as in Figure 12.13 for the following
times.

(a) Just before the call to Pass1 b (b) Just after the call to Pass1b
(e) Just before the return from Pass 1 b (d) Just after the return from Pass 1 b

4. Determine the outputs to the Log of Exr4a and Exr4b.

(a) (b)

PROCEDURE Pass4a (OUT n, m: INTEGER)PROCEDURE Pass4b (OUT m, n: INTEGER);
BEGINBEGIN

n := 1;n := 1;
m :=2m :=2

END Pass4a;END Pass4b;

PROCEDURE Exr4ao;PROCEDURE Exr4bo;
VARVAR
n, m: INTEGER;n, m: INTEGER;

BEGINBEGIN
Pass4a (n, m);Pass4b (n, m);
(* ra1 oW ra1 0)
StdLog.String(,n = '); StdLog.lnt(n); StdLog.Ln;StdLog.String(,n = '); StdLog.lnt(n); StdLog.Ln;
StdLog.String(,m = '); StdLog.lnt(m); StdLog.LnStdLog.String(,m = '); StdLog.lnt(m); StdLog.Ln

END Exr4a;END Exr4b;

5. For Exercise 4(a), draw the memory allocation as in Figure 12.16 for the following
times.

(a) Just before the call to Pass4a
(e) Just before the return to Exr4a

(b) Just after the call to Pass4a
(d) Just after the return to Exr4a

6. For Exercise 4(b), draw the memory allocation as in Figure 12.16 for the following
times.

(a) Just before the call to Pass4b
(c) Just before the return to Exr4b

(b) Just after the call to Pass4b
(d) Just after the return to Exr4b

7. Suppose a calling procedure declares variables

a, b, c: REAL;

and procedure Exr7 has the heading

PROCEDURE Exr7 (d: REAL; OUT e: REAL; VAR f: REAL)

State whether each of the procedure calls is legal. For those that are not legal, explain
why.

(a) Exr7(a, b, c)

(d) Exr7(a, 7.0, c)
(g) Exr7(7, b, c)

(b) Exr7(a, b)

(e) Exr7(a, b, 7.0)
(h) Exr7(a, 7, c)

(e) Exr7(7.0, b, c)
(0 Exr7((a + b) / 2.0, b, c)

Exercises 273

274 Chapter 12 Proper Procedures

8. Suppose a calling procedure declares variables

p, q, r: INTEGER

and procedure Exr8 has the heading

PROCEDURE Exr8 (s: INTEGER; OUT t: INTEGER, u: INTEGER)

State whether each of the procedure calls is legal. For those that are not legal, explain
why,

(a) Exr8(p, q, r)
(d) Exr8(p, 5, r)
(g) Exr8(5,0, q, r)

(b) Exr8(p, q)
(e) Exr8(p, q, 5)
(h) Exr8(p, 5,0, r)

(e) Exr8(5, q, r)
(f) Exr8«p + q) DIV 2, q, r)

9. (a) What are the advantages of using local variables and parameters instead of global
variables~ (b) When is it justified to use a global variable?

Problems

10. Make the program in Figure 12,5 bulletproof by continuing the loop only if the scanner
is not at the end of text and dataValue is not negative, After terminating the loop, check
sC.eot to determine how the loop terminates. If it terminates without reaching the end
of text you know a negative value was encountered. In that case. insert an appropriate
error message in the text model. Otherwise do nothing and terminate normally.

11. Declare

PROCEDURE PrintRow (numSpace, numChr: INTEGER; ch: CHAR; VAR I: PboxMappers.Formatter)

that inserts into a text model to which I is connected one line with numSpace spaces
followed by numChr occurrences of ch. For example, PrintRow (5, 3, 'a', 1m) should
insert one line with five spaces followed by three 'a's. Use your procedure to print the
pattern shown below to a new window. Activate your program with a commander in
your Docu file. After your program creates the window you will need to display the pat
tern in Courier or some other monospaced font to have the characters aligned properly.

12. For Chapter 11, Problem 5. write a program to display a solid box of @ symbols in a
new window. Use a procedure called PrintPattern with three parameters-one that
specifies how many rows to print. one that specifies the number of columns to print.
and one that specifies the formatter to use. Assert as a precondition that the number of
rows and columns must be positive. Insure in the calling procedure that the precondi
tion is not violated by not changing anything in the dialog box and not opening a new
window if a nonpositive value is entered.

13. For Chapter II. Problem 6, write a program to display a hollow box of zeros in a new
window. Use a procedure called PrintPattern with three parameters-one that specifies
how many rows to print, one that specifies the number of columns to print, and one that
specifies the formatter to use. Assert as a precondition that the number of rows and col
umns must be greater than I. Insure in the calling procedure that the precondition is not
violated.

14. For Chapter II. Problem 7, write a program to display a right triangle of zeros with a
vertical right side in a new window. Use a procedure called PrintPattern with a parame
ter that specifies how many rows to print and a parameter that specifies the formatter to
use. Assert as a precondition that the number of rows must be positive. Insure in the
calling procedure that the precondition is not violated.

15. For Chapter II, Problem 8, write a program to display symmetric triangle of zeros in a
new window. Use a procedure called PrintPattern with a parameter that specifies how
many rows to print and a parameter that specifies the formatter to use. Assert as a pre
condition that the number of rows must be positive. Insure in the calling procedure that
the precondition is not violated.

16. A rectangular box has width, length, and height. Write a program that inputs these
dimensions from a dialog box and calls a procedure that calculates the volume and
total surface area of the box. Your procedure should have five formal parameters, each
of which you should determine whether to call by value, call by result. or call by refer
ence.

17. Implement a dialog box that looks and behaves like Figure 7.3, but with one additional
button labeled "Reverse Stack". When the user presses this button. all the items on the
stack should be rearranged in reverse order with the item originally at the top of the
stack on the bottom and the item originally at the bottom on the top. The text fields for
Push and Pop should not change. nor should the field for the number of items change.
Use two temporary variables called tempStack1 and tempStack2 for intermediate stor
age of stack values in your exported procedure ReverseStack. Write another procedure,
not exported. named CopySourceToDest

PROCEDURE CopySourceToDest (source: PboxStackADS.Stack; OUT des!: PboxStackADS.Stack)

that clears Dest then copies source to dest in reverse order by successively popping
items from source and pushing them to des!. Use a temporary variable called temp to
store an individual value from the stack between the pop and push operations. Note
that source is called by value so that its actual parameter will not change. Procedure
ReverseStack can simply call CopySourceToDest three times. copying Stack A to
tempStack1. then tempStack1 to tempStack2, then tempStack2 back to Stack A. which
will be in reverse order. Import module PboxStackADS.

18. Do Problem 17 but import PboxStackObj.

Problems 275

r.ta Chapter 13
dlJ'

Function Procedures

Component Pascal provides both native and programmer-defined procedures. For
example, the module in Figure 12.5 contains the statement

n := SHORT(ENTIER(x + 0.5))

Both the ENTlER function, which truncates a real value and returns a long integer,
and the SHORT function, which converts a LONGINT value to an INTEGER value,
are native. That is, they are provided by the Component Pascal language, and do not
need to be imported from another module or defined by the programmer. If you need
a function procedure that is not provided by the language or the framework, you
must define your own. This chapter shows how to define function procedures that
contain parameter lists.

Function procedures have some characteristics in common with proper proce
dures and some characteristics that differ. One common characteristic is that a call
ing procedure makes a procedure calL the called procedure executes, then control is
passed back to the calling procedure. The details of the procedure call and return dif
fer, however. Another common characteristic is that storage is allocated on the run
time stack with both proper and function procedures. Again, however, the details
differ.

The bisection algorithm

Procedure ComputeRoot in Figure 10.11 computed one root of a cubic equation
with the bisection algorithm. The following program improves procedure Compute
Root in several ways. Figure 10.8 shows that the cubic equation has three real
roots-one between -2 and -I, one between 0 and l, and one between 2 and 3. But
the original version of ComputeRoot found only the root between 2 and 3. One
improvement would be to allow the user to enter the starting values of left and right,
which would permit finding any of the roots.

Another shortcoming of the original version of ComputeRoot is that it permits the
user to enter a value of 0.0 for the tolerance. The problem is that the loop will exe
cute endlessly if d.tolerance has the value 0.0. It would be better if the program
guarded against this possibility. Figure 13.1 shows the dialog box for an improved
version of ComputeRoot. The dialog box has additional input fields for the user to
enter starting values for left and right. You can see from the figure that the program

278 Chapter 13 Function Procedures

must be able to prove to itself that a root must lie between the two values entered by
the user before it will proceed.

El ~ [PDlynDml.'l~~~ El EI =(Polynomial)=!ii fJ =[Polynomlal)=!ii

Lert ~ Right ~

Tolerante I B.B I

Left ~ RighI ~

Tolerance I B.B

Left ~ Right ~
Toleronce le.81

I Compute Root I
A root moy not lie between these
points.

II Compute Root I
Toleronce must be greoter thon O.

II Compute Root I
Roo\: - 1.81540525

The module in Figure 13.2 uses two procedures to implement these improve
ments to the program. The first procedure, Compute Root, is the same kind of proce
dure we have always used to link to a button in a dialog box. The second procedure,
F, is a programmer defined function procedure. The procedure declaration part of F
is

PROCEDURE F (x: REAL): REAL;
CONST

a3 = 1.0; a2 = -1.0; a1 = -4.0; aO = 2.0;
BEGIN

RETURN ((a3" x + a2)" x + a1)· x + aO
END F;

These are the statements that define the function. The parameter x in this declaration
is the formal parameter. You can tell that F is a function procedure by the type
": REAL" that follows the formal parameter, which indicates that the function
returns a real value.

MODULE Pbox13A;
IMPORT Dialog, PboxStrings;
VAR

d·: RECORD
left", right·: REAL;
tolerance": REAL;
message-: ARRAY 64 OF CHAR;

END;

PROCEDURE F (x: REAL): REAL;
CONST

a3 = 1.0; a2 = -1.0; a1 = -4.0; aO = 2.0;
BEGIN

RETURN ((a3· x + a2) " x + a1) "x + aO
END F;

Figure 13.1
Three executions of the
bisection algorithm of Listing
13.2.

Figure 13.2
The bisection algorithm with
a programmer-defined
function.

The bisection algorithm 279

PROCEDURE ComputeRoot*;
VAR

left, mid, right: REAL;
fLeft, fMid: REAL;
rootString: ARRAY 32 OF CHAR;

BEGIN
IF d,tolerance <= 0,0 THEN

d,message := "Tolerance must be greater than 0."
ELSIF F(d.left) * F(d.right) > 0 THEN (* ra1 *)

d.message := "A root may not lie between these points."
ELSE

left := d.left; right := d.right; fLeft := F(left); (* ra2 *)
(* Assert: root is between left and right *)
WHILE ABS(left - right) > d.tolerance DO

mid := (left + right) / 2.0;
fMid := F(mid); (* ra3 *)
IF fLeft * fMid > 0.0 THEN

(* Assert: root is between mid and right *)
left := mid;
fLeft := fMid

ELSE
(* Assert: root is between left and mid *)
right := mid

END
END;
PboxStrings.ReaIToString((left + right) / 2, 1,0, rootString);
d.message := "Root: " + rootString

END;
Dialog.Update(d)

END Compute Root;

BEGIN
d.left := 0.0; d.right := 0.0; d.tolerance := 1.0;
d.message := ""

END Pbox13A.

One of the statements that calls the function from the main program is

fLeft := F(left)

F(left) is a function call. In this example, it occurs on the right side of an assignment

statement. The EBNF for an assignment statement is

Statement = Designator " :=" Expr

which shows that an expression occurs on the right side of an assignment statement.

So, a function call is an example of an expression. In general, a function can occur

within a more complicated expression.

Figure 13.2
Continued.

280 Chapter 13 Function Procedures

Advantages of function procedures

One advantage of this version of the bisection algorithm is the ability to easily mod
ify the function. In Figure 10.11. modifying the function would require changing the
statement in two different places in the main program. In Figure 13.2. you would
only need to modify the function definition once. That one modification affects the
computation of the function from all calling points in the main program.

Another advantage of this version is its readability. In the original version, the
function was buried in the code of the main program, and the coefficients. a3. a2,
a1. and aO. were separated from the function computation. In this version. the coef
ficients and the code for the function are all together. That makes the program easier
to understand.

Function procedure calls

When a proper procedure is called, three items are pushed onto the run-time stack
the parameters, the return address, and storage for the local variables. Because the
purpose of a function procedure is to return a value, it must allocate an extra cell on
the run-time stack for the value returned. The cell for the returned value is allocated
before any of the other items on the stack. Allocation takes place on the run-time
stack in the following order when you call a function procedure:

• Push storage for the return value.

• Push the parameters.

• Push the return address.

• Push storage for the local variables.

Like storage for the local variables, the cell for the return value has some undefined
value when the function is called. This is in contrast to the parameters, which get
values of or references to the actual parameters, and the return address, which gets
the address of the statement to execute when the function tenninates.

Another difference in detail between proper procedures and function procedures
is flow of control when the procedure terminates. The difference is:

• When a proper procedure terminates, control is passed to the statementJollow
ing the calling statement.

• When a function procedure terminates. control is passed to the calling state
ment.

This difference is related to the ditference between the way a proper procedure is

Allocatioll Fir II jUllction

procedure

Flow o{ cOlltrol "'ith proper
procedures alld/illlctioll

procedures

called and the way a function procedure is called. When you call a proper procedure, Proper procedure clliis stw/(/

the call is its own statement. For example. the proper procedure call "fOlie.

StdLog.String("Mr. K. Kong")

stands alone. apart from any other statement. However, when you call a function Function procedure calIs lire

procedure. it is always part of another statement. For example. in the function proce- parI ,,(allother slutellleill.

dure call to ASS

x := ASS(-3.7)

the function call is part of an assignment statement. while in the call

StdLog.Real(ABS(-3.7))

the function call is part of a procedure call. You can see from the proper procedure
call that when the call terminates, there is nothing left for the calling statement to do.
The next statement to execute will be the one following the procedure call. Also,
from the function call you can see that when the call terminates, the value 3.7 is
returned. The statement that makes the call must do something with this returned
value, either assign it to x or output it to the Log. Therefore, control must be returned
to the calling statement.

A factorial function

The next program illustrates allocation on the run-time stack. It computes the facto
rial of an integer entered by the user as shown in Figure 13.3. The factorial function
is not defined for values less than zero. If the user enters a number less than zero the
program changes the number entered to zero. Also, the factorial function produces
very large values even for small parameters. If the number entered is greater than 20.
its factorial exceeds the range of a LONGINT, which is 9.223,372.036,854.775,807.
If the user enters a number greater than 20, the program guards against numerical
overflow by changing it to zero. Otherwise, an overflow trap would occur.

* f aclollal !!lei EJ oW F aclollal !!lei EJ
Ent .. intoge< P

1L..~~\fiJl

Factorial: Is Facloriai: 1'307674368000

The program, which is shown in Figure 13.4, contains two procedures-Com
puteFactorial, which is called by the framework when the user clicks the button in
the dialog box, and Factorial. which is called by Compute Factorial.

Figure 13.5 shows the storage allocation for the program in Figure 13.4. The
proper procedure ComputeFactorial has no parameters and no local variables. So.
when it is called only the return address is stored on the run-time stack. The function
procedure Factorial has one parameter and two local variables. So. when it is called
five items are stored on the run-time stack-storage for the returned value, one
parameter, the return address. and storage for the two local variables.

Figure 13.5(a) shows the storage allocated for global variables d.num and d.facto
rial when module Pbox13B is loaded. Their values are set by the initialization code
for the module. These storage cells remain in memory until the module is unloaded.

Figure 13.5(b) shows what happens when the user enters the value 3 in the dialog
box. The text field of the dialog box is linked to the interactor field d.num. So. d.num
gets the value 3.

A/Clctoria/jilncrioll 281

Figure 13.3
The dialog box for the

factorial function of Listing

13'-+.

282 Chapter 13 Function Procedures

MODULE Pbox13B;
IMPORT Dialog;
VAR

dO: RECORD
num*: INTEGER;
factorial-: LONGINT

END;

PROCEDURE Factorial (n: INTEGER): LONGINT;
VAR

i: INTEGER;
fact: LONGINT;

BEGIN
ASSERT((O <= n) & (n <= 20), 20);
fact := 1;
FOR i := 1 TO n DO

fact := fact * i
END;
RETURN fact

END Factorial;

PROCEDURE ComputeFactorial*;
BEGIN

IF (0 <= d.num) & (d.num <= 20) THEN
d.factorial := Factorial(d.num) (* ra 1 *)

ELSE
d.num:= 0;
d.factorial := 1

END;
Dialog.Update(d)

END Compute Factorial;

BEGIN
d.num:= 0;
d.factorial := 1

END Pbox13B.

Figure 13.S(c) shows what happens when the user clicks the button in the dialog
box. The button of the dialog box is linked to procedure ComputeFactorial, so the
framework calls Compute Factorial. The return address raO is the location of some
instruction within the framework not visible in the program of Figure 13.4. After the
IF statement executes. the next statement is

d.factorial := Factorial(d.num); (* ra1 *)

which is a call to the function procedure Factorial.
Figure 13.S(d) shows the storage allocated on the run-time stack immediately

after the call to Factorial. Five items are pushed onto the stack in this order: storage
for the returned value labeled retVal. the value of the actual parameter labeled n, the

Figure 13.4
A program to compute the
factorial of an integer with a
function.

d.laclorial

d.num

EEl
W////ffi,

(a) After loading module Pbox13B

d.lactorial

d.num EB r:ol retAddr

~
(e) After call to CompuleFaclorial

6 fact

4

ral relAddr

3 n

d.num EB 6 relVal

d.laclorial retAddr

(e) Before return to ComputeFactorial

d.laclorial

d.num E8 ~retAddr

(g) Before return to framework

d.num

d.faclorial

d.num

d.factorial

d.num

d.laclorial

d.num

d.faclorial

Afactorialfllnction 283

EB
(b) After user enters d.num

faci

ral retAddr

3 n

EB relVal

raG relAddr

(d) After call to Factorial(d.num)

EB WretVal

raG relAddr

/.

(I) After return to ComputeFaclorial

E8
(h) After return to framework

Figure 13.5
Memory allocation for the
program in Figure 13.4.

284 Chapter J 3 Function Procedures

return address labeled retAddr, the first local variable labeled i, and the second local
variable labeled fact When you call a function procedure, after the procedure exe
cutes control returns to the same statement that called it Therefore, the return
address stored on the stack is the address of the statement that made the call. The
program listing has the comment (* ra1 *) on the same line as the calling statement to
indicate the return address for the function procedure. As usuaL the stack frame is
outlined in bold on the stack in the figure.

Figure l3.5(e) shows the values on the stack after Factorial has executed and just
before its return to Compute Factorial. Factorial has used local variable i to compute
the value 6 for fact The statement

RETURN fact

assigns the value of fact to the retVal storage location. Then the return address ra1 is
used to determine which instruction to execute next

Figure l3.5(f) shows the run-time stack immediately after the return from Facto
rial. The value returned is available to the calling procedure. Control is returned to
the instruction at ra1, which is the location of the statement

d.factorial := Factorial(d.num); (* ra1 *)

The entire stack frame is deallocated except for the value returned. This statement
now completes its execution by assigning the value returned to d.factorial.

Figure l3.5(g) shows the allocated storage just before the return from Compute
Factorial. The dialog box has been updated so the computed value of d.factorial is
visible on the screen.

Figure l3.5(h) shows the run-time stack immediately after the return from Com
puteFactorial. Control has returned to raO, which is the address of some statement in
the framework. Storage for variables d.num and d.factorial will remain allocated
with their current values until the values are changed by the program or the module
is unloaded.

A function to compute wages

The next program is yet another example of computing a wage with possibility of
overtime. The computation is performed in a function with preconditions that are
guaranteed to be met by the calling procedure. Figure 13.6 shows the dialog box.

o :~C;::~ [m8ge J ""~ El

Hours ~

Rate ~

rl Compute I
I,"/age. $490 00

Hours ~

Rate ~

II Compute I
Nel ther hours no~ rate
can be negat iV€I

Figure 13.6
The dialog box for the wage
function of Figure 13.7.

A fUllction to compute wages 285

MODULE Pbox13C;
IMPORT Dialog, PboxStrings;
VAR

dO: RECORD
hours', rate': REAL;
message-: ARRAY 64 OF CHAR

END;

PROCEDURE Wages (hrs, rt: REAL): REAL;
BEGIN

ASSERT(hrs >= 0.0, 20);
ASSERT(rt >= 0.0, 21);
IF hrs <= 40.0 THEN

RETURN hrs ' rt
ELSE

RETURN 40.0 ' rt + (hrs - 40.0) , 1.5 ' rt
END

END Wages;

PROCEDURE ComputeWages';
VAR

wageString: ARRAY 16 OF CHAR;
BEGIN

IF (d.hours >= 0.0) & (d.rate >= 0.0) THEN
PboxStrings.ReaIToString(Wages(d.hours, d.rate), 1,2, wageString); r ra1 ')
d.message := "Wage: $" + wageString

ELSE
d.message := "Neither hours nor rate can be negative."

END;
Dialog.Update(d)

END ComputeWages;

BEGIN
d.hours := 0.0; d.rate := 0.0;
d.message := ""

END Pbox13C.

Figure 13.7 is the program for the dialog box in Figure 13.6. As usuaL the com
pute button is linked to an exported procedure CompuleWages. The actual computa
tion is performed by the function procedure Wages, which has two formal
parameters, hrs and r1. It is typical for the formal parameters to be an abbreviation of
the actual parameters. hrs is an abbreviation for d.hours and rt is an abbreviation for
d.rate.

Figure 13.8 shows the storage allocation for the program. Figure 13.8(a) assumes
the user has entered 46.0 in the dialog box for d.hours and 10.0 in the dialog box for
d.rate. When the user clicks the button, the framework calls CompuleWages. which

has no parameters and one local variable. The stack frame consists of the return

address of some statement in the framework and storage for the one local variable.

Figure 13.7
A program to compute wages
with possible overtime with a
function procedure.

286 Chapter 13 Function Procedures

d.hours

d.rale

d.message

~ o EJ wageSlring

raO relAddr

/.

d.hours

d.rate

d.message

~ o

ral

10.0

46.0

raO

/.

retAddr

rt

hrs

relVal

wageString

retAddr

(a) After call to ComputeWages (b) After call to Wages(d.hours. d.rate)

d.hours

d.rale

d.message

~ o

ral

10.0

46.0

490.0

raO

/.

retAddr

rt

hrs

relVal

wageSlring

retAddr

d.hours

d.rale

d.message

~ o g:]90.0 relVal

wageSlring

raO retAddr

/.

(c) Before return to ComputeWages (d) After return to ComputeWages

d.hours 46.0 d.hours 46.0

d.rale 10.0 "490.00" wageString d.rale 10.0

d.message "Wage: raO retAddr d.message "Wage:

?/// // ////ffi.

(e) Before return to framework (t) After return to framework

Figure 13.8(b) shows allocation on the run-time stack when function procedure
Wages is called. First on the stack is storage for the returned value labeled retVal.
Then the formal parameters hr and rt are pushed. Because they are called by value,
the cells contain the values of the actual parameters d.hours and d.rale. Next on the
stack is the return address ra I. which is the address of the calling statement

PboxSlrings.ReaIToSlring(Wages(d.hours, d.rale). 1.2, wageSlring)

Function Wages verifies that the preconditions are met. It tests for the possibility
of overtime by comparing hrs with 40.0. There are two RETURN statements within
the function, only one of which will execute. When the computer encounters a
RETURN within a procedure, the procedure terminates immediately without execut
ing any other statements that may follow the RETURN statement. This program also

Figure 13.8
Memory allocation for the
program in Figure \3.7.

Using junction procedures 287

shows that a RETURN statement can be followed by an arbitrary expression of the
correct type. It need not be followed by a single variable as was the RETURN in
function Factorial in Figure 13.4. In Figure 13.8(c) the value of the expression to be
returned is stored in the cell labeled retVal for the returned value.

Figure 13.8(d) shows the run-time stack after the return to the calling procedure.
The returned value of 490.0 is given to the calling statement, which proceeds to use
it as the actual parameter in a call to the proper procedure PboxStrings.ReaIToString.
The stack frame for the call to this procedure is not shown in Figure 13.8. The call to
the proper procedure give the string value to wageString as shown in Figure 13.8(e).
Finally. after the dialog box is updated to show the result. control is returned to the
framework in Figure 13.8(f).

Using function procedures

All the examples of call by result and call by reference so far have been with proper
procedures instead of function procedures. Component Pascal permits function pro-
cedures to use call by result and call by reference. However, such parameters with Do not use call by result or

function procedures are usually inappropriate. The purpose of a function is to return cail hy reference with

a single value. In mathematics. you give a function a value, x, and it returns a value flmctiolls

fix). The function depends on x but does not change the value of x. Programs are eas-
ier to understand if functions behave as they do in mathematics and do not change
their actual parameters. This book has no examples of functions with parameters
called by result or called by reference.

Because the formal parameters of function procedures are usually called by
value, the actual parameters may be expressions.

Example 13.1 The function call

d.factorial := Factorial(2 * d.num + 1)

where d.factorial, d.num, and Factorial are declared as in Figure 13.4, is legal. If
d.num has value 3, then formal parameter n would get the value of 7 at the start of
function execution. I

In general. a function call can be placed anywhere an expression is allowed. Fig
ure 13.4 has the function call, Factorial(d.num). on the right side of an assignment
statement. The function call can just as easily be part of a larger expression.

Example 13.2 The statement

num := Math.Pi * Math.lntPower(x. 2) / Factorial(i)

is legal. where num and x are real variables, i is an integer variable. and Factorial is
declared as in Figure 13.4. I

The RETURN statement for a function can occur anywhere, even within the body
of a loop. When it is encountered. the function terminates immediately.

288 Chapter 13 Function Procedures

Example 13.3 Suppose that i, max, and testDivisor are integer variables, and the
following code executes from within a function procedure with return type BOOL
EAN.

WHILE i < max DO
IF i MOD testDivisor = 0 THEN

RETURN TRUE
END;
INC(i)

END;
RETURN FALSE

If at any time during execution of the loop i gets a value that makes the test of the IF
statement true, the function will terminate immediately and will return true. Other
wise, the loop will terminate because the WHILE test will become false, and the
function will return false. I

Exercises

1. If the function procedure Exrl is defined as

PROCEDURE Exr1 (a, b: INTEGER): INTEGER;
BEGIN

IF a < bTHEN
RETURN 2' a

ELSE
RETURN 2' b

END
END Exrl

then what does each of the following code fragments output to the Log')

(a)

i:= 12;
j:= 3;
StdLog.lnt(Exrl (i, j)

(e)

StdLog.lnt(Exr1 (Exrl (3, 2), Exr1 (4, 5»)

(b)
i:= 4;
j= Exrl (2 • i + 1, 10);
StdLog.lnt(j)

2. Assume that the user enters 2 for d.a and 3 for d.b. Draw a picture of the memory allo
cation as in Figure 13.5 produced by the module listed below for the following times.

(a) After user enters d.a and d.b.
(e) After call to Prob2.
(e) After return to ComputeProb2.

(g) After return to framework.

(b) After call to ComputeProb2.
(d) Before return to ComputeProb2.

(0 Before return to framework.

MODULE Pbox13Prob2;
IMPORT Dialog;
VAR

dO: RECORD
a*, b*: INTEGER;
co: INTEGER

END;

PROCEDURE Prob2 (e, f: INTEGER): INTEGER;
VAR

i, j: INTEGER;
BEGIN

I :=e;1 :=f;
INC(i);INC(j);
IFi >2THEN

RETURN 2 * i
ELSE

RETURN 3' j
END

END Prob2;

PROCEDURE ComputeProb2*;
BEGIN

d.c := Prob2(d.a, d.b); (* ral *)
Dialog.Updale(d)

END CompuleProb2;

BEGIN
d.a := 0; d.b := 0;
d.c:= 0

END Pbox13Prob2.

Problems

3. For Chapter 6, Problem 13, write the program to find the sales commission. Declare

PROCEDURE Commission (sales: REAL): REAL

10 compute the commission from the amount of sales. Implement a precondition for the
function that the entered number cannot be less than O. Insure that the precondition is
met in the calling procedure. If it is not met, set the entered sales to $0.00 and the dis
played commission to $0.00.

4. Write the bowling prize program of Chapter 6, Problem 14. Declare

PROCEDURE BowlingPrize (scrl, scr2, scr3: INTEGER): REAL

to compute the prize from the three scores. scrl. scr2. and scr3. Implement a precondi
tion for the function that none of the scores can be less than 0 or greater than 300.
Insure that the precondition is met in the calling procedure. If it is not met, set the

entered scores to 0 and the displayed prize to $0.

5. For Chapter 6. Problem 16, write the program to find the grade point average. Declare

Problems 289

290 Chapter 13 Function Procedures

PROCEDURE GPA (numA, numB, numC, numD, numF: INTEGER): REAL

to compute the grade point average from the letter grades. Implement a precondition
for the function that none of the entered numbers can be less than O. Insure that the pre
condition is met in the calling procedure. If it is not met, set the entered numbers to 0
and the displayed grade point average to a blank field.

6. For Chapter 8, Problem 19. write the program to determine the traffic fine. Declare

PROCEDURE TrafficFine (speed: INTEGER): REAL

to compute the traffic fine from the speed. Implement a precondition for the function
that the entered speed cannot be less than O. Insure that the precondition is met in the
calling procedure. If it is not met, set the entered speed to 0 and the displayed fine to O.

7. Write the Frisbee program of Chapter 8, Problem 22. Declare

PROCEDURE OrderCost (numFr: INTEGER): REAL

to compute the cost of the order from the number of Frisbees ordered. Implement a pre
condition for the function that the entered number of frisbees cannot be less than O.
Insure that the precondition is met in the calling procedure. If it is not met, set the
entered numbers to 0 and the displ"ayed cost of the order to $0.00.

8. Write the schedule program of Chapter 6, Problem 19. Declare

PROCEDURE RegPeriod (Iastlntl: CHAR): INTEGER

to compute the registration period from the user's last initiaL Allow the user to input
uppercase or lowercase letters. Implement a precondition for the function that lastlntl is
alphabetic. Insure that the precondition is met in the calling procedure. If it is not met.
output an error message in the message field.

9. For Chapter 8, Problem 24, write the program to determine whether a given year is a
leap year. Declare

PROCEDURE IsLeapYear (Year: INTEGER): BOOLEAN

to determine the leap year from the year. Implement a precondition for the function that
the year entered cannot be less than O. Insure that the precondition is met in the calling
procedure. If it is not met, set the entered year to 0 and the displayed message to a
blank field.

10. For Chapter 10. Problem 35, write the program to raise a number to a power. Declare

PROCEDURE Power (base: REAL; expon: INTEGER): REAL

to compute the base raised to the exponent. There are no preconditions for the function.
If the exponent is 0, return I for the function even if the base is 0.0.

11. For Chapter 10, Problem 36, write the program to estimate the value of the base of the
natural logarithms. e. Declare

PROCEDURE EstE (numTrm: INTEGER): REAL

to compute the estimate from the number of terms. Implement a precondition for the
function that the number of terms numTrm cannot be less than 2. Insure that the precon
dition is met in the calling procedure. If it is not met, set the entered number to 2 and
the displayed estimate to 2.

12. For Chapter 10, Problem 38. write the program to determine if a number is prime.
Declare

PROCEDURE IsPrime (n: INTEGER): BOOLEAN

to determine whether the number is prime. Implement a precondition for the function
that n cannot be less than I. Insure that the precondition is met in the calling procedure.
If it is not met, set the entered number to I and the displayed message to a blank field.

Problems 291

1111 Chapter14

1iIP'
Random Numbers

Many events in our lives are random. When you enter a full parking lot, for example,
you drive around until someone pulls out of a parking space that you can claim. The
event of someone pulling out of a parking space is random. You do not know when
or where it will occur. Consequently, you cannot predict exactly how long you will
drive before you find a place.

Computers are useful in part because they can behave like the real world. For
example, the popular flight-simulator computer programs can give the illusion of
piloting an airplane. Large, sophisticated flight simulators are even used to train air
line pilots. But how can a computer behave like the real world when some events in
the real world are random') Every algorithm you have encountered thus far in this
book has no random element. Given the input and the processing statements. you
can always predict the output. With random events. you cannot predict the outcome.

A random number module

The solution to the problem of simulating random elements is to design an algorithm
whose output appears random. even though it is not. The PboxRandom module con
tains four procedures that provide the client module the ability to behave in a seem
ingly random fashion, and thus to simulate random events in the real world. Figure
14.1 is the interface for the random number module PboxRandom.

DEFINITION PboxRandom;
CONST

seed Limit = 2147483647;

PROCEDURE Int (n: INTEGER): INTEGER;
PROCEDURE Randomize;
PROCEDURE Real 0: REAL;
PROCEDURE SetSeed (n: INTEGER);

END PboxRandom.

The algorithm that produces seemingly random numbers depends on maintaining
an integer value known as a seed. Each time the importing module requests a ran
dom number the number is computed from the seed. and (he next value of the seed is

Figure 14.1
The interface of module
PbuxRandom.

294 Chapter 14 Random Numbers

computed from the current value of the seed. Procedure SetSeed allows the import
ing module to set the value of the seed before requesting a sequence of random num
bers. Its documentation is

PROCEDURE SetSeed (n: INTEGER);
Pre
0< n 20
n < seed Limit 21
Post
The random number seed is initialized to n.

A precondition for SetSeed to work correctly is for n to be greater than zero and less
than seedLimit. If the seed is set to the same value before requesting a second
sequence of random numbers, the second sequence of numbers will be identical to
the first sequence.

Procedure Randomize sets the seed to some random number not predictable by
the importing module. It gets the value from a clock inside the computer that keeps
track of the date to the nearest second. Its documentation is

PROCEDURE Randomize
Post
The random number seed is initialized to a value derived from the system clock.
Two calls to Randomize should be separated by more than one second to guarantee
different values of seed.

Randomize has no precondition. If you call Randomize twice, the values that the
seed is set to will be ditferent, because you will have called the procedure at differ
ent times.

Random reals

Figure 14.3 shows the dialog box for a module that illustrates the behavior of proce
dure PboxRandom.ReaIO, which is a function procedure. The dialog box has an
input field for the user to enter a seed value. When the user clicks the button labeled
Set Seed. procedure SetSeed executes with its parameter value equal to the value
the user has entered in the dialog box. If the user sets the seed to 4831 as shown in
the figure then clicks the button labeled Display, ten real numbers are printed to the
Log as shown.

MODULE Pbox14A;
IMPORT Dialog, PboxRandom, PboxStrings, StdLog;
VAR

d': RECORD
seed': INTEGER;

END;

Figure 14.2
A procedure that prints ten
random real numbers to the

Log.

PROCEDURE SetSeed';
BEGIN

IF (0 < d.seed) & (d.seed < PboxRandom.seedLimit) THEN
PboxRandom.SetSeed(d.seed)

ELSE

Random reats 295

Figure 14.2
Continued.

StdLog.String("Seed must be greater than 0 and less than 2147483647."); StdLog.Ln
END

END SetSeed;

PROCEDURE Randomize';
BEGIN

PboxRandom. Randomize
END Randomize;

PROCEDURE Display';
VAR

i: INTEGER;
x: REAL;
real String: ARRAY 8 OF CHAR;

BEGIN
FOR i := 1 TO 10 DO

StdLog.String("i = "); StdLog.lnt(i);
x := PboxRandom.ReaIO;
PboxStrings.ReaIToString(x, 5, 3, reaIString);
StdLog.String(" x = "); StdLog.String(reaIString); StdLog.Ln

END;
StdLog.Ln

END Display;

BEGIN
d.seed:= 1

END Pbox14A.

«- Random Real. J!II~EJ

Seed 14831

Set Seed

- 1 .-0.100
- 2 x-0.909
- J .-0.605
• 4 • - 0.244
- 5 x - 0.752
'" 6 x"'O.017
- 7 • - 0.560
- 8 .-0.08J
• 9 •• 0.01a
-10 • - 0.253

Figure 14.3
The output of procedure
Display of Figure 14.2.

296 Chapter 14 Random Numbers

If the user clicks the Display button a second time without first setting the seed
back to 4831 a different set of ten real values will be displayed as follows:

x = 0.329
2 x = 0.699
3 x = 0.301
4 x = 0.252
5 x = 0.473
6 x = 0.637
7 x = 0.312
8 x = 0.166
9 x = 0.728

10 x = 0.937

The program in Figure 14.2 implements the dialog box of Figure 14.3. The Set
Seed and Randomize buttons simply call the corresponding procedures from module
PboxRandom, with procedure SetSeed insuring that the precondition for procedure
PboxRandom.SetSeed is not violated.

The Display button is linked to a procedure that executes a FOR loop ten times.
Each time the body of the loop executes it cans procedure PboxRandom.ReaIO,
which is a function procedure that returns a random real value between zero and
one. Its documentation is

PROCEDURE Real 0: REAL;
Post
Returns a random real between 0.0 and 1.0.

PboxRandom.Real has no precondition. Because it is a function, you must use it
within another statement. Procedure Display uses it within the assignment statement

x := PboxRandom.RealO

This function can shows a curious requirement of procedure cans. When you can
a proper procedure that has no parameters you omit the parentheses in the call. How
ever, when you call a function procedure that has no parentheses you must include
the parentheses with nothing between them.

Random integers

For simulation purposes it is frequently useful to have a series of random integers
rather than random reals. Figure 14.4 shows a dialog box that produces a sequence
of ten seemingly random integers. It outputs a different list of random integers
depending on the initial value for the seed.

The dialog box has an additional input field labeled Limit. In the figure, the user
entered 10 for the limit before clicking on the Display button. That choice caused
each random integer to have one of 10 values between 0 and 9.

Module Pbox14B in Figure 14.5 produces the output shown in Figure 14.4. As
with the previous module. it consists mostly of simple cans to the procedures of
PboxRandom.

FlIIlct;OI1 pmcedure wlls ,,·;til
/10 /)UH1I1u.:fers stit/Ileed

pClrnltheses.

o .c .. c.c" ·ce·, (Random Integers I -:C:CS-:::- E3

Seed ~l limit ~ <) 6 9254:4 ~
[Set Seed I
I Randomize I

MODULE Pbox14B;

Otsplc&¥

IMPORT Dialog, PboxRandom, PboxStrings, StdLog;
VAR

d*: RECORD
seed*; INTEGER;
limit*: INTEGER;

END;

PROCEDURE SetSeed*;
BEGIN

IF (0 < d.seed) & (d.seed < PboxRandom.seedLimit) THEN
PboxRandom.SetSeed(d.seed)

ELSE

!. ~

Random integers 297

Figure 14.4
The output for the procedure
of Figure 14.5.

Figure 14.5
A procedure that prints ten
random integers to the Log.

StdLog.String("Seed must be greater than 0 and less than 2147483647."); StdLog.Ln
END

END SetSeed;

PROCEDURE Randomize*;
BEGIN

PboxRandom.Randomize
END Randomize;

PROCEDURE Display*;
VAR

i: INTEGER;
m: INTEGER;

BEGIN
IF (0 < d.limit) & (d. limit < PboxRandom.seedLimit) THEN

FOR i := 1 TO 10 DO
m := PboxRandom.lnt(d.limit);
StdLog.lnt(m)

END;
StdLog.Ln

ELSE
StdLog.String("Limit must be greater than 0 and less than 2147483647."); StdLog.Ln

END
END Display;

BEGIN
d.seed := 1;
d.limit:= 0

END Pbox14B.

298 Chapter]4 Random Numbers

Procedure PboxRandom.lnt is a function that returns an integer. Unlike PboxRan
dom.Real, it requires a parameter that specifies the range of possible integer values
to be returned. The documentation for PboxRandom.lnt is

PROCEDURE Int (n: INTEGER): INTEGER;
Pre
0< n 20
n < seedlimit 21
Post
Returns a random integer in the range 0 .. n-1.

The precondition is that n is positive and less than seedlimit, which is checked by
the calling procedure.

Example 14.1 Had the user entered 8 for the limit and set the value of seed to
2346 the sequence

6 2 057 1 5 343

would be printed on the Log. In this sequence, each random integer has one of eight
values between 0 and 7. I

The REPEAT statement

When the programs we have written up until now have required loops we were
always able to solve the problem at hand with either the WHILE loop or the FOR
loop. One characteristic that is common to both of these loops is that the test is at the
beginning of the loop. Hence, the body of a WHILE or FOR loop will not execute at
all if the first test of the boolean condition is false. It is usually desirable to permit
the possibility of the body never executing. For example, if you are processing a list
of values in the focus window the body of the loop contains the statements necessary
to process one value. Each time the body executes it processes another value. If the
focus window has no values, you do not want the body of the loop to execute at all.

Although not as common, the situation sometimes occurs where you always want
the body of the loop to execute at least one time. For these cases it would be more
convenient to have the test for loop termination be at the end of the loop rather than
at the beginning. Component Pascal provides such a loop in the form of the REPEAT
statement. It differs from the WHILE statement in two respects. Not only is the test
for termination at the end of the loop instead of the beginning, the loop terminates
when the test condition is true rather than false. Figure 14.6 is a flowchart for the
REPEAT statement

REPEAT
Statement]

UNTIL Condition]

which you should compare with Figure 10.1 for the WHILE statement. Statement I
always executes the first time regardless of Condition I. If Condition I is false control

Figure 14.6
The flowchart for the
REPEAT statement.

branches up to the REPEAT and Statement I executes again. The loop repeats until
Condition 1 is true.

Rolling a pair of dice

Figure 14.7 shows how module PboxRandom can be used to simulate a random
event in the real world. Suppose you are playing a game with a pair of dice. Each die
has six sides. When you roll one die, it will come to rest with some random integer
between I and 6 showing on its top side. The figure shows a simulation of a player
who rolls the dice until a total of 7 or 11 appears.

* Come 7111 I!III~EJ

Seed ~ R..-.domize I

Rolls of the dice
1 4
6 2
4 6
4 5
6 2
6 6
2 5

You rolled 7 times before you got7 or 11.

_ DIX

You can simulate the toss of a single die by calling procedure PboxRan
dom.lnt(6). which will return a random number between 0 and 5. If you add one to
that value you will have a random number between 1 and 6. The program in Figure
14.8 simulates the rolls by executing a REPEAT statement. Each time the body of
the loop executes it makes two calls to PboxRandom.lnt and outputs the result of the
rolls on the Log. The loop repeats until the sum of the numbers on the dice equals 7
or 11. You can see how convenient the REPEAT statement is in this situation,
because you always want the body to execute at least one time. In the simulation,
there is always at least one roll of the dice.

To simulate the toss of a coin, you would need random values with two possibili
ties, one for heads and one for tails.

Example 14.2 You could call

PboxRandom.lnt(2)

and let 0 represent heads and I represent tails. The sequence of 20 calls will produce

00100001001101110101

with an initial value of 9735 for Seed. I

Rolling a pair of dice 299

Figure 14.7
The output for the procedure
in Figure 14.8.

300 Chapter 14 Random Numbers

MODULE Pbox14C;
IMPORT Dialog, PboxRandom, PboxStrings, StdLog;
VAR

d': RECORD
seed': INTEGER;

END;

PROCEDURE SetSeed';
BEGIN

IF (0 < d.seed) & (d.seed < PboxRandom.seedLimit) THEN
PboxRandom.SetSeed(d.seed)

ELSE

Figure 14.8
A procedure that simulates
rolls of a pair of dice.

StdLog.String("Seed must be greater than 0 and less than 2147483647."); StdLog.Ln
END

END SetSeed;

PROCEDURE Randomize';
BEGIN

PboxRandom.Randomize
END Randomize;

PROCEDURE RollDice';
VAR

die1, die2: INTEGER;
sum, numRoIIs: INTEGER;

BEGIN
numRolis := 0;
StdLog.String("Rolis of the dice"); StdLog.Ln;
REPEAT

die1 := PboxRandom.lnt(6) + 1;
die2 := PboxRandom.lnt(6) + 1;
INC(numRoIIs);
sum := die1 + die2;
StdLog.lnt(die1); StdLog.lnt(die2); StdLog.Ln

UNTIL (sum = 7) OR (sum = 11);
StdLog.String("You rolled "); StdLog.lnt(numRoIIs);
StdLog.String(" times before you got 7 or 11."); StdLog.Ln

END RoliDice;

BEGIN
d.seed:= 1

END Pbox14C.

Random number generators

The random number generators in the preceding programs are all based on the gen
eral computation

::." + I = aZn MOD m

Random number generators 301

where::: l' :':2' Z3' ... are the successive values of the seed, m is the modulus, and a is
the multiplier with :2 < a < m . Generators of this form are called Lehmer generators Lehll1er generalo!"\"

after the person who proposed them. To design a Lehmer generator you select values
of m and a. An (m, a) Lehmer generator is one with a modulus of m and a multiplier
ofa.

Example 14.3 If you select values of (17,5) for (m, a), and the current value of
seed zn is II, then the next seed is computed as

::'n + 1 aZn mod m

5· II mod 17

55 mod 17

4

The 20 successive seed values from the (17,5) Lehmer generator are

II 4 3 15 7 5 8 6 13 14 2 10 16 12 9 11 4 3 15

with an initial seed of 11. I

Example 14.4 The (17, 13) Lehmer generator produces the sequence

4 13 16 4 13 16 4 13

starting from 4. I

These examples show an unavoidable feature of all pseudorandom number gener
ators. Because each value is computed from the previous value. once the initial value
reappears in the sequence, the sequence must repeat. The period of the generator is
the maximum number of values before the sequence begins to repeat. The (17, 5)
Lehmer generator has a period of 16, and the (17, 13) generator has a period of 4.

A truly random sequence would contain no repeating cycles. But a pseudoran
dom sequence must repeat eventually, because there are only a finite number of val
ues less than the modulus. The best you can do is to pick the modulus and multiplier
to make the cycle as long as possible and to make the output appear random. The
longest possible period with a modulus of m is 111 - I . A generator with this period Filii-period gel/au Ion

is known as a full-period generator.
Computer scientists have devised a set of statistical tests that measure the ran

domness of proposed generators. They have investigated the pseudorandom
sequences generated by different choices of m and a in an effort to discover the best
generators. One standard Lehmer generator that is among the best known has (m. a)

values of (2147483647, 48271). which is a full-period generator with good pseudo
random behavior. The modulus m is a Mersenne prime equal to 231 - I . This is the
generator that is used in module PboxRandom in Figure 14.9.

302 Chapter 14 Random Numbers

MODULE PboxRandom;
IMPORT Dates;
CONST

multiplier = 48271 ;
modulus = 2147483647;
quotient = modulus DIV multiplier;
remainder = modulus MOD multiplier;
seedLimit* = modulus;

VAR
seed: INTEGER;

PROCEDURE ComputeNextSeed;
VAR

low, high: INTEGER;
BEGIN

low := seed MOD quotient;
high := seed DIV quotient;
seed := multiplier * low - remainder' high;
IF seed <= 0 THEN

seed := seed + modulus
END

END ComputeNextSeed;

PROCEDURE Int' (n: INTEGER): INTEGER;
BEGIN

ASSERT(O < n, 20);
ASSERT(n < seedLimit, 21);
ComputeNextSeed;
RETURN SHORT(ENTIER(seed I modulus * n))

END Int;

PROCEDURE Randomize*;
VAR

date: Dates.Date;
time: Dates.Time;
i: INTEGER;

BEGIN
Dates.GetDate(date); Dates. GetTime(time);
seed := 86400 * Dates.Day(date) + 3600 * time.hour + 60 * time. minute

+ time. second; (* Elapsed time this year in seconds *)
FOR i :=OTO 7 DO

ComputeNextSeed
END

END Randomize;

PROCEDURE Real* 0: REAL;
BEGIN

ComputeNextSeed;
RETURN seed I modulus

END Real;

Figure 14.9
An implementation of the
standard (2147483647,
48271) Lehmer random
number generator.

Random number generators 303

PROCEDURE SetSeed* (n: INTEGER);
VAR

i: INTEGER;
BEGIN

ASSERT(O < n, 20);
ASSERT(n < seedLimit, 21);
seed := n MOD modulus;
FOR i := 0 TO 7 DO

ComputeNextSeed
END

END SetSeed;

BEGIN
Randomize

END PboxRandom.

In PboxRandom, the constant multiplier corresponds to a, and the constant modu
lus corresponds to m in the equation zn + t = aZn MOD m. Module PboxRandom
contains a global variable seed, which corresponds to zn . It must be global, because
its value must persist between calls of the procedures. Procedure ComputeNextSeed
computes the next seed zn + I from the current seed. A direct translation from the
equation to Component Pascal would be one assignment statement,

seed := multiplier * seed MOD modulus

Instead, module ComputeNextSeed is implemented as

low := seed MOD quotient;
high := seed DIV quotient;
seed := multiplier * low - remainder * high;
IF seed <= 0 THEN

seed := seed + modulus
END

where quotient and remainder are defined as the constants

quotient = modulus DIV multiplier;
remainder = modulus MOD multiplier;

and low and high are local variables. Why is this more complicated algorithm used
in~tead of the more direct translation of a single assignment statement?

Thc problem is that the range of possible values for a Component Pascal integer
is -2147483648 to 2147483647, which not so coincidentally is the modulus of the
generator. When zn gets close to 2147483647 and gets multiplied by 48271 before
(he MOD operation, the product lies outside the range and an overflow error occurs.

Fortunately, Schrage developed an algorithm (published in 1979) to implement a
L.:hmer generator in spite of the limited range of the integer type. Instead of multi
plying the value of zn by a, the algorithm computes two intermediate numbers from
~I/ • each of which is guaranteed to be smaller than m. It then combines these smaller

Figure 14.9
Continued.

304 Chapter 14 Random Numbers

numbers (low and high in procedure ComputeNextSeed) to compute ~n + I in a way
that is guaranteed mathematically to be equivalent to multiplying :11 by a and then
doing the MOD operation. The last section of this chapter provides a more detailed
explanation of Schrage's algorithm.

Procedure Real works by computing the next integer value of seed and then con
verting that value to a real number between 0.0 and 1.0. Because every value of seed
is between zero and the modulus. Real simply returns seed divided by the modulus.

Procedure Int is a bit more complicated. Suppose the calling procedure calls Int
with value 5 for formal parameter n. Because seed has a value between I and the
modulus minus I, the quantity seed / modulus has a value between just above 0.0
and just below 1.0. Therefore, the quantity seed / modulus * n has a value between
just above 0.0 and just below 5.0. The ENTlER function truncates this value, produc
ing an integer value between a and 4. Figure 14. IO shows the transformation from
the real number line to the integer number line.

0.0 0.2 0.4 0.6 0.8 1.0

TL.~~
I I I I I
o 2 3 4

Procedure Randomize sets the value of seed based on the date and time from the
system clock. BlackBox provides a module named Dates that links to the clock in
your computer. The module provides abstract data types (ADTs) Date and Time.
There is a procedure named GetDate that gives the actual parameter the current date
and another named GetTime that gives the actual parameter the current time of day.
Function Day returns the day of the year, beginning with I for the first day of Janu
ary. 2 for the second of January, and up to 365 for the last day of December (pro
vided the current year is not a leap year). Randomize uses Day together with the
current time to compute how many seconds has elapsed since the first of the year.
The seed variable is initialized to that number of seconds, and then run through eight
cycles of the Lehmer algorithm.

Although you can have fun trying to design your own generator, finding good
values of III and a is not an easy task. If the modulus m is a prime number, then zero
will never appear in the sequence, a desirable feature indeed. Even so, Example 14.4
shows that a prime modulus is no guarantee of a full-period generator. Actually.
making a Lehmer generator full period is the easy part. It is much more difficult to
find values of III and a that produce sequences that are sufficiently pseudorandom.

Figure 14.10
The transformation
PboxRandom.lnt makes from

the real number line to the
integer number line.

Random l1umber generators 305

* Schrage's algorithm

This section uses the following mathematical symbols corresponding to the quanti

ties ill module PboxRandom.

-- seed

(l = multiplier

!II modulus

'I quotient

r = remainder

low

h high

With these abbreviations, the computation of the quotient and remainder are

q m diva

r = m mod a

and Schrage's algorithm in GeL is

1:= z mod q
h := z div q

z := a * 1- r * h
if z:::; 0 ~ Z := Z + In

o Z > 0 ~ skip
fi

Before describing Schrage's algorithm in general. consider a specific computa
tion of the next seed for thc Lehmer generator of Example 14.3.

Example 14.5 For the (17, 5) generator of Example 14.3, the constants q and rare
computed as

q In uiv a = 17 div 5 = 3

r = III mou a = 17 mod 5 = :2

anu (he computation of the next seed after II from Schrage's algorithm is

Z 1110U q = II mod 3 = :2

Ir Z dil q = 11 div 3 = 3

l/ l-r·17 = 5·2-2·3 = 10-6 = 4

The C<lll1putatioll for ?, in Example 14.3 requires the intermediate computation of 5

limes I I. which is 55. This computation for the same next seed requires 5 times 2,
'Which Is \lllly 10. I

306 Chapter 14 Random Numbers

Example 14.6 To illustrate how the if statement works in Schrage's algorithm,
consider the same (17, 5) generator to compute the next seed after 16.

I = z mod q = 16 mod 3 = I

h = z div q = 16 div 3 = 5

z = a· /- r . h = 5 . 1 - 2 . 5 = 5 - 10 = -5

This time, -5 is less than or equal to O. So, the if statement requires the addition of m
as follows.

::: = -5+m = -5+17 = 12

which is the next seed after 16. I

The relation between the div and mod operators is based on the fact that x div y
is the quotient when you divide x by y, and x mod y is the remainder when you
divide x by y. The quotient and remainder are related to x and y by

x = y . (quotient) + remainder o s remainder < y

so that

x = y. (x div y) + x mod y o sx mod y < y

Solving this equation for x mod y

x mod y = x - ,v(x div y)

Schrage's algorithm is an alternate way of computing the quantity a::: mod m,
which can be manipulated as follows.

a::. mod m

(x mod y = x- y(x div y»

a::. - mea::: div m)

(Add and subtract m(z div q»
a: - m(z div q) + m(z div q) - mea::: div m)

(Factor out m)

az - m(::: div q) + m(z div q - az div m)

(Define y(:::) = a::: - me::: div q) and 0(:::) = ::: div q - a::: div m)

y(:::) + mO(:::)

Schrage's algorithm is based on the fact that y(:::) is the computation a . 1- r . h ,
which is computed just before the if statement, and that the quantity 0(:::) is either
zero or one. If 0(:::) is zero, the algorithm does not add anything to y(.:). If 0(:::) is

Random number generators 307

one, the algorithm adds m to y(~) .
To show that y(::) is the computation a . [- r . h , use the fact that q is the quo

tient and r is the remainder when you divide m by a. So, they are related by

m = q·a+r O::;r<a

Therefore,

y(~)

(Definition of y(z»

az - m(z div q)

(m=qa+r)

a;;; - (qa + r)(z div q)

(Algebra)

a[z - q(z div q)]- r(z div q)

(General relation between div and mod, x = y. (x div y) + x mod y)

a(z mod q) - r(z div q)

(Computation from algorithm 1:= z mod q and h:= z div q)

a·[-r·h

To show that 8(z) is either zero or one, you must prove both an upper and lower
bound, -I < 8(~) < 2. The lower bound -1 < 8(x) is straightforward to prove. It
depends only on the fact that for positive integers x and y

xly - 1 < x div y::; xly

where / represents real division.

Example 14.7 With x = 25 and y = 4, the inequalities state that

25 I 4 - 1 < 25 di v 4 ::; 25 14

which is equivalent to

5.25 < 6 ::; 6.25

With x = 24 and y = 4, the inequalities state that

24/4-1 <24 div 4::;24/4

which is equivalent to

I

308 Chapter 14 Random Numbers

From the detinition of 0(;:) , the lower bound is

-1 < z div (m diva) - az div m

which is equivalent to

z div (m diva) >az div m-I

To prove this inequality, start with the left hand side.

z div (m diva)

> (xdivy>xly-l)

:cl(m diva) - I

2 (x div ySxly)

zl(mla) - I

(Algebra)

az.lm-I

2 (xly2xdiv y)

azdivm-I

The upper bound 0(:::) < 2 is not so straightforward to prove and will not be given
here. It depends on the fact that;: < m , which must be true because m is the modulus
of the computation for the seed. But, the upper bound also depends on one addi
tional assumption, namely that r < q, which is equivalent to m mod (/ < m diva.
This additional assumption is a restriction on Schrage's algorithm. Without it, 0(;:)
can be greater than one, and the algorithm would need to add some multiple of m,
not just m, to the original computation of a . 1- r . h . The beauty of Schrage's algo
rithm is that if you are careful to choose (m, a) for your Lehmer generator so that
m mod a < m diva, the computation of 0(;:) is not necessary. By choosing (m, (I)

so that 0(::) is zero or one you are guaranteed that the computation a . 1- r . h will
either be correct or, if it is not positive, will need to be adjusted only by the addition
ofm.

Exercises

1. When you toss two dice, the sum is one of the II numbers between 2 and 12. Would it
be a good idea to simulate the toss of two dice by calling PboxRandom.lnt once with a
value of II for n? Explain.

2, (aj What are the values of rand q for the random number generator in PboxRandom~

Do these values satisfy the assumption for the upper bound of O(z) .) (b) Answer part
(a) for the random number generator of Example 14.3.

3. Prove the upper bound 0(:) < 2 for Schrage's algorithm for the implementation of the
Lehmer random number generator. Send your proof to the author of this book and he

will include it in the next printed revision and credit you in the acknowledgments.

Problems

4. In the child's game of paper/scissors/rock, each child secretly chooses one of the
objects. When the choices are revealed, paper loses to scissors, scissors loses to rock,
and rock loses to paper. Equal choices are a draw. Design a dialog box that permits the
user to set the seed or randomize it. Include a set of three radio buttons for the user to
select paper, scissors, or rock. When the user clicks on a button labeled Play, compare
her choice with a randomly selected object and print a message on the Log that states
what the computer chose and who won, the computer or the user.

S. Add some output fields to the dialog box of Problem 4 to keep track of the score
between the user and the computer. Each time the user plays a game. update the score.
Include a button to reset the score to zero.

6. In the program of Listing 14.8, it took 8 rolls of the dice to get a 7 or II. What do you
think the average number of rolls would be? Can you calculate the average mathemati
cally? Perform a computational experiment by writing a program to simulate 100
sequences of rolls. Design a dialog box for the user to set the seed or to randomize it.
When the user clicks a button. simulate 100 sequences of rolls and output on the Log
the fewest number of rolls (integer), the greatest number of rolls (integer) and the aver
age number of rolls (real), to get a 7 or 11.

7. The game of craps is played as follows. Roll a pair of dice. If you get a 7 or lion the
first roll you win. and if you get 2.3 or 12 (called craps) you lose. Otherwise. the num
ber you rolled becomes your point. You then keep rolling until you roll your point
again. in which case you win, or until you roll a 7, in which case you lose. For exam
ple. a roll of 9. then 2. then 10, then 9 is a win. because the point (9 in this case) was
rolled again before 7. As another example, a roll of 5, then 2. then 10. then 7 is a loss.
because a 7 was rolled before the point (5 in this case).

Write a Component Pascal program to simulate a game of craps. Design a dialog box
for the user to set the seed or randomize it. Include one other button for the user to
press to playa game of craps. When the user clicks the button. output the result of the
sequence of rolls for the game to the Log. In the end. announce if the user won or lost.

8. In the Problem 7. what do you think the probability of winning a game of craps is? Can
you calculate it mathematically? Perform a computational experiment by writing a pro
gram to simulate 100 games. Design a dialog box that allows the user to set the seed or
randomize it. When the user clicks a button. output to the Log the number of wins
(integer) and losses (integer), and an estimate of the probability of winning a single
game as the ratio (real) of the number of wins divided by the total number of games.

9. The local town drunk gets thoroughly inebriated. climbs to the roof of a skyscraper.
steps out onto the center of the ledge, and begins to walk. Each time he takes a step. the
probability is 1/3 that he will step to the right. 1/3 that he will step straight ahead. and
1/3 that he will step to the left. If he takes a total of two steps to the left. he will fall
safely onto the roof. But if he takes a total of two steps to the right. he will fall to the
sidewalk below. Write a program that simulates one walk of the drunk. Design a dialog
box that allows the user to set the seed or randomize it. When the user clicks a button.

Problems 309

310 Chapter 14 Random Numbers

output the random walk to the Log as shown below. with the roof on the left and the f(x)
sidewalk on the right. At the end of the simulation announce which way he fell. After
the program executes you can display the Log in Courier or some other monospaced
font to make the spaces next to the x character distinct.

10.

11.

12.

(x
(x)

(x)

(x)

(x)

x)

x)

x)
x)

He fell to the sidewalk.

In Problem 9, suppose a whole army of drunks repeat the walk many times. Guess the
average length of a walk. That is, how many steps on the average does a drunk take
before he falls off one way or the other? Now perform a computational experiment by
writing a program to simulate 100 walks. Design a dialog box that allows the user to
set the seed or randomize it. When the user clicks a button, output the number of times
he fell to the sidewalk (integer), the number of times he fell onto the roof (integer), and
the average number of steps he took (real) before falling. How close is the computed
value to your guess?

The ideas in this problem form the basis of an important mathematical technique called
the Monte Carlo method. The method has application to problems in statistical physics.
The "army" of drunks is called an ensemble, and the average is called an ensemble
average.

o
Figure 14.II(a) shows a graph of the equation y x- between the points x = 0.0
and x = 1.0. The square of height 1.0 between these points has area 1.0. You can esti
mate the area under the curve by picking several points at random inside the square and
counting the points that are below the curve. The area is approximately the number of
points below the curve divided by the total number of points. For example, the estimate
from Figure 14.II(b) is 4111 or 0.3636.

Design a dialog box that requests the user to enter a seed and the number of random
points, then outputs the estimate of the area in the dialog box. Obtain the coordinates of
a single point by calling procedure PboxRandom.Real twice, once for the x-coordinate
and once for the y-coordinate. What do you think is the relationship between the num
ber of random points and the accuracy of the estimate? Can you illustrate that relation
ship with your program?

You can use a random numbej generator to compute the value of It based on the fact
that the area of a circle is ltr-. Fig~re 14.12 shows the area of one fourth of a circle
with radius 1.0 whose area is It(LOr 1 4 = It/4. Write a program that asks the user to

enter a seed and the number of random points, then computes the estimate of the area
using the technique of Problem II. Output the estimate of It as four times the area.
What do you think is the relationship between the number of random points and the
accuracy of the estimate') Can you illustrate that relationship with your program?

(a) The area under the curve.

fix)

I 1--.----.--1

• •
• • • • • • •

o
(b) Eleven random points for
estimating the area.

Figure 14.11

The function [(xl

Problem II.

o
Figure 14.12

o
x- for

The quarter circle to estimate
It for Problem 12.

x

x

13. Figure 10.7 shows an algorithm for finding the largest value from a list of values in the
focus window. It contains the loop

WHILE -sc.eot DO
IF num > largest THEN

largest := num
END
sc.Scanlnt(num)

END

(al If the numbers in the focus window are random, approximately what percentage of
the executions of the loop do you suppose would include the statement largest := num?
Explain the reasoning behind your supposition. (b) After answering part (a), write a
program in Component Pascal to test your supposition. Modify the algorithm to take
the numbers from a random number generator instead of from the focus window.
Design a dialog box with seven controls-a field for the user to input a seed, a button
to set the seed, a button to randomize the seed, a field for the user to input the number
of random integers to process, a button to find the maximum of the random numbers,
an output field to display the largest integer found, and an output field to display the
percentage of the number of times that execution of the body of the loop includes the
statement largest := num. When the user presses the button to find the maximum inte
ger, invoke PboxRandom.lnt with an actual parameter of one billion (1,000,000,000).
That is, you will be testing to find the maximum of a set of integers, each one of which
is between one and one billion. (e) Experiment with your program trying out various
values of the seed and of the number of integers to test. Is your supposition from part
(al close to the results from your program? If not, explain how your reasoning must be
modified to account for the results of your program.

14. Write a program that outputs to the Log all the values of the multiplier a that will pro
duce a full-period Lehmer generator with a modulus m of 1021. Remember that the
multiplier is restricted to 2 < a < m.

Problems 311

~ Chapter15

151~
One-Dimensional Arrays

Recall that abstraction involves the suppression of detail. The collection of a group
of items is generally the first step toward abstraction. The previous chapter presented
proper procedures and function procedures, which are collections of program state
ments executed when one procedure calls another. Declaring a procedure creates a
new statement that the calling procedure can use. One advantage of such declara
tions is that if different people design the calling procedure and the called procedure,
the person who writes the calling procedure does not need to know about the collec
tion of statements in the called procedure. This is particularly tme when the called
procedure is in a different module from the calling procedure. The collection of Pmgm/ll uh.l"lmclioll

statements is a step toward program abstraction.
We have already seen that records are collections of values, each of which may

have different types. Arrays are also a collection of values. Unlike records, the val
ues in an array must all be the same type. For example, it is possible for a record to
have both an integer field and a real field. However, an array of integer values cannot
contain a real value. In this chapter, you will learn how to declare and manipulate
arrays. In the same way that the collection of statements is a step towards program Outu uh.l"lraclioll

abstraction, the collection of values is a step toward data abstraction.

Array input/output

Figure 15.1 shows the input and output windows of a program that displays the input
values in reverse order. Procedure ReverseReals in Figure 15.2 inputs four values
from the focus window and outputs them in reverse order in the new window. It
declares list to be an array of four real values. The procedure is invoked by a menu
selection not shown in the figure.

1 60 2.30 - 1 00 5 10 5 ~ 0 - 1 00 2.30 160

.. IlI!l

Figure 15,1
The input ami output for the
procedure of Figure 15.2 .

314 Chapter 15 One-Dimensional Arrays

MODULE Pbox15A;
IMPORT TextModels, TextViews, Views, TextControliers, PboxMappers;

TYPE
Real4 = ARRAY 4 OF REAL;

PROCEDURE ReverseReals*;
VAR

mdln: TextModels.Model;
cn: TextControliers.Controller;
sc: PboxMappers.Scanner;
list: Real4;
i: INTEGER;
mdOut: Tex1Models.Model;
vw: TextViews.View;
fm: PboxMappers. Formatter;

BEGIN
cn := TextControliers.FocusO;
IF cn # NIL THEN

mdln := cn.text;
sc.ConnectTo(mdln);
FOR i := 0 TO 3 DO

sc.ScanReal(list[i])
END;
mdOut := TextModels.dir.NewO;
fm.ConnectTo(mdOut);
FOR i := 3 TO 0 BY -1 DO

fm.WriteReal(list[i], 8, 2)
END;
vw := TextViews.dir.New(mdOut);
Views.OpenView(vw)

END
END ReverseReals;

END Pbox15A.

You could reverse the four values by declaring four variables, say list1, list2, list3,
and list4. You could read them in with four sC.ScanReal statements and write them
out with four fm.WriteReal statements. The disadvantage of this approach is that it is
not feasible for large data sets. Would you like to write a program with this approach
to reverse 100 values?

[n this procedure, list is declared to have type Real4, which is declared to be

ARRAY 4 OF REAL

The declaration means that the array variable. list, contains four real values indexed
from 0 to 3. The four values are referred to by IiSI[O], Iisl[1], list[2], and list[3]. An ele
ment of the array, say lisl[2], is also called a subscripted variable because of its simi
larity to subscripted variables in mathematics. In mathematical notation, if a variable

Figure 15.2
A program to reverse four
real values in the focus
window.

x is subscripted, you refer to its values by xo' xl, x2' and x3. Component Pascal syn
tax calls for the subscripts to be enclosed in square brackets. An array variable is
also called a vector. An individual compartment that contains a value is called a cell
of the array. Figure 15.3 shows the array list and the variable i allocated on the run
time stack. To keep the figure simple, the MVC variables are not shown.

list[O]

list[1]

list[2]

list[3]

(a) Initially.

2

listIe] 1.60

list[1] 2.30

list[2] -1.00

Iist[3]

(d) After third scan.

2

list[O] 1.60

list[1] 2.30

Iist[2] -1.00

list[3] 5.10

(g) Output list[2].

o
list[O] 1.60

Iist[1]

list[2]

list[3]

(b) After first scan.

3

Iist[O] 1.60

list[t] 2.30

list[2] -1.00

Iist[3] 5.10

(e) After fourth scan.

Iist[O] 1.60

Iist[1] 2.30

Iist[2] -1.00

list[3] 5.10

(h) Output list[1].

Iist[O] 1.60

Iist[1] 2.30

Iist[2]

list[3]

(c) After second scan.

3

list[O] 1.60

list[1] 2.30

list[2] -1.00

Iist[3] 5.10

(0 Output list[3].

o
Iist[O] 1.60

list[1] 2.30

list[2] -1.00

Iist[3] 5.10

(i) Output list[O].

The program works by setting up the usual MVC variables to scan from the
model shown in the focus window. The first FOR loop

FOR i := 0 TO 3 DO

initializes i to o. Then, the first time through the loop

sc.ScanReal(list[i])

scans the first value 1.60 from the text model into list[Oj, because the current value of

Array input/output 315

Figure 15.3
A trace of procedure
ReverseReals in Figure 15.2.

316 Chapter J 5 One-Dimensional Arrays

i is O. Figure 15.3(b) shows the result of the scan. The next time through the loop i
has value I, so the effect of

sc.ScanReal(list[iJ)

is to scan the next value from the text model into list[1] as Figure 15.3(c) shows.
Similarly, the third and fourth values are scanned into list[2] and Iist[3].

The second FOR loop outputs the values in reverse order to the text model for the
output window. It initializes i to 3 and executes

fm.WriteReal(list[i], 8, 2)

which has the effect of writing list[3] to the output model, because the current value
of i is 3. Notice in Figure 15.3(f), that the values maintain their order in the list array.
The next time through the loop i has value 2, so the statement

fm,WriteReal(list[i], 8, 2)

has the effect of writing list[2] to the text model as Figure 15.3(g) shows. Similarly,
list[1] and list[O] are written without having their order altered in the array.

Using arrays

You must remember that an array like list contains a collection of values, not just one
value. To assign a value to a cell of an array you must specify which cell gets the
value.

Example 15.1 The statement

list := -1.0

where list is declared as it is in procedure ReverseReals is illegal, even though -1.0
has type real. The problem is that the cell of list is not specified. On the other hand,

list[2] := -1.0

is legal. The assignment statement gives the value of -1.0 to the third cell of list. I

The index of list in procedure ReverseReals has a range of 0 to 3. During execu
tion, the computer checks whether the index is within the allowable range whenever
a reference to a cell of an array is made. If it is not. a trap occurs with an appropriate
error message.

Example 15.2 If you erroneously change the second FOR statement In Figure
15.2 to

FOR i := 4 TO 0 BY -1 DO

you will get a trap when the statement

fm.WriteReal(list[i], 8, 2)

executes because the first time through the loop i is not between 0 and 3. Figure 15.4
shows the top part of the trap window that results from the error. You can see in part
(a) that the values of the list are not visible because they are hidden in the collapsed
fold. Expanding the fold as in part (b) shows the value of the array. I

o c~ •• c ... :' ITrap) .. c -- ~~ __ • --'ElI3

Ind .. out of range

... Pbo/"l1504.Revcr~eReol:5 {OOOOO 140HI

. en TextControliers.ControllerlOEC749 14HI •

Collapsed fold . fm PboxMappers.Formatterll!fieldsl!
.1 INTEGER 4

.llst Pboxl5A.Real4 !lelementsl
,",u11" TovtMnrtolc Mnrl,:11 rnl='("OAn~ALll

(a) The values of list are hidden in the fold.

o (Trap)- ElI3

index out of range

• POOl-< 15A ReverseReals rooooo 140HI •

en TextControllers.ControlierlOEC749 14HI •
fm PboxMappers Fonnatter~fieldslll

INTE:G~R d
list Pboxl5A.Real4 ~--------.t----
101 REAL ~6 I ___ Expanded fold
[Ii REAL 23 ______ ~
121 REAL - 10
[31 REAL 5. I 3 ~

To ... tMnfiole Mnrlol rl"lt'ral1n~III.n ...

(b) Expanding the fold to see the values of list.

The index is not limited to a constant or a single variable. It can be any arbitrary
expression as long as the expression has type integer.

Example 15.3 The assignment statement

list[3 * i - 5] := 1 .6

gives the value of 1.6 to list[1] if i has the value of 2. I

Example 15.4 Suppose list gets the values

1.6 2.3 -1.0 5.1

from the model behind the focus window, as in procedure ReverseReals. The code

Using arrays 317

Figure 15.4
The trap window when your
index is out of range .

318 Chapter 15 One-Dimensional Arrays

fragment

FOR i := 2 TO 5 DO
fm.WriteReal(list[i MOD 4],6, 1)

END

would output

-1.0 5.1 1.6 2.3

These are the values of list[2], Iist[3], list[O], and list[1].

Memory allocation for arrays

I

If you do not know exactly how many data items will be in the array. you must allo
cate more space than you would reasonably expect. Figure 15.5 shows the input and
output windows for a program that performs processing similar to that in Figure
15.2. The figure shows the output window displaying seven values from the focus
window in reverse order, but the program will work for up to 1024 values in the
focus window. Procedure ReverseReals in Figure 15.6 shows the technique. It allo
cates storage for 1024 real values in list, even though the focus window may contain
fewer values.

~o 90 1~ 10 ~o 2D

~Jt:!IX

200 500 3m 100 900 600 ~oo

-I I

The trace of the run-time stack for this program would be very large indeed. It
would have 1024 cells just for list. including list[O]. Iist[1], and so on, to Iist[1023]. In
this example the focus window contained only seven real values. That means that the
program did not use 1017 values. They remained undefined throughout the program
execution and represent wasted memory.

The program inputs the values into the real array with procedure ScanRealVector
from module PboxMappers. The documentation for ScanRealVector is

Figure 15.5
The input and output for the
procedure of Figure 15.6.

Open arrays 319

PROCEDURE (VAR s: Scanner) ScanRealVector (OUT v: ARRAY OF REAL; OUT numltm: INTEGER), NEW
Pre
s is connected to a text model. 20
Sequences of characters scanned represent in-range real or integer values. 21
Number of values in text model <= LEN(v). Index out of range.
Post
v gets all the values scanned up to the end of the text model to which s is connected.
numltm gets the number of integer values scanned.
The values are stored at v[O .. numltm - 1].

Both v and numltm are called by result. That means that they each refer to their
corresponding actual parameter, and that their initial values when the procedure is
called can be considered undefined. You can see that this is the case, because neither
list nor numltems has been given any values before the call to ScanRealVector. The
effect of the procedure is to change the values of both list and numltems. Scan
RealVector is programmed to scan real values from a text model, skipping over any
spaces, tabs, or line characters, until the end of the text is reached. It puts the values
in vector v and in the process counts the number of values scanned and puts the
value of the count in numltm. In the end, the values have been placed in v[O] to
v[numltm - 1].

The type, ARRAY 1024 OF REAL, in the declaration of the array specifies a fixed
number of elements in the array. You may be tempted to circumvent the problem of
wasted memory by declaring list as

list: ARRAY numltems OF REAL

but this declaration is illegal because numltems is a variable. You must have a con
stant expression in the declaration of the size of your array. Storage allocation for
variables in the procedure occurs before the first statement executes. The procedure
cannot wait until numltems gets a value from

sc.ScanReaIVector(list, numltems)

before allocating memory.

Open arrays

It is legal to declare a formal array parameter v with a fixed number of cells. For
example, procedure ScanRealVector could have been declared as

All il/egul til!cillrar;(l1l

(VAR s: Scanner) ScanRealVector (OUT v: ARRAY 1024 OF REAL; OUT numltm: INTEGER)

instead of as

(VAR s: Scanner) ScanRealVector (OUT v: ARRAY OF REAL; OUT numltm: INTEGER)

Both of these declarations are legal.

320 Chapter 15 One-Dimensional Arrays

MODULE Pbox15B;
IMPORT TextModels, TextViews, Views, TextControliers, PboxMappers;

TYPE
Real1024 = ARRAY 1024 OF REAL;

PROCEDURE ReverseReals*;
VAR

mdln: TextModels.Model;
en: TextControliers.Controller;
se: PboxMappers.Seanner;
list: Rea11024;
numltems: INTEGER;
i: INTEGER;
mdOut: TextModels.Model;
vw: TextViews.View;
fm: PboxMappers.Formatter;

BEGIN
en := TextControliers.FoeusO;
IF en # NIL THEN

mdln := en. text;
se.ConneetTo(mdln);
se.SeanReaIVeetor(list, numltems);
mdOut := TextModels.dir.NewO;
fm.ConneetTo(mdOut);
FOR i := numltems - 1 TO 0 BY -1 DO

fm.writeReal(list[ij, 6, 2)
END;
vw := TextViews.dir.New(mdOut);
Views.OpenView(vw)

END
END ReverseReals;

END Pbox15B.

If the server module PboxMappers were designed with v having 1024 cells, as in
the first declaration above, the program in Figure 15.6 would compile and run with
no apparent difference to the user. An array specified without the number of ele
ments it contains, as in the specification of v in the second declaration above, is
known as an open array. A formal parameter list is one of the few places you can

Figure 15.6
A program to reverse any
number of real values.

specify an open array. The advantage of specifying an open array in the formal TIll' adl'llntage of open arrays

parameter list of a procedure is that it makes the procedure more general than if you
commit to an array of fixed size.

Example 15.5 Suppose the server module PboxMappers were designed with 1024
cells for v, as in the first declaration above. If you wanted the program of Figure 15.6
to process up to 2048 real values by declaring type

Real2048 = ARRAY 2048 OF REAL;

A problem-solving technique 321

and variable

list: Rea12048;

it would not compile. There would be a type conflict between actual parameter list.
which would be an ARRAY 2048 OF REAL, and formal parameter v, which would be
an ARRAY 1024 OF REAL. Because v is declared as an open array in procedure
ScanRealVector, however, the procedure will work correctly regardless of the num
ber of cells allocated for the actual parameter. I

One of the preconditions of procedure ScanRealVector is

Number of values in text model <= LEN(v). Index out of range.

LEN is a built-in Component Pascal function that returns the length of an array Tile LENfimctioll

regardless of the number of cells that are occupied by meaningful values. It is partic-
ularly useful in procedures that have open arrays in their parameter lists.

Example 15.6 The value of LEN (v) in procedure ScanRealVector is 1024 when it
is called from procedure ReverseReals in Figure 15.6. I

In the program of Figure 15.6, if there are no more than 1024 values in the text
model then numltems will get a value less than LEN (v). The program will execute
with no ill etfects. It will simply have some unused cells in the list array. But. if there
are more than 1024 values in the text model the scanner will trap with an "index out
of range" error message.

Wasted memory is a common problem in array processing and does not have a
simple solution. With some programs you will know ahead of time exactly how
much data must be processed and exactly how large to declare your array. With other
programs. however, you will not know. In that case. you must decide what is reason
able for the problem at hand and for the main memory size of your computer.

A problem-solving technique

One skill you should develop is the ability to manipulate the elements of an array.
Typically you will be confronted with a problem that requires the elements to be
rearranged somehow, and you must write the statements that perform the re-arrange-
ment. Analysis is determining the manipulation from given program statements. Allalnis I'e nus design

while design is determining the program statements from a given desired manipula-
tion.

There are two approaches to program design problems. One approach is to go
from the specific to the general. This technique involves generalizing from a small
number of known patterns to a single general pattern. Another approach is to derive
the general pattern using the methods of formal logic. These two approaches are at
opposite ends of the inductive/deductive reasoning spectrum. Practitioners of each
approach sometimes disparage the opposite approach. Both. however, are valuable

322 Chapter 15 One-Dimensional Arrays

and should be mastered by the professional software designer. The usual practice is
to use the generalization technique to determine the code initially, then use formal
methods to prove that what you have written is correct.

Here are the steps of the generalizing technique:

• Step I-Write some specific initial values for the array in a trace.

• Step 2-Perform the manipulation by changing the values in the trace, one at a
time.

• Step 3-For each change, write a specific assignment statement that will pro
duce the change.

• Step 4-Discover a pattern in the indices of the assignment statements you
wrote. Generalize from the specific statements to a loop containing arrays
with variables in the subscripts.

The last step is usually the hardest.
The following discussion presents a series of problems that require you to design

a program or code fragment that manipulates the values of an array. Each problem is
developed to show how you might use the generalizing technique.

The rotate left problem

The first illustration of this problem-solving technique is to rotate the elements of an
array to the left. The leftmost element will rotate to the rightmost spot. For example,
suppose list and numltems are declared as in procedure ReverseReals in Figure
15.6, numltems has the value 4, and list has the values

5.0 -2.3 8.0 0.1

Then, after the rotation, list should have the values

-2.3 8.0 0.1 5.0

Now you apply the four steps of the problem-solving technique.
Steps 1 and 2-1n these steps, you write the values in a table and perform the

changes one at a time.

list[O] list[1] list[2] list[3]

Original values 5.0 -2.3 8.0 0.1
Change Iist[O] -2.3 -2.3 8.0 0.1
Change list[1] -2.3 8.0 8.0 0.1
Change Iist[2] -2.3 8.0 0.1 0.1
Change Iist[3] -2.3 8.0 0.1 5.0

Step 3-For each change, you must write a specific assignment statement that
will produce the change.

The rotate left problem

list[O] list[1] list[2] Iist[3]

Original values 5.0 -2.3 8.0 0.1
Iist[O] := list[1] -2.3 -2.3 8.0 0.1
list[1] := list[2] -2.3 8.0 8.0 0.1
Iist[2) := list[3] -2.3 8.0 0.1 0.1
Iist[3) := ? -2.3 8.0 0.1 ')

But here you have a problem. You want list[3) to get the old value of Iist[O]. But if you
write

Iist(3) := list[O)

then list[3] will get the current value of Iist[O], which is -2.3, not 5.0. The solution is
to employ a temporary real variable, say temp, which saves the old value of list[O].
Here is a revised trace:

temp list[O] Iist[1] list(2) list(3)

Original values 5.0 -2.3 8.0 0.1
temp :=list[O) 5.0 5.0 -2.3 8.0 0.1
list[O] := list[1] 5.0 -2.3 -2.3 8.0 0.1
list(1) := list[2] 5.0 -2.3 8.0 8.0 0.1
list(2) := list(3) 5.0 -2.3 8.0 0.1 0.1
list[3] := temp 5.0 -2.3 8.0 0.1 5.0

Step 4-In this step, you discover a pattern in the indices of the assignment state
ments you wrote. The pattern in the indices just presented is

o I
2

2 3

The index on the right of the assignment statement is one more than the index on the
left. So the generalization is

temp := list[O];
FOR i := 0 TO 2 DO

list[i] := list(i + 1]
END;
list[3] := temp

in the case where the array has four elements. In the more general case where there
are numltems values, the statements are

temp := list[O];
FOR i := 0 TO numltems - 2 DO

list[i] := list[i + 1)
END;
list[numltems - 1] := temp

323

324 Chapter 15 One-Dimensional Arrays

MODULE Pbox15C;
IMPORT TextModels, TextViews, Views, TextControliers, PboxMappers;

TYPE
Real1024 = ARRAY 1024 OF REAL;

PROCEDURE RotateLeft (VAR v: ARRAY OF REAL; numltm: INTEGER);
VAR

i: INTEGER;
temp: REAL;

BEGIN
ASSERT((O <= numltm) & (numltm <= LEN(v)). 20);
IF numltm > 1 THEN

temp := vIOl;
FOR i := 0 TO numltm - 2 DO

vIi] := v(i + 1]
END;
v(numltm - 1] := temp

END
END RotateLeft;

PROCEDURE ProcessRotation*;
VAR

mdln: TextModels.Model;
en: TextControliers.Controller;
se: PboxMappers.Seanner;
list: Real1 024;
numltems: INTEGER;
mdOut: TextModels.Model;
vw: TextViews.View;
1m: PboxMappers.Formatter;

BEGIN
en := TextControliers.Foeus();
IF en # NIL THEN

mdln := en.text;
se.ConneetTo(mdln);
se.SeanRea/Veetor(list, num/tems);
mdOut := TextMode/s.dir.NewO;
Im.ConneetTo(mdOut);
Im.WriteReaIVeetor(list, numltems, 6, 2);
RotateLeft(list, numltems);
Im.WriteLn; Im.WriteLn;
fm.WriteReaIVeetor(/ist, num/tems, 6, 2);
vw := TextViews.dir.New(mdOul);
Views.OpenView(vw)

END
END ProeessRotation;

END Pbox15C.

Figure 15.7
A program with a procedure
to rotate the elements in an
array.

The rotate leji problem 325

Figure 15.7 shows this algorithm implemented in a procedure called RotateLeft.
Figure 15.8 shows the input and output windows of the program. It generalizes the
problem to work for any number of elements, with seven elements shown in the fig
ure.

untitled 8 Il!IEl El untitled OJ , 4.00 6.00 900 1.00 3.00 5.00 2.00

6.00 9.00 1.00 300 500 200 4.00

4.D 6D ~o 1.0 3D ~O 20

. {'-

Procedure RotateLeft has formal parameter v that corresponds to actual parameter
list and formal parameter numltm that corresponds to actual parameter numltems.
The precondition for RotateLeft to work correctly is that numltm have a value
between 0 and LEN(v). As is the case with procedure ScanRealVector, v is an open
array so that procedure RotateLeft could work with an array of any length.

Example 15.7 Suppose you have two types declared as follows.

TYPE
Real128 = ARRAY 128 OF REAL;
Real1024 = ARRAY 1024 OF REAL;

and two local arrays

VAR
myArray: Rea1128;
yourArray: Real1 024;

If you want to rotate each array and you do not write your procedure with an open
array, you must write two procedures, one with declaration

PROCEDURE MyRotateLeft (VAR v: Rea1128; numltm: INTEGER)

that you call with

MyRotateLeft (myArray, myNumltems)

and one with declaration

PROCEDURE YourRotateLeft (VAR v: Real1 024; numltm: INTEGER)

that you call with

YourRotateLeft (yourArray, yourNumltems)

Figure 15.8
The input and output for the
procedure of Figure 15.7.

Il!IEl

i
to ./;

326 Chapter 15 One-Dimensiollal Arrays

However, if you have the open array in the formal parameter list you only need to
write one procedure as in Figure 15.7 and call it with either array as

RotateLeft (my Array, myNumltems);
RotateLeft (YourArray, yourNumltems) I

It is usually best to not commit to a fixed array length when you design a proce
dure to process an array. Most server modules provide procedures with open array
parameters as does ScanRealVector as shown on page 319. Because v is an open
array, your client module can call it with an actual parameter having any length you
desire. Because of the advantage of using open arrays you should get in the habit of
using them in the formal parameter lists of your procedures.

Call by constant reference

The program uses the procedure WriteRealVector from PboxMappers. Here is its
documentation.

PROCEDURE (VAR f: Formatter) WriteRealVector (IN v: ARRAY OF REAL; numltm, minWidth, dec: INTEGER),
NEW

Pre
f is connected to a text model. 20
numltm <= LEN(v). Index out of range.
Post
The first numltm values of v are written to the text model to which f is connected,
each with a field width of minWidth and dec places past the decimal point. If minWidth
is too small to contain a value of v it expands to accommodate the value.

The calling procedure supplies WriteRealVector with the vector to write v, the num
ber of items in v to write numltm, the field width minWidth, and the number of places
past the decimal point dec. The designation IN signifies call by constant reference.

The purpose of call by constant reference is identical to the purpose of call by
value. Namely, the calling procedure desires to give a value to the called procedure.
In that sense we can revise Figure 12.17 to include call by constant reference as
shown in Figure 15.9

(a) Call by value and call
by constant reference.

(b) Call by result. (el Call by reference.

Figure 15.9
The flow of information for
four different calling
mechanisms, including call
by constant reference.

Call by constant reference 327

If call by constant reference has the same effect as call by value, then why does
Component Pascal provide both calling mechanisms? The answer is efficiency. In
fact, procedure WriteRealVector would work if v were called by value. However,
remember that the array corresponding to the actual parameter has 1024 elements. In
call by value, the formal parameter gets the value of the actual parameter. Hence, all
1024 elements would be pushed onto the run-time stack when the procedure is
called. That action would take much time and would consume much space on the
stack. It would be more efficient if v were called by reference. Then only a single
cell on the run-time stack would be necessary, and it would contain a reference to
the actual parameter.

But the purpose of call by reference is for information to flow in both directions,
as shown in Figure IS.9(c). In procedure WriteRealVector, the information is only
supposed to flow in one direction as in Figure IS.9(a). So in call by constant refer
ence, Component Pascal pushes a reference to the actual parameter on the run-time
stack. At the same time the compiler forbids the called procedure to change the
value of the formal parameter. The result is to achieve the effect of call by value but
with the efficiency of call by reference.

Now you may be asking, If call by constant reference has the efficiency advan
tage of call by reference and the effect of call by value, why have call by value in the
first place? The answer is twofold. First, call by value has the advantage that the
actual parameter can be any expression of the proper type. It need not be a single
variable. In call by constant reference the actual parameter must be a single variable.

Integers, reals, booleans, pointers,

Figure 15.10
Guidelines for using the four
parameter calling
mechanisms.

short arrays and short records Long arrays and long records

Call by value Common. Not common.

Default Use when the actual parameter should Inefficient procedure call.

not change. Use call by constant reference instead.

Actual parameter can be an expression.

Call by constant reference Not common (illegal for all types Common.

IN except arrays and records). Use when the actual parameter should

Inefficient procedure execution. not change.

Use call by value instead. Actual parameter must be a variable.

Call by result Common.

OUT Use when the actual parameter should change and its

initial value is undefined.

Actual parameter must be a variable.

Call by reference Common.

VAR Use when the actual parameter should change and its

initial value is defined.

Actual parameter must be a variable.

328 Chapter 15 One-Dimensional Arrays

Second, the efficiency in call by constant reference is in the procedure call. It is actu
ally less efficient after the procedure call and during execution of the called proce
dure. It is therefore more efficient in total to use call by value for integers, reals,
booleans, pointers (described later in this book), and short arrays and records, and to
use call by constant reference for long arrays and records. Figure 15.10 summarizes
all these ideas for the four calling mechanisms.

Finding the largest value

The next illustration of this problem-solving technique involves finding the largest
value of an array. For example, in the function procedure

PROCEDURE Maximum (IN v: ARRAY OF REAL; numltm: INTEGER): REAL;

if v has the values

5.0 -2.3 8.0 0.1

and numltm has the value 4, then the procedure should return the value 8.0.
The basic idea is the same as the algorithm to find the largest value in the focus

window. That algorithm saves the largest value found so far in a variable. Each time
the loop executes, the algorithm scans a new value from the model displayed in the
focus window. If the value scanned is greater than the largest found to that point, the
algorithm updates the variable with the newly scanned value. The algorithm we will
now discuss uses the same logic, but it compares largest with the items of the array
one at a time.

The first three steps of the problem-solving technique require you to write some
specific initial values for the array in a trace table. Then change the values one at a
time, and for each change, write a specific assignment statement that will produce
the change. The following trace shows one possibility.

largest v[O] v[1] v[2] v[3]

Original values 5.0 -2.3 8.0 0.1
largest :=v[O] 5.0 5.0 -2.3 8.0 0.1
IF v[1] > largestTHEN 5.0 5.0 -2.3 8.0 0.1

update largest 5.0 5.0 -2.3 8.0 0.1
IF v[2] > largest THEN 5.0 5.0 -2.3 8.0 0.1

update largest 8.0 5.0 -2.3 8.0 0.1
IF v[3] > largest THEN 8.0 5.0 -2.3 8.0 0.1

update largest 8.0 5.0 -2.3 8.0 0.1

You must now discover a pattern in the indices and generalize. The pattern in the
indices in the comparisons is

2
3

Finding the largest value 329

So the statements, one of which is a loop, are

largest := v[O];
FOR i := 1 TO 3 DO

IF v[i] > largest THEN
largest := v[i]

END
END;

in the case where the array has four elements. In the more general case where there
are numltm values, you should replace the constant 4 by numltm - 1. Figure 15.11 is
the completed function. A precondition for the function to work is that numltm be
strictly greater than zero. Otherwise there is no largest element and it would not
make sense to call the procedure. The precondition should be verified in the calling
procedure.

PROCEDURE Maximum (IN v: ARRAY OF REAL; numltm: INTEGER): REAL;
VAR

i: INTEGER;
largest: REAL;

BEGIN
ASSERT((O < numltm) & (numltm <= LEN(v)), 20);
largest := v[O];
FOR i := 1 TO numltm - 1 DO

IF v[i] > largestTHEN
largest := v[i]

END
END;
RETURN largest

END Maximum;

What is the total statement execution count for the algorithm of Figure IS.I!?
ASSERT statements do not count for execution purposes, because they do no data
processing. Their purpose is to specify a procedure, which would execute the same
without them. Clearly the initialization of largest executes one time. If numltm has
the value n, the FOR statement executes n times. Furthermore. every time the body
of the FOR loop executes, the test of the nested IF statement executes. But how
many times does the assignment statement

largest := v[i]

execute? The answer is. It depends. You cannot predict exactly how many times it
executes. because you do not know how many times the IF test will be true. In the

Figure 15.11
A function that returns the
largest element in an array.

best case. the IF test will never be true and the assignment will never execute. In the Definitioll o!hCS!-<'llSC (/nd

worst case, the I F test will always be true and the assignment will always execute. IViJ/·S!-<·U.\C execlItion COIIIII

The average case depends on the original arrangement of the data values in v. and is
somewhere between the best case and the worst case. It is an exercise for the student
(Exercise 8) to determine the execlltion count.

330 Chapter 15 One-Dimensional Arrays

Exchanging the largest with the last

The next problem is to switch the largest value of an array with the last value. For
example, if list is declared as before with the same initial values

5.0 -2.3 8.0 0.1

then, after the processing, the values should be

5.0 -2.3 0.1 8.0

For a first attempt, you might try to find the largest number using function Maxi
mum above. Namely. suppose you have computed that largest has the value 8.0.
Now, how would you make the exchange? The following trace shows the specific
statements.

temp largest v[O] v[1] v[2] v[3]

Original values 8.0 5.0 -2.3 8.0 0.1
temp:= v[3] 0.1 8.0 5.0 -2.3 8.0 0.1
v[3] := largest 0.1 8.0 5.0 -2.3 8.0 8.0
v[2] := temp 0.1 8.0 5.0 -2.3 0.1 8.0

How do you generalize the last assignment statement in the trace? Where did the
2 in v[2] come from? The problem is that we have the value of the largest element,
when what we really need is the index of the largest element to make the exchange.

So, instead of saving the largest value in the array, we must save the index of the
largest value in the array. An integer variable, say indexMax, will save the value of
the index of the largest element found so far. The following trace shows the specific
statements to compute indexMax.

Original values
indexMax := 0
IF v[1] > v[indexMax] THEN

update indexMax
IF v[2] > v[indexMax] THEN

update indexMax
IF v[3] > v[indexMax] THEN

update indexMax

indexMax

o

o

2

2

The statements in the form of a loop are

indexMax := 0;
FOR i := 1 TO 3 DO

IF v[i] > v[indexMax] THEN
indexMax := i

END
END;

v[O] v[1] v[2] v[3]

5.0 -2.3 8.0 0.1
5.0 -2.3 8.0 0.1

5.0 -2.3 8.0 0.1

5.0 -2.3 8.0 0.1

5.0 -2.3 8.0 0.1

Initializing in decreasing order 331

which is valid when there are four items in the list. In the general case, you must
replace the 3 by numltem - 1. The algorithm is shown as the procedure in Figure
15.12. If numltem is not greater than one, there is no need to exchange at all. The
procedure works fine even when given an array with one item or an empty array.

PROCEDURE LargestLast (VAR v: ARRAY OF REAL; numltm: INTEGER);
VAR

i, indexMax: INTEGER;
temp: REAL;

BEGIN
ASSERT((O <= numltm) & (numltm <= LEN(v)), 20);
IF numltm > 1 THEN

indexMax := 0;
FOR i := 1 TO numltm - 1 DO

IF v[i] > v[indexMax] THEN
indexMax := i

END
END;
temp := v[numltm - 1];
v[numltm - 1] := v[indexMax];
v[indexMax] := temp

END
END LargestLast;

Initializing in decreasing order

The previous problems were rearrangements of existing values in the array. Some
problems call for initializing the values in the array. Here is an example. Suppose list
is an array of integers. If numltem has the value 5, you must initialize list to

4 3 2 0

In general, the values should be in decreasing order, with the first value equal to the
number of items minus I and the last value equal to O.

The specific assignment statements for five elements are

v[O]:= 4
v[1]:= 3
v[2]:= 2
v[3]:= 1
v[4]:= 0

You must discover the general relationship between the pairs

Figure 15.12
A procedure that exchanges
the largest element in an array
with the last element.

332 Chapter J 5 One-Dimensional Arrays

o 4
1 3
2 2
3 1
4 0

Each time the fiN integer in the pair increases by one, the second integer decreases
by one_ If you write the FOR loop

FOR i := 0 TO 4 DO
vIi] := some expression

END

the expression must decrease as i increases. An expression with -i satisfies that
requirement. As i increases, -i decreases. Namely, the expression 4 - i works for five
elements. When i has the value 0, 4 - i has the value 4. When i has the value 4, 4 - i
has the value O.

For four elements the pattern is

o 3
I 2
2 I
3 0

and the expression is 3 - i. For general values of numltm, the expression is

numltm - i - 1

When i has the value 0, numltm - i - 1 has the value numltm - 1. So, vlO] := numltm -
1. When i has the value numltm - 1, numltm - i - 1 has the value O. So, v[numltm - 1] :=
O. The algorithm in procedure form is in Figure 15.13.

PROCEDURE Initialize (OUT v: ARRAY OF INTEGER; numltm: INTEGER);
VAR

i: INTEGER;
BEGIN

ASSERT((O <= numltm) & (numltm <= LEN(v», 20);
FOR i := 0 TO numltm - 1 DO

vIi] := numltm - i - 1
END

END Initialize;

Another approach to the same problem is to note that the expression always starts
with the value of numltem - 1 and decreases by one. You can declare an integer vari
able, j, and initialize it to numltem - 1. Decrement the value of j each time through
the loop and simply give the value of j to vIi]. The algorithm in procedure form is in
Figure 15.14.

Figure 15.13
A procedure to initialize the
elements of an array to a
decreasing sequence.

PROCEDURE Initialize (OUT v: ARRAY OF INTEGER; numltm: INTEGER);
VAR

i, j: INTEGER;
BEGIN

ASSERT((O <= numltm) & (numltm <= LEN(v», 20);
j:= numltm -1;
FOR i := 0 TO numltm - 1 DO

v[i] :=j;
DECO)

END;
END Initialize;

Character arrays

Recall from Chapter 4 that arrays of characters are terminated with the sentinel
value OX. In that respect they are different from arrays of uther types because uther
arrays are not so terminated. However, like arrays of other types, arrays of characters
can be manipulated by subscripting.

Character arrays 333

Figure 15.14
A procedure that performs the
identical processing to that in
Figure 15.13.

The $ symbol denotes the Component Pascal string selector, which affects the The $ siring se/eclor

processing of arrays uf characters, but not arrays of other types. The $ symbol, when
it follows the name of a variable of type array of character, signifies all the values
from the first up to and including the cell containing the OX sentinel character. The
purpose of the $ string selector is to make string assignments more efficient than
would otherwise be the case.

Example 15.8 Suppose you declare the type

TYPE
String16 = ARRAY 16 OF CHAR;

and you have two variables declared as

VAR
d': RECORD

stringln': String16;
stringOut-: String16

END;

The value of d.stringln is "each" and you want to assign it to d.stringOut, so you
write

d.stringOut := d.stringln

Without the $ symbol after d.stringln, the values represented by d.stringln include all
16 cells of the array. The assignment statement would cause 16 values to be assigned
to d.stringOut as Figure 15.15(a) shows. This is clearly a waste of time, because for
an array of characters all the values after the OX sentinel are irrelevant. With the $

334 Chapter 15 One-Dimensional Arrays

symbol after d.slringln. the values represented by d.slringln$ consists of the five val
ues d.slringln[O], d.slringln[1], ... , d.stringln[4]. The assignment statement

d.slringOul := d.slringln$

only needs to give five values to d.stringOul as Figure 15.15(b) shows instead of 16
values. I

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

d.stringln I e I al c I h loxi I I I I I I I I I I
t t t t t t t t t t t t t t t t

d.stringOut I e I a I c I h loX I I I I I I I I I I I
(a) d.stringOut := d.stringln

d.stringln I e I a I c I h lox I
t t t t t

d.stringOut I e I a I c I h I OX I

(b) d.stringOut:= d.stringln$

LEN returns the length of an array regardless of the number of cells that are occu
pied by meaningful values. It works with arrays of characters the same way it works
with arrays of other types.

Example 15.9 Within procedure RolaleLeft in Figure 15.7. the function call

LEN(v)

would return 1024 because that is the length of the actual parameter, list. It is irrele
vant that there may be only seven cells used as in Figure 15.8. The LEN function
cannot detect which cells are used and which are not. I

Example 15.10 If d.slringln is declared as in Example 15.8 and has value "each".
the function call

LEN(d.slringln)

returns 16 because that is the number of cells in the array d.slringln. Again, it is irrel
evant that only five cells are used. I

Figure 15.15
The effect of the $ when
specifying an array of
characters.

Character arra:"s 335

When you use the LEN function in conjunction with the $ string selector, the Usillg LEN Lllld 5 together

function is able to determine which cells are used, and returns the length of the
string, that is the number of characters it contains. LEN is only able to achieve this
etIect with arrays of characters, because arrays of other types are not terminated
with OX. Another interpretation of LEN when used with the $ string selector is the
index of the OX sentinel.

Example 15.11 If d.stringln is declared as in Example 15.8 and has value "each".
the function call

LEN(d.stringln$)

returns 4 because that is the number of characters in the array d.stringln. You can see
from Figure 15.15 that 4 is also the index of the OX sentinel. I

Here is a program that illustrates string manipulation by subscripting. Figure
15.16 is the dialog box.

* Rnl~l~ I .n I!lIiI EJ

I~
Rotaled Jilthe

Figure 15.17 shows the program that implements the dialog box. It declares a
type String16 to be an array of 16 characters. Although 16 characters are reserved
for d.stringln, the variable can hold a maximum of 15 characters because of the need
for the terminal OX character.

The assignment statement

d.stringOut := d.stringln$

in procedure ProcessRotation assigns one array to another using the $ string selector
to eliminate any unnecessary assignments beyond the OX sentinel. Procedure
RotateLeft uses the function LEN together with the $ string selector to rotate the
characters in the actual parameter d.stringOut.

Procedure RotateLeft in Figure 15.17 is similar to the RotateLeft in Figure 15.7.
Instead of passing numltm to indicate the number of items in the array, this proce
dure uses the LEN function to determine the number of characters in the string. The
algorithm uses the LEN function three times. which is actually inefficient. Each time
you call LEN with an array of characters using the $ symbol, it must execute a loop
starting at the beginning of the array and repeating until the OX sentinel is reached.

Figure 15.16
The dialog box for a program
that rotates an array of
characters to the left.

336 Chapter 15 One-Dimensional Arrays

MODULE Pbox15D;
IMPORT Dialog, PboxStrings;
TYPE

String16 = ARRAY 16 OF CHAR;
VAR

d': RECORD
stringln': String16;
stringOut-: String16

END;

PROCEDURE RotateLeft (VAR str: ARRAY OF CHAR);
VAR

i: INTEGER;
temp: CHAR;

BEGIN
IF LEN(str$) > 1 THEN

temp := str[O];
FOR i := 0 TO LEN(str$) - 2 DO

str[i] := str[i + 1]
END;
str[LEN(str$) - 1] := temp

END
END RotateLeft;

PROCEDURE ProcessRotation';
BEGIN

d.stringOut := d.stringln$;
RotateLeft(d.stringOut);
Dialog.Update(d)

END Process Rotation;

BEGIN
d.stringln := "";
d.stringOut := ""

END Pbox15D.

Figure 15.18 shows another version of procedure RotateLeft, which does not use
LEN at all. It tests for the OX symbol directly with a WHILE loop instead of a FOR
loop. The algorithm first checks for str[O] equal to the sentinel. If they are equal, str
is the empty string and no rotation is necessary. Otherwise str has at least one char
acter and you can do the rotation. Without the IF test, the WHILE loop would execute
even if str were the empty string. Eventually the value of i could reach IS, at which

point str[i + 1] would be out of range and would generate a trap.

Figure 15.17
A program with a procedure
to rotate the elements in an
array.

PROCEDURE RotateLeft (VAR str: ARRAY OF CHAR);
VAR

i: INTEGER;
temp: CHAR;

BEGIN
IF str[O) # OX THEN

temp := str[O);
i:= 0;
WHILE str[i + 1) # OX DO

str[i] := str[i + 1];
INC(i)

END;
str[i) := temp

END
END RotateLeft;

* Specifications for arrays

Arrays are frequently processed with FOR statements. Because GCl has no for
statement. such statements are written with the equivalent while. You translate from
CP to GCl by making the initialization. test, and increment, which is implicit in the
CP FOR statement, explicit.

Example 15.12 The translation of the CP code fragment

FOR i := 0 TO numltms - 2 DO
vIi) := v[i + 1]

END

to GCl using n for numltms is

i :=0;
do i s; n - 2 ~

v[i]:=v[i+l];
i :=i+ I

od I

Formal specifications for arrays frequently require universal quantification, V. to
denote a relationship that is true for all the elements of the array. As an example,
consider procedure RotateLeft from Figure 15.7. The body of the procedure is

Character arrays 337

Figure 15.18
A more efficient version of
RotateLeft.

338 Chapter 15 One-Dimensional Arravs

BEGIN
ASSERT((O <= numltm) & (numltm <= LEN(v)), 20);
IF numltm > 1 THEN

temp := v[O];
FOR i := 0 TO numltm - 2 DO

v[i] := v[i + 1]
END;
v[numltm - 1] := temp

END
END RotateLeft;

The purpose of the IF statement is to guarantee that numltm is greater than one. To
write a specification for the inner code fragment

temp := v[O];
FOR i := 0 TO numltm - 2 DO

v[i] := v[i + 1]
END;
v[numltm - 1] := temp

you can use the fact that numltm must be greater than one by making it a precondi
tion. Using t as an abbreviation for temp, the above code in GeL is

1:=V[O];
i:= 0;
do i s n - 2-

v[i]:=v[i+I];
i := i + I

od;
v[n-I]:=!

which we will abbreviate as S.
Now, the precondition for the Hoare triple {p} S { Q} is P. and it will contain the

conjunct n > I . But how can you specify the postcondition Q? The purpose of the
procedure is to shift the elements of the array to the left. with the first element mov
ing to the end of the array. You need a rigid variable V to specify the initial value of
the array v. The precondition P is

I < n s len(v) 1\ ('Vi lOs i < n : veil = veil)

For the postcondition, you need to state that all the elements starting from the sec
ond are shifted down one slot, and the first is shifted to the end. Using universal
quantification again, the postcondition Q is

('Vi I Osi<n-I: v[i]=V[i+I])l\v[n-I]=V[O]

The complete formal specification in the form of the Hoare triple {P} S { Q} is

{I <n5.lefl(v) II (Vi I 05.i<n: v[i]=V[i])}
v:= ?
{ (V i I 0 5. i < n - I : v[i] = V[i + I]) II v[n - I] = V[O]}

To prove that statement S satisfies the specification, you prove using formal methods
the validity of the Hoare triple

{I <n5.len(v) II (Vi I 05.i<n: v[i]=V[i])}
t:=v[O];
i:= 0;
do i 5. fl- 2.-

od;

v[i] := v[i + I];
i := i + I

v[n-I]:=t
{(Vi I 05. i < n - I : v[i] = V[i + I]) II v[n - l] = yeO]}

Because so many specifications require you to set up a rigid variable for an array,
it is convenient to have an abbreviation for the fully quantified expression. From
now on, this book will assume that

v=V

is an abbreviation for

(Vi I 05. i < n : v[i] = V[i])

where n is the number of elements in the array. With this abbreviation, the above for
mal specification is written

{ I < n 5. Ie n(v) II V = V}
v := .)

{(Vi I 05. i < n - 1 : v[i] = V[i + I]) II v[n - I] = yeO]}

Sometimes a rigid variable is not required. particularly if the elements of the
array do not change.

Example 15.13 Procedure Maximum in Figure IS.II does not change the value of
v. The ASSERT statement guarantees that numltm is greater than zero, which
becomes the precondition. It is an exercise for the student to translate the code frag
ment

largest := v[O];
FOR i := 1 TO numltm - 1 DO

IF v[i] > largestTHEN
largest := v[i]

END
END

Character arrays 339

340 Chapter 15 One-Dimensional Arrays

from CP to GCL. Assuming g stands for largest and n stands for numltm, the formal
specification states that g is one of the elements of v and that it is the largest element
in v as follows.

{O < n s len(v)}
g .= ? ..
{(3i lOs i < n : g = v[i]) A (Vi lOs i < n : g <!: veil)} I

The algorithm for putting the largest element at the end of the array assumes that
the values in the array after S executes are a rearrangement of the values before S
executes. In general, a rearrangement of values is called a permutation.

Example 15.14 If an array of values before S executes is

5 2 7 4

and the values after S executes is

4 2 7 5

then the final value are a permutation of the initial values. I

Let/to denote the first index and I the last index in the range [f./l To specify that
the values in array b between b[f] and b[/] are a permutation of the corresponding
values in array a, this book will use the predicate perm(a,b,j,l) . It takes some care
to define this predicate formally. If there are no duplicated values in a or in b, then
the definition of the predicate is

(Vi I / sis I : (3j I / s j s I : a[i] = bU]))

The definition is more difficult to write if there are duplicated values in a or in b, and
will not be given here. It is left as an exercise to use perm(a,b,j,l) to write the for
mal specification for the algorithm to put the largest element at the end of the array.

Exercises

1. Predict the output of Figure 15.2 if the two loops are modified as follows:

(a)
FOR i := 0 TO 3 DO

sc.ScanReal(list[i])
END;

FOR i := 0 TO 3 DO
fmWriteReal(list[iJ, 8, 2)

END;

(Continued on next page.)

(b)
FOR i := 3 TO 0 BY -1 DO

sc.ScanReal(list[i])
END;

FOR i := 0 TO 3 DO
fmWriteReal(list[iJ, 8, 2)

END;

(e)
FOR i := 0 TO 3 DO

sc.ScanReal(list[i])
END;

FOR i := 4 TO 7 DO
fm.WriteReal(list[i MOD 4]. 8. 2)

END;

(d)
FOR i := 5 TO 8 DO

sc.ScanReal(list[i MOD 4])
END;

FOR i := 0 TO 3 DO
fmWriteReal(list[(i + 1) MOD 4]. 8. 2)

END;

2. Suppose i and n are integers and v is an ARRAY 10 OF REAL in the following code:

i:= n -1;
WHILE i >= 0 DO

StdLog.Real(v[i]); StdLog.String(" ");
DEC(i.2)

END

(a) What is the output to the Log if n is 6 and the values of v are

4.0 3.0 5.1 1.0 -7.0 8.5

(b) What is the output to the Log if n is 7 and the values of v are

4.0 3.0 5.1 1.0 -7.0 8.5 2.0

3. If i is an integer and v is an array of integers. what is the output of the following code?

FOR i := 0 TO 3 DO
v[i]:= 2' i

END;
FORi:=3T01 BY-1 DO

v[i]:= v [i - 1] + 1
END;
FOR i := 0 TO 3 DO

StdLog.lnt(v[i]); StdLog.String(" ")
END

4. How many statements does procedure RotateLeft of Figure 15.7 execute if the value of

numltm is n? Count only the statements in procedure RotateLeft. Do not include the
statements in the calling procedure.

5. Your friend writes the following statements in procedure RotateLeft of Figure 15.7.

FOR i := 0 TO numltm - 1 DO
IF i = OTHEN

temp:= vIOl
ELSE

v[i - 1]:= vIi]
END

END;
v[numltm - 1] := temp

(a) Does your friend's code work correctly? (b) How many statements execute if the

value of numltm is n? Compare this count with that of the previous exercise.

Exercises 341

342 Chapter J 5 One-Dimensional Arrays

6. Your friend writes the following statements in procedure RotateLeft of Figure 15.7.

temp:= v[numltm - 1];
FOR i := 0 TO numltm - 2 DO

v[i + 1]:= v[i]
END;
v[o]:= temp

and renames the procedure RotateRight. If the program runs with the values

5.0 -2.3 8.0 0.1

for v, what is the output?

7. Determine the statement execution count for both versions of procedure Initialize in
Figure 15.13 and Figure 15.14 if the value ofnumltm is n.

8. Suppose the value of numltm in function procedure Maximum in Figure 15.11 is n.
Assume that n is greater than I. (a) How must the data be arranged initially for the best
case to occur? (b) What is the total statement execution count for this function in the
best case? (el How must the data be arranged initially for the worst case to occur? (d)
What is the total statement execution count for this function in the worst case?

9. Suppose the value of numltm in procedure LargestLast in Figure 15.12 is n. Assume
that n is greater than l. (a) How must the data be arranged initially for the best case to
occur? (b) What is the total statement execution count for this procedure in the best
case? (e) How' must the data be arranged initially for the worst case to occur? (d) What
is the total statement execution count for this procedure in the worst case?

10. The expression v = V where v and V are arrays of n elements is an abbreviation for
what quantified expression?

11. (a) The predicate perm(a,b,f,l) where a and b are arrays of elements in the range
[{.llis an abbreviation for what quantified expression assuming there are no duplicate
values in a or in b? (b) Write a list of four integers for a that contains one duplicated
value and a list of four integers for b that contains no duplicated values, such that the
values in a and b satisfy the quantified expression and such that the values in b are not
a permutation of the values in a.

12. Translate the code fragment in Example 15.13 from CP to GCL.

13. (a) Translate the code fragment from procedure LargestLast in Figure 15.12

indexMax := 0;
FOR i := 1 TO numltm - 1 DO

IF v[i] > v[indexMax] THEN
indexMax := i

END
END;
temp := v[numltm - 1];
v[numltm - 1] := v[indexMax];
v[indexMax] := temp

from CP to GCL. You will not need variable temp, because GCL has the multiple
assignment statement. (b) Write the formal specification for the code fragment. The
postcondition will have two conjuncts, one to state that the final values of v are a rear
rangement of the initial values, and one to state that the largest element is in the last
position. You may use the predicate perm(a,h,f.l).

14. Write the formal specification for the statements S in procedure Initialize in Figure
15.13.

PROCEDURE Initialize (OUT v: ARRAY OF INTEGER; numltm: INTEGER)

BEGIN
ASSERT«O <= numltm) & (numltm <= LEN(v)), 20);
S

END Initialize

Abbreviating n for numltm. S must set the elements of v[O"Il-ll to a decreasing
sequence of integers. each value one less that the preceding value, and ending with O.

15. Write the formal specification for the statements S in procedure RotateRight in Prob
lem 20.

PROCEDURE RotateRight (VAR v: ARRAY OF REAL; numltm: INTEGER)

BEGIN
ASSERT«O <= numltm) & (numltm <= LEN(v)), 20);
IF numltm > 1 THEN

S
END

END RotateRight

16. Write the formal specification for the statements S in procedure Reverse in Problem
22.

PROCEDURE Reverse (VAR v: ARRAY OF REAL; numltm: INTEGER)

BEGIN
ASSERT«O <= numltm) & (numltm <= LEN (v)), 20);
IF numltm > 1 THEN

S
END

END Reverse

17. Write the formal specification for the statements S in procedure FirstOdd in Problem
24. Use the symbol r for the integer value returned. You may need to use existential
quantification 3 to state that there does not exist any odd integers before the index
returned.

PROCEDURE FirstOdd (IN v: ARRAY OF INTEGER; numltm: INTEGER): INTEGER

BEGIN
ASSERT«O <= numltm) & (numltm <= LEN(v)), 20);
S

END FirstOdd

Exercises 343

344 Chapter 15 One-Dimensional Arrays

18. Write the formal specification for the statements S in IsPalindrome in Problem 29. Use
the symbol h for the boolean value returned and 11 as an abbreviation for LEN(str$).

PROCEDURE IsPalindrome (str: ARRAY OF CHAR): BOOLEAN

BEGIN
S

END IsPalindrome

Problems

19. The focus window contains a list of real numbers. Write a procedure activated from a
menu selection that inputs the real numbers into an array and then does the following:
outputs every other number starting with the first. outputs every other number starting
with the second. outputs every negative number. and outputs how many negative num
bers were in the list. If the focus window contains

5.1 23.2 -6.2 1.0 -19.6 -13.0 4.8

Your one procedure should create a new window with all the following output.

Every other one from first:
5.1 -6.2 -19.6 4.8

Every other one from second:
23.2 1.0 -13.0

Every negative:
-6.2 -19.6 -13.0

The list has 3 negative numbers.

You should write a single exported procedure. It is not necessary to have separate pro
cedures for each output.

20. Declare

PROCEDURE RotateRight (VAR v: ARRAY OF REAL; numltm: INTEGER)

with the same parameter list as RotateLef1 in Figure 15.7. Your procedure should rotate
the numbers to the right instead of to the left. Test the procedure in a program similar to
Figure 15.7. Implement the appropriate precondition on numltm.

21. Declare

PROCEDURE Rotate2Lef1 (VAR v: ARRAY OF REAL; numltm: INTEGER)

with the same parameter list as RotateLef1 in Figure 15.7 that rotates the items two

places to the left instead of only one. For example. if v has the same initial values as in
Figure 15.8. its values after the procedure is called should be

9.0 1.0 3.0 5.0 :Z.O 4.0 6.0

Use only one loop. and do not call RotateLeft. Test the procedure in a program similar

to Figure 15.7. Implement the appropriate precondition on numltm. which is the same

as the precondition for RotateLeft.

22. Declare

PROCEDURE Reverse (VAR v: ARRAY OF REAL; numltm: INTEGER)

with the same formal parameter list as procedure RotateLeft in Figure 15.7. The proce

dure should reverse the elements in the array. Implement the appropriate precondition

on numltm. Test the procedure in a program similar to Figure 15.7. Display the values

both before and after the call to procedure Reverse. Do not use any output statements

in procedure Reverse.

23. Declare

PROCEDURE Shuffle (IN vln: ARRAY OF REAL; OUT vOul: ARRAY OF REAL; numllm: INTEGER)

The procedure should shuffle the values like a perfect shuffle of a card deck. Split the

deck into two equal stacks and build the shuffled deck by alternately taking cards from
the top of each stack. If the list vln is

then after the shuffle the list vOul should be

1.0 6.0 2.0 7.0 3.0 8.0 4.0 9.0 5.0

Test the procedure in a program similar to Figure 15.7. but with two different lists, one

for input and one for output. Implement the appropriate precondition on numltm. Dis

play the values of each list after the call to procedure Shuffle. Do not use any output

statements in procedure Shuffle.

24. Declare

PROCEDURE FirstOdd (IN v: ARRAY OF INTEGER; numltm: INTEGER): INTEGER

The function should return a value that is the index of the first odd integer in the list, or

-1 if there are no odd integers. For example. if v contains

8 627 3 4 9 5

the function should return 3, because the first odd integer, 7, is at v[3]. Implement the
appropriate precondition on numltm. Test your function by taking the input from the
focus window and displaying the result in the Log. Do not use any input or output
statements in function FirstOdd.

25. Declare

PROCEDURE InitOneZero (OUT v: ARRAY OF INTEGER; numltm: INTEGER)

Problems 345

346 Chapter 15 One-Dimensional Arrays

that sets the values of v to alternating ones and zeros. For example, if numltm is 7, the
values of v should be

o o o

Implement the appropriate precondition on numltm. Test your procedure with a dialog
box that inputs the number of items. When the user clicks the initialize button, initial
ize the array, then output it to the Log. Do not include any output statements in Init
OneZero.

26, Declare

PROCEDURE InitPairs (OUT v: ARRAY OF INTEGER; numltm: INTEGER)

that sets the values ofv to alternating pairs of ones and zeros. For example, if numltm is
7, the values of v should be

o 0 0

Implement the appropriate precondition on numltm. Test your procedure with a dialog
box that inputs the number of items. When the user clicks the initialize button, initial
ize the array, then output it to the Log. Do not include any output statements in Init
Pairs. Hint: Because the pattern repeats every four times, consider the MOD 4
operation.

27, The program in Figure 14.5 generates a random sequence of integers between 0 and 9.
With a seed of 2346, the integers 4, 6, and 2 each occur twice and the integers I, 3, and
8 do not appear as Figure 14.4 shows. Write a procedure

InitRandom (OUT v: ARRAY OF INTEGER; numltm: INTEGER)

that puts random integer values between 0 and numltm - 1 in the first numltm cells of v
without any repeating values. Initialize the list with sequential integer values, then
make one sweep through the list to exchange the content of each cell with the content
of another cell chosen at random. For example, if numltm is 7. initialize v to

o 2 3 456

Then interchange v[O] with another cell chosen at random, v[l] with another cell chosen
at random, and so on. Implement the appropriate precondition on numltm. Test your
procedure with a dialog box that inputs the number of items and gives the user the
option to set the seed. When the user clicks the compute button, initialize the array,
then output it to the Log. Do not include any output statements in InitRandom.

28, A list of numbers is said to have a run if several identical values are adjacent to each
other. For example, the list of numbers

12 3 3 3 3 3 16 3 4 16 9 4 4

has a run of five 3's and another run of two 4 'so Declare

PROCEDURE LongestRun (IN v: ARRAY OF INTEGER; numltm: INTEGER): INTEGER

that returns the length of the longest run in a list of integers. For example, the function
should return 5 if v has the above values. Do not use more than one loop. Be sure to
consider the case where the longest run is at the end of the list. Assert as part of your
precondition that there is at least one item in the list. Test your procedure by taking the
input values from the focus window with a menu selection. Verify in the calling proce
dure that your precondition is met. Output the length of the longest run on the Log. Do
not include any output statements in procedure LongestRun.

29. A palindrome is a word that is the same spelled backward or forward. For example,
radar is a palindrome but bulb is not, because in reverse order it would be blub. Declare

PROCEDURE IsPalindrome (str: ARRAY OF CHAR): BOOLEAN

to determine if str is a palindrome. Test it with a dialog box that prompts the user to
input a word and outputs whether it is a palindrome. Assume the user will not enter any
spaces within or before the word. Consider the empty string to be a palindrome.

30. Declare

PROCEDURE Collapse (VAR str: ARRAY OF CHAR)

that eliminates all the spaces in str. Test it with a dialog box that prompts the user to
input a phrase and outputs the modified phrase without the spaces. For example, if the
user enters "a head" your procedure should change it to "ahead". Use only one loop,
not nested, and collapse all leading and trailing spaces. Do not include any output
statements in procedure Collapse. Test your procedure in a program similar to that in
Figure 15.17.

31. Write procedure RotateLeft of Figure 15.18 with a REPEAT loop in place of the WHILE
loop. Test your procedure in a program similar to that in Figure 15.17 with a dialog box
for the user to enter a string. Be sure to test your program for the case where the user
enters the empty string, a string with only one character, and a string with several char
acters.

32, Declare

PROCEDURE MyToUpper (from: ARRAY OF CHAR; OUT to: ARRAY OF CHAR)

that does the identical processing as PboxStrings. ToUpper. Test your procedure in a
program similar to that in Figure 15.17 with a dialog box for the user to enter a string.
Do not import any module except for Dialog.

33. Figure 15.19(a) shows a funnel that contains a bunch of marbles at the top of a board
with rows of pegs. When the door at the bottom of the funnel opens a marble is
released and hits the top peg. The probability is 0.5 that it will bounce off the peg to the
right and 0.5 that it will bounce to the left. [f it bounces to the right, it will hit a peg on
the second row, at which time the probability is again 0.5 for bouncing to the left and
0.5 to the right. The marble continues to hit one peg in each row with probability 0.5 of
bouncing to the left and 0.5 to the right. After hitting a peg in the bottom row, the mar
ble is caught in one of the buckets below the last row of pegs. Each bucket is so narrow
that the marbles are stacked one on top of the other in the bucket.

Problems 347

348 Chapter 15 One-Dimensional Arrays

•
• • o=- -- =18/naryMarblesJ;=-~~13

• • •
• • • •

• • • • •

(a) The funnel. marbles.
pegs and buckets.

Seed IL'lJ5 __ --'

I SetSeed

I Randomize I

(b) The dialog box.

Number otRows 15
'-----'

Number of Marbles 11_6 __ --'

II "'1"a.eMarble. I

(a) Write a program that simulates the marbles rolling down the board. hitting the
pegs, and landing in the buckets. Implement the dialog box of Figure 15.19(b) to allow
the user to input the number of rows of pegs and the number of marbles to release
through the funnel. Display the output in a new window like that of Figure 15.19(c)
showing the percentage of the number of marbles in each bucket to four places past the
decimal point and a histogram with an asterisk symbol for each marble caught in the
bucket.

(b) Assuming that the buckets in Figure 15.19(a) are numbered starting with 0 for the
leftmost bucket. I for the next. and so on up to n for the rightmost bucket. the probabil
ity of a single marble landing in bucket number k is

P(n. k) n!

k'(n - k)!Z/l
Osksn

where n is the number of rows of pegs. The percentages that your program computes
and displays in the output window should be close to the above theoretical probability.
Add to your program a computation of the squared error defined as

/I

S(n) 2: [P(n, i) - E(n, i)]2

i = 0

where E(n, i) are the experimental values that you computed as the ratios in the first
part of your program. Output the squared error to six places past the decimal point at
the bottom of the output window. Experiment with different numbers of marbles for a
fixed number of rows. In general. what happens to the squared error as the number of
marbles increases?

Figure 15.19
Problem 33 .

o ~~ untItled JO = £ll13

0.00001 ~
0.1675 1 •••
0.2500 I ... ** It,
0,31251·····
0,16751 ...
0,06251 • .

-
W ,t 4 ~ ,',

(e) The output.

_ Chapter16

W~
Iterative Searching and Sorting

Probably the most important algorithms in all of computer science are the searching
and sorting algorithms. They are important because they are so common. To search
for an item is to know a key value and to look it up in a list. For example, when you
look up a word in a dictionary or look up a phone number in a phone book based on
a person's name you are performing a search. Putting data in order is performing a
sort. For example, table entries in many business reports are in some kind of order.
The post office wants bulk mailings to be in order by zip code.

Searching

This section presents two basic search algorithms, the sequential search and the
binary search. In a search problem, you are given

• An array of values

• The number of values in the array

• A search value

The algorithm must determine whether the array contains a value equal to the search
value. If it does, the algorithm must compute the index of the array where the value
is located.

For example, suppose you declare the following procedure:

PROCEDURE Search (IN v: ARRAY OF INTEGER; numltm, srchNum: INTEGER;
OUT i: INTEGER; OUT fnd: BOOLEAN);

Also, suppose that numltm has the value 4, and the first four values in v are

50 20 70 60

If srchNum has the value 70, then the search algorithm should set fnd to TRUE and i
to 2, because v[2] has the value 70. If srchNum has the value 40, the algorithm
should set fnd to FALSE. It does not matter what value it gives to i, because v does
not contain the value 40.

Parameter v is called by constant reference, because the purpose of Search is not
to change the values of v, but to use the values of the actual parameter. It is called by
constant reference instead of by value because it could be a long array. Parameters

350 Chapter 16 Iterative Searching and Sorting

numltm and srchNum are called by value, because the calling procedure gives the
values to Search, with infonnation flowing from the calling to the called procedure.
Parameters i and fnd are called by result, because their initial values can be consid
ered undefined when the procedure is first called, and Search will change the values
of the corresponding actual parameters.

The sequential search

The sequential search algorithm starts at the first of the list. It compares srchNum
with v[O], then v[1], and so on until it either finds srchNum in v or it gets to the end of
the list. One version of the algorithm follows.

PROCEDURE Search (IN v: ARRAY OF INTEGER; numltm, srchNum: INTEGER;
OUT i: INTEGER; OUT fnd: BOOLEAN);

BEGIN
ASSERT((O <= numltm) & (numltm <= LEN(v)), 20);
1:= 0;
WHILE (i < numltm) & (v[i] # srchNum) DO

INC(i)
END;
fnd := i < numltm

END Search;

If you trace this algorithm with a value of 70 for srchNum, you will see that i first
gets O. The WHILE expression is true because 0 is less than 4, and 50 is not equal to
srchNum. When i gets 1, the WHILE expression is true again, because I is less than 4
and 20 is not equal to srchNum.

When i gets 2, however, the WHILE expression is false, because v[2] equals srch
Num. The loop tenninates, and fnd gets true. The value of i is the index of v where
srchNum was found.

If you trace the algorithm with 40 for the value of srchNum, i will get 0, then 1,
then 2, then 3. When i is 3, the WHILE expression will still be true. so i will get 4.
Then the expression

(i < numltm) & (v[i] # srchNum)

will be evaluated with i having a value of 4.
At this point in the execution, an interesting feature of Component Pascal comes

into play. The first part of the expression is false because i is equal to numltm. The
second part of the expression does not need to be evaluated. Regardless of whether it
is true or false, the entire expression will be false because of the first part.

There are two evaluation techniques in this situation. One is called full evalua
tion, and the other is called short-circuit evaluation. The steps of the full evaluation
technique are

Figure 16.1
The first version of the
sequential search algorithm.
This is not the most efficient
version.

• Evaluate the first part.

• Evaluate the second part.

• Perform the AND operation.

The steps of the short-circuit evaluation technique are

• Evaluate the first part.

• If it is false, skip the second part.

• Otherwise, evaluate the second part.

With full evaluation, both parts are evaluated, regardless of whether the first part is
true or false.

Fortunately, Component Pascal uses the short-circuit evaluation technique. In this
example, the second part of the expression

(v[i] # srchNum)

will not be evaluated, with i having the value 4. If it were evaluated, the algorithm
would be comparing v[4] with 40. If the array in the actual parameter were an
ARRAY 4 OF INTEGER, the comparison would generate a trap. Because Component
Pascal uses the short-circuit evaluation technique, such a trap will not occur with
this algorithm.

The short-circuit evaluation technique also works with expressions that contain
the OR boolean operator. When Component Pascal evaluates the boolean expression
in the WHILE statement

WHILE P OR q DO

if it finds that p is true it does not evaluate q, because the entire boolean expression
will be true regardless of whether expression q is true or false.

How fast is this algorithm? That depends on several things, namely how many
items are in the list, whether the list contains the value of srchNum, and if it does
contain srchNum, where it is located. Because the performance depends on these
various factors, three categories of performance are commonly specified. They are

• Best-case performance

• Worst-case performance

• Average performance

In this algorithm, the best case is when vIOl contains the same value as srchNum.
The worst case is when the value of srchNum is not in the list at all. The average
case is somewhat difficult to define because it depends on the probability that srch
Num will be in the list. We will not pursue the problem of determining the average
performance of the search algorithms.

Search algorithms are usually evaluated by counting the number of comparisons
necessary to find the search item. This algorithm makes two comparisons each time
it evaluates the while expression. They are

i < numltm

The sequential search 351

FilII evaluation ()(AND

expressilms

Short-circllit evaluatio/l (!(
AND expressions

352 Chapter 16 Iterative Searching and Sorting

and

v[i] # srchNum

In the best case, the WHILE expression is false the first time, the body of the loop
never executes, and the algorithm makes two comparisons. Let n equal the value of
numltm. In the worst case, the algorithm searches the entire list, evaluating the
WHILE expression n times plus one additional comparison to detect the end of the
list. So it makes 2n + I comparisons.

Therefore, the performance of this algorithm is

• Best case: 2 comparisons

• Worst case: 2n + I comparisons

If you search a list of 1000 items, then in the best case you will make two compari
sons and in the worst case you will make 2001 comparisons.

With a little thought, you can improve this sequential search algorithm substan
tially. Think about the WHILE expression. Why do you need the comparison of i with
numltm? Because, if srchNum is not in the list, i would keep getting bigger and the
loop would not terminate. You would not need the first comparison if you knew that
srchNum was in the list. You can guarantee that it will be in the list if you put it there
yourself, before starting the loop.

PROCEDURE Search (VAR v: ARRAY OF INTEGER; numltm, srchNum: INTEGER; Figure 16.2
OUT i: INTEGER; OUT fnd: BOOLEAN); An efficient version of the

BEGIN sequential search algorithm.
ASSERT((O <= numltm) & (numltm < LEN(v)), 20);
v[numltm] := srchNum;
i:= 0;
WHILE v[i] # srchNum DO

INC (i)
END;
fnd := i < numltm

END Search;

v

[OJ 50

[1J 20

[2J 70

[3J 60

[4J

[5J

(a)

v

50

20

70

60

70

(b)

i v i

[3-- 50 ~ 20

70

60

70

(c)

v i v Figure 16.3

50 at 50 A trace of the sequential
search algorithm when the

20 20 value of srchNum. 70. is in
70 70 the list.

60 60

70 70

(d) (e)

Figure 16.2 shows a better version of the sequential search algorithm. The algo
rithm puts the value of srchNum at the end of the list to act as a sentinel, if neces
sary. Formal parameter v must be called by reference instead of by constant
reference, because the algorithm modifies v. Also, the precondition requires numltm
to be strictly less than LEN(v). It cannot be equal to LEN (v) because the algorithm
reserves the last spot in the array for the sentinel value.

Figure 16.3 is a trace of the algorithm when the item searched is in the list. i never
reaches numltm. Figure 16.4 is a trace when the item is not in the list. This time, i
reaches numltm, and the value of srchNum acts like a sentinel.

v v i v i v i v i

Tool dialog boxes 353

v v

[0] 50

[1] 20

[2] 70

[3] 60

50 [B- 50 ~ 50

~
50

L
50 50

20 20 20 20 20 20

70 70 70 70 70 70

60 60 60 60 60 60

[4] 40 40 40 40 40 40

[5]

(al (b) (el (d) (el (f) (g)

How much better is this version of the sequential search? Counting the compari- Figure 16.4
sons as in the analysis of the previous version gives the following performance fig- A trace of the sequential
ures:

• Best case: I comparison

• Worst case: n + I comparisons

If you search a list of 1000 items, in the best case you will make comparison
instead of 2 and in the worst case you will make 100 I comparisons instead of 200 I.
This version is substantially better than the first and is the one you should use when
ever you need to do a sequential search.

Tool dialog boxes

In practice, you rarely will have to search for a numerical value in a single list of
numbers. A more common need is to look up someone's name to retrieve additional
information about the person. For example, you may want to search a list of names
for a particular name to find the corresponding telephone number.

Figure 16.5 shows a dialog box for such a problem. It consists of two groups of
controls, one to load the telephone book and one to perform a query. The figure
shows how to load a phone book. A window contains the phone book, which con
sists of a list of names followed by phone numbers. Each name and number is
enclosed in double quotes, but single quotes could be used consistently as well. To
load the phone book, the user must first make the phone book window the focus
window, then make the dialog box the focus window. With the dialog box the focus

search algorithm when the
value of srchNum, 40. is not
in the list.

354 Chapter 16 Iterative Searching and Sorting

window, the user clicks the Load Phone Book button. A procedure then scans the
names and numbers from the phone book window into two arrays, one for the names
and one for the numbers. The dialog box displays how many entries from the book
have been scanned into the phone book.

EI --« Telephone Numbers» ---8

Phone Bock
Phone8k i lond Phone Boot I

"'Prott" "242-1932 H

"Hernendez- "'889-2505"' Number of entries: 7

"Seymore" "'991-3800"
"Andrews" "'243-1056" Query

II
"'Nord" "'123-4567" Name I
"Jeffrey"' "'765-4321" Number:
"Peckard" "100-0000"'

~ Look U~ I

You can tell from Figure 16.5 that the dialog box is the focus window because it
overlaps with the phone book window and appears on top of it. When the user clicks
the Load Phone Book button, how does the BIackBox framework know which win
dow to scan? It cannot scan from the focus window, because when the user clicks
the button the dialog box is the focus window. Somehow, the framework must
remember which window was the focus window just before the dialog box became
the focus window.

Tool dialog boxes have the property that they are not considered by the frame
work to be the focus window. Instead, the framework considers the window that was
focused immediately before the tool dialog box is activated to be the focus window.
You construct a tool dialog box the same way to construct any dialog box. But
instead of opening it as an auxiliary dialog box with procedure StdCmds.OpenAux
Dialog, you open it as a tool dialog box with procedure StdCmds.OpenTooIDialog.

One possibility is to have the documentation section provide a commander that
when clicked will activate the tool dialog box. Although this technique is convenient
for users of the BlackBox framework, a more conventional GUI technique is to pro
vide the user with a menu selection to activate the tool dialog box.

The tool dialog box in Figure 16.5 was opened with the menu script

MENU "Pbox17"
"A. .. " "" "StdCmds.OpenTooIDialog(,Pbox17/Rsrc/DlgA', 'Telephone Numbers')"

END

When you provide a menu selection to activate a dialog box, you should include the
ellipsis .. , to give the user a cue that when the menu item is selected a dialog box
will appear.

Figure 16.6 shows how the user enters a query by typing a name and clicking the
Look Up button. In case the name is not found in the phone book an appropriate
message appears in the dialog box.

It is clear from the dialog box that the module will need to expon five items for
the five controls-a procedure to load the phone book. an output integer for the

Figure 16.5
A tool dialog box.

TheJralllework does not
consider a tool dialog box to
he the jiJclIS willdow.

[) ~« Telephone Numbers » ~ i3

Phone ~BO~O~k=;::;;==;~=;--
i load Phone Book

Number of entries: 7

auery--;=============:::;-]
Name LI W_"_rd _____ --'

Number: 123-4567

I look Up I

[) - « Telephana Numbers» - i3

Phone BOOk--~---l
I Load Phone Book I

NlJmber of entries: 7

QuerY---;=============:::;l
Name ISmith L-____ -------'

Number: No entry

~ Look Up I

number of items loaded, an input field for the name, an output field for the number,
and a procedure for performing the search. In addition, a global data structure is
needed for the phone book, which consists of an array of names and an array of
numbers. Figure 16.7 shows the array of names and the corresponding array of num
bers. They are known as parallel arrays because the number numberList[i] goes with
the name nameList[i]. Figure 16.8 shows the module that implements the dialog box.

nameList numberList

[OJ Pratt [0] 242-1932

[1] Hernandez [1] 889-2505

[2] Seymore [2] 991-3800

MODULE Pbox16A;
IMPORT Dialog, TextModels, TextControliers, PboxMappers;
TYPE

Name = ARRAY 32 OF CHAR;
Number = ARRAY 16 OF CHAR;

VAR
d'; RECORD

numEntries-; INTEGER;
name'; Name;
number-; Number

END;
CONST

maxltems = 1024;
VAR

name List: ARRAY maxltems OF Name;
numberList: ARRAY max Items OF Number;

Tool dialog hoxes 355

Figure 16.6
Performing a query.

Figure 16.7
The parallel arrays for the
phone book in Figure 16.8.

Figure 16.8
Using the sequential search to
look up a phone number.

356 Chapter i6 iterative Searching and Sorting

PROCEDURE LoadBook*;
VAR

md: TextModels.Model;
cn: TextControliers.Controller;
sc: PboxMappers.Scanner;
i: INTEGER;

BEGIN
cn := TextControliers.FocusO;
IF cn # NIL THEN

md := cn.text; sc.ConnectTo(md);
i:= 0;
sc.ScanString(nameList[ij); sc.ScanString(numberList[i]);
WHILE -sc.eot DO

INC(i);
sc.ScanString(nameList[i]); sC.ScanString(numberList[i])

END;
d.numEntries := i

END;
d.number := '''';
Dialog.Update(d)

END LoadBook;

Figure 16.8
Continued.

PROCEDURE Search (VAR v: ARRAY OF Name; numltm: INTEGER; IN srchName: Name;
OUT i: INTEGER; OUT fnd: BOOLEAN);

BEGIN
ASSERT((O <= numltm) & (numltm < LEN(v)), 20);
v[numltmj := srchName$;
i :=0;
WHILE v[ij # srchName DO

INC(i)
END;
fnd := i < numltm

END Search;

PROCEDURE LookUp*;
VAR

j: INTEGER;
found: BOOLEAN;

BEGIN
Search(nameList, d.numEntries, d.name, j. found);
IF found THEN

d.number := numberList[j]$
ELSE

d.number := "No entry"
END;
Dialog.Update(d)

END LookUp;

BEGIN
d.numEntries := 0; d.name := ""; d.number := ""

END Pbox16A.

The binary search

When you look up a word in a dictionary, you do not use the sequential search. If
you want to look up the word walrus, you do not start at the front of the book and
look sequentially from the first entry on. Instead, you use the fact that the words are
in alphabetical order. You open the book to an arbitrary place and look at a word. If
walrus is less than the word you opened to, you know that walrus lies in the section
before your place in the book. Otherwise it is in the back part.

This common idea is the basis of the binary search. To perform a binary search
the list must be in order. The algorithm makes the initial selection at the midpoint of
the list. After the first comparison, the algorithm knows which half of the list the
item must be in.

The second comparison is at the midpoint of the proper half. After this compari
son the algorithm knows which quarter of the list the item must be in. The algorithm
continues to split the known region in half until it finds the value or determines that
it is not in the list. It gets the name "binary" from the fact that it divides the list into
two equal parts with each comparison.

Figure 16.9 shows the binary search algorithm. The variables for this algorithm
are the same as those for the sequential search, except that three local indices are
necessary-first, mid, and last-instead of one index, i.

PROCEDURE Search (IN v: ARRAY OF INTEGER; numltm, srchNum: INTEGER;
OUT i: INTEGER; OUT fnd: BOOLEAN);

VAR
first, mid, last: INTEGER;

BEGIN
ASSERT((O <= numltm) & (numltm <= LEN(v)), 20);
first := 0;
last := numltm - 1 ;
WHILE first <= last DO

mid := (first + last) DIV 2;
IF srchNum < v[mid) THEN

last := mid· 1
ELSIF srchNum > v[mid) THEN

first := mid + 1
ELSE

fnd := TRUE; i := mid;
RETURN

END
END;
fnd:= FALSE

END Search;

The variables first and last will keep track of the boundaries of the list within
which the search value must lie, if it is in the list at all. The algorithm initializes first
to zero and last to numltm . 1. At the beginning of the loop, if srchNum is in v then

(v[first) <= srchNum) & (srchNum <= v[last))

The binary search 357

Figure 16.9
The binary search algorithm.

358 Chapter 16 Iterative Searching and Sorting

will be true. This assertion is the loop invariant. The algorithm works by keeping the
loop invariant true each time the loop executes.

The variable mid is the midpoint between first and last. The algorithm compares
v[mid] with srchNum. Depending on the test, it updates either first or last such that
the value is still between v[first] and v[last]. When the algorithm terminates, mid is
the index of the cell of v that contains srchNum. Figure 16.10 is a trace of the algo
rithm when the values of v are

10 30 40 50 60 70 90

and srchNum is 40, a value in the list. The algorithm initializes first to 0 and last to 6.
mid gets (0 + 6) DIV 2, which is 3, the midpoint between 0 and 6.

v first v first v first v
[0] 10 EI- 10 EJ .. 10

~
10

[1] 30 30

M
30 30

[2] 40 mid 40 40 M 40

[3] 50 B .. 50 50 50

[4] 60 60 60 60

[5] 70 last 70 70 70

[6] 90 G3 .. 90 90 90

(a) (b) (e) (d)

The IF statement compares srchNum, 40, with v[mid], 50. Because srchNum is
less than v[mid], the algorithm knows that the value cannot be in the bottom half of
the list. So it updates last to I less than mid, which is 2. Notice how the loop invari
ant is still true. The search value, if it is in the list, must be between v[O] and v[2].

The next time through the loop mid gets I, which is the midpoint between ° and
2. After the comparison, first gets 2. The next time through the loop, mid gets 2 also,
and the loop terminates because v[2] has the same value as srchNum.

This algorithm is the first one we have encountered that has the RETURN state
ment in a proper procedure. Previous examples have always used the RETURN state
ment in function procedures, where RETURN is followed by an expression for the
value to be returned. Because procedure Search in Listing 16.9 is not a function pro
cedure, there is no value to be returned. Therefore, there is no expression following

Figure 16.10
A trace of the binary search
algorithm when the value of
srchNum, 40, is in the list.

the RETURN statement. The RETURN statement serves to exit the procedure imme- The RETURN statement in a

diately, in this case before reaching the end of the procedure. If the loop terminates pmper procedure

because first <= last then fnd will be set to false. On the other hand, if srchNum =
v[mid] then fnd will be set to true, and the loop and the procedure will terminate
immediately.

Figure 16.11 is a trace with the same values as Figure 16.10 for v, but with a
value of 80 for srchNum, which is not in the list. This time first. mid, and last eventu
ally all get 6. Because srchNum, 80, is less than v[mid], 90, the algorithm sets last to

mid - 1, which is 5. In the figure, that causes first and last to cross. Mathematically,
first> last, which causes the loop to terminate.

first v first v first v first v

[8-- 10 10 10 10

30 30 30 30

mid 40 mid 40 mid 40 mid 40

[G- 50

~
50

:i
50 EJ 50

60 60 60 60

last 70 70 70 70

[8- 90 [8- 90 90 90

(a) (b) (c) (d)

Does this algorithm look familiar? The bisection algorithm in Chapter 10 for
finding the root of an equation was essentially a binary search. Figure 10.9 shows
the variables left, mid, and right, which correspond directly to first, mid, and last.

The difference is that the bisection algorithm searches for a real value on the con
tinuous number line, while the binary search algorithm searches for a discrete value
in an ordered array. The bisection algorithm updates the real variable mid with

mid := (left + right) I 2.0

while the binary search algorithm updates the integer variable mid with

mid := (first + last) DIV 2

How fast is this algorithm? As with the sequential search. that depends on several
factors. The loop will terminate as soon as srchNum equals v[midj. The best case is
when they are equal the first time, which happens if the value is exactly in the mid
dle of the list. The number of comparisons will be 3.

The worst case is when the value is not in the list, the comparison in the test of
the WHILE loop is made every time the body executes, and both comparisons in the
IF statement are made every time the body executes. That happens if srchNum is
always greater than v[midj. The worst case with the values of v that were just pre
sented occurs with a value of 95 for srchNum.

Each time the loop executes, it makes three comparisons. So the total number of
comparisons is three times the number of times the loop executes. If numltm has the
value n, how many times will the loop execute? The answer to that question is the
same as the answer to the question, How many times must you cut an integer, n, in
half to get to one? After all, each time the loop executes it eliminates half the possi
ble locations for the value.

If you do not know the answer, you can use the problem-solving technique of
going from the specific to the general. Let t equal the number of times. Here are
some specific values of nand t:

The binary search 359

Figure 16.11
A trace of the binary search
algorithm when the value of
srchNum, 80, is not in the
list.

360 Chapter 16 Iterative Searching and Sorting

n = 16, 1=4 times: 16 8 4 2 I
n = 32, 1=5 times: 32 16 8 4 2
n=64, 1=6times: 64 32 16 842

You can see that the general relationship between 11 and I is 11 = l, This relation
ship is approximately true even if n is not an exact power of 2, For example, if n is
40, the number of times you must halve it in order to get to I is either 5 or 6.

[n mathematics, the logarithm to the base lOis denoted log, and the logarithm to
the base e is denoted In. In computer science. logarithms are usually to the base 2.
The logarithm to the base 2 is denoted Ig. In mathematical notation, logzn = 19l1

The relationship between I and 11 can be written t = 19n by the definition of the
logarithm. This is the number of times the loop executes in the worst case. Each time
the loop executes, it makes three comparisons. So the number of comparisons is
3lgn.

Summarizing, the binary search has the following performance figures:

• Best case: 3 comparisons

• Worst case: 31gn comparisons

The average case, however you define it, is somewhere between the best case and
the worst case.

The selection sort

Sort algorithms put lists of values in order. For example, if numltm is 9 and the first
9 values of v are

7 3 8 2 -+ 9 5 6

then after the sort, the nine values should be

2 3 4 5 6 7 8 9

The selection sort is based on the idea of finding the largest item in the list and
putting it at the end. Then it finds the next largest and puts it next to the end. It con
tinues finding the largest item in the top part of the list and putting it at the end of the
top part until it gets to the top. Here is the first outline of the algorithm.

FOR k := numltm - 1 TO 1 BY -1 DO
Select the largest element from the top parr of the list between v[O] and v[k].
Exchange it with v[k].

END

The first time the loop executes, k gets numltm - 1. So the largest element in the
entire I ist is exchanged with the element at the bottom of the list. After thi s first exe
cution of the loop, the largest element is in its correct position in the sorted list.

The second time the loop executes, k gets numltm - 2. So the largest element
between v[O] and v[numltm - 2] is exchanged with v[numltm - 2]. At this point in the

Ig is rhe logarithm to the ha.l'c
2.

execution. the bottom two elements will be at their correct positions in the list.
Similarly. after the third execution of the loop the bottom three elements will be

in their correct positions. The last time. k gets I. after which the bottom k - 1 ele
ments will be in their correct order. Therefore. the top one must be in its correct
order also.

How do you put the largest element between v[O] and v[k] into v[k]? This is pre
cisely the problem solved by procedure LargestLast in Figure 15.12. Inserting the
code for that processing into the outer loop yields the algorithm in Figure 16.12 for
the selection sort.

PROCEDURE Sort (VAR v: ARRAY OF INTEGER; numltm: INTEGER);
VAR

i, k: INTEGER;
maxlndex: INTEGER;
temp: INTEGER;

BEGIN
ASSERT((O <= numltm) & (numltm <= LEN(v»), 20);
FOR k := numltm - 1 TO 1 BY -1 DO

maxlndex := 0;
FOR i := 1 TO k DO

IF v[i] > v[maxlndex] THEN
maxlndex := i

END
END;
temp := v[k];
v[k] := v[maxlndex];
v[maxlndex] := temp

END
END Sort;

Figure 16.13 is a trace of the outer loop of the selection sort algorithm. Figure
16.13(a) shows the original list. When k has the value 8 the first time the outer loop
executes, the inner loop computes maxlndex as 6. the index of the largest element
between v[O] and v[8]. The algorithm exchanges v[8] with v[6].

Figure 16.13(b) shows the list after the first exchange. The second time the outer
loop executes, maxlndex is computed as l. after which the algorithm exchanges v[1]
with v[7]. At this point in the execution. the last two values are in order. The outer
loop executes eight times. after which the entire list is in order.

How fast is the selection sort algorithm') Two criteria are common in the analysis
of sort algorithms. One criterion counts the number of comparisons performed by
the algorithm. The other counts the number of exchanges. In the selection sort, it is
easier to count the number of comparisons.

The inner loop makes one comparison each time it executes. So the number of
comparisons is the number of times the inner loop executes. Let Il be the value of
numltm. The first time the outer loop executes. the inner loop executes Il - I times,
The second time the outer loop executes, the inner loop executes one less time,
which is n - 2 . The third time the outer loop executes, the inner loop executes 11 - 3
times. and so on,

The selectioll sort 361

Figure 16.12
The selection sort,

Figure 16.13
Eight executions of the outer
loop of the selection sort. The
shaded cells contain the

sulues of the array that are in

order.

362 Chapter 16 Iterative Searching and Sorting

3

8

7

2

5

(a)

3

8

7

2

5

4

6

9

(b)

3

6

7

2

5

4

8

9

(e)

So, the number of comparisons is

3

6

4

2

5

7

8

9

(d)

(n - I) + (n - 2) + (n - 3) + ... + 3 + 2 + 1

3

6

7

8

9

(e)

3

5

6

7

8

9

3

2

4

5

6

7

8

9

(g)

which is the sum of the first n - 1 integers. You should recognize this problem from
the statement execution count for the algorithm that prints a triangle. Remember that
the sum of the first m integers is m(m + 1)/2. So the sum of the first n - 1 integers
is (n - I)(n - 1 + I)/2 or n(n - 1)/2, which is the number of comparisons the
selection sort makes to sort n items.

Example 16.1 To sort 100 items requires 100(99)/2 = 4950 comparisons. If
you double the number of items to 200, the algorithm makes 200(199)/2 =
19,900 comparisons. I

So, doubling the number of items more than doubles the number of comparisons.
Why? Because the number of compafsons is not linear in n. It is quadratic in n,
because n(n - I)/2 is the same as (n- -n)/2. That means doubling the number of
items will approximately quadruple the number of comparisons. Four times 4950 is
approximately 19,900.

Exercises

1. Detennine (a) the best case, and (b) the worst case execution count of each statement
in procedure Search of Figure 16.1 assuming numltm has value n. Calculate the total
statement execution count as a polynomial in n. Because there are two tests in the
WHILE statement, count that statement as executing twice each time it executes.

2. Detennine (a) the best case, and (b) the worst case execution count of each statement
in procedure Search of Figure 16.2 assuming numltm has value n. Calculate the total
statement execution count as a polynomial in n.

2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

(h) 0)

3. Detennine (a) the best case. and (b) the worst case execution count of each statement
in procedure Sort of Figure 16.12 assuming numltm has value n. Calculate the total
statement execution count as a polynomial in n .

..j. (a) For the search algorithm of Figure 16.1, translate the statements

i:= 0;
WHILE (i < numltm) & (v[ijll srchNum) DO

INC(i)
END;
fnd := i < numltm

from CP to GCL. (b) Write a fonnal specification for the code fragment. Use the fact
that if there exists aj in the proper range such that v[j] = s then s = v[il, where s is
the search number.

5. (a) For the search algorithm of Figure 16.2, translate the statements

v[numltmj := srchNum;
i:= 0;
WHILE v[ij # srchNum DO

INC(i)
END;
fnd := i < numltm

from CP to GCL. (b) Write a fonnal specification for the code fragment. Use the fact
that if there exists a j in the proper range such that v [j J = s then s = v [i) , where s is
the search number.

6. (a) For the binary search algorithm of Figure 16.8. translate the statements

first:= 0;
last := numitm . 1;
WHILE first <= last DO

mid := (first + last) DIV 2;
IF srchNum < v[midj THEN

last := mid - 1
ELSIF srchNum > v[midj THEN

first := mid + 1
ELSE

fnd := TRUE; i := mid;
RETURN

END
END;
fnd:= FALSE

from CP to GCL. You may assume that GCL has a return statement. (b) Write a for
mal specification for the code fragment. Use the fact that if there exists aj in the proper
range such that v[j] = s then s = "[i] , where s is the search number.

7. (a) For the selection sort algorithm of Figure 16.12, translate the statements

Exercises 363

364 Chapter 16 Iterative Searching and Sorting

FOR n:= numltm -1 TO 1 BY -1 DO
maxlndex := 0;
FOR i := 1 TO n DO

IF v[i] > v[maxlndex] THEN
maxlndex := i

END
END;
temp := v[n];
v[n] := v[maxlndex];
v[maxlndex] := temp

END

from CP to GCL. (b) Write a formal specification for the code fragment. You may use
the predicate perm(a.b,numltm) to specify that the final values of v are a rearrange
ment of thed initial values of v.

Problems

8. Write a procedure

OddFirstSort (VAR v: ARRAY OF INTEGER; numltm: INTEGER)

that rearranges the elements of a list of integers so all the odd integers are before all the
even integers. To test it, write a program similar to that in Figure 15.7, with input from
the focus window using ScanlntVector from module PboxMappers and OddFirstSort
taking the place of RotateLeft. The new window should contain the original list fol
lowed by the rearranged list. Activate your procedure with a menu selection.

9. Write a program to input values from a focus window similar to the one titled PhoneBk
in Figure 16.5 into the parallel arrays nameList and numberList as defined in Figure
16.8. Dec! are a proced ure

SortBook (VAR nameLsl: ARRAY OF Name; VAR numLsl: ARRAY OF Number; numltm: INTEGER)

that sorts the parallel arrays based on the values in nameLst. For example, after the sort
nameList[O] should be Andrews, and numList[O] should be 243-1056. Output the sorted
names with the corresponding numbers next to them on the Log. Activate your proce
dure with a menu selection.

10. Modify Figure 16.8 so that it uses the binary search instead of the sequential search.
Assume the names are in order in the phone book window.

11. The input for this problem is in a focus window that contains a list of up to 1024 inte
gers. Write a program that inputs the list, then outputs to the Log a list of those integers
that occur more than once and the number of times each occurs. Activate your proce
dure with a menu selection. Hint: First sort the list. Also consider the possibility that
the last item in the list might be duplicated. Considering that case. you may be able to

simplify your code by appending an extra value after the last item of the list. similar to

the technique of the sequential search in Figure 16.2.

Sample focus window:
33 -2 25 25 3 7 -2 17 12 25 33 8 17 2 17 20 2S

Sample output to the Log:
-2 occurs 2 times
17 occurs 3 times
25 occurs 4 times

33 occurs 2 times

12. Modify procedure Sort in Figure 16.12 so that it sorts with the largest element first. To
test it, write a program similar to that in Figure 15.7. with input from the focus window
using Scan I ntVector from module PboxMappers and Sort taking the place of
RotateLeft. The new window should contain the original list followed by the sorted list.
Activate your procedure with a menu selection.

13. Modify procedure Sort in Figure 16.12 so that it moves the smallest element to v[O] on
the first pass, the next larger to v[1] on the second pass, and so on. To test it, write a pro
gram similar to that in Figure 15.7, with input from the focus window using Scanln
tVector from module PboxMappers and Sort taking the place of RotateLeft. The new
window should contain the original list followed by the sorted list. Activate your proce
dure with a menu selection.

14. Declare

PROCEDURE Compress (VAR v: ARRAY OF INTEGER; VAR numltm)

which removes duplicate integers from a sorted list of integers. For example, if numltm
is 12 and v is

4 4 5 9 9 9 14 19 19 19 19

then Compress should change v to

4 5 9 14 19

and numltm to 6. To test it, write a program similar to that in Figure 15.7, with input
from the focus window using ScanlntVector from module PboxMappers and Compress
taking the place of RotateLeft. The new window should contain the original list fol
lowed by the compressed list. Activate your procedure with a menu selection. Do not
include any output statements in Compress.

15. Anagrams are words that use the same letters. For example, races and acres are ana
grams, but car and cat are not. Declare

PROCEDURE IsAnagram (wd1, wd2: ARRAY OF CHAR): BOOLEAN

which determines if wd1 and wd2 are anagrams. Test your function with a dialog box
that has two input fields for the words and one output field for a message stating
whether the two words are anagrams.

Problems 365

_ Chapter17

I!I~
Stack and List Implementations

Chapter 6 introduces the concept of an abstract data structure (ADS) and an abstract
data type (ADT). It illustrates each of these abstractions with stacks and lists. An
ADT differs from an ADS because the server module exports a type. The client
module is then able to declare its own variable with that type and can have as many
data structures as it needs. The data structures exist in the client module. For exam
ple, the module of Figure 7.10 declares two stacks, stackA and stackB. Because an
ADS does not export a type, there is only one data structure and it is hidden in the
server module. For example, the module of Figure 17.4 does not contain any stack
variables. It simply manipulates the one stack contained in PboxStackADS.

Chapter 9 introduces the concept of a class, which is the object-oriented equiva
lent of an ADT. It introduces classes so you can see how to use the MVC objects
provided by the BlackBox framework. The module in Figure 9.3 uses the stack class
from PboxStackObj to manipulate two stacks. For now, there is no apparent advan
tage of using a class instead of an ADT. A demonstration of the advantage of using
classes is postponed until a later chapter.

In all the previous chapters you accessed the ADS, the ADT, or the class by
inspecting its corresponding interface, which consists of all the items exported by
the server module. You then wrote your client modules accessing those items pro
vided by the server. It was not necessary for you to know how the data structure is
implemented in order to use the data structure. This chapter shows the implementa
tions of the stack ADS, the stack class, and the list ADT that were previously hidden.

Stack ADS implementation

Figure 17.1 shows the interface for the stack abstract data structure from PboxStack
ADS. The server module exports five items-the constant capacity that specifies the
maximum number of values that can be stored in the structure, and the four proce
dures Clear, Numltems, Pop, and Push. Procedure Push gives the client the ability to
store a value in the data structure, and procedure Pop gives the ability to retrieve a
value. Stacks are last in, first out (LIFO) structures, so that when a client executes
the Pop procedure the value retrieved is the most recent value pushed. Figure 17.2
shows a sequence of push and pop operations on the stack.

368 Chapter 17 Stack and List Implementations

DEFINITION PboxStackADS;

CONST
capacity = 8;

PROCEDURE Clear;
PROCEDURE Numltems 0: INTEGER;
PROCEDURE Pop (OUT val: REAL);
PROCEDURE Push (val: REAL);

END PboxStackADS.

m ~ 5.0

?//////ffi /'

(a) BEGIN (b) Push(5.0) (e) Push(2.0)

Eli ~ 5.0 ~ /'

(f) Pop(d.x) (g) Push(7.0) (h) Pop(d.x)

l!l 2.0 m 5.0 5.0

/' /'

(d) Push(4.0) (e) Pop(d.x)

W////ffi
(i) Pop(d.x)

As you might suspect by now, a straightforward implementation of the stack is to
use an array to store the values. When the client executes the push operation, you
simply store the value in the array. Of course, you need to keep track of where the
most recent value was stored so you will know where to store the value pushed. You
can use an integer variable whose value will be the index of the most recently stored
value. Figure 17.3 is a diagram of the values that the array. named body, and the inte
ger. named top. acquire assuming the same sequence of pushes and pops as in Figure
17.2.

Figure 17.4 is the corresponding implementation of the stack abstract data struc
ture. The module contains two global variables, body and top. that are necessary to
maintain the state of the stack between invocations of the procedures. body is an
array of eight reals and top is an integer. To clear the stack top is set to -I. which
indicates that no items are stored in the array. Procedure Clear performs the opera
tion with the simple assignment

top :=-1

You can see from Figure 17.3 that at any point in time. the number of values
stored in the stack is one more thun the value of top. For example, in part (d) three

Figure 17.1
The interface of the stack

abstract data structure.

Figure 17.2
A sequence of operations on a

stack.

top top

"rG ~ body

[0] 5.0

[I]

[2]

[3]

[4]

(a) BEGIN (b) Push(5.0)

top top

~ ~ 5.0 5.0

2.0 7.0

4.0 4.0

<0 Pop(d.x) (g) Push(7.0)

top

~ 5.0

2.0

(e) Push(2.0)

top

lli 5.0

7.0

4.0

(h) Pop(d.x)

top

body

5.0

2.0

4.0

(d) Push(4.0)

top

"rG
body

5.0

7.0

4.0

(i) Pop(d.x)

Stack ADS implementation 369

top

~ 5.0

2.0

4.0

(e) Pop(d.x)

Figure 17.3
A Component Pascal
implementation of a stack.

values are stored and the value of top is two. Therefore. function procedure
Numltems simply executes the single statement

RETURN top + 1

The documentation for the push procedure is

PROCEDURE Push (val: REAL)
Pre
NumltemsO < capacity 20
Post
val is pushed onto the top of the stack.

Procedure Push implements the precondition with the assertion

ASSERT(top < capacity - 1. 20)

370 Chapter 17 Stack and List Implementations

Using the ASSERT statement to implement the precondition is consistent with the
design-by-contract rule, which states

• IF in the client.

• ASSERT in the server.

MODULE PboxStackADS;

CONST
capacity* = 8;

VAR
body: ARRAY capacity OF REAL;
top: INTEGER;

PROCEDURE Clear*;
BEGIN

top := -1
END Clear;

PROCEDURE Numltems* 0: INTEGER;
BEGIN

RETURN top + 1
END Numltems;

PROCEDURE Pop' (OUT val: REAL);
BEGIN

ASSERT(O <= top, 20);
val := body[top];
DEC(top)

END Pop;

PROCEDURE Push* (val: REAL);
BEGIN

ASSERT(top < capacity - 1,20);
INC(top);
body[top] := val

END Push;

END PboxStackADS.

The value of capacity -1 is the index of the last cell in the array. In this implemen
tation. the capacity of the array is 8, and the index of the last cell is 7. To have room
to put another value on the stack, variable top must be less than 7. The push opera
tion is achieved with the assignments

INC(top);
body[top] := val

where val is the value supplied by the actual parameter from the client module. For

The design-hy-collfract rule

Figure 17.4
The implementation of the
stack abstract data structure.

Stack class implementation 371

example, in Figure 17.3(c) top has value l. INC(top) gives it value 2, then body[2]
gets val, as shown in part (d).

The documentation for procedure Pop is

PROCEDURE Pop (OUT val: REAL)
Pre
o < NumltemsO 20
Post
An item is removed from the top of the stack and val gets its value.

The precondition states that you cannot pop a value off the stack unless there is at
least one value to be retrieved. Procedure Pop implements the precondition with the
assertion

ASSERT(O <= top, 20)

A value of zero for top indicates that one value is in the stack, as Figure 17 .3(b)
shows. Procedure Pop implements the retrieval with the statements

val := body[top];
DEC(top)

Because top is the index of body where the most recent value was stored, you must
make the assignment to formal parameter x before you decrement top. Note how this
is consistent with the implementation of procedure Push, in which the INC operation
occurs before the assignment to body[top].

Stack class implementation

Figure 17.5 shows the interface of the stack class from module PboxStackObj. It dif
fers from the stack ADS because the type Stack is exported.

DEFINITION PboxStackObj;

CONST
capacity = 8;

TYPE
Stack = RECORD

(VAR s: Stack) Clear, NEW;
(IN s: Stack) Numltems (): INTEGER, NEW;
(VAR s: Stack) Pop (OUT val: REAL), NEW;
(VAR s: Stack) Push (val: REAL), NEW

END;

END PboxStackObj.

Figure 17.5
The interface of the stack
class.

372 Chapter 17 Stack and List Implementations

The concept of implementing the stack class with an array is identical to the con
cept of implementing the stack abstract data structure in the previous section. You
have an array named body that stores the values, and you have an integer variable
named top that stores the index of the array where the most recent value was pushed.
You clear the array by setting top to -I, procedure Numltems returns one plus the
value of top, Pop assigns to x then decrements top, and Push increments top then
assigns to body[topj. The assertions are implemented as they are with the stack ADS.
Figure 17.6 shows the implementation.

MODULE PboxStackObj;

CONST
capacity" = 8;

TYPE
Stack" = RECORD

body: ARRAY capacity OF REAL;
top: INTEGER

END;

PROCEDURE (VAR s: Stack) Clear", NEW;
BEGIN

s.top :=-1
END Clear;

PROCEDURE (IN s: Stack) Numltems" 0: INTEGER, NEW;
BEGIN

RETURN s.top + 1
END Numltems;

PROCEDURE (VAR s: Stack) Push' (val: REAL), NEW;
BEGIN

ASSERT(s.top < capacity - 1, 20);
INC(s.top);
s.body[s.topj := val

END Push;

PROCEDURE (VAR s: Stack) Pop" (OUT val: REAL), NEW;
BEGIN

ASSERT(O <= s.top, 20);
val := s.body[s.top];
DEC(s.top)

END Pop;

END PboxStackObj.

Compare the interface of the class in Figure 17.5 with the implementation in Fig
ure 17.6. What is contained between the lines

Figure 17.6
The implementation of the
stack class.

Stack class implementation 373

Stack = RECORD

END

in each case') The interface does not show body or top in the record for the Stack
class, but the implementation does. Furthermore. the interface shows the procedure
headings within the record, but the procedures are contained outside the record in
the implementation. Why are the interface and the implementation different in these
two respects?

One big advantage of the Component Pascal language over many other object
oriented languages is that the interface is generated automatically by the compiler.
With other languages, the programmer must write not only the implementation but
the corresponding interface as well. So it is the Component Pascal compiler that
generates the interface from the implementation. Figure 17.6 shows that Stack is
exported with the * export mark but body and top are not. That is why body and top
do not appear in the interface. They are both part of class Stack but are hidden from
the client.

Automatic generation of the interface is also the reason for the procedure head
ings appearing inside the Stack record. When the compiler processes the source
code, it detects the presence of an exported method by the existence of the receiver
in front of the procedure name. The type of the receiver determines the placement of
the procedure heading in the interface. For example, when the compiler scans the
source line

PROCEDURE (VAR s: Stack) Clear*, NEW;

it detects the receiver (VAR s: StaCk). The type of the receiver is Stack, so the line

(VAR s: Stack) Clear, NEW;

is inserted in the Stack record in the interface.
Why does the interface display class methods this way? To emphasize that class

methods belong to the class record. The style is consistent with the manner in which
methods are called. For example. suppose you have a record

d*: RECORD
valuePushed*, valuePopped-: REAL;
numltemsA-, numltemsB-: INTEGER

END;

How do you access one of the fields of the record, say valuePushed? You precede it
with the record name with a period between the record name and the field. You refer
to the value Pushed field of record d by writing

d.valuePushed

And how does a client module invoke a method,) The style is the same as if the
method were a field in the record. For example, if your client module declares

374 Chapter 17 Stack and List Implementations

VAR
stackA, stackS: PboxStackObj.Stack;

then to call the method to clear stackA, you write

StackA.Clear

This call is consistent with the interface

Stack = RECORD
(VAR s: Stack) ClearStack, NEW;

END

In the same way that valuePushed belongs to the d record, Clear belongs to the
Stack record.

The implementation of all the methods in the stack class is similar to the imple
mentations in the stack ADS. Because body and top are part of a record, you simply
use the record notation to refer to them. For example, the code for the push proce
dure with the ADS is

INC(top);
body[topj := val

where body and top are global variables in the server module. The corresponding
code for the push method with the class is

INC(s.top);
s.body[s.topj := val

where record s is the formal parameter corresponding to the actual parameter in the
client module.

List ADT implementation

Figure 17.7 shows the interface of the list ADT. As with the implementation of the
stack, an array is a convenient data structure for implementing a list.

List ADT implementation 375

DEFINITION PboxListADT;

CONST
capacity = 8;

TYPE
List = RECORD END;
T = ARRAY 16 OF CHAR;

PROCEDURE Clear (VAR 1st: List);
PROCEDURE Display (IN 1st: List);
PROCEDURE GetElementN (IN 1st: List; n: INTEGER; OUT val: T);
PROCEDURE InsertAtN (VAR 1st: List; n: INTEGER; IN val: T);
PROCEDURE Length (IN 1st: List): INTEGER;
PROCEDURE RemoveN (VAR 1st: List; n: INTEGER);

Figure 17.7
The interface of the list
abstract data type.

PROCEDURE Search (VAR 1st: List; IN srchVal: T; OUT n: INTEGER; OUT fnd: BOOLEAN);

END PboxListADT.

Figure 17.8 shows the implementation of the list ADT. The list record contains
two fields-body, which is the array itself. and lastlndex, which is the index of the
last item in the array.

The array has a capacity of eight, yet the body is declared to be an ARRAY 9 OF
T. That is, there are nine cells in the array indexed from 0 to 8. The ninth cell at
index 8 cannot be used by the client for storing a value. It is for storing the search
value as a sentinel using the efficient version of the search algorithm in Figure 16.2.
If the declaration for body did not allocate the extra cell, the algorithm could not do
a sequential search when there are eight items in the list, because there would be no
room for the sentinel.

MODULE PboxListADT;
IMPORT StdLog;

CONST
capacity' = 8;

TYPE
T' = ARRAY 16 OF CHAR;
List· = RECORD

body: ARRAY capacity + 1 OF T; (. + 1 necessary for procedure Search .)
lastlndex: INTEGER

END;

PROCEDURE Clear' (VAR 1st: List);
BEGIN

Ist.lastlndex := -1
END Clear;

Figure 17.8
The implementation of the
list abstract data type.

376 Chapter 17 Stack and List Implementations

PROCEDURE Display' (IN 1st: List);
VAR

i: INTEGER;
BEGIN

StdLog.Ln;
FOR i := 0 TO IsUastindex DO

StdLog.lnt(i); StdLog.String(" "); StdLog.String(lst.body[iJ); StdLog.Ln
END

END Display;

PROCEDURE GetElementN* (IN 1st: List; n: INTEGER; OUT val: T);
BEGIN

ASSERT(O <= n, 20);
ASSERT(n <= Ist.lastlndex, 21);
val := Ist.body[n]

END GetElementN;

PROCEDURE InsertAtN' (VAR 1st: List; n: INTEGER; IN val:T);
VAR

i: INTEGER;
BEGIN

ASSERT(O <= n, 20);
ASSERT(lsUastindex < capacity - 1, 21);
IF n > IsUastindex + 1 THEN

n := IsUastlndex + 1
END;
FOR i := IsUastlndex TO n BY -1 DO

Ist.body[i + 1] := Ist.body[i]
END;
INC(lst.lastindex);
Ist.body[n] := val

END InsertAtN;

PROCEDURE Length' (IN 1st: List): INTEGER;
BEGIN

RETURN Ist.lastlndex + 1
END Length;

PROCEDURE RemoveN' (VAR 1st: List; n: INTEGER);
VAR

i: INTEGER;
BEGIN

ASSERT(O <= n, 20);
IF n <= Ist.lastlndex THEN

FOR i := n TO Ist.lastlndex - 1 DO
Ist.body[i] := Ist.body[i + 1]

END;
DEC(lsUastlndex)

END
END RemoveN;

Figure 17.8
Continued.

List ADT implementation 377

PROCEDURE Search* (VAR 1st: List; IN srchVal: T; OUT n: INTEGER; OUT fnd: BOOLEAN);
BEGIN

Ist.body[lst.lastlndex + 1] := srchVal;
n:= 0;
WHILE Ist.body[n] # srchVal DO

INC(n)
END;
fnd := n <= Ist.lastlndex

END Search;

END PboxListADT.

Figure l7.9(a) shows an abstract representation of a list containing four items.
The first item is at position 0 and the last is at position 3. Figure l7.9(b) shows the
implementation. The items are stored in the body part of the data structure. The
position of each item corresponds to the index of the array. lastlndex has value 3,
because that is the index of the last item in the array.

lastlndex

body

0 trout [0] trout

tuna [IJ tuna

2 cod [2J cod

3 salmon [3] salmon

4 [4J

5 [5J

6 [6]

7 [7]

[8J

(a) The abstract list (b) The array implementation

The procedures for the list ADT are straightforward array manipulations. The
Clear procedure simply sets lastlndex with

Ist.lastlndex := ·1

Any values remaining in the body of the array will be overwritten when the client
inserts new values.

The Display procedure outputs Ist.body[i] with

Figure 17.8
Continued.

Figure 17.9
The abstract list ADT and its
array implementation.

378 Chapter 17 Stack and List Implementations

StdLog.lnt(i); StdLog.String(" "); StdLog.String(lst.body[i]); StdLog.Ln

in the body of a FOR loop, with i ranging from 0 to Ist.lastlndex.
Procedure GetElementN implements the preconditions

Pre
0<= n 20
n < Length(lst) 21

with the ASSERT statements

ASSERT(O <= n, 20);
ASSERT(n <= Ist.lastlndex, 21)

Implementation of the second precondition is based on the fact that the index of the
last item is one less than the length of the list. In Figure 17.9(b), lastlndex is 3 and
the length of the list is 4. n is less than 4 if and only if it is less than or equal to 3.
GetElementN has formal parameter val called by result. It sets the value of val by
executing the statement

val := Ist.body[n]

Procedure InsertAtN implements the preconditions

Pre
0<= n 20
Length(lst) < capacity 21

with the ASSERT statements

ASSERT(O <= n, 20);
ASSERT(lst.lastindex < capacity - 1, 21)

If the preconditions are satisfied, it adjusts the value of n by comparing it with the
index of the last item. The procedure allows the client to supply a large value of n, in
which case the value gets inserted at the end of the list. The I F statement

IF n > Ist.lastlndex + 1 THEN
n := Ist.lastindex + 1

END;

adjusts n to the position just after the last item, where the new value will be inserted,
if the original value of n is beyond that position. Figure 17.10 shows the effect of

List ADT implementation 379

FOR i := Ist.lastlndex TO n BY -1 DO
Ist.body[i + 1) := Ist.body[i)

END;
INC(lst.lastlndex);
Ist.body[n) := val

for the case of inserting value bass at position 2 for n. The elements of the array
must be shifted down to make room for the inserted value.

lastlndex lastlndex lastlndex lastlndex

body body body body

[0] trout trout trout trout

[1] tuna tuna tuna tuna

[2] cod cod cod cod

[3] salmon salmon cod cod

[4] salmon salmon salmon

[5]

Figure 17.10
Execution of InsertAtN with 2
for n and bass for val.

lastlndex

body

trout

tuna

bass

cod

salmon

(a) Initial (b) Ist.body[4):=
Ist.body[3)

(e) Ist.body[3):=
Ist.body[2)

(d) INC (
Ist.lastlndex)

(e) Ist.body[n):=
val

The implementation of procedure RemoveN first verifies the precondition that n
is nonnegative with an appropriate ASSERT statement. The specification allows a
large value of n, in which case the list is unchanged. No processing needs to be done
unless n is less than or equal to lastlndex. Consequently, the processing is contained
within the IF statement

IF n <= Ist.lastlndex THEN

Figure 17.11 shows the effect of executing

FOR i := n TO Ist.iastlndex - 1 DO
Ist.body[i) := Ist.body[i + 1)

END;
DEC(lst.iastlndex)

for the case of removing the item at position I. This time the items are shifted up and
lastlndex is decremented. The garbage value at position 3 will be overwritten when
the client inserts a new value later.

380 Chapter 17 Stack and List Implementations

lastlndex lastlndex lastlndex lastlndex

body body body

[0] trout trout trout

[1] tuna cod cod

[2] cod cod salmon

[3] salmon salmon salmon salmon

[4]

[5]

(a) Initial (b) Ist.body[1]:=
Ist.body[2]

(e) Ist.body[2]:=
Ist.body[3]

(d) DEC (
Ist.lastlndex)

Problems

1. PboxStackADS in Figure 17.4 uses array body and integer top to implement a stack
abstract data structure. At any given point in time. top has the index. of the item on top
of the stack. Modify the corresponding implementation of the abstract data type in
PboxStackADT so that at any given point in time top will have the index. of the location
to push the next item. Hence, when the stack is cleared top will be initialized to 0
instead of to -I. Be sure to modify the ASSERT statements where necessary. Test your
program by importing your implementation into a program similar to that in Figure
7.10.

2. Work Problem 1 but test your program by importing your implementation into the pro
gram you wrote for Chapter 7. Problem 20.

3. PboxStackObj in Figure 17.6 uses array body and integer top to implement a stack
class. At any given point in time, top has the index of the item on top ufthe stack. Mod
ify PboxStackObj so that at any given point in time top will have the index of the loca
tion to push the next item. Hence, when the stack is cleared top will be initialized to 0
instead of to -\. Be sure to modify the ASSERT statements where necessary. Test your
program by importing your implementation into a program to construct an RPN calcu
lator as described in Chapter 7, Problem 14. Verify in the calling module that the pre
conditions are met. If a precondition is not met, the calculator should do nothing and
no trap should occur.

4. Work Problem 3, but construct a full-featured scientific calculator as described in
Chapter 7, Problem 16.

5. Work Problem 3, but test your program by importing your implementation into a mod
ule that implements a dialog box for two stacks with an "A to B" button as described in
Chapter 7, Problem 20. Verify in the calling module that the preconditions are met. If a
precondition is not met, the dialog box should not change and no trap should occur.

Figure 17.11
Execution of RemoveN with I
for n.

r.tEt Chapter 18
1bP'

Two-Dimensional Arrays

Sometimes you need to store information not as a single list of values, but as a table
of values. Tables have rows and columns. The Component Pascal data structure that
corresponds to a table is a two-dimensional array. In the same way that vector is
another name for a one-dimensional array, matrix is another name for a two-dimen
sional array.

Matrix input/output

Figure IS.l shows a tool dialog box for inputting a two-dimensional array of real
values from the focus window and outputting the array to a new window. The dialog
box is opened as a tool, so the scanner will be attached to the model of the view that
was previously the focus window, which is titled "untitled I" in the figure. When the
user clicks the Load Matrix button, the program scans the real numbers into a two
dimensional array. When the user clicks the Display Matrix button a new window
appears, which is titled "untitled 2" in the figure, that contains the values previously
scanned into the two-dimensional array.

120 80 3Q 40
30 5.0 7 J 1.0
20 110 :J 0 100

"

NumberofRowt: p
NunberofCIlitI1m r

i!l unhtled2 JlllIiil EJ
1200 8.00 6.00 4.00
300 5.00 7.CO 1 00
2.00 1100 9CO ,000

Figure IS.2 is the implementation of the dialog box of Figure IS. I. It defines glo
bal variable matrix to be a two-dimensional array with the declaration

matrix: ARRAY 32, 32 OF REAL

The two indices. 32 and 32, is what makes the array two-dimensional. The first
index numbers the rows and the second index numbers the columns. matrix contains
storage for 32 x 32 = 1024 values in 32 rows and 32 columns. although the pro
gram does not in general use all the storage.

Figure 18,1
Input and output for a two
dimensional array of real
values.

382 Chapter 18 Two-Dimensional Arrays

MODULE Pbox18A;
IMPORT Dialog, TextModels, TextViews, Views, TextControliers, PboxMappers;
TYPE

Matrix = ARRAY 32, 32 OF REAL;
VAR

dO: RECORD
numRows-, numCols-: INTEGER;

END;
matrix: Matrix;

PROCEDURE LoadMatrix*;
VAR

md: TextModels.Model;
en: TextControliers.Controller;
se: PboxMappers.Seanner;

BEGIN
en := TextControliers.FoeusO;
IF en # NIL THEN

md := en. text;
se.ConneetTo(md);
se.SeanReaIMatrix(matrix, d.numRows, d.numCols);
Dialog.Update(d)

END;
END LoadMatrix;

PROCEDURE DisplayMatrix*;
VAR

md: TextModels.Model;
vw: TextViews.View;
fm: PboxMappers.Formatter;

BEGIN
md := TextModels.dir.NewO;
fm.ConneetTo(md);
fm.WriteReaIMatrix(matrix, d.numRows, d.numCols, 8, 2);
vw := TextViews.dir.New(md);
Views.OpenView(vw)

END DisplayMatrix;

BEGIN
d.numRows := 0; d.numCols := 0;

END Pbox18A.

Figure 18.3 shows how the cells in the matrix are numbered. matrix[2, 31 is the
component in row two, column three. In general, matrix[i, j] is the component in row
i, columnj.

Procedure LoadMatrix in Figure 18.2 contains our usual MVC suspects for con
necting to the focus window. It inputs the values by calling the imported procedure
ScanRealMatrix from module PboxMappers. Here is the documentaion for Scan
RealMatrix.

Figure 18.2
A procedure that inputs a
matrix and outputs it to a new
window.

matrix[O,O] matrix[O,1]

12.0 8.0

matrix[1,0] matrix[1, 1]

3.0 5.0

matrix[2, 0] matrix[2,1]
2,0 11,0

matrix[O, 2]

6.0

matrix[1,2]

7.0

matrix[2, 2]

9.0

matrix[O, 3]

4.0

matrix[1, 3]

1.0

matrix[2, 3]

10.0

Matrix input/output 383

Figure 18.3
Indices for a two-dimensional
arrayal' real values.

PROCEDURE (VAR s: Scanner) ScanRealMatrix (OUT mat: ARRAY OF ARRAY OF REAL;
OUT numR, numC: INTEGER), NEW

Pre
s is connected to a text model. 20
Sequences of characters scanned represent in-range real or integer values. 21
All nonempty rows have the same number of values. 22
Number of rows in text model <= LEN(mat, 0). Index out of range.
Number of columns in text model <= LEN(mat, 1). Index out of range.
Post
mat gets all the values scanned up to the end of the text model to which s is connected.
numR gets the number of rows scanned.
numC gets the number of columns scanned.
The values are stored at v[O .. numR - 1, O .. numC - 1].

ScanRealMatrix expects each row of the matrix to be on a separate line. It scans The operulioll of

all the values on the first line into the first row of the two-dimensional array mat, SC<lIlReulMalrix

counting how many values are on the first line of the text model. It then scans each
of the other lines in turn, counting the number of values on each line. If it detects a
different number of values from the number on the first line, it terminates with a
trap. Scan Real Matrix allows you to have any number of leading or trailing blank
lines, which it ignores in the scan. You can even have blank lines between two lines
of numbers and the embedded blank line will be ignored as well. At the completion
of the scan, numR will contain the number of rows in mat, and numC will contain
the number of columns.

The Component Pascal function LEN returns the number of elements in a one-
dimensional array. You can also use LEN in an array with more than one dimension, LEN ,villi II Mo-dillll:llsiollu!

but it requires two parameters instead of just one. The function call LEN(arr, n) (//'/'{I\

returns the number of cells in the nth dimension of array arr starting with n = 0 for
the first dimension. For a two-dimensional array, LEN(mat, 0) is the number of rows
of mat, and LEN (mat, 1) is the number of cells in each row. A precondition for proce-
dure ScanRealMatrix is that matrix mat has enough rows and columns to store the
values that are in the model to which s is connected.

Procedure DisplayMatrix outputs the values by calling WriteRealMatrix, also from
PboxMappers. Here is the documentaion for WriteRealMatrix.

384 Chapter 18 Two-Dimensional Arrays

PROCEDURE (VAR f: Formatter) WriteRealMatrix (IN mat: ARRAY OF ARRAY OF REAL;
numR, numC, minWidth, dec: INTEGER), NEW

Pre
f is connected to a text model. 20
numR <= LEN(mat, 0). Index out of range.
numC <= LEN(mat, 1). Index out of range.
Post
The first numR rows and numC columns of mat are written to the text model to which f
is connected, each with a field width of minWidth and dec places past the decimal point.
If min Width is too small to contain a value of mat it expands to accommodate the value.

Parameter mat is called by constant reference, because its values are defined
when the procedure is called and its values are not to be changed. To write the
matrix you must supply the number of rows and columns in numR and numC. You
also supply a value for minWidth, the field width for each real value, and for dec, the
number of places you want to display past the decimal point.

Printing a column

Figure 18.4 shows the input and output of a program that prints a column of a matrix
to a new window. The dialog box allows the user to load the values from the focus
window into the matrix as in Figure 18.2. It also contains a text field for the user to
enter the column to display.

o _ c Mall1H Column:. = EI

71l1' operation of
WriteReulAlulrix

Figure 18.4
Printing a column of a matrix

untitled 2
...... Input El == untitled 3 § !!!lEi to a new window.

12.0 a.o 5.0 4.0
3.0 5.0 7.0 1.0
2.0 11.0 9.0 10.0

I load MatriH I
Number of Rows; 3

Number or Columns: 4

rOUIPut
Column ~

I DI'ela~ CoIUIf:!!)

Column 3
4.00
1.00

10.00

Before looking at the program that implements the dialog box of Figure 18.4, try
to solve the problem yourself. Suppose you are given a two-dimensional array
matrix with d.numRows rows, and an integer variable, d.column. The problem is to
output all the values from matrix in that column. For example, if d.column has the
value of 3, the code should output

4.00
1.00

10.00

which are all the components in column three. The specific output statements with

formatter fm are

fm.writeReal(matrix[O, 3]. 8, 2); fm.writeLn
fm.writeReal(matrix[1, 3]. 8, 2); fm.writeLn
fm.writeReal(matrix[2, 3]. 8, 2); fm.writeLn

assuming a field width of 8 and two places past the decimal point. In a FOR loop the
statements are

FOR i := 0 TO 2 DO
fm.writeReal(matrix[i, 3]. 8, 2); fm.writeLn

END

for an array with values in three rows. Because the value of numRows specifies how
many rows of data are in the array. you must replace the 2 with d.numRows - 1. For
a general column, you must replace the 3 with d.column. Here is the code for print
ing the column.

FOR i := 0 TO d.numRows - 1 DO
fm.writeReal(matrix[i, d.column]. 8, 2); fm.writeLn

END

Figure 18.S shows the module that implements the dialog box of Figure 18.4.

MODULE Pbox18B;
IMPORT Dialog, TextModels, TextViews, Views, TextControliers, PboxMappers;
TYPE

Matrix = ARRAY 32, 32 OF REAL;
VAR

d': RECORD
numRows-, numCols-: INTEGER;
column': INTEGER;

END;
matrix: Matrix;

PROCEDURE LoadMatrix';
VAR

md: TextModels.Model;
cn: TextControliers.Controller;
sc: PboxMappers.Scanner;

BEGIN
cn := TextControliers.FocusO;
IF cn # NIL THEN

md := cn.text;
sc.ConnectTo(md);
sc.ScanReaIMatrix(matrix, d.numRows, d.numCols);
Dialog.Update(d)

END;
END LoadMatrix;

Printing a column 385

Figure 18.5
A program to print a column
of a matrix. The dialog is
activated from a menu
selection.

386 Chapter 18 Two-Dimensional Arrays

PROCEDURE DisplayColumn';
VAR

md: TextModels.Model;
vw: TextViews. View;
fm: PboxMappers.Formatter;
i: INTEGER;

BEGIN
md := TextModels.dir.NewO;
fm.ConnectTo(md);
IF (0 <= d.column) & (d.column < d.numCols) THEN

fm.WriteString("Column "); fm.writelnt(d.column, 1); fm.writeLn;
FOR i := 0 TO d.numRows - 1 DO

fm.writeReal(matrix[i, d.columnJ, 8, 2); fm.writeLn
END

ELSE
fm. WriteString("That column is not in the array")

END;
vw := TextViews.dir.New(md);
Views.OpenView(vw)

END DisplayColumn;

BEGIN
d.numRows := 0; d.numCols := 0; d.column := 0;

END Pbox18B.

Finding the largest in a row

The next illustration of a two-dimensional array involves finding the largest element
in a row of a matrix. The problem is to complete the statements for the function pro
cedure

PROCEDURE MaxlnRow (IN mat: ARRAY OF ARRAY OF REAL; row, numCols: INTEGER): REAL;

Because mat is called by constant reference, assume its values are defined when the
procedure is called. Because row and numCols are called by value, their initial val
ues are also defined. numCols is the number of columns in mat, and row is the row
from which we want the maximum value. For example. if the values in mat are again

12.0 8.0
3.0 5.0
2.0 11.0

6.0 4.0
7.0 1.0
9.0 10.0

and if row has the value 2. the function should return the value 11.0. A precondition
is that there is at least one row and one column. Otherwise there can be no maxi
mum.

Assume you have a local variable max to store the maximum value found. The
specific statements to compute max for row 2 are

max := mat[2, 0];

IF mat[2, 1] > max THEN
max := mat[2, 1]

END;
IF mat[2, 2] > max THEN

max := mat[2, 2J
END;
IF mat[2, 3] > max THEN

max := mat[2, 3]
END

After execution, max has the maximum value of 11.0 from row two (the third row).
The corresponding FOR statement assuming local integer variable j is

max := mat[2, 0];
FOR j := 1 TO 3 DO

IF mat[2, j] > max THEN
max := mat[2, j]

END
END;

for an array with values in four columns. For numCols in general, j in the FOR loop
ranges from 1 to numCols - 1. And for a general row, the FOR loop is shown in Fig
ure 18.6.

PROCEDURE MaxlnRow (IN mat: ARRAY OF ARRAY OF REAL;
row, numCols: INTEGER): REAL;

VAR
max: REAL;
j: INTEGER;

BEGIN
ASSERT«O <= row) & (row < LEN (mat, 0)), 20);
ASSERT«O < numCols) & (numCols <= LEN (mat, 1)), 21);
max := mat[row, 0];
FOR j := 1 TO numCols - 1 DO

IF mat[row, j] > max THEN
max:= mat[row, j]

END
END;
RETURN max

END MaxlnRow;

Matrix multiplication

The next illustration deals with multiplication of two matrices, a and b, with the
product in c. To multiply matrix a times matrix b, the number of columns of a must
equal the number of rows of b. The integer variable numRa is the number of rows in
matrix a, numCaRb is the number of columns in matrix a and rows in matrix b, and
numCb is the number of columns in b. The product c will have the same number of

Matrix multiplication 387

Figure 18.6
A function procedure that
returns the maximum value in
a row of a matrix.

388 Chapter 18 Two-Dimensional Arrays

rows as a and the same number of columns as b.
For example, if a and b have the values

1.0
0.0

3.0
4.0

a
-1.0

1.0
2.0

-2.0

then the product c should have the values

c
-5.00 8.00 6.00

-17.00 -6.00 27.00

b
-1.0 2.0
-3.0 0.0

1.0 -2.0
3.0 2.0

With these matrices, numRa is 2, numCaRb is 4, and numCb is 3.

5.0
4.0
3.0

--4.0

Each value of c comes from mUltiplying a row of a with a column of b. For exam
ple, the element in the second row and third column of c comes from multiplying the
second row of a with the third column of b. You multiply a row with a column by
mUltiplying corresponding components from left to right in the row and from top to
bottom in the column. Then you add the products. This specific case is

0.0 * 5.0 + 4.0 * 4.0 + 1.0 * 3.0 + (-2.0) * (-4.0)

which is 27.0. In general, the element in row i and column j of c comes from multi
plying row i of a with column j of b.

Our problem is to write the proper procedure

PROCEDURE Multiply (IN a, b: ARRAY OF ARRAY OF REAL;
numRa, numCaRb, numCb: INTEGER; OUT c: ARRAY OF ARRAY OF REAL);

Because a and b are called by constant reference, their initial values are defined. The
problem is to compute new values for the matrix product c, which is called by result.

Start with the specific case above. For row one and column two of c, you need to
compute

a[1, 0] * b[O, 2] + a[1, 1] * b[1 , 2] + a[1, 2] * b[2, 2] + a[1, 3] * b[3, 2]

In a FOR loop, that is

sum:= 0.0;
FOR k := 0 TO 3 DO

sum := sum + a [1, k] * b [k, 2]
END;
c [1, 2] := sum

where sum is a real variable.
This code is for arrays with four columns in a and four rows in b. For the more

general case of numCaRb columns and rows, k in the FOR statement ranges from 0
to numCaRb - 1. Also, this computation is for row one, column two of c. In the more
general case of row i and column j of c the code is

sum := 0.0;
FOR k := 0 TO numCaRb - 1 DO

sum := sum + a[i, kj , b[k, j]
END;
c[i, jj := sum

This computation must be done for every row and column of c. So, it must be
nested in a nested loop with i ranging from 0 to numRa - 1 and j ranging from 0 to
numCb - 1. The final code for matrix multiplication is in procedure Multiply in Figure
18.8. Figure 18.7 shows the corresponding dialog box.

* Malm(Mulbpilcalaon

R_inA: r R_inS: r
CoIuImo inA: r c.:.um. in B r

MODULE Pbox18C;

Product 'llatri)C"
-500 8.00

-17.00600

.1 I

600
2700

_ Cl x

IMPORT Dialog, TextModels, TextViews, Views, TextControliers, PboxMappers;
VAR

d': RECORD
numRowA-, numCoIA-, numRowB-, numCoIB-: INTEGER;

END;
matrixA, matrixB: ARRAY 32,32 OF REAL;

PROCEDURE LoadA';
VAR

md: TextModels.Model;
en: TextControllers_Controller;
sc: PboxMappers.Scanner;

BEGIN
cn := TextControllers.FocusO;
IF cn # NIL THEN

md := cn.text;
sc.ConnectTo(md);
sc.ScanReaIMatrix(matrixA, d.numRowA, d.numCoIA);
Dialog.Update(d)

END
END LoadA;

Matrix multiplication 389

Figure 18,7
Output for the product of two
matrices.

Figure 18.8
A program that mUltiplies two
matrices.

390 Chapter 18 Two-Dimensional Arrays

PROCEDURE LoadB';
VAR

md: TextModels.Model;
en: TextControliers.Controlier;
se: PboxMappers.Seanner;

BEGIN
en := TextControliers.FoeusO;
IF en # NIL THEN

md := en.text;
se.ConneetTo(md);
se.SeanReaIMatrix(matrixB, d.numRowB, d.numCoIB);
Dialog.Update(d)

END
END LoadB;

PROCEDURE Multiply (IN a, b: ARRAY OF ARRAY OF REAL;
numRa, numCaRb, numCb: INTEGER;
OUT e: ARRAY OF ARRAY OF REAL);

VAR
sum: REAL;
i, j, k: INTEGER;

BEGIN
ASSERT((O <= numRa) & (numRa <= LEN(a, 0)) & (numRa <= LEN(e, 0))

& (0 <= numCaRb) & (numCaRb <= LEN (a, 1)) & (numCaRb <= LEN(b, 0))
& (0 <= numCb) & (numCb <= LEN(b, 1)) & (numCb <= LEN(e, 1)),20);

FOR i:= OTO numRa - 1 DO
FOR j := 0 TO numCb - 1 DO

sum:= 0.0;
FOR k := 0 TO numCaRb - 1 DO

sum := sum + a[i, k] , b[k, j]
END;
e[i, j]:= sum

END
END

END Multiply;

Figure 18.8
Continued.

PROCEDURE Compute';
VAR

md: TextModels.Model;
vw: TextViews.View;
fm: PboxMappers.Formatter;
matrixC: ARRAY 32, 32 OF REAL;

BEGIN
md := TextModels.dir.NewO;
fm.ConnectTo(md);
IF d.numColA = d.numRowB THEN

Multiply(matrixA, matrixB, d.numRowA, d.numColA. d.numColB, matrixC);
fm.writeString("Product matrix:"); fm.writeLn;
fm.writeReaIMatrix(matrixC, d.numRowA, d.numColB, 8, 2)

ELSE

Matrix multiplication 391

Figure 18.8
Continued.

fm.writeString("The number of columns in A must equal the number of rows in B.")
END;
vw := TextViews.dir.New(md);
Views.OpenView(vw)

END Compute;

BEGIN
d.numRowA := 0; d.numColA := 0; d.numRowB := 0; d.numColB := 0;

END Pbox18C.

To determine the statement execution count of procedure Multiply number the
executable statements as follows.

Statement
number
(I)

(2)
(3)
(4)
(5)
(6)

Executable statement
FOR i:= OTO numRa - 1 DO
FOR j := 0 TO numCb - 1 DO
sum:= 0.0;
FOR k := 0 TO numCaRb - 1 DO
sum := sum + ali, k] , b[k, j]
c[i, j] := sum

For simplicity, assume that both matrix a and b have II rows and II columns. Then.
the test for each for loop executes n + I times and each statement in the body of the
for loop executes II times. Figure 18.9 shows the statement execution count for
numRa values of 2, 3, and n in general.

So, the effect of a doubly nested loop is to give a cubic execution time as a func
tion of the size of the matrices to be multiplied. The implication for execution time
estimates is that if you double the size of the arrays you multiply the execution time
by eight.

The execlIwb/e staremellls (If
Ilmcedllre :v/II/rirlr

392 Chapter 18 Two-Dimensional Arrays

Statement numRa

=2

(I) 3
(2) 6

(3) 4

(4) 12

(5) 8

(6) 4

Total: 37

Using two-dimensional arrays

In Component Pascal. the declaration

ARRAY L1. L2 OFT

is really an abbreviation of

ARRAY L1 OF
ARRAY L20FT

numRa

=3

4

12

9

36

27

9

97

numRa

=n

n + I
(n+I)·n

2
n

2
. (n + I) n

3
n

2
n

3 ~
2n +4n-+2n+ I

That is. a two-dimensional array is a one-dimensional array of vectors.

Example 18.1 In Figure 18.3, the declaration

Matrix = ARRAY 32, 32 OF REAL;

could be written

Matrix = ARRAY 32 OF ARRAY 32 OF REAL;

Considered in this light. variable matrix has 3:! elements from matrix[O] up to
matrix[31J. each of which is a vector of 32 reals as Figure 18.10 shows. I

Consistent with this abbreviation. the notation matrix[i. iJ. which denotes the ele
ment in row i. column j of the matrix. is simply an abbreviation for matrix[i][jJ. which
denotes element j in the vector matrix[iJ as Figure 18.10 shows.

Example 18.2 The assignment statement max := mat[row. j) in Figure 18.6 can be
written max := mat[rowJDl. I

Figure 18.9
Statement execution count for
the procedure Multiply in
Figure 18.8.

12.0 8.0
matrix[O][2]

6.0
matrix[O][3]

4.0
matrix[O] I matrix[O][O] I matrix[O][1]

L_ ______ -L ________ J-______ ~L_ ______ ~

matrix[1] matrix[1][O] matrix[1][1] matrix[1][2] matrix[1][3]
3.0 5.0 7.0 1.0

matrix[2] matrix[2][O] matrix[2][1] matrix[2][2] matrix[2][3]

2.0 11.0 9.0 10.0

Exercises

1. Assume that matrices a and b of Figure 18.8 each have n rows and Il columns. If it
takes 50 J1s for procedure Multiply to execute with Il = 25, how many microseconds will
it take to execute with n = 65~ Use the approximate ratio where you neglect the low
order terms of the polynomial.

2. Assume that matrix a of Figure IS.S has t rows and m columns, and matrix b has m
rows and 11 columns. Write an expression in terms of t, m, and 11 for the statement exe
cution count of procedure Multiply.

Problems

3. W rite a program that inputs a two-dimensional array of real values from a window, and
outputs to a new window the row sum of each row, the column sum of each column,
and the grand total. For example if the focus window contains

4.0 -6.0 1.0 3.0
-2.0 3.0 7.0 2.0

1.0 0.0 4.0 5.0

the new window should contain

4.0 -6.0 1.0 3.0 2.0
-2.0 3.0 7.0 2.0 10.0

1.0 0.0 4.0 5.0 to.O
3.0 -3.0 12.0 10.0 22.0

Hint: If the original matrix contains 3 rows and 4 columns, store the column sums in
the 4th row and row sums in the 5th column. Test your program with a dialog box sim
ilar to that in Figure IS.I. Activate your dialog box with a menu selection.

4, Write a program to output to the Log the indices of the largest element of a two-dimen
sional array of real values. For example, if the input is identical to that of Problem 3,

the output to the Log should be

Exercises 393

Figure 18,10
The matrix of Figure 1S.3
considered as an array of
vectors.

394 Chapter 18 Two-Dimensional Arrays

Largest value: 7.00
Row: 1
Column: 2

Test your program with a dialog box similar to that in Figure 18.1. Activate your dialog
box with a menu selection.

5. Declare

PROCEDURE Normalize (VAR mat: ARRAY OF ARRAY OF REAL; normR. numC: INTEGER)

where normR is a row in mat to be normalized. and numC is the number of columns in

mat. Implement appropriate preconditions with the ASSERT statement. To normalize a
row, divide every element in that row by the element in the row with the largest abso
lute value. For example. to normalize row 0 of the matrix in Problem 3, you would call

Normalize (matrix. O. 4)

which would divide each element in the first row by -6.0. producing

-0.667
-2.000

1.000

1.000
3.000
0.000

-0.167
7.000
4.000

-0.500
2.000
5.000

To normalize row I. the procedure should divide each element in the second row by
7.0. producing

4.000 -6.000
-0.286 0.429

1.000 0.000

1.000
1.000
4.000

3.000
0.286
5.000

Display the normalized matrix with three places past the decimal point. Test your pro
cedure with a dialog box similar to that of Figure 18.4 with an input field for the user to
enter the number of the row to normalize. When the user clicks the compute button,
verify that the row number entered in the dialog box is valid. If it is, output the matrix
before and after the normalization. Otherwise output an error message. Do not include
any output statements in Normalize. Activate your dialog box with a menu selection.

6. Declare

PROCEDURE SwapRow (VAR mat: ARRAY OF ARRAY OF REAL; row1. row2. numC: INTEGER)

where numC is the number of columns in mat. Implement appropriate preconditions
with the ASSERT statement. The procedure should exchange row1 with row2. Test your
procedure with a dialog box similar to that of Figure 18.4 with input fields for the user
to enter two row numbers. When the user clicks the compute button. verify that the row

numbers entered in the dialog box are valid. If they are. output the matrix before and
after the exchange. Otherwise output an error message. Do not include any output
statements in Swap Row. Activate your dialog box with a menu selection.

7. Declare

PROCEDURE Transpose (VAR mat: ARRAY OF ARRAY OF REAL; VAR numR, numC: INTEGER)

where numR and numC are the number of rows and columns in mat. Implement appro
priate preconditions with the ASSERT statement. The procedure should transpose mat
and switch the values of numR and numC. To transpose a matrix, tum its columns into
rows and its rows into columns. For example, the transpose of the matrix in Problem 3
is the following matrix with four rows and three columns.

4.0 -2.0 1.0
-6.0 3.0 0.0

1.0 7.0 4.0
3.0 2.0 5.0

Test your procedure with a dialog box similar to that of Figure 18.1. When the user
clicks the compute button, output the matrix before and after the transposition. Do not
include any output statements in Transpose. Activate your dialog box with a menu

selection.

8. Declare

PROCEDURE InitUnit (OUT mat: ARRAY OF ARRAY OF REAL; numR, numC: INTEGER)

where numR and numC are the number of rows and columns in mat. Implement appro
priate preconditions with the ASSERT statement. The procedure should initialize the
matrix to all zeros, except for ones on the diagonal. For example, if numR is 3 and
numC is 4, mat should get

1.0 0.0
0.0 1.0
0.0 0.0

0.0 0.0
0.0 0.0
1.0 0.0

Test your procedure with a dialog box that requests the user to enter the number of
rows and columns. When the user clicks the compute button, verify that the number of
rows and columns are each nonnegative. If they are, initialize the matrix and output it
to a new window with one place past the decimal point. Otherwise, output an error
message. Your procedure should work with the empty matrix, in which the number of
rows or columns is zero. Do not use any output statements in InitUnit. Activate your dia
log box with a menu selection.

9. Declare

PROCEDURE InitBand (OUT mat: ARRAY OF ARRAY OF REAL; numR, numC: INTEGER)

where the meanings of the parameters are the same as in Problem 8. Implement appro
priate preconditions with the ASSERT statement. The procedure should initialize the
matrix to all zeros, except for ones on the diagonal and elements immediately adjacent
to the diagonal. For example, if numR is 4 and numC is 5, mat should get

1.0 1.0 0.0 0.0 0.0
1.0 1.0 1.0 0.0 0.0
0.0 1.0 1.0 1.0 0.0

0.0 0.0 1.0 1.0 1.0

Test your procedure as specified in Probkm 8.

Problems 395

396 Chapter 18 Two-Dimensional Arrays

10. Generalize Chapter 15. Problem 27 to a two-dimensional array. Declare

PROCEDURE InitRandom (OUT mat: ARRAY OF ARRAY OF INTEGER; numR. numC: INTEGER)

that initializes the array to a random sequence of nonrepeating integers. Implement
appropriate preconditions with the ASSERT statement. Test your procedure with a dia
log box that inputs the number of rows and columns in a dialog box and gives the user
the option to set the seed. When the user clicks the compute button. verify that the
number of rows and columns are each nonnegative. If they are. initialize the matrix and
output it to a new window. Otherwise, output an error message. For example, if the user
enters 3 rows and 4 columns the procedure should initialize mat to

o
4
8

I
5
9

2
6

10

3
7

II

then exchange mat[O, OJ with another component chosen at random, mat[O, IJ with
another component chosen at random, and so on. Output the matrix of nonrepeating
random integers to a new window. Do not use any output statements in InitRandom.
Activate your dialog box with a menu selection.

11. Each integer of a two-dimensional array of integers represents the elevation at one
point of some rugged terrain. A local maximum is a point whose integer value is
greater than the values of its surrounding eight neighbors. For example, the integer
array

20
41
42

30

30
40
62
60

30
53
90
70

43
61
85
50

53
77

71
49

72

95
87
56

83
99
88
58

has a local maximum at row two, column two because 90 is greater than 40. 53, 61. 62,
85, 60, 70, and 50. Values on the borders, such as 99, are not candidates for local max
ima. Note also that 95 is not a local maximum because 99 is greater than 95. Write a
program that inputs a two-dimensional array of integers with a dialog box similar to
that of Figure 18.1. When the user clicks the compute button, output the location of all
the local maxima. if any. to the Log.

12. A saddle point is a point whose integer value is greater than its two neighbors' values
in the same row but smaller than its two neighbors' values in the same column. A point
can also be a saddle point if its integer value is smaller than its two neighbors' values in
the same row but greater than its two neighbors' values in the same column. For exam
ple, the integer array

48
64
61
56

52
55
62
60

30
50
40
32

43
58
51
48

67
95
70
49

has a saddle point at row one. column two because 50 is greater than 30 and 40. but less
than 55 and 5S. Values on the borders are not candidates for saddle points. Write a pro
gram that inputs a two-dimensional array of integers with a dialog box similar to that
of Figure IS.I. When the lIser clicks the compute button. output the location of all the
saddle points. if any, to the Log.

Problems 397

_ Chapter19

dlJ'
Recursion

Did you ever look up the definition of some unknown word in the dictionary only to
discover that the dictionary defined it in terms of another unknown word? Then,
when you looked up the second word, you discovered that it was defined in terms of
the first word! The problem with the dictionary is that you did not know the meaning
of the first word to begin with. Had the second word been defined in terms of a third
word that you knew, you would have been satisfied.

Definition of recursion

A recursive definition of an item is a definition in terms of that same item. In the dic
tionary example, the recursion is circular or mutual. In mathematics, a recursive def
inition of a function is a definition that uses the function itself. For example, suppose
a function, fen) , is defined as follows:

fen) = nf(n - 1)

You want to use this definition to determine f(4) , so you substitute 4 for II in the
definition.

f(4) = 4f(3)

But now you do not know what f(3) is. So you substitute 3 for n in the definition
and get

f(3) = 3f(2)

Substituting this into the formula for f(4) gives

f(4) = 4(3)f(2)

But now you do not know what f(2) is. The definition tells you it is 2 times f(1) .
So the formula for f(4) becomes

f(4) = 4(3)(2)f(l)

400 Chapter 19 Recursion

You can see the problem with this definition. With nothing to stop the process,
you will continue to compute f(4) endlessly.

f(4) = 4(3)(2)(1)(0)(-1)(-2) ...

It is as if the dictionary gave you an endless string of definitions, each based on
another unknown word.

To be complete, the definition must specify the value of fen) for a specific value
of n. Then the preceding process will terminate, and you can compute fen) for any
n. Here is a complete recursive definition of fen) :

{
f(O) = I
fen) = nf(n - 1) for n > 0

This definition says you can stop the previous process at f(O). So f(4) is

f(4) = 4f(3)

= 4(3)f(2)

4(3)(2)f(l)

4(3)(2)(l)f(O)

4(3)(2)(1)(I)

24

You should recognize this definition as the factorial function.

A recursive factorial function

A recursive function in Component Pascal is a function that calls itself. There is no
special recursion statement with a new recursion syntax to learn. The method of
storage allocation on the run-time stack is the same as with nonrecursive functions.
The only difference is that a recursive function contains a statement that calls itself.

Figure 19.1 shows a dialog box for the factorial function. It is identical to the dia
log box of Figure 14.3, which is linked to a procedure that also calculates the facto
rial function but using iteration instead of recursion. As far as the user is concerned,
there is no difference between the results of the two programs.

I'J ;=""CC "-- (ra.torlel) =c.",,---=; 9

Enter integer D
II Compute I

Factorl.l: 6

I'J "-~'"=C-=-==(Fodorlal) e- ~9

EAter integer E:J
II Compute I

Factorial: 35566742e096000

The function in Figure 19.2 computes the factorial of a number recursively. It is a
direct application of the recursive definition of f(n) , which is shown above.

A recursive defillitio/l oj

fc/ctorial

Figure 19.1
The dialog box for the
factorial function of Figure
19.2.

A recur.l'ivefactorial junction 401

MODULE Pbox19A;
IMPORT Dialog;
VAR

d*: RECORD
num*: INTEGER;
factorial-: LONGINT

END;

PROCEDURE Factorial (n: INTEGER): LONGINT;
BEGIN

ASSERT((O <= n) & (n <= 20). 20);
IF n = OTHEN

RETURN 1
ELSE

RETURN n * Factorial(n - 1) (* ra2 *)
END

END Factorial;

PROCEDURE ComputeFactorial*;
BEGIN

IF d.num >= 0 THEN
d.factorial := Factorial(d.num) (* ra1 *)

ELSE
d.factorial := 0

END;
Dialog. Update(d)

END ComputeFactorial;

BEGIN
d.num := 0;
d.factorial := 1

END Pbox19A.

When a function is called. memory allocation on the run-time stack takes place in
the following order.

• Push storage for the returned value.

• Push the parameters.

• Push the return address.

• Push storage for the local variables.

Figure 19.3 is a trace that shows the run-time stack. Figure J9.3(a) shows the val
ues for global variables d.num and d.factorial after the user has entered 3 for d.num
in the dialog box. When she clicks the button in the dialog box. the framework calls
procedure Compute Factorial, pushing the return address onto the run-time stack, as
shown in Figure 19.3(b). The return address is raO, which represents the address of
some statement in the framework. Figure 19.3(c) shows the stack frame after proce
dure ComputeFactorial calls Factorial. The return address on the run-time stack is

ra I, the address of the statement

Figure 19.2
A program to compute the
factorial recursively.

All (}Clltion /i) rjill1crioll

proc(!t/ures

402 Chapter 19 Recursion

d.num E8 d.num

E8~~~dd'
d.num

d.factorial d.factorial d.factorial

W/////a

(a) After user enters d.num (b) Call ComputeFactorial)

retAddr

n

retVal

ra2 retAddr retAddr

2 n n

retVal retVal

retAddr ral retAddr

n 3 n

d.num E8 retVal d.num E8 retVal d.num

d.factorial retAddr d.factorial raO retAddr d.factorial

/.

(d) Call Factorial(2) (e) Call Factorial(1)

d.factorial := Factorial(d.num); (* ra1 *)

The first statement in the function tests if n equals O. Because it does not, the ELSE
part of the IF statement executes, which causes the first recursive call.

Figure 19.3(d) shows the stack after the first recursive call. Procedure Factorial
calls itself. The statement that makes the call is

RETURN n • Factorial(n - 1) (* ra2 *)

so the return address is the address of this statement, ra2. The function is suspended
and a new instance of the same function begins executing. The actual parameter is n
- 1, and the current value of n is 3. Because the parameter is called by value, the for
mal parameter n for the new stack frame gets the value 2.

Figure 19.3(d) shows a curious situation that is typical of recursive calls. The pro
gram in Listing 19.2 shows only one declaration of n in the formal parameter list of
Factorial. But Figure 19.3(d) shows two instances of n. The old instance of n has the

ral retAddr

3 n

E8 retVal

raO retAddr

/.

(e) Call Factorial(3)

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

ral retAddr

3 n

E8 retVal

raO retAddr

/.

(0 Call Factorial(O)

Figure 19.3
The run-time stack for Figure
19.2.

A recursive factorial function 403

relVal

ra2 retAddr

n

retVal relVal

ra2 retAddr retAddr

2 n n

relVal relVal

retAddr retAddr

n n

d.num relVal d.num relVal d.num

d.factorial retAddr d.faclorial raO retAddr d.faclorial

/.

(g) Return (h) Return

d.num E8 Ejj"N" d.num E8 d. factorial I raO /. retAddr d.factorial

?//////,0.

(j) Return (k) Return

value 3 from procedure ComputeFactorial. But the new instance of n has the value 2
from the recursive call.

The computer suspends the old execution of the function and begins a new execu
tion of the same function from its beginning. The first statement in the function tests
n for o. But which n? Figure 19.3(d) shows two n's on the run-time stack. The rule is
that any reference to a local variable or formal parameter is to the one on the top
stack frame. Because the value of n is 2, the ELSE part executes.

But now the function makes another recursive call. It allocates another stack
frame as Figure 19.3(e) shows, then another as Figure 19.3(f) shows. Each time, the
newly allocated formal parameter gets a value one less than the old value of n
because the function call is

Factorial(n - 1)

Finally, in Figure 19.3(f), n has the value O. The statement

RETURN 1

gives I to the cell on the run-time stack allocated for the returned value. The
RETURN statement also triggers a return to the calling statement.

The same events transpire with a recursive return as with a nonrecursive return.

2

E8
(i) Return

Figure 19.3
Continued.

retVal

relAddr

n

retVal

retAddr

404 Chapter 19 Recursion

The bottom cell of the stack frame gets the returned value, and the return address
tells which statement to execute next. In Figure 19.3(t). the bottom cell of the top
stack frame gets I, and the return address is the calling statement in the function.
The top frame is deallocated as shown in Figure 19.3(g). The calling statement

RETURN n * Factorial(n - 1) (* ra2 *)

completes its execution. It multiplies its value of n, which is I, by the value returned,
which is I, and assigns the result to the cell reserved for the returned value. So, the
cell for the returned value gets 1, as Figure 19.3(h) shows. A similar sequence of
events occurs on each return. Figure 19.3(i) and (j) show that the value returned
from the second call is 2 and from the third call is 6.

Figure 19.4 shows the calling sequence for Figure 19.2. The down arrows repre
sent function calls, and the up arrows represent returns. The value returned is next to
each up arrow. Procedure Compute Factorial calls Factorial. Then Factorial calls itself
three times. In this example, Factorial is called a total of four times.

You can see that the program computes the factorial of 3 the same way you would
compute 1(3) from its recursive definition. You start by computing 1(3) as 3 times
1(2). Then you must suspend your computation of 1(3) to compute 1(2). After
you get your result for 1(2) , you can mUltiply it by 3 to get 1(3) . Similarly, the pro
gram must suspend its execution of the function to call the same function again. The
run-time stack keeps track of the current values of the variables so they can be used
when that instance of the function resumes.

Thinking recursively

You can take two different viewpoints when dealing with recursion-microscopic

Compute Factorial

Factorial(2)

Factorial(1)

Factorial(O)

Figure 19.4
The calling sequence for
Figure 19.2.

and macroscopic. Figure 19.3 illustrates the microscopic viewpoint and shows pre- The microscopic viewpoint of

cisely what happens inside the computer during execution. It is the viewpoint that recursion

considers the details of the run-time stack during a trace of the program. The macro-
scopic viewpoint does not consider the individual trees. It considers the forest as a
whole.

You need to know the microscopic viewpoint to understand how Component Pas
cal implements recursion. The details of the run-time stack are necessary when you
study how recursion is implemented at the machine level. But to write a recursive
function you should think macroscopically, not microscopically.

The most difficult aspect of writing a recursive function is the assumption that
you can call the procedure that you are in the process of writing. To make that
assumption, you must think macroscopically and forget about the run-time stack.
The two key elements of designing a recursive function are

• Compute the function for the basis.

• Assuming the function for n - 1. write it for n.

Imagine you are writing function Factorial. You get to this point:

PROCEDURE Factorial (n: INTEGER): LONGINT;
BEGIN

IF n = OTHEN
RETURN 1

ELSE

and wonder how to continue. You have computed the function for the basis. n = O.
But now you must assume that you can call function Factorial, even though you have
not finished writing Factorial. You must assume that Factorial(n - 1) will return the
correct value for the factorial.

Recursive additioll 405

Here is where you must think macroscopically. If you start wondering how Facto- The macroscopic viewpoillt of

rial(n - 1) will return the correct value, and if visions of stack frames begin dancing recursion

in your head, you are not thinking correctly. In writing Factorial, you must assume
you can call Factorial(n - 1). with no questions asked.

Recursive programs are based on a divide and conquer strategy. It is appropriate
when you can solve a large problem in terms of a smaller one. Each recursive call
makes the problem smaller and smaller until the program reaches the smallest prob
lem of all. the basis. which is simple to solve.

Recursive addition

Here is another example of a recursive problem. Figure 19.5 shows the input/output
for a program that scans a list of integers into an array. It computes their sum and
displays it on the Log. Because this problem can be solved much more efficiently
using the techniques of earlier chapters without an array, this example serves only to
illustrate recursion.

_0>< * log I!I~EJ

3 2 6 4 ~
~

~
~j

Suppose v is an array of n integers. You want to find the sum of all n integers in
the list recursively. The first step is to formulate the solution of the large problem in
terms of a smaller problem. If you knew how to find the sum of the first n-1 integers.
you could simply add it to the nth integer in v. You would then have the sum of all n
integers.

The next step is to design a function with the appropriate parameters. The func
tion will compute the sum of n integers by calling itself to compute the sum of n-1
integers. So the parameter list must have a parameter that tells how many integers in
the array to add. These considerations should lead you to the following function
head:

PROCEDURE Sum (IN v: ARRAY OF INTEGER; n: INTEGER): INTEGER;
(* Returns the sum of the first n elements of v *)

Figure 19.5
The input and output for the
module in Figure 19.6.

406 Chapter 19 Recursion

How do you establish the basis? That is simple. If n is less than I, there are no
numbers left to add, and the function should return O. Now you can write

BEGIN
IF n < 1 THEN

RETURN 0
ELSE

Now think macroscopically. You can assume that Sum(v, n - 1) will return the
sum of the first n-1 integers. Have faith. All you need to do is add that sum to v[n - 1].
Listing 19.6 shows the function in a finished program. v is called by constant refer
ence because it is an array whose initial values are defined an not changed by Sum.

MODULE Pbox19B;
IMPORT TextControliers, PboxMappers, StdLog;

PROCEDURE Sum (IN v: ARRAY OF INTEGER; n: INTEGER): INTEGER;
(* Returns the sum of the first n elements of v *)

BEGIN
ASSERT (n >= 0, 20);
IF n = OTHEN

RETURN 0
ELSE

RETURN v[n - 1] + Sum(v. n - 1) (* ra2 *)
END

END Sum;

PROCEDURE ComputeSum*;
VAR

cn: TextControliers.Controller;
se: PboxMappers.Seanner;
list: ARRAY 1024 OF INTEGER;
numltems: INTEGER;

BEGIN
en := TextControliers.FoeusO;
IF en # NIL THEN

se. ConneetTo(en. text);
se.SeanlntVeetor(list. numltems);
StdLog.String("Sum = ");
StdLog.lnt(Sum(list. numltems»; (* ra1 *)
StdLog.Ln

END
END ComputeSum;

END Pbox19B.

Even though you write the function without considering the microscopic view,
you can still trace the run-time stack. Figure 19.7 shows the stack frames for the first
two calls to Sum. The stack frame consists of the value returned, the parameters, v

Figure 19.6
A recursive function that
returns the sum of the first n
numbers in an array.

A recursive greatest common divisor function 407

and n, and the return address. Because there are no local variables, no storage for
them is allocated on the run-time stack. v is called by constant reference. Hence, a
reference to its actual parameter is passed on the run-time stack.

ral retAddr

4 n

v

retVal

4 numltems 4 numltems

3264 list 3264 list

raO retAddr raO retAddr

:/. :/.

(a) Call ComputeSum (b) Call Sum(v, 4)

A recursive greatest common divisor function

ra2

3

ral

4

4

..... 3264

raO

:/.

retAddr

n

v

retVal

retAddr

n

v

retVal

numltems

list

retAddr

(e) Call Sum(v, 3)

To reduce a fraction to lowest terms you must determine the greatest common divi
sor (gcd) of the numerator and denominator, then divide them both by the gcd.

Example 19.1 The fraction 24/30 is not in lowest terms. The divisors of 24,
other than I and 24 itself, are 2, 3, 4, 6, 8, and 12. The divisors of 30 are 2, 3, 5, 6,
10, and 15. The common divisors of 24 and 30 are 2, 3, and 6. Of these common
divisors the greatest is 6. Therefore, to reduce 24/30 to lowest terms you divide 24
by 6 and 30 by 6 to get 4/5. I

An elegant algorithm for computing the gcd of two integers is based on the fol
lowing mathematical property.

gcd(m, n) = {
m if n = 0

gcd(n, m mod n) if n > 0

It is a recursive property, because the gcd function is defined in terms of itself.

Example 19.2 The recursive property of the gcd computes the greatest common
divisor of 24 and 30 as follows.

Figure 19.7
The run-time stack for Figure
19.6.

408 Chapter 19 Recursion

gcd(24,30) = gcd(30, 24 mod 30)

= gcd(30, 24)

= gcd(24, 30 mod 24)

= gcd(24,6)

= gcd(6, 24 mod 6)

= gcd(6,0)

= 6 I

The algorithm is based on the fact that if an integer k divides both m and n, then it
divides m mod n. To see why this is true consider the relationship between div and
mod.

• m div n is the quotient of m -7 n.

• m mod n is the remainder of m -7 n.

Let

q = m div n

r = m mod n

Then the relationship between div and mod is expressed mathematically as

m = q'n+r O"r<n

Example 19.3 For m = 30 and n 24 ,

q = m div n = 30 div 24 = I

r = m mod n = 30 mod 24 = 6

The mathematical relationship between div and mod states that

30 = I . 24 + 6 0" 6 < 24 I

What does it mean for k to divide m') It means that there exists some integer, call
it m' , such that m = km' . So, if k divides both m and n, then

m km'

n kn'

The mathematical relationship between div and mod becomes

km' = q'kn'+r

Solving for r and factoring out k yields

r km' - qkn'

k· (m' - qn')

A recursive binomial coefficient/unction 409

Because r is k times some integer, the last equation says that k divides r, which is m
mod n. So, if k divides both m and n, then it divides m mod n. That is why the gcd of
m and n is the gcd of nand m mod n.

The algorithm terminates by making the second parameter smaller until it
reaches zero, at which time the first parameter is the gcd of the two numbers. Exam
ple 19.2 shows that if m < n the first call to gcd(m, n) simply switches m and n.
Thus, the call has made the second parameter smaller. That operation is mathemati
cally justified because the gcd of two integers does not depend on their order.

On the other hand, if m is not less than n then the call gives n to the first parame
ter and computes m mod n as the second parameter. Because the mod operation is
the remainder when you divide m by n, that remainder is guaranteed to be between °
and n - 1 . It is, therefore, smaller than m as well. Because subsequent calls make
the second parameter smaller than both m and n, the algorithm is guaranteed to ter
minate.

The algorithm terminates when n equals 0. But because n gets its value recur
sively from m mod n, that can only be possible if n divides m with no remainder. But
that implies that n is the gcd of m and n. Implementation of the gcd function is left as
a problem for the student at the end of the chapter.

A recursive binomial coefficient function

The next example of a recursive function has a more complex calling sequence. It is
a function to compute the coefficient in the expansion of a binomial expression.

Consider the following expansions:

I
(x + y)

1
(x+ yf

(x + y)3

.:(
(x + y)

x+y

2 ') 2 = x + _.\7 + Y
3 2 2 3

x + 3x Y + 3xy + y

.:(43622434 = x + x y + x y + xy + y

The coefficients of the terms are called binomial coefficients. If you write the coeffi
cients without the terms, they form a triangle of values called Pascal's triangle. Fig
ure 19.8 is Pascal's triangle for the coefficients up to the seventh power.

You can see from Figure 19.8 that each coefficient is the sum of the coefficient
immediately above and the coefficient above and to the left. For example. the bino
mial coefficient in row 5, column 2, which is 10, equals 4 plus 6. Six is above 10,
and 4 is above and to the left.

Mathematically, the binomial coefficient b(n, k) for power n and term k is

b(n, k) = b(n - 1, k) + b(n - l. k - I)

410 Chapter 19 Recursion

Term number; k

Power; n 0 2 3 4 5 6 7

1
2 2
3 3 3 1
4 4 I
5 10 5 1
6 6 15 20 15 6
7 7 21 35 35 21 7

That is a recursive definition, because it defines the function ben, k) in terms of
itself. You can also see that if k equals 0, or if n equals k, the value of the binomial
coefficient is I. The complete mathematical definition is

l
b(n,o) = I

b(k, k) = 1

b(n,k) = b(n-l,k)+b(n-l,k-l)

where the first two equations are the basis for the recursive function.

MODULE Pbox19C;
IMPORT StdLog;

PROCEDURE BinomCoeff (n, k: INTEGER): INTEGER;
VAR

y1, y2: INTEGER;
BEGIN

ASSERT«O <= k) & (k <= n), 20);
IF (0 = k) OR (k = n) THEN

RETURN 1
ELSE

y1 := BinomCoeff(n - 1, k); (* ra2 *)
y2 := BinomCoeff(n - 1, k - 1); (* ra3 *)
RETURN y1 + y2

END
END BinomCoeff;

PROCEDURE ComputeBinomCoeff';
BEGIN

StdLog.String(nBinomCoeff(3, 1) = n);
StdLog.lnt(BinomCoeff(3, 1)); r ra1 *)
StdLog.Ln

END ComputeBinomCoeff;

END Pbox19C.

Figure 19.8
Pascal' 5 triangle.

A recursive definition of the
hinomial coefficient

Figure 19.9
A recursive computation of
the binomial coefficient.

A recursive binomial coefficient function 411

The program in Figure 19.9 computes the value of a binomial coefficient recur
sively. It is based directly on the recursive definition of ben, k) . To keep the follow
ing figures simple, the program always computes the same coefficient and does not
ask the user for an arbitrary coefficient.

Figure 19.10 shows a trace of the run-time stack. Figures 19.1O(b), (c), and (d)
show the allocation of the stack frames for the first three calls to procedure Binom
Coeff. They represent calls to BinomCoeff(3, 1), BinomCoeff(2, 1), and BinomCo
eff(1, 1). The first stack frame has the return address ral of the calling program in
procedure ComputeBinomCoeff. The next two stack frames have the return address
ra2 of the y1 assignment statement.

Figure 19.10(e) shows the return from BinomCoeff(1, 1). y1 gets the value I
returned by the function in Figure 19.1O(f). Then the y2 assignment statement calls
the function BinomCoeff(1, 0). Figure 19.10(g) shows the run-time stack just after
the function call to BinomCoeff(1, 0). Each stack frame has a different return
address.

The calling sequence for this program is different from the previous recursive
programs. The other programs keep allocating stack frames until the run-time stack
reaches its maximum height. Then they keep deallocating stack frames until the run-

y2

y1

ra2 retAddr

k

2 n

relVal

y2 y2

y1 y1

ral relAddr ral relAddr

k k

3 n 3 n

relVal relVal

~ retAddr raO retAddr raO retAddr

/. /. /.

(a) Call ComputeBC (b) Call BC(3,1) (e) Call BC(2, 1)

Figure 19.10
The run-time slack for Figure
19.9. BC stands for
BinomCoeff.

y2

y1

ra2 relAddr

k

n

relVal

y2

y1

ra2 retAddr

k

2 n

relVal

y2

y1

ral retAddr

k

3 n

relVal

raO retAddr

/.

(d) Call BC(1.1)

412 Chapter 19 Recursion

y2

y1

ra3 relAddr

0 k

n

relVal relVal

y2 y2 y2

y1 y1 y1

ra2 relAddr ra2 retAddr ra2 retAddr

k k k

2 n 2 n 2 n

relVal retVal relVal

y2 y2 y2

y1 y1 y1

ra! relAddr ra! retAddr ra! retAddr

k k k

3 n 3 n 3 n

relVal relVal retVal

raO relAddr raO relAddr raO relAddr

/. /. /.

(e) Return (1) y1 := BC(1, 1) (g) Call BC(1, 0)

time stack is empty.
This program allocates stack frames until the run-time stack reaches its maxi

mum height. It does not deallocate stack frames until the run-time stack is empty,
however. From Figures 19.IO(d) to (e) and (t) it deallocates. but from Figure
19.1O(f) to (g) it allocates. From Figures 19.IO(g) to (h). (i). (j). and (k) it deallo
cates, but from Figure 19.IO(k) to (I) it allocates. Why?

Because this function has two recursive calls instead of one. If the basis step is
true, the function makes no recursive call. But if the basis step is false, the function
makes two recursive calls, one for y1 and one for y2.

Figure 19.10
Continued.

relVal

y2

y1

ra2 retAddr

k

2 n

retVal

y2

y1

ral retAddr

k

3 n

relVal

raO relAddr

/.

(h) Return

A recursive binomial coefficient function 413

y2

y1

ra2 retAddr

k

2 n

retVal 2 retVal

y2 y2 y2

y1 y1 2 y1

ral retAddr ral retAddr ral retAddr

k k k

3 n 3 n 3 n

retVal retVal retVal

retAddr raG retAddr retAddr

/.

(i) y2:= BC(1, 0) (j) Return (k) y1 := BC(2, 1)

retVal

y2 y2

2 y1 2 y1

ral retAddr ral retAddr

k k

3 n 3 n

retVal

raO retAddr

/.

retVal W rely,l

raO retAddr raO retAddr

/. /.

(m) Return (n) y2:= BC(2, 0) (0) Return

Figure 19.11 shows the calling sequence for the program. Notice that it is in the
shape of an inverted tree with the root of the tree at the top and the leaves at the bot
tom. Each node of the tree represents a function call. Except for the main program. a
node has either two children or no children. corresponding to two recursive cal\s or
no recursive cal\s.

Figure 19.10
Continued.

y2

y1

ra3 retAddr

G k

2 n

retVal

y2

2 y1

ral retAddr

k

3 n

retVal

raG retAddr

/.

(I) Call BC(2, 0)

W//////z

(p) Return

414 Chapter 19 Recursion

2

Referring to Figure 19.11, the sequence of calls and returns is

ComputeBinomCoeff
Call BC (3, 1)

Call BC (2, 1)
Call BC (1, 1)

Return to BC (2, 1)

Call BC (1, 0)
Return to BC (2, 1)

Return to BC (3, 1)
Call BC (2, 0)

Return to BC (3, 1)
Return to ComputeBinomCoeff

Figure 19.12 shows how to visualize the execution sequence. You can think of the
call tree as a land mass in an ocean. A boat begins at the left side of the root and sails
along the coastline. It continually moves forward in and out of the bays always keep
ing the land mass to its left until it arrives back at the right side of the root.

Figure 19.11
The call tree for Figure 19.9.
The numbers next to the
branches represent the value
returned by the function.

Figure 19.12
A visualization of the calling
sequence for the call tree of
Figure 19.1 \.

When analyzing a recursive program from a microscopic point of view. it is eas
ier to construct the call tree before you construct the trace of the run-time stack.
Once you have the tree, it is easy to see the behavior of the run-time stack. Every
time a transition is made to a lower node in the tree, the program allocates one stack
frame. Every time a transition is made to a higher node in the tree, the program deal
locates one stack frame.

You can determine the maximum height of the run-time stack from the call tree.
lust keep track of the net number of stack frames allocated when you get to the low
est node of the call tree. That will correspond to the maximum height of the run-time
stack. In this program, the maximum number of stack frames is four, which occurs
twice-once with the call to BinomCoeff(1, 1) and once with the call to BinomCo
eff(1,0).

Drawing the call tree in the order of execution is not the easiest way. The previ
ous execution sequence started

ComputeBinomCoeff
Call BC (3, I)

Call BC (2, 1)

CaIlBC(I,I)

You should not draw the call tree in that order. It is easier to start with

ComputeBinomCoeff
Call BC(3, I)

Call BC (2, I)

Call BC (2, 0)

Return to BC (3, I)
Return to BinomCoeff

recognizing from the program listing that BC (3, I) will call itself twice-BC(2, I)
once, and BC (2, 0) once. Then you can go back to BC (2, I) and determine its chil
dren. In other words. determine all the children of a node before analyzing the
deeper calls from anyone of the children.

This is a "breadth first" construction of the tree as opposed to the "depth first"
construction that follows the execution sequence. The problem with the depth-first
construction arises when you return up several levels in a complicated call tree to
some higher node. You might forget the state of execution the node is in and not be
able to determine its next child node. If you determine all the children of a node at
once. you no longer need to remember the state of execution of the node.

Reversing an array

The module in Figure 19.13 has a recursive proper procedure instead of a function.
It reverses the elements in an array of characters. Remember that to solve a problem
recursively. you need to think of solving a problem with a large size in terms of the

Reversing an array 415

416 Chapter 19 Recursion

same problem with a smaller size. Suppose you want to reverse the string "'Back
ward" to produce "drawkcaB". This is a problem involving eight characters. But
what if you could assume that you had a procedure that would automatically reverse
the middle six characters.

Here is the paradox of designing recursive solutions: You need to write a proce
dure assuming that it is already written. In this problem, you write a procedure that
will reverse eight characters by assuming you can call the same procedure to reverse
the middle six characters. So, the parameter list must include the indices of the first
and last positions of the array. To reverse all eight characters in an array, simply
exchange the first and last characters, then call the procedure recursively to reverse
the middle six characters.

In general the procedure reverses the characters in the array str between str[lirst]
and str[last]. The calling procedure wants to reverse the characters between 'B' and
'd'. So it calls Reverse with 0 for lirst and 7 for last. The called procedure switches
str[lirst] with str[last] and calls itself recursively to switch all the characters between
str[lirst + 1] and str[last - 1]. If lirst is ever greater than or equal to last, no switching is
necessary and the procedure does nothing.

MODULE Pbox19D;
IMPORT StdLog;

PROCEDURE Reverse (VAR str: ARRAY OF CHAR; lirst, last: INTEGER);
(* Reverses the characters between str[first] and str[last] *)
VAR

temp: CHAR;
BEGIN

ASSERT((O <= first) & (last < LEN(str$», 20);
IF first < lastTHEN

temp := str[first];
str[first] := str[last];
str[last] := temp;
Reverse(str, lirst + 1, last - 1)

END (* ra2 *)
END Reverse;

PROCEDURE ComputeReverse*;
VAR

word: ARRAY 16 OF CHAR;
BEGIN

word := "Backward";
Reverse(word, 0, LEN(word$) - 1);
StdLog.String(word); (* ra1 *)
StdLog.Ln

END ComputeReverse;

END Pbox19D.

Figure 19.14 shows the beginning of a trace of the run-time stack. In this pro
gram, str must be called by reference because the procedure changes the values of

Figure 19.13
A recursive procedure to
reverse the elements of an
array.

the array in the actual parameter list. Even though there are multiple copies of str,
one in each stack frame, they all refer to word in the calling procedure.

"B"

ral

7

0

temp

retAddr

last

first

str

ra2

6

I

"B"

ral

7

0

Permutations 417

temp

retAddr

last

first

str

temp

retAddr

last

first

str

"Backward" word l "Backward" word --- "dackwarB" word

raO retAddr raO retAddr raO retAddr

z /. z

(a) Before call Reverse (b) Call Reverse(word, 0, 7) (e) Call Reverse(s, 1, 6)

Permutations

The next example of recursion has the most complex calling sequence yet. The prob
lem is to print all the permutations of a list of characters. For example, the characters
abcd have 24 permutations as follows:

abcd bacd cabd dabc
abdc badc cadb dacb
acbd bcad cbad dbac
acdb bcda cbda dbca
adbc bdac cdab dcab
adcb bdca cdba dcba

In general, we need a procedure that will print aU the permutations of any number of
characters.

Remember, the key to a recursive solution is to solve the large problem assuming
you already have the solution to a smaller problem. This problem is to print the per
mutations of the characters in some array of characters, say str, between str[O] and
str[3]. As usual the procedure heading will include the array for which we want the
permutation and the limits of the indices.

PROCEDURE Permute (str: ARRAY OF CHAR; first, last: INTEGER);
(* Print the permutations of str between str[first] and str[lasl] .)

Figure 19.14
The run-time stack for Figure
19.13.

418 Chapter 19 Recursion

In this problem we will call the procedure with str having a value of "abcd", and first
and last having values 0 and 3.

What can you assume? You can assume you have a procedure that will print all
the permutations between str[l] and str[3]. For example, if you give the procedure
the characters "xabc" for str and values I and 3 for first and last, you can assume that
it will print the following six permutations:

xabc xacb xbac xbca xcab xcba

Look at the pattern of permutations for four characters. It is simply four groups of
six permutations. Each group starts with one of the four characters and contains the
six permutations of the remaining three characters. You can print the permutations of
four characters as follows:

Make str[O] 'a'
Print permutations from str[l] to str[3] with str[O] at the beginning
Make str[O] 'b'
Print permutations from str[l] to str[3] with str[O] at the beginning
Make str[O] 'c'
Print permutations from str[l] to str[3] with str[O] at the beginning
Make str[O] 'd'
Print permutations from str[l] to str[3] with str[O] at the beginning

This is obviously a job for a loop. To make the first character of str each letter in
tum, simply exchange it with each of the other characters.

FOR i := 0 TO 3 DO
Exchange str[O] with str[i]
Print all permutations from str[l] to str[3]

END

For this scheme to work, the procedure that prints the permutations cannot change
any of the values in str. The array of characters must be called by value.

Starting with abcd, the loop exchanges 'a' with 'a' and prints the first group of
six permutations starting with abcd. Then it exchanges 'a' with 'b' and prints the
group of six permutations starting with baed. Then it exchanges 'b' with 'c' and
prints the group of six permutations starting with cabd. Then it exchanges 'c' with
'd' and prints the group of six permutations starting with dabc.

In general, you want to be able to print the permutations between str[firstj and
str[lastj, where first and last are parameters. The loop generalizes to

FOR i := first TO last DO
Exchange str[first] with str[i]
Print permutations from str[first + 1] to str[last]

END

Figure 19.15 shows the completed program.

MODULE Pbox19E;
IMPORT StdLog;

PROCEDURE Exchange (VAR s: ARRAY OF CHAR; i, j: INTEGER);
VAR

temp: CHAR;
BEGIN

temp := sri];
sri] := s[j];
s[j]:= temp

END Exchange;

PROCEDURE Permute (str: ARRAY OF CHAR; first, last: INTEGER);
(* Print the permutations of str between str[first] and str[last] *)
VAR

i: INTEGER;
BEGIN

ASSERT((O <= first) & (first <= last) & (last < LEN(str$)), 20);
IF first = last THEN

StdLog.String(str); StdLog.Ln
ELSE

FOR i := first TO last DO
Exchange(str, first, i);
Permute(str, first + 1 , last)

END
END

END Permute;

PROCEDURE ComputePermutation*;
BEGIN

Permute("abc", 0, 2);
END Compute Permutation;

END Pbox19E.

Figure 19.16 shows the call tree for the case where procedure Permute is given
initial values of "abc" for s. and 0 and 2 for first and last. Procedure ComputePermu
tation calls the procedure once with first equals 0 and last equals 2. The FOR loop
executes three times. Each time it executes it makes a recursive call to Permute. So.
the node below the main program has three children.

Each child has first equals I and last equals 2. Their FOR loops execute twice, so
they each have two children. The bottom nodes have first equals 2 and last equals 2.
They have no children. They simply print the value they received in the array. The
six leaves on the tree print the six permutations.

Towers of Hanoi

The Towers of Hanoi puzzle is a classic computer science problem that is conve
niently solved by the recursive technique. The puzzle consists of three pegs and a set

Towers of Hanoi 419

Figure 19.15
A recursive procedure that
prints the permutations of the
elements in an array.

420 Chapter 19 Recursion

of disks with different diameters. The pegs are numbered 1,2, and 3. Each disk has a
hole at its center so that it can fit onto one of the pegs. The initial configuration of
the puzzle consists of all the disks on one peg in a way that no disk rests directly on
another disk with a smaller diameter. Figure 19.17 is the initial configuration for
four disks.

The problem is to move all the disks from the starting peg to another peg under
the following conditions:

• You may only move one disk at a time. It must be the top disk from one peg,
which is moved to the top of another peg.

• You may not place one disk on another disk having a smaller diameter.

The procedure for solving this problem has three parameters, n, i, and j, where

• n is the number of disks to move

• i is the starting peg

• j is the goal peg

i and j are integers that identify the pegs. Given the values of i and j, you can calcu
late the intermediate peg, which is the one that is neither the starting peg nor the goal
peg, as 6 - i - j. For example, if the starting peg is I and the goal peg is 3 then the
intermediate peg is 6 - I - 3 = 2.

To move the n disks from peg i to peg j, first check to see if n = I. If it does, then
simply move the one disk from peg i to peg j. But if it does not, then decompose the
problem into several smaller parts.

Figure 19.16
The call tree for Figure 19.15.

Figure 19.17
The Towers of Hanoi puzzle.

• Move n - 1 disks from peg i to the intermediate peg.

• Move one disk from peg i to peg j.

• Move n - 1 disks from the intermediate peg to peg j.

Figure 19.18 shows this decomposition for the problem of moving four disks from
peg 1 to peg 3.

Towers of Hanoi 421

(a) Move three disks from peg I
to peg 2.

(b) Move one disk from peg 1 to
peg 3.

(e) Move three disks from peg 2
to peg 3.

This procedure guarantees that a disk will not be placed on another disk with a
smaller diameter, assuming that the original n disks are stacked correctly. Suppose,
for example, that four disks are to be moved from peg 1 to peg 3 as in Figure 19.18.
The procedure says that you should move the top three disks from peg 1 to peg 2,
move the bottom disk from peg 1 to peg 3, and then move the three disks from peg 2
to peg 3.

In moving the top three disks from peg 1 to peg 2, you will leave the bottom disk
on peg 1. Remember that it is the disk with the largest diameter, so any disk you
place on it in the process of moving the other disks will be smaller.

In order to move the bottom disk from peg 1 to peg 3, peg 3 must be empty. You
will not place the bottom disk on a smaller disk in this step either.

When you move the three disks from peg 2 to peg 3, you will place them on the
largest disk, now on the bottom of peg 3. So the three disks will be placed on peg 3
correctly.

The procedure is recursive. In the first step, you must move three disks from peg
1 to peg 2. To do that, move two disks from peg 1 to peg 3, then one disk from peg I
to peg 2, then two disks from peg 3 to peg 2. Figure 19.19 shows this sequence.

Figure 19,18
The solution for moving four
disks from peg I to peg 3.

(a) Move two disks from peg 1 to
peg 3.

(b) Move one disk from peg I to
peg 2.

(e) Move two disks from peg 3 to
peg 2.

Using the previous reasoning, these steps will be carried out correctly. In the pro
cess of moving two disks from peg 1 to peg 3. you may place any of these two disks
on the bottom two disks of peg 1 without fcar of breaking the rules.

Figure 19.19
The solution for moving three
disks from peg I to peg 1.

422 Chapter 19 Recursion

Eventually you will reduce the problem to the basis step where you only need to
move one disk. But the solution with one disk is easy. Programming the solution to
the Towers of Hanoi puzzle is left as a problem at the end of the chapter.

Mutual recursion

Some problems are best solved by procedures that do not call themselves directly
but that are recursive nonetheless. Suppose a procedure calls procedure A, and pro
cedure A contains a call to procedure B. If procedure B contains a call to procedure
A, then A and B are mutually recursive. Even though procedure A does not call itself
directly, it does call itself indirectly through procedure B.

There is nothing different about the implementation of mutual recursion com
pared to plain recursion. Stack frames are allocated on the run-time stack the same
way, with parameters allocated first, followed by the return address, followed by
local variables.

There is one slight problem in specifying mutually recursive procedures in a
Component Pascal program, however. It arises from the fact that procedures must be
declared before they are used.

If procedure A calls procedure B, the declaration of procedure B must appear
before the declaration of procedure A in the listing. But, if procedure B calls proce
dure A, the declaration of procedure A must appear before the declaration of proce
dure B in the listing. The problem is that if each calls the other, each must appear
before the other in the listing, an obvious impossibility.

For this situation, Component Pascal provides the forward declaration, which
allows the programmer to write the first procedure heading without the rest of the
procedure. In a forward declaration, you include the heading with the formal param
eter list, but you insert the A character after the reserved word PROCEDURE. After
the forward declaration comes the declaration of the second procedure, followed by
the declaration of the first procedure with formal parameters that match the formal
parameters of the forward declaration.

Figure 19.20 is an outline of the structure of the mutually recursive procedures A
and B as just discussed:

MODULE Alpha;
CONST, TYPE, VAR of Alpha

PROCEDUREA A (x: SomeType);

PROCEDURE B (Y: SomeOtherType);
Procedure body for B, including CONST, TYPE, VAR, etc.

PROCEDURE A (x: SomeType);
Procedure body for A, including CONST, TYPE, VAR, etc.

BEGIN
etc.

END Alpha.

Figure 19.20
The structure of a program
with mutual recursion.

If B has a call to A, the compiler will be able to verify that the number and types
of the actual parameters match the formal parameters of A scanned earlier in the for
ward declaration, If A has a call to B, the call will be in the procedure body of A, The
compiler will have scanned the declaration of B because it occurs before the proce
dure body of A.

Mutual recursion is rare in practice with one notable exception, Some compilers
are based on a technique called recursive descent, which uses mutual recursion
heavily. You can get an idea of why this is so by considering the structure of Compo
nent Pascal statements. It is possible to nest an IF inside of a WHILE, which is nested
in turn inside of another IF. A compiler that uses recursive descent has a procedure to
translate IF statements and another procedure to translate WHILE statements. When
the procedure that is translating the outer IF statement encounters the WHILE state
ment, it calls the procedure that translates WHILE statements. But when that proce
dure encounters the nested IF statement, it calls the statement that translates IF
statements; hence the mutual recursion. We will leave complete examples of mutual
recursion to the problems following this chapter.

The cost of recursion

The selection of examples in this section was based on only one criterion-the abil
ity of the example to illustrate recursion. You can see that recursive solutions require
much storage for the run-time stack. It also takes time to allocate and deallocate the
stack frames. Recursive solutions are expensive in both space and time.

If you can solve a problem easily without recursion, the nonrecursive solution
will usually be better than the recursive solution. Function procedure Factorial in
Figure 13.4, the nonrecursive function to calculate the factorial, is certainly better
than the recursive factorial function of Figure 19.2. Both procedure Sum in Figure
19.6 and procedure Reverse in Figure 19.13 can easily be programmed iteratively
with a loop. The iterative versions are simpler and more efficient than the recursive
versions.

The binomial coefficient b(n, k) has a nonrecursive definition that is based on
factorials.

b(n, k)
n!

k!(n-k)!

If you compute the factorials nonrecursively, a program based on this definition may
be more efficient than the corresponding recursive program. Here the choice is a lit
tle less clear, because the nonrecursive solution requires multiplication and division
but the recursive solution requires only addition. Also, the nonrecursive version
overflows with smaller values of nand k compared to the recursive version.

Some problems are recursive by nature and can only be solved nonrecursively
with great difficulty. The problems of printing the permutations of n letters and solv
ing the Towers of Hanoi puzzle are recursive by nature. You can try to solve them
without recursion to see how difficult it would be.

The cost of recursion 423

424 Chapter 19 Recursion

Exercises

l. The function Sum in Figure 19.6 is called for the first time by procedure ComputeSum.
From the second time on it is called by itself. (aJ How many times is it called alto
gether assuming the input of Figure 195' (b) Draw a picture of the run-time stack just
after the function is called for the third time. You should have four stack frames.

including the one for ComputeSum.

2. For the following call statements from ComputeBinomCoeff

(a) StdLog.lnt(BinomCoeff(4, 1 »; (0 ra1 0)

(bJ StdLog.lnt(BinomCoeff(5, 1 »; (0 ra1 0)

(e) StdLog.lnt(BinomCoeff(3, 2)); (0 ra1 0)

(d) StdLog.lnt(BinomCoeff(4, 4»; (0 ra1 0)

(e) StdLog.lnt(BinomCoeff(4,2)); (0 ra1 0)

(1) Draw the call tree as in Figure 19.11. (2) How many times is procedure BinomCoeff
called~ (3) What is the maximum number of stack frames (including the frame for
ComputeBinomCoeff) on the run-time stack during the execution? (4) Write the
sequence of calls and returns using the indentation style as on page 414.

3. For Exercise 2. draw the run-time stack as in Figure 19.10 just before the return from
the following function calls.

(a) BinomCoeff(2, 1)
(e) BinomCoeff(1, 1)
(e) BinomCoeff(2, 1)

(b) BinomCoeff(3, 1)
(d) BinomCoeff(4, 4)

In part (el. BinomCoeff(2, I) is called twice. Draw the run-time stack just before the
return from the second call of the function.

4. Draw the calling sequence for Figure 19.13. How many times is procedure Reverse
called" What is the maximum number of stack frames (including the frame for Com
puteReverse) allocated on the run-time stack') Draw the run-time stack just after the

third call to procedure Reverse.

5. Answer the three questions below and draw the call tree as in Figure 19.16 for proce
dure Permute of Figure 19.15 for the following call statements from procedure Com
putePermutation.

(aJ Permute ("wxyz", 0, 3)
(e) Permute ("wxyz", 1,2)

(b) Permute ("wxyz", 1,3)
(d) Permute ("wxyz", 2,2)

How many times is procedure Permute called" What is the maximum number of stack
frames (including the frame for ComputePermutation) on the run-time stack during the

execution" In what order does the program make the calls and returns?

6. For Exercise 5, draw the run-time stack just after the following function calls.

(a) Permute ("xwyz", 2, 3)
(e) Permute ("wyxz", 2, 2)

(b) Permute ("wyzx", 3, 3)
(d) Permute ("wxyz", 2, 2)

7. The mystery numbers are detined recursively as

lM Y51(0) = :2

,111'51(1) = I

,11\'51(11) :2 x Myst(ll- I) + 4 x ,",,[vst(1l - 2) for n > I

(a) Draw the call tree for Mvst(4) . (b) What is the value of ,11.1'51(4)"

8. For your solution to Problem 13. draw the call tree as in Figure 19.16 for the following

Fibonacci numbers.

(a) Fib(3) (b) Fih(4) (e) Fib(5)

For each of these calls. (1) how many times is Fih called" (2) What is the maximum

number of stack frames (including the frame for the procedure linked to the dialog box

button) allocated on the run-time stack?

9. For your solution to Problem 15, (a) draw the call tree as in Figure 19.16 for the prob

lem to move four disks from peg I to peg 3. (b) How many times is your procedure

called? (e) What is the maximum number of stack frames (including the frame for the

procedure linked to the dialog box button) on the run-time stack"

10. For your solution to Problem 20, (a) draw the call tree as in Figure 19.16 for the exam
ple input given in the problem. (b) How many times is procedure Comb called')

(e) What is the maximum number of stack frames (including the frame for the proce

dure that calls Comb the tirst time) on the run-time stack?

11. For your solution to Problem 21, (a) draw the call tree as in Figure 19.16 for the exam

ple input given in the problem. (b) How many times is procedure Select called"

(e) What is the maximum number of stack frames (including the frame for the proce
dure that calls Select the tirst time) on the run-time stackry

12. Examine the Component Pascal module that follows. (a) Draw the run-time stack just
after procedure What is called for the last time. (b) What is the output of the program')

MODULE Pbox19Exercise12;
IMPORT StdLog;

PROCEDURE What (VAR word: ARRAY OF CHAR; j: INTEGER);
BEGIN

IF j > 3THEN
wordU· 1]:= word[6· j];
What(word, j . 1)

END (' ra2 ')
END What;

Exercises 425

426 Chapter 19 Recursion

PROCEDURE Mystery';
VAR

sIring: ARRAY 8 OF CHAR;
BEGIN

sIring := 'abedel';
Whal (sIring, 6);
SldLog.Slring(slring) (' ra 1 ')

END Myslery;

END Pbox19Exereise12.

Problems

13. The Fibonacci sequence is

o 2 3 5 8 13 21

Each Fibonacci number is the sum of the preceding two Fibonacci numbers. The
sequence starts with the first two Fibonacci numbers, defined as

jFib(O) = 0

Fib(l) = I

Fib(n) = Fib(n- I) + Fib(n - 2) for II > I

Design a dialog box with one input field for the value of n and one output field for the
Fibonacci number. Use a recursive function to compute Fib(n) and output it. Assert a
precondition in your function that n cannot be negative, and do nothing if the user
enters a negative value. By experimentation. determine the largest value of II that will
cause an overflow. Implement a precondition in the function and a test in the calling
procedure to prevent the overflow.

14. Design a dialog box with two integer input fields. one field that outputs a message, and
one button labeled GCD. Use a recursive function to output the greatest common divi
sor in the message field. Assert a precondition in your function that at least one param
eter must be nonzero. If the user enters two negative numbers display an appropriate

message in the message field.

15. Write a program in Component Pascal that prints the solution to the Towers of Hanoi
puzzle. It should present the user with a dialog box with three input fields-the number
of disks in the puzzle. the peg on which all of the disks are placed initially, and the peg
on which the disks are to be moved. Display the solution in a new window. For exam
ple, if the user requests the solution for moving three disks from peg 3 to peg 2, your
window should display the following solution.

Move a disk from peg 3 10 peg 2.
Move a disk from peg 3 10 peg 1.
Move a disk from peg 2 10 peg 1.
Move a disk from peg 3 10 peg 2.
Move a disk from peg 1 10 peg 3.
Move a disk from peg 1 to peg 2.
Move a disk from peg 3 10 peg 2.

Assert a precondition in your function that the number of disks must be greater than
zero and that the peg numbers must be in 1..3. If the user violates the preconditions
write an appropriate error message on the window. Pass the formatter as a parameter as

in Figure 12.2.

Hi. (Silas Smith) Write the recursive function procedure

PROCEDURE NumDiskMoves (n: INTEGER): LONGINT

that returns the number of moves it takes to transfer n disks in the Towers of Hanoi

puzzle from one peg to another one. Output the number of moves after the instructions
for moving the disks in Problem 15. Do not use any global variables in NumDiskMoves.
and do not change its parameter list as specified above.

17. Write a recursive version of RotateLeft in Figure 15.7. To rotate n items left, rotate the
first n - 1 items left recursively, then exchange items n - 2 and n - 1. For example, to
rotate the five items

5.0 -2.3 7.0 8.0 0.1

to the left, recursively rotate the first four items to the left,

-2.3 7.0 8.0 5.0 0.1

then exchange items four and five.

-2.3 7.0 8.0 0.1 5.0

Do not use a loop. Test your procedure with input/output as in Figure 15.7. Your pro

gram must work with the empty list.

18. Write a function

PROCEDURE Maximum (IN v: ARRAY OF INTEGER; last: INTEGER): INTEGER

that returns the largest value of the integers in v between v[OJ and v[lastJ. Use recursion
without a loop. Test your procedure with a tool dialog box containing one button to
load an array and another to compute the maximum. Display the maximum in a read
only field in the dialog box. Assert a precondition in your function that v contains at
least one value and verify in the calling procedure that the precondition is not violated.
Also assert an appropriate precondition on the upper bound of last.

19. Write a recursive version of boolean function IsPalindrome described in Chapter 15,
Problem 29. You will need to modify the parameter list. Do not use a loop.

20. Write a program to print all combinations of n letters taken r at a time. As opposed to
permutations, the order of the elements in combinations is irrelevant. For example, the
combinations of six letters taken four at a time are the possible sets of four letters from

abcdef as follows:

Problems 427

428 Chapter 19 Recursion

abcd bcde cdef
abce bcdf
abcf bcef
abde bdef
abdf
abef
acde
acdf
acef
add

The solution for selecting four letters from abcdef is to first output 'a' followed by the
solution for selecting three letters from bcdef. Then output 'b' followed by the solution
for selecting three letters from cdef. Then output 'c' followed by the solution for
selecting three letters from def.

The following is the parameter list for a procedure to output the combinations.

PROCEDURE Comb (prefix: ARRAY OF CHAR; n, r: INTEGER; suffix: ARRAY OF CHAR);
(* Prints the prefix string followed by the combination ')
r of n characters taken r at a time from the suffix string. *)
(' Assumes suffix contains n characters. *)

To produce the previous list of combinations, the main program called

Comb("", 6, 4, "abcdef")

The top level recursive calls were

Comb("a", 5, 3, "bcdef")
Comb("b", 4, 3, "cdef")
Comb("c", 3, 3, "def")

Before each recursive call you will need to concatenate the first character from the suf
fix onto the last character of the prefix, then strip the first character from the suffix. Test
your program with a dialog box for the user to enter a string of up to seven characters
and the number of characters from the string to output. Before calling procedure Comb,
verify that the number of characters to output is not greater than the length of the
string. When the user clicks the compute button, output the combinations to the Log.

21. Write a program to print n selections of 111 letters with duplication. As opposed to the
elements in combinations of Problem 20. the elements in selections can be duplicated.
For example, the two selections of four letters with duplication from abcd are as fol
lows:

aa

ab
ac

ad

ba

bb
bc

bd

ca
cb
cc
cd

da
db
dc

dd

The solution for selecting two letters from abcd is first to output 'a' followed by the

solution for selecting one letter from abed. Then output 'b' followed by the solution for
selecting one letter from abed. Next output 'c' followed by the solution for selecting

one letter from abed. Finally output 'd' followed by the solution for selecting one letter
from abcd.

The following is the parameter list for a procedure to output the ,elections.

PROCEDURE Select (prefix: ARRAY OF CHAR; n: INTEGER: IN suffix: ARRAY OF CHAR);
(,Prints the prefix string followed by the selection ')
(' of n characters taken from the suffix string. ')

To produce the previous list of selections, the main program called

Select("", 2, "abcd")

The top level recursive calls were

Select("a", 1, "abcd")
Select("b", 1, "abcd")
Select("c", 1, "abcd")
Select("d", 1, "abcd")

Before each recursive call you will need to concatenate one character from the suffix
onto the last character of the prefix. Test your program with a dialog box for the user to
enter a string of up to seven characters and the number of characters from the string to
output. Before calling procedure Select, verify that the number of characters to output
is not negative. When the user clicks the compute button, output the selections to the
Log.

22. The determinant of an n x n matrix is defined recursively in terms of the determinants
of (n - 1) x (fl - I) matrices. For example, the 3 x 3 determinant

647

025

891

is defined recursively in terms of the 2 x 2 determinants as follows:

In general, the coefficients that multiply the smaller determinants come from the first
row of the larger determinant and alternate in sign starting with positive. Each smaller
determinant comes from the larger one by eliminating the first row and the column of
the coefficient. For example, the second determinant comes from eliminating the first
row and the second column of the large determinant, because the coefficient. 4. is in the
second column. The determinant of a I x I matrix is simply the value of the single
element. Write a program that inputs a matrix of integer values from the focus window
and outputs the value of its determinant to the Log. The determinant value of the above
matrix is -210.

Problems 429

430 Chapter 19 Recursion

23. At the start of any particular day. a machine is either broken down or in operating con
dition. If the machine is broken at the start of day n, the probability is p that it will be
successfully repaired and in operating condition at the start of day (n + I) and (I - p)
that it will still be broken. If the machine is in operating condition at the start of day n,
the probability is q that it will have a failure causing it to be broken down at the start of
day (n + I) and (I - q) that it will still be in operating condition. At the start of day
one, the machine is in operating condition.

The problem is to calculate the probability that the machine is in operating condition
on day m. That state can occur in two ways, depending on its state the previous day.
Either the machine was broken on the previous day and was repaired with probability
p, or it was operating on the previous day and remained operating with probability
(I - q) . Mathematically,

Prob(Operating on day m) = pProb(Broken on day (m-I»+(l-q)Prob(Operatingonday (m-I»

Similarly

Prob(Broken on day m) = (I - p)Prob(Broken on day (m - I» + qProb(Operating on day (m - I»

Notice that these two relationships are mutually recursive. What is the basis of the
recursion?

(a) Declare ProbOperate and ProbBroken, two mutually recursive functions. Use them
in a program that inputs the day, m, and probabilities, p and q, and outputs the probabil
ity that the machine is operating on day m. (b) Draw the call tree for m = 3. (e) Use
your program to calculate the probability that the machine is operating on days m = I,
2, 3, 4, 5 if p = 0.4 and q = 0.2. Plot your data. Experiment with different values of p
and q and discuss your results.

24. (Gregory Boudreaux) The sum of the first four I 's is

~

}: 1+1+1+1=4
i= I

The sum of the first four integers is

-+

}:i = 1+2+3+4 = 10
i = I

The sum of the first four squares is

4

}:i" 1+4+9+16=30
i = I

In general, the sum of the first n powers to the j is

n n k-I

2:/ n 2: / -I - 2: 2: iH

i = I i ~ I k -::::::.?i ~ I

which is a recursive relationship. Defining the function sum(n, j) to be the sum of the

first 11 terms to the power j,

sum(/!, j) 2: /
i = I

the recursive relationship is expressed as

lsum(n, 0) = /J

sum(l, /) = I

sum(l1, j) /J • SUm(l1, } - 1)- 2: sum(k-I,j-I)

k=2

(al Write a recursive function procedure

PROCECURE Sum (n, j: LONGINT): LONGINT

for 11 > I, i > 0

that returns the sum of the first /J terms to the power j. Test your program with a dialog
box containing two input fields for 11 and j, and one output field for the sum. (b) Draw
the call tree for the evaluation of Sum(3, 2). Show the value returned for each call on
the call tree and verify that the final value returned is the sum of the first three squares.

Problems 431

.- Chapter20

1iI~
Recursive Searching and Sorting

Any algorithm that uses a loop to perfonn its processing can be written without a
loop using recursion. In particular. the iterative searching and sorting algorithms we
learned in Chapter 17 can all be written recursively. This chapter presents a recur
sive version of the binary search and a taxonomy of sorting algorithms based on
recursIOn.

Recursive binary search

Figure 20.1 shows the input window and dialog box for a program that tests a recur
sive version of the binary search. As far as the user is concerned. there is no differ
ence between a recursive and an iterative version of the search. The user loads a
vector of values into a one-dimensional array. enters a number to search for, and
clicks the LookUp button. The dialog box responds with the position of the number
in the vector.

D ~untitled 1 ~ 08

1 1 22 33 44 55 66

.. III

o ~« Binary Search »~"" 13
lo a 0-------,

Number of Items:

Seorch-------,

SeCln:hfor ~
Location: 4

II loot Up B

The idea of a recursive solution to a problem is to assume that the procedure can
call itself to solve a smaller problem. With the binary search. the smaller problem is
the same search carried out on either the first half or second half of the list. The
parameter list of the procedure, therefore, must include the indices between which
the search for the smaller problem is carried out. The complete procedure heading is

PROCEDURE Search (IN v: ARRAY OF INTEGER; first, last, srchNum: INTEGER;
OUT i: INTEGER; OUT fnd: BOOLEAN);

Figure 20.1
The input window and dialog
box for testing a binary
search algorithm.

434 Chapter 20 Recursive Searching and Sorting

v is the array to search, first and last are the indices in v between which the search is
to take place, and srchNum is the number to be searched. If srchNum is in the list,
the procedure sets fnd to true and i to its location. Otherwise, it sets fnd to false. Fig
ure 20.2 shows the procedure in a module that implements the dialog box in Figure
20.1.

Procedure Search contains no loop. The test for the basis is whether first is
greater than last. If it is, the indices have crossed as shown in Figure 16.11 (d), and
the item is not in the list. Further recursive calls are not needed and fnd can be set to
false. Otherwise, the midpoint between first and last is computed, and srchNum is
compared to v[mid]. Depending on the result of this comparison, a recursive call is
made on the first half of the list, or on the last half of the list, or srchNum was found,
in which case fnd is set to true and no further recursive calls are necessary.

MODULE Pbox20A;
IMPORT Dialog, TextModels, TextControliers, PboxMappers, PboxStrings;
VAR

dO: RECORD
numltems-: INTEGER;
searchNumber*: INTEGER;
indexString-: ARRAY 16 OF CHAR;

END;
list ARRAY 1024 OF INTEGER;

PROCEDURE LoadList*;
VAR

md: TextModels.Model;
cn: TextControliers.Controller;
sc: PboxMappers.Scanner;

BEGIN
cn := TextControliers.FocusO;
IF cn # NIL THEN

md := cn.text;
sc. ConnectTo(md);
sC.ScanlntVector(list, d.numltems)

END;
Dialog.Update(d)

END LoadList;

Figure 20.2
A recursive version of the
binary search algorithm.

The Merritt sort taxonomy 435

PROCEDURE Search (IN v: ARRAY OF INTEGER; first, last, srchNum: INTEGER;
OUT i: INTEGER; OUT fnd: BOOLEAN);

VAR Figure 20.2
mid: INTEGER; Continued.

BEGIN
ASSERT((O <= first) & (last < LEN(v)). 20);
IF first> last THEN

fnd:= FALSE
ELSE

mid := (first + last) DIV 2;
IF srchNum < v[midj THEN

Search(v, first, mid - 1, srchNum, i, fnd)
ELSIF srchNum > v[midj THEN

Search(v, mid + 1, last, srchNum, i, fnd)
ELSE

fnd :=TRUE;
i :=mid

END
END

END Search;

PROCEDURE LookUp';
VAR

j: INTEGER;
found: BOOLEAN;

BEGIN
Search(list, 0, d.numltems - 1, d.searchNumber, j, found);
IF found THEN

PboxStrings.lntToStringO, 1, d.indexString)
ELSE

d.indexString := "No entry"
END;
Dialog. Update(d)

END LookUp;

BEGIN
d.numltems := 0;
d.searchNumber := 0; d.indexString := ""

END Pbox20A.

The Merritt sort taxonomy

The idea of a recursive sort is to sort a large list assuming you can recursively sort a
smaller part of the list. Figure 20.3 shows the general approach. Suppose you have a
list of elements. L. To sort the list, you split it into two sublists, LI and L2. The sub
lists are each smaller than the original list. L. The recursive idea lets you assume that
you have the solution to the problem of sorting the smaller lists. So you recursively
sort L I, producing the sorted sublist L I'. Then you recursively sort L2, producing
the sorted sublist L2'. The last step is to join the two sorted sublists, LI' and L2', into
the final sorted list, L'.

436 Chapter 20 Recursive Searching and Sorting

~
QQ ~

~ Sort Sort ~

~l' . y2' Jam

CD

Merge sort and quick sort

There are two basic sort algorithms, which differ in the methods they use to perform
the split and the join. The two are the merge sort algorithm and the quick sort algo
rithm, shown in Figure 20.4. The classification of sort algorithms into these two
families is known as the Merritt taxonomy after Susan Merritt, who proposed it in
1985.

r--<73162854~
Split

r--<73162854~
Split

~ ~
~ Sort sort~

~ ~
~ Sort sort~

~367 y458
Join ~234 :'¥678 Join

(12345678) (12345678)

(a) The merge sort algorithm. (b) The quick sort algorithm.

The figure shows the original unsorted list. L. as the eight values

7 3 6 2 8 5 4

for both algorithms. The final list for both is

2 3 4 5 678

which is the sorted list, L'.

Figure 20.3
The general sort algorithm in
the Merritt sort taxonomy.

Figure 20.4
The two basic sort algorithms
in the Merritt sort taxonomy.

The merge sort algorithm performs a simple split. It takes Ll as the first half of The idea behilld /IIelX" sort

the list

7 3 6

and L2 as the second half of the list

Insertion sort and selection sort 437

2 8 5 4

It recursively sorts the sublists, producing the sorted sub list Ll' as

367

and the sorted sub list L2' as

2 4 5 8

The last step is to merge these two sublists into a single sorted list, L'. You can see
that the split of L into Ll and L2 is easy. You simply take the left half of Las Ll and
the right half as L2. On the other hand, the join is hard. It requires a loop to cycle
through the sublists, selecting the smallest number at each step to place in the
merged list.

The quick sort algorithm splits the original list, L, such that every element in the The idea behind quick sort

sublist Ll is at most the median value, and every element in the sub list L2 is at least
the median value. It follows that every element in LI will be less than or equal to
every element in L2. The sub list Ll is

3 2 4

and the sublist L2 is

7 6 8 5

The algorithm sorts Ll recursively into the list LI'

234

and L2 recursively into the list L2'

567 8

Then it joins LI' and L2' into the final sorted list, L'. You can see that the split of L
into LI and L2 is hard. It requires a loop that somehow compares the elements in the
list with each other and moves the smaller elements to the left and the larger ones to
the right. On the other hand, the join is easy. It does not require any further compar
isons in a loop, the way the join in the merge sort does.

Insertion sort and selection sort

Figure 20.5 shows the special cases of the merge sort and quick sort when the split
of n elements subdivides the list such that LI has n - I elements and L2 has one ele
ment.

When L2 has a single element, the merge sort algorithm simply picks the right
most element in the list during the split operation. In Figure 20.5(a), the rightmost

438 Chapter 20 Recursive Searching and Sorting

element is 4 which is split off into L2. Ll is the sub list

7 3 6 2 8 5

The algorithm recursively sorts the sublist Ll into

2 3 5 678

but does not need to sort L2 because L2 has only one element. Then, it joins Ll' and

~73162854~
Split

qJ
Sort ~

~235678 9 Join

(12345678)

(a) The insertion sort algorithm.

r--C73162854~
• ' Split . •

s~
~234567 ~ Join

(12345678)

(b) The selection sort algorithm.

L2' by inserting the single element from L2' into LI'. The insertion process requires
a simple loop to shift the lower elements down one slot to make room for the ele
ment from L2. The merge sort with a split of one element is called the insertion sort.
The insert operation is really a merge of two lists where one of the lists has a single
element.

When L2 has a single element, the quick sort algorithm must select the largest
value from L to put in L2. Figure 20.5(b) shows that the largest element from the
original list is 8. After it is selected from the original list, L I is left as

7 3 6 2 4 5

The selection process requires a simple loop to find the index of the largest value.
After the index is computed, an exchange puts the largest value in L2. In this exam
ple, the largest value 8 is exchanged with 4. The algorithm sorts the sublist Ll into

234567

but it does not need to sort L2 because L2 has only one element. The quick sort with
a split of one element is called the selection sort.

You can program the selection and insertion sorts recursively or nonrecursively.
Figure 20.6 is a nonrecursive trace of the single-element sort algorithms with the
same original unsorted list, L, as in the previous figure. The shaded areas are those
regions that are guaranteed to be in order after each pass of the algorithm.

Figure 20.5
Sorting with a split of one
element.

Nonreclirsive versions of tlze
insertioll sort and selection
sort

Quick sort 439

Initial list 7 3 6 2 8 5 4 Initial list 1 7 3 6 2 8 5

Pass I. insert 3 3 7 6 2 8 5 4 Pass I. select 81 7 3 6 2 4 5

Pass 2. insert I 3 7 6 2 8 5 4 Pass 2. select 71 5 3 6 2 4 7

Pass 3. insert 6 3 6 7 2 8 5 4 Pass 3. select 61 5 3 4 2 6 7

Pass 4. insert 21 2 3 6 7 8 5 4 Pass 4. select 51 2 3 4 5 6 7

Pass 5. insert 81 2 3 6 7 8 5 4 Pass 5, select 41 2 3 4 5 6 7

Pass 6, insert 51 2 3 5 6 7 8 4 Pass 6. select 31 2 3 4 5 6 7

Pass 7, insert 41 2 3 4 5 6 7 8 Pass 7. select 21 2 3 4 5 6 7

(a) The insertion sort algorithm. (b) The selection sort algorithm.

The nonrecursive version of the insertion sort begins by inserting 3 into the sub- Figure 20.6
list Nonrecursive traces of the

single element sort
7 algorithms.

producing the sorted sub list

3 7

Then it inserts I into this list. producing the sorted sublist

3 7

and so on.
Procedure Sort in Figure 16.12 is a nonrecursive implementation of the selection

sort. which is traced in Figure 16.13. Figure 20.6(b) is also a trace of the nonrecur
sive selection sort, but with the same list as in Figure 20.6(a). The nonrecursive sort
begins by selecting 8 and exchanging it with the last element of the list. Then, it
selects 7 and exchange it with the penultimate element, and so on.

Figure 20.7 summarizes the four basic sort algorithms. Many other sort algo
rithms have been invented, but most fall into one of the two basic families, either
merge sort or quick sort.

Quick sort

Figure 20.4(b) shows the ideal quick sort split. That figure had an original list, L, of
eight items. The algorithm split L exactly in half, with four items in LI and four in
L2. The median value of a list of items is that value, m. such that there are as many
items less than m as greater than m. If you knew the median value. you could split
the list exactly in half. Unfortunately, the only way to determine the median value is

4

8

8

8

8

8

8

8

440 Chapter 20 Recursive Searching and Sorting

to sort the list and pick the middle item. But you need the median value to sort the
list in the first place. The only thing you can do in the face of this dilemma is to be
satisfied with a less-than-ideal split.

Figure 20.8 shows the dialog box and input focus window for the quick sort algo
rithm. As with the recursive version of the binary search, it is impossible for the user
to tell whether the sort is done iteratively or recursively. Figure 20.9 is an implemen
tation of the quick sort algorithm.

90 20 80 50 40 10 95 60 30 70 ~

41' ':.:~::<::' •• ,~

90 20 80 50 40
10 20 30 40 50

10
60

95 60
70 80

30
90

"," ,"

MODULE Pbox20B;

x

70 iI 95

.uJ

IMPORT Dialog, TextModels, TextViews, Views, TextControliers, PboxMappers;
VAR

dO: RECORD
numltems-: INTEGER;

END;
list: ARRAY 1024 OF INTEGER;

Figure 20.7
Summary of the sort
algorithms.

Figure 20.8
The input and output for the
quick sort algorithm.

Figure 20.9
An implementation of the
quick sort algorithm.

PROCEDURE LoadList*;
VAR

md: TextModels.Model;
en: TextControliers.Controller;
sc: PboxMappers.Scanner;

BEGIN
cn := TextControliers.FocusO;
IF cn # NIL THEN

md := cn.text;
sc.ConneetTo(md);
sc.ScanlntVector(list, d.numltems);
Dialog. Update(d)

END;
END LoadList;

PROCEDURE QuickSort (VAR v: ARRAY OF INTEGER; first, last: INTEGER);
(* Sorts the items of array v between v[first] and v[last]. *)
VAR

i, j: INTEGER;
key: INTEGER;
temp: INTEGER;

BEGIN

Quick sort 441

Figure 20.9
Continued.

ASSERT((O <= first) & (first <= last) & (last < LEN(v» OR (last < 0) & (0 <= first), 20);
IF first < last THEN

key := v[(first + last) DIV 2];
i := first;
j:= last;
(* Invariant 1: key <= v[j + 1 .. last]. *)
(* Invariant 2: v[first..i - 1] <= key. *)
(* Invariant 3: if i <= j, there exists kin [first..j] such that v[k] <= key. *)
(* Invariant 4: if i <= j, there exists k in [i .. last] such that key <= v[k]. *)
WHILE i <= j DO

WHILE v[i] < key DO
INC(i)

END;
WHILE key < vOl DO

DECm
END;
IFi<=jTHEN

temp:= vOl;
v[j] := veil; (* Establish invariant 4. *)
v[i] := temp; (* Establish invariant 3. *)
INC(i); (* Establish invariant 2. *)
DECm (* Establish invariant 1. *)

END
END;
QuickSort (v, first, i - 1);
QuickSort (v, i, last)

END
END QuickSort;

442 Chapter 20 Recursive Searching and Sorting

PROCEDURE SortList*;
VAR

md: TextModels.Model;
vw: TextViews. View;
fm: PboxMappers.Formatter;

BEGIN
md := TextModels.dir.New();
fm.ConnectTo(md);
fm.writelntVector(list, d.numltems, 4); fm.writeLn;
QuickSort(list, 0, d.numltems - 1);
fm.writelntVector(list, d.numltems, 4); fm.writeLn;
vw := TextViews.dir.New(md);
Views.OpenView(vw)

END SortList;

BEGIN
d.numltems := 0

END Pbox20B.

The precondition for procedure QuickSort has two disjuncts. The first disjunct

(0 <= first) & (first <= last) & (last < LEN(v))

is for the case of a nonempty array, and the second disjunct

(last < 0) & (0 <= first)

is for the case of an empty array. If there are no items in the focus window
d.numltems gets 0 when list is scanned. Because the call from procedure SortList is

QuickSort(list, 0, d.numltems - 1)

formal parameter first gets 0 and formal parameter last gets -I. The second disjunct
is true, which allows procedure QuickSort to handle the case of an empty array.

Procedure QuickSort picks the middle item of the unsorted list and hopes it is
close to the median value. The value it picks is called the key. If the key is less than
the true median, list L I will contain fewer items than list L2. If the key is greater
than the true median, Ll will contain more items.

You could be extremely unlucky and have the key be the smallest value in the list,
in which case LI will have only one value. Or if the key is the largest value, L2 will
have only one value. On the other hand, you could be extremely lucky and have the
key be the true median. You must be content to let the key be what it will be, and
accept the average behavior of the algorithm.

Figure 20.10 is a trace of the first call to procedure QuickSort in Figure 20.9. Pro
cedure SortList calls the QuickSort with a value of 0 for first and 9 for last. As Figure
20.10(a) shows, QuickSort initializes i to first and j to last. It computes key as 40.

The WHILE loop splits the list into sublists LI and L2. The two nested WHILE
loops increase i and decrease j until i finds the value 90, which is greater than key,
and j finds the value 30, which is less than key. Because i is less than or equal to j, 90

Figure 20.9
Continued.

(a) first = 0
last = 9

key:=40

(b) Increase i
Decreasej

(c) Swap
INC(i)

DECO)

(d) Increase i
Decrease j

(e) Swap
INC(i)

DECO)

(0 Increase i
Decreasej

(g) Swap
INC(i)

DECO)

(h) QS (0, 3)

(i) QS (4, 9)

~l ~l ~l ~l ~l ~l ~l m ~l ~l

I 90 I 20 I 80 I 50 I 40 I 10 I 95 I 60 I 30 I 70 I

t t

I 90 I 20 I 80 I 50 I 40 I 10 I 95 I 60 I 30 I 70 I

t t

I 30 I 20 I 80 I 50 I 40 I 10 I 95 I 60 I 90 I 70 I

t t

I 30 I 20 I 80 I 50 I 40 I 10 I 95 I 60 I 90 I 70 I

t t

I 30 I 20 I 10 I 50 I 40 I 80 I 95 I 60 I 90 I 70 I

t t

I 30 I 20 I 10 I 50 I 40 I 80 I 95 I 60 I 90 I 70 I

t t

I 30 I 20 I 10 I 40 I 50 I 80 I 95 I 60 I 90 I 70 I

t t

I 10 I 20 I 30 I 40 I 50 I 80 I 95 I 60 I 90 I 70 I

I 10 I 20 I 30 I 40 I 50 I 60 I 70 I 80 I 90 I 95 I

Quick sort 443

Figure 20.10
A trace of the first call to
QuickSort in Figure 20.9.

444 Chapter 20 Recursive Searching and Sorting

is to the left of 30. So they need to be exchanged. Figure 20.1 O(c) shows the result of
the exchange. Afterward, QuickSort increments i by I and decrements j by I.

Because i is still to the left of j, the loop repeats. Figure 20.1 O(d) shows i increas
ing to find 80 and j decreasing to find 10. j skips over 60 and 95 because they are
greater than key. i is still to the left of j. Figure 20.1 O(e) shows the exchange of 10
and 80, the increment of i, and the decrement of j.

The algorithm has four loop invariants as shown in the comments. They are
described more formally in the next section. The net effect of the four invariants is to
establish the single invariant:

• Every element between v[first] and v[i - 1] is less than or equal to every element
between v[j + 1] and v[last].

In Figure 20.10(e), the loop invariant means that each of the values (30, 20, 10) is
less than or equal to each of the values (80, 95, 60, 90, 70).

The initializing statements make the loop invariant true the first time. Because
they initialize i to first, there are no elements between v[first] and v[first - 1]. Because
they initialize j to last, there are no elements between v[last + 1] and v[last]. Because
there are no elements in the left interval and no elements in the right interval, every
element in the left interval is less than or equal to every element in the right interval.

The statements in the body of the WHILE loop keep the invariant true. They
increase i and/or decrease j, in effect widening the left and right intervals. When i
finds a value greater than or equal to key and j finds a value less than or equal to key,
you know that i's value is greater than or equal to j's value. The exchange keeps the
invariant true.

Figure 20.1O(g) shows the last exchange. QuickSort swaps 50 and 40. After it
increments i and decrements j, i has the value 5 and j has the value 4. So j is to the left
of i, and the loop terminates.

The assertion in the listing follows from the loop invariant and the termination
condition. Ll is the sub list between v[first] and v[j]. L2 is the sub list between v[i] and
v[last].

Figure 20.1O(h) and (i) shows the result of the recursive calls to QuickSort. The
abbreviation QS (0, 3) stands for the procedure call

QuickSort (v, first, i - 1)

when first has the value 0 and i has the value 4. Similarly, QS (4, 9) stands for the
procedure call

QuickSort (v, i, last)

when i has the value 4 and last has the value 9.
Each recursive call to QuickSort splits a smaller list. The first recursive call splits

the list

30 20 10 40

with a first of 0 and a last of 3. The second recursive call splits the list

50 80 95 60 90 70

with a first of 4 and a last of 9. Each of these executions produces a trace like that of
Figure 20.10.

What is the structure of the call tree of QuickSort? The listing shows that the pro
cedure makes either two recursive calls or no recursive calls, depending on the size
of L. Therefore, each node in the call tree will have either two children or no chil
dren. For the values listed in Figure 20.8, you would need to do a trace of the split at
each call. If you do the traces, you will see that the call tree is structured as shown in
Figure 20.11.

The program makes a total of 19 calls to QuickSort, including the initial call from
SortList. The figure shows that QS (4, 9) splits the list of six elements into Ll, with
five elements, and L2, with one element. It does not call itself recursively for L2, but
it does for L 1. QS (4, 8) makes a more even split. Its list L has five items, from v[4] to
v[8]. It splits it into sublist Ll, from v[4] to v[6], and L2, from v[7] to v[8].

Using the technique of Figure 19.12, you can determine from the call tree that the
order of calls and returns is as follows:

Quick sort 445

Figure 20.11
The call tree for QuickSort in
Figure 20.9.

446 Chapter 20 Recursive Searching and Sorting

SortList
Call QS (0, 9)

Call QS (0, 3)
Call QS (0, 1)

Call QS (0, 0)

Return to QS (0, I)
Call QS (I, I)

Return to QS (0, I)

Return to QS (0, 3)

Call QS (2, 3)
Call QS (2, 2)

Return to QS (2, 3)
Call QS (3, 3)

Return to QS (2, 3)
Return to QS (0, 3)

Return to QS (0, 9)
Call QS (4,9)

Call QS (4, 8)

Call QS (4, 6)
Call QS (4, 5)

Call QS (4,4)
Return to QS (4, 5)

Call QS (5, 5)
Return to QS (4, 5)

Return to QS (4, 6)
Call QS (6, 6)

Return to QS (4,6)
Return to QS (4, 8)

Return to QS (4. 9)
Call QS (9, 9)

Return to QS (4. 9)
Return to QS (0, 9)

Return to SortList

You can also see from Figure 20.11 that the maximum number of stack frames on
the run-time stack is seven, including the stack frame for procedure SortList. The
maximum occurs twice, once after the call to QS(4, 4) and then again after the call
to QS(5, 5).

* Correctness of quick sort

The quick sort procedure with the outer loop invariant is written in GCL as follows.

procedure QuickSort(v,first.last);
if first < last--+

fi

key := v[(first + last) div 2]; i := first;j:= last;
{('Vk I j+ I skslast: keysv[k]) /I

('Vk I firstsksi-I: v[k]skey)/\
(isj=(3k I firstsksj: v[k]skey» /I

(isj=(3k I iskslast: keysv[k]))}
do i s j--+

dov[i]<key--+i:=i+lod;
do key < v[j] --+ j := j - I od;
if is j --+ v[i], vU] := vUJ. v[i]; i,j := i + I,j - I
o i > j --+ skip

fi
od;
QuickSort(v,first,i - I);
QuickSort(v,i .last)

first'" last --+ skip

end QuickSort

To prove the correctness of the quick sort algorithm requires several steps. This sec
tion outlines the steps and leaves the details of the proof to the exercises.

Step I: The quick sort algorithm is recursive. Therefore, the proof of its correct
ness is a proof by mathematical induction. The first step in a proof by mathematical
induction is to prove the base case. The base case occurs when the segment of v to
be sorted is empty or when it has one element. The complete formal specification for
QuickSort including the precondition from the ASSERT statement in Figure 20.9 is

{(O s first s last < Leney) v last < 0 s first) /I v = v}
v:= ?
{perm(v,V,first,last) /I ('Vi I first s i <last - 1 : v[i] s v[i + I])}

The first disjunct in the precondition is for the case when the segment has one or
more elements. The second disjunct is for the case when the original array to be
sorted has no elements. Use the precondition with the base case to prove the post
condition.

Step 2: The second step in a proof by mathematical induction is to show that the
correctness for a small number of elements implies the correctness for a larger num
ber of elements. With QuickSort, you assume that the recursive call

QuickSort(v,first,i - I)

will correctly sort v between first and i-I, and that the recursive call

QuickS ort(v,i ,last)

will correctly sort v between i and last. For the recursion to terminate, these calls
must be for segments that are smaller than the original segment [first .. last]. If

Quick sort 447

448 Chapter 20 Recursive Searching and Sorting

i = first then the second recursive call will be for a segment that is the same
length as the original segment, and if i = last + I then the first recursive call will
be for a segment that is the same length as the original segment. The second step is
to prove that neither of these cases can happen, that is, that first < i:s last, so the
recursion will terminate.

Step 3: The idea behind the quick sort algorithm is to partition the segment
[first .. last] into two subsegments [first .. i - I] and [i .. last] such that every ele
ment in [first .. i - I] is less than or equal to every element in [i . .last]. Assuming
that the recursive calls correctly sort the subsegments the entire segment will be
sorted. The third step is to prove that every element in the first subsegment is less
than or equal to every element in the second subsegment. That is, you must prove
that

(Vk I first:S k < i : (VI I i:s I <last: v[k]:s v[l]))

before the recursive calls are made. The recursive calls are made just after the outer
do loop. So, for this part of the proof you may assume the four loop invariants and
the negation of the loop condition.

Step 4: The previous step assumed the loop invariants. The fourth step is to prove
the loop invariants from the precondition and the initialization statements just before
the outer do loop.

Step 5: The fifth step is to prove that one execution of the outer do loop maintains
the loop invariants.

Step 6: The sixth step is to prove that the outer do loop terminates. You can prove
that it terminates with the help of the loop invariants.

Merge sort

Unlike the quick sort algorithm, merge sort splits L exactly in half every time. Fig
ure 20.12 shows the split part of the merge sort algorithm. The parameters are the
same as those for procedure QuickSort and the procedure is called the same way.
The merge part of the algorithm is left as a problem for the student.

PROCEDURE MergeSort (VAR v: ARRAY OF INTEGER; first, last: INTEGER);
(* Sorts the items of array v between v[first] and v[las!]. *)
VAR

i, j, k, mid: INTEGER;
temp: ARRAY 128 OF INTEGER;

BEGIN

Figure 20.12
An implementation of the
merge sort algorithm.

ASSERT((O <= firs!) & (first <= last) & (last < LEN(v)) OR (last < 0) & (0 <= first), 20);
IF first < last THEN

mid := (first + last) DIV 2;
MergeSort(v, first, mid);
MergeSort(v, mid + 1, last);
(* Problem for the student to join v[firsLmid] and v[mid + 1 .. last]*)

END
END MergeSort;

Merge sort has a problem that quick sort does not have. To merge two parts of
one list into a second list requires storage for the second list. To perform the merge
you must allocate storage for the second list as a local array variable, which is the
purpose of temp in Figure 20.12. You then merge the two sublists into the second list
and copy the second list back into the original.

Figure 20.13 shows a trace of the top-level call to MergeSort of Figure 20.12. The
split is the simple computation of local variable mid. The recursive calls are at the
beginning of the algorithm in contrast to the recursive calls of QuickSort, which are
at the end.

(a) first = 0
last = 9
mid :=4

(b) MS (0,4)

(e) MS (5, 9)

(d) Problem for
the student.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

90 20 80 50 40 10 95 60 30 70

20 40 50 80 90 10 I 95 I 60 I 30 70

I 20 I 40 I 50 I 80 I 90 10 30 60 70 95

10 20 30 40 50 60 75 80 90 95

Figure 20.14 shows a trace of the join operation that is left as a problem for the
student. Each part of the figure shows the v array located above the temp array. The
idea is to have one FOR loop with control variable k that increments from first to last
and denotes the index of temp that receives a value from v. At each iteration of the
loop, temp[kj will get either v[iJ, after which i is incremented, or vOl, after which j is
incremented. The figure does not show seven steps in the loop that occur between
parts (c) and (d). At the conclusion of the merge from array v to array temp, the ele
ments from temp[firstj to temp[lastj must be copied back into array v from v[first] to
v[last].

Figure 20.15 is the call tree for the values in Figure 20.13(a). The values in paren
theses are the values of parameters first and last. The leaf nodes have first equal to
last, indicating that a subarray of one element needs to be sorted. The algorithm does
no processing in those cases, but just returns to the calling procedure.

You should be able to visualize the order in which the merges are performed from
Figure 20.15. Figure 20.16 show the merges in the order they occur for the left half
of the array.

Merge sort 449

Figure 20.13
A trace of the top-level call to
MergeSort in Figure 20.12.

450 Chapter 20 Recursive Searching and Sorting

(a) FOA k := first
I 20 I 40 I 50 I 80 I 90 I 10 I 30 I 60 I 70 I 95 I

t
k

; ;
(b) temp[k] := v(j];

I 20 I 40 I 50 I 80 I 90 I ~O I 30 I 60 I 70 I 95 I INCO)

•
I 10 I

t
k

; ;
(c) temp[k] := vIi];

I 2~ I ~ I 50 I 80 I 90 I 10 I 30 I 60 I 70 I 95 I INC(i)

I 10 I 20 I

t
k

;
(d) temp[k] := vOl;

I 20 I 40 I 50 I 80 I 90 I 10 I 30 I 60 I 70 I 95 I INCO)

* I 10 I 20 I 30 I 40 I 50 I 60 I 70 I 80 I 90 I 95 I

t
k

(e) ~o:;r:Y temp I 10 I 20 I 30 I 40 I SO I 60 I 70 I 80 I 90 I 95 I

Y t t t t t t t t t t
I 10 I 20 I 30 I 40 I 50 I 60 I 70 I 80 I 90 I 95 I

;

Figure 20.14
A trace of the top-level call to
MergeSort in Figure 20.12.
Seven steps are not shown
between parts (c) and (d).

[0] [1] [2] [3] [4] [5] [6] [7]

(a) Initial Fal 20

vV
I 80 50 I 40 I 10 95 60

(b) MS (0, I)

1~18ol 50 I 40 I 10 I 95 60

V
(c) MS (0, 2)

20 ISOl 90 150 14ol 10 95 60

VV
(d) MS (3, 4)

I~I~I 10 95 60

(el MS (0, 4) I 20 I 40 I 50 I 80 I 90 10 I 95 I 60 I

[8] [9]

30 70

30 70

30 70

30 70

30 70

Merge sort 451

Figure 20.15
The call tree for MergeSort in
Figure 20.12 with the values
in Figure 20.13.

Figure 20.16
The merges in MergeSort in
the order they occur for the
left half of the array.

452 Chapter 20 Recursive Searching and Sorting

In-place merge sort

The program in Figure 20.17 is an implementation of the in-place merge sort. It is a
more efficient implementation of the algorithm because it does not require extra
storage for the second array or extra time for the copy operation in Figure 20.l4(e).
The program sorts an array of integers. It stores each value in a record with two
parts, value and link. The array to be sorted is an array of records. The algorithm
does not exchange any records in the array. Instead, it alters the link part of all the
records in such a way that you can always determine the next higher number from
the link field.

The input and output are identical to that for the quick sort in Figure 20.8. One
difference from the previous sort algorithms is that the in-place merge sort cannot
work with an empty array. Consequently, its precondition is weaker, and procedure
SortList must test for the case of an empty array.

MODULE Pbox20C;
IMPORT Dialog, TextModels, TextViews, Views, TextControliers, PboxMappers;
TYPE

Item = RECORD
value: INTEGER;
link: INTEGER

END;
VAR

d*: RECORD
numltems-: INTEGER;

END;
list: ARRAY 1024 OF Item;

PROCEDURE LoadList*;
VAR

md: TextModels.Model;
cn: TextControliers.Controller;
sc: PboxMappers.Scanner;
i: INTEGER;

BEGIN
cn := TextControliers.FocusO;
IF cn # NIL THEN

md := cn.text;
sc.ConnectTo(md);
i :=0;
sC.Scanlnt(list[ij.value); list[i].link := -1;
WHILE -sc.eot DO

INC(i);
sc.Scanlnt(list[ij.value); list[ij.link :=-1

END;
d.numltems := i;
Dialog. Update(d)

END;
END LoadList;

Figure 20.17
An implementation of the in
place merge sort algorithm.

In-place merge sort 453

PROCEDURE MergeSort (VAR v: ARRAY OF Item; first, last: INTEGER; OUT start: INTEGER);
(* Sorts the items of array v between v[firstj and v[lastj. *)
VAR Figure 20.17

mid, 10Start, hiStarl: INTEGER;
i, j, k: INTEGER;

BEGIN
ASSERT((O <= first) & (first <= last) & (last < LEN (v) - 1), 20);
IF first = last THEN

start := first
ELSE

mid := (first + last) DIV 2;
MergeSort(v, first, mid, 10Start);
MergeSort(v, mid + 1, last, hiStart);
i := 10Start;
j := hiStart;
k := LEN(v) - 1; (* Temporary start of merged list *)
WHILE (i # -1) & (j # -1) DO

IF v[ij.value <= vOl.value THEN
v[kj.link := i;
k:= i;
i:= v[i].link

ELSE
v[kj.link := j;
k :=j;
j := vOl. link

END
END;
IF i = -1 THEN

v[kj.link := j (* Attach remainder of last list *)
ELSE

v(kj.link := i (* Attach remainder of first list *)
END;
start := v[LEN(v) - 1j.link

END
END MergeSort;

Continued.

454 Chapter 20 Recursive Searching and Sorting

PROCEDURE SortList*;
VAR

md: TextModels.Model;
vw: TextViews. View;
fm: PboxMappers.Formatter;
i:INTEGER;
first: INTEGER;

BEGIN
md := TextModels.dir.NewO;
fm.ConnectTo(md);
FOR i := 0 TO d.numltems -1 DO

fm.Writelnt(list[ij.value,4)
END;
fm.WriteLn;
IF d.numltems > 0 THEN

MergeSort(list, 0, d.numltems - 1, first);
i := first;
WHILE i # -1 DO

fmWritelnt(list[ij. value, 4);
i := list[ij.link

END
END;
vw := TextViews.dir.New(md);
Views.OpenView(vw)

END SortList;

BEGIN
d.numltems := 0

END Pbox20C.

Figure 20. I 8(a) shows the array of records before SortList calls procedure Merge
Sort. Procedure LoadList sets the link field of every record to -I before the call.

list (0)

list(1)

list (2)

list (3)

list (4)

list (5)

list (6)

list (7)

list (8)

list (9)

90

20

80

50

40

10

95

60

30

70

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

(a) Before the first MergeSort call.

90 6
II 20 8

0 80 0

firstB---

50 7

P-40 3
10 1

95 -1
~

60 9 1
30 4 P 70 2

(b) After the top-level merge

Figure 20.17
Continued.

Figure 20.18
The result of a MergeSort call
from procedure SortList of
Figure 20.17 .

Figure 20.l8(b) shows the array of records after the call to MergeSort. Procedure
SortList has an integer variable, first. MergeSort sets first to 5 because list[5].value is
the smallest item in the list. It sets list[5].link to 1 because list[1].value is the next
larger item in the list. It sets Iist[1].link to 8 because list[1].value is the next larger item
in the list, and so on.

For each record, i, list[i].link is the index of the record whose value part is the next
larger item in the list. The second field links each item to the next larger item. The
record with the largest value, record 6 in this list, has a Link of -I. That link points
to nothing at all, which the figure indicates by the dashed triangle.

The WHILE loop in SortList outputs the list in order. It initializes i to 5 and out
puts list[5].value. The assignment

i := list[i].link

gives i the value I. The next time through the loop the Writelnt procedure outputs
Iist[1]. value. The loop continues to advance i through the linked list until it gets the
value -1, when the loop terminates. Even though the program exchanged no values,
the output is indistinguishable from the QuickSort program. In effect, the program
sorted the list.

Procedure SortList calls MergeSort with a value of 0 for first and 9 for last.
MergeSort splits the list in half with

mid := (first + last) DIV 2

which gives 4 to mid. It calls itself recursively to sort Ll as the list between v[O] and
v[4], and L2 as the list between v[5] and v[9]. Figure 20.19 shows the list after these
two recursive calls to MergeSort.

90 -\

10Start~ 20 4

80 0

50 2

40 3

hiStartL3- 10 8

95 -\

60 9

30 7

70 6

In-place merge sort 455

Figure 20.19
The list in the call to
MergeSort(v, 0, 9, first) after
the recursive calls to
MergeSort(v, 0, 4, loStart) and
MergeSort(v, 5, 9, hiStart).

456 Chapter 20 Recursive Searching and Sorting

The split was easy. The rest of MergeSort, that part in the WH ILE loop, is the join.
Given the values for 10Start and hiStart, which point to the start of two ordered
linked lists, the problems is to alter their link fields to make one ordered linked list
with start pointing to the smallest element. Figure 20.20 shows a trace of the join
operation for two short linked lists.

ioStart 40 -1 40 -1

B: 10 0 B: 10 0

20 3 20 3

hiStart 30 -1 30 -1

• k §8- •

(a) After the two recursive calls. (b) After initializing i, j, k.

~
40 -1 [G- 40 -1

k 10 0 10 2

20 3 k B: 20 3

30 -I 30 -1

(e) After one loop execution. (d) After two loop executions.

[G- 40 -1

10 2

Start 40 -1

B--- 10 2

20 3 20 3

k B--- 30 -1 30 0

B •

(e) After three loop executions. (0 At procedure termination.

Figure 20.20(b) shows i initialized to 10Start and j initialized to hiStart. MergeSort
initializes k to LEN(v) - 1. It assumes that the list does not use the entire array and
that the last record is available for temporary storage. i advances through the first
list, j advances through the second list, and k advances through the merged list.

Each time the loop executes, it finds the next item from lists Ll and L2 to put in

Figure 20.20
A trace of the join operation
in MergeSort for two short
linked lists.

Complexity a/the sort algorithms 457

the merged list. It changes the link in the last record of the merged list to point to the
newly merged item from Ll or L2. The newly merged item is taken off the sublist.
At the conclusion of the loop, all the items will be in one merged list with no physi
cal exchanges.

Figure 20.20(c) shows the operation after one loop execution. The statements

v(k].link := i;
k:= i;
i:= v(i].link

link the v[1] record into the new merged list and unlink it from the i list. Figure
20.20(d) and (e) show the same operation with both values from the j list.

When the WHILE loop gets to the end of one of the lists, you know that all the
remaining links of the other sublist do not need changing. The last IF statement links
the tail of the other sublist to the end of the merged list, as Figure 20.20(f) shows.

Complexity of the sort algorithms

How fast are the sort algorithms that are described in this section? Remember from
Chapter 19 that the selection sort is O(n2). The insertion sort is also O(n2). You
can visualize in Figure 20.6 that each algorithm requires n passes through the list.
Each pass requires a loop to do the insertion or selection. The doubly nested loops
give the algorithms their O(n2) behavior.

How do quick sort and merge sort compare with the single-element sorts? In the
best case with quick sort, you divide the list in half each time. Figure 20.21 shows
the call tree for merge sort and the best case quick sort for a 16-element list.

- - - -

Number of
calls

at this level

- -

2

4

-

8

-

-

Number of
executions Number of

of each loop comparisons

16 1 x 16 = 16

- - - - -

8 2x8 = 16

- - - -

4 4x4 = 16

- - - - -

2 8x2 = 16

Total number of comparisons: 4 x 16 = 64

Figure 20.21
The call tree for merge sort
and the best case quick sort
with a 16-element list.

458 Chapter 20 Recursive Searching and Sorting

The list at the top level has 16 elements. The lists at the next lower recursive call
have 8 elements. The lists at the next lower call have 4 elements, and the bottom
level has 2-element lists.

A loop executes at each level. In merge sort, the WHILE loop performs the join. In
quick sort, the REPEAT loop performs the split. In both algorithms, the loop passes
through the list comparing items. The number of comparisons equals the number of
items in the list.

For example, the top level has a list of 16 items, and the algorithm makes 16 com
parisons. The next level has lists with 8 items. The loops at this level make 8 com
parisons each. Because there are 2 recursive calls at the second level, the total
number of comparisons at this level is also 16. Similarly, the number of comparisons
at the next lower level is also 16. There are 4 lists, and each list requires 4 compari
sons. In general, if the list has n elements, the algorithms make n comparisons at
each level. So the total number of comparisons is n times the total number of levels.

How many levels are there for a list of n elements? The number of times you need
to divide n in half to get it down to 1. You recognize this answer from the analysis of
the binary search algorithm. It is Ign. In Figure 20.21, the logarithm of 16 is 4,
which corresponds to the 4 levels of recursive calls. The total number of compari
sons is therefore 4 times 16, which is 64.

In general, the total number of comparisons is n times 19n. Merge sort and the
best-case quick sort are O(nlgn) algorithms. In the worst case, quick sort is O(n2)
because in that case it is equivalent to the selection sort. In practice, quick sort is
O(nlgn) on the average.

The five orders encountered thus far, starting with the fastest, are

• O(lgn) Example: the binary search

• O(n) Example: the sequential search

• O(nlgn) Example: the merge sort and quick sort
2

• O(n) Example: the single-element sorts
3

• O(n) Example: matrix multiplication

If you are comparing two algorithms with different orders, the algorithm with an
order farther down the list will be worse for large amounts of data, regardless of the
coefficients. For example, an algorithm with a statement execution count of 5nlgn
will be faster than one with 2n2 . Even though 5 is greater than 2, for large n the first
expression will be smaller than the second. On the other hand, the coefficients are
important when you compare two algorithms with the same order. If one algorithm
has a statement execution count of 5nlgn , and the second has a count of 2nlgn, the
second algorithm will be faster.

Some algorithms, not encountered in this book, are even worse than O(n3).

They are O(2n), and form a class of difficult problems that computer scientists have
spent a great deal of time investigating. They are interesting problems that you will
learn about if you take more advanced computer science courses.

Exercises

1. Draw the ideal quick sort and merge sort traces corresponding to Figure 20.4(a) and (b)
for the following lists:

(a) 4 7 5 2 3 8 6
(b) 8 7 6 5 4 3 2
(e) 8 2 3 4 5 6 7

2. Work Exercise I for the single-element sorts of Figure 20.5(a) and (b).

3. Work Exercise I for the nonrecursive single-element sorts of Figure 20.6(a) and (b).

4. Write the list of 10 integer values just after the following calls to QuickSort in Figure
20.11.

5.

(a) QS (0, 3)
(d) QS (4,8)

(b) QS (2. 3)

(e) QS (4, 5)

(e) QS (4,9)
(0 QS (7, 8)

Draw the list and the elements that j and i point to corresponding to Figure 20.IO(g),
(h), and (i) for the initial lists that follow. Figure 20.IO(g) represents the list just before
the first recursive call to QuickSort.

(a) 10 60 40 80 30 90 20 70 25 50
(b) 10 20 25 30 40 50 60 70 80 90
(el 90 80 70 60 50 40 30 25 20 10
(d) 80 90 50 50 50 50 50 50 10 20

6. Draw the QuickSort call tree as in Figure 20.11 for the following initial lists.

(a) 30 70 40 20 (b) 80 40 20 90 70
(e) 40 60 10 70 90 30 (d) 10 20 30 40 50 60 70
(e) 70 60 50 40 30 20 10

How many times is QuickSort called? What is the maximum number of QuickSort stack
frames on the run-time stack during the execution') In what order does the program
make the calls and returns ')

7. The section on the correctness of the quick sort algorithm, page 446. gave an eight-step
outline of the proof. (a) Prove step I. (b) Prove step 2. (e) Prove step 3. (d) Prove
step 4. (e) Prove step 5. (I) Prove step 6. (g) Prove step 7. (h) Prove step 8.

8. Draw the result of a MergeSort call corresponding to Figure 20.18 for the following
lists of numbers.

(a) 30 50 10 80 40 70 20 60
(b) 10 20 30 40 50 60 70 80
(el 80 70 60 50 40 30 20 10

9. Work Exercise 8 for the two top-level recursive MergeSort calls corresponding to Fig
ure 20.19.

Exercises 459

460 Chapter 20 Recursive Searching and Sorting

10. What is the total number of comparisons for the merge sort and the best-case quick sort
with the following number of elements?

(a) 32 (b) \024 (e) 65,536

What is the maximum number of stack frames allocated at one time for each of the
lists?

Problems

11. Write the recursive version of the sequential search. Use the technique of inserting the
number to be searched at the end of the list as shown in Figure 16.3 and Figure 16.4.
Declare

PROCEDURE RecursiveSearch (VAR v: ARRAY OF INTEGER; numltm, srchNum: INTEGER;
VAR i: INTEGER; OUT fnd: BOOLEAN);

BEGIN
(. Problem for the student .)

END RecursiveSearch;

PROCEDURE Search (VAR v: ARRAY OF INTEGER; numltm, srchNum: INTEGER;
OUT i: INTEGER; OUT fnd: BOOLEAN);

BEGIN
ASSERT«O <= numltm) & (numltm < LEN(v)), 20);
i :=0;
v[numltm] := srchNum;
RecursiveSearch(v, numltm, srchNum, i, fnd)

END Search;

Note that i is called by reference in RecursiveSearch. Do not use a loop. Do not com
pare i with numltm. Test your program with a dialog box identical to that in Figure
20.1.

12. Write the recursive version of the insertion sort algorithm as shown in Figure 20.5(a).
Make a recursive call to sort the left part of the list, and use a single loop, starting from
the end of the sorted part of the list to insert the single element. Test your algorithm in
a program similar to the one in Figure 20.9.

13. Write the recursive version of the selection sort algorithm as shown in Figure 20.5(b).
Use a single loop to move the largest element to the end of the list, then make a recur
sive call to sort the remaining left part of the list. Test your algorithm in a program sim
ilar to the one in Figure 20.9.

14. Write the nonrecursive version of the insertion sort algorithm as shown in Figure
20.5(a). Use a nested loop. Test your algorithm in a program similar to the one in Fig
ure 20.9.

15. Suppose an application uses the merge sort. but it needs to have the array elements
physically in order. not just linked in order. Modify procedure SortList of Figure 20.17
to put the elements of list physically in order. Declare temp List to be an array of the
same type as list. After the call to MergeSort. copy the elements from list into tempList
in physical order. Then copy the elements from tempList to list and output list without
using the link field to verify that its elements are physically in order.

16. Complete procedure MergeSort of Figure 20.12. Test it in a program identical to Figure
20.9 except that the call is to MergeSort instead of to QuickSort.

Problems 461

1111 Chapter21

1iI~
Linked Lists

Previous chapters show how Component Pascal allocates storage on the run-time
stack when a proper procedure is called. First, storage is allocated for the parame
ters, then for the return address, and finally for the local variables of the procedure.
When the program returns from a procedure, it deallocates the storage. When a func
tion procedure is called, storage for the returned value is allocated followed by allo
cation for the same items as those for a proper procedure.

Component Pascal provides an alternate method for allocating and deallocating
storage from main memory. It maintains a region in memory that is called the heap, The heap

which is separate from the stack. You do not control allocation and deallocation
from the heap during procedure calls and returns. Instead, you allocate from the
heap with the help of pointer variables. Allocation that is not triggered automatically
by procedure calls is known as dynamic storage allocation. Dynamic storage allocation

Pointers are common building blocks for implementing abstract data types and
classes. This chapter presents the Component Pascal pointer type and shows how
you can use pointers to implement a linked list abstract data type and a linked list
class.

Pointer data types

When you declare an array, you must declare it to be an array of some type. For
example, you can declare an array of integers or an array of real values. Pointers
share this characteristic of arrays. When you declare a pointer, you must declare that
it points to some type. The program in Figure 21.1 illustrates the Component Pascal
pointer type. It shows how to declare a pointer variable and how to access the values
associated with it.

The program declares type Node to be a record that contains an integer field i and
a real field x. Local variable a is declared to be a pointer to a Node, that is, a pointer
to a record. a is not a record. It is a pointer to a record. If a acquires a value during
execution of the program, that value will not be a record. Instead, the value given to
a will specify the memory location of where the record is stored, somewhere in the
heap.

Figure 21.2 is a trace of the execution of the procedure in Figure 21.1. Figure
21.2(a) shows a after POinterExample1 is called. Because a is a local variable, it is
allocated on the run-time stack when the procedure is called. Return address raO is
the location of some instruction in the framework. Most local variables have unde-

464 Chapter 21 Linked Lists

fined values when they are allocated. Pointer variables, however, are initialized to
the special value NIL. In Figure 21.2(a) the NIL value is shown as the dashed trian
gle.

MODULE Pbox21A;
IMPORT StdLog;

PROCEDURE PointerExample1*;
TYPE

Node = RECORD
i: INTEGER;
x: REAL

END;
VAR

a: POINTER TO Node;
BEGIN

NEW(a);
a.i:= 6;
a.x:= 15.2;
StdLog.String("a.i = "); StdLog.lnt(a.i); StdLog.Ln;
StdLog.String("a.x = "); StdLog.Real(a.x); StdLog.Ln

END PointerExample1;

END Pbox21A.

Run-time stack Heap Run-time stack Heap

Figure 21.1
A program that illustrates the
Component Pascal pointer
type.

Figure 21.2
The trace of the procedure in

~ ~ Figure 21.1.

(a) Call PointerExample1 (b) NEW(a)

(c) a.i := 6 (d) a.x:= 15.2

The first statement the program (:xecutes is

NEW(a)

The procedure NEW is a standard Component Pascal procedure that does two things:

• It allocates storage from the heap. Because a was previously declared to be a
pointer to a record with an integer and a real component. NEW(a) allocates
enough memory to store a record with those components .

• It assigns to a the location of this newly allocated storage. So a now points to
the location of a record.

Figure 21.2(b) indicates the effect of NEW(a). The box adjacent to the a box repre
sents the storage allocated from the heap. The arrow pointing from the a box to the
newly allocated box represents the value that NEW assigns to a.

The next statement the program executes is

a.i:= 6

Figure 21.2(c) shows the effect of the assignment. In the same way that you access
the field of a record by writing the name of the record followed by the field and sep
arated by a period. you access the field of the record to which a pointer points by
writing the name of the pointer followed by the field and separated by a period.
Remember that a is not a record. It is a pointer to a record. Therefore, the integer
field of the record to which a points gets 6.

The next statement,

a.x := 15.2

assigns a value to the real field of the record to which a points as shown in Figure
21.2(d).

The last statements

StdLog.String("a.i = "); StdLog.lnt(a.i); StdLog.Ln;
StdLog.String("a.x = "); StdLog.Real(a.x); StdLog.Ln

simply output the following text to the Log.

a.i = 6

a.x = 15.2

Pointer assignments

You can assign one pointer to another. but you must be careful to consider the effect
of such an assignment. Because a pointer "points to" an item. if you give the
pointer's value to a second pointer, the second pointer will point to the same item to
which the first pointer points. The program in Figure 21.3 illustrates the effect of the
assignment operation on pointers.

Pointer assignments 465

The iH'O (/clions o(NEW

466 Chapter 2 I Linked Lists

MODULE Pbox21 B;
IMPORT StdLog;

PROCEDURE PointerExample2*;
TYPE

Node = RECORD
i: INTEGER

END;
VAR

a, b, c: POINTER TO Node;
BEGIN

NEW(a); a.i := 5;
NEW(b); b.i := 3;
c:= a;
a:= b;
a.i := 2 + c.i;
StdLog.String("a.i = "); StdLog.lnt(a.i); StdLog.Ln;
StdLog.String("b.i = "); StdLog.lnt(b.i); StdLog.Ln;
StdLog.String("c.i = "); StdLog.lnt(c.i); StdLog.Ln

END PointerExample2;

END Pbox21 B.

Figure 21.3
The effect of the assignment
operation on pointers.

The program allocates and assigns values to a.i and b.i, as Figure 21.4(a-e) Figure 21.4
shows. These operations are similar to those of the previous program. A trace of Figure 21.3.

c c c c D
b b

a a e--t--.... 0
raO raO raO raO

/. /. /. /.

(a) Call POinterExample2 (b) NEW(a) (e) a.i:= 5 (d) NEW(b)

c

b

a

raO

/'

(e) b.i:= 3 (I) c:= a (g) a:= b (h) a.i:= 2 + c.i

After b.i := 3 in Figure 21.4(e), the statement

c:= a

gives the value of a to C, as Figure 21.4(f) shows. a is a pointer. Therefore c will
point to the same memory location to which a points. After the assignment. c also
points to the record that contains 5. Notice that the statement does not assign to c the
value 5. It assigns to c the pointer to the record that contains 5.

The statement

a:= b

copies the b pointer into a, as Figure 21.4(g) shows. As in all assignment statements,
the previous value of a is destroyed. a no longer points to the record containing 5,
but to the same record to which b points, namely the record containing 3.

The last assignment statement

a.i:= 2 + c.i

contains the + arithmetic operation. Because a.i and c.i are integer variables and not
pointers, the statement is legal. It adds 2 to the integer in the record to which c is
pointing,S, to get 7. The 7 is copied into the record to which a is pointing. As in all
assignment statements, the original content of the memory location, 3, is destroyed.

The output statements

StdLog.String("a.i = "); StdLog.lnt(a.i); StdLog.Ln;
StdLog.String("b.i = "); StdLog.lnt(b.i); StdLog.Ln;
StdLog.String("c.i = "); StdLog.lnt(c.i); StdLog.Ln;

produce

a.i = 7
b.i = 7
c.i = 5

Because a and b now point to the same record, the record containing 7, its value is
printed twice.

Using pointers

Component Pascal allows you to declare a pointer to a record or to an array. It does
not allow you to declare a pointer to any other type.

Example 21,1 The declaration

a: POINTER TO INTEGER;

Using pointers 467

468 Chapter 21 Linked Lists

is illegal because you cannot have a pointer to an integer. only to a record or an
array. I

The period that separates the name of the pointer from the name of the field of the
record to which it points is actually an abbreviation for a longer notation. In general,
if pointer p points to a record r that contains field I. then

• p is a pointer

• p" is the record r to which p points

• pA.f is field I of the record r to which p points.

The notation p.1 is an abbreviation for the longer notation p".f.

Example 21.2 The program statements in Figure 21.1

a.i:= 6;
a.x:= 15.2;

can be written in non abbreviated form with the circumflex A as

aA.i:= 6;
aA.x := 15.2; I

You can output the components of a record to which a pointer points. but you
cannot output the value of a pointer variable.

Example 21.3 The statement

StdLog.lnt(a)

is illegal with a declared as in Figure 21.3. I

The only operations that are allowed on pointer data types are

:= assignment
test for equality

test for inequality

Specifically, you cannot test if one pointer is greater than another, and you cannot
perform mathematical operations on pointers.

Example 21.4 With a and b declared as in Figure 21.3. the test

IF a.i < b.i THEN

is legaL because you can test if an integer value is less than another integer value.
However. the test

Til" paiod ahhreviation/i)r
poimers to records

The unly o{Jerntiol1s ulhnred

Oil poinfer lima [-"pes

IF a < bTHEN

is illegal because a and b are pointers. I

Example 21.5 With a declared as in Figure 21.3, the statement

a.i:= a.i * 2

would be legal because a.i is an integer. On the other hand, the statement

a:= a * 2

would be illegal, because you cannot multiply a pointer by 2. I

One of the most common errors in programming with pointers is to assume that a
pointer points to a record when in fact it does not.

Example 21.6 Suppose a is declared as in Figure 21.3, and you forget to execute
the NEW procedure as follows.

BEGIN
a.i:= 5;

The assignment statement will generate a trap with the error message

NIL dereference

Because a is NIL it does not point to anything, and a.i does not exist. The system pro
tests with the run-time error message. complaining that you are referring to some
thing with a but that a does not refer to anything. I

Linked lists

In practice, you frequently combine a pointer with other variables into a record.
Then the pointer part of the record can point to yet another record, linking the two
records together. The program in Figure 21.6 constructs a linked list of three real
numbers. Each record in the linked list has two parts, a value part, which contains
the value of a real number, and a next part. which points to the next record in the
linked list. Figure 21.5 shows the structure of a record of type Node as declared in
the program. The box labeled value will contain a real value and the box labeled next

Linked lists 469

will contain a pointer value. value next
Figure 21 .7 is a trace of the first part of the program in Figure 21.6. which creates I I

a linked list. The following is a description of each statement executed by the first
part of the program. Figure 21.5

Figure 21.7(a) shows the allocated memory after the call to LinkedListExample. The structure of a record of
The program allocates storage for the local variables declared in the variable decla- type Node in Figure 21.6.
ration part on the run-time stack. The variables first and p are not records. They are
pointers to records. Initially their values ar~ NIL.

470 Chapter 21 Linked Lists

MODULE Pbox21 C;
IMPORT StdLog;

PROCEDURE LinkedListExample*;
TYPE

List = POINTER TO Node;
Node = RECORD

value: REAL;
next: List

END;
VAR

first, p: List;
BEGIN

(* Create linked list *)
NEW(first); first.value := 4.5;
p := first;
NEW(first); first.value := 1.2;
first.next := p; p := first;
NEW(first); first.value := 7.3;
first.next := p;
(* Output linked list *)
p := first;
StdLog.Real(p.value); StdLog.String(" ");
p:= p.next;
StdLog.Real(p.value); StdLog.String(" ");
p:= p.next;
StdLog.Real(p.value); StdLog.String(" ")

END LinkedListExample;

END Pbox21 C.

Figure 21.6
A program that constructs a
linked list of three real
numbers.

Figure 21.7(b) shows the effect of the procedure call NEW(first). Procedure NEW Creating a linked list

does two things. First, it allocates enough storage from the heap for a record of type
Node. Then it changes the value of first to point to the record just allocated. It also
initializes the value of link to NIL. All pointers are automatically initialized to NIL
whenever they are allocated, whether on the stack or from the heap. Then, first.value
:= 4.5 stores value 4.5 in the value part of the node to which first points.

Figure 21.7(c) shows the effect of the statement

p := first

This is a pointer assignment. It makes p point to the same node to which first points.
Because first points to the node containing 4.5, p will point to the same node after
the assignment.

Figure 21.7(d) shows that procedure call

NEW(first)

allocates another record from the heap and sets first to point to the newly allocated

P1[" first "

raO

/.

(a) Call LinkedListExample

fir~~~
raO ""

/.

(e) p:= first

p

first 1.21~~
raO

/.

(e) first.next:= p

p

first

raO
11.2 H---~

/.

(g) NEW(first); first.value := 7.3

record. Then,

first.value := 1.2

sets the value part of the record to which first points, to 1.2.

Linked lists 471

P~' first ~
raO ""

/.

(b) NEW(first); first.value := 4.5

p

first

raO

/.

(d) NEW(first); first.value := 1.2

fir~~1 1.2 I+-I4.51;1
raO ~

/.

(f) p:= first

p

first

raO

(h) first.next:= p

Figure 21.7
The trace of Figure 21.6 to
create a linkeJ list

Figure 21.7(e) shows the effect of the assignment statement

first.next := p

This is another pointer assignment. It makes first.next point to the same record to
which p points. You can see from the figure that this statement is responsible for
linking the 1.2 node to the 4.5 node.

Figure 21.7(f) shows the etfect of the pointer assignment

472 Chapter 21 Linked Lists

p:= first

This assignment statement makes p point to the same thing to which first points.
namely, the newly allocated record.

Figure 21.7(g) shows that the procedure call

NEW(first)

allocates another record from the heap and sets first to point to the newly allocated
record. Furthermore,

first.value := 7.3

sets the value part of that record to 7.3.
Figure 21.7(h) shows how the statement

first.next := p

links the 7.3 node to the 1.2 node.
Now the linked list is complete. The first record containing 7.3 in its value part is

linked to the second record, which contains 1.2 in its value part. The second record
is, in turn, linked to the third which contains 4.5 in its value part.

The last part of the program outputs the linked list to the Log. Figure 21.8 is a OllTputting a linked list

trace. The idea is for p to start at the beginning of the list and to advance through it
by way of the next field. Following is a description of each statement executed.

Figure 21.8(a) shows the effect of the assignment statement

p:= first

Because p and first are both pointers, the assignment makes p point to the same
record to which first points, namely the first record of the linked list. It is similar to
an initializing statement. Because p.value is the value field of the first record, the
StdLog.Real call outputs 7.3.

Figure 21.8(b) shows how the statement

p:= p.next

advances p to the next record of the linked list. p.value is now the value of the sec
ond record. The StdLog.Real call outputs 1.2.

Figure 21.8(c) shows how the same statement

p:= p.next

advances p to the next record of the linked list again. p.value is now the value of the
last record. The StdLog.Real call outputs 4.5.

The action of the pointer p is typical of algorithms that must process information
from every node in a linked list. You initialize a local pointer variable p to point to
the first node in the list. You process all the nodes of the list by putting the statement

fir~1W1 7.3 1+-1 1.2 H--14.5T,l
raO ~

/.

(a) p:= first

p

first

raO

I 7.3 H-~I 1.2 I·~~

(b) p:= p.next

~ I 7.3 1+-1

(e) p:= p.next

p := p.next in the body of a loop. Each time the loop executes. p advances to the next
node of the linked list. Also in the body of the loop are any statements that process
the data in the value part of the node. How would such a loop terminate') When p
points to the last node of the linked list. That happens when p.next = NIL. The state
ments to output the linked list could be written with a single loop as follows.

p := first;
WHILE p # NIL DO

StdLog.Real(p.value}; StdLog.String(" "};
p := p.next

END

This loop works correctly even if the list is empty. because an empty list would have
first equal to NIL. The test for a WHILE statement is at the beginning of the loop. so
the test would be false the first time and the body of the loop would never execute.

In Figure 21.6. first and p are local variables that are allocated on the run-time
stack. When the procedure terminates, first and p are all deallocated and so no longer
point to any of the nodes of the linked list. So how do the nodes of the linked list get
deallocated'} They stay allocated until the heap runs out of memory and the execu
tion of a NEW statement requires memory from the heap. At that point. the Compo-

Linked lists 473

Figure 21.8
The trace of the procedure in
Figure 21.6 to output a linked
list.

nent Pascal system initiates an operation known as garbage collection. The garbage ,\lIiolllUiic ~(/lI)(/~l' «(,il,'Cllol/

collection algorithm sweeps through all the nodes in the heap and deal locates all

474 Chapter 21 Linked Lists

those that are unreachable from any active pointers. This automatic garbage collec
tion feature is a major advantage of Component Pascal over many other program
ming languages. Languages that do not have automatic garbage collection require
the programmer to deallocate any unused nodes. It is easy to make programming
errors in the deallocation of dynamic memory, because the effects of incorrect deal
location frequently do not show up immediately.

Class assignments

There are two basic relationships in object-oriented design--class composition and
inheritance. The examples in this section assume that Alpha, Beta, and Gamma are
each a record type and are related by the second relationship, inheritance. Specifi
cally, Beta inherits from Alpha, and Gamma inherits from Alpha. The Unified Mod
eling Language (UML) symbol for inheritance is the triangle. Figure 21.9 illustrates
the object-oriented relationship of inheritance between Alpha, Beta, and Gamma in a
UML class diagram. The Component Pascal term for inheritance is extension. Beta
is an extension of Alpha. Beta is called the subclass, and Alpha is called the super
class.

The examples also assume that AlphaPtr, BetaPtr, and GammaPtr are pointers to
Alpha, Beta, and Gamma respectively and that alphaPtr, betaPtr, and gammaPtr are
variables of type AlphaPtr, BetaPtr, and GammaPtr respectively as follows.

TYPE
AlphaPtr = POINTER TO Alpha;
BetaPtr = POINTER TO Beta;
GammaPtr = POINTER TO Gamma;

VAR
alphaPtr: AlphaPtr;
betaPtr: BetaPtr;
gammaPtr: GammaPtr;

The word class is object-oriented terminology for type, and the word object is
object-oriented terminology for variable. The statement, "Variable alphaPtr has type
AlphaPtr". becomes in object-oriented terminology, "Object alphaPtr is an instantia
tion of class AlphaPtr".

The idea behind inheritance is that Alpha is the more general class and Beta is the

Alpha

Beta ~ Gamma

Figure 21,9
The object-oriented
relationship of inheritance
between Alpha, Beta, and
Gamma.

more specific class. The fundamental class assignment rule is that you can assign the Tile/ill1dallle/l{ol c/oss

specific to the general, but you cannot assign the general to the specific. usligllllle/ll rule

Example 21.7 With alphaPtr and betaPtr declared as above, and Beta inheriting
from Alpha as in Figure 21.9, the assignment

betaPtr := alphaPtr

is not legal, but the assignment

alphaPtr := betaPtr

is legal. I

In Example 21.7, what is the type of alphaPtr after the legal assignment'? It would
appear from its declaration that it has type AlphaPtr, but because it has just been
assigned betaPtr, it would appear to have beta's type, which is BetaPtr. In fact, it has

Class assignments 475

both. Its static type is AlphaPtr and its dynamic type is BetaPtr. In computer science The IIIcmlillg oFstaric ilnd

terminology, the word static means something that happens or is determined at com- d\"llumic

pile time, and the word dynamic means something that happens or is determined at
execution time. The compiler can determine the static type of alphaPtr from its dec-
laration in the VAR section. But, the assignment to alphaPtr does not occur until the
program is executing.

It is possible that at some later time alphaPtr could get the value of gammaPtr, at
which time its dynamic type would change to GammaPtr. To morph is to change
from one object into another object, as in the metamorphosis of a caterpillar into a
butterfly. In object-oriented terminology, alpha is polymorphic because it can Polrll/{!/phisll/

change from being a beta object to being a gamma object.
From the fundamental class assignment rule it follows that an object's dynamic

type is either the same as its static type or is more specific than its static type. Sup
pose you have one object with some static type, and another object of a more general
static type but whose dynamic type is the same as the static type of the first object.
You want to assign the second object to the first. According to the static types the
assignment violates the fundamental class assignment rule. But if the dynamic type
of the second object is the same as the static type of the first object it seems that you
should be able to make the assignment.

Example 21.8 Suppose that betaTwoPtr has declaration

VAR
betaTwoPtr: BetaPtr;

and the assignment statement

alphaPtr := betaTwoPtr

executes. This assignment statement is legal by the class assignment rule. because
alphaPtr is more general than betaTwoPtr. Furthermore, alphaPtr now has dynamic
type BetaPtr. It seems as though the assignment

betaPtr := alphaPtr

should now be legal, because the dynamic type of alphaPtr is the same as the static
type of betaPtr. I

Component Pascal provides a way. To make the assignment, you must append a
type guard to the variable on the right hand side of the assignment statement, which Tl"jJc guard,

consists of an extension (that is. a subclass) of its static type enclosed in parentheses.
The assignment statement will compile correctly only if the type guard is an exten-
sion of the expression that it guards.

476 Chapter 21 Linked Lists

Example 21.9 With the above declarations.

alphaPtr (BetaPtr)

is a valid type guard. because type BetaPtr is a subclass of AlphaPtr. which is the
type of alphaPtr. However. the type guard

betaPtr (AlphaPtr)

will not compile. because AlphaPtr is not a subclass of BetaPtr. I

Example 21.10 Because a type is a subclass of itself. the type guard

alphaPtr (AlphaPtr)

although not very useful. is legal. I

To determine if an assignment statement will compile, the compiler treats the
guarded variable as if it had the type of the guard and applies the class assignment
rule.

Example 21.11 With alphaPtr and betaPtr declared as above, the assignment
statement

betaPtr := alphaPtr (BetaPtr)

will compile, because if alphaPtr had the type BetaPtr it would compile. I

If variable v has type guard T. the guarded expression v(T) asserts that the
dynamic type of v is T or an extension (that is, a subclass) of T. The program will
trap if during execution the dynamic type of v is not T or a subclass of T.

Example 21.12 The assignment statement in Example 21.11 will always compile
successfully. If during execution alphaPtr first gets betaTwoPtr as in Example 21.8
the assignment will also execute successfully. However. if during execution alphaPtr
first gets gammaPtr (a legal assignment by the class assignment rule) then the
assignment statement in Example 21.11 will trap. I

Component Pascal has a special record named ANYREC. which is the most gen- T"~ A.VYREC record

eral record of all. Any record that does not inherit from any other record automati-
cally inherits from ANYREC. So. even though it is not shown in the UML diagram
of Figure 21.9, class Alpha inherits from ANYREC.

Example 21.13 Suppose Alpha and Beta have the inheritance relationship of Fig
ure 21.9, and alphaPtr and betaPtr are declared as above. If you declare

VAR
deltaPtr: POINTER TO ANYREC;

A circular linked list ADT 477

then the assignments

deltaPtr := alphaPtr;
deltaPtr := betaPtr

are legal. The second assignment is based on the transitive property of inheritance.
That is, because Beta inherits from Alpha, and Alpha inherits from ANYREC, Beta
inherits from ANYREC. So, deltaPtr is more general than betaPtr and can get its
value. The assignment

alphaPtr := deltaPtr (AlphaPtr)

will compile successfully, but will execute successfully only if the dynamic type of
deltaPtr is AlphaPtr or a subclass of AlphaPtr. I

A circular linked list ADT

It is possible to package a linked list as an abstract data structure, an abstract data
type, or a class. The same advantages and disadvantages apply to any ADS, ADT,
and class. Namely, an ADS is appropriate when there is only one data structure. To
implement an ADS, you put the data structure in the server module and usually
export only the procedures that operate on the data structure. An ADT and a class are
appropriate when the client module might want more than one instance of the data
structure. The server module exports the type of the data structure so the client mod
ule is free to declare as many data structures as needed.

Figure 21.10 shows the interface of a list abstract data type. It has two interesting
features. First, it is a circular list in which the next field of the last node is not NIL,
but points back to the first node in the list. Second, the value part of each node is not
limited to any particular type like REAL or INTEGER. Instead, the value part is a
pointer to ANYREC. The client is free to define any record it desires to store in the
value part of each node. The ADT maintains a current position in the circular list,
which the client can change via the GoNext procedure.

DEFINITION PboxCUstADT;

TYPE
CList = POINTER TO Node:

PROCEDURE Clear (OUT 1st: CUst);
PROCEDURE Empty (1st: CUst): BOOLEAN;
PROCEDURE GoNext (VAR 1st: CUst);
PROCEDURE Insert (VAR 1st: CUst; val: POINTER TO ANYREC);
PROCEDURE NodeContent (1st: CUst): POINTER TO ANYREC;

END PboxCUstADT.

Like all interfaces, the one in Figure 21.1 () hides the details of the implementa-

Figure 21.10
The interface of the circular
list abstract data type.

478 Chapter 21 Linked Lists

tion. A client can use the procedures with the circular list without knowing anything
about how they are implemented. Here are the specifications of the procedures.

The documentation of the clear procedure is

PROCEDURE Clear (OUT 1st: CList)
post
1st is cleared to the empty list.

As an example of what procedure Clear does, suppose you have a variable named
myList that has been declared as follows

VAR
myList: PboxCListADT.CList;

and has the structure shown in Figure 21.11 (a) where it contains three items. The
clouds in Figure 21.11(a) represent records of some unknown type to which the
pointers to ANYREC point. If you execute the statement

PboxCListADT.Clear(myList)

then myList is cleared to the empty list, as shown in Figure 21.11 (b).

myList myList ~ Figure 21.11
The result of calling
procedure Clear.

(a) Before PboxCListADT.Clear(myList) (b) After PboxCListADT.Clear(myList)

The documentation of the procedure Empty is

PROCEDURE Empty (1st: GList): BOOLEAN
post
Returns TRUE if 1st is empty. Otherwise returns FALSE.

If myList has the structure of Figure 21.11 (a), then PboxGListADT.Empty(myList)
returns FALSE, but if myList has the structure of Figure 21.11 (b) it returns TRUE.

Procedure GoNext advances the list to the next node in the list. Its documentation
is

A circular linked list ADT 479

PROCEDURE GoNext (VAR 1st: CList)
pre
1st is not empty. 20
post
The next location in 1st is designated as the current item.

Figure 21.12 shows the effect of executing

PboxCListADT. GoNext(myList)

One more execution of GoNext would make myList point to the node whose value
part points to the A record.

Figure 21.12
The result of calling
procedure GoNext.

myList myList Gf--------------

~~'---+-----'-'
m m m

(a) Before PboxCListADT.GoNext(myList) (b) After PboxCListADT.GoNext{myList)

Procedure Insert assumes that val is a pointer to some record. It inserts a new
node into the list whose value part points to the same record that val points to. Its
documentation is

PROCEDURE Insert (VAR 1st: CList; val: POINTER TO ANYREC)
post
Value val is inserted in 1st after the current item, and it becomes the current item.

my List myList

myPtr 8----m

Figure 21.13
The result of calling
procedure Insert.

(a) Before PboxCListADT.lnsert(myList, myPtr) (b) After PboxCListADT.lnsert(myList, myPtr)

480 Chapter 21 Linked Lists

Figure 21.13 shows the effect of executing the statement

PboxCListADT.lnsert(myList, myPtr)

Before execution, myPtr points to some record. After execution, myPtr still points to
the record but a new node is created and inserted into the circular list. The value part
of the new node also points to the record.

The last procedure NodeContent returns the value part of the current node, that is,
the node to which 1st points. Its documentation is

PROCEDURE NodeContent (1st: CList): POINTER TO ANYREC
pre
1st is not empty. 20
post
Returns the content from the current item of 1st.

The purpose of NodeContent is for the programmer to retrieve the content of the
current node. For example, suppose myPtr is a pointer of type MyPtr with an initial
value of NIL as in Figure 21.14(a). After executing the statement

myPtr := PboxCListADT.NodeContent(myList) (MyPtr)

myPtr points to the record to which the value part of the current node in the list
points as in Figure 21.14(b). Note the required use of the type guard (MyPtr),
because myPtr is more specific than POINTER TO ANYREC. The programmer can
then use myPtr to access the various fields of the record.

myList myList

myPtr 8--=?
(a) Before (b) After

Figure 21.14
The result of calling
procedure NodeContent when
myList initially has the
structure of Figure 21.11 (a).

myPtr := PBoxCListAOT.NodeContent(myList) (MyPtr) myPtr := PBoxCListAOT.NodeContent(myList) (MyPtr)

Figure 21.15 is the dialog box for a program that uses the circular list in Pbox
CListADT. The program stores a list of books where the type Book is defined as

A circular linked list ADT 481

TYPE
String64 = ARRAY 64 OF CHAR;
Book = POINTER TO RECORD

title: String64;
author: String64;
price: REAL

END;

Title: On Liberty

Author: Jllhn St IJ;:\rt r-' III

Price: 7,95

Title:)HUmitO Hction

Author; (lI.1Wig von Hises

Price: ! 34.95

! II Insert H

Total: 999.99

I Preuious I

A book is a pointer to a record with three fields-one for the title of the book. one
for the author, and one for the price. The dialog box allows the user to enter informa
tion into each of these fields, and then insert the book into the circular list. The dia
log box represents a situation where the user has entered the information for the
book Human Acti()n, inserted it. and then pressed the Next button to display the next
book in the list. which is On Liberty. Figure 21.16 shows the corresponding structure
of the circular list.

cList Gf-------------~~

I
t

H ~I
t

H ~I
t

H

Figure 21.15
The dialog box for a program
that uses the circular list from
module PboxCListADT.

Figure 21.16
The circular list
corresponding to the dialog
box in Figure 21.15.

~I i 1·[

• The Road to Serfdom Human Action On Liberty The Fountainhead

Friedrich A. Hayek Ludwig von Mises John Stuart Mill Ayn Rand

10.95 34.95 7.95 44.95

The dialog box has five buttons. The Clear button will obviously execute a proce
dure that calls PboxCListADTClear. the Next button will execute a procedure that
calls PboxCListADTGoNext, and the Insert button will execute a procedure that calls
PboxCListADTlnsert. The Previous button allows the user to display the content of

482 Chapter 21 Linked Lists

the previous node in the list and the Delete button allows the user to delete the cur
rent node from the list. These features cannot be implemented directly with the pro
cedures of Figure 21.10. Implementation of additional procedures to provide these
capabilities is left as a problem for the student at the end of this chapter. Also left as
a problem for the student is computation of the total price of all the books in the
linked list, which has a stub value of 999.99 in Figure 21.15.

Figure 21.17 is the program that implements the dialog box of Figure 21.15. The
module contains a global variable cList, which is the circular list of books, along
with the usual d interactor for the dialog box.

MODULE Pbox21 D;
IMPORT Dialog, PboxCListADT;

TYPE
String64 = ARRAY 64 OF CHAR;
Book = POINTER TO RECORD

title: String64;
author: String64;
price: REAL

END;

VAR
d*: RECORD

titleOut-, authorOut- : String64;
priceOut-: REAL;
titleln*, authorln* : String64;
priceln*: REAL;
total-: REAL

END;
cList: PboxCListADT. CList;

PROCEDURE ClearDialog;
BEGIN

d.titleOut := ""; d.authorOut := ""; d.priceOut := 0.0;
d.titleln := ""; d.authorln := ""; d.priceln := 0.0;
d.total := 0.0

END ClearDialog;

PROCEDURE SetBookOut (b: Book);
BEGIN

d.titleOut := b.title;
d.authorOut := b.author;
d.priceOut := b.price

END SetBookOut;

PROCEDURE SetTotal;
BEGIN

(* A problem for the student *)
d.total := 999.99

END SetTotal;

Figure 21.17
The program that implements
the dialog box of Figure
21.15.

PROCEDURE Clear>;
BEGIN

ClearDialog;
PboxCListADT.Clear(cList);
Dialog.Update(d)

END Clear;

PROCEDURE Next>;
VAR

book: Book;
BEGIN

IF -PboxCListADT.Empty(cList) THEN
PboxCListADT. GoNext(cList);
book := PboxCListADT.NodeContent(cList) (Book);
SetBookOut(book);
Dialog.Update(d)

END
END Next;

PROCEDURE Previous>;
BEGIN

(> A problem for the student *)
END Previous;

PROCEDURE Delete>;
BEGIN

(* A problem for the student *)
END Delete;

PROCEDURE Insert*;
VAR

book: Book;
BEGIN

NEW(book);
book.title := d.titleln;
book. author := d.authorln;
book.price := d.priceln;
PboxCListADT.lnsert(cList, book);
SetBookOut(book) ;
SetTotal;
Dialog.Update(d)

END Insert;

BEGIN
Clear

END Pbox21 D.

A circular linked list ADT 483

Figure 21.17
Continued.

Execution of the Clear procedure is straightforward. It calls ClearDialog. which Procedllre Clellr

clears the fields in the dialog box, then calls the Clear procedure for the circular list
to make cList empty. It then updates the dialog box to make the changes visible.

484 Chapter 21 Linked Lists

Note that procedure Clear is executed when the module is loaded.
Procedure Next first checks if cList is empty. If it is, nothing happens. Otherwise, Procedure Next

the precondition for GoNext is satisfied, and it executes

PboxCListADT.GoNext(cList)

which makes cList point to the next node in the linked list. Now the procedure needs
to access the fields of the book contained in the value part of the node so it can dis
play them on the dialog box. It gets the information by executing

book := PboxCListADT.NodeContent(cList) (Book)

where book is a local variable of type Book. The type guard (Book) is necessary
because NodeContent returns a pointer to ANYREC, which is more general than
Book. Now that Book has a value the procedure call

SetBookOut(book)

puts its values in the d record, after which time the dialog is updated to make the
changes visible.

Procedure Insert also has a local variable book of type Book. First it executes ProceduJ'i: Illsert

NEW(book)

which creates a new record with three fields-title, author, and price-and sets book
to point to the newly allocated record. Then, the statements

book. title := d.titleln;
book. author := d.authorln;
book. price := d.priceln

transfer the data from the input fields of the dialog box to the newly allocated record.
The procedure call

PboxCListADTI nsert(cList, book)

inserts the new book into the list as shown in Figure 21.13, and

SetBookOut(book);
SetTotal

sets the output fields in the dialog box, after which they are updated to make the
changes visible.

Figure 21.18 shows the implementation of the circular linked list. The exported
type CList is a pointer to Node where Node has a value field and next field as does
the node in Figure 21.5, page 469. The difference here is that the value part is a
pointer to ANYREC.

MODULE PboxCListADT;

TYPE
CList* = POINTER TO Node;
Node = RECORD

value: POINTER TO ANYREC;
next: CList

END;

PROCEDURE Clear' (OUT 1st: CList);
BEGIN

1st := NIL
END Clear;

PROCEDURE Empty' (1st: CList): BOOLEAN;
BEGIN

RETURN 1st = NIL
END Empty;

PROCEDURE GoNext' (VAR 1st: CList);
BEGIN

ASSERT (1st # NIL, 20);
1st := Ist.next

END GoNext;

PROCEDURE NodeContent' (1st: CList): POINTER TO ANYREC;
BEGIN

ASSERT (1st # NIL, 20);
RETURN Ist.value

END NodeContent;

PROCEDURE Insert* (VAR 1st: CList; val: POINTER TO ANYREC);
VAR

temp: CList;
BEGIN

IF 1st = NIL THEN
NEW(lst);
1st. value := val;
Ist.next := 1st

ELSE
temp := Ist.next;
NEW(lst.next);
1st := Ist.next;
Ist.value := val;
Ist.next := temp

END
END Insert;

END PboxCListADT.

A circular linked list ADT 485

Figure 21.18
Implementation of the
circular list
PboxClistADT.Clist.

486 Chapter 21 Linked Lists

Ist~

(a) Before 1st := NIL (b) Immediately after Ist:= NIL (e) After automatic garbage col
lection.

Procedure Clear simply sets 1st to NIL. Something important is going on behind
the scenes here-the process known as automatic garbage collection. Figure 21.19
shows the effect of automatic garbage collection. Immediately after execution of 1st
:= NIL, the nodes of the circular list are still allocated from the heap. However, there
is no way they can be used, because there are no pointers from any program that link
to them. Periodically the BlackBox framework detects every allocated piece of
memory in the heap that cannot be reached from any active pointers, and automati
cally returns each one to the heap so the storage can be reused. If Component Pascal
did not provide for automatic garbage collection, procedure Clear would be more
complicated. It would require a loop to advance a pointer through the list, individu
ally returning each unused node to the heap. Most modem programming languages
have automatic garbage collection, but a few older programming languages still in
widespread use do not.

Procedure Empty simply executes

RETURN 1st = NIL

If list 1st is empty, 1st equals NIL and the boolean expression 1st = NIL is true. Proce
dure GoNext implements its precondition with the ASSERT statement, and then exe
cutes

1st := 1st. next

in the usual manner. Formal parameter 1st is called by reference because the actual

Figure 21.19
Implementation of procedure
Clear with automatic garbage
collection.

Proct!tiure
PhnxCLislADTElllpl1"

Pmcl!dllre
PhoxCListADT (In:Vext

parameter must change. Procedure NodeContent is another one-liner. After its pre- PmCl!rillre
condition test it simply returns Ist.value. See Figure 21.14 for the effect. PburCListAD LY"dt! COI/ICllt

Procedure Insert takes a pointer to an existing record. creates a new node in the
circular list, and sets the value part of the new node to point to the same record.
There are two cases depending on whether 1st is empty. Figure 21.20 shows the non
empty case with the pointers labeled with their formal parameters. It corresponds to
Figure 21.13 where the pointers are labeled with the corresponding actual parame
ters.

Here is how procedure Insert works. Figure 21.20(a) shows the initial configura- I'rocedurt!

tion with 1st pointing to one of the nodes in the circular list and val pointing to a PI)()xCLiSIADTIII.lerr

record that needs to be inserted. The first statement

1st ~ cF8 temp

C:P--'----t---'-"
m m
val G-m

(a) Initial.

Iih-

valG-m
(e) NEW(lst.next).

1st Gf------~t

c:P--~
mm

val
(e) 1st. value := val.

A circular linked list ADT 487

1st ~ rEl temp

[~iliJ
valG-m

(b) temp:= Ist.next.

Figure 21.20
Execution of procedure
PboxCListADT.lnsert with a

nonempty list.

rEl temp 1st Bf------~t

C:P--r--l---r-11 ih-

m
val G-m

(d) Ist:= Ist.next.

(f) Ist.next:= temp.

488 Chapter 21 Linked Lists

temp := Ist.next

sets the temporary pointer to point to the node after the current one as in Figure
21.20(b). It is necessary to have a pointer to this node. because the link between it
and the original one will be broken. Figure 21.20(c) shows the effect of

NEW(lst.next)

As always, NEW does two things-allocates storage from the heap and makes its
parameter point to allocated storage. In this case, Ist.next is the parameter. Its type is
Node, so storage for a Node is allocated and Ist.next points to it. The newly allocated
node has two pointer fields that Component Pascal initializes to NIL. You can see
from the figure that 1st. next no longer points to the node to which temp points. The
next statement

1st := Ist.next

brings 1st over to the new node as in Figure 21.20(d). Figure 21.20(e) shows the
effect of

Ist.value := val

which is yet another pointer assignment. It makes Ist.value point to the same record
to which val points. This is how the record is placed into the list. Figure 21.20(f)
shows how

Ist.next := temp

links the new current node to the next node. It now becomes clear why you need
temp to be able to link up the new node to the next one.

A circular doubly-linked list

To implement the Previous and Delete buttons on the dialog box of Figure 21.15 you

will need to modify module PboxCListADT. To change the current position to the
previous node it is convenient for each node to have a link not only to the next node
but to the previous one as well. The definition of a node is augmented to

Node = RECORD
prey: CUst;
value: POINTER TO ANYREC;
next: CUst

END;

as in Figure 21.21. Figure 2 I .22 shows the doubly linked version of the circular list
in Figure 21.11.

Because of the extra prey link in each node you will need to add some processing
to procedure PboxCUstADT.lnsert. The prey link of the next node must be made to

prev value next

I I I I
Figure 21.21
The structure of a record of
type Node for a doubly-linked

list.

A circular doubly-Linked list 489

1st Gr--------~

~~'_'__'_____1] l~

m
point to the newly inserted node, and the prey link of the newly inserted node must
be made to point to the old current node.

With the prey link it is simple to implement a procedure that changes the current
position to the previous node. Use the technique as in PboxClistADT.GoNext but
with the prey link instead of the next link. It is more complicated but possible to
implement the Previous button of the dialog box in Figure 21.15 without modifying
PboxClistADT at all. You can find the previous node by looping all the way around
the list until you get to the node just before the current one. Implementation of the
Previous button with this approach is a problem for the student at the end of the
chapter.

A procedure that deletes the current node should have as its precondition that the
list is not empty, because it is impossible to delete a node from an empty list. There
is a special case if the list contains a single node. because after the deletion the list is
empty. Figure 21.23 shows what you must do to the nonempty list of Figure 21.22 to
delete the current node. Make the links of the previous and the next node bypass the
current node, and set 1st to the previous node. After automatic garbage collection, the
node will be reclaimed. It is not necessary to change the links of the deleted node.
The fact that it is possible to getji"Oln the deleted node to the list is irrelevant. What
matters is that it is impossible to get 10 the deleted node from any accessible pointer.
The inaccessibility of the deleted node is a sufficient condition for automatic gar
bage collection. The garbage collector will not necessarily collect the nodes to
which the deleted pointers point. In Figure 21.23. record B is also inaccessible and
will be garbage collected along with its list node.

Figure 21.22
A circular doubly-linked list
that corresponds to the
singly-linked list of Figure
ll.ll

Figure 21.23
Deleting a node frOiTI a
doubly linked circular list
with the list initially as in
Figure 21.22.

490 Chapter 21 Linked Lists

Record assignment

Both arrays and records are collections of values. With arrays, the values must all be
of the same type but with records they need not be. If you have two array variables
of the same type, say a and b, and you make an assignment between them, say a :=
b, then every element of b gets copied to the corresponding element of a. Figure
4.17(a), page 68, shows such a copy for arrays of characters.

It is possible to assign a whole record to another one, provided they have the
same type. In the same way that assignment of one array to another causes every ele- All ji£'ili.l' Ket copied illll

ment of the array to be copied. assignment of one record to another causes every recolti ({.I'signmellt

field to be copied.

Example 21.14 Suppose type Composer is a record with two fields, and compos
erA and composerS are declared as follows.

TYPE
Composer = RECORD

name: ARRAY 32 OF CHAR;
birth Year: INTEGER

END;
VAR

composerA. composerS: Composer;

If composerA and composerS have the values in Figure 21.24(a), and you make the
assignment

composerA := composerS

then both fields of composerS get copied to composerA as in Figure 21.24(b). That
is, the assignment is equivalent to

composerA.name := composerS. name;
composerA.birthYear := composerS.birthYearl

composerA 1 Mozart
1 1756 1

composerS I Bach I 1685 1

(a) Before composerA := composerB.

composerA 1 Bach 1 1685 1

composerS 1 Bach
1 1685 1

(b) After composerA:= composerS.

The declaration of CList in PboxCListADT defines CList to be a pointer to a node.
The following section declares List from module PboxLListObj to be a linked list that
has the same interface as the list presented in Chapter 7 (whose implementation is
shown in Chapter 17). Rather than implement List as an ADT like CList, the follow
ing section implements List as a class. Because it is implemented as a class, List is

Figure 21.24
Record assignment.

not defined to be a pointer, but a record. Here is the declaration.

List' = RECORD
head: POINTER TO Node

END;
Node = RECORD

value:T;
next: List

END;

Type List is a record containing only one field named head, which is a pointer to
a Node. As usual, a Node is a record with two fields-value and next-and next has
type List. With this setup, List is not a pointer. It is a record that contains a pointer.
Furthermore, the next field is not a pointer. It is also a record that contains a pointer.
That makes next a record inside of a record. Figure 21.2S(a) shows the structure of a
node for List assuming that myList is a variable of type List. To keep the diagrams
simple, the abbreviation in part (b) will be used to represent the structure in part (a)
throughout the remainder of this book.

~::'~:~d \ 'fG I .. D G
mylist.headll ~'----~ifo------jr--+-_...J

(a) Node structure for list.

mylist.head.nexl

mylist.head.next.head

(b) Abbreviated diagram of the same structure as in (a).

Suppose myList and yourList are both variables of type List. The assignment statc
ment

myList := yourList

is a record assignment. Therefore, every field of record yourList gets copied to the
corresponding field of myList. But there is only one field in the record, namely head,
which is a pointer. Therefore, the above record assignment is equivalent to the
pointer assignment

myList.head := yourList.head.

Record assignment 491

Figure 21.25
Diagrams for the node
structure of List.

492 Chapter 21 Linked Lists

A linked list class

The remainder of this chapter describes how a linked list can be implemented as a
class. Recall from Chapter 9 that the two primary advantages of using a class instead
of an ADT are the object-oriented features of inheritance and class composition. Illlzeritam:e llllli class
Chapters 23 and 24 describe these object-oriented features. In this chapter, there is compositioll

no direct advantage to implementing the linked list as a class because those features
of the class are not used.

The purpose for introducing the linked list as a class is to learn some of the
details of how to program with objects. The culmination of our study of object-ori
ented programming is a design pattern known as the state pattern presented in Chap
ter 24. That chapter presents yet another implementation of the linked list based on
an object-oriented property of inheritance known as polymorphism. The state pat
tern design technique is a modification of the class implementation of this chapter.
So, you may view this class implementation as an opportunity to learn some more
details of how to program with objects. It is a preliminary step in the direction of
more advanced object-oriented programming. Figure 21.26 shows the interface of
PboxLListObj, a linked list packaged as a class.

DEFINITION PboxLListObj; Figure 21.26
The interface of the linked list

TYPE class PboxLListObj.
T = ARRAY 16 OF CHAR;
List = RECORD

(VAR 1st: List) Clear, NEW;
(IN 1st: List) Display, NEW;
(IN 1st: List) GetElementN (n: INTEGER; OUT val: T), NEW;
(VAR 1st: List) InsertAtN (n: INTEGER; IN val: T), NEW;
(IN 1st: List) Length 0: INTEGER, NEW;
(VAR 1st: List) RemoveN (n: INTEGER), NEW;
(IN 1st: List) Search (IN srchVal: T; OUT n: INTEGER; OUT fnd: BOOLEAN), NEW

END;

END PboxLListObj.

Compare Figure 21.26 with Figure 7.18, page 139, which is the interface of
PboxListADT, a list abstract data type. Because PboxListADT implements its list with
an array it has a capacity, which the linked implementation does not have. This is a
major advantage of a linked data structure compared to an array-based data struc
ture. With an array, you must declare the maximum amount of storage you will need
even if you do not use all the storage. With a linked structure, you need not commit
to a maximum size. The data structure can grow to fit the data as long as storage is
available in the heap. Heap storage is, in tum, limited only by the amount of physi
cal storage available on your computer.

The procedures for PboxLListObj in Figure 21.26 perform the same operations as
the procedures for PboxListADT in Figure 7.18. Procedure Clear initializes a list to

the empty list. Display displays the content of the list on the Log. GetElementN
returns the element at position n in a list assuming that the first element is at position

A major ad\"lll/tage ,,(aliI/ked
impiemel1tati(1il (}\'erall arr{l."

implemel/tation

O. InsertAtN provides a value and a location of where to insert thc value into a list.

Length returns the number of elements in a list. RemoveN supplies a position in a
list and removes the element at that position from the list. Search supplies a search

value and sets fnd to false if the value is not in the list. Otherwise it sets fnd to true

and n to the position of the first occurrence of that value in the list. Figure 21.27 is
the documentation for PboxLListObj.

TYPE List
The linked list class supplied by PboxLListObj.

TYPET
The type of each element in the list, a string of at most 15 characters.

PROCEDURE (VAR 1st: List) Clear
Post
List 1st is initialized to the empty list.

PROCEDURE (IN 1st: List) Display
Post

A linked list class 493

Figure 21.27
The documentation of the
linked list class PboxLListObj.

List 1st is output to the Log, one element per line with each element preceded by its position.

PROCEDURE (IN 1st: List) GetElementN (n: INTEGER; OUT val: T)
Pre
0<= n 20
n < Ist.LengthO 21
Post
val gets the data value of the element at position n of list 1st.
Note: 0 is the position of the first element in the list.

PROCEDURE (VAR 1st: List) InsertAtN (n: INTEGER; IN val: T)
Pre
0<= n 20
Post
val is inserted at position n in list 1st, increasing Ist.LengthO by 1.
If n > Ist.LengthO, val is appended to the list.

PROCEDURE (IN 1st: List) Length 0: INTEGER
Post
Returns the number of elements in list 1st.

PROCEDURE (VAR 1st: List) RemoveN (n: INTEGER)
Pre
0<= n 20
Post
If n < Ist.LengthO, the element at pOSition n in list 1st is removed.
Otherwise, the list is unchanged.

494 Chapter 21 Linked Lists

PROCEDURE (IN 1st: List) Search (IN srchVal: T; OUT n: INTEGER; OUT fnd: BOOLEAN)
Post
If srchVal is in list 1st, fnd is set to TRUE and n is set to the first position where srchVal is found.
Otherwise, fnd is set to FALSE and n is undefined.

Figure 21.28 shows the dialog box of a program that uses the linked lisf class of
Figure 21.26. It is identical to the dialog box of Figure 7.19 except that the number
of items in each list (999) is not correct. It is your job to complete the implementa
tion of the linked list class to display the correct number of items in the list.

o =-.. --~~~ [Two Lists) .---. --. --=-----==~~ 13

I Insert R II Insert B I I h.libut I.t Dosition EJ
'-------'

I R9moue A) I Remou, 0 J from Dn~ition E=:J

I Search R I I Search B I '--___ --'1 Lu,ation:

I Rotrlo"e R I I Retrie"e B I l!:==:J String:

Number af items in A: 999 Number of items in B: 999

I Display R I I Display B I ij Clear

Figure 21.29 shows the module that produces the dialog box of Figure 21.28. The
interface in Figure 21.26 shows that two types are exported by the linked list class
List, which corresponds to the linked list, and T, which corresponds to the type of the
value that is stored in each cell of the list. In this linked list, the type stored in each
cell is a string of up to 15 characters. You can see this type PboxLListObj.T for the
fields in the d record that correspond to the controls of the dialog box used for input
and output of values with this type.

MODULE Pbox21 E;
IMPORT Dialog, PboxLListObj, PboxStrings;

TYPE
String32 = ARRAY 32 OF CHAR;

VAR
d*: RECORD

insertT*: PboxLListObj.T; insertPosition*: INTEGER;
removePosition*: INTEGER;
searchT*: PboxLListObj.T; searchPosition-: String32;
retrievePosition*: INTEGER; retrieveT-: PboxLListObj.T;
numltemsA-, numltemsB-: INTEGER;

END;
IistA, listB: PboxLListObj.List;

Figure 21.28
The dialog box for
manipulating two lists.

Figure 21.29
The program for the dialog
box of Figure 21.28.

PROCEDURE InsertAtA*;
BEGIN

IistAlnsertAtN(d.insertPosition, d.insertT);
d.numltemsA := listALengthO;
Dialog.Update(d)

END InsertAtA;

PROCEDURE InsertAtS*;
BEGIN

IistB.lnsertAtN(d.insertPosition, d.insertT);
d.numltemsB := listB.LengthO;
Dialog.Update(d)

END InsertAtB;

PROCEDURE RemoveFromA*;
BEGIN

listA.RemoveN(d.removePosition);
d.numltemsA := listA.LengthO;
Dialog.Update(d)

END RemoveFromA;

PROCEDURE RemoveFromS*;
BEGIN

listB.RemoveN(d.removePosition);
d.numltemsB := IistB.LengthO;
Dialog.Update(d)

END RemoveFromB;

PROCEDURE SearchForA*;
VAR

found: BOOLEAN;
position: INTEGER;

BEGIN
IistASearch(d.searchT, position, found);
IF found THEN

PboxStrings.lntToString(position, 1, d.searchPosition);
d.searchPosition := "At position" + d.searchPosition + "."

ELSE
d.searchPosition := "Not in list."

END;
Dialog.Update(d)

END SearchForA;

A linked list class 495

Figure 21.29
Continued.

496 Chapter 2 I Linked Lists

PROCEDURE SearchForS*;
VAR

found: BOOLEAN;
position: INTEGER;

BEGIN
listB.Search(d.searchT, position, found);
IF found THEN

PboxStrings.lntToString(position, 1, d.searchPosition);
d.searchPosition := "At position" + d.searchPosition + "."

ELSE
d.searchPosition := "Not in list."

END;
Dialog.Update(d)

END Search ForB;

PROCEDURE RetrieveFromA*;
BEGIN

I istA GetElementN (d. retrieve Position , d. retrieve T);
Dialog. Update(d)

END RetrieveFromA;

PROCEDURE RetrieveFromS*;
BEGIN

listB.GetElementN(d.retrievePosition, d.retrieveT);
Dialog.Update(d)

END RetrieveFromB;

PROCEDURE DisplayListA*;
BEGIN

listADisplayO
END DisplayListA;

PROCEDURE DisplayListS*;
BEGIN

listB.DisplayO
END DisplayListB;

PROCEDURE ClearLists*;
BEGIN

listAClear; listB.Clear;
d.insertT := ""; d.insertPosition := 0;
d.removePosition := 0;
d.searchT := ""; d.searchPosition := "";
d.retrievePosition := 0; d.retrieveT := "";
d.numltemsA := 0; d.numltemsB := 0;
Dialog. Update(d)

END ClearLists;

BEGIN
ClearLists

END Pbox21 E.

Figure 21.29
Continued.

The two lists processed by the module are the global lists declared as

listA, listS: PboxLListObj.List;

This client module can have more than one data structure because the type of the
data structure PboxLListObj.List is exported by the server module. The lists are glo
bal because they must persist between the clicks of thc buttons in the dialog box.

To invoke a method for the linked list the client module uses the syntax appropri
ate for objects. For example, in procedure InsertAtA, !istA is an object. The relevant
method exported by the server module is InsertAtN, whose documentation specifies

PROCEDURE (VAR 1st: List) InsertAtN (n: INTEGER; IN val: T)

The receiver is (VAR 1st: List), which acts like one of the formal parameters, except
that it is placed before the method name instead of after it along with the other for
mal parameters. The corresponding method call as shown in Figure 21.29 is

listA.lnsertAtN(d.insertPosition, d.insertT)

In the same way that d.insertPosition is the actual parameter that corresponds to for
mal parameter n, and d.insertT is the actual parameter that corresponds to formal
parameter val, listA is the actual parameter that corresponds to formal parameter 1st.
Unlike the other actual parameters, the object listA comes before the name of the
method, it is not enclosed by parentheses, and it is separated from the method name
by a period.

Figure 2 I .30 is a partial implementation of the linked list class. Most of the meth
ods are left as problems for the student. The statements in the procedures that are not

A linked list class 497

completed are known as stubs. Their purpose is to allow the module to be compiled The {,"rl'"l{, lira III/Ii

before all the procedures are completed. For example, the statement

(. A problem for the student .)
RETURN 999

in method Length is a stub. The RETURN statement is necessary for the module
PboxLListObj to compile. Placing stubs in some of the procedures allows the other
procedures in the module to be compiled and tested. When you complete procedure
Length you should delete its stub.

498 Chapter 21 Linked Lists

MODULE PboxLListObj;
IMPORT StdLog;

TYPE
T* = ARRAY 16 OF CHAR;
List* = RECORD

head: POINTER TO Node
END;
Node = RECORD

value:T;
next: List

END;

PROCEDURE (VAR 1st: List) Clear*, NEW;
BEGIN

Ist.head := NIL
END Clear;

PROCEDURE (IN 1st: List) Display*, NEW;
VAR

p: List;
i: INTEGER;

BEGIN
i:= 0;
p:= 1st;
WHILE p.head # NIL DO

StdLog.lnt(i); StdLog.String(" "); StdLog.String(p.head.value); StdLog.Ln;
INC(i);
p := p.head.next

END
END Display;

PROCEDURE (IN 1st: List) GetElementN* (n: INTEGER; OUT val: T), NEW;
VAR

p: List;
i: INTEGER;

BEGIN
ASSERT(O <= n, 20);
p:= 1st;
FOR i := 1 TO n DO

ASSERT(p.head # NIL, 21);
P := p.head.next

END;
ASSERT(p.head # NIL, 21);
val := p.head.value

END GetElementN;

Figure 21.30
Implementation of the linked
list class that is used in Figure
21.29.

PROCEDURE (VAR 1st: List) InsertAtN* (n: INTEGER; IN val: T), NEW;
VAR

prey, p: List;
i: INTEGER;

BEGIN
ASSERT(O <= n, 20);
IF (n = 0) OR (Ist.head = NIL) THEN (* Insert at beginning *)

p:= 1st;
NEW(lst.head);
Ist.head.value := val;
Ist.head.next := p

ELSE
i := 1;
prev:= 1st;
p := Ist.head.next;
WHILE (i < n) & (p.head # NIL) DO

INC(i);
prev:= p;
p := p.head.next

END;
NEW(prev.head.next.head);
prev.head.next.head.value := val;
prev.head.next.head.next := p

END
END InsertAtN;

PROCEDURE (IN 1st: List) Length* 0: INTEGER, NEW;
BEGIN

(* A problem for the student *)
RETURN 999

END Length;

PROCEDURE (VAR 1st: List) RemoveN* (n: INTEGER), NEW;
BEGIN

(* A problem for the student *)
END RemoveN;

A linked list class 499

Figure 21.30
Continued.

PROCEDURE (IN 1st: List) Search* (IN srchVal: T; OUT n: INTEGER; OUT fnd: BOOLEAN), NEW;
BEGIN

(* A problem for the student *)
fnd:= FALSE

END Search;

END PboxLListObj.

500 Chapter 21 Linked Lists

The declaration of the linked list from module PboxLListObj in Figure 21.30 is

List' = RECORD
head: POINTER TO Node

END;
Node = RECORD

value:T;
next: List

END;

which is shown in Figure 21.25. Enclosing the head pointer within a record is neces
sary because the linked list is implemented as a class, and some of the methods for
the class would be impossible to implement otherwise. Like the declaration for
CList, however, the type of the next field of the Node is a List.

Why not structure the node for the class the same way as for CList? Because of
restrictions that Component Pascal puts on the receiver of a method. The type of the
receiver must be either

• a pointer to a record called by value (default),

• a record called by reference (VAR), or

• a record called by constant reference (IN).

It would be legal to declare the linked list class as follows

List' = POINTER TO Node;
Node = RECORD

value: T;
next: List

END;

which is similar to the way it is declared in Figure 21.18 for CList. The problem is
with the implementation of some of the methods, such as procedure Clear. This pro
cedure clears a list by setting the pointer to NIL. To change the value of the pointer
requires the pointer be called by reference in procedure Clear, as Figure 21.30
shows. It would be impossible to call the pointer by reference in the receiver,
because pointers are restricted to call by value in the receiver.

Method PboxLListObj.Clear works just like its counterpart PboxCListADT.Clear.
The CList procedure sets

Ist:= NIL

while the corresponding List method sets

Ist.head := NIL

In both cases, automatic garbage collection reclaims any inaccessible nodes result
ing from the NULL assignment.

RestriCTions Oil the receiver (~t
U IIlelllOd

Me/I/O"
PlwxLLis/Ohi. Clf!ur

Method GetElementN takes as input an integer n and list 1st. and retrieves the ele- Me!l1OiI

ment val from the node at position n in 1st. Figure 21.31 (a) shows !istA before execu- 1'I)(lxLLi.I(Ol>j.Ge/£IemenIiV

tion of procedure GetElementN. Figure 21.31 (b) shows the usual memory allocation

on the run-time stack when a call to listA.GetElementN(d.retrievePosition, d.retrie
veT) executes assuming that the user has entered 1 for d.retrievePosition. Formal
parameter 1st is called by constant reference. and so gets a reference to IistA. val is
called by result, so it gets a reference to its actual parameter d.retrieveT, which is not
shown in the figure.

!istA 8--1 This 1+-1 is I+-~

?//////h.

(a) Before call to GetElementN

!istA 8--1 This 1+-1 is I+-~

p

retAddr

val •

n

1st

/.

(b) Call1istA.GetElementN(d.retrievePosition, d.retrieveT)

pn
1st 8--1 This 1+-1 tS I+-~

D
(c) Abbreviated version of (b)

To keep things simple. the following diagrams will frequently show only the rele
vant formal parameters and local variables as in Figure 21.31 (c). Even though for
mal parameters and local variables are allocated on the run-time stack. the structure
of the stack itself is not shown. The receiver 1st is a record that contains the single
link head. Rather than show the actual parameter, the figures will show the formal
parameter 1st. and label the pointer to the first node as Ist.head as in Figure 21.31 (c).
Likewise. the label for the formal parameter p will be the pointer that is in the one
field of the record. p.head.

A linked list class 501

Figure 21.31
Memory allocation when
method GetElementN is

called.

502 Chapter 21 Linked Lists

The preconditions of procedure GetElementN as specified in the documentation
are

0<= n 20
n < Ist.LengthO 21

The first statement in the implementation of the procedure

ASSERT(O <= n, 20)

insures that n is greater than zero. If it is not, a trap will execute with the appropriate
message that a precondition was violated and will display the identifying number
20.

The technique for retrieving the element at position n is to initialize List variable
p to list 1st, and then advance it through the list n times. Figure 21.32 shows the
sequence of steps to retrieve the element at position I. The record assignment

Figure 21.32
p

~. A trace of procedure

If-I If-~
GetElementN.

1st This is

D
(aJ p:= 1st

p

~I
p G

I~I 1st This If-I is If-~ 1st 8--1 This IS If-~
OJ OJ
(b) FOR i:= no n DO (e) p:= p.head.next

p:= 1st

in Figure 21.32(a) is equivalent to

p.head := Ist.head

and initializes p.head to point to the first element of the list. The first execution of

FOR i := 1 TO n DO

in Figure 21.32(b) initializes i to I and causes the body of the loop to execute. The
first statement in the body of the loop is the assertion

ASSERT(p.head # NIL, 21)

which will trigger a trap if p.head equals NIL. If n is less than the length of the list,
then p will eventually get the NIL value from the last node in the list, producing the
trap. The ASSERT statement implements the precondition n < Ist.LengthO. The sec
ond statement in the body of the loop

p := p.head.next

in Figure 21.32(c) advances p.head through the linked list. In this example, p.head
only advances once to get to the node at position I, but in general it will advance n
times to get to position n. The assertion preceding this statement guarantees that
p.head is not NIL and, therefore, that p.head.value exists. The last statement in the
procedure

val := p.head.value

gives the value part of the node pointed to by p.head to formal parameter val.
It is important to be aware of the types involved when dealing with linked struc

tures. In the assignment statement

p := p.head.next

the relevant types are

• p is a record (which is also a List)

• p.head is a pointer to a Node

• p.head.next is a record (which is also a List)

So, the assignment is a record assignment, or, equivalently, a List assignment.
Because the record contains a single field named head, which is a pointer, you could
write the same assignment as

p.head := p.head.next.head

However, an assignment statement such as

p:= p.head

would be illegal due to type conflict, because you would be trying to assign a pointer
to a record.

Method InsertAtN takes as input an integer n and a string value val, and inserts a
new node with val into list 1st at position n. Figure 21.33 is a trace of the procedure
call to insert the word "such" at position 2. The figure uses the abbreviated style
without showing the run-time stack for simplicity.

The first statement

A linked list class 503

Ml!thoJ

PhoxLListOhj.lllSl'rrArN

504 Chapter 21 Linked Lists

ASSERT(O <= n, 20)

corresponds directly to the precondition 0 <= n of the procedure. Unlike procedure
GetElementN, which requires n to be less than the length of the list, InsertAtN per
mits n to be greater than or equal to the length of the list. If it is, the new node is
appended to the end of the list.

The processing for the case of the empty list or when n has the value of zero is
different from the case when the list has at least one node and n is greater than zero.
Figure 21.33 shows a list with three elements and an insertion at position 2. A trace
of the procedure for the other case is left as an exercise for the student.

p B
I~I

p G
1$1 1st ~I This LS I+-~ 1st G--I This

BJ
,

prey prey G
(a) i:= 1; prey := 1st; p ;= Ist.head.next (b) INC(i); prey := p

p B p B
I+~~ 1st G--I This H-~I LS 1st G--I This I~I 'J

tun. ,

J prey G prey G

LS

is

(e) p;= p.head.next (d) NEW(prev.head.next.head)

p G p G
I~~ 1st 8--1 This l+rl LS 1st 8--1 This I~I LS tun.-

prey B ~ ~ prey G J

(e) prev.head.next.head.value:= val (f) prev.head.next.head.next:= p

I+-~

,

L
l+t~ q ~

I~~ fun.

1 such I~ ~

Figure 21.33(a) shows the list after the first three statements in the ELSE part of

the procedure execute. To keep the figure simple. storage for local variable i is not
shown. The statement

Figure 21.33

prey := 1st

makes pointer prev.head point to the same node to which Ist.head points. namely the

Execution of procedure
InsertAtN to insert the word
"such" at position 2.

node that contains "This". The statement

p := Ist.head.next

makes pointer p.head point to the same node to which Ist.head.next.head points,
namely the node that contains "is". The program is guaranteed to not produce a trap
from a NIL pointer reference with this assignment, because the IF part of the test
must be false, which implies that Ist.head is not NIL. Therefore, Ist.head points to a
node and the next part of that node exists. It is true that if the list consists of a single
node that p.head would get NIL from this assignment, but such an assignment would
not produce a trap.

These statements set up the loop invariant, which is that p.head points to the node

.-\ Linked list class 505

at position i, and prev.head points to the previous node. Specifically, the value of i is £.Ira/J/ish fhl.' loo/l il1l"Uriallf

L p.head points to the node at position I, and prev.head points to the previous node
at position O. The body of the loop processes the variables by increasing i while
maintaining the loop invariant.

The test at the beginning of the loop is

WHILE (i < n) & (p.head # NIL) DO

By De Morgan's law the loop will terminate when (i >= n) OR (p.head = NIL). In
fact, because the loop increments i only by one each time through the loop, the loop
will terminate when (i = n) OR (p.head = NIL).

Figure 21.33(b) and (c) show the effect of one execution of the loop body. The
statements

INC(i);
prey := p

increment i by one and advance prev.head to point to the next node. Then. the
assignment statement

p := p.head.next

makes p.head point to the next node in the list. As with the initialization statements
before the loop, you are guaranteed that this assignment will not produce a NIL ref
erence trap. This time it is the WHILE test that guarantees no trap because you can
execute the body only if (p.head # NIL). So, you know that p.head points to a node
and that p.head.next exists.

Figure 21.33(c) shows that the loop invariant is maintained. Specifically, the R""'lfuiJlish flli! loop i!1l"UriWlI

value of i is 2, p.head points to the node at position 2, and preY.head points to the
previous node at position I. At this time the loop terminates because i equals n.
Because the loop body maintains the invariant, you know that when the loop termi-
nates that (i = n) OR (p.head = NIL) and that p.head points to the node at position i,

and preY.head points to the previous node. The remaining task is to allocate a new
node and splice it into the linked list between the nodes pointed to by prey. head ,md
p.head.

Figure 21.33(d) shows the effect of the statement

506 Chapter 21 Linked Lists

N EW(prev. head. next. head);

to allocate a new node from the heap. Figure 21.33(e) shows how

prev.head.next.head.value := val;

sets the value part of the node to the string entered by the user. The next statement
illustrated in Figure 21.33(f)

prev.head.next.head.next := p

links the new node to the remainder of the list.
With these pointer manipulations you can see why the algorithm needs to keep

track of the previous node prey and the next node p. The link of prey must be
changed to point to the newly allocated node. And the link of the newly allocated
node must be set to point to the node to which p.head points.

Figure 21.34 shows the sequence of events that must transpire to implement ;'vIeth,,"

RemoveN. In Figure 2 1. 34(a) the algorithm initializes prev.head to point to the node PhO':LListOhj.RemOl"eN

at position a in the list and p.head to point to the node at position 1. A loop is
required to search for the node that contains the search word. The body of the loop
contains statements to advance p and prey.

prev:= p;
p := p.head.next

When p.head points to the node to be removed, prev.head points to the node before
it, as shown in Figure 21.34(b). Figure 21.34(c) shows how to remove the node from
the list. The algorithm merely changes the link part of the preceding node to point to
the node after the one to be deleted. Implementation of the procedure to delete a
node is a problem for the student at the end of this chapter.

Design trade-offs with linked lists

What are the advantages of using linked lists with pointers? After all, Figure 17.8
shows all the operations on the list data structure implemented with arrays. The
linked implementation of lists has two advantages over the array implementation.
The first advantage is the flexibility of dynamic storage allocation. With arrays you Flnihilitv oj".,wrage

must allocate enough memory for the maximum problem size you expect to encoun- a/location

ter. With dynamic storage allocation you always have the entire heap from which to
allocate another element.

This advantage is particularly important in problems with many lists. Suppose
you have three lists-a, b, and C. One time when you run the program. list a may
have 10,000 elements, and lists band c only a few. The next time, list b may have
10.000, and lists a and c only a few. If you implement the lists with arrays, you
would need to allocate 10,000 elements for a, b, and c, for a total of 30,000 ele
ments, to account for the possibility of any of the three lists having a maximum of
10,000 elements. Your computer would need storage for 30.000 elements to run the
program.

Design trade-offs with linked lists 507

p Figure 21.34
Deleting a node in a linked
list.

prev

1st ~I This Irl stuff 1+-1 is 1+-1 not I+-~
(3) Initialize p and prevo

p § I~I prev

I~I 1st 8----1 This 1+-1 is not I+-~ stuff

(b) Find the node to delete.

(c) Unlink the node from the list.

But if you implement the lists with dynamic storage allocation, you do not need
to declare the maximum size of each list. Your computer would need storage for
only a few more than 10,000 elements regardless of which list used most of them.
Using pointers, different lists use storage from the same heap. The net result is that
the linked list implementation can require less storage because of the flexibility of
dynamic storage allocation from the heap.

The second advantage of a linked implementation is the speed of insertions and Spet'd o{illsertiolls ({nd

deletions in long lists. To delete item 10 in a 100-item array, a, requires you to shift deletio/lS

a[11) to a[1 0), a[12) to a[11), a[13) to a[12), and so on. But to delete item 10 in a 100-
item linked list only requires you to change the link field of item 9 to point to item
II. You need not make any shifts.

The disadvantage of linked lists is their sequential nature. The only way to access Selllll'lItial ({en'ss

an element in the middle of a list is to start at the beginning and sequentially
advance a pointer through all the intermediate nodes. Arrays. however, are random
access data structures. That is, you can access the element at position i of array a
directly by subscripting a[i]. Direct access with subscripting is what allows for effi-
cient searching and sorting. For example, you cannot do a binary search of a linked
list because you cannot access the middle of the list in one step the way you can with

508 Chapter 21 Linked Lists

an array.
So, whether to use an array implementation or a linked implementation of a list Trade-ol/I' ",illl "alll

depends on the use to which it will be put. If speed of insertions and deletions is llI'l/ell/res

important and if flexibility of memory allocation is important use a linked imple-
mentation. If speed of searching and sorting is important use an array implementa-
tion. Such considerations arise frequently in the study of data structures. You
typically have more than one implementation at your disposal and the implementa-
tion you choose will involve trade-offs that require you to take into account the use
to which the data structure will be put.

Disk

Server, version I
Client

(a) Server module loads.

Server, version I
Client

(b) Client module loads.

Server, version 2
Client

Main memory

I Server, version I

Server, version I
Client

Server, version I
Client

(el Compile and Unload Server, version 2. Unloading fails.

Server, version 2
Client

(d) Client must be unloaded first.

Server. version 2
Client

I Server, version I

(e) Then Server. version I can be unloaded.

Unloading

The problems at the end of this chapter require you to program a server module that
is imported by a client module. Usually, the client module will be written or modi-

Figure 21.35
Developing a server module.

fied only once, and you will spend most of your program development effort on the
server module. Because the BlackBox framework is based on dynamic linking and
loading, you must take care with the unloading process. Suppose you write some
code in a server module, call it version L and test it with the client module. Figure
21.35 shows a likely scenario.

Figure 21.35(a) and (b) show that before a client module can be loaded from disk
to main memory, all modules that it imports, that is, the server modules, must be
loaded first. The framework cannot allow a module to be loaded without the mod
ules that it uses (that is, imports) to also be loaded. Therefore, when you test a server
module, the server loads first followed by the client that uses it.

Figure 21.35(c) shows what happens if you make a change to your server mod
ule, call it version 2, and select Dev-7Compile And Unload. The compile may be
successful, but the unload will fail because the system cannot unload the server
module while the client is still in main memory. To unload a server you must first
unload all the clients that import it.

Exercises 509

There are several ways to unload a module. If the focus window contains the How ro unlout/ (l !not/llie

source code for the module you want to unload, you can simply select Dev---?Unload
and that module will be unloaded. Alternatively, you can type the name of the mod-
ule in the Log or in some other text window and highlight it with your mouse. Then
select Dev---?Unload Module List.

If you ever want to see which modules are currently loaded you can select
Info---?Loaded Modules. A window will appear that contains a list of all the currently
loaded modules, the number of bytes each one occupies in main memory, the num
ber of clients for each server module, and the date and time of the compile and of the
load. Because the list of modules in the window has every client listed before its
servers, you can even highlight the list in the window in order to execute Dev---?Un
load Module List.

Exercises

1. Suppose the variable declaration part of a Component Pascal program declares a, b, c,
and d to each be a pointer to a record as in Figure 21.3. What does each of the follow
ing code fragments output to the Log"

(a)
NEW(a);
NEW(b);
a.i:= 5;
b.i:= 6;
a:= b;
StdLog.lnt(a.i);StdLog.Ln;
StdLog.lnt(b.i);StdLog.Ln;

(b)
NEW(a);
a.i:= 7;
NEW(b);
b.i:= 2;
c:= a;
d:= b;
a:= b;
StdLog.lnt(a.i);StdLog.Ln;
StdLog.lnt(b.i);StdLog.Ln;
StdLog.lnt(c.i);StdLog.Ln;
StdLog.lnt(d.i);StdLog.Ln;

(c)
NEW(a);
a.i;= 9;
b:= a;
a.i := b.i + a.i;
StdLog.lnt(a.i);StdLog.Ln;
StdLog.lnt(b.i);StdLog.Ln;

2, Suppose p, q, r, and last have type List as in Figure 21.6 and have the values in Figure
21.36. Draw the figure after execution of the following instructions.

(d)
NEW(a);
a.i;= 2;
NEW(b);
b.i;= 3;
c:= a;
a:= b;
b;= c;
StdLog.lnt(a.i);StdLog.Ln;
StdLog.lnt(b.i);StdLog.Ln;
StdLog.lnt(c.i);StdLog.Ln;

510 Chapter 21 Linked Lists

(a)
q:= r;
p:= last

(d)
NEW(q)
q.next:= r;
q.value := 5.0;
r:= q;
q:= NIL

(b)
q:= q.next;
p:= p.next

(e)
r.next := q.next;
q:= NIL

(e)
q := q.next.next;
p := p.next.next

~ Lr-----� 1-.0 ~I~r--I 2.0----,-,1~r--1 3.0----,-,1+r~
last 81--------------------·

3. Suppose p, q, r, and last have type List as in Figure 21.6 and have the values in Figure
21.36. State whether each of the following instructions produces a NIL pointer refer
ence error. For those that do, explain why.

(a)
p:= NIL;
p:= p.next

(b)
p:= p.next;
p:= p.next

(c)
last := last.next;
last := last.next

4. In computer science terminology, (a) what is the meaning of the word static? (b) What
is the meaning of the word dynamic?

5. Assuming the declarations of the types and variables in the section Class assignments,
page 474, state whether each of the following assignments will or will not compile cor
rectly. For those that will not compile correctly, explain why not.

(a) alphaPtr:= gammaPtr
(e) alphaPtr:= gammaPtr (AlphaPtr)
(e) gammaPtr:= alphaPtr (GammaPtr)
(g) betaPtr:= gammaPtr
(i) deltaPtr:= gammaPtr

(b) alphaPtr:= gammaPtr (GammaPtr)
(d) gammaPtr:= alphaPtr
(f) gammaPtr:= alphaPtr (AlphaPtr)
(h) betaPtr:= gammaPtr (BetaPtr)
(j) gammaPtr:= deltaPtr (GammaPtr)

6. Suppose p, q, r. and last have type List as in Figure 21.30 and have the values in Figure
21.36 assuming the abbreviation of Figure 21.25(b). Draw the figure after execution of
the following instructions.

Figure 21.36
The linked list for Exercises
2,3, and 6.

(a)
q.head := r.head;
p:= last

(d)
NEW(q.head)
q.head.next := r;
q.head.value := 5.0;
r:= q;
q.head := NIL

(b)
q := q.head.next;
p := p.head.next

(e)
r.head.next := q.head.next;
q.head := NIL

(e)

q := q.head.next.head.next;
p := p.head.next.head.next

7. Suppose p and q have type List as in Figure 21.30. State whether each of the following
statements will or will not compile correctly. For those that will not compile correctly.
explain why not.

(a) p:= q
(d) p:= q.head
(g) p.headA.next:= q

(b) p.head:= q.head
(e) p.next:= q.next
(h) NEW(p)

(e) pA.head:= qA.head
(I) p.head.next:= q
(i) NEW(p.head)

8. (a) What types are receivers restricted to in Component Pascal? (b) For each of the
types in (a), which parameter calling mechanisms are allowed?

Problems

9. Modify the PboxStackADT to implement the stack with a linked list instead of an array.
The interface for your modified stack should be similar to the interface in Figure 7.8
except that it should not export a capacity, because you will be able to allocate as many
nodes as you wish from the heap. Define a stack to be a pointer to a node as follows.

Stack' = POINTER TO Node;
Node = RECORD

value: REAL;
next: Stack

END;

Your interface should have the following specifications.

PROCEDURE Clear (VAR s: Stack);
PROCEDURE Numltems (s: Stack): INTEGER;
PROCEDURE Pop (VAR s: Stack; OUT x: REAL);
PROCEDURE Push (VAR s: Stack; x: REAL);

In each of these procedures, s will point to the node at the top of the stack. The next
field of the node will point to the node that is second from the top. and so on. Test your
implementation with the program of Figure 7.10.

10. It is possible for the user to generate a trap when she executes module Pbox21 E, Figure
21.29. Rewrite the module to make it bulletproof so that no trap will he generated
regardless of the user input. If an input value would generate a trap. program the mod
ule to do nothing.

Prohlems 511

512 Chapter 21 Linked Lisls

11. Implement procedure SetTotal in Figure 21.1 7 to compute the total price for all the
books in the circular list. The empty list is a special case, for which the total is 0.00. If
there is at least one book in the list you should initialize a local variable, say p, of type
CList to cList. Leaving cList unchanged, progress around the circular list with p using
GONext(p) to advance through the circular list until p equals cList. At each position in
the circular list accumulate the total from the price of the current book. You will need
to use a local variable book of type Book as in PROCEDURE Next on page 483 to
access the price field of the book record.

12. Implement the Previous button of the dialog box in Figure 21 15 by completing proce
dure Previous in Figure 21.17. Do not modify PboxCListADT.

13. Implement the Delete button of the dialog box in Figure 21.15 by completing proce
dure Delete in Figure 21.17. Add a procedure to PboxCListADT also named Delete.
which is called by procedure Delete in Figure 21.17. The precondition for procedure
Delete is that the list is not empty. The postcondition is for the new current position to

be the old previous one. Do not change the declaration for Node in PboxCListADT.

14. Implement the Previous button of the dialog box in Figure 21.15 by completing proce
dure Previous in Figure 21.1 7. Add a prey link to the PboxCListADT node as described
in the section, A circular doubly-linked list, page 488. Add a procedure to Pbox
CListADT named GoPrev, which is called by procedure Previous. The precondition for
GoPrev is that the list is not empty.

15. Implement the Delete button of the dialog box in Figure 21.15 by completing proce
dure Delete in Figure 21.17. Do this problem only after you have completed Problem
14 for the doubly-linked list. Add a procedure to PboxCListADT also named Delete.
which is called by procedure Delete in Figure 21.1 7. The precondition for procedure
Delete is that the list is not empty. The postcondition is for the new current position to
be the old previous one as shown in Figure 21.23.

16. This problem is for you to complete the following methods for the linked list class in
module PboxLListObj. Test your procedures with the program in Figure 21.29 using the
dialog box of Figure 21.28. For each of the following procedures, implement any pre
conditions with the appropriate ASSERT or HALT procedure. Do not use recursion in
any of your implementations.

(a) (VAR 1st: List) RemoveN (n: INTEGER). NEW
(b) (IN 1st: List) Search (IN srchVal: T; OUT n: INTEGER; OUT fnd: BOOLEAN). NEW
(e) (IN 1st: List) Length 0: INTEGER, NEW

17. Change the implementation of procedure Display in PboxLListObj as follows.

PROCEDURE (IN 1st: List) Display', NEW;
BEGIN

Ist.DisplayRecursive(O)
END Display;

Then. define DisplayRecursive as

PROCEDURE (IN 1st: List) DisplayRecursive (n: INTEGER), NEW

which recursively outputs a list starting with its first element numbered n. Do not use a

loop.

18. Work Problem 17, but output the list in reverse order.

19. Work Problem 16(b) to write the method Search for the linked list class. but do it
recursively without a loop. Define SearchN as

PROCEDURE (IN 1st: List) SearchN (IN srchVal: T; VAR n: INTEGER; OUT fnd: BOOLEAN), NEW;

whose signature differs from that of Search only by n being called by reference (VAR)
instead of called by result (OUT). The programmer of the client in Figure 21.29 must
see the same interface for your recursive version of PboxLListObj and must not need to
initialize the value of n before it calls the server method. In the implementation Qf
Search, initialize n to 0 then call SearchN. which assumes that the initial value of n is
defined. If 1st is not empty and the value field of its first node does not equal srchVal,
then SearchN must call itself recursively. If srchVal is at position n in the next list of the
first node of 1st. then it is at position n + 1 in 1st. In that case. SearchN must increment
n.

20. Work Problem 16(c) to write the method Length for the linked list class, but do it recur
sively without a loop. The base case is for the empty list.

21. This problem requires you to add the following methods to module PboxLListObj in
Figure 21.30. Test your procedures by importing them into the module of Figure 21.29.
Augment the dialog box of Figure 21.28 to test the procedures.

(a) PROCEDURE (VAR 1st: List) Copy' (listB: List), NEW
Create a new list. 1st, which is a copy of listS. You must allocate new copies of all the
nodes of listS. You are not allowed to simply set Ist.head to point to the same head
node that IistB.head points to.

(b) PROCEDURE (VAR 1st: List) Append' (listB: List), NEW
Append a copy of ListB to the end of ListA. You must allocate new copies of all the
nodes of listS. You are not allowed to simply set the head field of the last node of 1st to
point to the same head node that listB.head points to.

(e) PROCEDURE (VAR 1st: List) Merge' (listB: List), NEW
Merge a copy of listB with 1st starting with the first word in 1st. For example. if 1st is the
list

Now the for

and listB is the list

is time action

then after the procedure is called. 1st should be the list

Problems 513

514 Chapter 21 Linked Lists

Now is the time for action

Be sure your procedure works correctly if 1st has more words than listB or if listS has
more words than 1st. You must allocate new copies of all the nodes of listS. You are not
allowed to alter the original nodes of listS.

r.II Chapter 22
IiIJP

Binary Trees

Like stacks and lists, binary trees are structures that store values. Stacks and lists are
linear. That is, you can visualize them as consisting of a sequential row of values,
one after the other. Each data structure has operations for storing and retrieving val
ues. With a stack, to store an item you push it onto the top of the stack, while a list
allows you to insert a value at an arbitrary location.

Binary trees have more of a two-dimensional structure compared to stacks and
lists. Like all data structures, however they have operations for storing and retrieving
values. This chapter begins by defining the characteristics of an abstract binary tree.
It concludes by showing how pointers can be used to implement the data structure.

Abstract binary trees

The definition of an abstract binary tree is recursive. It is defined in terms of itself.
An abstract binary tree is

or

• an empty tree

• a nonempty tree consisting of a root cell containing

.... a left child, which is a binary tree

.... a value

.... a right child, which is a binary tree.

You can see the recursive nature of the definition, because the root cell of a non
empty tree contains a left child, which is in tum a tree. Similarly to programming
with recursion, a recursive definition must have a base case that stops the recursion.
In this definition, the empty tree is the base case, because it is not defined in terms of
another tree.

Figure 22.1 illustrates this definition of an abstract binary tree for a tree of inte
gers. The root of the tree is the node that contains 5. The leaves-6, I, and 7-are

The d<'.fillilioll of all abstract
biliary tree

those nodes whose left and right children are both empty. The structure in Figure The d~fillitiol1 ofll tell/"
22.I(a) is a binary tree because its root, 5, has a left child that is a binary subtree, as
shown in (b), and a right child that is a binary subtree, as shown in (c).

Figure 22.2 shows why the structure in Figure 22.1 (b) is a binary tree. The root of
this tree contains 4, its left child in Figure 22.2(b) is empty, and its right child,
shown in Figure 22.2(c), consists of a singie node. You can see from this line of rea-

516 Chapter 22 Billary Trees

5

(a) The tree. (b) Its left child. (c) Its right child.

soning that each child of a node in the original structure of Figure 22.1 (a) can be
shown to be a binary tree. The basis of the definition is the fact that a binary tree can
be empty.

(a) The tree. (b) Its left child. (c) Its right child.

Every node in a tree has a depth. The depth of the root node is always zero. The
depth of any child of the root is one. In general, the depth of any node is one plus the
depth of its parent node. The height of a tree is the maximum value of the depths of
all its nodes. Figure 22.3 shows a binary tree having nine nodes with the depth of
each node labeled. Node 42 has a depth of 2. Node 7 has the maximum depth, 4, of
all the nodes. Therefore, 4 is the height of the tree

Depth 0 16

Depth 1

Depth :2 Height 4

Depth 3

Depth 4 7

The values in the binary tree of Figure 22.3 have no particular order associated
with them. This binary tree is said to be unordered. In practice, binary trees usually
are ordered in a way that makes retrieving a value efficient. Such a tree is called a
biliary search tree. A binary search tree satisfies four criteria:

Figure 22.1
An abstract binary tree.

Figure 22.2
Another abstract binary tree.

Figure 22.3
The depth of the nodes and
the height of the tree.

• every value in the left subtree of the root is less than the value of the root

• the left subtree is a search tree

• every value in the right subtree of the root is greater than the value of the root

• the right subtree is a search tree

It is possible to construct a binary tree in which the left and right children of the
root are search trees, but the tree itself is not a search tree. It is also possible to con
struct a binary tree in which every value in the left subtree is less than the root and
every value in the right subtree is greater than the root, but the tree itself is not a
search tree. For a binary tree to be a search tree, all four criteria must hold.

Example 22.1 In Figure 22.1 (a), the fact that I is in the right subtree of root 5,
shows that the tree is not a search tree. Another node out of order is 6, which is in the
left subtree of the root. I

Example 22.2 The binary tree of Figure 22.4 is a search tree. All the nodes in the
left subtree of the root (20, 10, 30) are less than the root value, and all the nodes in
the right subtree (60, 50) are greater than the root value. Furthermore, the subtree
with 20 as a root is itself a search tree, because lOis less than 20, and 30 is greater
than 20. Similarly, the subtree with 60 as a root is itself a search tree, because 50, the
value in the left child of 60, is less than 60. I

In their abstract form, binary trees are usually written on paper or displayed on
the screen as two-dimensional drawings. It is frequently necessary, however, to out
put the values from the tree in a single list as opposed to a flat drawing. To print all
the values requires a procedure that somehow travels around the tree, visiting the
various nodes and outputting their values. Such a trip is called a traversal. Three
common traversals of a binary tree are:

• Preorder traversal

• Inorder traversal

• Postorder traversal

The definition of each traversal is recursive and is related to the recursive nature of
the definition of a binary tree.

The definition of a preorder traversal is

Abstract billary trees 517

The dejil1iliol1olo hillo,,"
se(lrch tree

40

Figure 22.4
A binary search tree.

Bil1or), Iret: IUlI'ers,,!s

• Visit the root. The prfordt'f lral'ersa!

• Make a preorder traversal of the left subtree, if any.

• Make a preorder traversal of the right subtree, if any.

This definition is recursive because the preorder traversal requires two other preor
der traversals.

Figure 22.5(a) shows the preorder traversal of the binary tree of Figure 22.1. The
line that enters from the upper left and exits to the upper right traces the path. The
definition says to first visit the root, which the figure indicates by the solid box to the
left of the root. Then do a pre order traversal of the subtree whose root is 20, fol
lowed by a preorder traversal of the subtree whose root is 60.

Now apply the preorder traversal to the tree whose root is 20. First visit 20. then

518 Chapter 22 Binary Trees

(a) Preorder. (b) Inorder. (e) Postorder.

do a preorder traversal with 10 as the root, followed by a preorder traversal with 30
as the root. Similarly, the preorder traversal of the tree whose root is 60 consists of a
visit to 60, followed by a visit to 50. The net result is

40 20 10 30 60 50

The definition of an inorder traversal is

• Make an inorder traversal of the left subtree, if any.

• Visit the root.

• Make an inorder traversal of the right subtree, if any.

Figure 22.5(b) shows the corresponding inorder visitation on the same tree. This
time the incoming path does not first visit the root. Instead, it waits until the left sub
tree has been traversed. Then the root is visited as indicated by the solid box on the
path just under the root. After the root is visited, the path traverses the right subtree.
The net result is

10 20 30 40 50 60

The definition of a postorder traversal is

• Make a postorder traversal of the left subtree, if any.

• Make a postorder traversal of the right subtree, if any.

• Visit the root.

Figure 22.5(c) shows the postorder traversal. The path does not show a visit to the
root until both the left and right subtrees have been traversed. This time the output is

10 30 20 50 60 40

Remember that the tree in Figure 22.5 is a binary search tree. The example of an
inorder traversal of a binary search tree shows that it outputs the values in order, as if
they were sorted. In fact. one of the primary uses of binary trees is to maintain lists
of elements in sorted order.

Figure 22.5
The visits to the nodes in the
tree traversal algorithms.

The iI/order traversal

Tile pustorder traversal

A binarv search tree ADT 519

To build a binary search tree requires an insert operation. Insert assumes that a
given binary tree is a search tree and inserts a new node with some value to the tree.
maintaining its ordered state. Figure 22.6 shows the structure of an abstract tree of
integers that is initially empty and is constructed with the sequence of inserts 40. 20,
60.50, 10,30.

(a) Insert 40.

~
® 20

40

(b) Insert 20. (e) Insert 60.

60

Figure 22.6
Constructing the binary
search tree with the insert
algorithm.

40 40 40

20 20 60

so 10 SO

(d) Insert SO. Ie) Insert 10. (f) Insert 30.

With each insert operation. the newly created node takes the place of an empty
left child or an empty right child of some node in the tree. The node that is inserted
becomes a leaf. If the node to which it is attached was previously a leaf. that node
becomes an intemalnode, that is, a node that is not a leaf. Definilion of un '"lemu/node

When a given value is inserted to a given ordered binary tree, the attachment
point is unique. For example. to insert 10 to the tree of Figure I O.IS(d) it must take
the place of the left child of 20. Placing 10 at any other available location would pro
duce a tree that is not ordered.

A binary search tree ADT

In the same way that a linked list can be packaged as an ADT or as a class. a binary
search tree can be packaged both ways. Figure 22.7 shows the interface for a binary
search tree ADT.

520 Chapter 22 Billary Trees

DEFINITION PboxTreeADT;

TYPE
Tree = POINTER TO Node;
T = ARRAY 16 OF CHAR;

PROCEDURE Clear (OUT tr: Tree);
PROCEDURE Contains (tr: Tree; IN val: T): BOOLEAN;
PROCEDURE Insert (VAR tr: Tree; IN val: T);
PROCEDURE Numltems (tr: Tree): INTEGER;
PROCEDURE PreOrder (tr: Tree);
PROCEDURE InOrder (tr: Tree);
PROCEDURE PostOrder (tr: Tree)

END PboxTreeADT.

As with the list ADT in Chapter 21, type T is the type of the values that are stored
in the data structure. The tree itself is a pointer. The documentation for Tree and T is

TYPE Tree
The binary search tree ADT supplied by PboxTreeADT.

TYPET
The type of each element in the tree, a string of at most 15 characters.

The documentation for procedure Insert shows that it has a precondition.

PROCEDURE Insert (VAR tr: Tree; IN val: T)
Pre
Tree tr does not already contain val. 20
Post
val is inserted in tree tr, maintaining its ordered property.

If you try to insert an element in the tree that already contains the same value, a trap
will be generated with error number 20.

Procedure Contains returns true iff tr contains element val, and function
Numltems returns the number of items in tr. Neither of these methods has a precon
dition. The next three procedures output the tree in preorder, inorder, and postorder.
Because the operation of outputting a tree to the Log does not change the tree, tr in
these methods is called by value. The Clear procedure clears an existing tree to the
empty tree. Because this method will change the tree, tr is called by reference.

As with the linked list interface in Chapter 21, no capacity is specified, indicating
that the only limit on the size of a binary search tree is the amount of available mem
ory. It is apparent from this fact that this binary tree is implemented as a linked
structure with dynamic storage allocation as opposed to being implemented with an
array. While the previous examples showed binary search trees that stored integers,
this interface is for an ordered binary tree that stores strings.

Figure 22.8 shows one possible data structure for the binary search tree ADT. As

Figure 22.7
The inteIi'ace for the binary
search tree ADT.

A hillary search tree class 521

with the list ADT, type Tree is a pointer to Node. Node. however. contains two links
to the left and right subtree rather than just one link to the next element in a list.
Rather than describe the implementation of the binary search tree ADT. this chapter
concludes with the corresponding implementation of the binary search tree class.

TYPE
r = ARRAY 16 OF CHAR;
Tree* = POINTER TO Node;
Node = RECORD

leftChild: Tree;
value:T;
rightChild: Tree

END;

A binary search tree class

Module PboxTreeObj implements an ordered binary tree as a class. Figure 22.9
shows its interface. The methods have the same names and operations as the corre
sponding procedures in the ADT of Figure 22.7. In particular, the only method that
has a precondition is Insert. which does not allow the insertion of a duplicate item.

Figure 22.10 shows the dialog box for a program that uses the binary search tree
class of Figure 22.9. The user does not specify a position for an insertion. Instead,
the insert algorithm inserts an element into the one place that will maintain the
ordered property of the tree. The result of a search is simply a statement of whether
a tree contains a given element. No position is associated with the result as it is with
the locate option in the dialog box of Figure 21.28 for the linked list. Completion of
method Contains. which performs the search, is left as a problem for the student.
Also left as a problem are methods Numltems. InOrder, and PostOrder. The numbers
999 in the dialog box are produced by a stub in method Numltems.

DEFINITION PboxTreeObj;

TYPE
T = ARRAY 16 OF CHAR;
Tree = RECORD

(VAR tr: Tree) Clear, NEW;
(IN Ir: Tree) Contains (IN val: T): BOOLEAN, NEW;
(VAR Ir: Tree) Insert (IN val: T), NEW;
(IN tr: Tree) Numltems 0: INTEGER, NEW;
(IN tr: Tree) PreOrder, NEW;
(IN Ir: Tree) InOrder, NEW;
(IN tr: Tree) PostOrder, NEW

END;

END PboxTreeObj.

Figure 22.8
The data structure for the
binary search tree ADT.

Figure 22.9
The interface for the binary
search tree class.

522 Chapter 22 Binary Trees

I.-A I . 'j~If"II_'ow

localeA! locale B II I,abill

s-ch red: jiObin Is notl" tree B

....d..oIi1ano .. A: [999. . H atilano .. B; J9s9
PreO",",A I
InC",",AI

~rdorA I

. """'",",81
lrilider 8 I

.. PooOrdor B I

The program in Figure 22.11 shows how to use the ordered binary tree class. The
interactor is linked to the dialog box of Figure 22.10. Corresponding to the 11 but
tons in the dialog box are 11 procedures in module Pbox22A.

MODULE Pbox22A;
IMPORT Dialog, PboxTreeObj, StdLog;

VAR
dO: RECORD

insertT*: PboxTreeObj.T;
searchT*: PboxTreeObj.T;
resultString-: ARRAY 64 OF CHAR;
numltemsA-, numltemsB-: INTEGER;

END;
treeA, treeB: PboxTreeObj.Tree;

PROCEDURE InsertA*;
BEGIN

treeA.lnsert(d.insertT);
d.numltemsA := treeA.NumltemsO;
Dialog.Update(d)

END InsertA;

PROCEDURE InsertB';
BEGIN

treeB.lnsert(d. insertT);
d.numltemsB := treeB.NumltemsO;
Dialog.Update(d)

END InsertB;

Figure 22.10
The dialog box for
manipulating two binary
search trees.

Figure 22.11
A program that uses the
binary search tree class.

PROCEDURE SearchA*;
BEGIN

IF treeA.Contains(d.searchT) THEN
d.resultString := d.searchT + " is in tree A"

ELSE
d.resultString := d.searchT + " is not in tree A"

END;
Dialog. Update(d)

END Search A;

PROCEDURE SearchB*;
BEGIN

IF treeB.Contains(d.searchT) THEN
d.resultString := d.searchT + " is in tree B"

ELSE
d.resultString := d.searchT + " is not in tree B"

END;
Dialog.Update(d)

END SearchB;

PROCEDURE PreOrderA*;
BEGIN

StdLog.Ln;
treeA. PreOrder

END PreOrderA;

PROCEDURE PreOrderB';
BEGIN

StdLog.Ln;
treeB. PreOrder

END PreOrderB;

PROCEDURE InOrderA*;
BEGIN

StdLog.Ln;
treeA.lnOrder

END InOrderA;

PROCEDURE InOrderB';
BEGIN

StdLog.Ln;
treeB.lnOrder

END InOrderB;

PROCEDURE PostOrderA*;
BEGIN

StdLog.Ln;
treeA. PostOrder

END PostOrderA;

A binary search tree class 523

Figure 22.11
Continued.

524 Chapter 22 Binary Trees

PROCEDURE PostOrderB*;
BEGIN

StdLog.Ln;
treeB. PostOrder

END PostOrderB;

PROCEDURE ClearTrees*;
BEGIN

treeA.Clear; treeB.Clear;
d.insertT := '''';
d.searchT := ""; d.resultString := "";
d.numltemsA := 0; d.numltemsB := 0;
Dialog.Update(d)

END ClearTrees;

BEGIN
ClearTrees

END Pbox22A.

treeA and treeB are the two global variables whose states are maintained between
clicks of the buttons of the dialog box. Most of the procedures simply use the user
input from the dialog box as actual parameters in a call to the corresponding method
from the class. The procedures for outputting the tree traversals include a call of Std
Log.Ln before calling on the class so that the output for a traversal will begin on a
new line.

The implementation of a binary tree is closely related to the recursive definition
of an abstract binary tree. From an abstract perspective, a binary tree is either empty
or is a cell containing a value and two binary trees. In the same way that a list is
implemented as a pointer to the head node of the list, a binary tree is implemented as
a pointer to the root node of a tree. Each node in the tree contains a value part to
hold the data and two other parts to hold its left child and its right child. The data
part obviously has type T, but what is the type of the left child and right child? From
the recursive definition of a binary tree, they should each have type Tree. Figure
22.12 shows the structure of a record for a node in the implementation of a binary
tree.

The abstract binary tree of strings in Figure 22.13(a) has three elements with
robin as the root of the tree, finch as its left child and sparrow as its right child. The
links are simply drawn as lines between the nodes. Figure 22.13(b) shows the nodes
in the tree as it would be implemented with the record of Figure 22.12. treeA is a
pointer to the node record that represents its root. The value part of the root node
contains the string robin. The leftChild is a tree. That is, it is a pointer to the root of
the left subtree, a record containing finch in its value part. Because the node contain
ing finch has no left child, the pointer in its leftChild part is NIL. Likewise, the pointer
in its rightChild part is NIL.

Figure 22.14 shows the implementation using the structure of the nodes as shown
in the previous figures. The type declarations define type Tree to be a record, which
contains a pointer to the tree's root node. The root node, in turn. contains a left sub
tree. a value to store the data at the node. and a right subtree. Subtrees leftChiid and

Figure 22.11
Continued.

value

II
leftChild

Figure 22.12

II
rightChild

The structure of a record for a node
in the implementation of a binary
tree.

A binary search tree class 525

treeA.root ~

rfl robin I~

finch ~ W sparrow W

(a) An abstract binary tree. (b) Its linked implementation.

rightChiid have type Tree. That is, they are records with a single pointer to the roots
of the left and right subtrees.

Because a tree is a pointer to its root node, and an empty tree has no nodes, an
empty tree is represented by a pointer whose value is NIL. Method Clear makes a
tree empty by setting to NIL the pointer to its root node. The nodes that comprised
the tree are later reclaimed by the automatic garbage collector.

MODULE PboxTreeObj;
IMPORT StdLog;

TYPE
T* = ARRAY 16 OF CHAR;
Tree* = RECORD

root: POINTER TO Node
END;
Node = RECORD

leftChild: Tree;
value:T;
rightChild: Tree

END;

PROCEDURE (VAR tr: Tree) Clear', NEW;
BEGIN

tr.root := NIL
END Clear;

PROCEDURE (IN tr: Tree) Contains' (IN val: T): BOOLEAN, NEW;
BEGIN

(* A problem for the student *)
RETURN FALSE

END Contains;

Figure 22.13
An abstract binary tree and its
implementation as a class.

Figure 22.14
Implementation of the
ordered binary tree class that
is used in Figure 22.11.

526 Chapter 22 Binary Trees

PROCEDURE (VAR tr: Tree) Insert* (IN val: T), NEW;
VAR

parent: Tree;
p:Tree;

BEGIN
(* Find insertion point *)
parent.root := NIL;
p := tr;
WHILE p.root # NIL DO

parent := p;
ASSERT(p.root.value # val, 20);
IF val < p.root.value THEN

p := p.root.ieftChild
ELSE

p := p.root.rightChild
END

END;
(* Attach new node to parent *)
NEW(p.root);
p.root.value := val;
IF parent.root = NIL THEN (* tr is empty *)

tr:= p
ELSIF val < parent.root.value THEN

parent.root.leftChild := p
ELSE

parent.root.rightChild := p
END

END Insert;

PROCEDURE (IN tr: Tree) Numltems* 0: INTEGER, NEW;
BEGIN

(* A problem for the student *)
RETURN 999

END Numltems;

PROCEDURE (IN tr: Tree) PreOrder*, NEW;
BEGIN

IF tr.root # NIL THEN
StdLog.String(tr.root.value); StdLog.String(" ");
tr.root.leftChild. PreOrder;
tr. root. rightC hild. PreOrder

END
END PreOrder;

PROCEDURE (IN tr: Tree) InOrder*, NEW;
BEGIN

(* A problem for the student *)
END InOrder;

Figure 22.14
Continued.

A hinary search tree class 527

PROCEDURE (IN tr: Tree) PostOrder*, NEW;
BEGIN

(* A problem for the student *)
END PostOrder;

END PboxTreeObj.

PboxTreeObj implements method PreOrder directly from the definition of a pre
order traversal. If a tree is empty, it has no pre order traversal and the method simply
returns to the calling procedure. Otherwise, the steps in the algorithm are to first
visit the root, then to do a preorder traversal of the left subtree followed by a preor
der traversal of the right subtree. To indicate that the root is visited, the method out
puts the data from the current node. It then recursively calls for a preorder traversal
of the left subtree followed by a recursive call for a preorder traversal of the right
subtree. Implementation of procedures InOrder and PostOrder are similar and are
left as a problem for the student.

Figure 22.IS shows the action of procedure Insert when it is called to insert the
value pat into an ordered binary tree. The procedure has two parts. First, it must find
the position in the tree to attach the new node. Then, it must allocate the new node
and attach it.

To find the position, the procedure maintains two local variables, p and parent,
which are both trees. Variable p advances through the tree starting from the root, and
makes its way to the correct insertion point. Each time p advances one level down
the tree, variable parent points to the node from which p advances. When p finally
gets NIL, parent will point to the node to which the new node must be attached. Fig
ure 22.IS(a) through (d) shows the sequence of events of the first part of the proce
dure to find the position in the tree.

Each time through the loop the procedure must decide whether to advance p to
the left or to the right. Recall from Figure 22.9 the precondition that duplicate values
are not allowed. The assertion in the body of the WHILE loop in procedure Insert
guarantees that if v is not less than p.value it will be greater than p.value.

Figure 22.1S(e) shows the effect of the call to procedure NEW. Figure 22.IS(f)
shows how the new node is attached to its parent. In the figure, the original tree tr is
not empty. If it were, variable parent would be NIL, and procedure Insert would sim
ply point tr to the newly allocated node.

Implementation of procedure Contains is left as a problem for the student. It is
best programmed recursively. If tree Ir is empty it obviously does not contain v and
can return false. Otherwise, tr is not empty and its root must contain some value. If
that value equals v, the procedure can return true with no further recursive calls nec
essary. Otherwise, the procedure must determine whether v might be contained in
the left subtree or the right subtree. Your implementation should not search the entire
tree. but should use the fact that every value in the left subtree is less than the value
in the root and every value in the right subtree is greater than the root.

Procedure Numllems is also left as a problem for the student, and is also best pro
grammed recursively. If tree Ir is empty, it obviously has zero elements. Otherwise,
it contains one element, its left subtree contains some number of elements. and its
right subtree contains some number of elements. The integer it must return is. there-

Figure 22.14
Continued.

528 Chapter 22 Binary Trees

fore, one plus the number of elements in its left subtree plus the number of elements
in its right subtree.

1 parent

fat --- p fat --- parent

(a) parent.root:= NIL; P := tr (b) parent:= p; p := p.root.rightChild

fat

(e) parent:= p: p := p.root.ieftChiid (d) parent:= p, p := p.root.rightChild

fat

Figure 22.15
The action of procedure Insert
to insert the value pat in an
ordered binary tree.

0--- p pat --- p

(e) NEW(p.root); p.root.value := val (0 parent.root.rightChild:= p

Exercises

1. Draw the tinal binary search tree as in Figure 22.6(1) for each of the following
sequences of the insert operation.

(a) 50 30 80 60 40 20 10
(e) 50 60 70 80 10 20 30 40
(e) 50 40 30 20 10

(b) 50 30 80 60 40 10 20
(d) 10 20 30 40 50

2. For each of the binary search trees of Exercise I, write the preorder sequence.

3. For each of the binary search trees of Exercise I. write the postorder sequence.

4. For each binary tree in Figure 22.16. (I) state whether the tree is a search tree. (2) write
the preorder traversal. (3) write the inorder traversal. and (4) write the postorder tra
versal.

a a a

b b b

c c

d d

e e e

(a) (b) (e)

5. A binary search tree contains a set of integers. Assume that each of the following
sequences is the preorder sequence. From the preorder sequence and the known inorder
sequence. draw the ordered binary tree.

(a) 40 20 60
(e) 60 20 40
(e) 60 30 10 SO 70 90

(b) 60 40 20
(d) 20 40 60 80

6. A binary search tree contains a set of integers. Assume that each of the following
sequences is the postorder sequence. From the postorder sequence and the known inor
der sequence. draw the ordered binary tree.

(a) 40 20 60
(el 20 40 60
(e) 30 10 80 90 70 60

(b) 20 60 40
(d) so 60 40 20

Exercises 529

Figure 22.16
The binary trees for Exercise

4.

530 Chapter 22 Binary Trees

Problems

7. This problem is for you to complete the procedures for the binary search tree ADT in
module PboxTreeADT. Test your procedures with a program similar to the one in Fig

ure 22.11 using the dialog box of Figure 22.10. For each procedure. access the docu
mentation and implement any preconditions with the appropriate ASSERT or HALT
procedure.

(a) PROCEDURE Insert (VAR tr: Tree; IN val: T)
(b) PROCEDURE Contains (tr: Tree; IN val: T): BOOLEAN

{el PROCEDURE Numltems (tr: Tree): INTEGER
(d) PROCEDURE PreOrder (tr: Tree)
(el PROCEDURE InOrder (tr: Tree)
(f) PROCEDURE PostOrder (tr: Tree)
(g) PROCEDURE Clear (OUT tr: Tree)

8. Implement the following methods in module PboxTreeObj.

(a) PROCEDURE (IN tr: Tree) Contains (IN val: T): BOOLEAN. NEW
Write a nonrecursive version.

(b) PROCEDURE (IN tr: Tree) Contains (IN val: T): BOOLEAN, NEW
Write a recursive version without a loop. Use the fact that the tree is a search tree to
avoid unnecessary comparisons. For example, if val is not in the tree, do not search the
entire tree.

(e) PROCEDURE (IN tr:Tree) Numltems 0: INTEGER, NEW
(d) PROCEDURE (IN tr: Tree) InOrder, NEW
(e) PROCEDURE (IN tr: Tree) PostOrder, NEW

9. This problem requires you to add the following methods to Figure 22.14. Test your
methods by importing them into the module of Figure 22.11. Augment the dialog box
of Figure 22.10 to test the procedures.

(a) PROCEDURE (IN tr: Tree) NumLeaves 0: INTEGER, NEW
Return the number of leaves of tree tr. A leaf is a node that has no children.

(b) PROCEDURE (IN Ir: Tree) Numlnlernals 0: INTEGER, NEW
Return the number of internal nodes of tree Ir. An internal node is a node that is not a
leaf.

(e) PROCEDURE (IN tr: Tree) OutLeaves, NEW
Output the leaves of tree tr to the Log.

(d) PROCEDURE (VAR tr: Tree) StripLeaves, NEW

Remove all the leaves from binary tree Ir.

(el PROCEDURE (IN tr: Tree) ReverseOrder, NEW
Output the values from binary tree tr to the Log in the reverse of inorder.

(f) PROCEDURE (IN Ir: Tree) Heighl 0: INTEGER, NEW
Return the height of the binary tree tr. The definition of the height is recursive. If the
tree is empty, its height is -I. Otherwise its height is I plus the larger of the height of
the left and right subtrees.

(g) PROCEDURE (VAR tr: Tree) Copy (IrB: Tree), NEW
Create a new tree Ir, which is a copy of trB. Ir must contain the same values as IrB and
must also have the same shape as IrB. This is best done recursively. IflrB is empty then
tr should be made empty. Otherwise, a copy oftrB's root node should be created for Ir's
root, and copies should be made recursively for the left and right children.

(h) PROCEDURE (VAR tr: Tree) Equal (trS: Tree): BOOLEAN, NEW
Return true iff Ir is equal to trB. Two trees are equal if they have the same number of
equal values and if they have the same shape. This is best done recursively. The base
cases are (I) both trees empty. (2) one tree empty and the other not, and (3) both trees
not empty but with unequal values in their roots.

Problems 531

,. Chapter 23

Inheritance and Polymorphism

The history of computer science shows a steady progression from lower levels of
abstraction to higher levels. When the electronic computer was first invented in the
mid twentieth century, there was no assembly language much less the higher level
languages with which we are familiar today. It is no accident that the historic evolu
tion is toward progressively higher levels of abstraction instead of the other way
around. Human intellectual progress shows that generalities are usually discovered
from many specific observations. It is only with hindsight that you can start with the
general case and deduce specific consequences from it.

This chapter describes six levels of abstraction.

• Data abstraction, encompassing

.& Type abstraction, and

.& Structure abstraction

• Control abstraction, encompassing

.& Statement abstraction. and

.& Procedure abstraction

• Class abstraction

• Behavior abstraction

Previous chapters show programs that use the first Ii ve abstraction processes-type,
structure, statement, procedure, and class. This chapter reviews these five abstrac
tion processes and introduces the sixth-behavior abstraction.

Data abstraction

Plato, in his theory of forms. claimed that reality ultimately lies in the abstract form
that represents the essence of individual objects we sense in the world. In the Repub
lic, written in the form of a dialogue between Socrates and a student, he writes:

Well then, shall we begin the enquiry in our usual manner: Whenever a
number of individuals have a common name, we assume them to have also a
corresponding idea or form: do you understand me?

I do.

Let us take any common instance: there are beds and tables in the world-

Six abstraction processes

Pluto's uhslrucrion

534 Chapter 23 Inheritance and Polymorphism

plenty of them, are there not»

Yes.

But there are ani y two ideas or forms of them-one the idea of a bed, the other
of a table.

True.

And the maker of either of them makes a bed or he makes a table for our use,
in accordance with the idea-that is our way of speaking in this and similar
instances-but no artificer makes the ideas themselves: how could he?

Impossible.

Plato's consideration between the specific and the general exemplifies the
abstraction process. Another example of the abstraction process is the concept of
type in programming languages. Consider all the possible real values, such as 2.0,
5.2, -43.7, 0.8, and so on. In the same way that Plato considered many different
instances of a table to be representations of a single abstract table, from a computa
tion point of view the collection of all possible real values defines a single abstract
type REAL. Figure 23.1 shows the abstraction process, known as type abstraction, Type ab.llraction
for type REAL. A type is defined by a collection of values. Each value, such as 5.2 in
the box on the left, is specific, while the type REAL is general.

2.0 5.2

0.8

() . 43.7 4.0 REAL

'13.9 12.8

In the history of computing languages, types emerged as one of the first steps
toward higher levels of abstraction. At the machine level, which must be pro
grammed with machine language or its equivalent assembly language, there are no
types other than the bit patterns of pure binary. With assembly language. you have
unlimited freedom to interpret a bit pattern any way you choose. The same bit pat
tern in a specific memory location can be interpreted as an integer and processed
with the addition circuitry of the processor. It can be interpreted as a character and
sent to a Web page as such. It can even be interpreted as an instruction and executed.

Figure 23.1
Type abstraction for type
REAL.

In Component Pascal, every variable has a name, a type, and a value. The name is EI'er\' I'uriuhle has (/ 1I<l1l1e, ([

an identifier, defined by the syntax rules of the language. The type is supplied by the tlpe. ilild (/ mille.

language. Both the name and the type of a variable are determined when the soft-
ware designer writes and compiles the program. The value of a variable, on the other
hand, is stored in the main memory of the computer as the program is executing. The
value stored is one of the values that defines the type.

The compiler enforces type compatibility, which is a restriction on the freedom
of programmers that they do not have with assembly language. The abstraction pro
cess frequently imposes a loss of freedom because the nature of abstraction is the

Data abstraction 535

hiding of detail. Programmers then have no access to the details that are hidden. Admnl£lges and

With the advent of types to restrict the value that a variable can have to some mathe- disadmntages of ahstraction

matical entity like a real number comes the inability to consider the bit pattern
behind the value. But the restriction of freedom to access low-level details is also
liberation from the necessity to do so. Abstraction is powerful because the limitation
it places on the programmer's ability to access low level details at the same time
frees the programmer from that requirement.

The abstraction process permits the grouping together of specific real values into
a type because each value shares certain characteristics with all the other values. For
example, each value has a sign and a magnitude. Any value can be combined with
any other value with the arithmetic operators like multiplication. And any value can
be compared with any other value to determine whether the first is less than, equal
to, or greater than the second. If it were not for these common properties among
individual values, the grouping together of them to define a type would not be use
ful.

Furthermore, the collection of many specific numeric values to make a general
type is useful in a programming language because it models the same process in the
real world. For example, the type REAL in Component Pascal corresponds to the
notion of a real number in mathematics. All computer applications exist to solve
problems in the human world. The first step toward solving any problem is to model
it with the machine. There are usually approximations to the modeL which may
make the solution approximate. For example. there are only a finite number of real
values that a computer can store while there arc an infinite number of real values in
mathematics. Nevertheless, one source of power of the abstraction process in com
puting is that it can mirror the same process in the human world and so serve as a
model to compute the desired solution.

The next step toward higher levels of abstraction in programming languages
occurred when languages gave programmers the ability to create new types as com
binations of primitive types. Collections of primitive types are known as records or
structures in most programming languages. The corresponding abstraction process Srrllctllre £lhslmctioll

is called structure abstraction.
For example, suppose you need to process several different shapes-rectangles

and circles. Figure 23.2 shows geometrically how the collection of all possible rect
angles and circles define a single shape type. The abstraction process parallels the
process of defining a type as a collection of values. An individual rectangle is char
acterized by its length, say 2.0, and width. say 5.2. An individual circle is character
ized by its diameter, say 4.1. A shape is a collection of values-each one having a
type-to store its dimensions.

Do o
D

Figure 23.2
Structure abstraction to
abstract from specific shapes
of many ditferent sizes to a
single shape with a general
size.

536 Chapter 23 Inheritance and Polymorphism

In Component Pascal, you declare a new type as a record structure, which is a
collection of fields, each one of which is a primitive type supplied by the language
or a previously declared type. To store the information about a shape you need to
distinguish between rectangles and circles. You can do that with an integer field
called kind. If kind has value 0 then the shape is a rectangle. If kind has value I then
the shape is a circle. To store the dimensions of a rectangle you need real fields
named length and width. To store the dimensions of a circle you need a real field
named diameter. The type could be declared

MODULE ... ShapeADT;
TYPE

Shape> = POINTER TO RECORD
kind: INTEGER;
length, width: REAL;
diameter: REAL

END

You could then declare an individual shape as a variable of type Shape.

VAR
myShape: ... ShapeADT.Shape

To initialize myShape to be a 2 x 3 rectangle you use the usual period notation to
separate the variable name from the record field name as follows.

myShape.kind := 0;
myShape.length := 2.0;
myShape.width := 3.0

Programmer-defined types are powerful because they allow the programmer to
conveniently model the problem to mirror the situation in the problem domain. For
example, an airline reservation system might need to store a collection of informa
tion for each ticket it sells, say the passenger's name, address, flight date, flight num
ber. and price of the ticket. Collecting all these types into a single programmer
defined type allows the program to process a ticket variable as a single entity.

Computation abstraction

Abstraction of data is only one side of a two-sided coin. The other side is abstraction
of computation. At the lowest level between programming languages and the Statement ahstmction

machine is statement abstraction.
All computers consist of a central processing unit (CPU) that has a set of instruc

tions wired into it. The instruction set varies from one computer chip maker to
another, but all commercial CPUs have similar instructions. CPUs contain cells
called registers that store values and perform operations on them. The collection of
the operations specifies a computation.

Typical instructions are load. add. mul. and store. The load instruction gets a
value from main memory and stores it in a register of the CPU. The add instruction

Computation abstraction 537

adds the content of two registers. The mul instruction multiplies the content of two
registers. The store instruction puts a value from a register of the CPU into main
memory.

Before the advent of high-level languages, programmers wrote their programs
using the individual instructions of the instruction set of the particular CPU on
which the program was designed to run. Figure 23.3 shows an example of a
sequence of instructions for some hypothetical CPU that computes the perimeter of
a rectangle. The first two instructions load the value of length into register r1 and the
value of width into register r2. The next instruction adds the content of r1 to r2 and
puts the sum in register r3. Then, 2.0 is multiplied by the content of r3 with the result
placed back in r3, after which it is stored in main memory in the location reserved
for variable perim.

load length, r1

load width, r2

add r1 , r2, r3

mul 2.0, r3, r3

store r3, perim

perim := 2.0 • (length + width)

The language illustrated by this sequence of instructions is called assembly lan
guage. When you program in assembly language you must consider the details of
the CPU-how many registers it has, how to access them, and which values you
want to store in which registers. In a high-level language, however, all those details
are hidden. The compiler abstracts them away from the view of the programmer, so
that the programmer need only write the single assignment statement

perim := 2.0 • (length + width)

With statement abstraction. even the structure of the CPU is hidden. The program
mer does not need to know about registers or hardware instruction sets. A single
assignment statement in Component Pascal is a collection of several instructions in
assembly language. One statement in a high-level language is defined by many
statements at the machine level, in the same way that one type in a high-Ievcllan
guage is defined by many possible values at the machine level.

Corresponding to structure abstraction on the data side of the coin is procedure
abstraction on the computation side. In the same way that high-level languages
allow you to collect variables into structures to create a new data type, they allow

Figure 23.3
Statement abstraction for the
assignment statement.

you collect statements into procedures to create a new computation. The corre- Procedure u/lslmctiol1

sponding abstraction process is procedure abstraction.
Figure 23.4 shows procedure abstraction for the computation of the perimeter of

a shape. The Component Pascal computation of the perimeter of an arbitrary shape
is encapsulated in a function with formal parameter s whose type is Shape. Any
time the programmer needs to compute the perimeter, for example to output it with
StdLog.Real, a simple call to the function is all that is required. The computation
need only be done once, freeing the programmer from having to remember those
details whenever the computation is required. For example. if you have two vari-

538 Chapter 23 Inheritance and Pol.vmorphism

PROCEDURE Perimeter' (s: Shape): REAL;

BEGIN

IF s.kind = 0 THEN

RETURN 2.0 ' (s.length + s.width)

ELSE StdLog.Real(Perimeter (my Shape))

RETURN Math.PiO ' s.diameter
END

END Perimeter

ables-myShape and yourShape-both of type Shape, you can output their perime- Figure 23.4
ters with Procedure abstraction for the

computation of the perimeter

StdLog.Real(Perimeter (myShape)); StdLog.Ln;
StdLog.Real(Perimeter (yourShape)); StdLog.Ln

It would not matter if myShape is a circle and yourShape is a rectangle. The proce
dure takes care of determining what kind of shape the parameter is and returns the
appropriate value. The details of the computation are hidden in the function proce
dure calls. As with statement abstraction in Figure 23.3, one procedure call at a high
level causes the execution of several statements at a low level.

Class abstraction

The next step in the evolution of programming languages toward higher levels of
abstraction was the combination of data abstraction with computation abstraction to
produce class abstraction. Consider again the shapes in Figure 23.2 and imagine
what sort of processing might be required for such geometric figures. A rectangle
might represent part of a building like the interior wall of a room or a door. If the
walls and doors are to be painted your program would need to compute the area of
each rectangle to determine the amount of paint required. Or a circle might represent
a corral around which a fence is to be erected. Your program would then need to
compute the perimeter to determine the amount of material required for the fence.

Before the advent of object-oriented programming, the function to compute the
area or the perimeter of a shape would exist separately from its dimensions. For
example, you might have functions to compute the area and perimeter of a shape.
which is passed as a parameter in the parameter list of the function. The interface for
the server module providing ShapeADT might look something like

DEFINITION ... ShapeADT;
TYPE

Shape = POINTER TO RECORD END;
PROCEDURE Area (s: Shape): REAL;
PROCEDURE Perimeter (s: Shape): REAL;

where the kind field and the dimensions are not exported, and so do not appear in the
interface.

of a rectangle

With class abstraction, however. you bind the procedures with the type resulting
in type-bound procedures, also called methods, having the interface

DEFINITION ... ShapeObj;
TYPE

Shape = POINTER TO RECORD
(5: Shape) Area 0: REAL, NEW;
(5: Shape) Perimeter 0: REAL, NEW

END;

The procedures belong to the type rather than belonging to the module. As before,
values for the kind field and the dimensions are not exported and have an implemen
tation like

MODULE ... ShapeObj;
TYPE

Shape' = POINTER TO RECORD
kind: INTEGER;
length, width: REAL;
diameter: REAL

END

Figure 23.5 shows the process of class abstraction with this shape example. In the
figure, the data part on the top left combines with the control part on the bottom left
to produce the class on the right. The box in the right part of the figure is the Unified
Modeling Language (UML) class diagram for the class named Shape. It shows all
the fields of the record, whether exported or not, and also includes the head of each
method.

MODULE ... ShapeADT;
TYPE

Shape' = POINTER TO RECORD
kind: INTEGER;
length, width: REAL;

Class abstraction 539

Figure 23.5
Class abstraction that
combines the structure
abstraction of Figure 23.2
with the procedure
abstraction of Figure 23.4.

diameter: REAL
END

... ShapeObj.Shape

- kind: INTEGER
- length, width: REAL
- diameter: REAL

+ Area () REAL
+ Perimeter (): REAL

PROCEDURE Area' (s: Shape): REAL;

PROCEDURE Perimeter' (s: Shape): REAL;

A class diagram has three parts. The top box contains the name of the class, in
this diagram ... ShapeObj.Shape. The UML standard is for the class name to be in a

540 Chapter 23 Inheritance and Polymorphism

bold typeface. The middle box contains the data fields of the record, which are A.ttributes

known as attributes. In this diagram the attributes are kind, length, width, and diame-
ter. In UML. an item that is not exported is preceded by a - sign and an item that is
exported is preceded by a + sign. All of the attributes are preceded by a - sign
because none of them are exported. The bottom box contains the methods, which are Operations

known as operations. There are slight differences in syntax between Component
Pascal and UML. The receiver of the methods is not shown before the name of the
operation, because it can be inferred by the name of the class in the top box of the
UML diagram.

Example 23.1 The heading for the Perimeter procedure would be written in Com
ponent Pascal as

PROCEDURE (s: Shape) Perimeter> 0: REAL, NEW

The corresponding UML entry in the class diagram for the operation is

+ Perimeter (): REAL I

Object orientation is a viewpoint that shifts the focus from an external operation The ohject orientation shift ill

that requires the input of data about the shape, to an internal operation that is part of f()clls

the shape itself. This is a significant shift in focus. Computing the perimeter is no
longer something that you do to a shape. It is something the shape does for you.

In Figure 23.2, each individual shape on the left has an area and a perimeter in
addition to its dimensions. The area and perimeter are not data values that are inde
pendent from the dimensions. So, their values should not be stored the same way the
dimensions are stored, but they should be computed from the dimensions. In object
oriented design, the functions to compute the area and perimeter are no longer exter
nal to the type, but are internal. They literally become part of the type.

To emphasize the shift in focus when a function is bound to a type, object-ori
ented designers established a new set of terminology. Roughly speaking, in object
oriented terminology

• class corresponds to type

• object corresponds to variable

• method corresponds to procedure or junction

That is, an object has a class, like a variable has a type. It is more usual to state that
an object is an instance of a class rather than to state that an object has a class.

A shape class

Although the true power of object orientation requires behavior abstraction, this sec
tion presents a program that illustrates class abstraction without it. The purpose of
the program is to show how to solve a problem without behavior abstraction, so it
can be contrasted with the program in the following section. which does use it. Fig
ure 23.6 shows the abstraction process for class abstraction without behavior
abstraction.

(Type abstraction ~ Structure abstraction

(Statement abstraction ~ Procedure abstraction

Class abstraction
Shape

Figure 23.7 is the complete interface of the Shape class alluded to in the previous
section. Like type Book in Figure 21.17, page 482, type Shape is defined to be a
pointer to a record instead of a record. That way, an instance of a Shape can be
stored in a circular list CUst, which is a list whose nodes have value parts that are
pointers to ANYREC.

DEFINITION PboxShapeObj;

TYPE
Shape = POINTER TO RECORD

(5: Shape) GetlDString (OUT str: ARRAY OF CHAR), NEW;
(5: Shape) GetDimensionString (OUT str: ARRAY OF CHAR), NEW;
(5: Shape) Area 0: REAL, NEW;
(5: Shape) Perimeter 0: REAL, NEW;
(5: Shape) SetRectangleState (length, width: REAL), NEW;
(5: Shape) SetCircieState (diameter: REAL), NEW

END;

END PboxShapeObj.

Method GetldString sets parameter str to a string that can be displayed in a dialog
box. For example, if 5 is a rectangle the method sets str to "Rectangle". Method Get
DimensionString sets parameter str to a string that displays the dimensions of the
shape to three places past the decimal point. For example, if 5 is a rectangle with a
length of 2 and a width of 3 the method sets str to "Length = 2.000, Width = 3.000".
Method Area is a function procedure that returns the area of shape 5, and method
Perimeter returns the perimeter of s.

The first four methods do not change the state of s. They simply report back
infonnation about its state. The last two methods. however, change the state of s. If
you supply SetRectangleState with actual parameters 2.0 and 3.0 corresponding to
formal parameters length and width, the method will change the state of s to be a
rectangle having length 2.0 and width 3.0 regardless of the kind of shape that it was
before. Similarly, if you supply SetCircleState with actual parameter 6.0 corre
sponding to formal parameter diameter. the method will change the state of 5 to be a
circle having diameter 6.0.

Figure 23.8 shows a sequence of screen shots of a user manipulating a list of
shapes. Part (a) shows the dialog box for the first time. The bottom part of the dialog
box gives the user the option to enter data for a rectangle. circle, or triangle. As with
the circular list for books in Figure 21.15, page 481. the dialog box allows the user
to enter data about a shape and store the shape in a circular list. Figure 23.9 is a list
ing of the program that implements the dialog box of Figure 23.8.

A shape class 541

Figure 23.6
U sing class abstraction
without behavior abstraction
to process data for several
different kinds of shapes.

Figure 23.7
The interface for a Shape
class without behavior
abstraction.

542 Chapter 23 Inheritance and Polymorphism

ShGpC:

Dimensions:

Area: 0,000

Perimeter: 0.000

~ Rectangle length: 10.0
.::::) Circle Diameter; :-':-U-:-=.I·=:) ===='

Width: 10.0
'--------'

o Triangle Base: 10.0 . Height:'I).O~==-=

~Ir =:I=n.=ert=;;-

(a) Initial.

Next

Shope: Rectangle

Dimensions: Lergth" 4 000, Width" 5.000

Area: 20.000

Perimeter: 18.000

~ Rectangle length: Width: 1 S.O
'-------'

o Circle Diameter: :0.0
Base: .0.0 j Height: i.tJ:o --=-=

;1';:' =:I=n.=ert=;;-'
o Triangle

(e) Insert a rectangle.

Sh.:llpc: Rcct.:lnglc

Dimensions: Lerglh" 2 000, \-ildlh ~ 3000

Perimeter: 10.000

o Rectangle length: -+.0

., Circle Oi. meter: 1'-6_.0 ___ ---"

o Triangle Base: ,0.0 Height:: 0.0

II Insert ,

(e) Press Next.

Shape: Rectangle

Dimensions: Length = 2.000, Width: 3.000

Area; 6.000

Perimeter: 10000

~ Rectangle length: 1 2.0 Width: '3.0

o Circle Diameter:

o Triangle Base: n.:! Height: IlJJ

II Insert I

(b) Insert a rectangle.

Clear Next

Shape: Circle

Dimensions: Diameter = 6.000

ftreu: 20.274

Perimeter: 16.550

o Rectangle length:

e Circle Diometer:

o Triangle Base:

Cd) Insert a circle.

-u~ [Width: -".~ __ =
;::16= .• ==::::;
a.a Height: H.~ _____ ----1 --_._--_.

II Insert I

Figure 23.8
A sequence of screen shots
for execution of a program to
process shapes.

MODULE Pbox23A;
IMPORT Dialog, C := PboxCListADT, S := PboxShapeObj;

VAR
d*: RECORD

idString-, dimensionString- : ARRAY 64 OF CHAR;
area-, perimeter-: REAL;
shapeNumber*: INTEGER;
length*, width*: REAL; (* for rectangle *)
diameter*: REAL; (* for circle *)
base*, height*: REAL (* for triangle *)

END;
cList: C.CList;

PROCEDURE ClearDialog;
BEGIN

d.idString := ""; d.dimensionString := "";
d.area := 0.0; d.perimeter := 0.0;
d.length := 0.0; d.width := 0.0;
d.diameter := 0.0;
d.base := 0.0; d.height := 0.0

END ClearDialog;

PROCEDURE SetDialog (s: S.Shape);
BEGIN

s. Getl DString(d.idString);
s.GetDimensionString(d.dimensionString);
d.area := s.AreaO;
d.perimeter := s.PerimeterO

END SetDialog;

PROCEDURE Clear*;
BEGIN

ClearDialog;
C.Clear(cList);
Dialog.Update(d)

END Clear;

PROCEDURE Next*;
VAR

shape: S.Shape;
BEGIN

IF -C.Empty(cList) THEN
C.GoNext(cList);
shape := C.NodeContent(cList) (S.Shape);
SetDialog(shape);
Dialog.Update(d)

END
END Next;

A shape class 543

Figure 23.9
A program that produces the
sequence of screen shots in
Figure 23.8.

544 Chapter 23 Inheritance and Polymorphism

PROCEDURE Insert';
VAR

shape: S.Shape;
BEGIN

NEW(shape);
CASE d.shapeNumber OF
0:

shape.SetRectangleState(MAX(O.O, d.length), MAX(O.O, d.width)) I
1 :

shape.SetCircleState(MAX(O.O, d.diameter)) I
2:

(* Problem for the student ')
HALT(100)

END;
C.lnsert(cList, shape);
SetDialog(shape);
Dialog.Update(d)

END Insert;

PROCEDURE RectangleGuard' (VAR par: Dialog.Par);
BEGIN

par. disabled := d.shapeNumber # 0
END RectangleGuard;

PROCEDURE CircleGuard* (VAR par: Dialog.Par);
BEGIN

par. disabled := d.shapeNumber # 1
END CircieGuard;

PROCEDURE TriangleGuard* (VAR par: Dialog.Par);
BEGIN

par.disabled := d.shapeNumber # 2
END TriangleGuard;

BEGIN
Clear

END Pbox23A.

The import list

IMPORT Dialog, C := PboxCListADT, S := PboxShapeObj;

sets up a convenient abbreviation scheme. Component Pascal allows you to rename

Figure 23.9
Continued.

an imported module using the alias symbol :=. This import list renames module The ill/port abhrn·iatiOi/

PboxCListADT as simply C. Everywhere in this module that you would normally
place the name PboxCListADT, you can now place the abbreviation C. The same sub-
stitution applies to PboxShapeObj with its abbreviation S. Once you redefine
imported module names like this you cannot revert back to the long form.

Example 23.2 [n Figure 13.9. the procedure heading

PROCEDURE SetDialog (s: S.Shape);

would be written

PROCEDURE SetDialog (s: PboxShapeObj.Shape);

if the import list had not defined the abbreviation S. If you write the procedure head
ing the second way with the abbreviation defined. however. the module will not
compile. I

Buttons Clear, Next, and Insert are obviously linked to exported procedures

A shape class 545

Clear, Next. and Insert. Procedure Clear operates the same way the corresponding Procedure Clear

procedure does in Figure 21. 17.
Procedure Next has a local variable shape of type PboxShapeObj.Shape. The Procedure Next

procedure checks if cUst is empty, and if it is not calls GoNext to advance it to the
next entry. Then it sets shape to the content of the current node by calling NodeCon-
tent. Now that shape has the content of the current node the procedure calls SetDia-
log, passing shape as the actual parameter that corresponds to formal parameter s.
The first statement in SetDialog

s. Get! DStri ng(d. idString)

changes d.ldString to the name of shape s. The dimensions, area, and perimeter
fields get set similarly. Finally, after the return to procedure Next, the dialog is
updated so the changes in the d interactor will be made visible.

Procedure Insert also has a local variable shape of type PboxShapeObj.Shape. Pmc'cdllre (/Isert

To insert a new shape into the linked list based on the user's request, the procedure
executes

NEW(shape)

to allocate a new shape from the heap. The interactor field d.shapeNumber is linked
to the set of radio buttons in the dialog box. The level of the button for a rectangle is
set to 0, for a circle is set to I. and for a triangle is set to 2. Procedure Insert uses a
CASE statement, testing the value of d.shapeNumber, to determine what shape the
user wants to store. If the user wants to store a rectangle as in Figure 23.8(b)
d.shapeNumber will have the value 0 and procedure Insert will execute

shape.SetRectangleState(MAX(O.O, d.length), MAX(O.O, d.width))

The first MAX function returns the maximum of the two real values 0.0 and d.length.
Method SetRectangleState has a precondition that neither of its formal parameters
can be negative. The purposc of MAX is guarantee that the precondition will be met.
[f the user enters a negative value for the length or width of the rectangle, zero will
be stored instead. Procedure Insert concludes by calling the Insert procedure for the

546 Chapter 23 Inheritance and Polymorphism

circular list, setting the output fields in the d interactor, and updating the dialog box
to make the changes visible.

Control guards

In Figure 23.8(c), the radio button for the rectangle is on, and fields to input the
length and width are available, while those to input the diameter of a circle or the
base and height of a triangle are not. An important user-interface design principle is r\ IIsa·illleljilc" design

that the user should have a visual cue of those actions which can and cannot be per- principle

formed on a dialog box. The cue is usually the dimming of those elements that can-
not be selected, Figure 23.8(c) has the circle and triangle input fields dimmed while
the user can input information about a rectangle. Figure 23.8(d) has the rectangle
and triangle fields dimmed while the user can input information about a circle.

The ease with which the programmer can implement this user-interface design
principle is a testament to the power of the BlackBox framework. The technique is
based on the fact that BlackBox is a true framework and not just a collection of
server modules. Consider the dialog box in Figure 23.8(c). There are three buttons
labeled Clear, Next, and Insert The program to implement the dialog box has three
corresponding procedures that are executed when the buttons are pressed, The radio
buttons correspond to d.shapeNumber, which will have the value 0 with the Rectan
gle button pressed, Furthermore, the input and output fields correspond to fields in
the d interactor record.

If the user presses the Circle radio button, the effect on the dialog box will be to
dim the rectangle input and allow input for the circle as is done in Figure 23Jl(d).
But, it seems that the only effect of pressing the Circle button is to change the value
of d.shapeNumber from 0 to I. How can you program the dialog box to dim the
rectangle input when d.shapeNumber gets the value I? After all, pressing the radio
button does not cause any of your procedures to execute.

The answer is that the BlackBox framework continually monitors the appearance
of the dialog box. It can automatically detect the change in d.shapeNumber the
instant it occurs. Somehow you need to inform the framework when a field should
be dimmed. But you cannot do that by calling a procedure, because the event of
pressing a radio button does not cause any of your procedures to execute. The.solu
tion is for you to write a procedure that the framework calls. Such a procedure is
known as a control guard.

Every forms control has a potential control guard that you can link to with the
Inspector. You write a guard, which is an exported procedure, in your module. Then
use the Inspector to link to the guard. For example, in Figure 23.8(c) one of the
forms controls is the input field for the length of a rectangle. The user has entered
4.0 in the field. This control is linked to d.length in the d interactor. Figure 23.10
shows the Inspector for this control. You can see from the Link field of the Inspector
that this is indeed the Inspector for d.length. There is a Guard field in the Inspector,
in which the programmer has entered Pbox23A.RectangleGuard. This is the control
guard, which is an exported procedure in Figure 23.9.

The presence of procedure RectangleGuard may seem strange in Figure 23.9,
because nowhere in the module is a call to it. You do not call procedure Rectangle
Guard: the framework does. When does the framework call the control guard')

Control guards 547

~ In:spectol El

Control Text Field

unk!PbOX2JA.d,length !I~

label I I '
F' ========~ U Sat

Guard I Pbox2J.t..RectangleGuard I

.. ~p,;.
§...;d:i:lpbO'23A.~ed.ng.Guald

Notifier I I I..,el II]
51Ilelt OIlOht

!l·~,1 ,
Pliiff,;'
rRl(;lt
rMuti'i.h.

r p.......,j;,' ,:;l,~ :~..t.; f
'rCpti""4~

o Multiline o Password ",~ ro--
,,~ ,,'l-"'-'i'<"~ ,

Olt 'I ce..;;.,', $iv;, t: NIlIl.: f

(a) MacOS, (b) MSWindows,

Whenever it needs to, namely when you call Dialog,Update and when the user
changes the state of the dialog box, like when she presses a radio button, You, as an
applications programmer, do not need to concern yourself with those details of when
and how the framework calls your guard, All you need to do is provide the entry in
the Inspector for the control guard, The framework will see to it that the guard is
called at the appropriate times. This arrangement is not that different from the pro
grams you have been writing in BlackBox from the beginning. Most programs
implement a dialog box with buttons for the user to click on to initiate an ac.tion.
Your programs simply supply exported procedures that the framework calls at the
appropriate time.

The guard for the rectangle'S length input field is

PROCEDURE RectangleGuard' (VAR par: Dialog.Par);
BEGIN

par. disabled := d.shapeNumber # 0
END RectangleGuard;

The rectangle'S width input field is linked to the same guard. The guard procedure
has one formal parameter par whose type is Dialog.Par. It is called by reference.
meaning that if this procedure modifies par, the corresponding actual parameter in
the calling program will be modified. What is the actual parameter? Some variable
in the framework that you do not see. because the framework calls RectangleGuard
instead of you calling it.

To investigate the type Dialog.Par you can consult the documentation of Dialog,
part of which is shown in Figure 23.11. From the documentation, a variable of type
Par has five fields, the first four of which are boolean. The first boolean field is
named disabled. If par. disabled is set to false, the corresponding control in the dia
log box will not be disabled. That is. it will be available for the user to access. If
par.disabled is set to true, the control will be dimmed to show that the user cannot
access it. Any attempt at accessing the control will result in no action. The rectangle
guard sets par. disabled to the boolean expression

Figure 23.10
Links that must be entered in
the Inspector to enable the
guards for dimming controls
in the dialog box,

548 Chapter 23 Inheritance and Polymorphism

d.shapeNumber # 0

which will disable the rectangle's width input field if d.shapeNumber is not equal to
O. Because the rectangle's width input field is linked to the same guard it will be dis
abled under the same circumstances.

DEFINITION Dialog;

TYPE
Par= RECORD

disabled: BOOLEAN;
checked: BOOLEAN;
undef: BOOLEAN;
readOnly: BOOLEAN;
label: String

END;

The arrangement between BlackBox and the application programmer where the
framework calls the programmer's procedures is what distinguishes a true frame
work from a library of server modules. It is known as the Hollywood Principle,
"Don't call us. We'll call you." The ability to program a graphical user interface with
so much power and yet so much simplicity from the application programmer's per
spective is due to the BlackBox framework as much as it is due to the power and
simplicity of the Component Pascal language.

A shape class implementation

Figure 23.13 is the implementation of the shape class whose interface is in Figure
23.7. The exported type Shape is a pointer to a record with four fields as shown in
Figure 23.12. The first field is an integer kind, which indicates what kind of shape is
stored-O for rectangle and I for circle. The second and third fields are length and
width for storing the length and width of a rectangle when kind has value O. The
fourth field is diameter for storing the diameter of a circle when kind has value I.
Modification of the Shape structure to accommodate triangles is left as a problem
for the student.

MODULE PboxShapeObj;
IMPORT PboxStrings, Math;

TYPE
Shape' = POINTER TO RECORD

kind: INTEGER;
length, width: REAL;
diameter: REAL

END;

Figure 23.11
A partial listing of the
documentation for the Dialog
module.

The Hnllnmnd Principle

kind

length I width

diameter

Figure 23.12
The structure of type Shape
in Figure 23.13.

Figure 23.13
Implementation of the shape
class with class abstraction
only. Figure 23.7 shows the
interface for this class.

A shape class implementation 549

PROCEDURE (s: Shape) GetiDString' (OUT str: ARRAY OF CHAR), NEW;
BEGIN

CASE s.kind OF
0:

str := "Rectangle" I
1 :

str := "Circle"
END

END GetiDString;

Figure 23.13
Continued.

PROCEDURE (s: Shape) GetDimensionString' (OUT str: ARRAY OF CHAR), NEW;
VAR

temp: ARRAY 16 OF CHAR;
BEGIN

CASE s.kind OF
0:

1:

PboxStrings.ReaIToString(s.length, 1, 3, temp);
str:= "Length =" + temp + ", ";
PboxStrings.ReaIToString(s.width, 1,3, temp);
str := str + "Width = " + temp I

PboxStrings.ReaIToString(s.diameter, 1, 3, temp);
str := "Diameter = " + temp

END
END GetDimensionString;

PROCEDURE (s: Shape) Area' 0: REAL, NEW;
BEGIN

CASE s.kind OF
0:

RETURN s.length ' s.width I
1 :

RETURN Math.PiO ' s.diameter' s.diameter I 4.0
END

END Area;

PROCEDURE (s: Shape) Perimeter' 0: REAL, NEW;
BEGIN

CASE s.kind OF
0:

RETURN 2.0 ' (s.length + s.width) I
1 :

RETURN Math.PiO ' s.diameter
END

END Perimeter;

550 Chapter 23 Inheritance and Polymorphism

PROCEDURE (s: Shape) SetRectangleState* (length, width: REAL), NEW;
BEGIN

ASSERT((length >= 0.0) & (width >= 0.0), 20);
s.kind:= 0;
s.length := length;
s. width := width

END SetRectangleState;

PROCEDURE (s: Shape) SetCircleState* (diameter: REAL), NEW;
BEGIN

ASSERT(diameter >= 0.0, 20);
s.kind:= 1;
s.diameter := diameter

END SetCircieState;

END PboxShapeObj.

Methods SetidString, GetDimensionString, Area, and Perimeter all have a similar
control structure. Each method first determines what kind of shape is stored using a
CASE statement on s.kind. If s.kind has value 0, the method processes the data
assuming that a rectangle is stored and uses s.length and s.width accordingly. If
s.kind has value I, the method processes the data assuming that a circle is stored and
uses s.diameter accordingly.

Methods SetRectangleState and SetCircleState, unlike the previous methods,
change the state of s. Each method has a precondition that does not allow the dimen
sions of the state to be negative. The precondition is implemented with the usual
ASSERT statement. The input of the set state methods are values of the dimensions
of the shape. The method simply sets the kind field to the integer code for that state
and transfers the dimension values to the corresponding fields in the shape's record.

The program of Figure 23.9 stores the shapes in the circular list provided by
PboxCListADT. The dialog box in Figure 23.8(e) shows a dialog box where the user
has entered a circle of diameter 6.0 and pressed the Next button so that the current
shape is a rectangle of length 2.0 and width 3.0. Figure 23.14 shows the correspond
ing data structure.

cList

Figure 23.13
Continued.

Figure 23.14
The data structure that
corresponds to the screen shot
of Figure 23.8(e) with the
shape of PboxShapeObj.

The difference in syntax for defining and calling a method with class abstraction
compared to a procedure with procedure abstraction does not illustrate the power of
object-oriented design. After all, there is no inherent benefit to putting an actual
parameter in front of a method name instead of enclosing it in parentheses after a
function name. The only thing the object-oriented syntax does is to emphasize that
functions are bound to classes along with the data. The real power of object-orienta
tion comes with yet another level of abstraction-behavior abstraction.

Behavior abstraction

The program in the previous section processed ditferent shapes using class abstrac
tion. The class Shape in PboxShapeObj is a pointer to a record that contains a kind
field to specify what kind of shape is stored in the record. The methods for Shape
test the kind field with a CASE statement to determine the appropriate processing to
perform. Instead of adopting the viewpoint of class abstraction, where a shape is
simply a collection of data and methods that correspond to some specific shape, sup
pose you take a further step towards abstraction and collect several different shapes
together to form an abstract shape. What is common that can be abstracted out?

That is, what do rectangles, circles, and right triangles have in common? They
are certainly not all specified by length and width as is the rectangle. A circle, for
example, is specified by its diameter. Because dimensions for different objects are
specified differently, you cannot include the dimensions in the abstract shape. How
ever, all closed shapes have an area and a perimeter. So, you can at least include
those. You must be careful, however, because the algorithm for computing the area

Behavior abstraction 551

of a circle is not the same as the algorithm for computing the area of a right triangle. Figure 23.15
Even though the abstract shape will specify a method for computing the area and Behavior abstraction that
perimeter. it cannot implement it because the algorithm depends on the specific combines class abstraction
object. Furthermore, each shape has a method to set its IO string and its dimension for two different classes into a
string. single abstract class.

(Type abstraction)-- Structure abstraction

(Statement abstraction)-- Procedure abstraction

(Type abstraction)-- Structure abstraction

(statement abstraction)-- Procedure abstraction

Class abstraction
Rectangle

Class abstraction
Circle

Figure 23.15 is a representation of the behavior abstraction process.The figure
shows the abstraction processes for data and control culminating in class abstraction
for Rectangle and the same abstraction processes culminating in class abstraction

Behavior abstraction
Shape

552 Chapter 23 Inheritance and Polymorphism

for Circle. Behavior abstraction combines the specific shapes Rectangle and Circle
into the abstract class Shape.

Compare Figure 23.15. which shows the abstraction process for a shape using
behavior abstraction, with Figure 23.6, which shows the abstraction process using
only class abstraction. In Figure 23.6, the concepts of rectangle and circle are
merged with the concept of shape. Class Shape is a kind of hybrid. whose data is a
combination of fields that must accommodate information for both rectangles and
circles and a field kind to tell them apart. However, Figure 23.15 uses class abstrac
tion for each individual shape and behavior abstraction for the abstract shape. This is
a significant ditTerence that has major consequences in the program.

Inheritance

In Figure 23.15, the object-oriented relation between class Rectangle and class
Shape is that of inheritance. Rectangle inherits from Shape. Similarly, Circle inher
its from Shape. The Component Pascal terminology for the inheritance relation is
type extension. Type Rectangle is an extension of Shape, which is called the base
type. Circle is also an extension of Shape. Figure 23.16 is the interface for Pbox
ShapeAbs, which implements the inheritance relationship between the classes.

DEFINITION PboxShapeAbs;

TYPE
Shape = POINTER TO ABSTRACT RECORD

(s: Shape) GetiDString (OUT str: ARRAY OF CHAR), NEW, ABSTRACT;

Type extellsion llnd the base
type

Figure 23.16
The interface for a general
geometric shape. that uses
behavior abstraction.

(s: Shape) GetDimensionString (OUT str: ARRAY OF CHAR), NEW, ABSTRACT;
(s: Shape) Area 0: REAL, NEW, ABSTRACT;
(s: Shape) Perimeter 0: REAL, NEW, ABSTRACT

END;

Rectangle = POINTER TO RECORD (Shape)
(r: Rectangle) GetiDString (OUT str: ARRAY OF CHAR);
(r: Rectangle) GetDimensionString (OUT str: ARRAY OF CHAR);
(r: Rectangle) Area 0: REAL;
(r: Rectangle) Perimeter 0: REAL;
(r: Rectangle) SetState (length, width: REAL), NEW

END;

Circle = POINTER TO RECORD (Shape)
(c: Circle) GetiDString (OUT str: ARRAY OF CHAR);
(c: Circle) GetDimensionString (OUT str: ARRAY OF CHAR);
(c: Circle) Area 0: REAL;
(c: Circle) Perimeter 0: REAL;
(c: Circle) SetState (diameter: REAL), NEW

END;

END PboxShapeAbs.

In the declaration of the Shape type

Shape == POINTER TO ABSTRACT RECORD

the word ABSTRACT is a record attribute. It indicates that the class Shape is an
abstract class. which means it cannot be instantiated. No variables or fields of such a
record can ever exist.

Example 23.3 Suppose Shape is declared as in Figure 23.16 and you have a local
variable myShape declared as

VAR
myShape: Shape;

The instantiation

N EW(myShape)

is illegal and will not compile, because Shape is abstract. I

Why declare a type if you can never instantiate it? Because an abstract type is not
used by itself. Instead, it is a form to be used as a guide for creating concrete types

Inheritance 553

that are extensions of it. You can think of a superclass as a blueprint for the sub- Supcrc/uss lind suhclllss

classes that inherit from it.
The first method in the abstract shape is

(s: Shape) GetiDString (OUT str: ARRAY OF CHAR), NEW, ABSTRACT

It has two method attributes, NEW and ABSTRACT. In the same way that an abstract
class can never be instantiated. an abstract method can never contain any executable
statements and can never be called. Why declare a method if it can never be called~
Again. because it is not used by itself. Instead, it is a blueprint for the corresponding
method of the subclass. In this case. the blueprint says that the method of the sub
class must be named GetlDString and must have one parameter called by result of
type ARRAY OF CHAR. A record containing abstract methods must be abstract. The Rules/iii' uhslruer records

attribute NEW must be used on all newly introduced methods. lind "hslmer lIlolwds

The remaining methods of Shape-GetDimensionString. Area, and Perimeter
each have method attributes NEW and ABSTRACT. It is the responsibility of the sub
classes to implement the methods using the same method names and signatures. that
is. the same number and types of the formal parameters.

In the declaration of type Rectangle

Rectangle == POINTER TO RECORD (Shape)

the base type is enclosed in parentheses after the reserved word RECORD. The dec
laration states that Rectangle inherits from Shape; or, Rectangle is the subclass and
Shape is the superclass; or, Rectangle is an extension of Shape. The idea of inherit
ance is that the specific inherits from the general. Shape is general, and Rectangle is

554 Chapter 23 Inheritance and Polymorphism

specific. The fundamental class assignment rule is that you can assign the specific to The.timdumenwl class
the general, but you cannot assign the general to the specific. assignment mil'

Example 23.4 If myShape is a formal paramter of type Shape and myRectangle is
a local variable of type Rectangle, then the assignment

myShape := myRectangle

is legal, but the assignment

myRectangle := myShape

is not legal. I

The first method of class Rectangle is

(r: Rectangle) GetiDString (OUT str: ARRAY OF CHAR)

It has the same name as the first method of class Shape and the same signature. The
only difference is that the type Rectangle in the receiver (r: Rectangle) is a subclass
of the type Shape in the receiver (s: Shape). Furthermore, the method GetlDString
for Rectangle is neither ABSTRACT nor NEW. Because it is not ABSTRACT, it has
statements and can be called. Because it is not NEW, it is based on a previously
declared method. All these characteristics indicate that GetiDString for Rectangle is
a concrete implementation of GetlDString for Shape. Methods GetDimensionString,
Area, and Perimeter have the same characteristics as GetiDString. They are all con
crete implementations of the corresponding methods of Shape.

The last method of class Rectangle, however,

(r: Rectangle) SetState (length, width: REAL), NEW

is not an implementation of a previously declared method. It is NEW but not
ABSTRACT. There is no corresponding method in the superclass of Rectangle.

The declaration of class Circle mirrors that of class Rectangle. Circle is a subclass
of Shape. It implements the four methods declared in Shape-GetIDString, GetDi
mensionString, Area, Perimeter-and declares its own fifth method SetState that is
not an implementation of a previously declared abstract method.

Comparing the interface in Figure 23.16 with that in Figure 23.7 it should be
obvious that each method of PboxShapeAbs does the same processing as that in the
corresponding method of PboxShapeObj. Namely, GetlDString gives str a string
value that describes the name of the shape, GetDimensionString gives str a string
value that describes the dimensions of the shape with three places past the decimal,
Area returns the area of the shape, and Perimeter returns the perimeter of the shape.
SetState for Rectangle sets the state to a rectangle and SetState for Circle sets the
state for a circle. You can see that the SetState methods cannot be specified by the
abstract class Shape, because the parameter lists are different for rectangles and cir
cles. Signatures must be identical between superclass and subclass methods, which
would be impossible for SetState.

Polymorphism

Figure 23.17 is a program that implements the same dialog box as that shown in Fig
ure 23.8. From the user's perspective, there is no difference in the behavior of the
dialog box between the two versions. However, the program of Figure 23.17 uses
behavior abstraction with polymorphism.

MODULE Pbox23B;
IMPORT Dialog, C := PboxCListADT, S := PboxShapeAbs;

VAR
dO: RECORD

idString-, dimensionString- : ARRAY 64 OF CHAR;
area-, perimeter-: REAL;
shapeNumber": INTEGER;
length", width*: REAL; (* for rectangle *)
diameter*: REAL; (* for circle ")
base", height": REAL (' for triangle ')

END;
cList: C.CList;

PROCEDURE ClearDialog;
BEGIN

d.idString := ; d.dimensionString := ;
d.area := 0.0; d.perimeter := 0.0;
d.length := 0.0; d.width := 0.0;
d.diameter := 0.0;
d.base := 0.0; d.height := 0.0

END ClearDialog;

PROCEDURE SetDialog (s: S.Shape);
BEGIN

s.GetiDString(d.idString);
s.GetDimensionString(d.dimensionString);
d.area := s.AreaO;
d.perimeter := s.PerimeterO

END SetDialog;

PROCEDURE Clear';
BEGIN

ClearDialog;
C.Clear(cList);
Dialog.Update(d)

END Clear;

Polymorphism 555

Figure 23.17
A program that produces the
same output as the one in
Figure 23.9 but that uses
behavior abstraction.

556 Chapter 23 Inheritance and Polymorphism

PROCEDURE Next*;
VAR

shape: S.Shape;
BEGIN

IF -C.Empty(cList) THEN
C.GoNext(cList);
shape := C.NodeContent(cList) (S.Shape);
SetDialog(shape);
Dialog.Update(d)

END
END Next;

PROCEDURE Insert*;
VAR

rectangle: S.Rectangle;
circle: S.Circle;

BEGIN
CASE d.shapeNumber OF
0:

1 :

2:

NEW(rectangle);
rectangle.SetState(MAX(O.O, d.length), MAX(O.O, d.width));
C.lnsert(cList, rectangle);
SetDialog(rectangle) I

NEW(circle);
circle.SetState(MAX(O.O, d.diameter));
C.lnsert(cList, circle);
SetDialog(circle) I

(* Problem for the student *)
END;
Dialog.Update(d)

END Insert;

PROCEDURE RectangleGuard* (VAR par: Dialog.Par);
BEGIN

par. disabled := d.shapeNumber # °
END RectangleGuard;

PROCEDURE CircleGuard* (VAR par: Dialog.Par);
BEGIN

par. disabled := d.shapeNumber # 1
END CircleGuard;

PROCEDURE TriangleGuard* (VAR par: Dialog.Par);
BEGIN

par. disabled := d.shapeNumber # 2
END TriangleGuard;

Figure 23.17
Continued.

BEGIN
Clear

END Pbox23B.

A comparison of modules Pbox23A in Figure 23.9 and Pbox23B in Figure 23.17
shows little apparent difference except for procedure Insert. Pbox23B.lnsert has two
local variables-rectangle with type PboxShapeABS.Rectangle and circle with type
PboxShapeAbs.Circle. Suppose the user enters information about a rectangle and
clicks the Insert button. The CASE statement determines that the value of d.ShapeN
umber is 0 and executes

NEW(rectangle)

In Pbox23A, the corresponding statement is NEW(shape) where shape has type
PboxShapeObj.Shape. But in Pbox23B, that would be impossible because Pbox
ShapeAbs.Shape is abstract and you cannot instantiate an abstract class. That is
why Pbox23B.lnsert needs two local variables each with a concrete type instead of
one local variable with an abstract type.

The next statement

rectangle.SetState(MAX(O.O, d.length), MAX(O.O, d.width))

calls method SetState. But two SetState methods are imported from PboxShape·
Abs--one for a rectangle and one for a circle. How does Component Pascal know
which one to call? By the type of the receiver. With this call, the actual parameter
rectangle has type Rectangle. So, Component Pascal calls the SetState method
whose receiver has the same type. The effect of the call is to set the dimensions of
rectangle according to the user input.

Then the call

C.lnsert(cList, rectangle)

executes procedure PboxCListADT.lnsert. Actual parameter rectangle is a pointer to
a record extended from PboxShapeAbs.Shape while the corresponding formal
parameter val is a pointer to ANYREC. This is an example of the fundamental class

Polymorphism 557

Figure 23.17
Continued.

assignment rule applied to parameters. The formal parameter can be general and the Thetill1danlt'llwl class
actual parameter specific, but the formal parameter cannot be specific and the actual (lSsiJ;ntIlellt rule applied 10

parameter general. In this example, Shape inherits from ANYREC, and Rectangle parall1eta.1

inherits from Shape. Therefore, Rectangle, which is specific, inherits from
ANYREC, which is general.

The next statement in Pbox23B.lnsert

SetDialog(rectangle)

calls procedure Pbox23B.SetDialog. Here again the fundamental class assignment
rule applied to parameters comes into play. The formal parameter s has type Shape,
which is general, and the actual parameter rectangle has type Rectangle, which is

558 Chapter 23 Inheritance and Polymorphism

specific. As it is with class assignments, formal parameter s now has two types. Its
static type is Shape, while its dynamic type is Rectangle.

The first statement in Pbox23B.SetDialog is

s. Getl DStri ng(d. idString)

which illustrates behavior abstraction with polymorphism. The question is, How
does Component Pascal know which GetiDString to calP The situation is different
from the call to SetState. In that case, the actual parameter is rectangle, which has
type Rectangle. Component Pascal can determine from the interface in Figure 23.16
that there is a method with a Rectangle receiver and call that one. But in this case,
the actual parameter is s, which has type Shape. The interface shows that the GetlD
String with a Shape receiver is abstract.

(s: Shape) GetlDString (OUT str: ARRAY OF CHAR), NEW, ABSTRACT

Therefore, it has no statements and cannot be called.
The solution to this problem is at the heart of polymorphism. The only methods

that can be called are the concrete ones

(r: Rectangle) GetiDString (OUT str: ARRAY OF CHAR)

and

(c: Circle) GetiDString (OUT str: ARRAY OF CHAR)

which are the methods that implement the corresponding abstract method. But the
question remains, How does Component Pascal know which of the concrete meth
ods to call? It knows, not from the static type of s at compile time, but from its
dynamic type at execution time. In this scenario, because the dynamic type of s is
Rectangle it calls the GetlDString whose receiver has type Rectangle. The selection
of one method among several identically named methods based on the dynamic type

PoiVllllJrphism

of the actual parameter for the receiver is called polymorphic dispatch. Polymorphic dispatch

The remaining method calls in PBox23B.SetDialog are all based on polymorphic
dispatch. The formal parameter s has static type Shape, but dynamic type Rectan
gle. Therefore, the corresponding method implemented for Rectangle gets called.
Suppose the user were entering data for a circle. In that case Pbox23B.lnsert would
execute

NEW(circle)

followed by setting the state of circle and inserting it into cUst. Then, the procedure
call

SetDialog(circle)

would give formal parameter s in procedure SetDialog the dynamic type Circle. The
method calls would all be to the ones with a Circle receiver.

All abstract shape class implementation 559

An abstract shape class implementation

Figure 23.19 is the implementation of the shape class whose interface is in Figure
23.16. The exported type Shape is a pointer to an abstract record with no fields. Fig
ure 23.18(a) depicts the abstraction as a cloud. Class Rectangle inherits from Shape.
Its record has two fields, length and width. for storing the length and width of a rect
angle as Figure 23.18(b) shows. Class Circle also inherits from Shape. Its record has
one field, diameter, for storing the diameter of a circle. Compare Figure 23.18 with
Figure 23.12 where only class abstraction is used without behavior abstraction. With
behavior abstraction there is no need for the kind field to determine what kind of
shape is being processed.

G G • 1 length 1 width

(a) Shape. (b) Rectangle.

MODULE PboxShapeAbs;
IMPORT PboxStrings, Math;

TYPE

G .1 diameter

(c) Circle.

Shape* == POINTER TO ABSTRACT RECORD END;

Rectangle* = POINTER TO RECORD (Shape)
length, width: REAL

END;

Circle* == POINTER TO RECORD (Shape)
diameter: REAL

END;

(* -------------------- *)

Figure 23.18
The structure of type Shape,
Rectangle. and Circle in
Figure 23.19.

Figure 23.19
Implementation of the
abstract class Shape whose
interface is in Figure 23.16.

PROCEDURE (s: Shape) GetiDString* (OUT str: ARRAY OF CHAR), NEW, ABSTRACT;

PROCEDURE (r: Rectangle) GetiDString* (OUT str: ARRAY OF CHAR);
BEGIN

str :== "Rectangle"
END GetlDString;

PROCEDURE (c: Circle) GetiDString* (OUT str: ARRAY OF CHAR);
BEGIN

sIr :== "Circle"
END GetlDString;

560 Chapter 23 Inheritance and PolYmorphism

(. -------------------- .)
PROCEDURE (s: Shape) GetDimensionString' (OUT str: ARRAY OF CHAR), NEW, ABSTRACT;

PROCEDURE (r: Rectangle) GetDimensionString' (OUT str: ARRAY OF CHAR);
VAR

temp: ARRAY 16 OF CHAR;
BEGIN

PboxStrings.ReaIToString(r.length, 1,3, temp);
str := "Length = " + temp +", ";
PboxStrings.ReaIToString(r.width, 1,3, temp);
str := str + "Width = " + temp

END GetDimensionString;

PROCEDURE (c: Circle) GetDimensionString' (OUT str: ARRAY OF CHAR);
VAR

temp: ARRAY 16 OF CHAR;
BEGIN

PboxStrings.ReaIToString(c.diameter, 1, 4, temp);
str := "Diameter = " + temp

END GetDimensionString;

(. -------------------- .)
PROCEDURE (s: Shape) Area' 0: REAL, NEW, ABSTRACT;

PROCEDURE (r: Rectangle) Area' 0: REAL;
BEGIN

RETURN r.length • r.width
END Area;

PROCEDURE (c: Circle) Area' 0: REAL;
BEGIN

RETURN Math.PiO • c.diameter· c.diameter /4.0
END Area;

(. -------------------- .)
PROCEDURE (s: Shape) Perimeter' 0: REAL, NEW, ABSTRACT;

PROCEDURE (r: Rectangle) Perimeter' 0: REAL;
BEGIN

RETURN 2.0' (r.length + r.width)
END Perimeter;

PROCEDURE (c: Circle) Perimeter' 0: REAL;
BEGIN

RETURN Math.PiO • c.diameter
END Perimeter;

Figure 23.19
Continued.

An abstract shape class implementation 561

(* -------------------- *)
PROCEDURE (r: Rectangle) SetState* (length, width: REAL), NEW;
BEGIN

ASSERT((length >= 0.0) & (width >= 0.0), 20);
r.length := length;
r.width := width

END SetState;

PROCEDURE (c: Circle) SetState* (diameter: REAL), NEW;
BEGIN

ASSERT(diameter >= 0.0, 20);
c.diameter := diameter

END SetState;

END PboxShapeAbs.

Method GetlDString for PboxShapeAbs.Rectangle has only one assignment
statement

str := "Rectangle"

and GetiDString for PboxShapeAbs.Circle also has only one assignment statement

str := "Circle"

Contrast this state of affairs with the GetiDString for PboxShapeObj.Shape in Fig
ure 23.13

CASE s.kind OF
0:

str := "Rectangle" I
1 :

str := "Circle"
END

which uses the kind field to determine which shape is being processed. Without
behavior abstraction. you need a CASE statement to process a shape. With behavior
abstraction you do not.

The basic characteristic of abstraction is hidden detail. With behavior abstraction,
the details of selecting what kind of shape to process are hidden. Rather than use a
CASE statement to select the processing within a single method, the processing for
specific shapes is separated into different methods. one for each kind of shape,
which are then called with polymorphic dispatch. Of course. hiding the detail in a
lower level of abstraction does not eliminate the detail. Component Pascal must
maintain the equivalent of a kind field behind the scenes. It stores data to identify the
specific concrete class each time the program executes the NEW procedure to instan
tiate an object. The object's internal "'kind" data is consulted during execution time
to determine the dynamic type of the object.

Now, consider the implications of polymorphism in a software project with doz-

Figure 23.19
Continued.

562 Chapter 23 Inheritance and Polymorphism

ens of modules and thousands of lines of code. The software is always in a state of
flux with updates and revisions carried out continuously to satisfy the customers and
keep up with the competition. Without behavior abstraction in PboxShapeObj, what
does it take to add another shape like a triangle? The answer is that you must modify
every method in PboxShapeObj that processes a general shape by adding an addi
tiona� case for the triangle to the CASE statement. In a large software project, the
required modifications for a similar revision could be extensive.

With behavior abstraction in PboxShapeAbs, what does it take to add another
shape like a triangle? The answer is, You do not need to modify PboxShapeAbs at
all! You can simply package your additional shape in its own module, which imports
PboxShapeAbs. There is nothing in Component Pascal to prevent you from declar
ing a subclass in one module whose superclass is in another module. So, with behav
ior abstraction you do not modify existing code. You simply add code for additional
features. The ability to extend an application by adding code instead of modifying The most important benefit of
existing code is probably the most important benefit of object-oriented program- object-oriented programming

mingo It permits a company to design an abstract class with a few concrete classes
and have third-party developers write their own concrete classes to enhance the
product. The plug-ins for Web browsers are implemented with this idea. For this
approach to software development to be effective, the original abstract classes must
be well designed.

Another benefit of behavior abstraction over simple class abstraction is the sav
ings in space for the attributes of a object. Figure 23.20 shows the data structure for
the circular linked list that corresponds to Figure 23.14. With class abstraction only,
you must allocate unused space for a diameter even if the shape is a rectangle, or
you must allocate unused space for a width and length even if the shape is a circle.
With behavior abstraction, you allocate only enough space for the attributes that are
required for the object.

cList

Unified Modeling Language

Figure 23.21 is a Unified Modeling Language (UML) class diagram of the classes
declared in PboxShapeAbs. The UML standard specifies several diagrams other
than class diagrams. Each box in a class diagram represents a class. A box has three
compartments. The name of the class is always in the top compartment in a bold
typeface as in Rectangle. The name of an abstract class is slanted as in Shape. The

Figure 23.20
The data structure that
corresponds to Figure 23.14.
but with the abstract shape of
PboxShapeABS.

Unified Modeling Language 563

second compartment contains the attributes, and the third compartment contains the
operations. The names of abstract methods are slanted as in GetiDString in class
Shape.

Figure 23.21 PboxShapeAbs.Shape
The UML class dia gram for

din
+ GetiDString (OUT str: ARRAY OF CHAR)

the classes declare

+ GetDimensionString (OUT str: ARRAY OF CHAR) PboxShapeAbs.

+ Area (): REAL
+ Perimeter (): REAL

t
l J

PboxShapeAbs.Rectangle PboxShapeAbs.Circle

- width: REAL - diameter: REAL
- height: REAL

+ GetiDString (OUT str: ARRAY OF CHAR) + GetlDString (OUT str: ARRAY OF CHAR)
+ GetDimensionString (OUT str: ARRAY OF CHAR) + GetDimensionString (OUT str: ARRAY OF CHAR)
+ Area (): REAL + Area (): REAL
+ Perimeter (): REAL + Perimeter (): REAL
+ SetState (length, width: REAL) + SetState (diameter: REAL)

(a) The full version of the class diagram.

PboxShapeAbs.Shape

+ GetiDString (OUT str: ARRAY OF CHAR)
+ GetDimensionString (OUT str: ARRAY OF CHAR)
+ Area (): REAL
+ Perimeter (): REAL

T
I I

PboxShapeAbs.Rectangle PboxShapeAbs.Circle

- width: REAL - diameter: REAL
- height: REAL

+ SetState (length, width: REAL) + SetState (diameter: REAL)

(b) The abbreviated version of the class diagram.

In UML, the receiver of a method is not shown, because it can be inferred from
the class. Nor are the method attributes listed. The ABSTRACT attribute can be
inferred from the slanted type. In UML terminology, items that are exported read!
write are called public and are preceded by the plus symbol +. Items that are not
exported are called private and are preceded by the minus symbol -. There is no
UML standard for items that are exported read-only.

564 Chapter 23 Inheritance and Polymorphism

Example 23.5 The method heading for GetlDString in Component Pascal is

PROCEDURE (5: Shape) GetlDString* (OUT str: ARRAY OF CHAR), NEW, ABSTRACT;

The receiver is (5: Shape). The method attributes are NEW and ABSTRACT. The cor
responding heading in the UML class diagram is

+ GetlOString (OUT str: ARRAY OF CHAR)

The receiver is missing, but its type can be inferred in Figure 23.21 because it is in
the Shape class box. The plus sign indicates that the method is exported. The slanted
type for the name implies that the method is abstract. I

The triangle symbol "T'- is the UML notation for inheritance. The tip of the trian
gle points to the superclass and the other end of the triangle is connected to the sub
classes. In this book, the superclass will always be an abstract class with abstract
methods. Each concrete class will implement its own version of each abstract
method. Figure 23.21(a) shows the full UML class diagram. The abstract class
Shape has four abstract methods-GetlDString, GetDimensionString, Area, and
Perimeter. Both class Rectangle and Circle implement each of these methods. Rather
than repeat the abstract methods in each concrete class, this book will use an abbre
viated version of the UML class diagram where the corresponding concrete methods
are omitted as in Figure 23.21 (b). It will be assumed that each abstract method of the
superclass is implemented by each concrete subclass.

Class composition

Object-oriented design consists of defining several objects and establishing the rela
tionships between them. Inheritance is one way that objects can be related and class
composition is another. Inheritance is frequently described as the "is-a" relationship The is·a relationship

because the subclass "is a" superclass. For example, in the previous section a circle
is a shape. In contrast to inheritance, class composition is described as the "has-a" The has-a relationship

relationship.
The program in this section illustrates class composition with a Pizza class. There

are two kinds of pizzas, rectangular and circular. Because Shape is a class, and
Pizza is a class, and a pizza has a shape, the relationship between the two is one of
class composition. The Pizza class is composed of the Shape class.

An arrow with a diamond tail +----- is the UML symbol for class composi
tion. In a UML class diagram, the diamond tail touches the containing class, and the
arrowhead touches the class that it contains. There is no new Component Pascal syn
tax to learn for class composition. Because a class is a record with various fields, to
use class composition you simply put the contained class in the field of the class that
you want to contain it.

Example 23.6 Suppose you want to define a class named Pizza that contains a
Shape class. In Component Pascal, you would declare

Pizza* = POINTER TO RECORD
shape*: PboxShapeAbs.Shape

END;

Figure 23.22 shows the corresponding UML class diagram. The shape field of class
Pizza is in the attribute box of the Pizza class. The Pizza class contains the Shape
class. So, the diamond tail in the UML class diagram touches the Pizza class box.
and the arrowhead touches the Shape class box. I

Pizza

+ shape: PboxShapeAbs.Shape • • PboxShapeAbs.Shape

+ GetlDString (OUT str: ARRAY OF CHAR)

A Pizza class 565

Figure 23.22
The UML class diagram for a
Pizza class that has a Shape.

+ GetDimensionString (OUT str: ARRAY OF CHAR)
+ Area (): REAL
+ Perimeter (): REAL

I
I I

PboxShapeAbs.Rectangle PboxShapeAbs.Circle

- width: REAL - diameter: REAL
- height: REAL

+ SetState (length. width: REAL) + SetState (diameter: REAL)

To access an element of a composed class. use the standard period "." notation for
accessing the field of a record.

Example 23.7 Suppose you have a variable my Pizza of type Pizza as in Figure
23.22 and an output text field in your dialog box linked to d.dimensionString. You
want to display the dimensions of your pizza in your dialog box. Then.
myPizza.shape is a Shape with method GetDimensionString. The statement

myPizza.shape.GetIDString(d.dimensionString)

calls the GetiDString method polymorphically to set d.dimensionString to the dimen
sions of the shape of myPizza. I

A Pizza class

In real life, a pizza has more than just a shape. It also has a crust. a topping, and a
price. The crust for the Pizza class in this section can be thick or thin. The topping
can be vegetarian or pepperoni, and either topping can have extra cheese. The price
of the pizza depends on all these characteristics. Figure 23.23 shows a dialog box for

566 Chapter 23 Inheritance and Polymorphism

a program that implements a Pizza class that has a shape. a topping with possible
extra cheese. and a crust. It is for a restaurant where you can order a custom pizza
with any shape, any size, any topping, and any crust. The program computes the
price according to the pizza specification. The figure shows an order that has been
entered for a rectangular pizza, 20 x 30 cm, vegetarian, thick crust. The price is
computed as 7.63. The user is about to enter an order for a circular pizza, 25 cm
diameter, pepperoni, thick crust with extra cheese.

llNr·tf'N~·1

. ~~§F~{~~.:

The price of a pizza is determined by a fixed cost of 2.50 regardless of the shape
or selection plus a variable cost that depends on the ingredients. A vegetarian pizza
has a variable cost of 0.0045 per square em, and a pepperoni pizza has a variable
cost of 0.0065 per square cm. An order with extra cheese adds 0.00 I 0 per square cm.
so that the vegetarian and pepperoni toppings are 0.0055 and 0.0075 respectively.
Thick crust costs 0.0030 and thin crust 0.0020. The final price is determined by add
ing a tax of 0.09 to the fixed plus variable cost.

Example 23.8 In Figure 23.23, the area of the rectangular pizza is

1

20x30=600cm-

So, the price is computed as

(2.50 + 0.0045 x 600 + 0.0030 x 600) x 1.09 = 7.63

If the order had been with extra cheese the Selection would display "Vegetarian,
Extra cheese, Thick crust", and the price would be computed as

(2.50 + 0.0055 x 600 + 0.0030 x 600) x 1.09 = 8.28 I

Figure 23.23
The dialog box for a program
that uses the Pizza class .

Figure 23.24 is the UML class diagram for class Pizza in module PboxPizza.
Because a pizza "has a" shape, and a pizza has a topping. and a pizza has a crust,
class composition is used to include each of these three constituents in class Pizza.
In the same way that Shape is an abstract class with concrete subclasses Rectangle
and Circle, Topping is an abstract class with concrete subclasses Vegetarian and Pep
peroni. Inheritance is the relation between class Pepperoni and class Topping,
because pepperoni "is a" topping. Similarly. Crust is an abstract class with concrete
subclasses Thick and Thin.

The abstract class Topping has boolean attribute extraCheese, which is true if the
customer wants extra cheese on his topping and false otherwise. It is possible to
duplicate the extraCheese attribute in classes Vegetarian and Pepperoni and not
have it in Topping. It is usually best, however. to have those characteristics that are
common to a set of classes appear only once in a more general class. Accordingly.
the extraCheese attribute appears only once in class Topping.

When any subclass inherits from any superclass, the subclass inherits all the
attributes of the superclass. An object of the subclass accesses the attributes of the
superclass as if they were all declared as fields of the subclass. That is, you use the
period"." between the name of the object and the field to access the field.

Example 23.9 Suppose you declare

VAR
myPepperoni: Pepperoni;

where the classes are declared as in the UML class diagram of Figure 23.24. You
have allocated myPepperoni from the heap with

NEW(myPepperoni)

and you want to set the field extraCheese in the Topping superclass to FALSE. The
statement

myPepperoni.extraCheese := FALSE

performs the assignment. It is as if extraCheese is an attribute of myPepperoni
directly. even though it is an attribute of the Topping superclass. •

Example 23.10 Suppose you declare

VAR
myPizza: Pizza;

where the classes are declared as in the UML class diagram of Figure 23.24. If you
want to set extraCheese to FALSE for myPizza. use the usual technique for class
composition. Assuming a concrete topping has been allocated from the heap. the fol
lowing statement performs the assignment.

myPizza.topping.extraCheese := FALSE.

A Pi~::.a class 567

A subclass inherits the
uttribllles of its slIperciass.

568 Chapter 23 Inheritance and Polymorphism

PboxPizza.Pizza Figure 2 3.24
The UML

+ shape: PboxShapeAbs.Shape •
I

class Pbox

class diagram for

Pizza. Pizza.
+ topping: Topping
+ crust: Crust ,

• PboxShapeAbs.Shape

+ Get/DString (OUT str: ARRAY OF CHAR)
+ GetDimensionString (OUT str: ARRAY OF CHAR)
+ Area (): REAL
+ Perimeter (): REAL

T
I I

PboxShapeAbs.Rectangle PboxShapeA bs.Circle

- width: REAL - diameter: REAL
- height: REAL

+ SetState (length, width: REAL) + SetState (diameter: R EAL)

PboxPizza. Topping

+ extraCheese: BOOLEAN

+ GetToppingString (OUT str: ARRAY OF CHAR)
+ ToppingCost (): REAL

L
I

I I
PBoxPizza.Vegetarian PboxPizza.Pe pperoni

PboxPizza.Crust

+ GetCrustString (OUT str: ARRAY OF CHAR)
+ CrustCost(): REAL

PBoxPizza.Thick PboxPizza.Thin

Classes Vegetarian and Pepperoni each implement abstract method GetTopping
String. The Vegetarian version of GetToppingString sets str to "Vegetarian" if extra
Cheese is false. and to "Vegetarian, Extra cheese" otherwise. Similarly, the
Pepperoni version sets str to "Pepperoni" or "Pepperoni, Extra cheese". Method
ToppingCost returns the variable cost per square cm for each topping. taking into
account whether extra cheese is ordered. For the Vegetarian class, ToppingCost

n:tllnlS 0.0065 without extra cheese or 0.0075 with extra cheese.

The Thick and Thin classes are simpler because their methods do not depend on
any attributes. The Thick version of GetCrustString always sets str to "'Thick crust"

and the Thin version always sets it to 'Thin crust". The Thick version of CrustCost

always returns 0.0030 and the Thin version always returns 0.0020.
Figure 23.25 shows the implementation of the PboxPizza.Pizza class. Most of the

implementation is left as a problem for the student. Your solution should translate

the UML design of Figure 23.24 into Component Pascal code.

MODULE PboxPizza;
IMPORT PboxShapeAbs;

TYPE
Topping* = POINTER TO ABSTRACT RECORD

(* Problem for the student. *)
END;

(* Topping subclasses, Problem for the student. *)
(* Crust class and subclasses, Problem for the student. *)

Pizza* = POINTER TO RECORD
shape*: PboxShapeAbs.Shape;
topping*: Topping;
(* Problem for the student *)

END;

(* -------------------- *)

A Pi::.::.a class 569

Figure 23.25
Implementation of the Pizza
class whose UML class
diagram is in Figure 23.24.

PROCEDURE (I: Topping) GetToppingString* (OUT str: ARRAY OF CHAR), NEW, ABSTRACT;

(* GetToppingString, Problem for the student. *)

(* -------------------- *)
PROCEDURE (I: Topping) ToppingCost* 0: REAL, NEW, ABSTRACT;

(* ToppingCost, Problem for the student. *)

(* -------------------- *)

(* GetCrustString, Problem for the student *)

(* -------------------- *)

(* CrustCost, Problem for the student *)

END PboxPizza.

Figure 23.26 shows the program for the dialog box of Figure 23.23. It imports,

among other modules, PboxPizza. As with PboxPizza, parts of the module are left as

a problem for the student at the end of the chapter. Procedure setDialog requires a

570 Chapter 23 Inheritance and Polymorphism

local temporary array of characters to set the selection string. because it is the con

catenation of the topping string. the string '". ", and the crust string. In the same way
that procedure Insert requires local concrete classes for a rectangle and a circle. it

requires local concrete classes for vegetarian and pepperoni toppings, and thick and

thin crusts.

MODULE Pbox23C;
IMPORT Dialog, C := PboxCListADT, S := PboxShapeAbs, P := PboxPizza;

CONST
base Price = 2.50;
tax = 0.09;

VAR
dO: RECORD

shapeString-, dimensionString-, selectionString-: ARRAY 64 OF CHAR;
price-: REAL;
shapeNumber': INTEGER;
length', width': REAL; (* for rectangle *)
diameter': REAL; (* for circle ')
extraCheese': BOOLEAN;
toppingNumber', crustNumber': INTEGER

END;
cList: C.CList;

PROCEDURE ClearDialog;
BEGIN

d.shapeString := ; d.dimensionString := ; d.selectionString := ;
d.price := 0.0;
d.shapeNumber := 0;
d.length := 0.0; d.width := 0.0;
d.diameter := 0.0;
d.extraCheese := FALSE;
d.toppingNumber := 0; d.crustNumber := 0

END ClearDialog;

PROCEDURE SetDialog (pz: PPizza);
VAR

tempStr: ARRAY 32 OF CHAR;
BEGIN

pz.shape.GetiDString(d.shapeString);
pZ.shape.GetDimensionString(d.dimensionString);
(* Problem for the student *)

END SetDialog;

PROCEDURE Clear*;
BEGIN

ClearDialog;
C.Clear(cList);
Dialog. Update(d)

END Clear;

Figure 23.26
The program for the dialog
box of Figure 23.23.

PROCEDURE Next*;
VAR

pizza: PPizza;
BEGIN

IF -C. Empty(cList) THEN
C.GoNext(cList);
pizza := C.NodeContent(cList) (P.Pizza);
SetDialog(pizza) ;
Dialog.Update(d)

END
END Next;

PROCEDURE Insert*;
VAR

pizza: P.Pizza;
rectangle: S.Rectangle;
circle: S.Circle;
(* Problem for the student. *)

BEGIN
NEW(pizza);
CASE d.shapeNumber OF
0:

1 :

NEW(rectangle);
rectangle.SetState(MAX(O.O, d.length), MAX(O.O, d.width));
pizza. shape := rectangle I

NEW(circle);
circle.SetState(MAX(O.O, d.diameter));
pizza. shape := circle

END;
(* CASE d.toppingNumber, Problem for the student *)
(* d.extraCheese, Problem for the student *)
(* CASE d.crustNumber, Problem for the student *)
C.lnsert(cList, pizza);
SetDialog(pizza);
Dialog.Update(d)

END Insert;

PROCEDURE RectangleGuard* (VAR par: Dialog.Par);
BEGIN

par.disabled := d.shapeNumber # 0
END RectangleGuard;

PROCEDURE CircleGuard* (VAR par: Dialog.Par);
BEGIN

par.disabled := d.shapeNumber # 1
END CircleGuard;

PROCEDURE TriangleGuard* (VAR par: Dialog.Par);
BEGIN

par.disabled := d.shapeNumber # 1
END TriangleGuard;

A Pizza class 571

Figure 23.26
Continued.

572 Chapter 23 Inheritance and Polymorphism

BEGIN Figure 23.26
Clear

END Pbox23C .

An alternate design of the Pizza class

Behavior abstraction with polymorphic dispatch allows you to eliminate IF or CASE
statements. The design of the Pizza class in the previous section requires an IF state
ment in the implementation of GetToppingString, because the topping string depends
on whether the boolean field extraCheese is true or false. The design also requires
an IF statement in the implementation of ToppingCost for the same reason. The cost
of the topping depends on the value of the extraCheese attribute. The design in Fig
ure 23.27 uses behavior abstraction to diminate all IF statements in the methods for
the Pizza class.

PboxPizza. Topping

+ cheese: Cheese ~

+ GetToppingString (OUT sIr: ARRAY OF CHAR)
+ ToppingCost (): REAL

6
I

PB
1 1

oxPizza. Vegetarian
1 1

PboxPizza.Pepperoni -I

PboxPizza. Cheese

Continued.

Figure 23.27
The UML diagram for an

the Pizza
ract

alternate design of
class using an abst
Cheese class.

+ GetCheeseString (OUT sIr: ARRAY OF CHAR)
+ CheeseCost (): REAL

6
I

PBoxPizza.Regular

In this design, extraCheese is not a boolean attribute of Topping. Instead, class
Topping is composed of class Cheese. which is abstract. The Cheese class specifies
methods GetCheeseString and CheeseCost, which are implemented by the concrete
subclasses Regular and Extra.

The Regular version of GetCheeseString sets str to the empty string The Extra
version of GetCheeseString sets str to the string ", Extra cheese" with a leading
comma and space. The implementation of the Vegetarian version of GetTopping
String simply concatenates "Vegetarian" with the string for the cheese. If cheese is
instantiated as Regular. then "Vegetarian" concatenated with the empty string is sim-

PboxPizza.Extra

Class composition versus inheritance 573

ply "Vegetarian". If cheese is instantiated as Extra. then "Vegetarian" concatenated
with ", Extra cheese" is "Vegetarian, Extra cheese".

The same idea is used to eliminate the IF statements from the implementation of
ToppingCost. The Regular version of CheeseCost returns 0.0, and the Extra version
returns the price difference between regular and extra cheese. ToppingCost can sim
ply add the price difference to the cost for the topping without extra cheese.

Class composition versus inheritance

When object-oriented (00) design was first invented there was no history of design
experience on which to draw to develop programs. In the early days, programmers
concentrated on inheritance and the power of polymorphism. With the hindsight that
comes with experience, many designs from that era are now known to be less than
sound because the designers did not have an appreciation of the utility of class com
position. Most of 00 design consists of modeling the problem to be solved with an
optimum mixture of class composition and inheritance. UML class diagrams are
useful because they capture these two aspects of 00 structure in a standard form
that does not depend on the programming language used for the implementation.

As with any design process, there is always more than one way to solve a prob
lem. The choice of a particular solution depends on the trade-otTs that the designer
makes according to the goals of the project. Figure 23.28 shows another way to
model the relationship between a pizza and a crust. Suppose the application is for a
bakery where the crust is the important object. The bakery may make crusts for pies
as well as pizzas. You might choose to have classes Pie and Pizza inherit from Crust.
reasoning that crust is common to both pies and pizzas and should therefore be
abstracted out to the superclass.

Crust

crustAtlribute: CrustAtlribute

I

I I
Pie Pizza

pieAtlribute: PieAttribute pizzaAttribute: PizzaAtlribute

Most 00 designers would object (') to this design. Remember that inheritance is
the "is-a" relationship and class composition is the "has-a" relationship. The design
of Figure 23.28 implies that a pizza is a crust, whereas the design of Figure 23.24
implies that a pizza has a crust. In this example, the real world nature of pizza pro
vides a guide for the proper model to use. In some situations the problem is not so
clear even after considering the so-called real world. For example, what is the rela
tionship between a square and a rectangle? Mathematically, a square is a rectangle
with equal sides. Would you therefore make a square a subclass of a rectangle') The
problem with that implementation is that a square object would inherit both the

Figure 23.28
A possible design with a
different relationship between
Pizza and Crust.

574 Chapter 23 Inheritance and Polymorphism

length and width of the rectangle when it only needs the length of one side. The
square versus rectangle design problem has provoked much debate in 00 circles.
The upshot is that many solutions to any given problem are possible, and good 00
design can be difficult.

Records versus pointers

Figure 23.19 shows that Shape, Rectangle, and Circle are all declared to be pointers
to records.

Shape' = POINTER TO ABSTRACT RECORD END;
Rectangle' = POINTER TO RECORD (Shape)

length, width: REAL
END;
Circle' = POINTER TO RECORD (Shape)

diameter: REAL
END;

With these declarations, you can allocate local pointer variables on the run-time
stack with

myShape: Shape;
myRectangle: Rectangle;
myCircle: Circle;

You can allocate rectangle and circle records from the heap with

NEW(myRectangle);
NEW(myCircle)

because myRectangle and myCircle are pointers. It is the records that are allocated
from the heap, and the pointers on the stack that point to them. However, you cannot
allocate a shape from the heap with

NEW(myShape)

because Shape is abstract. The usual class assignment rule applies. The assignment

myShape := myRectangle

is legal, but the assignment

myRectangle := myShape

is not.
There is nothing in Component Pascal to prevent youJrom declaring classes and

subclasses to be records instead of pointers to records. For example, Component
Pascal permits the following declarations. which ditfer from the previous declara
tions only by the omission of POINTER TO.

ShapeRO = ABSTRACT RECORD END;
RectangleR* = RECORD (Shape)

length, width: REAL
END;
CircleR* = RECORD (Shape)

diameter: REAL
END;

Records versus pointers 575

You can allocate local variables for the rectangle and circle records on the run-time
stack, such as

yourRectangle: RectangleR;
yourCircle: CircleR

But, the declaration of a local variable of type Shape such as

yourShape: ShapeR;

is not allowed, because it attempts to allocate an abstract record. The class assign
ment rule

yourShape := yourRectangle

cannot apply here, because it is impossible to have yourShape in the first place.
Component Pascal provides the record attribute EXTENSIBLE to allow the pro- Extensihle records

gram mer to declare a superclass that is not abstract as follows.

ShapeE* = EXTENSIBLE RECORD END;
RectangleE* = RECORD (Shape)

length, width: REAL
END;
CircleE* = RECORD (Shape)

diameter: REAL
END;

The local variable allocations on the run-time stack

herShape:ShapeE;
herRectangle: RectangleE;
herCircle: CircleE;

are all legal. The allocation for herShape is legal. because herShape is not abstract.
Now that you have a superclass with subclasses you might think that the class
assignment rule would permit the assignment

herShape := herRectangle

But, it does not' These variabks are not assignment compatible. even though you Class us.liglllllellt rule

can assign myRectangle to myShape in the pointer version.
Object-oriented programming languages in general and Component Pascal in

576 Chapter 23 Inheritance alld Polymorphism

particular rely on the characteristics of pointers and allocation from the heap to pro
vide polymorphism. Some pure 00 languages do not have explicit pointers at all. In
these languages, every variable is automatically a pointer to a record, even though
the pointer is hidden. The only assignment that is possible is a pointer assignment.
The phrase "pointer to" is usually not part of the terminology in these languages.
Instead, a variable is said to be a "reference to" an object. But apart from the termi
nology, such languages are identical to Component Pascal in their 00 capabilities
and their underlying structure. Most pure 00 languages provide automatic garbage
collection because of the prevalence of heap allocation.

Other 00 languages are similar to Component Pascal in that they are not pure
00. These languages provide procedure abstraction as well as class and behavior
abstraction and usually have pointers as an explicit primitive type. An advantage of
such mixed-paradigm languages is that you are not forced to use 00 techniques
when they are not appropriate. These languages also tend to be more efficient than
pure 00 languages. Component Pascal is rather unique in that pointers are an
explicit primitive type, yet the language still provides automatic garbage collection.

Extensible records have a place in 00 design. However, the most important 00
design patterns are based on abstract records instead. An abstract record cannot be
instantiated. Its purpose is to be a kind of blueprint for the subclasses that are
extended from it. The design patterns presented in this book use abstract records for
inheritance together with class composition.

Private versus public

Items that are not exported are called private, and items that are exported are called
public. An important 00 design issue is whether to export an attribute, making it
public, and if so, whether it should be exported read/write or read-only.

Consider class Rectangle in Figure 23.21 where attributes length and width are
private. Because they are private. they are not accessible to any client module,
including module Pbox23C in Figure 23.26. But, procedure Pbox23C.lnsert needs to

give values to length and width from the input dialog box. It does so by executing the
call

rectangle.SetState(MAX(O.O, d.length), MAX(O.O, d.width))

Method SetState is public, and so can be called from Pbox23C.lnsert. An alternate
design would be to make length and width public. Then, you would not even need
the SetState method. To set the length and width of the rectangle, Pbox23C.lnsert
would simply make the assignments

rectangle. length := MAX(O.O, d.length);
rectangle.width := MAX(O.O, d.width)

Now, consider attribute shape in class Pizza in Figure 23.24. Because it is public,
Pbox23C.lnsert can access it directly with the assignment

pizza. shape := rectangle

An alternate design would be to make shape private and supply the public method

PROCEDURE (p: PboxPizza) SetShape* (s: PboxShape.Shape), NEW;
BEGIN

p.shape:= s
END SetShape;

Procedurc Pbox23C.lnsert would thcn make the call

pizza.SetShape(rectangle)

to set the shape attribute of pizza to rectangle.
What is the difference between these two design decisions? Why are Rectan

gle.length and Rectangle.width private, which requires a public method to change
them, while Pizza. shape is public, which requires no such method? Why not make
every attribute public and dispense with methods to change their values? After all,
your program would be shorter and would also run faster because of the time it takes
to call a method.

The programs in this book are small enough to be written by a single individual.
You typically write both the client module, like that in Figure 23.26, and the server
module, like that in Figure 23.25. It is common, however, in a large project for the
programming effort to include a team of programmers, so that the person who writes
the client module is not the person who writes the server module. Indeed, it is even
possible for the server programmer to provide the module to many different custom
ers who write their own clients. In such an environment. protection is the key con
cept. If you write a server and you do not know who will write the client you should
program defensively. making sure that the data in your data structures are consistent
and meaningful. You should not allow clients to corrupt your data structures.

Private verSllS public 577

BlackBox provides design by contract to ensure that clients cannot violate the Design hv COlllract

preconditions of any methods. The Component Pascal ASSERT statement enforces
the preconditions stated in the specification of each procedure. Rectangle.length and
Rectangle.width are private to enforce the invariant that they cannot be negative. If
one of these dimensions were set negative. then its value would be meaningless as
would be the computations of the area and perimeter of the rectangle. The public
method to set the state of the rectangle ensures with an ASSERT statement that the
values will never be set negative. This implementation is consistent with the design-
by-contract rule. which states

• I F in the client.

• ASSERT in the server.

There is no corresponding reason to protect Pizza.shape beyond the protection
provided by the language itself. Component Pascal is a strongly typed language. The
compiler will allow an assignment to pizza.shape only if the right side of the assign
ment has the same type or an extension of the same type as the left side. Method Set
Shape above adds no protection value to the server. Whatever damage a client could
do with a direct assignment to the public attribute it could do with a call to the public
method that changes the private attribute.

You should be aware that some 00 designers adhere to a blanket rule that

The desigll·hr-co/limci rule

578 Chapter 23 Inheritance and Polymorphism

attributes should always be private and only accessed through public methods. The
philosophy in this book, however, is to not provide superfluous methods. If a method
to access the state of a private variable does not add protection value to the server,
then the method can be dispensed with and the attribute made public.

The read-only export feature of public attributes is unique to Component Pascal.
For example, class PboxMappers.Scanner has the attribute

eot-: BOOLEAN

exported read-only. When you write a statement like

WHilE -sc.eot DO

where sc is an instance of class Scanner, you are accessing the value of a public
attribute. Because it is not exported read/write, however, Component Pascal does not
allow you to change its value with an assignment like

sc:= FALSE

Such an assignment would corrupt the scanner's data structure. Most 00 languages
do not provide public read-only attributes. They would maintain eot as a private
attribute and provide the function

PROCEDURE (s: PboxMappers.Scanner) Eot' 0: BOOLEAN, NEW;
BEGIN

RETURN s.eot
END Eot;

You would then include the function call in the WHilE statement as

WHilE -sc.EotO DO

This design is less efficient than the one permitted by Component Pascal, because a
function must be called with each execution of the loop. It is necessary, however,
when the language does not provide read-only access.

Abstract objects and methods

A curious restriction on abstract objects and methods are the following two rules.

• You cannot instantiate an abstract object with NEW.

• You cannot implement an abstract method with BEGIN .. END.

If you cannot allocate a new abstract object from the heap, to what use could you
ever put such an object? Similarly, if you cannot give any instructions to an abstract
method, you certainly can never call it. So, why have an abstract method at all if it
can never be called?

The answer is that abstract objects and methods are necessary blueprints for the
implementation of behavior abstraction with polymorphism. Procedure SetDialog in

R~stricti/J11S on ahstract
ohjects alld methods

Figure 23.17 shows an example of how an abstract object and method can be useful.
Formal parameter s is an abstract object. When the compiler translates the Set Dialog
procedure. it cannot determine the dynamic type of s. That is. the compiler only
knows that the static type of s is an abstract Shape. The statement

NEW(s)

would be a compile error because of the restriction that you cannot instantiate an
abstract object with NEW. During execution, however, formal parameter s might
correspond to actual parameter rectangle as in the call to SetDialog from procedure
Insert. In that situation, the dynamic type of s would be Rectangle. On the other
hand, the dynamic type could just as easily be circle as in another call to SetDialog
from the same procedure. The general object scan morph between these two spe
cific classes during execution. When the compiler translates SetDialog it must take
into account that s could be either. It is the specific objects that are instantiated with
NEW in procedure Insert.

When the compiler translates

s.GetDimensionString(d.dimensionString)

in procedure Set Dialog, it must translate the method call for the general case,
because s is general. There are three headings for GetDimensionString in Figure
23.19. Only the concrete versions for a Rectangle and a Circle are implemented with
BEGIN .. END. The version of GetDimensionString for a Shape cannot be imple
mented. Its purpose is for the compiler to verify that any specific object that inherits
the general method will have the same signature. that is, the same number and types
of parameters. It also allows the compiler to verify that the signature of the above
call to GetDimensionString from SetDialog matches the signature in the heading for
the general case.

Exercises

L (a) What is the fundamental class assignment rule? (b) What is the fundamental class
assignment rule applied to parameters?

2. What is the most important benefit of object-oriented design')

3. (a) What object-oriented relationship is the "has-a" relationship? (b) What object-ori
ented relationship is the "is-a" relationship?

4. What is the Hollywood Principle" What does it have to do with BlackBox')

5. Draw the abbreviated version of the UML class diagram for the following classes.

Exercises 579

580 Chapter 23 Inheritance and Polymorphism

TYPE
Alpha" = RECORD

rho: POINTER TO Beta
END;

Beta = ABSTRACT RECORD END;
Gamma = RECORD (Beta) END;
Delta = RECORD (Beta)

value:T;
omega: Alpha

END;

PROCEDURE (IN b: Beta) Phi (n: INTEGER; OUT val: T). NEW. ABSTRACT;
PROCEDURE (IN a: Alpha) Phi" (n: INTEGER; OUT val: T). NEW;
PROCEDURE (IN g: Gamma) Phi (n: INTEGER; OUT val: T);
PROCEDURE (IN d: Delta) Phi (n: INTEGER; OUT val: T);

Problems

6. Modify PboxShapesObj in Figure 23.13 to include a right triangle shape containing
two fields named base and height. Test your program by modifying the program in Fig
ure 23.9.

7. Modify the program in Figure 23.17 to include a right triangle shape containing two
fields named base and height. Do not modify PboxShapesAbs in Figure 23.19. Instead,
implement the Triangle class in a new module without changing any code in module
PboxShapeAbs.

8. Complete the PboxPizza implementation of Figure 23.25 according to the design of the
UML class diagram of Figure 23.24. Test your implementation by completing the pro
gram of Figure 23.26.

9. Complete the PboxPizza implementation of Figure 23.25 according to the design of the
UML class diagram of Figure 23.24 with the modification of Figure 23.27 where class
Cheese is abstract. None of the methods of any of the classes are allowed to have IF or
CASE statements or any local variables. Test your implementation by completing the
program of Figure 23.26. which should be unchanged from that of Problem 8.

r.Ild Chapter24

dlJ'
The State Design Pattern

The state design pattern is an object-oriented technique that uses inheritance and
class composition. It is applicable to a variety of software design problems where an
object needs to alter its behavior when its internal state changes. This chapter illus
trates the state design pattern with implementations of a binary tree and a linked list.

Binary trees and linked lists have several things in common. Both structures are
based on links between nodes. The state of each structure is defined as a pointer to
its first node. That is, the state of a binary tree is defined as a pointer to its root node,
while the state of a linked list is defined as a pointer to its head node. Furthermore,
the definition of each data structure is inherently recursive. A binary tree is either
empty or a pointer to a node that contains a value, a left tree, and a right tree. A list is
either empty or a pointer to a node that contains a value and a list. These common
properties are the basis of the state pattern implementation of the data structures.

Binary search trees

Figure 24.1 is the interface for a binary search tree implemented with the state
design pattern. The methods should look familiar, as they are identical to the meth
ods of the binary search tree class of Figure 22.9, which is also shown in the figure.
Examine the interfaces for these two classes and you will find that they are identical
in every detail except that the name of the module for the tree with the state design
pattern is PboxTreeSta while that for the tree in Chapter 22 is PboxTreeObj.

Because the interfaces are identical, the programs that use them are identical as
well. Rather than showing the dialog box that uses the tree with the state design pat
tern see Figure 22.10, which is identical. Rather than showing the program that
implements the dialog box see Figure 22.11. which is identical except for the substi
tution of PboxTreeSta for every occurrence of PboxTreeObj. In all respects. a client
module that uses the binary search tree implemented with the state design pattern is
not aware of any difference between its behavior and that of the binary search tree as
implemented in Chapter 22.

582 Chapter 24 The State Design Pattern

DEFINITION PboxTreeSta;

TYPE
T = ARRAY 16 OF CHAR;
Tree = RECORD

(VAR tr: Tree) Clear, NEW;
(IN tr: Tree) Contains (IN val: T): BOOLEAN, NEW;
(VAR tr: Tree) Insert (IN val: T). NEW;
(IN tr: Tree) Numltems 0: INTEGER, NEW;
(IN tr: Tree) PreOrder, NEW;
(IN tr: Tree) InOrder, NEW;
(IN tr: Tree) PostOrder, NEW

END;

END PboxTreeSta.

DEFINITION PboxTreeObj;

TYPE
T = ARRAY 16 OF CHAR;
Tree = RECORD

(VAR tr: Tree) Clear, NEW;
(IN tr: Tree) Contains (IN val: T): BOOLEAN, NEW;
(VAR tr: Tree) Insert (IN val: T), NEW;
(IN tr: Tree) Numltems 0: INTEGER, NEW;
(IN tr: Tree) PreOrder, NEW;
(IN tr: Tree) InOrder, NEW;
(IN tr: Tree) PostOrder, NEW

END;

END PboxTreeObj.

Figure 24.2 shows the UML diagram for the state design pattern applied to a
binary search tree. The declarations of Tree and Node are

TYPE
T* = ARRAY 16 OF CHAR;
Tree- = RECORD

root: POINTER TO Node
END;

Node = ABSTRACT RECORD END;
EmptyNode = RECORD (Node) END;
NonEmptyNode = RECORD (Node)

leftChild: Tree;
value:T;
rightChild: Tree

END;

Figure 24.1
The interfaces for a binary
search tree implemented with
the state design pattern and as
it is implemented in Chapter
22.

The dura strucll/re!(I/' U
hillary tree usillg rhe state

design pattern

The relation between a tree and an abstract node is class composition. A tree has a
node. The relation between an empty node and an abstract node is inheritance. An
empty node is an abstract node. The relation between a nonempty node and an
abstract node is also inheritance. A nonempty node is an abstract node. The relation
between a nonempty node and a tree is class composition. A nonempty node has two
trees.

PboxTreeSta. Tree

- root: POINTER TO Node • .. PboxTreeSta.Node

+ Clear
+ Contains (IN val: T): BOOLEAN - Contains (IN val: T): BOOLEAN

+ Insert (IN val: T) - Insert (VAR owner: Tree; IN val: T)

+ Numltems (): INTEGER - Numltems (): INTEGER

+ PreOrder - Pre Order

+ InOrder - InOrder

+ PostOrder - PostOrder

T
I

Binary search trees 583

Figure 24.2

The UML diagram for a state
design pattern implementa
tion of a binary search tree.

i

I

I L PboxTreeSta.NonEmptyNode I PboxTreeSta.EmptyNode I
- leftChild: Tree
- value:T
- rightChild: Tree

The module for the binary search tree contains the class for the tree as well as the
class for the abstract node and each of its two subclasses. The details of the node
structure are hidden from the client module by virtue of the fact that none of the
node declarations are exported. In Figure 24.1, none of the details of the node or
even the pointer to the head node are visible to the client. Unfortunately, many
object-oriented languages are not based on the module concept, which is one of the
great strengths of Component Pascal compared to them. If you had no way of pack
aging several classes into one module, you would need to export the methods of the
abstract Node, making them pUblic, so the Tree class could have access to them.

Class abstraction unifies attributes and operations. Because an instance of a class
has both, it becomes an autonomous entity. You should think of 00 design as a col
lection of cooperating objects, each one of which is autonomous. It sometimes helps
to have an anthropomorphic view of the design in which each object is like an inde
pendent person who cooperates with the other people objects. Figure 24.3 is such a
view for the state design pattern of the binary search tree.

Figure 24.3(a) shows the viewpoint of a tree object. As far as the tree is con
cerned, he owns an abstract node. The tree looks through a window, represented by
the dashed vertical line, and sees an abstract node, represented by the amorphous
shape on the right side of the window. The tree does not know what kind of node he
owns, that is, whether his node is empty or nonempty. The state of the tree is defined
by its root. Figure 24.2 shows that root is a pointer to a Node. But type Node is
abstract. That is, it can never be allocated. The only nodes that can be allocated are

O"ieCI-oriellted desigl/ is a
collection (~l coopero{i!1g

,,"jeers.

The l'ieWpolilt of'a IreI'

584 Chapter 24 The State Design Pattern

I am a tree.
I own an abstract node.

Q

(a) The viewpoint of a Tree.

I am an empty node.
I own nothing.

My owner. Q
(b) The viewpoint of an EmptyNode.

I am a nonempty node.
I own two trees and a value.

My owner. Q
value

II II
leftChild rightChild

(el The viewpoint of a NonEmptyNode.

its concrete subclasses. EmptyNode and NonEmptyNode.

E
II)

.c
Co ...
o
E
>-
o
a..

Now consider the viewpoint of an empty node in Figure 24.3(b). An empty node

Figure 24.3
The cooperating objects in
the state design pattern for the
binary search tree.

has no attributes. Every node has an owner, but not in the same sense that the owner The vielVpoilll of an emptl'

has a node. If myTree is a tree, then it can always refer to the node it owns by the node

expression myTree.root. But if myEmptyNode is an EmptyNode, there is no corre-
sponding myEmptyNode.owner. Consequently, the empty node cannot look through
the window directly to see his owner.

The viewpoint of a nonempty node is similar to that of the empty node. He can-
not see his owner directly. However, he owns something that an empty node does not The viewpoi", ofa Il(}nelllptv

own. namely two trees and a value. node

The system of these three cooperating objects-trees, empty nodes. and non-
empty nodes-works by delegation. Each autonomous object either knows how to Delegation

perform a simple task itself or, if it cannot perform the task, delegates all or part of
the task to another object. Typically, the client module gives a tree a task to perform
by calling one of the tree's methods. The tree then delegates the task to its node.

For example, the PboxTree.Sta box in Figure 24.2 shows that a tree object has
method NumltemsO, which returns the number of items in the tree. Imagine that you

are the tree in Figure 24.3(a). You are instructed to return the number of nodes con
tained in yourself. The problem is that you do not even know whether you are empty
or not' The only thing you know is that you have an abstract node. When you look
through the window at your node, you cannot tell what kind of node it is. You only
see that abstract blob. Fortunately, the PboxTreeSta.Node box in Figure 24.2 shows
that an abstract node also has a method named NumltemsO. You own an abstract
node, and your abstract node provides a method that will return the number of items
in the tree. So, you simply call the method for your node.

Now, which method executes'? Certainly not the abstract method NumltemsO,
because an abstract method cannot be implemented. Figure 24.2 shows that Emp
tyNode and NonEmptyNode are concrete subclasses of the abstract class Node. They
inherit from Node and each one implements its own version of NumltemsO. The
double-headed arrow on the right of Figure 24.3 indicates that polymorphic dispatch
determines which of these two versions of NumltemsO executes. You can see that
polymorphism eliminates an IF statement here. As a tree, you do not know what kind
of node you own, whether empty or nonempty. But you do not need to know or even
to test what kind of tree you are with an IF statement. You simply delegate to your
node the task of computing the number of items with a single call, which is poly
morphically dispatched.

Consider the implementation of the empty node's version of NumltemsO. If you
are the empty node in Figure 24.3(b), and you are the root of a tree, how many items
do you contain? The answer should be obvious-none. Your version of NumltemsO
simply returns O.

What about the implementation of the nonempty node's version of NumltemsO?
If you are the nonempty node in Figure 24.3(c) what do you return? That is, if you
are the root of a tree, how many nodes does your tree contain? Remember, you own
a value and two subtrees. So, the answer is one (yourself) plus the number of nodes
in your left child plus the number of nodes in your right child.

Figure 24.4 shows the implementation of the binary search tree with the state
design pattern. Implementation of some of the methods are left as problems for the
student. Compare this tree class with that in Figure 22.14. As with that implementa
tion, a Tree is a record that contains a single pointer to a node. With the state design
pattern, however, the root of a tree is never NIL. It always points to something, either
an empty node if the tree is empty or a nonempty node if it is not.

MODULE PboxTreeSta;
IMPORT StdLog;

TYPE
r = ARRAY 16 OF CHAR;
Tree' = RECORD

root: POINTER TO Node
END;

Binary search trees 585

NUlnltellls for a tree

PO/VlllO ll'iliSII1

NlImltems for an ell1prv Ilode

Nlllllltems jiJr ([110nempty
110de

Figure 24.4
The implementation of the

binary search tree with the
state design pattern.

586 Chapter 24 The State Design Pattern

Node = ABSTRACT RECORD END;
EmptyNode = RECORD (Node) END;
NonEmptyNode = RECORD (Node)

leftChild: Tree;
value:T;
rightChild: Tree

END;

(* """""""""""""""""""" *)
PROCEDURE (VAR tr: Tree) Clear*, NEW;

VAR
p: POINTER TO EmptyNode;

BEGIN
NEW(p);
tr.root := p

END Clear;

(* """""""""""""""""""" *)
PROCEDURE (IN tr: Tree) Contains* (IN val: T): BOOLEAN, NEW;
BEGIN

(* A problem for the student *)
RETURN FALSE

END Contains;

(* """""""""""""""""""" *)

Figure 24.4
Continued.

PROCEDURE (IN node: Node) Insert (VAR owner: Tree; IN val: T), NEW, ABSTRACT;

PROCEDURE (VAR tr: Tree) Insert* (IN val: T), NEW;
BEGIN

tr.root.lnsert (tr, val)
END Insert;

PROCEDURE (IN node: NonEmptyNode) Insert (VAR owner: Tree; IN val: T);
BEGIN

ASSERT(node.value # val, 20);
IF node.value < val THEN

node.rightChild.lnsert(val)
ELSE

node.leftChild.lnsert(val)
END

END Insert;

PROCEDURE (IN node: EmptyNode) Insert (VAR owner: Tree; IN val: T);
VAR

p: POINTER TO NonEmptyNode;
BEGIN

NEW(p);
p.leftChild.Clear;
p.value := val;
p.rightChild.Clear;
owner. root := p (* Change the state of owner *)

END Insert;

(* -------------------- *)
PROCEDURE (IN tr: Tree) Numltems* 0: INTEGER, NEW;
BEGIN

(* A problem for the student *)
RETURN 999

END Numltems;

(* -------------------- *)
PROCEDURE (IN node: Node) PreOrder, NEW, ABSTRACT;

PROCEDURE (IN tr: Tree) PreOrder*, NEW;
BEGIN

tr.root. PreOrder
END PreOrder;

PROCEDURE (IN node: EmptyNode) PreOrder;
BEGIN

(* Do nothing *)
END PreOrder;

PROCEDURE (IN node: NonEmptyNode) PreOrder;
BEGIN

StdLog.String(node.value); StdLog.String(" ");
node.leftChild.PreOrder;
node.rightChild.PreOrder

END PreOrder;

(* -------------------- *)
PROCEDURE (IN tr: Tree) InOrder*, NEW;
BEGIN

(* A problem for the student *)
END InOrder;

(* -------------------- *)
PROCEDURE (IN tr: Tree) PostOrder*, NEW;
BEGIN

(* A problem for the student *)
END PostOrder;

END PboxTreeSta.

Compare Figure 24.4 with Figure 22.14 and you will see that with the state
design pattern there is no setting of any pointer to NIL, nor is there a comparison of
any pointer to NIL. The concept of NIL is hidden at a lower level of abstraction with
the state design pattern. There are fewer IF statements because polymorphic dispatch
takes their place.

For example, method Clear from PboxTreeSta in Figure 24.4 declares p to be a

local pointer to an empty node as

Binary search trees 587

Figure 24.4
Continued.

588 Chapter 24 The State Design Pattern

p: POINTER TO EmptyNode;

It clears tree tr by setting its root to a pointer to an empty node as follows.

NEW(p);
tr.root := p

Compare this with the corresponding implementation of Clear from PboxTreeObj in
Figure 22.14.

tr.root := NIL

This version of Clear clears tree tr by setting its root to NIL. In contrast, there is no
concept of NIL in the PboxTreeSta version. Figure 24.5 shows the difference
between empty trees in these two versions. There is really nothing in the oval box
labeled EmptyNode in Figure 24.5(b), because an empty node has no attributes.

treeA.root

(a) The empty tree from PboxTreeObj
in Figure 22.14.

treeA.root ~

(EmptyNode)

(b) The empty tree from PboxTreeSta
in Figure 24.4.

To see how the state design pattern eliminates the IF statement and the NIL value,
consider the implementation of method PreOrder. In PboxTreeObj, the implementa
tion of method PreOrder in Figure 22.14 begins with the statement

IF tr.root # NIL THEN

followed by the recursive calls to PreOrder in the body of the IF statement. But, the
PreOrder implementation in PboxTreeSta has no IF statement and no reference to
NIL. Imagine you are the tree in Figure 24.3(a). You do not know what kind of tree
you are, whether empty or nonempty. Only your root node knows. But you cannot
tell by looking at your root node, because it is abstract. All you see is that abstract
blob. So, you delegate. The implementation of PreOrder for a tree is the one liner

tr.root.PreOrder

which is a call to the PreOrder method of a node. Which version of PreOrder gets
called-the one for an empty node or the one for a nonempty node? Polymorphism
decides with no IF statement or NIL test. The implementation of the empty node ver
sion is simply the comment

(* Do nothing *)

Figure 24.5
The empty tree in
PboxTreeObj and
PboxTreeSta.

PreOrder fin' ({ Tree

PreOrderfor (//1 emf/tv /lotle

The implementation of the nonempty version is an output of the nonempty node's
value with

StdLog,String(node.value); StdLog.String(" ")

followed by the usual recursive calls to PreOrder for the left and right children. In
the first recursive call,

node.leftChild.PreOrder

node is the current nonempty node, and node.leftChiid is its left child, which is a
tree. Therefore, node.leftChild.PreOrder is a method call for a tree, not for a node.

The implementation of method Insert in PboxTreeSta shows the power of object
oriented programming with polymorphism. Consider implementation of the method
from PboxTreeObj in Figure 22.14. It has a WHILE loop to determine the leaf where
the new value is to be attached and tests for NIL all over the place. Contrast the com
plexity of that implementation with the simplicity of the one from PboxTreeSta in
Figure 24.4. There are no loops, and there is only one simple IF statement that com
pares the value to be inserted with the value of the current nonempty node. Here is
how it works.

The heading for the Insert method for a tree is

PROCEDURE (VAR tr: Tree) Insert' (IN val: T), NEW;

Formal parameter tr is the tree into which the value is to be inserted, and val is the
formal parameter of the value to insert. Imagine you are the tree in Figure 24.3(a).
You have a value val to insert into yourself. but you do not even know what kind of

Billar.' search Irees 589

PreOrder/()r ([1l01lt!mrJt)'

node

tree you are, whether empty or nonempty. So, you delegate the task to your root Insertff)r (/ {rei'

node, which knows what kind of node it is. If your root node is nonempty, it will
simply pass the request down to one of its children.

But, there is a slight complication if your root node is empty. In that case, your
root node must change your state (hence, the name state design pattern). Your cur
rent state is empty, but after the insertion your state will be changed to nonempty.
That is, your root attribute will need to point to a new nonempty node after the inser
tion rather than the empty node to which it currently points. Your empty node will
need to change your root. So, you the owner of the node must pass yourself to your Insert/i),. (111 ,,!>slmel /loLie

node so it can change your state. The heading for the Insert method for an abstract
node is

PROCEDURE (IN node: Node) Insert (VAR owner: Tree; IN val: T), NEW, ABSTRACT;

Not only must the tree pass the value via parameter val to its node, it must also pass
itself via parameter owner to its node. Formal parameter owner is passed by refer
ence, because the method may use its value and change the corresponding actual
parameter.

The heading for the Insert method for a nonempty node is

PROCEDURE (IN node: NonEmptyNode) Insert (VAR owner: Tree; IN val: T);

590 Chapter 24 The State Design Pattern

Figure 24.6 shows the perspective of a nonempty node object who owns a value and
two children. The value it owns is robin. It does not know what kind of children it
owns, because each child contains a root that points to an abstract node. It has access
to its owner and to val through its parameter list. The figure assumes that sparrow is
passed as val. The implementation of Insert for the nonempty node is simple. First,
the statement

ASSERT(node.value # val, 20)

verifies that a duplicate value is not being inserted into the tree. Then,

IF node.value < val THEN
node.rightChild.lnsert(val)

ELSE
node.leftChild.lnsert(val)

END

executes, which tests if robin is less than sparrow. Because robin is indeed less than
sparrow in alphabetical order, the nonempty node simply delegates the insertion task
by passing sparrow to be inserted into its right child with the call

node.rightChild.lnsert(val)

Because node.rightChild is a tree, the method call is for a tree with no owner in the
parameter list.

The heading for the Insert method for an empty node is

PROCEDURE (IN node: EmptyNode) Insert (VAR owner: Tree; IN val: T);

Because the node is empty, a new nonempty node must take its place with the value
from val in the new node's value field. Also, the left and right children of the new
node must be empty trees. The code is straightforward as Figure 24.7 shows. Ini
tially the empty node is in an environment that provides access to its owner, the
value passed to it in parameter val, and the local variable p, as Figure 24.7(a) shows.
When the statement

NEW(p)

executes in Figure 24.7(b), a nonempty node is allocated because p is declared to be
a pointer to a nonempty node. Then,

p.leftChild.Clear

clears the left child in Figure 24.7(c),

p.value := val

puts the value from the parameter into the value part of the new nonempty node in
Figure 24.7(d), and

val I sparrow

owner ~

rfl robin

~
Figure 24.6
The viewpoint of a nonempty
node in the environment of an

Binary search trees 591

val I sparrow val I sparrow

owner 0JP owner

Q (EmptyNode) Q (EmptyNode)

(a) Initial (b) NEW(p)

val I sparrow val I sparrow

owner

~
owner

Q (EmptYNOde) Q (EmptyNode) r+1 sparrow I h
(EmptyNode) (EmptyNode)

(e) p.leftChild.Clear Cd) p.value:= val

val I sparrow val I sparrow

owner

~
owner B

Q (EmptyNode) r+ 1

sparrow I~ Q (EmptyNode) r+1
(EmptyNode) (EmptyNode) (EmptyNode) (EmptyNode)

(e) p.rightChild.Clear (f) owner. root := p

p.rightChild.Clear

clears the right child in Figure 24.7(e). The last statement in the method

owner. root := p

shown in Figure 24.7(f) changes the state of the owner. Whereas the owner used to
be an empty tree. it is now a nonempty tree.

A striking feature of method Insert for the state design pattern in Figure 24.7
compared to the original method illustrated in Figure 22.15 is the locality of the

Figure 24.7
The viewpoint of an empty
node in the environment of an

Insert call.

592 Chapter 24 The State Design Pattern

environment. Figure 22.15 shows how that algorithm must view the entire tree.
keeping track of the parent of each node as it works its way to the proper leaf. But.
the algorithm with the state design pattern is separated into three parts-one for the
tree, one for a nonempty node, and one for an empty node. Each part is a separate
method. The implementation of the tree method is a single line. The simplicity of Localitv oFtize environmelll

the method is due to the fact that the environment of the tree is local. The tree does
not even know what kind of tree it is because it cannot see past its abstract root.
There is no larger picture of the tree as a whole. The implementation of the non-
empty node method is a single IF statement. It cannot see past its children, because
their roots are abstract. The nonempty node cannot see past its owner above or past
its children below. The environment in which it accomplishes its task is strictly
local. The same can be said for the empty node. It works in a local environment
without even the concept of a parent.

In effect. the original insertion algorithm is distributed among three kinds of
objects-one tree and two nodes--each acting in its own local environment. In each
environment, abstraction hides the details from the other environments. The problem
is subdivided into smaller problems in a natural way. Each smaller problem is easier
to solve that the larger problem of which it is a part. A distributed algorithm using Distributed alfiorithms

polymorphism in a system of cooperating objects is the hallmark of object-oriented
thinking. An example of the utility of such an approach is programming for a net-
work of computers. It is possible to have the different objects of the system exist on
different computers in the network. In such an environment, the distribution of the
algorithm is not just a logical construction among objects executing on the same
computer, but is a literal distribution of objects executing on physically different
computers.

Linked lists

The state design pattern is a general technique not limited to binary trees. Figure
24.8 shows the interfaces for a linked list implemented with the state design pattern
and for the linked list implemented in Chapter 21.

DEFINITION PboxLListSta;

TYPE
T = ARRAY 16 OF CHAR;
List = RECORD

(VAR 1st: List) Clear, NEW;
(IN 1st: List) Display, NEW;
(IN 1st: list) GetElementN (n: INTEGER; OUT val: T), NEW;
(VAR 1st: list) InsertAtN (n: INTEGER; IN val: T), NEW;
(IN 1st: list) Length 0: INTEGER, NEW;
(VAR 1st: list) RemoveN (n: INTEGER), NEW;

Figure 24.8
The interfaces for a linked list
implemented with the state
design pattern and as it is
implemented in Chapter 21.

(IN 1st: list) Search (IN srchVal: T; OUT n: INTEGER; OUT fnd: BOOLEAN), NEW
END;

END PboxLlistSta.

DEFINITION PboxLListObj;

TYPE
T = ARRAY 16 OF CHAR;
List = RECORD

(VAR 1st: List) Clear, NEW;
(IN 1st: List) Display, NEW;
(IN 1st: List) GetElementN (n: INTEGER; OUT val: T), NEW;
(VAR 1st: List) InsertAtN (n: INTEGER; IN val: T), NEW;
(IN 1st: List) Length 0: INTEGER, NEW;
(VAR 1st: List) RemoveN (n: INTEGER), NEW;

Linked lists 593

Figure 24.B
Continued.

(IN 1st: List) Search (IN srchVal: T; OUT n: INTEGER; OUT fnd: BOOLEAN), NEW
END;

END PboxLListObj.

There is no difference between these two interfaces other than the name of the
module. Consequently, the program that uses PboxLListSta is identical in all
respects to the program that uses PboxLListObj except for the textual substitution of
the name of one module for the other. Refer to Figure 21.28 for a dialog box that
uses the linked list and Figure 21.29 for a program that implements the dialog box.

The state design pattern for the linked list uses the same kind of abstract node
that is used in the state design pattern for the binary tree. The state of a list is defined
as a pointer to a head node, which is abstract. An empty node and a nonempty node
are type extensions of an abstract node. An empty node contains no attributes. A
nonempty node contains a field for the value and a field named next, which is a list.
Here is the declaration of a list and its associated nodes.

TYPE
T* = ARRAY 16 OF CHAR;
list" = RECORD

head: POINTER TO Node
END;

Node = ABSTRACT RECORD END;
EmptyNode = RECORD (Node) END;
NonEmptyNode = RECORD (Node)

value:T;
next: List

END;

Figure 24.9 is the UML diagram for the state design pattern of the linked list,
which you should compare with Figure 24.2 for the binary tree. Figure 24.9 shows
that seven public methods are exported by PboxLListSta, corresponding to the seven
methods provided by the interface in Figure 24.8. As usual, all the methods for the
nodes, as well as the nodes themselves. are private. The user of the module has no
concept of the internal workings of the list. Unlike the binary tree, however, Figure
24.9 shows that List has two private methods that are helpers for their corresponding
public methods. Method DisplayN is a helper for Display and SearchN is a helper for

The datll structure for a linked list
lIsing the stale design pattem

594 Chapter 24 The State Design Pattern

Search. The abstract node provides six methods that correspond to six of the seven
methods provided by the list. Clear is the one method that List can implement with
out delegating the task to a corresponding Node method. As usual, each concrete
node implements all the abstract methods inherited from the abstract node.

PboxLListSta.List

- head: POINTER TO Node • .. PboxLListSta.Node

+ Clear
+ Display - Display (n: INTEGER)

- DisplayN (n: INTEGER) - GetElementN (n: INTEGER; OUT val: T)

+ GetElementN (n: INTEGER; OUT val: T) - InsertAtN (VAR owner: List; n: INTEGER; IN val: T)

+ InsertAtN (n: INTEGER; IN val: T) - Length (): INTEGER

+ Length (): INTEGER - RemoveN (VAR owner: List; n: INTEGER)

+ RemoveN (n: INTEGER) - SearchN (IN srchVal: T;

+ Search (IN srchVal: T; VAR n: INTEGER; OUT fnd: BOOLEAN)

OUT n: INTEGER; OUT fnd: BOOLEAN) .¢,.
- SearchN (IN srchVal: T;

VAR n: INTEGER: OUT fnd; BOOLEAN)

1 I I
PboxLListSta.NonEmptyNode I PboxLListSta.EmptyNode

L. - value:T
- next: List

Figure 24.9

l

The viewpoint of each object in the state design pattern for the linked list is iden
tical to the viewpoint of the corresponding object in the state design pattern for the
binary tree in Figure 24.3. A List is an owner of an abstract head node. Because the
node is abstract, the list cannot see past it and does not know whether it is an empty
list or a nonempty list, similar to the tree in Figure 24.3(a). An empty node does not
own anything, similar to the empty node in Figure 24.3(b). A nonempty node owns a
value and a next list, similar to the way the non empty node in Figure 24.3(c) owns a
value and two children.

The UML diagram for a state
design implementation of a
linked list.

As with a tree, the system of cooperating objects works by delegation. A client
module typically calls a method for the list. Because the list does not know what
kind of list it is, it simply delegates the task to its head node by calling the corre
sponding method for the node. Polymorphism determines whether the method for an
empty node or for a nonempty node executes, with no recourse to an IF statement to
determine which. For two methods-Display and Search-the list delegates the task
to its helper function. The helper function then delegates the task polymorphically to
the corresponding method for the node. As with the binary tree, usually the method
for the empty node can execute without further calls, and the method for the non
empty node makes a further call to a method of its next list.

Figure 24.10 is the implementation of the linked list with the state design pattern.

Methods Length, RemoveN, and Search are left as problems for the student.

MODULE PboxLlistSta;
IMPORT StdLog;

TYPE
T* = ARRAY 16 OF CHAR;
List' = RECORD

head: POINTER TO Node
END;

Node = ABSTRACT RECORD END;
EmptyNode = RECORD (Node) END;
NonEmptyNode = RECORD (Node)

value:T;
next: list

END;

(. -------------------- .)
PROCEDURE (VAR 1st: list) Clear', NEW;

VAR
p: POINTER TO EmptyNode;

BEGIN
NEW(p);
Ist.head := p

END Clear;

(. -------------------- ')
PROCEDURE (IN node: Node) DisplayN (n: INTEGER), NEW, ABSTRACT;

PROCEDURE (IN 1st: list) DisplayN (n: INTEGER), NEW;
BEGIN

1st. head.DisplayN(n)
END DisplayN;

PROCEDURE (IN 1st: list) Display', NEW;
BEGIN

Ist.DisplayN (0)
END Display;

PROCEDURE (IN node: EmptyNode) DisplayN (n: INTEGER);
BEGIN

(' Do nothing ')
END DisplayN;

PROCEDURE (IN node: NonEmptyNode) DisplayN (n: INTEGER);
BEGIN

StdLog.lnt(n); StdLog.String(" "); StdLog.String(node.value); StdLog.Ln;
node.next.DisplayN(n+ 1)

END DisplayN;

Linked lists 595

Figure 24.10
The implementation of the
linked list with the state

design pattern.

596 Chapter 24 The State Design Pattern

(* •••....•.....•..•.•• *)

PROCEDURE (IN node: Node) GetElementN (n: INTEGER; OUT val: T), NEW, ABSTRACT;

PROCEDURE (IN 1st: List) GetElementW (n: INTEGER; OUT val: T), NEW;
BEGIN

ASSERT(O <= n, 20);
Ist.head.GetElementN(n, val)

END GetElementN;

PROCEDURE (IN node: EmptyNode) GetElementN (n: INTEGER; OUT val: T);
BEGIN

HALT(21)
END GetElementN;

PROCEDURE (IN node: NonEmptyNode) GetElementN (n: INTEGER; OUT val: T);
BEGIN

IF n = OTHEN
val := node.value

ELSE
node.next.GetElementN(n . 1, val)

END
END GetElementN;

(* •••••••••••••••••••• *)

Figure 24.10
Continued.

PROCEDURE (VAR node: Node) InsertAtN (VAR owner: List; n: INTEGER; IN val: T), NEW, ABSTRACT;

PROCEDURE (VAR 1st: List) InsertAtN* (n: INTEGER; IN val: T), NEW;
BEGIN

ASSERT(n >= 0, 20);
Ist.head.lnsertAtN(lst, n, val)

END InsertAtN;

PROCEDURE (VAR node: EmptyNode) InsertAtN (VAR owner: List; n: INTEGER; IN val: T);
VAR

p: POINTER TO NonEmptyNode;
BEGIN

NEW(p);
p.value := val;
p.next.Clear;
owner. head := p (* Change the state of owner *)

END InsertAtN;

Linked lists 597

PROCEDURE (VAR node: NonEmptyNode) InsertAtN (VAR owner: List; n: INTEGER; IN val: T);
VAR

p: POINTER TO NonEmptyNode;
BEGIN

IF n > OTHEN
node.next.lnsertAtN(n - 1, val)

ELSE
NEW(p);
p.value := val;
p.next := owner; (. Change the state of p.next .)
owner.head := p (* Change the state of owner .)

END
END InsertAtN;

(. -------------------- .)
PROCEDURE (IN 1st: List) Length' 0: INTEGER, NEW;
BEGIN

(* A problem for the student ')
RETURN 999

END Length;

(' -------------------- ')
PROCEDURE (VAR 1st: List) RemoveN* (n: INTEGER), NEW;
BEGIN

(* A problem for the student ')
END RemoveN;

(' -------------------- ')

Figure 24.10
Continued.

PROCEDURE (IN 1st: List) Search' (IN srchVal: T; OUT n: INTEGER; OUT fnd: BOOLEAN), NEW;
BEGIN

(' A problem for the student ')
fnd:= FALSE

END Search;

END PboxLListSta.

As with the binary tree, the implementation of a linked list with the state design
pattern relegates NIL to a lower level of abstraction. Nowhere is there any test for
NIL in the implementation of Figure 24.10. Nor does the implementation contain any
loops, all of which are replaced by recursion. There are also fewer IF statements,
many of which are replaced by polymorphic dispatch.

The implementation of method Clear for the linked list is identical to its counter
part for the binary tree. The method has a local pointer, which it uses to allocate a
new empty node. It sets its head pointer to point to the new empty node as does the
tree in Figure 24.5.

Display requires a helper function because each item of a list is printed on the Log
prefixed by its position in the list. For example, a list of items might be displayed as

598 Chapter 24 The State Design Pattern

o trout
1 tuna
2 cod
3 salmon

So, a nonempty node needs to know its position in the list so it can display the posi
tion before it displays its value. The idea is for the helper method DisplayN to con
tain an additional parameter n that signifies the position of the first item in the
current list. When the client module calls Display for a list, the list simply calls the
helper function DisplayN with an actual parameter of 0 corresponding to formal
parameter n.

IstDisplayN (0)

The 0 indicates that the first item in the client's list is at position O. The helper
method delegates the display task polymorphically to the list's head node, passing
along the current position.

1st. head. DisplayN (n)

If the head node is an empty node, there is nothing to print and no more processing
to be done. DisplayN for an empty node is simply

(* Do nothing *)

If the head node is a nonempty node, it prints the value of n followed by the value it
owns. Then, it delegates the task of printing the rest of the list by calling the helper
method for its next list. Because the position of the first item in the next list is the
position of the current item plus I, it supplies n + 1 for the actual parameter.

StdLog.lnt(n); StdLog.String(" "); StdLog.String(node.value); StdLog.Ln;
node.next.DisplayN(n+ 1)

You should compare this implementation of Display with the implementation of
Display in Figure 21.30 for PboxLListObj. This implementation divides the algorithm
into four methods, two of which consist of a single statement and one of which con
tains no statements! It is necessary to have an implementation for the empty node
even if it does nothing, because the method does get called polymorphically. The
implementation for PboxLListSta exhibits the object-oriented features of locality of
environments in a system of cooperating objects.

When a client calls InsertAtN for a list it supplies n, the position in the list to
insert, and val, the value to be inserted. The implementation for the list version
implements the precondition with an ASSERT statement, then delegates as usual.

ASSERT(n >= 0, 20);
Ist.head.lnsertAtN(lst, n, val)

A third parameter is included in the corresponding method for a node. 1st is the
actual parameter and owner is the formal parameter. A head node needs to have

Display jiJr a list

DisplayN jor a list

Disp/ayN jor (1/1 empty node

Disl'/mN jiJr II nonelllptv
node

IllsertAtN jill" II list

access to its owner, because the owner's state will change if n is 0.
The implementation of InsertAtN for a nonempty node must first decide if the

value is to be inserted at the current position or at a position further down the list. If
n is greater than 0, it belongs further down the list. So, the method delegates with

node.next.lnsertAtN(n - 1, val)

Because node. next is a list, the method call is for the list version of InsertAtN, which
has only two parameters. The implementation supplies n - 1 for the actual parameter,
because the position of the first item in the next list is one less than the current posi
tion.

val I tuna val I tuna

Linked lists 599

p[h p 8--L-1 ---...l..lfl

owner 8--,--1 c_od -,-,H- t:1
(a) Initial

val I tuna

p 8--1 tuna Ih
owner 8--1 cod

(c) p.value:= val

val I tuna I

P~~
~I oe' It-- t:1 owner

(e) owner.head:= p

owner 8--,--I C_Od -,-,I f-. t:1
(b) NEW(p)

val I tuna I

P8--~
owner 8--1 cod H- t:1

(d) p.next:= owner

Figure 24.11
Method InsertAtN for a
nonempty node.

If n equals 0, the four statements in Figure 24.11 execute. Figure 24.11 (a) shows
the initial environment for a nonempty node who owns value cod and next, which is
a list. The nonempty node has access to its owner as a formal parameter. The figure

600 Chapter 24 The State Design Pattern

assumes that tuna is passed in parameter val from the list. Figure 24.11 (b) shows the
effect of

NEW(p)

where p is a local variable that points to a nonempty node. Storage for the node is
allocated from the heap. The statement

p.value := val

sets the value field of the new node to tuna from parameter val. Figure 24.11 (d)
shows the effect of

p.next := owner

which changes the state of p.next to point to the same nonempty node to which
owner points. Finally, Figure 24.11 (e) shows the effect of

owner.head := p

which changes the state of owner to point to the inserted node.
The implementation of InsertAtN for an empty node is similar to the above imple

mentation for a nonempty node. No IF statement is required, because the specifica
tion requires the value to be inserted at the end of the list if the position supplied
exceeds the length of the list. The empty node simply executes

NEW(p);
p.value := val;
p.next.Clear;
owner. head := p

where p is a local nonempty node. The only difference between this sequence of
statements and the sequence for a nonempty node is that p.next is cleared instead of
being set to point to the following node. There is no following node that must be
linked to the inserted node.

You should compare this algorithm to the implementation of InsertAtN in Figure
21.30 for PboxLListObj. This version for PboxLListSta with polymorphism exhibits
the object-oriented locality of environment for its distributed system of cooperating
objects. Because the environment is local, the code for each method is easier to write
and to understand compared to the version for PboxLListObj.

Method Search for a list is implemented with the help of method SearchN also
for a list, whose signature differs from that of Search only by n being called by ref
erence (VAR) instead of called by result (OUT).

PROCEDURE (IN 1st: List) SearchN (IN srchVal: T; VAR n: INTEGER; OUT fnd: BOOLEAN). NEW;

The programmer of the client sees the same interface for PboxLListSta as for Pbox
LListObj and does not need to initialize the value of n before she calls the server

method. Inside the PboxLListSta server, Search initializes n to 0 then calls SearchN,
which assumes that the initial value of n is defined. The idea is for SearchN to dele
gate to its head node the request to search for srchVal. The head node executes
SearchN for an empty node or for a nonempty node with polymorphic dispatch. The
nonempty node reasons that if srchVal is not equal to its value field, it must further
delegate the task to the list in its next field. If srchVal is at position n in the next list.
then it is at position n + I in the nonempty node's owner's list. In that case, the non
empty node must increment n for its owner. The details are a problem for the stu
dent.

Problems

1. Complete the methods for the binary search tree of Figure 24.4. You will need to write
the methods for the abstract node, and the corresponding implementations for the con
crete empty node and nonempty node. Test your implementation with a client program
identical to that in Figure 22.11 but importing your server module instead of Pbox
TreeObj.

(a) PROCEDURE (IN tr: Tree) Contains* (IN val: T): BOOLEAN, NEW
(b) PROCEDURE (IN tr: Tree) Numltems* 0: INTEGER. NEW
(c) PROCEDURE (IN tr: Tree) InOrder*, NEW
(d) PROCEDURE (IN tr:Tree) PostOrder*, NEW

2. Complete the methods for the linked list of Figure 24.10. You will need to write the
methods for the abstract node, and the corresponding implementations for the concrete
empty node and nonempty node. Test your implementation with a client program iden
tical to that in Figure 21.29 but importing your server module instead of PboxLListObj.

(a) PROCEDURE (IN 1st: List) Length* 0: INTEGER, NEW
(b) PROCEDURE (VAR 1st: List) RemoveN* (n: INTEGER). NEW
(c) PROCEDURE (IN 1st: List) Search* (IN srchVal: T; OUT n: INTEGER; OUT fnd: BOOLEAN). NEW

Problems 601

,. Appendix A

Component Pascal Syntax

The lexical rules of Component Pascal are:

Ident
Letter
Digit
Number
Integer
Real
ScaleFactor
HexDigit
Character
String

(Letter I .. _") {Letter I "_" J Digit):
= " A " .. " Z" I u, a ., ,. u z" I "A" ., "0" I "0" .. "0" I "0" .. " :Y".

"0" I "1 " I "2" I "3" I "4" I "5" I "6" I "7" I "8" I u. 9 ",
Integer I Real.
Digit {Digit} I Digit {HexDigit} (" H" I "L ").

= Digit {Digit} "." {Digit} [ScaleFactor].
= " E" [" +" I "-"] Digit {Digit}.

Digit I "A" I "B" I "c" I "D" I "E" I "F".
Digit {HexDigitl "X".
" II" { Char} "II" I "I" {Char} "I" .

The start symbol for a valid Component Pascal program is Module. The syntax
rules of Component Pascal are:

Module =

ImportList =
DeclSeq =

ConstDecl =
TypeDecl
VarDecl =
ProcDecl

ForwardDecl
FormalPars
FPSection
Receiver =
Type =

FieldList :::
StatementSeq =

MODULE Ident ";" [ImportList] DeclSeq [BEGIN StatementSeq] [CLOSE StatementSeq]
END Ident " . ".

IMPORT [Ident ":="] Ident {"." [Ident ":="] Ident} ";".
{CONST {ConstDecl ";"1 I TYPE {TypeDecl ";"} I VAR {VarDecl ";"I}

{ProcDecl ";" I ForwardDecl ";" I .
IdentDef "=" ConstExpr.
IdentDef "=" Type.
IdentList ":" Type.
PROCEDURE [Receiver] IdentDef [FormalPars]

[" ." NEW] [" ... (ABSTRACT I EMPTY I EXTENSIBLE)]
[" ;" DeclSeq [BEGIN StatementSeq] END Ident].

PROCEDURE "1\" [Receiver] IdentDef [FormaIPars].
.. (.. [FPSection {";" FPSection)) ")" [":" Type].
[VAR I IN lOUT] Ident {"." Ident} ":" Type.
" (" [VAR I IN] Ident ":" Ident ")".
Qualident
I ARRAY [ConstExpr {"." ConstExpr I] OF Type
I [ABSTRACT I EXTENSIBLE I LIMITED] RECORD [" (" Qualident ")"]

FieldList {";" FieldList I END
I POINTER TO Type
[IdentList ": " Type].
Statement {";" Statement I.

604 Computing Fundamentals

Statement

Case
CaseLabels
Guard
ConstExpr
Expr
SimpleExpr
Term
Factor

Set
Element
Relation
AddOp
MulOp
Designator

ExprList
IdentList
Qualident
IdentDef

[Designator ":=" Expr
I Designator [" (" [ExprList] ")"]
I IF Expr THEN StatementSeq (ELSIF Expr THEN StatementSeq)

[ELSE StatementSeq] END
I CASE Expr OF Case (" I" Case) [ELSE StatementSeq] END
I WHILE Expr DO StatementSeq END
I REPEAT StatementSeq UNTIL Expr
I FOR Ident ":=" Expr TO Expr [BY ConstExpr] DO StatementSeq END
I LOOP StatementSeq END
I WITH Guard DO StatementSeq {HI" Guard DO StatementSeq}

[ELSE StatementSeq] END
I EXIT
I RETURN [Expr]
].
[CaseLabels {"," CaseLabels} "." StatementSeq].
ConstExpr [" .. " ConstExpr].
Qualident ":" Qualident.
Expr.
SimpleExpr [Relation SimpleExpr].
[" +" I "- "] Term (AddOp Term).
Factor {MulOp Factor}.
Designator
I Number
I Character
I String
I NIL
I Set
I "(" Expr ")"
I "-" Factor.
"{" [Element ("," Element)] ")".

== Expr [' ... " ExprJ.
" =" I "#" I "<" I "<=" I ">" I ">=" I IN I IS.
H +" I "-" I OR.
" ." I .. /" I DIV I MOD I "&".
Qualident {"." Ident I "[" ExprList "j" I "/\" I "$"
I "(" Qualident ")" I .. (" [ExprList] ") "}.
Expr {"," ExprJ.
IdentDef {"," IdentDefJ.
[Ident ". "] Ident.
Ident ["'" I "- "].

"Index
Symbols
Not equal to 87
$ String selector 68, 333
& And 88
* Export mark 36
* Multiplication 51, 54, 58
+ Addition 51, 54, 58
+ Concatenation 66
+ UML public 540, 563
- Read-only export mark 82
- Subtraction 51,54,58
I Division 51, 58
:= Assignment 50
:= GCL assignment 69
:= Import abbreviation 544
< Less than 87
<= Less than or equal to 87
= Equal to 87
> Greater than 87
>= Greater than or equal to 87
1\ Pointer dereference operator 468
I Case separator 106
- Not 89
- UML private 540, 563

Numerics
ox String sentinel 65, 333-335
100 Invariant violation 157
20 Precondition violation 120

A
ABS 58
ABSTRACT

method attribute 553
objects and methods 578
record attribute 553

Abstract data structure 113, 129
list 130
stack 119

Abstract data type 113, 129
list 138
stack 124

Abstraction 6, 30, 113,533-552
and nesting 151
behavior 551
class 538
computation 536
data313,533
procedure 537
program 313
statement 536
structure 535
type 534

Actual parameter 37, 51
ADS. See Abstract data structure
ADT. See Abstract data type
Algol 2
Alphabet 15

closure of 16
nonterminal 17
terminal 17

Alternation, EBNF operation 25
Analysis

versus design 321
ANYREC 476
API. See Application programming

interface
Application programming interface

4
ARRAY 65

one-dimensional 313-336
open 319
See also specific type, e.g.

CHAR, ARRAY OF
two-dimensional 381-392

ASSERT 144, 156, 157-163
purpose of 160

Assertion 156
See also ASSERT

Assignment
class 474, 554
formal definition of 146
in GCL 69
integer to real 53
multiple, in GCL 70

pointer 465, 470
record 490
rule for extensible records 575
rule for parameter 557
statement 50
symbol 50

Associative operator 52
Attribute. See Unified Modeling

Language
Automatic garbage collection 473
Average

computing from window 211

B
Backus, John 2
Binary search

iterative 357-360
recursive 433-435

Binary tree 515-528
abstract 515
depth of node 5 16
height 516
inorder traversal 518
insert operation 519
internal node 519
leaf 515
left child 515
postorder traversal 518
preorder traversal 517
right child 515
root 515
search tree 516, 581-592

Binomial coefficient 409
Bisection algorithm 214-217, 277·

279
BlackBox framework 1-6
Bohm, Corrado 222
BOOLEAN 87

expression 87
variable 88. 96

Bulletproof 144, 261
Button

606 Computing Fundamentals

C

command control 79
commander 40
dialog box 76
radio 103

Calling mode 126
by constant reference 126,326-

328
by reference 126, 263-265
by result 66, 101, 120, 126,265-

267
by value 126,252-256,261-262
default, See by value
for function procedure 287
summary of by value, by con-

stant reference, by result, and
by reference 327

summary of by value, by result,
and by reference 267

Caption control 79
CASE statement 106
CHAR 62

ARRA Y OF 65, 333
number line 63
ordinal value 63
output of array to log 66
output to log 63

Check box 97
CHR63
Class 175

assignment rule 474,554
assignment rule for extensible

records 575
assignment rule for parameters

557
Class composition 175, 191, 564-

565
symbol for 182, 564
versus inheritance 573

Client module 30
Closure

of an alphabet 16
of the derivation operation 19

Code 101
Code folder 8
Commander button 40

Comments 34
Compilation unit 29
Compilers 31-32
Compiling a program 38
Component Pascal 2-3

calling mode 126
comments 34
identifier 34-36
program 32
reserved words 34
semicolon 38
statement 37
syntax 26-27, 603-604

Concatenation 16, 66
Constant 97
Context sensitive grammar 21
Control

caption 79
command button 79
dialog box 79
radio button 103
text field 79

Control guard 546
Controller 180
CPo See Component Pascal
Cross-platform 3-4

o
Dead code 161
DEC 56
Default calling mode. See Calling

mode, by value
Delegation 584, 594
Derivation

of a valid sentence 19
Design

by contract 144,577
by contract rule 370, 577
versus analysis 321

Dialog
.Par 548
.Update 83
interface 548

Dialog box 75-84
button 76
control 79
from program 195

tool 353-355
IJO, See specific type e.g. String,

output to dialog box
Directory I 84
DIV 54, 58
do statement, GCl 227
Docu folder 8, 40,81
Documentation files 40
Drag and drop 9
Dynamic storage allocation 463

E
EBNF. See Extended Backus-Naur

form
ELSE 94
ElSIF 153, 164
Empty string 16
Enc folder 8
Encoding BlackBox documents 9-

13
ENTlER 59, 258
eot technique 202
Error

logical 39
syntax 38-40

Evaluation
full 350
short-circuit 351

Execution count
best-case versus worst-case 329,

351
nested loop 240-242, 243-245
single loop 204-208

Export
read-only 82, 19 I, 563
read/write 83, 563

Exporting procedures 36
Expression

BOOLEAN 87
infix 114
INTEGER 54
mixed 57
postfix 114
prefix 114
REAL 51, 213

Extended Backus-Naur form 24-25
EXTENSIBLE 575

F
Factorial

iterative 281
recursive 400

Factory design pattern 184
Field 82

in trap window 124
Flowchart 94

CASE 107
IF with ELSE 96
IF without ELSE 94, 95
nested IF 153
REPEAT 298
sequential vs nested IF 157
WHILE 201

FOR statement 222-227
Formal parameter 37, 51
Formal specification 145

for array 337
Formatter 182

called by constant reference 255
Full evaluation 350
Function procedure 60--62, 277-288

G
GCD. See greatest common divisor
GCL. See Guarded command lan-

guage
Global data 29
Global variable 76, 269-272

in trap window 124
when to use 272

Grammar 17-22
context sensitive 21
for algebraic expressions 23
for identifiers 18
for signed integers 19
four parts of 17

Graphical user interface 5
Greatest common divisor 407
Guard

control 546
Guarded command language 68

assignment statement 69
do statement 227
if statement 108, 165
multiple assignment 70

skip statement 108
GUI. See Graphical user interface

H
HALT 161
has-a relationship 564
Heap 463
Hoare triple 145, 156,338
Hollywood Principle 548

Identifier
Component Pascal 34--36
grammar for 18

Identity element 16
IF statement 92-103

nested 151-165
if statement, GCL 108, 165
Import abbreviation 544
Importing procedures 36
IN. See Calling mode, by constant

reference
INC 56
Infix expression 114
Inheritance 175,474, 552-554

symbol for 181, 564
versus class composition 573

Input
See specific type, e.g. REAL, in

put from dialog box
Insertion sort 438
INTEGER 53

ARRAYOF331
expression 54
input from dialog box 76
output to dialog box 81
output to Log 53
range of 59
to string conversion 66

Interactor 83
Interface 30--31

See Module for interfaces of spe
cific modules

Invariant 156--163
implemented with ASSERT 160
strong versus weak 159

Inverse operator 90

is-a relationship 564
Iterator 182

J

Index 607

Jacopini, Guiseppe 222

L
Language 15-17

detinition of 17
Largest

computing from array 328
computing from window 212

LargestLast 330
Layout mode 79, 80, 83
Left-to-right rule 52
Lehmer generator 30 I
LEN 321, 325, 334

with $ string selector 335
with two-dimensional array 383

Length
of ARRA Y OF CHAR 334
of ARRAY OF REAL 321, 325,

334
of string 16

Ig 360, 458
List 130

abstract data structure 130
abstract data type 138
circular doubly-linked 488
circular linked 477
linked 469-508
linked class 492, 592-601

Loading modules 76
Local data 29
Local variable 76
Logarithm 360, 458
Logical error 39
LONGINT

range of 59
Loopinvariant208-209,505

M
Mask mode 79
Math

.Exp 60

.IntPower 61. 214

.Ln60

608 Computing Fundamentals

.Log 60

.Pi 60
interface 61

Matrix multiplication 387-391
MAX 60
Menu selections 194
Merge sort

concept 436
implementation 448-449
in-place 452-457

Merritt sort taxonomy 435
Merritt, Susan 436
Method 177
MIN 60
Mixed expression 57
MOD 55, 58
Mod folder 8
Model 179
Model view controller

design pattern 179-197
Modula-22
Module 29, 33

Dialog 83, 548
Math 60
PboxCListADT 477
PboxListADS 130
PboxListADT 138
PboxLListObj 492
PboxLListSta 592
PboxMappers 182-183
PboxPizza 569
PboxRandom 293
PboxShapeAbs 552
PboxShapeObj 541
PboxStackADS 119
PboxStackADT 125,176
PboxStackObj 176
PboxStrings 64
PboxTreeADT 520
PboxTreeObj 521
PboxTreeSta 582
StdLog 31
TextControllers 190-191
TextModels 184
TextViews 185
unloading 508
Views 186

Mossenbock, H. P. 3

Mutual recursion 422
MVC. See Model view controller

N
Name

of variable 49
Naur, Peter 2
Nesting 151, 239
NEW 465, 470

method attribute 553
NIL 464, 469
Nonterminal alphabet 17

o
Oberon 2
Oberon microsystems 3

URL 7
Object 175
Object program 31
Object-oriented language 6
Object-oriented programming 29

primary benefit of 562
shift in focus 540
terminology 179.540

ODD 88
OOP. See Object-oriented program

ming
Open array 319
Operation. See Unified Modeling

Language
Operator

associati ve 52
inverse 90
precedence 91

Optional, EBNF operation 25
OR 89
ORD63
Ordinal value of CHAR 63
OUT. See Calling mode, by result
Output

p

See specific type, e.g. REAL.
output to Log

Parameter
actual 37, 51
class assignment rule 557

formal 37, 51
Parsing 22
Pascal, Blaise 2
Pascal's triangle 409
Pbox project 113

URL64
PboxCListADT

.Clear 478,486

.Empty 478, 486

.GoNext 479,486

.Insert 479,486

.NodeContent 480, 486
implementation 485
interface 477

PboxListADS
.Clear 131
.Display 134
.GetElementN 133
.InsertAtN 131
.Length 131
.RemoveN 132
.Search 133
.T 131
interface 130

PboxListADT
.InsertAtN 139
.List 139
.RemoveN 145
implementation 375
interface 138, 375

PboxLListObj
documentation 493-494
implementation 498-499
interface 492, 593

PboxLListSta
.EmptyNode.DisplayN 598
.EmptyNode.InsertAtN 600
.List.Display 598
.List.DisplayN 598
.List.InsertAtN 598
.List.Search 600
.List.SearchN 600
.NonEmptyNode.DisplayN 598
.NonEmptyNode.InsertAtN 599
implementation 595
interface 592
UML class diagram 594

PboxMappers

.Formatter.ConnectTo 187

.Formatter.WriteReal 189

.Formatter.WriteReaIMatrix 383

. Formatter. W riteRealVector 326

.Formatter.WriteString 187

.Scanner.ConnectTo 192

.Scanner.eot 202

.Scanner.ScanInt 210

.Scanner.ScanReal 193. 202. 210

.Scanner.ScanRealMatrix 382

.Scanner.ScanReaIVector 318
interface 182-183

PboxPizza
alternate design 572
implementation 569
UML class diagram 568

PboxRandom
.Int298
.Randomize 294
.Rea1296
.SetSeed 294
implementation 302
interface 293

PboxShapeAbs
.Circle 554
.Circle.SetIDString 561
.Rectangle 553
.Rectangle.SetIDString 554, 561
.Rectangle.SetState 554
.Shape 553
.Shape.SetIDString 553
implementation 559
interface 552

PboxShapeObj
implementation 548
interface 541

PboxStackADS
.capacity 119
.Clear 119
.NumItems 120
.Pop 120, 371
.Push 120, 369
implementation 370
interface 119, 368

PboxStackADT
.Clear 126
.Pop 126
.Stack 125

interface 125. 176
PboxStackObj

implementation 372
interface 176.371

PboxStrings
.IntToString 66
.Lower 64
.RealToString 84
.ToLower 101
.Upper 64
interface 64
URL64

PboxTreeADT
.Insert 520
.T 520
.Tree 520
interface 520

PboxTreeObj
implementation 525
interface 521,582

PboxTreeSta
.EmptyNode.Insert 590
.EmptyNode.PreOrder 588
.Node.Insert 589
.NonEmptyNode.Insert 589
.NonEmptyNode.PreOrder 589
.Tree.Clear 587
.Tree.Insert 589
.Tree.PreOrder 588
implementation 585
interface 582
UML class diagram 583

Performance. See Execution count
Permutation 340. 417
Plato 533
POINTER 463

assignment 465, 470
legal operations 468
period abbreviation for ". 468
versus record 574

Polymorphic dispatch 558
Polymorphism 475.555-558.585
Pop operation 114
Postcondition 120. 145
Postfix expression 114
Precedence of operators 91. 116
Precondition 120. 145. 156
Prefix expression 114

Index 609

Primitive type 125
Private 563

versus public 576
Procedure

function 60-62, 277-288
proper 42-45, 251-272
signature 37

Production
rules of 17.18

Program 32
compiling 38
style 41

Programmer-defined type 125
Project folders 6-8
Proper procedure 42-45, 251-272
Public 563

versus private 576
Push operation 114

Q
Queue 143
Quick sort

R

concept 437
correctness of 446
implementation 439-446

Radio button 103
Random

integers 296
number generators 300
reals 294

Range
of INTEGER 59
of LONGINT 59
of REAL 60

Read-only export 82, 191, 563
Read/write export 83. 563
REAL 49

ARRAYOF314
expression 5 1,213
input from dialog box 84
input from window 190
input of matrix from window 382
input of vector from window 318
output of matrix to window 383
output of vector to window 326

610 Computing Fundamentals

output to Log 50, 52
output to window 189
range of60

Receiver 176
restrictions on 500

RECORD 82
assignment 490
versus pointer 574

Recursion 399-423
cost of 423
macroscopic viewpoint 405
microscopic viewpoint 404
mutual 422

REPEAT statement 298
Repetition, EBNF operation 25
Republic 533
Reserved words 34
Return address 251, 280, 284
RETURN statement 278

in proper procedure 358
Rigid variable 146,338
Rsrc folder 8, 80
Rules of production 17, 18
Run-time stack

S

for function procedures 280, 40 I
for proper procedures 251

Scanner 182
Schrage's algorithm 305
Searching

iterative 349-360
recursive 433-435

Selection sort 360-362
concept 438

Selector, $ 68, 333
Semantics 15
Semicolon

rules for 96
Semicolon seperator 38
Sequential search 350-356
Server module 30
SHORT 59, 257
Short-circuit evaluation 351
Signature of procedure 37
skip statement, GCL 108
Socrates 533

Sorting
complexity 457
iterative 360-362
recursive 435-458

Source program 31
Specification, formal 145

for array 337
Stack 114

abstract data structure 119
abstract data type 124
class 176
See also Run-time stack

Stack frame 255
Start symbol 17, 18
State design pattern 581-601
Statement

See specific statement, e.g. IF
statement

StdCmds
.OpenAuxDialog 81
.OpenToolDialog 354

StdLog
.Char 63
.Rea151
.String 37, 66
interface 31

Stepwise refinement 217-222, 245-
247

String
alphabetic order 99
empty 16
length of 16
output to dialog box 84
output to Log 37
output to window 186
selection with 99
selector $ 68, 333

Structured programming theorem
222

Stub 497
Style

precondition 120
program 41

Subclass 474, 553
Superc\ass 474, 553
Sym folder 8
Syntax 15

Component Pascal 26-27, 603-

T

604
error 38-40

Terminal alphabet 17
Text field control 79
Text subsystem 8-9
TextControllers 181

.Controller 191

.Controller.text 192

.Focus 191
interface 190-191

TextModels 181
.dir 185
.dir.New 187
.Directory 184
.Directory.New 184
.Mode1184
interface 184

TextViews 181
.dir.New 187
.Directory .New 185
interface 185

Tool dialog box 353-355
Towers of Hanoi 419
Trap 122, 260, 317
Type

U

base 552
extension 552
guard 475
in GCL69
of variable 49
primitive 125
programmer-defined 125
static versus dynamic 475, 558
See also specific type, e.g. REAL

UML. See Unified modeling lan
guage

Unified Modeling Language 181.
474,562-565
attribute 540
class diagram 539, 563
operation 540

URL
Oberon microsystems 7

PboxStrings 64

V
Value

of variable 49
V AR. See Calling mode, by refer

ence
Variable

global 76
local 76
name of 49
rigid 146,338
three attributes of 49
type of 49
value of 49
See also specific type, e.g. REAL

View 179
Views 181

W

.0penView 186, 187

.View 186
interface 186

WHILE statement 201-222
Window 179-197

110, See specific type e.g. String,
output to window

Wirth, Niklaus 2

Index 611

