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Preface

As its name suggests, aeroacoustics is a subject that connects the fields of aerodynam-

ics and acoustics. It is relatively young for a mechanical science and of an age where

many of us were taught by or have worked with the pioneers in this field. Part of the

appeal of aeroacoustics is in the creativity and generous spirit of cooperation

unleashed by this cross-disciplinary collaboration of experts, where extraordinary

accomplishments have been made possible by fusion of fields and expertise.

Aeroacoustics is a field where applied mathematics, science, and engineering play

a pivotal role; a field where experiments in their classical role of testing hypotheses

are very much part of current progress. Consider, for example, the sound radiated by

an airfoil in turbulence. The science of turbulence is hard enough, and putting an air-

foil into it feels likely to be an unmanageable complication. At low Mach number the

sound radiated by the interaction is perhaps one millionth part of the pressure field

generated. It is hard to imagine a problem that appears more badly posed. Remarkably,

it has been rendered not only tractable but, with some simplification, solvable by

entirely analytical methods with results that pass near, if not through, experimental

measurements. It is very satisfying to be working in a field that regularly produces

extraordinary achievements of this type. A number of these achievements are detailed

in this book.

Stewart Glegg obtained his BSc degree in engineering science from Southampton

University and went on to also obtain his Masters and PhD at Southampton studying

under the direction ofMike Fisher at the ISVR. At Southampton he was fortunate to be

introduced to the fields of fluid dynamics and acoustics by some of the pioneers in

aeroacoustics, notably Geoff Lilley, Chris Morfey, Peter Davies, Phil Doak, and of

course Mike. After graduating with his PhD he worked at Westland Helicopters under

the direction of Dave Hawkings who introduced him to the field of rotor noise. In 1979

he returned to the ISVR as a faculty member, and in 1985 he moved to Florida Atlantic

University in search of a warmer climate and new challenges. It was not long before he

was conscripted by Feri Farassat to work on helicopter rotor noise under NASA spon-

sorship, and since that time he has been actively involved in aeroacoustics in the

United States.

William Devenport also graduated in engineering science in the United Kingdom,

at the University of Exeter, and went on to do a PhD at the University of Cambridge.

His PhD research was in the experimental and computational study of turbulent sep-

arated flows under the capable guidance of Peter Sutton. While it was not his focus

then, he was fortunate enough to be able to attend lectures on aeroacoustics given

by Shôn Ffowcs Williams, to interact with Ann Dowling, and to share an office with

some of their graduate students. His experimental work continued when he joined

Virginia Tech as a postdoc, under the guidance of Roger Simpson. His interest in



aeroacoustics truly began just after he was appointed as assistant professor in 1989.

Ever supportive, Roger Simpson introduced him to Tom Brooks at NASA Langley.

Tom had already been sponsoring Stewart to do predictions of broadband noise gen-

erated by blade wake interactions in helicopter rotors, and had decided that some

experiments were needed to define the turbulence structure. Stewart visited Virginia

Tech in the Spring of 1990 initiating a collaboration that continues today. Perhaps

some of the longevity of our collaboration and interest derives from our different tech-

nical backgrounds and areas of expertise.

This book began its life on paper in 2005 when the authors jointly organized a

course on aeroacoustics and hydroacoustics taught from Florida Atlantic University

to graduate students there and at Virginia Tech. The initial core of the text (written

by S.G.) was drafted as notes for that course with the intent of bringing together

the fundamentals of aeroacoustics in a form and at a level that would be appropriate

to graduate students, and that would give them the background needed to understand

most modern papers and developments in the field. Over 11 years later this remains the

goal of this book.

We have many to thank for their help in making this book possible. In terms of

those who have enabled the long-term study of aeroacoustics of which this book is

a part, we first thank the Department of Ocean and Mechanical Engineering at Florida

Atlantic University and the Kevin T. Crofton Department of Aerospace and Ocean

Engineering at Virginia Tech for providing us with secure and supportive research

and teaching environments, over many years. Without their support it would not have

been possible to develop the material for this text or to write it up. We also acknowl-

edge the invaluable support and encouragement of our colleagues at these institutions

including the members of the Center for Acoustics and Vibration at FAU, and Eric

Paterson, Aur�elien Borgoltz, and the members of ATFRG and CREATe at VT. We

owe a debt of gratitude to the many graduate students we have had the privilege to

work with. Some (mentioned below) directly contributed to this book, but all have

contributed indirectly through the hard work and inspiration they dedicated to the

mutual advance of understanding that underpins the relationship between student

and advisor. Our research sponsors have in many ways enabled this book, and we

are grateful to all. Among them are Tom Brooks, who along with his colleagues at

NASA Mike Marcolini and Casey Burley, found a way to sponsor us continuously

for the first 10 years of our collaboration; sponsorship that was fundamental in initi-

ating, building, and linking our research programs. We have been fortunate enough

also to receive long-term support from the Office of Naval Research, in particular

through the programs in hydroacoustics and turbulence and wakes managed by

Ki-Han Kim and Ron Joslin. We are very grateful not only for the sustained funding,

but also for the motivation they have provided to move into new and exciting technical

areas, and to take on challenges outside our comfort zone. We have also benefited

greatly from collaborations and support associated with the Virginia Tech Stability

Tunnel and its evolution as an aeroacoustic facility. In particular, we owe debts here

to Ricardo Burdisso who played a central role in its transformation and who, along

with his company AVEC Inc., have been inspirational partners in its further develop-

ment and advancement. We also thank Wing Ng, and his company Techsburg Inc.,
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without whom this upgrade would never have been possible. We owe a debt of grat-

itude to ONR, and particularly Ron Joslin, for his courage to be the first to support this

venture when it must have appeared both unconventional and risky, and to ONR and

General Electric for their encouragement and support in maturing many of its state of

the art capabilities.

In terms of those whose efforts have directly contributed to this book we would first

like to thank those who encouraged or inspired the book, in particular, Phil Joseph,

Chris Morfey, Bill Blake, and Nigel Peake. We are particularly grateful to Chris

who also carefully reviewed and commented on a number of chapters, and whose

comments often challenged us to maintain the technical rigor of the book.

A number of people provided material for or read and commented on specific sections

or components of the book and we thank them all. They include Nathan Alexander,

Jason Anderson, Manuj Awasthi, Neehar Balantrapu, Andreas Bergmann, Ken

Brown, Ricardo Burdisso, Lou Cattafesta, Ian Clark, Dan Cadel, Alexandra

Devenport, Mitchell Devenport, Mike Doty, Marty Gerold, Christopher Hickling,

Florence Hutcheson, Remy Johnson, Liselle Joseph, Phil Joseph, Emilia Kawashima,

Jon Larssen, Todd Lowe, Lin Ma, Henry Murray, Mike Marcolini, Patricio Ravetta,

Michel Roger, David Stephens, Ian Smith, and Hiroki Ura.

Last but not least, above all we thank our spouses Inger Hansen (known to family

and friends as Lisa) and Anne Devenport for their constant support of us in our careers,

in this endeavor, and for their dedicated efforts in reviewing and correcting large frac-

tions of the book.

Stewart Glegg

Florida Atlantic University, Boca Raton, FL, United States

William Devenport

Virginia Tech, Blacksburg, VA, United States
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1Introduction

1.1 Aeroacoustics of low Mach number flows

Sound is a fundamental part of human life. We use it for social interaction, for art, for

communication and education, and for understanding each other. Sound is also a

byproduct of human activities. Unwanted sound, or noise, can adversely affect our

productivity, health, security, and quality of life. Flow noise generated by fans, vehi-

cles, wind turbines, and propulsion systems are major contributors to this unwanted

sound. Aeroacoustics is the study of noise generation by air flows, and the way in

which aerodynamic systems can be designed to minimize noise.

Much of our motivation for understanding flow generated noise originates from the

aircraft industry. Regulations require noise certification for all new aircraft and so new

products must meet increasingly high standards for noise emissions. Historically,

most key developments can be traced to the advent of the jet engine at the end of

World War II and its role in ushering in a new era in commercial air transportation.

The original engines were unacceptably loud and it was clear that for the jet engine to

be viable the noise had to be reduced. At that time there was no understanding of how

sound waves could be generated by a turbulent flow, although theories did exist for

sound radiation from vibrating surfaces, and even propellers. In 1952 Sir James

Lighthill [1] published his theory of aerodynamic sound and the subject of

aeroacoustics was born. This theory, which is known as Lighthill’s Acoustic Analogy,

provides the basis for our understanding of sound generation by flow. It is an exact

re-arrangement of the equations of fluid motion, but has certain limitations, which

must be carefully understood if it is to be applied correctly. Lighthill’s theory has been

frequently challenged, but remains the most important and effective analytical tool for

the understanding and reduction of flow noise.

The purpose of this book is to provide an introduction to the basic concepts that

describe the sound radiation from low Mach number flows, in particular flows over

moving surfaces, which are the most widespread cause of flow noise in engineering

systems. This includes fan noise, rotor noise, wind turbine noise, boundary layer noise,

airframe noise, and aircraft noise, with the exception of jet and shock associated noise.

The basic principles are also applicable to hydroacoustics, the study of flow generated

noise in underwater applications. The primary difference between aero and

hydroacoustics is that water is an almost incompressible fluid and thus usually

involves Mach numbers that are an order of magnitude smaller than in aerodynamic

applications.

This book is intended to be an introductory text on lowMach number aeroacoustics

for graduate students who do not have a background in acoustics but who are familiar

with the mathematical foundations of fluid dynamics and thermodynamics. It is writ-

ten in four parts. Part 1 introduces the fundamentals, including the basic equations of

unsteady fluid flow, a review of fluid dynamics concepts, and an introduction to linear

Aeroacoustics of Low Mach Number Flows. http://dx.doi.org/10.1016/B978-0-12-809651-2.00001-1
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acoustics. Lighthill’s acoustic analogy is then introduced, leading to Curle’s theorem,

the Ffowcs Williams and Hawkings equation, the linearized Euler equations, vortex

sound, and a discussion of turbulence and turbulent flows. This is followed by Part 2

that details experimental measurement techniques, including the use of microphones

and flow measurement devices, signal processing and phased arrays, and wind tunnel

testing methods. Part 3 of the text deals with edge and boundary layer noise including

leading edge noise, trailing edge noise, and the flow over rough surfaces. Finally, Part

4 considers rotating sources such as fans, propellers, and rotors. It includes chapters on

open rotor noise, duct acoustics, and fan noise.

1.2 Sound waves and turbulence

Sound waves cause small perturbations in pressure that propagate through a fluid

medium. The speed of propagation, co, depends on the local properties of the fluid,

but is typically about 343 m/s in air and 1500 m/s in water. The simplest form of a

sound wave is a harmonic wave that has a sinusoidal variation in space with a wave-

length λ and a frequency f¼co/λ, Fig. 1.1. The human ear responds to frequencies

between 20 Hz and 20 kHz, so typical wavelengths of interest are from 17 m to

17 mm in air.

In contrast, turbulence is caused by instabilities in viscous shear flows breaking

down into random chaotic motion. Common examples are boundary layers on wings

and aircraft fuselages, and the wakes behind moving vehicles. At higher speeds (high

Reynolds number) the loss of energy due to turbulent mixing far exceeds the loss that

occurs directly from viscous action. Turbulence is sometimes conceptualized as if it

consisted of eddies convected at constant velocity through the medium without

Radiated sound waves

Turbulent eddy

Uc

Turbulent flow

Structure in the flow

l

Fig. 1.1 A turbulent flow incident on

a structure that radiates sound waves.
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evolving in the convected frame of reference. This simplification is known as Taylor’s

hypothesis and the average convection speedUc is typically taken to be about 60–80%
of the free stream velocity. The size of the eddies L is usually the same order of mag-

nitude as the smallest dimension of the mean flow, for example the boundary layer,

shear layer, or wake thickness.

When convected turbulence encounters a solid body, it generates rapid changes

of pressure on the surface of the body that radiate as sound waves through the fluid.

The frequencies of the fluctuations which result from this type of interaction are deter-

minedby the eddy size and its convectionvelocity, and canbeestimated as f�Uc/L. The
soundwaves generated at this frequencywill thereforehave awavelengthλ�Lco/Uc. In

lowMachnumber applications, the convection speed is alwaysmuch less than the speed

of sound (Uc≪co), so the acousticwavelength is alwaysmuch larger than the size of the

eddies generating the sound. The disparity in scales between the turbulent eddy dimen-

sions and the acousticwavelength is one of themost important features of aeroacoustics

and hydroacoustics and one of the reasons that the subject is so challenging.

1.3 Quantifying sound levels and annoyance

The ear responds to the pressure fluctuations of sound waves to cause the sensation of

hearing. When carrying out calculations of noise levels and designing for quiet sys-

tems it is always important to keep in mind the end goal. This is most often the level of

annoyance experienced by a human listener.

The humanear has a remarkable dynamic range and canhear soundwaveswith ampli-

tudes as low as 20 μPa and as high as 200 Pa before encountering the threshold of pain.
The ear’s sensitivity is logarithmic and so sound is measured using a decibel scale,

referred toas the soundpressure level (SPL).This isgiven in termsof the rootmeansquare

of the fluctuating pressure time history prms and a reference pressure pref as

SPL¼ 20log10 prms=pref
� �

(1.3.1)

where the units are stated as dB(re pref). It is important to specify the reference sound

pressure pref when quoting a result in decibels because different units are used in dif-

ferent applications. For almost all airborne applications the standard is pref¼20 μPa,
but results in underwater applications are not as well standardized. The most common

reference pressure used in underwater acoustics is pref¼1 μPa, but historical data is
also given in other units such as pref¼1 μbar.

The root mean square pressure prms is the time average of the square of the fluc-

tuating pressure. At any instant the pressure at a point is given as the sum of the mean

background pressure po and a time varying perturbation p0(t). If p(t) is the pressure at a
point in the fluid then the pressure perturbation is p0 tð Þ¼ p tð Þ�po. The root mean

square or “rms” pressure is then defined as

prms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2T

ðT
�T

p tð Þ�poð Þ2dt
s

(1.3.2)
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where the averaging time must be large enough to include many cycles of the lowest

frequency contained in the signal.

The human ear also discriminates the frequency of sound in a logarithmic manner.

The frequency content of noise is therefore often characterized by summing up the

sound into one-third octave bands that appear as equal intervals on a logarithmic scale.

In acoustics, an octave is a doubling of the frequency and thus a third-octave band

integrates the sound over a band for which the upper limit is 21/3 times its lower limit.

The mid-band frequencies in Hertz are given by the relation

fn ¼ 1000�2 n�30ð Þ=3 (1.3.3)

where n is known as the band number [2]. Thus the band extends from fn�2�1/6 to

fn�21/6.

The typical response of the ear at different frequencies is plotted in Fig. 1.2 and we

see that low and high frequencies are significantly less important than the

mid-frequency range around 1 kHz. Note especially how the ear does not respond well

to frequencies below 100 Hz, although sometimes low-frequency sounds are identi-

fied as being most irritating. To obtain a measure of the perceived loudness of a sound

the most commonly used metric is the dB(A) level. This applies a weighting to each

one-third octave band level and then each band level is summed on an energy basis.

Since the dB(A) level corrects for the sensitivity of the ear, and is easy to measure

directly using a sound level meter, it is used extensively in noise control applications.

It has also been found to be a good measure of annoyance and so most noise ordi-

nances are defined using this unit with corrections for duration, pure tones, and

day/night levels. Other measures of annoyance such as perceived noise level (PNL)

and effective perceived noise level (EPNL) are used in assessing aircraft noise.

Frequency Hz

dB
(A

) c
or

re
ct

io
n

102
–40

–30

–20

–10

0

10

103 104

Fig. 1.2 The dB(A) weighting scale which represents the typical sensitivity of the human ear.
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It is important to appreciate that simple physical scaling of sound levels frommodel

scale tests to full scale applicationsmust also incorporate a correction that accounts for

annoyance. For example, slowing the rpm of a propeller will not only reduce its source

level, but will generate lower frequencies which receive a larger negative A-weighting

correction. The dB(A) level will therefore scale quite differently from the SPL, and

significant additional noise benefits can be achieved by changing the frequency con-

tent of a sound.

In this text we will not attempt to rate noise source levels in subjective units such as

dB(A), PNL, or EPNL, but rather the focus will be on the fundamental physics behind

the sound generation process. However, it is important to keep in mind that based on

the sensitivity of the ear (Fig. 1.2), the frequencies of most concern to humans usually

lie between about 350 and 10,000 Hz. This roughly corresponds to wavelengths

between 1 m and 3 cm in air.

1.4 Symbol and analysis conventions used in this book

While there is no universally agreed upon nomenclature for aeroacoustics, we use

symbol conventions that will be familiar to many aeroacousticians. In this way anal-

ysis methods or results described in this book will be, as far as possible, recognizable

when seen elsewhere in the aeroacoustics literature. We have also strived to be as con-

sistent as possible and avoid using the same symbol for quantities that may be con-

fused. Recognizing that these desires often conflict with that of familiarity, we

have included in Appendix A both a list of symbols for basic quantities that appear

repeatedly throughout the book, as well as a chapter-by-chapter nomenclature for

more specialized symbols.

Our conventions for symbol modifiers are also listed in Appendix A and the most

important ones are summarized here. Vector quantities are represented using bold

symbols, such as x for position, or using subscript notation to refer to their Cartesian

components, e.g., x1, x2, and x3. Except in special cases, the mean part of a variable

will be denoted by subscript “o” or an overbar, the latter being used to indicate an

averaging or expected value operation. The fluctuating part (such as p0(t) discussed
above) will usually be denoted using a prime. A tilde accent, such as p

�
ωð Þ is used

to denote the Fourier transform of the variable in question with respect to time,

whereas a caret accent, such as p̂ denotes the complex amplitude of a signal with har-

monic time dependence.

Fourier transforms are perhaps the most important mathematical tool of

aeroacoustic analysis. Except where otherwise noted we define the Fourier transform

of a time history as

p
�
ωð Þ¼ 1

2π

ðT
�T

p0 tð Þeiωtdt (1.4.1)

where T tends to infinity, and the inverse Fourier transform as

Introduction 7



p0 tð Þ¼
ð∞
�∞

p
�
ωð Þe�iωtdω (1.4.2)

where ω is angular frequency and we are using the symbol i to represent the square

root of �1. We define the one-dimensional Fourier transform of a variation over dis-

tance as

f
�

k1ð Þ¼ 1

2π

ðR∞

�R∞

f x1ð Þe�ik1x1dx1 (1.4.3)

where R∞ tends to infinity, and the inverse transform as

f x1ð Þ¼
ð∞
�∞

f
�

k1ð Þeik1x1dk1 (1.4.4)

with two- and three-dimensional forms that are the result of repeated application of

Eqs. (1.4.3) or (1.4.4). Here k1 is the wavenumber. Note that in the forward time trans-

form the exponent is positive, and the transformed variable is identified with a tilde,

whereas it is negative in the forward spatial transform, and the transformed variable is

identified with a double tilde.

It is important to realize that the above Fourier transform definitions are not uni-

versal to aeroacoustics analysis since there is no common standard. Our definitions are

consistent with the definitions used in the previous aeroacoustics texts by Goldstein

[3], Howe [4], and Blake [5]. Other texts on aeroacoustics, such as Dowling and

Ffowcs Williams [6], and books focused on related topics, such as signal analysis

[7], use different conventions, and it is obviously important to be aware of these dis-

tinctions when applying or comparing results.
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2The equations of fluid motion

This chapter is a review of the basic equations and concepts of fluid dynamics. These

also form the foundations of aeroacoustics. We will start by considering the equations

of fluid motion, the thermodynamics of small perturbations, and the role of vorticity.

We will then evaluate the rate of change of energy in the fluid, including the energy

associated with sound waves in a moving medium. Finally, we will review some basic

concepts of fluid dynamics and summarize some results and methods of ideal flow

theory that are most relevant to low Mach number aeroacoustics.

2.1 Tensor notation

Cartesian tensor notation is useful in aeroacoustics because it provides relatively sim-

ple expressions for tensor products. In this section we will give a brief overview of the

notation to be used in the following sections.

We are typically concerned with position vectors such as x and ywhich describe the
locations of observers and sources, and flow variables, such as the velocity vector v,

which defines the velocity of a fluid particle at a fixed location. In Cartesian coordi-

nates these vectors have three components and if we use tensor notation, each com-

ponent of the vector is defined by a subscript, say i, which has the values 1, 2, or 3.

Hence we define x¼ (x1, x2, x3) giving the three components of the position vector x.

To simplify the notation, we replace x by xiwhere the subscript i¼1, 2, 3 defines each

component. Using this approach, the definition of a dot product between the vectors q

and v is

q � v¼
X3
i¼1

qivi ¼ q1v1 + q2v2 + q3v3 (2.1.1)

In general, the summation signs in the above definition are found to be cumbersome

and so we introduce the convention that whenever repeated indices occur in a product

there is an implied summation over all the components. Hence we have

qivi�
X3
i¼1

qivi (2.1.2)

For example, we can define the magnitude squared of a vector as

xj j2 ¼ x � x¼ xixi ¼ x2i ¼
X3
i¼1

x2i ¼ x21 + x
2
2 + x

2
3 (2.1.3)
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This notation is particularly useful in the definition of the gradient of a scalar ϕ

rϕ¼ @ϕ

@xi
� @ϕ

@x1
i +

@ϕ

@x2
j+

@ϕ

@x3
k (2.1.4)

where i, j, and k are unit vectors in the i¼1, 2, and 3 directions. Similarly, the diver-

gence of a velocity v is

r � v¼ @vi
@xi

¼ @v1
@x1

+
@v2
@x2

+
@v3
@x3

(2.1.5)

This approach is most valuable when dealing with tensors. For example, the product

Sij¼vivj is a tensor which represents a matrix with nine elements corresponding to

i¼1, 2, 3 and j¼1, 2, 3.

Sij ¼ vivj ¼
v21 v1v2 v1v3
v2v1 v22 v2v3
v3v1 v3v2 v23

2
4

3
5 (2.1.6)

A common expression found in the equations of motion is the velocity gradient tensor

@vi/@xj, which expands as

@vi
@xj

¼

@v1
@x1

@v1
@x2

@v1
@x3

@v2
@x1

@v2
@x2

@v2
@x3

@v3
@x1

@v3
@x2

@v3
@x3

2
666664

3
777775 (2.1.7)

Care needs to be exercised when we consider the expression Sii since this has repeated
indices and so, by the rules defined above

Sii ¼
X3
i¼1

Sii ¼ S11 + S22 + S33 (2.1.8)

Hence if we want to isolate only one of the diagonal terms of the tensor we write Sii (no
summation implied).

Example Consider the tensor defined by the Kronecker delta function δij (which is

defined as zero when i 6¼ j and one when i¼ j) and evaluate (a) pδij, (b) δkjδik, and
(c) Sijδij.

Using the summation rule we obtain

pδij ¼
p 0 0

0 p 0

0 0 p

2
64

3
75 δikδkj ¼

X3
k¼1

δikδkj ¼
1 0 0

0 1 0

0 0 1

2
64

3
75 Sijδij ¼

X3
i¼1

X3
j¼1

Sijδij ¼ Sii

(2.1.9)

10 Fundamentals



Throughout this text the velocity vector is denoted as v or vi and is often considered as
the sum of the mean, time invariant, velocity U and the velocity fluctuation about the

mean u, so v¼U+u. Coordinates are defined using the vectors x, y, or zwith the coor-

dinates x and y used to denote observer and source location, respectively, where rel-

evant. A volume is denoted as V and a surface area by S.
The thermodynamic variables of pressure, density, temperature are given their

usual symbols p, ρ, Te, and the internal energy, enthalpy, and entropy are expressed,

per unit mass, using the variables e, h, and s, respectively. Stagnation enthalpy and

specific total energy are H and eT, respectively. A subscript “o” is used to denote

the mean, time invariant, values of the thermodynamic variables at a fixed location,

whereas a prime is used to indicate the fluctuating part. The mean speed of sound is

given by the symbol co, and if this is constant throughout the fluid the symbol c∞
is used.

2.2 The equation of continuity

The concept of conservation of mass requires that mass is neither created nor des-

troyed in any fluid element. In Fig. 2.1 we show a region of the fluid, which is of vol-

ume V, and is bounded by the surface S. We will refer to this as a control volume. The

outward pointing normal to the surface is n(o) and the velocity of the fluid is v. If the

volume is fixed in space, and the density of the fluid is written as a function of space

and time t as ρ(x,t), then the mass of the fluid contained in V is

ð
V

ρdV (2.2.1)

The flow transports fluid in and out of the control volume and the mass flux out of V,
across the surface element dS, per unit time, is given by

ρv � n oð ÞdS (2.2.2)

The rate at which the control volume loses mass must equal the net outward flux of

mass, which is given by the integral of Eq. (2.2.2) over the bounding surface S. Hence,
for a fixed stationary surface

ð
S

ρv � n oð ÞdS¼� d

dt

ð
V

ρdV and
d

dt

ð
V

ρdV¼
ð
V

@ρ

@t
dV (2.2.3)

We can simplify this equation by using the divergence theorem to turn the surface

integral into a volume integral. The divergence theorem states that the integral of

the divergence of a vector over a volume is related to the component of the vector

normal to the surface enclosing the volume by
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ð
V

r� vdV¼
ð
S

v � n oð ÞdS

Using this relationship gives

ð
V

@ρ

@t
+r� ρvð Þ

� �
dV¼ 0 (2.2.4)

This result is independent of the volume V and so the integral can only be identically

zero if the integrand is zero. Hence we obtain the continuity equation in differential

form as

@ρ

@t
+r� ρvð Þ¼ 0 (2.2.5)

In tensor notation this is given as

@ρ

@t
+
@ ρvið Þ
@xi

¼ 0 (2.2.6)

This is one of the most important equations in fluid dynamics and defines how mass is

conserved in a fixed volume. It shows that the rate of change of density with time

added to the divergence of the mass flux is zero at a fixed point.

It is also important to consider how mass is conserved in a frame of reference that

moves with a differentially small piece of the fluid material, defined as a fluid particle.
To consider this, we introduce the substantial or material derivative Df/Dt, which
defines the rate of change of the function f in a frame of reference that moves with

the particles rather than in the fixed frame which was used above. To define the

n(o)

Surface element dS

Bounding surface S

Volume V

Flow velocity v

Fig. 2.1 A control volume of size V bounded by the surface S with fluid moving through the

volume at velocity v.
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moving frame of reference, we specify the position of the fluid particles at time t1 by
the vector ηi. Since the particles move with velocity vi their location at the time t> t1
will be

zi tð Þ¼ ηi +

ðt
t1

vidt (2.2.7)

The rate of change in the convected frame of reference is the rate of change of f(zi(t),t)
when ηi is fixed. Hence

Df

Dt
¼ @f

@t

� �
ηi¼const

¼ @f zi tð Þ, tð Þ
@t

(2.2.8)

Then by using Eq. (2.2.7) and evaluating the partial derivatives we find the substantial

derivative for the location xi¼ zi(t) in fixed coordinates is

Df

Dt
¼ @f xi, tð Þ

@t
+
@zi tð Þ
@t

@f xi, tð Þ
@xi

¼ @f xi, tð Þ
@t

+ vi
@f xi, tð Þ
@xi

¼ @f

@t
+ v �rf (2.2.9)

The substantial derivative can now be used to rewrite the continuity equation: by using

the vector identity v �rρ+ ρr� v�r � ρvð Þ, we expand Eq. (2.2.5) as,

@ρ

@t
+ v �rρ + ρr� v¼Dρ

Dt
+ ρr� v¼ 0 (2.2.10)

This shows that if the fluid density is constant in the frame of reference moving with

the fluid particles, soDρ/Dt¼0, then the divergence of the flow velocity is zero. In an

incompressible fluid such as water, the density is almost constant and so we can

approximate the requirement for conservation of mass asr� v¼ 0. However acoustic

waves are, by definition, compressible and so this approximation cannot be used in the

analysis of sound.

In the following sections we will consider thermodynamic quantities such as

entropy or enthalpy, which are defined per unit mass rather than per unit volume.

We will therefore need to consider the volume per unit mass, or specific volume,

equivalent to the inverse of the density. We then have

D 1=ρð Þ
Dt

¼� 1

ρ2
Dρ

Dt
(2.2.11)

and so Eq. (2.2.10) gives

D 1=ρð Þ
Dt

¼ 1

ρ
r � v (2.2.12)

This is an alternative form of the continuity equation, which is useful in applications

that involve compressible flow.
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2.3 The momentum equation

2.3.1 General considerations

To determine the momentum balance in a fluid we recall that the time rate of change of

momentum of a body of fluid is equal to the net force exerted on it. We now apply this

principle to the control volume illustrated in Fig. 2.1. The net momentum of the fluid

in the control volume is given by

ð
V

ρvdV (2.3.1)

According to the conservation of momentum, the rate of change of this quantity equals

the force F applied to the control volume less the net rate at which momentum leaves

the volume due to the movement of fluid across its surface. We saw above that the

mass flow rate of fluid across a single element of the control surface dS is

ρv � n oð ÞdS. The rate at which momentum is lost due to this motion is therefore

ρv � n oð ÞdS
� �

v (2.3.2)

Hence the rate of change of momentum in the fixed stationary control volume is

d

dt

ð
V

ρvdV¼F�
ð
S

ρv � n oð Þ
� �

vdS and
d

dt

ð
V

ρvdV¼
ð
V

@ ρvð Þ
@t

dV (2.3.3)

The forces which are applied to the control volume are of three different types: (i) body

forces, such as gravitywhich are almost never important in aeroacoustic applications and

so will be ignored, (ii) pressure forces which apply a net force�pn(o)dS to each surface
element shown in Fig. 2.1, and (iii) viscous shear stresses that introduce a net shear force

on the surface.Viscous forces are rarely important in soundwavesbut are often important

to the flows that produce them. They are most conveniently expressed using a viscous

stress tensor σijwhich gives the force per unit area in the j direction applied to a surface
whoseoutwardnormal lies in the idirection.Thestress tensor is symmetric soσij¼σjiand
the indices are interchangedwithout consequence.Wecan define the viscous shear stress

applied to the surface of the control volume as

σjin
oð Þ
j dS¼ σijn

oð Þ
j dS (2.3.4)

where nj
(o) is the tensor notation for the outward pointing normal to the surface. It is

convenient to combine the viscous stress and pressure force into a single tensor pij
defined as

pij ¼ pδij�σij (2.3.5)
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This tensor is called the compressive stress tensor and is often used in aeroacoustics to

replace the tensor τij¼�pij which is more commonly used in texts on fluid dynamics.

These conventions allow the force on the fluidF in the control volume to be written

as

Fi ¼�
ð
S

pijn
oð Þ
j dS (2.3.6)

Combining this with Eq. (2.3.3) yields, in tensor notation,

ð
V

@ ρvið Þ
@t

dV¼�
ð
S

ρvivj + pij
� �

n
oð Þ
j dS (2.3.7)

and applying the divergence theorem then gives

ð
V

@ ρvið Þ
@t

+
@ ρvivj + pij
� �

@xj

� �
dV¼ 0 (2.3.8)

As with the continuity equation this integral can only be zero if the integrand is zero so

we obtain the momentum equation in the absence of body forces as

@ ρvið Þ
@t

+
@ ρvivj + pij
� �

@xj
¼ 0 (2.3.9)

This is the conservation form of the momentum equation, which shows that the rate of

change of momentum of a fixed volume of fluid is balanced by the flux of momentum

out of the volume and the stresses applied to its surface.

We can also write the momentum equation in a nonconservation formwhich relates

the forces applied to a fluid particle to its acceleration Dvi/Dt. Newton’s Second Law
of motion then requires that the mass per unit volume ρ times the acceleration equals

the force applied to the particle per unit volume, which from Eq. (2.3.6) and the diver-

gence theorem is �@pij/@xj, so

ρ
Dvi
Dt

+
@pij
@xj

¼ 0 (2.3.10)

It is a relatively simple exercise to show that Eqs. (2.3.9), (2.3.10) are the same by

expanding the derivatives in Eq. (2.3.10) and using the continuity equation (2.2.6).

Eq. (2.3.10) is the well-known Navier Stokes equation.

2.3.2 Viscous stresses

Viscous stresses are caused by molecular diffusion across the boundary enclosing the

control volume. If the molecular diffusion causes fluid molecules to move into a

region of fluid with a different velocity, then momentum is transferred and a viscous
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stress exists. The viscous stress causes the velocity parallel to the boundary, say vs, to
be sheared in the direction normal to the boundary, so nj(@vs/@xj) 6¼0 or the velocity

normal to the boundary, say vn, to be sheared in the direction parallel to the boundary,
so (@vn/@xj) 6¼0. Detailed consideration of the viscous shear stress for a compressible

fluid is discussed in texts on fluid dynamics [1,2], and requires the definition of a coef-

ficient of bulk viscosity in addition to the shear viscosity μ. The bulk viscosity is usu-
ally assumed to be zero (Stokes hypothesis) in which case the viscous stress term is

σij ¼ μ
@vi
@xj

+
@vj
@xi

�2

3

@vk
@xk

δij

� 	
(2.3.11)

where μ is the coefficient of viscosity (for a detailed derivation of this equation see

Batchelor [1] or Kundu [2]).

The viscous stress term in the momentum equation can be simplified for an incom-

pressible flow. From Eq. (2.3.10) we note that the contribution of the viscous stresses

will depend on @σij/@xj and that for an incompressible flow @vj/@xj¼0 so we obtain

from Eq. (2.3.11)

@σij
@xj

¼ μ
@2vi
@x2j

 !
¼ μr2vi (2.3.12)

assuming constant viscosity.

The importance of the viscous term can be assessed by writing the Navier Stokes

equations in terms of dimensionless variables. We define the dimensionless velocity,

distance, time, density, and pressure v#i ¼ vi=U, x
#
i ¼ xi=L, t

#¼Ut/L, ρ#¼ρ/ρ∞, and
p#¼p/ρ∞U

2 where U, L, and ρ∞ are constant reference values with L representing

the overall scale of the flow. Substituting these definitions into Eq. (2.3.10), expanded

using Eqs. (2.3.5), (2.3.11), gives

ρ∞U
2

L
ρ#

Dv#i
Dt#

+
ρ∞U

2

L

@p#

@x#i
� @

@x#j

μU

L2
@v#i
@x#j

+
@v#j
@x#i

�2

3

@v#k
@x#k

δij

 !" #
¼ 0

Dividing throughout by ρ∞U
2/L we obtain

ρ#
Dv#i
Dt#

+
@p#

@x#i
� @

@x#j

1

Re

@v#i
@x#j

+
@v#j
@x#i

�2

3

@v#k
@x#k

δij

" # !
¼ 0 where Re�ρ∞UL

μ

We see that in normalized form the viscous term is divided by the ratio of the scale of

the inertial forces ρ∞U
2/L to the scale of the viscous forces μU/L2. This ratio is defined

as the Reynolds number Re. In high speed and/or large scale flows the Reynolds num-

ber is high and the viscous term small, indicating that the effects of viscosity can often

be ignored.
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2.4 Thermodynamic quantities

Acoustic waves are a result of compressible effects in the fluid that cause small per-

turbations in the local pressure. It is therefore important that we understand how pres-

sure changes are associated with changes in density and temperature. We make the

assumption that an acoustic wave is a thermodynamic process which does not involve

any exchange of heat or dissipative processes. In this case, the pressure perturbation p0

about the mean pressure po is directly proportional to the density perturbation ρ0 about
the mean density ρo with the constant of proportionality given by the isentropic bulk

modulus (dp/dρ)s.

p0 ¼ ρ0c2o c2o�
@p

@ρ

� 	
s

(2.4.1)

We will show later that co is the speed at which sound waves propagate through the

medium.

We cannot ignore the role of dissipative processes or heating on the generation of

sound or on the flows that generate it. For this reason, we need to discuss the thermo-

dynamic properties of gases in some detail and define the role of quantities such as the

enthalpy and entropy, which along with pressure, density, internal energy, kinetic
energy, and temperature, define the “state” of the gas.

The First Law of Thermodynamics requires that the energy of a system can only be

changed by the addition of heat or by work done on the system. In this case our

“system” is a fluid particle that (by definition) moves with the flow and has constant

mass. The change of internal energy per unit mass of the particle de is given by the sum
of the heat added per unit mass δq and the work done on the system per unit mass, δw,
so

de¼ δq+ δw (2.4.2)

Note here that the internal energy represents the state of the particle and is independent

of how the energy got there, whereas the heat and the work represent path functions

and are dependent on the process taking place.

First consider what happens when the molecules in a particle expand to fill a larger

volume. When the particle expands from a volume V to a volume V+dV, the work

done on the surrounding fluid is given by the force exerted on the surrounding medium

times the distance it moves during the expansion. Writing this as a surface integral, the

force on each surface element is pdS, and the distance it moves is Δx, giving the total
work done by the particle as

ð
S

pΔxdS

where the surface S encloses the volume V. Since the particle is very small the pressure

may be considered as constant over the surface and, since
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dV¼
ð
S

ΔxdS

the work done by the system on its surroundings is pdV. This represents a loss of

energy to the system and so Eq. (2.4.2) becomes

de¼ δq�pdυ (2.4.3)

In this equation dυ represents a change in volume per unit mass and can be related to

the density of the fluid in the particle using υ¼1/ρ. This example considers a volu-

metric change which occurs at constant pressure. In many cases we need to consider

changes in pressure which occur without a change in volume. In this case the particle

increases its “capacity to do work.” We can define this capacity using a state variable

called the enthalpy which is related to the internal energy as h¼e+pυ. We note that

dh¼de+υdp+pdυwhich allows the first law (2.4.3) to be written for a change at con-

stant volume as

dh¼ δq + υdp¼ δq+
dp

ρ
(2.4.4)

If heating takes place at either constant volume or constant pressure, then the temper-

ature Te of the system is increased. The sensitivity coefficients are defined as specific

heats for constant volume and constant pressure as

cv ¼ @q

@Te

� 	
V

cp ¼ @q

@Te

� 	
p

(2.4.5)

Hence if heating takes place at constant volume then the change in internal energy can

be related to the heat input by Eq. (2.4.3). Specifically,

@e

@Te

� 	
V

¼ @q

@Te

� 	
V

¼ cv

In contrast if heating takes place at constant pressure then we can use Eq. (2.4.4) to

give the change in enthalpy as,

@h

@Te

� 	
p

¼ @q

@Te

� 	
p

¼ cp

If e and h are only functions of temperature (the assumption of a perfect gas), then

these expressions reduce to de¼cvdTe and dh¼cpdTe. Subtracting Eq. (2.4.3) from

Eq. (2.4.4) and using these relationships give

dh�de¼ pdυ+ υdp
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or

d pυð Þ¼ cp� cv
� �

dTe

which integrates to the perfect gas law p¼ρRTe with R¼ (cp�cv).
For an ideal gas the specific heats are constant and allow us to relate the internal

energy and the enthalpy to the temperature as

e¼ cvTe h¼ cpTe (2.4.6)

To proceed further we introduce the concept of the entropy of a system, which

describes its state of disorder. Entropy is a variable like temperature or pressure that

gives the state of a gas. It is increased by the addition of heat and by any irreversible

process, like heat conduction or molecular diffusion. The Second Law of Thermody-

namics gives the entropy change in a process as

ds¼ δqrev
Te

(2.4.7)

where δqrev is called the reversible heat addition. This is an imaginary quantity—heat

cannot be added reversibly as the addition will always be accompanied by some dis-

sipative process that would further increase disorder. So δqrev is the amount of heat

that would have to be added, in the absence of any accompanying dissipative process,

to account for the thermodynamic changes that occur due to irreversible processes and

any actual addition of heat. We can use Eq. (2.4.7) and the first law to obtain a rela-

tionship for entropy in terms of the other state variables. Imagine a process containing

only reversible heat addition. In this case we would have δq¼δqrev and we could sub-
stitute Teds in Eq. (2.4.7) for δq in Eqs. (2.4.3), (2.4.4). This would give

de¼ Teds�pd 1=ρð Þ
dh¼ Teds + dp=ρ

(2.4.8)

Notice that these expressions give the entropy change only in terms of the other state

variables p, ρ, Te, e, and h. We can therefore infer that Eq. (2.4.8) must hold in general

(not just for our reversible example), unless entropy defines a property of the gas inde-

pendent of these other variables. This is not the case. For example, for a thermally

perfect gas the Kinetic Theory of Gases tells us that any of the state variables can

be expressed as functions of two others.

So, by rearranging these equations using Eq. (2.4.6),

Teds�pd 1=ρð Þ
cv

¼ Teds+ dp=ρ

cp

then using the perfect gas law, we find

The equations of fluid motion 19



ds¼ cv
dp

p
� cp

dρ

ρ
(2.4.9)

from which it follows that the specific entropy is

s¼ cv ln Cp=ργð Þ

whereC is the constant of integration and γ¼cp/cv is the ratio of specific heats. We see

then that for s¼const we have

p

ργ
¼ const (2.4.10)

Differentiating this equation, we obtain the isentropic bulk modulus,

@p

@ρ

� 	
s

¼ γp

ρ

This expression is of course, equal to the sound speed squared (Eq. 2.4.1). However,

for sound waves the pressure fluctuations p0 and density fluctuations ρ0 are very much

less than their mean absolute values, so in this case we can replace the pressure and

density with their mean values po and ρo to give

c2o ¼
γpo
ρo

(2.4.11)

We can also reinterpret Eq. (2.4.9) as an expression for the small changes in a sound

wave. For fluid flows where the entropy is the same everywhere (i.e., only isentropic

processes occur, and the entropy at all points has the same initial value) the flow is

defined as homentropic, so ds¼0, and

0¼ cv
p0

po
� cp

ρ0

ρo

giving p0 ¼ ρ0c2o, which is the expression given by Eq. (2.4.1).

A more general specification is isentropic flow, in which the specific entropy of

each moving particle is constant so Ds/Dt¼0. This leads to a generalized relationship

between pressure and density which is obtained by taking the substantial derivative of

Eq. (2.4.8), and using Eq. (2.4.6), to obtain

De

Dt
¼ p

ρ2
Dρ

Dt
¼ cv

DTe
Dt

Dh

Dt
¼ 1

ρ

Dp

Dt
¼ cp

DTe
Dt

(2.4.12)

20 Fundamentals



We solve these equations to obtain a relationship between pressure and density fluc-

tuations for an isentropic flow as

Dp

Dt
¼ γp

ρ

Dρ

Dt
(2.4.13)

where γp/ρ is the local instantaneous sound speed squared, or,

Dp

Dt
¼ c2o

Dρ

Dt
(2.4.14)

if the flow generated fluctuating pressure and density are small compared to their

absolute values, as is usually the case in low Mach number flows. Comparing these

results with Eq. (2.4.11) shows that for an isentropic flow the relationship between

pressure and density depends on their material derivatives, as distinct from their per-

turbations from the mean, but the constant of proportionality is the same when the

mean pressure and density are used. In the following section we will consider the

entropy of the fluid in more detail and show when we can make the assumptions

of homentropic and isentropic flow.

2.5 The role of vorticity

2.5.1 Crocco’s equation

Irrotational flows are important in fluid dynamics and to put their features in perspec-

tive we need to consider the role of vorticity. We start by rearranging the momentum

equation into a form which was originally derived by Crocco. This relates the rate of

change of velocity to terms such as the vorticity. To obtain Crocco’s equation we

expand the momentum Eq. (2.3.10) term by term and divide by ρ so

@v

@t
+ v �rv +

1

ρ
rp� e¼ 0 (2.5.1)

where e is a vector specifying the viscous force per unit mass defined in tensor nota-

tion as ei¼ (1/ρ)@σij/@xj and the kinematic viscosity ν¼μ/ρ. We can rearrange this

expression by making use of the vector identity

r u � vð Þ¼ u �rð Þv+ v �rð Þu + u� r�vð Þ + v� r�uð Þ (2.5.2)

with u¼v to obtain

v �rð Þv¼ 1

2
r v � vð Þ� v� r�vð Þ
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and so

@v

@t
+
1

2
r v � vð Þ + ω�vð Þ + 1

ρ
rp� e¼ 0 (2.5.3)

where we have introduced the vorticity, defined as ω¼r�v. The term 1⁄2r v � vð Þ¼
1⁄2rv2i is replaced by introducing the stagnation enthalpy, defined as H¼ h+ 1⁄2v2i . We

then rewrite Eq. (2.4.8) in terms of gradients as

rh¼ Ters+
1

ρ
rp

This assumes that at some upstream point the fluid properties are initially uniform in

space, so that their values at adjacent points can be thought of as being connected by a

single thermodynamic process. Substituting from the definition of the stagnation

enthalpy we obtain,

rH¼ Ters +
1

ρ
rp+

1

2
rv2i

This is substituted into Eq. (2.5.3) to give

@v

@t
+rH�Ters+ ω�vð Þ� e¼ 0 (2.5.4)

This is Crocco’s form of the momentum equation, which highlights some of the most

important features of inviscid, irrotational flow.

If the flow is irrotational (r�v¼ω¼0), then the velocity can be expressed as the

gradient of a scalar field, v¼rϕ since, by definition the curl of the gradient of any

scalar field is zero. We refer to ϕ as the velocity potential. If the flow is also

homentropic (rs¼0) and inviscid (e¼0) Eq. (2.5.4) reduces to r(@ϕ/@t+H)¼0,

from which Bernoulli’s equation is obtained by integration to give

@ϕ

@t
+H¼ f tð Þ (2.5.5)

where f(t) is constant across all space. This is important because it shows that for an

irrotational, inviscid, and steady flow, H¼const�Ho throughout the flow. This is the

basis for potential flow calculations in fluid dynamics, which provide great insight

into simple flows around streamlined bodies. If the flow is unsteady, but the unstead-

iness occurs over a limited region of space embedded in an ambient steady flow, then

Eq. (2.5.5) applies but f(t) must be a constant equal to the ambient stagnation enthalpy.

Thus we write

H�Ho ¼ @ϕ

@t
�H0

where H0 is the unsteady stagnation enthalpy.
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2.5.2 The vorticity equation

We can now derive an equation for the vorticity from the curl of Eq. (2.5.4) as

@ω
@t

+r� ω�vð Þ�rTe�rs�r� e¼ 0 (2.5.6)

This may be written in nonconservative form by using the vector identity

r� ω�vð Þ¼ω r� vð Þ�v r �ωð Þ + v �rð Þω� ω �rð Þv (2.5.7)

We note that, since the divergence of any curl field is zero, r�ω¼0. We can then

make use of Eq. (2.2.12) to rewrite Eq. (2.5.6) as

@ω
@t

+ v �rð Þω+ ρω
D 1=ρð Þ
Dt

� ω �rð Þv�rTe�rs�r�e¼ 0

We then use Eq. (2.3.11) and the definition ei¼ (1/ρ)@σij/@xj to evaluate r�e. Since

the curl of a gradient is zero we obtain r�e¼νr2ω, assuming constant viscosity.

Finally, dividing by ρ and combining terms give the compressible vorticity equation

D ω=ρð Þ
Dt

� ω
ρ
�r

� 	
v�1

ρ
rTe�rs� ν

ρ
r2ω50 (2.5.8)

This equation defines the generation and modification of vorticity in any fluid. When

viscous and heating effects are absent the evolution of vorticity within the flow is

determined by the second term in the equation which represents the distortion of

the fluid particle by the velocity gradients. In two-dimensional flow the vorticity vec-

tor is normal to the direction of the flow gradient and so this term is zero. We also note

that Eq. (2.5.8) is a set of nonlinear homogeneous differential equations for the vor-

ticity vector, whose terms describe the transport, deformation, generation, and diffu-

sion of vorticity. We will discuss the fluid dynamics of vorticity and its implications,

in more detail in Section 2.7.

2.5.3 The speed of sound in ideal flow

Before concluding this section, it is worthwhile considering the definition of the speed

of sound in a little more detail and showing how it depends on the local flow condi-

tions for an ideal gas in steady flow. We have shown that for a homentropic (inviscid),

steady, irrotational flow originating in a uniform free stream, the stagnation enthalpy

is constant. If we define upstream or reference conditions using the subscript∞ then

we use Eq. (2.4.10) and Ho¼const to give

po=ρ
γ
o

� �¼ p∞=ρ
γ
∞

� �
ho ¼ h∞ + 1=2 U2

∞�U2
� �

(2.5.9)
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where U is the mean flow speed and the subscript o represents mean quantities at the

downstream location, while the subscript ∞ refers to upstream conditions. To obtain

the speed of sound we note that h¼e+p/ρ and that Eq. (2.4.6) allows us to write

h¼γe. Combining these relationships gives h¼γp/ρ(γ�1), and using Eq. (2.4.11)

we obtain from the second part of Eq. (2.5.9)

c2o ¼ c2∞ +
γ�1ð Þ
2

U2
∞�U2

� �
(2.5.10)

where co is the local speed of sound and c∞ is the speed of sound at the upstream loca-

tion. Furthermore, using the first equation of Eq. (2.5.9) gives relationships for the

local mean pressure and density as

ρo
ρ∞

� 	γ�1

¼ c2o
c2∞

¼ 1 +
γ�1ð Þ
2c2∞

U2
∞�U2

� �
po ¼ ρ∞c

2
∞

γ

ρo
ρ∞

� 	γ

(2.5.11)

Hence given a set of upstream conditions and a homentropic mean flow, we can deter-

mine the variation of speed of sound, mean density, and mean pressure from the local

flow velocity alone. We conclude that the speed of sound and the density can be taken

as constant in applications where U2
∞ � U2

� �
≪ c2∞, which is usually the case in low

Mach number flows.

2.6 Energy and acoustic intensity

2.6.1 The energy equation

The equations of state which define the speed of sound propagation have been shown

to be dependent on the distribution of the mean thermodynamic properties of the gas

and can be simplified if it can be assumed that the flow is either homentropic or isen-

tropic. We therefore need to define an equation that determines the conditions that

allow these assumptions to be made. This is achieved by considering the rate of

change of energy of a fluid particle as it moves through space. The total energy

per unit mass of the particle eT is given by the sum of its specific internal energy e

and its kinetic energy per unit mass 1⁄2v2i . The rate of change of energy for the fluid

particle is then

M
DeT
Dt

(2.6.1)

whereM is the mass of the particle, and the material derivative is required because we

are considering a constant mass of fluid which is moving through the medium. From

the First Law of Thermodynamics the energy of the particle only changes if the par-

ticle does work on the surrounding fluid or it is the recipient of heat. If the particle

occupies a small volume V(t) at time t then the rate of work done by the particle is
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determined by the stresses on the surface S(t) enclosing the particle, and the velocity of
the surface. The rate of work done on the particle by the surrounding fluid is the neg-

ative of this,

�
ð
S tð Þ

vjpijn
oð Þ
i dS

where ni
(o) is the outward pointing unit normal to the surface. If heat flux per unit area

through the fluid material is given by the vector field Q, then the flow rate of heat

energy into the particle is,

�
ð
S tð Þ

Qin
oð Þ
i dS

Using the divergence theorem, we can change the surface integrals in the above two

equations into volume integrals and write the rate of gain of energy of the particle as

�
ð
V tð Þ

@

@xi
vjpij +Qi

� �
dV (2.6.2)

We can then equate (2.6.2) to the net increase in energy given by Eq. (2.6.1), as

M
DeT
Dt

¼�
ð
V tð Þ

@

@xi
vjpij +Qi

� �
dV (2.6.3)

Since the particle is very small we can assume the integrand is constant throughout the

volume and define the density as ρ¼M/V(t) to obtain the energy equation

ρ
DeT
Dt

+
@

@xi
vjpij +Qi

� �¼ 0 (2.6.4)

This equation relates the rate of change in total energy of a fluid particle to the rate of

workdonebysurfacestressesand the rateofheataddition.Wehaveneglectedbodyforces

such as gravity in this derivation since these effects are rarely important in acoustics.

We can also derive the rate of change of energy directly from the relationships

given in Section 2.4. First we rewrite Eq. (2.4.8) in terms of substantial derivatives,

De

Dt
¼ Te

Ds

Dt
�p

D

Dt

1

ρ

� 	

This is permissible because the rates of change in the thermodynamic variables expe-

rienced by a specific fluid particle over time constitute a thermodynamic process,

regardless of the particle motion, and viscous action that may cause heating is consid-

ered negligible. Incorporating the specific total energy andmultiplying by density gives,
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ρ
DeT
Dt

¼ ρTe
Ds

Dt
�ρp

D

Dt

1

ρ

� 	
+ ρ

D

Dt

v2i
2

� 	
(2.6.5)

The second term on the right of this equation can be simplified using Eq. (2.2.12) and

the third term may be reduced using the momentum equation (2.3.10) so

ρ
DeT
Dt

¼ ρTe
Ds

Dt
�p

@vi
@xi

� vi
@pij
@xj

(2.6.6)

This gives the energy equation in terms of the entropy rather than the heat flux vector,

which may be useful in some applications. An important result is obtained if we sub-

tract Eq. (2.6.6) from Eq. (2.6.4) to give

ρTe
Ds

Dt
¼ σij

@vi
@xj

�@Qi

@xi
(2.6.7)

This shows that if we can ignore viscous effects and heat conduction then the flow can

be considered as isentropic, and relationships such as Eq. (2.4.14) can be used to relate
the pressure and density fluctuations in the fluid. This is an important result because

direct viscous effects are negligible over large parts of most engineering flows. Sim-

ilarly, in acoustic waves the momentum flux is almost completely balanced by pres-

sure perturbations and viscous effects on acoustic propagation are found to be very

small. Further, in most fluids flows the temperature is uniform or varies only slowly

on the scale of wave propagation, so heat conduction effects are not significant. Hence

the assumptions required of an isentropic flow apply to most of our applications.

Entropy fluctuations are caused by a burst of heat such as a combustion event in

the flow, and entropy is a convected quantity in the absence of viscous effects or heat

generation. Therefore, if s¼0 at an upstream location in an inviscid unheated flow,

then it remains zero throughout the flow.

In Eq. (2.6.4) the energy equation is given for a material element, which is

convected through the fluid. We can also express this for a stationary point in space

by using the continuity equation to provide the expansion

ρ
DeT
Dt

¼DρeT
Dt

� eT
Dρ

Dt
¼DρeT

Dt
+ eTρr� v

Writing in tensor notation we have,

ρ
DeT
Dt

¼ @ρeT
@t

+ vi
@ρeT
@xi

+ ρeT
@vi
@xi

¼ @ρeT
@t

+
@ρeTvi
@xi

(2.6.8)

Using Eqs. (2.6.8), (2.6.4) then gives,
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@ ρeTð Þ
@t

+
@

@xi
ρeTvi + vjpij +Qi

� �¼ 0 (2.6.9)

Further simplification is possible by introducing the stagnation enthalpy which is

equal to H¼eT+p/ρ, so

@

@t
ρeTð Þ + @ ρviH� vjσij +Qi

� �
@xi

¼ 0 (2.6.10)

This result gives the rate of change of total energy at a point in terms of the flux of

enthalpy, the viscous stresses, and the flux of heat. It is valuable because it can be

integrated over a fixed control volume of any size, to give the rate of change of total

energy of a system. For example, if we consider a jet engine and draw a control volume

as a spherical surface of very large diameter enclosing the engine and its exhaust, the

volume integral of @(ρeT)/@t inside the control volume gives the net rate that energy is

added to the fluid. If energy is being lost from the control volume, then it must be

replaced at the same rate by the engine to maintain a steady outflow. The rate at which

energy leaves the control volume is equal to the instantaneous power being generated

by the engineWT. If the control surface is far enough from the engine, so that viscous

effects and heat conduction are zero on the control surface, then Eq. (2.6.10) shows

that the total power generated by the engine can be obtained from

WT ¼
ð
V

r � ρHvð ÞdV¼
ð
S

ρHv � ndS (2.6.11)

This result is valuable in the experimental evaluation of engineering systems because

it allows for the mechanical input of power to the fluid to be determined directly from

measurements on a surface surrounding the power source. It is also useful in acoustics

because it leads to the concept of sound power generation, and allows us to define acous-

tic source strength from measurements at great distances from the source of sound.

2.6.2 Sound power

As noted above the power generated by a system is an instantaneous quantity, which

means thatWTwill vary with time. Furthermore Eq. (2.6.11) includes power needed to

drive the system as well as the power required to maintain the unsteady flow and the

acoustic waves, which may be a small fraction of the total. In acoustic applications we

are interested in making this distinction and separating the mechanical power gener-

ated by the system from the “power” required to feed the acoustic motion of the fluid

particles at large distances from the source. Tomake this distinction let us consider the

average power generated by the system over a period of time. We will define this as

the “expected value” of the instantaneous power and split it into contributions from the

steady Ws and unsteady part (time varying) Wa, so
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E WT½ � ¼Ws +Wa (2.6.12)

where E[] represents an expected value. The steady components of the flow quantities

are defined using the subscript o and unsteady parts with primes soH¼Ho+H
0 etc. The

mass flux per unit area is then ρv¼E[ρv]+ (ρv)0. The unsteady components will have

a zero mean value, but their correlations can be nonzero. Hence terms like E[(ρv)0Ho]

are zero, but terms like E[(ρv)0H0] are nonzero and contribute to the unsteady power

budget. As discussed above we choose to split the power budget as

Ws ¼
ð
S

E ρv½ �HondS (2.6.13)

and

Wa ¼
ð
S

E ρvð ÞH0½ � � ndS¼
ð
S

E ρvð Þ0H0
 � � ndS (2.6.14)

The reason for this choice is that in a homentropic potential flow we can show thatWs

is zero because, according to Crocco’s equation, Ho is constant over space and

Eq. (2.6.13) reduces to

Ws ¼Ho

ð
S

E ρv½ �ndS¼Ho

ð
V

E r� ρvð Þ½ �dV

¼�Ho

ð
V

E
@ρ

@t

� �
dV¼ 0

(2.6.15)

using the continuity equation. We conclude that a steady inviscid potential flow does

not need to be driven by a power source. In contrast we would expect a real flow,

which includes turbulent wakes and viscous effects, to require a source of power to

maintain it in a steady state, soWs 6¼0. On this basis we defineWs as the mean power

and Wa as the power from unsteady enthalpy, which we will later relate to acoustic

processes. The splitting of power in this way allows us to define a procedure for mea-

suring the sound power output Wa of an acoustic system. In general, we define

Wa ¼
ð
S

I � ndS I¼E ρvð Þ0H0
 �
(2.6.16)

where I is the acoustic intensity in the region outside of the turbulent flow. Then, if we

can measure the acoustic intensity on a surface enclosing the sources of sound, we can

determine their sound power output. This has proven to be a useful concept in noise

control applications provided we can accurately determine I. For a homentropic flow

we use Eq. (2.4.8) to give H0 ¼p0/ρo+U�u (note that to first order accuracy

v2i ¼U2
i + 2Uiui +⋯ so the unsteady part of 1⁄2v2i is Uiui) so

I¼E ρou+ ρ
0Uð Þ p0=ρo +U � uð Þ½ � (2.6.17)
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We conclude that in order to measure the acoustic intensity in a flow, we need to know

the flow speed as well as the acoustic perturbations of density, particle velocity, and

pressure. The measurement is much easier in a stationary medium for which I¼E[p0u]
and instrumentation is commercially available to measure this quantity directly. How-

ever, some care needs to be exercised because Eq. (2.6.17) is not uniquely related to

the acoustic processes in turbulent flow where unsteady pressure and velocity fluctu-

ations can exist that do not propagate as acoustic waves.

2.7 Some relevant fluid dynamic concepts and methods

In addition to the governing equations, an appreciation of some of the physics of fluid

dynamics and the methods used in its analysis is needed as a basis for aeroacoustics.

The purpose of this section is to provide a short review of this topic. Readers who need

or desire a more in-depth treatment are referred to dedicated texts in this field such as

Karamcheti [3], Howe [4], or Katz and Plotkin [5].

2.7.1 Streamlines and vorticity

One of the most commonly used concepts of fluid dynamics is that of a streamline.
A streamline is simply a line that is everywhere tangent to the velocity vector. It

follows that the streamlines are given by the equation ds�v¼0 where ds is change
in position along the streamlines. The concept of a streamline is particularly useful

in steady flow, since in this case the streamlines are also the paths taken by fluid

particles. In unsteady flows where the velocity fluctuations are small compared to

the mean, the streamlines of the mean flow can still be taken to represent the over-

all paths taken by the fluid, as well as the paths along which turbulence is

convected.

Consider a curve in space that cuts across a flow as shown in Fig. 2.2. All the

streamlines that pass through this curve will form a stream surface. By definition there
can be no flow through a stream surface as it is everywhere tangent to the flow. Math-

ematically we can define a family of stream surfaces by representing them as contour

surfaces of a scalar function ψ , known as the stream function. Charting all the stream-

lines that pass through a pair of intersecting curves (Fig. 2.2) maps out two intersecting

stream surfaces of different families. The intersection of these surfaces must be a

streamline and aligned with v, and the perpendiculars of these surfaces (aligned with

the gradient of their respective stream functions) must both be perpendicular to v. We

therefore have that

αv¼rψ1�rψ2 (2.7.1)

where α is some scaling factor. Since the divergence of the cross product of two gra-

dient fields is identically zero, we must have that r�(αv)¼0. In steady flow we can

choose α to be the flow density since then this condition is satisfied by virtue of con-

servation of mass, Eq. (2.2.6). When the flow is incompressible α can equally well be
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taken as 1. Stream functions and streamlines are key quantitative concepts particularly

with reference to rapid distortion theory and the drift function, topics to be covered in

Chapter 6.

We can analogously define vortex lines, lines everywhere tangent to the vorticity

vector that can be thought of as instantaneously stringing together the axes of rotation

of adjacent fluid particles (the vorticity is twice the angular velocity of the fluid par-

ticles). Being a rotational field, the divergence of the vorticity is identically zero and

thus from the divergence theorem we have that the net flux of vorticity out of any

closed surface is zeroð
S

ω � n oð ÞdS¼
ð
V

r�ωdV50 (2.7.2)

because the divergence of a curl operation is zero. This is valid regardless of the flow,

the fluid, or the thermodynamic conditions and can be interpreted as saying that all

vortex lines entering a volume must exit from it and thus, all vortex lines must con-

tinue to infinity or form loops. This is one of Helmholtz’ vortex theorems.

Rotation in a fluid on a macroscopic scale is measured in terms of circulation Γ, the
integral around a closed loop C of the velocity component along the loop:

Γ�
ð

↺

C

v � ds (2.7.3)

Circulation and vorticity are related through Stokes’ theorem, which states that the

circulation around a loop is equal to the net flux of vorticity through any open surface

bounded by that loop:

Γ¼
ð

↺

C

v � ds¼
ð
S

r�vð Þ � n oð ÞdS¼
ð
S

ω � n oð ÞdS (2.7.4)

Stream surface
y1= const

Stream surface
y2= const

Flow direction 

Curves defining 
stream surfaces

∇y1

∇y2

v

Fig. 2.2 Relationship between stream surfaces and streamlines.
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where n(o) is a unit normal vector pointing out of the surface, this direction being given

by the right-hand rule applied to the direction of the line integral around loop C. This
too is a mathematical identity, but one containing subtleties. For example, Eq. (2.7.4)

cannot be applied to just any loop because not all loops bound surfaces over which the

vorticity is defined. A case in point is steady irrotational flow around a

two-dimensional airfoil of infinite span. For any loop that contains the airfoil, no sur-

face can be drawn bounded by that loop that does not pass inside the airfoil where the

vorticity is undefined. Thus Stokes’ theorem cannot be applied and we can have a cir-

culation around the airfoil even though the flow has no vorticity. In the real flow about

an airfoil the vorticity is trapped in the airfoil boundary layer and wake as we will

demonstrate below. Note that in the irrotational flow, all loops that pass around the

airfoil have the same circulation since two loops of different sizes form the perimeter

of an annular surface on which we can apply Stokes’ theorem.

The rate of change of circulation around a loop of fluid particles that convects with

the flow is DΓ/Dt, which can be written, starting with Eq. (2.7.3), as:

DΓ

Dt
¼ D

Dt

ð

↺

C

v � ds¼
ð

↺
C

Dv

Dt
� ds+

ð
↺

C

v � D dsð Þ
Dt

(2.7.5)

Since ds represents the distance between adjacent fluid particles in the fluid loop, the

rate of change of this seen moving with the flow D(ds)/Dt is merely the difference in

velocity between the particles dv. Since v � dv¼ 1⁄2d v2i
� �

and vi
2 will have the same

value at the beginning and end of the loop, the last integral is zero. Substituting

the momentum equation (2.5.1) for Dv/Dt we obtain,

DΓ

Dt
¼�

ð

↺

C

rp

ρ
� ds+

ð

↺

C

e � ds (2.7.6)

This is Kelvin’s circulation theorem. The terms on the right-hand side are called the

pressure force torque and viscous force torque, respectively. We can evaluate the

pressure torque by applying Stokes’ theorem to this line integral,

ð

↺

C

rp

ρ
� ds¼

ð
S

r� rp

ρ

� 	
� ndS¼�

ð
S

1

ρ2
rρ�rp

� 	
� ndS

If the fluid is barotropic so that the density is a unique function of pressure (as in isen-

tropic flow), or if the density is constant, then rρ�rp is always zero. In these sit-

uations, therefore, circulation can only be changed around a fluid loop as a

consequence of viscous forces acting on that loop.

This has profound implications. Eq. (2.7.6) applies to a fluid loop, however small,

including one wrapped around a single fluid particle. It therefore says that, in the

absence of pressure and viscous force torques, the vorticity of a fluid particle

will not change and if it is initially zero, then it will remain zero (this is the second
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of Helmholtz’ theorems). Thus vorticity is convected with the flow as if it were part of

the fluid material. In flows that begin with an irrotational free stream, vorticity will

only appear where pressure or viscous force torques act.

A second implication is known as the starting vortex. Consider a stationary

two-dimensional airfoil of infinite span in a stationary fluid. We define a fluid

loop that encloses the airfoil (Fig. 2.3) and is large enough so as to remain outside

any viscous flow generated once the airfoil starts moving. Obviously the circulation

around this loop is zero and, according to Kelvin’s theorem, will remain zero. The

airfoil begins moving, developing a lift and therefore (as we will see below) a circu-

lation. Vorticity is generated by viscous torques acting at the airfoil surface, and

some of this is swept into the developing airfoil wake. For the circulation around

the loop to remain zero, the circulation around this wake must be equal and opposite

to that around the airfoil. We can apply a similar argument to any unsteadiness

in the airfoil circulation once it is in motion and thus conclude that all such fluctua-

tions must result in the shedding of vorticity of equal and opposite strength in

the wake.

In incompressible flow the viscous force per unit mass can be calculated using

Eq. (2.3.12) from the Laplacian of the velocity. Expanding this using vector identities

gives,

e¼ μ

ρ
r2v¼ ν r r � vð Þ�r�r� vð Þ¼�νr�ω (2.7.7)

where μ/ρ is the kinematic viscosity which is taken as a constant. We see that the vis-

cous force is zero if the flow is irrotational. So, if a barotropic flow is initially irro-

tational then it will remain irrotational because it cannot produce viscous torques in

the absence of a boundary, and without viscous torques no new vorticity can be gen-

erated. The implication is that vorticity and viscous effects can only originate at the

Fluid loop G=0

−G G

Stationary airfoil Airfoil begins moving

Fig. 2.3 The starting of an airfoil from rest.
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flow boundaries and, in practice, this occurs at solid surfaces as a result of the no slip
condition. To all intents and purposes, this is also true in compressible flows with low

Mach number when the viscosity is constant, or nearly so, and where Eq. (2.3.12) is

valid to an error of the order of the Mach number squared.

The no slip condition describes the observation that fluid immediately adjacent

to a solid surface cannot move relative to it. This causes the formation of a bound-
ary layer—a thin layer of fluid over the surface where the speed of flow is slowed

by friction in the form of viscous forces. Boundary layers can be laminar but at

high Reynolds numbers, or when disturbed, they become turbulent. Separated

flows and wakes are always created from boundary layers. Vorticity generated

by viscous action thus populates all these regions. When, as is usually the case,

these flows are turbulent, much of the turbulence energy is contained in large orga-

nized eddies, also termed coherent structures or vortices. A classic example is the

nearly regular train of eddies that can be shed into the wake of a bluff body, known

as a vortex street. In most other flows, coherent structures are less organized than

this, but are no less important in determining the dynamics of the flow and the

sound it produces.

In aeroacoustics, turbulent motions are often referred to as gusts, commonly with

the adjectives “turbulent” or “vortical.” The linearity of most aeroacoustics problems

means that it makes sense to decompose these motions into sinusoidal components

that are then considered separately, hence the mathematically useful but physically

improbable concept of a sinusoidal gust. Given Helmholtz’ vortex theorems, vorticity,

coherent structures, and gusts are often conceptualized as being convected by the local

time-averaged flow, implying, whether true or not, that these are small disturbances

and that viscous force torques act on a timescale large compared to the others control-

ling the flow. This latter assumption requires that the ratio of the scale of the inertial

forces to that of viscous forces is large, which implies high Reynolds number flow.

2.7.2 Ideal flow

In general, aerodynamic surfaces are designed to operate with low drag and thus with

boundary layers that remain thin compared to the overall scale of the surface. There-

fore, aerodynamic performance with the exception of drag can often be modeled by

ignoring the boundary layer altogether and assuming irrotational flow. If the flow is of

low Mach number, homentropic, and can be considered incompressible, then the

governing equations become particularly simple and we refer to the resulting motion

as ideal flow.
The governing equations of ideal flow are obtained by first considering the condi-

tion of irrotationalityr�v¼0, which is identically solved by expressing the velocity

as the gradient of a scalar function ϕ, called the velocity potential (hence our previous
references to potential flow in this chapter). Note that the absolute value of the veloc-

ity potential has no meaning since it is important only in that its gradient gives the

velocity field.

Under the conditions of ideal flow, the momentum equation, in the form of

Eq. (2.5.5), reduces to Bernoulli’s equation for unsteady potential flow,
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@ϕ

@t
+
1

2
v2i +

p

ρ
¼ const (2.7.8)

where the constant can be a function of time. The continuity equation (2.2.10)

becomes simply r�v¼0, or

r2ϕ¼ 0 (2.7.9)

This is, of course, Laplace’s equation. The challenge of ideal flow is to find solutions

to Laplace’s equation that satisfy the boundary conditions of the problem at hand.

Since, the continuity equation is only first order in terms of velocity we can only sat-

isfy one boundary condition and thus we choose to satisfy the nonpenetration condi-

tion v�n¼@ϕ/@n¼0 on rigid surfaces, where n is a unit vector normal to the surface.

The no slip condition is ignored since in any case our assumptions preclude modeling

of the vortical boundary layer that it generates.

Many important aerodynamic results are obtained by considering the case of ideal

flow in two dimensions. In this case we make use of the fact that any analytic function

of a complex variable is a solution to Laplace’s equation. As the independent variable

we choose a complex coordinate z¼x1+ ix2 to define positions in the flow. As depen-
dent variables we define the complex potentialw(z) and complex velocityw0(z), where

w zð Þ¼ϕ+ iψ and w0 zð Þ¼ v1� iv2 (2.7.10)

The streamfunction ψ used to complete the complex potential is obtained from

Eq. (2.7.1) with α¼1, ψ¼ψ1, and ψ2¼x3, the latter representing the stream surfaces

coincident with the x1-x2 planes in which the two-dimensional flow takes place. With

these values we obtain v1¼@ψ /@x2 and v2¼�@ψ /@x1 (compared to v1¼@ϕ/@x1 and
v2¼@ϕ/@x2). Note that the complex velocity is defined with its imaginary part equal

to �v2 since in this case we have,

w0 ¼ dw

dz
¼ @ϕ

@x1
+ i

@ψ

@x1
¼ 1

i

@ϕ

@x2
+
@ψ

@x2
¼ v1� iv2 (2.7.11)

Since Laplace’s equation is linear, the solution to complicated flow problems can be

obtained through the superposition of simple solutions expressed as functions of the

complex variable z¼x1+ ix2. To match the nonpenetration boundary condition of a

solid surface the stream function, or the imaginary part of w(z), must be chosen to

be a constant on that surface, and the solutions to many problems can be obtained

by superimposing simple flows to meet this criterion. The complex velocity of some

simple flows representing a point source, a vortex, and a doublet, are

w0 zð Þ¼ q

2π z� z1ð Þ w0 zð Þ¼ �iΓ

2π z� z1ð Þ w0 zð Þ¼ Aeiβ

2π z� z1ð Þ2
Source Vortex Doublet

(2.7.12)

34 Fundamentals



where q, Γ, and A are real constants that denote the strength of these flows, z1 denotes
their positions, and angle β denotes the orientation of the doublet. The free stream

contribution to the flow is simply a constant w0(z)¼U∞ exp(�iα) where α is the free

stream angle. The flows of Eq. (2.7.12) all have singularities of infinite velocity at the

point z¼ z1 where they are not analytic. Everywhere else, however, these are valid.

Fig. 2.4 illustrates the flows. The source is simply flow away from the point z¼ z1,
the magnitude of the radial velocity decaying with the inverse of the radius. Despite

appearances, this flow (as it must) satisfies conservation of mass everywhere except

the singularity at its center, where fluid is produced at a volumetric flow rate of q per
unit span. By convention a source with a negative strength is referred to as a sink. The

vortex produces a flow that orbits the singularity with a tangential velocity that decays

inversely with radius. This is an entirely irrotational flow outside the singularity, but

one that has a circulation Γ around any loop that encloses the singularity. Consistency

with Stokes’ theorem is maintained in one of two ways. We can argue that Stokes’

theorem doesn’t apply since any surface bounded by a loop containing the singularity

must pass through the singularity and therefore out of the domain where the velocity

is defined. Alternatively, we can think of the point vortex as an idealization of an

eddy where all the vorticity has been concentrated into a point at its center with a mag-

nitude Γ. The vorticity is then given as Γδ(x1)δ(x2) and integration of the delta func-

tions in Stokes’ theorem yields the correct circulation. The doublet flow can be likened

to a source and sink placed very close together. Flow is produced on one side of the

doublet and is then reabsorbed on the opposite side. The orientation of the doublet,

defined by the direction of flow along the single straight streamline that passes

through its singularity, is set by the parameter β.
With equal validity we can think of the flow fields generated by adding these sin-

gularities as representations of steady flows or as snapshots of unsteady flows. For

example, consider the flow generated by a point vortex of strength Γ placed at a height

h above a plane solid surface, i.e., at z1¼ ih (Fig. 2.5). To satisfy the nonpenetration

condition imposed at the surface the circular vortex flow must be modified. This

Source

ix2

x1

ix2

x1

ix2

x1

DoubletVortex

Fig. 2.4 The elementary ideal flows of Eq. (2.7.12) with z1¼0 and β¼0. For positive strength

the flow is outward from the source, counter-clockwise around the vortex and exits the doublet

in the x1 direction.
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modification is determined using the method of images, which says that the influence
of the wall on a singularity is identical to the effect of adding the mirror image of that

singularity in the wall. In this case, where the wall is coincident with the x1 axis, the
image will be a counter-rotating vortex of strength�Γ at the location z1¼� ih. Essen-
tially the addition of the mirror image flow cancels out the wall-normal velocity com-

ponent at the surface, making it a streamline of the flow. The complex velocity and

complex potential of this flow, illustrated in Fig. 2.5B are thus,

w0 zð Þ¼� iΓ

2π z� ihð Þ +
iΓ

2π z+ ihð Þ (2.7.13)

w zð Þ¼� iΓ

2π
ln z� ihð Þ + iΓ

2π
ln z+ ihð Þ (2.7.14)

where the complex potential is obtained by integration of the complex velocity

according to Eq. (2.7.11). In these equations the second term represents the flow

induced by the presence of the surface. This becomes an unsteady problem if we want

the vortex singularity to represent the behavior and influence of a real flow feature, i.e.,

an eddy. The eddy will move as it is convected by the rest of the flow, and thus

Fig. 2.5B represents only one instant of the flow history. To estimate the convection

velocity in the ideal flow model we only need determine the velocity of the rest of the

flow at the singularity, where “rest of the flow” includes the image representing the

influence of the surface. The convection velocity wc
0 is therefore determined by eval-

uating Eq. (2.7.14) at z¼ ih, ignoring the first term since that represents the vortex

itself, to give w0
c ¼Γ=4πh. Noting that this is entirely real, we conclude that the vortex

convects itself parallel to the surface. The ability of a point vortex to represent actual

eddies in an idealized way makes it particularly useful in aeroacoustics.

x1

ix2

x1

G

–G

h

h

(A) (B)

Fig. 2.5 Modeling the flow produced by a point vortex close to a plane surface coincident with

the x1 axis using the method of images. (A) Placement of the image vortex and

(B) resulting flow.

36 Fundamentals



As a second example, consider the steady flow past a circular cylinder. In its sim-

plest form this can be simulated by placing an opposing doublet in a free stream, giv-

ing a complex velocity field of

w0 zð Þ¼U∞e
�iα� Aeiα

2π z� z1ð Þ2 (2.7.15)

It is left as an exercise for the reader to show that this flow, shown in Fig. 2.6A, con-

tains a circular streamline centered at z1 of radius R¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=2πU∞

p
. Adding a point vor-

tex at z1 does not change the circular streamline since the vortex velocity field is

entirely tangential, but alters the flow to represent circulation around the cylinder

(Fig. 2.6B). The complex velocity field, expressed in terms of the cylinder radius

R is then

w0 zð Þ¼U∞e
�iα�U∞R

2eiα

z� z1ð Þ2 �
iΓ

2π z� z1ð Þ (2.7.16)

Of course, neither of the ideal flows shown in Fig. 2.5 are very useful as representa-

tions of the actual flow around a cylinder, which is dominated by the shedding of a

thick rotational wake. However, as will be discussed below, the circular cylinder with

circulation is useful as a starting point for airfoil analysis where ideal flow does pro-

vide realistic solutions. Note that in this example we have considered the singularities

to be held in place at z1 and therefore representing a steady flow about a fixed cylinder.

A third example, with which we introduce the Milne Thompson circle theorem,
combines the last two giving us the flow past a circular cylinder in the presence of

a vortex. The Milne Thomson circle theorem enables us to introduce a circle of radius

R centered at the origin, into any ideal flow w(z) as long as that flow contains no other

rigid boundaries. With the circle, the complex potential becomes

w1 zð Þ¼w zð Þ +w* R2=z
� �

(2.7.17)

(A)

ix2

x1

ix2

x1

(B)

Fig. 2.6 Ideal flow past a circular cylinder obtained from Eqs. (2.7.15), (2.7.16) with z1¼α¼0.

(A) Γ¼0 and (B) Γ<0.
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where w*() is the complex conjugate of function w(), obtained by conjugating all the

constants in w() (whether they are additive or multiplicative). This is easily proven by

substituting the coordinates on the circle z¼Rexp(iθ) where θ is angle measured from

the real axis about the origin. We then obtain,

w1 zð Þ¼w zð Þ +w* R exp �iθð Þð Þ¼w zð Þ +w* z*ð Þ¼w zð Þ + w zð Þ½ �* (2.7.18)

Thus the complex potential w1 is entirely real on the surface of the cylinder, implying

that the streamfunction is constant, and thus the cylinder is a streamline. To proceed

with our example, consider the flow generated by an isolated point vortex located at z1.
From Eq. (2.7.12) we will have that

w zð Þ¼�iΓ

2π
ln z� z1ð Þ (2.7.19)

Applying the Milne Thompson theorem to add the cylinder to this flow we obtain

w1 zð Þ¼�iΓ

2π
ln z� z1ð Þ + iΓ

2π
ln

R2

z
� z*1

� 	
(2.7.20)

This flow field, shown in Fig. 2.7 can be understood by decomposing the second term

in Eq. (2.7.20) which, by analogy with our plane wall example and Eq. (2.7.14), is

referred to as the image of the vortex in the circle. Specifically, we can write

iΓ

2π
ln

R2

z
� z*1

� 	
¼ iΓ

2π
ln �z*1

z

� 	
z�R2

z*1

� 	� �

¼ iΓ

2π
ln z�R2

z*1

� 	
� iΓ

2π
ln zð Þ + const (2.7.21)

where the constant can be ignored since it has no impact on the velocity field. We see

that the image consists of a point vortex at the cylinder center and another at R2/z1* of
equal and opposite strength to the original vortex, respectively. This vortex configu-

ration is shown in Fig. 2.7 which shows that the position R2/z1*, referred to as the

inverse point, lies inside the circle on the line joining the center of the circle to the

position of the original vortex. Note the strength of image vortex at the center of

the circle can be adjusted or set to zero so the net circulation around the cylinder is

modified. This doesn’t alter the circular streamline representing the cylinder since

the vortex only generates tangential velocities.

As with the plane wall example, we can compute the convection velocity of the

vortex by calculating the velocity produced by the rest of the flow at z1. This involves
differentiating Eq. (2.7.21) and substituting z1 for z. Expressing the result in polar

velocity components, which can be calculated as vr� ivθ ¼w0
c exp iθð Þ, we find that

the vortex has no radial convection and moves tangentially with a velocity
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vθ ¼� Γ

2πr1

R2

r21 �R2

� 	
(2.7.22)

where r1¼jz1j.
Returning to the uniform flow past a circular cylinder with circulation, Fig. 2.6B, it

is clear that the flow passing through the cylinder is being deflected downward. To

sustain this there must be an upward force on the cylinder, i.e., a lift. Lift is by def-

inition a force perpendicular to the free stream. It is given by theKutta Joukowski the-
orem which relates the lift force on any two-dimensional body in an otherwise

undisturbed uniform flow to the circulation around it as,

Lift per unit span¼�ρU∞Γ (2.7.23)

which equals to �F2/b in terms of the span b and the force F2 acting on the fluid (the

convention for forces in aeroacoustic analysis). Note that, the caveat “otherwise

undisturbed” is important—any other disturbance to the flow around the body, say

from a vortex, or a nearby surface or another body, invalidates this result. The

Kutta Joukowski theorem can be derived from first principles or as a special case

of the Blasius theorem. This gives the steady force per unit span integrated over

any closed contour C (not just a body surface) in any ideal flow in terms of its com-

ponents in the x1 and x2 directions as

F1� iF2 ¼� iρb

2

þ
C

w zð Þ2dz (2.7.24)

Note that the sign of this expression has been chosen so that it gives the force on the

fluid exterior to the contour rather than on the body or region inside. The force is there-

fore given by the residues of the functionw0(z)2 at singularities withinC. For example,

ix2

x1R

z1

R2/z*
1

Fig. 2.7 Ideal flow produced

by a point vortex in the

vicinity of a circular cylinder

obtained from Eq. (2.7.20)

with no adjustment to the

strength of the image at the

cylinder center.

The equations of fluid motion 39



Blasius theorem gives the force components on the vortex adjacent to the wall in

Fig. 2.5 as F1¼0 and F2¼�ρΓ2b/4πh if use is made of the identity that

1

2πi

þ
C

dz

zn
¼ 1 n¼ 1

0 n> 1



2.7.3 Conformal mapping

The complex representation of ideal flow permits flow solutions to be modified by

conformal mapping. Specifically, any complex function z¼ z(ζ) can be used to

map one coordinate pair, say, ζ¼ξ1+ iξ2 to another z¼x1+ ix2. This enables us to take
a simple flow solution in terms of ζ, constructed using the methods described above,

and transform it into a more sophisticated flow, in terms of z. Specifically, we can map

a complex potential constructed in the ζ plane,W(ζ), to a new complex potential,w(z),
in the z plane by writing

w zð Þ¼W ζ zð Þð Þ (2.7.25)

This transfers the value of the complex potential at the point ζ to the point z, and thus
the streamlines of the flow are deformed in the same way that the mapping deforms the

space. Since both w andW are functions of a complex variable, they are both solutions

to Laplace’s equation wherever these functions are analytic. We can get the complex

velocity in the mapped domain w0(z) simply by differentiating

w0 zð Þ¼ dw

dz
¼ dW

dζ

dζ

dz
¼W0 ζð Þdζ

dz
(2.7.26)

At points where the derivative of the mapping function dz/dζ¼0, singularities can

appear in the mapped flow that were not in the original flow. These are known as crit-
ical points. Everywhere else the mapping is referred to as conformal. Angles of inter-
section are preserved under conformal mapping, but not at critical points. Thus critical

points are very useful for creating flow past a geometry with a sharp corner from one

that is smooth (such as the circular cylinder). A good example and perhaps the most

important example of mapping for aeroacoustics, is the Joukowski mapping. This is

given by the function z¼ζ+C2/ζ, whereC is a real constant. This has critical points on

the real axis at ζ¼�C corresponding to z¼�2C. The Joukowski mapping transforms

the space outside a circle of radiusC centered on ζ¼0 in the ζ plane to the whole space
by, effectively, flattening the circle on to a strip of length 4C on the real axis

(Table 2.1). Angles of intersection are preserved everywhere except at the critical

points at the end of the strip where they are doubled, for example from the 180-degree

angle on the exterior of the circle to 360 degrees at the end points of the strip.

Applied to the flow past a circular cylinder placed at the origin, the Joukowski map-

ping can be used to produce the flow past a flat plate. This is, of course, the most ele-

mental representation of an airfoil. For a flat plate of chordlength c¼2awe choose the
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mapping constant and the radius of the cylinder to both be a/2. The flow past the cyl-

inder is thus, from Eq. (2.7.16),

W0 ζð Þ¼U∞e
�iα�U∞a

2eiα

4ζ2
� iΓ

2πζ
(2.7.27)

And thus by integration we have

W ζð Þ¼U∞ζe
�iα +

U∞a
2eiα

4ζ
� iΓ

2π
ln ζð Þ (2.7.28)

The inverse of the mapping function to be substituted into the complex potential is

ζ¼ z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2�a2

p

2
(2.7.29)

where the branch cut of the square root is chosen to lie along the axis between the

critical points at z¼�1. The result after simplification is,

w zð Þ¼U∞z cos α� iU∞
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2�a2

p� �
sin α� iΓ

2π
ln

z+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2�a2

p

2

 !
(2.7.30)

This flow field is most easily plotted by evaluating the position of streamlines in flow

past the cylinder and then transforming those positions using the mapping function.

The result, shown in Fig. 2.8A, for an angle of attack α of 5 degrees and a circulation

around the cylinder Γ/aU∞ of �1, is mathematically consistent but physically unset-

tling. The flow is seen to pass around the sharp trailing edge of the flat plate, a behav-

ior never observed in practice. The boundary layer present in real airfoil flows will

always force the flow to detach smoothly from a sharp trailing edge, a constraint

known as the Kutta condition. To satisfy the Kutta condition in an ideal flow the cir-

culation around the cylinder must be chosen such that the rearward stagnation point

(where the flow detaches from the cylinder) sits at the right-hand critical point that

ends up forming the trailing edge of the plate. This requires that

Γ¼�2πaU∞ sin α (2.7.31)

Fig. 2.8B shows the flow in the z plane when the circulation is fixed at this value. Note
that it can easily be shown that the circulation is unchanged by mapping. This means

that the circulation around the cylinder in Eq. (2.7.31) is also the circulation around the

plate, and thus the lift force per unit span on the plate is

�F2=b¼ 2πaρU2
∞ sin αð Þ (2.7.32)

The lift coefficient Cl ¼�F2=1⁄2ρU2
∞cb where c is the plate chord 2a, is thus equal to

2π sin(α), or 2πα for small angles.
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Table 2.1 Conformal mappings showing their effects on space

Mapping function ζ plane z plane

Joukowski

z¼ ζ +
C2

ζ

Half-plane

z¼ ζ2

Logarithm

z¼ h

π
lnζ

4
2

F
u
n
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Step

z¼ h

π

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2�1

p
+cosh�1ζ

� 	

Schwartz-Christophel

dz

dζ
¼
YN�1

n¼1

ζ�ξ nð Þ
1

� �α nð Þ�π
π

Points a0 through e0 in the mapped (z) plane correspond to points a through e in the ζ plane.
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The Joukowski mapping can be used to create flows past airfoils with thickness and

camber as well. This is done by shifting the center of the initial circular cylinder to the

left in the negative ξ1 direction (adding airfoil thickness) or upwards in the direction of
iξ2 (adding camber) while enlarging its radius to ensure that it still cuts the right-hand

critical point at ζ¼C, so that a sharp trailing edge is produced (Fig. 2.9A). If we retain
a/2 as our mapping constant the cylinder will have a radius R>a and will produce a

flowfield, in terms of the complex potential, of

W ζð Þ¼U∞ ζ� ζ1ð Þe�iα +
U∞R

2eiα

ζ� ζ1
� iΓ

2π
ln ζ� ζ1ð Þ R¼ ζ1�Cj j (2.7.33)

where ζ1 is the position of the center of the mapping circle. Substituting the inverse of

the mapping function Eq. (2.7.24) gives the airfoil flow, and the velocity field

w0 zð Þ¼W0 ζð Þ dζ

dz

� 	

¼ U∞e
�iα�U∞R

2eiα

ζ� ζ1ð Þ2�
iΓ

2π ζ� ζ1ð Þ

( )
1

1�a2=4ζ2
� � (2.7.34)

The circulation needed to satisfy the Kutta condition by placing the rearward stagna-

tion point on the cylinder at ζ¼C can be obtained from Eq. (2.7.33) as

Γ¼�4πRU∞ sin α+ βð Þ (2.7.35)

so that the two-dimensional lift coefficient is

Cl ¼ 8π
R

c
sin α + βð Þ (2.7.36)

iξ2

ξ1 ξ1

a

U∞

iξ2

(A) (B)

Fig. 2.8 Uniform flow past a flat plate at an angle of attack of 5 degrees. (A) Γ/aU∞¼�1 and

(B) Γ/aU∞¼�2π sin α.
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As shown in Fig. 2.9A, β is the angle between the real axis and the cylinder radius at

the right-hand critical point, so that sin β¼ Im(ζ1)/R. So it is straightforward to place

the center of the mapping circle so as to select the angle of attack α¼�β at which the
airfoil passes through zero lift. As noted above, increasing Im(ζ1) increases the cam-

ber of the airfoil, and increasing �Re(ζ1) produces a thicker foil. Sample airfoils and

the flows they produce are shown in Fig. 2.9. For a symmetric airfoil (Im(ζ1)¼0) the

maximum thickness tmax (which occurs near 30% chord) and the chordlength c can be
estimated as

tmax

C
��5:2

Re ζ1=Cð Þ
R=Cð Þ0:8 and

c

C
¼ 3�2Re ζ1=Cð Þ+ 1

1�2Re ζ1=Cð Þ (2.7.37)

where the second of these expressions is exact. These equations can be used approx-

imately for airfoils with modest camber.

Other mapping functions have been devised that produce a variety of useful results.

A selection of those most relevant for aeroacoustics applications are listed in

Table 2.1, along with diagrams showing their effects on the geometry of the space.

ζ-plane

C

ζ1

R

b

α
U∞

ix2

x1

ix2

x1

(A)

(B) (C)

Fig. 2.9 Joukowski mapping of an airfoil with thickness and camber. (A) Nomenclature in

the ζ plane. (B) Airfoil flow generated with α¼10 degrees and ζ1¼�0.3C and (C) with

ζ1¼ (�0.3+0.2i)C.
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An important footnote in the application of conformal mapping to aeroacoustics

problems comes when calculating the convection of a point vortex. One such example

is the convection of a vortex past a lifting airfoil, which can be modeled in the z
plane by applying the Joukowski mapping to the flow of a free stream flow past a cir-

cular cylinder in the presence of the vortex, generated in the ζ plane using the Milne

Thompson circle theorem. Superficially, it appears that we should be able to deter-

mine the convection velocity in the z plane from that in the ζ plane using

Eq. (2.7.26). However, Eq. (2.7.26) is not strictly valid at the singularity of the con-

vecting vortex since the flow here is not irrotational [6]. A more careful analysis [7]

shows that the convection velocity is correctly calculated as

w0
c ¼W0

c

dζ

dz
� iΓ

4π

d2ζ

dz2
dz

dζ
(2.7.38)

where all terms are calculated at the location of the convecting vortex, and Γ is the

strength of that vortex. This modification is called Routh’s correction.

2.7.4 Vortex filaments and the Biot Savart law

It is self-evident that all flows of practical interest are three dimensional. The

two-dimensional methods we have outlined in the previous two sections are valuable

because they provide tools for analyzing the fluid dynamics in regions where the flow

can be assumed invariant in the third dimension. When fully three-dimensional ideal

flow analysis is required conformal mapping is no longer an option, and the superpo-

sition of elementary flows becomes the main method by which solutions are found to

match the boundary conditions of interest.

Viewed in three dimensions, the source, vortex, and doublet singularities of

Eq. (2.7.12) extend to infinity and are known as line singularities or filaments.

A source and doublet truly confined to a three-dimensional point can also be defined.

The extensive engineering tools that exist to configure distributions of these flows to

represent the aerodynamics of wings and other devices [5] are beyond the scope of fun-

damental aeroacoustics. Instead we focus here on the analysis of the vortex filament as a

fundamental model of the dynamics of organized vorticity in three-dimensional flows.

In general, a three-dimensional vortex filament can trace a path of any shape

through space provided that, for consistency with Helmholtz’ theorems, it forms a

loop or extends to infinity. The vortex strength, denoted by the circulation it generates

Γ, cannot vary along the filament length since any variation would violate the require-

ment that Eq. (2.7.4) is independent of the surface chosen. The velocity field generated

by an arbitrary filament is given by the Biot Savart law:

v xð Þ¼� Γ

4π

ð
C

x�yð Þ�dy

jx�yj3 (2.7.39)

As shown in Fig. 2.10A, this equation gives the velocity as a function of position x in

terms of an integral with respect to distance along the filament defined by the
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coordinate y. This equation can be derived [3] by solving ω¼r�v for the velocity v

in terms of the vorticityω and then applying this solution to the singular vorticity field

of the filament.

Consider, for example, the application of the Biot Savart law to simple straight

filament, Fig. 2.10B. We will use Eq. (2.7.39) to calculate the velocity induced by

the filament at the origin (x¼0). There is no loss of generality here since the origin

can be placed at whatever point is of interest. We express position on the filament y

in terms of the perpendicular distance to the filament h and the angle θ between y and
the filament. Following the geometry apparent in Fig. 2.10B we have that

v¼ Γ

4π

ð
C

y�dy

jyj3 ¼ Γt

4π

ð
C

hdyj j
jyj3 ¼ Γt

4π

ð
C

h2=sin2θ

h3=sin3θ
dθ¼� Γt

4πh
cos θð Þ½ �C (2.7.40)

Here t represents the unit vector in the direction of y�dy, i.e., perpendicular to the

plane containing both the filament and the point where we obtain the velocity. For

an infinite straight filament θ varies from 0 to π and thus Eq. (2.7.40) predicts a veloc-

ity magnitude of Γ/2πh. Such a flow is indistinguishable from a two-dimensional point

vortex, and thus this result is identical to the velocity field implied in Eq. (2.7.12).

Eq. (2.7.40) is much more generally applicable, however. We note that the Biot Savart

law shows that the velocity induced by any vortex filament is equal to a linear sum of

contributions from each element of the filament length. Thus we can meaningfully use

Eq. (2.7.40) to extract the velocity contribution due to a finite portion of the filament,

say between θ¼θ1 and θ2, as

v¼ Γt

4πh
cos θ1ð Þ� cos θ2ð Þ½ � (2.7.41)

dy

y
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G

Curve C

∞

∞

y

O

G

dy
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(A) (B)

q2

q1

Fig. 2.10 Nomenclature for the Biot Savart law. (A) General case and (B) straight filament.
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We can now estimate the velocity field of a filament of any geometry by discretizing

that geometry as a series of straight segments and using Eq. (2.7.39) to compute the

velocity contribution from each segment. This calculation is sometimes more easily

performed with Eq. (2.7.41) rewritten in terms of the vectors y1 and y2 that locate the

ends of the segment (Fig. 2.10B):

v¼ Γ

4π

y1�y2
jy1�y2j2

y1�y2ð Þ � y1
y1j j�

y2
y2j j

� 	� �
(2.7.42)

Just as in two dimensions we can envision the different parts of a vortex filament being

convected by the velocity field of the rest of the flow at those points and thus, one

would hope, mimic the behavior of a real eddy. However, there is a complication here

since one part of a vortex filament can clearly convect another. A classic example is

the circular vortex ring which, like a smoke ring, should convect itself along its axis.

Unfortunately, the self-convection velocity turns out to be infinite at any point where a

filament is curved (such as in the case of the ring) or forms a corner (such as with a

discretized filament). In the latter case this is easily visualized in the case of two seg-

ments meeting at a right angle. As the corner is approached along one segment the

velocity induced by the other tends to infinity since h in Eq. (2.7.40) tends to zero.

The solution to this problem is to recognize that a real eddy has a rotational core

of finite radius and thus a scale below which its motion cannot be modeled as a vortex

filament in irrotational flow. So, we introduce a “cut off” distance d, assumed propor-

tional to the core radius, and exclude the section of filament within an arc-length d of
the point where the convection velocity from the Biot Savart law is required. An

accepted value for d, obtained by comparison with known results for finite-core vor-

tices due to Kelvin, is 0.642 times the core radius [8].
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3Linear acoustics

In this chapter we will review the basic concepts of linear acoustics. We will start by

deriving the acoustic wave equation for small linear perturbations in a stationary fluid

and then discuss the general characteristics of sound propagation, the sound radiation

from volume displacement and dipole sources, the far field approximation, and acous-

tic scattering. We will also introduce the concept of Green’s functions and solutions to

the wave equation in both the time and the frequency domains. Finally, the concept of

Fourier transforms and their application in acoustics will be discussed.

3.1 The acoustic wave equation

Consider sound generation and propagation in a medium where there is no signif-

icant flow and where the time average properties are uniform throughout the region

of interest. In this situation acoustic waves are the only source of pressure and

velocity fluctuations. We limit consideration to sound levels which are less than

about 140 dB (re 20 μPa) in air or about 220 dB (re 1 μPa) in water. This covers

almost all sound levels of practical significance, and allows us to assume that the

perturbations of density caused by the sound wave are much smaller than the mean

density.

To demonstrate this, consider a sound wave that propagates isentropically so that

the relationship between density and pressure perturbations, discussed in Section 2.4,

is given by

p0 ¼ ρ0c2o c2o ¼
@p

@ρ

� �
s

(3.1.1)

where co is the sound speed, defined by the isentropic bulk modulus of the fluid.

Typical values are co¼343 m/s in air and co¼1500 m/s in water. It follows that

the density perturbation for a sound level of 140 dB (re 20 μPa) in air is about

1.7�10�3 kg/m3, which is very much less than the mean density of 1.2 kg/m3. In

water a sound level of 220 dB (re 1 μPa) corresponds to a density perturbation of

0.044 kg/m3, which is much smaller than the mean density of 1000 kg/m3. It is there-

fore reasonable to assume that ρ0≪ρo for all acoustic waves of interest, and this allows
us to develop the equations of linear acoustics.

The first step in deriving the linear acoustic wave equation is to use the assumption

of small density perturbations in the continuity equation given by Eq. (2.2.6).

@ρ

@t
+
@ ρvið Þ
@xi

¼ 0 (2.2.6)
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We replace ρ by ρo+ρ0 and assume ρ0≪ρo, where ρo is independent of time and

constant throughout the medium, to give

@ρ0

@t
+
@ ρovið Þ
@xi

+
@ ρ0við Þ
@xi

� @ρ0

@t
+ ρo

@vi
@xi

� 0 (3.1.2)

Note that vi represents only velocity fluctuations due to the acoustic waves, since there
is no mean flow. Next we consider the momentum equation given by Eq. (2.3.9). We

neglect viscous effects and apply the assumption of small density perturbations to give

@ ρvið Þ
@t

+
@ ρvivj + pij
� �

@xj
� ρo

@vi
@t

+
@ po + p

0ð Þ
@xi

+ ρo
@ vivj
� �
@xj

� 0

The first term on the right is linearly dependent on small perturbations of velocity and

the second term appears to depend on both the mean pressure gradient and the gradient

of the pressure perturbation. However in a stationary fluid the mean pressure gradient

is zero and only matched by gravitational forces which have been ignored, so we can

specify @(po+p
0)/@xi¼@p0/@xi, which is also linearly dependent on small quantities.

The term @(vivj)/@xj is nonlinear and involves the product of two small quantities.

To determine the importance of this term we assume that the perturbation has a time

scale Ts and lengthscale λ so that λ/Ts is of the order of magnitude of the speed of sound

co. It then follows that @ vivj
� �

=@xj � v2i =λ and @vi/@t�vi/Ts�vico/λ. So, if the velocity
perturbation associated with the wave is small compared to the speed of sound, the

nonlinear term can be dropped. Using these assumptions we obtain the linearized

acoustic momentum equation as

ρo
@vi
@t

+
@p0

@xi
� 0 (3.1.3)

If we subtract the divergence of Eq. (3.1.3) from the time derivative of Eq. (3.1.2) we

obtain,

@2ρ

@t2
�@2p0

@x2i
¼ 0

We then use Eq. (3.1.1) to replace the density perturbation to obtain the linear acoustic

wave equation,

1

c2o

@2p0

@t2
�@2p0

@x2i
¼ 0 or

1

c2o

@2p0

@t2
�r2p0 ¼ 0 (3.1.4)

Eqs. (3.1.3), (3.1.4) are the basis for all calculations in linear acoustics and their solu-

tions can be used to address many of the problems in noise control when the acoustic

medium is stationary and its mean properties are uniform throughout. Eq. (3.1.4) is a

second order linear partial differential equation whose solution will depend on a set of
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boundary conditions and initial conditions, which, when specified, define the acoustic

pressure fluctuations throughout the medium. In the following section we will con-

sider some simple examples of sound generation and propagation in uniform media.

3.2 Plane waves and spherical waves

The simplest example of an acoustic wave is a one dimensional plane wave. For exam-

ple, the sound propagation along a thin tube can be considered as a plane wave that is

only a function of distance in the direction of propagation, and time. In this case the

wave equation simplifies to

1

c2o

@2p0

@t2
�@2p0

@x21
¼ 0 (3.2.1)

and its solution can be obtained from the method of characteristics as

p0 x1, tð Þ¼ f t� x1=coð Þ + g t + x1=coð Þ (3.2.2)

This is known as d’Alembert’s solution of the wave equation and shows that there are

two independent solutions. The first solution f(t�x1/co) represents a wave which pro-

pagates in the positive x1 direction. It is easy to show that a pressure perturbation f(t) at
x1¼0 will be repeated at the location x1¼d at a time d/co later, and so it follows that co
is indeed the speed of sound propagation. In a similar fashion, the solution g(t+x1/co)
represents a wave which propagates in the negative x1 direction so a pressure pertur-

bation g(t) at x1¼0 will be repeated at the location x1¼�d at a time d/co later.
Of greater practical importance is the solution to the wave equation in spherical

coordinates. If we limit consideration to waves that are only a function of the radial

distance r from the center of the coordinate system and reduce the Laplacian operator

in Eq. (3.1.4) so it is only a function of the radial coordinate r, the wave equation

becomes,

1

c2o

@2p0

@t2
�1

r

@2

@r2
rp0ð Þ¼ 0 (3.2.3)

Multiplying through by r gives a one dimensional wave equation in terms of the var-

iable rp0 whose solution is given by rp0 ¼ f(t� r/co)+g(t+ r/co). The first solution rep-
resents waves propagating outwards in the radial direction, whereas the second

solution represents inwardly propagating waves that are collapsing onto the center

of the spherical coordinate system. In a few applications where sound waves are

focused, the inwardly propagating waves can be important, but in most cases we

are only interested in outwardly propagating waves. The solution to the wave equation

for outwardly propagating waves is then

p0 r, tð Þ¼ f t� r=coð Þ
r

(3.2.4)
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The additional feature of this result is that the pressure perturbation not only propa-

gates outwards, but also decays in amplitude as 1/r.

3.3 Harmonic time dependence

In many cases we are interested in evaluating the features of a sound field as a function

of frequency rather than time. To achieve this, we can consider the time history of the

signal to be at a single frequency with a harmonic time dependence. If the angular fre-

quency is ω radians per second, then the time dependence of a harmonic wave will be

f(t)¼A cos(ωt�ϕ) and the solution to the wave equation for spherical waves will be

p0 r, tð Þ¼A cos ωt�ωr=co�ϕð Þ
r

(3.3.1)

where A and ϕ are real constants which determine the amplitude of the wave and its

phase, respectively. It will prove valuable to treat harmonic time series as the real part

of a complex exponential with a time dependence exp(�iωt). The choice of the minus

sign in the argument of the exponential is important and care should be exercised when

comparing results with this sign convention to results in other texts which use a exp(iωt)
time dependence. Using the �iωt convention equation (3.3.1) can be rewritten as

p0 r, tð Þ¼Re p̂ rð Þe�iωt
� �¼Re

Âe�iωt+ ikr

r

" #
(3.3.2)

where the ^ indicates a complex amplitude, defined so that Â¼Aexp iϕð Þ. Thus p̂ rð Þ is
the complex amplitude of the pressure as a function of position. The symbol k repre-
sents the acoustic wavenumber k¼ω/co. For brevity we can often take the harmonic

time dependence to be implied. For example, Eq. (3.3.2) can simply be written as

p̂ rð Þ ¼ Âeikr

r
(3.3.3)

Note that with this time convention a wave propagating in the r direction has positive
phase expressed in the term exp(ikr). The spatial dependence of the sound field is

therefore also harmonic and oscillates with a length scale defined by the acoustic

wavelength λ. To relate the wavelength to the acoustic wavenumber we note that

the sound field starts to repeat when the phase kr is incremented by 2π. The distance
between peaks in the wave is the wavelength and so kλ¼2π, and we have

k¼ω/co¼2π/λ.
More generally we can write the linear acoustic wave equation (3.1.4) in terms of the

complex pressure amplitude p̂ xð Þ by substituting p0 x, tð Þ¼Re p̂ xð Þexp �iωtð Þ½ � to give

r2p̂+ k2p̂¼ 0 (3.3.4)

which is known as the Helmholtz equation.
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The acoustic momentum equation for a harmonic wave is similarly obtained from

Eq. (3.1.3) as

iωρov̂¼rp̂ (3.3.5)

This is a result that we will use frequently in sound radiation and scattering problems.

3.4 Sound generation by a small sphere

To solve a sound radiation or scattering problem, we must find the appropriate solu-

tion to the wave equation and use the boundary conditions to determine the unknown

constants, such as Â in Eq. (3.3.3). To illustrate this procedure, consider the sound

radiation from a small pulsating sphere of radius awhich has a normal surface velocity

uoexp(�iωt), as shown in Fig. 3.1.

The appropriate solution to the wave equation, which matches the boundary con-

dition for this example, is given by Eq. (3.3.3). To determine the unknown constant Â
we match the particle velocity of the sound wave in the radial direction to the velocity

of the surface, v̂r½ �r¼a ¼ uo and use the acoustic momentum equation (3.3.5) to give

1

iωρo

@p̂

@r

� 	
r¼a

¼ uo (3.4.1)

From Eq. (3.3.3) we find

@p̂ rð Þ
@r

¼� Â 1� ikrð Þeikr
r2

(3.4.2)

And so, at the sphere surface,

@p̂ rð Þ
@r

� 	
r¼a

¼� Â 1� ikað Þeika
a2

ruoe
−iwt

Fig. 3.1 A small sphere with a radial surface velocity.
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Substituting into Eq. (3.4.1) and solving for Â gives

Â¼� iωρoa
2uoe

�ika

1� ikað Þ (3.4.3)

The complete solution for the acoustic field is then given by Eq. (3.3.3) as

p̂¼� iωρoa
2uoe

ik r�að Þ

1� ikað Þr (3.4.4)

Note that if the sphere is very small so ka≪1 then exp(�ika)�1� ika and this solu-

tion approximates to

p̂¼� iωρoa
2uoe

ikr

r
(3.4.5)

Eq. (3.4.4) shows how the sound field everywhere is determined by the boundary con-

ditions. No initial conditions were required in this case because a harmonic time

dependence was assumed. It is also important to note that the surface area of the sphere

is S¼4πa2 and we can define the rate of change of volume of the sphere as

Qe�iωt ¼ uoSe
�iωt

so

p̂¼� iωρoQe
ikr

4πr
(3.4.6)

Consequently, the acoustic pressure is directly proportional to the rate of change of

volume caused by the surface displacement, and so a radially pulsating sphere is fre-

quently referred to as a volume displacement source. Alternatively, it is termed a sim-

ple source or an acoustic monopole because the sound field is only a function of

distance from the center of the sphere. It is also important to note that physically

ρoQexp(�iωt) represents the “rate of change of mass” of fluid displaced by the motion

of the surface.

In solving the wave equation, we specified how sound waves propagate through the

medium, and by introducing the boundary conditions, we specified how the waves were

initiated. However, we can only use this result for this particular boundarymotion. If the

surface had been an ellipsoid, then the solution to the wave equation would have to be

specified in ellipsoidal coordinates, which is not as simple. Other shapes require solu-

tions to the wave equation in other orthogonal coordinate systems of which there are

only a finite number that provide analytical solutions to the wave equation. There is

therefore only a limited set of problems that can be addressed using this approach,

and for arbitrary shapes numerical methods have to be used. One useful example, which

can be solved exactly, is for a sphere which translates back and forth in the x1 direction
with velocity voexp(�iωt), as shown in Fig. 3.2.
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In this case the velocity of the surface in the radial direction, normal to the surface

of the sphere, provides the necessary boundary condition. The velocity tangential to

the surface can be neglected because viscous effects are ignored. The surface velocity

is then given by v̂r½ �r¼a ¼ vo cosθ where θ is the angle subtended by the point

on the surface to the x1 axis. To address this problem we need to specify a solution

to the wave equation that matches this boundary condition and this is found by taking

the derivative of Eq. (3.3.3) in the x1 direction giving

p̂ rð Þ ¼ @

@x1

Âeikr

r

 !
(3.4.7)

We can readily show that this is a solution to the wave equation because any derivative

of a solution to the wave equation is also a solution to the wave equation, as is easily

verified from Eq. (3.1.4). Evaluating the derivative in Eq. (3.4.7) gives

p̂ rð Þ ¼ @r

@x1

@

@r

Âeikr

r

 !
(3.4.8)

and since r¼ x21 + x
2
2 + x

2
3

� �1=2
it follows that @r/@x1¼x1/r¼cos θ. Evaluating the

derivatives in Eq. (3.4.8) then gives

p̂ rð Þ ¼ ik cos θ
Âeikr

r

 !
1� 1

ikr

� �
(3.4.9)

This solution has a cos θ directionality associated with it, which we can use to match

the boundary condition for the translating sphere. Also note how the amplitude of

sound field is no longer simply a function of 1/r since there is now an additional factor

of 1/ikr in the solution. This term becomes negligible at large distances from the center

of the sphere when kr≫1 but will dominate in regions where kr≪1. We therefore

define the region where kr≫1 as the acoustic far field, where the amplitude of the

sound wave decays inversely with the distance from the source.

r  

x1

x2

v
o
e−iwt

Fig. 3.2 Sound radiation from a translating sphere.
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Evaluating the radial component of the acoustic momentum equationrp̂¼ iωρov̂
we obtain

@p̂

@r
¼ iωρov̂ � n

where n is a unit vector in the radial direction on the surface of the sphere. Applying

this at the sphere surface where v̂ � n¼ vo cos θ we write

1

iωρo

@p̂

@r

� 	
r¼a

¼ cos θ

ρoco

Âeika

a

 !
ik�2

a
+

2

ika2

� �
¼ vo cos θ (3.4.10)

For a small sphere we can assume ka≪1 and obtain the approximate solution for the

sound field by only retaining the term 2/ika2. Then solving for Â and using Eq. (3.4.9)

gives

p̂ rð Þ ¼ ik cos θ
iωρovoa

3eikr

2r

� �
1� 1

ikr

� �
(3.4.11)

The cos θ dependence shows that the acoustic field caused by a translating sphere has
a beam along the x1 axis and is zero in the direction normal to the source motion. This

is quite different from the field generated by uniformly pulsating sphere given

(Eq. 3.4.5), which is omnidirectional. We also note that the peak value of the pressure

for the translating sphere is a factor of ka/2 less than the level generated by the pul-

sating sphere at the same distance if uo and vo are taken as equal. Since ka≪1, the

radiated sound levels from the translating sphere for a given surface velocity are much

less than that of the pulsating sphere. The physical explanation of this observation is

that the pulsating sphere displaces mass during each cycle, so the medium has

nowhere to go apart from propagating away as an acoustic wave. In contrast, the trans-

lating sphere causes no net displacement of mass, and the fluid can adjust in the near

field to accommodate the motion. However, some energy still escapes as sound and

propagates to the acoustic far field.

3.5 Sound scattering by a small sphere

In the previous section we discussed the radiation of sound from a small sphere with a

prescribed surface motion. In this section we will consider the scattering of sound by a

small sphere. Scattering occurs because an object is placed in an acoustic field, and to

satisfy the boundary conditions on the surface of the object, additional waves must be

generated, which are known as the scattered field.

To illustrate this concept, we will consider scattering by a small spherical gas bub-

ble of radius a in a liquid such as water. The gas in the bubble will be assumed to be

much more compressible and very much less dense than the liquid and so the bubble
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surface offers no resistance to the pressure perturbation of the incident wave. This

boundary condition implies that the fluctuating pressure is zero on the surface of

the bubble.

We will consider the incident field to be a plane wave of unit amplitude propagat-

ing in the x1 direction so the incident field is defined from Eq. (3.2.2) with harmonic

time dependence as

p̂i rð Þ¼ eikx1 ¼ eikr cos θ (3.5.1)

where r is the distance from the center of the bubble and x1¼ r cos θ. If the radius of
the bubble is very much smaller than the acoustic wavelength (which is always the

case in underwater applications) then we can approximate the complex exponential

describing the incident field on the surface r¼a as

p̂i að Þ¼ eika cos θ � 1 + ika cos θ (3.5.2)

The scattered field must match this angular dependence and be a solution to the wave

equation. Both requirements can be satisfied if the scattered field is the sum of omni-

directional and directional fields of the type given in Eqs. (3.3.3), (3.4.9),

p̂s rð Þ¼ Âeikr

r
+ ik cos θ

B̂eikr

r

� �
1� 1

ikr

� �
(3.5.3)

In order to satisfy the boundary condition we require that p̂i að Þ + p̂s að Þ¼ 0, so

Eqs. (3.5.2), (3.5.3) give

Âeika

a
+ ik cos θ

B̂eika

a

� �
1� 1

ika

� �
¼� 1 + ika cos θð Þ (3.5.4)

Matching the cos θ dependence we find that Â¼�ae�ika and B̂¼ ika3e�ika= 1� ikað Þ,
so

p̂s rð Þ¼�aeik r�að Þ

r
� kað Þ2 cos θ aeik r�að Þ

r 1� ikað Þ
� �

1� 1

ikr

� �
(3.5.5)

This shows that the directional term is of order (ka)2 compared with the omnidirec-

tional term and so can be neglected because ka≪1, leaving the scattered field as

p̂s rð Þ¼�aeik r�að Þ

r
(3.5.6)

It follows that bubbles in a sound field act like small sources, which generate their own

waves which propagate to the acoustic far field.
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3.6 Superposition and far field approximations

The acoustic wave equation is linear and so any number of sound fields can be added

together, or superimposed. Consider a region containing a large number, say N, of
monopole sources located at y(n) where n¼1,2,3,…,N, as shown in Fig. 3.3.

The acoustic field at a point x is given by summing the acoustic fields of each

source, given by Eq. (3.3.3), so

p̂ xð Þ¼
XN
n¼1

Âne
ikjx�y nð Þj

x�y nð Þ

 

 (3.6.1)

where jx�y(n)j is the distance from each source to the observer location x and Ân

represents the relative contribution of each source, which, for example would be

iωρoQ/4π if all the sources were identical pulsating spheres. At large distances from

the sources this expression can be simplified by expanding jx�y(n)j as a Taylor series.
We note that in general

x�yj j ¼ r xi� yið Þ¼ x1� y1ð Þ2 + x2� y2ð Þ2 + x3� y3ð Þ2
� �1=2

(3.6.2)

where r¼ r(xi� yi) is the distance from the source to the observer explicitly defined as

a function of xi and yi. If we choose the coordinate origin to be located near the sources
then in the far field jxj≫ jyj we can use a Taylor series expansion to approximate the

propagation distance as,

r xi� yið Þ¼ r xið Þ� yi
@r xið Þ
@xi

+
yiyj
2

@2r xið Þ
@xi@xj

+⋯ (3.6.3)

In this expansion the term @r/@xi¼xi/jxj is a direction cosine and independent of jxj. In
contrast the second term @2r/@xi@xj is inversely proportional to jxj and so becomes less

r1

y(1)

y(2)

y(3)

y(4)

r2

r3
r4

Observer at x

Sources

Fig. 3.3 Sources distributed over a region, each source is located at y(n) and the observer is at x.

The propagation distances are rn¼jx�y(n)j.
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and less significant at large distances from the source. Retaining the first order terms

gives r(xi�yi)¼jxj�xiyi/jxj so

p̂ xð Þ�
XN
n¼1

Âne
ikjxj�iky nð Þ � x=jxj

xj�y nð Þ � x=jxj j ¼ eikjxj
XN
n¼1

Âne
�iky nð Þ � x=jxj

xj�y nð Þ � x=jxj j jxj≫jy nð Þj

At large distances the term in the denominator is closely approximated by jxj and so to
first order we obtain

p̂ xð Þ� eikjxj

xj j
XN
n¼1

Âne
�iky nð Þ � x=jxj 1 + y nð Þ � x=jxj2 +⋯

� �
jxj≫jy nð Þj (3.6.4)

and the term y(n)�x/jxj2 in brackets can be ignored, unless, as will be shown below, the
sum of the source amplitudes is zero. However, the dependence on y(n) in the complex

exponential cannot be ignored because it can dominate the result if some phase

cancelation occurs in the summation. Physically this occurs when destructive interfer-

ence between multiple sources leaves a residual sound field dependent upon the phase

differences between those sources. The far field approximation is thus

p̂ xð Þ� eikjxj

xj j
XN
n¼1

Âne
�iky nð Þ � x=jxj jxj≫jy nð Þj (3.6.5)

The important feature of this result is that in the acoustic far field the relative position
of the sources and their relative strengths determines the directionality of the field,

which depends on x/jxj. The amplitude of the field decays inversely with distance

and the phase increases linearly along lines of constant jxj. This is an important result

that will be used extensively later in the text.

3.7 Monopole, dipole, and quadrupole sources

In Section 3.5 we stated that a simple volume displacement source was often referred

to as amonopole. The acoustic field was omnidirectional and inversely proportional to

the propagation distance from the center of the source. In this section we will discuss

multipoles which are sources obtained by clustering together simple sources of equal

magnitude and opposite phase.

The simplest example of a multipole source is a dipole which is defined as two

monopole sources of equal strength and opposite phase a small distance d apart, where
kd≪1, as shown in Fig. 3.4.

The far field from a dipole is readily obtained from Eq. (3.6.4) by placing the

positive source at y1¼�d/2 and the negative source at y1¼d/2, and setting

Â1 ¼ iωρoQ=4π, Â2 ¼�iωρoQ=4π so that
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p̂ xð Þ� iωρoQe
ikjxj

4πjxj eikdx1=2jxj 1� x1d=2jxj2 +⋯
� �� e�ikdx1=2jxj 1 + x1d=2jxj2 +⋯

� �� �
(3.7.1)

providing that jxj≫d. Since we have specified kd≪1 we can simplify this result by

using the expansion

e�ikdx1=2jxj ¼ 1� ikdx1=2jxj�1

2
kdx1=2jxjð Þ2 +⋯ (3.7.2)

and using this in Eq. (3.7.1) we see that the terms of order 1 cancel, leaving

p̂ xð Þ� iωρoQe
ikjxj

4πjxj
� �

ikd
x1
xj j�

x1d

jxj2 +⋯
� �

jxj≫d (3.7.3)

which can be simplified using cos θ	x1/jxj, and we find that

p̂ xð Þ� ikd cos θ
iωρoQe

ikjxj

4πjxj
� �

1� 1

ikjxj +⋯
� �

jxj≫d

The first thing to note about an acoustic dipole is that its field is directional and

depends on the cosine of the angle subtended by the observer to the line between

the sources, which defines the dipole axis. Therefore, it has the same far-field char-

acteristics as the transversely oscillating sphere, with a maximum in the direction

of the dipole axis and a null or a zero at 90 degrees to the dipole axis, Fig. 3.5.

Secondly we see that the dependence on distance from the source scales as

d/jxj2 when kjxj≪1 and as kd/jxj when kjxj≫1. These represent the acoustic near

field and far field approximations, respectively. The far field approximation

requires that the observer is in both the geometric far field jxj≫d and the acoustic

far field kjxj≫1, in which case only the phase shift caused by the differences in

propagation distance from each source is important.

y2

y1= −d/2 y1= d/2 y1

r1

r2

x

Fig. 3.4 Two sources of opposite phase that define a dipole source.
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Note also that the source has no net volume displacement because the total source

strength is zero. In spite of this the acoustic field is nonzero because the two sources

are displaced by the distance d. Finally, we note that the maximum amplitude of the

acoustic field from a dipole is ikd times the amplitude of the pure monopole field at the

same distance, and since we assumed that kd≪1 we conclude that the dipole is an

inefficient sound source.

A quadrupole source can be formed by placing two dipole sources back to back,

with positive sources at y1¼�3d/2 and y1¼3d/2, and negative sources at y1¼�d/2
and y1¼d/2. The net acoustic far field (kjxj≫1) is

p̂ xð Þ� iωρoQe
ikjxj

4πjxj e3ikdx1=2jxj � eikdx1=2jxj � e�ikdx1=2jxj + e�3ikdx1=2jxj
� �

jxj≫d

(3.7.4)

Then using Eq. (3.7.2) we find that all the terms of order 1 and all the terms of order kd
cancel, leaving

p̂ xð Þ��2 kdð Þ2 x1
xj j

� �2 iωρoQe
ikjxj

4πjxj jxj≫d kjxj≫1 (3.7.5)

This is referred to as a longitudinal quadrupole because all the sources are in line and

the net volume velocity is zero. Note how the directionality is determined by cos2 θ (as
shown on the left side of Fig. 3.6) and the source strength is now proportional to (kd)2,
and so the field is yet another order of magnitude less than the monopole field. We can

also form quadrupoles with sources in different arrangements. For example, if we

place two sources of amplitude iωρoQ/4π at y¼ (d/2,d/2) and y¼ (�d/2,�d/2), and
two sources of strength �iωρoQ/4π at y¼ (d/2,�d/2) and y¼ (�d/2,d/2), we obtain

in the acoustic far field

p̂ xð Þ� iωρoQe
ikjxj

4πjxj
eikdx1=2jxj + ikdx2=2jxj + e�ikdx1=2jxj�ikdx2=2jxj � eikdx1=2jxj�ikdx2=2jxj � e�ikdx1=2jxj + ikdx2=2jxj
� �

(3.7.6)

+ −

Fig. 3.5 The cosine directionality of a dipole source.
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Then using the expansion

e�ikdx1=2jxj�ikdx2=2jxj ¼ 1� ikdx1=2jxj� ikdx2=2jxj�1

2
kdx1=2jxj
 ikdx2=2jxjð Þ2 +⋯

gives

p̂ xð Þ�� kdð Þ2 iωρoQe
ikjxj

4πjxj
x1x2
jxj2

� �
jxj≫d kjxj≫1 (3.7.7)

which implies a sin θ cos θ¼½ sin(2θ) directionality, as shown on the right side of

Fig. 3.6, and a scaling on (kd)2. This type of directionality and scaling is important

in aeroacoustics and we will show in Chapter 4 that turbulence generates sound fields

that have the same directionality.

3.8 Acoustic intensity and sound power output

The results given above show that an arrangement of simple sources of the same level

can produce a directional acoustic far field. In many applications there is a need to

compare sources with different directionalities and this can be achieved by comparing

their total sound power output. In Chapter 2 the acoustic sound power output of a

source is defined by Eq. (2.6.16), as

Wa ¼
ð
S

I � n oð ÞdS (2.6.16)

where I is the acoustic intensity, S is a surface that encloses all the acoustic sources in a
volume V and n(o) is a unit normal vector pointing out of the volume.

In Section 2.6 we also defined the acoustic intensity in a stationary homentropic

medium as I¼E[p0v], where E[] represents an expected value of the terms in brackets

(see Chapter 8 for a detailed discussion of expected values). For linear acoustics and

+ − − + − +
+ −

Fig. 3.6 The directionality

of different types of

quadrupole.
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harmonic time dependence, we can write this using subscript notation for the intensity

vector as

Ij ¼E p̂j jcos ωt +ϕp

� �
v̂j


 

cos ωt+ϕj

� �� �
where p̂j j and ϕp represent the amplitude and phase of the complex pressure p̂, and jv̂jj
and ϕj represent these measures for the complex velocity component. Using the trig-

onometric expansion cos(ωt+ϕp)cos(ωt+ϕj)¼½(cos(2ωt+ϕp+ϕj))+ (cos(ϕp�ϕj))

gives

Ij ¼
p̂j j v̂j


 


2

E cos 2ωt+ϕp +ϕj

� �
+ cos ϕp�ϕj

� �� �

Since the expected value of a harmonic time history is zero only the second term

remains, and we can define the acoustic intensity for a harmonic time signal as

Ij ¼
p̂j j v̂j


 


2

cos ϕp�ϕj

� �¼Re p̂v̂*j

� �
2

(3.8.1)

where v̂*j represents the complex conjugate of the velocity of a harmonic wave.

We can evaluate the sound power output of a source distribution by defining a

spherical surface, on jxj¼const, that encloses the sources and lies in the acoustic

far field, so the outward normal vector is in the radial direction. Eq. (3.8.1) shows that

the radial component of the intensity vector will depend on the particle velocity in the

radial direction, which from the momentum equation (3.3.5), iωρov̂¼rp̂, depends on
the gradient of the acoustic pressure in that direction. We showed in deriving

Eq. (3.6.5) that for all source distributions the far-field sound has a variation in the

radial direction given by eikr/rwhere r¼jxj. So, using the momentum equation (3.3.5),

we obtain

v̂r ¼ 1

iωρo

@p̂

@r
¼ p̂

iωρo
ik�1

r

� �
(3.8.2)

Then, using Eq. (3.8.1), the acoustic intensity vector in the radial direction is

Ir ¼ 1

2
Re

p̂p̂*
iωρo

ik +
1

r

� � �
¼ 1

2
p̂j j2 k

ωρo
¼ p̂j j2
2ρoco

(3.8.3)

so we obtain the far field intensity simply in terms of the pressure amplitude. It follows

that the acoustic intensity of a dipole scales as (kd)2 compared to a monopole, and as

(kd)4 for a quadrupole compared to a monopole. Since kd≪1 we see that there is a

considerable reduction in intensity for sources of higher multipole order compared

to a monopole source.
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To obtain the sound power output for each source type we need to evaluate the sur-

face integral of the radial intensity as required by Eq. (2.6.16). For a monopole source

defined by Eq. (3.4.6), the intensity is constant on r¼const and we obtain

W monopoleð Þ
a ¼ ωρoQð Þ2

2ρoco 4πrð Þ2
ð
S

dS

Since the surface area of a sphere of radius r is 4πr2 the sound power output is

W monopoleð Þ
a ¼ ωρoQð Þ2

8πρoco
(3.8.4)

For a dipole source the same approach is used but the intensity has a cos2 θ depen-

dence, and so the surface integral must take that into account. Using Eq. (3.7.3) to give

the acoustic far field of a dipole gives, using spherical coordinates r, θ, φ to evaluate

the surface integral

W dipoleð Þ
a ¼ ωρoQð Þ2 kdð Þ2

2ρoco 4πrð Þ2
ðπ
0

ð2π
0

cos2θ sin θr2dφdθ¼ ωρoQð Þ2 kdð Þ2
24πρoco

(3.8.5)

Similarly, for the quadrupole field given by Eq. (3.7.5) we obtain

W quadrupoleð Þ
a ¼ 4 ωρoQð Þ2 kdð Þ4

2ρoco 4πrð Þ2
ðπ
0

ð2π
0

cos4θ sin θr2dφdθ¼ ωρoQð Þ2 kdð Þ4
10πρoco

(3.8.6)

The important result here is that the total sound power output of a dipole source is of

order (kd)2 less than that of a monopole source, and that the power output of a quad-

rupole source is of order (kd)2 less than a dipole source. Since we have taken kd≪1 it

can usually be assumed that a dipole source will always be an order of magnitude more

significant than a quadrupole source, and that monopole sources will dominate the

sound power output from any source distribution in which they are present.

3.9 Solution to the wave equation using Green’s functions

In this section we give a general solution to the wave equation in the presence of sur-

face sources and scattering surfaces. This is known as the method of Green’s functions

and will be useful in many of the problems that will be discussed in subsequent

chapters.

Consider a uniform stationary medium in which acoustic propagation is deter-

mined by the linear wave equation (3.1.4). The medium can include objects and other

surfaces, which can generate and reflect sound (see Fig. 3.7). We wish to determine

the acoustic pressure p0(x,t) at observer location x and at time t due to some sound

64 Fundamentals



source distributed in space y at time τ. To do this we first write the wave equation in

terms of y and τ.

1

c2o

@2p0 y, τð Þ
@τ2

�@2p0 y, τð Þ
@y2i

¼ 0 (3.9.1)

and then introduce the Green’s function G defined as being a solution to the inhomo-

geneous wave equation

1

c2o

@2G

@τ2
�@2G

@y2i
¼ δ x�yð Þδ t� τð Þ (3.9.2)

The Green’s function is distributed in space as a function of y and τ, but also depends
on the observer position x and time t, where we wish to obtain our solution and so has a
functional form G(x,tjy,τ). We will show below that it gives the relationship between

the acoustic field at x and t due to an impulsive source of sound at y and τ.
The functions on the right side of Eq. (3.9.2) represent Dirac delta functions. In one

dimension a Dirac delta function has the property that

δ t� τð Þ ¼ 0 when t 6¼ τ, and

ðT
�T

δ t� τð Þdτ¼ 1 �T< t< T (3.9.3)

When the argument of the Dirac is a vector we define it so that

δ x�yð Þ¼ 0 whenx 6¼ y, and

ð
V

δ x�yð ÞdV yð Þ¼ 1 whenx is inV

0 whenx is not inV



(3.9.4)

Radiated sound waves

un

Radiating surface

Scattering surface

Fig. 3.7 Radiating and scattering surfaces in a sound field.
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For Cartesian coordinates this is given as

δ x�yð Þ¼ δ x1� y1ð Þδ x2� y2ð Þδ x3� y3ð Þ (3.9.5)

but for other coordinate systems the definition is more complicated. For example in

spherical coordinates we have

δ x�yð Þ¼ lim
ε!0

ε2e�εr

4πr

� �
r¼ jx�yj, ε> 0 (3.9.6)

Given these special properties we can find a solution to the linear wave equation by

using the following approach. We multiply the equation for the Green’s function

(3.9.2) by p0(y,τ), and the linear wave equation (3.9.1) by G(x,tjy,τ), then subtract

the results to give

1

c2o
p0
@2G

@τ2
�G

@2p0

@τ2

� �
� p0

@2G

@y2i
�G

@2p0

@y2i

� �
¼ δ x�yð Þδ t� τð Þp0 y, τð Þ (3.9.7)

If we integrate the right side over τ and the volume V(y) which includes x then we

obtain p0(x,t), which is the result we want, so

ð
V

ðT
�T

1

c2o
p0
@2G

@τ2
�G

@2p0

@τ2

� �
� p0

@2G

@y2i
�G

@2p0

@y2i

� �
dτdV yð Þ¼ p0 x, tð Þ (3.9.8)

providing x is inside V and �T< t<T. Considering the first term in the integrand we

note that we can rearrange the differentials as

p0
@2G

@τ2
�G

@2p0

@τ2

� �
¼ @

@τ
p0
@G

@τ
�G

@p0

@τ

� �
(3.9.9)

from which it follows that

ð
V

ðT
�T

@

@τ
p0
@G

@τ
�G

@p0

@τ

� �
dτdV yð Þ¼

ð
V

p0
@G

@τ
�G

@p0

@τ

� 	τ¼T

τ¼�T

dV yð Þ (3.9.10)

If we specify initial conditions that require p0 and @p0/@τ to be zero at τ¼�T then the

integrand in Eq. (3.9.10) is zero at its lower limit. If we introduce the additional con-

straint on the Green’s function that @G(x,tjy,τ)/@τ and G(x,tjy,τ) be zero when τ� t
then the upper limit of the integrand is zero if t<T. This constraint, called the
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causality condition, simply expresses the requirement that the sound heard at time t
must be produced at time τ< t.

A similar expansion can be used on the second term in Eq. (3.9.8) which allows us

to write

ð
V

p0
@2G

@y2i
�G

@2p0

@y2i

� �
dV yð Þ¼

ð
V

@

@yi
p0
@G

@yi
�G

@p0

@yi

� �
dV yð Þ (3.9.11)

The integrand in this equation is now the divergence of a vector, so we can use the

divergence theorem to turn the volume integral into a surface integral. If we choose

a unit vector ni, normal to the surface and pointing into the volume, we can write

Eq. (3.9.8) as

p0 x, tð Þ¼
ðT
�T

ð
S

p0 y, τð Þ@G x, tjy,τð Þ
@yi

�G x, tjy,τð Þ@p
0 y, τð Þ
@yi

� �
nidS yð Þdτ (3.9.12)

where the surface S includes the surfaces of all objects in V and the surface that bounds

V at its exterior boundary. Note the arguments of the Green’s functions have been

included in Eq. (3.9.12) for clarity. In free field applications the Sommerfeld radiation

condition is used. This requires that there can only be outgoing waves on the exterior

boundary and no sound is reflected back to the observer from the exterior boundary.

This condition eliminates the need to include the exterior boundary in the surface

integral.

The result given by Eq. (3.9.12) shows how any sound field, which satisfies the

linear acoustic wave equation, can be evaluated from knowledge of the pressure

and the pressure gradient on surfaces that bound the region of interest. To evaluate

the integrals we need to know the Green’s function, which must satisfy the inhomo-

geneous wave equation (3.9.2) and a causality condition, but is otherwise unrestricted.

We can use Eq. (3.9.12) for both sound radiation problems in which the surface motion

and or surface pressure is prescribed, and for sound scattering problems where passive

boundary conditions relating the pressure and pressure gradient are defined on the

scattering surfaces (see Fig. 3.7).

For radiating surfaces, it is useful to consider the two terms in Eq. (3.9.12) sepa-

rately. The pressure gradient term can be obtained from the acoustic momentum equa-

tion (3.1.3) as

@p0

@yi
ni ¼ n �rp0 ¼�ρo

@vi
@τ

ni (3.9.13)

At a surface, the acoustic particle velocity normal to the surface vini will be equal to
the velocity normal to the surface un imposed by the boundary condition, giving
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p0 x, tð Þ¼
ðT
�T

ð
S

ρo
@un y, τð Þ

@τ
G x, tjy,τð Þ

� �
dS yð Þdτ +

ðT
�T

ð
S

p0 y, τð Þ@G x, tjy,τð Þ
@yi

� �
nidS yð Þdτ

(3.9.14)

The first term represents the sound radiated by the vibration of the surface, and the

second term gives the contribution from the force per unit area p0ni exerted on the fluid
by the surface. To evaluate these integrals, we need to specify a Green’s function and

this can be obtained most simply by comparing the result (Eq. 3.9.14) with the result

given in Section 3.4 for a small pulsating sphere. In this example a small spherical

surface is defined with its center at y¼0, and the normal velocity on the surface is

given by the real part of uoexp(�iωt). If we allow the radius of the source to become

smaller and smaller then eventually the spatial dependence of G and @G/@yi will
become so inconsequential that these functions can be taken outside of the surface

integral, giving

p0 x, tð Þ¼ Re

ðT
�T

G½ �yi¼0

ð
S

�iωρouoe
�iωτ

� �
dS yð Þdτ

2
4

3
5

+

ðT
�T

@G

@yi

� 	
yi¼0

ð
S

p0nidS yð Þ
8<
:

9=
;dτ

The second integral in this equation depends on the surface integral in {} which rep-

resents the net force exerted on the fluid by the sphere, and is zero because the pres-

sure is constant on the surface. In the first term the surface velocity is also constant

on the surface and so the surface integral is simply S¼4πa2 times the integrand,

giving

p0 x, tð Þ¼Re

ðT
�T

�iωρouoSe
�iωτ

� �
G x, tjy,τð Þ½ �yi¼0dτ

2
4

3
5 (3.9.15)

Let us compare this result with the result we obtained in Section 3.4 when we analyzed

the same problem. In that case we found (Eq. 3.4.6) that

p0 ¼Re � iωρouoSe
�iωt+ ikr

4πr

� 	
k¼ω=co r¼ jxj (3.9.16)

Comparing these two results shows that the Green’s function must be

G x, tj0,τð Þ¼ δ t� r=co� τð Þ
4πr
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This is known as the free field Green’s function because it defines the radiation from

an infinitely small volume displacement source in an unbounded domain. Since the

free field Green’s function is of such significance we will give it the symbol, Go.

If the source is located at y rather than y¼0 then we use r¼jx�yj, and

Go x, tjy,τð Þ¼ δ t�jx�yj=co� τð Þ
4πjx�yj (3.9.17)

The Green’s function is a solution to Eq. (3.9.2) when r¼jx�yj>0 and indeterminate

when r¼0, so we cannot use it to determine the surface pressure from Eq. (3.9.12)

unless asymptotic methods are used. However, we can use it to find the pressure

anywhere off the surface provided we can specify the pressure and the pressure

gradient on the boundary. We also note that the free field Green’s function satisfies

the causality condition when r>0 becauseGo¼0 and @Go/@τ¼0 when t< τ< τ+ r/co.
When we use the free field Green’s function in Eq. (3.9.12) or (3.9.13) we need to

define the gradient of Go, which can be evaluated as

@Go

@yi
¼ xi� yið Þ

r

_δ t� r=co� τð Þ
4πrco

+
δ t� r=co� τð Þ

4πr2

� �
r¼ jx�yj (3.9.18)

where the dot above the Dirac function represents a time derivative. Notice that the

field from this term has a cosine directionality built in, and there is both a near field

and far field term, as we found when we considered the translating sphere.

By using this form of the Green’s function it is convenient to evaluate the time inte-

grals in Eq. (3.9.14). Integrating the time derivative of the Dirac delta function by parts

we obtain,

p0 x, tð Þ¼
ð
S

ρo
@un
@τ

� 	
τ¼τ*

dS yð Þ
4πjx�yj +

ð
S

@p0

@τ
ni +

p0nico
x�yj j

� 	
τ¼τ*

xi� yið ÞdS yð Þ
4πjx�yj2co

(3.9.19)

where τ*¼ t�jx�yj=co.
The integrands of the surface integral are now evaluated at the correct retarded

time τ*, also referred to as the source time or emission time. This is the observer time

t less the time it takes for the wave to propagate from the surface element to the

observer at the speed of sound. The first term in Eq. (3.9.19) represents the sound gen-

erated by the vibration of the surface and depends on its acceleration. The second term

gives the sound generated by the surface loading, and includes both near field and far

field components. If we only consider the acoustic far field where jxj≫ jyj then terms

of order 1/jxj2 can be ignored compared to terms of order 1/jxj, and so

p0 x, tð Þ � 1

4πjxj
ð
S

ρo
@un
@τ

� 	
τ¼τ*

dS yð Þ + xi
4πjxj2co

ð
S

@p0

@τ
ni

� 	
τ¼τ*

dS yð Þ (3.9.20)
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This is an important result because it shows that in the acoustic far field the surface

velocity term, often referred to as the monopole term, is inherently omnidirectional

unless retarded time delays from different parts of the surface cause some kind of

directionality (as was the case with the source distributions we discussed in

Section 3.6). The second term has an inherent cosine directionality with a peak in

the direction of the net force applied to the fluid (when retarded time effects are neg-

ligible), and so this term is often referred to as the dipole term.

In summary, we have considered sound radiation by fixed surfaces in a uniform

stationary medium, and obtained a general solution to the linear wave equation using

Green’s functions. The acoustic field has been shown to be caused by the vibrational

motion of the boundaries, and the forces exerted on the fluid by the surfaces. Surface

vibration causes monopole radiation, and loading noise has an inherent dipole or

cosine directionality.

3.10 Frequency domain solutions and Fourier transforms

In the first part of this chapter we discussed the solution to the wave equation for a

harmonic wave of a single frequency, and then we discussed the general solution

to the wave equation when the pressure was a function of time. The solution was found

in terms of a Green’s function G(x,tjy,τ) that represents the propagation from a point

source at y to an observer at x. The source fluctuations at time τ are received at the

observer at time t. In many applications we are interested in the frequency content of a

nonsinusoidal signal which is obtained by taking its Fourier transform with respect to

time. In this section we will show how we can obtain the Fourier transform of the

received signal directly from that of the source fluctuations by using a Green’s func-

tion defined in the frequency domain.

There are many variations on the definition of the Fourier transform that can be

found in the literature and there is no consistent convention. For this text we will

be consistent with the conventions used by Morse and Ingard [1] and Goldstein

[2], and define the Fourier transform of a time history as

ep x,ωð Þ¼ 1

2π

ðT
�T

p0 x, tð Þeiωtdt (3.10.1)

and the inverse Fourier transform as

p0 x, tð Þ¼
ð∞

�∞

ep x,ωð Þe�iωtdω (3.10.2)

Note that the units of the transformed pressure variable are Pascals per “radians per

second.” For the inverse transform relationship to be valid the time history must have
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finite energy during�∞< t<∞. Thus, in the forward transform, T is taken to be large

enough to encompass the entire (but finite) time history, so that

ð∞
�∞

jp0 x, tð Þjdt¼
ðT
�T

jp0 x, tð Þjdt<∞

If we take the Fourier transform of the wave equation (3.9.1) with respect to the time

variable τ then we obtain the Helmholtz equation defined as

@2ep y,ωð Þ
@y2i

+ k2ep y,ωð Þ¼ 0 (3.10.3)

where k¼ω/co is the wavenumber. This is exactly the same equation as Eq. (3.3.4).

We can obtain a solution to the Helmholtz equation by using a Green’s function that is

the solution to the inhomogeneous equation

@2 eG xjyð Þ
@y2i

+ k2 eG xjyð Þ¼�δ x�yð Þ (3.10.4)

Note the similarities and differences between this equation and Eq. (3.9.2), and that

there is a negative sign in front of the Dirac delta function, which is required so that the

two equations are consistent.

If we nowmultiply Eq. (3.10.3) by eG and Eq. (3.10.4) by ep y,ωð Þ, integrate over the
volume and subtract we obtain

ep x,ωð Þ¼�
ð
V

ep y, ωð Þ@
2 eG xjyð Þ
@y2i

� eG xjyð Þ@
2ep y, ωð Þ
@y2i

 !
dV yð Þ

¼�
ð
V

@

@yi
ep y,ωð Þ@

eG xjyð Þ
@yi

� eG xjyð Þ@ep y,ωð Þ
@yi

 !
dV yð Þ

As before, the volume integral can be evaluated using the divergence theorem. If we

choose a unit vector ni, normal to the surface elements and pointing into the volume

we obtain

ep x,ωð Þ¼
ð
S

ep y,ωð Þ@
eG xjyð Þ
@yi

� eG xjyð Þ@ep y,ωð Þ
@yi

 !
ni yð ÞdS yð Þ (3.10.5)

This is the frequency domain solution to the wave equation, or Helmholtz equation,

and is equivalent to Eq. (3.9.12), which gives the time domain solution. The equiva-

lence between these two results is established by taking the inverse transform of

Eq. (3.10.5), and substituting Eq. (3.10.1), so
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p0 x, tð Þ

¼
ð∞

�∞

ð
S

1

2π

ðT
�T

p0 y, τð Þ @ eG xjyð Þ
@yi

" #
ω

� eG xjyð Þ
h i

ω

@p0 y, τð Þ
@yi

 !
ni yð Þe�iω t�τð Þdτ

8<
:

9=
;dS yð Þdω

(3.10.6)

where the frequency domain Green’s function is evaluated at the frequency ω.
Comparing Eq. (3.10.6) with Eq. (3.9.12) shows that the relationship between the

Green’s function in the time domain and the frequency domain is given by

G x, tjy, τð Þ¼ 1

2π

ð∞
�∞

eG xjyð Þ
h i

ω
e�iω t�τð Þdω (3.10.7)

and the frequency domain Green’s function is obtained by taking the Fourier trans-

form defined by Eq. (3.10.1) of 2πG(x, tjy, 0) as

eG xjyð Þ¼
ðT
�T

G x, tjy, 0ð Þeiωtdt

Using the result given by Eq. (3.9.17) defines the free field Green’s function in the

frequency domain as

eGo xjyð Þ¼ eikjx�yj

4πjx�yj (3.10.8)

In the rest of the text we will find that solutions using Green’s functions in both the

time domain and frequency domain are valuable, and we will use Eqs. (3.9.12),

(3.10.5) to solve problems in aeroacoustics that involve solid boundaries. The Green’s

functions given by Eqs. (3.10.8), (3.9.17) are referred to as the free field Green’s func-

tions and we will show in the next chapters how these results can be generalized to

eliminate contributions from surface source terms that are sometimes difficult to

evaluate.
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4Lighthill’s acoustic analogy

The equations of motion used for linear acoustics are based on a number of assump-

tions that do not apply to turbulent flows. This chapter will discuss the classic theory of

sound generation by turbulence, which is the basis for our understanding of

aeroacoustics. Lighthill’s acoustic analogy will be described and an inhomogeneous

wave equation will be derived that identifies the sources of sound in an arbitrary

unsteady flow. The solution to this wave equation in the presence of stationary sur-

faces will be given based on Curle’s theorem and Green’s functions. The concept

of a tailored Green’s function will also be introduced.

4.1 Lighthill’s analogy

In the previous chapters we discussed sound radiation from sources in a uniform sta-

tionarymedium.We showed that in ideal conditions the propagation of sound could be

described by the linear acoustic wave equation with a pressure perturbation as the

dependent variable. Sound was only generated by disturbances that caused a pre-

scribed motion of a boundary, and boundary conditions were matched using the lin-

earized momentum equation. With the invention of the jet engine it was soon realized

that the theory of linear acoustics could not be used to specify the radiation of sound

from this very loud source. When a jet exhausts into a stationary fluid a large region of

turbulent flow is generated but there are no surfaces with prescribed motions, so some

other mechanism of creating sound waves must be present. In general, turbulence

occurs in high Reynolds number flows where viscous effects are small, and the motion

of the fluid is dominated by nonlinear interactions. To describe the noise generated by

turbulence wemust be very careful about making assumptions that allow the equations

of motion to be linearized, and this is the reason why the concepts of linear acoustics

cannot provide the basis for sound generation by an unconfined fluid flow.

Lighthill’s analogy specifically addresses the problem of sound generation by a

region of high speed turbulent flow in an otherwise stationary fluid as illustrated in

Fig. 4.1. The objective is to determine the equations that describe the generation of

sound waves that propagate to the acoustic far field, as distinct from defining the fluid

motion in the turbulent flow. The magnitude of turbulent velocity fluctuations is

typically 10% of the mean flow speed, and for subsonic flows of interest in air, will

probably exceed 2–3 m/s. In contrast an acoustic wave has a particle velocity

u¼pʹ/ρoco¼ρʹco/ρo and, for a high intensity acoustic wave in air, we showed in

Chapter 3 that ρʹ/ρo is of order 1/1000. Since co¼343 m/s it follows that the acoustic

wave will only be a small part of the unsteady motion and so we must be very cautious

about the coupling of the turbulent flow to the acoustic waves. If, for example, we

blindly assume the turbulence to be incompressible then no sound is generated

because this assumption eliminates all acoustic effects. Alternatively, if we assume

a weakly incompressible flow we can permit acoustic motion in a fluid flow, which
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is dominated by incompressible turbulence, but do we get the right result? For this

reason, Lighthill’s analogy is based on the exact equations of fluid flow, without mak-

ing any assumptions about the compressibility effects in the region of turbulence, and

is valuable because it provides the correct equations for coupling the acoustic wave

motion outside the turbulent region to the large velocity fluctuations, which occur

inside the flow.

To derive Lighthill’s equationwe take the time derivative of the continuity equation

(2.2.6)

@

@t

@ρ

@t
+
@ ρvið Þ
@xi

� �
¼ 0 (4.1.1)

and subtract the divergence of the momentum equation (2.3.9)

@

@xi

@ ρvið Þ
@t

+
@ ρvivj + pij
� �

@xj

� �
¼ 0 (4.1.2)

to give

@2ρ

@t2
¼ @2 ρvivj + pij

� �
@xi@xj

(4.1.3)

In this equation the diagonal elements of the stress tensor are defined as gauge pressure,

so they are relative to the surrounding ambient pressure, giving pij¼ (p�p∞)δij�σij.
We then define the density perturbation relative to the surrounding medium as

Radiated sound waves

Turbulent flow

Stationary medium l

Fig. 4.1 Sound radiation from a region of turbulent flow in an otherwise stationary medium.
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ρʹ¼ρ�ρ∞ and subtract @2 ρ0c2∞
� �

=@x2i from each side of Eq. (4.1.3), where c∞
is the ambient speed of sound outside the flow, which is constant, and note that

@ρ/@t¼@ρʹ/@t, to obtain a wave equation in the form

@2ρ0

@t2
� c2∞

@2ρ0

@x2i
¼ @2Tij
@xi@xj

Tij ¼ ρvivj + p�p∞ð Þ� ρ�ρ∞ð Þc2∞δij�σij (4.1.4)

This is known as Lighthill’s wave equation [1]. The left side specifies the propagation

of an acoustic wave in a uniform medium with sound speed c∞ using density as the

dependent variable. The right side is frequently referred to as a source term, which con-

tains all the effects that generate acoustic waves. However, it would appear that the

choice of the sound speed c∞ is arbitrary but that is not the case. Lighthill’s equation

represents an analogy for the waves that radiated from a finite volume of turbulent flow

into a surrounding stationary medium. The speed of sound c∞ must be chosen as the

speed of sound in the stationary medium, not the region of turbulence where it could

have a very different value due to compressible flow effects, combustion, or entrained

air in underwater applications. This choice is appropriate because the objective is to

evaluate the acoustic waves that propagate away from the region of turbulent flow

in the stationary medium, and the source term defines how the turbulence, or fluid per-

turbations in the turbulent region, will couple with the sound waves in the far field.

It is important to appreciate that in deriving Lighthill’s equation no approximations

have been made, and so Eq. (4.1.4) is an exact rearrangement of the equations of fluid

flow. In linear acoustics ρʹ¼ρ�ρ∞ is replaced by p � p∞ð Þ=c2∞, it is assumed that

nonlinear interactions are not important so ρvivj¼0 and viscous effects can be

ignored. Consequently Tij is approximated as being equal to zero and so is the right

side of Eq. (4.1.4).

Lighthill’s equation is also referred to as Lighthill’s acoustic analogy because it

treats the turbulent flow as if it contained sound waves propagating in the same man-

ner as in the surrounding fluid. All the issues about the modeling of the turbulence,

which cannot be addressed by linear acoustics, are addressed in Lighthill’s equation

by the inclusion of the term on the right side. However, since this equation is all inclu-

sive, it also hides some important details of what is happening in the flow region. It

should be remembered here that Lighthill’s equation, although exact, is designed to

provide insight into the sound waves outside the flow, not in the region of turbulent

motion where the speed of sound propagation may be distinctly different from c∞.

4.2 Limitations of the acoustic analogy

4.2.1 Nearly incompressible flow

Lighthill’s equation has been used extensively in the fields of aero and

hydroacoustics because of its simplicity and because it makes no approximations

about the flow. However, in most situations the variable Tij cannot be determined

Lighthill’s acoustic analogy 75



and approximations have to be made to estimate the terms which couple most effec-

tively with the sound field. The difficulty is that the very large fluctuations of the

source terms may be very weakly coupled to the sound waves, and so effectively

do not radiate any sound.

First consider an almost incompressible flow in which the velocity fluctuations are

dominated by turbulence, and the viscous terms can be ignored. We also assume the

flow is homentropic so that p � p∞ð Þ ¼ ρ�ρ∞ð Þc2∞. Furthermore we will assume as

before that ρʹ≪ρ∞¼const and v2i ≪ c2∞. These approximations are perfectly legiti-

mate in hydroacoustic applications but must be treated with care in aeroacoustic appli-

cations where the flow may be isentropic but not homentropic and flow velocities

approach the speed of sound. Given these approximations Eq. (4.1.4) reduces to

@2ρ0

@t2
� c2∞

@2ρ0

@x2i
¼ ρ∞

@2 vivj
� �

@xi@xj
(4.2.1)

Now let us reduce the source term further by expanding it term by term

@2 vivj
� �

@xi@xj
¼ @

@xi
vi
@vj
@xj

+ vj
@vi
@xj

� �
¼ @

@xi
vi
@vj
@xj

� �
+
@vj
@xi

@vi
@xj

+ vj
@2vi
@xi@xj

For an incompressible flow the divergence of the velocity is zero so the first and last

term drop out giving

@2 vivj
� �

@xi@xj
¼ @vj
@xi

@vi
@xj

(4.2.2)

We conclude that, given the assumptions of an almost incompressible flow, the

unsteady terms in Lighthill’s source term are not only nonlinear but also determined

by the velocity gradients. However, as was pointed out in Chapter 1, the lengthscales

of the turbulent eddies in this flow are of order Uc/f where Uc is the convection speed

and f is the frequency, and this is much less than the acoustic wavelength λ¼co/f at the
same frequency. However, the source term Eq. (4.2.2) is nonlinear and will generate

perturbations at the sum and difference frequencies of two interacting velocity fluc-

tuations. As a result the radiated sound field will occur at a different frequency from

the frequency of the velocity perturbation observed in the flow, and this can allow the

acoustic and turbulence lengthscales to match. The important point to be made here is

that the flow noise is generated by a nonlinear interaction, and so linear approxima-

tions will not give the correct results.

4.2.2 Uniform flow

In aeroacoustic applications we cannot always assume that v2i ≪ c2∞ and the local

speed of sound may vary significantly from its value outside the flow. The wave equa-

tion in (4.1.4) is then a poor approximation for sound waves in the flow. Specifically,
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there are two effects taking place, the generation of sound by turbulence at a source

element, and secondly the propagation of the sound from the source element through

the nonuniform flow to the acoustic far field. The latter effect causes waves to bend as

they propagate, and this feature is hidden in Lighthill’s source term. Separating sound

propagation effects from sound generation in Tij has been the cause of significant

debate for a number of years. To illustrate the subtleties of refraction or propagation

effects, and show how Lighthill’s equation includes these effects in Tij, consider tur-
bulence in a uniformly moving medium. Because the mean flow is uniform we can

partition the velocity such that vi ¼ U
∞ð Þ
i + wi where U

∞ð Þ
i is constant everywhere,

and this gives

Tij ¼ ρ U
∞ð Þ
i +wi

� �
U

∞ð Þ
j +wj

� �
+ pij�ρ0c2∞δij (4.2.3)

We can expand the product of velocities term by term to give

ρ U
∞ð Þ
i +wi

� �
U

∞ð Þ
j +wj

� �
¼ ρ U

∞ð Þ
i U

∞ð Þ
j +U

∞ð Þ
j wi +U

∞ð Þ
i wj + wjwj

� �
(4.2.4)

and so the right side of Eq. (4.1.4) becomes

@2Tij
@xi@xj

¼U
∞ð Þ
i U

∞ð Þ
j

@2 ρ

@xi@xj
+ 2U

∞ð Þ
j

@2 ρwið Þ
@xi@xj

+
@2

@xi@xj
ρwiwj + pij�ρ0c2∞δij
� �

(4.2.5)

We then use the continuity equation (2.2.6) to modify the second term

@ ρwið Þ
@xi

¼�@ρ

@t
�U

∞ð Þ
i

@ρ

@xi
(4.2.6)

so we obtain

@2Tij
@xi@xj

¼�U
∞ð Þ
i U

∞ð Þ
j

@2ρ

@xi@xj
�2U

∞ð Þ
j

@2ρ

@t@xj
+

@2

@xi@xj
ρwiwj + pij�ρ0c2∞δij
� �

(4.2.7)

Note the sign of the first term is changed by this last operation. Using this result in

Eq. (4.1.4) then gives, since ρ¼ρ∞+ρʹ where ρ∞ is constant

@2ρ0

@t2
+ 2U

∞ð Þ
j

@2ρ0

@t@xj
+U

∞ð Þ
i U

∞ð Þ
j

@2ρ0

@xi@xj
� c2∞

@2ρ0

@x2i
¼ @2

@xi@xj
ρwiwj + pij�ρ0c2∞δij
� �

(4.2.8)

The first three terms on the left can be combined to give a convected wave

equation, so
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D2
∞ ρ0

Dt2
� c2∞

@2ρ0

@x2i
¼ @2

@xi@xj
ρwiwj + pij�ρ0c2∞δij
� �

where
D∞ρ0

Dt
¼ @ρ0

@t
+U

∞ð Þ
j

@ρ0

@xj

(4.2.9)

The important part of this exercise is that it shows how Lighthill’s equation can be

applied in a uniform flowwhere the acoustic waves satisfy a convected wave equation.

It also shows that when applying Lighthill’s wave equation (4.1.4) in a uniform flow

there are terms associated with linear acoustic perturbations that appear in the source

term. InEq. (4.2.9) the source termdepends on the velocity perturbation about themean

flowwi, and the mean flow only affects unsteady terms on the left side, causing a prop-

agation effect. Both Eqs. (4.1.4), (4.2.9) are mathematically correct, but if we wish to

determine the acoustic waves in a uniformly convected flow then Eq. (4.2.9) is obvi-

ously the better choice. Note that themean flow in this example is constant everywhere,

which is never the case in a real flow, and we must resort to more detailed analyses to

extract the effect of a nonuniform mean flow on sound propagation inside the flow.

4.3 Curle’s theorem

A solution to Lighthill’s wave equation can be obtained by using the method of

Green’s functions described in Chapter 3. Specifically, we will determine the acoustic

field in a stationary uniform medium, which includes a bounded region of unsteady

flow (in which the assumptions of linear acoustics need not apply). In line with

Lighthill’s analogy, the solution will not necessarily be correct in the turbulent flow,

but should apply everywhere outside the flow where the medium is uniform and at

rest. We will start by writing Lighthill’s wave equation (4.1.4), in terms of y and τ, as

1

c2∞

@2 ρ0c2∞
� �
@τ2

�@2 ρ0c2∞
� �
@y2i

¼ @2Tij
@yi@yj

(4.3.1)

which has the same structure as Eq. (3.9.1) with p0 replaced by ρ0c2∞ and a source term

on the right side. As before we obtain a solution by multiplying this equation by a

Green’s function G and subtracting it from ρ0c2∞ times Eq. (3.9.2). Then, as in

Eq. (3.9.7), we obtain

1

c2∞
ρ0c2∞

@2G

@τ2
�G

@2 ρ0c2∞
� �
@τ2

� �
� ρ0c2∞

@2G

@y2i
�G

@2 ρ0c2∞
� �
@y2i

� �

¼ δ x�yð Þδ t� τð Þρ0 y, τð Þc2∞�G
@2Tij
@yi@yj

(4.3.2)

When this equation is integrated over time and space the left side reduces in exactly

the same way as it did in the previous chapter giving a surface integral as in
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Eq. (3.9.12). However, in this case we must also include the additional term on the

right of Eq. (4.3.2) giving

ρ0 x, tð Þc2∞ ¼
ðT
�T

ð
S

ρ0 y, τð Þc2∞
@G

@yi
�G

@ ρ0 y, τð Þc2∞
� �

@yi

� �
nidS yð Þdτ

+

ðT
�T

ð
V

G
@2Tij y, τð Þ
@yi@yj

� �
dV yð Þdτ (4.3.3)

This equation, while correct, is a dangerous result. The issue is that if we assume that

the source region, where Tij is nonzero, is very small, then we can neglect the prop-

agation times between different points y inside the volume and the observer at x, then

the Green’s function can be taken outside the volume integral and it becomes the inte-

gral of a divergence. This can be evaluated as a surface integral, and if there are no

objects in the flow, the only contributions to the integrand comes from surfaces that

can be placed where Tij¼0. Consequently, for sound radiation from turbulence, in the

absence of any nearby surfaces, Eq. (4.3.3) gives a result that is identically zero if the

turbulent region is so small that the retarded times can be neglected in the volume

integral. To use Eq. (4.3.3) we must know the value of integrand precisely at the cor-

rect source times τ and carry out an integration with no rounding error in order to get

the correct result, but the danger is that numerical errors in the integration will be

larger than the contribution from the source terms. Lighthill recognized this issue

and proposed an important simplification of this equation that identified the leading

order source terms in the volume integral, so that it could be evaluated without requir-

ing exact retarded time calculations. This concept was later extended by both Curle [2]

and Doak [3] to apply to turbulent flow in the presence of surfaces. Using Doak’s

approach, which describes the acoustic propagation using a Green’s function, we

can derive Curle’s equation by using the expansion

@

@yi
G
@Tij
@yj

� �
� @

@yj
Tij

@G

@yi

� �
¼G

@2Tij
@yi@yj

�Tij
@2G

@yi@yj
(4.3.4)

The volume integral in Eq. (4.3.3) then becomes

ðT
�T

ð
V

G
@2Tij y, τð Þ
@yi@yj

� �
dV yð Þdτ¼

ðT
�T

ð
V

@2G

@yi@yj

� �
Tij y, τð ÞdV yð Þdτ

+

ðT
�T

ð
V

@

@yi
G
@Tij y, τð Þ

@yj

� �
dV yð Þdτ

�
ðT
�T

ð
V

@

@yj
Tij y, τð Þ@G

@yi

� �
dV yð Þdτ (4.3.5)
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The volume integrals in the last two terms can be evaluated using the divergence the-

orem, using a unit normal ni that points into the fluid, and if we also note that Tij¼Tji,
we obtain

ðT
�T

ð
V

G
@2Tij y, τð Þ
@yi@yj

� �
dV yð Þdτ¼

ðT
�T

ð
V

@2G

@yi@yj

� �
Tij y, τð ÞdV yð Þdτ

+

ðT
�T

ð
S

Tij y, τð Þ@G
@yi

�G
@Tij y, τð Þ

@yi

� �
njdS yð Þdτ

(4.3.6)

We are now able to replace the volume integral in Eq. (4.3.3) using Eq. (4.3.6), but we

note that the integrand of the surface integral is modified giving

ρ0 x, tð Þc2∞ ¼
ðT
�T

ð
S

ρ0c2∞δij + Tij
� �@G

@yi
�G

@ ρ0c2∞δij + Tij
� �

@yi

� �
njdS yð Þdτ

+

ðT
�T

ð
V

@2G

@yi@yj

� �
Tij y, τð ÞdV yð Þdτ

(4.3.7)

Finally, we make use of the definition of Lighthill’s stress tensor to replace

ρ0c2∞δij + Tij ¼ pij + ρvivj (4.3.8)

and then use the momentum equation to give

ρ0 x, tð Þc2∞ ¼
ðT
�T

ð
S

pij + ρvivj
� �@G

@yi
+G

@ ρvj
� �
@τ

� �
njdS yð Þdτ

+

ðT
�T

ð
V

@2G

@yi@yj

� �
Tij y, τð ÞdV yð Þdτ

(4.3.9)

This is a very general result and we will discuss it term by term in the next section.

However, before proceeding, it is valuable to compare Eq. (4.3.9) and the results

for linear acoustics. In the previous chapter we derived a solution to the homogeneous

wave equation (with no source terms on the right side), and showed that the acoustic

field can be determined by the boundary conditions on the surfaces in the region of

interest. The two important quantities that contributed to the sound generation were

shown to be the surface acceleration and the force per unit area applied to the fluid

by the surface (see Eq. 3.9.14). In this section a more general analysis has been carried

out, which is not limited by the assumptions of linear acoustics used in Chapter 3.
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The only restrictions are that the surfaces bounding the fluid are stationary and that the

medium is at rest outside the region of turbulent flow. The solution to Lighthill’s wave

equation is then given by Eq. (4.3.9), with source terms that depend on (i) the rate of

change of mass flux on the surface, (ii) the force per unit area pijnj applied to the fluid
by the surface, (iii) the momentum flux across the surface, and (iv) a volume integral

contribution from the distribution of Lighthill’s stress tensor Tij throughout the fluid.
The additional contributions that appear in Eq. (4.3.9) and not in Eq. (3.9.13) are the

momentum flux and the contribution from the volume sources, both of which are

nonlinear and so not part of the linear acoustic wave equation. These are important

because they identify the sources of sound in a turbulent flow.

It is also of interest to note that the result given by Eq. (4.3.9) depends on a Green’s

function that only needs to be a solution to Eq. (3.9.2) and satisfy a causality condition.

We can therefore choose G in a fairly arbitrary manner. In the previous chapter we

gave the solution for G in a free field, but if there are rigid surfaces present then

we can also find solutions for G that satisfy the boundary conditions. This technique

is useful for certain problems and will be discussed in more detail later in this chapter.

One final note on Eq. (4.3.9), we can easily show that since the free field Green’s

function

Go x, tjy,τð Þ¼ δ t� τ + jx�yj=c∞ð Þ
4πjx�yj (4.3.10)

is only a function of jx�yj, and so has the properties

@Go

@yi
¼�@Go

@xi

@2Go

@yi@yj
¼ @2Go

@xi@xj

and so we can rewrite Eq. (4.3.9) as

ρ0 x, tð Þc2∞ ¼
ðT
�T

ð
S

@ ρvj
� �
@τ

GonjdS yð Þdτ� @

@xi

ðT
�T

ð
S

pij + ρvivj
� �

GonjdS yð Þdτ

+
@2

@xi@xj

ðT
�T

ð
V

Tij y, τð ÞGodV yð Þdτ ð4:3:11Þ

Then if we use the definition ofGo in Eq. (4.3.10) and carry out the time integrals we find

ρ0 x, tð Þc2∞ ¼
ð
S

@ ρvj
� �
@τ

� 	
τ¼τ*

njdS yð Þ
4πjx�yj�

@

@xi

ð
S

pij + ρvivj

 �

τ¼τ*

njdS yð Þ
4πjx�yj

+
@2

@xi@xj

ð
V

Tij y, τð Þ
 �
τ¼τ*

dV yð Þ
4πjx�yj ð4:3:12Þ

In this solution we have written the results so the source terms are evaluated at

the correct retarded times τ¼τ*¼ t�jx�yj/c∞. The surfaces are stationary so y is
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independent of τ, and fluctuations that occur in different parts of the flow at the

same source time τ will contribute to the received signal at x at different recep-

tion times t. The effect of retarded time is therefore a key component of accu-

rately predicting far field sound from flow noise sources. If the source region

is sufficiently small that retarded times can be ignored, then the integrals can

be evaluated approximately at a fixed source time. In contrast to Eq. (4.3.3)

we now see that the volume source term is given by the integral of Tij and does

not integrate to zero. It therefore represents the acoustic source term in a flow to

leading order.

4.4 Monopole, dipole, and quadrupole sources

The results given in the previous section are sufficiently important that we need to

spend some time fully evaluating the importance of each term. To facilitate this,

we will split Eq. (4.3.12) into three parts so

ρ0c2∞ ¼ ρ0c2∞
� �

monopole
+ ρ0c2∞
� �

dipole
+ ρ0c2∞
� �

quadrupole
(4.4.1)

The first term of interest is given by the monopole term, which we obtain from the

mass flux term of Eq. (4.3.12). For a surface on which the fluid moves with a normal

velocity vini¼un the monopole term is

ρ0 x, tð Þc2∞
� �

monopole
¼
ð
S

@ ρunð Þ
@τ

� 	
τ¼τ*

dS yð Þ
4πjx�yj (4.4.2)

This equation shows that sound can be generated by the flux of mass across the sur-

face, which is determined by the local density and the motion across the surface. If the

surface is rigid or impenetrable (and of course stationary) then this term is zero. If the

surface is sufficiently small that retarded time effects can be ignored, it is said to be

acoustically compact, and in the acoustic far field, we can write Eq. (4.4.2) in terms of

the position x (relative to a point inside or on the surface) as

ρ0 x, tð Þc2∞
� �

monopole
¼ 1

4πjxj
ð
S

@ ρunð Þ
@τ

dS yð Þ
2
4

3
5
τ¼τ*

This term is omnidirectional in the acoustic far field, and so is labeled the mono-

pole term, as discussed in Chapter 3. It shows that the source term depends on the

net rate of mass flux at the surface ρun, and does not depend on the shape of the

surface. Consequently the acoustic field does not distinguish between an acousti-

cally compact spherical surface or an acoustically compact surface of any other

shape. The discussion of the acoustic field from a spherical source is therefore
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far more general than it would appear from first sight, and the sound radiation from

a vibrating surface of arbitrary shape is the same as the sound radiation from a

spherical surface with the same net rate of mass flux injection.

Next consider the dipole term of Eq. (4.3.12), which is the surface integral with

terms related to the surface loading

ρ0 x, tð Þc2∞
� �

dipole
¼� @

@xi

ð
S

pij + ρvivj

 �

τ¼τ*

njdS yð Þ
4πjx�yj (4.4.3)

To evaluate the space derivative we can use the chain rule to define

@f τ*ð Þ
@xi

¼ @τ*
@xi

@f τð Þ
@τ

� 	
τ¼τ*

but since τ*¼ t�jx�yj/c∞ we find that

@f τ*ð Þ
@xi

¼� xi� yið Þ
jx�yjc∞

@f τð Þ
@τ

� 	
τ¼τ*

(4.4.4)

An alternate form of Eq. (4.4.3) is then

ρ0 x, tð Þc2∞
� �

dipole
¼
ð
S

@ pij + ρvivj
� �

@τ
+

pij + ρvivj
� �

c∞

x�yj j
� 	

τ¼τ*

xi� yið ÞnjdS yð Þ
4πjx�yj2c∞

(4.4.5)

Note that if the surface is impermeable then ρvivjnj¼0 and the only significant term is

the compressive stress tensor. We also see that there is a near field and far field term in

this result. The second term in square brackets will be important when the observer

is close to the source, but becomes less and less important when the observer moves

away from the source region, as is often the case. In most applications, we need

only consider the far field approximation of Eq. (4.4.5) for a rigid stationary surface,

which is

ρ0 x, tð Þc2∞
� �

dipole
� xi
4πjxj2c∞

ð
S

@ pijnj
� �
@τ

� 	
τ¼τ*

dS yð Þ (4.4.6)

We now see that for a rigid surface it is only the surface loading which causes the

sound, and this depends on both the pressure and the viscous stresses, although in gen-

eral the latter is assumed to be negligibly small and cannot be included without also

evaluating the volume sources in the boundary layer close to the wall. Furthermore if

the surface is acoustically compact then we can neglect the effects of retarded time

over the surface and write Eq. (4.4.6) in the form
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ρ0 x, tð Þc2∞
� �

dipole
� xi
4πjxj2c∞

@Fi

@τ

� 	
τ¼τ*

Fi τð Þ¼
ð
S

pijnjdS yð Þ (4.4.7)

where Fi is the net force applied to the fluid by the surface, including viscous drag. It

follows therefore that for an acoustically compact surface that applies a force to the fluid

the sound radiation has the characteristics of a compact dipole (as discussed inChapter 3)

orientated in the direction of the force. Consequently this term is defined as the dipole

term because it has an inherent cosine directionality if retarded time effects are ignored.

We can also derive a scaling law for the dipole source term because in general the

force on the surface scales with the square of the mean flow velocity around the body,

so Fi∝ρ∞U
2S, where S is the surface area of the body. In addition the time scale of

the fluctuations is given by a typical dimension of the turbulence, say L divided by the

mean flow speed U. Hence the time derivative of Fi will scale as @Fi=@τ∝ρ∞U
3S=L.

It follows that the acoustic intensity in the far field, Ir ¼ p2rms=ρ∞c∞, is proportional to
the square of the acoustic wave amplitude in the far field (Note in Chapter 3 we con-

sidered a harmonic wave and showed that the acoustic intensity was Ir ¼ jp̂j2=2ρ∞c∞.
For the more general case, we can define the acoustic intensity using the root mean

square pressure prms¼ jp̂j= ffiffiffi
2

p
and the speed of sound in the stationary fluid). The

far field intensity of a dipole source will then scale as

Ir∝
ρ∞U

6S2 cos2θ

4πjxjð Þ2c3∞L2
(4.4.8)

where θ is the observer angle relative to the dipole axis.

The important conclusion from Eq. (4.4.8) is that the far field sound scales on the

sixth power of the mean flow velocity. This simple scaling law has proven to be

invaluable in many applications where dipole sources are expected to dominate.

For example in applications where we have an acoustically compact rigid surface

in a turbulent flow, the flow noise is expected to scale as the sixth power of the veloc-

ity. We can conclude that noise will be significantly reduced if we lower the flow

speed and in many practical applications this is the most effective way to obtain a

noise level reduction.

Finally we will consider the volume integral in Eq. (4.3.12) which is referred to as

the quadrupole term. Using Eq. (4.4.4) to change the space derivatives to derivatives

over source time gives the quadrupole term as

@2 Tij=r

 �

τ¼τ*
@xi@xj

¼ @2Tij

@τ2

� 	
τ¼τ*

@τ*
@xi

@τ*
@xj

1

r
+ 2

@Tij

@τ

� 	
τ¼τ*

@τ*
@xi

@

@xi

1

r

� �
+ Tij

 �

τ¼τ*
@2

@xi@xj

1

r

� �
(4.4.9)

where r¼jx�yj and @τ*/@xi¼� (xi�yi)/rc∞. In the acoustic far field where

Lighthill’s analogy applies, this term can be simplified by dropping all the terms that

are of order 1/r2 and 1/r3 so
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ρ0 x, tð Þc2∞
� �

quadrupole
� xixj
4πc2∞r

3

ð
V

@2Tij
@τ2

� 	
τ¼τ*

dV yð Þ (4.4.10)

Furthermore, if the turbulence is limited to a volume that is small compared to the

acoustic wavelength, then the effects of retarded time across the volume can be

ignored, leading to

ρ0 x, tð Þc2∞
� �

quadrupole
� xixj
4πc2∞jxj3

ð
V

@2Tij
@τ2

dV yð Þ
2
4

3
5
τ¼τ*

(4.4.11)

The inherent directionality of this source, if retarded time effects are ignored, is the

same as the quadrupole sources we considered in Chapter 3. For example the T11
term has a (xi/jxj)2¼ (cos θ)2 directionality which is the same as a longitudinal

quadrupole, Eq. (3.7.5), and T12 has the same directionality as Eq. (3.7.7), as illus-

trated in Fig. 3.6.

In principle, this result gives the far field noise from a region of unbounded turbu-

lent flow and shows that it is the second time derivative of Lighthill’s stress tensor that

generates the sound. We can also obtain a scaling law for the noise from turbulence

using this result. The volume integral of the stress tensor Tij is expected to scale as

ρ∞U
2V where V is the volume of the fluid, and, as for the dipole source, we expect

the time scale to be L/U where L is the lengthscale of the turbulence in the flow.

The far field pressure is therefore proportional to U4, and the far field acoustic inten-

sity scales as

Ir∝
ρ∞U

8V2

4πjxjð Þ2c5∞L4
xixj
jxj2
� �

(4.4.12)

and shows that the noise from turbulence in the flow scales with the eighth power

of the flow speed, U8. This is one of the most important results of Lighthill’s the-

ory because it shows how the noise from free turbulence is very sensitive to mean

flow speed. For example if the exit velocity of a jet is reduced by 30% the acoustic

intensity in the far field is reduced by 80log 10(0.7)¼�12.4 dB, which is a signif-

icant reduction. However, a decrease in jet exit velocity is also accompanied by a

reduction in thrust, which often limits the noise reduction that can be achieved.

The thrust is proportional to ρ∞U
2A where A is the exit area of the jet, hence

if we increase the jet diameter or exit area we can reduce the exit velocity for

a given thrust. Since the noise is determined by the eighth power of the velocity,

an increase in jet diameter for the same thrust is accompanied by a reduction in

noise, and this is one of the reasons why many modern commercial aircraft have

large diameter engines.

Another important conclusion from these scaling laws is to estimate the sound from

a finite volume of turbulence compared to the sound from a surface dipole source.

Taking the ratio of Eq. (4.4.12) to Eq. (4.4.8) gives
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Irð Þquadrupole
Irð Þdipole

<
U2V2

c2∞L
2S2

It follows that the quadrupole source strength is of order (U/c∞)
2¼M2 times the dipole

source strength whereM is the flowMach number, providing the ratio V/LS is of order
one. For low Mach number flowsM≪1 and this implies that the volume source terms

of quadrupole order are negligible compared to the surface source terms that are of

dipole order.

4.5 Tailored Green’s functions

As pointed above the solution to Lighthill’s wave equation given by Eq. (4.3.9)

depends on a Green’s function that only needs to be a solution to the inhomogeneous

wave equation (3.9.2). We therefore have some latitude in choosing this function and

we can also require that the Green’s function satisfies boundary conditions on the sur-

faces within the flow. This can be important when we consider high Reynolds number

flows over rigid surfaces. Eq. (4.3.9) shows that the acoustic field is given by

ρ0 x, tð Þc2∞ ¼
ðT
�T

ð
S

pij + ρvivj
� �@G

@yi
+G

@ðρvjÞ
@τ

� �
njdS yð Þdτ

+

ðT
�T

ð
V

@2G

@yi@yj

� �
Tij y, τð ÞdV yð Þdτ (4.3.9)

If the surface is stationary and impenetrable then vjnj¼0 and the only remaining term

in the surface integral depends on pij. In high Reynolds number flow the viscous shear

stress terms can be considered to be negligible and so the compressive stress tensor is

determined by the pressure term alone, giving

ρ0 x, tð Þc2∞ ¼
ðT
�T

ð
S

p0
@G

@yi
ni

� �
dS yð Þdτ +

ðT
�T

ð
V

@2G

@yi@yj

� �
Tij y, τð ÞdV yð Þdτ (4.5.1)

where pʹ¼p�p∞. The surface integral is then only dependent on the distribution of

surface pressure. However, if the Green’s function is chosen to satisfy the rigid wall

boundary condition so that ni@G/@yi¼0 on the surface then the only remaining term in

Eq. (4.5.1) is the volume integral. A Green’s function that satisfies additional bound-

ary conditions is specified as a tailored Green’s function, and will be given the nota-

tion GT. The acoustic field is then
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ρ0 x, tð Þc2∞ ¼
ðT
�T

ð
V

@2GT x, tjy,τð Þ
@yi@yj

� �
Tij y, τð ÞdV yð Þdτ (4.5.2)

This of course is an important simplification because it eliminates the need to calculate

the surface pressure and allows the acoustic far field to be calculated directly from the

volume source terms. The main difficulties with this approach are finding the tailored

Green’s function for bodies of arbitrary shape, and modeling the Lighthill source term

with sufficient accuracy. Analytical models of the surface pressure below a turbulent

boundary layer are often more readily available than models of the nonlinear terms in

Lighthill’s stress tensor. Furthermore, in low Mach number flows the volume source

terms in Eq. (4.3.9) are of quadrupole order, as discussed in Section 4.4, and so can be

neglected in comparison to the surface integral terms. For these reasons many prob-

lems can be most easily addressed by using the surface integral term in Eq. (4.3.9) with

an appropriate analytical model for the surface pressure. However, when numerical

calculations of the unsteady flow are available Eq. (4.5.2) gives an attractive alterna-

tive to Eq. (4.3.9) because the volume integral need only be evaluated over the volume

where the flow is turbulent, and the form of the tailored Green’s function may also

help to window or limit that volume to the region close to discontinuities. However,

for flow over streamlined bodies the wake can be an extremely important contributor

to Tij and integrating this correctly needs to be done carefully with the correct down-

stream boundary conditions.

The simplest example of a tailored Green’s function is a hard flat surface of infinite

extent, as shown in Fig. 4.2.

The acoustic waves from the source at y reach the observer at x by two different

paths, the direct path and the reflected path, and the length of the reflected path is the

same as the distance from an image source below the surface at the location y#. Since

the surface is rigid the boundary condition on the surface is @p/@y2¼0 so the tailored

Green’s function also needs to satisfy this condition. If we define

y = (y1, y2,y3)

y2= 0

x = (x1,x2,x3)

y# = (y1, − y2,y3) Image source

Direct path

Reflected path

Fig. 4.2 A source over a hard flat surface and its image source.
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GT x, tjy,τð Þ¼Go x, tjy,τð Þ +Go x, tjy#,τ� �
(4.5.3)

then it is relatively simple to verify that @GT/@y2¼0 for all points on the surface and

GT is a solution to Eq. (3.9.2) for y2>0. This particular Green’s function is important

to problems involving sources close to a large rigid surface. If the source is within a

fraction of an acoustic wavelength of the surface, then we can approximate y and y# by

their values on the surface, soGT¼2GowhereGo is evaluated on the surface at y2¼0.

Tailored Green’s functions are available for simple shapes in the frequency

domain, and can be computed using boundary element methods for more complex

shapes. The frequency domain approach is based on taking the Fourier transform,

defined by Eq. (3.10.1), of Eq. (4.5.1), using Eq. (3.10.7) and the convolution theorem,

to give

eρ x,ωð Þc2∞ ¼
ð
S

ep y,ωð Þ@
eG xjyð Þ
@yi

ni

 !
dS yð Þ +

ð
V

@2 eG xjyð Þ
@yi@yj

 !eTij y,ωð ÞdV yð Þ

(4.5.4)

where eG xjyð Þ is the Green’s function in the frequency domain defined by Eq. (3.10.7).

We can reduce this to a volume integral by introducing a tailored Green’s function that

satisfies the inhomogeneous Helmholtz equation (3.10.4),

@2 eGT xjyð Þ
@y2i

+ k2 eGT xjyð Þ¼�δ x�yð Þ (4.5.5)

and matches the boundary condition on the surface. For an impenetrable surface we

find a solution for which ni@ eGT=@yi ¼ 0 on S and so the integrand of the first integral

in Eq. (4.5.4) is zero, and

eρ x,ωð Þc2∞ ¼
ð
V

@2 eGT xjyð Þ
@yi@yj

 !eTij y,ωð ÞdV yð Þ (4.5.6)

The two results given by Eqs. (4.5.4), (4.5.6) , or Eqs. (4.5.1), (4.5.2), give some

insight into the sources of sound as they appear in the acoustic far field. From

Eq. (4.5.6) it would appear that the only sound source is the turbulence in the vol-

ume of the fluid. However, that is a misconception hidden in the nature of the tai-

lored Green’s function. If we consider Eq. (4.5.4), it is seen that there are two

apparent noise sources, one being the turb ulence in the volume and the other being

the radiation from the surface, which direc tly relates the outgoing waves to their

“source as observed from the acoustic far field.” The tailored Green’s function

includes not only these outgoing waves but also the waves that are reflected by

the surface, and indicates that the sound radiation in the far field is “driven” by

the turbulence, and so is best described as the “origin” of the sound. One must
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therefore be careful in choosing the terms that describe the mechanisms of sound

generation and distinguish between the “ origin” of the sound and the “source of

sound as observed from the acoustic field.”

4.6 Integral formulas for tailored Green’s functions

To calculate the tailored Green’s function for an arbitrary shape we can combine

Eqs. (4.5.5), (3.10.4) which defines the free field Green’s function and is rewrit-

ten as

@2 eGo zjyð Þ
@y2i

+ k2 eGo zjyð Þ¼�δ z�yð Þ (4.6.1)

Multiplying Eq. (4.6.1) by eGT xjyð Þ and Eq. (4.5.5) by eGo zjyð Þ, subtracting the two

equations, integrating over the volume V(y), and using the divergence theorem, gives

ð
S

eGo zjyð Þ@
eGT xjyð Þ
@yi

� eGT xjyð Þ@
eGo zjyð Þ
@yi

 !
nidS yð Þ¼ eGT xjzð Þ� eGo zjxð Þ

Since ni@ eGT xjyð Þ=@yi ¼ 0 the first term in the surface integral is eliminated and the

tailored Green’s function is given by

eGT xjzð Þ¼ eGo zjxð Þ�
ð
S

eGT xjyð Þ@
eGo zjyð Þ
@yi

 !
nidS yð Þ (4.6.2)

In principle, for a source at z, the acoustic field at x can be calculated using the free

field Green’s function and the surface integral in Eq. (4.6.2). However, to use this

result we need to know the tailored Green’s function for a source on the surface and

an observer at x. This can be obtained using a boundary element method and solving

Eq. (4.6.2) for a point z that lies on the surface. Some care is required because the

surface integral becomes singular when y¼z, and so the limiting form of the integral

must be used. The approach is to indent the surface about the point z with a hemi-

sphere of radius ε and then let ε tend to zero. On the hemisphere jz�yj¼ r¼ε
where r is in the radial direction po inting away from the point z. The surface integral

can be defined as

� eGT xjzð Þ
ð
Sε

@

@r

eikr

4πr

� �� 	
r¼ε

dS

where the negative sign is the result of the normal being chosen to point into the fluid

in the opposite direction to the radial coordinate r. Evaluating the radial derivative in
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the limit that ε tends to zero gives 1/4πε2 and, since the integrand is constant on the

surface the integral is simply the area of a hemisphere times the integrand, or 2πε2/
4πε2¼1/2. It follows that

1

2
eGT xjzð Þ¼ eGo zjxð Þ

�
ð

S,z 6¼y

eGT xjyð Þ@
eGo zjyð Þ
@yi

 !
nidS yð Þ for z on S yð Þ (4.6.3)

is a suitable form for the evaluation of the tailored Green’s function on the surface that

can be evaluated numerically using a boundary element method. The tailored Green’s

function for different source and receiver positions can then be obtained from

Eq. (4.6.2).

4.7 Wavenumber and Fourier transforms

Wavenumber methods are very important in aeroacoustics because they directly relate

the source fluctuations to the propagating waves in the acoustic far field. To illustrate

this we will first consider the general definition of a Fourier transform and then extend

it to both time and space.

As described in Section 3.10 the Fourier transformwith respect to time is defined as

ef ωð Þ ¼ 1

2π

ðT
�T

f tð Þeiωtdt (4.7.1)

The integral converges for all functions f(t) provided that they are piecewise contin-

uously differentiable and the integral of jf(t)j exists over the limits �T to T. This usu-
ally requires that T is less than infinity. In the limit that T becomes very large we can

define the inverse transform as

f tð Þ¼
ð∞
�∞

ef ωð Þe�iωtdω (4.7.2)

The frequency content of the acoustic field generated by a turbulent flow can be deter-

mined using Eq. (4.7.1). For example the far field sound generated by turbulence in the

absence of scattering surfaces, is given by Eq. (4.4.7) as

ρ0 x, tð Þc2∞
� �

quadrupole
� xixj
4πc2∞jxj3

ð
V

@2Tij y, τð Þ
@τ2

� 	
τ¼τ*

dV yð Þ (4.7.3)

By introducing the inverse Fourier transform of the Lighthill stress tensor,
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Tij y, τð Þ¼
ð∞

�∞

eTij y,ωð Þe�iωτdω

and evaluating τ at the correct retarded time we find that, after rearranging the order of

integration,

ρ0 x, tð Þc2∞
� �

quadrupole
�
ð∞

�∞

�ω2xixj
4πc2∞jxj3

ð
V

eTij y, ωð ÞeikrdV yð Þ
8<
:

9=
;e�iωtdω

Taking the Fourier transform of this with respect to time we obtain

eρ x,ωð Þc2∞
� �

quadrupole
� �ω2xixj
4πc2∞jxj3

ð
V

eTij y,ωð ÞeikrdV yð Þ (4.7.4)

This result shows that all the retarded time effects are now accounted for by the

exponential factor under the integral, and we no longer require the rather comp-

licated evaluation of emission time at t he source. This can have some advantages

in the evaluation of some simple problem s, especially when the distribution of

the sources are well defined and we can u se the far field approximation that

r¼jxj�x�y/jxj, so

eρ x,ωð Þc2∞
� �

quadrupole
��ω2xixje

ik xj j

4πc2∞jxj3
ð
V

eTij y,ωð Þe�ikx � y=jxjdV yð Þ (4.7.5)

The concept of a Fourier transform in time can be extended to a four

dimensional transform in both time and space and is defined as wavenumber

transform

eeq k,ωð Þ¼ 1

2πð Þ4
ðT
�T

ðR∞

�R∞

ðR∞

�R∞

ðR∞

�R∞

q x, tð Þeiωt�ik � ydy1dy2dy3dt (4.7.6)

and its inverse

q y, tð Þ¼
ð∞
�∞

ð∞
�∞

ð∞
�∞

ð∞
�∞

eeq k,ωð Þe�iωt+ ik � ydk1dk2dk3dω (4.7.7)

An important point to note here is that the Fourier transform definition given by

Eq. (4.7.6) uses an exponent +iωt� ik�x.
Using these results the frequency dependence of the acoustic field given by

Eq. (4.7.5) is defined in terms of a wavenumber transform by
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eρ x,ωð Þc2∞
� �

quadrupole
�
�2π2xixjω

2eikjxjT
�
ij k oð Þ,ω
� �

c2∞jxj3
k oð Þ ¼ωx=c∞jxj (4.7.8)

This is an important result because it shows that the far field sound from a turbulent

flow can be directly related to the wavenumber transform of the source distribution.

Furthermore, it is only the wavenumbers which have a magnitude jk(o)j¼ω/c∞ that

couple with the far field, and fluctuations at any other wavenumber are not important.

In deriving this result we made use of the far field solution given by Eq. (4.7.4), and it

is an interesting exercise (which will be left to the reader) to show that the same result

can be obtained from Eq. (4.3.3) (in the absence of a scattering surface), in which the

derivatives are applied to the Green’s function.

The fact that Eq. (4.7.8)only depends on the acoustic wavenumberk¼ω/c∞ has some

important implications. For example, if we consider the turbulence to be purely

convected at the mean velocityU, then Tijwill be a function of y�Ut and the frequency
associated with anywavenumber will beω¼k�U. There will be no sound radiation to the
acoustic far field unless jkj¼ω/c∞¼jk�Uj/c∞, which requires that jUj is greater than or
equal to the speed of sound. Eq. (4.7.8) also shows that we need only evaluate the source

term for wavenumbers where jkj<ω/c∞, which, in principle, simplifies the modeling

process. Unfortunately the measurement or numerical simulation of turbulence at these

wavenumbers is very difficult, and this inhibits the application of this method.

The same approach can be used for dipole surface sources. Starting with Eq. (4.4.6)

we take its Fourier transform with respect to time and apply the far field approxima-

tion r� jxj�x � y=jxj to give

eρ x,ωð Þc2∞
� �

dipole
��iωxieik xj j

4πc∞jxj2
ð
S

epij y,ωð Þnje�ikx � y=jxjdS yð Þ (4.7.9)

For thin airfoils in an inviscid flow, which will be discussed in later chapters, the

surface integral can be expressed in terms of the pressure jump Δp across the airfoil

planform where

ΔepnidΣ½ �planform ¼ epnidS½ �upper� epnidS½ �lower

and the subscripts refer to the upper and lower surfaces of the airfoil. Choosing the

planform to lie in the y2¼0 plane then gives

eρ x,ωð Þc2∞
� �

dipole
��iωx2eik xj j

4πc∞jxj2
ðc
0

ðb=2
�b=2

Δep y,ωð Þe�ikx1y1=jxj�ikx3y3=jxdy1dy3

(4.7.10)

where the span of the blade is b and the blade chord is c. Since the pressure jump is

zero on all parts of the plane y2¼0 not on the airfoil, the limits of the integrals in
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Eq. (4.7.10) can be extended to �R∞. The integral then represents a wavenumber

transform giving

eρ x,ωð Þc2∞
� �

dipole
�
�iπωx2Δeep k

oð Þ
1 , k

oð Þ
3 ,ω

� �
eik xj j

c∞jxj2 (4.7.11)

where

Δeep k1, k3, ωð Þ¼ 1

2πð Þ2
ðR∞

�R∞

ðR∞

�R∞

Δep y,ωð Þe�ik1y1�ik3y3dy1dy3 (4.7.12)

is the wavenumber transform of the surface pressure and k
oð Þ
i ¼ ωxi= xj jc∞ is the

acoustic wavenumber in the direction of the observer.

This is an important result because it shows that the acoustic field only depends on

the wavenumber transform of the surface pressure fluctuations at the acoustic

wavenumbers. As with the turbulence sources discussed above, any disturbance that

convects over the surface at a subsonic speed will not couple with the acoustic far

field. Any attempts to measure the surface pressure fluctuations on an airfoil and relate

them to the acoustic far field are therefore very difficult because the measurement

needs to distinguish between hydrodynamic pressure fluctuations, convected subson-

ically over the surface, and acoustic fluctuations (which also may be contaminated by

facility noise). A much easier approach is to infer the surface pressure fluctuations

at the acoustic wavenumbers from a far field sound measurement. If the left

side of Eq. (4.7.11) is measured for values of k1
(o) and k3

(o) in the range�ω=c∞ < k
oð Þ
i <

ω=c∞ (or for all angles at all frequencies), then we can obtain the wavenumber spec-

trum of the pressure jump at all the wavenumbers that are important for acoustic cal-

culations in other environments.

Finally, we note that at low frequencies the acoustic wavenumbers tend to zero and

so the wavenumber spectrum defined by Eq. (4.7.12) reduces to the net unsteady load-

ing on the airfoil, divided by (2π)2. In contrast at very high frequencies the

wavenumber transform (4.7.12) will be dominated by edge effects because the oscil-

latory nature of the integrand tends to suppress the contributions from parts of the sur-

face where the pressure varies smoothly. Because of the importance of edges on sound

radiation we will consider their effect on blade noise in great detail in Part 3 of the text.
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5The FfowcsWilliams and Hawkings

equation

In Chapter 4 we derived the general solution to the wave equation for a medium that

included stationary scattering objects. In many important applications, such as for pro-

pellers and helicopter rotor noise, the surfaces are moving and so we need to modify

the analysis to take full account of surface motion. Powerful techniques to address this

problem have been pioneered by Ffowcs Williams and Farassat, and the objective of

this chapter is to introduce these techniques. We will start by reviewing the concept of

generalized derivatives and then show how these may be used to give solutions to

Lighthill’s equation for a medium that includes moving surfaces and convected tur-

bulent flow. This will be followed by a general discussion of the sound fields from

moving sources and the extension of the results to sources in a moving fluid. Finally,

we will show how incompressible computational fluid dynamics (CFD) codes can be

used to calculate the sound radiated by stationary objects in the flow.

5.1 Generalized derivatives

A generalized derivative extends the concept of an ordinary derivative to discontin-

uous functions. For example, consider the Heaviside step function Hs(x) which is

defined as being zero when x<0 and one when x>0 as shown in Fig. 5.1.

The derivative of this function is obviously zero when x<0 and x>0 and must be

very large when x¼0. Also it follows that if we integrate the derivative of Hs then

we have

ðx
x1

@Hs x
0ð Þ

@x0
dx0 ¼ 1 x> 0 x1 < 0

0 x< 0 x1 < 0

�
(5.1.1)

Hs(x)

1.0

x

Fig. 5.1 A Heaviside step function.
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We see therefore that the derivative of the Heaviside function has exactly the same

properties as the Dirac delta function so we can define,

δ x� xoð Þ¼ @Hs x� xoð Þ
@x

(5.1.2)

This concept can be extended to surfaces which bound a region. If we define a function

f(x) which is greater than zero outside a volume enclosed by a surface So and less than
zero inside the volume, as shown in Fig. 5.2, it follows that the surface is defined

by f¼0.

For example, if we want to define a spherical surface of radius a we can choose

f ¼ x21 + x
2
2 + x

2
3�a2. Similarly, for a cylinder of radius a we have f ¼ x21 + x

2
2�a2.

The unit normal to the surface, pointing out of the region as shown, is given by

n¼rf= rfj j (5.1.3)

evaluated on f¼0. This description of a surface is perfectly general and can be

extended to moving surfaces by letting f also be a function of time. For example, a

sphere moving with velocity U can be defined by

f ¼ x�Utj j2�a2

Now consider how we can analyze a flow field in the region exterior to the surface,

which may be in arbitrary accelerated motion. We want to know the flow variables

in the region exterior to So but we know nothing about the variables inside So,
and so the velocity, for example, can only be defined outside So. We can however

introduce a new velocity variable vHs(f ) which is defined everywhere. In the region

outside the volume this variable is still the velocity, but inside the volume it is

zero. We now have a flow variable which is specified everywhere in the presence

of an arbitrary moving surface. One important property of vHs(f ) is its divergence

r � vHs fð Þð Þ¼Hs fð Þr � v+ v �rHs fð Þ (5.1.4)

but

rHs fð Þ¼ @Hs

@f
rf ¼ δ fð Þjrf jn (5.1.5)

f< 0

f > 0

n

Fig. 5.2 Function f that defines the surface bounding a volume.
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so the divergence becomes

r� vHs fð Þð Þ¼Hs fð Þr � v+ v � nδ fð Þjrf j (5.1.6)

We can of course evaluate the divergence theorem for this new variable and integrate

over an infinite region V∞ bounded only at infinity by the surface S∞, soð
V∞

r� vHs fð Þð ÞdV¼�
ð
S∞

vHs fð Þð Þ � ndS (5.1.7)

It follows from Eq. (5.1.6) that

ð
V∞

Hs fð Þr � v + v � nδ fð Þjrf jð ÞdV¼�
ð
S∞

v � ndS (5.1.8)

If we apply the divergence theorem to the first term in the integrand of this equation,

then

ð
V∞

Hs fð Þ r � vð ÞdV¼
ð
Vo

r� vð ÞdV¼�
ð
So + S∞

v � ndS (5.1.9)

where Vo is the region outside of So where f>0, and So is the surface of the body

where f¼0, which may of course be a function of time. It then follows from

Eq. (5.1.8) that

ð
V∞

v � nδ fð Þjrf jdV¼
ð
So

v � ndS (5.1.10)

This result is invaluable for the analysis of moving surfaces because the effect of

the surface motion is completely defined by the integrand on the left of this

expression.

Now let us consider the time derivatives of our new variable vHs(f ), which will be
given by

@ vHs fð Þð Þ
@t

¼Hs fð Þ@v
@t

+ vδ fð Þ@f
@t

(5.1.11)

For a surface which moves with velocityV it follows that f is a function of x�
ð
Vdt on

the surface and so the chain rule gives

@f x�
ð
Vdt

� �
@t

2
664

3
775
f¼0

¼ �V �rf½ �f¼0 (5.1.12)
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then Eq. (5.1.11) is modified to

@ vHs fð Þð Þ
@t

¼Hs fð Þ@v
@t

�vδ fð Þ V � njrf jð Þ (5.1.13)

so that the second term on the right is specified in terms of the surface velocity.

Next consider the material derivative of vHs, which is given by

D vHsð Þ
Dt

¼Dv

Dt
Hs + v

Df

Dt
δ fð Þ (5.1.14)

Using Eq. (5.1.12) we see that

Df

Dt
¼ @f

@t
+ v:—ð Þ f5 v�Vð Þ � njrf j (5.1.15)

For an impermeable boundary the velocity of the fluid normal to the surface is equal to

the surface velocity in this direction and so v �n¼V �n and it follows that Df/Dt¼0.

Hence the second term in Eq. (5.1.14), which is only nonzero on the surface, can be

eliminated for impermeable surfaces.

Finally, in the next section, we need to consider integrals that include a Green’s

function. For example,

ð
V∞

G
@

@yi
pijnjδ fð Þjrf j� �

dV yð Þ (5.1.16)

which we can expand as

ð
V∞

@

@yi
Gpijnjδ fð Þjrf j� �

dV yð Þ�
ð
V∞

pijnjδ fð Þjrf j� �@G
@yi

dV yð Þ (5.1.17)

The first of these two integrals can be evaluated using the divergence theorem, but

since the only boundary to V∞ is at infinity where G tends to zero, its net contribution

is zero so

ð
V∞

G
@

@yi
pijnjδ fð Þjrf j� �

dV yð Þ¼�
ð
V∞

pijnjδ fð Þjrf j� �@G
@yi

dV yð Þ (5.1.18)

Similarly for integrands which include time derivatives we can show that, integrating

by parts and noting that G is zero when τ¼�T, then

ðT
�T

ð
V∞

G
@

@τ
vjnjδ fð Þjrf j� �

dV yð Þdτ¼�
ðT
�T

ð
V∞

vjnjδ fð Þjrf j� �@G
@τ

dV yð Þdτ

(5.1.19)
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These results summarize some of the basic concepts of generalized derivatives. In the

next section we will show how they can be used to provide a solution to Lighthill’s

equation in the presence of moving surfaces.

5.2 The Ffowcs Williams and Hawkings equation

In this section we will consider how the concept of a generalized derivative may be

used to obtain the solution to Lighthill’s equation in the presence of moving surfaces.

We will start by evaluating the continuity and momentum equations in terms of

the new variables vHs, pHs, and ρHs which are defined everywhere in an unbounded

infinite volume V∞. To obtain the continuity equation (2.2.6) in terms of the new

variables we expand

@ ρ0Hsð Þ
@t

+
@ ρviHsð Þ

@xi
¼Hs

@ρ0

@t
+
@ ρvið Þ
@xi

� �
+ ρvj�ρ0Vj

� �
nj

� �
δ fð Þjrf j (5.2.1)

where ρ0 ¼ρ�ρ∞. The first term on the right is zero because it is the continuity equa-

tion in the region where the flow is defined, and zero outside the flow region because

Hs is zero. It follows that it is zero everywhere, so

@ ρ0Hsð Þ
@t

+
@ ρviHsð Þ

@xi
¼ ρvj�ρ0Vj

� �
njδ fð Þjrf j (5.2.2)

A similar procedure may be applied to the momentum equation given by Eq. (2.3.9),

leading to

@ ρviHsð Þ
@t

+
@ ρvivjHs + pijHs

� �
@xj

¼ ρvi vj�Vj

� �
+ pij

� �
njδ fð Þjrf j (5.2.3)

(where the pressure is defined as gauge pressure as in Chapter 4). We can then obtain a

wave equation for the new variable ρ0Hs in exactly the same way we did for Lighthill’s

equation in Section 4.1. Taking the time derivative of Eq. (5.2.2), the divergence

of Eq. (5.2.3) and subtracting gives an equation equivalent to Eq. (4.1.3). Then

subtracting @2 ρ0c2∞Hs

� �
=@x2i from both sides gives

@2 ρ0Hsð Þ
@t2

� c2∞
@2 ρ0Hsð Þ

@x2i
¼@2 TijHs

� �
@xi@xj

� @

@xi
ρvi vj�Vj

� �
+ pijÞnjδ fð Þjrf

� ��� �

+
@

@t
ρvj�ρ0Vj

� �
njδ fð Þjrf j� �

(5.2.4)
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This is the Ffowcs Williams and Hawkings equation [1], which is an inhomogeneous

wave equation that includes the effects of moving surfaces on the right hand side.

We can solve this equation using the method of Green’s functions as was done in

Section 4.2, but since the dependent variable of the wave equation is defined in an

unbounded medium, the surface integrals, which appeared in Eq. (4.3.3), are not

required and we obtain

ρ0 x, tð Þc2∞Hs ¼
ðT
�T

ð
V∞

G
@2 HsTij
� �
@yi@yj

� �
dV yð Þdτ

�
ðT
�T

ð
V∞

G
@

@yi
ρvi vj�Vj

� �
+ pijÞnjδ fð Þjrf

� ��� �
dV yð Þdτ

+

ðT
�T

ð
V∞

G
@

@τ
ρvj�ρ0Vj

� �
njδ fð Þjrf j� �

dV yð Þdτ

(5.2.5)

Using the same procedure employed in deriving Eqs. (4.3.4)–(4.3.6) we can recast the
first integral term as

ðT
�T

ð
V∞

@2G

@yi@yj
TijHs

� �
dV yð Þdτ

where the additional surface integral that appears in Eq. (4.3.6) is zero in the present

case because of the unbounded domain. We can also convert the second and third

terms in Eq. (5.2.5) using the identities established in Eqs. (5.1.18), (5.1.19) to give

ρ0 x, tð Þc2∞Hs ¼
ðT
�T

ð
V∞

@2G

@yi@yj
TijHs

� �
dV yð Þdτ

+

ðT
�T

ð
V∞

ρvi vj�Vj

� �
+ pijÞnjδ fð Þjrf

� ��� �@G
@yi

dV yð Þdτ

�
ðT
�T

ð
V∞

ρvj�ρ0Vj

� �
njδ fð Þjrf j� �@G

@τ
dV yð Þdτ

(5.2.6)

We can obtain the form preferred by Ffowcs Williams for the free field Green’s func-

tion G¼Go, by noting that, since x and y are fixed,

@Go

@yi
¼�@Go

@xi

@Go

@τ
¼�@Go

@t
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and thus,

ρ0 x, tð Þc2∞Hs ¼ @2

@xi@xj

ðT
�T

ð
V∞

TijHs

� �
GodV yð Þdτ

� @

@xi

ðT
�T

ð
V∞

ρvi vj�Vj

� �
+ pijÞnjδ fð Þjrf

� ��� �
GodV yð Þdτ

+
@

@t

ðT
�T

ð
V∞

ρvj�ρ0Vj

� �
njδ fð Þjrf j� �

GodV yð Þdτ

(5.2.7)

where partial derivatives have been shifted to the observer variables, as in Eq. (4.3.11).

Both these results are given because in some applications it is easier to evaluate the

differentials at the source as in Eq. (5.2.6), whereas in other applications the differ-

entials are more accurately applied at the observer location as in Eq. (5.2.7).

Evaluating the second and third integrals in Eq. (5.2.6) using Eq. (5.1.10) converts

them to surface integrals

ρ0 x, tð Þc2∞ ¼
ðT
�T

ð
Vo τð Þ

@2G

@yi@yj
TijdV yð Þdτ

+

ðT
�T

ð
So τð Þ

@G

@yi
ρvi vj�Vj

� �
+ pij

� �
nj

� �
dS yð Þdτ

�
ðT
�T

ð
So τð Þ

@G

@τ
ρvj�ρ0Vj

� �
nj

� �
dS yð Þdτ

(5.2.8)

Notice how this result reduces to Curle’s equation (4.3.9) when the surfaces are sta-

tionary so V¼0. It is important to appreciate that this result is not an obvious exten-

sion to Curle’s theorem because of the change to the momentum flux term and the

additional surface source ρ0Vj. Also note how the volume and surface integrals must

now be evaluated over moving surfaces, which adds a new level of complexity

because the sources are moving relative to the observer, so both y and the propagation

distance between the source and the observer will change with emission time.

One of the key simplifications to this result is for an impenetrable surface where the

flow velocity normal to the surface equals the surface normal velocity so that

vini¼Vini. This eliminates the momentum flux terms in the second integral and

because ρ�ρ0 ¼ρ∞ the integrand in the third integral reduces to ρ∞Vini giving

ρ0 x, tð Þc2∞ ¼
ðT
�T

ð
Vo τð Þ

@2G

@yi@yj
TijdV yð Þdτ

+

ðT
�T

ð
So τð Þ

@G

@yi
pijnjdS yð Þdτ

�
ðT
�T

ð
So τð Þ

@G

@τ
ρ∞VjnjdS yð Þdτ

(5.2.9)
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The volume and surface integrals in Eqs. (5.2.8) or (5.2.9) can be evaluated by defin-

ing a coordinate system that moves with the surface. Moving coordinates will be den-

oted by z which is identical to the fixed source coordinate y at time τo so for emission

times τ>τo we have

y¼ z+

ðτ
τo

V t0ð Þdt0 (5.2.10)

The surface and volume integrals can be evaluated in the moving coordinate system

provided we account for the change in the size of the volume and surface elements

introduced by this transformation, hence we specify the Jacobians J and K such that

dV(y)¼JdV(z) and dS(y)¼KdS(z). It will be left as an exercise for the reader to show
that if surfaces are moving with constant linear or angular velocity then the Jacobians

are unity and @G/@yi¼@G/@zi.
Now let us return to FfowcsWilliams’ form of these equations given by Eq. (5.2.7).

An important application of Eq. (5.2.7) is in propeller or helicopter rotor noise where

the surfaces are rotating and translating in an otherwise stationarymedium. In this case

the free field Green’s function is appropriate and we are most concerned with the

acoustic far field. The Green’s function is given by

Go ¼ δ t� τ� r τð Þ=c∞ð Þ
4πr τð Þ r τð Þ¼ jx� z� Us + z�Ωð Þ½ � τ� τoð Þj (5.2.11)

where Us is the translational velocity of the propeller and Ω is its angular velocity

about the origin of z. If we convert the volume integrals to surface integrals we obtain,

ρ0 x, tð Þc2∞ ¼ @2

@xi@xj

ðT
�T

ð
V∞

TijGodV zð Þdτ

� @

@xi

ðT
�T

ð
So τð Þ

ρvi vj�Vj

� �
+ pij

� �
nj

� �
GodS zð Þdτ

+
@

@t

ðT
�T

ð
So τð Þ

ρvj�ρ0Vj

� �
GodS zð Þdτ

Since the Green’s function is multiplied into each integrand, we can now perform the

time integrations. These are made easier by noting that, with g¼ t� τ� r(τ)/c∞,

ðT
�T

f τð Þδ g τð Þð Þdτ¼
ðg Tð Þ

g �Tð Þ

f τð Þδ gð Þ
@g=@τð Þdg

¼ f

@g=@τj j
� 	

g¼0

¼ f

�1� 1

c∞

@r

@τ

����
����

2
664

3
775
τ¼τ*

¼ f

1�Mrj j
� 	

τ¼τ*

(5.2.12)
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whereMrc∞¼�@r/@τ is the velocity of the source in the direction of the observer, and
the correct retarded time τ* is the solution to τ*¼ t� r τ*ð Þ=c∞. Thus the Ffowcs

Williams Hawkings equation becomes,

ρ0 x, tð Þc2∞Hs ¼ @2

@xi@xj

ð
Vo

Tij
4πrj1�Mrj
� 	

τ¼τ*
dV zð Þ

� @

@xi

ð
So

ρvi vj�Vj

� �
+ pij

� �
nj

4πrj1�Mrj
� 	

τ¼τ*
dS

+
@

@t

ð
So

ρvj�ρ0Vj

� �
nj

4πrj1�Mrj
� 	

τ¼τ*
dS

(5.2.13)

In this result the integrals are carried out over the moving surface at the correct emis-

sion time, and then the acoustic field is differentiated to obtain the final result.

In the acoustic far field, where the sound is the only disturbance and the sound

waves are propagating radially away from the source, the space and time derivatives

can be exchanged. This is simply a reflection of the fact that the change of the acoustic

pressure in time experienced at a fixed point is the same as the change in space mul-

tiplied by the sound speed. To verify this for moving surfaces, we evaluate the gradient

of the free field Green’s function defined in Eq. (5.2.11) as

@Go

@xi
¼ @

@xi

δ gð Þ
4πr τð Þ
� �

¼ @r

@xi

@g

@r

@δ gð Þ
@g

1

4πr τð Þ�
δ gð Þ

4πr2 τð Þ
� �

¼xi� yi
r

�1

c∞

@δ gð Þ
@t

1

4πr τð Þ�
δ gð Þ

4πr2 τð Þ
� �

¼�xi� yi
r

1

c∞

@Go

@t
+

Go

r τð Þ
� �

In the acoustic far field where jxj≫ jyj the derivatives of the Green’s function can

therefore be approximated by

@Go

@xi
�� xi

xj j
1

c∞

@Go

@t

� �
(5.2.14)

The approximation may be applied to both the dipole and quadrupole terms in

Eq. (5.2.13) giving the far field approximation for impermeable surfaces, as

ρ0 x, tð Þc2∞ �xixj
jxj2

1

c2∞

@2

@t2

ð
Vo

Tij
4πjxjj1�Mrj
� 	

τ¼τ*
dV zð Þ

+
xi
xj j

1

c∞

@

@t

ð
So

pijnj
4πjxjj1�Mrj
� 	

τ¼τ*
dS zð Þ

+
@

@t

ð
So

ρ∞Vjnj
4πjxjj1�Mrj
� 	

τ¼τ*
dS zð Þ

(5.2.15)
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The result shows that for propeller or rotor noise there are three terms of impor-

tance. The first is the quadrupole term whose strength depends on Tij and is the

sound radiated by both turbulence and flow distortions such as shock waves that

are associated with the blades. The second is the dipole source term that is con-

trolled by the surface loading pij. Finally, we have a term ρ∞Vjnj that depends only
on the blade surface velocity and the density at the observer. This is a volume

displacement source and is only nonzero if the observer “sees” a time varying sur-

face velocity at emission time. This source is zero for an object in linear motion

traveling toward the observer, but nonzero for a rotating blade which continuously

changes direction relative to the observer. All the integrands are evaluated at

emission time τ¼ τ*¼ t� r(τ*)/c∞ and so for moving sources, the emitted time

history and the observed time history are distorted relative to each other by the

motion. We can shift the time differentials from the observed field onto the source

terms using

@

@t
¼ @τ*

@t

@

@τ
¼ 1

1�Mr

@

@τ
(5.2.16)

which introduces an extra factor of (1�Mr)
�1 for each time derivative in Eq. (5.2.15).

A physical interpretation of this result is that the motion of the source compresses the

time history as the source moves towards the observer, and this dramatically increases

the radiated sound, especially when the relative Mach number Mr approaches one.

Also note that the integrals become singular when Mr¼1, and so special care needs

to be exercised when evaluating these source terms for propellers or rotors with super-

sonic tip speeds. We will discuss this issue in more detail in Chapter 16 when we

review rotor noise.

5.3 Moving sources

To illustrate some of the subtleties of the results given above we will evaluate the

acoustic field from a moving source using Eq. (5.2.13). Consider an acoustically com-

pact surface that is moving through a stationary fluid with constant speed Us in the x1
direction. We will assume that the sound from turbulence in the fluid is negligible

compared to the sound from the surface sources, and that the size of the surface is

small compared to the propagation distance to the observer. If the source is acousti-

cally compact, then the differences in retarded time from different points on the

surface can be ignored and we can approximate the source to observer distance r
as jx�y(c)j. Here y(c) is the centroid of the surface, at the correct retarded time, in

the fixed reference frame, corresponding to z¼0 in the moving frame. Therefore,

from Eq. (5.2.11),

r τð Þ¼ jx�Usτj
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where we have taken the time origin of the surface motion τo to be zero. The surface

terms in Eq. (5.2.13) can then be simplified by taking the terms that depend on the

propagation distance outside of the surface integrals giving

ρ0 x, tð Þc2∞ �� @

@xi

1

4πrj1�Mrj
ð
So

pijnjdS zð Þ
� 
� 	

τ¼τ*

+
@

@t

1

4πrj1�Mrj
ð
So

ρ∞VjnjdS zð Þ
� 
� 	

τ¼τ*

Since Vj¼ (Us,0,0) is constant on the surface the last term integrates to zero and the

only contribution comes from the dipole term. The surface integral of pijnj in that term
is the net force applied to the fluid by the surface. For modeling purposes we take this

as being a harmonic source in the frame of reference moving with the surface, with

vector amplitude F̂i, defined as

ð
So

pijnjdS zð Þ¼Re F̂ie
�iωoτ

� �

so that the acoustic field is given by

ρ0 x, tð Þc2∞ ��Re
@

@xi

F̂ie
�iωoτ

4πrj1�Mrj
� 	

τ¼τ*

� �
(5.3.1)

The retarded time is evaluated by solving the equation t¼ τ+ r(τ)/c∞ or

t� τ¼ x1�Usτð Þ2 + x22 + x23
� �1=2

=c∞ (5.3.2)

The retarded times τ¼ τ* can be obtained in terms of the observer time by squaring

this equation and solving the resultant quadratic equation giving

τ*¼
c∞t�Mx1ð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1�Ustð Þ2 + 1�M2ð Þ x22 + x

2
3

� �q
c∞ 1�M2ð Þ (5.3.3)

where M¼Us/c∞. There are two possible solutions to this equation, but it is also con-

strained by the causality condition, which requires that t> τ. For subsonic source speeds
whereM<1 the onlyoption is to choose thenegative signon the square root inEq. (5.3.3)

(this is readily verifiable by setting x2¼x3¼0). However, for supersonic source speeds,

two real solutions are possible if x1�Ustð Þ2 > M2�1
� �

x22 + x
2
3

� �
. To illustrate this

Fig. 5.3Ashowsa seriesofwave fronts emitted fromasource that ismoving subsonically,

and Fig. 5.3B shows the wave fronts for a source moving supersonically.

These figures highlight the physics of the problem. For the subsonic case

(Fig. 5.3A), the wave fronts spread out from the source, but as the source moves
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the center of the wavefronts changes. This causes an apparent contraction of the acous-

tic wavelength for an observer ahead of the source, and an apparent increase in

frequency of the signal. For an observer behind the source, the apparent wavelength

is increased and the observed frequency of the signal is decreased. In the far field the

retarded time equation can be approximated using the far field approximation

discussed in Section 3.6 with y1¼Usτ, so

r τð Þ� jxj� x1Usτ=jxj+⋯

The velocity of the source in the direction of the observer is Ur¼Usx1/jxj and the

source Mach number in the direction of the observer is Mr¼Ur/c∞. The far field

approximation applied to Eq. (5.3.2) then gives

t� τ� jxj=c∞�Mrτ or τ� t�jxj=c∞ð Þ= 1�Mrð Þ (5.3.4)

leading to the approximation of Eq. (5.3.1) as

ρ0 x, tð Þc2∞ ��Re
@

@xi

F̂ie
�iωo t�jxj=c∞ð Þ= 1�Mrð Þ

4πjxjj1�Mrj
� 	� �

�Re
�iωoxiF̂ie

�iωo t�jxj=c∞ð Þ= 1�Mrð Þ

4πc∞jxj2 1�Mrð Þ2 +O jxj�2
� � ! (5.3.5)

where near field terms of order jxj�2 have been ignored. This shows that the apparent

frequency at the observer is multiplied by a factor (1�Mr)
�1 giving an increase of fre-

quency when the source approaches the observer, andMr is positive, and a reduction of

frequency as the sourcemoves away from theobserver, andMr is negative.This is called

the Doppler frequency shift and is well known in many applications. We also note that

the source has a dipole directivity given by xi/jxj as expected, but there is also a direc-
tivity caused by the sourcemotion. In this example the source is said to have twopowers

of Doppler amplification because there is a factor of (1�Mr)
2 on the bottom line of

Eq. (5.3.5). This can significantly increase the levels as the source approaches the

observer and reduce the levels as the source moves away.

(B)(A)

Fig. 5.3 Wave fronts from a source moving from left to right. In (A) the source is moving with a

Mach number of M¼0.5 and in (B) the Mach number is M¼1.5.
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When the source is moving supersonically as illustrated in Fig. 5.3B the situation is

quite different. The source is now moving faster than the acoustic waves it generates

and so it cannot be heard as it approaches the observer. This is to be expected from the

solution to the retarded time equation (5.3.3) because the argument of the square root

is negative if x1�Ustð Þ2 > M2�1
� �

x22 + x
2
3

� �
. To expand on this, we note that the term

(x1�Ust) is the source position at reception time t (see Fig. 5.4) and for a real solution
to Eq. (5.3.3) we require

x1�Ustj jffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 + x

3
3

p ¼ cot μ>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�1

p

where μ is the angle of the observer to the path of the source evaluated at reception

time, as shown in Fig. 5.4. We can rearrange this inequality so that it reads

μ< sin�1 1

M

� �
(5.3.6)

where sin�1(1/M) defines the angle of the Mach cone caused by the source motion,

which is illustrated by the leading boundary of the waves in Fig. 5.3B. Inside theMach

cone we see that two wave fronts reach the same point at the same time, and this cor-

responds to the two possible solutions to the retarded time equation (5.3.3) when the

argument of the square root is positive. An interesting point is that the propagation

time for the wave front that originated from the source after it has passed the observer

is shorter than the propagation time for the wave front originating from the source

before it passed the observer, and hence the signal emitted by the source is both

Doppler shifted and reversed in time!

Thecharacteristics of sourcesmovingat speed are importantwhenweconsider rotat-

ing sources such as propellers, helicopter rotors, and wind turbines, which will be con-

sidered in Part 4 of the text.Wewill leave further discussion of this topic until that time.

(x1,x2,x3)

Position of source
at emission time t1

Ust1

Ust2

Ust

Position of source
at emission time t2

Position of source
at reception time t

Boundary of the Mach cone
where m=sin−1(1/M)

m

Fig. 5.4 The source positions at emission times and reception times for supersonically moving

sources.
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5.4 Sources in a free stream

In many applications we are interested in the sound radiation from a uniform flow over

a stationary object. Examples include model testing in wind tunnels, the flow in ducts,

flow over large surfaces such as aircraft fuselages, and perhaps most importantly CFD

calculations in body fixed coordinates. In each case there is a uniform steady flow at

large distances from the region of turbulence that causes the sound and this contradicts

the assumption, made in both Lighthill’s acoustic analogy and the Ffowcs Williams

and Hawkings equation that the medium is at rest at infinity.We showed in Section 4.2

that, in a uniform flow, the Lighthill stress tensor needed to be modified to only

include the unsteady perturbations relative to the uniform flow, and that the acoustic

propagation was determined by the convected wave equation. In principle, we can

solve this modified equation using the techniques described earlier in this chapter

using solutions to the convected wave equation. However, a simpler approach is often

possible if we work in a frame of reference moving with the uniform flow, in which the

medium appears stationary and the source and the observer are seen to be moving

upstream at the flow speed. This approach is accommodated by modifying the results

of this chapter to include a moving source and observer and by referencing flow veloc-

ity perturbations to the free stream.

An important application of this theory is to ducted fan noise where the sources

are stationary or rotating next to stationary surfaces. The acoustic propagation is

most readily addressed in this case by using the convected wave equation. It is pos-

sible to model this propagation by using a Green’s function that satisfies the bound-

ary conditions on the wall of the duct. We therefore need a formulation that will

correctly allow for moving sources in a uniform flow that is bounded by stationary

surfaces.

First consider the solution to Lighthill’s wave equation in a frame of reference

moving with the uniform flow velocity U(∞)¼ (U∞,0,0). The velocity perturbations

relative to the moving frame of reference are given by w, so the velocity in the fixed

frame is v¼U(∞)+w. Lighthill’s stress tensor is defined in the moving frame as

T 0
ij ¼ ρwiwj + p�p∞ð Þδij� ρ�ρ∞ð Þc2∞δij�σij

Also the velocity of the surface relative to the fixed frame is Vj�U
∞ð Þ
j . Eq. (5.2.8) can

then be written, for the positions x0 and y0 in the moving frame as

ρ0 x0, tð Þc2∞ ¼
ðT
�T

ð
Vo τð Þ

@2G

@y0i@y
0
j

T 0
ijdV y0ð Þdτ

+

ðT
�T

ð
So τð Þ

@G

@y0i
ρwi wj�Vj +U

∞ð Þ
j

� �
+ pij

� �
nj

� �
dS y0ð Þdτ

�
ðT
�T

ð
So τð Þ

@G

@τ
ðρwj�ρ0 Vj�U

∞ð Þ
j

� �
nj

� �
dS y0ð Þdτ

(5.4.1)
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We wish to change this result to give a solution at the points x and y, which are the

observer and source locations in the fixed frame of reference. As part of this we need

to replace the Green’s function. In the moving frame where no free stream is observed,

the Green’s function is a solution to the inhomogeneous wave equation,

1

c2∞

@2G

@τ2
�@2G

@y02i
¼ δ x0 �y0ð Þδ t� τð Þ (3.9.2)

The Green’s function in the fixed frame, Ge(x,tjy,τ), will be related to G by straight-

forward translation of the coordinates,

G x0, tjy0,τð Þ¼Ge x+U ∞ð Þt, tjy+U ∞ð Þτ,τ
� �

and thus

@G

@y0i
¼ @Ge

@yi
and

@G

@τ
¼ @Ge

@τ
+U

∞ð Þ
i

@Ge

@yi
¼D∞Ge

Dτ

where D∞/Dτ is the free stream convective derivative, introduced in Eq. (4.2.9).

Applying these conversions to Eq. (3.9.2) we see that the fixed frame Green’s function

must be a solution to the equation,

1

c2∞

D2
∞Ge

Dτ
�r2Ge ¼ δ t� τð Þδ x�yð Þ (5.4.2)

and so we obtain

ρ0 x, tð Þc2∞ ¼
ðT
�T

ð
Vo τð Þ

@2Ge

@yi@yj
T0
ijdV yð Þdτ

+

ðT
�T

ð
So τð Þ

@Ge

@yi
ρwi wj�Vj +U

∞ð Þ
j

� �
+ pij

� �
nj

� �
dS yð Þdτ

�
ðT
�T

ð
So τð Þ

D∞Ge

Dτ
ðρwj�ρ0 Vj�U

∞ð Þ
j

� �
nj

� �
dS yð Þdτ

(5.4.3)

An important application of Eq. (5.4.3) is in CFD calculations or surface flows in

which the surfaces are stationary and the medium is in uniform motion at infinity.

In this case V¼0 and the nonpenetration boundary condition on the surfaces require

that (U(∞)+w)�n¼0 on all the surfaces. The integrand of the last integral in Eq. (5.4.3)

then reduces to ρ∞U
∞ð Þ
j njD∞Ge=Dτ which does not vary with time and so makes no

contribution to the acoustic field. A similar reduction can be made to the second inte-

gral in Eq. (5.4.3) and, neglecting viscous stresses as we did in Section 4.5, gives
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ρ0 x, tð Þc2∞ ¼
ðT
�T

ð
So

@Ge

@yi
p0nidS yð Þdτ +

ðT
�T

ð
Vo

@2Ge

@yi@yj
T0
ijdV yð Þdτ (5.4.4)

where p0 ¼p�p∞. This result is identical to Eq. (4.5.1), which was the result for

a stationary medium, the differences being that the Green’s function must satisfy

the convected wave equation (5.4.2), and that the Lighthill stress tensor depends

on ρwiwj.

5.5 Ffowcs Williams and Hawkings surfaces

One of the most useful applications of the formulas given above is in the calculation

of the acoustic far field from detailed numerical simulations of a flow within a lim-

ited region. Recent advances in computational methods have enabled the accurate

calculation of many time varying flows of practical interest. Provided the Mach

number is not too high, these solutions provide both the unsteady flow and the acous-

tics inside a computational grid, but the computational domain is limited by the size

of the computer, and usually cannot be extended to the acoustic far field. Further-

more, increasing the size of the computational domain soon becomes a wasteful

exercise because wave propagation outside the flow is well understood and modeled

by the linear wave equation. The purpose of a Ffowcs Williams and Hawkings

(FWH) surface is to provide a far field solution to the wave equation given accurate

numerical calculations on a surface which bounds the source region. It is assumed

that the calculations are accurate inside the source region and that they accurately

capture the compressible flow fluctuations and the acoustic waves, so that the FWH

surface may be arbitrarily lo cated within the numerical domain. This is important

because the numerical calculations at the edges of the computational domain may

be adversely influenced by numerical boundary conditions, so the FWH surface

is usually placed inside the numerical domain in a region where there is confidence

in the calculations. However, it is preferable, but not absolutely necessary, to choose

the surface so that the Lighthill stress tensor does not contribute to the far field in

the region outside the FWH surface. Then Eq. (5.2.13) can be used without the quad-

rupole source terms to give the acoustic field as

ρ0 x, tð Þc2∞Hs ¼� @

@xi

ð
So

ρvi vj�Vj

� �
+ pij

� �
nj

4πrj1�Mrj
� 	

τ¼τ*
dS

+
@

@t

ð
So

ρvj�ρ0Vj

� �
nj

4πrj1�Mrj
� 	

τ¼τ*
dS

(5.5.1)

This result implies that if we know the flow quantities on So (which may be moving

relative to the observer) then we can calculate the acoustic far field everywhere out-

side the computational domain. Obviously we need to check that the surface is in

the right place and that the dropping of the quadrupole term is a good approximation.
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As shown by Brentner and Farassat [2], this can be done by recalculating the results on

a slightly different surface and checking that the far field is independent of surface

location. Notice that in this formula we need to know the mass flux, the surface stress,

and the momentum flux on the surface. These variables are available in an unsteady

compressible flow calculation, but the incorrect result will be obtained from an incom-

pressible flow calculation because the acoustic waves which couple with the far field

will be missing unless the surface is very small compared to the acoustic wavelength.

For a rotating source, such as a helicopter rotor, the steady flow in blade based coor-

dinates can be used as the input to Eq. (5.5.1) to give a time varying far field. This can

include detached shock waves that are local to the blade and inside the computational

domain. When the blade encounters an unsteady flow event, such as a blade vortex

interaction, then obviously the time varying surface quantities must be used.

To apply Eq. (5.5.1), it is necessary to calculate the integrand at the emission time

for of each element of the FWH surface. This can require significantly more accurate

time computations on the surface than would be required in the acoustic far field.

It can therefore be advantageous to move the time derivatives in Eq. (5.5.1) inside

the integrand. For the acoustic far field this can be done by using

@

@xi
�� xi

xj j
1

c∞

@

@t

and Eq. (5.2.16) to give the form used by Farassat [3]

ρ0 x, tð Þc2∞Hs � 1

c∞

ð
So

xi

4πjxj2 1�Mrð Þ2
@Li
@τ

+
Li

1�Mrð Þ
@Mr

@τ

� 
" #
τ¼τ*

dS

+

ð
So

1

4πjxj 1�Mrð Þ2
@q

@τ
+

q

1�Mrð Þ
@Mr

@τ

� 
" #
τ¼τ*

dS

(5.5.2)

with

Li ¼ ρvi vj�Vj

� �
+ pij

� �
nj q¼ ρvj�ρ0Vj

� �
nj

where terms of order jxj�2 have been dropped. The source terms on the surface

can now be readily evaluated and differentiated in source time, and then propagated

to the far field. There is still a requirement to match the observer time and the emission

time, but this can be done with less restrictive requirements on numerical accuracy if

the differentials are evaluated in source time.

In conclusion, the approach described above is very attractive because it overcomes

one of the main limitations of Lighthill’s theory. Specifically, it moves the application

of Lighthill’s equation to the region where it is unambiguously defined, and allows all

the processes which are taking place to be determined by the numerical code inside the

FWH surface. However, the accuracy of the result depends on the accuracy of the cal-

culations on the surface. It is only the surface perturbations that couple to the acoustic

field which are needed, and unfortunately these may be a small part of the net motion.
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The signal to noise ratio of the integrands in Eq. (5.5.2) is therefore determined by the

ratio of the propagating waves to the numerical noise, not the ratio of the absolute

fluctuations to the numerical noise. In later chapters we will discuss how we can dis-

criminate the propagating and nonpropagating parts of the surface source terms, and

show that it is the disturbances with supersonic phase speeds on the FWH surface

(relative to the observer) which are the most important.

5.6 Incompressible flow estimates of acoustic
source terms

In the previous section we discussed the use of FWH surfaces to couple CFD calcu-

lations over a finite volume to the acoustic far field. This requires that the acoustic

waves are correctly defined on the FWH surface and this will only be the case if they

are computed using the compressible equations of motion. At low Mach numbers the

CFD grid required for a compressible calculation stretches the limits of computational

capabilities. In general, a FWH surface surrounding a computational domain of arbi-

trary size cannot be used with the output from an incompressible flow calculation.

However, it has been shown by Wang et al. [4] that some valuable results can be

obtained at low Mach numbers if the output of an incompressible flow calculation

is used to specify the source terms in Lighthill’s acoustic analogy, provided the vol-

ume integral is broken down into source regions that are very small compared to the

acoustic wavelength.

With the flow computed incompressibly, the speed of sound used in the application

of Lighthill’s equation can be taken as constant so that acoustic density perturbations

are directly related to the acoustic pressure fluctuations as p�p∞ ¼ ρ�ρ∞ð Þc2∞.
Lighthill’s stress tensor can then be approximated by ρowiwj where wi is the flow

perturbation relative to a constant velocity U
∞ð Þ
j at the inflow boundary of the com-

putational domain (see Section 5.4). Acoustic radiation from low Mach number tur-

bulent flows without surfaces present is normally of very low level, and so the surface

source terms are usually of primary interest. In almost all cases the viscous terms on

the surfaces are assumed to be negligible. The surface source term in Eq. (5.4.4) is then

determined by the surface pressure. If the surface is acoustically compact and all parts

of the turbulent flow are within a fraction of an acoustic wavelength from the surface,

then the surface pressure can be approximated by the pressure fluctuations that are

obtained from the incompressible CFD calculation. However, if the surface is large

compared to the acoustic wavelength, then this approximation is invalid because

the acoustic waves on the surface are not included. For example, the sound radiated

by the trailing edge of an airfoil is often modeled by a semi-infinite flat plate that

extends to the upstream limit of the computational domain. As we will show below,

the far field sound from turbulence near the corner of a large flat plate will scale quite

differently from the sound from an acoustically compact surface, and this limits the

use of the surface hydrodynamic pressure for acoustic calculations.
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An alternative approach, used by Wang et al. [4], is to combine the calculated

Lighthill’s stress tensor with a tailored Green’s function, as in Eq. (4.5.2). This elim-

inates the need to evaluate the surface integral and the far field sound is calculated

directly from the unsteady flow. Unfortunately, tailored Green’s functions are only

available for a limited set of idealized shapes. An alternative numerical approach,

developed by Khalighi et al. [5], is to numerically calculate the surface pressure from

the volume source terms using a boundary element method. This calculation is most

easily done in the frequency domain and implies that the pressure term in Eq. (4.5.4)

(or the Fourier transform of Eq. 5.4.4) is solved for the unknown surface pressure p
�

with the volume sources defined from an incompressible CFD calculation. The

resulting integral equation is of course singular because the Green’s function is sin-

gular when the source point and observer point merge, but the approach described in

Section 4.6 can be used to eliminate the singularity. The size of the surface is in prin-

ciple not limited, but boundary integral methods are only applicable to closed sur-

faces, and so some approximation must be used to close semi-infinite surfaces

without introducing additional scattering. This is a three step approach: first an

unsteady incompressible CFD code is used to calculate the turbulent flow, and then

a compressible boundary element method is used to numerically calculate the surface

pressure from the volume source terms in Lighthill’s analogy. The final step is to cal-

culate the acoustic far field from the surface pressure on the boundary and the volume

sources. However, both these methods assume that Lighthill’s analogy can be used to

calculate the pressure perturbations within the flow and, as we will discuss below, this

limits their application to low Mach number flows.

The physical element that is missing from these approaches is the back reaction of

the acoustic waves on the unsteady flow near corners and edges. For example, acoustic

feedback loops that occur in cavities and in laminar boundary layers will not be sim-

ulated because they are often caused by acoustic rather than hydrodynamic feedback.

A classical example is a singing airfoil where the instabilities in a laminar boundary

layer close to the leading edge of an airfoil grow with distance downstream and pro-

duce the regular shedding of eddies from the trailing edge. Potential flow and acoustic

perturbations produced by the shedding are then felt upstream near the leading edge

where they serve to originate and organize the boundary layer instability.

The process is controlled by the upstream feedback, which can be caused by either

potential flow perturbations or acoustic waves that originate at the trailing edge. The

amplitude of the potential flow perturbations scale with 1/r2, where r is the distance
from the source of the disturbance. In contrast acoustic perturbations, which are ini-

tially much weaker, scale with distance as 1/r. At distances that are of the order of an
acoustic wavelength, the acoustic disturbances can dominate because their decay with

distance is much less than the decay of potential perturbations. If acoustic propagation

is left out of the calculation, as it is in an incompressible flow code, then the feedback

that disturbs the upstream laminar boundary layer will be much weaker and may not

initiate a sufficient disturbance to trigger the feedback loop. This issue is not limited to

low frequencies because the feedback loop is nonlinear, and so instabilities at very

high frequencies can cause significant flow excursions at low frequencies that would

not be modeled correctly by an incompressible flow calculation.
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Finally, it must be pointed out that Lighthill’s formulation was never intended for

calculations within the flow, and this in itself can be a limitation when the mean flow

Mach number is increased above about 0.3. To illustrate this point, consider

Lighthill’s source term when there is a significant distortion of the mean flow from

its uniform inflow value. If we define the mean flow as Ui ¼U
∞ð Þ
i +ΔUi where

U
∞ð Þ
i is constant then the velocity relative to the constant flow is wi¼ΔUi+ui and

the source term in Lighthill’s wave equation can be broken down into linear and

nonlinear terms as follows:

ρwiwj ¼ ρ∞ΔUiΔUj|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Steady flow

+ ρ∞ΔUiuj + ρ∞uiΔUj + ρ
0ΔUiΔUj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Linear terms

+ ρ∞uiuj + ρ
0uiuj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Nonlinear terms

(5.6.1)

The important point is that when there is significant distortion of the mean flow then

terms that are linear in the perturbation velocity will dominate the source terms if

ΔU≫u. For flows over obstructions that include stagnation points or for weakly tur-

bulent inflows over streamlined shapes, the linear terms will dominate. However, if

that is the case then we cannot ignore the term ρ0ΔUiΔUjwhich depends on the acous-

tic variable ρ0, and so is not a source term. It is also not included in incompressible

flow calculations. This term represents the refraction of sound waves by the mean flow

and should be part of the wave operator. This is one of the inherent limitations of

Lighthill’s analogy but will only have a small impact if ρ0ΔUiΔUj≪ρ0c2∞, which sug-
gests the limit ΔU/c∞<0.3. To address this limitation a theory is required that does

not include the acoustic variable in the source term. In the next chapter we will address

this issue by assuming that the turbulence is sufficiently weak that the linear terms in

Eq. (5.6.1) dominate the production of sound.
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6The linearized Euler equations

In Chapters 4 and 5 we developed the basic equations for sound generation by fluid

flow based on Lighthill’s Acoustic Analogy. The solution to these equations gives the

radiated sound in terms of sources in the flow and sources on surfaces that bound the

flow. To obtain the surface source terms we need to solve a boundary value problem,

but Lighthill’s analogy is not ideally suited for this because it only describes acoustic

waves propagating in a stationary medium. In practice, surfaces immersed in a turbu-

lent flow will generate sound through their interaction with the turbulence. Predicting

this type of sound generation may be thought of as involving two distinct physical

mechanisms: the distortion of the turbulence by the flow around the body, and the gen-

eration of unsteady pressures on the surface as a response to that turbulence. To

address these issues we will now discuss an alternate formulation based on the line-

arization of the Euler equations, which assume that the flow is isentropic and inviscid.

6.1 Goldstein’s equation

Goldstein [1] derived a solution to the linearized Euler equations for small perturba-

tions about a steady mean flow. The equations of motion for the mean flow, defined in

terms of its density, pressure, and velocity ρo, po, and U, were subtracted from the

equations of motion for the unsteady flow and linearized, giving a set of linear equa-

tions in terms of the density, pressure, and velocity perturbations ρ0, p0, and u. In this

section we use a more general approach and take the time derivative of the equations

of motion and identify the perturbation quantities as @ρ/@t, @p/@t, and @v/@t. The the-
ory assumes an inviscid flow with no heat conduction, which means that the unsteady

flow is isentropic and so, from Eq. (2.6.7), Ds/Dt¼0. We also assume the mean flow

to be homentropic. This restricts the approach to cases where boundary layer effects

can be ignored and therefore excludes separated flows. It also assumes that the mean

flow convects flow disturbances linearly, which implies that the turbulent eddies

remain as coherent structures while they are convected from an upstream boundary

(where they are defined) until they have completely passed the surfaces in the flow.

This can represent a severe restriction in small-scale turbulent flows where the coher-

ence length scale of the turbulence, in the convected frame, is small compared to the

size of the body.

The starting point for the derivation of Goldstein’s wave equation is to rewrite the

continuity equation in terms of the density perturbation, or more generally, in terms of

the rate of change of density @ρ/@t. This will enable us to separate out the fluctuating
quantities from the mean quantities at a later stage. Taking the time derivative of the

continuity Eq. (2.2.5) gives

@2ρ

@t2
+
@

@t
r� ρvð Þ¼ 0
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so

@2ρ

@t2
+ v �r @ρ

@t

� �
+
@ρ

@t
r� v +r� ρ

@v

@t

� �
¼ 0 (6.1.1)

The first two terms of the expansion combine to give the material derivative of @ρ/@t,
and we can replace the divergence of the velocity in the third term by using the con-

tinuity equation in the form given by Eq. (2.2.12), ρD 1=ρð Þ=Dt¼r � v, so, after mul-

tiplying and dividing by the density we have

ρ
1

ρ

D

Dt

@ρ

@t

� �
+
@ρ

@t

D

Dt

1

ρ

� �� �
+r� ρ

@v

@t

� �
¼ 0 (6.1.2)

Combining the terms in curly brackets then gives

D

Dt

1

ρ

@ρ

@t

� �
+
1

ρ
r� ρ

@v

@t

� �
¼ 0 (6.1.3)

This is the continuity equation in terms of perturbation variables @ρ/@t and @v/@t. We

will show later that this can be readily linearized about the mean time-invariant flow

when the density perturbations are small.

Next we replace the density perturbation with the pressure perturbation by using

the equation for entropy change in an ideal gas given by Eq. (2.4.9) in the form

1

ρ

@ρ

@t
¼ cv
pcp

@p

@t
� 1

cp

@s

@t
¼ 1

ρc2
@p

@t

� �
� 1

cp

@s

@t

where c2¼ γp/ρ¼pcp/ρcv is the local unsteady speed of sound. The continuity equa-

tion is then

D

Dt

1

ρc2
@p

@t

� �
+
1

ρ
r ρ

@v

@t

� �
¼ 1

cp

D

Dt

@s

@t

� �
(6.1.4)

We linearize this equation about the mean flow by setting ρ¼ρo+ρ
0, p¼po+p

0 and
assuming that terms of order (ρ0/ρo)@p/@t, (p0/po)@p/@t, and ρ0@v/@t are negligible

compared to terms of order @p/@t and ρo@v/@t, which also impacts the definition of

the speed of sound. (Note that in the present context the prime indicates fluctuation

relative to the mean value, rather than disturbance relative to a static ambient as

was the case for Lighthill’s equation.) So, the left side of Eq. (6.1.4) becomes

D

Dt

1

ρoc2o

@p

@t

� �
+

1

ρo
r ρo

@v

@t

� �

For isentropic flow the right side becomes
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D

Dt

@s

@t

� �
¼ @

@t

Ds

Dt

� �
� @v

@t
�r

� �
s

For isentropic flow Ds/Dt¼0, and since there is no mean entropy gradient,

@v=@tð Þ �rð Þs is the product of two small quantities and so can also be ignored,

and it follows that Eq. (6.1.4) may be reduced to

D

Dt

1

ρoc2o

@p

@t

� �
+

1

ρo
r ρo

@v

@t

� �
¼ 0 (6.1.5)

Additionally, we assume that the velocity perturbation is small compared to the mean

velocity, so jUj≫ juj. Thus for any fluctuating quantity f we can approximate

Df

Dt
¼ @f

@t
+ U + uð Þ �rf � @f

@t
+U �rf ¼Dof

Dt
(6.1.6)

where Do/Dt is the substantial derivative relative to the mean flow. The assumption

jUj≫ juj implies that the flow perturbation is only convected by the mean flow and

does not convect itself. In turn this implies that the time scale of the turbulence in the

moving frame of reference is much larger than the transit time of the turbulence

through the region of interest. This is referred to as rapid distortion theory (RDT)

and will be discussed in Section 6.3.

The linearized continuity equation and entropy equation then become

Do

Dt

1

ρoc2o

@p

@t

� �
+

1

ρo
r ρo

@v

@t

� �
¼ 0

Dos

Dt
¼ 0 (6.1.7)

Following Goldstein [1] we decompose the velocity into three terms v¼U +rϕ + u gð Þ

where we define the velocity potential term ϕ to be directly related to the pressure

fluctuations by

ρo
Do

Dt

@ϕ

@t

� �
¼�@p

@t
(6.1.8)

Note that u( g) can include both potential and rotational disturbances, leaving us free to

choose ϕ as that part of the potential related directly to the pressure fluctuation. We

can then obtain the wave equation in terms of this velocity potential by substituting for

the velocity and pressure disturbances in Eq. (6.1.7) to give

Do

Dt

1

c2o

Do
_ϕ

Dt

� �
� 1

ρo
r ρor _ϕ
� �¼ 1

ρo
r ρo _u

gð Þ
� 	

(6.1.9)

where the dot represents a derivative with respect to time. Since Eq. (6.1.9) is linear

with respect to the potential and velocity disturbance terms, it applies to both the time
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derivatives and the fluctuating parts of the flow variables that were considered in the

original derivation given by Goldstein [1]. In his formulation, therefore, the dots

denoting time derivative do not appear.

The wave equation given by (6.1.9) includes a source term on the right side that still

needs to be defined. To obtain this we will start with the momentum equation in its

nonconservative form given by Eq. (2.3.10). To obtain this in terms of perturbation

quantities, we take its time derivative and ignore viscous terms, giving

D

Dt

@v

@t

� �
+

@v

@t
�r

� �
v¼� @

@t

1

ρ
rp

� �

Decomposing the velocity as above and expanding the right side of this equation we

obtain

D

Dt
_u gð Þ +r _ϕ
� 	

+ _u gð Þ +r _ϕ
� 	

:r
� 	

v¼�1

ρ
r _p +

_ρ

ρ2
rp

We then linearize this equation as we did continuity and use Eq. (6.1.8) to give

Do

Dt
_u gð Þ +r _ϕ
� 	

+ _u gð Þ +r _ϕ
� 	

�r
� 	

U¼ 1

ρo
r ρo

Do
_ϕ

Dt

� �
+

_ρ

ρ2o
rpo (6.1.10)

The first term on the right side of this equation expands as

1

ρo
r ρo

Do
_ϕ

Dt

� �
¼rρo

ρo

Do
_ϕ

Dt

� �
+
@ r _ϕ
� �
@t

+r U �r _ϕ
� �

Which, using the vector identity

r A �Bð Þ¼ A �rð ÞB + B �rAð Þ +A� r�Bð Þ +B� r�Að Þ

can be rewritten as

1

ρo
r ρo

Do
_ϕ

Dt

� �
¼rρo

ρo

Do
_ϕ

Dt

� �
+
@ r _ϕ
� �
@t

+ U �rð Þr _ϕ + r _ϕ �r� �
U +r _ϕ�ωo

where ωo ¼r�U is the vorticity of the mean flow. The middle three terms in this

expansion match the terms on the left-hand side of Eq. (6.1.10) that depend on the

potential ϕ, and so we obtain

Do _u
gð Þ

Dt
+ _u gð Þ �r
� 	

U¼r _ϕ�ωo +
rρo
ρo

Do
_ϕ

Dt

� �
+

_ρ

ρ2o
rpo (6.1.11)
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then using Eq. (6.1.8) the last two terms on the right side of Eq. (6.1.11) become

rρo
ρo

Do
_ϕ

Dt

� �
+

_ρ

ρ2o
rpo ¼�rρo

ρ2o
_p +

_ρ

ρ2o
rpo

Further we can relate these quantities to the entropy using Eq. (2.4.9), so

�rρo
ρ2o

_p +
_ρ

ρ2o
rpo ¼�rρo

ρ2o
_p +

rpo
ρo

cv _p

cppo
� _s

cp

� �

Since the mean flow is assumed to be homentropic it follows that

cv=poð Þrpo ¼ cp=ρo
� �rρo, and so

�rρo
ρ2o

_p +
_ρ

ρ2o
rpo ¼�rpo

ρo

_s

cp

� �
making use of the momentum equation for the mean flow gives

�rρo
ρ2o

_p +
_ρ

ρ2o
rpo ¼ _s

cp

� �
U �rð ÞU

Then, since Dos/Dt¼0 we can write the right side of this equation as

_s

cp

� �
U �rð ÞU¼Do

Dt

_sU

2cp

� �
+

_sU

2cp

� �
�r

� �
U

With these rather extensive manipulations we obtain Eq. (6.1.11) as

Do _u
hð Þ

Dt
+ _u hð Þ �r
� 	

U¼r _ϕ�ωo _u hð Þ ¼ _u gð Þ � U _s

2cp

Do _s

Dt
¼ 0 (6.1.12)

As in the wave Eq. (6.1.9), the dot represents a differentiation with respect to time and

identifies fluctuating quantities. Eqs. (6.1.9), (6.1.12) are a set of linear partial differ-

ential equations for small perturbations in a homentropic mean flow. The perturbation

can include an entropy gust defined by U _s=2cp which would be relevant to supersonic
or heated flows. However, at low Mach number we are generally only interested in

vortical disturbances, so _s¼ 0. We also note that the wave Eq. (6.1.9) has variable

coefficients so that it allows for the diffraction of the sound by the mean flow and

any variation in local sound speed. It applies both within the flow and in the acoustic

far field, which makes it more valuable than Lighthill’s equation in solving certain

problems. However, it excludes the nonlinear turbulent terms that dominate in cases

where there are no surfaces in the flow and so cannot be used when direct radiation

from turbulence is important.

One of the most significant aspects of this derivation is that in a potential mean

flow, ωo is zero, and so Eqs. (6.1.9), (6.1.12) are uncoupled, and analytical solutions
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can be found for u(h) and @s/@t. We will discuss these solutions in more detail in the

next section and introduce the concept of drift coordinates that allow for the analytical

solution to Eq. (6.1.12).

6.2 Drift coordinates

One of the most important applications of Goldstein’s equation is to the sound radi-

ation from unsteady flow over stationary rigid surfaces. The results from this appli-

cation can also be used for moving surfaces by making use of the Ffowcs Williams

and Hawkings surface as described in Chapter 5.

Consider the flow over a body, as shown in Fig. 6.1. The mean flow is defined as

uniform at the inflow boundary, where a disturbance is defined and is convected or

propagated downstream in accordance with Eqs. (6.1.9), (6.1.12).

The problem can be solved in terms of drift coordinates X1, X2, X3 which are

defined as the solutions to the first-order differential equations

DoX1

Dt
¼U∞

DoX2

Dt
¼ 0

DoX3

Dt
¼ 0 (6.2.1)

with the upstream boundary conditions that Xi¼xi, and the flow speed is U∞ in the x1
direction as x1 tends to�∞. The coordinate X1 is described as the “drift” because sur-

faces of constant X1 represent the locations of fluid particles after they have been

convected by the mean flow for the same amount of time. For example, if a set of

particles are on the surface X1¼0 at time t¼0 then the same particles will lie on

the surface X1¼U∞τ after they have been convected by the mean flow for a time

t¼ τ (see Fig. 6.2). It follows then that

DoX1

Dt
¼U �rX1 ¼U∞ and X1 ¼U∞

ð
streamline

dσ

U

where σ is the distance along amean-flow streamline, and the integral is initiated at the

upstream boundary where X1¼0.

The surfaces X2¼const and X3¼const represent stream surfaces, and the unit vec-

tors normal to those surfaces are orthogonal to each other. The intersection of the two

surfaces represents the streamlines of the mean flow (see Fig. 2.2).

Upstream infinity

U = (U∞, 0, 0)

x1 = −∞

Fig. 6.1 The flow over a stationary object and the boundary conditions at upstream infinity.
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The application of drift coordinates to the equations defined in Section 6.1 is read-

ily seen because they give the solution to the differential equation

Dof xi, tð Þ
Dt

¼ 0 (6.2.2)

with the initial condition

f½ �x1!�∞ ¼ g x2,x3, t� x1=U∞ð Þ
as

f xi, tð Þ¼ g X2,X3, t�X1=U∞ð Þ

It follows immediately that the evolution of an entropy perturbation _s: for which
Do _s=Dt¼ 0 is given by _s X2,X3, t�X1=U∞ð Þ, and any entropy perturbation defined

at the upstream boundary will be convected downstream according to this behavior.

Finding a solution for @u(h)/@t in Eq. (6.1.12) is not as straightforward. However, if
the mean flow is irrotational then the equation for @u(h)/@t is given by

Do _u
hð Þ

Dt
+ _u hð Þ �r
� 	

U¼ 0 (6.2.3)

Since the flow is irrotational the vector expansion of r(rXi.U) reduces to

r rXi �Uð Þ¼ rXi �rð ÞU + U �rð ÞrXi

X2=const

X2+h2=const

X1=0 X1=h1

A�

B�

C�

D�

BA

D C

X1= U∞t

X1= U∞t + h1

U∞

(x1,x2,x3) = (−∞, 0, 0)

(x1,x2,x3) = (−∞,h2, 0)

Flow speed U

Fig. 6.2 The evolution of drift coordinates. The surface X2¼const is a stream surface, and

X1/U∞ gives the time it takes for a particle to convect along a streamline from the point

X1¼0 to the point at X1.

The linearized Euler equations 121



and so, using Eq. (6.2.1)

Do rXið Þ
Dt

+ rXi �rð ÞU¼ @ rXið Þ
@t

+r U �rXið Þ¼r U∞ð Þ¼ 0 (6.2.4)

It follows thatrXi satisfies the same differential equation as @u(h)/@t and that the solu-
tion to Eq. (6.2.3) for an irrotational mean flow is given by

u hð Þ ¼rXju
∞ð Þ
j X2,X3, t�X1=U∞ð Þ (6.2.5)

This shows that the effect of drift is not to simply convect the velocity disturbance but

to also modify its amplitude and direction. At the upstream boundary the surfaces

defined by constant drift coordinates are aligned with the Cartesian coordinates x1,
x2, x3, and so @Xj/@xi¼δij and

u
hð Þ
i

h i
x1!�∞

¼ u
∞ð Þ
i x2,x3, t� x1=U∞ð Þ (6.2.6)

This represents the gust at the inflow boundary and Eq. (6.2.5) specifies how the gust

propagates downstream.

It would appear that these solutions uniquely define the gust everywhere in the flow

given the upstream boundary condition, but unfortunately, the solution is not valid for

points that lie downstream of a stagnation point on a stationary body. Physically, a

fluid particle on a stagnation streamline comes to rest at the stagnation point and

can never be convected past that point. So, in principle, X1 is not defined at any point

on a surface downstream of a stagnation point. However, it should be remembered that

this is a linear theory that assumes juj≪ jUj, and this approximation is not valid when

jUj tends to zero.

Solutions based on drift coordinates embody the stretching of the turbulent eddies

by the mean flow. However, as the stretching takes place the gust is no longer diver-

gence free. To demonstrate this we note that the divergence of Eq. (6.2.5) includes the

terms @u
∞ð Þ
j =@Xi

� 	
rXj �rXi

� �
, and Fig. 6.2 shows that the surfaces of constant drift

and the stream surfaces are not orthogonal after the flow has been stretched, so

rXi �rXj 6¼ 0 when i 6¼ j. The consequence of this is that the right side of the wave

Eq. (6.1.9) is not zero, even if the gust is incompressible at the upstream boundary,

and so there will be both volume source terms and surface source terms that result

from the boundary conditions imposed on the solution to the wave Eq. (6.1.9).

For a two-dimensional potential mean flow, we can define unit vectors s and n that

are in the direction of the flow and normal to the flow, respectively. In general, the

drift coordinates X2 and X3 define the stream surfaces of the mean flow, and for a

potential flow can be represented by stream functions with a suitable normaliza-

tion. On this basis we can define the drift function gradients for two-dimensional

flow as
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rX1 ¼U∞

U
s+ qn, rX2 ¼ U

U∞
n

where q is to be determined. An illustration of these functions is shown in Fig. 6.3.

The problem with drift coordinates is accurately calculating the distortion q which
requires an integration along adjacent streamlines to find the position of the drift sur-

face X1¼const. This is most readily achieved by considering the displacement vectors

δl(i ) which are shown in Fig. 6.3. These join the corners of a material volume that is a

rectangular box at the upstream boundary with sides of length hi (Fig. 6.2).

The displacement coordinates δl(i ) and the drift coordinates are linked, and we can
define one in terms of the other. First we note that the δl(1) coordinate lies in the direc-
tion of the flow along the intersection of the stream surfaces X2¼const and X3¼const.
Similarly the δl(2) coordinate lies along the intersection of the surfaces X1¼const and
X3¼const, while δl(3) lies along the intersection of the surfaces X1¼const and

X2¼const. It follows that

rXi � δl jð Þ ¼ 0 i 6¼ j

where we using superscript notation to indicate that no summation is implied by the

repeated index.We can also use a Taylor series expansion to show that, for differential

small material volumes

Xi x + δl ið Þ
� 	

¼Xi xð Þ + δl ið Þ �rXi

and since by definition Xi(x+δl
(i ))�Xi(x)¼hi we obtain the general result that

δl ið Þ �rXj ¼ hiδij (6.2.7)

X2=const

X2+h2=const

A�
B�

C�

D�

X1= U∞t
X1= U∞t + h1

∇X2 ∇X1

δ n

s

l(1)

δ l(2)

Fig. 6.3 Displacement and drift coordinates.
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where δij is the Kroneker delta function. Furthermore, in a low Mach number flow

where the mean density is constant, the material volume remains the same, so

δl 1ð Þ � δl 2ð Þ �δl 3ð Þ
� 	

¼ δl 2ð Þ � δl 3ð Þ �δl 1ð Þ
� 	

¼ δl 3ð Þ � δl 1ð Þ �δl 2ð Þ
� 	

¼ h1h2h3

which is written in tensor notation as

δl ið Þ � δl jð Þ �δl kð Þ
� 	

¼ hihjhk i, j, kð Þ¼ 1, 2, 3ð Þ, 2, 3, 1ð Þ, or 3, 1, 2ð Þ (6.2.8)

Since δl( j ) lies on the surfaces Xi¼const and Xk¼const, and δl(k) lies on the surfaces

Xi¼const and Xj¼const, it follows that (δl( j )�δl(k)) lies normal to the plane

Xi¼const. Since these vectors are in the same direction, Eqs. (6.2.7), (6.2.8) show that

rXi ¼ δl jð Þ �δl kð Þ

hjhk
i, j, kð Þ¼ 1, 2, 3ð Þ, 2, 3, 1ð Þ, or 3, 1, 2ð Þ (6.2.9)

This gives a useful relationship between drift and displacement coordinates which we

will find useful in the next section. In general δl(1) lies in the direction of the mean flow

and is equal to U times the time taken for the particle to move between two points

defining the material volume in the direction of the flow. Since those two points were

initially a distance h1 apart in a region where the speed was U∞, continuity requires

that δl(1)¼Uh1/U∞. For two-dimensional flows δl(3) is constant, and so the only

remaining unknown is δl(2), which will depend on the particular flow, and can be cal-
culated from the distortion of the material volume.

It is also noteworthy that this relationship is invertible using vector triple products.

We find that

rXi�rXs ¼�rXs� δl jð Þ �δl kð Þ

hjhk

� �
¼� rXs � δl kð Þ� �

δl jð Þ � rXs � δl jð Þ� �
δl kð Þ

hjhk

 !

¼�δksδl
jð Þ

hj
+
δjsδl

kð Þ

hk

so

rXi�rXj ¼
δl kð Þ

hk
i, j, kð Þ¼ 1, 2, 3ð Þ, 2, 3, 1ð Þ, or 3, 1, 2ð Þ

�δl kð Þ

hk
i, j, kð Þ¼ 1, 3, 2ð Þ, 2, 1, 3ð Þ, or 3, 2, 1ð Þ

8>><
>>: (6.2.10)

6.3 Rapid distortion theory

In Section 6.1 we derived Goldstein’s equation for perturbations to the flow over a

body. The perturbations are defined on some upstream boundary where the flow is
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uniform and can be specified as either a perturbation of velocity or entropy. Entropy

waves are only important in heated or high-speed flows, and so we will focus on veloc-

ity perturbations. Furthermore, we will consider low Mach number flows where the

mean density and the speed of sound can be assumed to be constant. The unsteady

velocity throughout the flow is then

v¼U+rϕ+ u hð Þ (6.3.1)

where the perturbation potential is the solution to Eq. (6.1.9), given in terms of the

fluctuating parts, as

1

c2∞

D2
oϕ

Dt2
�r2ϕ¼r � u hð Þ (6.3.2)

To solve for the perturbation potential, we need to define the velocity term on the right

side, which is the solution (6.1.12), and we need to specify the boundary conditions on

all the surfaces bounding the flow.

The problem to which Eq. (6.3.2) is most readily applied is the sound radiation

from a stationary rigid body in an irrotational mean flow. For this problem the bound-

ary conditions are

ϕ½ �jxj!∞ ¼ 0, u hð Þ
h i

x1!�∞
¼ u ∞ð Þ x2,x3, t� x1=U∞ð Þ, u � n½ �surfaces ¼ 0

The first step in finding a solution is to determine the evolution of the flow perturba-

tion as a function of distance from the inflow boundary, and the second step is to solve

the scattering problem for the potential ϕ that ensures the boundary conditions on the

surface are met. In this section we focus on the evolution of the gust through the flow

and show how particularly simple results can be obtained for high-frequency gusts. In

the next section we will consider the scattering problem and show how acoustic waves

are generated by the interaction of the gust with the surface.

In Section 6.2 we saw that if we define the velocity on the upstream boundary as

u(∞)(x2, x3, t�x1/U∞) then, in a potential mean flow, the gust velocity is given by

u hð Þ ¼rXju
∞ð Þ
j X2,X3, t�X1=U∞ð Þ (6.3.3)

These results assume that the flow perturbations are represented by the linearized

equations of motion, which assume jUj≫ juj. This implies that the evolution of the

gust is determined by the mean flow and that nonlinear turbulent interactions are neg-

ligible. This will only be the case if the turbulent structure in the flow remains coherent

during its passage through the domain being studied, which implies that the mean

flow distortion is so rapid that it dominates the distortion of the turbulent eddies.

This is RDT.

It has also been assumed that the gust velocity at the upstream boundary is incom-

pressible and u(h) is specified as a vortical gust. Due to the incompressibility condi-

tion, the divergence of u(h) is zero at the upstream boundary, but its divergence does

not remain zero when it is distorted by the mean flow, and so the right side of

Eq. (6.3.2) is in general nonzero. The perturbation potential ϕ is related to the pressure
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perturbation by Eq. (6.1.8), is a solution to the acoustic wave Eq. (6.3.2), and is

defined by Goldstein as the “acoustic” part of the gust, even if it does not propagate

at the speed of sound as an acoustic wave.

Further insight is obtained by considering a harmonic wave at the inflow boundary

defined such that

u ∞ð Þ x2,x3, t� x1=U∞ð Þ ¼Re âexp ik � x� ik1U∞tð Þð Þ (6.3.4)

If this gust is incompressible then the divergence of u(∞) is zero so that k � â¼ 0. By

combining Eq. (6.3.4) with Eq. (6.3.3) for a potential mean flow we find

û hð Þ ¼rXkâke
ik �X (6.3.5)

where the hat represents the complex amplitude of a variable with implied harmonic

time dependence, so

u hð Þ ¼Re û hð Þe�iωt
� 	

, ω¼ k1U∞

The right side of Eq. (6.3.2) is then obtained as

r � û hð Þ ¼ iκ �rXk +r2Xk

� �
âke

ik �X, κ¼rXjkj (6.3.6)

As was pointed out by Majumdar and Peake [2] this result is greatly simplified by

considering a high-frequency gust where jkj is large. This implies that the lengthscale

of the gust is much smaller than the scale of the mean flow distortion. In this case the

first term on the right side of Eq. (6.3.6) is dominant, and this simplifies the solution to

Eq. (6.3.2) considerably. However, it also implies that the scale of the gust is small,

and this challenges the concept of a rapid distortion described earlier, so this approx-

imation must be used selectively. Quantitatively, if the scale of the mean flow distor-

tion is L, then the high-frequency gust approximation assumes that k1L≫1, or in terms

of the gust frequency ω¼k1U∞, we require ωL/U∞≫1. This condition must be used

in conjunction with the assumption used above that juj≪U which is required by the

constraints of RDT.

Next consider a solution to Eq. (6.3.2) that is of the form

ϕ¼Re Q̂eik �X�iωt
� 	

so that Doϕ/Dt¼0 is zero, and the wave Eq. (6.3.2) becomes

κj j2� ikjr2Xj

� 	
Q̂eik �X ¼ iκ:rXk +r2Xk

� �
âke

ik �X

In the high-frequency approximation the variations of κ and Xi are assumed to be rel-

atively slow compared to the term exp(ik�X). We can therefore find a local
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approximate solution to this equation that assumes that κ and rXi are effectively

constant over several wavelengths. The high-frequency approximation implies that

jκj2≫kjr2Xj and jκ �rXjj≫r2Xj, so we have an approximate solution (6.3.2)

given by

Q̂� iκ �rXkâk

κj j2

Then using Eq. (6.3.1) we find the unsteady velocity as

û¼rϕ̂+ û hð Þ ¼ �κ κ � rXkð Þ
κj j2 +rXk

 !
âke

ik �X ¼ û hð Þ �
κ κ � û hð Þ
� 	

κj j2

0
@

1
A (6.3.7)

which is the result given by Majumdar and Peake [2]. Using the vector triple product

theorem this can be written as

û¼�
κ� κ� û hð Þ

� 	
κj j2 (6.3.8)

This shows that the gust is incompressible throughout the flow because κ � û¼ 0 and,

at upstream infinity where κ � û hð Þ tends to k � û ∞ð Þ ¼ 0, û tends to û(h), and so the

potential correction is zero on the upstream boundary. We also note that there is

no pressure perturbation that is caused by this gust because Doϕ/Dt¼0, so there

are no propagating acoustic waves, in spite of the fact that the potential perturbation

is sometimes referred to as the acoustic part.

Continuing with our analysis, the local vorticity fluctuation ω̂¼r� û can be cal-

culated from Eq. (6.3.5) as

ω̂¼r� rXkâke
ik �X� �

¼r âke
ik �X� ��rXk ¼ iκâkeik �X

� ��rXk ¼ iκ�rXkâke
ik �X

¼ iκ� û hð Þ
(6.3.9)

It follows that the local gust velocity, the local vorticity, and the local gust

wavenumber vector κ are orthogonal to each other at a point in the flow and that, from

Eq. (6.3.8),

û¼ i
κ� ω̂
jκj2 (6.3.10)

We denote the gust vorticity at the inflow boundary as ω ∞ð Þ ¼
Re ω̂ ∞ð Þ exp ik � x� ikU∞tð Þ
� 	

, where ω̂ ∞ð Þ is the complex amplitude of the inflow

vorticity obtained by taking the curl of Eq. (6.3.4) to give ω̂ ∞ð Þ ¼ ik� â.
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We can use this amplitude to express the vorticity at any point in the flow by

substituting û(h) given by Eq. (6.3.5) into Eq. (6.3.9) and using Eq. (6.2.10) to give,

ω¼Re ω̂ ∞ð Þ
i

δl ið Þ

hi
eik �X�ik1U∞t

� �
(6.3.11)

where the sum over repeated indices is implied. This is a form Cauchy’s theorem (see

Batchelor [3]) in which the vorticity remains aligned with and proportional to the

length of the fluid lines, represented here by the displacement coordinates.

To illustrate the modification of a gust in an accelerating flow we will consider the

two-dimensional example shown in Fig. 6.4. This flow represents the contraction of a

wind tunnel. The mean flow streamlines lie along radial lines that converge to an

apparent sink shown on the right-hand side of the figure. The upstream boundary

is on the surface r¼ ro in terms of the cylindrical polar coordinates (r,θ). The flow

speed on the inflow boundary is Uo and, at any point on a streamline, is given by

U¼Uo(ro/r). The unit vector s lies in the direction of the flow, and the unit vector

n lies normal to the streamlines in the plane shown. In addition, there will be a unit

vector t pointing out of the paper. We can calculate the drift from the time it takes for a

particle to be convected from the inflow boundary to a point a distance s¼ ro� r
downstream as

X1 ¼Uo

ðs
0

ds

U
¼
ðs
0

rds

ro
¼ s� s2

2ro
(6.3.12)

The surfaces of constant X1 are shown in Fig. 6.4 and are seen to move further apart as

the flow accelerates along the contraction.

The first thing to notice from Fig. 6.4 is that the accelerating flow stretches the gust

in the direction of the flow, and that there is a contraction of each volume element in

the direction normal to the flow.

X1= const

X2= (p − q )ro r

θ

Inflow boundary

X1= 0
r = ro

s = 0
U = Uo

Apparent sink
End of contraction

n
s

Fig. 6.4 A wind tunnel contraction modeled by a converging two-dimensional flow.
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Wewill define a vortical gust on the inflow boundary with components in the s, n, t

directions given by âexp ik1s + ik2μ + ik3z� ik1Uotð Þ, where μ¼ ro(π�θ) is the cir-

cumferential distance normal to the flow direction, and k � â¼ 0. We can readily cal-

culate the drift function gradients and the displacement vectors as

rX1 ¼ r

ro
s, rX2 ¼ ro

r
n, rX3 ¼ t,

δl 1ð Þ

h1
¼ ro

r
s,

δl 2ð Þ

h2
¼ r

ro
n,

δl 3ð Þ

h3
¼ t

so that the wavenumber vector and vortical gust are

κ¼ k1r

ro
s +

k2ro
r

n+ k3t, û hð Þ ¼ â1r

ro
s +

â2ro
r

n+ â3t

� �
eik �X

and the local vorticity is given by

ω̂¼ ω̂ ∞ð Þ
1

ro
r
s+ ω̂ ∞ð Þ

2

r

ro
n+ ω̂ ∞ð Þ

3 t

� �
eik �X

This shows that the effect of the accelerating flow is to reduce the streamwise com-

ponent of the wavenumber vector and increase the streamwise vorticity. Similarly, the

wavenumber vector normal to the flow is increased as the flow is stretched, and the

vorticity component normal to the flow is reduced. The spanwise wavenumber and

vorticity in the t direction is unaltered by the flow acceleration.

To complete the picture, we must also include the potential correction to the veloc-

ity to ensure that the gust remains incompressible. This is particularly simple to cal-

culate for a two-dimensional gust for which k3¼0 and a3¼0. The only component of

the local vorticity is then in the t direction and remains unaltered by the flow accel-

eration, giving from Eq. (6.3.10)

û¼2
k2

ro
r

� 	
s� k1

r

ro

� 	
n

� 	
k1â2� k2â1ð Þeik �X

k1r=roð Þ2 + k2ro=rð Þ2 (6.3.13)

Because the gust is incompressible we have â2 ¼�k1â1=k2, and so this reduces to

û

âj j ¼
k2
ro
r
s� k1r

ro
n

� �
jkjeik �X

k1r=roð Þ2 + k2ro=rð Þ2

The important conclusion that we can draw from this example is that as the flow is

accelerated in the region where r< ro the streamwise gust becomes stronger than
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the gust normal to the flow. When k2<k1 the magnitude of the gust initially increases

as it is stretched by the flow, as shown in Fig. 6.5, and reaches a maximum when the

numerator of Eq. (6.3.13) reaches a maximum. However, the magnitude of the gust is

always reduced by stretching when k2>k1. It follows that the stretching tends to

amplify the gusts that have a large scale (k2<k1) in the cross stream direction.

6.4 Acoustically compact thin airfoils and the Kutta
condition

In many applications in aero and hydroacoustics we are concerned with calculating the

sound radiation from thin blades at relatively low frequencies, where the blade chord

is much less than the acoustic wavelength. The case where the blade is moving at low

Mach number through turbulence will be discussed in Chapter 14. Here we consider

the case where the blade is fixed in a turbulent stream and the observer is outside the

flow, as shown in Fig. 6.6.

For this case Curle’s theorem applies, andwe can use Eq. (4.4.7) to calculate the radi-

ated sound, providing the flow Mach number is sufficiently small for the quadrupole

sources in the flow to be negligible (as discussed in Section 4.4). Since the blade is

assumed to be acoustically compact, differences in the propagation time from each point

on the blade surface to the observer will be small enough for sound waves generated on

different parts of the surface to arrive in phase at the observer. Eq. (4.4.7) then gives

0
0.4

0.6

0.8

1

1.2

|u
|/|
a|

1.4

1.6

1.8

2

2.2
k2/k1=2

k2/k1=1

k2/k1=0.5

k2/k1=0.1

0.5 1 1.5 2

s/ro

2.5 3 3.5 4 4.5

Fig. 6.5 The magnitude of a two-dimensional gust in a contraction for ro¼7.
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ρ0 x, tð Þc2∞
� �

dipole
� xi
4πjxj2c∞

@Fi

@τ


 �
τ¼τ*

Fi ¼
ð
S

pijnjdS yð Þ (4.4.7)

where Fi is the net unsteady loading on the blade from both lift and drag. To calculate

the acoustic field, we need to determine the unsteady blade loading from the charac-

teristics of the blade shape and the unsteady inflow.

To carry out this calculation the first step is to assume that at high Reynolds num-

bers over a streamlined blade the unsteady loads can be characterized using the invis-

cid flow approximation, so the linearized Euler equations are applicable. This

excludes bluff bodies that have thick unsteady wakes and other cases where flow sep-

aration occurs. However, in well-designed systems, flow separation is avoided at all

costs, and the blade drag is much smaller than the lift force. To meet this requirement

blades are often very thin, with thickness to chord ratios that are <10%, and the per-

turbation of the mean flow speed at most locations is small, so jU�U∞j¼εU∞, where

ε≪1. In Section 6.1 the linearized Euler equations were introduced by assuming an

unsteady turbulent inflow with velocity perturbation juj≪U so that terms of order juj2
could be ignored compared to terms of order jujU. In unsteady thin airfoil theory, it is
assumed that juj is of order εU∞, so the mean flow perturbation and the gust amplitude

are of the same magnitude. The hierarchy of velocity terms for the thin airfoil problem

is then illustrated by considering

v �rð Þv¼ U∞ î +ΔU + u
� 	

�r
� 	

U∞ î+ΔU + u
� 	

¼U∞
@

@y1
ΔU + uð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

O εU2
∞ð Þ

+ ΔU + uð Þ �rð ÞðΔU + u|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
O ε2U2

∞ð Þ

Þ (6.4.1)

This shows that if we can ignore terms of order ε2 compared to terms of order ε, then
we can approximate Do/Dt by D∞/Dt¼@/@t+U∞@/@x1. The steady flow can be

approximated by including a small correction ΔU to the uniform flow, and the turbu-

lence is modeled by a gust superimposed on the uniform flow U∞ in the x1 direction.
Given these approximations the linearized Euler equations (6.3.2) and (6.1.12), for the

unsteady gust in a potential mean flow, reduce to

U∞

U =0

Sound waves

Turbulent gust

Fig. 6.6 An airfoil in a uniform flow.
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1

c2∞

D2
∞ϕ

Dt2
�r2ϕ¼ 0,

D∞u
hð Þ

Dt
¼ 0, p0 ¼�ρo

D∞ϕ

Dt
(6.4.2)

(Note that in this case the gust is undistorted and so remains divergence free, and the

right side of the wave equation is zero). It follows that u(h)¼u(∞)(x2, x3, t�x1/U∞) and

is defined by the unsteady vortical gust far upstream of the airfoil. The boundary con-

dition on the surface requires that u�n¼0, and the normal to the surface has compo-

nents n1¼ sinα and n2¼cosα, where α is the angle (in radians) that the surface makes

with the x1 direction. In thin airfoil theory it is assumed that α≪1, which is reasonable

except near the blunt leading edge of a thick airfoil section. Given this assumption

n1≪n2, the boundary condition on the surface reduces to u2¼0. Physically, this

models the airfoil as an infinitely thin flat plate at zero angle of attack. This is a very

useful approximation that is used extensively in aeroacoustics because it is correct to

first order and facilitates many important solutions to challenging problems. Further-

more, the approximation is of the same order as thin airfoil theory for the mean lift and

drag of the surface and so applies to lifting surfaces at small angles of attack. We will

return to this issue in subsequent chapters, but first we will explore the implications of

this first-order approximation.

The problem of an unsteady flow encountering flat plate airfoil of chord c, at zero
angle of attack, was first investigated by von Kármán and Sears [4]. They considered

the flow perturbation to be a two-dimensional harmonic upwash gust

â2 exp ik1 x1�U∞tð Þð Þ convected by the mean flow toward the airfoil located at

�c/2<x1<c/2, x2¼0, as shown in Fig. 6.7. This gust causes a time varying angle

of attack at the leading edge of the airfoil. It is assumed, however, that the flow con-

tinues to leave smoothly from the trailing edge. This assumption, based on empirical

observations of real flows, is the Kutta condition discussed in Section 2.7. In the invis-

cid model it conveniently avoids the infinite velocities that would be produced if the

flow were required to negotiate this sharp corner. To maintain the Kutta condition

requires that the circulation around the airfoil fluctuates with time. Since, according

to Kelvin’s theorem, the overall circulation of the flow must be conserved, the change

in circulation implies the shedding of vorticity into its wake, the strength of the vor-

ticity matching, instant by instant, the change in circulation on the airfoil. This

requirement was sufficient for von Kármán and Sears to calculate the unsteady lift

for a harmonic gust in a two-dimensional ideal flow.

U∞

Flat plate

Δ p ≠ 0

Wake Δ p = 0

x2

x1

Harmonic upwash gust

â2e
ik1(x1− U∞t)

Fig. 6.7 The Sears problem: a harmonic upwash gust incident on a flat plate.
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The Kutta condition in unsteady flow has been the subject of many different model-

ing efforts, and in some cases it is assumed that the vorticity in the near wake, just

downstream of the trailing edge, is convected at a speed that is less than the free stream

velocity because of the reduced flow speed in the blade boundary layer and at the cen-

ter of the near wake. von Kármán and Sears assumed that the vorticity was convected

at the mean flow speed, and the correctness of this assumption has sometimes been

challenged. The modeling issue was not resolved until Amiet [5] pointed out that,

for the Sears problem, the flat plate and the wake are effectively replaced by a jump

in velocity potential Δϕ, which is directly related to both the vortex sheet strength

@(Δϕ)/@x1 and the pressure jump Δp¼�ρoD∞(Δϕ)/Dt across the blade and wake,

as shown in Fig. 6.7. Amiet argued that there could be no pressure jump across the

wake because there is no structure in the fluid to support it. The correct boundary con-

dition therefore is that Δp¼0 across the wake, and this will include all the effects of

the Kutta condition, the blade boundary layer, and the formation of vorticity in the

near wake. It follows that D∞(Δϕ)/Dt¼0 across the wake, and so the perturbations

in the effective vortex sheet are convected downstream at the free stream velocity,

which confirms the assumption used in the early work on unsteady blade loading.

The solution of Sears problemwill be discussed in more detail in Chapters 7 and 14,

and here we will give the result for future reference. The unsteady lift force on a com-

pact airfoil located at �c/2<x1<c/2, and with span b, was given by Sears as

�F2 tð Þ¼Re πρoU∞â2bcS σð Þe�ik1U∞t
� �

S σð Þ¼ 2

πσ H
1ð Þ
o σð Þ+ iH 1ð Þ

1 σð Þ
� 	 σ¼ k1c=2

(6.4.3)

where Ho
(1)(σ) and H1

(1)(σ) are Hankel functions of the first kind, and σ is the

nondimensional frequency. Note that the left-hand side of Eq. (6.4.3) is negative

since F2 denotes the force of the airfoil on the fluid.

The Sears function is plotted as a function of frequency in Fig. 6.8, and it is well

approximated by

jS σð Þj � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2πσ

p (6.4.4)

These results are based on the assumption of an incompressible flow. This approxi-

mation was later shown by Amiet to be valid for frequencies where the acoustic

wavelength is greater than four times the blade chord. Sears’ result is therefore a

low-frequency approximation, which is consistent with the compact chord assumption

that is required to calculate the acoustic field using Eq. (4.4.7).

By combining Eq. (6.4.3) with Eq. (4.4.7) we obtain the acoustic far-field pressure

in terms of the upwash gust amplitude as

p x, tð Þð Þdipole �Re
�iωx2e�iω t�jxj=c∞ð Þ

4πjxj2c∞ πρoU∞â2bcS σð Þð Þ
� �

(6.4.5)

The linearized Euler equations 133



where ω¼k1U∞ is the frequency. This represents an acoustic dipole that points in the

direction of the unsteady lift. It has a cosine directionality with no sound in the direc-

tion of the flow. If the gust amplitude is taken to be proportional toU∞, then for fixed

values of k1c and b/jxj, the acoustic pressure scales as ρoU3
∞=c∞, as expected from the

discussion in Chapter 3. The response function is reduced at higher frequencies as

shown in Fig. 6.8, and the approximation of the Sears function implies that the acous-

tic pressure is proportional to (ωc/2U∞)
1/2 at high frequencies. In practice, the ampli-

tude of the gust also reduces with frequency, so the spectral level is reduced as the

frequency is increased. We will discuss this characteristic in subsequent chapters

when we introduce turbulence modeling.

6.5 The Prantl–Glauert transformation

In Section 6.4 we discussed the approximations of thin airfoil theory and showed that

if the unsteady flow is linearized about the mean flow, and the mean flow perturba-

tions are small, then the sound radiation from an airfoil in an unsteady flow can be

reduced to the boundary value problem in which the perturbation potential satisfies

the convected wave equation and the airfoil is modeled by a flat plate of zero thick-

ness. The sound radiation from surfaces in a uniform flow was discussed in

Section 5.4, and the acoustic field was given by Eq. (5.4.4) in terms of a Green’s func-

tion that was the solution to the inhomogeneous wave equation
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Fig. 6.8 The Sears function plotted against nondimensional frequency σ¼k1c/2. Solid line, jSj;
o, Re(S); +, Im(S); squares, approx jSj.
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1

c2∞

D2
∞Ge

Dτ2
�r2Ge ¼�δ t� τð Þδ x�yð Þ (5.4.5)

To obtain a solution to this equation we can make use of the Prantl–Glauert transfor-
mation that conveniently transforms Eq. (5.4.5) into a regular wave equation for which

we already have a solution. The transformation is defined as follows

Ge x, tjy,τð Þ¼Gg ξ, tgjζ,τg
� �

ξ¼ x1,βx2,βx3ð Þ tg ¼ t +Mx1=β
2c∞

ζ¼ y1,βy2,βy3ð Þ τg ¼ τ +My1=β
2c∞

(6.5.1)

where β2¼1�M2 and M¼U∞/c∞. The inhomogeneous wave Eq. (5.4.5) is then

reduced to

1

β4c2∞

@2Gg

@t2g
�@2Gg

@ξ2i
¼�δ ξ2ζð Þδ tg� τg

� �
(6.5.2)

The solution to this equation was discussed in Chapter 3, and from Eq. (3.9.17) we

obtain for the free-field Green’s function

Gg ξ, tgjζ,τg
� �¼ δ tg� ξ2ζj j=β2c∞� τg

� �
4π ξ2ζj j

Converting this back to regular coordinates then gives

Ge x, tjy,τð Þ¼ δ t� rg=β
2c∞� τ +M x1� y1ð Þ=β2c∞

� �
4πrg

rg ¼ x1� y1ð Þ2 + β2 x2� y2ð Þ2 + β2 x3� y3ð Þ2
� 	1=2 (6.5.3)

This provides the Green’s function that is applicable to problems where the source and

the observer are both in a uniform flow. Note how the across flow scale is reduced

by the factor β and the effect of mean flow convection on the wave propagation

appears in the argument of the delta function. The relationship between the Green’s

function in the time domain and frequency domain is given by Eq. (3.10.7), and using

inverse transforms we obtain the frequency domain Green’s function

G
�
e xjyð Þ¼ eiωrg=β

2c∞�iωM x1�y1ð Þ=β2c∞

4πrg
(6.5.4)

For example, to calculate the sound radiation from a flat plate airfoil on the y1 axis in a
moving medium we could use the stationary medium result given by Eq. (4.5.4) and

replace the Green’s function using Eq. (6.5.4) as described in Section 5.4. Then using

the far-field approximation, we obtain
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eρ x,ωð Þc2∞
� �

dipole
�

�iωx2eikore

4πc∞r2e

ðc=2
�c=2

ðb=2
�b=2

Δep y,ωð Þe�ikox1y1=re� ikox3y3β
2=re� ikoM x1� y1ð Þdy1dy3

ko ¼ω=β2c∞ re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + β

2 x22 + x
2
3

� �q
ð6:5:5Þ

This result shows how we can calculate the far-field sound in the flow providing that

we know the surface pressure distribution. It also shows how the wavenumber descrip-

tion of the surface pressure can be used to give the far field as in Eq. (4.7.11) with the

wavenumbers

k
oð Þ
1 ¼ ko

x1
re
�M

� �
, k

oð Þ
3 ¼ koβ

2 x3
re

� �
(6.5.6)

which allow for propagation enhanced by convection due to the steady flow, and the

appropriate correction to the propagation distance.
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7Vortex sound

One of the concerns with Lighthill’s analogy is the physical interpretation of the

source term Tij and relating it to easily recognized features of the flow. In many cases

the flow may include relatively large coherent structures that are characterized by

almost two-dimensional line vortices. Examples include coherent vortex shedding

behind a cylinder or into a wake, and tip vortices interacting with helicopter rotor

blades. These problems are often more readily understood if the sound is related to

the vorticity in the flow rather than the Lighthill stress tensor. In this chapter we

review the theory of vortex sound and give some examples of its application in

low Mach number flows. In particular we will consider the sound radiation caused

by the unsteady loading on rigid, acoustically compact surfaces in the presence of

flows that can be modeled by coherent vortical structures.

7.1 Theory of vortex sound

The theory of vortex sound was first discussed by Powell [1] who manipulated the

source term in Lighthill’s wave equation to specifically include the vorticity. In this

section we extend this concept and show how the linearized Euler equations developed

in the previous chapter can be used to identify acoustic source terms that depend on

vorticity [2]. In Section 6.1 we derived Goldstein’s wave equation, which was given

by Eq. (6.1.9) as

Do

Dt

1

c2o

Do
_ϕ

Dt

� �
� 1

ρo
r ρor _ϕ
� �¼ 1

ρo
r ρo _u

gð Þ
� �

(6.1.9)

where the dot represents a time derivative and the velocity and pressure perturbations

were defined such that

v¼U+rϕ+ u gð Þ, ρo
Do

Dt

@ϕ

@t

� �
¼�@p

@t

The velocity perturbation can be specified using Crocco’s equation (Eq. 2.5.4) for an

inviscid flow

@v

@t
¼�rH + Ters�ω�v

and so Eq. (6.1.9) can be written as

Do

Dt

1

c2o

Do
_ϕ

Dt

� �
+

1

ρo
r ρorHð Þ¼ 1

ρo
r ρoTers�ρoω�vð Þ (7.1.1)
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We can then modify this equation to makeH the dependent variable of the wave oper-

ator on the left side. From the definition of the stagnation enthalpy H we find that

@H

@t
¼ Te

@s

@t
+
1

ρ

@p

@t
+
1

2

@v2i
@t

and taking the dot product of Crocco’s equation with the velocity v, and ignoring vis-

cous terms, gives

v � @v
@t

¼ 1

2

@v2i
@t

¼�v �rH + v � Tersð Þ

Rearranging these equations gives

DH

Dt
¼ 1

ρ

@p

@t

for an isentropic flow where Ds/Dt¼0. If this result is linearized about the mean flow

then DoH=Dt¼�Do
_ϕ=Dt, which can be used in Eq. (7.1.1) to obtain Howe’s wave

equation [2]

Do

Dt

1

c2o

DoH

Dt

� �
� 1

ρo
r ρorHð Þ¼ 1

ρo
r ρoω�v�ρoTersð Þ (7.1.2)

The significant point here is that the acoustic variable is now defined by the stagnation

enthalpy and the source terms are specified in terms of the Lamb vectorω�v, and the

gradient of the entropy. The form of the equation is identical to Goldstein’s equation

but the source terms are specified in a more convenient form, if the vorticity is a

well-defined quantity.

For the special case when the flow Mach number is very small, the mean density is

constant, there are no entropy fluctuations, and the fluid is at rest outside a bounded

region, we can simplify Howe’s wave equation to

1

c2∞

@2H

@t2
�@2H

@x2i
¼r � ω�vð Þ (7.1.3)

The solution to Eq. (7.1.3) can be obtained using the approaches described in Chapters

4 and 5. In the absence of scattering surfaces we can use the method of Green’s func-

tions to obtain

H x, tð Þ¼�
ðT
�T

ð
V

ω�vð Þi
@Go

@yi
dVdτ (7.1.4)

The source term on the right of Eq. (7.1.4) reveals the role of vorticity as a source of

sound. It shows that there is no sound caused by vorticity that is aligned with the local
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flow. Furthermore, if the source term is linearized about an irrotational mean flow,

we can use Eq. (6.3.11) to relate the local vorticity to the vorticity of a harmonic gust

on some upstream inflow boundary, defined by ω¼Re ω̂ ∞ð Þ exp ik � x� ikU∞tð Þ
� �

,

so that

ω�U¼Re ω̂ ∞ð Þ
i

δl ið Þ

hi
�U

� �
eik �X�ik1U∞t

� �

where δl(i) are displacement coordinates shown in Fig. 6.3. Since δl(1)/h1¼U/U∞ we

can use the relationship given by Eq. (6.2.9) to show that

ω�U¼Re U∞ ω̂ ∞ð Þ
3 rX2� ω̂ ∞ð Þ

2 rX3

� �
eik �X�ik1U∞t

� �

where X2¼const and X3¼const are the stream surfaces of the mean flow. It follows

that the source term in Eq. (7.1.4) is determined by the two components of the vorticity

that are initially normal to the mean flow, and the streamwise component of the vor-

ticity has no impact on the source term, even after distortion by the mean flow. The

important consequence of this is that trailing tip vortices or other similar flows where

the unsteady vorticity is initially aligned with the mean flow can only cause sound

radiation because of nonlinear or self-induced unsteady motion.

7.2 Sound from two line vortices in free space

A simple canonical model of vortex sound [1] is given by two line vortices of equal

strength Γ that are separated by the distance 2d in an otherwise stationary fluid, as

shown in Fig. 7.1. The vortex pair will spin about the point halfway between them

because of the induced flow at each vortex. Because there is no background flow,

the motion of each vortex is caused only by its convection by the other vortex in

the pair, and so each moves with a speed of U¼Γ/4πd.

G

G2d

Wt

y2, j

y1, i

y(v)

−y(v)

O

Fig. 7.1 The spinning vortex pair.
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The location of each vortex is given as y¼�y(v) where y(v)(τ)¼ (dcos(Ωτ),
dsin(Ωτ), 0), and the angular velocity of the system is Ω¼Γ/4πd2 and U¼Ωd.
The vorticity of each vortex is defined as

ω¼ kΓδ y1� y
vð Þ
1 τð Þ

� �
δ y2� y

vð Þ
2 τð Þ

� �
(7.2.1)

where k is a unit vector pointing out of the page in Fig. 7.1. It follows that the Lamb

vector in Eq. (7.1.4) is

ω�v¼�ΩΓy vð Þ τð Þ δ y1� y
vð Þ
1 τð Þ

� �
δ y2� y

vð Þ
2 τð Þ

� �n
�δ y1 + y

vð Þ
1 τð Þ

� �
δ y2 + y

vð Þ
2 τð Þ

� �o (7.2.2)

Note that, with the vorticity lumped into discrete vortices, the velocity field of

the flow v can be replaced with the convection velocity of the vortices.

Using Eq. (7.2.2) in Eq. (7.1.4) and integrating over y1 and y2 gives the sound

field as

H x, tð Þ¼ΩΓ

ð∞
�∞

ðT
�T

y
vð Þ
i τð Þ@Go x, tjy,τð Þ

@yi

� 	
y¼y vð Þ τð Þ + ky3

� y
vð Þ
i τð Þ@Go x, tjy,τð Þ

@yi

� 	
y¼�y vð Þ τð Þ + ky3

dy3dτ

The integral is carried out over the infinite length of the two vortices because this is

a two-dimensional problem. However, if we consider the sound radiation from a

small linear segment of the vortices we can evaluate the far-fi eld sound from that

segment. This enables us to use the far-field approximation for the Green’s func-

tion. The far-field sound from the segment of length b centered on y3 is then δH,
where

δH x, tð Þ¼ΩΓb

ðT
�T

y
vð Þ
i τð Þ@Go x, tjy,τð Þ

@yi

� 	
y¼y vð Þ τð Þ + ky3

� y
vð Þ
i τð Þ@Go x, tjy,τð Þ

@yi

� 	
y¼�y vð Þ τð Þ + ky3

dτ

We note from this result that if we were to ignore the effect of retarded time then the

integrand would be zero, giving no far-field sound. However, if we expand the

Green’s function using a Taylor series expansion about the point ky3
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@Go x, tjy,τð Þ
@yi

� 	
y¼�y vð Þ τð Þ + ky3

¼ @Go x, tjy,τð Þ
@yi

� 	
y¼ky3

� y
vð Þ
j τð Þ @2Go x, tjy,τð Þ

@yi@yj

� 	
y¼ky3

+⋯

and so the integral reduces to

δH x, tð Þ¼ 2ΩΓb

ðT
�T

y
vð Þ
i τð Þy vð Þ

j τð Þ@
2Go x, tjky3,τð Þ

@yi@yj
dτ (7.2.3)

and we obtain an acoustic field that has the characteristics of a quadrupole. As we did

in Section 4.4, in the acoustic far field we can shift the derivative of the free-space

Green’s function so that they are derivatives with respect to time, and then integrate

over source time, so we obtain

δH x, tð Þ¼ 2ΩΓb

c2∞

@2

@t2

xjy
vð Þ
j

� �
xiy

vð Þ
i

� �
4πjx�ky3j3

2
4

3
5
τ¼τ*

The analysis is simplified if we choose the observer location to be at x¼ (Ro,0,0)

which gives xiyi
(v)¼Rodcos(Ωτ). We then obtain

δH x, tð Þ¼ΩΓbd2R2
o

2πc2∞

@2

@t2
cos2 Ωτð Þ
R2
o + y

2
3

� �3=2
" #

τ¼τ*

(7.2.4)

Since cos2(Ωτ)¼ (1+cos(2Ωτ))/2 we can simplify the integrand so that it only depends

on cos(2Ωτ) because the constant term will not contribute to the acoustic field.

Then since the correct retarded time is

τ*¼ t� r=c∞, r¼ R2
o + y

2
3

� �1=2
we obtain

δH x, tð Þ¼�Ω3Γbd2R2
o

πc2∞r
3

cos 2Ω t� r=c∞ð Þð Þ (7.2.5)

We can then evaluate the far-field pressure because @H/@t is approximately equal to

(1/ρo)@p/@t in the acoustic far field. To obtain a scalable result we can define a Mach

number of the vortex motion as M¼Ωd/c∞, and the speed of the vortex as

U¼Ωd¼Γ/4πd so the far-field pressure signal is given by

δp x, tð Þ¼�4ρoU
2M2R2

obcos 2Ω t� r=c∞ð Þð Þ
r3

(7.2.6)
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This is a canonical example of two-dimensional flow noise and as such it is valuable to

investigate the important features of the result. It shows that the far-field pressure from

an elemental part of the vortex scales asU2M2 which is the same as the result obtained

in Chapter 4 for free turbulence. The acoustic intensity in the far field I¼jpj2/(2ρoc∞)
will scale as M4U4 or the eighth power of the velocity at the vortex. Eq. (7.2.6) also

shows that the acoustic radiation occurs at a frequency that is twice the angular speed

of the vortex, which is to be expected since the flow field replicates itself after half a

revolution of the vortex pair.

Some care needs to be taken when evaluating this result for a line vortex whose

span exceeds the acoustic wavelength. The result given by Eq. (7.2.6) needs to be inte-

grated along the length of the vortex and the motion is only specified by the model

given above if the vortex is of infinite length. The infinite length vortex results in

a two-dimensional problem and the far-field approximations used above will no lon-

ger be valid, and the result will scale differently, but the problem can be solved exactly

[2]. However, if the vortices are of finite length, and their span is acoustically com-

pact, but their motion is well approximated by the self-induced spinning motion used

above, then the far-field sound is given by the integral of Eq. (7.2.6) over y3.

7.3 Surface forces in incompressible flow

In Chapter 4 we showed that, for acoustically compact bodies in low Mach number

flows, the flow noise is dominated by dipole sources whose strength is directly pro-

portional to the unsteady loading on the body surface. In this case the acoustic wave-

length is much larger than the size of the body, and so the unsteady loading will be

dominated by the incompressible part of the flow perturbations. We can therefore sep-

arate the problem into two parts, the incompressible flow that causes the unsteady load

and the sound radiation from the loading on the surfaces. When this approximation is

made, the acoustic far field can be evaluated from Curle’s equation (4.4.7) with the

source term defined by the unsteady loading caused by incompressible flow

perturbations.

In an incompressible flow the force applied to the fluid by a stationary surface can

be calculated directly from the vorticity in the flow (see Ref. [2] for a more detailed

derivation of the results that follow, in which the effect of viscosity is included). To

obtain this relationship consider the problem illustrated in Fig. 7.2 where fluid is

bounded by a surface S∞ at a large distance from the body and the mean flow tends

to a constant on this surface. Since the fluid is assumed incompressible its density will

be constant and the divergence of the velocity vwill be zero. The surface of the body is

assumed impenetrable and so v�n on S, and we will assume that jvj2 tends toU2
∞ on S∞

with a difference that tends to zero as 1/rα, where α>2. This implies that there is no

net flux of momentum across S∞ because in the limit that r tends to infinity (ρv�n)
v¼ρU∞

2n1 which integrates to zero on S∞.
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The force applied to the fluid by the body Fi can be equated to the fluid momentum

and the pressure on S∞ using Eq. (2.3.3), with the assumption that there is no net flux

of momentum across S∞ giving

Fi ¼ ρo
d

dt

ð
V

vidV�
ð
S∞

pnidS (7.3.1)

(where in this case the normal is chosen as n¼�n(o) so it points into the enclosed

volume). The volume integral can be changed to a surface integral by making use

of the identity

vi ¼ v �r xið Þ¼r � vxið Þ� xir� vð Þ

and noting that the last term is zero in an incompressible fluid. Substituting this into

the volume integral in Eq. (7.3.1) and using the divergence theorem results in

ρo
d

dt

ð
V

vidV¼�ρo
d

dt

ð
S∞

xiv � ndS�ρo
d

dt

ð
S

xiv � ndS

The boundary condition on the surface of the body requires that v�n¼0, so the surface

integral over S is zero and we can write Eq. (7.3.1) as

n S∞
U∞

Stationary object bounded by S

n

w

Local region of vorticity

Fig. 7.2 A stationary object in a steady uniform flow that includes a small region of vorticity

and is bounded by a surface S∞.
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Fi ¼�
ð
S∞

pni + xiρo
@v

@t
� n

� �
dS (7.3.2)

(where d/dt has been replaced by @/@t inside the integral because the surface is

stationary).

The right side of Eq. (7.3.2) can be related to the vorticity in the flow by making use

of Kirchhoff coordinates and the form of the momentum equation given by Eq. (2.5.3).

The Kirchhoff coordinates Yi are defined as equal to the potential of the flow around

the body that results from an inflow on S∞ of unit amplitude in the xi direction. They
have the properties that

Yi ¼ xi
n �rYi ¼ ni



onS∞, r2Yi ¼ 0, n �rYi ¼ 0 on S (7.3.3)

If we take the dot product ofrYi with the momentum equation expressed in the form

given by Eq. (2.5.3) and integrate over the volume of the fluid then, ignoring viscous

terms for a homentropic flow, we obtainð
V

rYi � ρo
@v

@t

� �
dV +

ð
V

rYi �r p+
1

2
ρov

2
i

� �
dV¼�ρo

ð
V

rYi � ω�vð ÞdV

The first volume integral on the left of this equation can be turned into a surface inte-

gral over S∞ in exactly the same way as was done for Eq. (7.3.2). Similarly the inte-

grand of the second volume integral can be turned into a divergence because Yi is a
solution to Laplace’s equation. Then making use of the boundary conditions on the

surface defined in Eq. (7.3.3) we find that

ð
V

rYi � ρo
@v

@t

� �
dV +

ð
V

rYi �r p+
1

2
ρov

2
i

� �
dV

¼
ð
V

r Yiρo
@v

@t

� �
dV +

ð
V

r rYi p +
1

2
ρov

2
i

� �� �
dV

¼ �
ð
S∞ + S

Yiρo
@v

@t
� ndS�

ð
S∞ + S

n �rYi p +
1

2
ρov

2
i

� �
dS

¼�
ð
S∞

Yiρo
@v

@t
� ndS�

ð
S∞

n �rY p +
1

2
ρov

2
i

� �
dS

Since the surface lies at infinity we can use the limiting values given by Eq. (7.3.3) to

obtain

�
ð
S∞

xi ρo
@v

@t
� n

� �
+ ni p+

1

2
ρov

2
i

� �
dS¼�ρo

ð
V

rYi � ω�vð ÞdV

Then since the velocity tends to its value in the uniform flow with an error proportional to

1/rα where α>2 and S∞ increases as r2 the integral of the squared velocity term becomes
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ð
S∞

ni
1

2
ρov

2
i

� �
dS!

ð
S∞

ni
1

2
ρoU

2
∞

� �
dS¼ 0

Bymatching terms in Eq. (7.3.2) we obtain the force applied to the fluid by the body in

terms of the volume distribution of the Lamb vector ω�v as

Fi ¼�ρo

ð
V

rYi � ω�vð ÞdV (7.3.4)

To evaluate this integral, we need to include the vorticity throughout the fluid, includ-

ing any bound vorticity such as the vorticity in the surface boundary layer and the

wake behind the body. However, since the mean vorticity and mean velocity in the

boundary layer next to the surface of the body will be parallel to the surface, the Lamb

vector near the surface will point in the direction of the surface normal which is

orthogonal to rYi. This greatly reduces the contribution from the blade boundary

layer velocity fluctuations in this calculation. However, the vorticity in the wake

behind the body, that is an extension of the surface boundary layers, cannot be ignored

and may play a dominant role. The other important conclusion from this result is that

stationary vorticity does not contribute to the unsteady loading, so we need to only

consider vorticity that is convected when evaluating Eq. (7.3.4). Also we note that

the streamwise force is given by the F1 component rY1 � ω�vð Þ. If the vorticity is

convected by the potential mean flow around the body then v¼U∞rY1, and there

will be no streamwise force. The streamwise force is therefore determined by the devi-

ation of the vortex path from the potential flow streamlines, which results from the

influence of other regions of vorticity or the image vorticity inside the body that

impacts the vortex trajectory in the flow.

When vorticity is close to a rigid surface it will be convected by both the local mean

flow (which would still exist if the vorticity was zero) and a self-induced flow that is

required to meet the non-penetration boundary condition on the surface. The

self-induced flow is often characterized by equivalent image vorticity that is placed

inside the surface but is a potential flow outside the surface. The image vorticity

can have a big impact if the path of the vortex takes it close to the stagnation point,

but little impact if the vortex is relatively weak and some distance from the surface. To

assess the importance of this we will consider a line vortex near a surface and estimate

the velocity induced by the image vortex to beΓ/4πδ, where δ is the distance of the line
vortex from the surface and Γ is its circulation. Then if Γ/4πUδ≪1 (where U is the

local mean flow speed) the motion induced by the image vortex will not be important.

However, this criterion cannot be met close to the stagnation point at the front of the

body where the mean flow speed tends to zero. In this case the motion of the vortex

will be controlled by the induced flow and the amplitude of the unsteady loading will

be of order ρoΓ
2/4πδ. However this will only have a small impact on the unsteady

loading pulse which will have a peak amplitude of order ρoΓU∞. This leads to a cri-

terion that requires Γ/4πU∞δ≪1, which is less restrictive than the criterion based on

the local flow speed. In real flows one might expect Γ/2π�uoL, where uo is a typical
gust velocity and L is the lengthscale of the turbulence. Typically, L�δ, so the
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importance of the self-induced motion of the vortex will depend on uo/4πU∞ which is

very small in most flows of interest for which uo≪U∞. Therefore, we will not con-

sider the impact of the image vortex on the convection speed any further, and we will

assume the vortex is simply convected by the mean flow.

7.4 Aeolian tones

Awell-knownphenomenonofsoundcausedbyflowoversolidbodies is theAeolian tone.

This describes the mechanism of sound generation from the wind blowing through boat

rigging and over telephone wires, or any other cylindrical body. Themechanism respon-

sible for Aeolian tones has been studied extensively and is a classic example of vortex

sound. The flow is illustrated in Fig. 7.3, which shows a stationary cylinder in a uniform

flow, which sheds well-defined vortical structures into its wake. The vortical structures

form a von Kármán vortex street that consists of equally spaced vortices that are

convected downstream at a constant speed. At Reynolds numbers Red¼U∞d/v (based
on the flow speed U∞ and the cylinder diameter d) that lie in the range 40<Red<
5�104 it is found that well-defined vortical structures are shed periodically, and the

frequency of vortex shedding f is given by a Strouhal number St¼ fd/U∞ of approxi-

mately 0.2. This is a weak function of Reynolds number and given by Goldstein [3] as

St¼ 0:198 1�19:7=Redð Þ
Flow visualization of the wakes behind cylinders have shown that the formation of the

wake vortices follows a consistent process. As shown in Fig. 7.3 the vortices are ini-

tiated just behind the cylinder on either the upper or lower side of the wake.

During the period of growth, the vortex is almost static as it spins up, extracting

circulation from the boundary layer on the surface of the cylinder. Once it has reached

a critical circulation, it detaches from its point of initiation and is swept downstream

by the flow. The initial period of acceleration is quite fast, and once it reaches the wake

region it is convected with constant speedUc. The process is then repeated for a vortex

in the lower part of the wake, and it grows and separates in exactly the same way as the

vortex in the upper part of the wake. The process is then repeated resulting in a time

varying, periodic flow.

Cylinder of diameter d

von Karman vortex street

U∞

G

G h G

a

Fig. 7.3 The vortex street that occurs behind a cylinder in a steady flow.
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The periodic vortex shedding causes an unsteady lift fluctuation on the cylinder

that is readily understood by using the results given in Section 7.3. In terms of

Eq. (7.3.4) the unsteady lift on the cylinder will be given by

F2 tð Þ¼�ρo

ð
V

rY2 � ω�vð ÞdV (7.4.1)

where the function Y2 is the velocity potential of a flow of unit free-stream velocity in

the i¼2 direction around the cylinder and is given by Eq. (2.7.27) as

Y2 ¼Re ze�iπ=2 +
d2eiπ=2

4z

� �
¼ y2 1 +

d2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 + y

2
2

p
 !

where z¼ y1 + iy2 (7.4.2)

The first thing we note from Eq. (7.4.1) is that, since we are assuming that the vorticity

is concentrated at a point in the flow, there will be no unsteady load while the vortex is

stationary during its period of growth because v¼0. However, once it reaches its crit-

ical strength and starts to move then it will contribute to the unsteady load. Vortex

formation occurs at a point lo>d downstream from the center of the cylinder, and

so when the vortex is in motion we can approximate Y2�y2 and the trajectory is

almost parallel to the y1 axis, so we can write

rY2 � ω�vð Þ�Γnu t� tnð Þδ y1� lo� s t� tnð Þð Þδ y2�h=2ð ÞH jy3j�b=2ð Þ
where u(t� tn) is the speed of the vortex after it detaches at time t¼ tn and is zero for

t< tn. The location of the vortex in the downstream direction is given by lo+ s(τ),
where τ is the time since the vortex was shed and s(τ) is the distance traveled. The

vertical location of the vortex is given by y2¼�h/2 depending on whether it is in

the upper or lower row, and the spanwise extent of the vortex is given by b. Further-
more the vortices shed in the upper row will have the opposite direction of rotation to

the vortices in the lower row, so Γn¼ (�1)nΓ. Using this model in Eq. (7.4.1) for mul-

tiple vortices then gives

F2 tð Þ¼�ρoΓb
X∞
n¼0

�1ð Þnu t� tnð Þ (7.4.3)

If the vortex convection speed increases linearly with time until it reaches a steady

convection speed Uc and the acceleration time is half a period, then we can model

u(τ) such that

u τð Þ¼
0 τ< 0

2Ucτ=T 0< τ< T=2

Uc τ> T=2

8>><
>>:

The series in Eq. (7.4.3) then represents a triangular wave with amplitude Uc, and it

can be expanded into a Fourier series so that
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F2 tð Þ¼�ρoΓbUc
1

2
+

4

π2
cos Ωtð Þ + 4

9π2
cos 3Ωtð Þ +⋯

� �
(7.4.4)

whereΩ¼2π/T is the fundamental frequency of the fluctuations. We can then define a

lift coefficient for the first harmonic based on the frontal area of the cylinder as

CL ¼ F2j j
1=2ð ÞρoU2

∞bd
¼ 8

π2
Γ

U∞d

� �
Uc

U∞

� �
(7.4.5)

Analysis of a von Kármán vortex street [4] shows that the convection speed of the

vortices in the sheet relative to a fixed body in a uniform flow is given by

Uc ¼U∞� Γ

2a
tanh πh=að Þ (7.4.6)

where a is the horizontal distance between vortices and is approximately a¼4d for

Reynolds numbers above 1000. The stability of the vortex street requires that

h/a¼0.281. To obtain Γ we note that the Strouhal number is directly related to the

convection velocity, so St¼Ucd/U∞a, and since St¼0.2 the convection velocity is

approximately Uc¼0.8U∞. However, there is also experimental evidence that the

convection velocity is higher than this and has a value of Uc¼0.9U∞ [5]. Solving

Eq. (7.4.6), with Uc¼0.9U∞, then gives

Γ

U∞d
¼ 2a

d tanh πh=að Þ 1� Uc

U∞

� �
� 1:13

and a lift coefficient of approximately 0.81, which is in good agreement with the mea-

sured values given by Blake [5].

The sound radiation from the unsteady loading at the fundamental frequency is

readily calculated using Eqs. (7.4.4), (4.4.7), and we obtain the far-field sound as

p� ρoU
3
∞bCLSt

4c∞

� �
x2 sin Ω t� r=c∞ð Þð Þ

jxj2 (7.4.7)

This shows the classic dipole scaling of the far-field sound in which the acoustic inten-

sity I¼ (prms)
2/ρoc∞ scales as M3U∞

3 and depends on the sixth power of the flow

speed. Also note the directionality that has cosine dependence with a maximum in

the direction of the unsteady lift.

7.5 Blade vortex interactions in incompressible flow

An important source of noise in aeroacoustics occurs when a blade moves past a line

vortex. This is particularly relevant to helicopter noise when blade vortex interactions

occur during maneuvers and cause a loud thumping sound. The source of the vortices
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in this case is the tips of the blades themselves. Using the formulas developed in

Section 7.3 we can derive a simple incompressible flow model for the unsteady load

caused by a blade vortex interaction from which we can calculate the acoustic field.

More detailed analysis of this problem, which includes the effect of compressibility,

will be given in Chapter 14, and here we will focus on the incompressible flow solu-

tion, using the approach given by Howe [2].

If wemake the assumptions of thin airfoil theory then the blade can be modeled as a

flat plate with zero thickness at zero angle of attack to the mean flow, as shown in

Fig. 7.4. The vortex is convected past the plate with the mean flow U∞, and its path

takes it a height h above the plate. The coordinate system is chosen to be coincident

with the center of the plate and the blade chord is 2a. If we consider a line vortex with
circulation Γ then we can calculate the unsteady loading per unit span of the plate on

the fluid using Eq. (7.3.4). Since the direction of the vorticity vector is out of the page,

and the flow is in the y1 direction the Lamb vector points in the y2 direction and the

unsteady load per unit span for a vortex located at y1¼U∞t, y2¼h is

F2

b
¼�ρoU∞Γ

@Y2
@y2

� 	
y1¼U∞t,y2¼h

(7.5.1)

where b is the span of the blade. The Kirchhoff coordinate Y2 for a flat plate can be

calculated from potential flow theory and is given by Eq. (2.7.29) with α¼π/2 as

Y2 ¼Re �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2�a2

p� �
, z¼ y1 + iy2 (7.5.2)

The branch cut of the square root is chosen to lie between z¼�a so that there is no

flow through the plate. Fig. 7.5 shows the streamlines of the flow defined byrY2, and
it is seen that the function contours around the plate, changing rapidly for locations

near the leading and trailing edges. Using this in Eq. (7.5.1) then gives the unsteady

loading as a function of time as

Flat plate

Δp ≠ 0

Wake      Δp = 0

y1

y2

−a a

U∞

G

h

Fig. 7.4 A blade vortex interaction in which the blade is modeled as a flat plate with zero

thickness.
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F2

b
¼�1

2
ρoU∞ΓRe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U∞t + ih�a

U∞t+ ih + a

r
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U∞t + ih + a

U∞t + ih�a

r� 

(7.5.3)

(note: this is the force applied to the fluid that tends to a constant when t¼�∞ because

the vortex remains in the flow). The time history of the unsteady load therefore has

two contributions. The first has a peak whenU∞t¼�a, which corresponds to the loca-
tion of the vortex when it is closest to the leading edge of the blade. The second con-

tribution occurs whenU∞t¼a, which corresponds to the location of the vortex when it
is closest to the trailing edge. These pulses are shown in Fig. 7.6, and their peak levels

are determined by the height of the vortex above the surface, so the results for different

values of h/a are shown. The closer the vortex is to the blade the sharper and larger is
the unsteady loading pulse, and the leading and trailing edge pulses are of the same

magnitude.

However, this model has not included the effect of vorticity in the blade wake,

which is required to satisfy the Kutta condition. To fully calculate the impact of

the wake vorticity we would need to solve the equations of motion to obtain the shed

vorticity as a function of time. However, the impact of the wake vorticity is to elim-

inate the pressure jump at the trailing edge of the blade, and it was argued by Howe [2]

that this reduces the trailing edge pulse. This leads to Howe’s approximation which

applies to the case when the vortex is close to the blade, so h≪a. It approximates

the net unsteady loading by the contribution from the leading edge pulse only, and

sets the trailing edge pulse to zero, so the unsteady load is given by the first term

in Eq. (7.5.3) in the limit that U∞t¼�a, as

Fig. 7.5 The streamlines of the flow defining the Kirchhoff coordinate Y2 for a flat plate of zero
thickness.
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F2

b
¼�1

2
ρoU∞ΓRe i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

U∞t + ih+ a

r� 

(7.5.4)

A comparison between Howe’s approximation and the total pulse is shown in Fig. 7.7

for a vortex that passes above the blade at a standoff distance of h/a¼0.05.

To justify this approximation, we need to compare the results using Howe’s

approximation to the solution that would have been obtained using an exact incom-

pressible flow calculation that includes the Kutta condition. For a harmonic gust this

is given by Sears function, which was discussed in Chapter 6. The comparison is most

easily carried out by considering a gust that is caused by a harmonic vortex sheet at

distance h above the blade. This causes a velocity field given by

v̂1e
�iωt ¼U∞� â1 sgn y2�hð Þe�k1jy2�hj + ik1 y1�U∞tð Þ,

v̂2e
�iωt ¼�iâ1e

�k1jy2�hj + ik1 y1�U∞tð Þ

It is readily verifiable that this flow is incompressible, and the vorticity is only nonzero

on the vortex sheet and has a single component in the i¼3 direction given by

ω̂3e
�iωt ¼ 2â1δ y2�hð Þeik1 y1�U∞tð Þ.
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Fig. 7.6 The leading and trailing edge loading pulses from a blade vortex interaction when there

is no wake and the Kutta condition is not imposed, Λ¼F2/ρoΓU∞b.

Vortex sound 151



Using this result in Eq. (7.3.4), we assume that the amplitude of the velocity fluctu-

ations is very much less than the mean flow speed, giving the unsteady load as

F̂2

b
e�iωt ¼�2ρoU∞â1

ð∞
�∞

@Y2
@y2

� 	
y2¼h

eik1 y1�U∞tð Þdy1 (7.5.5)

Using Howe’s approximation this becomes

F̂2

b
¼�ρoU∞â1

ð∞
�∞

Re i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

y1 + ih + a

s( )
eik1y1dy1

This integral can be evaluated using tables of Fourier transforms, and it is found that

F̂2 ¼�2πρoU∞â1ab

ffiffiffiffiffiffiffiffiffiffiffiffi
1

2πk1a

r� �
e�ik1a�k1h�iπ=4 (7.5.6)

We can compare this with the high-frequency approximation to the unsteady loading

calculated using Sears function using Eqs. (6.4.3), in the limit that k1a¼σ≫1. In

Eq. (6.4.3) the gust was defined relative to the upwash on the blade, and so the equiv-

alence between the magnitude of the gust response given by Eqs. (6.4.3), (7.5.6) for

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5
Ut/a

2 2.5

–0.5

–1

–1.5

–2

–2.5

–3

0

V

Fig. 7.7 The comparison of Howe’s approximation (*) for the blade response to a passing

vortex compared to the response without a wake (line), h/a¼0.05.
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σ≫1 requires that the upwash gust amplitude is replaced by exp(�k1h) in Eq. (7.5.6).
Comparing Eqs. (6.4.3), (7.5.6) shows that they give the same gust magnitude in the

limit that σ≫1. Consequently Howe’s approximation correctly accounts for the effect

of vortex shedding in the wake and the Kutta condition and leads to the conclusion that

the unsteady loading from a blade vortex interaction is dominated by the response of

the blade as the vortex passes leading edge of the blade, hence the term Leading Edge
Noise which we will discuss in more detail in subsequent chapters.

Another example that is of interest and also verifies Howe’s approximation is the

response of a flat plate to a step gust. In this case the incident disturbance is specified

by the velocity and vorticity distribution where the gust reaches the leading edge at

t¼0. We assuming wo≪U∞, the unsteady loading per unit span is

v1 ¼U∞, v2 ¼woH U∞t� y1�að Þ, ω3 ¼�woδ y1 + a�U∞tð Þ

F2

b
¼ ρoU∞wo

ðR
�R

@Y2
@y2

� 	
y1¼U∞t�a

dy2

At first sight this integral would appear trivial and gives the load as 2ρoU∞woR which

does not vary in time. However, there is an additional contribution when the step gust

passes the leading edge of the blade because Y2 has a discontinuity on y2¼0 between

y1¼�a. The contribution from the discontinuity is given by the jump in the value of

Y2 across the surface. Applying Howe’s approximation to Eq. (7.5.2) gives the jump in

Y2 as

2Re
ffiffiffiffiffi
2a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1 + iε + a

p� �
H y1 + að Þ

where ε tends to zero. The response to a step gust is then given by

F2

b
¼�2πρoU∞woa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U∞t=a

p
π

 !
H U∞t=að Þ (7.5.7)

This can be compared to the approximate form of Kussner’s function [6] for the

response of a plate to a step gust, which is given by

F2

b
¼�2πρoU∞woa

eτ2 +eτð Þeτ2 + 2:82eτ + 0:8
� �

H U∞t=að Þ, eτ¼U∞t

a

These results are compared in Fig. 7.8 and there is good agreement when the

nondimensional time is less than one.
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In conclusion the response of a blade to different types of gusts including a blade

vortex interaction, a harmonic upwash gust and a step gust, is well approximated

using Eq. (7.3.4) and Howe’s approximation, which assumes the unsteady load is

defined by the pulse that occurs when the disturbance is close to the leading edge

of the blade.

7.6 The effect of angle of attack and blade thickness on
unsteady loads

7.6.1 The effect of angle of attack

The calculation of the unsteady load produced by a two-dimensional body in an ideal

potential flow can be carried out using Eq. (7.3.4) using a conformal mapping

approach. This is particularly useful when considering the unsteady loading produced

by airfoils at an angle of attack to the mean flow. This is not part of Sears theory since

thin airfoil theory assumes that the effect of angle of attack is of second order on the

unsteady loading and so is ignored. To evaluate its effect consider the unsteady load-

ing caused by a line vortex with circulation Γ that is convected by a two-dimensional

steady flow with velocity v¼ (U,V,0) past a flat plate airfoil as illustrated in Fig. 7.9.

The vortex is defined as having its axis in the y3 direction and so, by using Eq. (7.3.4),
the unsteady loading per unit span is given by
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Fig. 7.8 Howe’s approximation (circles) compared to Kussner’s function (line) K¼
jF2/2πρoU∞woabj for the response of a flat plate to a step gust in incompressible flow.
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Fi

b
¼�ρoΓ U

@Yi
@y2

�V
@Yi
@y1

� �
(7.6.1)

where Yi is the potential of a flow that has a speed of unit amplitude from the i direction
at infinity. Since the flow around the body is incompressible and irrotational it can be

specified in terms of a complex potential w(z)¼ϕ+ iψ , where z¼y1+ iy2, ϕ is the

velocity potential, and ψ is the stream function of the flow. The steady flow over

the surface, and the flow defining Yi can then be specified as

U� iV¼ dwo

dz
,

dYi
dy1

� i
dYi
dy2

¼ dwi

dz
(7.6.2)

and the unsteady loading can be written in terms of the complex potentials as

Fi

b
¼�ρoΓIm

dwo

dz

dwi

dz

� �*
 !

(7.6.3)

where the * represents the complex conjugate.

To illustrate the application of this result we will consider a flat plate airfoil as

shown in Fig. 7.9, where the flow is incident at an angle of attack α to the chord line.

The complex potential of the flow can be obtained using conformal mapping and is

given by Eq. (2.7.29) as

wo ¼U∞zcosα� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2�a2

p� �
sinα� iΓo

2π
ln

z+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2�a2

p

2

 !
(7.6.4)

The circulation Γo defines the steady circulation around the airfoil, and to satisfy the

Kutta condition at the blade trailing edge we require that Γo¼�2πaU∞sinα
(Eq. 2.7.30). We can use this result along with the complex potentials that define

the flow in the y1 and y2 directions, which are

Flat plate

Wake      

G

U

V

Δp ≠ 0
Δp = 0

Fig. 7.9 A vortex being convected past a flat plate with the flow at a finite angle of attack.
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w1 ¼ z w2 ¼�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2�a2

p

to give the derivatives needed for Eq. (7.6.3) as,

dwo

dz
¼U∞ cosα� i

ffiffiffiffiffiffiffiffiffiffi
z�a

z+ a

r
sinα

� �
dw1

dz
¼ 1

dw2

dz
¼ �izffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2�a2
p (7.6.5)

However, the results are more easily interpreted if we use Howe’s approximation and

limit consideration to the leading edge pulse. This also corrects for the unsteady Kutta

condition at low angles of attack and so is more likely to be accurate than a direct

evaluation of Eq. (7.6.3). In this approximation the complex potential is evaluated

in the limit that z tends to �a so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2�a2

p
� i

ffiffiffiffiffi
2a

p ffiffiffiffiffiffiffiffiffi
z+ a

p

The two components of the unsteady load then separate out readily, and the evaluation

of Eq. (7.6.3) gives

F1

b
¼�ρoΓU∞Im

ffiffiffiffiffiffiffiffiffi
2a

z+ a

r !
sinα,

F2

b
¼ 1

2
ρoΓU∞Im

ffiffiffiffiffiffiffiffiffi
2a

z + a

r !
cosα (7.6.6)

The first important feature to note about this result is that the unsteady force normal to

the blade F2 is simply cosα times the unsteady force given by Eq. (7.5.4) for a vortex

located at z¼U∞t+ ih. In addition, there is a force F1 in the direction of the blade

chord, which is a suction force because it is negative. The dependence on vortex loca-

tion as a function of z is identical in each case, and the direction of the force vector is
given by the vector components (�2sinα, cosα, 0). For small angles of attack this cor-

responds to rotating the direction of the force anticlockwise through the angle 2α as

shown in Fig. 7.10.

U∞

F1= −2F sina

F2= F cosa

a
Flat plate airfoil

Fig. 7.10 Flow incident at an angle of attack α on a flat plate airfoil and the rotation of the

unsteady force in the anticlockwise direction.
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The effect of the angle of attack on the amplitude of the pulse is relatively small and

causes an increase in loading of (1+3sin2α)1/2 which is minimal for small α. This
result suggests that the effect of a small angle of attack on the unsteady loading is sim-

ply to rotate the direction of the load without affecting its amplitude.

However, the results given above are based on a fixed vortex displacement above

the surface h, and we have not considered the effect of the rate of change of vortex

position on the timescale of the pulse. If the vortex is convected by the mean flow

along a streamline then its velocity is given by (dwo/dz)* as defined in Eq. (7.6.5). In

the vicinity of the leading edge where the pulse reaches its largest values we can

approximate z+a as equal to h, where jhj is the closest distance of the vortex to

the leading edge. The velocity of the vortex will depend on (1+2a/h)1/2, and this

will have only a minor impact on the vortex velocity if (2a/jhj)1/2sinα≪1. For angles

of attack of less than 6 degrees this implies that we require (jhj/2a)1/2>0.1. It fol-

lows that if the vortex trajectory meets this criterion then the velocity of the vortex

near the leading edge is not strongly affected by its proximity to the surface, and so

the time scale of the pulse will remain the same as it was for zero angle of attack, and

the leading order effect is simply the rotation of the direction of the force. However,

in situations where the vortex passes closer to the leading edge than required by this

limit then the vortex speed will be affected by the local flow speed, and some pulse

distortion can be expected.

7.6.2 The effect of airfoil thickness

The same approach may be used to evaluat e the effect of blade thickness on the

unsteady loading. If we consider the Joukowski airfoil discussed in Section 2.7,

then we can define the complex potential using Eqs. (2.7.32), (2.7.33). It will

be assumed that the vortex is convected along a streamline, and so we need

to take into account both the motion of the vortex and its location in drift

coordinates.

To evaluate the streamlines of the flow and the drift coordinates around the airfoil

we make use of the conformal mapping given in Table 2.1 so that

z¼ ζ + a2=4ζ

and evaluate ζ from Eq. (2.7.32) for a blade of finite thickness and no circulation, so

ζ� ζ1ð Þe�iα ¼W +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W�2R

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W + 2R

p

2
, R¼ ζ1�Cj j

and the branch cuts are chosen, so the real part of each square root is positive. The

streamlines for the flow over an airfoil with ζ1¼�0.3C and C¼a/2 are shown in

Fig. 7.11A.
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The vortex will be convected by the mean flow, and if its circulation is suffi-

ciently small that nonlinear convection effects can be ignored then the position

of the vortex at any time will be determined by the drift coordinates of the

mean flow. The drift coordinate X2¼ψ /U∞ is simply the stream function of the

mean flow normalized on the velocity, a nd the surfaces of constant drift

along the streamline can be evaluated from the integral of the velocity along the

streamline as

z¼
ðX1=U∞

�to

w0
o zð Þ� �

*dt

wherewo is given by Eq. (2.7.33) evaluated withwo¼w, α¼0, and Γ¼0 for a blade at

zero angle of attack.

The drift coordinates are shown in Fig. 7.11B and illustrate how the vortex that

passes close to the airfoil will be retarded in comparison to the vortex that passes

well above the airfoil. If the vortex is on the stagnation streamline then it comes

to rest at the leading edge stagnation point and so is not convected over the surface

unless it is ejected into the flow by a nonlinear interaction with the surface, caused

by the image vortex required to match the non-penetration boundary condition. In a

turbulent flow this ejection could cause the vortex to pass over either the upper or

lower surface, so the net contribution from vorticity on the stagnation streamline is

indeterminate.

Since the blade is symmetrical in this example, and the vortex is modeled

as following a streamline, the unsteady loading caused by the passage of the

vortex can be obtained from the complex velocity of the mean flow, as specified in

Eq. (7.6.3). The terms required in this equation are obtained from Eq. (2.7.33) as
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Fig. 7.11 (A) The streamlines over a Joukowski airfoil with a thickness to chord ratio of 0.3.

(B) The drift coordinates for the same airfoil.
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dwo

dz
¼U∞ 1� R2

ζ� ζ1ð Þ2
( )

1

1�a2=4ζ2
� �

dw2

dz
¼�i 1 +

R2

ζ� ζ1ð Þ2
( )

1

1�a2=4ζ2
� �

Using these results in Eq. (7.6.3) then gives the unsteady loading for a vortex located at

a point ζ on the streamline where

ζ¼ z+
ffiffiffiffiffiffiffiffiffiffi
z�a

p ffiffiffiffiffiffiffiffiffi
z + a

p
2

and as before the branch cuts are chosen so that square roots have a positive real part.

Fig. 7.12 shows the unsteady loading for a vortex passing at different distances from

the blade shown in Fig. 7.11. The effect of the blade thickness on the leading edge pulse

when compared to the results presented in Fig. 7.6 is significant. The sharpness of the

leading edge pulse is smoothed, but the effect of thickness on the trailing edge pulse is

relatively small. It is also noteworthy thatwhen the vortex is on a streamline that is close

to the airfoil the pulse is independent of the displacement of the vortex, indicating that

for thick airfoils the proximity of the vortex to the stagnation streamline is unimportant.
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Fig. 7.12 The nondimensional unsteady loading as a function of nondimensional time

2U∞t/c for a vortex passing a blade with thickness to chord ratio of 0.3. Displacement of

the vortex from the stagnation streamline at upstream infinity: (solid line) h/a¼0.05, (circles)
h/a¼0.1, (crosses) h/a¼0.5, and (squares) h/a¼1.

Vortex sound 159



This example is for a very thick airfoil, and the effects of thickness for thin airfoils

are better shown by considering a vortex at a fixed starting point being convected

past an airfoil of different thicknesses, as shown in Fig. 7.13. The three cases shown

are for an airfoil with thickness to chord ratios of 1.2%, 12%, and 30%, respectively.

As before the effect of thickness is to reduce the leading edge pulse and has a much

smaller effect on the trailing edge pulse. We also note that the effect of thickness

is nonlinear and that for the thick blade (as in Fig. 7.12) the leading edge pulse is

significantly smoothed.

Clearly the effect of thickness on the unsteady loading is to smooth out the leading

edge pulse that occurs as the vortex interacts with the leading edge of the blade. It has

less effect on the trailing edge pulse, but that is inconsequential because in these exam-

ples the Kutta condition has not been introduced. The smoothing of the leading edge

pulse implies that the high-frequency content of the blade response function will be

reduced by thickness effects. The effect of the blade thickness appears as if the vortex

passes further from the blade than it would if the blade was a flat plate. This scales on

the blade thickness to chord ratio, and Fig. 7.14 shows a comparison between the

unsteady loading from airfoils of thicknesses of 1.2%, 6%, and 12% with a vortex ini-

tiated at the same point upstream and is compared to the unsteady loading calculated

using a flat plate approximation with the vortex displacement increased by half the
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Fig. 7.13 The nondimensional unsteady loading as a function of nondimensional time

2U∞t/c for a vortex passing a blade with thickness to chord ratios of 0.012 (solid line),
0.12 (circles), and 0.3 (crosses). Displacement of the vortex from the stagnation streamline

at upstream infinity is 2h/c¼0.05.
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thickness of the blade. The curves are remarkably close, and this provides a first-order

scaling on the effect of blade thickness on the unsteady loading.

We can also estimate the effect of blade thickness on the blade response function in

the frequency domain bymodifying Eq. (7.5.6) so that the displacement of the vortex

h is increased by half the thickness of the blade. This will reduce the high-frequency
content of the blade response function by a factor of exp(�ωtmax/2U∞), where tmax is
the thickness of the blade, and so the high-frequency content of the blade response

function is reduced by an exponential factor that depends on the blade thickness.

However, it should be noted that this analysis is for incompressible flow and assumes

that the blade andwake respond instantaneously to an incoming disturbance.Wewill

show in Chapter 14 that this approximation is only valid when the blade chord is less

than one-quarter of the acoustic wavelength. The discussion outlined above shows

that blade thickness is only important when ωtmax/U∞>1. The incompressibility

criteria requires that ω<πco/2c and so for the effect of blade thickness to bemodeled

by an incompressible model we require πtmax/2cM>1 or that the flowMach number

is less than 0.19 for a 12% thick blade. In most aeroacoustic applications the blade

Mach number exceeds this criterion and so compressibility effects have to be

considered.
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Fig. 7.14 The nondimensional unsteady loading as a function of nondimensional time

2U∞t/c for a vortex passing a blade with thickness to chord ratios of 0.012 (solid line),
0.06 (circles), and 0.12 (squares). The two curves show a calculation based on the blade of

finite thickness and a flat plate with the vortex displaced by an additional half the blade

thickness. Displacement of the vortex from the stagnation streamline at upstream infinity is

2h/c¼0.05.
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8Turbulence and stochastic

processes

This chapter discusses the stochastic nature of turbulence and the sound field produced

by the interaction of a generic surface with a turbulent flow. The generation of turbu-

lence at the largest scales, the energy cascade and dissipation are described, and the

Reynolds averaged Navier Stokes (RANS) equations are introduced including the

concept of a turbulence model. Computational methods based on these concepts

are discussed. The chapter also introduces the necessary descriptors of turbulence

for aeroacoustic analysis such as correlation functions integral scales frequency spec-

tra, cross spectra cross correlations coherence phase wavenumber spectra in multiple

dimensions in homogeneous inhomogeneous flows.

8.1 The nature of turbulence

It is tempting to think of sound as an entirely deterministic phenomenon. The repre-

sentation of sound fields as harmonic waves in space and time engenders an image

of acoustic fields formed by the ordered propagation of entirely predictable periodic

variations in density and pressure. There are many applications in aeroacoustics

where this is the case, for example: the sound field generated by the thickness noise

of a rotating propeller or the tones generated by a set of rotor blades as they cut through

a nonuniform flow field. In many cases, however, sources of sound result from the

unsteadiness of a turbulent flow and they, and the sound fields they produce, are

stochastic.

Turbulence is chaotic, vortical motion found in the rotational regions of flows, such

as boundary layers, wakes, and jets, where viscosity has influenced the motion. Tur-

bulence in lowMach number flows is usually considered incompressible. Even though

the mean motion may be compressible, the turbulent fluctuations in velocity are rarely

more than 10–20% of the mean and thus do not have a significant Mach number.

Turbulence is initiated and maintained by viscous instability and characterized by

eddying motions over a large and continuous range of scales. Sound produced by the

action of turbulent flow therefore tends to be broadband, with energy over a contin-

uous distribution of frequencies. On the largest scales the turbulent eddies, often also

known as coherent structures, are formed by the instability and roll up of shear-layers

associated with the large scale geometry of the flow, such as the von Kármán vortex

street formed behind a circular cylinder (see Section 7.4). The scale of these largest

structures L is comparable to the overall dimension of the flow (e.g., the wake thick-

ness), and the scale of their velocity fluctuations, u, varies directly with the overall

velocity scale of the flow U.
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The shearing motions associated with these largest structures are themselves

unstable, however, and so they break down into smaller structures that are themselves

subject to instability. This process continues until the structures formed are small

enough to be directly slowed by the molecular viscosity of the fluid. Such a structure

with a size η and velocity uη experiences a viscous force that scales on μuη/η (from

Newton’s Law of Viscosity) multiplied by the eddy surface area that varies as η2.
It experiences a loss of momentum at a rate equal to its mass times the rate of change

of its velocity, which will scale on ρη3
� �

uη=τη
� �¼ ρu2ηη

2, where we have calculated

the timescale for the deceleration τη as η/uη. Given that the viscous force and rate of

change of momentum must be in balance, we expect that

ρu2ηη
2 ffi μuη=η
� �

η2
� �

and thus,

ηuη=νffi 1

where ν the kinematic viscosity ν¼ μ=ρ. We see that the Reynolds number

of the smallest scales in turbulence is of order 1. The scales η,uη, and τη are referred
to as the Kolmogorov microscales after the great 20th century Russian mathe-

matician Andrey Kolmogorov. These are most commonly expressed in terms of the

rate of viscous dissipation of kinetic energy per unit mass ε¼ u2η=τη. Since

τη ¼ η=uη and η¼ v=uη we obtain

uη ¼ νεð Þ1=4, η¼ ν3=ε
� �1=4

, and τη ¼ ν=εð Þ1=2 (8.1.1)

The flow of energy from large to small scales is referred to as the “energy cascade.”

Kinetic energy enters the cascade at the largest scales, at a rate that is determined by

the largest motions based on the time scale L/U, i.e., at a rate, per unit mass, that scales

withU2= L=Uð Þ¼U3=L. All this energy must be dissipated by viscosity at the smallest

scales and so, counter-intuitively, this rate ε�U3=L is independent of viscosity. The

ratio of the largest to smallest scales in the cascade is

L=η¼ L= ν3=ε
� �1=4 � L

�
ν3

U3=L

� �1=4

¼ UL

ν

� �3=4

¼Re3=4 (8.1.2)

where we have denoted the overall Reynolds number of the flow UL/ν as Re. We see,

therefore, that the statement that turbulence is associated with a large range of scales is

synonymous with the statement that turbulence is a high Reynolds number phenom-

enon. The ratio of largest to smallest velocity and time scales in the energy cascade is

similarly shown to vary as Re1/4 and Re1/2 respectively.

Kolmogorov hypothesized that at sufficiently high Reynolds numbers, the smallest

eddies in a turbulent flow depend only on viscosity and dissipation rate and thus are iso-

tropic and universal between different flows. This is often referred to as the dissipation
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range. He also hypothesized universality in themid-range scales, much larger than η but
much smaller than L, which should therefore be determined by the rate of energy flow

through the cascade, which is equal to ε. This is referred to as the inertial subrange.
The validity of Kolmogorov’s hypotheses, and the extent to which turbulent flows

exhibit a universal character, remain open questions in turbulence research.

Turbulence is a stochastic phenomenon. While it is completely described by the

governing equations of fluid dynamics, the instantaneous details of flow are sensitive

to its history and boundary conditions in such a complex and chaoticway that determin-

istic predictions are simply not possible. Fortunately, the instantaneous details are

rarely important since, as engineers, we care about typical behavior. We wish to know

the average behavior of the turbulence, andof the sound fieldwithwhich it is associated.

8.2 Averaging and the expected value

In many aeroacoustic and fluid dynamic situations we find it helpful to take the mean

value. For example consider an instantaneous acoustic or fluid dynamic variable, or a

combination of variables, a(y,t). We can, and often do, get the mean value of a by

averaging with respect to time

�a yð Þ¼ 1

2T

ðT
�T

a y, tð Þdt

where we assume an averaging time 2T long enough compared to the flow processes

that the result is independent of when the averaging period occurs or how long it is.

Time averaging is intuitively simple but not appropriate when the typical behavior is a

function of time itself, i.e., when the flow is not time stationary.
To understand this, consider the situation illustrated in Fig. 8.1 where an airfoil

cuts through a turbulent wake. As this occurs, the airfoil encounters turbulence that

produces an unsteady lift fluctuation and a burst of sound. The sound, the pressure

fluctuations experienced on the airfoil and the eddy structures it encounters clearly

will have typical characteristics, but these characteristics will depend on the position

of the airfoil relative to the wake, which is itself a function of time.

Noise-generating airfoil

Turbulent wake

Cutting plane

y1
y3

y2

Fig. 8.1 Airfoil cutting through a turbulent wake.
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To handle this kind of situation we use the more general concept of the expected

value. This is the mean of the value of a stochastic variable taken over many repeated

realizations of the same flow. In each realizationwe imagine running the flowunder con-

ditions identical in all respects, except for the stochastic behavior. Thus we can imagine

obtaining multiple independent samples of our flow quantity a at the same defined

positionand time; e.g., for the samepositionof the airfoil relative to thewake.These inde-

pendent samples can now be averaged to obtain a mean that remains dependent on time.

E a y, tð Þ½ � ¼ lim
N!∞

1

N

XN
n¼1

a nð Þ y, tð Þ

where a(n)(y, t) is the nth sample of a and N is the total number of samples taken.

As already noted we apply averaging to many variables and combinations of vari-

ables. As we will see below, averaging of products of fluctuating velocity components

at the same position and time, at different positions and times, of pressure fluctuations

and of the Fourier transforms of these variables appear frequently in the analysis and

results of aeroacoustic problems. When the terms “average” or “mean” are used, they

will refer to the expected value, unless otherwise stated. In general we will denote

averaged values using an overbar, e.g., p02 , unless a custom symbol has already been

defined, such as in the case of mean velocity component Ui, or mean density ρo.
The particular types of statisticalmeasures of turbulence that aremost often required

for aeroacoustic predictions become clear when the mechanisms of sound production

are considered. Returning once more to the situation shown in Fig. 8.1, according to

Curle’s equation (4.3.9) for an impermeable stationary surface, the instantaneous

acoustic pressure p0 x, tð Þ¼ ρ0 x, tð Þc2∞ depends on the time and area integral of the pres-

sure over the airfoil surface, and a volume integral of quadrupole sources that is of sec-

ond order. So, the first order approximation to the sound field is given by

p0 x, tð Þ¼
ðT
�T

ð
S

p0 y, τð Þ @

@yi
G x, tjy,τð Þð Þni yð ÞdS yð Þdτ (8.2.1)

(note that the mean pressure produces no sound in this case, and viscous effects have

been ignored so we can replace pijwith p
0 in the integrand where p0 ¼p�p∞). To char-

acterize the typical character of the sound field, we typically measure in the mean

square acoustic pressure p02 x, tð Þ¼E p0 x, tð Þ2
h i

, for example, which is

p02 x, tð Þ¼ E

ðT
�T

ð
S
p0 y, τð Þ@G x, tjy,τð Þ

@n
dS yð Þdτ

� � ðT
�T

ð
S
p0 y0, τ0
� �@G x, tjy0,τ0ð Þ

@n
dS y0
� �

dτ0
� �� �

¼
ðT
�T

ð
S

ðT
�T

ð
S
E p0 y, τð Þp0 y0, τ0

� �	 
@G x, tjy,τð Þ
@n

@G x, tjy0,τ0ð Þ
@n

dS yð ÞdS y0
� �

dτdτ0

where we have used @/@n to represent the gradient in the direction normal to the sur-

face. The expected value operator ends up containing only the multiplication of the

166 Fundamentals



pressures since pressure is the only stochastic variable on the right hand side. The

sound is therefore a function of the correlation (i.e., the average of the product) of

the pressure fluctuation at y and τ, and that at y0 and τ0.
The important general point here is that average measures of the sound field will in

general be functions of the two-point space-time correlations of the turbulent flow var-

iables, and that simple averaging of a flow variable at a fixed position does not give all

the information required to calculate the far field sound.

8.3 Averaging of the governing equations and
computational approaches

Averaging plays a key role in how we approach the numerical solution to turbulent

flow problems. At low Mach number a turbulent flow is, in principle, prescribed

by the continuity and momentum equations

@ρ

@t
+
@ ρvið Þ
@xi

¼ 0 (2.2.6)

@ρvi
@t

+
@ ρvivj + pij
� �

@xj
¼ 0 (2.3.9)

Numerical solution to these equations for turbulent flow is possible only in very sim-

ple situations and at Reynolds numbers that are low compared to most applications.

These direct Navier Stokes (DNS) solutions are primarily useful for scientific research

into the fundamental physics of a flow. Engineering solutions are not possible by this

method because of the inherently large range of scales present in turbulent flows at

practical conditions. At an overall Reynolds number Re of one million (which is typ-

ical as it applies to a blade of chord 20 cm in a flow of 75 m/s in air), the analysis of

Section 8.1 tells us that we will need to resolve a range of length scales of about

30,000:1 (Re3/4) and a range of timescales of about 1000:1 (Re1/2). Numbers like these

imply vast computational memory and speed requirements.

To compute turbulent flows at practical conditions and Reynolds numbers it is

thus necessary to average the continuity and momentum equations. Splitting the

dependent flow variables ρ, vi, and pij into their expected values and fluctuations

about the mean, and taking the expected value of Eqs. (2.2.6), (2.3.9) we get, in turn

@ρo
@t

+
@ ρoUi + ρ0ui
� �

@xi
¼ 0

@ρoUi + ρ0ui
@t

+
@ ρoUiUj + ρouiuj + ρ0 Ui + uið Þ Uj + uj

� �
+ pij

� �
@xj

¼ 0
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Note that the ρ0 and p0 here denote fluctuations about the mean (expected) value, rather

than changes from ambient conditions. At low Mach number, terms multiplied by ρ0

can be neglected since ρ0≪ρo, and so we obtain

@ρo
@t

+
@ ρoUið Þ
@xi

¼ 0 (8.3.1)

and

@ρoUi

@t
+
@ ρoUiUj + ρouiuj + pij
� �

@xj
¼ 0 (8.3.2)

We see that averaging of continuity equation merely returns the same expression in

terms of the mean flow variables and, since the averaging process represents an

expected value, the mean flow quantities can vary with time and so the time deriva-

tives are not zero. Averaging of the momentum equation also returns a similar expres-

sion in terms of the mean variables, but with the additional terms ρouiuj involving the
velocity fluctuations. These terms (or, strictly speaking their negatives) are referred to

as the Reynolds or turbulent stresses, since they appear in the equation in the same way

as the mean compressive stress tensor pij .
When attempting to solve Eqs. (8.3.1), (8.3.2) we can specify the mean compres-

sive stress tensor pij from the sum of the mean pressure and the mean viscous stresses,

which can be inferred from the mean velocity gradients and the viscosity. Also we can

relate the pressure and density through the energy relations described in Chapter 2 (or

for incompressible flows the density may be assumed constant). In the absence of the

turbulent stresses there would then be four equations with four unknowns p, U1, U2,

and U3, and a solution is possible. However, when the turbulent stresses are included

there is an additional set of six unknown terms,

u21 , u
2
2 , u

2
3 , u1u2 , u1u3 , u2u3

and thus Eqs. (8.3.1), (8.3.2) do not form a closed set. Solving them requires that we

introduce empirical expressions to relate the Reynolds stresses back to the mean flow

variables. These relations are referred to as a “turbulence model.” The first and most

straightforward turbulence modeling concept is the Boussinesq eddy viscosity μt,
remarkably proposed in 1877 [1]. Boussinesq’s hypothesis is that the turbulent

stresses are related to the mean velocity gradients in almost the same way that the vis-

cous stresses are related to the complete velocity gradients. That is, by near analogy

with Eq. (2.3.11) (for incompressible flow), we write

�ρouiuj ¼ μt
@Ui

@xj
+
@Uj

@xi

� �
�2

3
ρoκeδij (8.3.3)

where κe � 1

2
u2i ¼ 1

2
u21 + u

2
2 + u

2
3

� �
is the turbulence kinetic energy. The eddy viscosity

is considered a property of the flow, rather than the fluid, and thus is a variable that
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must bemodeled.One classicmodel is the “k-epsilon”model [2] forwhichμt is taken to
be proportional to the mean scales L and U so μt∝ρoκeL=U and since ε scales as U3/L
and κe scales as U

2 it follows that L/U scales as κe/ε and μt scales as ρoκe
2/ε. The turbu-

lence kinetic energy κe and dissipation rate ε are obtained from empirical differential

equations designed tomodel the factors controlling the changes to a patch of turbulence

as it is convected along by themean flow.Much experimental, theoretical, and compu-

tational effort has gone into identifying and refining turbulence models, and there

are many to choose from. All such models are, however, ultimately limited in applica-

tion and accuracy since the models are not themselves solutions to the equations

of motion.

In 1895 Osborne Reynolds [3] derived (in incompressible form) the time averaged

version of Eqs. (8.3.1), (8.3.2),

@ ρoUið Þ
@xi

¼ 0
@ ρoUiUj + ρouiuj + pij
� �

@xj
¼ 0 (8.3.4)

which are therefore referred to as the Reynolds averaged Navier Stokes (RANS) equa-

tions. Computational approaches that solve these equations for steady boundary con-

ditions are referred to as RANS calculations. When the boundary conditions are

unsteady (e.g., for the turbulent flow produced by an oscillating airfoil), Eq. (8.3.2)

must be solved and the calculation is described as URANS. RANS and URANS cal-

culations are feasible and regularly conducted for complete engineering configura-

tions at full-scale conditions. Indeed, a number of commercial packages are

available that perform such computations. The drawback of these methods is that a

generic turbulence model is being asked to represent all the scales of the turbulence,

including the largest scales that are expected to be characteristic of the specific flow

conditions and geometry. The accuracy and reliability of such predictions can often be

a concern. A further drawback from the aeroacoustic perspective is that the turbulence

quantities computed as part of the solution are generally single-point statistics of

velocity like the Reynolds stresses, κe, and ε, well short of the two-point quantities

of velocity and pressure that are needed to completely define an acoustic source. Addi-

tional sweeping modeling assumptions are therefore normally needed to extrapolate

RANS and URANS results to obtain the acoustic sources.

Time varying unsteady flows are more accurately computed using large eddy sim-

ulation (LES). Here the equations of motion, (2.2.6) and (2.3.9), are filtered to remove

turbulence scales too small to be resolved by the computational grid or time step.

Since the filtering is just another type of averaging, the result is equations that appear

identical to Eqs. (8.3.1), (8.3.2) but where the averaged variables ρo,Ui and pij now
include the resolved turbulent fluctuations, and where the term ρouiuj represents

the unknown correlations between the small scale unresolved fluctuations.

A turbulence model is required for these “subgrid” stresses. The LES approach

was proposed by Smagorinsky [4] who also introduced the first subgrid turbulence

model, which is an extension of Boussinesq’s eddy viscosity hypothesis. More sophis-

ticated modeling approaches have since been proposed including the “dynamic

model” of Germano et al. [5] in which the parameters of the model are adjusted to
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match the local characteristics of the resolved turbulence. LES turbulence models are

expected to be more generally applicable because the larger configuration-specific

turbulence scales are computed directly. The model therefore only needs to account

for the small scale turbulence that is hopefully more universal in character.

The grid resolution, and thus filter size, is an important factor in performing an LES

calculation. Choosing a coarse filter and grid means a faster, smaller calculation but

one that places greater reliance on the accuracy of the empirical turbulence model.

Choosing a sufficiently fine filter can result in calculations that approach the fidelity

of DNS. The need for both computational efficiency and accuracy has resulted in the

development of hybrid RANS/URANS/LES methods where computational effort can

be concentrated in those regions where it is most needed.

Better resolved LES calculations can be particularly useful for aeroacoustics

because some fraction of the pressure and velocity correlations that form the acoustic

source terms can be computed directly from the resolved scales. This fraction

obviously increases as the resolution and expense of the calculation are increased.

Integration of these sources over a surface bounding the flow and using a Ffowcs

Williams Hawkings surface, can then be used to determine the sound heard by an

observer in the far field, within the limitations discussed in Chapter 5.

Note that in principle, the origin and propagation of sound waves can be directly

computed as part of any unsteady compressible turbulent flow simulation. However,

this is rarely done for low Mach number flows because of the computational chal-

lenges posed by the large disparity in the scales and fluctuation levels of sound waves

and of the turbulence producing them.

8.4 Descriptions of turbulence for aeroacoustic analysis

8.4.1 Time correlations and frequency spectra of a single variable

Consider the situation shown in Fig. 8.2 where noise is being radiated by the contin-

uous passage of turbulence over the leading edge of an airfoil. Both, the time varia-

tions of the flow properties used to describe the turbulent source (whether they be

velocity or pressure) and the sound waves that are heard by a far field observer are

stochastic and time stationary. It is important that we have a quantitative measure

of the typical frequency content of these signals because we need to assess the impact

of the sound on a human listener, and because we are interested in separating out the

contributions of different turbulence scales to the acoustic source. In Chapter 3 we

introduced the Fourier transform as a way to extract the frequency components of

a specific waveform. Applied to a generic flow or acoustic quantity a(t) that varies
with time and has zero mean, this definition is

a
�

ωð Þ¼ 1

2π

ðT
�T

a tð Þeiωtdt (8.4.1)
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The Fourier transform a
�

ωð Þ is not by itself a very useful measure since, just like a(t), it
will vary stochastically. The appropriate average measure of the frequency content is

given by the autospectral density of a (often referred to as the autospectrum, the power

spectrum, or just the spectrum) defined as

Saa ωð Þ� 1

2π

ðT
�T

Raa τð Þeiωτdτ (8.4.2)

where Raa(τ) is the time delay autocorrelation function, defined as

Raa τð Þ¼ E a tð Þa t + τð Þ½ � (8.4.3)

As can be seen from this expression Raa(τ) is the average of the signal multiplied by

itself at a later time. For a time stationary signal the expected value of a(t)a(t+ τ) will
not depend on t. The inverse Fourier transform relates the spectrum back to Raa(τ).

Raa τð Þ¼
ð∞
�∞

Saa ωð Þe�iωτdω (8.4.4)

The definition (8.4.3) tells us that the autocorrelation function is even, i.e., it is

symmetric about τ¼ 0, because

E a tð Þa t + τð Þ½ � ¼E a t� τð Þa tð Þ½ �¼ E a tð Þa t� τð Þ½ �

This means that the spectrum is a real and even function of frequency because

Eq. (8.4.2) can be expanded as

Saa ωð Þ¼ 1

2π

ðT
�T

Raa τð Þcos ωτð Þdτ + i

2π

ðT
�T

Raa τð Þsin ωτð Þdτ

Unsteady lift F2

Far-field acoustic
pressure p′

A

B

Fig. 8.2 An airfoil in turbulence producing leading edge noise.
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The imaginary term is zero because Raa(τ) is even and sin(ωτ) is an odd function. It

also follows that Saa(ω) is an even function of frequency because cos(ωτ) is an even

function of frequency.

To illustrate why the concepts of the spectrum and correlation are useful physi-

cally, consider the example shown in Fig. 8.3. Fig. 8.3A shows part of a velocity signal

u1(t) measured in boundary layer turbulence near a wall where the mean flow velocity

is close to 20 m/s. The signal appears quite random but, as we will see, does have a

definite statistical character that reveals important information about the boundary

layer turbulence. In Fig. 8.3B the time delay correlation of this signal is shown.

The expected value required in Eq. (8.4.3) was obtained by calculating the product

u1 tð Þu1 t + τð Þ for every time instant at which the signal was measured (about

400,000 times in this particular case) and then taking themean value of those numbers.

The correlation function measures how similar the signal is to its time shifted copy.

At zero time delay the signals are a perfect match and the correlation has its maximum

value equal, by definition, to the velocity variance u21 (i.e., its mean square). For non-

zero time delay, the correlation decays as the time shifted signal copy becomes less

and less similar to the original, reaching 8% of u21 at about 0.02 s. The overall width of

the correlation peak is a measure of the time scale of the largest turbulence and,

indeed, the larger scales in the time signal of Fig. 8.3A do appear to be about

0.02 s. To precisely quantify this we introduce the concept of the integral timescale

T , defined as

T � 1

E a2 tð Þ½ �
ð∞
0

Raa τð Þdτ¼
ð∞
0

ρaa τð Þdτ (8.4.5)

We also use this opportunity to introduce the correlation coefficient function ρaa,
which is just Raa normalized on the variance, so that ρaa 0ð Þ¼ 1. In this example

ρu1u1 τð Þ integrates to a time scale of 0.0064 s. The integral time scale is usually about

one third of the overall half-width of the correlation peak. If we assume that all the

turbulence is traveling with a mean speed of 20 m/s then this timescale can be used

to estimate the streamwise lengthscale of the flow (0.0064�20¼0.128 m). In gen-

eral, this type of time-to-space conversion is referred to as Taylor’s frozen flow
hypothesis. While it is commonly used, and probably reasonably accurate in this

example, it is important to remember that it unrealistically treats the turbulence as

though it didn’t have velocities itself. It can therefore be misleading, particularly in

flows where the turbulent velocity fluctuations are significant compared to the mean

velocity.

It is clear that the correlation function also has information about smaller turbu-

lence scales. For example, its initial rate of decay will reflect how much of the mean

square velocity fluctuation is due to the smallest turbulence. Taking the Fourier trans-

form to obtain the spectrum reveals this information in a more explicit way. Fig. 8.3C

shows the spectrum of the velocity signal Su1u1 ωð Þ calculated according to Eq. (8.4.2).
Both axes of the spectrum have been plotted on logarithmic scales to more clearly

reveal the behavior in different frequency ranges. We see that the overall form of

the spectrum is broken into three parts. At low frequencies, where it represents the
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largest motions of the boundary layer, the spectrum curves downward from a plateau.

The level of this plateau is characterized by the zero frequency value of the spectrum

(indicated by the horizontal line in Fig. 8.3C) which, in this case gives

Su1u1 0ð Þ¼ 0:181m2=s2= rad=sð Þ. Looking at Eq. (8.4.2) for zero frequency, we see that
this value corresponds to the integral time scale, scaled as T u21=π or, in general

Saa 0ð Þ¼T a2=π. In the mid-frequency range we see that our example velocity spec-

trum becomes almost straight with a slope on the log-log scale of close to �5/3.

As will be discussed in Chapter 9, this is indicative of an inertial subrange behavior

in the mid-range scales of the boundary layer turbulence, as hypothesized by Kolmo-

gorov. At the highest frequencies, which are assumed to be generated by the smallest

eddies, the spectrum curves downward away from the �5/3rds slope as a result of the

dissipation of these eddies by viscous action.

In general, the spectrum of a time history a(t) can be physically interpreted as

revealing the contributions to the mean square fluctuation a2 at each frequency. This

can be demonstrated very simply using the inverse transform relationship, Eq. (8.4.4)

which, for zero time delay τ becomes

Raa 0ð Þ¼ a2 ¼
ð∞
�∞

Saa ωð Þdω (8.4.6)

This is known as Parseval’s theorem which states that the “power” in the time and

frequency domains is the same, and that the spectrum divides up that power by fre-

quency. (Note that the term “power” is loosely used in spectral analysis to refer to

the mean square.) It is in this sense that Saa(ω) is a spectral density function. We also

see that the units of Saa(ω) will be the units of a2 per radian-per-second.
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Fig. 8.3 Velocity in a low-speed high Reynolds number turbulent boundary layer measured at a

point that is 20% of the boundary layer thickness from the wall. (A) Time variation of the

velocity fluctuation, (B) time delay autocorrelation function, and (C) autospectral density.
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One simple but critical detail here is that the mathematical definition of the spectral

density includes both positive and negative frequencies. In the present context of

one-dimensional spectra these mean the same thing. However, note from

Eq. (8.4.6) that the energy is spread over both the positive and negative domains.

We call the spectrum double sided and this is the norm for mathematical analysis.

However, in many situations including presenting predictions or measurements of

sound spectra, it is normal to consider them to exist only for positive frequencies

and to double the spectral values. We then refer to the spectrum as single sided for

which we introduce the symbol Gaa(ω).
The fact that Saa(ω) (and by extension Gaa(ω)) is a density function means that

we expect it to integrate to a defined physical quantity. This limits the ways in which

we may scale it and the frequency variable upon which it depends. For example, if we

wanted to express our spectrum as a function of frequency f in cycles per second or

Hertz, then we would write Saa(f )¼2πSaa(ω) since we are expecting that

a2 ¼
ð∞
�∞

Saa fð Þdf (8.4.7)

and df¼dω/2π. Another way of thinking about this is to envision Saa( f ) as resulting in
a Fourier transform defined in terms of frequency in Hertz as,

Saa fð Þ¼
ðT
�T

Raa τð Þe2πif τdτ

so comparing this with Eq. (8.4.2) we see that Saa( f )¼2πSaa(ω). A more complicated

example is the scaled velocity spectrum, which we might reasonably want to normal-

ize so that it integrates to u21=U
2
∞ where U∞ is the free stream velocity. The integrand

of Eq. (8.4.7) is then Su1u1 ωð Þ=U2
∞. However, at the same time it would be physically

meaningful to nondimensionalize the frequency as σ¼ωL=U∞ where L is a represen-

tative physical scale of the flow. To preserve the integral under the spectrum our spec-

tral normalization must become Su1u1 σð Þ¼ Su1u1 ωð ÞU∞=L so that

u21
U2

∞
¼
ð∞
�∞

Su1u1 σð Þ
U2

∞
dσ σ¼ωL=U∞

Some quite specific conventions exist for presenting broadband sound spectra. We

present acoustic pressure spectra in decibels as using the “narrow band” sound pres-

sure level (SPL), which for a spectrum is defined as

SPL¼ 10log10 Gpp σð Þ= p2ref =Δσref
� �h i

dB re pref =Δσ
1=2
ref (8.4.8)

where△σref refers to whatever frequency unit is being used for σ (e.g., Hz, radians per
second, orU∞/L) and pref is the reference pressure, conventionally taken as 20 μPa for
measurements in air. Note that the single sided spectrum Gpp is used to express the
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SPL. We refer to Eq. (8.4.8) as “narrow band” to distinguish it from one-third octave

band SPL. As discussed in Chapter 1, the third octave spectrum divides the spectrum

into frequency bands, with each band being 21/3 times the size of the preceding band.

In this case the SPL in the nth band is given by

SPLn ¼ 10log10

1

p2ref

ðf nð Þ
u

f
nð Þ

l

Gpp fð Þdf
 !

dB re pref (8.4.9)

where the lower and upper frequency limits of each band are defined in terms of the

mid-band frequency fn as

f
nð Þ

l ¼ fn=2
1=6

f nð Þ
u ¼ fn�21=6

(8.4.10)

The mid-band frequencies are calculated using Eq. (1.3.3). The third octave bands

appear evenly spaced when plotted on a logarithmic scale, and the spectral levels rep-

resented are no longer densities but pure mean square contributions, the frequency

dependence having been integrated out in Eq. (8.4.9).

To close this section, we return to the definition of the spectrum Saa(ω) given in

Eq. (8.4.2) and investigate the relationship between this average measure of the fre-

quency content, and the Fourier transform of the instantaneous signal ã(ω). Since we
are restricting ourselves to a time stationary signal we can average the time delay cor-

relation (Eq. 8.4.3) over time without changing its value, so

Raa τð Þ¼ 1

2T

ðT
�T

E a tð Þa t + τð Þ½ �dt (8.4.11)

Substituting this into Eq. (8.4.2) we obtain

Saa ωð Þ¼ 1

2π

ðT
�T

1

2T

ðT
�T

E a tð Þa t + τð Þ½ �dteiωτdτ

¼ 1

4πT
E

ðT
�T

ðT
�T

a tð Þa t + τð Þeiωτdτdt
� �

(8.4.12)

Now we make the substitution t0 ¼ t+ τ and note that dtdτ¼ dtdt0 to obtain

Saa ωð Þ¼ 1

4πT
E

ðT
�T

ðT + t

�T + t

a tð Þa t0ð Þeiω t0�tð Þdt0dt
� �

(8.4.13)

We next change integration limits from (�T, �T+ t) and (T, T+ t) to (�T, �T)
and (T, T) as illustrated in Fig. 8.4. The expected value of the integrand E[a(t)
a(t0)]¼Raa(t� t0), which is only a function of t0 �t, and is constant along diagonal lines
such as the one shown. The two integration regions are shown by the solid and dashed

boxes. We see that the change in limits is only valid if the expected value of the inte-

grand decays to zero in a time t0 �t≪T and that the time history itself is bounded by
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the limits �T< t0<T, as required by the definition of the Fourier transform. With this

change, and rearranging Eq. (8.4.13), we obtain

Saa ωð Þ¼ 1

4πT
E

ðT
�T

a tð Þe�iωtdt

ðT
�T

a t0ð Þeiωt0dt0
� �

¼ π

T
E a

�* ωð Þ a� ωð Þ	 
 (8.4.14)

where a
�* ωð Þ denotes the conjugate of a� ωð Þ. An important observation here is that the

definition of the Fourier transform that is used here does not give the spectrum for zero

frequency and is limited to angular frequencies for which ω≫π/T.
Eq. (8.4.14) shows that the spectrum is also the expected value of the magnitude

squared of the Fourier transform, supporting the physical interpretation given to it.

The equivalence demonstrated in Eq. (8.4.14) is particularly useful when it comes

to determining spectra from measured signals—as will be discussed further in

Chapter 11. The fact that Eq. (8.4.14) does not apply at ω¼ 0 means that

spectra obtained using this method can only be used to estimate the integral scale

by assuming that it is revealed by the asymptotic level of the spectrum as ω tends

to zero.

The relationship in Eq. (8.4.14) can be cast in a somewhat different form that can be

particularly useful in analysis. Specifically, consider the expected value of the right

hand side but with two different frequency arguments, that is,

E a
�* ϖð Þ a� ωð Þ	 
¼ 1

2πð Þ2
ðT
�T

ðT
�T

E a tð Þa t0ð Þ½ �e�iϖteiωt
0
dtdt0 (8.4.15)

We make the substitution of τ for t0 with τ¼ t0 �t, and as before ignore the change in

the limit by assuming large T giving,

E a
�* ϖð Þ a� ωð Þ	 
¼ 1

2πð Þ2
ðT
�T

ðT
�T

E a tð Þa t + τð Þ½ �eiωτei ω�ϖð Þtdτdt

¼ 1

2π

ðT
�T

ei ω�ϖð Þtdt
1

2π

ðT
�T

Raa τð Þeiωτdτ
(8.4.16)

The first integral term on the right hand side is equal to δ(ϖ�ω), whereas the second
is simply the frequency spectrum. Our final result is therefore,

E a
�* ϖð Þ a� ωð Þ	 
¼ δ ϖ�ωð ÞSaa ωð Þ (8.4.17)

This shows that for a stationary signal the fluctuations at each frequency are

uncorrelated, which can be valuable in the analysis of some turbulent flow

phenomena.
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8.4.2 Time correlations and frequency spectra of two variables

Consider again the situation illustrated in Fig. 8.2. In addition to characterizing

the typical behavior of the turbulent or acoustic variables, we are also interested

in characterizing the typical relationships, for example between the sound pressure

fluctuations at two points in acoustic the far field from the source. The way to do

this is to define, by analogy with Eq. (8.4.3), a time delay cross correlation function

Rab τð Þ�E a tð Þb t + τð Þ½ � (8.4.18)

where a and b have zero mean. This measures the similarity of the stochastic varia-

tions in a with those in b, as the time delay τ between b and a is varied. We are assum-

ing that both variables are time stationary so that the cross correlation will only be a

function of τ. For zero time delay Rab(0) is equal to the covariance ab. We define the

cross correlation coefficient as

ρab τð Þ� Rab τð Þffiffiffiffiffiffiffiffiffiffiffi
a2 b2

p (8.4.19)

Defined this way �1� ρab τð Þ� 1 and the coefficient only reaches 1 or �1 if a(t) and
b t + τð Þ are exact scaled copies of each other. Unlike the autocorrelation function,

Rab(τ) can be asymmetric and reach its maximum magnitude at a nonzero time delay.

In the example of Fig. 8.2 the acoustic signal at Awould precede the acoustic signal at

B and thus RAB τð Þ¼ E pA tð ÞpB t+ τð Þ½ �would have a positive maximum at positive time

delay τ. Inverting the sign of the acoustic signal (say by shifting the point A from

below to above the airfoil if the sound is from a lift dipole only) would reverse the

sign of RAB which would then have a negative peak.

–

–

–

–

–

Fig. 8.4 Integration regions in Eq. (8.4.13).

Turbulence and stochastic processes 177



Consistent with the autospectrum, we define the cross spectral density as the Fou-

rier transform of the correlation function

Sab ωð Þ� 1

2π

ðT
�T

Rab τð Þeiωτdτ (8.4.20)

Expanding this we obtain

Sab ωð Þ¼ 1

2π

ðT
�T

Rab τð Þcos ωτð Þdτ + i

2π

ðT
�T

Rab τð Þsin ωτð Þdτ

showing that Sab(ω) will, in general, be a complex function because of the probable

asymmetry of Rab(τ). It is straightforward to verify that Sab will also be conjugate

symmetric with frequency, so Sab ωð Þ¼ S*ab �ωð Þ. The real and imaginary parts of

Sab are referred to as the cospectrum Cab and the quad-spectrum Qab respectively.

As one would expect, the inverse Fourier transform relates the cross spectrum back

to the cross correlation

Rab τð Þ¼
ð∞
�∞

Sab ωð Þe�iωτdω (8.4.21)

For zero time delay we obtain an expression for the covariance in terms of the cross

spectral density

ab¼Rab 0ð Þ¼
ð∞
�∞

Sab ωð Þdω¼
ð∞
�∞

Cab ωð Þ + i 	Qab ωð Þdω¼
ð∞
�∞

Cab ωð Þdω
(8.4.22)

The conjugate symmetry of the cross spectrum ensures that quad-spectrum does not

contribute to the covariance. The cospectrum may therefore be thought of as the

covariance per unit frequency. Two more physically important expressions of the

cross spectrum are the coherence and phase spectra, defined respectively as

γ2ab ωð Þ¼ Sab ωð Þj j2
Saa ωð ÞSbb ωð Þ (8.4.23)

and

θab ωð Þ¼ arctan
Qab ωð Þ
Cab ωð Þ
� �

(8.4.24)

The coherence γab
2 is a squared and normalized measure of the expected value of the

product of the complex amplitude of the two quantities a and b at a given frequency. If,
in multiple realizations of our airfoil example, the lift (assumed say to be a compact

178 Fundamentals



dipole source) and sound variations (which may include background noise) were ran-

domly phased with respect to each other implying no linear connection, then the

coherence between them would be zero. If the phasing were not random, but tended

to prefer a particular value, then the coherence would be positive with a value that

increases the more closely correlated the signals are at that frequency. For nonzero

coherence, the phase spectrum θab(ω) gives the preferred value of the phase differ-

ence, and the phase is undefined for γ2ab ¼ 0:
The coherence is an even function of frequency and is normalized so that

0� γ2ab � 1, a value of 1 being achieved when b(t) is a constant multiple of a(t).
The phase is an odd function and has a straightforward relationship to the time delay

between variables. In the case of the airfoil example we argued that the positive time

delay between the sound fluctuations in the far field would lead to RAB(τ) reaching its
maximum magnitude at positive τ. This situation corresponds to a positive gradient of
the phase spectrum θAB(ω) with frequency.

A review of the above material will make it clear that the auto correlation and auto

spectrum functions are simply special cases of the cross correlation and cross

spectrum functions with b tð Þ¼ a tð Þ. This is also true for the relationship between

the cross spectral density and the stochastic Fourier transform. Using a derivation

entirely analogous to that laid out in Eqs. (8.4.11)–(8.4.14), we can show that, for

angular frequencies ω≫π/T,

Sab ωð Þ¼ π

T
E a

�* ωð Þ b� ωð Þ
h i

(8.4.25)

where a
�

ωð Þ and b
�

ωð Þ are the Fourier transforms of a(t) and b(t). Likewise we can

show, analogously to the derivation of Eq. (8.4.17) that

E a
�* ϖð Þ b� ωð Þ
h i

¼ δ ϖ�ωð ÞSab ωð Þ (8.4.26)

Note that if one of the variables involved in the cross spectrum or correlation is a vec-

tor then these statistical measures are also vectors, e.g., the pressure velocity spectrum

Spui . If both are vectors then the resulting measures are tensors, e.g., the velocity cor-

relation tensor Ruiuj , which is commonly abbreviated as Rij.

8.4.3 Spatial correlation and the wavenumber spectrum

The correlation and spectral analysis techniques we have introduced to analyze the

temporal behavior of a turbulent flow can equally well be applied to revealing its spa-

tial structure. Consider turbulent velocity fluctuations u2 as a function of position

along a line x1 through a turbulent flow (Fig. 8.5). The correlation between simulta-

neous fluctuations at two points on the line can in general be written as

R22 x1, x
0
1

� �¼E u2 x1ð Þu2 x01
� �	 


(8.4.27)
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If the flow is assumed homogeneous along the line (i.e., its average properties are

independent of x1), then the correlation will only be a function of the separation

between the two points Δx1 ¼ x01� x1

R22 Δx1ð Þ¼E u2 x1ð Þu2 x01
� �	 


(8.4.28)

Homogeneity also allows us to define an integral lengthscale for the turbulence

L21� 1

u22

ð∞
0

R22 Δx1ð ÞdΔx1 (8.4.29)

where Lij is defined as the integral lengthscale of velocity component ui in the

direction xj. We can additionally Fourier transform the correlation function in the

homogeneous direction to give the wavenumber spectrum

ϕ22 k1ð Þ� 1

2π

ðR∞

�R∞

R22 Δx1ð Þe�ik1Δx1dΔx1 (8.4.30)

The inverse relationship giving the correlation function in terms of the wavenumber

spectrum is

R22 Δx1ð Þ¼
ð∞
�∞

ϕ22 k1ð Þeik1Δx1dk1

Note that, to be consistent with the Fourier transform convention introduced in

Chapter 1, the signs of the exponents in the spatial Fourier transform and its inverse

are reversed compared to those used with the time transform, Eqs. (8.4.1), (8.4.2). The

wavenumber spectrum and spatial correlation function reveal the averaged structure

of the turbulence in ways that are entirely analogous to the frequency spectrum and

time correlation functions illustrated in Fig. 8.3.

The homogeneity of the turbulent flow is important in the sameway that stationarity

is important in time histories. Without it, the integral scale and spectrum, as well as

x1

u2 u2

x2x1�

Fig. 8.5 Velocity fluctuations in a two-dimensional turbulent boundary layer. Coordinate x3 is
out of the paper.
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properties derived from the spectrum, lose much of their physical meaning and math-

ematical utility. The assumptionof homogeneitywill be good if the average properties a

flow vary on a scale much larger than the scale of its turbulence. For example, Fig. 8.5

depicts part of a two-dimensional turbulent boundary layer formed under a free stream

in the x1 direction. The largest turbulence scales will be of the order of the boundary
layer thickness δ, a distance much smaller than the scale on which the boundary

layer is growing. Homogeneity in x1 is therefore a good assumption in this case. Since

the boundary layer is two dimensional it would be a good approximation in the

spanwise x3 direction, but not in direction x2 perpendicular to the wall.
There is much scope in the correlation and spectrum descriptors that we have not

yet acknowledged. It is clear from the boundary layer example that the spatial corre-

lation and wavenumber spectrum will be functions of x2, could also be taken in the x3
direction, and could be taken of any velocity component combination. So, we would

have Lin(x2), Rij(x2,Δxn), and ϕij(x2,kn), where n¼ 1,3. Perhaps more interestingly we

can expand correlations and spectra to more than one dimension. Most generally, we

could consider the five-dimensional correlation between any two points in the bound-

ary layer which has the form

Rij Δx1, x2,x02,Δx3,τ
� �¼E ui x1, x2, x3, tð Þuj x01, x02, x03, t0

� �	 

(8.4.31)

and we can envision taking the Fourier transform in △x1 and △x3 to yield the

two-wavenumber spectrum

ϕij x2,x
0
2, k1,k3,τ

� �¼ 1

2πð Þ2
ðR∞

�R∞

ðR∞

�R∞

Rij Δx1, x2,x02,Δx3,τ
� �

e�ik1Δx1�ik3Δx3dΔx1dΔx3
(8.4.32)

and then the Fourier transform in time to obtain the wavenumber frequency spectrum

Φij x2,x
’

2, k1,k3,ω
� �¼ 1

2πð Þ3
ðT
�T

ðR∞

�R∞

ðR∞

�R∞

Rij Δx1, x2,x’2,Δx3,τ
� �

eiωτ�ik1Δx1�ik3Δx3dΔx1dΔx3dτ
(8.4.33)

The spectral quantities can of course always be related back to correlations through

inverse Fourier transforms. So, for example, the time cross spectrum of the velocities

at two points in the flow, (x1,x2,x3) and (x1
0,x20,x30) can be obtained from the

wavenumber frequency spectrum in Eq. (8.4.33) as

Sij Δx1,x2,x’2,Δx3,ω
� �¼ ð�∞

�∞

ð∞
�∞

Φij x2,x
’

2, k1,k3,ω
� �

eik1Δx1 + ik3Δx3dk1dk3

(8.4.34)

Descriptors like those ofEqs. (8.4.31)–(8.4.33) encompass all the possible secondorder

statistics defined by a flow and are sufficiently rich to represent the complete acoustic
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source term inmany linear aeroacoustic problems. Obviously, in any specific problem,

the number of homogeneous directions in the flow will limit the dimensionality of the

wavenumber spectrum that can be defined, just as time stationarity of the flow will

determine if a physically useful frequency spectrum exists. Note that the two-point cor-

relation, as written in the right hand side of Eq. (8.4.31), can always be defined.

Acoustic sources are often cast in terms of the fluctuating velocity field of the tur-

bulence, but may also appear in terms of the fluctuating vorticity or the pressure on a

surface, for example. In our boundary layer example, the fluctuating wall-pressure

field will be characterized by the wavenumber frequency spectrum

Φpp k1, k3,ωð Þ¼ 1

2πð Þ3
ðT
�T

ðR∞

�R∞

ðR∞

�R∞

Rpp Δx1,Δx3,τð Þeiωτ�ik1Δx1�ik3Δx3dΔx1dΔx3dτ

(8.4.35)

where

Rpp Δx1,Δx3,τð Þ¼E p x1, x3, tð Þp x01, x
0
3, t

0� �	 

(8.4.36)

Note that relationships exactly analogous to Eqs. (8.4.14), (8.4.17) exist for the

wavenumber domain. Thus, for example, we can write for the wavenumber frequency

spectrum of the wall-pressure,

π

T
E p

��* k1, k3, ωð Þ p�
�

k’1, k
’

3,ω
� �� �

¼Φpp k1, k3,ωð Þδ k1� k’1
� �

δ k3� k’3
� �

(8.4.37)

where p
��
denotes the wavenumber frequency transform of p0. Also, we can relate

the one-dimensional wavenumber spectrum to the one-dimensional wavenumber

transform as,

ϕpp k1ð Þ¼ 1

4πR∞
E

ðR∞

�R∞

p Δx1ð Þeik1Δx1dt
ðR∞

�R∞

p Δx01
� �

e�ik1Δx01dt0
� �

¼ π

R∞
E p

��* k1ð Þ p�
�

k1ð Þ
� �

(8.4.38)

for example. In addition, by repeated application of Eq. (8.4.38) or (8.4.14) multi-

dimensional relationships are obtained, such as,

ϕij k1k3ð Þ¼ π2

R2
∞
E u

��
i* k1, k3ð Þu�

�
j k1, k3ð Þ

� �
(8.4.39)

for the planar wavenumber spectrum of the velocity fluctuations.

The combination of space and time in the correlation function and in the wave-

number frequency spectrum in general captures information about the convection or
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phase velocity of fluid motions as well as their scale and intensity. We can always cal-

culate avelocitycomponent fromΔxi/τ or ω/ki.Whether suchacomponent isphysically

meaningful depends on the form of the correlation or spectrum at that point. Where tur-

bulence iscarriedbyameanflow,muchof theenergyof the flowwill appearconcentrated

around a convective ridge.
Fig. 8.6 shows this type of feature in the pressure correlation coefficient function

Rpp Δx1,0,τð Þ=p2 measured underneath a high Reynolds number turbulent boundary

layer. The convective ridge defines the elongated form of the correlation function.

The convection velocity Uc is calculated as Δx1/τ at the center of the ridge. For small

separations Δx1, the correlation levels on the ridge are high because the turbulence

does not evolve much over short distances. The slope of the convective ridge and

Uc are relatively low here in the measurements (about 0.6U∞) because the correlation

includes a substantial contribution from small turbulence scales in the near-wall

region where the flow speeds are slow. At larger separations the correlation values

reduce as the turbulence has more distance to evolve. Smaller eddies evolve more

quickly and so the correlation increasingly represents the larger eddies of the flow that

are more likely to occupy faster flowing regions further from the wall. The slope of the

convective ridge and Uc therefore increase for larger separations. The convection

velocity of wall-pressure fluctuations in a smooth wall boundary layer is usually

observed to be between 60% and 80% of the free stream velocity. The boundary layer

wall-pressure spectrum and correlation function will be discussed in more detail in the

next chapter.
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Fig. 8.6 Streamwise space-time correlation coefficient function for the wall-pressure

fluctuations Rpp Δx1,0,τð Þ=p2 under the boundary layer of Forest [6]. U∞¼33.6 m/s, boundary

layer thickness δ¼231 mm. Inset shows enlargement of region at small τ and△x1. Contours are
in intervals of 0.05 starting at 0.05.
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9Turbulent flows

In Chapter 8 it was shown that predictions of sound radiated as a result of the unsteady

motions of a turbulent flow require estimates of the two-point space-time correlations

of those flows, or their spectral equivalents. In practice these estimates are usually

obtained using models developed for homogeneous and isotropic turbulence, and by

scaling or otherwise modifying those models to match the inhomogeneous and aniso-

tropic reality of the application in question. The fundamental knowledge needed to do

this, including the properties of homogeneous isotropic turbulence and of the most

important turbulent shear flows for aeroacoustics at low Mach number, is the topic

of this chapter.

9.1 Homogeneous isotropic turbulence

9.1.1 Mathematical description

Homogeneous isotropic turbulence is turbulence that has average properties that are

both independent of position and direction. Either one considers there to be no mean

flow, or the mean flow is uniform and the turbulence is viewed from a frame of ref-

erence moving with it. Homogeneous turbulence is an ideal that can be approximated

by the uniform turbulence downstream of a grid, or by Direct Navier Stokes (DNS)

simulations of turbulence in periodic boxes. It is the simplest kind of turbulence

and therefore the most studied and understood.

Homogeneous turbulence is decaying turbulence. Its mean flow has no shear and

therefore nomechanism for the generation of new eddies from instabilities in the mean

flow. At its largest scales it is therefore missing the configuration-specific biases that

are present in almost all other turbulent flows. However, it serves as a useful repre-

sentation of the universal components of those flows. Given Kolmogorov’s hypoth-

eses we expect this representation to become increasingly accurate at smaller

scales and higher Reynolds numbers.

The value of homogeneous turbulence to aeroacoustics is not just this universal

character, but also the fact that it is simple enough for analytical models of the second

order statistics of the turbulence to exist. Engineers often use these models to provide

acoustic source terms for flows that can be approximated by homogeneous turbulence,

that average in time to something that appears homogeneous, or that are clearly neither

homogeneous nor isotropic but for which no better information exists.

In analyzing homogeneous turbulence, we will consider only spatial correlations

and related quantities. This is because in aeroacoustic applications it is generally

assumed that the decay rate of turbulence is negligible over the time taken for the tur-

bulence to convect over noise-producing hardware and to generate sound. Thus

Taylor’s hypothesis can be used to infer time dependencies from the spatial descrip-

tion of the turbulence.
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The forms of the spatial correlation function and wavenumber spectrum of the

velocity fluctuations for homogeneous turbulence can be readily inferred from

Eqs. (8.4.31), (8.4.32) to be

Rij Δx1, Δx2,Δx3ð Þ¼E ui x1, x2, x3ð Þuj x01, x02, x03
� �� �

(9.1.1)

and

φij k1,k2,k3ð Þ¼ 1

2πð Þ3
ðR∞

�R∞

ðR∞

�R∞

ðR∞

�R∞

Rij Δx1, Δx2,Δx3ð Þ

e�ik1Δx1�ik2Δx2�ik3Δx3dΔx1dΔx2dΔx3

(9.1.2)

The inverse relationship is simply given by the equivalent inverse Fourier transform

Rij Δx1, Δx2,Δx3ð Þ¼
ð∞

�∞

ð∞
�∞

ð∞
�∞

φij k1,k2,k3ð Þeik1Δx1 + ik2Δx2 + ik3Δx3dk1dk2dk3

(9.1.3)

While bothRij andφij appear to be three-dimensional tensor functions they can, in fact,

both be inferred from a single one-dimensional scalar function. This can be under-

stood if we consider the velocity fluctuations at two points A and B in a homogeneous

turbulent flow, as shown in Fig. 9.1. The points are separated by a distance r and we

define fluctuating velocity components us and un respectively parallel and perpendic-
ular to the direction of separation. Isotropy means that the average flow properties

must be invariant under rotation of the coordinate system used to describe them.

The mean-square velocity in any direction must therefore be the same, and so

u2n ¼ u2s � u2 . The turbulent shear stress term unus must also be zero as any nonzero

value would reverse the sign if we rotated our coordinates 180 degrees about the axis

AB in Fig. 9.1. Equivalently, we can argue that at any instant when us is positive there

A
B

Fig. 9.1 Velocity correlations in homogeneous turbulence.
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is equal probability that un is either positive or negative and so E usun½ � ¼ 0. Following

the same arguments, the correlation between different components at different points

un Að Þus Bð Þ must also be zero. With these restrictions the only distinct correlations we

can make are us Að Þus Bð Þ and un Að Þun Bð Þ, the value of the latter being independent of
rotation about the axis AB and thus the same for the third velocity component ut
directed out of the page.

Given that the velocity in any other direction can be composed from these com-

ponents we conclude that no other independent correlations are possible. We there-

fore define the longitudinal and lateral correlation coefficient functions as,

respectively

f rð Þ¼ us Að Þus Bð Þ=u2 and g rð Þ¼ un Að Þun Bð Þ=u2

where r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx21 +Δx22 +Δx23

p
, and the associated integral scales are

Lf ¼
ð∞
0

f rð Þdr and Lg ¼
ð∞
0

g rð Þdr (9.1.4)

To obtain a general expression for the two-point correlation function

Rij Δx1, Δx2,Δx3ð Þ ¼ ui Að Þuj Bð Þ we recognize that the Cartesian velocity components

ui at A and B are simply a rotation of us, un, and ut, as shown in Fig. 9.2, and thus

ui ¼ us es � eið Þ + un en � eið Þ + ut et � eið Þ

where ei denotes the unit vector in the direction of ui, and es, en, and et are the unit

vectors defining the directions of us, un, and ut. We will therefore have that

ui Að Þuj Bð Þ ¼ us Að Þus Bð Þ es � eið Þ es � ej
� �

+un Að Þun Bð Þ en � eið Þ en � ej
� �

+ ut Að Þut Bð Þ et � eið Þ et � ej
� �

Recognizing that un Að Þun Bð Þ ¼ ut Að Þut Bð Þ ¼ u2 g rð Þ and us Að Þus Bð Þ ¼ u2 f rð Þ, and
that the direction cosine products can be written as

es � eið Þ es � ej
� �¼ΔxiΔxj

r2

and

en � eið Þ en � ej
� �

+ et � eið Þ et � ej
� �¼ δij�ΔxiΔxj

r2

we obtain
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Rij Δx1, Δx2,Δx3ð Þ¼ u2 g rð Þδij + f rð Þ�g rð Þ
r2

ΔxiΔxj
� �

(9.1.5)

This result is consistent with the requirement [1] that any second order isotropic

tensor function must have the form αΔxiΔxj + βδij where α and β are only functions

of r. The additional requirement that Rij must be consistent with the incom-

pressible continuity equation allows us to obtain a relationship between f and g.
Continuity requires that @ui=@xi ¼ 0 and thus, from Eq. (9.1.1),

@Rij=@Δxi ¼ @R1j=@Δx1 + @R2j=@Δx2 + @R3j=@Δx3 ¼ 0. Applying this to Eq. (9.1.5)

(noting that @ΔxiΔxj=@Δxi ¼ 4Δxj) gives,

g¼ f +
r

2

@f

@r
(9.1.6)

See also Batchelor [1].

Substituting this expression into Eq. (9.1.4) for Lg and integrating the second term
by parts gives that Lg ¼ Lf =2. Also, from Eq. (9.1.5) it follows that the sum of the nor-

mal correlation function components

1

2
Rii rð Þ¼ 1

2
R11 rð Þ +R22 rð Þ +R33 rð Þ½ � ¼ u2 g rð Þ + f rð Þ=2½ �

where r¼ (Δx1,Δx2,Δx3) and r¼jrj. This function contains no reference to direction

and, for r¼ 0, is equal to the turbulence kinetic energy κε.
To obtain a useful form of the wavenumber spectrum φij in terms of the

one-dimensional description above, we first take the Fourier transform of
1

2
Rii rð Þ using

Eq. (9.1.2).

A

B

Fig. 9.2 Coordinate systems for generalization of the two-point velocity correlation.
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1

2
φii k1,k2,k3ð Þ¼ 1

2πð Þ3
ðR∞

�R∞

ðR∞

�R∞

ðR∞

�R∞

1

2
Rii rð Þe�ik:rdΔx1dΔx2dΔx3

¼ u2

2πð Þ3
ðR∞

�R∞

ðR∞

�R∞

ðR∞

�R∞

g rð Þ + f rð Þ=2ð Þe�ikr cos θdΔx1dΔx2dΔx3

where k¼ k1, k2, k3ð Þ and θ is the angle between r and k. The integral over volume

dΔx1dΔx2dΔx3 can instead be performed over the spherical surface defined by

r¼ const and then with respect to r (Fig. 9.3), as

1

2
φii k1,k2,k3ð Þ¼ u2

2πð Þ3
ðR∞

0

ð2π
0

ðπ
0

g rð Þ + f rð Þ=2ð Þe�ikr cos θr2 sin θdθdφdr

¼ u2

2πð Þ2
ð∞
0

g rð Þ + f rð Þ=2ð Þ
ðπ
0

sin θe�ikr cos θdθ

0
@

1
A r2dr

¼ u2

2πð Þ2k

ð∞
0

2g rð Þ + f rð Þð Þsin krð Þ rdr

We see that
1

2
φii k1,k2,k3ð Þ depends only on wavenumber magnitude k. The total

energy at a given value of k is therefore given by integrating
1

2
φii k1,k2,k3ð Þ over

all possible wavenumber directions, which is simply equivalent to multiplying by

the spherical surface area 4πk2. This result is called the energy spectrum function
and is given the symbol E(k). Thus,

E kð Þ�2πk2φii k1,k2,k3ð Þ¼ u2

π

ð∞
0

2g rð Þ + f rð Þ½ �kr sin krð Þdr

Ring area
2pr2 sin q dq 

Δx3

Δx2

Δx1

q

k

r

Fig. 9.3 Integration over the spherical surface r¼const.
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The energy spectrum function represents the turbulence kinetic energy per

wavenumber. It also can be used to express the full wavenumber spectrum φij. Like

Rij this is constrained to satisfy continuity and, as an isotropic tensor function, to have

the form

φij k1,k2,k3ð Þ¼ α kð Þkikj + β kð Þδij (9.1.7)

where α(k) and β(k) are functions to be determined. Continuity implies that

@Rij=@Δxi ¼ 0 and therefore, from Eq. (9.1.3), that φijki ¼ 0. With Eq. (9.1.7) for

φij this gives

β kð Þ¼�k2α kð Þ

Furthermore, Eq. (9.1.7) implies

φii k1,k2,k3ð Þ¼ E kð Þ
2πk2

¼ k2α kð Þ + 3β kð Þ¼ 2β kð Þ¼�2k2α kð Þ

Substituting α(k) and β(k) back into Eq. (9.1.7) then gives the full wavenumber spec-

trum as

φij k1,k2,k3ð Þ¼ E kð Þ
4πk2

δij� kikj
k2

	 

(9.1.8)

In principle this result can also be obtained by taking the three-dimensional

wavenumber transform of Eq. (9.1.5).

The energy spectrum function is conceptually useful because it is a

one-dimensional function that can be used to divide the turbulence into its different

scales and, as explained in Section 8.1, different physical mechanisms are expected to

dominate in different scale ranges. It is therefore the natural function in which to

express models of homogeneous turbulence. Below we detail and discuss two such

models that are commonly used in aeroacoustics.

9.1.2 The von Kármán spectrum

In 1948, Theodore von Kármán [2] working at Caltech introduced a semiempirical

model for the energy spectrum function of homogeneous turbulence based on two the-

oretical arguments. The first concerned Kolmogorov’s hypothesis of a universal iner-

tial subrange in turbulence where the statistical behavior of the flow is completely

determined by the rate of energy flow through the cascade ε, as discussed in

Section 8.1. This implies that E kð Þ� k�5=3 in this range as a consequence of the fact

that E kð Þk5=3ε�2=3 is the only nondimensional group that can be formed from these

variables. The second argument concerned the rate of decay of the turbulence at
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the largest scales and indicated that E kð Þ� k4 at small wavenumbers. With these

behaviors set he proposed the interpolation function

E kð Þ¼ const
k=keð Þ4

1 + k=keð Þ2
h i17=6 (9.1.9)

where ke is defined as the wavenumber scale of the largest eddies. The value of the

constant can be fixed by requiring that E(k) integrate to the turbulence kinetic energy,
giving

E kð Þ¼ 55

9
ffiffiffi
π

p Γ 5=6ð Þ
Γ 1=3ð Þ

u2

ke

k=keð Þ4

1 + k=keð Þ2
h i17=6 (9.1.10)

where Γ() is the Gamma function, and ke can be related to the longitudinal integral

scale as

ke ¼
ffiffiffi
π

p
Lf

Γ 5=6ð Þ
Γ 1=3ð Þ (9.1.11)

Eq. (9.1.10) can be analytically integrated into many other spectral and correla-

tion forms, both of fundamental interest and of use in aeroacoustics problems.

First we consider the planar wavenumber spectrum, obtained by taking the

inverse Fourier transform of φij(k1,k2,k3) with respect to k2 and evaluating it

for Δx2 ¼ 0

ϕij k1, k3ð Þ¼
ð∞

�∞

φij k1,k2,k3ð Þdk2 (9.1.12)

This, for example, is the wavenumber spectrum of relevance to the type of prob-

lem depicted in Fig. 8.2 where an aerodynamic surface is cutting a plane through a

turbulent flow and we are interested in quantitatively evaluating the scales of the

turbulence in that plane. Substituting Eqs. (9.1.10), (9.1.8) into Eq. (9.1.12), we

obtain

ϕ11 k1, k3ð Þ¼ 1

18π

u2

k2e

3 + 3 k1=keð Þ2 + 11 k3=keð Þ2

1 + k1=keð Þ2 + k3=keð Þ2
h i7=3 (9.1.13)

ϕ22 k1, k3ð Þ¼ 4

9π

u2

k2e

k1=keð Þ2 + k3=keð Þ2

1 + k1=keð Þ2 + k3=keð Þ2
h i7=3 (9.1.14)
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ϕ33 k1, k3ð Þ¼ 1

18π

u2

k2e

3 + 11 k1=keð Þ2 + 3 k3=keð Þ2

1 + k1=keð Þ2 + k3=keð Þ2
h i7=3 (9.1.15)

We can integrate one more time, this time with respect to k3, to give the

one-dimensional wavenumber spectra along a single line through the turbulence.

For ϕ11 this gives

ϕ11 k1ð Þ¼
ð∞

�∞

ϕ11 k1, k3ð Þdk3 ¼ 1ffiffiffi
π

p Γ 5=6ð Þ
Γ 1=3ð Þ

u2

ke

1

1 + k1=keð Þ2
h i5=6 (9.1.16)

Applying the same integral to ϕ22 and ϕ33 we obtain

ϕ22 k1ð Þ¼ϕ33 k1ð Þ¼ 2

27
ffiffiffi
π

p Γ 5=6ð Þ
Γ 7=3ð Þ

u2

ke

3 + 8 k1=keð Þ2

1 + k1=keð Þ2
h i11=6 (9.1.17)

Note that these are double-sided spectra. The inverse Fourier transforms ofϕ11(k1) and
ϕ22(k1) with respect to k1 give the longitudinal and lateral correlation functions f and g

multiplied by u2 as functions of Δx1. Replacing Δx1 with r in those expressions gives
their more general form:

f rð Þ¼ 22=3

Γ 1=3ð Þ kerð Þ1=3K1=3 kerð Þ (9.1.18)

and

g rð Þ¼ 22=3

Γ 1=3ð Þ kerð Þ1=3 K1=3 kerð Þ� ker

2
K�2=3 kerð Þ

	 

(9.1.19)

where K is the modified Bessel function of the second kind.

One-dimensional wavenumber spectra are of particular interest because they are

easily related to the frequency spectrum that would be measured if the turbulence

was convecting in the x 1 direction past a fixed point. In Fig. 8.3C we plotted the

turbulence frequency spectrum S11(ω) produced by boundary layer turbulence mov-

ing at U1 ¼ 20m=s over a probe. Assuming Taylor’s hypothesis we can estimate this

curve using a homogeneous turbulence spectrum model as S11 ωð Þ¼ϕ11 ω=U1ð Þ=U1.

Note that the division by U1 is necessary to ensure that S11(ω) integrates to the mean

square velocity fluctuation. Fig. 9.4A shows that this prediction, made using

Eq. (9.1.16) and scaled with the actual mean-squa re velocity and the integral scale

obtained from the measured correlation functions, is remarkably accurate. The von

Kármán formula only departs from the measurement at the highest frequencies

where dissipation begins to affect the spectral form. Figs. 9.4B and C show similar
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measurements and predictions for the normal to wall and spanwise velocity spectra

S22(ω) and S33(ω) at the same position in the boundary layer. The scaling of the pre-

dictions is based on the mean-square velocity and integral scale associated with each

component. We see that, except in the dissipation range, the von Kármán model is

quite realistic.

The agreement in Fig. 9.4 does not imply that the boundary layer turbulence is

homogeneous and isotropic, merely that the von Kármán formula may realistically

describe the form of the spectrum. Just how anisotropic the boundary layer actually

is can be seen in the integral scale and velocity variance values listed in the figure. We

see that u22 is only about 40% of u21 (instead of being equal), and that the lateral scale Lg
of the u2 and u3 components is only about 10% of longitudinal scale of the u1 com-

ponent Lf (as opposed to half ). However, the agreement seen in the spectra of Fig. 9.4

is still significant. It tells us that we can probably make a fair estimate of the acoustic

source terms in inhomogeneous anisotropic turbulent flows by assuming a von

Kármán spectrum scaled on the local integral scale and turbulence intensity of the

velocity component of interest. Indeed, it is on this basis that many broadband noise

predictions are made.

Pope [3] has extended the von Kármán interpolation formula to include a dissipa-

tion range model at high frequencies and to allow E(k) to vary as k2 at low frequencies

in some situations. In its high Reynolds number form, Pope’s high frequency
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Fig. 9.4 (A) Streamwise (S11), (B) normal to wall (S22), and (C) spanwise (S33) velocity spectral
density for the same turbulent boundary layer flow represented in Fig. 8.3 (solid lines) compared

with curves estimated using the von Kármán formula with parameters adapted for each

component (dotted lines).
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dissipation range model involves multiplying the energy spectrum (Eq. 9.1.10) by the

function

fη kηð Þ¼ exp �β kηð Þ4 + c4η
h i1

4�βcη

	 

(9.1.20)

where η is the Kolmogorov lengthscale, β¼ 5:2, and cη ffi 0:40. Strictly speaking, since

the effect of this multiplication is to lower spectral levels at the highest frequencies a

slight rescaling of the numerical constant multiplying Eq. (9.1.10) then becomes nec-

essary to ensure that the energy spectrum still integrates to the turbulence kinetic energy.

9.1.3 The Liepmann spectrum

Shortly after von Kármán introduced his interpolation function, his Caltech colleagues

Hans Liepmann, John Laufer, and Kate Liepmann [4] proposed an alternative expres-

sion for the turbulence spectrum

E kð Þ¼ 8

π
u2Lf

kLf
� �4

1 + kLf
� �2h i3 (9.1.21)

At higher wavenumbers this model implies that E(k) varies as k�2 rather than the more

fundamental k�5=3. The difference can be small, however, and gives a function con-

taining only integer powers of wavenumber that can be significantly easier to manip-

ulate mathematically as part of aeroacoustic analyses. Integrating the Liepmann

spectrum we obtain, for the planar wavenumber spectra,

ϕ11 k1, k3ð Þ¼ u2L2f
4π

1 + k1Lf
� �2

+ 4 k3Lf
� �2

1 + k1Lf
� �2

+ k3Lf
� �2h i5=2 (9.1.22)

ϕ22 k1, k3ð Þ¼ 3u2L2f
4π

k1Lf
� �2

+ k3Lf
� �2

1 + k1Lf
� �2

+ k3Lf
� �2h i5=2 (9.1.23)

ϕ33 k1, k3ð Þ¼ u2L2f
4π

1 + 4 k1Lf
� �2

+ k3Lf
� �2

1 + k1Lf
� �2

+ k3Lf
� �2h i5=2 (9.1.24)

and for the one-dimensional spectra,

ϕ11 k1ð Þ¼ u2Lf
π

1

1 + k1Lf
� �2 (9.1.25)
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ϕ22 k1ð Þ¼ ϕ33 k1ð Þ¼ u2Lf
2π

1 + 3 k1Lf
� �2

1 + k1Lf
� �2h i2 (9.1.26)

and, finally, for the longitudinal and lateral correlation functions

f rð Þ¼ e�r=Lf (9.1.27)

g rð Þ¼ e�r=Lf 1� r

2Lf

	 

(9.1.28)

Fig. 9.5 compares the Liepmann and von Kármán interpolation formulae. The

one-dimensional wavenumber spectra (Fig. 9.5A) are almost identical up to a

wavenumber k/ke of about 10. The longitudinal and lateral correlation functions

(Fig. 9.5B and C) are very similar. Note that for both models f(r) decays monotoni-

cally, but g(r) has a shallow overshoot at larger r so it dips below zero.

9.2 Inhomogeneous turbulent flows

Homogeneous isotropic turbulence is rare in practical applications. Aeroacousticians

are almost always dealing with turbulent flows with average properties that vary sub-

stantially across their width and that involve motions with a clear preference for
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Fig. 9.5 Comparison of Karman (solid line) and Liepmann (dotted line) models.

(A) One-dimensional wavenumber spectrum ϕ11ke=u
2 , (B) longitudinal correlation coefficient

function f(r). (C) Lateral correlation coefficient function g(r).
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direction. The specifics of these vary from configuration to configuration making a

single prescription impossible. However, turbulence only forms in the rotational

regions of a flow where viscous action has had an influence. Thus a substantial pro-

portion of the turbulent flows of interest are wakes or boundary layers. In this section

we describe these flows in their most idealized form; the fully developed plane wake

and the zero-pressure gradient flat plate turbulent boundary layer. The goal here is to

give the reader a qualitative and quantitative understanding of these canonical flows

that they can then adapt and extend when faced with aeroacoustic sources generated

by more configuration-specific turbulent shear flows.

It is important to state at the outset that no analytic interpolation formulae for the

velocity correlations exist for these flows. Comprehensive numerical characteriza-

tions of the correlation functions (either measured or computed) exist in only a few

cases and are too unwieldy to be used for routine aeroacoustic analysis. Instead, such

analysis must usually rely on scaling of von Kármán or Liepmann spectra to the local

or spatially averaged properties of these flows. Therefore it is these properties—the

Reynolds stress fields, the velocity scales, and the lengthscales—that we will highlight

in our discussion. Where visible, we also point out features of the large-scale turbu-

lence structure that are unlikely to be modeled well with homogeneous turbulence

spectra. Interpolation formulae do exist for the wavenumber-frequency spectrum of

the wall-pressure fluctuations of the turbulent boundary layer. These models, which

are central to the aeroacoustic analysis of noise from flow over surfaces, will be pres-

ented at the end of this section.

9.2.1 The fully developed plane wake

Consider a two-dimensional body, such as an airfoil or strut, placed in a free stream as

shown in Fig. 9.6. The body disturbs the flow causing the formation of a wake that

trails downstream. After an initial period of comparatively rapid evolution the wake

settles down into a slender flow with almost parallel mean streamlines in which gra-

dients in the flow direction @=@x1 are much less than those across the wake @=@x2.
This fully developed far wake is the focus of our interest here. The mean-velocity

Fig. 9.6 Control volume and nomenclature for a plane wake.
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profile of the far wake has a symmetric form characterized by Uw, the maximum

velocity deficit reached on the wake centerline, and Lw, the distance measured from

the wake centerplane to the point where the deficit is half Uw. It is usual to refer to LW
as the half wake width.

At high Reynolds number, no scales beyond Uw and Lw are needed to char-

acterize the mean flow or the important turbulence scales. Viscous scales are

only important in controlling the dissipation of the energy of the smallest tur-

bulence and have no direct influence on the overall flow structure. Thus the flow

reaches a self-similar state in which the mean flow, turbulence stresses, spectra,

and correlations can all be described by functions that are independent of

streamwise position. For example, using the coordinate system of Fig. 9.6, we

expect U∞�U1ð Þ=Uw, uiuj=U
2
w, Li1/Lw, and Li3/Lw; all to be only functions of

η� x2=Lw (where Lij is defined as the integral lengthscale of velocity component

ui in the direction xj). The distances defining two point correlations (and

wavenumbers) are also expected to scale on Lw. Frequencies seen at a fixed

point will scale closely as ωLw=U∞ since fluctuations are produced by eddies

being convected past the point almost at U∞. Note that Uw=U∞≪1 in the

far wake.

The fact that the form of the wake becomes invariant with streamwise position does

not imply that this flow is universal. Fully developed wakes generated by different

bodies are qualitatively very similar, but the relative magnitudes of such things as

the peak turbulence intensity
ffiffiffiffiffi
u21

p
to the maximum deficit Uw may differ by as much

as 30% [5].

We can infer how the controlling scales Uw and Lw change as the wake grows.

Consider first the control volume shown in Fig. 9.6. Assuming incompressible

flow and requiring that the mass flow in and out of the volume be the same,

we have

_m¼ 2ρohU∞�
ðh
�h

ρoU1dx2 (9.2.1)

where�h and h are the x2 limits of the control volume and _m: is the mass flow per unit

span out of the top and bottom faces of the volume. Equating the difference in the

momentum flow into and out of the control volume in the x1 direction to the drag force
per unit span on the body as D, gives

2ρoU
2
∞h� _mU∞�

ðh
�h

ρoU
2
1dx2 ¼D (9.2.2)

where we are assuming that the mass flow _m: leaves the volume with a U1 velocity

component equal to the free-stream velocity—a good approximation if h is large.

Substituting for _m: and normalizing on ρoU
2
∞ this expression simplifies to
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D

ρoU2
∞
¼
ðh
�h

U1

U∞
1� U1

U∞

	 

dx2 (9.2.3)

The integral on the right-hand side has units of distance and is referred to as the

momentum thickness θ. Since it is equal to the normalized drag it must be invari-

ant with streamwise position in the wake x1. Note that the Eq. (9.2.3) can

be written as θ=c¼ 2Cd, where Cd is the two-dimensional drag coefficient on

the body and c is the reference length used to normalize Cd, such as

airfoil chord.

Writing the integrand of Eq. (9.2.3) as
U1

U∞

U∞�U1

U∞

	 

dx2, we note that

U∞�U1ð Þ=U∞ will scale with Uw=U∞, and U1=U∞ � 1 since Uw=U∞≪1. Similarly

x2 will scale with Lw. We must therefore have that θ�UwLw=U∞, and thus the product

of the velocity and length scales of the wake must be constant.

To determine how these parameters vary individually, we use the streamwise

component of the Reynolds averaged Navier Stokes equations (8.3.4). For

two-dimensional mean flow with @=@x3 ¼ 0 and ignoring viscous terms this is,

for i¼1

U1

@U1

@x1
+U2

@U1

@x2
¼� 1

ρo

@po
@x1

�@u21
@x1

�@u1u2
@x2

(9.2.4)

A formal order of magnitude analysis [6] shows that only the first term on the left hand

side and the last term on the right hand side are significant in the far wake, giving

U∞
@U1

@x1
¼�@u1u2

@x2
(9.2.5)

where the substitution of U∞ for U1 on the left hand side follows from Uw=U∞≪1.

Following Townsend [7], we can use the concept of self similarity to scale the flow in

the wake. This requires the velocity profile to scale on the wake width LW. Given that
θ¼UWLW/U∞ is constant, this also requires scaling of the wake velocity deficit onUW.

Consequently, we can write the mean velocity and stress profiles as a functions of

η¼x2/LW in the form

U∞�U1

Uw
¼ h1 ηð Þ and

u1u2
U2

w

¼ h2 ηð Þ (9.2.6)

It follows that

@U1

@x1
¼� @1

@x1
UWh1 ηð Þð Þ and

@ u1u2ð Þ
@x2

¼U2
W

LW

@h2
@η

198 Fundamentals



Substituting these into Eq. (9.2.5), recognizing that
@η

@x1
¼� η

Lw

dLw
dx1

, and rearranging

gives

U∞

Uw

dLw
dx1

	 

η
dh1
dη

� U∞

U2
w

Lw
dUw

dx1

	 

h1 ¼�dh2

dη

Since the terms outside the parentheses are not functions of x1, the terms inside the

parentheses must be constants and this gives two simultaneous differential equations

for Lw and Uw. The solution to these is simply that Lw � xn1 and Uw � xn�1
1 where n is a

constant. Since we already know that
UwLw
U∞

is a constant then we must have that

Lw � x
1=2
1 and Uw � x

�1=2
1 .

This is realized in practice. For example, Fig. 9.7 shows data from the plane wake

shed from a roughened airfoil in a uniform air flow [8], much as pictured in Fig. 9.6.

The airfoil is 0.2 m in chord and the free-stream velocity U∞ is 20 m/s, for a Mach

number of 0.059 and a Reynolds number U∞c=ν¼ 339,000. The drag coefficient

on the airfoil is 0.0187 implying θ=c ¼ 0:093. The scaling variables are shown as a

function of x1/θ where x1 is measured downstream from the wake origin, very close

to the airfoil trailing edge. After some slight initial adjustment,Uw and Lw closely fol-
low square root variations predicted. The specific dependencies shown by the dotted

lines in Fig. 9.12 are;

10–2

102

x1/q
103

10–1

 

Fig. 9.7 Variations of Uw/U∞ (	)
and Lw/θ
100 (□) with streamwise

distance for a plane wake.

Data from Ref. [8].
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Uw=U∞ ¼ 1:66 x1=θð Þ�1=2
(9.2.7)

Lw=θ¼ 0:306 x1=θð Þ1=2

The ratio between θ/Lw and Uw/U∞, of 1.97 is expected to be universally constant

[5]. This wake develops a self-similar structure by about eight chord lengths (860θ)
downstream of the trailing edge. In Figs. 9.8–9.11 we show the self-similar form so

as to illustrate the typical structure of a fully developed wake. Mean velocity and

Reynolds-stress profiles are plotted in Fig. 9.8. The mean-velocity profile is an

inverted bell shape that has an almost Gaussian form. The curve fit of Wygnanski

et al. [5]

U�U∞

Uw
¼�exp �0:637

x2
Lw

	 
2

�0:056
x2
Lw

	 
4
 !

(9.2.8)

provides a quite accurate model of the mean profile with the only effect of the (x2/Lw)
4

term in the exponent being to slightly narrow the tails of the profile (Fig. 9.8A).
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Fig. 9.8 Profiles through the fully

developed plane wake of Ref. [8].

(A)Mean velocity; 	, (U�U∞)/Uw;

—, Eq. (9.2.8); - - -, Eq. (9.2.8)

without the non-Gaussian term.

(B) Turbulence normal stresses;

□,u21=U
2
w; 4,u22=U

2
w; e,u23=U

2
w.

(C) Turbulence shear stress; 5,

u1u2=U
2
w.
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The Reynolds normal stresses (Fig. 9.8B) are almost constant and equal over the

central portion of the wake jx2j< Lw where they reach values of about 0.1Uw
2 . They

fall below 10% of this value just over two wake half-widths from the center. The

Reynolds shear stress u1u2=U
2
w forms an antisymmetric profile that roughly mirrors

the negative of the gradient of the mean velocity. It reaches its peak magnitude of just

over 0.04, near jx2j ¼ 0:8Lw. Note that two-dimensionality implies that the other

Reynolds shear stresses u1u3 and u2u3 are zero.

Fig. 9.9 shows the integral lengthscales in the flow. The flow is homogeneous in the

spanwise x3 direction and almost homogeneous in the streamwise x1 direction, since it
is slowly growing. We can therefore define meaningful integral scales of each of the

three velocity components in x1 and x3, and these integral scales are functions of the

position in the wake x2/Lw. Recall that, in the convention established in Section 8.4, Lin
denotes the lengthscale of velocity component ui taken in direction xn. The streamwise

lengthscales in Fig. 9.9B were measured by determining the integral timescale from

time-delay correlations, and then applying Taylor’s hypothesis. We expect this to be a

good assumption sinceUw=U∞≪1 and so themean velocity is always close toU∞ and

the timescale on which the turbulence evolves Lw/Uw is therefore much longer than the

timescale for it to convect past a fixed point Lw=U∞.

In many ways the lengthscale profiles of Fig. 9.9 have similar shapes to those

of the turbulence normal stresses, with roughly constant regions over the middle

50% or so of the wake flanked by regions of decay towards the edges. The length-

scales reveal strong anisotropy of the largest scale eddies in the wake. Near the

wake center the longitudinal lengthscale in the streamwise direction L11
(Fig. 9.9B) is about 80% of the half-wake width and about four times the two lat-

eral scales L21 and L31 (recall that for homogeneous turbulence the longitudinal

scale is twice the lateral). At the same position, the longitudinal scale in the

spanwise direction L33 (Fig. 9.9A) is about 0.4Lw and actually smaller (by about

30%) than the lateral scale L23.
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Fig. 9.9 Variation of the integral lengthscales with distance x2 across the wake of Ref. [8].
(A) Spanwise scales: —, L13/Lw; - - -, L23/Lw; ��, L33/Lw. (B) Streamwise scales inferred from

the integral timescale and Taylor’s hypothesis: —, L11/Lw; - - -, L21/Lw; ��, L31/Lw.
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The nature of the large-scale eddies producing this behavior is more apparent in the

spanwise and streamwise correlation coefficient functions from which the length-

scales are integrated. Fig. 9.10 shows these functions at the wake center, x2 ¼ 0.

The streamwise correlation (Fig. 9.10B) of the vertical velocity component ρ22 is seen
to oscillate as it decays reaching a minimum at jΔx1j � 1:7Lw followed by a shallow

maximum at jΔx1j � 3:5Lw. The negative area produced by the overshoot results in the
comparatively low integral lengthscale L21 at the wake center. The oscillation indi-

cates some regularity in the spacing of eddies in the streamwise direction, termed

quasi periodicity. What we are seeing is organization associated with eddies generated

directly from the roll up of the shear visible in the mean-velocity profile pictured in

Fig. 9.8A, a feature that would not be represented well with a Liepmann or von

Kármán model (Fig. 9.4C), even though such a model might still adequately describe

the smaller scales. These large scale organizedmotions may also be responsible for the

broad wings seen in the spanwise decay of ρ22 visible in Fig. 9.10A.

The inhomogeneity of the wake in the x2 direction means that the spatial correlation

in this direction is a function of two positions x2 and x2
0 and not just the distance

between them. Fig. 9.11 shows this two-dimensional correlation function Rij(x2,x2
0),

for zero Δx1, Δx3 and τ, plotted in coefficient form by normalizing on the geometric

average of the corresponding mean-square velocity fluctuations at x2 and x2
0. In this

−3 −2 −1 0 1 2 3
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tU∞/Lw ≡ Δx1/Lw

Fig. 9.10 Correlation coefficient functions on the wake centerplane for the wake of Ref. [8].

(A) As a function of spanwise separation. (B) As a function of time delay and, through Taylor’s

hypothesis, streamwise separation. —, ρ11; - - -, ρ22; ��, ρ33.
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normalization the diagonals of the contour maps in Fig. 9.11 have a value of unity and

the rate of decay to either side is an indication of the extent of the correlation perpen-

dicular to the plane of the wake. For example, Fig. 9.11A shows that streamwise

velocity fluctuations at the wake center correlate over about one half-wake width

above and below the center. The vertical extent of the correlation in the region of

highest mean-velocity gradient near x2=Lw ¼�1 is actually larger than at the center-

line, giving the correlation map a waisted appearance. Otherwise the vertical extent

of the correlations of all three velocity components is remarkably constant with

the position in the wake, with the vertical velocity component u2 correlating over

the greatest distance, and the spanwise correlation u3 the smallest. We can therefore

define meaningful integral scales in the x2 direction. Integrating the correlation

coefficient function, as shown in Fig. 9.11 with respect to x2
0 for x2 ¼ 0 we obtain

scales of 0.35Lw, 0.82Lw, and 0.17Lw for the u1, u2, and u3 velocity components

respectively.

9.2.2 The zero pressure gradient turbulent boundary layer

Any surface exposed to a high Reynolds number air stream will develop a boundary

layer. The boundary layer is an expression of the no-slip condition imposed at the sur-

face, which requires that the fluid layer immediately adjacent to a surface not move

relative to it. At low Mach numbers the no-slip condition, and the boundary layer it

produces, are the only sources of vorticity within a flow. Wakes, regions of separation

and vortical flows, all originate from boundary layers.

Boundary layers are by definition thin. That is, thin relative to the streamwise dis-

tance over which the boundary layer grows significantly, and thin compared to the

local radius of curvature of the surface. A boundary layer is therefore another example

of a slender flow with almost parallel streamlines in which gradients of the average
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(A) (B) (C)x2/Lw x2/Lw x2/Lw

x�2

Lw

0.1

0.1

Fig. 9.11 Zero-time delay correlation coefficient Rij x2, x
0
2

� �
= u2i x2ð Þu2j x02

� �h i1=2
for the wake.

(A) Streamwise velocity i¼ j¼1, (B) normal velocity i¼ j¼2, (C) spanwise velocity i¼ j¼3.

Contours in steps of 0.1: —, Positive levels; , zero level.

Data from Ref. [8].
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velocity properties in the flow direction are much less than those across the boundary

layer. The almost parallel streamlines also ensure that the mean pressure is constant

across the boundary layer, and that pressure variations in the streamwise direction are

impressed by the overriding irrotational flow. We refer to the streamwise pressure

gradient as favorable or adverse depending, respectively on whether it is tending

to accelerate or decelerate the fluid.

Fig. 9.12 shows the coordinate set up for our boundary layer discussion, with x1
measured streamwise from the origin of the boundary layer far upstream, x2 perpen-
dicular to the wall, and x3 spanwise. The velocity of the irrotational flow just outside

the boundary layer edge isUe and the timemean frictional stress exerted by the bound-

ary layer on the wall is τw. We define the local friction coefficient Cf�τw=
1

2
ρU2

e . We

denote the boundary layer thickness as δ and this is defined as the distance from the

wall to the point where the mean-velocityU1 is 99% ofUe. We also define a boundary

layer momentum thickness,

θ¼
ðδ
0

U1

Ue
1�U1

Ue

	 

dx2 (9.2.9)

Similar to the wake, the momentum thickness is related to viscous drag. Specifically,

a control volume analysis similar to the analysis for the wake in Section 9.2.1 relates

the incremental increase in the normalized friction drag per unit length to twice

the incremental increase in momentum thickness per unit length, Cf ¼ 2dθ=dx1.
A second integral measure of the boundary layer thickness is the displacement

thickness δ*.

δ*¼
ðδ
0

1�U1

Ue
dx2 (9.2.10)

This is a measure of the loss of volumetric flow rate in the boundary layer per unit span

due to the frictional slowing of the flow. Graphically it is equivalent to the shaded area

Fig. 9.12 Turbulent boundary layer.
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outside the mean-velocity profile shown in Fig. 9.12 divided by Ue. The slower flow

rate in the boundary layer effectively pushes the overriding irrotational flow away

from the wall by a distance equal to δ*.
A smooth surface exposed to a low-turbulence free stream will first develop a lam-

inar boundary layer, but transition to a turbulent flow occurs relatively quickly at most

Reynolds numbers of engineering relevance. A typical length Reynolds number x1Ue/ν
for transition to turbulence with zero pressure gradient is about 600,000 implying, for

example, transition within about 10 cm in an air flow of 100 m/s. Transition can occur

much sooner in the presence of surface roughness, significant free-stream turbulence, or

an adverse pressure gradient, or can be delayed substantially in a favorable pressure

gradient or if the free stream is particularly clean.

At high Reynolds numbers a turbulent boundary layer contains a vast range of eddy

sizes, from those that encompass the whole boundary layer to microscopic motions

that dissipate energy directly to viscosity. Away from the wall the largest eddies

are responsible for an intricately convoluted boundary layer edge, beneath which a

full turbulent energy cascade is established. Close to the wall, however, the extreme

velocity gradients associated with the no-slip condition produce instability and roll up

of new turbulent eddies so small as to be comparable to that of the energy dissipating

motions. The presence of the wall thus enforces some spatial sorting of the turbulence

structure.

In a zero pressure gradient turbulent boundary layer two sets of scales are needed to

describe the mean flow and average turbulence properties. Close to the wall the flow is

determined by viscosity ν and the wall shear stress τw from which we can form the

“inner” velocity and length scales uτ�
ffiffiffiffiffiffiffiffiffiffiffiffi
τw=ρo

p
and ν/uτ. Note that uτ is referred to

as the friction velocity. The flow near the boundary layer edge is also determined

by the friction (but with no direct dependence on viscosity) as well as the boundary

layer thickness and so the “outer” scales here are uτ and δ. As we will see below, the
edge velocity Ue also plays some role throughout the boundary layer.

Accurate and fast computational methods for boundary layer calculation, with and

without pressure gradient, are well established and readily available [9,10]. For zero

pressure gradient turbulent boundary layers a number of empirical formulae exist as

well. The skin-friction coefficient

Cf ¼ 2
u2τ
U2

e

(9.2.11)

can be estimated using the well-known Schulz-Grunow formula

Cf ¼ 0:37 log10Rexð Þ�2:584
(9.2.12)

where Rex�Uex1=ν. Note that many other curve fits exist [11]. In Fig. 9.13 this expres-

sion has been used to plot the variation in uτ/Ue with Reynolds number. The normal-

ized friction velocity and the skin-friction coefficient gently decrease with an increase

in Reynolds number, and uτ/Ue is close to 4% for Reynolds numbers between about
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1 and 4 million (this Reynolds number range encompasses most wind tunnel work and

some full-scale applications, such as wind turbines). Simple calculations for the

boundary layer thicknesses can be obtained by approximating the mean-velocity

profile using a 1/7th power-law curve [12] to give:

δ¼ 0:37x1
Uex1
ν

	 
�1=5

(9.2.13)

with θ=δ¼ 7=72 and δ*=δ¼ 1=8. Eq. (9.2.13) implies that the boundary layer thick-

ness grows almost linearly as x1
4/5, and has a thickness of roughly equal to 2% of

its running length. Favorable and adverse pressure gradients will result in thinner

and substantially thicker boundary layer thicknesses, respectively.

As Eqs. (9.2.12), (9.2.13) imply, the ratios of the micro and macro turbulent bound-

ary layer scales uτ/Ue and ν/uτδ are not constant. This means that, unlike the wake, the

turbulent boundary layer does not reach a self-similar state. Instead it continually sus-

tains two distinct scaling regions. This is particularly apparent for the mean-velocity

profile. In the outer region the slowing of the mean flow relative to the free-stream

scales with the friction and distances scale on the boundary layer thickness, so

U1�Ue

uτ
¼ fo

x2
δ

� �
(9.2.14)

This is known as the “law of the wake.” In the inner region, adjacent to the wall, only

the friction and viscosity determine the flow:

u + ¼ f+ x +
2

� �
(9.2.15)
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Fig. 9.13 Schultz-Grunow formula for the skin-friction coefficient plotted as friction velocity.
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where the inner variables are defined as u +�U1=uτ and x
+
2 �x2uτ=ν. This is “the law of

the wall.” Obviously, these two descriptions of the profile must be consistent and pre-

sumably, must overlap. If so, the mean-velocity gradients implied by Eqs. (9.2.14),

(9.2.15) must match in the overlap region and we have

@U1

@x2
¼ uτ

δ
f 0o

x2
δ

� �
¼ u2τ

ν
f 0+

x2uτ
ν

� �
(9.2.16)

and thus

x2
δ
f 0o

x2
δ

� �
¼ x2uτ

ν
f 0+

x2uτ
ν

� �
(9.2.17)

Since they are functions of different nondimensional variables, the left and right hand

sides of this equation can only be the same if they are both equal to a constant, defined

as 1/κ. Integrating f 0+ in Eq. (9.2.17) we a have

u + ¼ 1

κ
lnx+

2 +C (9.2.18)

where κ is referred to as the von Kármán constant. We see that the overlap portion of

the profile must have a semilogarithmic form and this is indeed observed in practice.

There is no universal agreement as to the exact values of the constants κ and C, though
most authors choose values close to 0.40 and 4.9, respectively.

The structure of the entire mean-velocity profile is illustrated in Fig. 9.14 which

includes experimental data from a flat plate boundary layer with a

momentum-thickness Reynolds number Reθ¼θUe/ν of 15,500 [13]. Fig. 9.14A shows

the profile plotted in terms of x2
+ and on a semilogarithmic scale to more clearly show
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Fig. 9.14 Mean-velocity profile in a turbulent boundary layer at Reθ¼15,500 plotted
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Data from Ref. [13].
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the near-wall behavior.We see that the law of the wall consists of three regions. For x +
2

less than about 5 the profile approaches the linear form u+¼x2
+ with a slope set by the

velocity gradient at the wall. This is called the linear sublayer. In the buffer layer,
between about x2

+¼5 and 30, the profile transitions to the semilogarithmic form of

Eq. (9.2.18).

Both sublayer and buffer layer portions of the profile can be estimated by integrat-

ing the van Driest [14] formulation

du +

dx+
2

¼ 2

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4κ2x+2

2 1� e�x +
2
=A+

� �q (9.2.19)

from the wall, with A+ ffi 26.The semilogarithmic region, or log layer, is also part of

the law of the wake and extends, approximately from x+
2 ¼ 30 to x2=δffi 0:2. In the

outer region, beyond x2=δffi 0:2, the profile curves over to meet with the free stream.

The form of the profile in the semilogarithmic and outer regions is often estimated by

using Coles [15] extension of Eq. (9.2.18)

u + ¼ 1

κ
lnx+

2 +C + 2
Π

κ
sin2 π

2

x2
δ

� �
(9.2.20)

where Πffi 0:51.
The profiles of the turbulence stresses also have two scaling regions, in the inner

region varying as x+
2 and as x2/δ in the outer region. The stresses u1u2 , u21 , u

2
2 , and u23

are generally taken to scale with uτ
2 over the whole boundary layer, though this is a

matter of some debate. In particular, it is fairly clear that the peak nondimensional

streamwise turbulence normal stress u21=u
2
τ increases significantly with Reynolds

number [16] and it has been proposed that u21 scales on uτUe [17]. This is believed

to result from “inactive” motion on the boundary layer—essentially velocity fluctu-

ations in the u1 component driven by large-scale irrotational motions in the outer part

of the boundary layer [18].

Fig. 9.15 shows sample turbulence stress profiles for the same Reθ¼15,500 bound-

ary layer represented in Fig. 9.14. The boundary layer thickness is based on a statis-

tical average quantity and thus the instantaneous boundary layer edge often exceeds

this height. As a result, the turbulence stresses (Fig. 9.15) are not completely zero out-

side the boundary layer edge. At x2 ¼ δ the normal stresses are about 0.004 Ue
2 (2%

turbulence intensity). Turbulence levels intensify as the wall is approached, and

become increasingly anisotropic, with the streamwise normal stress u21 becoming

roughly twice the spanwise u23 and wall-normal u22 stresses. While not visible in

the figure, u21 peaks very close to the wall towards the bottom of the buffer layer,

whereas�u1u2 and u22 reach almost constant maximum values in the semilogarithmic

region of the mean-velocity profile (Fig. 9.15). In particular, the shear-stress�u1u2 is
constant here with a value equal to half the skin friction coefficient Cf.
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This equivalence derives from the average streamwise momentum Eq. (8.3.4)

which in the inner region can be shown [9] to reduce to the statement that the sum

of the turbulent and viscous shear stresses in the inner region is constant and equal

to the wall shear stress:

τw ¼ μ
@U1

@x2
�ρou1u2 (9.2.21)

Thus, �u1u2 is constant in the log layer, where viscous effects are insignificant, and

decreases in the buffer layer to balance the increase in viscous shear.

The size and form of the largest eddies responsible for the velocity fluctuations are,

to some extent, revealed in Figs. 9.16 and 9.17. Fig. 9.16A shows the integral time-

scale associated with each of the three velocity components as a function of distance

from the wall. Sample time delay correlation functions from which these scales were

obtained are shown in Figs. 9.17A through C. Fig 9.16B shows integral lengthscales in

the spanwise direction as a function of x2 with example correlation functions appe-

aring in Figs. 9.17D through F.

The integral timescales (Fig. 9.16A), are approximately constant or increase slowly

as the boundary layer is traversed from top down. Close to the wall, in the region not

shown in Fig. 9.16A, the timescales are expected to become proportional to distance

from the wall [19] and thus reduce to zero. By far the largest timescale and therefore,

through the qualitative application of Taylor’s hypothesis, the largest streamwise
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Fig. 9.15 Turbulence stress profiles for a flat plate turbulent boundary layer at Reθ¼15,500.
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lengthscale is that associated with the streamwise velocity fluctuations u1. This scale is
about five times that associatedwith the spanwise and wall normal velocity fluctuations.

The underlying time-delay correlation coefficient functions (Fig. 9.17A–C) show

that this is because ρ11 has very long positive tails, indicating significant correlation

for time delays as large as 3δ/Ue (the time taken for the flow at the boundary layer edge

to move downstream by three boundary layer thicknesses). The ρ22 and ρ33 correlations
have less pronounced tails and for τ> 0:5δ=Ue those tails are negative and thus subtract

from the corresponding integral scales.

The spanwise integral lengthscales (Fig. 9.16B) are quite small compared to the

implied streamwise scales and are seen to increase with distance from the wall in

the outer region. Over most of the boundary layer the lengthscale of the spanwise

velocity fluctuations L33 is largest and reaches a value of some 17% of δ over the

top half of the boundary layer. However, the associated correlation coefficient func-

tions (Fig. 9.17D–F) show that the streamwise velocity component u1 actually corre-

lates over larger spanwise distances than u3. The streamwise velocity correlation

function ρ11 has negative lobes, however, for larger spanwise separations that reduce
its integral scale. The negative lobes are more pronounced towards the bottom of the

boundary layer.

As with the plane wake, the inhomogeneity of the boundary layer means that the

spatial correlation in the vertical direction is a function of two positions x2 and x2
0 and

not just the distance between them. This correlation coefficient function

Rij x2, x
0
2

� �
= u2i x2ð Þ u2j x02

� �h i1=2
is plotted in Fig. 9.18. This figure shows that

streamwise velocity fluctuations in the log layer near the wall have about a 10%
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Fig. 9.18 Zero-time delay correlation coefficient Rij x2, x
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for a flat plate

turbulent boundary layer at Reθ¼15,500. (A) Streamwise velocity i¼ j¼1, (B) Normal

velocity i¼ j¼2, (C) Spanwise velocity i¼ j¼3. Contours in steps of 0.1; —, Positive levels;

, zero level; - - -, negative levels.

Data from Ref. [38].
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correlation coefficient with those at the mid height of the boundary layer, and that

streamwise velocity fluctuations at the mid height correlate measurably with those

over almost the entire boundary layer thickness. The scale of the vertical correlation

of u1 appears almost independent of position in the boundary layer. This contrasts with

the scale of the correlation of normal-to-wall fluctuations u2 which grows approxi-

mately linear with distance from the wall (Fig. 9.18B). The spanwise velocity corre-

lation also grows with distance from the wall (Fig. 9.18C), but this velocity component

is the least well correlated in the vertical direction.

Convection velocities of the velocity fluctuations of the turbulence in the boundary

layer are a function of distance from the wall x2. For most of the boundary layer, the

convection velocity Uc measured from the streamwise space-time correlation is close

to the local mean-velocity [20] However, in the buffer layer and linear sublayer the

convection velocity becomes almost constant at between 10 and 15 uτ indicating, per-
haps, that the streamwise velocity correlations in this region are predominantly gen-

erated by the overriding turbulent structures, rather than by eddies contained within

these regions. A bulk convection velocity for the boundary layer turbulence, which

is of particular relevance to aeroacoustic applications, can be defined using the

streamwise space-time correlation wall-pressure fluctuations. As will be explained

in the next section, the pressure fluctuations represent an integral over the boundary

layer thickness. Fig. 9.19 shows convection velocities deduced from the wall-pressure

correlations over streamwise separations Δx1 for a range of momentum-thickness

Reynolds numbers [20–23]. For the smallest streamwise separations, for which the

0 10 20

Δx1/d
∗

30 40 50
0

0.2

0.4

0.6

0.8

1

Uc
Ue

Fig. 9.19 Smooth wall boundary layer convection velocities Uc obtained from the center of the

convective ridge in the wall-pressure space-time correlation, as a function of streamwise

separationΔx1.⃝ , Blake [21], Reθ¼8210–13,200;✩, Bull [22], 10,500–35,200;□, Willmarth

and Wooldridge [23], 38,000; e ,▷,◁, 4, 5, Forest [24], 27,400, 37,700, 52,000, 64,300,

76,700, respectively.
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correlation contains the greatest contribution from small scale eddies near the wall,Uc

is close to 0.6Ue. At large separations, where the correlation is mostly determined by

the largest eddies,Uc is between about 0.8Ue and 0.85Ue. Note that there is some scat-

ter in the rate of increase with spacing between studies that may indicate a slight

increasing trend with Reynolds number.

9.2.3 The turbulent boundary layer wall-pressure spectrum

Scattering of turbulent surface pressure fluctuations into sound is one of the dominant

mechanisms behind some important aeroacoustic noise sources, such as trailing edge

noise and rough-wall boundary layer noise. To relate the surface pressure fluctuations

on a flat surface below a turbulent boundary layer to the velocity fluctuations in the

boundary layer we can use Lighthill’s analogy, provided that the flow is of sufficiently

low Mach number that it may be regarded as locally incompressible. Since the dis-

tances between the local velocity fluctuations and a point on the surface are small

compared to the acoustic wavelength, we need not be concerned with the effect of

propagation time on the solution to Lighthill’s wave equation given by Eq. (4.3.3).

The unsteady surface pressure will be given by p�p∞ ¼ ρ0c2∞ and, since the surface

is rigid, the pressure gradient will be zero normal to the surface. We can then replace

the Green’s function in Eq. (4.3.3) with the tailored Green’s function specified

in Eq. (4.5.3) to eliminate the surface integral, and give the surface pressure on the

surface as

p x, tð Þ�p∞ ¼
ðT
�T

ð
V

GT x, tjy,τð Þ@
2Tij y, τð Þ
@yi@yj

dV yð Þdτ (9.2.22)

This simplifies considerably if we assume a completely incompressible flow because

we can approximate Tij by ρovivj (Section 4.2.1) and the tailored Green’s function, for
a point on the surface asGT¼δ(τ� t)/2πjx–yj, since the distance from the sources and

their images to the surface is the same. These approximations are valid very close to

the source where the fluctuations are dominated by the hydrodynamic part of the flow

and the acoustic waves can be ignored because they are of a completely different scale.

Using these approximations and carrying out the integral over time gives

p x, tð Þ�p∞ ¼ ρo
2π

ð
V

@2 vivj
� �

@yi@yj

� �
y, tð Þ

dV yð Þ
x�yj j (9.2.23)

where the terms in square brackets are evaluated at y and t. The mean flow speed in the

boundary layer varies with height and so we can split the velocity into its mean and

unsteady parts as vi¼Ui+ui and so vivj¼ (UiUj+Uiuj+uiUj+uiuj). It follows then that
this formulation gives both a steady and unsteady surface pressure. The unsteady part

of the surface pressure is obtained by subtracting the mean of the fluctuations and

gives the nonlinear velocity term in Eq. (9.2.23) as
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vivj� vivj ¼Uiuj + uiUj + uiuj�uiuj

Then making use of the relationship for an incompressible flow that was used in

Eq. (4.2.2), we find that, if the mean flow speed is parallel to the boundary in the

y1 direction, then

@2

@yi@yj
Uiuj + uiUj

� �¼ 2
@U1

@y2

@u2
@y1

Using these results in Eq. (9.2.23) then gives

p x, tð Þ�po ¼ ρo
2π

ð
V

2
@U1

@y2

@u2
@y1

+
@2 uiuj�uiuj
� �
@yi@yj

� �
y, tð Þ

dV yð Þ
x�yj j (9.2.24)

The two terms of the integrand are referred to as the rapid and the slow term, respec-

tively. The “rapid” term incorporates the mean-velocity gradient and this is thought of

as responding immediately to changes in the mean flow, whereas the “slow” term

responds only indirectly as a consequence of the influence of the mean flow on the

turbulence structure. The rapid term is often assumed to dominate in boundary layers,

and thus is the usual focus of modeling, though DNS calculations show both contri-

butions to be of similar magnitude [25]. In free turbulent flows, where mean-velocity

gradients are small, the slow term dominates [26].

At a fundamental level, Eq. (9.2.24) shows that the pressure fluctuation at a point

on the wall x¼ (x1,0,x3) will be given by the integral of fluctuating velocities over the
boundary layer, weighted by the inverse of the distance from that point. Thus the pres-

sure fluctuation will tend to reflect contributions from small scale turbulent motions

just above the wall as well as from larger scale motions from the outer part of the

boundary layer that are coherent over a substantial volume of the flow. Scale decom-

positions of the pressure fluctuation into frequency or wavenumber-frequency spectra

therefore reveal these different contributions.

Fig. 9.20 shows the wall-pressure frequency spectrum Gpp(ω) measured under a

flat plate turbulent boundary layer flow as a function of momentum-thickness Reyn-

olds number Reθ. At low frequencies pressure fluctuations are predominantly gener-

ated by the large structures in the outer part of the boundary layer with scales on the

order of the boundary layer thickness δ. The pressure fluctuations generated by these

structures should scale on the velocity difference with the free stream that sustains

them and thus, consistent with the law of the wake, should scale on ρouτ
2. At the same

time they are carried over the wall at a convection velocity that will likely be propor-

tional to the edge velocity Ue (Fig. 9.19) and so their passage frequency will scale on

Ue/δ. Thus we expect the spectrum in this region to have a fixed form when plotted as:

Gpp ωð Þ
ρou2τ
� �2Ue

δ
¼ go

ωδ

Ue

	 

(9.2.25)
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As demonstrated in Fig. 9.20A we see exactly this behavior, with pressure spectra

measured over a 3:1 range of Reynolds numbers grouping into a narrow band that,

in this case, extends up to ωδ=Ue � 100. Note that there are a number of (mostly

minor) variations of the outer scaling that are commonly used, such as using δ* as

the distance scale, or assuming a convective velocity scaled on uτ.
The small near-wall eddies contributing to the pressure spectrum at high frequen-

cies will have sizes determined by the same viscous scale ν/uτ that determines the

mean-velocity profile at the bottom of the boundary layer. These structures will be

moving at flow-speeds that vary with uτ and produce turbulent velocity fluctuations

that scale with uτ and thus, presumably, produce pressure fluctuations that scale as

ρout
2. The high frequency part of the spectrum should therefore appear invariant when

normalized as:

Gpp ωð Þ
ρou2τ
� �2 u2τν ¼ gi

ων

u2τ

	 

(9.2.26)

Again this behavior is realized, as illustrated in Fig. 9.20B. It also appears from

Fig. 9.20 that there is a mid-frequency range where both the above scalings exist

simultaneously. In that case we must have that

δ

Ue
go

ωδ

Ue

	 

¼ ν

u2τ
gi

ων

u2τ

	 

(9.2.27)
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Fig. 9.20 Flat plate turbulent boundary layer wall-pressure spectra scaled using (A) outer and

(B) inner scales. Experimental data of Forest [24]: 5, Reθ¼27,400; 	, 37,700;◇, 52,000; □,

64,300;4, 76,700. Models scaled using boundary layer parameters for Reθ¼27,400; ,

Goody [27]; , Howe [37].
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This is only possible if

go
ωδ

Ue

	 

∝

ωδ

Ue

	 
�1

and gi
ων

u2τ

	 

∝

ων

u2τ

	 
�1

(9.2.28)

and thus we expect the pressure spectrum to have a �1 slope in the overlap region

when plotted on a log-log scale. Mysteriously almost all turbulent boundary layer

experiments, like that represented in Fig. 9.20 reveal a mid-frequency region with

a slope of �0.7 to �0.8. A �1 region has been seen in atmospheric boundary layer

measurements [29], a finding that may indicate that this behavior may be very slow

to appear with increase in Reynolds number.

Analysis [30,31] of the fundamental constraints on the pressure spectrum and of the

turbulent contributions to the integrand of Eq. (9.2.24), as well as measurements [ 32,33]

have established other power-law regions in the wall-pressure time spectrum, including

a (ωδ/Ue)
2 region at low frequencies, and a ων=u2τ

� ��5
region at very high frequencies

where the pressure fluctuations are generated by action in the viscous sublayer.

An empirical interpolation formula for the wall-pressure frequency spectrum,

which takes advantage of these scaling regions, was developed by Goody [27] and

has the form:

Gpp ωð Þ
ρou2τ
� �2Ue

δ
¼ C2 ωδ=Ueð Þ2

ωδ=Ueð Þn +C1½ �3:7 + C3R
�4=7
T ωδ=Ueð Þ

h i7 (9.2.29)

where RT is the ratio of the outer to inner layer timescales (δ/Ue)/(ν/uτ
2). Goody

recommends the constants:

C1 ¼ 0:5, C2 ¼ 3:0, C3 ¼ 1:1 and n¼ 0:75 (9.2.30)

Goody’s equation reduces at low frequencies ωδ=Ue≪1 to

Gpp ωð Þ
ρou2τ
� �2Ue

δ
¼ C1

C3:7
2

ωδ

Ue

	 
2

(9.2.31)

and at high frequencies ωδ=Ue≫ C3R
4=7
T

� �7= 7�3 � 7nð Þ
to

Gpp ωð Þ
ρou2τ
� �2 u2τν ¼C1

C7
3

ων

u2τ

	 
�5

(9.2.32)

If RT is sufficiently large then a mid-frequency “overlap” range will exist where

Gpp ωð Þ
ρou2τ
� �2Ue

δ
¼C1

ωδ

Ue

	 
2�3�7n
(9.2.33)
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Goody chose n¼ 0:75 based on comparisons with lower-Reynolds number

boundary layer measurements than those of Fig. 9.20 where the overlap region

slope was observed to be about �0.7. Note that RT was not sufficient in those

cases to realize the full implied slope in the overlap region of �0.775. Choosing

n¼ 0:79 agrees very well with the higher R eynolds number, higher slope, and

data of Fig. 9.20 and also comes close to satisfying the infinite Reynolds number

limit that requires the overlap region slope of �1 predicted by dimensional

analysis. The important take-away here is the need for adjustment of the param-

eter n according to Reynolds number if accuracy in the mid-frequency range is

important.

The full wavenumber-frequency spectrum of surface pressure fluctuations

Φpp(k1, k3,ω), as defined in Eq. (8.4.35), is of particular interest for aeroacoustic

calculations. This spectrum captures t he spatial scales on which the pressure

fluctuations occur at each frequency and thus is the source term in surface

and trailing edge noise applications. It a lso captures convection of turbulence

over the wall at Uc and thus includes a convective ridge that lies along

k1 ¼ω=Uc. Because of its importance, considerable effort has gone into develop-

ing models for the wavenumber-frequency spectrum. We include here the details

of a sophisticated model developed by Chase [28 ] and a more elemental

model due to Corcos [34] with the intent that these span the range of need from

accuracy to analytical simplicity. A number of other such models have been

proposed which may be more easily applied in certain situations, many of

which are reviewed by Graham [35 ], Liu and Dowling [36 ], and Howe [37].

The Chase model spectrum, in the incompressible limit, is given by the

expression:

Φpp k1, k3,ωð Þ¼ ρ2ou
3
τ

κ2+ + bδð Þ�2
h i5=2 CTκ

2
κ2+ + bδð Þ�2
h i
κ2 + bδð Þ�2
h i +CMk

2
1

8<
:

9=
; (9.2.34)

where κ is the magnitude of the in-plane wavenumber vector κ2 ¼ k21 + k
2
3, and κ + is κ

modified according to the difference of k1 and its value on the convective ridge, ω/Uc,

normalized on a multiple h of the friction velocity, so

κ2+ ¼ κ2 +
ω

Uc
� k1

	 

Uc

huτ

� �2
(9.2.35)

Chase recommended that the empirical constants take the values

h¼ 3, CTh¼ 0:014, CMh¼ 0:466, b¼ 0:75 (9.2.36)

and the range of validity is Ue/co≪1, κ≫ jωj/co, and ωδ/Ue>1.
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Fig. 9.21 shows a perspective view of the Chase spectrum in wavenumber fre-

quency space which forms a thin tongue aligned with the convective ridge. The spec-

trum extends further in spanwise wavenumber (k3) than streamwise (k1) because the
boundary layer turbulence correlates over significantly greater distances in the

streamwise than spanwise direction. The exact frequency spectrum corresponding

to Eq. (9.2.34) can be derived [35], but a simpler, approximate form due to Chase

[31] and given by Howe [37] is,

Gpp ωð Þ
ρou2τ
� �2Ue

δ*
¼ 2 ωδ*=Ueð Þ2

ωδ*=Ueð Þ2 + 0:0144
h i3=2 (9.2.37)

This spectral form is compared with data and Goody’s model in Fig. 9.20A. We see

that the Chase model includes no viscous range at high frequencies, and at

mid-frequencies takes on the � 1 slope expected at very high Reynolds number.

The Corcos spectrum provides an algebraically simpler wavenumber-frequency

spectrum model with the form

Φpp k1, k3,ωð Þ¼ Spp ωð ÞU2
c

π2ω2

α1α3

α21 + Uck1=ω�1ð Þ2
h i

α23 +U
2
c k

2
3=ω

2
� � (9.2.38)

with empirical constants α1 ¼ 0:1 and α3 ¼ 0:77. Note that Corcos’ formulation leaves

the frequency spectrum Spp(ω) unspecified.

Fig. 9.21 Wavenumber-frequency spectrum from Eq. (9.2.34) at conditions corresponding to

the model Chase frequency spectrum in Fig. 9.20A. Contour spacing is 4 dB.
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10Aeroacoustic testing and

instrumentation

Aeroacoustic predictionsmust depend to some degree on assumptions or simplifications

concerning the physics of sound sources and details of their modeling. Experimental

testing provides the most direct way to observe sources, infer their physics, and provide

quantitative results against which prediction methods can be validated.

Most experimental testing in aeroacoustics is carried out using wind tunnels.

Unless information is required at full scale about a large vehicle or application, run-

ning a wind tunnel is usually far less expensive than conducting a field test. It also

provides a more controlled environment that can be particularly useful when insight

into the fundamental physics is desired. Wind tunnel testing is the focus of this chap-

ter. Some of the different wind tunnel configurations used for low Mach number

experimental work are described, as are the acoustic corrections that must be applied

to most wind tunnel measurements. This chapter concludes with an overview of some

pressure and velocity measurement techniques often used in aeroacoustic testing.

10.1 Aeroacoustic wind tunnels

The ideal aeroacoustic wind tunnel is one that can accurately reproduce the aerody-

namics of the device or flow configuration of interest while providing capability for

the measurement of the far-field sound that it generates with the minimum of back-

ground noise. Accuracy in aerodynamics at low Mach number implies a

low-turbulence and closely uniform free stream, model Reynolds numbers that real-

istically represent the application of interest (which are usually high), and small pre-

dictable interference corrections. Aerodynamic interference refers to the differences

between the desired flow and the modeled flow which result from the finite extent of

the wind tunnel stream. Small corrections allow larger models to be used and thus lead

to higher achievable Reynolds numbers.

The standard wind tunnel configuration for aerodynamic studies is the closed test

section. Parallel, or nearly parallel, rigid test section walls guide the flow over the

model. This type of test section has been in use since at least the time of the Wright

brothers and is extremely well understood. Interference corrections are well known

and comparatively small and allow for the use of quite large models compared to

the test section size. Such wind tunnels can be used for acoustic measurements. Micro-

phones may be placed in the flow using aerodynamic mounts and nose cones or

mounted on, or recessed within, the wind tunnel walls. The QinetiQ 5 m wind tunnel

at Farnborough in the United Kingdom is a classic example of one such facility. The

5 m�4.2 m test section, with a model under test, is shown in Fig. 10.1. Acoustic mea-

surements in this facility have included the use of arrays of microphones embedded in

the hard surface of the test section ceiling. This facility, built in the 1970s, is used for
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testing up to a Mach number of 0.33 and can be pressurized up to 3 atm. This allows

for independent control of test Mach number and Reynolds number.

To reduce acoustic reflections and reverberation, the walls of a closed test section

wind tunnel may be treated, such as has been done in the NASA Glenn 9- by 15-Foot

Low-Speed Wind Tunnel [1]. Fig. 10.2 shows the test section of this tunnel which is

used extensively for testing the aeroacoustics of aircraft propulsion systems, including

model turbofans and propellers. The photograph shows a number of in-flow micro-

phones surrounding a model engine as well as, to the left of the picture, a traversable

microphone rake. Treatment applied to the test section walls to reduce acoustic reflec-

tions, covered by metal perforate panels, is also visible.

The performance of microphones or a microphone array in a closed test section

facility can be substantially improved by shielding it from the flow to minimize pres-

sure fluctuations produced by turbulence which can overwhelm the acoustic pressure

signal. A common arrangement is to recess the microphone array into a shallow cavity

in one of the test section walls, covered with an acoustically transparent membrane.

This approach was pioneered by Jaeger and coworkers at NASA Ames [2] who found

that very light, plain weave Kevlar fabric provided a suitable covering, being both

acoustically transparent and strong enough to stand up to extended exposure to the

flow. Fig. 10.3 shows an example of such a recessed array in the closed test section

of the Virginia Tech Stability Wind Tunnel.

Useful acoustic measurements in closed test section wind tunnels are easier in large

facilities, where the acoustic far field can be reached within the test section, and in the

Fig. 10.1 Hard-wall test section of the QinetiQ 5 m wind tunnel at Farnborough, United

Kingdom, with a model of an A300 aircraft under test.

Image provided by Ian Smith, QinetiQ.
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investigation of louder sources that are not overwhelmed by reverberation or back-

ground facility noise. Dominant sources of background noise are usually the wind tun-

nel fan, turning vanes, and the roughness noise from walls both up- and downstream of

the test section. Microphones placed in the flow, or on the test section walls, may be

directly exposed to such parasitic sources.

A much more optimal arrangement from an acoustic perspective is the open-jet test

section. Here the test section walls are partially or completely eliminated, and the free

stream is projected as a jet across an anechoic chamber. The model is then placed in

the jet so that the sound it produces radiates through the jet shear layer into the cham-

ber where microphone instrumentation is placed. Free-jet tunnels come in a variety of

arrangements. One example is the Quiet Flow Facility (QFF) at NASA Langley

Fig. 10.2 Test section of the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel.

Image provided by David Stephens, NASA Glenn Research Center.

1” gap
Kevlar covering

Test section wall

Recessed
microphone
phased array

Fig. 10.3 Thirty-two microphone phased array mounted in the closed test section of the

Virginia Tech Stability Wind Tunnel.
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Research Center [3], shown in Figs. 10.4 and 10.5. Air is supplied from a low-pressure

fan through a diffuser, including a set of acoustic splitters to suppress noise from the

fan, and into a plenum. Air from the plenum is accelerated to test speed through a

contraction and exhausted into a large anechoic chamber through a vertical 2�3-foot

nozzle (pictured in Fig. 10.4). For the experiment shown in Fig. 10.4 [4], an airfoil

Ventilation
Exhaust

Anechoic
chamber

Jet

Air from fan, diffuser
and acoustic treatment

Turbulence
control

Vibration
isolation

Fig. 10.5 Schematic of the Quiet Flow Facility at NASA LaRC.

Fig. 10.4 The Quiet Flow Facility at NASA LaRC. Test-section area showing an airfoil model

under test and microphone phased array in the foreground.

Image provided by Florence Hutcheson and Michael Doty, NASA Langley Research Center.
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model is mounted in the jet between two large end plates attached to the nozzle exit.

The jet is allowed to diffuse over the height of the anechoic chamber where it is

exhausted to atmosphere through a large duct (Fig. 10.5).

This typeofopen-circuit arrangement canproduceextremelyquiet flowconditions and

is especially suited to smaller facilities. Flow losses associatedwith the acoustic treatment

used to remove the fannoisecanbeminimizedbyarranging for lowflowspeeds in thebulk

of the air delivery system. The exhaust system can be placed sufficiently far from the noz-

zle to keep speeds low here also and thusminimize parasitic noise generation. TheNASA

facility also has vibration isolation and ventilation of the anechoic chamber to minimize

structure-borne noise and to prevent instability as the flow exhausts from the chamber.

For larger facilities it becomesmore important to recover the kinetic energy of the jet.

Such facilities thus usually have a closed circuit arrangement and a collector designed to
receive the jet back into the tunnel duct withminimum loss. Figs. 10.6 and 10.7 show the

test section and layout of the DNW-NWB low-speed wind tunnel with its open-jet con-

figuration [5]. The 3.25 m�2.80 m nozzle that launches the jet is visible to the left of

this photograph. Six meters downstream the somewhat larger collector is visible to the

right of the picture. This is designed to operate well even with lifting models in the jet

[6]. The entire arrangement is enclosed within a large anechoic chamber.

Ingeneral, the designof this typeof facility requires somecare. Impingement of the jet

shear layer on the collector surfaces may produce significant noise and, through reso-

nance with the rest of the tunnel circuit, can generate large-scale flow pulsations known

as pumping. Test models that substantially deflect the jet can exacerbate these problems.

Pumping has been eliminated at the DNW-NWB [7] by introducing a sudden change in

the cross-sectional area of the flow path just ahead of the drive fan (see Fig. 10.7). This

produces a discontinuity in the acoustic impedance which acts to suppress resonances.

While the open-jet test section arrangement can provide a near optimal solution to

the acoustic goals of a wind tunnel test, this configuration can suffer from large

Fig. 10.6 Test section of the DNW-NWB low-speed wind tunnel showing 3.25 m�2.8 m

nozzle to the left and the collector to right.

Image provided by Andreas Bergmann, DNW.
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aerodynamic interference effects depending on the size of the model compared to the

test section. These may limit the accuracy of the aerodynamic data obtained so that

separate test runs in different wind tunnels or test sections may be needed to ade-

quately characterize both aerodynamic and acoustic performance. In airfoil testing

the aerodynamic interference is primarily produced by the deflection of the jet. To

a first level of approximation the effect of this is to reduce the angle of attack expe-

rienced by the airfoil from the geometric value implied by the airfoil chord line and the

test section axis to an angle that accounts for the distortion of the wind tunnel flow. In

closed wall tunnels, the dominant correction is referred to as the blockage. This is
characterized as a change in the effective free stream velocity U∞ compared to the

actual speed of the on-coming flow. Blockage also produces a smaller angle of

attack error.

Fan

Sudden reduction in
flow area

Test section
Anechoic chamber

Aeroacoustic
turning vanes

Fig. 10.7 Plan view schematic of the DNW-NWB low-speed wind tunnel.

Image provided by Andreas Bergmann, DNW.

ℎ
(A)

(B)

(C)

Fig. 10.8 Schematics and nomenclature

for interference calculations for (A) a

closed test section, (B) an open-jet test

section, and (C) a hybrid test section.
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To predict corrections for an open-jet test section usually requires a numerical

calculation of some type. Figs. 10.8 through 10.10 show example calculations.

Fig. 10.8B is a schematic of a NACA 0012 airfoil in an open jet wind tunnel test sec-

tion. The airfoil is placed at a geometric angle of attack of 5 degrees in the center of a

free jet with its leading edge a distance xle downstream of the nozzle exit of height h.
A two-dimensional panel method [8] is used to calculate the flow around the airfoil

and the associated deflection of the jet boundaries, these being modeled as surfaces of

constant pressure. The best match between the computed airfoil pressure distribution

and a parallel free flight calculation is then used to determine the corrected angle of

attack and free stream velocity.

Fig. 10.9 shows the corrections to angle of attack, (α0 �α)/α0, and free stream veloc-

ity U0
∞�U∞

� �
=U0

∞ computed as functions of chord length to test section height ratio

c/h for a free jet with xle/h¼1. Also shown are these corrections computed using a

similar method for a closed test section (Fig. 10.8A). In these ratios α and U∞ denote

the effective angle of attack and free stream velocity, whereas α0 and U0
∞ denote the

geometric angle of attack and nominal facility free stream. Note that closed test

section corrections for airfoils can be accurately estimated analytically using

well-established methods [9].

The airfoil in the open-jet test section experiences almost no blockage effect

(Fig. 10.9B), compared to a correction of a few percent in the closed test section.

The interference effect on angle of attack is, however, several times that of the closed
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Fig. 10.9 Interference corrections for a NACA 0012 airfoil at 5 degrees geometric angle

of attack. Corrections for (A) angle of attack (α0 �α)/α0, and (B) free stream velocity

U0
∞�U∞

� �
=U0

∞. Symbols: Δ, closed test section; �, free-jet test section with xle/h¼1; and

□, hybrid test section with L/h¼2.
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test section and, in an absolute sense, very large. For example, an airfoil placed in a

free jet requires a correction to angle of attack of over 30% if the chord length is half of

the test section width, or larger. Unfortunately, this error is also a function of the posi-

tioning of the model relative to the nozzle exit, as shown in Fig. 10.10 where it has

been plotted as a function of both xle and c/h. Changing the airfoil profile significantly
from a NACA 0012 airfoil section also noticeably affects the correction.

A significant problem with the size of the angle of attack effect is that it can change

the character of the flow and thus render the fundamental assumptions of the aerody-

namic correction invalid, namely, that the effects of the test flow boundaries are invis-

cid and in the aerodynamic far field. If this happens, then no effective angle of attack

can be found where the pressure distribution resembles that produced in free flight

[10]. In such a circumstance there is no other option than to reduce the size of the

model relative to the jet or abandon the quantitative relationship of the test to condi-

tions independent of the wind tunnel configuration. Such a test can still be of value, of

course, if the goal of the experiment is fundamental scientific insight into phenomena

still present in the wind tunnel flow or the validation of a computational method that is

used to simulate both the free jet and the model mounted within it.

A third type of configuration used in aeroacoustic testing is the hybrid anechoic

tunnel (Fig. 10.11). Here the hard walls of the closed test section are replaced with

acoustically transparent walls (termed acoustic windows), generally made from

Kevlar fabric. Acoustic instrumentation is placed in an anechoic chamber or cham-

bers external to the acoustic windows. The acoustic windows contain the flow and

thus limit the aerodynamic interference, at the same time as enabling sound mea-

surements in the acoustic far field in much the same way as for a free jet.

Fig. 10.11 shows the layout of the hybrid acoustic test section of the Virginia Tech

Stability Wind Tunnel [11]. This facility has a square test section 1.83 m on edge.

The side walls of the test section consist of 4.21-m long 1.83-m high acoustic win-

dows. Sound generated in the flow passes through these windows into two large

anechoic chambers that sit to either side of the test section. The floor and ceiling

of the test section include treated flow surfaces designed to minimize acoustic reflec-

tions. Fig. 10.12 shows an airfoil model mounted vertically in this test section, as well

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

1.2Fig. 10.10 Corrections for

angle of attack (α0 �α)/α0 for
a NACA 0012 placed in a free

jet at α0 ¼5 degrees as a

function of streamwise

position xle/h and chord

length c/h.

230 Experimental Approaches



Port
chamber

Starboard
chamber

4.21

2.57

1.83

5.6

Foam transition

Kevlar acoustic window

To
diffuserTest section

Model
mount

Fig. 10.11 Plan view schematic of the anechoic test section system of the Virginia Tech

Stability Wind Tunnel.

From W.J. Devenport, R.A. Burdisso, A. Borgoltz, P.A. Ravetta, M.F. Barone, K.A.

Brown, M.A. Morton, The Kevlar-walled anechoic wind tunnel, J. Sound Vib. 332 (2013)

3971–3991.

(A)

 

(B)

 

Fig. 10.12 The anechoic test section system of the Virginia Tech Stability Wind Tunnel

configured for an airfoil trailing edge noise measurement. (A) Phased array system in the

port-side anechoic chamber and (B) airfoil in the test section.
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as a phased microphone array system placed in one of the anechoic chambers to mea-

sure the airfoil trailing edge noise. Figs. 10.13 and 10.14 show other implementations

of this concept at the 2 m�2 m wind tunnel at the Japan Aerospace Agency (JAXA)

in Tokyo, and the Anechoic Flow Facility at the Naval Surface Warfare Center, in

Carderock, Maryland. The JAXA facility is configured similarly to the Virginia Tech

Stability Tunnel, with the exception that only the starboard-side Kevlar acoustic win-

dow is backed by a full anechoic chamber. The comparatively shallow space-saving

chamber on the port side serves, primarily, as an acoustic absorber.

The Carderock facility represents a somewhat different arrangement used to con-

tain the 8-foot diameter jet of this otherwise conventional open-jet wind tunnel. The

setup shown is for a surface flow noise test on a large model that divides the test sec-

tion into left and right halves. The facility has an octagonal nozzle necessitating seg-

mented acoustic windows.

The basic idea behind the hybrid configuration is to combine the better features

of closed and free-jet test-section configurations for aeroacoustic testing. From the

aerodynamic perspective, enclosing the jet in Kevlar walls reduces interference cor-

rections to closed-test section levels. That is not to say that closed-test section methods

can be used without modification to estimate corrections, as the porosity and flexibil-

ity of the acoustic windows are both significant factors in determining these. Correc-

tions require a test section flow simulation that incorporates these effects. Fig. 10.9

shows example calculations of interference effects for a NACA 0012 airfoil

(Fig. 10.8C) computed using an inviscid panel method coupled with a membrane

solver and porosity model [11]. Even for large c/h the angle of attack corrections

remain small. Free-stream velocity corrections are the same size as those for a closed

Fig. 10.13 The hybrid anechoic test section system of the JAXA 2 m�2 m Wind Tunnel.

(A) Phased array system in the starboard-side anechoic chamber and (B) high-lift OTOMO

model installed in the test section.

Images provided by Hiroki Ura, JAXA.
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test section. As evidenced in Fig. 10.15, these corrections are almost independent of

the length of the acoustic windows relative to the test section height L/h, for L/h
greater than about 2. Note that the angle of attack correction actually passes through

zero for c/hffi0.5. This is because there are two contrary influences on this

parameter—the porosity of the acoustic windows (which tends to lower angle of

attack) and their flexibility (which tends to increase blockage and thus angle of

attack). The much lower interference effects compared to a free jet permit testing

of substantially larger models, and thus a higher range of Reynolds numbers.
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Fig. 10.15 Corrections for angle of attack (α0 –α)/α0 for a NACA 0012 placed at α0 ¼5 degrees

in a hybrid acoustic test section with Kevlar 120 acoustic windows tensioned at 1500 N/m as a

function of acoustic window length L/h and chord length c/h.

Foil used for surface flow noise study

Kevlar
acoustic
windows

Fig. 10.14 Photographs of the Anechoic Flow Facility at NSWC Carderock Division with

acoustic windows installed.

Image provided by Jason Anderson, NSWCCD.
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The acoustic windows of a hybrid test section eliminate the need for a jet collector

(and eliminate any noise it might generate) and permit a much longer test section com-

pared to its width. Acoustic instrumentation can also be placed much closer to the

flow, and thus the sources of interest, than it can be for a jet (Fig. 10.12A). The

net effect of these two attributes is that a phased microphone array placed close to

the outside of an acoustic window receives sound from a comparatively long stretch

of the flow making it easier to distinguish the sounds produced from a model placed at

the center of the test section from the parasitic noise sources of the wind tunnel, which

appear at the ends of the test section. These acoustic benefits are balanced against the

necessity of accounting for acoustic losses for sound transmission through the win-

dows (see Section 10.2.4) and, at frequencies greater than about 15 kHz, the presence

of some parasitic noise generated by the flow over the acoustic window material.

10.2 Wind tunnel acoustic corrections

When sound measurements are made in the anechoic chamber surrounding the test

section of an open-jet or hybrid anechoic wind tunnel, the sound produced in the flow

must cross a shear-layer as it propagates from model to microphone. The shear layer

reflects some of the sound and refracts the remainder, bending the otherwise direct

path of propagation to the microphone. This changes the amplitude of the sound

and its apparent directivity. Some of the amplitude change results from the increased

distance traveled by the refracted waves and from the distortion of the wave field pro-

duced by the refraction. In a hybrid anechoic tunnel additional amplitude attenuation

is produced by the insertion loss of the acoustic window.

We begin by ignoring the shear layer thickness and a possible acoustic window,

deferring discussion of these effects to later in this section. Without these complica-

tions this situation is amenable to mathematical analysis which provides formulae that

can be used to correct soundmeasurements back to what would have been measured in

the absence of the shear layer.

10.2.1 Shear layer refraction

In preparation for addressing this problem, consider a plane sound wave propagating

through still air. The wave has a complex pressure amplitude p̂, a frequencyω and thus

a wavenumber, in the direction of propagation, of k¼ω/co. The wave will produce a
small in-phase velocity fluctuation in the direction of propagation with an amplitude û,
referred to as the particle velocity. In terms of the acoustic momentum equation,

Eq. (3.3.5), we have

iωρoû¼
@p̂

@s
¼ ikp̂ where p̂¼Aeiks (10.2.1)

and s is distance along the path of propagation. Thus the amplitude of the particle

velocity fluctuation is

û¼ p̂=ρoco (10.2.2)
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Now consider plane waves encountering an infinitely thin shear layer, as shown sche-

matically in Fig. 10.16. The shear layer is perpendicular to the x2 direction and sep-

arates a uniform flow of velocity U¼U∞i in the x1 direction from stationary air. The

sound waves incident on the shear layer originate from within the flow and have

wavefronts defined by the spherical polar angles θi and ψ i. The sound propagates per-

pendicular to these fronts at speed co at the same time as being swept downstream by

the flow at U∞i. A portion of the sound is reflected from the shear layer back into the

flow. The reflected sound field has the same form as the incident field except that

its component of propagation perpendicular to the shear layer is reversed and thus

θr¼�θi. The remaining sound is transmitted through the shear layer and appears

on the other side as plane wavefronts propagating along the direction defined by

the angles θt and ψ t. There is no convection on this side of the shear layer.

The relationship between the transmitted, reflected, and incident sound is deter-

mined by ensuring that these sound fields are consistent where they meet at the shear

layer. The sound waves impose pressure variations on the shear layer and associated

out-of-plane motion due to the vertical component of the acoustic particle velocity.

These variations take the form of a surface wave that moves across the shear layer

tracking the acoustic wavefronts that produce it. The reflection mechanism requires

that the incident and reflected waves be in phase at the shear layer. The transmitted

and incident/reflected waves must also be in phase here, since otherwise there would

be no way for the pressure and surface motions to be consistent across the shear layer.
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Fig. 10.16 Interaction of a plane wave with a thin shear layer.
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First we will match the velocity of propagation of the surface wave with the trans-

mitted sound wave. The transmitted sound wave propagates at the sound speed co, and
the distance between successive wavefronts in the direction of propagation is the

wavelength λ. Since the direction of propagation makes an angle θt to the shear layer,
the distance between the wavefronts where they meet with the shear layer is

λs¼λ/cos θt. The surface wave must therefore travel at a speedUs¼co/cos θt to match

the propagation of the transmitted sound, and thus the velocity of the surface wave

expressed in terms of components in the x1 and x3 directions is

Us ¼ co
cos θt

cos ψ ti +
co

cos θt
sinψ tk (10.2.3)

For the incident wave we must also add the convection by the mean flow and so, in

terms of the incident wave angles,

Us ¼ co
cos θi

+U∞ cos ψ i

� �
cos ψ ii +

co
cos θi

+U∞ cos ψ i

� �
sinψ ik (10.2.4)

We see that the surface wave speed can also be expressed as Us¼
co/cos θt+U∞cos ψ i. Matching components in Eqs. (10.2.3), (10.2.4), we have

cos ψ t

cos θt
¼ cos ψ i

cos θi
+M cos2ψ i (10.2.5)

and

sin ψ t

cos θt
¼ sinψ i

cos θi
+M cos ψ i sin ψ i (10.2.6)

where M¼U∞/co. Solving these equations gives the angles of the transmitted sound

wave in terms of those of the incident sound wave

cos θt ¼ cos θi
1 +M cos ψ i cos θi

ψ t ¼ψ i (10.2.7)

and, conversely, for the angles of the incident sound wave

cos θi ¼ cos θt
1�M cos ψ t cos θt

ψ i ¼ψ t (10.2.8)

These equations constitute Snell’s law for shear layer refraction. To determine the

amplitude of the transmitted sound compared to the incident we use the fact that

the pressure fluctuations and deflections of the shear layer implied by the incident

and reflected wave must be consistent with those implied by the transmitted wave.
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Using subscripts “i,” “r,” and “t” to denote incident, reflected, and transmitted we

have that, for the pressure,

p̂i ¼Aeik cos θt x1 cos ψ t + x3 sin ψ tð Þ + ik x2�hð Þsin θi
p̂r ¼Beik cos θt x1 cos ψ t + x3 sin ψ tð Þ�ik x2�hð Þsin θi
p̂t ¼Ceik cos θt x1 cos ψ t + x3 sin ψ tð Þ + ik x2�hð Þsin θt

where k¼ω/c∞, x2¼h identifies the shear layer, and we have matched the

wavenumbers at the shear-layer interface. At the interface the pressure must match so

p̂t½ �shear layer ¼ p̂i½ �shear layer + p̂r½ �shear layer (10.2.9)

and thus C¼A+B. Defining the reflection and transmission coefficients as R¼B=A
and T¼C=A Eq. (10.2.9) becomes

T¼ 1 +R (10.2.10)

We must also consider the displacement of the shear layer ξ normal to the flow asso-

ciated with the surface wave. For a harmonic sound wave, the displacement of the

shear layer will be sinusoidal and have the form

ξ¼Re De�iωt+ ik cos θt x1 cos ψ t + x3 sin ψ tð Þ
n o

(10.2.11)

This must match the acoustic particle velocity on either side of the layer in the x2 direc-
tion. In the stationary air outside the flow we have, from Eq. (10.2.2),

@ξ

@t
¼Re

p̂t½ �shear layere�iωt sin θt

ρoco

 !
so � iωD¼C sin θt

ρoco

Inside the flow, the sound wave is being convected at speed U∞, and so we must use

the convective derivative to get the displacement velocity. We also have to account for

the fact that the acoustic particle velocity of the reflected wave is reversed compared

to that of the incident wave. Thus the displacement velocity is,

D∞ξ

Dt
¼Re

p̂i� p̂r½ �shear layere�iωt sin θi

ρoco

 !

so

�iωD 1�M cos θt cos ψ tð Þ ¼ A�Bð Þsin θi
ρoco

Using Snell’s law (Eq. 10.2.8) and combining the above expressions to eliminate D
gives

A�Bð Þsin θi cos θi ¼C sin θt cos θt (10.2.12)

Dividing through by A to evaluate R and T, we obtain,
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T¼ 1�Rð Þsin 2θi=sin 2θt (10.2.13)

which in combination with Eq. (10.2.10) implies

T¼ 2

1 + sin 2θt=sin 2θi
(10.2.14)

and

R¼ 1� sin 2θt=sin 2θi
1 + sin 2θt=sin 2θi

(10.2.15)

Eqs. (10.2.14), (10.2.15), along with Eqs. (10.2.7), (10.2.8), first derived in

two-dimensions by Ribner [12], completely define refraction effects for the case of a

thin shear layer. These expressions have been derived for plane waves and a flat shear

layer. However, they can equally well be taken to represent arbitrarily small portions of

a nonplanar sound field or curved shear layer, and thus the results can also be applied

locally to much more general situations. Exactly how the above relations are employed

to correct measured noise data will depend on the specifics of an experimental setup.

10.2.2 Corrections for a two-dimensional planar jet

Consider the arrangement shown in Fig. 10.17. The figure shows an acoustic source at

location S in a wind tunnel flow of velocity U∞ located a distance h inside the shear

layer. The sound is being measured at location M, outside the shear layer at a distance

and angle rm and θm from the source. Because of refraction, the measured sound

S

M C

R

S�

Shear layer

rm=SM rc=SC

U=U∞i

U= 0

qt

qiqc

qm H

h

Fig. 10.17 Sound measurement in a wind tunnel.
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arrives indirectly at M via the point R. Note that the angles θi and θt in Fig. 10.17 cor-
respond to those in Fig. 10.16. The plane of the shear layer is perpendicular to the

plane MRS. We wish to correct the measurement for the effects of the shear layer.

In other words, we wish to know the true directivity angle θc (which also gives the

corrected observer distance rc¼H/sin θc), the amplitude of the acoustic pressure p̂c
that would have been measured at point C if the flow had been unbounded, and the

difference in the corresponding arrival time of the sound waves τm� τc. We need

to know these in terms of θm and the measured pressure amplitude p̂m and the geomet-

rical parameters h and H.
To obtain the true directivity angle θc we note first that

H cot θm ¼ h cot θc + H�hð Þcot θt (10.2.16)

To eliminate θt we first use Snell’s law (Eq. 10.2.7) for ψ i¼0 to give

1

cos θt
¼ 1

cos θi
+M (10.2.17)

Next, we relate θi and θc using the kinematics of the sound propagation in the flow.

Consider the point S0 (Fig. 10.17) located at the apparent center of the spherical wave
arriving at point R on the shear layer. The time taken for this wave to propagate to

R from the source is h/(co sin θi), and in this time its center has convected downstream

a distance hM/sin θi between S and S0. We therefore have

h cot θc�h cot θi ¼ hM=sin θi (10.2.18)

which is solved using tangent half-angle identities to give,

tan θi=2¼ 1

1�M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csc2θc�M2

p
� cot θc

� �
(10.2.19)

Eqs. (10.2.19), (10.2.17), (10.2.16) are simple to evaluate analytically in reverse, i.e.,

to determine θm from θc givenM and h/H. An iterative method is needed to determine

θc from θm. For these calculations it is useful to rearrange Eq. (10.2.17) as

cot θt ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec θi +Mð Þ2�1

q

where the square root takes the sign of sec θi. Simpler relationships exist for limiting

cases. In the limit of H/h!∞, θm¼θt and the relationship becomes

tan θc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M cos θmð Þ2� cos2θm

q
1�M2ð Þcos θm +M

(10.2.20)

and, as H/h!1 we simply recover that θc¼θm.

Aeroacoustic testing and instrumentation 239



The correction to the receiving angle is plotted as a function of Mach number

in Fig. 10.18A for H/h¼2. Corrections become particularly large in the forward

arc and as the Mach number is increased. However, for M�0.2 they are less

than 10 degrees and roughly constant with θm over the central portion of the arc

between θm of 45 and 135 degrees where most measurements are made.

Fig. 10.18B shows the same correction plotted as a function of H/h for M¼0.2.

The correction increases with increasing distance of the observer from the flow.

Eq. (10.2.20) representing the limitH/h!∞ only serves as an accurate approximation

for H/h greater than about 5.

With θc determined, the difference in the time of arrival of the measured signal

at M and its hypothetical arrival across the flow at C is given by differencing the prop-

agation times from point R

τm� τc ¼H�h

co

1

sin θt
� 1

sin θi

� �
(10.2.21)

where θt and θi can be determined from Eqs. (10.2.16), (10.2.17).

To determine jp̂c=p̂mj we must account for both the loss of pressure amplitude in

transmission through the shear layer (Eq. 10.2.14) and the difference in the spreading

of the sound field between R and M as compared to R and C. In the absence of the

shear layer the acoustic wave-fronts remain spherical, and so the square of the pressure
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Fig. 10.18 Corrections to θm in degrees; (A) as a function of Mach number for H/h¼2 and

(B) as a function of H/h for M¼0.2.
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amplitude is inversely proportional to the square of the propagation distance from the

source, i.e.,

p̂c
p̂i

				
				
2

¼ h sin θi
H sin θi

� �2

¼ h2

H2
(10.2.22)

Where, consistent with the Snell’s law analysis above, we are using p̂i and p̂t to denote
the amplitude of the incident and transmitted sound pressure for the shear layer at R,

respectively. Determining jp̂m=p̂tj is more involved because we must account for the

change in the spreading that occurs with refraction. Fig. 10.19 illustrates the method.

We consider the sound passing through an elemental area dx1dx3 at R expanding out

the area dx01dx03 at M. From Fig. 10.19,

dx01dx
0
3 ¼ dx1� H�h

sin2θt
dθt

� �
dx3 +

H�h

sin θt
cos θtdψ t

� �
(10.2.23)

Note that dθt as drawn in Fig. 10.19 is negative, resulting in the minus sign that appears

inside the first bracket. Since the square of the sound pressure varies inversely with the

cross-sectional area, and since the elemental areas at R andMmake equal angles to the

ray RM, then

M

U=U ∞
ih

dyt qt

dx¢3

dx¢1

−dqt

dx3

dx1

dqi

qi

x3

x1

S

R

S′

H − h

H − h

sin qt
sin2qt

sin qt

qt
−dqt

dx1 dx3

dyi

dyt cos qt

(H − h)dyt cos qt

(H − h)dqt

dx′1
dx′3

x2

−

Fig. 10.19 Ray tube connecting R and M. Insets (bottom right) show views of the ray tube from

perpendicular to the dx1dx
0
1 and dx3dx

0
3 planes.

Aeroacoustic testing and instrumentation 241



p̂t
p̂m

				
				
2

¼ dx’1dx
’

3

dx1dx3
¼ 1� H�h

sin2θt

@θt
@x1

� �
1 +

H�h

sin θt
cos θt

@ψ t

@x3

� �
(10.2.24)

where the derivatives are evaluated at R. To determine the derivatives of θt and ψ t, we

first consider position where a general sound ray (i.e., one not confined to the x1 x2
plane) passes through the shear layer in terms of θi and ψ i, Fig. 10.20, which is

x1 ¼ h cot θi cos ψ i +
hM

sin θi
x3 ¼ h cot θi sin ψ i

(10.2.25)

Differentiating these expressions with respect to θi and ψ i, differentiating Snell’s law

for these angles (Eq. 10.2.8) with respect to θt and ψ t, using the chain rule, and eval-

uating for ψ t¼0 give

@x1
@θt

¼�h sin θt
ζ3

(10.2.26)

@x3
@ψ t

¼ h cos θt
ζ

(10.2.27)
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Fig. 10.20 Path of an out-of-plane sound ray.
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where ζ2� (1�M cos θt)
2�cos2 θt. Since the same process yields @x3/@θt¼

@x1/@ψ t¼0, the derivatives of θt and ψ t needed for Eq. (10.2.24) are simply the recip-

rocals of Eqs. (10.2.26), (10.2.27), and thus

p̂t
p̂m

				
				
2

¼ 1 +
H�h

h

ζ3

sin3θt

� �
1 +

H�h

h

ζ

sin θt

� �
(10.2.28)

Finally, from Eqs. (10.2.28), (10.2.22), (10.2.14) we obtain

p̂c
p̂m

				
				
2

¼ p̂t
p̂m

				
				
2 p̂i
p̂t

				
				
2 p̂c
p̂i

				
				
2

¼ 1

T2

p̂t
p̂m

				
				
2 p̂c
p̂i

				
				
2

¼ 1

4
1 +

H�h

h

ζ3

sin3θt

� �
1 +

H�h

h

ζ

sin θt

� �
h2

H2
1 + sin 2θt=sin 2θið Þ2

(10.2.29)

which can be rewritten as

p̂c
p̂m

				
				
2

¼ 1

4ζ2
h2

H2
1 +

H�h

h

ζ3

sin3θt

� �
1 +

H�h

h

ζ

sin θt

� �
ζ + sin θt 1�M cos θtð Þ2
� �2

(10.2.30)
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Fig. 10.21 Corrections the acoustic pressure fluctuation amplitude (A) as a function of Mach

number for H/h¼2 and (B) as a function of H/h for M¼0.2.

Aeroacoustic testing and instrumentation 243



This amplitude correction is plotted in Fig. 10.21A as a function of the angle of the

sound measurement θm and Mach number for H/h¼2. Over much of the rearward arc

p̂c=p̂mj j is <1 (i.e., negative in terms of dB), primarily because the shear layer trans-

mission coefficient T is greater than1 here. Over the forward arc, however, the spread-

ing effect dominates making the corrected pressure amplitude significantly greater

than that measured, particularly as the Mach number is increased above 0.2. Increas-

ing the distance of the microphone from the shear layer, i.e., increasing H/h, tends to
magnify the corrections as shown forM¼0.2 in Fig. 10.21B. At Mach numbers of 0.3

and less, microphone measurements made close to θm¼90 degrees require no signif-

icant amplitude correction. In interpreting Figs. 10.18 and 10.21, it is important to note

that space limitations and the extent of the flow often constrain acoustic measurements

to directivity angles between θm of 45 and 135 degrees. Note that Eq. (10.2.30) and the

directivity corrections introduced starting at Eq. (10.2.16) were first derived by Amiet

[13,14].

The results of the above analysis allow for two important physical observations

concerning the refraction phenomenon that we have not yet commented on. First,

for incident wave angles θi sufficiently close to 180 degrees (i.e., directed toward

the oncoming flow), the sound can suffer total internal reflection and no transmitted

wave is produced. In this situation the magnitude of the right hand side of Eq. (10.2.7)

is >1 so that there is no solution for θt. Indeed, we can infer from this expression that

for transmission to occur we must have

�1

1 +M cos ψ i

� cos θi � 1

1�M cos ψ i

(10.2.31)

Fig. 10.22 shows this bound plotted as a function of Mach number, total internal

reflection occurring for angles to the right of the lines drawn. The effect clearly

grows with Mach number, but even for a Mach number of 0.15 it is not possible

to receive sound outside the flow propagating into the wind, closer than 30 degrees

from the oncoming flow direction. This may be a more significant concern for
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Fig. 10.22 Boundary between refraction (to the left) and total internal reflection (to the right) as

a function of Mach number.
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hybrid anechoic tunnels since it is more feasible to place instrumentation close to

the shear layer in this configuration.

A second observation becomes apparent when Eq. (10.2.17) in combination with

the trigonometry apparent in Fig. 10.17 is used to plot the wavefronts of sound prop-

agating through a shear layer from a point source, as has been done in Fig. 10.23. Here

the sound source is located at the origin. The refracted wavefronts are clearly non-

circular (or nonspherical in the three-dimensional view), and their asymmetry

becomes more pronounced as they propagate further from the shear layer. This means

that there is no virtual image location for the sound. Thus if, as discussed in

Chapter 12, we were to use a microphone phased array to construct an image of

the source from the diffracted sound, then that image will be blurred unless we account

for the wavefront distortion using, for example, the propagation time correction of

Eq. (10.2.21).

10.2.3 Effects of shear layer thickness and curvature

The effects of shear layer thickness are discussed by Amiet [13,14], through compar-

ison of measured corrections with the predictions made by the above formulae. He

argues that shear-layer thickness effects are generally most significant for emission

angles closest to those producing total internal reflection and thus are not often impor-

tant in measurements. Additionally, Amiet [14] argues that Eq. (10.2.30) will still

apply in the limit of a thick shear layer, with the exception that there will be no loss

of acoustic energy in the shear layer since no reflected wave is produced. This has the

effect of multiplying the measured pressure amplitude by the factor (1�R2)�1/2,

which, using Eqs. (10.2.15), (10.2.17), can be rewritten as

1�R2
� ��1=2 ¼ 2 1�M cos θtð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ sin θt
p

ζ + sin θt 1�M cos θtð Þ2 (10.2.32)
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Fig. 10.23 Wavefronts propagating from a point source at the origin through a shear layer for a

flow of M¼0.5.
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Amiet [14] also gives results that incorporate the effects of shear layer curvature, as in

the round shear layer formed around a circular free jet.

10.2.4 Considerations for hybrid anechoic tunnels

In hybrid anechoic wind tunnels the Kevlar acoustic windows used to contain the flow

produce an attenuation of the sound additional to that associated with refraction. Oth-

erwise, the effects of refraction are expected to be identical to those derived in

Sections 10.2.1 and 10.2.2. Indeed, the presence of the Kevlar results in a much thin-

ner and flatter shear layer than will be realized in most open-jet tunnel situations, and

so some of the assumptions of the analysis are more accurate. Snell’s law (Eqs. 10.2.7,

10.2.8) and the geometric relations derived in Eqs. (10.2.16)–(10.2.28) all apply.

The transmission and reflection result (Eqs. 10.2.14, 10.2.15) and the pressure ampli-

tude result that depends on it (Eq. 10.2.30), however, need to be modified to account

for the insertion loss associated with the Kevlar barrier. Note that losses in transmis-

sion through an acoustic window do not usually impact the signal-to-noise ratio of a

sound measurement, since both signal and the parasitic noise of the facility must pass

through the Kevlar and are thus attenuated by the same amount.

The attenuation produced by the Kevlar depends not only on its physical charac-

teristics (porosity and flexibility) but also on the speed of the flow that it is exposed to.

This is because the flow influences the characteristics of the motion through the pores

and the movement of the fabric that couples the sound waves on the incident and trans-

mitted sides. Fortunately, such losses can be quite easily measured using, for example,

the setup shown in Fig. 10.24.

A speaker and a microphone are positioned facing each other across the empty test

section. Both are mounted in anechoic chamber areas outside the test section, and thus

the sound from the speaker must traverse both Kevlar windows and the flow in the test

section to be recorded by the microphone. The sound attenuation between the speaker

and microphone, as compared to that which would occur in a free-field environment,

reveals the insertion loss associated with traversing two acoustic windows subject to

flow. The loss associated with a single window, that is needed to adjust far-field noise

measurements of a source in the test section, is simply half of this value when

Microphone

Speaker Kevlar acoustic window

Test section
U∞

Kevlar acoustic window

Fig. 10.24 Arrangement for

measuring the attenuation associated

with Kevlar acoustic windows.
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expressed in decibels. Measuring the attenuation associated with transmission through

both windows and shear layers avoids the problems associated with placing speakers

or microphones in the flow.

Most hybrid wind tunnels to date have used Kevlar 120 scrim as the acoustic win-

dow material. This fabric weighs 58 g/m2 and has a plain weave with 34 threads per

inch in both directions made fromKevlar 49 fiber. Insertion losses associated with one

batch of this material [11], measured using the method depicted in Fig. 10.24, and then

curve fitted are shown in Fig. 10.25. The curve fits are given by the expressions:

ΔKevlar dBð Þ¼ 0:0059
f

1000Hz

� �2

+ 0:0145
f

1000Hz

� �
(10.2.33)

representing the transmission loss through the Kevlar with no flow, and

ΔFlow dBð Þ¼ 1� e�1:057 f =1000Hzð Þ
h i

5:4316M + 88:95M2
� �

(10.2.34)

for the additional flow-related losses. As can be seen in Fig. 10.25, the total correction

needed for the presence of the Kevlar (ΔKevlar+ΔFlow) increases with both frequency

and flow speed. While Fig. 10.25 and Eqs. (10.2.33), (10.2.34) are perhaps useful in

general for providing rough estimates of Kevlar losses to be used in experiment or

facility design, a measured calibration specific to the acoustic windows used in a par-

ticular test or facility is important for measurement accuracy. Different batches of the

samematerial made to identical specifications can differ sufficiently (e.g., in porosity)

to have a significant impact upon loss characteristics.

10.3 Sound measurement

Sound measurements at conditions likely to be generated by low Mach number flows

are commonly made using condenser microphones—microphones that use the change

in capacitance between a membrane and a backing plate. The membrane vibrates in

response to the sound, and the capacitance changes as the distance between the
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Fig. 10.25 Losses (ΔKevlar+ΔFlow) for a Kevlar 120 acoustic window as a function of frequency

for different flow Mach numbers.
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membrane and the backing plate fluctuates as a function of time. Conventional con-

denser microphones require a power source to maintain a charge across the membrane

and the backing plate, so a change in capacitance appears as a change in voltage. In

electret microphones either the diaphragm or the fixed plate of the capacitor is made

from a ferro-electric material that carries a permanent electric charge (referred to as

prepolarized). This eliminates the need for a voltage source for the microphone,

though power is usually still required because an integrated preamplifier is commonly

part of these devices.

Instrumentation microphones designed for scientific work are often the most

expensive but can provide well-defined, accurately documented, and stable charac-

teristics. Examples are the 1/2-in. diameter B&K 4190 illustrated in Fig. 10.26A and

the 1/4-in. G.R.A.S. 40-PH-S5-1 shown in Fig. 10.26B. Microphones of this type

may be provided with documentation of t heir frequency response when exposed

to plane sound waves parallel to the diaphragm, as well as deviations from that

response for off-axis sound (e.g., Fig. 10.27). Within its operating range (6.3 Hz–
20 kHz for the B&K 4190) this type of microphone will generally have an almost

constant amplitude response to sources ahead of the diaphragm so that in this range

only a single value of the microphone sensitivity is needed to make a quantitative

sound measurement. Precise measurement of this sensitivity (to account for environ-

mental conditions at the time of a measurement) can be made using a pistonphone.

This is a handheld device produces pressure fluctuations of known amplitude by

using the mechanical motion of a vibrating piston at a fixed frequency to simulate

a sound wave by compressing a fixed volume of air to which the microphone dia-

phragm is exposed.

Fig. 10.26 Examples of

microphones for sound

measurement. All are shown on

the same scale, which may be

inferred from the 1/2-in.

diameter microphone in part

(A) B&K model 4190,

(B) G.R.A.S. 40-PH-S5-1,

(C) B&K model 4138,

(D) Sennheiser KE 4-211-2, and

(E) Panasonic WM-64PNT.
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Instrumentation microphones come in a range of diameters. Large diameter micro-

phones (e.g., 1/2 or 1 in.) are more sensitive to acoustic pressure fluctuations because

those fluctuations are integrated over a larger diaphragm area. Such microphones are

useful for measuring sources that are particularly quiet at laboratory scale, such as

roughness noise, where good electrical signal-to-noise ratio is needed. At the same

time, the larger diaphragm has greater inertia limiting the frequency response. While

suffering from lower sensitivity, smaller diameter microphones (e.g., 1/4 and 1/8 in.)

may have a greater range, both in terms of the intensity of the sound and the frequen-

cies they canmeasure. For example, the B&Kmodel 4138 1/8 in. microphone pictured

in Fig. 10.26C can measure sounds up to 168 dB and 140 kHz.

The size of the diaphragm is also important compared to the wavelength of the

sound. When the wavelength becomes comparable to the diameter then the scattering

of the sound field around the end of the microphone and the spatial distribution of the

diaphragm sensitivity become important in determining the response. Fig. 10.27

shows, for example, the deviations in the response of the B&K 4190 with the direction

of the incident sound. This microphone has a 1/2-in. diaphragm, and we see that the

directionality of the sound becomes a substantial factor at around 6 kHz, where the

quarter wavelength is approximately equal to the diaphragm diameter. At 20 kHz,

the microphone is 10 dB less sensitive to sound directed at the side of the microphone,

or from behind, than it is to sound originating from in front. Instrumentation micro-

phones are usually designated as free-field microphones (like the B&K model 4190),

optimized as far as possible to measure sound incident on the microphone from any

direction, or pressure-field microphones designed to measure sound (or fluid dynamic

pressure fluctuations) at a wall. Pressure-field microphones, such as the B&K model
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Fig. 10.27 Amplitude response as a function of frequency and direction for a B&K 4190 1/2-in.

microphone with (a) standard protection grid and (b) B&K model UA 0386 nose cone (curves

for 0 and 180 degrees coincident).

Data provided by Brűel and Kjaer.
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4138 in Fig. 10.26C, usually include a vent designed to equalize the mean pressure on

the two sides of the microphone for situations where the face of the microphone is

exposed to a pressure significantly different from ambient.

At the lower end of the cost spectrum are devices designed for mass market appli-

cations such as lavalier microphones, cell-phones, hearing aids, and units designed

for the recording and performance industry. Many of these devices are electret

microphones, and a subset can be used for sound measurement in low Mach number

applications as long as the experimentalist is willing to take the time to select and

calibrate these sensors to the precision needed for scientific work. It is common

practice to perform frequency response calibrations of such microphones using

an instrumentation microphone as a reference, by subjecting both microphones to

a broadband sound field generated by a loud speaker. Such a calibration needs to

be done in an environment with a well-defined acoustic character, such as a sealed

cavity, a pipe, or an anechoic chamber. Consistent placement and configuration of

the test and reference microphones is usually critical to ensure that they are exposed

to exactly the same sound field. Examples of such microphones include the

Sennheiser KE 4-211-2 shown in Fig. 10.26D and the Panasonic WM-64PNT of

Fig. 10.26E. Stability, low noise, and adequate amplitude and frequency range

are important considerations in selecting a low-cost microphone for an aeroacoustic

test. For situations where multiple microphones are to be used as part of a system

(such as a phased microphone array) measuring and matching the phase calibrations

of the microphones are often crucial.

The placement and mounting of microphones outside of the test flow involves a

number of considerations. It is usually desirable for the microphone to be as close

as possible to the source to maximize signal-to-noise ratio. At the same time, keep-

ing the microphone in the acoustic far field (at least one wavelength from the

Microphone

Jet flow direction

Anticipated source location

Microphone gantry 
lagged with acoustic 

foam

Fig. 10.28 Microphone mounting in an anechoic wall jet wind tunnel.

250 Experimental Approaches



source) is often desirable to simplify the interpretation of the measurement. Also,

placing the microphone too close to the free jet or acoustic window can result in

contamination by near-field pressure fluctuations associated with the turbulent

shear layer. It is usual to orient the microphone to point as directly as possible

at the source. This aligns the wavefronts parallel to the diaphragm and makes

use of the most favorable microphone response. To exploit the best characteristics

of the anechoic chamber, microphones are usually placed at least a quarter wave-

length away from the walls, defined by t he wedge tips. To avoid unpredictable

scattering effects microphones should either use slender mounts and be held from

behind or be mounted on a solid surface designed to cleanly reflect the incoming

acoustic waves (in which case the measured sound pressure amplitude is doubled

because of the addition of the incident and reflected waves). Fig. 10.28 shows

single microphones mounted with these considerations in mind in an open-jet wind

tunnel. Note that acoustic foam is wrapped around the support beams of the

microphone gantry in order to reduce acoustic reflections. Two different mounting

strategies for a microphone array are shown in Figs. 10.29 and 10.30. In Fig. 10.29

the microphones are mounted flush in the face of a circular carbon fiber disk

designed to reflect the sound, and in Fig. 10.30 the microphones are supported

from behind using an open lattice designed to transmit the sound at wavelengths

of interest.

Fig. 10.29 Microphones mounted in a

carbon fiber disk to form a 117-

microphone phased array.
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It is often of interest to obtain sound measurements at angles that require placing

microphones inside the flow. A good example here is rotor testing, where sound

radiated on or near the rotor axis is of particular scientific interest. When a micro-

phone is placed directly in the flow its signal will be contaminated with turbulent

and sound pressure fluctuations resulting from the interaction of the microphone

and its support with the flow. To minimize the contamination an aerodynamic

fore-body is used with the microphone, and a streamlined fairing is placed over

the supporting strut. The typical microphone fairing shown in Fig. 10.31 is a

1/2-in. diameter B&K model UA 0386 nose cone. This consists of a

bullet-shaped housing with a circumferential opening covered by a porous screen.

When mounted to the front of a microphone the space interior to the screen forms a

cylindrical cavity with one face formed by the microphone diaphragm. Regardless

of the orientation of the acoustic source of interest, the microphone is mounted

with the nose-cone facing directly into the flow. In this position its streamlined

shape minimizes the generation of turbulence, and the screen keeps any flow gen-

erated pressure fluctuations separated from the diaphragm. Furthermore, the screen

tends to average out turbulent pressure fluctuations that are incoherent around its

circumference. The principal drawback of this arrangement is that the nose cone

changes the response of the microphone to sound at wavelengths of comparable

size. Fig. 10.27 shows the effect of this nose cone on the free-field response of

the 1/2-in. B&K 4190 microphone. For sound waves directed roughly at the face

of the microphone θ¼0 degrees and 30 degrees the nose cone considerably atten-

uates the intensity of the sound measured at frequencies above about 15 kHz. The

forebody actually amplifies sound coming from the side and behind in this fre-

quency range. Obviously, these effects need to be corrected if sound at these fre-

quencies is to be measured accurately. Note that other longer forebody designs can

further reduce flow noise contamination [15].

Microphone 
diaphragm

Supporting lattice 
structure

Fig. 10.30 Microphones mounted from behind using an open lattice in the anechoic chamber of

a hybrid anechoic wind tunnel.
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The design of the strut supporting the microphone in the flow is equally critical.

Even as a streamlined airfoil, the strut will be an acoustic source that competes with

the sound produced by the model under test. Making the strut as quiet as possible,

maximizing the distance of the microphone from the strut (by using a long sting

support) can be simple and effective measures. (Note that Fig. 10.31 shows a micro-

phone being used to measure relatively intense sound from a rotor system, and thus a

short microphone sting was adequate in this case.) Ideally, the airfoil section chosen

for the strut needs to be quiet. In particular, it must not generate vortex shedding tones

while being thick enough to provide rigid structural support for the microphone. The

McMasters-Henderson airfoil [16], a symmetric 28% thick section illustrated in

Fig. 10.32, works well in this role [15].
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Fig. 10.32 The McMasters Henderson airfoil section [16], with coordinates.
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strut and cabling

Fig. 10.31 Microphone with nose cone mounted in the flow using a faired strut.
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10.4 The measurement of turbulent pressure fluctuations

Microphones respond to pressure fluctuations regardless of whether those fluctuations

arise from sound waves or flow features. The same basic devices are thus used for

measuring the fluid dynamic pressure fluctuations at a surface immersed in a turbulent

flow. Such pressure fluctuations are often of interest since they represent an acoustic

source (through Curle’s equation) or because they help reveal the physical character-

istics of a turbulent flow that is otherwise responsible for the aerodynamic noise

produced.

The requirements of fluid dynamic pressure fluctuation measurements are quite

different from those of sound measurements, and thus the details of the devices used,

and how they are used, can be significantly different. The considerations that lead to

these requirements concern the scale, intensity, and the location of the pressure

fluctuations.

At low Mach number the scale of the turbulent eddies L in a flow is much smaller

than the wavelength of the sound they might produce λ, the ratio being roughly the

Mach number. (This is because we expect the passing frequency of the eddies U/L
to be the same as the frequency of the sound co/λ.) Suppose, for example, we are con-

cerned with characterizing the pressure fluctuations underneath a turbulent boundary

layer on the surface of an airfoil. Such pressure fluctuations define the basic source

terms for trailing edge noise and roughness noise to be discussed in Chapter 15. As

discussed in Section 9.2.3 and shown in Fig. 9.20B the highest frequency pressure

fluctuations in the boundary layer occur at a normalized angular frequency of about

ων/uτ
2. The friction velocity uτ is expected to be about 5% of the free streamU∞, so for

an airfoil traveling through air at 50 m/s, ωffi4.3�105 or 68 kHz assuming sea-level

conditions. If we take the convection velocity of the smallest eddies to be 0.6U∞
(Fig. 9.19), then this implies that these eddies are a little under half a millimeter in

size. If we are interested in completely resolving the pointwise pressure, then we must

be able to resolve pressure scales at least this small. This is a major challenge. Studies

using different size transducers [17] have shown that the measurement of the pressure

spectrum becomes independent of transducer size when the effective transducer diam-

eter, normalized on the inner boundary layer variables as d+¼duτ/ν, is less than about
18. For the airfoil example, this implies a diameter d, of only 0.1 mm. In most cases it

is not possible to meet this requirement—sufficiently small transducers simply do not

exist. However, making the effective transducer size small is still important in min-

imizing the underresolution if we are interested in characterizing the pressure at a

point. In doing so it usually makes sense to match the dynamic response of the micro-

phone and its spatial response. If we need to use a transducer to measure the pressure

fluctuations on our airfoil which has a dynamic response that dies off above 17 kHz,

say, then there is no real purpose for its effective diameter to be less than about

0.4 mm.

At low Mach numbers, the intensity of pressure fluctuations in a turbulent flow is

usually many orders of magnitude larger than the far-field sound the flow produces.

Transducer dynamic range is therefore a consideration. In an equilibrium turbulent

254 Experimental Approaches



boundary layer the root-mean-square pressure fluctuation at the wall is about 1% of

the free stream dynamic pressure 1⁄2ρ∞U
2
∞ and approximately three times the wall

shear stress τw, corresponding to 20 Pa or 120 dB (relative to 20 μPa) in the above

airfoil example. If it were produced by sound waves, a level of 120 dB would be close

to the threshold of pain and thus is already near the upper limit of many commercially

available microphones. Furthermore, simple perturbations to the boundary layer, such

as produced by a step in the surface, can increase the RMS pressure fluctuation by

more than an order of magnitude, meaning that a transducer with a 140 dB range

would be inadequate in this case. One benefit of the high range of aerodynamic pres-

sure fluctuations is that it does permit the use of solid-state transducers that are

normally too insensitive for sound measurement. Such transducers are usually

piezo-resistive (electrical resistance proportional to pressure) or piezo electric (charge

proportional to pressure).

The final factor in the selection of pressure transducers for flowmeasurement is the

space available. In some applications this may be the dominant constraint. Trailing

edge noise is again a convenient example. The radiated noise is nominally dependent

on the surface pressure fluctuation difference between the two sides of the airfoil at the

trailing edge itself. There is therefore a desire to measure as close as possible to this

point so that the measured characteristics are accurately representative of the source

term. Consider the commonly used NACA 0012 airfoil, for example. At a point 5% of

the chord length c upstream of the trailing edge (a reasonable place for a trailing edge

pressure measurement), this airfoil has a thickness equivalent to 1.4% c. For a

half-meter chord length model this implies 7 mm thickness to accommodate one or

two surface pressure sensors (if the difference is being measured) and their wiring.

Fig. 10.33 shows some examples of microphones suitable for turbulent pressure

fluctuation measurement at low Mach number. We use these examples to illustrate

the typical trade-offs made in selecting suitable transducers, rather than

Fig. 10.33 Examples of

microphones for pointwise

measurement of pressure in a

flow. All are shown on the

same scale, which may be

inferred from the 1/8-in.

diameter microphone in part

(A) B&K model 4138,

(B) Sennheiser KE 4-211-2,

(C) Knowles FG-23742-C05,

(D) Kulite LQ-062-5D, and

(E) Endevco 8514-10.
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recommending any specific device. The two electret microphones, the Knowles

FG-23742 and the Sennheiser KE-4-211-2, are supplied with fairly small openings

(0.75 and 1 mm diameter, respectively) and thus have an inherent spatial resolution

that may be sufficient for some applications. These microphones are quite sensitive

(6.7 and 10 mV/Pa, respectively) implying measurements relatively free of electrical

noise, have a useful frequency response (to 10 and 20 kHz), and are compact enough

for installation within a confined space (particularly the Knowles for which the casing

is only 2.5 mm in diameter and depth). On the other side, these devices have limited

dynamic ranges of about 115 dB for the Knowles and 140 dB (with some distortion)

for the Sennheiser. Much higher ranges can be achieved using the solid-state Kulite

LQ-062-5D and the Endevco 8514-10 both of which have pressure fluctuation ranges

that exceed 170 dB, have frequency response characteristics from DC to over

100 kHz, and come in relatively compact packages with effective sensor diameters

of approximately 0.7 and 1.7 mm, respectively. The caveat here is that the large range

implies a low sensitivity, of about 4 and 3 μV/Pa.
A different option is to use a small instrumentation microphone, such as the 1/8-in.

B&K 4138 pictured in Fig. 10.33A. This microphone combines a range (168 dB) and

sensitivity (1 mV/Pa) that are well suited to most low Mach number flows. If device

size is not a limitation, then the dominant shortcoming of this transducer is the large

diameter of its diaphragm (3 mm). A simple and common way to improve the spatial

resolution of microphones of this type is to place a pinhole over the diaphragm (com-

pare Figs. 10.33A and 10.26C). However, it is important to recognize and account for

the fact that this substantially impacts the frequency response.

The cavity and pinhole aperture above the microphone together form what is

known as a Helmholtz resonator as shown in Fig. 10.34. As long as the dimensions

of the cavity and pinhole are small compared to the acoustic wavelength, then the pres-

sure sensed in the cavity by the microphone pm can be determined from the pressure

Volume  
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diaphragm 

 

 

Flow/ambient 

 h

Fig. 10.34 Nomenclature for analysis of the Helmholtz resonator formed by mounting a

microphone behind a pinhole in a surface. The dashed line shows the control volume analyzed.
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experienced at the top of the pinhole p using a one-dimensional momentum balance.

The rate of change of momentum of the fluid oscillating through the pinhole is gen-

erated by the pressure difference between the cavity and the ambient (pm�p) acting
over the pinhole area A. This is opposed by the frictional resistance to flow through the

pinhole which we will assume is proportional to the flow velocity with a damping

coefficient RA, where R is the termed the acoustic resistance. Thus,

M
@u2
@t

¼ pm�pð ÞA�u2RA (10.4.1)

Here M is the mass of fluid in motion and u2 is its velocity. Assuming harmonic

fluctuations, i.e., u2, p, and pm are given by their amplitudes û2, p̂ and p̂m multiplied

by exp(�iωt), this becomes

�iωMû2 ¼ p̂m� p̂ð ÞA�RAû2 (10.4.2)

The movement of the flow out of the pinhole produces a rate of change of the density

of the air in the cavity, given by the associated mass flow rate and the cavity volume

@ρ

@t
¼�ρou2A

V
¼ 1

c2o

@pm
@t

(10.4.3)

where this has been equated to the pressure in the cavity pm assuming isentropic com-

pression. In terms of amplitudes this relationship can be rewritten as

û2 ¼ iωV

ρoc2oA
p̂m (10.4.4)

Substituting into Eq. (10.4.2) and rearranging we obtain

p̂m
p̂
¼ ρoc

2
oA

2=V

�ω2M� iωRA+ ρoc2oA
2=V

(10.4.5)

We see that the pinhole cavity behaves as a simple second-order system with a stiff-

ness given by ρocoA
2/V. The mass of the fluid in motionM can be computed from the

product of the air density, the pinhole area, and an effective pinhole depth Leff. This is
generally different from the physical depth L to account for the additional fluid just

above and below the pinhole aperture that is involved in the motion.

The appropriate values for Leff and R are dependent upon the specifics of the sit-

uation. With no mean motion in the ambient and a circular pinhole that is shallow

compared to its diameter d, potential flow modeling [18] indicates that Leff¼πd/4.
When the pinhole depth is significant this estimate can be modified to

Leff ¼ L+
π

4
d (10.4.6)
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Different formulas for the acoustic resistance exist, a common one being [19]

R¼ ρo
ffiffiffiffiffiffiffiffi
8νω

p
1 + L=dð Þ (10.4.7)

where ν is the kinematic viscosity of the air. Behaving as a second-order system the

response of the cavity p̂m=p̂ will have a natural frequency

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρoc

2
oA

2

MV

r
¼

ffiffiffiffiffiffiffiffiffiffi
c2oA

Leff V

s
¼ cod

D
ffiffiffiffiffiffiffiffiffiffi
hLeff

p (10.4.8)

where D denotes the microphone diaphragm diameter and h the distance between the

diaphragm and the bottom of the pinhole. Obviously maximizing the frequency

response means minimizing the depth of the diaphragm below the surface, given

a fixed microphone and pinhole diameter. The amplitude response at the natural

frequency is

p̂m
p̂

				
				¼

ρoc
2
oA

2

V
ωnRA

¼ Leff
ffiffiffiffiffiffi
ωn

pffiffiffiffiffi
8ν

p
1 +L=dð Þ (10.4.9)

using the resistance formula of Eq. (10.4.7). The measured response function of the

B&K 4138 microphone with half-millimeter diameter pinhole pictured in Fig. 10.33A

as shown in Fig. 10.35. Using known geometry (D¼3.2 mm, d¼0.5 mm) and envi-

ronmental conditions (co¼340 m/s, ν¼1.6�10�5 m2/s) and taking h and L to be 0.5
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Fig. 10.35 Measured response of a B&K 4138 microphone with 0.5-mm pinhole cap.
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and 0.2 mm, respectively, Eqs. (10.4.8), (10.4.9) give a natural frequency of 16.6 kHz

and an amplitude response at this frequency of 21 dB. While the predicted natural fre-

quency appears accurate, the amplitude is not, reflecting the fact that the resistance

formula of Eq. (10.4.7) is quite uncertain. In particular, when using a microphone with

pinhole to measure the fluctuating pressure under a flow, one would expect shear flow

over the top of the pinhole to have a substantial effect on the acoustic resistance. Past

measurements have indicated both an increase [19] and a decrease [20] in effective

resistance in the presence of a grazing flow, in different circumstances.

Overall, the important observation here is that enhancing the spatial resolution of a

microphone using a pinhole has a substantial effect on its dynamic response that is

likely to impact the frequency range of interest in most low Mach number flows.

Given the magnitude of the effects, and the uncertainties in their theoretical estima-

tion, dynamic calibration of the microphone with pinhole is essential. This is often

done by comparing the output with that of an unmodified instrumentation microphone

when both are exposed to a broadband acoustic source.

Resolving the pointwise pressure is not always the goal of a surface pressure mea-

surement in a flow. Sometimes we are interested in deliberate spatial averaging of the

surface pressure fluctuations, typically if we are interested in revealing the portion of

the pressure field that is directly related to the near-field of an acoustic response. For

example, if we are considering the response of an airfoil in turbulence and the leading

edge noise it produces (e.g., Fig. 8.2), then at low Mach number the source term is

characterized by the zero spanwise wavenumber component of the surface pressure

fluctuation (i.e., its spanwise average) produced on the airfoil leading edge by the inci-

dent turbulence. Likewise, at low Mach number the sound produced by flow over a

step is determined by the unsteady force on the step faces and thus the spatially aver-

aged pressures there. Fig. 10.36 shows a linear array of 24 half-inch microphones

developed precisely for this application. The microphones are used with their

Fig. 10.36 Array of 24, 1/2-in. instrumentation microphones used by Awasthi [21] to measure

the unsteady force on a step face. Note that microphone caps have been removed so that the

diaphragms can be mounted flush with the flow surface.
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diaphragms exposed and mounted flush with the surface, so as not to disturb the flow

and to take advantage of the averaging of the pressure fluctuations over each dia-

phragm as well as the array as a whole.

The spatial sensitivity distribution of an instrumentation microphone diaphragm

was measured by Br€uel and Rasmussen [22] and can be predicted by the function

[23,24]

S r=rmaxð Þ¼ Jo αð Þ� Jo αr=rmaxð Þ
Jo αð Þ� 1

(10.4.10)

where α¼2.675, Jo denotes the Bessel function of the first kind of zero order, r is the
distance from the center of the microphone, and rmax is the diaphragm radius. This

function, plotted in Fig. 10.37, shows how the microphone is less sensitive at its edges

and thus has somewhat narrower spatial resolution than implied by its physical

diameter.

The challenge with this type of measurement system is in establishing the extent

to which the array produces an acceptable approximation to the ideal intended result

(usually defined by a parallel aeroacoustic analysis). For the array of Fig. 10.36 the

ideal result was the uniform averaging of the pressure over an inf initely extending

spanwise strip. One way this can be done when the turbulence is generated by a

boundary-layer like flow is to exploit the models for the wave-number frequency

spectrum of the wall pressure Φpp(k1,k3,ω) introduced at the end of Chapter 9. Spe-

cifically, given the sensitivity distribution of each microphone, any array result can

be written as a wavenumber filter function F(k1,k3). In our example, this is obtained

by Fourier transforming the sum of the 24 spanwise distributed microphone response

functions representing the spatial sensitivity map of the array. The model spectrum

(scaled according to boundary layer parameters appropriate to the experiment) is
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Fig. 10.37 Sensitivity as a function of position within a microphone diaphragm.
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then integrated, weighted by this filter, to estimate the frequency spectrum of the

array output, i.e.,

Gpp ωð Þ¼
ð∞
�∞

ð∞
�∞

Φpp k1, k3,ωð ÞF k1, k3ð Þdk1dk3 (10.4.11)

This can then be compared to the same integration carried out using a filter function

FI(k1,k3) representing the ideal intended measurement Gpp
I(ω). By comparing Gpp(ω)

and Gpp
I(ω) the frequency range within which the measurement is likely to be accurate

can be inferred.

10.5 Velocity measurement

Measuring the velocity field of a flow is often a central component of aeroacoustics

experiments. First, velocity measurements are needed to quantitatively reveal the

form of the flow in which the noise is being produced. An example here would be

measuring mean flow field around an airfoil that is a source of trailing edge noise.

Such measurements would reveal the thickness of the boundary layer and the

velocity distribution within it—important contextual and scaling information for

the noise produced. Second, velocity measurements are often made to directly

quantify the acoustic source, such as measuring the upwash fluctuations produced

by turbulence approaching a noise-producing leading edge. In this section we focus

our discussion on instrumentation suitable for this second purpose and the associ-

ated issues. For a more general review of instrumentation for aerodynamic velocity

and turbulence measurements the reader is referred to a dedicated text such as

Tropea et al. [25].

Hot-wire anemometry serves as a basic tool in many aeroacoustics experiments.

Hot wires provide continuous measurement of the fluctuating velocity at a fixed point

as in a flow as turbulence is convected past, in much the same way that a noise gen-

erating device experiences the turbulence. The fluctuating signals generated by a

hot-wire probe can be readily analyzed to determine velocity spectra and, if pairs

of probes are used, space time correlations. These are capabilities that match well with

the scientific challenge of characterizing sound generated as a result of interaction

with the turbulence. Hot-wire anemometry is long established technology that is well

understood. One of its drawbacks is that it can only be used accurately in regions

where the turbulent fluctuations are significantly smaller than the mean velocity

and thus is restricted to flows outside regions of separated flow. A second limitation

is that it is intrusive, requiring introduction of a solid probe to the flow. In most

unseparated flows, it is possible to arrange the mounting of probes so that the intro-

duction of the hot wire does not significantly disturb the flow at the measurement

point. However, it is almost inevitable that any probe arrangement will generate sig-

nificant sound or otherwise disturb the aeroacoustic interaction under study. Hot-wire
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measurements therefore cannot usually be made simultaneously with acoustic mea-

surements, and duplicate runs of an experiment are usually required to collect both

types of information.

Hot wires measure velocity by sensing the rate at which a fine wire is cooled by the

flow. Wires are typically 2.5 or 5 μm in diameter (at the limit of visibility for most

people) and 1–2 mm in length. Tungsten is a common wire material. Fig. 10.38 shows

a simple single hot-wire sensor supported on two needle-like prongs. The hot-wire

sensor is operated using an electrical feedback circuit incorporating the sensor as

one arm of a Wheatstone bridge. The circuit provides current to electrically heat

the sensor, so its cooling rate can be measured. The absolute temperature to which

the wire is heated as a multiple of the ambient temperature is referred to as the over-
heat ratio. The feedback loop is designed tomaintain sensor conditions in the presence

of the fluctuating cooling rate imposed by the turbulent velocity fluctuations to which

the sensor is exposed. The most widely used scheme is referred to as constant temper-
ature anemometry, or CTA. Here the voltage across the sensor is continually adjusted
to maintain the sensor at the same temperature and thus the same resistance. The volt-

age required to do this varies with the velocity to which the sensor is exposed. Since

the sensor remains at a fixed temperature the only inertia in the system that limits the

response of the probe is electrical and thus it is quite possible to achieve the frequency

response (usually in the 10s of kHz) necessary to characterize the turbulence. Over-

heat ratios of between 1.6 and 1.8 are commonly used in this scheme.

In CTA the relationship between the velocity experienced by the sensor veff and
voltage output by the bridge E is known as King’s law:

E2 ¼A +Bvneff (10.5.1)

This equation comes from the relationship between the nondimensional heat transfer

rate from a circular cylinder in a flow and the Reynolds number of the flow. The

exponent n is generally taken as 0.45, whereas the constants A and B are determined

by calibration. Calibration is performed by placing the probe in a known flow (such

as a wind tunnel free stream) and measuring the voltage output of the anemometer

over a sequence of several different flow speeds (usually about 10) covering the

range of speeds that the sensor is expected to be exposed to during the measurement.

θv1

v2

v3

3.2 mm

(A) (B)

Fig. 10.38 A hot-wire probe with a single-slanted sensor (A) photo and (B) schematic.
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Hot-wire calibrations are notoriously sens itive, particularly to temperature of the

flow but also to humidity and to any contaminants in the air that tend to coat the

sensor and change its thermal or electrical properties. It is thus not uncommon

to need to recalibrate for every hour or two of operation. In facilities where the

temperature is not controlled to within a fraction of a degree, methods to correct

for temperature drift [26,27] are necessary to maintain calibration and measurement

accuracy.

As a first approximation the effective cooling velocity experienced by the sensor

can be taken as the component of the velocity perpendicular to the sensor. Consider,

for example, the single sensor arrangement shown in Fig. 10.38. We choose our coor-

dinate system so that the sensor is in the v1�v2 plane and so that the mean flow is

predominantly in the v1 direction.With the sensor sitting at an angle θ to this direction,
the effective velocity will be:

v2eff ¼ v1 sin θ + v2 cos θð Þ2 + v23 (10.5.2)

Note that this relationship guarantees that veff can only ever be determined as a positive

quantity, reflecting the fact that flow can only ever increase the heat transfer from the

wire, regardless of its direction. This rectification effect is what prevents hot wires

being used accurately in highly turbulent flows, where there is no dominant mean flow

direction and direction of the flow may reverse on the sensor. For the same reason, it

usually makes little sense to pick probe arrangements that place a sensor anywhere

near tangent to the flow direction. The angle θ in Fig. 10.38 would thus not usually

be chosen to be less than about 45 degrees. To make Eq. (10.5.2) more useable, we

linearize it by first breaking the velocity components into their mean and fluctuating

components:

Ueff + ueff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1 + u1ð Þsin θ + U2 + u2ð Þcos θ½ �2 + U3 + u3ð Þ2

q

¼ U1 sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

u1
U1

+
U2

U1

+
u2
U1

� �
cot θ


 �2
+

U3

U1

+
u3
U1

� �2

csc2θ

s

¼ U1 sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2

u1
U1

+ 2
U2

U1

+
u2
U1

� �
cot θ +O 2ð Þ

s

	 U1 + u1ð Þsin θ + U2 + u2ð Þcos θ (10.5.3)

where we have neglected all terms involving the square or product of the ratio of a

mean or fluctuating component to U1 in order to expand the square root. So, in the

approximation of Eq. (10.5.2) we see that a hot-wire sensor placed perpendicular

to a mean flow (θ¼90 degrees) senses the fluctuating component of velocity in the

mean flow direction. A sensor placed at an angle to the mean flow can be thought

of as sensitive to a linear combination of the mean and fluctuating velocity compo-

nents that lie in the plane formed by the sensor and mean flow direction. This second

observation allows us to design a hot-wire probe with multiple sensors placed at
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different angles to the flow so as to measure more than one velocity component.

Figs. 10.39 and 10.40 show examples of such probes in the form of an X-wire probe,

used for two-component velocity measurement, and a quad-wire probe used for

three-component measurements.

Attention to detail is necessary to successfully make hot-wire measurements, par-

ticularly with multiple sensor probes. First, it is usually not safe to rely on Eq. (10.5.3)

and the geometric angles of the sensors to characterize the angle response of a probe.

Cooling effects at the ends of the wires, curvature in the wires, interference between

adjacent sensors and prongs, and the assumptions made in deriving Eq. (10.5.3) make

it wise to calibrate probes for flow angle. This would involve, for example, pitching

the X-wire probe of Fig. 10.39 over an arc of angles in a known flow and recording the

effective velocities measured at each angle. For the three-component probe of

Fig. 10.40 a complete cone of angle measurements is required. Modeling of the mea-

sured angle response can then be accomplished using methods of different fidelity

depending on the application and the accuracy required. At the simplest level

Eq. (10.5.3) may still be used, but with the sensor angles chosen so as to best fit

the calibration data. More sophisticated methods include, in the case of the X-wire,

using the calibration data to establish a look up table for the velocity and angle of

the flow in terms of the voltages of the two sensors [28]. In the case of the

quad-wire, methods include using Eq. (10.5.3) with each sensor to obtain rough esti-

mates of the velocity components that are then used to address a look-up table of the

4.3 mm

(A) (B)

q2

q1q3

q4

Fig. 10.40 A quad hot-wire probe (A) photo and (B) schematic.

2.3 mm

(A) (B)

q2
q1

Fig. 10.39 An X-array hot-wire probe (A) photo and (B) schematic.
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errors in those estimates established using the calibration data [29]. Note that such

schemes can be questionable if the sensors of a probe are exposed to different flows.

In particular, hot-wire probes become unusable when placed in flow gradients that

result in significant changes in the flow properties along or between sensors (such

as at the bottom of a boundary layer). Equivalently, probes cease to be accurate at

frequencies where the typical scale of the turbulence is comparable to the sensor

dimensions or spacing. For these reasons probes tend to be made as small as possible

(e.g., about 1 mm3 in the case of the quad-wire probe).

As noted at the beginning of this section, hot wires are well suited to the mea-

surement of single- and two-point velocity spectra that are of particular interest to

aeroacoustics. It is therefore particularly important that the dynamic response of

the hot-wire anemometers used is adequate to resolve the highest frequency of

fluctuations of interest. Optimizing the dynamic response of a constant temperature

anemometer is, in principle, a simple ma tter of making sure that the capacitance

and inductance of the hot-wire sensor and its cabling are balanced in the Wheat-

stone bridge used to operate it. Commercial anemometer bridges generally permit

the user to adjust this balance. Most bridges also incorporate the ability to impose a

square wave voltage signal across the bridge so as to simulate the effect of impul-

sive changes in velocity at the hot-wire sensor. Alternatively, the anemometer

response can be excited using a pulsed laser directed at the hot-wire sensor. Visual

inspection of the impulse response can be enough to get an idea of the dynamic

response limit within a few kHz. However, recording and Fourier transforming

of the response to quantitatively document the phase and amplitude response of

the sensor as a function of frequency is generally preferable since then the resulting

dynamic calibration can be accounted for in the processing of velocity measure-

ments. Quantitative documentation of the response is particularly important in

multisensor probes since phase matching or correction of the different sensors is

necessary if the velocity components are to be correctly inferred from the effective

velocities at high frequencies.

Optical flow diagnostics also play a major part in aeroacoustic testing. At low

Mach number, the dominant technique is particle image velocimetry (PIV). PIV

can provide instantaneous cross sections through a flow field to directly reveal the

turbulent eddies and their interactions with flow hardware. PIV requires that the flow

be seeded with particles small enough to accurately follow the flow. Seeding materials

include DEHS (di-ethyl-hexyl-sebacate), olive oil, dioctal phthalate, and poly-latex

spheres that are dispersed into particles typically 1 μm in diameter and injected into

the flow far enough upstream of the test region for them to be evenly distributed

throughout the flow regions of interest. Seeding can be a problem in many

aeroacoustic wind tunnels where the seed material may be absorbed into the pores

of wedges and other acoustic treatment, compromising their performance. This prob-

lem often requires that optical measurements be made in a different facility than that in

which the acoustics is being measured, sometimes complicating the comparison of

acoustics and aerodynamics. This has been less of a problem in hybrid acoustic wind

tunnels where the Kevlar acoustic windows tend to reduce the amount of seed material

reaching the most critical acoustic treatment.
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PIV involves directing a sheet of laser light through a flow to illuminate the motion

of seed particles in the region of interest. A camera or cameras are then used to image

the motion of the seed particles and thus infer a cross-sectional view of the flow field.

A single camera can be used to infer two velocity components. Adding a second cam-

era allows the out of plane component to be measured as particles pass through the

thickness of the light sheet. The general approach is to use a double pulsed laser to

produce the light sheet, and synchronized cameras to record images of the particles

separated by a short time interval. Velocities are then determined by cross correlating

small portions of the pairs of images, termed the interrogation domain, to infer the

movement of the local distribution particles. This distance normalized on the time

interval between the images gives the velocity vector of the flow at that location.

One of the great attributes of this method is it provides direct measurements of the

coherent structures present in the turbulence and, through differentiation, of the vor-

ticity field with which they are associated.

Depending on the arrangement and conditions, measurement accuracy of about 1%

or better [25] can be obtained. As an example of a system that achieves this in a low

Mach number environment, consider the PIV setup show in Fig. 10.41. Here a light is a

sheet being used to interrogate the flow structure between a rotor immersed in a

boundary layer and the adjacent wall on which the boundary layer is growing. The

light sheet, generated by an Nd:YAG laser, is oriented parallel to the wall. This allows

the camera to be placed behind the (transparent) wall with its image plane parallel to

the light sheet. This is the optimum orientation since it allows for the best focusing

457-mm 
diameter 
rotor

20-mm tip 
gap with 
wall

Pulsed laser light 
sheet parallel to the 
wall at the mid-
height of the tip gap 
x2=10 mm, for
PIV measurements

Hot-wire 
measurement in 
approach BL (not 
simultaneous with 
PIV or sound 
measurements)

2048 × 2048 pixel CCD

x1

x2

U∞

(A) (B)
camera

Fig. 10.41 The experimental setup of Alexander et al. [30] and Murray [31]. (A) Side-view

schematic showing the positioning of the PIV light sheet and (B) photograph showing the rotor

and light sheet from inside the test section. Experiment included far-field sound measurements.
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across the entire field of view. Where other camera orientations are necessary (such as

in using a second camera to get the third velocity component) it is necessary for the

camera lenses to be tilted with respect to their CCD sensors so that the images can be

properly focused. In this experiment, the flow speed was close to 20 m/s, and the time

delay between laser pulse pairs was set to 50 μs, implying a particle displacement of

about 1 mm. A camera with a resolution of 2048�2048 pixels was used to image a

square portion of the illuminated cross section 28 cm on edge. This implies a particle

displacement of about 8 pixels. Images were analyzed using a 32�32-pixel interro-

gation area. That is, data from the two images in each 32�32-pixel subdomain of the

image plane were cross correlated in order to identify the spatial correlation peak and

thus the local movement of the flow between the images. The fact that one can achieve

1% accuracy with this setup implies that the particle movement can be determined to

an accuracy of better than 10% of the pixel spacing. This is done by curve fitting the

data defining the correlation peak, usually to a Gaussian surface. Fig. 10.42B shows

instantaneous velocity and vorticity fields measured in this experiment. These were

used to identify and quantify the eddies interacting with the blade tips and thus char-

acterize a major component of the rotor noise source.

Once set up, a PIV system can be very effective in collecting large quantities of

flow measurements in a comparatively small amount of wind tunnel time. Post-

processing images to extract those measurements can be quite time-consuming, how-

ever, particularly if the images contain imperfections (as is common). Imperfections

can include inhomogeneities in seeding or illumination, or nonuniform or varying

background. An example of the latter can be seen in a sample image from the rotor
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Fig. 10.42 Raw PIV image (A) and an instantaneous velocity vectors and vorticity contours

(B) from the experiment of Murray [31]. Distances are normalized on the rotor radius and the

origin of x1 is at the rotor mid chord plane; vorticity levels are in radians per second.
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experiment (Fig. 10.42A), where the rotor itself can clearly be seen in the background

and the fine haze distributed across the picture are the particle images. Since the rotor

is moving, separating correlations associated with the displacement of its image, as

opposed to those of the seed particles, is necessary to extract useful measurements.

The effects of a static nonuniform background can be mitigated, for example, by sub-

tracting the background image, obtained by subtracting the minimum intensity

recorded at each pixel over the course of the experiment. For the rotor experiment,

it was necessary to establish a background as a function of rotor position to eliminate

its effect.

Most off-the-shelf PIV systems provide relatively low image pair acquisition rates,

typically of 15–30 Hz and thus do not yield information about the time variation of the

flow that would be useful for most aeroacoustic applications. Time-resolved PIV is

possible, however, and systems capable of several thousand frames per second have

been applied successfully to aeroacoustic problems, particularly in jet flows where

optical access is unrestricted, see, for example, Refs. [32,33].
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11Measurement, signal processing,

and uncertainty

In this chapter we describe how measured data can be used to estimate the types

of statistical and spectral quantities of i mportance to most aeroacoustic problems

and the errors and limitations of that proc ess. The chapter includes discussions of

the inherent limitations in measurements and the concept of measurement uncer-

tainty. The methods used to estimate uncertainties in raw measurements, results

derived from those measurements, and sta tistical quantities are also explained.

A large part of this chapter is dedicated to explaining how spectra and correla-

tion functions are estimated. The numeric al Fourier transform is introduced, and

the distinctions with the continuous Fourier transform explained. Fundamental

issues that limit the accuracy of spectral e stimates, specifically aliasing, broad-

ening, windowing, and the convergence of spectral averages, are discussed in

detail.

Fig. 10.41 depicts an example of an aeroacoustics experiment [1,2]. A thrusting

rotor is partially immersed in a turbulent bo undary layer. As it ingests the layer tur-

bulence, it generates noise that is measured in the far field using a set of micro-

phones. Since the experiment is directed at examining how this sound is

produced, the turbulent fluctuations in the boundary layer are also being recorded

using hot-wire probes and particle image velocimetry (PIV). The signals produced

by the microphones and hot-wire sensors are digitally sampled, as are the outputs of

the reference sensors monitoring the free-stream velocity and the properties of the

air. The data will need to be analyzed to estimate the quantities of interest, from sim-

ple averages of the flow conditions to space-time correlations of the hot-wire and

from PIV-measured velocity fluctuations to cross spectra of the far field sound at

the different microphone positions.

This task is more complex than it sounds. To successfully and accurately docu-

ment the experiment and characterize the aeroacoustics it is necessary to consider

many factors not immediately apparent in the mathematical definitions of the quan-

tities we are measuring. In essence we must consider in detail how the reality of the

experiment and the experimental data differ from the ideal of the mathematical

descriptors we adopt for analysis. To be successful requires that we understand

the errors that these differences produce and that we design our experiment to min-

imize their impact.

11.1 Limitations of measured data

The very act of measurement places fundamental limitations on the information we

can extract. Whatever recording system we use will have a limited range and resolu-

tion, and therefore a limited dynamic range. In a digital measurement system, the
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dynamic range is stated in bits. For example, a 12-bit system is one that can sense 212

(4096) distinct signal levels, implying a dynamic range of 20log10 2
12¼72 dB. Com-

mon also are 16- and 24-bit systems which imply dynamic ranges of 96 and 144 dB,

respectively. Obviously the bit-resolution places a fundamental limit on the accuracy

of a measurement, and the relative accuracy is optimized if a signal is amplified or

attenuated so that its fluctuations span, as nearly as possible, the full range of a mea-

surement system.

A further limitation is that the signal will have to be sampled at a finite rate

fs¼1/Δt, where Δt is the time between successive samples and is referred to as

the sampling period. To define a sinusoidal waveform requires at least two samples

per period (e.g., one at each successive peak and trough). Thus the highest frequency

that can be inferred from a sampled signal is limited to half the sampling rate. This is

referred to as the Nyquist frequency or Nyquist criterion, after the

Swedish-American electronics engineer Harry Nyquist [3]. Finally, we can only

measure the signal for a finite period of time To. As such the measurement cannot

be used to infer the presence of any frequency with a period greater than the sam-

pling time, at least not without making assumptions about the behavior of the signal

before we started or after we finished measuring. Thus the lowest frequency we can

unambiguously infer from our measurement is 2π/To rad/s, regardless of whether

lower frequencies are present.

It is particularly important to be aware of the consequences of not meeting the

Nyquist criterion if one is interested in extracting spectral or time information about

a signal. Consider, for example, the broadband turbulent velocity signal shown in

Fig. 11.1A measured in a boundary layer much like that in our rotor example.

We know from our analysis of the spectrum of this same signal in Chapter 8 (see

Fig. 8.3C) that it contains little, if any, power at frequencies above 20 kHz. Sampling

at 50 kHz, as shown by the black trace in Fig. 11.1A, therefore meets the Nyquist

criterion, and the sampled signal contains a complete representation of the highest

frequency fluctuations. Sampling at the much lower frequency of 2 kHz, shown with

the gray trace, not only misrepresents the c ontent of the signal at frequencies greater

than the Nyquist but also corrupts the information we can obtain at lower

frequencies.

Exactly how this occurs becomes clearer if we consider a simple sine wave. The

1900 Hz wave of Fig. 11.1B is well defined when sampled at 50 kHz. Sampling at

2 kHz, however, produces data points that combine to form a spurious and much lower

frequency waveform of 100 Hz even though each sample still accurately represents

the level of the signal at the instant it was taken. This misidentification of frequency

content, called aliasing, is a serious problem. With only the 2 kHz sampled data we

will have no way of knowing whether the 100 Hz signal was actually present or not.

Furthermore, if we are measuring a broadband signal, like the turbulent velocity in

Fig. 11.1A, the contribution at 100 Hz that comes from aliasing may mask any actual

content we have at that frequency.

If all we are interested in is simple statistical information (such as the mean-square)

which does not involve the signal sequence, then aliasing is of no concern. All that
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matters is that we take sufficient independent samples to accurately estimate the

expected value. We can see this in Fig. 11.1B where the amplitude, and therefore

the mean square, of the two sampled signals is the same. If we are interested in

frequency content or time-delay information, then avoiding aliasing is critical. Even

if one can estimate the maximum frequency of a physical quantity to be measured, the

aliasing of high-frequency interference unintentionally present in the sensor signal

may doom a measurement or produce misleading results. For this reason, most digital

measurement systems include analog low-pass filters that are applied to a signal

before it is measured to ensure that the Nyquist criterion is satisfied.

In the above discussion we have made reference to time signals and frequency anal-

ysis, but the same limitations apply when the variation is in a signal that exists in space

and we want to know its wavenumber content. For example, Fig. 11.2 shows an instan-

taneous velocity vector field measured in the bottom of the boundary layer parallel to

the wall under the tips of the rotor blade in Fig. 10.41. Consider the fluctuating veloc-

ities seen along x3 at x1¼0 as shown in Fig. 11.2B. These are measured every 2.23 mm

over a total length of 240 mm. The Nyquist criterion therefore restricts us to inferring

information at wavenumbers less than 2π/0.00223¼2818 rad/m, and smaller spatial

scales will cause aliasing. At the same time we can only infer information at

wavenumbers down to 2π/0.24¼26 rad/m.
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from the measurement of Fig. 8.3) and (B) sinusoidal fluctuations.
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11.2 Uncertainty

All experimental measurements are subject to some degree of error. The errors may be

random, in that they contribute to the scatter of a measurement about the actual value,

or bias where the average of a sequence of measurements of the same quantity does

not converge to its actual value. In order for an experiment to be useful we need to

have a feel for the typical size of the errors in its results. Uncertainty analysis is

the term given to the methods used to estimate errors and then track their propagation

through themeasurement and data analysis process to a final derived result. We denote

the error in terms of an uncertainty interval or band. The interval is chosen so that
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x2¼10 mm. (B) Instantaneous velocity variation u1 extracted along the line x1¼0.
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there is a specified probability of the true value lying within it. The specified proba-

bility is generally taken to be 95%, unless other considerations (such as safety) dictate

a more stringent standard.

An uncertainty interval is commonly represented using the� sign as in “the Mach

number was measured to be 0.06�0.001” meaning that there is a 95% chance that the

true Mach number was between 0.059 and 0.061. Symbolically, uncertainties are indi-

cated using the δ[] notation andmaybe stated in absolute (e.g., δ[M]¼0.001) or relative

terms (e.g., δ[M]/M¼0.017, or 1.7%). Note that we use square brackets here to distin-

guish the notation used for uncertainty from that used for the Dirac delta function, δ( ).
In general, any experimental result Ro will be a function of some number of raw

measurements mn, i.e., measurements not derived from any other. Each measurement

will be subject to an unknown error εn. If we assume the errors are small, then the error

in the result εR will be given by

εR ffi
X
n¼1

εn
@Ro

@mn
(11.2.1)

where we are ignoring second- and higher-order terms in the Taylor expansion of Ro.

In uncertainty analysis we are interested in estimating the typical error, which can be

obtained by taking the mean square of Eq. (11.2.1) to give

ε2R ffi
X
n¼1

ε2n
@Ro

@mn

� �2

(11.2.2)

where we have assumed that the errors in different measurements are uncorrelated. If

the errors are all normally distributed then the uncertainty at 95% probability is pro-

portional to the root mean square error, where the constant of proportionality of 1.96 is

usually rounded to 2. So, we are 95% certain that the actual value of Ro lies between

�δ[Ro] and δ[Ro] of the measured value, where

δ Ro½ � ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n¼1

δ mn½ � @Ro

@mn

� �2vuut (11.2.3)

Eq. (11.2.3) is a broadly useful tool for tracking the propagation of uncertainties

through the analysis process. However, it is important to keep in mind that it rests

on assumptions that may not be valid in some situations. Indeed, we will meet such

a situation in the next section.

As an example of the application of Eq. (11.2.3), consider estimating an uncertainty

interval for the measurement of free stream velocity in the rotor experiment of

Fig. 10.41. The raw measurements contributing to this result are the dynamic pressure

of the free stream pdyn ¼ 1⁄2ρoU
2
∞ measured using a Pitot static tube and its absolute
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temperature and pressure, Te and po, used to determine the density (ρo¼po/RTe). We

have that

U∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RTepdyn

po

s
(11.2.4)

and thus, since the errors in these measurements will be independent,

δ U∞½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ pdyn
� � 1

2

U∞

pdyn

� �� �2
+ δ Te½ � 1

2

U∞

Te

� �� �2
+ δ po½ � �1

2

U∞

po

� �� �2s

(11.2.5)

In this particular experiment typical values were U∞¼20 m/s, Te¼290 K,

po¼945 mBar, and pdyn¼227 Pa. The raw measurement uncertainties δ[pdyn],
δ[Te], and δ[po] are obtained from the specifications and/or calibrations of the

transducers used, the acquisition hardware, and the judgment of the experimentalist.

Reasonable values in this case might be 2.5 Pa, 0.2 K, and 0.5 mBar, respectively,

giving,

δ U∞½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0121 + 0:00005 + 0:00003

p
¼ 0:11m=s (11.2.6)

where the terms under the square root are written in the same order as in Eq. (11.2.5).

We see that the uncertainty is dominated by the dynamic pressure measurement, and

thus, if we wanted to improve our accuracy then we would invest time or money here.

Note that we did not consider uncertainty in the gas constant R. This would only be

necessary if we were expecting to achieve a relative uncertainty comparable to that

with which R is known.

Several general observations can be made here. First, it is sometimes easier and

more reliable to calculate the derivatives needed for the uncertainty calculation

numerically. In particular, with measurements processed using a computer program

this can be done by perturbing each of the raw measurements input to the program,

in turn, by its uncertainty. The change in the result produced by each trial will approx-

imate δ[mn]@Ro/@mn. Second, informed guesswork by the experimentalist is often

necessary to estimate the uncertainty in a rawmeasurement (and, if necessary, the cor-

relation between rawmeasurements). This is fine. The experimentalist still has a better

idea of this error than anyone else and, if the measurement is worth making, the uncer-

tainty will be a small proportion and so possible inaccuracy within the uncertainty

estimate itself is not the main concern. Finally, the root mean square addition of uncer-

tainties ensures that we will have a tendency to underestimate the uncertainty in a

result, since any neglected contribution would only have increased its value. As such,

it is the experimentalist’s responsibility to substitute a credible value for the uncer-

tainty if they feel that a computed estimate is unreasonably small (though any such

estimate should of course be recorded).
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11.3 Averaging and convergence

Averaging is a common feature of aeroacoustic measurement since many of the prop-

erties in which we are interested are defined as expected values. This means we need

to know how many averages are necessary to determine the desired result to within a

certain accuracy, i.e., the uncertainty band. Consider, as an example, the uncertainty of

a mean value that is being measured from a series of N samples of a quantity a:

�ah i¼ 1

N

XN
n¼1

an (11.3.1)

The notation �ah iis used to recognize that, being determined from a limited number of

samples, this is only an estimate of the true mean value �a. Since Eq. (11.3.1) describes
the functional relationship between themean estimator and the samples fromwhich it is

calculated, it appears quite possible to determine the uncertainty in �ah i from the range of

fluctuations in an using the error propagation equation (11.2.3). However, for almost all

statistical quantities the nonlinear and/or correlation terms ignored in this equation are

significant, and the analysis becomes unwieldy if these are included.We therefore use a

different approach, directly deriving an equation for the variance in the error. For exam-

ple, for the mean value we determine the variance of its estimated value as

ε2ð �ah iÞ¼E �ah i� �að Þ2
h i

¼E
1

N

XN
n¼1

an

( )
� �a

 !2
2
4

3
5¼E

1

N

XN
n¼1

an� �að Þ
 !2
2
4

3
5

¼E
1

N

XN
n¼1

a0n

 !2
2
4

3
5

(11.3.2)

where the prime denotes the fluctuating part. Replacing the square with a double sum

we can write this as

ε2 �ah ið Þ ¼E
1

N2

XN
n¼1

XN
p¼1

a0na
0
p

" #
¼ 1

N2

XN
n¼1

XN
p¼1

E a0na
0
p

h i
(11.3.3)

At this point we can make one of two choices. The first is to assume that the samples

are all independent of each other, such as would be the case if they were collected by

occasionally checking the value of some reference quantity, in which case E a0na
0
p

h i
¼

a02δnp (where δnp is the Kronecker delta) and Eq. (11.3.3) becomes

ε2 �ah ið Þ¼ a02

N
(11.3.4)
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Assuming the error in the mean is normally distributed, the uncertainty interval at 95%

odds is determined as twice its standard deviation.

δ �ah i½ �¼ 2
ffiffiffiffiffiffi
a02

p
ffiffiffiffi
N

p (11.3.5)

So, uncertainty decreases as the inverse square root of the number of independent sam-

ples used in forming the average.

The second option in evaluating Eq. (11.3.3) is to assume that the samples are taken

in rapid succession at equal intervals Δt as they would be if they were part of a

time-resolved measurement. In this case E a0na
0
p

h i
¼ a02ρaa n�p½ �Δtð Þ, where ρaa is

the correlation coefficient function introduced in Eq. (8.4.5), and so we have

ε2 �ah ið Þ ¼E
1

N2

XN
n¼1

XN
p¼1

a0na
0
p

" #
¼ 1

N2

XN
n¼1

XN
p¼1

a02ρaa n�p½ �Δtð Þ (11.3.6)

Introducing the index q¼n�p we can reorganize the summations as

ε2 �ah ið Þ ¼ a02

N2Δt

XN�1

q¼1�N

N� qj jð Þρaa qΔtð ÞΔt (11.3.7)

Now, from Eq. (8.4.5),
XN�1

q¼1�N

ρ qΔtð ÞΔt is equal to twice the integral timescale T ,

assuming Δt≪T and the total sampling time To¼NΔt≫T . Applying these assump-

tions to Eq. (11.3.7) gives,

XN�1

q¼1�N

N� qj jð Þρaa qΔtð ÞΔtffi
XN�1

q¼1�N

Nρaa qΔtð ÞΔt¼ 2NT (11.3.8)

and so we have

ε2 �ah ið Þ ffi a02

To
2T (11.3.9)

and an uncertainty interval of

δ �ah i½ �¼ 2
ffiffiffiffiffiffi
a02

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
To=2T

p (11.3.10)
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In this case the uncertainty is independent of the number of samples we take if we

are measuring for a fixed time. This can be visualized in terms of the rapidly sam-

pled signal (black symbols) of Fig. 11.1A. Averaging the 100 samples of this signal

between t¼0.004 and 0.006 gives a poor estimate of u1 . However, since the data

taken already fully define the signal, we cannot improve this estimate by sampling

faster to take more data over this period. Comparing Eqs. (11.3.10), (11.3.5) shows

that for time-resolved data the effective number of independent samples is given by

the total sampling time divided by twice the integral time scale. A safe rule in gen-

eral is to take the effective number of independent samples as the minimum of N
and To=2T .

In a similar fashion we can derive uncertainty relations for other statistics

including the mean-square and the cross correlation [4]. These are summarized

in Table 11.1. Note that these formulae assume independent samples, and that

the cross correlation and coefficient expressions can equally well be applied to

space or time-delay correlation function estimates of single variables or pairs of

variables simply by appropriately assigning a and b. Technically, the effective

number of independent samples for the second-order statistics depends on the inte-

gral scale of the square or product of correlation functions. As a practical matter,

however, this distinction is often ignored, and the minimum of N and To=2T is

still used.

Table 11.1 Averaging uncertainties

Quantity Estimator Averaging uncertainty

Mean
�ah i¼ 1

N

XN

n¼1
an δ �ah i½ � ¼ 2

ffiffiffiffiffiffi
a02

p
ffiffiffiffi
N

p
Mean square

fluctuation
a02
D E

¼ 1

N

XN

n¼1
a02n δ a02

D Eh i
¼ 2

ffiffiffi
2

p
a02ffiffiffiffi
N

p
RMS

ffiffiffiffiffiffiffiffiffiffiffiffi
a02
D Er

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1
a02n

r
δ

ffiffiffiffiffiffiffiffiffiffiffiffi
a02
D Er� �

¼
ffiffiffi
2

p ffiffiffiffiffiffi
a02

p
ffiffiffiffi
N

p
Cross correlation

a0b0
	 
¼ 1

N

XN

n¼1
a0nb

0
n δ a0b0

	 
� �¼ 2
ffiffiffiffiffiffi
a02

p ffiffiffiffiffiffi
b02

p
ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ρ2ab
� �q

Cross correlation

coefficient ρabh i ¼ a0b0
	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a02
D E

b2
D Er δ ρabh i½ � ¼ 2ffiffiffiffi

N
p 1�ρ2ab

� �
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11.4 Numerically estimating Fourier transforms

In Chapter 8 we introduced the autospectrum and the cross spectrum as important

measures of turbulent flows and the acoustic fields that they generate. The measure-

ment of these functions, and the quantities that can be inferred from them, is therefore

often the central focus of aeroacoustics experiments. In this and the following sections

we develop the tools needed to best estimate these functions and related quantities

using sampled data. As a first step we introduce in this section the discrete Fourier

transform (DFT) and its inverse discrete Fourier transform (IDFT), as approximations

to the continuous Fourier transform we use in analysis. The DFT is defined as

Am�
XN
n¼1

ane
�2πi n�1ð Þ m�1ð Þ

N �DFT an,mð Þ (11.4.1)

for m¼ 1 to N. The IDFT is defined as

an� 1

N

XN
m¼1

Ame
2πi n�1ð Þ m�1ð Þ

N �IDFT Am, nð Þ (11.4.2)

for n¼ 1 to N. Note that these specific definitions are the same as those used by the

Matlab programming environment1 and other popular software tools, and that the

IDFT is the inverse of the DFT so that

an ¼ IDFT DFT an,mð Þ,nð Þ

Eqs. (11.4.1), (11.4.2) are rarely computed explicitly aswritten since this is an expensive

calculation requiring O(N2) operations. Instead the Fast Fourier Transform algorithm

[5] is used which takes advantage of efficiencies which become possible when N is a

composite number, and particularly when it is a power of 2. This reduces the compu-

tational effort to O(N log N)—a huge saving when large data sets are involved.

Consider now the definition of the continuous Fourier transform in time, Eq. (8.4.1),

applied to a signal that lasts a finite time of To seconds.

a
� sð Þ

ωð Þ¼ 1

2π

ðTo
0

a tð Þeiωtdt (11.4.3)

We use the symbol a
� sð Þ

ωð Þ since this is slightly different than Eq. (8.4.1) where the

time range of the integral extends from�T to T. Suppose that the signal is formed from

N samples of the quantity a taken at the beginning of a series of regular time intervals

1The DFT and IDFT are implemented by the Matlab functions fft() and ifft() respectively.
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Δt, i.e., an¼a([n�1]Δt) for n¼1 to N so that To¼NΔt. To apply the definition to this
signal we replace the integral by a summation

a
�
ωð Þ	 
¼ 1

2π

XN
n¼1

ane
iω n�1ð ÞΔtΔt (11.4.4)

where a
�
ωð Þ	 


indicates that we are using this discretization of Eq. (11.4.3) to provide

an estimate of the continuous Fourier transform a
�

ωð Þ as defined in Eq. (8.4.1), the

function we are really interested in. We will address exactly how a
�
ωð Þ	 


is different

than a
�

ωð Þ in Section 11.5. To apply Eq. (11.4.4) numerically we also need to dis-

cretize the result of the Fourier transform as a
�
m

	 
¼ a
�

m�1ð ÞΔωð Þ	 

for m¼1 to

N. Note that frequency resolution Δω is also the smallest nonzero frequency at which

we are going to get a result, so we choose this to be equal to the lowest frequency that

can be unambiguously determined from the sampled time signal, 2π/To. Thus,

a
�
m

	 
¼ 1

2π

XN
n¼1

ane
i m�1ð ÞΔω n�1ð ÞΔtΔt (11.4.5)

Now ΔωΔt¼2πΔt/To¼2π/N, and so,

a
�
m

	 
¼ 1

2π

XN
n¼1

ane
2πi n�1ð Þ m�1ð Þ

N Δt (11.4.6)

Comparing this with Eq. (11.4.1), we see that the numerical estimate of the Fourier

transform can be calculated as

a
�
m

	 
¼Δt
2π

DFT* anmð Þ (11.4.7)

where the asterisk denotes the complex conjugate of the DFT. If we restrict ourselves

to times t from 0 to To then the inverse of the continuous Fourier transform of

Eq. (11.4.3) is given by,

a tð Þ¼
ð∞

�∞

a
� sð Þ

ωð Þe�iωtdω (11.4.8)

and the equivalent inverse numerical transform to Eq. (11.4.7) is

an ¼ 2π

NΔt

XN
m¼1

a
�
m

	 

e�

2πi m�1ð Þ n�1ð Þ
N ¼ 2π

Δt
IDFT* a

�
m

	 

n

� �
(11.4.9)

where Δt¼2π/NΔω.
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Consider the example shown in Fig. 11.3 of a time domain signal, represented by

samples an, and the values of the transform a
�
m

	 

it implies. The signal is a simple

square pulse defined by 32 samples. The sampling period Δt is 1 s so that the fre-

quency spacing in the Fourier domain is 2π/32 rad/s. Both an and a
�
m

	 

are plotted

against their indices.
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Fig. 11.3 Numerical Fourier transform of a square pulse. (A) Sampled time signal,

(B) transform vs index, and (C) transform vs frequency with conjugate reflection shifted to

negative frequencies.
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Before discussing its individual elements, it is important to note that transform

defined by Eq. (11.4.6) is actually periodic. Since adding or subtracting any integer

multiple of 2π to the exponent does not change its value, then a
�
m

	 
¼ a
�
m+N

	 
¼
a
�
m�N

	 
¼ a
�
m+ 2N

	 

, and so on. The frequency values for which we had derived this

expression, and that are plotted in Fig. 11.3B, thus represent a single period of an infi-

nitely repeating function. Unexpectedly, the same is also true for the inverse transform

of Eq. (11.4.9) which tells us that an¼an+pN, where p is any integer. In other words, we
have inadvertently assumed in our formulation of the numerical Fourier transform that

the samples we measure form precisely one period of a periodic time variation. Since

this is not usually the case, it can be a source of significant bias error, termed broad-
ening. As will be discussed later, the source of this assumption was the discretization

of the transform into frequency intervals.

Consider now the elements of a
�
m

	 

for m¼1 to N shown in Fig. 11.3B. The first

element a
�
1

	 

is simply 1/2π times the mean value of the sampled signal since, from

Eq. (11.4.6),

a
�
1

	 
¼ 1

2π

XN
n¼1

anΔt (11.4.10)

This element is therefore always real. Another element with no imaginary part is

that corresponding to the Nyquist frequency ( π/Δt in terms of angular frequency)

which occurs at index m¼N/2+1 (equal to 17 in the example). Here Eq. (11.4.6)

reduces to

a
�
N=2 + 1

	 
¼ 1

2π

XN
n¼1

ane
πi n�1ð ÞΔt¼ 1

2π

XN
n¼1

an �1ð Þn�1Δt (11.4.11)

Since this is always real we can conclude that the numerical Fourier transform extracts

no useful phase information at the Nyquist frequency.

Fig. 11.3B shows that the remainder of the transform has a conjugate symmetry

with a
�
2

	 
¼ a
�
N

	 

*, a

�
3

	 
¼ a
�
N�1

	 

*,… a

�
m

	 
¼ a
�
N�m+ 2

	 

*. This is a consequence of

the fact that the signal an is real since, from Eq. (11.4.6),

a
�
N�m+ 2

	 
¼ 1

2π

XN
n¼1

ane
2πi n�1ð Þ N�m+ 2�1ð Þ

N Δt¼ 1

2π

XN
n¼1

ane
2πi n�1ð Þ �m+ 1ð Þ

N Δt

¼ 1

2π

XN
n¼1

ane
�2πi n�1ð Þ m�1ð Þ

N Δt ð11:4:12Þ
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which is the conjugate of a
�
m

	 

for real an. The axis of symmetry axis occurs when

m¼N�m+2, corresponding to m¼N/2+1, the Nyquist frequency. Since the numer-

ical transform is periodic we can, and usually do, ascribe the reflected spectral values

from m¼N/2+2 to N to negative frequencies corresponding to m¼�N/2+2 to 0, as

illustrated in Fig. 11.4C. In this way the numerical transform is put in a form that is

explicitly seen to match the conjugate symmetry of the continuous Fourier transform

about zero frequency.

The above discussion demonstrates that the numerical Fourier transform con-

tains no new information at frequencies greater than the Nyquist, as we would

expect given our discussion in Section 11.1. Furthermore we see that a
�
m

	 

is

defined by N unique values (2 real numbers and N/2�1 complex numbers requir-

ing 2 values each) matching the information content of the original sampled signal

an. Table 11.2 summarizes the structure of the Fourier transform vector a
�
m

	 

. Note

that any vector that does not match this structure will imply that the time signal

samples an are complex numbers.

11.5 Measurement as seen from the frequency domain

A complete understanding of the measurement process and its impact on Fourier trans-

form estimates requires that we model that process mathematically. To do this we

introduce the convolution theorem. This says that multiplying together two functions

in the time domain has the same effect as taking the convolution of (convolving) their
Fourier transforms. Conversely, multiplying two transforms is equivalent to convolv-

ing their time functions and dividing by 2π. The convolution of two functions a(t) and
b(t) denoted as a(t)*b(t) is defined as

c tð Þ¼ a tð Þ*b tð Þ�
ð∞
�∞

a τð Þb t� τð Þdτ (11.5.1)

Table 11.2 Structure of the numerical Fourier transform a
�
m

	 

Index Description

m¼1 Mean value (real)

2�m�N

2
Numerical Fourier transform values for frequencies ω¼ m�1ð Þ2π

To
N

2
+ 1

Nyquist frequency value (real)

N

2
+ 2�m�N Duplicate of values for 2�m�N

2
conjugated and in reverse order

so that a
�
m

	 
¼ a
�
N�m+ 2

	 

*
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To prove the convolution theorem, we take the Fourier transform of Eq. (11.5.1) over

infinite limits.

c
�

ωð Þ¼ 1

2π

ð∞
�∞

ð∞
�∞

a τð Þb t� τð Þdτeiωtdt (11.5.2)

Reversing the order of integration gives

c
�

ωð Þ¼ 1

2π

ð∞
�∞

a τð Þ
ð∞

�∞

b t� τð Þeiωtdtdτ (11.5.3)

With the substitution t0 ¼ t� τ we obtain

c
�

So, using the operators [Fscr]{} and ½Fscr��1fg to denote the Fourier transform and its

inverse we have that

a
�

ωð Þ b� ωð Þ¼ 1

2π
½Fscr�

ð∞
�∞

a τð Þb t� τð Þdτ
8<
:

9=
; (11.5.5)

A nearly identical proof shows that

a tð Þb tð Þ¼ ½Fscr��1

ð∞
�∞

a
�
ϖð Þ b� ω�ϖð Þdϖ

8<
:

9=
; (11.5.6)

Note that it is simple to show that convolution is commutative, i.e., a(t)*b(t)¼
b(t)*a(t) and a

�
ωð Þ* b� ωð Þ¼b

�
ωð Þ* a� ωð Þ. To understand what the convolution oper-

ation does, suppose that b is a delta function occurring at a time t1, i.e., b(t)¼δ(t� t1).
Convolving a with b simply shifts a by the time t1 since

a tð Þ*b tð Þ¼
ð∞
�∞

a τð Þδ t� t1� τð Þdτ¼ a t� t1ð Þ (11.5.7)
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By extension, convolving a with a sum of two delta functions at t1 and t2 produces a
function that consists of two copies of a shifted by t1 and t2 and added together, i.e.,

a(t� t1)+a(t� t2). In general, we can think of the convolution as smoothing the signal

a(t) using the kernel b(t), or vice versa. Exactly analogous examples and interpretation

apply to convolution in the frequency domain.

Now consider the measurement process illustrated in Figs. 11.4 and 11.5. We begin

with the continuous time variation of a physical quantity a(t) that effectively extends

forever, Fig. 11.4A. This signal also has a continuous Fourier transform that in prin-

cipal extends over an infinite frequency domain, Fig. 11.5A. To measure the signal,

we sample it at regular intervalsΔt, Fig. 11.4B. This can be modeled as multiplication

of the signal by a train of delta functions, one delta function when each sample is

taken:
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Fig. 11.4 The measurement process as seen in the time domain. (A) Variation of physical

quantity a(t), (B) sampled signal, (C) window function, (D) sampled and windowed data, and

(E) periodic sampled data implied by frequency sampling.
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f tð Þ¼
X∞
n¼�∞

δ t�nΔtð ÞΔt (11.5.8)

This has a Fourier transform that is also a train of delta functions since,

f
�

ωð Þ¼ 1

2π

X∞
n¼�∞

ðT
�T

δ t�nΔtð ÞΔteiωtdt¼Δt
2π

X∞
n¼�∞

eiωnΔt

¼
X∞
n¼�∞

δ ω�nΩoð Þ (11.5.9)
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Fig. 11.5 The measurement process as seen in the frequency domain (in terms of

Fourier magnitudes). (A) Continuous Fourier transform of physical quantity a(t) (also shown

as the dashed line in parts B, D, and E), (B) effect of time sampling, (C) transform of the

window function, (D) effect of time sampling and windowing, and (E) frequency sampling

of final result.
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where Ωo¼2π/Δt. In the example of Figs. 11.4 and 11.5 the sampling period

Δt¼3.14 ms, and so Ωo¼2000 rad/s. Thus the effect of sampling is to sum together

a series of copies of the Fourier transform a
�

ωð Þ each shifted by a different integer

multiple of Ωo, Fig. 11.6B. The Fourier transform is now periodic with the form

a
�
s ωð Þ¼

ð∞
�∞

a
�
ϖð Þ
X∞
n¼�∞

δ ϖ�ω+ nΩoð Þdϖ¼
X∞
n¼�∞

a
�
ω�nΩoð Þ (11.5.10)

This copying is the origin of aliasing. As shown in Fig. 11.5B, for example, a
�

ωð Þ
overlaps with the first copy to its right a

�
ω�Ωoð Þ, and the resulting sum produces

an aliased curve that is different from both. The overlapping is centered on the Nyquist

frequency π/Δt at 1000 rad/s, and the tonal spike at ω¼1055 in the original spectrum

is aliased down to ω¼945. We also see that although aliasing has its greatest effect

around the Nyquist frequency, it can influence the entire shape of the Fourier trans-

form. Obviously this overlapping and the associated error do not occur if the original

signal has no content above the Nyquist frequency.

The fact that we can only measure the signal for a finite time is equivalent to mul-

tiplying it by a function that is 1 while we are measuring and 0 when we are not. This

rectangular window function is shown in Fig. 11.4C, and its effect on the time domain

data is illustrated in Fig. 11.4D. The window function can be written as

w tð Þ¼H tð ÞH To� tð Þ (11.5.11)

where H is the Heaviside step function and To is the window length. This has the

Fourier transform

w
�

ωð Þ¼ 1

2π

ðTo
0

eiωtdt¼ eiωTo �1

2πiω
¼ To
2π

sin ωTo=2ð Þ
ωTo=2

eiωTo=2 (11.5.12)

The
sin x

x
, or sinc, function that forms the magnitude of w

�
ωð Þ is dominated by a

central peak surrounded by decaying sidelobes with intervening nulls at frequencies

of 2πn/To, where nj j 	 1, as illustrated in Fig. 11.5C. So, multiplying the time series by

the window function convolves its Fourier transform with this sinc function.

The resultant smoothing by w
�

ωð Þ, seen in Fig. 11.5D, substantially diminishes the

sharp peaks in the transform associated with the tonal components of the signal

and also generates sidelobes around those peaks mirroring those present in the window

function. This convolution with the window function is the source of broadening.

The final measurement step, implicit in the numerical Fourier transform is the sam-

pling of the Fourier transform in the frequency domain, Fig. 11.5E. The implied mul-

tiplication by a delta function train in frequency is equivalent to convolution in the
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time domain by a delta function train with a spacing equal to To, thereby replicating

our sampled time signal and making it periodic with a period equal to the window

length, Fig. 11.4E.

Unfortunately, we cannot completely mitigate the broadening error since it is a fun-

damental result of sampling the signal for a finite period of time. The worst effects can

be reduced, however, if we window our sampled signal (with its mean value subtracted

out) with a function that varies more smoothly to zero at the ends of the window than

the default rectangular function of Fig. 11.4C. Numerous options are available, two of

which are plotted in Fig. 11.6. These are the Hanning and Blackman Harris window

functions which are all given, respectively, by the expressions:

w tð Þ¼0:5�0:5 cos
2πt

To

� �

w tð Þ¼0:35875�0:48829 cos
2πt

To

� �

+ 0:14128 cos
4πt

To

� �
�0:01168 cos

6πt

To

� � (11.5.13)
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Fig. 11.6 Window functions plotted in (A) the time domain and (B) frequency domain. Solid

line, rectangular; dotted, Hanning; dashed, Blackman Harris.
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The Fourier transforms of these functions reveal sidelobes that are greatly reduced

compared to the rectangular window, though at the expense of increasing the width

of the central lobe, Fig. 11.6B. The Hanning window is a satisfactory default choice

for most applications. The application of a window reduces the average amplitude of

the signal since w(t)�1. This must be corrected by dividing by the RMS of the win-

dow function to ensure that the Fourier transform has the correct level, i.e., by dividing

by
ffiffiffiffiffiffi
w2

p
where

w2 ¼
ðTo
0

w tð Þ2dt

For the Hanning window w2 ¼ 3=8.

11.6 Calculating time spectra and correlations

11.6.1 Calculating spectra

The efficiency of the fast Fourier transform means that it is far quicker to compute

estimates of power and cross spectra directly from the Fourier transform of time series

than it is to apply the definitions in terms of the auto and cross correlation functions

Eqs. (8.4.2, 8.4.20 respectively). Specifically, for the power spectral density we make

use of Eq. (8.4.14)

Saa ωð Þ¼ π

T
E a

�* ωð Þ a� ωð Þ� �
(8.4.13)

To estimate the spectrum using this relation we first note that:

l The Fourier transform in Eq. (8.4.2) is taken from �T to T, whereas the numerical

transform is taken over a record lasting To seconds (Eq. 11.4.3). Therefore, we set
T¼To/2¼NΔt/2.

l To estimate the Fourier transform a
�

ωð Þ, the numerical transform is used, and thus

the spectrum is estimated as

S mð Þ
aa

D E
¼ Saa m�1½ �Δωð Þh i ¼ 2π

T0
E a

�
m

	 

* a

�
m

	 
� �
(11.6.1)

l The numerical Fourier transform is calculated using Eq. (11.4.7) after first win-

dowing the mean-subtracted measured data to avoid broadening. Thus for each

measured record an we will calculate
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a
�
m

	 
¼ Δt

2π
ffiffiffiffiffiffi
w2

p DFT* anwn,mð Þ (11.6.2)

where anwn ¼ a n�1½ �Δtð Þw n�1½ �Δtð Þ, and no summation is implied.
l The expected value operator is estimated by averaging the magnitude squared of

the Fourier transform calculated from multiple time records.

The estimated spectrum is therefore given by

S mð Þ
aa

D E
¼ Saa m�1½ �Δωð Þh i

¼ Δt
2πNNrecw2

XNrec

p¼1

DFT* a pð Þ
n wn,m

 �
DFT a pð Þ

n wn,m
 �

(11.6.3)

where an
( p) denotes the pth record of N samples an. Identical considerations lead to the

cross-spectral density being estimated as:

S
mð Þ
ab

D E
¼ Sab m�1½ �Δωð Þh i

¼ Δt
2πNNrecw2

XNrec

p¼1

DFT* b pð Þ
n wn,m

 �
DFT a pð Þ

n wn,m
 �

(11.6.4)

Doubling these expressions gives the single-sided spectral estimates hGaa
(m)i and

hGab
(m)i, of course. As noted in Section 8.4.1, Eq. (8.4.13) does not apply at zero fre-

quency. Zero frequency spectral estimates (revealing, e.g., integral scales) can be

obtained by assuming that they are given by the asymptotic level of the spectrum

as ω tends to zero, e.g., by assuming G 1ð Þ
aa

D E
¼ G 2ð Þ

aa

D E
or that hGab

(1)i is given by

the real part of hGab
(2)i.

In many cases signals are measured as single sequences of samples of length Ntot

rather than as multiple records. In this case we must decide how to break up these

sequences into records. This decision is controlled by two competing factors. First,

we want to choose the length of each record To (and thus the number of samples

in it N) so that the lowest frequency in the spectrum and its frequency resolution,

2π/To, will be sufficiently small to capture and distinguish all the phenomena in which

we are interested. Second, we wish to maximize the number of recordsNrec over which

the averaging is performed to minimize the averaging uncertainty. At first sight it

appears that these choices are constrained by the total number of samples, i.e.,

Nrec¼Ntot/N. However, when a tapered window function is used, each numerical Fou-

rier transform is only weakly dependent on the samples near the beginning and end of

each record, and thus records are overlapped to make the best use of the data. The

overlap ratio Λ, defined as the number of samples common to two adjacent records

divided by N, increases the number of records that are averaged to
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Nrec ¼ int
Ntot=N�1

1�Λ

� �
+ 1 (11.6.5)

where “int” indicates that only the integer part of the division result is

retained. It is common to use an overlap ratio of 50%, at least with a Hanning

window.

Once a spectrum has been computed we can give up some resolution to obtain a

smoother result. This process, called frequency averaging, is done by defining a

new frequency spacing that is an integer multiple of that for which the spectrum

was calculated. Spectral density values for the intervals with this new spacing are then

obtained by averaging the values computed for the corresponding original intervals.

For example, a spectral estimate hGaai calculated with frequency spacing Δω can be

converted into a smoother estimate hGaa1i with a frequency spacing Δω1¼BΔω,
where B is a positive integer, as

Gaa1 m1�1½ �Δω1ð Þh i¼ 1

B

1

2
G

M� B
2

� �
aa

� �
+
1

2
G

M +
B
2

� �
aa

� �
+

XM +
B
2
�1

m¼M� B
2
+ 1

G mð Þ
aa

D E2
64

3
75

(11.6.6)

for even B, where M¼B(m1�1)+1, and

Gaa1 m1�1½ �Δω1ð Þh i ¼ 1

B

XM +
B�1
2

m¼M� B�1
2

G mð Þ
aa

D E
(11.6.7)

for odd B. In effect these operations replicate what we would have obtained by

reducing our original record length by the factor B and increasing the number of

averages Nrec by the same factor. So, in choosing how to break up a single sequence

of samples in order to compute the spectrum, it is better to err on the side of choosing

fewer, longer records since once the spectrum has been computed we can trade res-

olution for a less uncertain spectrum using frequency averaging, though not

vice versa.

11.6.2 Uncertainty estimates

Uncertainties in spectral estimates associated with statistical convergence can be

determined by extending the methods introduced in Section 11.3 [6]. Estimates at

the 95% confidence level, based on the effective number of independent spectral aver-

ages Nrec taken, are listed in Table 11.3.
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11.6.3 Phase spectra

Estimates of the cross and auto-spectral density can be used to determine coherence

and phase spectra. Particular care needs to be taken in interpreting phase. Superfi-

cially, a positive phase hθab(ω)i can be thought of as implying a time delay, on aver-

age, between the sinusoidal components of a and b at frequency ω (with positive hθabi
implying that b is lagging). However, a phase shift between two sine waves can only

be uniquely determined over a range of one wavelength (2π radians) with the result

that the relationship between the phase and the time delay has the form:

θabh i¼ τω+ πð Þmod2π½ ��π (11.6.8)

where “mod” refers to the modulo operation so that the item in square brackets is equal

to the remainder of (τω+π) after division by 2π, and we have chosen this function so
that �π� θabh i< π. This causes a jump in phase whenever it is equal to �π and is

called phase wrapping. To illustrate this, consider a phase spectrum of the form shown

in Fig. 11.7A. This shows the phase for a cross spectrum between two signals with a

fixed time delay between them, so a(t)¼Cb(t+τ). This results in the linear increase in
phase with frequency and consequent discontinuities where θab jumps from positive to

negative value across the branch cut at �π, shown in Fig. 11.7A.

It is possible to unwrap the phase and determine the absolute time delay associated

with it if the phase variation is assumed to be continuous with frequency, if that var-

iation is sufficiently resolved in hθabi, and if the phase is defined continuously down to

Table 11.3 Averaging uncertainties in spectral quantities

Quantity Estimator Averaging uncertainty

Power spectral density hGaai δ Gaah i½ � ¼ 2Gaaffiffiffiffiffiffiffiffi
Nrec

p
Cross-spectral density

magnitude

jhGabij
δ Gabh ij j½ � ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GaaGbb

p ffiffiffiffiffiffiffiffi
Nrec

p
Co-spectrum Cabh i¼ real Gabh ið Þ

δ Cabh i½ � ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GaaGbb +C2

ab�Q2
ab

q
ffiffiffiffiffiffiffiffi
Nrec

p
Quad-spectrum Qabh i¼ imag Gabh ið Þ

δ Qabh i½ �¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GaaGbb�C2

ab +Q
2
ab

q
ffiffiffiffiffiffiffiffi
Nrec

p
Coherence

γ2ab
	 
¼ Gabh ij j2

Gaah i Gbbh i δ γ2ab
	 
� �¼ 2

ffiffiffi
2

p
γabffiffiffiffiffiffiffiffi

Nrec

p 1� γ2ab
� �

Phase
θabh i¼ arctan

Qabh i
Cabh i δ θabh i½ � ¼

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2ab

q
γab

ffiffiffiffiffiffiffiffi
Nrec

p radiansð Þ
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a frequency where the time delay is less than half the period. In that case we will be

able to unambiguously identify and undo the 2π jumps in phase between adjacent fre-

quencies associated with the phase ambiguity. In Fig. 11.7B we show the data of

Fig. 11.7A unwrapped in this way so that the uninterrupted linear increase in phase

with frequency is visible.

A second concern is that the estimated phase spectrum will adopt a value even

when the coherence is insignificant and no meaningful phase exists. Such values

should, of course, be ignored. The uncertainty relation in Table 11.3 can be used to

identify when there is significant coherence. Specifically, if we consider the border-

line case as that when the coherence is equal to its uncertainty, we obtain

Nrec 	 8
1� γ2ab
� �2

γ2ab
(11.6.9)

for the coherence to be significant. This relationship is plotted in Fig. 11.8. We see, for

example, that 25 averages are sufficient to identify significant coherence values down

to about γ2ab ¼ 0:2, and 100 and 1000 averages to identify coherence values as small as

0.07 and 0.008, respectively.
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Fig. 11.7 Phase spectrum implied by a 10 ms delay between signals a(t) and b(t). (A) Raw
spectrum. (B) Unwrapped spectrum.

294 Experimental Approaches



11.6.4 Correlation functions

The fast Fourier transform also provides a computationally efficient route for estimat-

ing the auto and cross correlation functions. In principle, once we have hSaai and hSabi
obtaining the correlations should just be a matter of applying an inverse Fourier trans-

form consistent with Eqs. (8.4.4), (8.4.21). In practice, this assumes that the record

length used in calculating hSaai and hSabi is much larger than any correlation time

in the signals. Since this is often not the case some special care is required.

Consider first, for example, the calculation of the auto spectrum using Eq. (11.6.1).

Substituting Eq. (11.4.6) for a
�
m

	 

(i.e., not using a tapered window function) we

obtain

S mð Þ
aa

D E
¼ Δt
2πN

XN
n¼1

XN
n0¼1

E anan0½ �e2πi m�1ð Þ n�n0ð Þ=N (11.6.10)

Now, since an ¼ a n�1½ �Δtð Þ then E anan0½ � ¼ Raa n�n0½ �Δtð Þ. Introducing the index

q¼n–n0 Eq. (11.6.10) can be rewritten as

S mð Þ
aa

D E
¼ Δt
2πN

XN
n¼1

XN
n0¼1

Raa n�n0ð ÞΔtð Þe2πi m�1ð Þ n�n0ð Þ=N

¼ Δt
2πN

XN
n¼1

Xn�1

q¼n�N

Raa qΔtð Þe2πi m�1ð Þq=N

100 101 102 103 104
10–3

10–2

10–1

100

Fig. 11.8 Minimum significant phase γ2ab as a function of number of independent spectral

averages Nrec.

Measurement, signal processing, and uncertainty 295



The summation over n then has N�jqj identical terms for 1�N<q<N�1, giving

S mð Þ
aa

D E
¼ Δt
2πN

XN�1

q¼1�N

N� qj jð ÞRaa qΔtð Þe2πi m�1ð Þq=N (11.6.11)

To estimate the correlation function, we now apply the numerical inverse Fourier

transform (Eq. 11.4.9) to hSaa(m)i, giving

R pð Þ
aa

D E
¼ 2π

NΔt
Δt
2πN

XN
m¼1

XN�1

q¼1�N

N� qj jð ÞRaa qΔtð Þe2πi m�1ð Þq=Ne�2πi m�1ð Þ p�1ð Þ=N

¼ 1

N2

XN�1

q¼1�N

N� qj jð ÞRaa qΔtð Þ
XN
m¼1

e2πi m�1ð Þ q�p+ 1ð Þ=N

(11.6.12)

for p varying from 1 to N. Now, the inner summation is zero unless q�p+1 is an inte-
ger multiple of N in which case it sums to N. Since q is limited to the range jqj�N�1,

we find for p>0 that q�p+1¼�N for each q less than zero, and q�p+1¼0 for

each q greater than or equal to zero enabling us to also eliminate the summation over

q to give

R pð Þ
aa

D E
¼N� p�1ð Þ

N
Raa p�1½ �Δtð Þ + p�1

N
Raa p�1�N½ �Δtð Þ (11.6.13)

So we see that the correlation estimate is actually formed from the scaled combination

of two correlation values. Thus estimates R pð Þ
aa

D E
for short positive time delays (from

zero to NΔt/2) are contaminated with those for large negative time delays (from�NΔt
to �NΔt/2).

If the time period over which the correlation is nonzero is insignificant compared

to NΔt/2 then Eq. (11.6.13) reduces to approximately R pð Þ
aa

D E
¼Raa p�1½ �Δtð Þ. If not,

we can obtain an uncontaminated correlation estimate of the second half of our orig-

inal series is set to zero. In other words, we zero pad each sample record by appending

it with an equal number of trailing zeros. This ensures that Raa nΔtð Þ¼ 0 for nj j 	N=2,
where N is now the full length of the zero-padded data records. Reworking the above

derivation in this case we obtain:

R pð Þ
aa

D E
¼N=2� p�1ð Þ

N
Raa p�1½ �Δtð Þ (11.6.14)

For p¼1 to N/2, and

R pð Þ
aa

D E
¼ p�1ð Þ�N=2

N
Raa p�1�N½ �Δtð Þ (11.6.15)

for p¼N/2+1 to N. The true correlation Raa can now be recovered from hRaai by
straightforward rescaling. Exactly the same procedure can be used to obtain estimates
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of the cross correlation function from the numerical inverse Fourier transform of

cross-spectrum estimates hSabi.

11.7 Wavenumber spectra and spatial correlations

The discussion of spectral estimates that began in Section 11.4 makes exclusive ref-

erence to signals in time and the correlations and frequency spectra they imply. How-

ever, the analysis results apply equally well to variations over distances, spatial

correlations, and wavenumber spectra with minor modifications due to the conjugate

relationship between the space and time Fourier transform definitions adopted in

Chapter 3. Specifically, the numerical Fourier transform applied to a variation in space

along coordinate x1 sampled at intervals Δx1 is

a
��
m

� �
¼Δx1

2π

XN
n¼1

ane
�2πi n�1ð Þ m�1ð Þ

N ¼Δx1
2π

DFT an,mð Þ (11.7.1)

where an¼a(nΔx1), a
��
m

� �
¼ a

��
m�1½ �Δk1ð Þ

� �
, and Δk1¼2π/(NΔx1). Likewise, the

inverse transform is

an ¼ 2π

NΔx1

XN
m¼1

a
��
m

� �
e
2πi m�1ð Þ n�1ð Þ

N ¼ 2π

Δx1
IDFT a

��
m

� �
, n

� �
(11.7.2)

Wavenumber spectra are very often calculated by numerical Fourier transform of

the associated correlation function, at least when the correlation function is

obtained in a point-wise fashion using measurements with two or more probes that

are traversed to different positions. However, when an array of sensors is used, or

measurements are made optically such as in the PIV snapshot of Fig. 11.2, spectra

may be calculated by averaging multiple estimates of the wavenumber transform of

instantaneous data sampled in space. In this case, analogs of Eqs. (11.6.3), (11.6.4)

are used, specifically

ϕ mð Þ
aa

D E
¼ ϕaa m�1½ �Δk1ð Þh i

¼ Δx1
2πNNrecw2

XNrec

p¼1

DFT* a pð Þ
n wn,m

 �
DFT a pð Þ

n wn,m
 �

(11.7.3)

where an
( p) denotes the pth record of N samples an ¼ a nΔx1ð Þ, and

ϕ mð Þ
ab

D E
¼ ϕab m�1½ �Δk1ð Þh i

¼ Δx1
2πNNrecw2

XNrec

p¼1

DFT* a pð Þ
n wn,m

 �
DFT b pð Þ

n wn,m
 �

(11.7.4)
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12Phased arrays

In aeroacoustic measurements we are often faced with the problem of trying to deter-

mine the relative levels of two different sources or extracting the sound level of a

source in a noisy environment. A classic example is measuring trailing edge noise

from an airfoil in a wind tunnel. In this case we need to separate the sources at the

trailing edge from the sources at the leading edge and also reject the background noise

and reflections from the tunnel walls. To achieve this, phased array technology has

been developed over many years and has become a required tool for most aeroacoustic

measurements in wind tunnels and on engine test stands. This chapter provides the

basic concepts of array technology and the results that can be easily coded to carry

out phased array processing. Those students who have already taken a class in acous-

tics will be familiar with the basic concepts outlined in the first section on the use of

line arrays. Section 12.2 and the rest of the chapter extend those concepts to problems

that are relevant in aeroacoustics.

12.1 Basic delay and sum processing

Phased arrays have been used for many decades in the fields of underwater acoustics,

radar, and optics, and the ability of these systems to locate sources that emit propa-

gating waves is very sophisticated. However, the application of phased arrays to

aeroacoustics is quite different because the sources of interest are usually continuously

distributed, and we are interested in their spatial variation in level. In terms of geo-

metrical optics this represents a near-field problem which is much more difficult to

solve than the classic far-field problem where each source can be considered as an

isolated point source, regardless of its actual size. In spite of this difference we will

start by considering isolated point sources in the geometric far field and show how a

simple line array may be used to determine their position and level. This will establish

some of the most important characteristics of phased array measurements, such as spa-

tial resolution and aliasing. In the next section we will show how these results can be

generalized for arbitrary near- and far-field arrays and how the array design can be

evaluated for a particular problem.

12.1.1 Basic principles, resolution, and spatial aliasing

We will start with the canonical problem of measuring the location of a simple har-

monic source using a line array of M transducers placed far from a source, as illus-

trated in Fig. 12.1. We can define the acoustic pressure at the array using

Eq. (3.4.6) as

p̂ xð Þ¼� iωρoQe
ikr

4πr
(12.1.1)
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where r¼jx2yj is the distance from the source at y to the transducer at x. Each trans-

ducer in the array is located at xm¼ ((m21)Δx2L/2,0,0), where the subscript m rep-

resents the microphone number, as shown in Fig. 12.1. The origin of the coordinate

system is at the center of the array, and the total length of the array is L¼ (M21)Δx
(note that this is different from our analyses in previous chapters where we placed the

origin in the vicinity of the source or sources). We can then use the far-field approx-

imation (analogous to Eq. 3.6.3) to approximate the propagation distance r when

jyj≫ jxj to

r yi� x
mð Þ
i

� �
� r yið Þ� x

mð Þ
i

@r yið Þ
@yi

+⋯¼ ro� x
mð Þ
i yi=ro

where ro¼jyj is the distance of the source from the center of the array. Since the trans-

ducers are along the x1 axis, this simplifies to ro2x1
(m)sinθ, where y1/ro¼ sinθ is the

angle subtended by the source as shown in Fig. 12.1. This approximation is equivalent

to assuming that the array is far enough from the source for the wavefronts it expe-

riences to be planar.

The far-field approximation for the pressure at each transducer is then

p̂ xmð Þ¼ �iωρoQe
ikro

4πro

� �
e�ik m�1ð ÞΔx�L=2ð Þsinθ (12.1.2)

The array output can be obtained by adding the signal from each receiver and dividing

the total by M, so

p̂t ¼
1

M

XM
m¼1

p̂ xmð Þ¼�iωρoQe
ikro + i

1
2
kLsinθ

4πro

1

M

XM
m¼1

e�ik m�1ð ÞΔxsinθ
 !

(12.1.3)

x1

x2

Far-field source at

y1= ro sinq y2= ro cosq

Line array of transducers

Δx

ro

m = 1 m = 2... m = M

Wavefronts

q

Fig. 12.1 A line array of M receivers and the waves arriving from a far-field source.
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The summation in the last term is a geometric series and can be summed (see standard

mathematical tables) to give

1

M

XM
m¼1

e�ik m�1ð ÞΔxsinθ ¼ 1� e�ikMΔxsinθ

M 1� e�ikΔxsinθð Þ

¼
sin

1

2
kMΔxsinθ

� �

M sin
1

2
kΔxsinθ

� �
8>><
>>:

9>>=
>>;e�i

1
2
k M�1ð ÞΔxsinθ

(12.1.4)

The phase term in Eq. (12.1.4) cancels with the phase term½ikLsinθ in Eq. (12.1.3), so
we obtain

p̂t ¼
�iωρoQe

ikro

4πro
F kL sinθð Þ,

F kL sinθð Þ¼
sin

1

2
kMΔxsinθ

� �
M sin 1

2
kΔxsinθð Þ

8<
:

9=
;

(12.1.5)

where F(kLsinθ) is also dependent onM and is plotted in Fig. 12.2A. This result shows

that the array output depends on the angle subtended by the source to the array, as

shown in Fig. 12.1. If the source is directly in front of the array, as shown in

Fig. 12.3A, then θ¼0, all the microphones receive the same in-phase signal, and F
has its maximum value (F¼1). If the angle of the source is increased from zero, then

the microphones will start to see out-of-phase signals and F will fall below 1. Even-

tually, if the wavelength is not too large compared to the microphone spacing, we will

reach the situation shown in Fig. 12.3B where the signal received by adjacent micro-

phones is 180 degrees out of phase and F¼0. Further increase in the source angle will

now start to bring the microphone signals back in phase until we reach the situation

shown in Fig. 12.3C where F¼1 once more. We see that there will be a fundamental

ambiguity in identifying the source location from the microphone signals. Note that in

general if there are angles for which ½kΔxsinθ¼�nπ (where n is an integer) then

F¼1 at that point. Likewise, if there are angles for which ½kMΔxsinθ is a multiple

of π then F¼0, and the array output is zero for these positions.

The overall sensitivity of a linear array for sources as a function of source angle is

illustrated in Figs. 12.2B and C for an array with 10 transducers and different values of

kL. This shows that at low frequencies the sensitivity of the array output to source

position is relatively weak (Fig. 12.2B) and the directivity map displaces a single lobe

or beam. At high frequencies the main lobe of the array sensitivity is much narrower,

but we have additional lobes, reflecting the ambiguity noted above where the array

output is equally as strong as the main lobe (Fig. 12.2C).

The simplestway todetermine the source location is to rotate the arrayuntil its output

is a maximum. If the microphone spacing is small enough compared to the acoustic

wavelength and there is only a single beam in the array sensitivity, as inFig. 12.2B, then

the angle of maximum array output uniquely identifies the direction of the source.
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However, if the array sensitivity has multiple beams as shown in Fig. 12.2C then there

can be multiple angles where the array output reaches a maximum. The false source

positions are called spatial aliases and can be eliminated by ensuring that

j½kΔxsinθj<π/2 for all angles. Sincek¼2π/λand jsinθj<1, this requires that the trans-

ducer spacing should be less than half an acoustic wavelength, Δx<λ/2.
The resolution of the array is usually given in terms of thewidth of the straight-ahead

lobe, definedby the angleordistanceoverwhich the arrayoutput drops to3 dBbelow its

maximum value. This corresponds to F¼0.707, which occurs approximately when

kMΔxsinθ¼2.8 or sinθ¼1.4λ/π(L+Δx), assuming that M is large. Longer arrays

(compared to the acoustic wavelength) will therefore have better sensitivity to source

position, or resolution. However, tomeet the restriction of spatial aliasingΔx<λ/2 and
to have a long array for good resolution requires a large number of transducers.

–50
0

0.5

|F
((

1/
2)
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nq
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(1/2)kMΔxsinq
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0

(A)

(B) (C)
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Fig. 12.2 (A) The array sensitivity F(kLsinθ) for waves arriving from different directions.

(B) Polar plot of F(kLsinθ) for kL¼8.8, M¼10 and (C) kL¼88, M¼10.
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x1

x2

Source

x1

x2
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Fig. 12.3 Wave patterns compared to microphone positions for situations (A) and (C) where the

array output is a maximum, and (B) where the output is zero.
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12.1.2 Beam steering

The arrayprocessingdescribed above allowsus to determine the directionofwavearrival

by physically rotating the array so that it points toward the source. Alternatively, we can

steer the array by time shifting the signals, so they add up in phase. FromFig. 12.1we see

that, forawavearrivingfromasourceatanangleθ to thearray, the timeofarrivaldiffersat

adjacent transducers byΔτ¼ (Δx/co)sinθ. So, if a phase shift

ϕm ¼ k m�1ð ÞΔx� 1

2
L

� �
sinθ

is added to the signal from themth transducer before the summation in Eq. (12.1.3), we

obtain

p̂t ¼
1

M

XM
m¼1

p̂ xmð Þeiϕm ¼ 1

M

XM
m¼1

p̂ xmð Þeik m�1ð ÞΔx� 1
2
Lð Þsinθ ¼�iωρoQe

ikro

4πro

which is identical to the signal that is obtained when the array points toward the

source. It follows that we can focus the array in different directions by choosing dif-

ferent phase shifts. If we choose

ϕm ¼ k m�1ð ÞΔx� 1

2
kL

� �
sinθs (12.1.6)

then the array signal is

p̂t ¼
iωρoQe

ikro + i
1
2
kL sinθ� sinθsð Þ
4πro

1

M

XM
m¼1

e�ik m�1ð ÞΔx sinθ�sinθsð Þ
 !

¼�iωρoQe
ikro

4πro
F kL sinθ� sinθsð Þð Þ (12.1.7)

We see from this result that by choosing different phase shifts ϕmwe have focused the

array in different directions without rotating it, and the maximum array output signal

will occur when the source is in the direction that the array is focused so θ¼θs. One of
the important points here is that the phase shift defined Eq. (12.1.6) is equivalent to a

time shift τm¼ϕm/ω applied to each transducer output, so the signal that results from

the array processing is

pt tð Þ¼ 1

M

XM
m¼1

p xm, t� τmð Þ¼Re
1

M

XM
m¼1

p̂ xmð Þe�iωt+ iϕm

 !

As a consequence, this process is often referred to as delay and sum beamforming. In

many applications implementing a delay and summay be computational by more effi-

cient than working in the frequency domain and using the methods described in

Section 12.2.
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12.1.3 Acoustic images and source levels

The method described above can be used to find the location of a source, but in

aeroacoustics the location of the source is usually known, and we need to determine

its level relative to the level of other sources that may also be present. To show how

this can be achieved using a line array consider the situation shown in Fig. 12.4 in

which there are two sources separated by a distance d and a distance h from an array

ofM transducers. To obtain the array output for different steering angles we can super-

pose the acoustic fields from each source, and the array output will be

p̂t ¼
iωρoQ1e

ikh

4πh
F kL sinθsð Þ + iωρoQ2e

ik d2 + h2ð Þ1=2

4π d2 + h2ð Þ1=2
F kL sinθ2� sinθsð Þð Þ

(12.1.8)

whereQ1 andQ2 are the source strengths of each source, and θ2 is the angle of source 2
subtended at the array.

To obtain an acoustic image we project the array output onto a line or plane. Since

we know the sources lie on the line y2¼h the obvious location for the source image in

this case is on the line ymin<y1<ymax at y2¼h, y3¼0. Since the sources are in the far

field from the array, H≫ jymaxj> jyminj>d, and we can write

sinθs ¼ y1ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 + y21

p sinθ2 ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 + d2

p

x1

Line array of transducers

Δx

m = 1 m = 2... m = M

y2=h

d

Q1 Q2

y1

Interrogation line

Focus point

q2

qs

Fig. 12.4 Imaging of two point sources of equal strength with a linear array.
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Substituting these expressions into Eq. (12.1.8) we can then plot the array output as a

function of focus position y1 and obtain the source image p̂tj j as shown by the solid line
in Fig. 12.5. This curve is for the two sources of equal strength separated by 8.2 wave-

lengths with equal source strength chosen, so ωρoQ/4πro¼1. We see that this image

clearly identifies the two sources in the locations of the two largest peaks. The reso-

lution of the sources is determined by the characteristics of the spatial filter function

F(kLsinθs) given by Eq. (12.1.5).

12.1.4 Array shading

One of the problems with the source image is side lobe leakage, which is apparent in

Fig. 12.5 in the smaller peaks that occur on either side of the sources. It is usually

desirable to minimize the amplitude of the side lobes, even at the expense of broad-

ening the main lobe that identifies the source location. Reducing the side lobes in the

image can be achieved in the same way as for the spectrum of a time series (see

Chapter 11) by multiplying each array signal by a weighting factor or window func-

tion Wm so that the array signal for a single source at θ¼0 is

p̂t ¼
1

M

XM
m¼1

p̂ xmð ÞWme
iϕm ¼�iωρoQe

ikro

4πro
F kLsinθsð Þ

F kL sinθsð Þ¼ 1

M

XM
m¼1

Wme
iϕm

 ! (12.1.9)

Various different options are available, and the most commonly used is a triangular

weighting given by Wm ¼ cmM=
XM

m¼1
cm with cm¼ (1�2jx1(m)j/L).

Fig. 12.5 compares the source images obtained using a window and no window.

The windowed result is smoother than the unwindowed result and has much lower side

lobes reducing the chances that one of these would be misidentified as a separate

source. An important feature of the image in Fig. 12.5 is that the source image levels

exceed one for the unwindowed case because of side lobe leakage. For the windowed

image the levels are slightly lower than for the unwindowed image because of the

reduced side lobe leakage. The price to be paid for reduced side lobe levels is a loss

in resolution, which is apparent in the rounding of the peaks.

Windowing array data is usually desirable and can be optimized when there are

only a limited number of point sources in the source distribution. These methods,

referred to as adaptive beamforming methods, calculate an optimal window function

for which the array output as a zero at source 2 when focused on source 1, and a zero at

source 1 when focused on source 2. This process can be extended to several individual

sources but fails to work for sources that are continuously distributed. In aeroacoustics

most applications involve complicated source environments, and so adaptive

beamforming methods have not been as successful as they have been in other areas

of array processing.
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12.1.5 Broadband noise sources

So far we have only considered simple harmonic sources, but the same approach may

be used for sources with an arbitrary time dependence. If we take the Fourier transform

with respect to time of the signal from each transducer we obtain Eq. (12.1.1) with Q
replaced by its Fourier transform, i.e., a function representing the amplitude of the

acoustic source at each frequency. We can then follow the same procedures as

described above to obtain the array output as a source image. In most cases we are

interested in the signals that are broadband in nature, and so we calculate the power

spectrum of the array output at each point in the source image, which is given from

Eq. (12.1.8), for two sources, for which d2≪h2 by

Stt ωð Þ¼ π

T
E jp�tj2
� �

¼ π

T
E jQ� 1j2
h i			F kL sinθsð Þ

			2 +E jQ�2j2
h i			F kL sinθ2� sinθsð Þð Þ

			2� �
ωρo=4πhð Þ2

+
2π

T
Re E Q

�*

1Q
�
2


 �
F kL sinθ2� sinθsð Þð ÞF kL sinθsð Þð Þ

� 
ωρo=4πhð Þ2

(12.1.10)

This result simplifies if the sources areuncorrelated, then thecross spectrumof the signals

from each source will be zero. The source image is then the sum of the squares of the

source spectra multiplied by the magnitude squared of the array sensitivity function F.
This result is of course a function of both frequency and space, and it is often useful

to plot these as a contour plot with frequency on the vertical axis and location on the
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Fig. 12.5 The source image for two point sources of equal strength separated by d¼0.7 m

at 4000 Hz for an array with M¼15 transducers and h¼5 m. The solid line is with no

window, and the dotted line is for a triangular window. The source strengths are chosen, so
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horizontal axis as shown in Fig. 12.6. The figure clearly shows how the ability to

resolve the nearby sources and their strengths is frequency dependent and improves

at the higher frequencies. It also shows the effects of spatial aliasing of the sources

(as illustrated in Fig. 12.3C) in the form of the curved bands that occur at high frequen-

cies and large displacements. We also note that in this case the source at y1¼d has a

peak image level that is lower than the source at y1¼0. This is a consequence of the

proximity of the source to the center of the array.

It is also noteworthy that the sources are clearly identified in Fig. 12.6B at a fre-

quency of 2000 Hz, but the image given for two harmonic sources of the same fre-

quency (as in Fig. 12.5) would not have separated the sources at 2000 Hz. This is a

feature of the fact that the sources have been assumed to be uncorrelated in

Fig. 12.6B, and so their image depends on F2 not F as in Fig. 12.5, giving an apparent

reduction in side lobe level and sharpness of the peak.

12.2 General approach to array processing

12.2.1 Background

The objective of the initial studies using microphone arrays for acoustic source loca-

tion in aeroacoustics was to identify the source distributions in jets and on full scale jet

engines (Fisher et al. [1], Billingsley and Kinns [2]). The purpose of developing these
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methods was to separate the noise coming from the engine inlet, the by-pass duct, and

the jet on a high by-pass ratio engine operating on a test stand, and to gain more insight

into the generation of jet noise from measurements at model scale in anechoic cham-

bers. Since those early studies the applications have been extended to include the mea-

surement of airframe noise by using ground-based acoustic arrays during an aircraft

flyover [3], wind tunnel measurements to extract source levels on a model from the

background noise [4], and to identify sources on wind turbine blades while they are in

operation [5]. Similar array-processing methods are used to extract information about

sources in ducts [6], and in particular the modal breakdown of the propagating waves.

In other studies, microphone array measurements have been used to determine the

unknown parameters in a model of the source distribution under consideration

[7,8] thus simplifying the array processing.

Overall the use of microphone arrays for acoustic source measurements can be

summarized by the general objective of trying to fit a set of unknown parameters

to a specified model of the acoustic sources, with the assumption that the wave prop-

agation from the source to the receiver is known and defined precisely. In the simplest

case the source model is a distribution of omnidirectional point sources with specified

locations but unknown strengths. In more elaborate models the distribution of relative

source strength is defined by a two- or three-parameter model for jet noise [7] or an

instability wave [8], and the unknown parameters are estimated from the array mea-

surements using a linear or nonlinear least squares optimization. However, in all cases

the process has two steps. The first is to use a source-imaging approach to gain insight

into the source distribution, where the dominant sources are located, and the second

step is to deconvolve the source image, or model the microphone array data, to obtain

the spectra of each acoustic source of interest. In this section we focus on the first step

of identifying the dominant sources, and in Section 12.3 we discuss deconvolution

methods.

One of the fundamental concerns regarding source location methods is the ade-

quacy or correctness of the source model to represent the actual acoustic source mech-

anism. For example, jet noise source images are usually modeled by a distribution of

stationary omnidirectional uncorrelated monopoles. In contrast Lighthill’s model of

jet noise represents the jet by quadrupole sources that are convected at a speed close

to the speed of sound. It was pointed out by Michel [9] that to correctly interpret jet

noise source images they must be compared to a stationary source model. This is an

important point because Lighthill’s model assumes that the turbulent eddies are acous-

tically compact in the convected frame of reference, and the directionality is caused by

a combination of the source motion and the refraction of sound by the shear layer. If jet

noise is modeled in the stationary frame the effective length scale of the source fluc-

tuations is increased, and the sources must be properly phased to give the correct

far-field directionality. It follows that the source model is key to understanding the

source image obtained by an array of far-field microphones. In many applications such

as airframe noise or wind tunnel measurements, the problem is simplified because the

source image can be checked by mechanically altering the source distribution. For

example, if a side edge flap is identified as an important source of airframe noise dur-

ing an aircraft flyover it can be retracted and the measurement is repeated. If the source
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is no longer present in the second test, then the acoustic measurement is verified.

Unfortunately, in applications such as jet noise where the source cannot be mechan-

ically removed this option is not available and correctly interpreting the results is more

difficult.

In this text we are mainly concerned with lowMach number flows where the acous-

tic sources are caused by turbulent flow close to impenetrable surfaces. In the rest of

this chapter we therefore focus on phased array processing applied to this type of prob-

lem. This leaves out the problem of jet noise, and the reader is referred to the chapter

by Jordan in Ref. [10] for a more detailed discussion of this topic.

12.2.2 The definition of source strength

In Part 1 of this book we showed that for lowMach number flows sound radiation was

primarily caused by turbulence in the vicinity of rigid surfaces. The origin of the sound

is always the turbulence, but the acoustic levels in the far field are significantly ampli-

fied by the scattering of near-field pressure fluctuations by the surface, and these

become the dominant sources of sound in most applications.

The objective of array processing, as applied to lowMach number flows, is to iden-

tify which parts of a surface are generating the most noise. In flyover noise applica-

tions the source is moving, and corrections are needed for both the Doppler shift and

the motion of the source. On engine test stands and in wind tunnel applications the

sources are stationary and so corrections for source motion are not required, but

the environment may be noisy, include reflections from walls and mounting struc-

tures, and refraction effects can distort the source image. In addition, the sound being

emitted from engine inlets or exits is inherently directional, and this intuitively poses a

problem for the geometrical optics approach to array processing that assumes omni-

directional point sources. The source directionality is equivalent to imposing a win-

dow function or weighting factor on the signal received by the array, as described by

Eq. (12.1.9). If this weighting factor only causes a variation in signal amplitude across

the array then its effect will be to smooth out the source image, and it will have a sim-

ilar, but likely weaker, effect on the source distribution as the triangular weighting

shown in Fig. 12.5. However, if the directionality includes a phase variation then

the apparent source position can be shifted, and this may lead to erroneous conclusions

about the sources if the phase directionality is severe. To avoid these problems, it is

necessary to assume that, as seen over the aperture of the array, the sources are approx-

imately omnidirectional. We will return to this issue in Section 12.4 and address the

complications of source directionality in that section. However, to establish a general

approach to array processing we will start by making this assumption.

In applications where the sources are stationary and the receivers are outside of the

flow we can use Curle’s equation (4.3.9) to describe the acoustic sources and the sig-

nals received by the array. We can reduce the problem to one that can be directly

related to a distribution of equivalent sources if we ignore the quadrupole terms in

Curle’s equation, which describe the sources in the flow, and retain only the linear

inviscid surface source terms. Also we will ignore the effect of refraction across

the shear layer bounding the mean flow, but, if necessary, wind tunnel corrections
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can be used to allow for this effect as described in Chapter 10. The net result of these

assumptions is that we can specify the sound field by the solution obtained for linear

acoustics, Eq. (3.9.12), or its equivalent in the frequency domain, Eq. (3.10.5):

ep x,ωð Þ¼
ð
S

ep y,ωð Þ@
eG xjyð Þ
@yi

ni yð Þ� eG xjyð Þ@ep y,ωð Þ
@yi

ni yð Þ
 !

dS yð Þ

The surfaces of integration can then be broken down into N sub-surfaces, each one

enclosing a different source point. These sub-surfaces can be taken to be arbitrarily

small and so are acoustically compact allowing the Green’s function to be taken out-

side of each surface integral giving the signal at the transducer located at x(m) as

p
�

x mð Þ, ω
� �

¼
XN
n¼1

G
�

x mð Þjy nð Þ
� �

qn (12.2.1)

where qn is the effective or equivalent source strength defined as

qn ¼
ð
Sn

ep y,ωð ÞeG x mð Þjy nð Þð Þ
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 !
@ep y,ωð Þ

@yi
ni yð Þ
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(12.2.2)

This shows that, in the geometric far field where G
�

x mð Þjy nð Þ
� �

� G
�

xjyð Þ
h i

S¼Sn
, each

source point has two source types, a monopole source that depends on the pressure

gradient normal to the surface and a dipole source that depends on the pressure applied

to the fluid by the surface. The monopole source is zero for rigid surfaces, but we

should not restrict the analysis to that case alone. For example, in an open jet wind

tunnel the inlet and the jet catcher may be represented by a Ffowcs Williams and

Hawkings surface across the flow, and the parasitic noise from upstream or down-

stream of the test section will cause equivalent sources that may be of monopole order.

The important part of this model is that the equivalent sources are defined as being

omnidirectional, and the actual source directionality must be absorbed into the defi-

nition of the source strength, not the Green’s function. Substituting the free-field

Green’s function (Eq. 3.10.8),

G
�
o xjyð Þ¼ eikjx�yj

4πjx�yj

we see that in the far field the first term in the integrand of Eq. (12.2.2) depends on

1eGo x mð Þjy nð Þð Þ

 !
@ eGo xjyð Þ

@yi
ni yð Þ� ikxini y

nð Þ� �
xj j (12.2.3)
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which results in a cosine directionality relative to the normal to the surface So. If the
array aperture is small then this directionality is relatively weak across the array, and

the error incurred by assuming an equivalent omnidirectional source is relatively

unimportant and, as stated above, will be ignored. If the array processing provides

the source strength qn then we can use Eqs. (12.2.2) and (12.2.3) to interpret the result
in terms of the effective source strength as seen by the observer at a particular

observer angle.

12.2.3 Source images and the point spread function

In order to focus the array onto a specific image point we need to phase shift each

microphone signal, multiply by some weighting factor and sum, as in Eq. (12.1.9).

This process can be thought of as multiplying the complex amplitudes of the array

signals by a steering vector. Using Eq. (12.1.9) as an example, the steering vector

in that case was

Wme
iϕm

M

The components of the steering vector are weighting factors generalized to include the

phase shift and normalization on the number of microphonesM. The steering vector of

Eq. (12.1.9) assumes sound waves that are planar at the array. A better steering vector

uses weighting factors that account for spherical wavefronts from each source point.

For example, the steering vector for sources located at y( j )¼ (y1
( j ),0,0) being focused

by a line array of microphones located at x(m)¼ (xo+ (m�1)Δx,ro,0) in the acoustic far
field is [11]

w jð Þ
m ¼Wm

x mð Þ �y jð Þ		 		
Mro

e�ikx mð Þ � y jð Þ=ro with Wm ¼ cmM=
XM
m¼1

cm (12.2.4)

where jx(m)�y( j )j exactly cancels the effect of spherical spreading as the wave from

the source propagates across the array, and cm is some arbitrary weighting function,

such as the triangular weighting used in Eq. (12.1.9). The array output when focused at

point y( j ) using this steering vector is then

p
� jð Þ
t ωð Þ¼

XM
m¼1

w jð Þ
m

� �*
p
�

x mð Þ,ω
� �

(12.2.5)

where p
�

x mð Þ,ω
� �

is the Fourier transform of the signal from each transducer. We can

relate the array output to the source strengths by using Eq. (12.2.1) to give

p
� jð Þ
t ωð Þ¼

XM
m¼1

XN
n¼1

w jð Þ
m
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G
�

x mð Þjy nð Þ
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qn (12.2.6)
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In general, we need to consider broadband sources, and so we evaluate the spectral

density of the array output, defined using Eq. (12.2.5) as

bj ωð Þ�Stt ωð Þ¼ π

T
E jp� jð Þ

t ωð Þj2
h i

¼
XM
m¼1

XM
s¼1

w jð Þ
s w jð Þ

m

� �* π
T
E p

�* x sð Þ,ω
� �

p
�

x mð Þ,ω
� �h i

(12.2.7)

where we have introduced the notation bj to represent the spectral density of the array
output at the jth focus point. The last term of the above expression defines the elements

of the cross-spectral density (CSD) matrix of the array signals, which is

Csm ¼ π

T
E p

�* x sð Þ,ω
� �

p
�

x mð Þ, ω
� �h i

(12.2.8)

To relate the spectrum of the array output bj(ω) to the source strengths we first write

Eq. (12.2.6) as

p
� jð Þ
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n¼1

Fjnqn, Fjn ¼
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m¼1

w jð Þ
m
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(12.2.9)

and so the source image is defined in terms of the source spectrum as

bj ωð Þ¼
XN
n¼1

XN
p¼1

FjnF
*
jp

π

T
E q*pqn

h i
(12.2.10)

We now make the assumption that all the sources are uncorrelated. This simplifies the

result because only the terms for which n¼p will be nonzero. The spectrum of the

source strengths can be defined as Qnn(ω)¼ (π/T)E[jqnj2], and so the array output

is related to the source strengths by

bj ωð Þ¼
XN
n¼1

jFjnj2Qnn ωð Þ (12.2.11)

where jFjnj2 is referred to as the point spread function for the array focused at y( j ). It is
often normalized to be one for n¼ j and expressed in dB as 20log10(jFnjj/jFnnj). It spec-
ifies the source image level at the point y( j ) caused by a source of unit level at the point
y(n). For example, the unweighted point spread function for the linear array described

in Section 12.1 is given by Eq. (12.1.9) for a source at y1
(n)¼d as

jFnjj2 ¼
sin k sinθn� sinθj

� �
MΔx=2

� �
M sin k sinθn� sinθj

� �
Δx=2
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, sinθn ¼ y
nð Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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This is shown in Fig. 12.7A for a source located at y1
(n)¼0.We see that the point spread

function shows a fairly narrow peak at the source location with the two largest

sidelobes some 13 dB down to either side. However, Fig. 12.5A also reveals a spurious

source image, of equal magnitude as the true image, near y1/λ¼85. This results from

spatial aliasing (as in Fig. 12.2C). Note that there would also be another spurious

image near y1/λ¼�85.

The point spread function is important because it determines the array performance

for a given array design and a given steering vector. It is not restricted to line arrays

and can be used for any type of two- or three-dimensional array or two- or

three-dimensional source distribution.

12.2.4 Steering vectors

The ability of an array to separate sources and determine their levels depends on the

choice of the steering vector, and some general guidelines in making that choice are

helpful. The basic rule is that the steering vector should maximize jFjjj and minimize
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Fig. 12.7 Point spread functions at 3500 Hz for the line array with 30 transducers and a fixed

spacing Δx¼0.375 m, and for similarly positioned logarithmically spaced array of

30 transducers placed at xm¼Llog10(m)/log10(M)�L/2. Source-array distance ro¼30 m;

(A) fixed-spacing array with far-field approximation given by Eq. (12.2.12), (B) fixed-spacing

array with steering vectors given by Eq. (12.2.13), and (C) logarithmic array.
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jFjnj when n 6¼ j. A basic choice for the steering vector is given by Eq. (12.2.4). This

relies on the phase shift between the transducers to focus the array and also corrects for

the propagation distance from each source to the receiver. The array output is then the

spectral level of the signal that would be received from the source at a reference dis-

tance ro. However, this form of the steering vector can cause problems when the image

includes sidelobes of an aliased source because the weighting factor jx(m)�y( j )j that
corrects for the spreading loss of far away sources also amplifies the spatial aliases,

and this can cause ambiguities at high frequencies. Alternative forms of the steering

vector [11] that avoid this problem are

w jð Þ
m ¼

eGo xmjyj
� �

G
�
o xmjyj
� ���� ��� or w jð Þ

m ¼ eiωxm � yj=rcc∞

M
(12.2.13)

where G
�
o xmjyj
� ���� ��� is the norm of the free-field Green’s function for all source and

receiver positions. Each steering vector will have its own point spread function and

postprocessing algorithm, and so the choice of the weighting in the steering vector

is usually determined by the application rather than a general rule, providing the phase

shift is correct to focus on a particular source. Fig. 12.7 shows the point spread func-

tion for the steering vector given by the first example in Eq. (12.2.13) (Fig. 12.7B) and

the far-field approximation given by Eq. (12.2.12) (Fig. 12.7A). It is seen that the point

spread function for the source being focused on is identical, but the aliased source

image near y1/λ¼85 has been altered in Fig. 12.7B because of the weighting factors,

reducing its amplitude and shifting its apparent location.

12.2.5 Signal-to-noise ratio

Signal-to-noise ratio is also an important consideration. In general, we need to dis-

tinguish the sound from the sources that we are interested in from the instrumen-

tation noise that is specific to each receiver. A particular case in point is when the

microphones of an array are exposed to a flow and their signals include turbulent

pressure fluctuations that are not part of the acoustic field. This noise level can be

high but is usually uncorrelated from tran sducer to transducer, so it will only con-

tribute to the diagonal elements of the measured CSD matrix given by Eq. (12.2.8).

In situations where there is significant transducer noise the array processing can be

improved by eliminating the diagonal elements from the CSD matrix. This reduces

the amount of data that is available to form the source image from M2 to (M�1)M
which is not very significant when the number of transducers is large, and the

advantage is that the instrumentation noise is eliminated from the processing.

However, it can also result in negative source image levels [ 11] that are unphysical.

Therefore, for specific array designs the point spread function always needs to be

checked to ensure that diagonal elimination from the cross-spectrum matrix is not

detrimental to the expected output of the array.
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12.2.6 Array design

In Section 12.1 we considered a line array with transducers of equal spacing. It was

found that therewere competing requirements for resolving sources andpreventing spa-

tial aliasing. To reduce aliasing at high frequencies the spacing between the transducers

needs to be less than half the acoustic wavelength, but to obtain good resolution at low

frequencies the length of the arrayneeds to be as large as possible. For a givennumber of

transducers at equal spacing this limits the operational frequency range to within spe-

cific bounds. One approach that can be used to improve array performance is to use an

array with unequally spaced transducers so that it includes both closely spaced trans-

ducers to eliminate spatial aliasing at high frequencies and a large aperture tomaximize

source resolution at low frequencies.A commonchoice is to use logarithmically spaced

transducers that are clustered at one end of a line array. An example of the point spread

function for a logarithmic array is shown in Fig. 12.7C and can be compared to the point

spread function of an array of the same length andwith the same number of transducers

in Fig. 12.7A. We see that the width of the point spread function near its peak around

y1¼0 is largely unaffected by using the logarithmic spacing, but spatial aliasing that

resulted in the spurious image around y1¼85 is almost completely eliminated. Inmany

applications the logarithmic array can be advantageous because it extends the fre-

quency range that can be considered by a limited number of transducers.

The illustrations so far have only considered line arrays, but inmost airframe noise or

wind tunnelapplications [11,12] there isa requirement toevaluate sources thatare located

over a two- or three-dimensional region, and sowe need an array that can resolve sources

in both the y1 and y3 direction. This requires that the transducers in the array are spread
over a plane with displacements in the x1 and x3 direction so that the phase of the sound
reaching thearray fromthe far fielddependsonexp(�iω(x1y1+x3y3)/c∞ro). It is thenpos-
sible to construct steering vectors that will focus on a point that depends on y1 and y3 to
obtain a source image. Typical array designs that meet this criterion are rectangular or

circular arrays inwhich the transducers are spread over a plane surface. This type of array

has been used extensively in underwater acoustics applications. The criteria for spatial

aliasingand resolutionalsoapply toplanararraysanddependonboth the transducer spac-

ing andmaximumdimension of the array in a given direction. The number of transducers

inaplanararraycan rapidlybecome large, andso theoptimizationof thearraydesign for a

given number of transducers ismuchmore important than for a line array. For this reason,

spiral arrays (see Fig. 12.8) are particularly useful in wind tunnel applications [12]

because they offer a good compromise between spatial resolution and spatial aliasing

for a limited number of receivers. The array includes transducers arranged in a spiral pat-

tern defined by

rm ¼ rs exp hθmð Þ
where rm and θm are the radial position and angle of the mth transducer on the spiral

(θm can be greater than 2π), and rs is the radius of the innermost receiver of the spiral

pattern. The scaling factor h is determined from the maximum and minimum radius of

the array, and the maximum angle as

h¼ 1

θmax

ln
rmax

rs

� �
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For equal spacing along the spiral for M transducers Underbrink [12] gives

hθm ¼ ln 1 +
m�1ð Þ rmax� rsð Þ

M�1ð Þrs

� �
This arrangement is shown in Fig. 12.8A for a spiral array with 40 microphones. The

corresponding point spread function is shown in Fig. 12.8B on a plane at a range of

5 m and a frequency of 3000 Hz, for source located at y1¼y3¼0. The results show

that the array can be focused on a point on a plane and that at these frequencies

the side lobes and aliases are not significant. The properties of the array are the same

as for a line array and depend on the array diameter to range ratio 2rmax/ro. Increasing
the range reduces the resolution unless the diameter is also increased by the same ratio.

Many other transducer arrangements can be used for specific applications, which

are optimized for the requirements of resolution and spatial aliasing in a given envi-

ronment. In particular, nested spiral arrays [12] can be used to increase the number of

transducers in a circular array for a given array diameter. The results are always

restricted to a limited frequency range, set by the minimum transducer spacing, the

size of the array, and the size and spacing of the sources being measured. The point

spread function for a particular design should always be checked before drawing con-

clusions about array output results. In the next section we will discuss deconvolution

methods that allow for improved resolution between sources, but it should be remem-

bered that, as in time series analysis, nothing can be done to eliminate the ambiguity

caused by spatial aliasing.

12.2.7 Array-processing algorithms

The implementation of the array-processing algorithms described above is particu-

larly simple if they are specified as a series of matrix operations that can be coded

directly in Matlab or any computing environment that is optimized for matrix oper-

ations. The process is to define the time Fourier transforms of the signal from each

transducer at each frequency as a row vector p with M elements, defined as
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Fig. 12.8 (A) A spiral array with 40 receivers and (B) its point spread function on a plane

at a range of 5 m at 3 kHz. The array diameter is 1.18 m, and the inner diameter of the

spiral is 5 cm.
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p¼ p
�

x 1ð Þ,ω
� �

, p
�

x 2ð Þ,ω
� �

,…
n o

(12.2.14)

Similarly we can define a row vector with N elements for the source strengths as

q¼{q1(ω), q2(ω), …}. The relationship between the source strength and the acoustic

pressure at each microphone is given by Eq. (12.2.1), and so to implement this we

define a rectangular matrix withM rows and N columns for the Green’s function, where

each element defines the propagation from the source to the receiver, soEq.(12.2.1)can be

written as

pH ¼GqH G� G
�

x mð Þjy nð Þ
� �h i

(12.2.15)

and the superscriptH represents the Hermitian transpose, defined by interchanging the

rows and columns of the matrix/vector and taking the complex conjugate. The

cross-spectrum matrix is then obtained as in Eq. (12.2.8) as

C¼ π

T
E pHp
� �

(12.2.16)

which has M rows and M columns and can be related to the cross spectrum of the

source strengths Q¼ (π/T)E[qHq] as

C¼GQGH (12.2.17)

To implement array processing we arrange the steering vectors wm
( j ) into a rectangular

matrix with M rows and J columns, where J is the number of image points so that

W ¼ w jð Þ
m

h i
. Then the source image may be calculated using Eq. (12.2.7) as

B¼WHCW, b¼ diag Bð Þ (12.2.18)

where b is a column vectorwith elements equal to the spectral density at each point in the

image bj(ω). These equations can be coded directly and are relatively simple to imple-

ment. If the sources are uncorrelated then the source cross-spectrummatrixQ is diagonal

with the nonzero elements equal to (π/T)E[jqnj2]. To obtain the point spread function

for the sourceatn¼ j, the source image shouldbeevaluatedbysettingQjj¼1 and all other

elements ofQ equal to zero.Wealso note that Eq. (12.2.18) also evaluates the cross spec-

trum of the source image points, which provides useful additional information about

the source distribution. However the source image is defined by the spectrum of the

sources at each point, which is given by the diagonal elements of B.

12.3 Deconvolution methods

12.3.1 Source spectra

The methods given in the previous sections are designed to give a source image that

shows the relative strength of each source in a distribution. In most applications we

also need to determine the source spectrum for each individual source, and this

requires postprocessing of the results. The difficulty is that the sources are not always

completely resolved, and so the level at a point in the source image or map may not be
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an accurate indication of the level of a particular source at that point. To address this,

issue a number of different procedures have been developed that deconvolve the

source strength from the point spread function and provide a better estimate of the

individual source strengths, and their spectra.

Before discussing deconvolution methods, we note that to obtain absolute source

levels we only need to know the relative source strengths at each frequency. To show

this we evaluate the power spectral density at one microphone in the array, which is

designated as the reference microphone, and relate it to the sum of the source strengths

assuming no correlation between sources, as

Cmm ωð Þ¼ π

T
E p

�
x mð Þ,ω
� �			 			2
 �

¼
XN
n¼1

G
�

x mð Þjy nð Þ
� �			 			2Qnn (12.3.1)

If we then choose a target source, with index i, which has nonzero amplitude at the

frequency of interest then, we can write this as

Cmm ωð Þ¼ S ið Þ
mm ωð Þ 1 +

XN
n¼1,n 6¼i

G
�

x mð Þjy nð Þ� �			 			2Qnn

G
�

x mð Þjy ið Þð Þ
			 			2Qii

0
B@

1
CA

S ið Þ
mm ωð Þ¼ G

�
x mð Þjy ið Þ
� �			 			2Qii

(12.3.2)

where Smm
(i ) (ω) is the level that would be measured at the receiver m from the target

source n¼ i in isolation. If we know the relative amplitude of each sourceQnn/Qii then

the only unknown in this equation is Smm
(i ) (ω), which can be readily evaluated. The spec-

trum of each of the other sources at the reference receiver can be similarly obtained.

12.3.2 The DAMAS method

The task of deconvolution is therefore to accurately define the relative levels of each

source in the source map. To place this in context we first define the level at each point

in the image using Eq. (12.2.11)

bj ωð Þ¼
XN
n¼1

jFjnj2Qnn ωð Þ (12.3.3)

where j¼1, 2,…J specifies the image points. This relationship represents a linear set

of J equations with N unknown values Qnn. It is often convenient to write these equa-

tions in matrix form as

b¼Fs (12.3.4)

where b and s are column vectors with elements bj andQnn, respectively, and F is a rect-

angular J�Nmatrix with elements jFjnj2. In principle, we can solve this equation provid-
ing J>N by inverting the matrixF, but this leads to both positive and negative values of
the mean square source strength, which is unphysical. Therefore, we impose the con-

straint that Qnn>0 and solve Eq. (12.3.4) using a nonnegative least squares algorithm.

This is the principle of the DAMAS method [11] and yields a stable result with certain
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limitations. First the number of image points cannot exceed the square of the number of

microphones in the array, andsecond if the imagepointsareplaced tooclose together then

the processing is slow with little added information. Brooks et al. [11] suggest that the

image point spacing (or “pixel size”) Δx should be proportional to the beamwidth of

the point spread function, defined by the distance between the points that are 3 dB below

thepeak level.However,athighfrequencies thiscan lead toover resolution, and it isbetter

to fix the pixel size as proportional toM2, using the criteria thatΔx is proportional toL/M,

whereL is the side lengthof the source imageplane. InFig.12.9weshowthedeconvolved

source imageobtainedusing theDAMASalgorithmfor thespiralarrayofFig.12.8. Inthis

case the sources are defined as two line sources to represent the leading and trailing edges

of an airfoil. The trailing edge noise sources are placed along the lines y1¼�2.1 and

y1¼�0.3 between �2.1<y3<1.05. The level of the sources along the line y1¼�2.1

is 20% of that along y1¼0.3. From this plot we see that the point spread function

(Fig. 12.6A) shows signs of spatial aliasing, and the conventional source image

(Fig. 12.9B) does not clearly identify the lower level sources in spite of the fact that they

should be resolved. The DAMAS image (Fig. 12.9C), however, reveals the correct loca-

tionand relative levels of the sources. Similar results canbeobtainedat lower frequencies

providing the pixel size is increased to 40% of the beamwidth when the array fails to

resolve the two line sources.
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Fig. 12.9 Examples of the beamformed and deconvolved images using the DAMAS algorithm

at 10 kHz for the array used in Fig. 12.8. The image plane lies between �3<y1<3 and

�3<y3<3, and the pixel size is Δy�Δy with Δy¼L/M¼6/40.
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12.3.3 The CLEAN algorithm

Another approach that can be used when one source is dominant or can be clearly sep-

arated from the others is the CLEAN algorithm [12]. In this approach the source level

of the dominant source is assumed to be given by its image level specified by

Eq. (12.2.11) and is designated at the location of the maximum in the source image

y(i ) with source spectrum given by Qii ¼ 4πroð Þ2b 1ð Þ
i where the superscript indicates

the level of the dominant source in the first iteration. The cross spectrum of the array

output from this source by itself is then calculated using Eqs. (12.2.1) and (12.2.8) as

C
1ð Þ
mj ¼G

�
x mð Þjy ið Þ
� �

G
�
* x jð Þjy ið Þ
� �

b
1ð Þ
i 4πroð Þ2 (12.3.5)

This is then subtracted from the measured cross-spectrum matrix. Next the bea-

mformed image is calculated from the corrected cross-spectrum matrix giving a

source map that is not contaminated by the side lobes from the dominant source. This

process can be repeated a number of times until the noise floor is reached. This has

worked well in flyover noise applications [12] where there are distinct isolated source

of interest, but its application to distributed sources can be limited.

12.3.4 Integrated source maps

In many applications we are interested in the source level of a group of sources that are

well resolved in the sourcemap. For example, the source image of trailing edge noise in a

wind tunnel, as represented in Fig. 12.9B, is important over a specific area near the blade

trailing edge, and we need to extract the noise from that area separately from the noise

generated by the blade leading edge or the wind tunnel. To achieve this, we integrate

or sum the source image levels over the region of interest. However, the result is

influencedby the point spread function for each image point, and so the integrated source

levelmust be corrected for the additional energy caused by the leakage through sidelobes

in the point spread function. To specify this we make use of the relationship given

in Eq. (12.2.11) and sum the source image levels bk multiplied by the pixel area Δsj to
give the integrated source level over a limited number of image points j¼ j1, j2, j3,… as

I¼
X

j¼ j1, j2,…ð Þ
bj ωð ÞΔsj ¼

X
j¼ j1, j2,…ð Þ

XN
n¼1

jFjnj2Qnn ωð ÞΔsj

To relate the integral of the source image to the actual integrated level we need to

define an inner and outer boundary. The outer boundary is the area that the source

image has been integrated over and includes all the points j¼ j1, j2, j3, … The inner

boundary includes all the sources that contribute to the image within the outer bound-

ary and includes the points n¼n1, n2, n3, … This is an important approximation and

only applies if the source of interest is well resolved and not contaminated by side

lobes from other sources in different parts of the system. The integrated source image

over the region of interest is then approximated as
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I�
X

j¼ j1, j2,…ð Þ

X
n¼ n1, n2,…ð Þ

jFjnj2Qnn ωð ÞΔsj

If the outer boundary is large enough and the pixel size is constant, then we can

approximateX
j¼ j1, j2,…ð Þ

jFjnj2 ¼F� const (12.3.6)

so that the integral of the point spread function is independent of the source position.

The actual integrated source level over the region of interest is then

Ia ¼
X

n¼ n1, n2,…ð Þ
Qnn ωð ÞΔsn � I

F
(12.3.7)

This effectively corrects the integrated source image levels for the spreading caused

by the finite resolution of the array and allows source spectra to be obtained from

source images.

12.4 Correlated sources and directionality

The basic assumption applied to the evaluation of the source imagewas that the sources

are omnidirectional and uncorrelated. This assumption is rarely valid for flow noise

sources, for example, surface sources are typically of dipole order and have a cosine

directionality, edge sources usually have a sin(θ/2) directionality, and more extended

sources such as rotors have sources that radiate differently in the upstream and down-

stream directions. Of particular concern are sources that are correlated over an area that

is larger than the acoustic wavelength since these sources will have their own distinct

acoustic field. An example of this is reflections from rigid surfaces such as wind tunnel

walls that cause image sources that can be some distance from the source itself.

First consider the type of error that appears in the source image from the equally

spaced line array, used in Fig. 12.7, if the source has a dipole directivity. Two exam-

ples are shown in Fig. 12.10, corresponding to a dipole aligned with the y1 axis and a

dipole aligned with the y2 axis. For the dipole aligned with the y2 axis the directionality
is weak over the array, as shown in Fig. 12.10A, and does not cause a significant var-

iation in level over the array. Consequently, the point spread function is almost the

same as it would be for an omnidirectional source. However, for the dipole that

has a null in the direction of the array, receivers for x1<0 will have signals that

are 180 degrees out of phase with the signals for x1>0, and so we expect a more

noticeable effect on the source image. The worst case scenario is when the array is

symmetrical about x1¼0, and the source image is shown as in Fig. 12.10B. It appears

to have two peaks that are symmetric about the actual source point, corresponding to

the simple model for a dipole defined by two sources of equal strength and

180 degrees out of phase.
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Of particular importance in lowMach number aeroacoustics are trailing edge noise

sources that have a sin(θ/2) directionality, as shown in Fig. 12.10C. These are typically
aligned with the flow, so the null in the directionality points downstream. At

90 degrees to the flow, where measurements are usually made, the directionality is

weak, and the source level is retrieved accurately, as shown in Fig. 12.10C.

In conclusion, the effect of directionality is most important if it includes a null in

the far field that falls on the array. A null in the far field is always associated with a

180 degrees change in phase, and so the phase measured across the array is distorted
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directionality with a null in the direction of the array shows an image with two sources of equal
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by this effect. If the directionality across the array is relatively weak, as shown by the

trailing edge noise or the dipole in the y1 direction in Fig. 12.10, then the assumption of

omnidirectional point sources is reasonable.
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13The theory of edge scattering

As we discussed in Chapters 6 and 7 the noise radiated from rotor or fan blades, or a

stationary airfoil encountering turbulence, is primarily caused by the interaction of

unsteady flow with the leading edge of the blade. In addition, blade boundary layer

turbulence can only radiate sound if it encounters a surface discontinuity such as a

trailing edge. Both these problems require the detailed analysis of the unsteady flow

close to an edge. In this chapter we lay out the details of how edge scattering is cal-

culated so that, in subsequent chapters, we can evaluate leading edge and trailing

edge noise.

13.1 The importance of edge scattering

We have shown in earlier chapters that sound caused by a turbulent flow in the pres-

ence of an airfoil or fan blade is determined by the unsteady pressure on the blade

surface. In general, we can model the blade, to first order, by a flat plate of finite chord

as shown in Fig. 6.7. The far-field sound was shown in Sections 4.7 and 6.5 to be

directly related to the wavenumber transform of the jump in surface pressure across

the blade evaluated at the acoustic wavenumber. The physical interpretation of this

result is that only waves that propagate across the surface at the speed of sound will

couple with the acoustic far field. In principle this is also correct for blades that are

acoustically compact in flows of very low Mach number, but in that limit the acoustic

wavenumbers are close zero, and the wavenumber spectrum is equal to the net

unsteady blade loading for all acoustic wavenumbers of interest.

On a smooth surface, pressure fluctuations associated with turbulence are

convected at a speed that is less than (or equal to) the local flow speed, and in most

cases of interest this is subsonic. The far-field sound can therefore only be caused by

the interaction of the turbulence with an edge, or a discontinuity on the surface, both of

which scatter wave energy into acoustic waves. The two most important examples are

leading edge noise, where turbulent gust impinges on the leading edge of a blade, and

trailing edge noise in which turbulent boundary layer pressure fluctuations are

convected downstream across the blade trailing edge. In this chapter both these prob-

lems will be considered.

Amiet [1,2] addressed the problems of leading and trailing edge noise by using the

solution to the Schwartzschild problem, which was developed for electromagnetic

wave scattering in the presence of a semi-infinite half plane. We will derive the solu-

tion to this problem using the Weiner Hopf method, which is of general applicability

and will be extended to cascades of blades in Chapter 18. The solution to the

Schwartzschild problem for electromagnetic waves only applies to a stationary sur-

face in the absence of flow, and so we will also describe how these results can be

extended to sound radiation in a uniform flow.
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13.2 The Schwartzschild problem and its solution based
on the Weiner Hopf method

13.2.1 The boundary value problem

The scattering of hydrodynamic pressure waves by a trailing edge can be modeled by

considering a surface pressure disturbance traveling downstream over a semi-infinite

plate, as shown in Fig. 13.1. The disturbance is expressed in terms of Δp, the pressure
difference between the top and bottom sides of the plate.

We assume that the pressure jumpΔp in the absence of the trailing edge (located at
x1¼0) is given by Poexp(�iωt+ ik1x1) and that the flowMach number is so small that

the mean flow can be ignored in the first instance. Note that we will allow for the pos-

sibility that the wavenumber k1 may have a small imaginary part allowing for decay or

growth of the disturbancewith x1. Both at and downstream of the trailing edge there can

be no pressure jump across the surface (the Kutta condition), and so an acoustic wave

field must be added that exactly cancels the incident pressure disturbance for x1>0,

x2¼0. The scattered acoustic field pmust satisfy the acoustic wave equation, and also

the boundary condition that @p/@x2¼0 on the surface of the plate to match the

non-penetration boundary condition. If we initially limit consideration to two dimen-

sions with nomean flow, then the scattered acoustic field is given by the solution of the

Schwartzschild problem. This defines a scattered acoustic field with a harmonic pres-

sure fluctuation p̂ x1, x2ð Þexp �iωtð Þ that satisfies the wave equation and the boundary
conditions:

@2p̂

@x21
+
@2p̂

@x22
+ k2p̂¼ 0

Δp̂s x1ð Þ½ �x1>0 ¼�Poe
ik1x1

@p̂ x10ð Þ
@x2

� �
x1<0

¼ 0

(13.2.1)

Schwartzschild showed that this problem can be solved to give the pressure jump

over the plate caused by the scattered wave as

Δp̂s x1ð Þ¼�2Po

π

ð∞
0

x1j j
ξ

� �1=2 eik ξ + jx1jð Þ + ik1ξ

ξ+ jx1j dξ x1 < 0

x2

x1

Semi-infinite flat plate

Δp = Poe
−iwt + ik1x1+ Δps≠ 0

Δp = Poe
−iwt+ ik1x1+ Δps= 0

Wake

Fig. 13.1 A hydrodynamic pressure disturbance traveling downstream over a semi-infinite

plate that causes a pressure jump across the plate and a scattered acoustic wave that cancels the

pressure jump across the wake.
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which on evaluation of the integral gives

Δp̂s x1ð Þ¼ Poe
ik1x1 1� ið ÞE2 k + k1ð Þjx1jð Þ� 1ð Þ x1 < 0 (13.2.2)

where E2(x) is a modified Fresnel integral defined as

E2 xð Þ¼
ðx
0

eiq

2πqð Þ1=2
dq (13.2.3)

which is a function that appears often in the theory of edge scattering in several

different forms.

13.2.2 Obtaining the Schwartzschild solution using
the Weiner Hopf method

The result given by Eq. (13.2.2) is specific to the boundary value problem given by

Eq. (13.2.1). However, we can obtain the same result in a way that may be extended to

more general cases by considering the scattering in more detail. This will lead to for-

mulations for leading edge noise and far-field radiation that do not follow directly

from Eq. (13.2.2).

To obtain Eq. (13.2.2) we start by taking the wavenumber transform of the wave

equation with respect to x1, defined such that

p
��

α, x2ð Þ¼ 1

2π

ðR∞

�R∞

p̂ x1, x2ð Þe�iαx1dx1 (13.2.4)

(Note: since this is a wavenumber transform we have chosen the exponential to have a

negative sign.) The wave equation then reduces to

@2eep
@x22

+ k2�α2
� �ep¼ 0

and the solution to this equation is

p
��

α, x2ð Þ¼A αð Þe�γx2 +B αð Þeγx2

where

γ¼ α2� k2
� �1=2

(13.2.5)

The branch cut for γ is chosen so that Re(γ)>0. The presence of the plate implies that

the wave field can be discontinuous across the plate where x2¼0, and so we can define
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separate solutions for the regions x2>0 and x2<0. The additional boundary condition

that we have is that the acoustic waves must decay at large distances from the plate,

and we can only meet that condition if we set B(α)¼0 when x2>0 and A(α)¼0 when

x2<0. While the plate can support a pressure jump, the normal derivative of the pres-

sure on x2¼0 must be continuous for both x1>0 (where there is no plate) and x1<0

(where it is zero). The pressure gradient is therefore

@eep α, 0ð Þ
@x2

¼ �γA αð Þ½ �x2¼0+ ¼ γB αð Þ½ �x2¼0�

and so A(α)¼�B(α), and the acoustic field caused by the scattered waves is given by
the inverse of Eq. (13.2.4) (i.e., the inverse wavenumber transform)

p̂ x1, x2ð Þ¼
ð∞

�∞

sgn x2ð ÞA αð Þeiαx1�γjx2jdα (13.2.6)

and allows for a pressure jump across the plate.

In order to solve the unknown function A(α) we use the wavenumber transform of

Eq. (13.2.6) on the surface x2¼0+ given by

A αð Þ¼ 1

2π

ðR∞

�R∞

p̂ x1, 0
+ð Þe�iαx1dx1

However, the boundary condition is different for x1>0 and x1<0, so we write this as

A αð Þ¼A� αð Þ +A+ αð Þ (13.2.7)

where

A� αð Þ¼ 1

2π

ð0
�R∞

p̂ x1, 0
+ð Þe�iαx1dx1 (13.2.8)

and

A + αð Þ¼ 1

2π

ðR∞

0

p̂ x1, 0
+ð Þe�iαx1dx1 (13.2.9)

The integrand of Eq. (13.2.9) is known from the boundary conditions of the problem,

but A�(α) remains as an unknown. To make use of the non-penetration boundary con-

dition we define the chordwise Fourier transform of the pressure gradient normal to

the plate, given by
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C + αð Þ¼ 1

2π

ðR∞

0

@p̂ x1, 0
+ð Þ

@x2
e�iαx1dx1 (13.2.10)

where the lower limit of the integral is zero because the pressure gradient is zero when

x1<0. However, by differentiating Eq. (13.2.6) we see that the pressure gradient is

given by the inverse Fourier transform

@p̂ x1, x2ð Þ
@x2

¼
ð∞

�∞

�γA αð Þe�γjx2j
n o

eiαxdα

and thus C+(α) is given by the terms in curly brackets at x2¼0+, which using

Eq. (13.2.7) is

C + αð Þ¼�γA� αð Þ� γA + αð Þ (13.2.11)

This completely defines the boundary value problem with the conditions set by

Eq. (13.2.1). The functions A+(α) and A�(α) are required to define the acoustic field

using Eq. (13.2.6), but unfortunately only A+(α) is known, and both A�(α) and C+(α)
are unknowns, and so it appears that this problem is underdetermined and cannot be

solved with these boundary conditions alone.

13.2.3 The radiation condition and the Weiner Hopf separation

In solving the wave equation, we used the radiation condition that requires the sound

field to decay at large distances from the surface. The same condition applies far

upstream or downstream from the edge, and we can use this additional boundary con-

dition to solve for the two unknowns in Eq. (13.2.11). To ensure that waves decay as

jx1j tends to infinity we require that the surface pressure has the asymptotic values

lim
x1!∞

@p̂ x1, 0ð Þ
@x2

<Ce�βx1 lim
x1!�∞

p̂ x1, 0ð Þ<De�βjx1j

where C,D, and β are real positive constants. (There is no need to impose a restriction

on the pressure gradient for negative x1 since the gradient is zero here anyway.) The

same condition should also be required for the incident pressure disturbance, and this

is achieved by requiring that Im(k1)>β. This apparently implies that the incident

wave decays from a large value upstream, but this issue can be addressed by assuming

that the incident wave is of finite extent in the upstream direction, as would be the case

in a real flow.

To show how this additional boundary condition can be used, we make use of

some well-known properties of the Laplace transform, which is defined by the trans-

form pairs
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F sð Þ¼
ð∞
0

f xð Þe�sxdx f xð Þ¼ 1

2πi

ði∞ + βo

�i∞+ βo

F sð Þesxds (13.2.12)

This transform is relevant to the problem being considered because it is essentially the

same as the Fourier transform defined in Eq. (13.2.9) over the positive values of x1, so,
for example,

A + αð Þ¼F+ iαð Þ=2π where F + sð Þ¼
ð∞
0

p̂ x1, 0
+ð Þe�sx1dx1 (13.2.13)

Laplace transforms are used extensively in control theory and are often applied to

determine if a system is stable or unstable. By definition they represent a function that

is zero for x<0, and the system is stable if it does not have exponential growth as x
tends to infinity. The criterion to prevent growth at infinity is that the Laplace trans-

form of the function should have no poles, branch cuts, or other singularities on the

right side of the complex s plane where Re(s)>0, as shown in Fig. 13.2.

If the function f(x) decays exponentially for large x>0, so f(x)<Cexp(�βx), where
C and β are positive real constants, then the Laplace transform converges when

Re(s)>�β, and all the singularities of F(s) lie to the left side of the path of integration
shown in Fig. 13.2. Since we wish to impose the boundary condition that the scattered

field decays for large jx1j, the criterion can be restated as requiring that all the singu-

larities of F+(s) lie in the region of the s plane where Re(s)<�β. We can then impose

this restriction on the boundary condition given by Eq. (13.2.12) to eliminate one of

the two unknown functions and obtain a complete solution.

However, before we proceed we must define the Laplace transforms of the other

terms in Eq. (13.2.11). Since the pressure gradient normal to the plate is zero when

x1<0 we can define its Laplace transform as in Eq. (13.2.12), by the function

Im(s)

Re(s)

Path of integration for the
inverse Laplace transform
on Re(s) =bo

Location of a
pole in left plane

Fig. 13.2 Laplace transforms in the s plane.
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G+(s), and so C+(α)¼G+(iα)/2π. However, for the pressure upstream of the edge, the

Laplace transform must be defined by reversing the direction of integration, so (using

ξ¼�x1)

A� αð Þ¼F� �iαð Þ=2π where F� sð Þ¼
ð∞
0

p̂ �ξ,0 +ð Þe�sξdξ

So, the boundary condition may be written as

G + sð Þ¼�γ sð ÞF + sð Þ� γ sð ÞF� �sð Þ½ �s¼iα γ sð Þ¼ � s2 + k2
� �� �1=2

(13.2.14)

The functions in this equation are analytic in different parts of the s plane as shown
in Fig. 13.3.

It follows that the right side of Eq. (13.2.14) only converges in the strip�β<Re(s)
<β. This is important when we evaluate the inverse Laplace transform defined as

f xð Þ¼ 1

2πi

ðβo + i∞

βo�i∞

F sð Þesxds (13.2.15)

Im(s)

Re(s)

Re(s) = −b
Region where F+(s)
and G+(s) are analytic

Re(s)

Re(s) =b
Region where F−(−s) 
is analytic 

Im(s)

Fig. 13.3 The regions of the s plane where the functions in Eq. (13.2.14) are analytic.

The theory of edge scattering 333



which is only valid if F(s) converges along the path of integration. The inversion of

Eq. (13.2.14) is therefore required to be carried out by choosing �β<βo<β and is

only possible if β>0.

We also need to be very specific about the definition of the function γ. This is a
multivalued function and, to meet the radiation condition, is required to have a pos-

itive real part. To ensure that this is the case on the path of integration Re(s)¼βo we
choose the branch cuts that are shown in Fig. 13.4, and using the criteria given in

Appendix B, define

γ sð Þ¼ J + sð ÞJ� sð Þ J+ sð Þ¼ eiπ=4 s� ikð Þ1=2 J� sð Þ¼ eiπ=4 s+ ikð Þ1=2 (13.2.16)

and require that k has a small positive imaginary part that moves the branch points

away from the path of integration as shown.

All the terms in Eq. (13.2.14) are now defined along the path of integration required

for the inverse Laplace transform. However, on the left side of this equation G+(s)
represents a function that is zero upstream of the edge and decays at large x1, so it

can have no singularities for Re(s)>�β. The same is therefore true for the

right-hand side of this equation. This gives the additional restriction that is needed

to solve Eq. (13.2.14) for the two unknowns, and we can manipulate the terms so that

this criterion is met, which is the basis of the Weiner Hopf method. First divide by

J+(s) so that

G + sð Þ
J+ sð Þ ¼�J� sð ÞF + sð Þ� J� sð ÞF� �sð Þ
� �

s¼iα

(13.2.17)

The first term on the right side of this equation is a mixture of functions that have non-

analytic features for both positive and negative values of real s. However, it can be

split into two parts, one which exactly cancels the second term on the right (which

Im(s)

Re(s)

Branch line for J−(s)

s = ik
1

s = ik

s = −ik

Branch line for J+(s)

Fig. 13.4 The branch cuts and poles of Eq. (13.2.12) in the s plane.

334 Edge and Boundary Layer Noise



only has singularities for Re(s)>β) and the second that has no singularities on the left
side of the s plane. This separation is dependent on the form of F+(s) which is given by
the boundary condition for x1>0 in Eq. (13.2.1) with the pressure at x2¼0+ being

taken as half of the pressure difference Δps, and thus

F + sð Þ¼�Po

2

ð∞
0

e� s�ik1ð Þx1dx1 ¼� Po

2 s� ik1ð Þ

This has a simple pole at s¼ ik1 that is shown in Fig. 13.4. By removing the residue at

the pole we can then write Eq. (13.2.15) as

G + sð Þ
J+ sð Þ �Po

J� ik1ð Þ
2 s� ik1ð Þ¼Po

J� sð Þ� J� ik1ð Þ
2 s� ik1ð Þ

� �
� J� sð ÞF� �sð Þ

� �
s¼iα

If we take the inverse transform of this equation along the imaginary axis s¼iα the

right side will give a function that is zero for x1>0 because all the terms are analytic

for Re(s)<0 as shown in Fig. 13.3. Similarly, the left side will give an equation that is

zero for x1<0 (providing that J+(s) is not zero when Re(s)>0). The only possible

solution therefore is that the two sides are independently equal to zero (or equal to

a function whose inverse transform is zero). We then obtain the solution for the

unknown function that gives the pressure on the upstream surface as

F� �sð Þ¼Po
J� sð Þ� J� ik1ð Þ
2J� sð Þ s� ik1ð Þ

� �� �
s¼iα

(13.2.18)

Using the definitions in Eq. (13.2.16) the pressure on the upstream part of the surface

can be obtained from the inverse Laplace transform of

F� sð Þ¼ Po

2

ik + ik1ð Þ1=2
�s+ ikð Þ1=2 s+ ik1ð Þ

� 1

s+ ik1ð Þ

 !" #
s¼iα

(13.2.19)

as a function of ξ¼�x1. Both terms in this equation have a pole at s¼� ik1 in the

right half plane that individually would cause a growing wave, but since the residues

of the terms cancel we can move the path of integration to the right of the pole and

substitute s¼s1+ik, so the inverse transform (designated by L�1{}) is

f ξð Þ¼Poe
ikξ

2
L�1 �i k + k1ð Þð Þ1=2

s1 + i k + k1ð Þð Þ ffiffiffiffi
s1

p � 1

s1 + i k + k1ð Þð Þ

( )

Standard tables give the inverse Laplace transform of the functions 1/(s+a) and 1/s1/2,
which should be combined as a convolution integral when multiplied together. We

then obtain the pressure jump across the surface as 2f(ξ) where
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Δp̂s �x1ð Þ¼Po e�iπ=4 k1 + kð Þ1=2
ðx1j j

0

ei k1 + kð Þτffiffiffiffiffi
πτ

p dτ�1

0
B@

1
CAeik1x1 x1 < 0

which is identical to the result given by Eq. (13.2.2).

13.2.4 Generalized Fourier transforms and Laplace transforms

The analysis given in the previous section was based on Laplace transforms to obtain

the solution to the Schwartzschild problem. In much of the literature (Noble [3],Morse

and Feshbach [4]) the Weiner Hopf method is carried out using Generalized Fourier

transforms of the type

F + αð Þ¼ 1

2π

ð∞
0

f xð Þe�iαxdx F� αð Þ¼ 1

2π

ð0
�∞

f xð Þe�iαxdx

These are equivalent to the approach given above with �iα replacing the Laplace

transform variable s. The advantage of the current approach is that there are

well-documented tables of Laplace transforms and their inverses that are readily avail-

able and can be used to simplify the results, and so this is the reason that this approach

has been used here. Generalized Fourier transforms can always be obtained from

Laplace transforms, providing the correct substitutions are made. However, care must

be exercised in the location of branch cuts in the s plane as a function of different vari-
ables. If the wrong branch cut is chosen, then the incorrect result will be obtained.

The other benefit of the present approach is that, while different authors use dif-

ferent conventions for Fourier transforms, the convention for Laplace transforms is

universal, and so there is little ambiguity in the final result.

13.3 The effect of uniform flow

In Chapter 6 we discussed thin airfoil theory and showed how the unsteady loading of an

airfoil in a uniform flow could be modeled by a flat plate at zero angle of attack that sat-

isfied the convective wave equation. In trailing edge noise applications, we need to

account for themean flowover the surface, and so the Schwartzschild problemdescribed

in the previous sectionmust bemodified to account for the flow. In addition, the pressure

perturbation over the surface is usually three dimensional, and so the two-dimensional

analysis used in Section 13.2 must be extended to the three-dimensional case.

To account for these effects, the perturbations in pressure and velocity potential

must satisfy the convective wave equation (6.4.3) so that

1

c2∞

D2
∞ϕ

Dt2
�r2ϕ¼ 0 and

1

c2∞

D2
∞p0

Dt2
�r2p0 ¼ 0 where p0 ¼�ρo

D∞ϕ

Dt
(13.3.1)

336 Edge and Boundary Layer Noise



These equations account for the convection of the sound waves by the uniform free

stream and are thus no different than the sound propagation equations for a stationary

medium derived in Chapter 3, except that the time derivative is expressed in the frame

of reference of an observer who is moving relative to the medium rather than one who

is fixed with respect to it. The pressure perturbation on the surface can still be con-

sidered harmonic, but is convected downstream in the direction of the flow, and

can include a harmonic spanwise variation so that the boundary condition given by

Eq. (13.2.1) is modified to

Δp̂ x1, x3ð Þ½ �x1>0 ¼�Poe
ik1x1 + ik3x3 (13.3.2)

where k1¼ω/Uc with Uc being the convection speed of the incident pressure

perturbation. Since the incident disturbance is harmonic in time and the surface geo-

metry is independent of the spanwise direction, we can specify the scattered acoustic

field as

p̂ x1, x2, x3ð Þ½ �3D ¼ p̂ x1, x2ð Þ½ �2Deik3x3 (13.3.3)

so that the scattered pressure has the form p̂ x1, x2ð Þexp �iωt + ik3x3ð Þ. Substituting
this form into the convective wave equation we obtain

β2
@2p̂

@x21
+ 2ikM

@p̂

@x1
+
@2p̂

@x22
+ k2� k33
� �

p̂¼ 0 (13.3.4)

with M¼U/c∞, β¼ (1�M2)1/2, and k¼ω/c∞.
To solve this equation, we proceed as in Section 13.2 and take its wavenumber

Fourier transform with respect to x1, giving

@2eep
@x22

� α2β2 + 2αkM� k2 + k23
� �eep¼ 0

We solve this equation as in Section 13.2 subject to the same boundary conditions for

the pressure jump across the surface and the continuity of the pressure gradient and

obtain the solution as before, so the three-dimensional pressure is given in the same

form as Eq. (13.2.6) by

p̂ x1, x2, x3ð Þ¼
ð∞

�∞

sgn x2ð ÞA αð Þeiαx1�γjx2j + ik3x3dα (13.3.5)

where in this case

γ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2β2 + 2αkM� k2 + k23

q
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The Schwartzschild problem can be solved in exactly the same way as was done in

Section 13.2 the only difference being in the definition of γ, which can be taken into

account by factorizing γ and specifying, for s¼ iα

γ sð Þ¼ J+ sð ÞJ� sð Þ J+ sð Þ¼ eiπ=4β s+ ikoM� iκð Þ1=2

J� sð Þ¼ eiπ=4 s+ ikoM + iκð Þ1=2
(13.3.6)

κ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2o� k23=β

2

q
ko ¼ω=β2c∞ (13.3.7)

The unsteady surface pressure in the no flow case was shown to be determined by the

function J�(s)¼ (s+ik)1/2, and so the effect of flow is to modify the result by replacing

k with κ+koM in the final result, so from Eq. (13.2.3) we obtain

Δp̂s x1, x3ð Þ¼Poe
ik1x1 + ik3x3 1� ið ÞE2 κ + koM + k1ð Þjx1jð Þ�1ð Þ x1 < 0 (13.3.8)

This extends the two-dimensional analysis to the three-dimensional case with flow

and gives a procedure for simplifying the rather complex problem of a convected flow

to a tractable problem.

The blade response to an incident pressure disturbance is important in the evalu-

ation of trailing edge noise, as will be discussed in detail in Chapter 15. In this case the

nondimensional response gte(x1, k1, k3) is defined so that

Δp̂s x1, x3ð Þ¼Pogte x1, k1, k3ð Þeik3x3 x1 < 0

gte x1, k1, k3ð Þ¼ eik1x1 1� ið ÞE2 k1Ajx1jð Þ� 1ð Þ (13.3.9)

where A¼1+(κ+koM)/k1. Some care needs to be used when evaluating κ because this
can be imaginary for large values of k3. However, for surface pressure fluctuations that
couple to the acoustic far field κ must always be real valued as will be discussed in

Chapter 14. For the case when k3¼0 we find that A¼1+Uc/c∞(1�M) which is

always greater than 1. The effect of the mean flow on the surface pressure only appears

as the factor of (1�M) in the definition of A and tends to make the response more

rapid in the vicinity of x1¼0.

13.4 The leading edge scattering problem

The unsteady loading on a flat plate of finite chord caused by an unsteady upwash gust

can also be evaluated in a compressible flow by using a modification to the

Schwartzschild problem described in the previous sections. However, the effect of

finite chord is important in this problem, and so we need to include the effect of both

the leading edge and the trailing edge of the blade in the solution. This cannot be

achieved in closed form, but an iterative method based on the successive approxima-

tions of the blade by semi-infinite flat plates converges quite quickly and is a good

approximation to the complete response. The approach is to first solve the problem
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of an upwash gust incident on a semi-infinite flat plate and then add a correction based

on the Schwartzschild solution described in Section 13.2 to ensure that there is no

pressure jump across the wake downstream of the blade trailing edge. This correction

however introduces a small jump in potential upstream of the leading edge, and so

additional terms need to be added to correct this. However, as we will show below

this is a relatively small correction that can usually be ignored.

13.4.1 The leading edge response

To solve the first-order problem of an upwash gust encountering a semi-infinite flat

plate, as shown in Fig. 13.5, we will use the same approach as was used in Section 13.2

but with the velocity potential as the dependent variable in the wave equation rather

than the pressure.

Thewave equation in this case is defined byEq.(13.3.1); the potential of the scattered

acoustic field has the form ϕ̂ x1, x2, x3ð Þexp �iωtð Þ¼ ϕ̂ x1, x2ð Þexp �iωt + ik3x3ð Þ,
and the boundary conditions are

Δϕ̂ x1x3ð Þ	 

x1<0

¼ 0
@ϕ̂ x1, 0, x3ð Þ

@x2
+ â2e

ik1x1 + ik3x3

" #
x1>0

¼ 0 (13.4.1)

for a harmonic upwash gust convected by the mean flow, so k1¼ω/U∞ in this case.

The solution can be obtained as before by taking the wavenumber transform of the

wave equation. The final result will be of the same form as Eq. (13.3.5) with the veloc-

ity potential replacing the unsteady pressure and the requirement that the gradient of

the velocity potential is continuous across the plate. The boundary conditions can then

be defined using the half-range transforms given by Eqs. (13.2.7) through (13.2.10),

with the subscripts referring to the upstream or downstream part of the x1 axis, so

C� αð Þ +C + αð Þ¼�γA� αð Þ� γA + αð Þ

Harmonic gust

2ˆ
ik1x1+ ik2x2+ ik3x3−iwta e

Flat plate
Δf≠ 0

x2

x1

U∞

Fig. 13.5 An upwash gust incident on a

semi-infinite flat plate.
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In this case A�(α)¼0 and

C + αð Þ¼ �â2
2πi α� k1ð Þ

As before this equation has two unknowns A+(α) and C�(α), so we need to use the

radiation condition as jx1j tends to infinity to find a solution. The procedure used

in Section 13.2 is followed again by writing the boundary condition in terms of the

Laplace transforms defined in Eq. (13.2.14) with the velocity potential as the depen-

dent variable and s¼ iα, so

�â2
s� ik1ð Þ +G� �sð Þ¼�γ sð ÞF + sð Þ

� �
s¼iα

We need to separate the terms in this equation that contribute to the wave field

upstream or downstream of the leading edge, and this is achieved by factorizing

γ(s), as in Eq. (13.3.6) identifying those terms that have singularities in the right or

left side of the s plane. From Fig. 13.4 we see that the factored equation takes the form

�â2
s� ik1ð ÞJ� sð Þ�

�â2
s� ik1ð ÞJ� ik1ð Þ +

G� �sð Þ
J� sð Þ ¼�J + sð ÞF + sð Þ� �â2

s� ik1ð ÞJ� ik1ð Þ
� �

s¼iα

As before the inverse Laplace transform of the left side of this equation gives a

function that is zero for x1>0, while the right side gives a function that is zero for

x1<0 providing that the imaginary part of k1 is greater than zero. We then obtain

the Laplace transform of the jump in potential across the surface downstream of

the leading edge as

F + sð Þ¼ â2
s� ik1ð ÞJ� ik1ð ÞJ + sð Þ (13.4.2)

or, in terms of the wavenumber spectrum of the potential jump,

A αð Þ¼A + αð Þ¼ â2
2πi α� k1ð ÞJ� ik1ð ÞJ+ iαð Þ (13.4.3)

The inverse Laplace transform of Eq. (13.4.2) gives the potential jump, but in this case

it is useful to evaluate the unsteady pressure jump

Δp̂ 1ð Þ x1, x3ð Þe�iωt ¼�ρo
D∞

Dt
Δϕ̂ x1, x3ð Þe�iωt
� �

and since (ω�αU∞)¼ (k1�α)U∞ and the pressure jump is the inverse transform of

2A(α), we obtain
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Δp̂ 1ð Þ x1x3ð Þ¼ �ρoU∞â2e
ik3x3

πβ k1 + koM + κð Þ1=2
ð∞

�∞

eiαx1

α + koM� κð Þ1=2
dα (13.4.4)

The inverse transform can be evaluated from tables, and we find that

Δp̂ 1ð Þ x1, x3ð Þ¼ πρoâ2U∞g
1ð Þ x1, k3, ω,Mð Þeik3x3

g 1ð Þ x1, k3,ω,Mð Þ¼ �2ei κ�Mkoð Þx1 + iπ=4

π k1 + κβ
2

� �1=2 ffiffiffiffiffiffiffi
πx1

p x1 > 0
(13.4.5)

(where we have used β2(k1+koM)¼k1). The important conclusion from this result is

that the pressure jump at the sharp edge has a square root singularity and tends to zero

at large distances downstream of the leading edge. The implication is that both the

pressure jump and the particle velocity at the leading edge are infinite, but in reality

the velocity at the edge will be limited by viscous effects and the details of the geom-

etry. The modeling that has been used here is based on thin airfoil theory, which

ignores that rounding of the leading edge of a blade. When the details of the rounding

are included in the analysis the leading edge pressure jump will be quite different as

discussed in Chapter 7 for incompressible flow.

13.4.2 The trailing edge correction

For a blade with a finite chord these results need to be corrected for the effect of the

trailing edge and the Kutta condition. We can calculate a correction that satisfies the

trailing edge boundary condition by using the trailing edge scattering theory described

in Section 13.2. However, this result is for a semi-infinite flat plate, and so there will

be a residual error that occurs at the blade leading edge. Successive corrections can be

calculated using the methods described here, but first we will consider the first-order

trailing edge correction that is obtained by solving the trailing edge boundary

value problem described with the incident pressure jump given by Eq. (13.4.5). Since

the origin in the leading edge problem is at a distance c upstream of the trailing

edge the result given by Eq. (13.4.5) must be redefined with the origin at the trailing

edge, giving

Δp̂ 1ð Þ x1, x3ð Þ¼ πρoâ2U∞
�2ei κ�Mkoð Þ x1 + cð Þ + iπ=4

π k1 + κβ
2

� �1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π x1 + cð Þp

( )
eik3x3

Carrying out the full Weiner Hopf procedure on this function is difficult, but a sim-

plified result is obtained in the high-frequency limit if the amplitude variation with x1
is ignored, and we approximate the pressure near the trailing edge as
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Δp̂ x1, x3ð Þ� πρoâ2U∞
�2ei κ�Mkoð Þc + iπ=4

π k1 + κβ
2

� �1=2 ffiffiffiffiffi
πc

p
( )

ei κ�Mkoð Þx1 + ik3x3

We can then use the analysis given in Section 13.2 to find the trailing edge correction

as the additional pressure jump

Δp̂ 2ð Þ x1, x3ð Þ¼�2πρoâ2U∞e
i κ�Mkoð Þ x1 + cð Þ + iπ=4

π k1 + κβ
2

� �1=2 ffiffiffiffiffi
πc

p 1� ið ÞE2 2κjx1jð Þ�1f geik3x3

x1 < 0

If the origin of the coordinate system is relocated back to the leading edge, we obtain

the corrected nondimensional surface pressure function as

g 1 + 2ð Þ x1, k3,ω,Mð Þ¼ �2ei κ�Mkoð Þx1 + iπ=4

π k1 + κβ
2

� �1=2 ffiffiffiffiffi
πc

p
ffiffiffiffiffi
c

x1

r
+ 1� ið ÞE2 2κjx1� cjð Þ�1

� �

0< x1 < c (13.4.6)

The corrected solution given by Eq. (13.4.6) is only an approximate solution, but

includes the major effects caused by the trailing edge, and ensures that the Kutta con-

dition is satisfied. The pressure jump includes a discontinuity upstream of the leading

edge because we have used a trailing edge correction that assumes it is the same as the

response of a semi-infinite flat plate upstream of the trailing edge. However, for large

arguments we find that

1� ið ÞE2 2κcð Þ� 1 +O 2κcð Þ�1=2
 �

so this correction is small when the blade chord is large compared to the acoustic

wavelength.

In conclusion we have developed expressions for the response of a flat plate

airfoil to a harmonic gust and obtained the unsteady surface pressure distribution,

which can be used to calculate the unsteady loading and the far-field sound. These

results are crucial to the calculation of sound radiation from thin airfoils and, although

the derivation is complex, the results are important to our understanding of the prob-

lem. We will discuss the features and characteristics of the results in the following

chapters.
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14Leading edge noise

One of the most important noise sources in lowMach number flows is a blade moving

through a region of unsteady flow or turbulence. The sound that radiates to the acous-

tic far field is referred to as leading edge noise. There are many examples where this

sound source occurs including fans of all types, helicopter rotors and propellers. This

chapter discusses the mechanisms of leading edge noise and shows how it can be cal-

culated for a stationary blade in a uniform flow.

14.1 The compressible flow blade response function

In Chapter 6 we introduced thin airfoil theory and showed how the unsteady flow

over a thin blade could be approximated to first order by considering the same flow

over an infinitely thin flat plate at zero angle of attack, as shown in Fig. 6.7. This

approximation is valid providing that the mean flow speed around the blade does

not differ from the free stream flow speed U∞ by more than �εU∞ and the ampli-

tude of the unsteady gust is also of order εU∞, where ε≪1 is a small parameter.

We then considered the case of an acous tically compact stationary blade in an

incompressible mean flow and showed that the source of sound was equivalent

to an acoustic dipole with its axis normal to the flow, and strength equal to the

net unsteady force produced by the blade . The relationship between the unsteady

force and the amplitude of a harmonic inc ident gust was given by Sears function

and was critically dependent on the application of the Kutta condition at the blade

trailing edge since this controls the cir culation about the blade. However, in

aeroacoustic applications we are also concerned with compressible flows, and

the modeling of the unsteady loading by an incompressible flow approximation

is a severe limitation. We must therefore i nvestigate in detail the effects of com-

pressibility on the blade res ponse function so that the limitations of incompressible

flow theory are well defined.

14.1.1 The compressible and incompressible flow blade
response to a step gust

If a step upwash gust is swept past a stationary blade, then there will be a sudden

change in angle of attack that convects across the blade surface. In an incompressible

flow the whole flow reacts instantaneously to any change in boundary conditions, and

so when the gust strikes the leading edge of the blade vorticity is shed into the blade

wake at the same instant in order to satisfy the Kutta condition at the trailing edge. In a

compressible fluid the physical mechanism is quite different. In general, information

propagates through the medium at the speed of sound, and so the trailing edge bound-

ary condition will be unaltered until the acoustic wave generated at the leading edge
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by the gust interaction reaches the trailing edge. Since the wave propagation speed is

enhanced by the mean flow convection the time taken for the acoustic wave to travel

from the leading edge to the trailing edge is c/(c∞+U∞), where c is the blade chord,
U∞ is the mean flow speed, and c∞ is the speed of sound. To determine if this delay is

important we must consider the phase shift between the leading edge pressure fluctu-

ations and the trailing edge pressure. If the frequency of interest is ω then the

phase shift will be ωc/(c∞+U∞). For incompressible flow c∞ is infinite, and so the

phase shift is zero. A step gust however excites all frequencies, and so an incompress-

ible flow calculation of the unsteady loading from a step gust will only be valid for the

low frequency part of the loading spectrum.

We can write this criterion in terms of the acoustic wavenumber k¼ω/c∞ and the

Mach number M¼U∞/c∞ and require that

kc

1 +M
≪ 1 (14.1.1)

for incompressible flow theory to be valid. This is the same as requiring that the

blade chord be acoustically compact, which was the assumption used in

Section 6.4. However, in many applications this requirement is not met. For

example, a frequency of 1000 Hz and a blade chord of 30 cm imply kc¼5.5

in air, and so the incompressible flow assumption is far from valid. In underwater

applications with the same dimen sions and at the same frequency kc¼1.25, and

so compressibility effects are also impor tant even though the medium is almost

incompressible.

An alternative perspective is obtained if the incoming gust has a streamwise scale

Lw, so the peak frequency excited by the gust is ω¼2πU∞/Lw. The criterion given by
Eq. (14.1.1) then becomes

2πcM

1 +Mð ÞLw ≪1 (14.1.2)

Since the lengthscale of the gust is likely to be of the samemagnitude as the blade chord,

the criterion is primarily determined by the flowMach numberM. TheMach number for

a π/2 phase shift is then M¼0.333, and at flow speeds substantially less than this the

incompressible flow approximation is valid. However, some caution needs to be used in

extending this concept to frequencies that are well above the peak frequency of the

incoming gust and lie in the range where kc is of order one, and this can occur if the

lengthscale of the incident turbulence is much smaller than the blade chord.

14.1.2 Leading and trailing edge solutions

In most aeroacoustics applications the Mach number is usually 0.3 or greater, and

the frequencies of interest are 500 Hz and above, so the effect of compressible flow

on the blade response function cannot be ignored. Unfortunately, there is no

346 Edge and Boundary Layer Noise



complete analytical solution to the flat plate blade response function in a compress-

ible flow, and numerical methods have to be used for the full calculation. However,

there are close approximations to the solution based on an iterative approach pro-

posed by Landahl [1]. In the first iteration the blade is assumed to be a semi-infinite

flat plate, as shown in Fig. 13.5. This will give a solution that satisfies the boundary

conditions on the plate and in the upstream flow, but it also causes a pressure jump

across the wake that does not satisfy the Kutta condition. To ensure a zero pressure

jump across the wake a second solution is added to the first solution that exactly

cancels the pressure jump across the wake but induces no additional upwash

upstream of the trailing edge. This second solution is found by solving a

semi-infinite plate trailing edge problem as shown in Fig. 13.1. The sum of the

two solutions satisfies the blade boundary conditions and the Kutta condition

but induces a pressure discontinuity upstream of the leading edge. To correct this

a third solution is added which eliminates the upstream pressure jump and satisfies

the nonpenetration boundary condition on the blade surface but induces a pressure

jump over the wake which needs to be corrected. This process can be repeated

indefinitely and converges to a solution if the residual pressure jumps in the wake

become smaller and smaller. Fortunately, the convergence is quite quick at high

frequencies, and usually only the first two terms in the series are needed to achieve

acceptable results.

14.1.3 The first-order solution for the surface pressure

The first-order solution can be obtained using the Weiner–Hopf method as described

in Section 13.4. The unsteady pressure jump across a blade, modeled by a

semi-infinite flat plate, caused by a harmonic upwash gust of amplitude

â2 exp ik1y1 + ik2y2 + ik3y3� iωtð Þ, as shown in Fig. 13.5, was given by Eq. (13.4.5)

and is repeated here as

Δp̂ 1ð Þ y1y3ð Þ¼ πρoU∞â2g
1ð Þ y1, k3,ω,Mð Þeik3y3

g 1ð Þ y1, k3,ω,Mð Þ¼ �2ei κ�Mkoð Þy1 + iπ=4

π3=2 k1 + κβ
2

� �1=2
y
1=2
1

y1 > 0
(13.4.5)

where positions have been written in terms of coordinate y, and we have explicitly

included the time dependency. The origin of y is at the leading edge. For a gust

convected by the mean flow the wavenumbers are given by

k1 ¼ ω

U∞
κ¼ k2o�

k23
β2

� �1=2

ko ¼ k1M

β2
β¼ 1�M2

� �1=2
(14.1.3)

The first point to note from this result is that the surface pressure tends to infinity as

y1
�1/2 at the leading edge of the blade. This behavior is expected from the steady flow

around an airfoil at a small angle of attack and is the result of the flat plate
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approximation. If the airfoil had a rounded leading edge then the pressure would

remain finite as y1 tends to zero. Next consider the phase which depends on

(κ�Mko)y1+k3y3 and indicates a wave propagating in the positive y1 and y3 direc-
tions, assuming that k1>0 and k3>0. If k3¼0 then the phase reduces to

ko 1�Mð Þy1 ¼ ωy1
c∞ +U∞

which represents a wave propagating downstream at the speed of sound plus the free

stream speed, as discussed earlier. The surface pressure is therefore controlled by an

acoustic wave propagating over the surface downstream from the leading edge.

If k3 is given a value in the range 0<k3<βko then we can write k3¼βkosinφ
and κ¼kocosφ. The phase variation in Eq. (13.4.5) then represents an acoustic wave

propagating at an angle to the y1 direction defined by

φe ¼ tan�1 k3
κ�Mko

� �
¼ tan�1 β sinφ

cosφ�M

� �

as shown in Fig. 14.1A, for example, for M¼0.3, φ¼π/8 radians, giving φe¼30.3

degrees.
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Fig. 14.1 The surface pressure for different values of the spanwise wavenumber for

M¼0.3. (A) k3¼βkosinφ with φ¼π/8 and (B) k3¼1.1ko.
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Because this is an acoustic wave it will couple strongly with the acoustic far

field, and there will be radiation in the direction of φe. This is referred to as a

super-critical wave [2 ]. In contrast for the case when jk3j>βko we find from

Eq. (14.1.3) that κ is a positive imaginary number (because of the choice of

the branch cut), and the wave decays exponentially in the y1 direction. This is

referred to as an evanescent or subcritical wave and is illustrated in

Fig. 14.1B. Because this wave does not propagate it will not radiate to the acoustic

far field.

Turbulent flows that are dominated by eddies with small lengthscales in the

spanwise direction will contain significant energy at wavenumbers where k3 is sub-
critical. The fluctuations at these wavenumbers will have little impact on the acoustic

far field because they do not couple with the acoustic wavenumbers that radiate sound.

However, evanescent waves can dominate the pressure fluctuations measured on the

surface close to the leading edge. Consequently, trying to relate measured pressure

fluctuations on the blade surface near the leading edge to the far-field sound is not

straightforward. Eq. (13.4.5) shows that at high spanwise wavenumbers jk3j≫βko
and the surface pressure fluctuations caused by subcritical waves will decay with dis-

tance from the leading edge as exp � k3j jy1ð Þ=y1=21 . So, the unsteady pressure caused by

the gust may be quite local to the leading edge, and its initial decay may bemuch faster

than would be expected if the evanescent wave was not considered. However, because

of this rapid decay, the surface pressure should asymptote to the super-critical case for

surface pressures measured more than an acoustic wavelength downstream of the

leading edge.

An alternative interpretation of this effect is obtained if we consider the speed with

which the intersection between the gust wavefront and the leading edge propagates

along the blade in the spanwise direction. Since the gust wavelength in the spanwise

direction is 2π/k3 and the gust period experienced at the leading edge is 2π/ω, this
speed is ci¼ω/k3. For this wave to be supercritical we require that jk3j<βko¼ω/βc∞
or ω/βjk3jc∞>1, and it follows that we require jcij/βc∞>1. The wavefront must

therefore propagate across the surface in the spanwise direction at a speed that is

greater than the speed of sound.

The first-order solution for the surface pressure given above is for a

semi-infinite flat plate and can be corrected to allow for finite chord using the

approach given in Section 13.6 . The correction is obtained by adding a solution

to the boundary value problem that ensures that there is no pressure jump across

the wake of the blade that extends downstream from y1¼c while maintaining

zero velocity normal to the blade surface for y1<c. The correction discussed

in Section 13.4 is only a first-order approximation to the complete solution

because the surface pressure induced by the leading edge is assumed to be a sim-

ply convected wave with no decay with distance downstream. Given this approx-

imation the blade response function with the trailing edge correction is given by

Eq. (13.4.6) as
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g 1 + 2ð Þ y1, k3, ω,Mð Þ¼ �2ei κ�Mkoð Þy1 + iπ=4

π k1 + κβ
2

� �1=2 ffiffiffiffiffi
πc

p
ffiffiffiffiffi
c

y1

r
+ 1� ið ÞE2 2κjy1� cjð Þ� 1

� �

0< y1 < c ð13:4:6Þ

where, as above, positions have been written in terms of the coordinate y1. The addi-
tional correction includes the complex Fresnel integral defined as

E2 xð Þ¼
ðx
0

eiq

2πqð Þ1=2
dq

which is shown in Fig. 14.2.

For large arguments the complex Fresnel integral has the asymptotic value of

(1+ i)/2, so the last two terms of Eq. (13.4.6) cancel as 2κjy1�cj tends to infinity.

It follows therefore that at high frequencies the trailing edge correction causes a small

oscillation of the pressure about first-order solution for positions significantly

upstream of the trailing edge and ensures the pressure is zero at the trailing edge as

illustrated in Fig. 14.3. Most of the physics of the problem can therefore be obtained

from the first-order solution, and at high frequencies, the combined first- and

second-order solution is well approximated by the first-order solution if it is truncated

at the trailing edge of the blade.
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Fig. 14.2 The complex Fresnel integral E2(x)¼C2(x)+ iS2(x). Solid line is the real part

C2(x), and the marked line �+� is the imaginary part S2(x).
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14.1.4 The unsteady lift in compressible flow

The blade response function also gives the total lift on the blade surface caused by the

upwash gust, and this can be obtained from Eq.(13.4.7) by integrating the pressure over

both the blade span and the blade chord. For blades with large span the spanwise integral

will be zero if k3 6¼0 because of the oscillatory nature ofΔp with y3, and so the loading

depends only on the amplitude of the gust with zero spanwise wavenumber. Integrating

Eq. (13.4.6) is complicated by the trailing edge correction, but, as discussed earlier, this

will have a small effect on the result at highfrequencies. A good approximation is obtained

by integrating the first-order solution given by Eq. (13.4.5). We then obtain the

nondimensional unsteady lift per unit span, normalized byπρoU∞â2c as in Eq. (6.4.4), as

S 1ð Þ σ,Mð Þ¼�1

c

ðc
0

g 1ð Þ y1, 0, ω,Mð Þdy1 (14.1.4)

where the reduced frequency σ¼ωa/U∞ and a¼c/2 is the semi-chord. The negative

sign is because Δp represents the pressure on the top of the airfoil less that on the bot-
tom. This integral can be evaluated directly to give

S 1ð Þ σ,Mð Þ¼ 2
ffiffiffi
2

p
E2 ko 1�Mð Þcð Þeiπ=4

π k1 + koβ
2

� �1=2
ko 1�Mð Þð Þ1=2c

This is often written in terms of the nondimensional variables
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Fig. 14.3 The distribution of surface pressure on the blade surface for koc¼10π and k3¼0.

Solid line shows jg(1+2)j, and the marked line �+� shows jg(1)j.

Leading edge noise 351



μ¼ ko 1�Mð Þc k1 + koβ
2

� �
c¼ μ 1 +Mð Þ2=M

which gives (after using (1+ i)¼√2exp(iπ/4))

S 1ð Þ σ,Mð Þ¼ 2 1 + ið ÞM1=2

πμ 1 +Mð Þ E2 μð Þ (14.1.5)

In the high frequency limit the function E2(x) will asymptote to (1+ i)/2, and so we can
approximate

S 1ð Þ σ,Mð Þ� 2iM1=2

πμ 1 +Mð Þ¼
i

πσM1=2
(14.1.6)

where we have used the relationship μ¼ 2σM= 1 +Mð Þ. This shows that the

first-order approximation to the compressible blade response function is

inversely proportional to the nondimensional frequency at high frequencies.

This scaling is quite different from the incompressible results given by Sears

function (Eqs. 6.4.4, 6.4.5) that scaled inversely with the square root of the

nondimensional frequency. The compressibility effect is therefore to reduce

the high-frequency response of the blade, and this has an increasingly important

effect in high speed flows. Fig. 14.4 illustrates this difference for a flow Mach

number of M¼0.3. At low frequencies the magnitude of the compressible solu-

tion is slightly larger than the incompressible solution, but this is caused by the

approximate nature of the compressible solution which only includes the

first-order approximation without the trailing edge or additional leading edge

corrections. However, at high frequencies, where the first-order compressible

blade response function is a more accurate approximation, the incompressible

and compressible solutions are very different. Amiet [ 3] notes that the incom-

pressible solution is appropriate to use when σM/β2<π/4, which corresponds

to the frequency where the blade chord (divided by β2) is less than a quarter

of the acoustic wavelength. For the example shown in Fig. 14.4 the compressible

blade response function should be used at nondimensional frequencies σ>2.38

according to Amiet’s criterion, as shown b y the vertical line in the figure. This

corresponds to the lowest frequency where the compressible blade response is

less than the incompressible response.

14.1.5 An arbitrary gust

The results given so far in this section have been for a harmonic gust with space

dependence â2 exp ik1 y1�U∞tð Þ + ik3y3ð Þ in the plane of the blade, y2¼0. To

extend these results to an arbitrary gust we consider the upwash velocity on

the blade surface y2¼0 to be the superposition of gusts with a spectrum of

wavenumbers, so
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u2 y1�U∞t,0,y3ð Þ¼
ð∞

�∞

ð∞
�∞

ð∞
�∞

u
��

2

kð Þeik1 y1�U∞tð Þ + ik3y3dk (14.1.7)

The pressure jump across the blade is then obtained by superimposing the contribu-

tions from each wavenumber component of the gust, so using Eq. (13.4.5) with g(1+2)

from Eq. (13.4.6), and substituting u
��
2 kð Þ for â2, including the time dependence that is

suppressed in Eq. (13.4.5), we obtain

Δp y1, y3, tð Þ ¼
ð∞

�∞

ð∞
�∞

ð∞
�∞

πρoU∞u
��

2

kð Þg 1 + 2ð Þ y1,k3,k1U∞,Mð Þe�ik1U∞t+ ik3y3dk

(14.1.8)

The Fourier transform of this signal with respect to time is obtained by replacing k1 by
ω/U∞, and so the integrand over k1 in Eq. (14.1.8) is simply an inverse Fourier trans-

form with respect to time, as defined in Eq. (3.10.2), and so

Δ p
�

y1, y3,ωð Þ

¼
ð∞
�∞

ð∞
�∞

πρou
��

2

ω=U∞,k2,k3ð Þg 1 + 2ð Þ y1, k3,ω,Mð Þeik3y3dk2dk3 (14.1.9)
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Fig. 14.4 The compressible blade response function given by Eq. (14.1.5) compared to

Sears Function as a function of the nondimensional frequency σ¼k1c/2, for a flow Mach

number of M¼0.3.
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Further simplification is possible if we note that the gust response is independent of

the k2 wavenumber, so we have

Δ p
�

y1, y3,ωð Þ ¼
ð∞

�∞

πρow
��

2

ω=U∞,k3ð Þg 1 + 2ð Þ y1, k3,ω,Mð Þeik3y3dk3 (14.1.10)

where w
��
2 k1, k3ð Þ is the planar wavenumber transform of u2(y1, 0, y3) in the plane

y2¼0, so

w
��

2
k1, k3ð Þ¼

ð∞
�∞

u
��

2

k1, k2, k3ð Þdk2

¼ 1

2πð Þ2
ðR∞

�R∞

ðR∞

�R∞

u2 y1, 0, y3ð Þe�k1y1�ik3y3dy1dy3 (14.1.11)

These results give the unsteady loading on a blade encountering an arbitrary gust. It is

important to note that there are some subtle differences between the results for a har-

monic gust given by Eq. (13.4.5) and the frequency domain result given by

Eq. (14.1.10). The spanwise dependence of the general gust is completely determined

by the wavenumber integral defined in Eq. (14.1.11), and so any spanwise dependence

can be included. For example, if the gust is of finite spanwise extent then this char-

acteristic will appear as part of the wavenumber spectrum as a function of k3.

14.2 The acoustic far field

14.2.1 The acoustic far field from the leading edge interaction

The acoustic field that results from unsteady pressure fluctuations on a thin plate in

uniform flow is given by Eq. (6.5.5), as

ρ
�
x,ωð Þc2∞

� �
dipole

��iωx2eikore

4πc∞r2e

ðd
�d

ðc
0

Δ p
�
y,ωð Þe�ikox1y1=re�ikox3y3β

2=re�ikoM x1�y1ð Þdy1dy3

ko ¼ ω

β2c∞
re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + β

2 x22 + x
2
3

� �q
ð6:5:5Þ

In obtaining this result we made use of Prantl-Glauert coordinates and the far-field

approximation, so the blade chord c and span b¼2d are required to be small compared

to the propagation distance re.
It will be convenient, when we come to rotor noise calculations in Chapter 16, to

have this result expressed in terms of the acoustic pressure perturbation pʹ¼ρʹc∞
2 and

the wavenumber transform of the surface pressure, as given by Eqs. (4.7.12) and

(6.5.6),
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p
� x, ωð Þ� �iπωx2eikore�ikoMx1

c∞r2e

� �
Δ p

��
k

oð Þ
1 , k

oð Þ
3 ,ω

	 

k

oð Þ
1

¼ ko
x1

re�M

� �
k

oð Þ
3 ¼ kox3β

2

re
(14.2.1)

and

Δ p
��

k
oð Þ
1 , k

oð Þ
3 , ω

	 

¼ 1

2πð Þ2
ðd
�d

ðc
0

Δ p
�
y,ωð Þe�ik

oð Þ
1
y1�ik

oð Þ
3

y3dy1dy3 (4.7.12)

The important feature of this result is thatΔ p
��

k
oð Þ
1 , k

oð Þ
3 ,ω

	 

has dimensions of a force

(per unit frequency, per unit wavenumber squared) and so, in the limit that ko is very

small, Δ p
��

k
oð Þ
1 , k

oð Þ
3 ,ω

	 

�Δ p

��
0, 0, ωð Þ, and Eq. (14.2.1) reduces to a dipole source

that depends on the force produced by the blade. However, when the acoustic wave-

length is comparable to the blade span or chord then the unsteady loading on the blade

surface couples to the acoustic field at the wavenumbers k1
(o) and k3

(o). To obtain the

far-field sound, Δ p
��

k
oð Þ
1 , k

oð Þ
3 ,ω

	 

must therefore be evaluated at the appropriate

wavenumbers which will depend on the observer location. A special case is for

semi-infinite blade chord because in that case the blade chord is always large com-

pared to the wavelength, and so the directionality will be distinctly different from

the case of a blade with an acoustically compact chord.

In order to obtain the wavenumber transform of the surface pressure we use

Eq. (14.1.10) in Eq. (4.7.12). First consider the integral over the span. In

Eq. (14.1.10) the dependence on span is given by an inverse Fourier transform over

k3, whereas Eq. (4.7.12) evaluates a forward transform as a function of y3. It follows
that the integrand in Eq. (14.1.10) matches the forward transform in Eq. (4.7.12).

Given this observation we obtain

Δ p
��

k
oð Þ
1 , k

oð Þ
3 , ω

	 

¼ 1

2
ρocw

��
2 ω=U∞,k

oð Þ
3

	 

Λ k

oð Þ
1 , k

oð Þ
3 ,ω,M

	 

(14.2.2)

where the integral over the chord is specified by

Λ k
oð Þ
1 , k

oð Þ
3 ,ω,M

	 

¼ 1

c

ðc
0

g 1 + 2ð Þ y1, k
oð Þ
3 ,ω,M

	 

e�ik

oð Þ
1
y1dy1 (14.2.3)

The function Λ defined in Eq. (14.2.3) is closely related to the nondimensional lift on

the airfoil surface. Since this is accurately represented by the first-order approxima-

tion to the unsteady surface pressure response we can simplify the evaluation of

Eq. (14.2.3) by using g(1) instead of g(1+2). The function Λ can then be interpreted

as the nondimensional blade response function as observed in the acoustic far field

and can be evaluated directly from Eq. (13.4.5) as
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Λ k
oð Þ
1 , k

oð Þ
3 , ω,M

	 

¼

�2 1+ ið ÞE2 κ�Mko� k
oð Þ
1

	 

c

	 

π ω=U∞ + κβ2
� �1=2

κ�Mko� k
oð Þ
1

	 
1=2
c

(14.2.4)

providing that κ (evaluated here using k3
(o)) is real and κ>kox1/re. This condition is

always met when the spanwise wavenumber of the incident gust is zero, but some care

must be taken when evaluating this result for larger spanwise wavenumbers particu-

larly where the observer is near the x1 axis.

14.2.2 The far-field directionality and scaling

To provide some insight into the scaling in the acoustic far field we consider the case

when the observer is in the plane x3¼0, and so spanwise gust wavenumber is zero

k
oð Þ
3 ¼ 0. In this case κ¼ko¼ωM/U∞β

2, and we obtain

Λ k
oð Þ
1 , 0, ω,M

	 

¼� 1�Mð Þ1=2 1 + ið ÞE2 koc 1� x1=reð Þð Þ

πσM1=2 1� x1=reð Þ1=2
(14.2.5)

In the high-frequency limit the Fresnel function tends to (1+ i)/2, and we obtain

Λ k
oð Þ
1 , 0, ω,M

	 

¼ �i 1�Mð Þ1=2
πσM1=2 1� x1=reð Þ1=2

(14.2.6)

An important feature of this result is that it provides the scaling of the far-field sound

on the mean flow Mach number.

The directionality in the far field is also quite different from the dipole

directionality discussed in Chapter 4 for acoustically compact surfaces. Com-

bining Eqs. (14.2.1), (14.2.2), and (14.2.6) shows that the far-field sound

depends on

x2β

re

� �
1

1� x1=reð Þ1=2
¼ sin θe

1� cos θeð Þ1=2
¼

ffiffiffi
2

p
cos θe=2ð Þ θe ¼ tan�1 x2β=x1ð Þ

(14.2.7)

which gives a cardioid-shaped directionality as shown in Fig. 14.5A and is quite

different from the dipole directivity given by sin θe shown in Fig. 14.5B. How-

ever, if the effect of finite chord is incl uded and the directionality is calculated

by using Eq. (14.2.5), the directionality has multiple lobes and a null in the

upstream and downstream directi ons similar to that of a dipole (see Fig. 14.5C

and D).
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14.2.3 Impulsive gusts of finite span

Further insight is obtained by considering an impulsive gust of very short duration that

is constant over a finite span b. The impulsive gust can be characterized by a Dirac

delta function scaled on the blade semi-chord in the direction of the flow, and so

the upwash is

u2 y1, 0, y3ð Þ¼woc

2
δ y1ð ÞH b=2�jy3jð Þ

In this case we find that the wavenumber transform in Eq. (14.1.11) reduces to

w
��
2 k

oð Þ
1 , k

oð Þ
3

	 

¼ wocb

2 2πð Þ2
sin k

oð Þ
3 b=2

	 

k

oð Þ
3 b=2

8<
:

9=
; (14.2.8)
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Fig. 14.5 Directivity patterns for different frequencies (A) koc¼∞, (B) koc¼0, (C) koc¼2π,
and (D) koc¼6π.
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When this result is used in Eq. (14.2.2) to calculate the acoustic far field it is

seen that the directionality in the y3 direction is determined by the terms in {}.

If the spanwise extent of the gust is large then the directionality will have a

clearly defined beam of sound that is strongest in the direction where

k
oð Þ
3 b¼ kox3bβ

2=re ¼ 0. The sound radiation is therefore primarily in the direction

normal to the plane of the blade where x3¼0. However, when the spanwise extent

of the gust is much smaller than the acoustic wavelength then kob≪1, and the

terms in {} are approximately unity for all observer angles, so the directionality

in both the x1 and x3 direction is determined by x2Λ/re and is independent of the

gust. This is important in cases where the spanwise correlation lengthscale of a gust

is small because in that case the directionality is determined entirely by the acous-

tics and the blade response function.

14.2.4 A step gust

A similar important example is given by a step gust for which

u2 y1, 0, y3ð Þ¼woH �y1ð ÞH b=2�jy3jð Þ

Ahead of the gust the upwash velocity is zero, and behind the gust the upwash is wo.

Providing that spanwise extent of the gust is much smaller than the acoustic wave-

length we obtain using Eq. (14.1.11)

w
��
2 k

oð Þ
1 , k

oð Þ
3

	 

¼ lim

ε!0

iwob

2πð Þ2 k
oð Þ
1 + iε

	 


where a small imaginary part has been added to the wavenumber to ensure the

wavenumber transform converges. The difference between the step upwash gust

and the impulsive gust is that the step gust is inversely proportional to the

wavenumber k
oð Þ
1 ¼ ko x1=re�Mð Þ, and this will alter the far-field directionality

and the spectral shape. At high frequencies and for an observer at x3¼0 we

can use Eqns. (14.2.1), (14.2.2) , and (14.2.7) to give the directionality for a step

gust as

x2β

re

� �
1

1� x1=reð Þ1=2 x1=re�M + iεð Þ
¼

ffiffiffi
2

p
cos θe=2ð Þ

x1=re�M + iεð Þ

The interesting characteristic of this result is that for a step gust there will be a strong

beam of radiation at the angle where x1/re¼M, which is caused by the sudden change

in the unsteady lift. This is a characteristic of the step gust, specifically its permanent

change in the angle of attack of the mean flow.
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14.3 An airfoil in a turbulent stream

One of the most important applications of leading edge noise is to blades embedded in a

turbulent flow.While these flows are usually inhomogeneous, they can often bemodeled

by a homogeneous turbulent flowwith the same characteristics, such as turbulence inten-

sity and lengthscale. To determine the characteristics of the radiated sound wewill com-

bine the results obtained abovewith themodels of homogeneous turbulence discussed in

Section 9.1, to obtain an estimate of the power spectrum of the far-field noise.

The power spectrum of a signal can be obtained from its Fourier transform using

Eq. (8.4.13), and so if we consider a blade of large span we can use Eqs. (14.2.1) and

(14.2.2) to define the far-field spectral density of the acoustic pressure as

Spp x,ωð Þ� πωx2
c∞r2e

� �2 SFF ω, k oð Þ
1 , k

oð Þ
3

	 

2πð Þ4

where

SFF ω, k oð Þ
1 , k

oð Þ
3

	 

2πð Þ4 ¼ π

T
E Δ p

��
k

oð Þ
1 , k

oð Þ
3 ,ω

	 
����
����
2

" #

¼ ρoc

2
Λ k

oð Þ
1 , k

oð Þ
3 , ω,M

	 
��� ���2 π
T
E w

��
2 ω=U∞,k

oð Þ
3

	 
����
����
2

" #

(14.3.1)

and T is half the averaging time used to obtain the spectral estimate. The term

SFF(ω,k1
(o),k3

(o)) represents the spectrum of the unsteady force produced by the airfoil

that couples with the acoustic field that radiates to an observer at x. At low frequencies

when the blade is acoustically compact it is simply the unsteady loading spectrum on

the blade. However, at high frequencies it will depend on the observer location x as

well as the flow Mach number.

This result is still quite general and applies to both a homogeneous and an inhomo-

geneous flow providing that we can define the expected value of the turbulence spec-

trum. We can use Eq. (8.4.38) written as

ϕ22 k1, k3ð Þ¼ π2

R2
∞
E w

��
2 k1, k3ð Þ

����
����
2

" #
(14.3.2)

and thus,

π

T
E w

��
2 k1, k3ð Þ

����
����
2

" #
¼R2

∞
πT

ϕ22 k1, k3ð Þ (14.3.3)

where ϕ22 is the planar wavenumber spectrum and can be defined using Eqs. (9.1.14)

or (9.1.23), using different empirical models for the turbulent spectrum. The averaging
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time T is defined by the time it takes the volume of turbulence to pass over the blade,

and so R∞/T¼U∞. In this result the size of the turbulent region also determines the

wetted span of the blade, and so R∞¼b/2. We then obtain the effective loading spec-

trum as

SFF ω, k oð Þ
1 , k

oð Þ
3

	 

2πð Þ4 � ρoc

2
Λ k

oð Þ
1 , k

oð Þ
3 ,ω,M

	 
��� ���2 U∞b

2π

� �
ϕ22 ω=U∞,k

oð Þ
3

	 

(14.3.4)

A suitable model for the planar wavenumber spectrum is given by the von Kármán

turbulence model and is defined by Eq. (9.1.14) as

ϕ22 k1, k3ð Þ¼ 4

9π

u2

k2e

k21 + k
2
3

� �
=k2e

1 + k21 + k
2
3

� �
=k2e

� 7=3 ke ¼
ffiffiffi
π

p
Lf

Γ 5=6ð Þ
Γ 1=3ð Þ (9.1.14)

The scaling of the far-field sound is revealed by using the approximation given

by Eq. (14.2.6) for an observer in the y3¼0 plane. This gives the far-field

pressure as

Spp x, ωð Þ� 4

9π

ρ2oU∞u2bM

πk2e r
2
e 1 +Mð Þ

 !
ω=keU∞ð Þ2

1 + ω=keU∞ð Þ2
h i7=3

0
B@

1
CAcos2

θe
2

� �
(14.3.5)

This reveals that the spectral density scales with the fourth power of the flow speed,

since u2 will scale with U2
∞, which is a direct consequence of the leading edge scat-

tering mechanism and the fact that the spectral density has been chosen to describe

the far field. If a spectral level is measured then it will depend on the bandwidth of

the measurement and will be given by ΔωSpp(ω). The right side of the equation is

then adjusted by multiplying by Δω¼ keU∞ð Þ Δω=keU∞ð Þ, and the scaling of the

far-field sound will depend on the fifth power of the mean flow speed. This is an

important difference from the dipole scaling laws discussed in Chapter 4 that sug-

gest the sound radiation scales on the sixth power of the flow speed and is a direct

consequence of the compressibility effects that are controlling the unsteady loading

at the leading edge of the blade. Another important feature of this result is that the

spectral level ΔωSpp(ω) scales as b/ke�bLf, so it depends on the blade span multi-

plied by the integral lengthscale of the turbulence. Reducing the integral lengthscale

of the turbulence therefore reduces the overall level of the spectrum. However, it

also alters the spectral shape. To illustrate this point Fig. 14.6 shows a typical spec-

trum plotted as a function of the nondimensional frequency for different values of

Lf/c. It is seen that the spectrum shifts to the right as the integral length scale is

reduced, increasing the high frequency content of the spectrum, but the

low-frequency levels are reduced.
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14.4 Blade vortex interactions in compressible flow

Blade vortex interaction is an important source of sound in situations where a blade tip

vortex on a rotor washes over a structure or is re-ingested into the rotor. An example is

a helicopter executing a maneuver in which the blade tip vortices are washed back into

the rotor plane and are cut by the blades. As a result, a loud thumping sound is heard,

and the far-field sound levels can be very high. This topic will be discussed in more

detail in Chapter 16, and in this section we describe the approach to calculating the

sound from a blade vortex interaction developed by Amiet [4].

In Section 7.5 we discussed the unsteady loading on a blade caused by a passing

vortex in incompressible flow. For rotor blades moving with tip speeds (such as a heli-

copter rotor) that approach the speed of sound the incompressible flow approximation

is no longer valid, and so in this section we use the compressible blade response func-

tion to calculate the radiated sound. However, the approach is not limited to compress-

ible flows and can also be used at lowMach numbers with the correct adjustment to the

blade response function.

14.4.1 The upwash velocity spectrum from a blade vortex
interaction

In this section we consider a three-dimensional vortex incident on a stationary blade in

a uniform flow, Fig. 14.7. The vortex axis makes an angle ϕv to the leading edge of the

blade, as shown. The vortex is convected with the speed U∞ in the y1 direction and, as
in Section 7.5, it is a height h above the blade.
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e

Fig. 14.6 Normalized far-field spectrum at x¼ (0, x2, 0) for different turbulence lengthscales
for a flat plate airfoil at M¼0.3, as a function of the nondimensional frequency σ. The

spectrum is normalized as Spp σð Þr2e=ρ2oc2U∞u2b.
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We can use the general gust description given by Eq. (14.1.11) to calculate the

upwash spectrum that is needed to obtain the acoustic field using Eqs. (14.2.1) and

(14.2.2). This is convenient for a flow that is dominated by a line vortex because

we can use Eq. (6.3.10) to relate the wavenumber spectrum of the velocity perturba-

tion to the wavenumber spectrum of the vorticity as

u
��

kð Þ¼ ik�ω�
�

kð Þ
jkj2 ω�

�
kð Þ¼ 1

2πð Þ3
ð
V

ω yð Þe�ik:ydV

(14.4.1)

For a line vortex the vorticity can be easily expressed using the coordinates (ξ1, ξ2, ξ3),
whereξ3 is alignedwith thevortex core, that is, in thedirectionof theunit vectorzasshown
in Fig. 14.7. Coordinate ξ2 is defined normal to the blade surface. The vorticity is then

ω yð Þ¼Γzδ ξ1ð Þδ ξ2�hð Þ
In blade-based coordinates yi we have that z¼ (sinϕv, 0, cosϕv), where ϕv is the angle

that the vortex core makes with the blade leading edge, ξ2¼y2 and

y1 ¼ ξ1 cosϕv + ξ3 sinϕv y3 ¼ ξ3 cosϕv� ξ1 sinϕv

Thewavenumber spectrumof thevorticity is thenobtainedby integratingoverξ1andξ2and
noting that the arguments of the Dirac delta functions are zero wheny2¼h and ξ1¼0, so

ω�
�

kð Þ¼ Γz

2πð Þ3
ðR∞

�R∞

e�ik2h�i k1 sinϕv + k3 cosϕvð Þξ3dξ3

Vortex core

Blade

z
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y3

y1

Vortex axis ẑ

y2

y3

y1

h
φv

Fig. 14.7 A blade vortex interaction showing a vortex cutting a blade and the coordinate

system used for the analysis.
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If the vortex is of finite length L then we can take R∞¼L/2 and

ω�
�

kð Þ¼ΓLze�ik2h

2πð Þ3
sin k1 sinϕv + k3 cosϕvð ÞL=2ð Þ

k1 sinϕv + k3 cosϕvð ÞL=2
� �

To obtain the upwash spectrum on the blade surface we use Eqs. (14.1.10) and

(14.4.1), noting that the component of k�z in the y2 direction is k3sinϕv�k1cosϕv, so

w
��

2
k1, k3ð Þ¼ iΓL k3 sinϕv� k1 cosϕvð Þ

2πð Þ3
sin k1 sinϕv + k3 cosϕvL=2ð Þ
k1 sinϕv + k3 cosϕvL=2

� �
ð∞

�∞

e�ik2h

k21 + k
2
2 + k

2
3

dk2

The integral can be completed analytically using tables of Fourier transforms, and we

obtain

w
��
2 k1, k3ð Þ¼ iΓL k3 sinϕv� k1 cosϕvð Þe�k13h

2πð Þ22k13
sin k1 sinϕv + k3 cosϕvL=2ð Þ
k1 sinϕv + k3 cosϕvL=2

� �
(14.4.2)

where k213 ¼ k21 + k
2
3.

Based on this result we can calculate the acoustic far field using Eqs. (14.2.1) and

(14.2.2), by setting k3¼kox3β
2/re and k1¼ω/U∞. In this case, the argument of the sinc

function above becomes

k1 sinϕv + k3 cosϕvð ÞL=2¼ωLcosϕv

2U∞
tanϕv +

Mβ2x3
re

� �

This implies that there will be a strong beam of radiation in the direction where

βx3=re ¼� tanϕv=βM

Note that if the angle of the vortex to the leading edge of the blade ϕv is large enough

then the right-hand side of this expression will be greater than 1, this beam will not

occur, and the peak level of the acoustic field will be greatly reduced. Blade vortex

interaction noise is therefore only significant when

tanϕv < βM

which gives a design criterion for this type of source. If the aerodynamics of a rotor

can be altered so that the interaction angle meets this criterion, then the loud thumping

sound associated with a BVI is avoided.
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We also note that the strength of the acoustic field depends on

exp �k13hð Þ¼ exp �jωh=U∞j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + Mx3β

2=re
� �2q� �

This differs from the two-dimensional result by a factor dependent onM2 and can be

ignored for most Mach numbers of interest. The scaling of a blade vortex interaction

on frequency will be strongly affected by the displacement of the vortex above the

blade, given by h. To illustrate this, consider a parallel interaction at the observer loca-

tion x3¼0 (so ϕv¼0 and k
oð Þ
3 ¼ 0) and use Eq. (14.4.2) in Eqs. (14.2.1) and (14.2.2)

to give

p
�

x, ωð Þ� �iπωx2eikore�ikoMx1

c∞r2e

� � �iρocΓLe
�jωjh=U∞

4 2πð Þ2
 !

Λ k
oð Þ
1 , 0, ω,M

	 

(14.4.3)

In the high-frequency limit we can use Eq. (14.2.6) to approximate Λ, and so

p
�

x, ωð Þ� x2e
ikore�ikoMx1

r2e 1� x1=reð Þ1=2
 !

iρoΓUL 1�Mð Þ1=2M1=2e�jωjh=U∞

2 2πð Þ2
 !

This shows the cardioid directivity expected from a leading edge interaction for blades

with noncompact chords and a scaling with flow speed that is much stronger than a

traditional unsteady loading source. (Since Γ would be expected to scale on M the

Mach number scaling for the mean-square acoustic pressure is approximately M3.)

However, the exponential decay of the spectrum with frequency is the dominant

effect.
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15Trailing edge and roughness

noise

In the last chapter we examined leading edge noise—noise generated by an airfoil sub-

jected to free stream unsteadiness. Airfoils and other fluid dynamic devices also gen-

erate noise as a result of turbulence and unsteadiness in the boundary layers and other

viscous flow regions that grow from their surfaces. This is called self-noise. In this

chapter we focus most of our discussion on self-noise generated by turbulent boundary

layers, specifically the flow of a turbulent boundary layer over a sharp trailing edge

and the flow of the boundary layer over a rough wall.

15.1 The origin and scaling of trailing edge noise

Trailing edge noise is fundamentally a consequence of the interaction between

unsteadiness in the flow and the sharp corner formed by the trailing edge of a lifting

surface. Consider this situation in its most idealized form, illustrated in Fig. 15.1. The

trailing edge is modeled as a semi-infinite flat plate of zero thickness immersed in a

uniform flow with a sweep angle Λo. This approximation, in which the leading edge is

ignored, is realistic as long as the airfoil chord remains large compared to the acoustic

wavelength of the sound produced.

Turbulence generated by the boundary layers formed on both sides of the plate is

convected over the trailing edge. Sound generated in this scenario can be characterized

in terms of a solution to Lighthill’s equation. One strategy, first considered by Ffowcs

Lo

ry

vz

vq

qy
qx

fx

vr

y
x

2d

U

Fig. 15.1 Nomenclature for the problem of a swept trailing edge behind a semi-infinite

flat plate.
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Williams and Hall in 1970 [1], is to employ a tailored Green’s function chosen to sat-

isfy the rigid wall boundary condition on the plate. The sound produced is then given

by Eq. (4.5.6) purely in terms of the Lighthill stress tensor,

ep x,ωð Þ¼
ð
V

@2 eGT xjyð Þ
@yi@yj

 !eTij y,ωð ÞdV yð Þ (15.1.1)

where we have expressed the sound field in terms of the pressure fluctuations it

produces. Ffowcs-Williams and Hall solved this equation using an exact expression

for the Green’s function and by ignoring the viscous and nonisentropic contributions

to the Lighthill stress tensor, approximations consistent with high Reynolds number

and low Mach number flow. In this case the sound source is only a function of the

Reynolds stress fluctuations Tij¼ρvivj. Simplifying the result for turbulence close

to the edge and for a far-field observer, they developed an expression for the radiated

sound

ep x,ωð Þ��
ffiffi
i

p

2
k2

ffiffiffiffiffiffiffiffiffiffiffiffi
sinϕx

p
cos

1

2
θx

� �ð fρv2r y,ωð Þ� fρv2θ y,ωð Þ
h i

cos 1
2
θy

� �
�2 gρvrvθ y,ωð Þsin 1

2
θy

� �
8<
:

9=
;

�eikjxj�iky � x=jxj

2πkry
� �3=2jxjdV yð Þ

(15.1.2)

As illustrated in Fig. 15.1, θx and θy are the angles of the observer and source points, x
and y, measured from the plate in a plane perpendicular to its edge; ry is the source

distance from the edge, in that plane; and ϕx is the angle of the observer measured

from the edge. The result is expressed in terms of the polar velocity components about

the trailing edge vr and vθ and the acoustic wavenumber k.
Eq. (15.1.2) reveals immediately that there is no significant sound generated by

velocity fluctuations parallel to the trailing edge. This is consistent with expectations

of the theory of vortex sound (Section 7.1, discussed for trailing edge applications by

Howe [2]) from which we would expect the streamwise component of the vorticity to

have no impact on the sound generated.

In order to examine the scaling of the sound implied by Eq. (15.1.2) we note that

since the mean velocity of the flow must be parallel to the flat plate, then, for

example,

v2r ¼ �UcosΛo cosθy + ur
� �2 ¼ UcosΛo cosθy

� �2�2Uur cosΛo cosθy + u
2
r

We can ignore the first term since it is steady and does not contribute to the sound,

and the last term on the basis that it is negligible if the turbulent fluctuations are

small compared to the mean velocity. If we restrict ourselves to low Mach number
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flows then we also ignore the density fluctuation contribution to the Lighthill stresses

and replace ρ with ρo. Applying similar considerations to νθ
2 and vrvθ, Eq. (15.1.2)

becomes

ep x,ωð Þ��
ffiffi
i

p

2
k2

ffiffiffiffiffiffiffiffiffiffiffiffi
sinϕx

p
cos

1

2
θx

� �
ρoUcosΛo

ð evifi θy� �
eikjxj�iky � x=jxj

2πkry
� �3=2jxj dV yð Þ

(15.1.3)

where subscript i¼1,2 for the cylindrical components vr and vθ, and f1 and f2 involve
only trigonometric functions of θy. Note that the form of Eq. (15.1.2) is unchanged if

we choose to use Cartesian velocity components inside the integral. We can now esti-

mate the spectrum of the far-field sound as

Spp x,ωð Þ¼ π

T
E ep* x, ωð Þep x,ωð Þ½ �

�
k sinϕx cos

2 1

2
θx

� �
ρ2oU

2u2 cos2Λo

4 2πð Þ3jxj2
ð ð

Sij y, y
0,ωð Þ

u2
fi θy
� �

fj θ0y
� �

eik y�y0ð Þ � x=jxj

ryr0y
� �3=2 dV yð ÞdV y0ð Þ (15.1.4)

where we have introduced the two-point velocity cross spectrum,

Sij y, y
0,ωð Þ¼ π

T
E ev*i y,ωð Þevj y0, ωð Þ
h i

and also the constant u representing the velocity scale of the turbulent fluctuations.

Now, the frequency of the sound will be controlled by the frequency with which eddies

pass the trailing edge, U/L, and thus we expect k¼U/Lc∞, where L is the lengthscale

of the turbulence. We also expect L to be the scale of the distance between the sources

and the trailing edge, ry and ry
0. Incorporating these observations, Eq. (15.1.4)

becomes

Spp x,ωð Þ�
sinϕx cos

2 1

2
θx

� �
ρ2oU

3u2 cos2Λo

4 2πð Þ3jxj2c∞L4

�
ð ð

Sij y, y
0,ωð Þ

u2
fi θy
� �

fj θ0y
� �

eik y�y0ð Þ � x=jxj dV yð Þ
ry=L
� �3=2 dV y0ð Þ

r0y=L
� �3=2

(15.1.5)

The inner integral in this expression is the volume under a weighted correlation

coefficient function and is expected to scale with the cube of L. The outer integral will
multiply this result by the span of the trailing edge b, and a distance proportional to L
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in each of the other two directions where the weighting in ry
0 is effective. In conclu-

sion, we have that the far-field sound spectrum will scale approximately as

Spp x, ωð Þ�
sinϕx cos

2 1

2
θx

� �
ρ2oU

3u2Lbcos2Λo

jxj2c∞ S ωð Þ (15.1.6)

where S(ω) provides the shape of the normalized pressure spectrum and has units of

seconds.

This expression reveals a number of characteristics typical of trailing edge noise.

Most importantly trailing edge noise is seen to scale approximately on the fifth power

of the flow velocity, or more accurately, as the fourth power of the velocity times the

Mach number. This clearly demonstrates that at low Mach number the presence of the

trailing edge greatly amplifies the direct sound radiation from the turbulence which, in

the absence of the trailing edge, would scale as U4M4 according to Eq. (4.4.11). Inter-

estingly, trailing edge noise is also slightly more efficient than the classical dipole scal-

ing given by Eq. (4.4.8), much like high-frequency leading edge noise. Trailing edge

noise also has a cardioid directivity, cos2(½θx) (Fig. 15.2), in which the loudest sound

is directed upstream and no sound propagates directly downstream. Sound is emitted

above the airfoil in antiphase with that emitted below. Eq. (15.1.6) reveals that trailing

edge noise can be reduced by sweeping the trailing edge, relative to the flow it expe-

riences (though this effect may be partly compensated for if accompanied by a

corresponding increase in the trailing edge length), or by decreasing the scale of the tur-

bulence L. Note that Eq. (15.1.5) suggests that trailing edge noise can also be controlled
if the turbulent sources can be moved away from the edge, increasing ry.

The most important results from Ffowcs-Williams and Hall’s analysis are these

scaling and directivity observations. More detailed analysis requires estimation of

the complicated two-point velocity spectrum function that forms the source term.

U

qx

Fig. 15.2 Directivity of trailing edge noise for an observer in a plane normal to the trailing edge.
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15.2 Amiet’s trailing edge noise theory

A different strategy for the analysis of trailing edge noise is to seek a solution through

Curle’s equation (4.3.12). In this case we will have a quadrupole contribution from the

sound generated directly by the turbulence and a dipole contribution from the sound

produced by the unsteady loading on the airfoil which, of course, is an integration of

the pressure fluctuations experienced on the airfoil surface. Based on the scaling argu-

ments outlined in Section 4.4, we expect the dipole contributions to dominate in low

Mach number flows.

Amiet [3,4] exploited this observation to develop an analytical approach to the

quantitative prediction of trailing edge noise. Like Ffowcs-Williams and Hall he used

the thin-airfoil theory approximation of a flat plate (Fig. 15.3) in a uniform flow in the

x1 direction. Statistically identical turbulent boundary layers are assumed to form on

either side of the airfoil.

Amiet’s theory takes advantage of the fact that the spectral form of the wall pres-

sure fluctuations imposed by a turbulent boundary layer on a flat plate, in the absence

of the trailing edge, is well known. At least in the idealized circumstances pictured in

Fig. 15.3, the convected vorticity that defines the boundary-layer turbulence will not

be modified as it flows over the trailing edge since no flow distortion occurs. The

changes in the pressure field that occur in the vicinity of the trailing edge, including

the radiation of sound, are therefore an irrotational response of the flow to the removal

of the non-penetration condition and the imposition of the Kutta condition at the

trailing edge. Amiet modeled this situation by treating the pressure fluctuation as hav-

ing two components, one representing the undisturbed boundary layer and the other

resulting from the response of the trailing edge to this disturbance.

We begin with Eq. (6.5.5) for the dipole sound radiated by a flat plate airfoil in

terms of the pressure difference it experiences. Integrating this expression gives the

sound expressed in terms of the wavenumber transform of the acoustic pressure

x = (x1, x2, x3)

x2,y2

x1,y1

U

c U(t–t)

rr

q qr

Fig. 15.3 Nomenclature for Amiet’s trailing edge noise theory. Coordinates x3 and y3
are perpendicular to the plane of the page in which direction the trailing edge has a span of b.
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ep x,ωð Þ��iπωx2Δeep k
oð Þ
1 , k

oð Þ
3 ,ω

� �
eikore�ikoMx1

c∞r2e
(15.2.1)

where the wavenumber arguments to Δp are given by Eq. (6.5.6)

k
oð Þ
1 ¼ ko

x1
re
�M

� �
k

oð Þ
3 ¼ koβ

2 x3
re

� �
(6.5.6)

and thus account for the convection of the sound waves in the uniform stream sur-

rounding the airfoil. Note that here ko¼ω/(β2c∞), re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + β

2 x22 + x
2
3

� �q
, and

β2¼1�M2. Using the definition of the wavenumber transform of the pressure,

adapted from Eq. (4.7.12), the full wavenumber transform of the surface pressure

jump is related to the spanwise wavenumber transform as

Δeep k1, k3,ωð Þ¼ 1

2π

ð0
�c

Δeep y1, k3,ωð Þe�ik1y1dy1 (15.2.2)

We can therefore rewrite Eq. (15.2.1) to give the far-field sound in terms of the pres-

sure differences at a given chordwise location on the airfoil

ep x,ωð Þ��iωx2eikore�ikoMx1

2c∞r2e

ð0
�c

Δeep y1, k
oð Þ
3 ,ω

� �
e�ik

oð Þ
1
y1dy1 (15.2.3)

Note that in Eqs. (15.2.2), (15.2.3) we have prescribed the limit so as to recognize the

finite size of the airfoil, which is taken as extending from �c to 0 in the chordwise

direction y1. We are interested in the spectrum of the far-field sound, rather than

the acoustic pressure at any particular instant, and this we can obtain using

Eq. (8.4.14) as

Spp x,ωð Þ¼ π

T
E ep* x, ωð Þep x,ωð Þ½ �

� ωx2
2c∞r2e

� �2 ð0
�c

ð0
�c

π

T
E Δeep* y1, k

oð Þ
3 ,ω

� �
Δeep y01, k

oð Þ
3 ,ω

� �h i
e�ik

oð Þ
1

y0
1
�y1ð Þdy1dy01

� ωx2
2c∞r2e

� �2 b

2π

ð0
�c

ð0
�c

ϕqq y1, y
0
1, k

oð Þ
3 ,ω

� �
e�ik

oð Þ
1

y0
1
�y1ð Þdy1dy01

where ϕqq is the spanwise wavenumber transform of the cross spectrum of pressure

difference fluctuations between any two points on the airfoil surface. Note that we

have taken the range �R∞ of the spanwise Fourier transform to be the airfoil span,

370 Edge and Boundary Layer Noise



of�b/2, effectively assuming that this is very large compared to the spanwise scales of

the turbulence encapsulated in ϕqq. We will restrict ourselves to an overhead observer

for whom x3 ¼ k
oð Þ
3 ¼ 0, and so

Spp x1, 0, x3,ωð Þ� ωx2
2c∞r2e

� �2 b

2π

ð0
�c

ð0
�c

ϕqq y1, y
0
1, 0, ω

� �
e�ik

oð Þ
1

y0
1
�y1ð Þdy1dy01

(15.2.4)

In order to specify ϕqq we prescribe the boundary-layer pressure fluctuations in two

parts. The first part is the pressure fluctuations that would be produced by the bound-

ary layer in the absence of the trailing edge pbl. In terms of the wavenumber frequency

transform of pbl this is

pbl y, tð Þ¼
ð∞
�∞

ð∞
�∞

ð∞
�∞

eepbl k1, k3, ωð Þe�i ωt�k1y1�k3y3ð Þdk1dk3dω (15.2.5)

Using Taylor’s frozen flow hypothesis we assume that pressure fluctuations do not

evolve and are convected downstream along the airfoil surface at a uniform speed

Uc so that k1¼K1	ω/Uc. Following the discussion at the end of Chapter 8, we

expect this to be 60–80% of the boundary-layer edge velocity. This means that

the wavenumber transform of the boundary-layer pressure fluctuations can be writ-

ten as

eepbl k1, k3,ωð Þ¼eepbl k3,ωð Þδ k1�ω=Ucð Þ

Thus Eq. (15.2.5) can be reduced to

pbl y, tð Þ¼
ð∞

�∞

ð∞
�∞

ð∞
�∞

eepbl k3,ωð Þδ k1�ω=Ucð Þe�i ωt�k1y1�k3y3ð Þdk1dk3dω

¼
ð∞

�∞

ð∞
�∞

eepbl k3,ωð Þe�i K1 Uct�y1ð Þ�k3y3ð Þdk3dω

Note that because of the overhead observer simplification we will only need to con-

sider contributions to pbl at zero-spanwise wavenumber, k3¼0. The second part of

ϕqq is the pressure fluctuation that results from the response of the trailing edge to this

disturbance, which is given by the Schwarzschild solution detailed in Chapter 13. For

a pressure perturbation,

Poe
�i K1 Uct�y1ð Þ�k3y3ð Þ
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the Schwarzschild solution Eq. (13.3.9) gives the trailing edge pressure response as

Pogte y1, K1, k3ð Þe�i K1Uct�k3y3ð Þ

So, for all wavenumber components, the total pressure fluctuation on the airfoil sur-

face will be

p y, tð Þ¼
ð∞

�∞

ð∞
�∞

eepbl k3,ωð Þ eiK1y1 + gte y1, K1, k3ð Þ	 

e�i K1Uct�k3y3ð Þdk3dω

Taking the Fourier transform in y3 and time, we obtain

eep y1, k3,ωð Þ¼eepbl k3,ωð Þ eiK1y1 + gte y1, k1, k3ð Þ	 

(15.2.6)

For the response function gtewe ignore the leading edge of the airfoil and use the result
for the trailing edge response of a semi-infinite airfoil, from Eq. (13.3.9)

gte y1, K1, 0ð Þ¼ 1� ið ÞE2 K1A y1j jð Þ�1f geiy1K1

where A¼Uc=c∞
1�M

+ 1 and E2 xð Þ¼
ðx
0

eiq

2πqð Þ1=2
dq

(15.2.7)

We expect this to be a good approximation as long as the airfoil chord remains large

compared to the acoustic wavelength and thus K1c≫1. Substituting into Eq. (15.2.6)

we obtain

eep y1, 0, ωð Þ¼ 1� ið Þeepbl 0,ωð ÞeiK1y1E2 K1A y1j jð Þ

Now, the spectrum of the pressure difference across the airfoil will be twice the spec-

trum of the pressure itself, as we do not expect the boundary-layer pressure fluctua-

tions to correlate between the two sides. So,

ϕqq y1, y
0
1, 0,ω

� �¼ 2π2

TR∞
E eep* y1, 0,ωð Þeep y01, 0, ω

� �h i

¼ 2π2

TR∞
E eep *

bl 0, ωð Þeepbl 0,ωð Þ
h i

1 + ið Þ 1� ið ÞE*
2 K1A y1j jð ÞE2 K1A y01

�� ��� �
eiK1 y0

1
�y1ð Þ

¼ 2ϕpp 0,ωð Þ 1 + ið Þ 1� ið ÞE*
2 K1A y1j jð ÞE2 K1A y01

�� ��� �
eiK1 y0

1
�y1ð Þ ð15:2:8Þ

where ϕpp is the spanwise wavenumber frequency spectrum of the undisturbed

boundary-layer pressure fluctuations. That is, in terms of the full wavenumber

frequency spectrum Φpp,
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ϕpp k3, ωð Þ¼
ð∞
�∞

Φpp k1, k3,ωð Þdk1

Substituting from Eq. (15.2.8) into Eq. (15.2.4), we recover

Spp x,ωð Þ� ωx2
2c∞r2e

� �2 b
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(15.2.9)

The integrals inside over y1 and y1
0 can be separated and are conjugates of each other,

and so our final result can be written as

Spp x1, x2, 0, ωð Þ� ωx2
2c∞r2e

� �2 b

π
ϕpp 0,ωð Þ 2

c

ð0
�c
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������
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2

or,

Spp x1, x2, 0, ωð Þ � πb
ωcx2

4πc∞r2e

� �2

ϕpp 0, ωð Þ Lj j2 (15.2.10)

where L, the integral inside the absolute value, is Amiet’s [3,4] generalized lift func-

tion. Note that the sound predicted by Eq. (15.2.10) is twice that given by Amiet

since we are accounting for both airfoil boundary layers. The integration defining

L can be done analytically, but Amiet [4] argues that the integrand should be mod-

ified to soften the effects of the leading edge limit (at �c) which otherwise implies

unsteady loading generated by the plane-wall boundary-layer pressure fluctuations

pbl acting at the sharp leading edge of the flat plate. These do not exist for a real

airfoil where the boundary layer originates at a rounded leading edge. To avoid this

problem, the complex exponential in Eq. (15.2.6) is modified to include a term that

ensures decay with distance from the trailing edge, i.e., the exponential becomes

exp(K1y1[i+ε]) and the undisturbed boundary-layer contribution to L is then

assessed in the high-frequency limit as ε tends to zero. With this adjustment Amiet

[4] gives the magnitude of L as

jLj ¼ 1

Θ
1� ið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=B

1 + x1=re

s
E2 BK1c 1 + x1=reð Þð Þe2iΘ�E2 AK1cð Þ

( )
+ 1

�����
�����
(15.2.11)
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where

Θ¼K1c 1 +B M� x1=reð Þð Þ=2 and B¼Uc=c∞
1�M2

¼ A�1

1 +M

Note that the source term ϕpp in Eq. (15.2.10) is related by Fourier transform to the

spanwise cross spectrum of surface pressure fluctuations

ϕpp 0, ωð Þ¼ 1

2π

ðR∞

�R∞

Spp Δy3,ωð ÞdΔy3

Thus we can write

ϕpp 0, ωð Þ¼ 1

π
lp ωð ÞSpp ωð Þ where lp ωð Þ¼

ðR∞

0

Spp Δy3,ωð Þ
Spp ωð Þ dΔy3 (15.2.12)

and express the source term as the product of a frequency-dependent spanwise

pressure lengthscale lp(ω) and the autospectrum of the surface pressure fluctuations

Spp(ω). At any given frequency we expect the scale of the turbulence in the streamwise

and spanwise directions to be the comparable and therefore anticipate that lp(ω) will
vary as U/ω.
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Fig. 15.4 Plot of (K1c/2)
2jLj2M vs. Mach number and wavenumber, evaluated for Uc/U¼0.8

and x1/re¼0.5, in decibels.
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To determine the scaling and directivity implied by Amiet’s result we note, as

before, that the frequency of the soundωwill be determined by the flow speed divided

by the turbulence scale U/L. Roughly speaking we also expect the pressure spectrum

to vary as ρo
2U4S(ω). The scaling of jLj2 can be determined from the fact that

Limx!∞ E2 xð Þ½ �¼ 1

2
1 + ið Þ. Thus for large K1c (implying, not unreasonably, that the

eddies are small compared to the chord length)

jLj2 � 1

K1c=2ð Þ2
A=B

1 + x1=re

� �
� 4L2

c2
1

M

1

1 + x1=re

since at lowMach numberA�1 and B�M. The realism of this characterization can be

seen in Fig. 15.4 which shows that (K1c/2)
2jLj2M is equal to 1 over a substantial range

of frequencies and Mach numbers with an error of less than�1 dB. Indeed estimating

jLj2 as (K1c/2)
�2M�1 may be sufficiently accurate for some applications. Finally, we

note that ignoring convective effects, re¼jxj, x2/re¼x2/jxj¼ sinθ, and x1/re¼cosθ,
where θ is the directivity angle from the downstream direction defined in

Fig. 15.3. Combining these observations, we conclude that in the absence of convec-

tive effects

Spp x1, x2, 0, ωð Þ �
sin2 1

2
θ

� �
ρ2oU

5Lb

c∞jxj2 S ωð Þ (15.2.13)

in complete agreement with Ffowcs-Williams and Hall’s result (Eq. 15.1.6). Note that

accounting for convective effects [5] produces a more complex directivity in terms of

the angle θr, the observer location measured from the retarded source position

(Fig. 15.3), giving

Spp x1, x2, 0, ωð Þ �
sin2 1

2
θr

� �
ρ2oU

5Lb

1 +Mcosθrð Þ 1 + M�Mcð Þcosθr½ �2c∞r2r
S ωð Þ (15.2.14)

where rr is the distance from the retarded source position to the observer.

Amiet’s major contribution is in formulating a method in which well-defined and

established empirical information can be used to predict the form and level of a

trailing edge noise spectrum from first principles. As an example, we consider sound

predictions for a NACA 0012 airfoil at zero angle of attack. The data [6], shown in

Fig. 15.5, reflect a chordlength of 0.23 m and a span of 1.22 m, with an observer

3 m directly overhead over the mid-span of the trailing edge. The flow speed is

55.5 m/s giving a chord Reynolds number close to 660,000. The airfoil boundary layer

is heavily tripped, and the trailing edge displacement thickness δ* is estimated as

2.4 mm. From the discussion following Eq. (9.2.12) we take uτ/Ue¼4%. We would

expect, approximately, δ/δ*¼8 and Uc/Ue¼0.8 (see Section 9.2.2). With these

parameters we can use Eqs. (9.2.29) or (9.2.37) to estimate the autospectrum of the
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boundary-layer pressure fluctuations Spp(ω). For lp(ω) we use Amiet’s suggested

relation

lp ωð Þ¼ 2:1Uc=ω (15.2.15)

Note that we could alternatively get an expression for lp(ω), or for ϕpp(0,ω) as a whole,
by integrating one of the wavenumber spectrum models for the wall pressure pres-

ented at the end of Chapter 9.

The comparison of predictions performed using the boundary-layer spectrum

models and the data are presented in Fig. 15.5. The predictions have been scaled to

one-third octave band SPL to make this comparison, by multiplying by the frequency

and by (21/6�2�1/6). Overall the spectrum is predicted quite well, including some fea-

tures of the shape. The predictions appear some 5 dB below the measurements at lower

frequencies. This type of disagreement is not unexpected. The adverse pressure gra-

dient experienced toward the rear of the airfoil would be expected to increase the

energy of larger boundary-layer eddies, and the amplitude of the pressure fluctuations

they produce, and increase the spanwise lengthscale over which the pressure fluctu-

ations correlate lp when compared to a flat plate boundary layer. Using pressure spec-

tra and scales measured on the airfoil itself has been shown to improve agreement

between measurements and predictions [5,7].

15.3 The method of Brooks, Pope, and Marcolini [8]

While Amiet’s theory establishes the fundamental relationship between trailing edge

noise and the boundary-layer pressure fluctuations on the airfoil generating the sound,

it does not in most cases serve as a very practical prediction tool. While the flat plate
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Fig. 15.5 Comparison of trailing edge noise spectra computed using Eq. (15.2.10),

with different boundary-layer pressure spectrum models, compared with measurements

for a NACA 0012 airfoil at zero angle of attack [6].
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serves as an adequate aeroacoustic model of a real airfoil, it is a poor model for deter-

mining the detailed aerodynamics of the boundary layer. Airfoil geometry and angle of

attack have a strong influence on the boundary-layer turbulence, particularly at the

trailing edge. One might therefore propose an experimental campaign to measure the

zero-spanwise wavenumber spectrum ϕpp(0,ω) over a large test matrix of practical con-

ditions and fit the resulting data to correlations to be used in trailing edge noise predic-

tion. Measurements of pressure fluctuations and their scale near a trailing edge are

difficult, however, and this approach requires that we choose the “right” measurement

location in an evolving flow and also separate out the boundary-layer pressure fluctu-

ations and the trailing edge response. A much better plan is to run the same test matrix

but instead measure the far-field trailing edge noise at each condition, since this com-

paratively simple measurement contains all the needed information about the source.

Brooks, Pope, and Marcolini (BPM) [8] took precisely this approach, measuring

the self-noise of airfoils over a large range of conditions and forming these data into

empirical correlations that then serve as a prediction tool. Since its publication in

1989, the BPM method has become the tool of first (and often last) choice for airfoil

self-noise predictions. It has also become the comparison baseline for more sophisti-

cated noise prediction schemes, such as those using large eddy simulation, or measure-

ments on configurations or at conditions that lie outside of the range of tests that

underpinned the original correlations.

BPM did not use their sound measurements to invert Amiet’s equation (15.2.10)

and determine the source component of the surface pressure spectrum at each condi-

tion. Though perfectly possible, this is an unnecessary step. The empirical information

can more directly be incorporated by scaling the measured sound spectra according to

the form derived by Amiet and Ffowcs-Williams and Hall (Eq. 15.2.14) and then esta-

blishing normalized spectral forms and correlations for the boundary-layer scaling

variables as functions of conditions.

In their study of turbulent boundary-layer trailing edge noise, BPM placed a series

of two-dimensional NACA 0012 airfoils, of chordlength from 1 in. to 1 ft, in the test

section of the Quiet Flow Facility at NASALangley (Fig. 10.4). They positioned a pair

of far-field microphones on either side of the chord line of each airfoil in order to sep-

arate the trailing edge noise from facility noise by using its antiphase relationship.

They also used a second pair of microphones placed fore and aft of each airfoil to elim-

inate parasitic leading edge noise originating from the airfoil model mounting. The

airfoils were tested over a range of angles of attack in clean configuration and with

a heavy boundary-layer trip, to ensure transition, and at flow speeds that provided

chord Reynolds numbers up to 1.5 million, and Mach numbers up to 0.2.

They extracted from this database all the cases where the far-field sound appeared

to be produced by turbulent boundary-layer trailing edge noise. They chose to model

the contributions to the noise spectrum using the form

Si x, �f i; Re, α,Mð Þ¼
2sin2 1

2
θr

� �
sin2 ϕrð Þ

1 +Mcosθrð Þ 1 + M�Mcð Þcosθr½ �2

�2dδ*i M
5

r2r
�Si �f i; Re, α,Mð Þ

(15.3.1)
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where the normalized frequency is defined as

�f i	
2πωδ*i
U

and where subscript i distinguishes the contributions from different components of the

boundary-layer turbulence, and we have explicitly indicated the airfoil chord Reyn-

olds number Re, the absolute value of the angle of attack α, and Mach number M
as parameters controlling the spectrum. Comparing with Eq. (15.2.14) we can see that

they chose the boundary-layer displacement thickness (dependent on α and Re) as the

measure of the turbulence scale, and they replaced the U5 scaling withM5. The resid-

ual factors of ρo
2 and c4∞ are absorbed into the dimensional model spectral form Si. The

directivity includes the term sin2 ϕr which prescribes a standard dipole out-of-plane

directivity to allow results to be used for all observer locations. The definitions of θr
and ϕr in three-dimensional space are shown in Fig. 15.6. As a practical matter, BPM

chose to express their spectral curve fits in terms of one-third octave band SPL. Thus

we write

SPLi x, �f i; Re, α,Mð Þ¼10log10

2sin2 1

2
θr

� �
sin2 ϕrð Þ

1 +M cosθrð Þ 1 + M�Mcð Þcosθr½ �2�
2dδ*i M

5

r2r

0
@

1
A

+ Fi
�f i;Re,α,Mð Þ

where Fi
�f ; Re, α,Mð Þ¼ 10 log10

Si �f i; Re, α,Mð Þ
4�10�10Pa2

� �

Two of the contributions to the spectrum are from the pressure- and suction-side

boundary layers, SPLp and SPLs, and use the corresponding displacement thicknesses.

The third contribution SPLα, which also uses the suction-side boundary-layer dis-

placement thickness, was hypothesized by BPM to be associated with a thin region

x3

x1x2

rr
U(t–t)

qr

fr

UFig. 15.6 Definition of directivity

angles for the BPM method.
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of separated flow formed on the suction side. They introduced this when they found

that the attached boundary-layer correlations could not account for the frequency

shifts seen in measured sound spectra with angle of attack. Since the contributions

add linearly in power, the total trailing edge noise is

SPLtot ¼ 10log10 10SPLp=10 + 10SPLs=10 + 10SPLα=10
� �

To evaluate this expression we need the displacement thicknesses δs* and δp* and the

spectral functions Fs, Fp, and Fα. The displacement thicknesses can be supplied from

measurements, calculations (e.g., using a software tool such asXfoil), or curve fits given

by BPM based on integrating hot-wire velocity profiles measured just downstream of

the NACA 0012 airfoil trailing edges. The spectral functions are defined as follows

Fs
�f s; Re, α,Mð Þ¼ FA

�f s;Re,Mð Þ+FK1 Reð Þ�3

Fp
�f p; Re, α,M
� �¼FA

�f p;Re,M
� �

+FK1 Reð Þ +FΔK Re,αð Þ�3

Fα
�f s; Re, α,Mð Þ¼FB

�f s;Re,α,Mð Þ +FK2 α,Mð Þ

The function FK1 sets the level of the model spectrum FA and has the form

FK1 Reð Þ¼
�4:31log10Re + 156:3 Re< 247,000

�9:0 log10Re + 181:6 247,000
Re
 800,000

128:5 800,000<Re

8<
:

FΔK provides an additional adjustment to the level of the model spectrum for the pres-

sure side contribution

FΔK Re,αð Þ¼ α 1:43log10 Re δ*p=c
� �

�5:29
� �

Re δ*p=c
 5000

0 Re δ*p=c> 5000

(

where the group Reδp*/c is the Reynolds number based on the pressure side

boundary-layer displacement thickness. For brevity we have not explicitly indicated

functional dependence on δp*/c. Function FK2 sets the level of the model spectrum due

to separation, FB, and is

FK2 α,Mð Þ¼ FK1 Reð Þ +
�1000 α< γo� γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2� β=γð Þ2 α� γoð Þ2
q

+ βo γo� γ
 α
 γo + γ
�12 γo + γ< α

8<
:

where

γ¼ 27:094M + 3:31 γo ¼ 23:43M + 4:651
β¼ 72:65M + 10:74 βo ¼�34:19M�13:82
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The function FA defining the spectral shape and frequency scaling for attached flow is

FA
�f i; Re,Mð Þ ¼F

minð Þ
A að Þ +F Rð Þ

A aoð Þ F
maxð Þ
A að Þ�F

minð Þ
A að Þ

h i
where

a¼ log10 50�f iM
0:6

� ��� ��
a0 ¼

0:57 Re< 95,200

�9:57�10�13 Re�857,000ð Þ2 + 1:13 95,200<Re< 857,000

1:13 857,000<Re

8><
>:

F
minð Þ
A að Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
67:552�886:788a2

p
�8:219 a< 0:204

�32:665a + 3:981 0:204
 a
 0:244

�142:795a3 + 103:656a2�57:757a+ 6:006 0:244< a

8><
>:

F
maxð Þ
A að Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
67:552�886:788a2

p
�8:219 a< 0:130

�15:901a+ 1:098 0:130
 a
 0:321

�4:669a3 + 3:491a2�16:699a + 1:149 0:321< a

8><
>:

F
Rð Þ
A aoð Þ¼ �20�F

minð Þ
A aoð Þ

F
maxð Þ
A aoð Þ�F

minð Þ
A aoð Þ

For the separated flow portion the spectral shape and frequency scaling function FB

is similarly defined as

FB
�f i; Re, α,Mð Þ ¼F

minð Þ
B bð Þ +F Rð Þ

B boð Þ F
maxð Þ
B bð Þ�F

minð Þ
B bð Þ

h i
where

b¼
log10 50�f sM

0:6
� ��� �� α< 1:33°

100:0054 α�1:33ð Þ2 log10 50�f sM
0:6

� ��� �� 1:33°
 α
 12:5°

4:72 log10 50�f sM
0:6

� ��� �� 12:5°< α

8>><
>>:

b0 ¼
0:3 Re< 95,200

�4:48�10�13 Re�857,000ð Þ2 + 0:56 95,200<Re< 857,000

0:56 857,000<Re

8><
>:

F
minð Þ
B bð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16:888�886:788b2

p
�4:109 b< 0:130

�83:607b+ 8:138 0:130
 b
 0:145

�817:810b3 + 355:210b2�135:024b + 10:619 0:145< b

8><
>:

F
maxð Þ
B bð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16:888�886:788b2

p
�4:109 b< 0:100

�31:330b+ 1:854 0:100
 b
 0:187

�80:541b3 + 44:174b2�39:381b+ 2:344 0:187< b

8><
>:

F
Rð Þ
B boð Þ¼ �20�F

minð Þ
B boð Þ

F
maxð Þ
B boð Þ�F

minð Þ
B boð Þ
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Note that all angles are in degrees, and that these relations are valid for angles of attack

from 0 to 12.5 degrees or γo, whichever is the smallest.

The above equations constitute a prediction method that accounts not only for

Reynolds number and boundary-layer thickness effects but also for the most important

aerodynamic parameter—the angle of attack. At the conditions of the BPM measure-

ments, these formulae constitute a curve fit to their experimental data and can be used

to illustrate some basic variations, as we have done in Figs. 15.7 and 15.8.

Fig. 15.7 shows the effect of angle of attack on the trailing edge noise radiated by

a tripped 22.86 cm chord blade. Angle of attack has surprisingly little effect on the

high-frequency portion of the spectrum. At low frequencies the sound level

increases with angle of attack at an increasing rate, and the frequency at which

the sound level reaches its maximum decreases by roughly a factor of 3 between

0 and 7.3 degrees. This change presumably reflects the effects of adverse pressure

gradient on the suction-side boundary layer, increasing the scale and intensity of tur-

bulent motions.

Fig. 15.8 shows the effect of chordlength on the sound at zero angle of attack. The

obvious effect here is that as the chordlength is increased, the trailing edge boundary

layer grows, and so the frequency of the sound drops, these effects being roughly in

proportion. In Fig. 15.8 we have factored this variation out by plotting the sound

against frequency normalized on chord and flow speed, as fc/U, where f is frequency
in Hz. In this form we can see that the simple chord scaling just described works well

at frequencies below fc/U�5 (i.e., turbulent scales larger than about 20% of the

chord). At higher frequencies the sound level increases with the chordlength because

the greater the chordlength, the higher the Reynolds number of the boundary layer,

and the greater the range and energy of the turbulence it produces at small scales.
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Fig. 15.7 Trailing edge noise spectra for a tripped NACA 0012 airfoil as a function of angle

of attack, in degrees, evaluated using the BPM method [8]. Conditions are U¼55.5 m/s,

c¼22.86 cm, b¼1.22 m, θr¼ϕr¼90 degrees, rr¼3 m, and standard atmosphere. Boundary

layer displacement thicknesses calculated using the BPM correlations.
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Fig. 15.5 includes a prediction using the BPM method of the same NACA 0012

airfoil results compared with Amiet’s method. The BPM prediction is also quite

good, though curiously shows a larger difference at low frequencies. Trailing

edge noise measurement at low frequencies is notoriously difficult, and the differ-

ences may reflect the fact that BPM include only noise contributions in antiphase

across the chord line, whereas the measurements of [6 ] were made using a phased

microphone array to distinguish trailing edge noise sources from one side of the

airfoil.

A particular advantage of the BPM scheme is that it is not restricted to self-noise

generated by turbulent boundary-layer flow over a sharp trailing edge. Self-noise gen-

erated by vortex shedding from a trailing edge (due to trailing edge bluntness or a lam-

inar trailing edge boundary layer), stalled flow over the airfoil, and interaction of

boundary-layer turbulence with the tip of a blade during the formation of a trailing

vortex can be handled by essentially the same approach. BPM reviewed experimental

data and present further curve fits that allow prediction of these sources and, in the

case of laminar shedding noise and stall noise, the conditions at which these become

the dominant self-noise mechanisms.

The BPM method is often used for airfoils that do not have a NACA 0012 section.

This may be done by entering trailing edge boundary-layer thicknesses computed or

measured on the airfoil in question and entering an angle of attack referenced to zero

lift. It is also quite common to see predictions at conditions that exceed the range of the

experiments on which the method is based. (BPM did so themselves on a model scale

rotor in the DNW-LLF, as discussed in Appendix C of Ref. [8], which actually caused

them to refine some of their prediction methods.) These approaches are fine for rough

estimates, but it is important to remember that such extrapolations can lead to

substantial error.
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Fig. 15.8 Trailing edge noise spectra for a tripped NACA 0012 airfoil as a function of

chordlength, inmeters, evaluated using the BPMmethod [8]. Conditions are α¼0,U¼55.5 m/s,

c¼22.86 cm, b¼1.22 m, θr¼ϕr¼90 degrees, rr¼3 m, and standard atmosphere. Boundary

layer displacement thicknesses calculated using the BPM correlations.
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15.4 Roughness noise

We have seen above that the intense surface pressure fluctuations generated by a tur-

bulent boundary layer are a significant source of sound at low Mach numbers when

they are scattered from a trailing edge. Given the form of Curle’s equation (4.3.9) one

might be forgiven for thinking that turbulent boundary-layer flow over a smooth flat

surface would be a similarly important source of noise. This is not the case. To see

why, imagine the application of Eq. (4.3.9) to flow over an infinite rigid wall defined

by the plane x2¼y2¼0, as shown in Fig. 15.9.

We apply this equation by taking the volume of integrationV as existing only above

the surface so that its enclosing surface S is formed by the wall and hemispherical sur-

face of much greater radius than the extent of the flow and the turbulent boundary

layer. Given that the velocities on the surface will be zero, because of the

non-penetration and no-slip conditions, then Eq. (4.3.9) becomes

p0 x, tð Þ¼
ðT
�T

ð
S

pij
@G

@yi
njdS yð Þdτ+

ðT
�T

ð
V

@2G

@yi@yj

� �
Tij y, τð ÞdV yð Þdτ (15.4.1)

where the sound field has been written in terms of its pressure fluctuations, and pij is
the sum of the pressure and viscous stresses pδij�σij. At low Mach number, the only

significant viscous stresses acting on the wall are those associated with viscous shear

parallel to the wall, σ12¼σ21¼μ@v1/@y2 and σ23¼σ32¼μ@v3/@y2. Thus, since

nj¼ (0,1,0) the first term expands to give

p0 x, tð Þ¼
ðT
�T

ð
S

pδi2�μ δi1
@v1
@y2

+ δi3
@v3
@y2

� �� 
@G

@yi
dS yð Þdτ

+

ðT
�T

ð
V

@2G

@yi@yj

� �
Tij y, τð ÞdV yð Þdτ

(15.4.2)

This equation can be evaluated in two ways, first using the free-field Green’s function,

Go, i.e.,

p0 x, tð Þ¼
ðT
�T

ð
S

pδi2�μ δi1
@v1
@y2

+ δi3
@v3
@y2

� �� 
@Go

@yi
dS yð Þdτ

+

ðT
�T

ð
V

@2Go

@yi@yj

� �
Tij y, τð ÞdV yð Þdτ

(15.4.3)

Alternatively, we can evaluate Eq. (15.4.2) using the tailored Green’s function of

Eq. (4.5.3) that accounts for sound reflection from a flat surface

Trailing edge and roughness noise 383



GT ¼ δ t� τ�jx�yj=c∞ð Þ
4πjx�yj +

δ t� τ�jx�y#j=c∞
� �

4πjx�y#j ¼Go +G
#
o (15.4.4)

where y#¼ (y1,�y2,y3) identifies locations of the image sources in the wall. As indi-

cated, this function is merely the sum of the free-field Green’s function for the source

and image points. Differentiation of Eq. (15.4.4) shows that on the wall at y2¼0,

@GT/@y2¼0, @GT/@y1¼2@Go/@y1, and @GT/@y3¼2@Go/@y3. So, substituting these

relations into Eq. (15.4.2) we lose the pressure term and obtain

p0 x, tð Þ¼ 2

ðT
�T

ð
S

μ δi1
@v1
@y2

+ δi3
@v3
@y2

� �
@Go

@yi
dS yð Þdτ

+

ðT
�T

ð
V

@2Go

@yi@yj

� �
Tij y, τð ÞdV yð Þdτ +

ðT
�T

ð
V

@2G#
o

@yi@yj

� �
Tij y, τð ÞdV yð Þdτ

(15.4.5)

By comparing Eqs. (15.4.3), (15.4.5) we see that effect of the surface pressure term

is equivalent to a doubling of the viscous shear stress dipole and the addition of a

quadrupole term representing the noise made by the image of the boundary-layer

turbulence in the wall. The shear dipole is expected to be negligibly weak except

perhaps at low Reynolds numbers, and even then it has been argued [9] that this term

is not a true source but acts as a modifier to the propagation of acoustic waves adja-

cent to the surface. The quadrupole term is, of course, small in any low Mach

number flow.

The relative silence of turbulent boundary layers is not maintained when the wall is

rough (Fig. 15.10). In this case the unsteady boundary-layer pressure field is experi-

enced on an uneven surface so that individual features of the roughness (which we will

refer to as roughness elements) are subjected to an unsteady pressure force tangential

to the wall that acts as a dipole source, radiating sound back out into the flow. This

source is enhanced by the effect that the roughness has on the boundary layer itself,

Volume V
enclosed by
surface S

#

x2

y

y

x

Fig. 15.9 Control volume and surface for the case of a turbulent boundary layer growing on an

infinite plane wall.
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intensifying the turbulence and the associated surface pressure fluctuations. To ana-

lyze this situation, we begin once more with Eq. (15.4.1) but without the viscous and

Lighthill stress tensor terms

p0 x, tð Þ¼
ðT
�T

ð
S

p
@G

@yi
nidS yð Þdτ (15.4.6)

As shown in Fig. 15.10, we define our coordinates so that the mean plane of the wall is

at y2¼0 and with the surface shape defined by the function ξ so that on the surface

y2¼ξ(y1,y3). Note that we are assuming that ξ is single valued function, i.e., the sur-

face has no overhanging elements. The apparently complex task of evaluating the

derivative of the Green’s function on the rough surface is simplified by using once

more the tailored Green’s function of Eq. (15.4.4). Since @G/@y2¼0 at y2¼0 we

can write the derivatives of this Green’s function at the rough surface in terms of

the Taylor series expansions

@GT

@y1

� 
y2¼ξ

¼ @GT

@y1

� 
y2¼0

+
ξ2

2

@3GT

@y1@y22

� 
y2¼0

+O ξ3
� �

@GT

@y2

� 
y2¼ξ

¼ ξ
@2GT

@y22

� 
y2¼0

+O ξ3
� �

@GT

@y3

� 
y2¼ξ

¼ @GT

@y3

� 
y2¼0

+
ξ2

2

@3GT

@y3@y22

� 
y2¼0

+O ξ3
� �

(15.4.7)

Substituting Eq. (15.4.4) into Eq. (15.4.7), and ignoring all but the leading order terms,

we obtain

 

x(y1,y3)

y1

y2

U

x

q

Fig. 15.10 Nomenclature for noise radiated from flow over a rough wall.

Trailing edge and roughness noise 385



@GT

@y1

� 
y2¼ξ

� x1
2πjxj2c∞ δ0 t� τ� xj j

c∞
+
x1y1 + x3y3

jxjc∞

� �

@GT

@y2

� 
y2¼ξ

� �x22ξ

2πjxj3c2∞
δ00 t� τ� xj j

c∞
+
x1y1 + x3y3

jxjc∞

� �

@GT

@y3

� 
y2¼ξ

� x1
2πjxj2c∞ δ0 t� τ� xj j

c∞
+
x1y1 + x3y3

jxjc∞

� �
(15.4.8)

Where these results have been simplified using far-field approximations. For example,

the result for @GT/@y1 without simplification is

@GT

@y1

� 
y2¼ξ

¼ x1� y1
2πjx�yj2c∞ δ0 t� τ� x�yj j

c∞

� �
+

x1� y1
2πjx�yj3 δ t� τ� x�yj j

c∞

� �
(15.4.9)

In the far-field x is large (using an origin close to the source), so we can neglect the

second term compared to the first, ignore y1 relative to x1 in the remaining numerator,

and replace jx�yj2 in the remaining denominator by jxj2 and jx�yj in the argument of

δ0 by jxj�xiyi/jxj, thereby giving the result in Eq. (15.4.8). Substituting Eq. (15.4.8)

into Eq. (15.4.6) we obtain

p0 x, tð Þ¼ 1

2πjxj2c∞

ð
S

ðT
�T

x1δ
0 τ*� τð Þpn1�

x2
2
ξ

jxjc∞ δ00 τ*� τð Þpn2 + x3δ0 τ*� τð Þ pn3dτdS yð Þ

(15.4.10)

where

τ*¼ t� x�yj j
c∞

� t� xj j
c∞

+
x1y1 + x3y3

jxjc∞

Performing the time integration then yields

p0 x, tð Þ¼ 1

2πjxj2c∞

ð
S

x1n1 + x3n3ð Þ @p

@τ

� 
τ¼τ*

� x22ξn2
jxjc∞

@2p

@τ2

� 
τ¼τ*

dS yð Þ (15.4.11)

where dS and ni represent the surface area and unit outward normal on the uneven

rough wall. As shown in Fig. 15.11 these can be expressed in terms of the roughness

height function ξ as
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nidS yð Þ¼ � @ξ

@y1
,1, � @ξ

@y3

� �
dy1dy3 (15.4.12)

and so,

p0 x, tð Þ¼ �1

2πjxj2c∞

ð
S

x1
@ξ

@y1
+ x3

@ξ

@y3

� �
@p

@τ

� 
τ¼τ*

+
x22ξ

jxjc∞
@2p

@τ2

� 
τ¼τ*

dy1dy3

(15.4.13)

The two terms inside the integral are not of the same order. If we characterize the time-

scale of the flow in terms of the turbulence lengthscale L divided by the flow velocity

U and denote the characteristic height of the roughness as h, then the second term is

smaller than the first by a factor of MLξ/L, where Lξ is the streamwise or spanwise

scale of the roughness. The second derivative term thus scales as if it were a quadru-

pole, and we neglect it as we have already neglected the quadrupole turbulence

sources. Taking the Fourier transform of the result with respect to observer time

we obtain

ep x,ωð Þ ¼ �1

4π2jxj2c∞

ð
S

x1
@ξ

@y1
+ x3

@ξ

@y3

� � ðT
�T

@p

@τ

� 
τ¼τ*

eiωtdtdy1dy3 (15.4.14)

Changing the variable of time integration to τ*, and remembering that taking the time

derivative of a variable is equivalent to multiplying its Fourier transform by �iω, we
obtain

y

y

Fig. 15.11 Expression of the rough surface area element ndS(y) in terms of the roughness height

function ξ.
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ep x,ωð Þ ¼ ikeikjxj

2πjxj2
ð
S

x1
@ξ

@y1
+ x3

@ξ

@y3

� �ep y,ωð Þe�ik x1y1 + x3y3ð Þ=jxjdy1dy3 (15.4.15)

where k is the acoustic wavenumber ω/c∞. From the definition of the inverse spatial

Fourier transform, we can express ep y, ωð Þ in terms of the wavenumber frequency

transform of the wall pressure eep k1, k3,ωð Þ as

ep y,ωð Þ¼
ð∞

�∞

ð∞
�∞

eep k1, k3,ωð Þe�i k1y1 + k3y3ð Þdk1dk3 (15.4.16)

giving

ep x,ωð Þ ¼ ikeikjxj

2πjxj2
ð∞

�∞

ð∞
�∞

eep k1, k3,ωð Þ
ð
S

x1
@ξ

@y1
+ x3

@ξ

@y3

� �
e�iκ � ydy1dy3dk1dk3

(15.4.17)

where

κ¼ k1 +
kx1
xj j ,0,k3 +

kx3
xj j

� �

The inner integral of Eq. (15.4.17) has the form of a wavenumber transform. Indeed, if

we introduce the wavenumber transform of the surface height,

eeξ κ1, κ3ð Þ¼ 1

2πð Þ2
ð
S

ξ y1, y3ð Þe�iκ � ydy1dy3 (15.4.18)

and note that iκ1
eeξ and iκ3eeξ are the wavenumber transforms of the surface slopes in the

y1 and y3 directions, then Eq. (15.4.17) can be reduced to

ep x,ωð Þ ¼ 2πikeikjxj

jxj2
ð∞

�∞

ð∞
�∞

eep k1, k3,ωð Þ iκ1x1 + iκ3x3ð Þeeξ κ1, κ3ð Þdk1dk3 (15.4.19)

This is the equation for the roughness noise. If the features of the roughness are acous-

tically compact in all directions so that k≪k1 and k≪k3, then κ1 and κ1 are indistin-
guishable from k1 and k3.

For Eq. (15.4.19) to be practically useful, we need to express the far-field sound in

terms of its frequency spectrum
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Spp x,ωð Þ¼ π

T
E ep* x,ωð Þep x,ωð Þ½ �

¼ 4π2k2

jxj4
ð∞

�∞

ð∞
�∞

π

T
E eep* k1, k3,ωð Þeep k01, k

0
3,ω

� �h i

� κ1x1 + κ3x3ð Þ κ01x1 + κ
0
3x3

� �eeξ* κ1, κ3ð Þeeξ κ01, κ
0
3

� �
dk1dk3dk

0
1dk

0
3 (15.4.20)

Now, if we assume that the portion of the fluctuating surface pressure field that is

responsible for the roughness noise is homogeneous then we can write the expected

value in the integral in terms of the wavenumber spectrum of the surface pressureΦpp.

Note that this assumption excludes pressure fluctuations directly associated with the

individual flows around roughness elements, such as due to the local effect of eddy

shedding from an element or the interstitial flows between adjacent elements. From

Eq. (8.4.37), we have

π

T
E eep* k1, k3,ωð Þeep k01, k

0
3,ω

� �h i
¼Φpp k1, k3,ωð Þδ k1� k01

� �
δ k3� k03
� �

and so,

Spp x,ωð Þ¼ 4π2k2

jxj2
ð∞

�∞

ð∞
�∞

Φpp k1, k3,ωð Þ κ1x1 + κ3x3
xj j

� �2 eeξ κ1, κ3ð Þ
��� ���2dk1dk3

(15.4.21)

Eq. (15.4.21) is an expression for the sound field that assumes that we know the pre-

cise roughness geometry. In many situations it is more likely that we will only have

statistical knowledge of the roughness, and for this situation the expected value oper-

ator on the right-hand side of Eq. (15.4.20) needs to encompass the surface coordinate

terms as well as the pressure terms. Assuming there is direct correlation between the

details of the pressure field and those of the rough surface (which is inevitable if the

homogeneity assumption is valid) then the result of this derivation becomes

Spp x,ωð Þ¼ k2h2Σ

jxj2
ð∞

�∞

ð∞
�∞

Φpp k1, k3,ωð ÞΓ κ, xð Þdk1dk3 (15.4.22)

where Σ is the area of the surface, projected onto the y2¼0 plane, h is the RMS rough-

ness, and

Γ κ, xð Þ¼ κ1x1 + κ3x3
xj j

� �2
4π2

Σh2
E
eeξ* κ1, κ3ð Þeeξ κ1, κ3ð Þ
h i� �

(15.4.23)
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Note that the term inside the curly braces is the wavenumber spectrum of the surface

height, normalized on its mean square. We see that both Eqs. (15.4.21), (15.4.22)

cleanly separate the flow-dependent acoustic source term, represented by the surface

pressure wavenumber spectrum, from the surface geometry term representing the

spectrum of the surface slope in the direction of the observer.

These equations provide perfectly practical expressions for roughness noise pre-

diction if we know the surface geometry, or its typical statistical form, and the

boundary-layer parameters needed to define one of the wavenumber frequency spec-

trum models of the surface pressure, such as Eq. (9.2.34) or (9.2.38). Given the fact

that we have neglected sound generated by the individual flows around roughness

elements, we might expect these equations only to be accurate when the roughness

comparable to the viscous scales of the boundary layer and such flows are

suppressed. However, this is not the case and accurate predictions have been made

in flows where the roughness elements are at least as large as the displacement thick-

ness [10]. The implication is that the scattering of the homogeneous components of

the surface pressure spectrum is a much greater contributor to roughness noise than

the self-noise of individual elements. For a broadband rough surface, the predicted

far-field sound has been found to be only weakly dependent on the form of the

wavenumber frequency spectrum [10], so the exact choice or accuracy of this model

is not likely to be critical in most circumstances.

As regards the scaling implicit in Eq. (15.4.22), we expect that k~M/L, that the
wavenumber spectrum of surface pressure will vary approximately as ρo

2U4S(ω)L2,
where L represents the scale of the turbulence, and that the wavenumbers k1 and k3
(and κ1 and κ3) representing flow scales will vary as 1/L. We thus have, for an observer

above the mid-span of the surface (x3¼0),

Spp x1, x2, 0, ωð Þ� cos2θρ2oU
4M2h2Σ

jxj2L2 S ωð Þ (15.4.24)

where we are taking κi�ki and introducing cos θ¼x1/jxj and S(ω), with units of

seconds, which gives the normalized spectral shape. This shows that roughness

noise has classical dipole scaling and directivity, the dipole being oriented parallel

to the wall. The sound increases in proportion to the area of the surface and the

square of the height of the roughness elements. Dividing Eq. (15.4.24) by

Eq. (15.2.13) for trailing edge noise and ignoring the differences in spectral shape

and directivity gives

Spp
��
roughness

Spp
��
trailing edge

�Mh2Σ

L3LTE
(15.4.25)

Since h/L is likely to be small, we see that at low Mach number roughness noise

will be the dominant self-noise source only when the surface area of the roughness

is very large compared to the product of the turbulence scale and the total edge
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length. This happens with undersea vehicles, for example, which can have large

surface area but small lifting surfaces. Roughness noise can also be important

in determining the acoustic noise floor of wind tunnels [11], where an observer

in a hard-wall test section finds themselves far from any edge sources, but in

the direct line of streamwise roughness noise dipoles associated with the walls

of the diffuser and contraction.

The above scaling argument ignores factors controlling the shape of the noise

spectrum. From Eq. (15.4.22) we see that the observer hears a sound spectrumwhose

shape is determined by wavenumber filtering of the surface pressure fluctuation

field, the filter being the surface slope spectrum represented by Γ. For rough surfaces
with random roughness elements defined by near-vertical sides it can be shown [12]

that the slope spectrum is wavenumber white, i.e., Γ is simply a constant. In this

case, Eq. (15.4.22) becomes dependent on the unweighted wavenumber spectrum

integrated with respect to k1 and k3, which is simply equal to the wall pressure fre-

quency spectrum, i.e.,

Spp x,ωð Þ¼ k2h2ΣΓ

jxj2
ð∞
�∞

ð∞
�∞

Φpp k1, k3,ωð Þdk1dk3 ¼ k2h2ΣΓ xð ÞGpp ωð Þ
2jxj2 (15.4.26)

Thus the roughness noise spectrum normalized on the surface pressure frequency

spectrum should simply be proportional to the frequency squared, the mean square

roughness height, and the area of the rough surface, i.e.,

Spp x,ωð Þ
Gpp ωð Þ ¼ω2h2ΣΓ xð Þ

2c2∞jxj2
(15.4.27)

Fig. 15.12 shows this type of behavior on roughness noise measurements made over a

series of sandpaper surfaces of different grit size [13]. The smallest grit size of 100

implies roughness elements with heights comparable to the viscous sublayer thick-

ness, whereas the largest, of 20, indicates roughness elements that penetrate into

the log layer and are comparable to the displacement thickness. The sound spectra

are normalized on the surface pressure frequency spectrum and the square of the

roughness height and convincingly follow a line proportional to ω2, except at high

frequencies for the largest roughness sizes.

Sandpaper and other stochastic surfaces do not strictly have wavenumber white

surface slope spectra, but their slope spectra are expected to have a broad maximum.

In the vicinity of this maximum not only Γ is approximately constant, but the surface

pressure wavenumber spectrum is most heavily weighted by Γ, making it probable

that this portion of the integral in Eq. (15.4.22) will dominate what is heard in the

far field. Thus Eq. (15.4.27) provides a simple means of estimating the roughness

noise spectrum generated by many random surfaces.

The fact that the rough surface acts as a filter on the surface pressure field in deter-

mining the far-field sound raises the intriguing possibility of using such a surface as a
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probe. That is, designing a deterministic surface with a shape chosen to reveal a spe-

cific part of the surface pressure wavenumber frequency spectrum in the noise it radi-

ates. For example, consider a wall with sinusoidal ribs of wavenumber

k wð Þ ¼ k
wð Þ
1 , 0, k

wð Þ
3

� �
. The shape of the wall is

ξ y1, y3ð Þ¼ ho cos k
wð Þ
1 y1 + k

wð Þ
3 y3

� �
(15.4.28)

which has the wavenumber transform

eeξ k1, k3ð Þ¼ ho
2

δ k
wð Þ
1 � k1

� �
δ k

wð Þ
3 � k3

� �
+ δ k

wð Þ
1 + k1

� �
δ k

wð Þ
3 + k3

� �� �
(15.4.29)

Substituting this into Eq. (15.4.19) and assuming that the surface is acoustically com-

pact, so that κ¼k, we obtain

ep x,ωð Þ¼ hoπikeikjxj

jxj2
ð∞

�∞

ð∞
�∞

eep k1, k3,ωð Þ ik1x1 + ik3x3ð Þ

δ k
wð Þ
1 � k1

� �
δ k

wð Þ
3 � k3

� �
+ δ k

wð Þ
1 + k1

� �
δ k

wð Þ
3 + k3

� �� �
dk1dk3

¼�hoπkeikjxj

jxj2 k wð Þ � x eep k
wð Þ
1 , k

wð Þ
3 ,ω

� �
+eep �k

wð Þ
1 , � k

wð Þ
3 , ω

� �h i
(15.4.30)
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Fig. 15.12 Narrowband spectra of the roughness noise generated by rectangular sandpaper

surfaces exposed to a wall-jet boundary layer in air. Boundary layer edge velocity and thickness

are approximately 14 m/s and 20 mm, respectively.

Data from Ref. [13].
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So that the far-field sound spectrum is

Spp x,ωð Þ¼ π

T
E ep* x,ωð Þep x, ωð Þ½ �

¼ hoπk

jxj2
� �2

k wð Þ � x� �2
Φpp k

wð Þ
1 , k

wð Þ
3 ,ω

� �
+Φpp �k

wð Þ
1 , � k

wð Þ
3 ,ω

� �h i
(15.4.31)

Note that if our coordinate system is oriented so that k1 is measured in the flow direc-

tion, then the wavenumber frequency spectrum at negative k1
(w) will be negligible since

this implies upstream traveling turbulence, and we can truncate this result to

Spp x,ωð Þ¼ hoπk

jxj2
� �2

k wð Þ � x
� �2

Φpp k
wð Þ
1 , k

wð Þ
3 ,ω

� �
(15.4.32)

So, a sinusoidal surface of wavenumber k(w) radiates only the portion of the

wavenumber frequency spectrum of the wall pressure at that wavenumber. The shape

of the far-field sound spectrum gives the frequency dependence or the surface pressure

spectrum at that wavenumber, multiplied by ω2. By turning a sinusoidal surface to

different angles, different parts of the wavenumber frequency spectrum can be rev-

ealed. Fig. 15.13 illustrates just how this works. The wavenumber frequency spectrum

of the wall pressure is represented in terms of contour surfaces drawn using the Chase

model of Eq. (9.2.34). We are considering the sound radiated by a circular patch of

sinusoidal ridges, with ridges oriented perpendicular to the direction αw where

cosαw ¼ k
wð Þ
1 = k wð Þ�� ��. This surface will radiate sound that reveals the shape of the

0

0

A

k3

k1

y1

y3

U

w

a
w

a
w

Convective ridge

A

Fig. 15.13 Schematic showing the wavenumber frequency spectrum of the wall pressure, and

the cut AA radiated by a sinusoidal surfaces with ridges oriented at angle αw.
Adapted from Ref. [14].
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wavenumber frequency spectrum along the line AA. By rotating the surface to vary

αw we can reveal an entire cylindrical cut through the wavenumber frequency spec-

trum, as shown. Fig. 15.14 shows results from just such a measurement used to reveal

the wavenumber spectrum of a wall-jet boundary layer using a ridged surface with a

1.26-mm wavelength [14]. This is a far smaller wavelength (and thus higher

wavenumber) that could be probed using an array of conventional surface micro-

phones and is a much easier measurement, requiring only a single far-field micro-

phone. The results (Fig. 15.14A) are plotted as a map, which reveals the

convective ridge forming a near-vertical arc in the plot. This appears to be in fair

agreement with the prediction of the map using the Chase model (Fig. 15.14B).
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16Open rotor noise

Up to this point in the text we have derived the basic equations of aero and

hydroacoustics and have presented the analytical methods needed to solve them.

We have also considered idealized problems such as leading and trailing edge

noise. We will now turn our attention to specific problems that can be addressed using

these theories. The first problem we will consider is the noise from propellers and

rotors.

16.1 Tone and broadband noise

There are many applications in which rotor noise is a serious problem and a cause for

concern. The commercial usage of propeller-driven aircraft is limited by high levels of

cabin noise. Ship propellers are a major cause of both shipboard noise and sound radi-

ation to the far field. Airboats are propeller driven and generate high noise levels when

running at full speed. On a larger scale, wind turbines can be very noisy if designed

incorrectly. Helicopter rotors have many of the same characteristics as propellers, and

there are both military and civil applications in which the reduction of helicopter noise

is important. In all these examples the same source mechanisms are found, but the

dominant processes depend on the application. In this section we discuss the different

mechanisms that cause noise from propellers and rotors, and then, in the following

sections, we derive prediction methods for each source type.

Rotating blades emit two distinctly different types of acoustic signatures. The first

is referred to as tone or harmonic noise and is caused by sources that repeat themselves

exactly during each rotation. The second is broadband noise which is a random, non-

periodic signal caused by turbulent flow over the blades. Fig. 16.1 illustrates these

signals and shows how they combine. In Fig. 16.1A the signature from a single blade

is shown during the period of one revolution Tp. If the rotor has three blades, then this
signature is repeated at the blade-passing frequency (BPF), and the sum (see

Fig. 16.1B) is a signature that repeats itself with a period of Tp/3. A typical broadband

signal is shown in Fig. 16.1C, and this is seen to have a quite different character, with

no associated periodicity, but an envelope that varies periodically. The sum of the sig-

nal types is shown in Fig. 16.1D. Note that how the sum tends to hide the details of the

broadband component.

The best way to determine the relative importance of tone and broadband noise is

to consider the narrow-band frequency spectrum of the signal. The Spectrum Level is
defined as the root mean square of the signal, which has passed through a frequency

filter of bandwidth Δf and centered on the frequency f. In rotor noise applications we
always deal with harmonic signals, and it is important to use the Spectrum Level

defined in this way rather than the Power Spectrum of the signal, which gives the

Aeroacoustics of Low Mach Number Flows. http://dx.doi.org/10.1016/B978-0-12-809651-2.00016-3
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signal energy per unit Hz. Fig. 16.2 shows a typical example of a rotor noise

spectrum with a 3 Hz bandwidth for a three-bladed rotor at 600 rpm. The peaks

define the tone noise and occur at the blade-passing frequencies, which in this case

are multiples of 30 Hz. At higher frequencies the broadband random noise dominates

the spectrum. This type of analysis is vital to the evaluation of rotor noise because it

enables us to unambiguously distinguish between the tone and broadband noise,

hence allows us to determine the most important noise source mechanisms.1
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Fig. 16.1 (A) The time history of a pulse from a single blade. (B) The time history from a

three-bladed rotor. (C) The time history of broadband rotor noise. (D) The time history of rotor

noise over one period.

1If we increase the bandwidth of the analysis from the 3 Hz specified above, the Spectrum Level of the

broadband noise will also increase because more broadband energy is passing through the filter, but the

tone level will remain the same. In contrast, if we had used a power spectrum analysis the broadband level

would be unaltered by changing the analysis bandwidth because the energy per Hz remains the same. How-

ever, the tone levels in a power spectrum are reduced by increasing the analysis bandwidth, and this is why

it is important to evaluate rotor noise using the spectrum level, and to specify the analysis bandwidth when

reporting results.
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The primary sources of tone noise depend on the rotor tip speed, and the flow con-

ditions in which the rotor is operating. Our understanding of rotor noise is based on the

Ffowcs-Williams and Hawkings equation given by Eq. (5.2.13):

ρ0 x, tð Þc2∞ ¼ @2

@xi@xj

ð
Vo

Tij
4πrj1�Mrj
� �

τ¼τ*
dV zð Þ

� @

@xi

ð
So

pijnj
4πrj1�Mrj
� �

τ¼τ*
dS zð Þ + @

@t

ð
So

ρ∞Vjnj
4πrj1�Mrj
� �

τ¼τ*
dS zð Þ

(5.2.13)

At low speeds the loading noise, given by the second term in Eq. (5.2.13), is usually

the dominant source of sound. This indicates that the steady and unsteady pressure

on the blade surface is the basis for the radiated sound. There are many effects that

can influence the blade loading. If the propeller is operating with a completely clean

inflow (uniform flow with no turbulence), which is rarely the case, then the blade

loading is steady in blade-based coordinates, but the component of the force in

the direction of the observer varies as the blade rotates. For example, consider

the sound radiated out to the sides of the propeller in the plane of the rotor,

Fig. 16.3. A far-field observer close to that plane “sees” a blade drag force that con-

tinuously changes direction, and so its component in the direction of the observer

varies with time and a sound wave is generated. The same is true, but to a lesser

extent, for the thrust force. The amount of load variation that is “seen” by the

observer is obviously very dependent on the observer location, and the sound field

is therefore very directional.

0 100 200 300 400 500
Frequency (Hz)

Sp
ec

tr
um

 l
ev

el
 (

dB
)

Harmonics of blade
passing frequency

Broadband noise

BPF=30Hz

−100

−80

−60

−40

−20

0

Fig. 16.2 The spectrum of rotor noise showing harmonics at blade-passing frequency and
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The sound caused by the time variation of the steady loading applies to all propel-

lers, but it is a relatively weak source of sound compared to the unsteady loading. Most

propellers operate in a nonuniform distorted inflow, and so their angle of attack varies

continuously as they rotate as shown in Fig. 16.4. (For helicopter rotors this is a nec-

essary design feature for level flight.) Smoothly varying changes of angle of attack are

usually not very important, but when the blade encounters a sudden velocity deficit in

the flow then the angle of attack change causes a rapid change in blade loading. The

discussion of Eq. (5.2.13) showed that in the acoustic far field we can approximate

@=@xi � �xi= xj jc∞ð Þ@=@t ¼� �xi= 1�Mrð Þ xj jc∞ð Þ@=@τ, which shows that it is the

time variation of the loading that generates sound. Consequently, a blade encountering

a velocity deficit that causes a rapid change in loading can be a very efficient source of

sound. A classic example of this is a wind turbine which can be designed so that the

blades operate either upwind or downwind of the tower (Figs. 16.5 and 16.6). In the

downwind design the tower causes a significant velocity deficit that the blade moves

though, and so a strong acoustic pulse is generated (Fig. 16.5). In contrast if the wind

turbine is designed so that the tower is downstream of the blades then the blades never

pass through the velocity deficit, and they only encounter a small velocity perturbation

as they pass the tower (Fig. 16.6). The upwind design of wind turbine is therefore sig-

nificantly quieter than the downwind design. This principle applies to any propeller

and, wherever possible, mounting of the rotor so that inflow distortions are minimized

and slowly varying will reduce noise.

A special case of unsteady loading noise is caused by blade vortex interactions

(BVIs) in helicopter rotors (Fig. 16.7). During forward flight the tip vortices of a heli-

copter can be ingested into the rotor and, given the right conditions, the helicopter

blades can pass near the core of the vortex, and this causes a local, very rapid, change

in angle of attack and a sudden change in blade load. This interaction emits a loud

“thumping” sound and is often the dominant cause for complaints about helicopter

Lift

Drag

Lift
Drag

Direction of loading vector
changes with blade position

Location of far-field observer
in the rotor plane

W

Fig. 16.3 The lift and drag forces on a

propeller.
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noise. If the operational conditions are changed so that the wake is ingested in a dif-

ferent way then this noise source is eliminated, but unfortunately this is not always

possible for some maneuvers.

In addition to unsteady loading noise the third term of Eq. (5.2.13) shows that there

is a contribution from the blade surface motion that is referred to as thickness noise.

We will show later that this is only important at tip speeds with Mach numbers in

excess of 0.7. However, for high-speed helicopters and transonic propellers this source

can be important. The mechanism for this source is the time varying displacement of

fluid by the blade volume as it rotates. To the fixed observer in the acoustic far field it

is as if the blade volume changes as it rotates, and this apparent variation in volume

causes a sound wave in the far field. The simplest way to reduce thickness noise is to

reduce the blade volume near the blade tip. If the blade thickness is halved in the tip

region then the thickness noise is reduced by 6 dB, which is not insignificant and can

be an effective way to reduce the noise from high-speed rotors.

Angle of attack changes with
blade position 

W

a

t/Tp

Fig. 16.4 A propeller operating in a distorted inflow.

Blade moves through wake on tower

Sudden change in loading cause
impulsive source

Downwind wind
turbine

a

t/Tp

Fig. 16.5 Illustration of a downwind wind turbine.
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When the blade tip speed is transonic or supersonic then shock discontinuities

can occur both on the blade surface and in the fluid surrounding the blade

tips (Fig. 16.8). This is considered quadrupole noise because it is a source in the

fluid volume as distinct from on the blade surface. From the observer’s perspective,

the shocks apparently change as the blade rotates, and so they generate sound.

This mechanism can be just as important as thickness noise in some rotor designs.

In general, the shocks are weaker if the blades are thinner, and so thinning of the

blade tips is always advantageous for the reduction of transonic and supersonic

rotor noise.

t/Tp

Blade no longer moves through wake
on tower

Impulsive source is eliminated

Upwind wind
turbine

a

Fig. 16.6 Illustration of an upwind wind turbine.

Tip vortices

Fig. 16.7 Illustration of blade vortex interactions.
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Broadband rotor noise is always caused by random variations in blade loading

resulting from the interaction of the blades with turbulence. The turbulence is often

generated upstream of the propeller and ingested into the rotor, but it can also be

self-generated in the blade boundary layer or at the blade tips. An example where

inflow turbulence is important is on ships where the propellers operate in a very dis-

turbed flow underneath the hull. On helicopters, the trailing tip vortices that cause BVI

noise can be surrounded by high levels of turbulence that generate broadband noise.

This is referred to as blade wake interaction noise. The turbulence in the blade bound-

ary layer does not generate much sound by itself, but when it passes the blade trailing

edge the local boundary conditions change rapidly, and significant sound generation

can occur (Fig. 16.9). As discussed in Chapter 15, this is trailing edge noise and is

often considered as the most important mechanism of broadband noise generation

in fans and propellers. Broadband noise from the turbulence at blade tips is not well

understood at this time but may be important on low aspect ratio blades and should not

be discounted as a possible noise source mechanism.

Fig. 16.9 Trailing-edge noise from the blade boundary layer interacting with the trailing edge

of a blade.

U
Shock surfaces

W

Fig. 16.8 The shock surfaces which can produce quadrupole noise from rotating blades.
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In the above we have summarized all the important source mechanisms for propel-

ler and rotor noise. It is clear from this discussion that there are a number of competing

mechanisms that are all important. In any particular application or set of operational

conditions there may be several equally significant mechanisms or one may

completely dominate. To determine the correct approach to sound reduction it is very

important to be able to predict the noise levels from each of the sources described

above. In the following sections we will discuss the prediction methodology for pro-

peller and rotor noise and then, in Chapter 18, we will extend these ideas to ducted fans

that have many of the same problems.

16.2 Time domain prediction methods for tone noise

16.2.1 Loading noise

Loading noise is caused by the time variation of the compressive stress tensor pij on a

blade surface as it rotates and may be predicted by the second term in the

Ffowcs-Williams and Hawkings equation (5.2.13), which gives the radiated acoustic

pressure as

p0 x, tð Þð Þloading ¼� @

@xi

ð
So

pijnj
4πrj1�Mrj
� �

τ¼τ*
dS zð Þ (16.2.1)

The surface integral in Eq. (16.2.1) should be carried out over the complete surface of

the rotor blade, but in many instances it can be simplified to an integral over the blade

planform. The planform is the projection of the rotor geometry into the rotor disc

plane, as shown in Fig. 16.10. This approximation is valid if the blades are thin

and the acoustic wavelength at the maximum frequency of interest is much larger than

the blade thickness. We can then ignore the displacement of the upper surface from the

lower surface and define the force per unit area applied to the fluid by the difference

between the values of pijnj evaluated on the upper and lower surfaces for a given point
on the blade planform (see Fig. 16.10). We define

fidΣ¼ pijnj
� �

upper
� pijnj
� �

lower

� �
dS and n1j jdS¼ dΣ

where dΣ is the planform area in the disc plane (see Fig. 16.10) of the surface element

dS. Substituting into Eq. (16.2.1) we obtain the thin airfoil approximation

p0 x, tð Þð Þloading ¼� @

@xi

ð
Σo

fi z, τð Þ
4πrj1�Mrj
� �

τ¼τ*
dΣ zð Þ (16.2.2)

For blades with lean and sweep there may also be a considerable displacement of the

mean camber line of the blade from the rotor disc plane. This displacement should be

included in the retarded timecalculation that takesplace inside the integral inEq. (16.2.2).
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If the variation of the surface loading fi repeats itself during each blade rotation,

then tone noise results. To calculate the acoustic field, we need to know the precise

variation of fi over the complete blade surface, as a function of emission time τ. How-
ever, there are some inherent difficulties with this requirement because the surface

integral must be evaluated at a fixed observer time, and so the emission time τ will
vary over the surface of the blade.

To address these difficulties, we use the approach pioneered by Farassat [1] and

shift the spatial derivatives to source time, as explained in Section 5.2. The result

was given by Eq. (5.5.2) for a far-field observer. If we project the blade loading onto

the surface planform as described above, we obtain

p0 x, tð Þð Þloading �
1

c∞

ð
Σo

xi

4πjxj2 1�Mrð Þ2
@fi
@τ

+
fi

1�Mrð Þ
@Mr

@τ

� 	" #
τ¼τ*

dΣ zð Þ

(16.2.3)

To evaluate Eq. (16.2.3) we need to calculate the location of each surface element

defined in the integrand at a given observer time.

To proceed we need to define the coordinate system of the blade and the observer.

There are several different choices for the coordinates, and care must be used in spec-

ifying the convention that will be used. In aircraft andmarine propeller applications the

convention [2] is to define coordinates (x,y,z)with xpointing in thedirectionof thrust. In
helicopter applications the z coordinate is chosen in the direction of thrust. In actuator
disc theory the x coordinate is chosen in the direction of flow through the propeller.

In this chapter we choose the aircraft propeller convention with x or x1 in the direction
of thrust as shown in Fig. 16.11. Furthermore, we need to choose the direction of blade

rotation. A propeller rotating anticlockwise when viewed from upstream is defined

as having “right-hand rotation.” If it rotates in a clockwise direction it is said to have

“left-hand rotation.” We will choose right-hand rotation as shown in Fig. 16.11.

Rotor planform

A

A

Section A-A

x2x3 plane

Blade
shape with
area S

Blade
planform
with area S

y+(R,f)

y− (R,f)

Fig. 16.10 Rotor blade planform relative to the upper and lower surface of the blade.
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To evaluate the integrand in Eq. (16.2.3) we solve the equation t�τ� r(τ)/c∞¼0,

so we can specify the azimuthal location ϕ¼ϕ1+Ωτ of each surface element as a

function of observer time t, radius R, and azimuthal location ϕ1 in blade-based coor-

dinates. For example, consider a rotor which is in the y2y3 plane at τ¼0 and is moving

with linear velocity (Uo,0,0) as shown in Fig. 16.11. In blade-based coordinates the

location of each surface element is z¼ (0,R cos ϕ1, R sin ϕ1), and in fixed coordinates

the surface element is located at y¼ (Uoτ, R cos(ϕ1+Ωτ), R sin(ϕ1+Ωτ)). The

retarded time equation is given by t�τ�jx�y(τ)j/c∞¼0, and to solve this equation

we use an interpolation method. First we evaluate t using a uniformly spaced set of

points τm¼mΔτ in source time and then interpolate the results to obtain values of

τ at fixed intervals in observer time tj¼ jΔt. Fig. 16.12 shows a plot of source location
vs observer time for a stationary propeller rotating with a tip Mach number of 0.8 for

source located at 30%, 60%, and 90% of the tip radius Rtip and an observer in the

acoustic far field at x¼ (40Rtip, 30Rtip, 0). Notice how the curves cross at different

observer times because the source at the outer radius is sometimes closer, and some-

times further from the observer as the blade rotates.

For blades with a subsonic tip speeds it is a relatively simple task to use this curve to

compute the location of each blade element for uniformly spaced steps in observer

time. However, for supersonic propellers this process becomes more difficult because

the curve is no longer monotonically increasing, and we will return to this issue in

Section 16.2.3.

The noise from steady loading is readily computed by defining the blade thrustFL and

the blade drag FD for blade element of spanΔR located atR. (Note the sign convention
requires that fi is the force per unit area applied to the fluid and is equal and opposite to
the force per unit area applied to the blade.) For steady loading f1dΣ¼�FL is constant,

x1
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R

ro

r

Observer

Direction of rotor advancement
with speed Uo

f= f1+Wt

qo

fo measured azimuthally
from the x2 axis to the
plane of qo

Fig. 16.11 Coordinate system used for propeller and rotor noise calculations.
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but thedirectionof thedragforcevarieswithblade location, so f2dΣ¼FDsin(ϕ1+Ωτ) and
f3dΣ¼�FDcos(ϕ1+Ωτ). Typically the drag force is about 10% of the thrust. The

acoustic far field for each surface element can be computed using Eq. (16.2.3).

To illustrate a typical calculation, consider an observer at x¼ (40Rtip, 30Rtip, 0) for

surface elements at 30%, 60%, and 90% of the blade radius. To evaluate Eq. (16.2.3)

we need to define both the blade loading and the relative Mach number Mr, which is

given, for x3¼0 and Uo¼0, by

Mr ¼�x2ΩR sin ϕ1 +Ωτð Þ
jxjc∞ (16.2.4)

We then obtain a nondimensional acoustic signal defined as

Cp tð Þ¼4πjxjc∞ p0 x, tð Þð Þloading
ΩFL

�� x1

jxj 1�Mrð Þ3
@Mr

@ Ωτð Þ

" #
τ¼τ*

+
x2 D=Lð Þ

jxj 1�Mrð Þ2 cos ϕ1 +Ωτð Þ + sin ϕ1 +Ωτð Þ
1�Mrð Þ

@Mr

@ Ωτð Þ
� 	" #

τ¼τ*

(16.2.5)

with

@Mr

@ Ωτð Þ ¼� x2ΩR

jxjc∞ cos ϕ1 +Ωτð Þ
� 	

f/
2p
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R=0.9 Rtip

t − tref
Tp

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

Fig. 16.12 The blade location ϕ at radii of 0.3Rtip, 0.6Rtip, and 0.9Rtip as a function of observer

time normalized by the period of rotation Tp (to normalize this plot trefwas chosen as jxj/co). The
blade tip Mach number is Mtip¼0.8, and the observer location is x¼ (40Rtip, 30Rtip, 0).
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There are several important features to this result. First notice how the loading

closest to the tip generates the most significant part of the signature because the rate

of change of Mr is largest at this radius. Second note that if drag to lift ratio is small

then the lift force dominates the calculation. In this case FD/FL¼0.1 and the peak of

the pressure pulse is only marginally increased by including the drag term

(Fig. 16.13).

The magnitude of the signature in this example is small because the thrust

force is constant during the rotation of the blade. However, if it has a harmonic

time dependence, so f1dΣ¼�FLf(τ), where f(τ)¼cos(mΩτ), then Eq. (16.2.5)

becomes

Cp tð Þ�� x1

jxj 1�Mrð Þ2
@f τð Þ
@ Ωτð Þ +

f τð Þ
1�Mrð Þ

@Mr

@ Ωτð Þ
� 	" #

τ¼τ*

(16.2.6)

For large values of m the rate of change of f(τ) is much greater than the rate of change

of the relative Mach number Mr, and so the radiated levels increase dramatically as

shown in Fig. 16.14 for the case when m¼10.
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Fig. 16.13 The acoustic signature from a rotating steady loading at radii of 0.3Rtip, 0.6Rtip, and

0.9Rtip as a function of observer time normalized by the period of rotation Tp (to normalize this

plot trefwas chosen as jxj/co). The blade tipMach number isMtip¼0.8, and the observer location

is x¼ (40Rtip, 30Rtip, 0).
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The peak signal level in Fig. 16.14 is approximately 30 times larger than in

Fig. 16.13, showing the importance of the unsteady loading in these calculations. Also

note how the frequency of the signature varies during the blade rotation. During the

first part of the cycle the blade is moving away from the observer, and the frequency is

lower than the source frequency because of a Doppler frequency shift. In the second

part of the cycle the blade is moving toward the observer, and the Doppler shift

increases the observed frequency so that it is higher than the source frequency.

This effect is dependent on the observer position and is more dramatic in the plane

of the rotor than along the rotor axis. The importance of unsteady loading is even

more significant when the blade encounters a sudden change in angle of attack caused

by an inflow distortion, an encounter with a wake, or a vortex in a BVI. To illustrate

this, consider a fluctuation in thrust on the blade segment of span ΔR, located at R,
given by

f1dΣ¼FL τ� τoð Þ=Tvð Þ exp � τ� τoð Þ2=Tv2
� �

(16.2.7)

as illustrated in Fig. 16.15. The choice of Tv¼0.02Tp gives a pulse which lasts for

approximately one-tenth of the period of rotation in source time. The observed signa-

ture from this pulse at the observer location is given in Fig. 16.16 and is much shorter

than the source signature as shown in Fig. 16.15. The source is at 90% of the blade

span, and so the Doppler frequency shift can be large, and the observed signature

becomes very impulsive, with a peak level that is much greater than for a harmonic

variation in loading as shown in Fig. 16.14.
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Fig. 16.14 The time history of the acoustic signature from a propeller with a harmonic unsteady

loading with a source frequency of 10 times the rotational frequency. Source located at

R¼0.9Rtip and Mtip¼0.8, and the observer location is x¼ (40Rtip, 30Rtip, 0).
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In the examples given above the signature from individual blade elements has been

shown. To obtain a complete prediction of rotor noise the surface integral must be eval-

uated, and this can be achieved by numerical integration or summing the calculations for

each blade element across the span at the correct retarded time. This is a relatively

straightforward extensionof the procedures described above providing that the blade sur-

face loading is known as both a function of blade radius and azimuth. In low-frequency

applications it is often reasonable to ignore the distribution of loading in the chordwise

direction and replace fiwith the sectional blade lift and drag per unit span for each blade
radius. This assumes that the blade chord is small compared to the acoustic wavelength

and is not always a good assumption, but it simplifies the calculations considerably and is

a valid approach to obtain first estimates of blade noise signatures at low frequencies.
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16.2.2 Thickness noise

Thickness noise is described by the third term in the Ffowcs-Williams and Hawkings

equation (5.2.13) which gives the acoustic field as

p0 x, tð Þð Þthickness ¼
@

@t

ð
So

ρ∞Vjnj
4πrj1�Mrj
� �

τ¼τ*
dS zð Þ (16.2.8)

The evaluation of this source term for a propeller can be achieved using the method

that was described in Section 16.2.1. The same procedure for evaluating the retarded

time solution can be employed with the same limitations on numerical accuracy. The

main difference is the appropriate evaluation of the source strength on the blade sur-

face, which is easier in this case because it is defined exactly by the blade geometry.

As before we can replace the surface integral for thin blades by an integral over the

blade planform in the rotor disk plane. We denote the upper and lower surface coor-

dinates, displaced axially (in the y1 direction from the rotor disk plane) as y+(R,ϕ) and
y�(R,ϕ). As shown in Fig. 16.10 we define the blade volume in terms of the upper

surface function f+(R,ϕ)¼y1�y+(R,ϕ)¼0 and the lower surface function

f�(R,ϕ)¼y�(R,ϕ)�y1¼0. The blade thickness is then defined by h¼y+�y�. The
normal to the blade surface is then given by n¼rf+/jrf+j on the upper surface

and n¼rf�/jrf�j on the lower surface. It follows that on the upper surface

Vjnj ¼ 1

rf+j j V1�V2

@y+

@y2
�V3

@y+

@y3


 �
(16.2.9)

Similarly, on the lower surface

Vjnj ¼ 1

rf�j j �V1 +V2

@y�
@y2

+V3

@y�
@y3


 �
(16.2.10)

Since dS¼dΣ/jn1j, rh¼ry+�ry�, and jn1j¼1/jrf+j or 1/jrf�j, we find that the

contributions from the upper and lower surfaces can be combined to give

VjnjdS¼� V2

@h

@y2
+V3

@h

@y3


 �
dΣ¼�V �rhdΣ (16.2.11)

Thickness noise can then be defined as an integral over the blade planform as

p0 x, tð Þð Þthickness ¼� @

@t

ð
Σo

ρ∞V �rh

4πrj1�Mrj
� �

τ¼τ*
dΣ zð Þ (16.2.12)

This shows how the blade thickness contributes to the source strength, and the result is

independent of the blade angle of attack or camber. Consequently, this source is

defined as “thickness” noise.
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Evaluation of the source term in this equation at the correct retarded time can be

challenging numerically, but an elegant alternative [1] simplifies this considerably. To

derive this alternate form, we return to the Ffowcs-Williams and Hawkings equation

(5.2.4) and only retain the thickness noise terms on the right-hand side. For an imper-

meable surface for which Vjnj¼vjnj we obtain

1

c2∞

@2 Hsp
0ð Þ

@t2
�@2 Hsp

0ð Þ
@x2i

� �
thickness

¼ @

@t
ρ∞Vjnjδ fð Þjrf j� �

(16.2.13)

However, for a body that does not deform as it moves we have, using Eqs. (5.1.12),

(5.1.3),

@

@t
1�Hs fð Þð Þ¼�@f

@t
δ fð Þ¼ Vjnjδ fð Þjrf j (16.2.14)

so the wave equation for thickness noise sources can be given in an alternate

form as

1

c2∞

@2 Hsp
0ð Þ

@t2
�@2 Hsp

0ð Þ
@x2i

� �
thickness

¼ @2

@t2
ρ∞ 1�Hs fð Þð Þ½ � (16.2.15)

The term (1�Hs(f )) represents the volume inside the moving surface, and so thick-

ness noise can be considered as being completely equivalent to the sound from a dis-

placed mass of fluid moving through a stationary medium, and this is referred to as

Isom’s result [1]. The solution to Eq. (16.2.15) is obtained following the procedures

given in Section 5.2, with the double derivative with respect to time requiring integra-

tion by parts twice, followed by the integration (5.2.12), giving

p0 x, tð Þ½ �thickness ¼
@2

@t2

ð
V∞

ρ∞ 1�Hs fð Þð Þ
4πrj1�Mrj

� �
τ¼τ*

dV zð Þ (16.2.16)

This result is relatively straightforward to evaluate numerically by breaking the vol-

ume of the blade down into acoustically compact volume elements of volume ΔVk,

centered on y(k), and using @=@t¼ 1�Mrð Þ@=@τ, so

p0 x, tð Þ½ �thickness ¼
X
k

ρ∞ΔVk
1

1�Mrð Þ
@

@τ

1

1�Mrð Þ
@

@τ

1

4πrj1�Mrj

 �
 �� �

y¼ y kð Þ

τ¼ τ*
(16.2.17)

This result shows that thickness noise can be computed directly from volume elements

within the blade, with the correct allowance for the propagation distance from the

source to the observer. The signature from different parts of the blade planform will

arrive at the observer at the same time, so the calculation is nontrivial, but it is tractable

using numerical methods.
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For an observer in the far field terms of order r�2 can be dropped, and this result

simplifies to

p0 x, tð Þ½ �thickness ¼
X
k

ρ∞ΔVk
1

4πr

1

1�Mrð Þ4
@2Mr

@τ2
+

3

1�Mrð Þ5
@Mr

@τ


 �2
 !" #

y¼ y kð Þ

τ¼ τ*
(16.2.18)

We can normalize this result to obtain a nondimensional thickness noise pulse for each

volume element as

Cq tð Þ¼ 4πjxjc∞ p0 x, tð Þð Þthickness
Ω Ω2Rρ∞ΔVk

� 
¼ c∞

ΩR

1

1�Mrð Þ4
@2Mr

@ Ωτð Þ2 +
3

1�Mrð Þ5
@Mr

@ Ωτð Þ

 �2

 !" #
y¼ y kð Þ

τ¼ τ*

(16.2.19)

Using this normalization, we see that the thickness noise is scaled on an equivalent

force equal to Ω2RρoΔVk, and so will depend on the blade volume. As an example

the normalized signature for an observer at (40Rtip, 30Rtip, 0) and a source at 90%

of the blade span, with tip Mach numberMtip¼0.8, is shown in Fig. 16.17. The thick-

ness noise gives a clearly defined pulse as the blade moves toward the observer, and its

level exceeds that of a steady loading signature for high tip Mach numbers for the

same equivalent blade loading. It is important to appreciate, however, that this

C
q(

t)
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(t–tref)/Tp
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Fig. 16.17 The time history of the thickness noise signature from a propeller. Source located at

R¼0.9Rtip and Mtip¼0.8, and the observer location is x¼ (40Rtip, 30Rtip, 0).
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calculation does not include all the effects of blade shape and retarded time across the

blade chord, and more detailed calculations are required to define the exact thickness

noise pulse.

16.2.3 Supersonic tip speeds

The calculations that have been described above are for blades with subsonic tip

speed. When the blade tip Mach number exceeds one then a number of effects occur.

These include the presence of shock surfaces in the flow and a singularity in the inte-

grals (16.2.1), (16.2.2), and (16.2.14) whenMr¼1. Another important issue for super-

sonic rotors is that there is no longer a one-to-one relationship between the emission

time and the observer time. Fig. 16.18 shows the calculation of blade position for a

given observer time for a supersonic rotor when the observer is in the plane of the

rotor. Close to the blade tip it is seen that there are in fact three solutions for ϕ for

an observer time of t/Tp¼0.75. Consequently, the source strength from many parts

of the rotor disc is concentrated at this instant of observer time, and a large impulsive

peak in the sound signature is expected. Numerical calculations in and around this

instant are clearly complex, and the reader is referred to the papers by Farassat [1]

on the details of how to address this problem. Providing the correct asymptotic numer-

ical coding is used, the time domain methods described above can be extended to

supersonic rotors. However, as will be shown in the next section, many of these

numerical difficulties with time domain methods are overcome if frequency domain

methods are employed, at the expense, unfortunately, of other numerical issues.
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2p

0.6

0.8

1
R=0.66 Rtip

R=0.96 Rtip

0.2 0.4 0.6
t – tref

Tp

0.8 1 1.2

Fig. 16.18 The blade locations ϕ at a given observer time for a rotor with a tip Mach number of

1.2 for an observer in the plane of the rotor.
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16.3 Frequency domain prediction methods for tone noise

In this section we discuss the prediction of tone noise from a propeller or rotor using

frequency domain methods [2]. These complement the time domain methods

described in the previous section and also provide greater insight into the important

physics of rotor noise.

16.3.1 Harmonic analysis of loading and thickness noise

In Section 16.2 we showed that the loading and thickness noise from a rotor could be

defined as an integral over the blade planform, which was given by the combination of

Eqs. (16.2.2), (16.2.14) as

p0 x, tð Þ¼� @

@xi

ð
Σo

fi
4πrj1�Mrj
� �

τ¼τ*
dΣ zð Þ� @

@t

ð
Σo

ρ∞V:rh

4πrj1�Mrj
� �

τ¼τ*
dΣ zð Þ

(16.3.1)

For tone noise the resulting acoustic signature will be periodic, and the contribution

from each blade will be repeated after each revolution. In this section we make use of

this characteristic to evaluate the integrals in Eq. (16.3.1). We limit consideration to

stationary propellers, but note that the theory can be readily extended to propellers and

rotors in flight.

The signature from each blade is identical, and so if p1(x,t) is the signature from one

blade in isolation, the signature from a rotor with B blades is

p0 x, tð Þ¼
XB
n¼1

p1 x, t + nTp=B
� 

(16.3.2)

where Tp is the period of one rotation. Because the acoustic signature is periodic we

can expand the signature from a single blade as a Fourier series of the type

p1 x, tð Þ¼
X∞
j¼�∞

cje
�2πijt=Tp ¼

X∞
j¼�∞

cje
�ijΩt (16.3.3)

where Ω¼2π/Tp is the rotational frequency. Combining Eqs. (16.3.2), (16.3.3) then

gives

p0 x, tð Þ¼
X∞
j¼�∞

cj
XB
n¼1

e�ij Ωt�2πn=Bð Þ ¼B
X∞

m¼�∞
cmBe

�imBΩt (16.3.4)

where we have made use of the fact that the sum over n is only nonzero when j¼mB.
The important feature of this result is that we can define the time history from a rotor
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with B blades from the Fourier coefficients of the time history from a single blade, but

only the coefficients of order mB will contribute.

To determine the Fourier coefficients required in Eq. (16.3.3)we evaluate the integral

cn xð Þ¼ Ω

2π

ðTp
0

p1 x, tð ÞeinΩtdt (16.3.5)

Combining this with Eq. (16.3.1) then gives

cn xð Þ¼� Ω

2π

ðTp
0

@

@xi

ð
Σo

fi
4πrj1�Mrj
� �

τ¼τ*
dΣ zð Þ

8<
:

9=
;einΩtdt

� Ω

2π

ðTp
0

@

@t

ð
Σo

ρ∞V �rh

4πrj1�Mrj
� �

τ¼τ*
dΣ zð Þ

8<
:

9=
;einΩtdt (16.3.6)

In the far field the differentiation of the first integral can be changed to a differential

over time (see Section 5.2) using @=@xi � �xi=rocoð Þ@=@t, where ro¼jxj so that by

using the properties of Fourier series we obtain

cn xð Þ¼ inΩ2

2π

ð
Σo

ðTp
0

�xifi
4πr2ocoj1�Mrj
� �

τ¼τ*

einΩtdtdΣ zð Þ

0
B@

+

ð
Σo

ðTp
0

ρ∞V:rh

4πroj1�Mrj
� �

τ¼τ*
einΩtdtdΣ zð Þ

1
CA

(16.3.7)

The integral over observer time can be changed to an integral over emission time

because t¼ τ+ r(τ)/co, and so the time differentials are related by dt¼j1�Mrjdτ. It
follows that since the source terms are also periodic with the same time scale,

Eq. (16.3.7) reduces to

cn xð Þ¼ inΩ2

2π

ð
Σo

ðTp
0

�xifi z, τð Þ
4πr2oco

einΩ τ + r τð Þ=coð ÞdτdΣ zð Þ

0
B@

+

ð
Σo

ðTp
0

ρ∞V z, τð Þ:rh zð Þ
4πro

einΩ τ + r τð Þ=coð ÞdτdΣ zð Þ

1
CA

(16.3.8)

One of the most significant aspects of this transformation is that it eliminates the sin-

gularity that occurs when Mr¼1, so the integrals are harmonic and well behaved for

all blade speeds.
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For an observer in the acoustic far field the integral over time in Eq. (16.3.8) can be

evaluated directly. Consider the blade element at radius R and azimuthal location ϕ1 in

blade-fixed coordinates, which is at y¼ (0, Rcos(ϕ1+Ωτ), Rsin(ϕ1+Ωτ)). Using the

approximation r� ro�x�y/jxj the propagation distance from this element to the

far-field observer is given by (see Fig. 16.11).

r τð Þ� ro� x2Rcos ϕ1 +Ωτð Þ=jxj� x3Rsin ϕ1 +Ωτð Þ=jxj (16.3.9)

It is advantageous to specify the observer location in spherical coordinates so that

x1 ¼ ro cosθo x2 ¼ ro sinθo cosϕo x3 ¼ ro sinθo sinϕo (16.3.10)

then

r τð Þ� ro�Rsinθo cos ϕ1�ϕo +Ωτð Þ (16.3.11)

The final step in the analysis is to make use of the Fourier series expansion

e�iαcosθ ¼
X∞

m¼�∞
Jm αð Þe�im θ + π=2ð Þ (16.3.12)

where Jm(α) is a Bessel function of the first kind of order m. This function has

well-known properties and is readily available on most computational systems, so

making use of it to simplify the analysis is advantageous. However, it is difficult

to compute accurately for large orders, and so asymptotic formulae for the Bessel

function are sometimes required. We can now write

einΩr τð Þ=c∞ ¼ einΩro=c∞
X∞

m¼�∞
Jm

nΩRsinθo
co


 �
e�im ϕ1�ϕo +Ωτ + π=2ð Þ (16.3.13)

Combining all these results into Eq. (16.3.8) gives the Fourier series coefficients in a

convenient form as

cn xð Þ¼ inΩeinΩro=co

4πroco

X∞
m¼�∞

ðRtip

Ri

Qm,n R, xð ÞJm nΩRsinθo
co


 �
dR (16.3.14)

with the blade planform surface element defined as dΣ¼Rdϕ1dR and the blade sur-

face given by ϕTE(R)<ϕ1<ϕLE(R) and Ri<R<Rtip. The source term is given as

Qm,n R, xð Þ¼ Ω

2π

ðϕLE

ϕTE

ðTp
0

�xifi z, τð Þ
ro

+ ρ∞coV z, τð Þ �rh zð Þ
� 	

ei n�mð ÞΩτ�im ϕ1�ϕo + iπ=2ð ÞRdϕ1dτ

(16.3.15)
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We have now reduced the problem to two relatively straightforward integrals. The

first integral in Eq. (16.3.14) is over the blade span, and the second, in

Eq. (16.3.15), gives the source term and requires integrals over the blade chord and

the period of rotation. We will start by considering the case in which we can ignore

the unsteady loading terms and limit consideration to only the steady loading and

thickness noise terms. If the thrust per unit area on the blade surface is fL(R,ϕ1)

and the drag is fD(R,ϕ1) then we have fi¼ (�fL,�fDsin(Ωτ+ϕ1), fDcos(Ωτ+ϕ1)),

and we can define

xifi
ro

¼�fL cosθo� fD sinθo sin Ωτ +ϕ1�ϕoð Þ (16.3.16)

Similarly, the thickness noise term may be simplified as in Section 16.2.2, as

ρ∞V z, τð Þ �rh zð Þ¼ ρ∞ ΩRð Þ 1
R

@h

@ϕ1

(16.3.17)

which is independent of time. Using these results in Eq. (16.3.15) then gives

Qm,n R, xð Þ¼ Ω

2π

ðϕLE

ϕTE

ðTp
0

�
fL R, ϕ1ð Þcosθo + fD R, ϕ1ð Þsinθo sin Ωτ +ϕ1�ϕoð Þ

+ρ∞coΩ
@h R, ϕ1ð Þ

@ϕ1

	
ei n�mð ÞΩτ�im ϕ1�ϕo + π=2ð ÞRdϕ1dτ

(16.3.18)

We have now completely specified the time dependence of the sources, and so the

integral over time may be evaluated analytically. We note that both the thrust term

and the thickness noise term are independent of time, and so their integral is only non-

zero when n¼m. Similarly, for the drag term the sine function may be split into the

sum of two exponentials, and so the integral over time will only be nonzero when

n¼m�1. Finally, we note that the integral of the thickness noise term over ϕ1 can

be carried out by parts, and providing h¼0 at the leading and trailing edges we obtain

Qm,n R, xð Þ¼
ðϕLE

ϕTE

fL R, ϕ1ð Þcosθoδmn + fD R, ϕ1ð Þsinθo δn,m�1�δn,m+ 1

2i


 ��

+ imΩρ∞coh R, ϕ1ð Þδmn
	
e�im ϕ1�ϕo + π=2ð ÞRdϕ1 (16.3.19)

This provides a simple formula for the source term that can be readily evaluated. We

still need to know the distribution of the thrust, drag, and thickness on the blade sur-

face, but this can be obtained from the blade design characteristics. As a first approx-

imation we can use a point-loading approximation, but this is inaccurate for the higher

harmonics. One of the most important features of this result is that the integral over
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time has reduced the summation in Eq. (16.3.14) to only three values of m for a given

harmonic n. The summation in Eq. (16.3.14) is therefore limited to only three terms

(and can be further simplified by using properties of Bessel functions if required). This

would not have been the case for unsteady loading because fLwould then be a function
of time. To show how unsteady loading can be incorporated into the calculation, we

can assume that the loading is periodic in source time and can therefore be expanded as

a Fourier series, so

fL R, ϕ1, τð Þ¼
X∞
k¼�∞

f
kð Þ

L R, ϕ1ð Þe�ikΩτ (16.3.20)

and similarly for the drag term. Using this result in Eq. (16.3.18) and integrating over

time shows that the integral will only be nonzero when n�m¼k (or n�m¼k�1 for

the drag term), so we can rewrite Eq. (16.3.19) to include unsteady loading as

Qm,n R, xð Þ¼
ðϕLE

ϕTE

f
n�mð Þ

L R, ϕ1ð Þcosθo + f kð Þ
D R, ϕ1ð Þsinθo δn,m+ k + 1�δn,m+ k�1

2i


 ��

+ imΩρ∞coh R, ϕ1ð Þδmn
	
� e�im ϕ1�ϕo + π=2ð ÞRdϕ1 (16.3.21)

In this result the number of terms required in the summation over m in Eq. (16.3.14)

has been significantly increased, and the expansion Eq. (16.3.20) may converge only

slowly. So, the evaluation of Eq. (16.3.21) may be time-consuming, but the compu-

tational procedure is relatively straightforward. One of the advantages of this

approach is that it allows the distribution of blade loading and thickness over the chord

to be readily included in the calculation. It should also be noted that the radial integral

in Eq. (16.3.14) includes a dependence on the Bessel function Jm(nΩRsinθo/co) which
has a strong impact on the directionality of the acoustic field. These functions can be

cumbersome to compute, but fortunately there are a number of asymptotic approxi-

mations, which simplify the task of computing the radial integral.

As an illustrative examplewewill calculate theFourier series coefficientscn(x) for the
Gaussian derivative impulsive blade loading given by Eq. (16.2.7). The loading coeffi-

cients in Eq. (16.3.20) can be calculated analytically in the limit thatTv≪Tp and are

f
kð Þ

L R, ϕ1ð Þ¼ ikFL ΩTvð Þ2 ffiffiffi
π

p
4π

exp ikΩτo� kΩTv=2ð Þ2
� � δ ϕ1ð Þδ Rð Þ

R

� 	
(16.3.22)

where the terms in {} are required so that the force acts at a point. It follows then that

Qm,n R, xð Þ¼ i n�mð ÞFL ΩTvð Þ2 ffiffiffi
π

p
4π

ei n�mð ÞΩτo� n�mð ÞΩTv=2ð Þ2δ Rð Þcosθoeim ϕo�π=2ð Þ

(16.3.23)
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A contour plot of these coefficients is shown in Fig. 16.19 and clearly shows the

importance of the terms with increasing m and n.

The nondimensional Fourier series coefficients of the acoustic signature are then

obtained as

C nð Þ
p ¼ 4πroc∞cn xð Þ

ΩFL
¼ inΩeinΩro=co

X∞
m¼�∞

Jm
nΩRsinθo

co


 �
cosθoe

im ϕo�π=2ð Þ

� i n�mð Þ ΩTvð Þ2
4
ffiffiffi
π

p ei n�mð ÞΩτo� n�mð ÞΩTv=2ð Þ2
( )

(16.3.24)

and the amplitude of these are plotted on a dB scale in Fig. 16.20. Note that the scale

has a very large range, and the harmonics that contribute significantly are only those

with indices <32. Evaluating the pulse observed in the far field from these harmonics

reproduces the signature calculated directly using the time series approach, as shown

in Fig. 16.16.
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Fig. 16.19 The contours of the function Qm,n specified in Eq. (16.3.23).
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We can also evaluate the harmonics of the thickness noise pulse that was given in

Fig. 16.17. The nondimensional form of these harmonics is given by

C nð Þ
q ¼ 4πroc∞cn xð Þ

Ω ρoΩ
2RΔVk

� ¼� c∞
ΩR

� �
n2Jn

nΩRsinθo
c∞


 �
eim ϕo�π=2ð Þ + inΩro=c∞

(16.3.25)

and these are also shown in Fig. 16.20. From this result we see that thickness noise

tends to dominate for the lower harmonics, and unsteady loading noise dominates

for the higher harmonics. Note also that for a rotor or propeller with B blades only

the harmonics n¼mB will contribute, so the contribution of thickness noise may

be limited to the first two blade-passing frequencies.

16.4 Broadband noise from open rotors

In the previous sections we have discussed the harmonic content of the sound from a

rotor, referred to as tone noise. This assumes that the acoustic sources are periodic, and

the same signature is generated by each blade. In addition to tone noise, rotors also

generate broadband noise that is not periodic with source fluctuations that are typi-

cally uncorrelated from blade to blade.

In Chapters 14 and 15 broadband noise sources on blades in a uniform flow were

discussed assuming that the blade and observer were fixed and embedded in a uniform
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Fig. 16.20 The amplitude of the harmonics given in Eq. (16.3.24) for the radiated sound from a

rotor with a loading pulse (squares) as shown in Fig. 16.15, and the thickness noise harmonics

(circles) given by Eq. (16.3.25). The observer is at x¼ (40 Rtip, 30Rtip, 0).
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flow, as in a wind tunnel. To use these results for a blade that is moving relative to a

fixed observer we can use Amiet’s approximation, which applies when the time scale

of the source fluctuations on a rotating blade is very much less than the time it takes for

one rotor revolution. This will be the case for trailing edge noise sources that depend

on the blade boundary layer, as described in Chapter 15, and for leading-edge noise

sourceswhen the lengthscale of the incoming turbulence is of the order of a blade chord

or less. It also applies to a BVI and leading-edge noise when small-scale turbulence is

stretched in the direction of the rotor inflow. In this limit Amiet [3] argued that the rotor

noise signal could be accurately estimated by breaking down each revolution of the

rotor into the suitable number of time segments and 10–15 radial segments as shown

schematically in Fig. 16.21 and that (1) the blade could be assumed to be in rectilinear

motion in each time segment and (2) the sources in each segment were uncorrelated, so

the far-field sound was the incoherent sum of the mean square levels in each segment.

The advantage of this approach is that the results from wind tunnel testing of fixed

blades can be incorporated directly into the source terms for rotor noise, and this greatly

simplifies the scaling of the results from model scale to full scale.

To apply Amiet’s approximation the approach described in Section 16.3 will be

used, but in this case we will evaluate the Fourier transform of the time history rather

than its Fourier series coefficients. We start by evaluating the dipole source term in the

Ffowcs-Williams and Hawkings equation for a single blade, which is

p0 x, tð Þ¼� @

@xi

ð
Σo

fi z, τð Þ
4πrj1�Mrj
� �

τ¼τ*
dΣ zð Þ (16.2.2)

In general, we are interested in obtaining the spectrum of the far-field sound, and so we

need to evaluate the Fourier transform of this equation with respect to time. As before

we place the observer in the geometric far field and make the far-field approximation

Rectilinear motion of blade

Time segment

Radial segment

Fig. 16.21 Segmenting of a rotor noise calculation.
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that @=@xi � xi=roc∞ð Þ@=@t, so the Fourier transform of Eq. (16.2.2) with respect to

time is

ep x,ωð Þ¼� 1

2π

ðT
�T

xi
4πr2o

@

@t

ð
Σo

fi z, τð Þ
1�Mrj j

� �
τ¼τ*

dΣ zð Þ
8<
:

9=
;eiωtdt (16.4.1)

where ro¼jxj. The differential with respect to observer time is equivalent to multiply-

ing the Fourier transform by �iω, and as in Chapters 14 and 15 we specify the

unsteady loading per unit area on the blade in terms of the pressure jump in the direc-

tion of the blade normal (which will be different for each segment), so

fi z, τð Þ¼ ni τð ÞΔp z, τð Þ (16.4.2)

and we obtain

ep x,ωð Þ¼ 1

2π

ðT
�T

iωxi
4πr2o

ð
Σo

ni τð ÞΔp z, τð Þ
1�Mrj j

� �
τ¼τ*

dΣ zð Þ
8<
:

9=
;eiωtdt

The integral over observer time can be shifted to an integral over source time by noting

that as before dt¼j1�Mrjdτ and t¼τ+ r(τ)/c∞, so we have

ep x,ωð Þ¼ iωxi
4πr2o


 �
1

2π

ðT2
T1

ð
Σo

ni τð ÞΔp z,τð ÞdΣ zð Þ
� 	

eiωτ + iωr τð Þ=c∞dτ (16.4.3)

where T1 and T2 are the source times that correspond to the observer times�T and tend
to infinity.

So far only the far-field approximation has been used, and so the result given by

Eq. (16.4.3) can be used as a starting point for an exact analysis. However, if we make

Amiet’s approximation and segment the source time history into discrete intervals of

length Δτ, the spanwise integral into finite parts Eq. (16.4.3) takes the form

ep x,ωð Þ ¼ iωxi
4πr2o


 �
1

2π

XM
m¼1

XN
n¼1

ðτm +Δτ=2

τm�Δτ=2

ðc
0

ðRn + 1

Rn

ni τð ÞΔp z, τð Þdξ1dR
8<
:

9=
;eiωτ + iωr τð Þ=c∞dτ

(16.4.4)

where τm¼mΔτ, τ1�Δτ/2¼T1, and τM+Δτ/2¼T2. Similarly, R1 is the inner radius

of the blade, and RN+1 is the outer radius of the blade, and the segmentation in

the radial direction does not have to be uniform. Also we have defined the distance

from the blade leading edge in the chordwise direction as ξ1 and the spanwise direc-

tion as R.
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In the geometric far field from the rotor we can approximate

r τð Þ� ro� xiyi τð Þ=ro

where yi(τ) defines the location of the blade in fixed coordinates and can be evaluated
from the blade location shown in Fig. 16.11 as

y1 ¼Uoτ + ξ1 sinβo y2 ¼Rcos ϕ1 +Ωτð Þ y3 ¼Rsin ϕ1 +Ωτð Þ

ϕ1 ¼� tan�1 ξ1 cosβo
R


 �
(16.4.5)

where the pitch angle βo is shown in Fig. 16.22. In Amiet’s approximation both ΩΔτ
and ϕ1 are limited to small angles, and so we can approximate

xiyi τð Þ� xi yi τmð Þ+ τ� τmð Þ@yi τmð Þ
@τ

+ ξ1
@yi τmð Þ
@ξ1

+ R�Rnð Þ@yi τmð Þ
@R

⋯

 �

¼ xiyi τmð Þ� ξ1 cosβo x3 cos Ωτmð Þ� x2 sin Ωτmð Þf g
+ R�Rnð Þ x2 cos Ωτmð Þ + x3 sin Ωτmð Þf g + τ� τmð ÞUr

where Ur is the velocity of the blade in the direction of the observer.

Making the geometric far-field approximations the Fourier transform Eq. (16.4.4)

then becomes

ep x,ωð Þ¼ iωxi
4πr2o


 �
1

2π

XM
m¼1

XN
n¼1

n
m, nð Þ
i eiωτm + iωr τmð Þ=c∞

�
ðΔτ=2

�Δτ=2

ðc
0

ðRn + 1�Rn

0

Δp ξ1,Rn +R
0,τm + τ0ð Þeiωτ0 1�M

m, nð Þ
r

� 
�ikamξ1�ikbmR

0
dξ1dR

0

8<
:

9=
;dτ0

(16.4.6)

where k¼ω/c∞, the displacement variables τ0 ¼ τ� τm and R0 ¼R�Rn have been

introduced, and the blade normal is assumed constant over the surface and defined

Disc plane

ni

bo

x1

Fig. 16.22 Blade pitch angle.
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for each segment, Fig. 16.21. Also we have defined the Mach number in the direction

of the observer for each segment, and

am ¼�cosβo x3 cos Ωτmð Þ� x2 sin Ωτmð Þf g=ro
bm ¼ x2 cos Ωτmð Þ + x3 sin Ωτmð Þf g=ro (16.4.7)

Since the pressure jump is zero everywhere, but on the blade the integral over the chord

inEq. (16.4.6) canbe extended to infinity in the ξ1 direction andbecomes awavenumber

transform. However, the spanwise integral in each segment needs to be truncated at the

edge of the segment, as discussed inChapter 14, and somecare is neededwhen applying

this approach to sources that have significant spanwise correlation. By choosing the

spanwise segments to be acoustically compact the phase variation can be eliminated,

and the integral over the span is then well approximated by simply integrating the pres-

sure jump over the span. Evaluating the integrals inside the curly braces then gives a

result in terms of the wavenumber transform of the pressure jump, so

ðc
0

ðRn + 1�Rn

0

Δp ξ1,Rn +R
0,τm + τ0ð Þeiωτ0 1�M

m, nð Þ
r

� 
�ikamξ1�ikbmR

0
dξ1dR

0

8<
:

9=
;

¼ 2πð Þ2
ð∞
�∞

Δeep m, nð Þ
kam,kbm,ωoð Þe�iωo τm + τ0ð Þ + iωτ0 1�M

m, nð Þ
r

� 
dωo (16.4.8)

The integral over τ0 can then be carried out explicitly, and we obtain

ep x,ωð Þ¼ iωxi
4πr2o


 �
1

2π

XM
m¼1

XN
n¼1

n
m, nð Þ
i eiωτm + iωr τmð Þ=c∞

� 2πð Þ2Δτ
ð∞

�∞

Δeep m, nð Þ
kam,kbm,ωoð Þ

sin ωo�ω 1�M
m, nð Þ
r

� �� �
Δτ=2

� �
ωo�ω 1�M

m, nð Þ
r

� �� �
Δτ=2

0
B@

1
CAe�iωoτmdωo

(16.4.9)

This is the basis for Amiet’s approximation and shows how the far-field sound can be

directly related to the wavenumber transform of the surface pressure jump on the

blades, evaluated at the wavenumbers corresponding to the waves in the acoustic

far field. When k tends to zero this is the unsteady loading on the blade segment,

and so scales as a dipole source as described in Chapter 4. However, at higher frequen-

cies the results given in Chapters 14 and 15 must be used and can be inserted directly

into this equation.

The size of the segment directly impacts the frequency scaling of the result. The

integral over ωo represents a frequency filter that depends on the size of the segment

used to separate the time steps in the process. The filtering process peaks when the

source frequency is equal to the observer frequency reduced by a Doppler factor to
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account for sourcemotion. The wavenumbers used in the evaluation ofΔp are different
from those used in Chapters 14 and 15 because in the present case the source is moving

and the observer is stationary, whereas in the earlier examples the source and observer

were stationary and the flow was moving. The consequence of this shift is that the

source frequency is Doppler shifted to account for the source motion, but the spatial

scales remain the same in both the observer-based coordinates and the moving source

coordinates, so the wavenumbers are defined in the observer frame of reference.

The far-field spectral density from each segment can be defined by using the def-

inition given in Eq. (8.4.13). If we assume that the segmentation is sufficient to resolve

the frequency content of the signal so that the filter has no effect, we can specify the

power spectral density from each segment as

S m, nð Þ
pp x,ωð Þ¼ πωxin

m, nð Þ
i

c∞r2o

 !2
π

T
E Δeep kam ,kbm,ω 1�M m, nð Þ

r

� �� ���� ���2� �

(16.4.10)

and, if the fluctuations are statistically independent for each value ofm and n, then the
total far-field sound is obtained by summing the spectrum generated by each segment

and multiplying by the number of blades. Amiet also pointed out that the averaging

time in the fixed frame of reference would be different from the frame of reference of a

moving blade by a factor of 1�Mr, and so Eq. (16.4.10) should also be corrected by

this factor when using stationary blade data or models as inputs. This is expected to be

a good approximation for trailing edge noise that depends on very small scale turbu-

lence and is often suitable for leading-edge noise as well. Note that the expected value

used in Eq. (16.4.10) is used in its most general sense in that the averaging is done on a

blade-by-blade basis while it passes through each segment multiple times. This

implies that the spectrum is obtained by averaging over many rotor revolutions and

is a key part of this approach. It is important to appreciate that this result is equivalent

to Eq. (14.3.1) and can be used with an inflow turbulence spectrum such as

Eq. (14.3.4) to give the far-field sound from inflow turbulence. The overall character-

istics of the far-field sound are then very similar to the noise from a blade that is not

rotating, since the Doppler frequency shift in Eq (16.4.10) will tend to average out

when the summation is applied across all the blade segments. The spectra shown

in Fig. 14.6 are then expected to be typical of the spectra from a rotor when inflow

turbulence dominates the far-field noise signature. For trailing edge noise, a similar

conclusion can be drawn and modeling functions such as Eq. (15.2.10) can be readily

adapted to provide the input required for Eq. (16.4.10). We will discuss how this is

modified in situations where the segment signals are not statistically independent

in the next section.

The valuable part of Eq. (16.4.10) is that it shows how measurements made in a

wind tunnel on a stationary blade in a uniform flow can be applied directly to the

sources on a rotating blade. The wavenumber spectrum of the blade surface pressure

was defined for a blade in a uniform flow in Sections 14.3, and from Eq. (14.3.1) we

have that
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� ���� ���2� �
¼ Spp x,ωð Þ

πωx2=c∞r2e
� 2
" #

WindTunnel

where k
oð Þ
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It follows that measurements made in the wind tunnel at the locations

x1
re
¼ am

1�M
m, nð Þ
r

" #
rotor

β2 +M
x3
re
¼ bm

1�M
m, nð Þ
r

" #
rotor

(16.4.12)

and normalized as in Eq. (16.4.11) can be used a direct input into Eq. (16.4.10) for both

leading-edge and trailing edge noise. This of course also applies to the Brooks, Pope,

andMarcolini model for trailing edge noise (Section 15.3) and provides a suitable pre-

diction method for fan noise.

16.5 Haystacking of broadband noise

In the previous section the broadband noise from a rotor was considered assuming that

the flow scales that caused the sound were of sufficiently small that the pressure fluc-

tuations on each blade segment, and each blade, were statistically independent and had

the same statistics at all blade positions. This is a significant approximation, and we

must also consider those situations where the blade pressure fluctuations are not uni-

form but vary at different points in the rotor plane, or are correlated from blade to

blade. The first of these effects is referred to as amplitude modulation and is illustrated

in Fig. 16.1C. The second is caused by the stretching of turbulent eddies as they enter

the rotor and is sometimes referred to as inflow distortion noise.

16.5.1 Amplitude modulation

Amplitude modulation occurs when the source level on a rotating blade varies signif-

icantly with position. An example is a rotor operating in a very uneven inflow, such as

the rotor operating near a wall that was discussed in Chapter 10. In this case the rotor

blades pass through a turbulent boundary layer that extends over about one-fourth of

the rotor disc plane. The noise levels from a particular blade are low when it is in the

free stream flow outside the boundary layer, and all the leading-edge noise is gener-

ated when the blade passes through the high levels of turbulence in the boundary layer.

The signal from each blade is therefore strongly modulated, but the modulation is par-

tially mitigated by the number of blades in the rotor. If the blade count is low, then the

effect of modulation is significant because there are times when no blade is in the

region of high-level turbulence. However, if the blade count is high then there are

always a number of blades in the region where noise is produced and the signal

has very little variation with time. Another example is the effect of a nonuniformmean

flow on trailing edge noise. If the nonuniform mean flow causes a significant change
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in blade angle of attack, then the trailing edge noise will be locally increased (or

decreased as the case may be) and the far-field sound will have a signal that is mod-

ulated. In each case we will assume that the signal from each blade is uncorrelated,

which will be the case for trailing edge noise but not always the case for

leading-edge noise, and we will discuss the impact of blade-to-blade correlation in

the next section.

To illustrate the effect that amplitude modulation has on the measured spectrum

consider a source signal from each blade that can be modeled as fs(t), where s is

the blade number and fs(t) is uncorrelated for different blades. If the signal is modu-

lated as the blade rotates by a mean flow effect, then the modulation can be represen-

ted by the function g(t�sTp/B) for blade number s, where Tp is the time for one blade

rotation and B is the blade count. The total signal is then

a tð Þ¼
XB
s¼1

fs tð Þg t� sTp=B
� 

An example of the signal from one blade is shown in Fig. 16.23. This signal is only

nonzero for one-fifth of the period of blade rotation, and the signals from successive

blades should be added to this. Fig. 16.23B shows the signal for seven blades summed

with the correct time delay. The signal appears to be continuous, and no periodic char-

acter is apparent from the overall signature, which is misleading.

The modulating function is periodic and so can be expressed as a Fourier series

g t� sTp=B
� ¼ X∞

n¼�∞
gne

2πin t�sTp=Bð Þ=Tp

and so the Fourier transform of the signal is given by

ea ωð Þ¼
XB
s¼1

X∞
n¼�∞

ef s ω�2πn=Tp
� 

gne
2πins=B

The power spectrum of the signal is given by

Saa ωð Þ¼
XB
s¼1

XB
r¼1

X∞
n¼�∞

X∞
m¼�∞

π

T
Ex ef s ω�2πn=Tp

� ef *
r ω�2πm=Tp
� h i

gng
*
me

2πi ns�mrð Þ=B

If we assume that the loading on each blade is statistically independent the double

summation is reduced to a single summation, and if the base signal is statistically sta-

tionary and independent of blade number, then only those terms for which n¼m will

be nonzero, so

Saa ωð Þ¼B
X∞
n¼�∞

Sff ω�2πn=Tp
� jgnj2 (16.5.1)
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As an example we can consider a signal that is modulated by a periodic rectangular

window of length Tg, where Tg¼Tp/5 as shown in Fig. 16.23A, and assume that the

source spectrum is given by

Sff ωð Þ¼ ωTsð Þ2
1 + ωTsð Þ4

as shown in Fig. 16.23C. The signal has a time scale Ts¼0.3Tp and the spectrum peaks

at the frequencyω¼Ω/2. When the signal is modulated and summed as in Eq. (16.5.1)

the resulting spectrum is quite different and shows a series of peaks and an oscillatory

level sometimes referred to as scalloping. The peaks do not occur at exact multiples of

the rotation frequency or blade passage frequency because Sff peaks at a frequency that
is nonzero. The spectrum, however, is quite different from that of a single blade as a

direct result of the periodic modulation of the signal.
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Fig. 16.23 The effect of modulation on the broadband signature from a seven-bladed rotor:

(A) The signature from one blade that is only nonzero for one-fifth of a rotor revolution; (B) the

sum of the signals from B¼7 blades; and (C) the spectrum of the signals, solid line is the
spectrum Gff(ω)¼2Sff(ω), and -	- is Gpp(ω)¼2Spp(ω) given by Eq. (16.5.1).
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16.5.2 Blade-to-blade correlation

In Amiet’s method it was assumed that the signals generated by each blade are sta-

tistically independent, and so there is no blade-to-blade correlation. This is a reason-

able approximation for trailing edge noise that depends on the individual blade

boundary layers and for situations where the length scale of the incoming turbulence

is much smaller than the distance between the blades. However, it is known that when

turbulence enters a rotor it can be stretched in the direction of the flow, and this

extends its axial length scale. This stretching can be substantial and alone can result

in a single turbulent structure being cut multiple times by successive blades so that the

blade loading is correlated between the blades. This results in a quasiperiodic signal in

the acoustic far field that includes bursts of pulses at the BPF and a sound spectrum

with broadband peaks at near multiples of the BPF, referred to as haystacks. The cri-

terion for this effect to occur is that the BPF should be significantly higher than the

axial inflow speedUo divided by the axial turbulence length scale BΩL/Uo≫1. If this

is a large parameter then blade-to-blade correlation needs to be considered, if not then

Amiet’s approximation can be applied.

This feature was originally identified by Sevik [4] for a propeller operating in

grid-generated isotropic homogeneous turbulence. It was expected that the spectrum

from this interaction would be a smooth function of frequency determined by the

wavenumber content of the inflow turbulence. However, Sevik found that the spec-

trum included a series of humps that peaked at frequencies slightly above the BPF.

It was later shown by Martinez [5] that the shifting of the humps from the BPF

was caused by the pitch angle of the blades to the axial flow.

To illustrate the characteristics of blade-to-blade correlation, consider a series of pulses

that persist for a limited period of time such as would be generated by a rotor withB blades

cutting throughaneddyat theblade-passing interval.Thesignature fromeachbladepassage

is the same, but the amplitude is modulated by the variation in the strength of the eddy as it

passes though the rotor. Amodel for the time history of the sound produced by one eddy is

p tð Þ¼
X∞
n¼�∞

f t�2πn=BΩð Þe� Uot=Lð Þ2 (16.5.2)

Here the envelope exp(�(Uot/L)
2) defines the time variation in the strength of the eddy

as it is convected through the rotor with axial velocityUo. We model the observed sig-

nature of a single-blade passage through the eddy as f(t)¼ (Ut/Lo)exp(�(Ut/Lo)
2)

which is the same shape as the signal shown in Fig. 16.15. In this model L represents

the axial lengthscale of the turbulence, Lo is the transverse lengthscale, and U is the

flow speed relative to the blade.

Fig. 16.24A shows the time history modeled by Eq. (16.5.2). The spectrum of these

pulses is shown in Fig. 16.24B for BΩL/Uo¼Bπ/4 and BΩLo/U¼2. The time scale of

the interaction is relatively small in this case indicating that the axial flow speed Uo is

large and the axial lengthscale L is small, so the blades only chop the eddy once, and the

spectrumof the pressure time history is comparatively smooth. However, when the axial

flow speed is reduced, and the lengthscale L is increased, the criterion for haystacking

BΩL/Uo is increased. Fig. 16.25A gives the time history for the case when BΩL/
Uo¼Bπ. Because several blades interact with a single eddy the time history hasmultiple
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Fig. 16.24 Signal from interactions of rotor blades with a single small eddy modulated by the

time variation of the eddy strength at the rotor position. (A) Time history modeled by

Eq. (16.5.2) and (B) spectrum of the time histories in figure (A). B¼7, BΩL/Uo¼Bπ/4, and
BΩLo/U¼2.
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Fig. 16.25 Signal from interactions of rotor blades with a single large eddy modulated by the

time variation of the eddy strength at the rotor position. (A) Time history modeled by

Eq. (16.5.2) and (B) the spectra of the time histories in figure (A). B¼7, BΩL/Uo¼Bπ, and
BΩLo/U¼2.
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pulses at the blade-passing interval and the spectrum (Fig. 16.25B) shows clearly

defined peaks at the blade-passing frequencies. This is the haystacking phenomenon.

Details of a time domain approach to this problem can be found in Glegg et al. [6].

16.6 Blade vortex interactions

When a helicopter undertakes a maneuver the trailing tip vortices shown in Fig. 16.7

can be ingested into the rotor and a BVI can occur. In certain flight regimes these inter-

actions can occur when the axis of the vortex is parallel to the blade leading edge as

shown in Fig. 16.26 for an advancing rotor.

In Section 14.4 we showed that BVI depended on the angle that the axis of the vor-

tex makes with the blade leading edge and the distance of the vortex core from the

blade. Parallel BVIs are therefore the most important sources of sound. The charac-

teristic sound of a BVI is a loud thumping sound that is caused by the impulsive

unsteady loading described in both Sections 14.4 and 7.5 and, because the time scale

of the pulse is usually short compared to the blade passage interval, the pulses are

heard as individual events and can be analyzed as such. The spectrum from multiple

pulses will then be given by the spectral harmonics of a single pulse at the

blade-passing frequencies.

To calculate the acoustic field from a BVI we can use Amiet’s method and consider

the pulse to be short enough that the blade is in linear motion during the BVI. The BVI

takes place at a specific point in the rotor disc plane, and so only one or two segments

of the plane, as shown in Fig. 16.21, need to be included in the analysis. We can

Trailing tip vortices

Direction of
advancement

Parallel blade
vortex interaction

Fig. 16.26 The trailing tip vortices from a helicopter in flight. The direction of

advancement shows the flight direction, and the dashed lines show the trailing tip vortices from

each blade.
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therefore use Eq. (16.4.9) to predict the far-field sound by only considering the spe-

cific values ofm,n that define the location of the BVI. The pulses are of short duration,
and so the segment time interval required in Amiet’s method can be taken as being

long compared to the pulse so that the integral in Eq. (16.4.9) is dominated by the sinc
function and Eq. (16.4.9) is well approximated by

ep x,ωð Þ¼ iπωxin
m, nð Þ
i eiωr τmð Þ=c∞

r2o

 !
Δeep m, nð Þ

kam,kbm,ω 1�M m, nð Þ
r

� �� �
(16.6.1)

for the segment where the BVI occurs. To evaluate this expression, we require the

wavenumber spectrum of the pressure jump across the blade, and this is obtained from

Eq. (14.2.2) and takes the form

Δeep kam,kbm,ωð Þ ¼ 1

2
ρoc
eew2 ω=U,kbmð ÞΛ kam,kbm,ω,Mð Þ (16.6.2)

where the upwash velocity spectrum is given by Eq. (14.4.2) as

eew2 k1, k3ð Þ¼ iΓL k3 sinϕv� k1 cosϕvð Þe�k13h

2πð Þ22k13
sin k1 sinϕv + k3 cosϕvð ÞL=2ð Þ

k1 sinϕv + k3 cosϕvð ÞL=2

 �

(16.6.3)

with k13 ¼ k21 + k23
� 1=2

.

The key features of this result are the angle of theBVIϕv and the vortexmiss distance

h. As discussed in Section 14.4 if the interaction angle does not meet the criterion that

tanϕv < βM

then no significant sound will be radiated because the vortex interaction with the blade

leading edge moves subsonically (see Section 14.4). However, if this criterion is met

then a BVI that radiates sound will occur and will depend on the miss distance of the

vortex from the blade. This introduces a factor exp(�k13h) in Eq. (16.6.3) which is well
approximated by exp(�jωh/Uj) and suppresses the high-frequency content of the gust
when the miss distance h is large. It is seen from these results that both increasing the

vortexmiss distance h and the interaction angleϕv reduce the sound level, and for noise

control purposes they can be optimized to be an effective noise reduction tool.
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17Duct acoustics

In many applications aeroacoustic sources occur in ducted environments. A most

important application is, of course, the internal sources of noise on a high

bypass-ratio turbofan engine that is commonly used in commercial aircraft transpor-

tation. The duct has a large impact on both the flow through the engine and the acous-

tic source efficiency. In this chapter the important issues of duct propagation will be

discussed, including the effect of acoustic absorption by material that can be placed on

the duct walls to attenuate the sound before it is radiated from the duct exits to the

acoustic far field.

17.1 Introduction

In the early days of commercial air transportation the noise from aircraft was domi-

nated by jet noise, which scales with the sixth or eighth power of the jet velocity

depending on the temperature of the jet. However, in the 1970s high bypass-ratio tur-

bofan engines were introduced, and this enabled the same thrust to be obtained with a

lower jet exit velocity relative to the surrounding flow and a corresponding reduction

in jet noise. Aircraft noise levels were significantly reduced as a consequence, and the

fan noise sources became comparable in level to the noise from the jet. To further

reduce aircraft noise, the fan noise sources had to be minimized as well as the jet noise,

and consequently ducted fan noise has become an important consideration in low

noise aircraft engine design.

The design of a typical high bypass-ratio aircraft engine is shown in Fig. 17.1. The

outer duct extends from the engine inlet to the bypass duct exit and is supported by the

stator vanes and struts that are downstream of the fan. Just aft of the fan is the com-

pressor inlet, which leads to the combustion chamber and the turbine, and the high

speed flow generated by combustion exhausts through the turbine exit to form the

jet core. The fan generates thrust, and the turbulent flow that results from the loaded

fan blades impinges on the downstream stator vanes. The wake flow is highly turbu-

lent and has a swirling motion, and the stator vanes are designed to reduce the swirl,

recovering the energy lost to angular momentum downstream of the fan. The primary

source of noise in the engine has been found to be the impingement of the wake from

the fan onto the stator vanes.

In general, the outer duct of the engine is circular, but in some applications the inlet

is modified so that it interferes less with the aerodynamic performance of the aircraft

or enables additional ground clearance when the engine is mounted below the wing.

The duct shape also has a varying cross section, and this can impact the propagation of

acoustic waves along the duct. However, a great deal can be learned from studying the
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acoustic propagation in circular ducts and treating the variations in the duct cross sec-

tion as a second-order effect. However, there are instances when the variation in duct

cross section is vital to the understanding of sound propagation, and we will discuss

these effects in more detail later.

In the analysis given in this chapter we will assume that sound propagation along

the duct is linear, which implies the use of Goldstein’s equation given in Chapter 6,

and excludes the nonlinear propagation of sound associated with buzz-saw noise

(noise caused by the rotating shock structure produced when the rotor is operated

supersonically). We will limit consideration to circular ducts with a steady mean flow,

which may be a function of radius and may include a swirling flow. We will also eval-

uate the effect of liners on the duct walls and radiation from the duct exits upstream or

downstream of the fan. In general, we will consider these effects as idealized with

simple boundary conditions so that we can identify the physical effects that are taking

place. For an accurate calculation for aeroacoustic sources in a duct, numerical

methods must be used. However, these are beyond the scope of the current treatment,

and so references will be provided when appropriate.

17.2 The sound in a cylindrical duct

17.2.1 General formulation

We start by considering the linear acoustics problem of sound propagation in a cylin-

drical duct that has a mean flow. It will be assumed that the mean flow is uniform in

the axial direction and that there are no vortical or turbulent perturbations introduced

upstream of the region of interest. The duct will initially be taken to be infinitely long,

but in later sections we will consider ducts of finite length.

Given these assumptions we can use Goldstein’s equation to describe the acoustic

waves in the duct in terms of the velocity potential ϕ as a function of the cylindrical

coordinates (R,φ,x) shown in Fig. 17.2A. We will also consider cases when the duct

has a center body as shown in Fig. 17.2B. Expressing Goldstein’s equation (in the

form of Eq. (6.3.2) with no source term) in cylindrical coordinates with an axisym-

metric mean flow and a uniform sound speed and mean density, yields

Fan
Compressor inlet

Stator vanes

Strut

Turbine exit

Fig. 17.1 Schematic of a high bypass-ratio turbofan engine.
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We will solve this equation for a harmonic time dependence exp(�iωt) and a mean

flow in the axial direction. We make use of the fact that the sound field is periodic

in the azimuthal direction, so the potential can be expanded as a Fourier series giving

ϕ R, φ, x, tð Þ¼
X∞

m¼�∞
ϕ̂m R, xð Þe�iωt�imφ (17.2.2)

where ϕ̂m R, xð Þ are the complex Fourier series coefficients of order m that define the

sound field. This simplifies Eq. (17.2.1) to

k2�m2

R2

� �
ϕ̂m + 2ikM

@ϕ̂m

@x
+ 1�M2
� �@2ϕ̂m

@x2
+
1

R

@

R
R
@ϕ̂m

@R

 !
¼ 0 (17.2.3)

whereM¼U/c∞ is the Mach number of the axial flow. Eq. (17.2.3) is the basic equa-

tion that describes the wave propagation in a circular duct.

17.2.2 Hard-walled ducts

The solution of this equation will depend on the boundary conditions that are imposed.

We will start by requiring that the duct walls are hard and velocity perturbations in the

direction normal to the wall are zero. If the mean flow is independent of the radius,

Center body

R=b

Axial flow

U(R)

(B)

R=a

x

Radius R

Axial flow
U(R)

(A)

R= a Fig. 17.2 (A) A cylindrical duct

of radius a with no center body with
an axial mean flow U. Cylindrical
coordinates are shown as (R,φ,x),
and the outer duct radius is R¼a.
(B) A cylindrical duct with a

center body. The outer duct radius

is a, and the center body radius is b.
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then we can use the method of separation of variables to find a solution to Eq. (17.2.3).

In this approach we specify

ϕ̂m R, xð Þ¼Xm xð Þψm Rð Þ (17.2.4)

then Eq. (17.2.3) can be simplified by substituting for ϕ̂m and dividing by Xmψm, so

k2�m2

R2

� �
+
2ikM

Xm

@Xm

@x
+

1�M2ð Þ
Xm

@2Xm

@x2
+

1

Rψm

@

@R
R
@ψm

@R

� �
¼ 0 (17.2.5)

The second and third terms are independent of R and so must be equal to a constant if

this equation is to apply for all values of x. We will choose this constant to be�κ2, and
so we obtain

2ikM

Xm

@Xm

@x
+

1�M2ð Þ
Xm

@2Xm

@x2
¼�κ2

k2�m2

R2
� κ2

� �
+

1

Rψm

@

@R
R
@ψm

@R

� �
¼ 0

(17.2.6)

To solve the first of these two equations we can seek a solution in the form Xm(x)¼
Cmexp(iμx), where Cm is a constant. The value of μ is then obtained from the disper-

sion relationship, by substituting this expansion for Xm(x) into the first expression in

Eq. (17.2.6)

μ2 +
2kMμ

β2
¼ κ2

β2

which has two possible solutions given by

μ¼ kM

β2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kM

β2

� �2

+
κ2

β2

s
(17.2.7)

Similarly, we can solve the second of the two equations in Eq. (17.2.6) by multiplying

through by ψm and expanding the differential, so

@2ψm

@R2
+
1

R

@ψm

@R
+ α2�m2

R2

� �
ψm ¼ 0, α2 ¼ k2� κ2 (17.2.8)

This is Bessel’s equation which has the well-known solution

ψm αRð Þ¼AJm αRð Þ +BYm αRð Þ

where Jm(αR) and Ym(αR) are Bessel functions of the first and second kind of order m
and are illustrated in Fig. 17.3. We see that the Bessel function of the first kind is

finite for all values of αR and is zero at αR¼0 for all orders m 6¼0. In contrast the
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Bessel functions of the second kind are infinite at αR¼0 for all orders. Both func-

tions are oscillatory for large values of αR and decay to zero as (αR)�1/2 for large

arguments.

For the special case when the duct has no center body the sound field must remain

finite at R¼0, and this eliminates Ym(αR) as a possible solution. The sound field in the
duct then only depends on Jm(αR). However, the solution must also match the

non-penetration boundary condition on the outer duct wall, and so we require that

the derivative of Jm(αR) with respect to R is zero at the wall where R¼a. This is only
possible for values of α for which @Jm(αR)/@R¼0 when R¼a. There will be an infinite
number of values of α that meet this condition, and they will be defined as αmn. For
example, Fig. 17.4A and B shows the functions ψm(αmnR)¼Jm(αmnR) for different
values of m and n. Of particular note is the case when m¼0, n¼0 for which αmn¼0.

This represents the plane wave mode that has no radial variation, so the sound field is

constant across the duct.

If the duct has a center body with radius b then the boundary condition at R¼b is

satisfied if the derivative of ψm(αR) with respect to R is zero at both walls. The bound-

ary condition at R¼b is met if

0
–1

–0.5

0

0.5

1

Yo(aR)
Y2(aR)

Y3(aR)

aR

Y1(aR)

2 4 6 8 10

0

(A)

(B)

–1

–0.5

0

0.5

1
Jo(aR)

J2(aR)
J3(aR)

aR

J1(aR)

2 4 6 8 10

Fig. 17.3 Examples of Bessel functions (A) of the first kind Jm(αR) and (B) of the second

kind Ym(αR).
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ψm αRð Þ¼ Jm αRð Þ� J0m αbð ÞYm αRð Þ
Y0
m αbð Þ (17.2.9)

where the prime represents a differentiation with respect to the argument of the func-

tion. To satisfy the boundary condition on the outer wall αmust take on the values for

which

ψ 0
m αað Þ¼ J0m αað Þ� J0m αbð ÞY 0

m αað Þ
Y0
m αbð Þ ¼ 0

As with the duct without a center body there are an infinite number of solutions to this

equation, and each represents a characteristic function or mode of propagation defined

by the functions ψm(αmnR). Examples of these modes for a duct with a center body are

shown in Fig. 17.4C and D. Note that the m¼0, n¼0 case yields a plane wave for

which αmn¼0 as was the case for the duct without a center body.

Eq. (17.2.8) is also identifiable as a Sturm Liouville equation with boundary con-

ditions ψ 0
m αað Þ ¼ ψ 0

m αbð Þ ¼ 0. The theory of differential equations shows that the

solution of this equation is given by the sum of a set of eigenfunctions of the form

X∞
n¼0

Amnψm αmnRð Þ

(B)

(A)

m = 0

n = 0

(C)

(D)

m > 0

m = 0

m > 0

n = 1

n = 2
n = 3

Fig. 17.4 Mode shapes for hard-walled ducts (A) no center body, m¼0; (B) no center body,

m>0; (C) with center body, m¼0; and (D) with center body, m>0. The dashed line gives
ψm(αmnR)¼0.
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We commonly refer to the eigenfunctions as modes of propagation, and each mode

individually satisfies the boundary conditions. Furthermore, Sturm Liouville theory

shows that the modes are orthogonal which means that

ðb
a

ψm αmnRð Þψm αmsRð ÞRdR¼ δnsCmn

where Cmn is a constant. Using the properties of the Fourier series that was used to

expand the solution as a function of azimuthal angle φ (Eq. 17.2.2) we then find that

ðb
a

ð2π
0

ψm αmnRð Þψ j αjsR
� �

ei m�jð ÞφRdRdφ¼ δnsδmjΛmn (17.2.10)

This is a valuable property that we will use to identify modes and evaluate how they

are coupled to acoustic sources in the duct. Note that the integral is now over the duct

cross-sectional area, and we can define the constant Λmn as

Λmn ¼
ð
S

jψm αmnRð Þj2dS (17.2.11)

where S is the duct cross sectional area.

The key element required to define the modes is the wavenumbers αmn that

are solutions to ψ 0
m αmnað Þ¼ 0. For the duct without a center body for which

ψm(αmna)¼Jm(αmna) these values are tabulated and readily available. For large values
of n there is also an asymptotic solution given by

αmna� fmn� 4m2 + 3ð Þ
fmn

+⋯O 1=f 3mn
� �

,

fmn ¼ n +m=2�3=4ð Þπ≫1

(17.2.12)

For a duct with a center body an approximate high-frequency solution can be obtained

for the mode shapes given by Eq. (17.2.9) by using the large argument approximations

of the Bessel functions

Jm αRð Þ�
ffiffiffiffiffiffiffiffiffi
2

παR

r
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4
�mπ
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The approximate mode shapes of a hard-walled duct with a center body are then

ψm αRð Þ¼ cos α R�bð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R= a + bð Þp (17.2.13)
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where the normalization of the amplitude of the mode has been chosen for

convenience (see below), and the wavenumbers are given by the solutions to

tan(α(a�b))¼1/2αa. For large arguments this gives, to a first approximation,

αmn¼nπ/(a�b). The important aspect of this result is that for ducts with center bodies

the mode shapes are characterized by a relatively simple function that closely resem-

bles a cosine wave with maxima or minima at the duct walls and n zero crossing

points, as illustrated in Fig. 17.4C and D.

Finally, we note that the normalization parameter for a duct without a center body is

given by

Λmn ¼ π a2� m2

α2mn

� �
J2m αmnað Þ (17.2.14)

and for the duct modes with a center bodyΛmn¼ (a2�b2)π which is the cross-sectional
area of the duct and justifies the choice of normalization used in Eq. (17.2.13).

17.2.3 Modal propagation

We can now summarize these results and combine Eqs. (17.2.2), (17.2.4) to give the

modal description of sound propagation in a duct as

ϕ R, φ, x, tð Þ¼
X∞

m¼�∞

X∞
n¼0

A
�
mnψm αmnRð Þe�iωt�imφ + iμ�mnx (17.2.15)

where from the dispersion relationship (17.2.7) and (17.2.8) we define

μ�mn ¼�kM

β2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kM

β2

� �2

+
k2�α2mn

β2

s

as the wavenumber that specifies the propagation in the axial direction. This is more

conveniently written by rearranging terms as

μ�mn ¼
�kM� kmn

β2
, kmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�β2α2mn

q
, β2 ¼ 1�M2 (17.2.16)

This wavenumber tells a great deal about the wave propagation in the duct. First we

note that the � sign is chosen to represent waves propagating in the positive or neg-

ative x direction when the value of the square root is real and taken to be positive.

When the argument of the square root is negative (which occurs when βαmn>k) then
it must have a positive imaginary part to ensure that the wave decays in the direction of

propagation. It follows that waves will either propagate as waves or decay with dis-

tance in either the upstream or downstream direction as defined by the � sign in

Eq. (17.2.16). When the waves decay they are classified as being cutoff, and when
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they propagate they are defined as being cut on. The rate of decay depends on the

“cutoff” ratio

χmn ¼ βαmn=k (17.2.17)

If the cutoff ratio is large χmn≫1 then the value of μ�mn has a large positive or negative
imaginary part, and the duct mode of orderm,n decays rapidly with distance along the
duct. On the other hand, when the cutoff ratio is very small then the value of kmn is real,
and the duct mode of orderm,n propagates along the duct without attenuation with the
wavenumber

k

β2
�M�1ð Þ¼ �k

1�M

which is consistent with upstream or downstream propagation of a plane wave in a

uniform flow with Mach number M. When the cutoff ratio χmn is of order 1 then

the modes are said to be close to cutoff and kmn tends to zero.

The decay of cutoff modes is an important feature of duct acoustics because it

limits the number of acoustic modes that will propagate from a source to a duct exit,

where they can radiate to the acoustic far field. If the source is a large distance from the

duct exit then the cutoff modes play no role in the far-field radiation, but if the source

is close to the duct exit then cutoff modes cannot be neglected. The rate of decay of a

cutoff mode depends on

exp � kjxj=β2� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2mn�1

q� �

where jxj is the distance from the source. When χmn≫1 the amplitude of the mode

decays to zero over a distance that is a fraction of an acoustic wavelength. However,

when the mode is close to cut off then the decay is relatively slow. This is important

because the fan design can be tailored so that the acoustic modes are cutoff, and this

can result in significant far-field noise reductions.

An important property of Bessel functions is that the first zero of Jm
0 (αa) will occur

when αa>m. Consequently, for a duct without a center body there will only be prop-
agating duct modes when

ka> βαm1a> βm

and, as a consequence, modes will only propagate when 2πa/λ>βm. This is the ratio
of the duct circumference to the acoustic wavelength and must be greater than m in

order for the mode of order m to be cut on.

Another feature of the modal expansion of the sound field (Eq. 17.2.15) is that the

modes are spinning as they propagate along the duct. The axial propagation speed is

given by ω=μ�mn, and the speed of angular rotation is given by ω/m. Since ka/β>m it

follows that the angular speed at the outer duct wall is ωa/m>ωβ/k¼c∞β. The
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angular speed of a propagating mode at the duct wall is therefore supersonic. This is an

important characteristic of duct propagation because it implies that rotating sources,

such as fans with subsonic tip speeds, will not couple directly with propagating acous-

tic modes. This issue will be discussed in more depth in the next chapter where it will

be shown that subsonic fan noise sources only couple with duct modes if their rate of

rotation is “stepped up” or increased by source interactions that effectively increase

their rate of rotation.

17.3 Duct liners

In the previous section it was assumed that the duct had a hard wall so that the acoustic

perturbation velocity normal to the wall was zero. In a lined duct the relationship is

more complicated and defined by the liner impedance which is a complex quantity

given by the ratio of the pressure imposed on the liner to the acoustic velocity normal

to the surface z¼ p̂=v̂s where both the pressure and particle velocity have a harmonic

time dependence exp(�iωt). The wall is assumed to be locally reacting, which implies

that acoustic waves do not propagate within the liner. To match the motion of the fluid

with the motion at the liner we must ensure that the displacement normal to the surface

ξ is equal to the fluid particle displacement at the same point. The particle velocity of

the fluid normal to the surface is given by the rate of change of the particle displace-

ment in a frame of reference moving with the mean flow, so the relationship between

the acoustic velocity potential ϕ and the acoustic particle displacement is

n �rϕ¼Dξ

Dt
(17.3.1)

where n is the unit normal to the surface. To obtain a boundary condition for the acous-

tic velocity potential with a harmonic time dependence we use the relationship

between the pressure and the potential given by Eq. (6.1.7) so that

p̂e�iωt ¼�ρo
Do

Dt
ϕ̂e�iωt
� �

For the liner, however, the relationship between its displacement and velocity normal

to the surface is vs¼@ξ/@t, and so

�ρo
Do

Dt
ϕ̂e�iωt
� �¼�iωzξ̂e�iωt (17.3.2)

We take the substantial derivative of Eq. (17.3.2) and linearize Eq. (17.3.1) about the

mean flow to obtain the boundary condition

�ρo
D2

o

Dt2
ϕ̂e�iωt
� �¼�iωz

Do

Dt
ξ̂e�iωt
� �¼�iωzn �rϕ̂e�iωt (17.3.3)
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The boundary conditions for the Sturm Liouville problem discussed in the previous

section need to be modified to account for the liner. Using Eq. (17.3.3) we find that

boundary condition for the radial modes in Eq. (17.2.15) becomes

ψ 0
m αmnað Þ¼ ρo ω�μ�mnU

� �2
ψm αmnað Þ

�iωαmnz
(17.3.4)

where the wavenumber of propagation along the duct is defined as a function of the

radial wavenumber as given by Eq. (17.2.16). This is often written in terms of the

nondimensional admittance βa¼ρoc∞/z and takes the form

αmnψ 0
m αmnað Þ

ψm αmnað Þ ¼ ikβa 1�μ�mnM=k
� �2

(17.3.5)

This is a far more complicated boundary condition than for a hard-walled duct

(which has an admittance of zero) and needs to be computed numerically. How-

ever, some insight can be obtained by considering approximate solutions for

small admittances and no axial flow. Considering a Taylor series expansion of

Eq. (17.3.5) gives

ψ 0
m αmnað Þ� ψ 0

m α oð Þ
mna

� �
+ αmn�α oð Þ

mn

� �
aψ 00

m α oð Þ
mna

� �
+⋯

where αmn
(o) a are the solutions for the hard-walled duct, and so ψ 0

m α oð Þ
mna

� �
¼ 0. From

Eq. (17.2.8) we find that

ψ 00
m α oð Þ

mna
� �

¼� 1� m

α oð Þ
mna

 !2
0
@

1
Aψm α oð Þ

mna
� �

and so we can approximate Eq. (17.3.5) when M¼0 as

� αmn�α oð Þ
mn

� �
α oð Þ
mna 1� m

α oð Þ
mna

 !2
0
@

1
A¼ ikβa (17.3.6)

This gives a relatively simple approximation for the radial wavenumber.

To determine the effect on mode attenuation along the duct we need to consider the

axial wavenumber, which, for zero flow, can be approximated from Eq. (17.2.16) as

kmn ¼ k oð Þ
mn � αmn�α oð Þ

mn

� �α oð Þ
mn

k
oð Þ
mn

+⋯

and combining this with Eq. (17.3.6) we obtain
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kmn ¼ k oð Þ
mn +

ikβa

k
oð Þ
mna 1� m=α oð Þ

mnað Þ2
� � +⋯ (17.3.7)

This shows that the effect of the liner impedance is to give the axial wavenumber an

imaginary part, which causes the modes to attenuate as they propagate along the duct.

The amount of attenuation is determined by not only the admittance but also the

wavenumbers of propagation. For the lowest order mode, we have noted in

Section 17.2 that m/αmo
(o) a is approximately 1, and so this mode will be highly atten-

uated by the liner because the imaginary part of the axial wavenumber will be large.

However, this effect is reduced for the higher-order radial modes for which

m=α oð Þ
moa≪1. Similarly, close to the cutoff frequency kmn

(o) will be small, and so the

effect of the liner will be large. It follows that liners are important at reducing levels

close to cutoff where typically duct mode power levels are high.

The more general result, with flow, requires a solution to Eqs. (17.3.5), (17.2.16),

and can be achieved by evaluating these functions for different values of αmn/k (both
real and imaginary) and determining βa and μ�mn=k. For example, in Fig. 17.5 we show

contours of the admittance jβaj, and its phase plotted against the real and imaginary

parts of μ�mn=k. In this case the flow Mach number is 0.3 and ka¼2, and there is no

center body in the duct. Note that for a hard wall the admittance is zero, and the curves
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Fig. 17.5 The admittance for different axial wavenumbers for a cylindrical duct without a

center body for mode order m¼1 with a flow Mach numberM¼0.3 at a frequency ka¼2. The

solid lines (horizontal) show the magnitude of the admittance, and the dashed lines (vertical)
show lines of constant phase.

448 Rotating Blades and Duct Acoustics



lie on the real axis at μ�mn=k ¼ �0:855, which is the phase speed for the m¼1 mode

propagating upstream at this frequency. As themagnitude of the admittance is increased

the imaginary part of μ�mn=k is no longer zero and takes on significant negative values,

which attenuates the mode as it propagates. For the wave to decay as it propagates

upstream the imaginary part of μ�mn=k must be negative as shown, and the attenuation

of this mode in decibels is given by 20log10 exp �jIm μ�mn
� �

xj� �� �
and gives an atten-

uation of about 10 dB per wavelengthwhen themagnitude of the admittance is>0.2 and

the phase lies in the range �30 degrees.

17.4 The Green’s function for a source in a
cylindrical duct

To analyze aeroacoustic sources in a duct we can make use of either Curle’s theorem

or the Ffowcs-Williams and Hawkings equation written in terms of a suitable Green’s

function. In general, a Green’s function in a duct with a nonuniform mean flow and

liners is not readily available in an analytical form, but we can obtain useful results by

limiting consideration to a uniform flow in a hard-walled duct. The more complex

situation of sources in a nonuniform swirling flow will be considered in

Section 17.6. For the case of uniform flow in a hard-walled duct the Green’s function

is chosen so that its derivative normal to the duct wall is zero. The surface integrals

over the duct walls in the Ffowcs-Williams and Hawkings equation (5.2.9) are thus

eliminated, and only the surface integrals over the fan blades and stator vanes need

to be considered. It should also be noted that Lighthill’s equation only applies in a

uniformmean flow. If the flow in the duct is nonuniform, then this has to be accounted

for separately in the evaluation of the source terms. In principle this can be achieved

by coupling the wave field in the duct to the source terms on a Ffowcs-Williams and

Hawkings surface surrounding the sources in the acoustic near field and using a sep-

arate solution for the wave propagation in the duct. However, the key part of the cal-

culation remains as the evaluation of the Ffowcs-Williams and Hawkings equation

using a Green’s function with a uniform mean flow, that is the solution to

1

c2∞

D2
∞Ge

Dτ
�r2Ge ¼ δ x�yð Þδ t� τð Þ

As in Section 3.10 we will first consider the Green’s function defined in terms of its

Fourier transform with respect to time. We can then use Eq. (3.10.7) to obtain the

equivalent result in the time domain, which can be used in Eq. (5.4.4) for a source

in a duct with flow. Substituting Eq. (3.10.7) into the equation above and evaluating

all the integrals gives the Green’s function in the frequency domain as the solution to

r2 eGe + k
2 eGe�2ikM

@ eGe

@xo
�M2@

2 eGe

@x2o
¼�δ R�Roð Þδ x� xoð Þδ φ�φoð Þ=R

(17.4.1)
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where the right-hand side of this equation is defined in cylindrical coordinates and

meets the requirements of Eq. (3.9.4). The source location is given by (Ro,φo,xo)
and the observer location by (R,φ,x), and the flow is defined as being uniform in

the axial direction with speed U so thatM¼U/c∞. Note also that the sign of the expo-
nent in the definitions in Eq. (3.10.7) determines the signs of the terms on the left of

this equation because the differential is carried out with respect to τ.
In the region x<xo or x>xo this equation is identical to the homogeneous equation

for sound propagation in a duct with flow�U in the axial direction (see Eq. 17.2.3), so

we expect the solution to have the same form as Eq. (17.2.15), and we can expand the

Greens function as a set of modes given by

G
�
e R,φ,xjRo,φo,xoð Þ ¼

X∞
m¼�∞

X∞
n¼0

A
�
mn R, φ, xð Þψm αmnRoð Þe�imφo + ikxoM=β2�ikmnxo=β

2

where the sign in the exponent is chosen as positive when xo>x and as negative when
xo<x (as will be justified below). As it stands this solution is discontinuous at x¼xo
and if it is used in Eq. (17.4.1) we will have to account for the discontinuity in the

evaluation of the derivatives with respect to xo. If the mode amplitudes are continuous

at the source point, then it follows that

G
�
e R,φ,xjRo,φo,xoð Þ¼

X∞
m¼�∞

X∞
n¼0

A
�
mn R, φð Þψm αmnRoð Þe�imφo + ik xo�xð ÞM=β2 + ikmnjxo�xj=β2

When this result is used in Eq. (17.4.1) and the derivatives are evaluated using

@2

@x2o
eik xo�xð ÞM=β2 + ikmnjxo�xj=β2
� �

¼ 2ikmn

β2

� �
δ xo� xð Þ� kM + sgn xo� xð Þkmn

β2

� �2

eik xo�xð ÞM=β2 + ikmnjxo�xj=β2

we find that the differential equation for the Green’s function reduces to

X∞
m¼�∞

X∞
n¼0

2ikmnA
�
mn R, φð Þψm αmnRoð Þe�imφo ¼�δ R�Roð Þδ φ�φoð Þ=R

Since the modes form an orthogonal set we can use Eq. (17.2.10) to extract the mode

amplitudes from this equation by multiplying each side by ψm(αmnR)e
imφ and integrat-

ing over the duct cross section, giving

A
�
mn R, φð Þ¼ �1

2ikmnΛmn
ψm αmnRð Þeimφ
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and so the Green’s function is given by

eGe R,φ,xjRo,φo,xoð Þ ¼X∞
m¼�∞

X∞
n¼0

iψm αmnRð Þψm αmnRoð Þe�im φo�φð Þ + ik xo�xð ÞM=β2 + ikmnjxo�xj=β2

2kmnΛmn

(17.4.2)

and the solution in the time domain is obtained from the inverse transform specified in

Eq. (3.10.7).

This result is fundamental to the understanding of sound propagation in a duct

because it shows how sound will propagate from a source at (Ro,φo,xo) to an observer
at (R,φ,x). When x>xo then the waves propagate downstream with the same phase

dependence as given by the modal expansion (17.2.15) and (17.2.16). Similarly, when

x<xo the waves are propagating upstreamwith the correct phase dependence. We also

note that this result is not reciprocal. If the source and observer positions are inter-

changed then the phase factor that depends on ik(xo�x)M/β2 will be reversed, and

so the wave fields are not identical unless M¼0. Reciprocity is only achieved if

the direction of the flow is also reversed, and this is known as the reverse flow the-

orem, which applies for all sources in a steady flow not only when they are in a duct.

The Green’s function represents the sound from a point monopole or volume dis-

placement source, and Eq. (17.4.2) shows how this depends on the radial location of

the source. If the source is located at a null of the radial mode shape, then it does not

couple with the acoustic field in the duct and that mode is not excited. In contrast if the

source is located at a maximum of the radial mode shape then that mode is strongly

excited, and if that mode is close to cutoff (kmn � 0) then it could dominate the sound

field in the duct. Similar results apply to dipole and quadrupole sources since their

acoustic efficiency is given by the derivative of the Green’s function along the axis

of the dipole. This can impact the efficiency of each mode because the derivatives will

introduce a factor that depends on the mode wavenumber and/or order. This will be

discussed in more detail in Chapter 18.

17.5 Sound power in ducts

In Section 2.6 we introduced the concept of sound power. An important application of

this concept is to duct acoustics. Since waves propagate along the duct and out of the

duct exit to the far field via a complicated path (see Fig. 17.1) the concept that sound

power is conserved allows us to relate the in duct sound levels directly to the far field,

assuming that there is no absorption at the duct walls and no sound power is reflected

back toward the source by the duct exits or internal features. This of course is an

important assumption that only applies for ducts of large diameter compared to the

acoustic wavelength. For small diameter ducts such as car exhausts, the acoustic

wavelength is large compared to the duct diameter and the reflections at the exhaust

exit and at changes of cross section, such as the muffler, completely control the sound

power radiated to the far field. In contrast on an aero engine the duct diameter is so
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large that waves propagate freely out of the inlet or exhaust, and reflections back

toward the source are of secondary importance. This characteristic is very important

for engine design purposes because it means that the sound power provides a measure

of the effective noise source level, which corresponds to the expected level of the

far-field sound.

In Section 2.6 we defined the sound power from a source in a volume bounded by

the surface S as

W¼
ð
S

I � ndS

where I is the acoustic intensity vector and n is the unit normal vector pointing out of

the volume containing the sources. In a hard-walled duct, the intensity is zero normal

to the duct walls, and so the integral is carried out over the duct cross sections

upstream or downstream of the source. We can therefore split the sound power into

its upstream and downstream components, which radiate from the engine inlet or exit,

respectively.

The acoustic intensity in a moving fluid is given by Eq. (2.6.17) in terms of the

acoustic particle velocity and acoustic pressure perturbations as

I¼E ρou+ ρ
0Uð Þ p0=ρo +U � uð Þ½ �

In the absence of vortical waves u¼rϕ and the pressure perturbation is given by

p0 ¼ ρ0c2∞ ¼�ροDoϕ=Dt, so

p0=ρo +U � uð Þ¼�Doϕ

Dt
+U �rϕ¼�@ϕ

@t

The intensity can then be written in terms of the velocity potential as

I¼E �ρo
@ϕ

@t
rϕ� U

c2∞

Doϕ

Dt

� �� �
(17.5.1)

For waves with harmonic time dependence we can reduce this result using the

approach given in Section 3.8 so that

I¼�ρo
2

Re �iωϕ̂* rϕ̂� U

c2∞
U �rϕ̂� iωϕ̂
� �� �� �

(17.5.2)

For upstream or downstream propagating waves we need to consider the component of

the intensity in the positive or negative axial direction and integrate over the cross

section of the duct. For a uniform flow we can define the acoustic velocity potential

using the modal expansion given by Eq. (17.2.15) so that

452 Rotating Blades and Duct Acoustics



rϕ̂� U

c2∞
U �rϕ̂� iωϕ̂
� �� �

� n

¼�i
X∞

m¼�∞

X∞
n¼0

eAmnψm αmnRð Þ μ�mn�M2 μ�mn�ω=U
� � �

e�imφ+ iμ�mnx

where the normal vector points away from the source and the � refers to downstream

or upstream propagation, respectively. The terms in the curly braces simplify to give

μ�mnβ
2 + kM ¼ � kmn. When these results are used in Eq. (17.5.2) and the surface inte-

gral is carried out over the duct cross section, then we can make use of the orthogo-

nality of the duct modes, given by Eq. (17.2.10), to obtain the sound power in either

the upstream or downstream directions as

W� ¼ωρo
2

X∞
m¼�∞

X∞
n¼0

jA�mnj2Re kmnð ÞΛmn (17.5.3)

This remarkably simple result has some important implications. First we note that the

power for each mode is uncoupled, so we can treat a noise control problem mode by

mode. Furthermore, the level is not simply a function of the mode amplitude but is also

determined by the normalization factorΛmn and the real part of the wavenumber kmn. If
the mode is cutoff, then kmn is imaginary, and there is no sound power transmitted in

that mode. Consequently, only propagating modes contribute to the far-field sound

power levels. An important result is that for a source in a duct the duct mode ampli-

tudes are given by the Green’s function specified in Eq. (17.4.2). This shows that the

duct mode amplitudes are inversely proportional to kmnΛmn, and so the sound power

will tend to infinity at the cut on frequency where kmn is zero unless the source strength
also tends to zero. This issue will be discussed in more detail in Chapter 18.

The consequence of this result is that if we use the modal sound power to evaluate

sources in the duct only the amplitude of propagating modes needs be considered.

Since these are limited to a finite number of modes the infinite summations in

Eq. (17.5.3) are no longer required making their evaluation tractable.

17.6 Nonuniform mean flow

In Section 17.3 a formulation was given for acoustic propagation in a cylindrical duct

with a uniform mean flow. It was shown that a modal solution could be obtained by

using the method of separation of variables, so the wave equation was reduced to solv-

ing a Sturm Liouville equation. However, when the mean flow is not uniform the wave

equation is not separable, and we must resort to other methods to find a solution. The

most general approach is to use a numerical method to solve the appropriate differ-

ential equation with the correct boundary conditions as described by Astley and

Eversman [1,2] and Golubev and Atassi [3]. However, some insight to the problem

is obtained if a high-frequency approximation is used to obtain the solution to the

wave equation in a hard-walled duct with nonuniform flow (Cooper and Peake [4]).
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To show how the high-frequency approximation can be applied, it is assumed that

the mean flow is only a function of the radial coordinate and is given by the sum of an

axial component U(R) and an azimuthal component W(R)¼Ω(R)R. We will assume

no mean radial flow, which is an important simplification and ignores the interaction

of the mean flow with the turbulent wakes of the fan blades. It will also be assumed

that there are no vortical waves in the duct, so the acoustic field is completely

described by the velocity potential that satisfies the convected wave equation given

in Eq. (17.2.1). We can assume that the velocity potential has a harmonic time depen-

dence and make use of the periodicity in the azimuthal direction to expand the poten-

tial in a Fourier series as given by Eq. (17.2.2). The resulting Fourier series

coefficients satisfy the differential equation given by

κ2m Rð Þ�m2

R2

� �
ϕ̂m + 2iκm Rð ÞM Rð Þ@ϕ̂m

@x
+ 1�M2 Rð Þ� �@2ϕ̂m

@x2
+
1

R

@

@R
R
@ϕ̂m

@R

 !
¼ 0

(17.6.1)

where

κm Rð Þ¼ ω +mΩ Rð Þð Þ=c∞ (17.6.2)

is the effective acoustic wavenumber in a swirling flow and will be a function of radius

unless the mean flow is in solid-body rotation. The difference between Eq. (17.6.1)

and Eq. (17.2.3) is that it is not separable because the coefficients are dependent

on the radius. However, we can find a solution using the Wentzel–Kramers–Brillouin
(WKB) method which gives an approximate solution in the high-frequency limit that

ka≫1. To implement this approximation, we specify the potential as an exponential

or phase function so that

ϕ̂m ¼Bme
iqm R=að Þ + iμx (17.6.3)

where μ and Bm are constants and qm(R/a) is to be determined from the solution to

Eq. (17.6.1). Themode shape is then given by exp(iqm(R/a)), and Eq. (17.6.1) becomes

λ2m Rð Þ� q0m
� �2

+
ia

R
q0m + iq00m ¼ 0 (17.6.4)

where the prime represents differentiation with respect to the argument of qm and

λ2m Rð Þ¼ κ2m Rð Þa2� 1�M2 Rð Þ� �
μ2a2�2κm Rð ÞM Rð Þμa2� ma

R

� �2
(17.6.5)

For the analysis of the sound field in the duct with uniform flow we expect μ/k
and m/ka to be of order one, and so it follows that λm is of order O(ka), which
is a large parameter in the high-frequency limit ka≫1. We consider a solution that

is of the form
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qm ¼ q oð Þ
m + kaq 1ð Þ

m

where both qm
(o) and qm

(1) are the same order of magnitude. In terms of these variables

Eq. (17.6.4) becomes

kað Þ2 λ2m Rð Þ
kað Þ2 � q0 1ð Þ

m

� �2 !
+ kað Þ ia

R
q0 1ð Þ
m + iq00 1ð Þ

m �2q0 1ð Þ
m q0 oð Þ

m

� �

+
ia

R
q0 oð Þ
m + iq00 oð Þ

m � q0 oð Þ
m

� �2� �
¼ 0

(17.6.6)

each term in this equation is therefore defined in descending orders of ka. The prin-
ciple of the WKB method is that when ka≫1 the first term is large compared to the

second two terms, and so an approximate solution is obtained for qm
(1) as

q0 1ð Þ
m Rð Þ¼�λm Rð Þ

kað Þ

To obtain a solution that is accurate to second order the second term in Eq. (17.6.6) can

also be set to zero, giving

q0 oð Þ
m ¼ ia

2R
+
iq00 1ð Þ

m

2q0 1ð Þ
m

We have therefore reduced the problem to solving two first-order differential equa-

tions that have the solutions

q 1ð Þ
m Rð Þ¼�1

a

ðR
b

λm Rð Þ
kað Þ dR, q oð Þ

m Rð Þ¼ i

2
ln

jλm Rð ÞjR
ka2

� �
+ const (17.6.7)

(where b is the radius of the inner duct wall, and we have used the fact that

ln q0m
�� ��� �� �0 ¼ q00m=q

0
m). The approximate solution to the wave equation in the

high-frequency limit is then given by

ϕ̂m �
Bm exp �i

ðR
b

λm Rð Þ=að ÞdR + iμx

0
@

1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijλm Rð ÞjRp (17.6.8)

This gives two alternative solutions for the acoustic field in a duct with a mean flow

that is a function of radius, and the two solutions can be combined to match the bound-

ary conditions at the duct walls. The radial dependence of the modes depends on the

integral defining qm
(1) in Eq. (17.6.7) which takes the form
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q 1ð Þ
m Rð Þ

¼� 1

ka2

ðR
b

κ2m Rð Þa2� 1�M2 Rð Þ� �
μ2a2�2κm Rð ÞM Rð Þμa2� ma

R

� �� �1=2
dR

The first point to note from this result is that at small radii the term (m/R)2 may be large

enough that the integrand is imaginary, but as R increases a branch point is reached

where the integrand is zero and at larger radii it becomes real valued. This causes the

integrand to have a critical point defined by the value of R¼Rc where the integrand

is zero.

To match the boundary conditions, we specify

ϕ̂m � Bme
iμxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λm Rð Þj jRp exp i

ðR
b

ffiffiffiffiffiffiffiffiffiffiffiffi
λ2m Rð Þ

q
a

dR

0
@

1
A + exp �i

ðR
b

ffiffiffiffiffiffiffiffiffiffiffiffi
λ2m Rð Þ

q
a

dR

0
@

1
A

0
@

1
A

(17.6.9)

where the square roots are evaluated so that their real parts are positive. Using this

form of the solution the hard-walled boundary condition is met on the inner duct wall

to first order in 1/ka, and to the same order we must solve for μ in Eq. (17.6.5) so that

kaq(1)(a)¼nπ to match the boundary condition on the outer wall, which can be done

iteratively if λm
2(R)>0 for b<R<a.

However, this solution does not apply close to the so-called critical radius where λm
is approximately zero, and so the high-frequency approximation is no longer strictly

valid. A solution can be obtained by solving Eq. (17.6.1) in the vicinity of the critical

point and the result is given by Cooper and Peake [4] in terms of Airy functions. This

needs to be matched to the solution valid outside the critical region defined by

Eq. (17.6.9). In the region where λm
2 is negative the mode shapes are given by a hyper-

bolic cosine, which needs to be matched to the solution in the critical region. The net

effect is that the mode amplitude tends to zero when λm
2(R)<0.

In the absence of swirl and for a uniform axial flow the approximate solution

reduces to the form of the Bessel function solutions given in the previous section

in Eq. (17.2.12) and shown in Fig. 17.4. The accuracy of the approximation is shown

in Fig. 17.6A for m¼2 and ka¼50 for no axial flow. The advantage of the

high-frequency analysis is that it allows the mean axial flow and swirl to be a func-

tion of radius. To illustrate this Fig. 17.6B shows the mode shape when the mean

flow speed varies with radius as M(R)¼MtR/a in comparison with the zero

flow case.

The effect of solid-body swirl, in which Ω is constant, is to alter the effective fre-

quency, so depending on the sign ofm, the cut on frequency is shifted fromωowithout

swirl to the effective frequency jωo�mΩj, and this can have important implications

for the number of modes that propagate.

It was also pointed out by Cooper and Peake [4] that some interesting possibilities

occur when λm(R) has more than one zero in the range b<R<a. In this case there is
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the possibility for two or more critical radii, and so the sound field can be trapped

between these points, giving rise to loud zones and quiet zones radially in the duct.

These zones exist if both λm
2(a) and λm

2(b) are less than zero and that λm
2(R) is greater

than zero at some location across the duct. If the swirl velocity is of the form

Ω(R)¼Ωo+Γ/R
2, corresponding to the combination of solid-body rotation and a

potential vortex, then ω+mΩ(R) will be less at the outer wall than at the inner wall,

and a mode that is cut on at a small radius could be cut off at the larger radius because

the effective frequency is less.

17.7 The radiation from duct inlets and exits

So far in this chapter we have discussed the propagation of acoustic modes in circular

ducts of infinite length. In a turbofan engine (Fig. 17.1) the duct will vary in cross

section and will be of finite length, and it is the radiation out of the duct inlets and

exits that is of primary concern. There are a number of numerical approaches that

can be used to address a real duct, including Finite Element Methods [1,2] and the

Geometrical Theory of Diffraction [5,6]. Small variations in the cross section of

the duct can also be considered using multiple scale analysis [7]. We can also gain

insight into radiation from a duct inlet or exit using analytical methods, and these

are discussed in this section.
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Fig. 17.6 The duct modes obtained using the WKB approximation: (A) the duct mode for

m¼2, ka¼40, b¼0.5a and no mean flow, solid line is WKB approximation, and dashed
line is exact solution. (B) The same case with the mean flow given by M¼MtR/a with

Mt¼0.3, solid line is WKB approximation, and dashed line is for no flow.

Duct acoustics 457



Analytical models of the sound radiation from a duct are most readily obtained by

considering a semi-infinite circular duct as illustrated in Fig. 17.7. In the case of the

duct exit or jet pipe (Fig. 17.7A) the flow inside the duct is taken to be uniform and

the flow speed outside the duct can be different so that a shear layer is formed between

the two flows, and this can cause shear layer refraction effects and the possibility of

instability waves at the interface. In the case of an inlet (Fig. 17.7B) the flow is taken to

be uniform both inside and outside the duct.

The sound radiation from semi-infinite pipes with flow is described by Munt [8],

who analyzed the problem using the Weiner Hopf method. However, Tyler and Sofrin

[9] argued that a good approximation to the far-field sound from an inlet without flow

is obtained by modeling the inlet by a circular duct that is mounted in a baffle, as

shown in Fig. 17.8. Lansing [10] studied the equivalence between these two approx-

imations and showed that there were only small differences in the radiated sound

power between the two cases. The differences occurred at frequencies close to cutoff,

as might be expected. However, the Tyler and Sofrin model cannot give the correct

directivity at angles >90 degrees to the duct axis because this observer would be

inside the baffle.
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Fig. 17.7 Modeling the duct exit (A) or inlet (B) as a semi-infinite circular duct.
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An alternative approximation was given by Cargill [11] who used a

Ffowcs-Williams and Hawkings surface on the external surface of a semi-infinite

pipe, and the pipe exit, for the configuration shown in Fig. 17.7A. A Green’s function

was developed for a source in the jet pipe flowwith different flow speeds on either side

of the shear layer. A key assumption was that the contribution from the external sur-

face of the pipe was negligible compared to radiation from the duct exit. In spite of this

apparently major simplification it was shown that the far-field sound was almost iden-

tical to Munt’s exact solution at all but a few observer angles in the region upstream of

the jet pipe exit.

To illustrate Cargill’s method, we will consider the sound radiation from an inlet

without flow, using the coordinates given in Fig. 17.7A, with U¼0. The solution for

the acoustic field outside the duct is given by Eq. (3.10.5) with the surface taken as the

external surface of the duct and the duct exit. In Cargill’s approximation only the duct

exit is included, and the acoustic pressure and its normal derivative are defined by the

waves propagating along the duct toward the duct exit. This implies that no waves are

reflected back toward the source inside the duct, which is a reasonable approximation

when ka≫1. The far-field sound is then given by Eq. (3.10.5) for a harmonic time

dependence

p̂ xð Þ¼
ð
S

p̂ yð Þ@G
�
o xjyð Þ
@yi

�G
�
o xjyð Þ@p̂ yð Þ

@yi

 !
nidS

If we limit consideration to a single duct mode and integrate over the duct exit, we

obtain the pressure as

p̂mn xð Þ¼Bmn

ð2π
0

ða
0

@G
�
o xjyð Þ
@y1

� ikmnG
�
o xjyð Þ

 !
ψm αmnRð Þe�imφRdRdφ

r

q Circular duct

x1

Infinite baffle

Fig. 17.8 The Tyler-Sofrin model for sound radiation from a duct exit.
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where Bmn is the pressure amplitude of the duct mode. For a duct without a center body

ψm(αmnR)¼Jm(αmnR). The free field Green’s function can be approximated for

observers in the acoustic far field of the duct by

G
�
o ¼ eikr�ikxiyi=r

4πr

where r is the distance from the center of the duct exit to the observer located at

x1¼ rcosθ, x2¼ rsinθ, x3¼0 as shown in Fig. 17.7A. Using y1¼0, y2¼Rcosφ,
y3¼Rsinφ, the acoustic far field is given by

p̂mn xð Þ¼�iBmn
eikr

4πr

ð2π
0

ða
0

kcosθ + kmnð ÞJm αmnRð Þe�imφ�ikRsinθcosφRdRdφ

The integral over the azimuth gives

ð2π
0

e�imφ�ikRsinθcosφdφ¼ 2πJm kRsinθð Þe�imπ=2

and the integral over the radius is a standard integral given by

ða
0

Jm αmnRð ÞJm kRsinθð ÞRdR

¼αmnaJm+ 1 αmnað ÞJm kasinθð Þ� kasinθJm αmnað ÞJm+ 1 kasinθð Þ
α2mn� k2 sin2θ

For a hard-walled duct J0m αmnað Þ ¼ 0, and we can use the Bessel function recurrence

relationships to simplify this result to

kasinθJm αmnað ÞJ0m kasinθð Þ
α2mn� k2 sin2θ

The far-field sound is then given by

p̂mn xð Þ¼�2πiBmnJm αmnað ÞDmn θð Þae
ikr

4πr
(17.7.1)

where the directivity is

Dmn θð Þ¼ kcosθ + kmnð Þ k sinθð ÞJ0m kasinθð Þ
α2mn� k2 sin2θ

(17.7.2)
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Fig. 17.9 shows the directivity of the far-field sound based on Eq. (17.7.2) and is com-

pared to computations based on the full Weiner Hopf solution [12]. It is seen that the

approximate solution is very accurate at angles where the directionality is a maximum

but fails to give the correct result at large angles where the levels are about 10 dB less

than the peak values. This is consistent with Cargill’s [11] observation that the error

was in the region of the far field where that particular mode did not significantly con-

tribute to the overall level.

It is clear from Fig. 17.9 that the far-field sound peaks at an angle to the duct axis

where ksinθ¼αmn where the denominator of Eq. (17.7.2) is zero. At this angle the

directivity can be evaluated using L’Hôpital’s rule because Jm
0 (ka sin θ) is also zero

when ksinθ¼αmn. The directivity therefore has similar characteristics to a sin(x)/x
function with a peak at the location where x¼0, and side lobes of a lower level on

either side of the peak.
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18Fan noise

This chapter will discuss the application of aeroacoustic theories to the prediction of

ducted fan noise. The focus will be on a fan in a circular duct with a center body as a

model of a typical aero engine, but the methods are also applicable to other geome-

tries. The most important difference between a ducted fan and an open rotor is that in

the ducted fan the acoustic sources excite duct modes that are determined by the

boundary conditions at the duct walls. This has a large impact on how the acoustic

sources are coupled to the acoustic far field outside the duct and this chapter will show

how these effects are modeled.

18.1 Sources of sound in ducted fans

In the early days of jet aircraft the far field noise was dominated by jet noise. It was

shown by Lighthill [1] that the sound intensity was proportional to the eighth power of

the jet exit velocity, and Morfey [2] showed that for heated jets the sound intensity

scaled with the sixth power of the flow speed. In the 1970s high bypass ratio turbofan

engines were introduced (see Fig. 17.1) which enabled a large increase in engine

diameter so the same thrust could be achieved with a lower jet speed. The jet noise

component of the sound was significantly reduced by the lower jet exit velocity

and other sources such as fan noise became significant contributors to the overall noise

level. Initially the far field sound, especially at low thrust conditions used when an

aircraft approached an airport, was dominated by tone noise from the engine fan. This

was attributed to the wakes of the fan blades impinging on the downstream stator

vanes that excited spinning modes in the fan duct, as discussed in Chapter 17. How-

ever, these modes only propagate along the duct if their rate of rotation has a super-

sonic phase speed at the duct wall. As wewill show in the next section a judicial choice

for the number of blades and stator vanes in an engine enables the fan tone noise to be

controlled and minimized. As the fan diameter is increased the broadband fan noise

also increases and contributes more energy to the far field, so in very high bypass ratio

turbofan engines the tone noise and broadband noise are of equal importance [3].

The noise sources in ducted fans have many of the same properties as the sources on

an open rotor, but there are also some important differences. The most significant dif-

ference is the effect of the duct since sound from the fan or stator vanes must propagate

along the duct before it radiates to the acoustic far field. This gives the opportunity to

include sound absorbing materials in the duct wall so that sound can be attenuated

before it reaches the duct exit and hence the acoustic far field. In addition, as we

showed in Chapter 17, only certain modes will propagate in a duct at a given fre-

quency. The duct therefore allows for noise control measures to be introduced that

decouple the acoustic sources from the propagating duct modes. It is important there-

fore to treat ducted fan noise as a coupled system that includes the correct interaction

Aeroacoustics of Low Mach Number Flows. http://dx.doi.org/10.1016/B978-0-12-809651-2.00018-7
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between the fan noise source and its local environment. The exception to this approach

is when the duct is very short (less than an acoustic wavelength) in which case the

nonpropagating modes can still reach the engine inlet or duct exit and couple with

the acoustic far field. In this chapter we will focus on ducted fans and the duct mode

amplitudes, referring to Chapter 17 for the effect of duct mode propagation and far

field radiation.

In Chapter 16 we identified rotor noise sources as thickness noise, loading noise,

unsteady loading noise, trailing edge noise, and quadrupole noise. As we will show in

the next section, thickness noise only couples with modes that are spinning with the

same speed as the fan. For fans with subsonic tip speeds these modes are typically cut

off, and so thickness noise in ducted fans is not usually an issue. However, when the

fan tip speed is supersonic then sources that rotate with the fan will propagate and

cause additional radiation. In high speed fan applications that have supersonic tip

speeds the quadrupole sources associated with shock waves on each blade propagate

along the duct and couple with the acoustic far field. This is known as Buzz-saw noise

and can often be important in aircraft cabins as well as to the observer on the ground.

The term Buzz-saw noise was chosen because the sound resembles that of a chain saw

cutting wood, and it typically has a spectrum that is rich in harmonics of the shaft rota-

tion frequency. However, this source does not occur in low Mach number flows and

will not be discussed in detail here.

The primary sources of fan noise are therefore unsteady loading noise and trailing

edge noise. The unsteady loading noise from the fan is caused by disturbances in the

inflow that result in a nonuniform flow entering the rotor. This flow can be significantly

altered by the duct inlet shape and any obstructions upstream of the fan. A relatively

small turbulent eddy in the atmosphere can be accelerated and stretched by the mean

flow as it enters the fan inlet (see Chapter 6) so that it gets a thin elongated sausage

shape that is repeatedly cut by the rotating blades. This results in fan tone noise that

is referred to as haystacking, and is particularly important in engines that are operating

on test stands close to the ground, where the atmospheric turbulence includes relatively

small scale eddies. For this reason, aircraft engines on test stands are fitted with an inlet

control device that consists of a cloth screen designed to break up the small scale eddies

entering the engine. At flight conditions this effect is greatly reduced by the motion of

the aircraft relative to the atmosphere. The acceleration of the outside flow into the inlet

is reduced because the engine moves towards the turbulent eddy, rather than the eddy

being sucked into the fan inlet. Consequently, haystacking tones are not as important in

flight situations as they are in ground testing.

In flight, the dominant source of fan noise has been found to be the impingement of

the turbulent wakes from the fan onto the downstream stator vanes [4] (see Fig. 17.1).

This mechanism includes both the tone and broadband noise, and is complicated by the

swirling flow in the duct downstream of the fan. The mean flow in the wakes of the fan

blades is relatively well defined, and can be computed usingReynolds averagedNavier

Stokes (RANS) methods (see Chapter 8) in a rotating frame. These disturbances can

then be used with a suitable blade response function to calculate the unsteady loading

on the vanes, and hence estimate the amplitude of the duct modes excited by this mech-

anism upstream and downstream of the stator vanes. However, sound radiated from the
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engine inletwill be attenuatedbyboth theduct liners, as described inChapter 17, and the

propagation of sound through the fan.

In addition to tone noise caused by the interaction between the mean flow deficit in

the blade wakes with the downstream stator vanes, there is broadband noise from rotor/

stator interactions. This is caused by random turbulent flow that is uncorrelated from

wake to wake and has a time scale that is small compared to the shaft rotation period.

This is a modulated turbulent flow and causes sound with a wide band spectrum that

can be peaked around the blade passage frequency if the modulation is distinct. Many

of the methods given in Chapter 16 can be used to describe this source, and, as will be

shown below, the broadband noise level critically depends on the turbulent intensity

and the turbulent length scale at the leading edge of the stator vanes.

The blade response to an incoming disturbance for a ducted fan or stator is dis-

tinctly different from that of an isolated blade. In rotor or propeller applications we

were able to treat each blade section independently as if it were a section of a uniform

blade of infinite span. The edge effects were accounted for by the limited spanwise

correlation length scale of the incoming disturbance. For the fan or stator application

the situation is different in two respects: first, the blade sets are of relatively high solid-

ity which means that the blades are sufficiently close together to be overlapped and to

interact aerodynamically. Second, the duct walls introduce spanwise boundary condi-

tions that impact the blade response especially at frequencies close to the duct mode

cut off frequency. It was shown in Chapter 17 that the Green’s function for sources in a

duct was infinite at the cut on frequency of each duct mode unless the source strength

tended to zero. We will show in Section 18.3 that duct modes will always have this

characteristic if the correct spanwise duct mode is used in the blade response function,

but not if it is approximated using the strip theory approach used in Chapter 16 for

open rotors. This has a large impact on broadband noise calculations at high frequen-

cies for large turbo fan engines because, within any one-third octave band of frequen-

cies, a large number of radial modes will cut on and the level averaged over frequency

will include modes at their cut on frequency. If the incorrect blade response function is

used in these calculations then each mode that is cutting on will have an infinite sound

power and will dominate the predicted spectrum, giving an erroneous result. The tai-

loring of the blade response function to its environment is therefore an important

aspect of fan noise prediction.

In addition to rotor/stator interaction noise there is also broadband fan self noise,

which can be an important contributor to the far field noise spectrum at high frequen-

cies. The flow speed over the fan blades is always much higher than the flow speed

over the stator vanes so self noise from the stators is always relatively insignificant

compared to the self noise from the fan. Fan self noise is caused by three distinctly

different mechanisms: (1) the interaction of the fan blades with the duct wall boundary

layer, (2) the tip flow between the duct wall and the fan blade, and (3) trailing edge

noise from the fan. For large diameter fans the trailing edge noise is considered to be

the most important of these three mechanisms [5], but for small or model scale fans the

turbulence in the duct wall boundary layer can be a contributor [6]. In automotive fans,

which have small diameter and have a low tip Mach number, tip effects and

recirculation have been shown experimentally to dominate the noise generation [7].
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The objective of this chapter is to outline procedures for the calculation of duct

mode amplitudes and duct mode sound power levels for rotors and stators in an infinite

duct. This gives the necessary inputs required for the calculation of the propagation

effects described in Chapter 17. We will start with a general formulation applicable to

all the source types described above, and then idealize the approach to correctly

account for the effects of the duct walls on the source levels.

18.2 Duct mode amplitudes

To describe the sound field in a circular duct we need to specify the duct mode ampli-

tudes in terms of the acoustic sources in the duct. The approach we will use initially is

based on Lighthill’s analogy in which the aeroacoustic sources are specified in a uni-

form mean flow in the duct. These concepts can be extended to nonuniform mean

flows by using the linearized Euler equations, but first we will identify the most impor-

tant sources of sound using Lighthill’s approach.

In Section 5.4 the solution to Lighthill’s equation in a uniform flowwas specified in

terms of a Green’s function that applied to the local environment. For the case of a

circular duct with a uniform axial flow the Green’s function was derived in

Section 17.4, and this allows the duct mode amplitudes to be directly related to

Lighthill’s source terms. In principle, the uniform flow assumption eliminates the

cases where the mean flow includes swirl as a function of radius, but these issues will

be addressed in Section 18.6. To apply Lighthill’s theory it will be assumed that the

flow in the duct is given by U
∞ð Þ
i +wi where U

∞ð Þ
i represents the uniform axial flow

(see Fig. 18.1) and wi is a small perturbation to the mean flow.

The acoustic field is then given by Eq. (5.4.4) with a Green’s function that satisfies

Eq. (5.4.3), which is given by Eq. (17.4.3). Since the fan blades will be moving we

take the boundary condition on the blade surface to be U
∞ð Þ
i +wi

� �
ni ¼Vini where

Vi is the blade speed. For stator vanes Vi¼0. Both the flow and the derivative of

y2

y3

y1, x0R
ϕ

Ω

Fan

Stator

U(∞)+w

Fig. 18.1 The coordinate system for a rotating fan in a circular duct.
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the Green’s function normal to the duct walls are zero. Furthermore, we can ignore the

quadrupole terms in Eq. (5.4.4) at low Mach numbers, and in the thickness noise term

we can use

ρwj�ρ0 Vj�U
∞ð Þ
j

� �
nj ¼ ρ∞ Vj�U

∞ð Þ
j

� �
nj

to give the acoustic field as

ρ0 x, tð Þc2∞ ¼
ðT
�T

ð
So τð Þ

@Ge

@yi
pijnjdS yð Þdτ

�
ðT
�T

ð
So τð Þ

D∞Ge

Dτ
ρ∞ Vj�U

∞ð Þ
j

� �
nj

� �
dS yð Þdτ (18.2.1)

and from Eq. (17.4.2) the Green’s function is

Ge x, tjy,τð Þ¼ 1

2π

ð∞
�∞

X∞
m¼�∞

X∞
n¼0

ψmn Rð Þψmn Roð Þ
2iΛmnkmn

� �
eim φ�φoð Þ�iμ�mn x�xoð Þ�iω t�τð Þdω

(18.2.2)

where the subscript o refers to the source position in cylindrical coordinates.

In Section 17.2 the acoustic field in the duct was described by the modal expansion

given in Eq. (17.2.10) for the velocity potential at a fixed frequency ω. The amplitude

of each duct mode was specified as Amn(ω). Since the velocity potential in a uniform

flow and the acoustic pressure are related by p0 ¼�ρ∞D∞ϕ/Dt and p0 ¼ ρ0c2∞ we can

define the acoustic pressure in the duct in a similar modal expansion, given by

p0 x, tð Þ¼
ð∞
�∞

X∞
m¼�∞

X∞
n¼0

Pmn ωð Þψmn Rð Þeimφ�iμ�mnx�iωtdω (18.2.3)

where

Pmn ωð Þ¼�iρ∞ ω+Uμ�mn
� �

Amn ωð Þ (18.2.4)

(where U is the axial flow speed along the duct as used in Chapter 17). The mode

amplitudes can then be obtained by combining the results above, and as with rotor

noise, may be split into terms representing thickness and loading noise, which can

be considered separately.

18.2.1 Thickness noise for a ducted fan

The mode amplitudes for the thickness noise term in Eq. (18.2.1) are obtained by com-

bining the second integral in Eq. (18.2.1) with the Green’s function in Eq. (18.2.2) and

separating out the modal content to give
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P thicknessð Þ
mn ¼ �

ðT
�T

ð
So τð Þ

ρ∞ Vj�U
∞ð Þ
j

� �
nj

� � ω+ μ�mnU
� �

ψmn Roð Þ
4πΛmnkmn

� �

e�imφo τð Þ + iμ�mnxo + iωτdS yð Þdτ (18.2.5)

where φo(τ) gives the azimuthal location of the blade surfaces at source time τ. If the
fan consists of B identical blades that are equally spaced, then the duct mode ampli-

tude will be the sum of the contributions from each blade. For a given axial and radial

location of each blade element the azimuthal location is given by

φo τð Þ¼ 2π s�1ð Þ
B

+φ �ð Þ
b Ro, xoð Þ�Ωτ

where s¼1, 2, 3,…, B is the blade number, Ω is the blade angular velocity, and φ �ð Þ
b

defines the suction and pressure surfaces of the blade (see Fig. 18.2). It is important to

note that in fan noise analysis we choose the xo coordinate to be pointing in the down-
stream direction, which is in contrast to the coordinates used in Chapter 16 that used a

system in which the x1 coordinate pointed upstream.

The only other term in this equation that could vary with time is the blade normal

velocity but since the blade is moving at constant angular speed in the azimuthal direc-

tion we can define Vj � U
∞ð Þ
j

� �
nj as independent of time and only a function of the

location on the blade surface. (This is readily shown by expressing the velocities in

cylindrical coordinates.)

The surface integral in Eq. (18.2.5) can then be carried out over each blade and the

results added with the correct phase shift to give

P thicknessð Þ
mn ¼� ω + μ�mnU

� �
2Λmnkmn

� � XB
s¼1

e�2πim s�1ð Þ=B
( )

�
ð
So τð Þ

ρ∞ Vj�U
∞ð Þ
j

� �
nj

� �
ψmn Roð Þe�imφb + iμ

�
mnxodS yð Þ

� 1

2π

ðT
�T

ei ω+mΩð Þτdτ

(18.2.6)

Fig. 18.2 Coordinates for a fan blade in blade fixed coordinates. A point on the surface of the

blade is given by the cylindrical coordinates Ro,φ
�ð Þ
b ,xo.
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This result has allowed us to separate out each of the integrals so that they can be

evaluated independently, and has important features. First we note that the summation

given in {} is zero unlessm is an exact multiple of the blade number B as discussed in

Chapter 16. Alternatively, if m¼ jB then each term in the summation is one and the

sum is equal to B. This ensures that only modes that have azimuthal indices m¼ jB
will be excited. Second the integral over the source time τ is a Dirac delta function

δ(ω+ jBΩ). When this result is used in Eq. (18.2.4) and the integration is carried

out over frequency we obtain

p0 x, tð Þ¼
X∞
j¼�∞

X∞
n¼0

CjB,nψ jB,n Rð ÞeijBφ�iχ�jBnx + ijBΩt (18.2.7)

where the mode amplitudes are

CjB,n¼� ω+ μ�mnU
� �
4πΛmnkmn

� �ð
So

ρo Vj�U
∞ð Þ
j

� �
nj

� �
ψmn Roð Þe�imφb + iμ

�
mnxodS yð Þ

" #
ω¼�jBΩ

m¼jB

and the axial wavenumber is

χ�jB,n ¼ μ�jB,n
h i

ω¼�jBΩ
(18.2.8)

The result given in Eq. (18.2.7) shows that the sound field in the duct is the combination

of harmonic waves at the blade passing frequencies jBΩ and that the duct mode ampli-

tudes can be obtained from the surface integral of the thickness noise terms, as was done

for an open rotor in Chapter 16. However, the axial wavenumber will determine if the

modes propagate, and it was shown in Section 17.2 that for the modes to be cut on we

require that ka/β> jjBj where a is the outer duct radius. Since in this case k¼jjBΩ/c∞j,
we find that ka/β¼jjB(Ωa/c∞)/βj and so the cut on condition will not be met unless

(Ωa/c∞)/β>1 and this does not occur if the blade tip speed is subsonic and the axial

flow speed is sufficiently subsonic that (Ωa/c∞)<β. As a consequence we can state that
if the fan tip speedor the axial flowspeed isnot in the transonic regime then theductmode

excited by thickness noise will be cut off and will not propagate along the duct. Hence it

will not radiate to the acoustic far field unless the duct is very short. This is an important

conclusion because it effectively eliminates thickness effects as a source of ducted fan

noise unless there is transonic flow at the blade tips. However, at these conditions the

blade will start to form leading edge shock waves which can propagate efficiently and

cause Buzz-saw noise which is usually a much more significant source.

18.2.2 Blade loading noise

In the previous section we showed that thickness noise was not an important acoustic

source for ducted fans, and quadrupole noise was only important when the blade tip’s

speed was transonic. Consequently, the most important source of sound in ducted fans

is attributed to loading noise. As with thickness noise the steady loading sources will
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only couple with nonpropagating modes and as we will see below it is the unsteady

loading on the blade surfaces that is of primary concern. The loading noise is specified

by the first surface integral in Eq. (18.2.1) and, as in Section 16.2.1 we can represent

loading noise by the surface pressure jump across the blade planform and represent the

source term in Eq. (18.2.1) as

pijnj
� 	

upper
� pijnj
� 	

lower

� �
dS¼ f

sð Þ
i dΣ

where dΣ represents an element of the blade planform and fi
(s)(y, τ) is the unsteady

loading per unit area on the planform surface as shown in Fig. 18.3 for blade

number s.

The mode amplitudes for loading noise are then obtained from Eqs. (18.2.1),

(18.2.3) as

P loadingð Þ
mn ¼

XB
s¼1

ðT
�T

ð
Σs τð Þ

f
sð Þ

i y, τð Þ @

@yi

ψmn Roð Þe�imφs τð Þ + iμ�mnxo

4πiΛmnkmn

 !
eiωτdΣ yð Þdτ

(18.2.9)

WRo

bo

fi
(s) (Ro, x)

U

Ue

U⎛ ⎞
⎜ ⎟WRo

Blade planform, area S

bo= tan–1

⎝ ⎠

Fig. 18.3 The surface loading per unit area fi as a function of position on the blade planform.

The angle βo is the angle of the blade planform relative to the direction of rotation.
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where we have defined

φs τð Þ¼ 2π s�1ð Þ
B

+φc Ro, ξð Þ�Ωτ (18.2.10)

and φc(Ro,ξ) is the azimuthal location of the blade planform relative to the blade lead-

ing edge for blade number s¼1, and xo is its downstream location.

This result is further simplified by introducing the direction cosines of the loading

vector in cylindrical coordinates. Since the loading is normal to the blade planform

when viscous stresses are ignored (which will be reasonable for high Reynolds num-

ber flows) we find that

f sð Þ
x Ro, ξ, τð Þ¼Δp sð Þ Ro, ξ, τð Þcos βo f sð Þ

φ Ro, ξ, τð Þ¼Δp sð Þ Ro, ξ, τð Þsin βo
where Δp(s)(Ro,ξ,τ) is the magnitude of the pressure jump across the blade surface at

the distance ξ from the leading edge at radius Ro. This enables the evaluation of

Eq. (18.2.9) as

P loadingð Þ
mn ¼�

XB
s¼1

ðT
�T

ð
Σs

m sin βo=Ro�μ�mn cos βo
� �

Ψmn Roð ÞΔp sð Þ ξ, Ro, τð Þ
4πΛmnkmn

eiωτ�imφs τð Þ + iμ�mnxodΣdτ (18.2.11)

This result applies to both fan tone noise and broadband noise and requires the eval-

uation of the unsteady loading on the blade planform.

This result is very similar to the result given by Eqs. (4.7.10)–(4.7.12) in which the
far field radiation from unsteady loading on a flat plate was directly related to the

wavenumber transform of the unsteady pressure jump across the plate. The difference

here is that the blade planform is in a circular duct and includes curvature to allow for

the camber of the blades.

18.2.3 Fan tone noise

Fan tone noise is the result of blade loadings that are periodic in time and sowe can eval-

uate Eq. (18.2.11) by using a Fourier series expansion of the loadingmagnitude. Further-

more, if each blade is identical and passes through the same inflowdisturbance then each

blade loading will be the same, but shifted in time by the blade passing interval, so

Δp sð Þ Ro, ξ, τð Þ¼Δp 1ð Þ Ro, ξ, τ�2π s�1ð Þ=BΩð Þ

The Fourier series expansion of the blade loads then takes the form

Δp sð Þ Ro, ξ, τð Þ¼
X∞
p¼�∞

Fp Ro, ξð ÞeipΩτ�2πip s�1ð Þ=B (18.2.12)
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Using this expression in Eq. (18.2.11) and substituting for φs from Eq. (18.2.10) gives

P loadingð Þ
mn ¼ �

X∞
p¼�∞

1

2Λmnkmn

� � XB
s¼1

, e�2πi m + pð Þ s�1ð Þ=B
( )

�
ð
Σo τð Þ

m sin βo
Ro

�μ�mn cos βo

� �
Fp Ro, ξð ÞΨmn Roð Þe�imφc + iμ

�
mnxodΣ yð Þ

� 1

2π

ðT
�T

ei ω+ m+ pð ÞΩð Þτdτ

As with the thickness noise case the summation over the blades is only nonzero if

m + p¼ jB

which restricts the mode order m to specific values of p and j. This is referred to as the
Tyler Sofrin condition. Also we note that in this case the integral over source time

gives a Dirac delta function δ(ω+(m+p)Ω) and when this is used in Eq. (18.2.3)

we obtain a result similar to Eq. (18.2.7)

p0 x, tð Þ¼
X∞
p¼�∞

X∞
j¼�∞

X∞
n¼0

BjB,p,nΨ jB�p,n Rð Þei jB�pð Þφ�iχ�jB,p,nx+ ijBΩt (18.2.13)

where

BjB,p,n

¼ �1

2Λmnkmn

� �ð
Σ

m sin βo
Ro

�μ�mn cos βo

� �
Fp Ro, ξð ÞΨmn Roð Þe�imφc + iμ

�
mnxodΣ yð Þ


 �
ω¼�jBΩ

m¼jB�p

and

χ�jB,p,n ¼ μ�jB�p,n

h i
ω¼�jBΩ

(18.2.14)

As with the thickness noise example we have an expression for fan tone noise that

is the superposition of harmonic waves and causes fan tones at multiples of the

blade passing frequency BΩ. However, unlike thickness noise there are multiple

azimuthal modes that exist at any blade passing frequency, one for each value of

the integer p. However, not all of these modes will propagate and we can use the

criteria developed in Chapter 17 to determine the propagating modes. This

requires that jka/βj> jmj at each frequency where m is the mode order, given

in this case by m¼ jB�p. The frequency of the tone associated with this mode

is jBΩ and so we require that
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jB
Ωa

βc∞

� �����
����> jB�pj j

Consequently, for values of the integer p that satisfy the criterion

jB�p

jB

����
����< Ωa

βc∞
(18.2.15)

the duct modes will propagate. This is an important result because it shows the range

of Fourier coefficients of the unsteady loading that will excite propagating modes in

the duct. In the low Mach number limit only a few modes for which jpj is approxi-
mately equal to jjBj will propagate, but when Ωa/c∞β approaches one a much larger

number of modes are cut on. Clearly if the loading harmonics can be controlled so that

the amplitudes of the Fourier coefficients are small for propagating modes then sig-

nificant noise reductions can be achieved. For example, if a fan is operating down-

stream of a set of fixed guide vanes that introduce a velocity disturbance in the

flow that is periodic, then the unsteady part of the flow incident on the fan will have

the same periodicity. The time period for the loading on each blade will repeat at inter-

vals of 2π/ΩV where V is the number of upstream guide vanes and it follows that

Δp 1ð Þ Ro, ξ, τð Þ¼
X∞
k¼�∞

FkV Ro, ξð Þe�ikVΩτ

which implies that the integer p in Eq. (18.2.12) will only take on values that are inte-
ger multiples of the vane number V. We can then use Eq. (18.2.15) to find a suitable

choice of V and B can eliminate many propagating modes.

The worst case occurs whenB¼V because then there will always be an integer k¼ j
that meets the criterion for propagation given by Eq. (18.2.15). This is referred to

as the plane wave mode because m¼ jB�kV¼0, and has no azimuthal variation.

In contrast, if there are five guide vanes and three blades and the tip Mach number

is 0.35 then for blade passing harmonics j¼1, 2, 3 we find that the criterion for prop-

agation is not met for the first harmonic but is met for values of k¼1 for the second

harmonic and k¼2 for the third harmonic of blade passing frequency. This example

shows that by choosing the blade and vane numbers correctly the unsteady loading at

the lower harmonics can be eliminated as a source of sound, which is clearly important

in fan design.

18.2.4 In duct sound power

The duct mode amplitudes given by Eq. (18.2.13) for unsteady loading sources can be

used in Eq. (17.5.3) to obtain the sound power in the duct. This is useful because, in the

absence of reflections at the duct exit the modal sound power gives a direct measure of

the far field sound. In Eq. (17.5.3) the sound power in each duct mode depends on the

mode amplitude expressed as a velocity potential. The relationship to modes defined
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in terms of pressure amplitude is given by Eq. (18.2.4). However, some caution needs

to be used in directly applying these results because the analysis given has not con-

sidered the blade response function, which is different for each of the duct modes, and

this issue will be addressed in the next section.

18.3 The cascade blade response function

In the previous section we showed that the duct mode amplitudes in a cylindrical duct

could be related to the distribution of unsteady loading, per unit area, on the planform

of the fan blades or stator vanes. To predict the noise from ducted fans that may

include a set of fixed stators, we need to calculate the unsteady loading, and this will

depend on the response of the blades or stators to incoming perturbations to the mean

flow. In ducted fans that have two stages (either the fan upstream of a set of stator

vanes or a set of stator vanes upstream of a fan) the most significant unsteady flow

will be caused by the wake of the upstream stage, and so we are most concerned with

the unsteady loading on the downstream stage caused by the wake flow. The problem

can be split into two parts: (i) the response of the downstream fan or stator to an arbi-

trary inflow disturbance and (ii) the specification of the unsteady inflow to the down-

stream stage caused by the upstream stage. In this section we will consider the

response of a blade row to an arbitrary inflow disturbance and this will be followed

in the subsequent sections by models of the unsteady inflow.

In Chapter 14 we discussed the details of the unsteady loading on a single blade in

response to an arbitrary gust. For ducted blade rows the problem is significantly dif-

ferent in two respects. First, the duct will control the characteristics of the sound field,

requiring it to match boundary conditions on the duct walls and to be periodic in the

azimuthal direction. This leads to propagating and nonpropagating modes that do not

occur in an open rotor situation, but are a central part of the problem for ducted fans.

Second, the blade count on ducted fans is usually large and so the solidity of the fan or

stator is high. This means that adjacent blades tend to overlap and that sound waves

can be trapped in the gaps between the blades (see Fig. 18.4). This will always occur if

the blade spacing is small enough that d<c, as shown in Fig. 18.4. The trapped waves
significantly alter the response of a blade row to an incoming gust and its coupling

with the acoustic waves that propagate up or downstream.

The complete solution for the response of a fan or stator to an incoming gust can be

obtained using the linearized Euler equations (Eqs. 6.1.8, 6.1.12). However, analytical

solutions to these equations in cylindrical coordinates, for a spinning fan and/or a

swirling mean flow, have not been obtained. Numerical solutions to this problem

are given by Atassi et al. [8] and Montgomery and Verdon [9]. Atassi and Golubev

[10] also identify the importance of almost vortical waves and almost acoustic waves

in a swirling mean flow and their numerical approaches allow for the inclusion of real

blade geometries and transonic flow Mach numbers.

To obtain insight into the characteristics of the blade response an analytical

approach is required. One approximation is to treat each radial blade section sepa-

rately and calculate its response to the local unsteady inflow. However, this does
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not allow the scattered field to satisfy the nonpenetration boundary conditions on the

rest of the blade, which may include significant twist. To address this problem Cooper

and Peake [11] developed an approach based onmatched asymptotic expansions using

a rectilinear model for the local blade response function and matching the output to the

duct modes in the high frequency limit. The advantage of the rectilinear cascade

model is that a complete solution can be obtained for an arbitrary gust, and the char-

acteristics of the radiated sound field can be related to the duct and mean flow param-

eters. This provides some important insights into the problems that are not readily

apparent in approximate solutions. Therefore in the following sections we will discuss

the rectilinear cascade model in detail, and then, in Section 18.4, we will show how the

rectilinear cascade matches the field in a cylindrical duct in the high frequency limit.

18.3.1 The rectilinear cascade model

The rectilinear cascade model is shown in Fig. 18.5. Each blade is assumed to be of

zero thickness and infinite span, but may be restricted to a finite span between rigid

plates for specific problems discussed later in this section. The blade chord is aligned

Ue

d

c

s

Fig. 18.4 A set of overlapping blades in a typical fan or stator set. The blades are overlapped

if d<c.
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with the mean flow, which is of speed Ue in the x direction. The effect of blade thick-
ness and camber are assumed to be of second order, as discussed in earlier chapters

where a flat plate was used to model an airfoil of finite thickness at an angle of attack

to the flow.

The blades are numbered n¼0,�1,�2,�3 and the coordinate system has its origin

at the leading edge of the blade n¼0. The blades are separated in the direction normal

to the flow by the distance h and the leading edge of the nth blade lies at x¼nd. The
blade chord is c and for the blades to be overlapped we require that d<c. The distance
between the leading edges is s¼ (h2+d2)1/2 and comparing Figs. 18.4 and 18.5 shows

the equivalence of the rectilinear model to the blade row in cylindrical coordinates in

the duct.

We will assume that the unsteady inflow to the blade causes a velocity perturbation

w which may be of general form, and that we can expand it as a harmonic function of

space and time such that the upwash normal to the blade surfaces is given by

w � n¼woe
�iωt + ik1x + ik2y + ik3z (18.3.1)

To satisfy the Kutta condition a wake is shed from the trailing edge of each blade, as

shown in Fig. 18.5, and we will assume that the wake cannot support a pressure jump.

The nonpenetration boundary condition and the Kutta condition define the bound-

ary conditions of the problem and can be combined with the linearized Euler equations

n = 0

n = –2

n = –1

Ue

Wake

n = 1

h

d

x

y

c

x

y

z

Fig. 18.5 The rectilinear cascade in uniform flow.
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(see Section 13.3.1) to give the pressure and velocity perturbations throughout the

fluid in terms of a velocity potential that is a solution to

1

c2∞

D2
∞ϕ

Dt2
�r2ϕ¼ 0

D∞ϕ

Dt
¼ @ϕ

@t
+Ue

@ϕ

@x
(18.3.2)

The pressure perturbation in the flow is given by p0 ¼�ρoD∞ϕ=Dt and the boundary

condition on each blade surface requires that

@ϕ

@y
+w � n¼ 0 (18.3.3)

so that for a harmonic gust given by Eq. (18.3.1) we have

@ϕ

@y


 �
nd<x<nd + c

y¼nh

¼�wo e�iωt+ ik1x + ink2h+ ik3z
� 	

nd<x<nd + c
(18.3.4)

This shows that the upwash on each blade has the same amplitude and is shifted in

phase by nk1d+nk2h¼nσ where σ¼k1d+k2h is referred to as the interblade

phase angle.

To find a solution to Eq. (18.3.2) we note that tomatch the nonpenetration boundary

condition on the blade surfaces the velocity potential must be harmonic in time and, if

the flow speed is independent of the span, then the potential is also harmonic in the

spanwise direction. We can then seek a solution for the velocity potential in the form

ϕ x, tð Þ¼ ϕ̂ x, yð Þe�iωt+ ik3z (18.3.5)

where ϕ̂ x, yð Þ is the two dimensional potential that satisfies the wave equation given

by Eq. (18.3.2),

β2
@2ϕ̂

@x2
+ 2ikM

@ϕ̂

@x
+
@2ϕ̂

@y2
+ k2� k23
� �

ϕ̂¼ 0 (18.3.6)

where β2 ¼ 1�M2, M¼Ue/c∞, and k¼ω/c∞.
In Section 13.2 we solved this equation for a single blade by noting that the potential

was discontinuous across the blade surface on y¼0 and finding solutions for y>0 and

y<0. In this case we have an infinite number of discontinuous sheets, each of which

representsablade surfaceandhas itsownacoustic field.Thesolution is thereforeobtained

by superimposing the solutions for eachblade.Following the steps betweenEqs. (13.3.4),

(13.3.5) we obtain the solution to the wave equation for a blade row as

ϕ̂ x, yð Þ¼
X∞
n¼�∞

sgn y�nhð Þ
ð∞
�∞

Cn αð Þeiζjy�nhj�iαxdα (18.3.7)
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where 2Cn(α) represents the Fourier transform of the potential jump across blade num-

ber n. In this section we have chosen to be consistent with Ref. [12] and use a different
convention for the Fourier transform, changing the sign of α and defining the propa-

gation of waves away from the plate in terms of a wavenumber

ζ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω+ αUeð Þ2=c2∞�α2� k23

q
(18.3.8)

where the branch cut is chosen so that ζ has a positive imaginary part.

Since the amplitude of the upwash at each blade is identical and has a phase shift of

nσ, and the leading edge of each blade is at x¼nd, we can define the potential jump on

each blade using a single function D(α,k1,σ) for a specific gust as

Cn αð Þ¼ 1

2
D α, k1, σð Þeinσ + inαd

(where we have introduced a factor of 2 so that D(α,k1,σ) is the Fourier transform of

the potential jump over each blade), so

ϕ̂ x, yð Þ¼ 1

2

X∞
n¼�∞

sgn y�nhð Þ
ð∞
�∞

D α, k1, σð Þeiζjy�nhj�iα x�ndð Þ + inσdα (18.3.9)

This shows that the solution is identical in each layer nh<y< (n+1)h relative to the

leading edge of blade number n, provided the interblade phase angle is correctly

accounted for.

To solve Eq. (18.3.9) for the unknown functionD(α,k1,σ) we need to match it to the

boundary conditions. Since there is only one variable we can use the boundary con-

dition on one blade alone to obtain this solution. Using Eq. (18.3.4) for y¼0+ and

0<x<c we find that

woe
ik1x ¼�1

2

ð∞
�∞

D α, k1, σð Þ
X∞
n¼�∞

, i,ζ,eiζjnhj+ in αd + σð Þ
( )

e�iαxdα 0< x< c

We can then rearrange this equation so that it is in a form suitable for solution using the

Weiner Hopf method, so

woe
ik1x ¼�2π

ð∞
�∞

D α, k1, σð Þj αð Þe�iαxdα 0< x< c (18.3.10)

and

j αð Þ¼ iζ

4π

X∞
n¼�∞

eiζjnhj + in αd + σð Þ (18.3.11)
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We have now defined a boundary value problem that is of the same form as the edge

scattering problem discussed in Chapter 13. As before the boundary condition given

by Eq. (18.3.10) is only defined over a limited range 0<x<c and so the integral in this
equation cannot be inverted to obtain the unknown function D(α,k1,σ). However, we
have defined D(α,k1,σ) as the Fourier transform of the jump in potential across y¼0,

and so the jump in potential across blade n¼0 is

Δϕ̂ xð Þ¼
ð∞
�∞

D α, k1, σð Þe�iαxdα (18.3.12)

which is zero when x<0. This provides an additional boundary condition that can be

used to complete the solution. As in Chapter 13 we can use the Weiner Hopf method

to solve this problem, but only for semi-infinite surfaces. The application of this

method to blades of finite chord requires a step by step solution. The first step is

to find a solution for the case when the chord c is infinite, and the second step is

to add a correction that ensures there is no pressure jump across the wake down-

stream of the trailing edge so that the Kutta condition is satisfied. The first step

is a well-defined Weiner Hopf problem with a known solution. The second step

can be solved by using the same approach with the rigid surface extending upstream

of the trailing edge to upstream infinity, �∞<x<c, and requiring that the potential
jump across the wake c<x<∞ exactly cancels the pressure jump caused by the

solution to the first step. This corrects the first solution so the Kutta condition is sat-

isfied but also introduces a discontinuity of potential upstream of the leading edge

where x¼0. The process therefore has to be repeated by adding additional solutions

that cancel the jumps in potential upstream of the leading edge or the pressure jump

across the wake. The full solution is given in Ref. [12] and the results are summa-

rized in Appendix C.

18.3.2 The acoustic duct modes

To obtain the acoustic field from a stationary cascade the summation and integral in

Eq. (18.3.9) need to be evaluated. The solution is given in Ref. [12] as

ϕ̂ x, yð Þ¼�wo

βse

X∞
m¼�∞

πζ�mD λ�m , k1, σ
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e � f 2m

p
( )

ei σ�2πmð Þy=h�iλ�m x�yd=hð Þ

κe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2o� k3=βð Þ2

q
fm ¼ σ + koMd�2πmð Þ=se

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 + hβð Þ2

q
λ�m ¼ koM� fm sin χe� cos χe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e � f 2m

p
(18.3.13)

and M is the mean flow Mach number relative to the blade, β¼ (1�M2)1/2, ko¼
ω/c∞β

2, χe¼ tan�1(hβ/d), and ζm
�¼β(κe

2� (λm
��koM)2)1/2. The blade spacing

and stagger angle is defined in Fig. 18.5.

In the result given by Eq. (18.3.13) the terms in {} represent the amplitude of each

mode of propagation, while the phase terms give the spatial dependence of the modes.
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Surfaces of constant x�yd/h are parallel to the fan face shown in Fig. 18.4 and so λm
� is

the wavenumber of propagation up or downstream in duct-based coordinates.When λm
�

is imaginary themodes are cut off and this occurswhen fm>κe.From this expression it is

also possible to obtain the upstream or downstream sound power for a harmonic gust by

integrating over a surface where x�yd/h is constant as described in Chapter 17:

W� ωð Þ¼ w2
o

2

� �
ωρoBsb

βsse

X∞
m¼�∞

Re
πζ�mD λ�m , k1, σ

� ��� ��2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e � f 2m

p
" #

(18.3.14)

In this expression (wo
2 /2) represents the mean square magnitude of the harmonic

upwash component incident on the cascade.

In Eq. (18.3.14) each of the terms inside the summation sign represents the modal

sound power, and this will only be nonzero if κe> fm. Therefore, for modes to be cut

on, the effective wavenumber κe must exceed a certain value which is determined by

the interblade phase angle, the Mach number, and the mode order. The modal sound

power would appear to be infinite at cut on, but this is not the case because the blade

response function tends to zero at cut on and so the radiated sound power remains

finite. This is illustrated in Fig. 18.6A which shows the downstream sound power

for the first three modes for a set of stator vanes. Note that no sound power is generated

below the cut on frequency for each mode, and that the sound power remains finite at

the cut on frequency in each case. The first mode also generates very little power at

nondimensional frequencies between 13 and 14. This occurs when the direction of

propagation of the mode is aligned with the blade chord and so the acoustic dipoles

on the blade surface do not contribute to the acoustic field for that mode.

The effective wavenumber κe that controls the cut on characteristics increases with
frequency, but also depends on the spanwise wavenumber. Gusts with significant

spanwise variations will cut on at higher frequencies than gusts with no spanwise var-

iations. Fig. 18.6B shows the modal sound power output as a function of spanwise

wavenumber for a fixed frequency. At this frequency the second mode has more sound

power than the first mode at zero spanwise wavenumber, but not necessarily at all

spanwise wavenumbers. Notice that as the first mode cuts off the sound power is trans-

ferred to the second mode at the cut off wavenumber. In a two dimensional model the

spanwise variation of the gust is ignored, and it is assumed that κε¼κ, so the cut on

frequency of each mode is only a function of the mode order and interblade phase

angle. Fig. 18.6B shows that significant errors could result from this approximation,

especially in broadband noise modeling where the spanwise variations of the gusts are

very significant.

18.3.3 The acoustic modes from an arbitrary gust

The theory described in Section 18.3.2 gives the sound radiation from a cascade of

blades in response to an incident harmonic vortical gust which is convected with

the flow. To apply this theory to broadband noise the gust must be defined in a more

general form and is also required to satisfy various boundary conditions. The first

modification we will impose is that the cascade is bounded by rigid end walls (see
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Fig. 18.6 (A) Downstream sound power for the first three modes for a set of stator vanes.

(B) Modal sound power output as a function of spanwise wavenumber for a fixed frequency

(M¼0.3, χ¼40 degrees, s/c¼0.6, and σ¼3π/4).
Reproduced with permission from S.A.L. Glegg, The response of a swept blade row to a

three-dimensional gust, J. Sound Vib. 227 (1999) 29–64.
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Fig. 18.7) and so both the acoustic field and the incoming gust must satisfy the non-

penetration condition at these boundaries. Secondly the cascade flow represents an

unwrapped version of a blade row in a cylindrical duct, and so must be periodic in

the azimuthal direction. Finally, we will assume that the gust is convected with the

mean flow at a uniform speed.

To develop a flow model which satisfies these conditions we will only consider a

set of stator vanes and assume that the turbulent gust is convected by the mean flow

with velocity V. The flow speed relative to the blade is then obtained as V¼ (Ue,0,0)

defined in (x,y,z) coordinates (see Fig. 18.5). The gust must be periodic (repeating

itself after B blade passages), and is described as having an upwash velocityX∞

m¼�∞
wo x�mdð Þ, where d¼ (Bd,Bh,0). Using this approach the gust wo(x) is zero

unless 0<y<Bh. The unsteady upwash relative to the blades is then

n �w x, tð Þ¼
X∞

m¼�∞
wo x�md�Vtð Þ (18.3.15)

For a vortical gust between two parallel end walls the flow components parallel to

the walls can be described by a Fourier cosine series expansion, so in general we

can write

wo x, y, zð Þ¼
ððX∞

n¼0

eewn k1, k2ð Þeik1x + ik2yεn cos nπz

H

� �
dk1dk2 (18.3.16)

where H is the height of the annulus and εn¼1 for n>0 and εo¼1/2. The integrand is

defined as the wavenumber transform of w(x) in the form

eewn k1, k2ð Þ¼ 2

2πð Þ2H

ðR
�R

ðBh
0

ðH
0

w x, y, zð Þ e�ik1x�ik2y cos nπz=Hð Þdxdydz (18.3.17)

The upwash is then obtained as

Ue

End walls

H

x
y

z

Fig. 18.7 The rectilinear cascade between rigid end walls.
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n �w x, tð Þ¼
ððX∞

n¼0

X∞
m¼�∞

eewn k1, k2ð Þeik1 x�Uet�mBdð Þ + ik2 y�mBhð Þεn cos nπz=Hð Þdk1dk2

(18.3.18)

Making use of the Poisson sum formula

X∞
m¼�∞

e�ik1mBd�ik2mBh ¼ 2π
X∞
k¼�∞

δ k1Bd + k2Bh�2πkð Þ (18.3.19)

and integrating over k2 gives

n �w x, tð Þ
¼ 2π

Bh

ð∞
�∞

X∞
n¼0

X∞
k¼�∞

eewn k1,
2πk

Bh
� k1d

h

� �
eik1 x�Uetð Þ + i 2πk

Bh
� k1d

h

� �
yεn cos nπz=Hð Þdk1

(18.3.20)

If we define ω¼k1Ue then we obtain the upwash velocity at the blade as

n �w x, tð Þ¼
X∞
n¼0

X∞
k¼�∞

ð∞
�∞

wkn ωð Þ e�iωt+ ik1 x�yd=hð Þ+ 2πiky=Bhεn cos nπz=Hð Þdω

(18.3.21)

where

wkn ωð Þ¼ 2π

BhUe

eewn k1,
2πk

Bh
� k1d

h

� �
¼ 1

πBhHUe

ðR
�R

ðBh
0

ðH
0

w xð Þ

e�ik1 x�yd=hð Þ�2πiky=Bh cos nπz=Hð Þdxdydz (18.3.22)

Eq. (18.3.21) gives a Fourier series expansion of the incoming vortical gust that satisfies

the periodicity condition and the endwall boundary conditions. Note that x�yd/h is con-
stant at the blade leading edges and so the interblade phase angle of the gust is σ¼2πk/B.

To obtain the acoustic field from this gust we can combine Eq. (18.3.13) with

Eq. (18.3.22) to give

ϕ x, tð Þ¼�1

βse

X∞
m¼�∞

X∞
k¼�∞

X∞
n¼0

ð∞
�∞

T kð Þ
mn ωð Þwkn ωð Þ

e�iωt+ i σ�2πmð Þy=h�iλ�m x�yd=hð Þεn cos
nπz

H

� �
dω

where T kð Þ
mn ωð Þ¼ πζ�mD λ�m ,ω=Ue,σ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e � f 2m

p
 !

ð18:3:23Þ

as the amplitude of a mode of orderm with a spanwise mode ordern and an interblade

phase angle 2πk/B. The computation of the triple summation in this expression can be
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simplified by using the property that Tmn
(k)¼Ton

(k+mB). Then if we introduce the integer

variable p¼mB�k it follows thatσ�2πm¼�2πp/B.We can thenwrite Eq.(18.3.23) as

ϕ¼ �1

βse

X∞
p¼�∞

X∞
n¼0

εn cos nπz=Hð Þ
ð∞
�∞

T
pð Þ
0n ωð Þ

X∞
m¼�∞

, wmB�p,n, ωð Þ
( )

e�iωt+ 2πipy=hÞ=Bs�iλ�m x�yd=hð Þdω

(18.3.24)

In an equivalent annular system, the azimuthal coordinate θ is related to y by

2πy/Bh¼θ on a surface where x�yd/h is constant, and so the integer p defines the

mode order in the cylindrical coordinate system. Also note that the summation over

m is only required over the gust coefficients and not over the blade response terms

which simplifies the evaluation of Eq. (18.3.24).

18.3.4 The sound power spectrum

For a periodic gust the sound power for each mode is given by Eq. (18.3.14). However,

for a stochastic input, such as broadband noise we need to calculate the sound power

spectral density which is defined in a moving fluid as

SWW ωð Þ¼ π

T
Ex W� ωð Þ½ � (18.3.25)

As in Eq. (18.3.14) the modes are orthogonal and contribute independently to the sound

power giving

SWW ωð Þ¼ ρoBsHUe

2

X∞
m¼�∞

X∞
k¼�∞

X∞
n¼0

H kð Þ
mn ωð ÞEkn ωð Þ

where H kð Þ
mn ωð Þ¼Re

ω πζ�mD λ�m ,ω=Ue,σ
� ��� ��2

Ueβsse
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e � f 2m

p
 !

and Ekn ωð Þ¼ εn
π

T
Ex wkn ωð Þj j2
h i

(18.3.26)

Using H kð Þ
mn ¼H

k +mBð Þ
0n we find

SWW ωoð Þ¼ ρoBsbUe

2

X
p,n

H
pð Þ
0n ωð Þ

X
m

EmB�p,n ωð Þ
( )

(18.3.27)

The evaluation of this expression is dependent on the definition of the disturbance

spectrum function Ekn(ω) which is obtained from Eq. (18.3.22), which gives,
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Ekn ωð Þ¼ εn

π BhHUeð Þ2T

ðBh
0

ðH
0

ðBh
0

ðH
0

ðR
�R

ðR
�R

Ex wo xð Þwo x1ð Þ½ �

eiω x�x1ð Þ=Ue + i 2πk +ωBd=Ueð Þ y�y1ð Þ=Bh

cos nπz=Hð Þ cos nπz1=Hð Þdxdx1dzdydz1dy1 (18.3.28)

where the extent of the flow in the x direction is�Rwhere R tends to infinity. Defining

T¼R/Ue and using the results of Chapter 9 shows that the integrals in Eq. (18.3.28)

define the wavenumber spectrum of the turbulence, and so we find that

Ekn ωð Þ¼ 2πð Þ2
UeBhH

Φww �k1,2πk=Bh+ k1d=h,nπ=Hð Þ k1 ¼ω=Ue (18.3.29)

These results give a complete set of equations for the sound power from a linear cas-

cade subject to an arbitrary inflow disturbance. They may be used for both broadband

noise and tone noise (see Section 18.6) and will be discussed in more detail in the

subsequent sections.

18.4 The rectilinear model of a rotor or stator in a
cylindrical duct

18.4.1 Mode matching

In the previous section we solved the compressible flow boundary value problem for a

blade row in a rectilinear duct subject to an unsteady velocity perturbation. In practice

we are more often concerned with a fan or a set of stator vanes in a cylindrical duct,

and the question arises as to whether the rectilinear model can be used to model the

blade response in cylindrical coordinates. There are some significant differences

between these two geometries which are highlighted by the wave equation in cylin-

drical coordinates for a steady mean axial flow with solid body rotation, which is

1

c2∞

D2
∞ϕ

Dt2
�@2ϕ

@x2o
� 1

R2

@2ϕ

@φ2
� 1

R

@ϕ

@R
�@2ϕ

@R2
¼ 0

D∞ϕ

Dt2
¼ @ϕ

@t
+U

@ϕ

@xo
+Ω

@ϕ

@φ

where (R,φ,xo) are the cylindrical coordinates defined in Fig. 17.2, U is the axial flow

speed, andΩ is the angular velocity of the mean flow. The boundary condition on each

blade surface requires that

cos βo
@ϕ

@x
+
sin βo
R

@ϕ

@φ
+w � n¼ 0 (18.4.1)

where w defines the incident unsteady disturbance and n¼ (0,sin βo,cos βo) is the

normal to the blade planform as defined in Fig. 18.3.

If we consider a cylindrical duct with a center body as shown in Fig. 17.2B with an

inner radius b and an outer radius a then we can define a set of coordinates
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ξ1 ¼ x, ξ2 ¼Rcφ, ξ3 ¼R�b

where Rc¼ (a+b)/2 is the mean radius of the duct. In terms of these coordinates the

wave equation becomes

1

c2∞

D2
∞ϕ

Dt2
�@2ϕ

@ξ2i
¼ 1

R2
� 1

R2
c

� �
@2ϕ

@φ2
+
1

R

@ϕ

@R
(18.4.2)

where

D∞ϕ

Dt
¼ @ϕ

@t
+U

@ϕ

@ξ1
+ΩRc

@ϕ

@ξ2

The terms on the left side of the wave equation given by Eq. (18.4.2) are identical to

the wave equation in rectilinear coordinates (ξ1,ξ2,ξ3) aligned with the axial flow. For
a duct mode with azimuthal order m and radial wavenumber αmn the order of magni-

tude of the terms on the right side of Eq. (18.4.2) will be

m2 1

R2
� 1

R2
c

� �
ϕ+

αmnϕ

R

while terms on the left are of order O(k2ϕ). In general, the terms on the right will be

small compared to the terms on the left provided that

kað Þ2≫ ma

R

� �2
1�R2

R2
c

����
����+ αmna2

R

The largest error occurs when R¼b and so this criterion will apply when

kbð Þ2≫m2 + αmnb (18.4.3)

In a cylindrical duct, acoustic modes will only propagate if the frequency is above cut

off which requires that ka>αmnβa>mβ so the limit set by Eq. (18.4.3) will be met for

modes that are well above cut off of the lowest order radial mode provided that b/a is
not too small. This criterion can also be expressed in terms of the blade number and the

blade tip Mach numberMtip¼Ωa/c∞ whereΩ is the shaft rotation speed. At the blade

passing frequency ka¼BMtip and so the criterion (18.4.3) is met for fans with a large

number of blades providing BMtip≫ma/b. In this limit the rectilinear approximation

of the wave equation in a cylindrical duct appears to be correct to first order.

In addition to the approximation of the wave equation the boundary condition on

the blade surface is not matched exactly by the rectilinear model. Expressing

Eq. (18.4.1) in the rectilinear coordinate system leads to
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cos χ
@ϕ

@ξ1
+ sin χ

Rc

R

� �2
@ϕ

@ξ2
¼�w � n Ue Rð ÞRc

Ue Rcð ÞR
� �

(18.4.4)

where tan βo¼U/ΩR, U2
e ¼U2 + ΩRð Þ2, and tan χ¼U/ΩRc. We can rearrange this as

cos χ
@ϕ

@ξ1
+ sin χ

@ϕ

@ξ2
��w � n Ue Rð ÞRc

Ue Rcð ÞR
� �

+ sin χ
@ϕ

@ξ2
1�R2

R2
c

� �

and since @ϕ=@ξ2≪@ϕ=@ξ1 for well cut on modes for which ka¼BMtip≫ma/b, the
second term on the right can be dropped leading to a boundary condition that is inde-

pendent of radius, provided that the gust amplitude is corrected as in Eq. (18.4.4).

It follows that the wave field in a rectilinear duct is representative of the waves in a

cylindrical duct with a center body, at least in the high frequency limit or when blade

count is large. The advantage of this approximation is that there is a complete solution to

the boundary value problem for the blade response function in the rectilinear duct that is

self consistent, but this is not the case for the cylindrical duct. Other approaches to solv-

ing this problem include using strip theory in which the blade loading at each spanwise

location is modeled by a two dimensional blade response function.While this allows for

the details of the gust and blade section to be included in themodel it leads to amismatch

with the dispersion relationship that can cause large errors at the cut off frequency of the

higher order modes. To overcome this issue Cooper and Peake [11] used a matching

technique on a surface just upstream of the blade row. The rectilinear model described

above was used to obtain the acoustic near field just upstream of the blade row, and then

a least squares optimizationwas used tomatch the near field to the ductmodes in a cylin-

drical duct. One of the features of Cooper and Peake’s model was that the matching was

only carried out for propagating acoustic modes and so numerical errors associated with

the nonpropagatingmodes was eliminated. A similar justification can be used in the rec-

tilinear model if only the sound power output of the modes is considered. Small errors in

amplitude will tend to be smoothed out by averaging the acoustic intensity over the duct

cross section and so it can be argued that the sound power estimate using the rectilinear

model will match the sound power in the cylindrical duct more accurately than the

acoustic mode amplitude, which is consistent with the scaling approach used by Cooper

and Peake [11].

18.4.2 An axial dipole example

To illustrate this equivalence consider a stationary point dipole source with its axis

parallel to the duct axis in the annular duct described above. The acoustic field is given

by the derivative of the Green’s function specified in cylindrical coordinates by

Eq. (17.4.2), and gives, for a source at y¼(Ro,0,0)

@ eGe

@x
¼�

X∞
m¼�∞

X∞
n¼1

μ�mn
� 	cylψmn Rð Þψmn Roð Þeimφ+ i μ�mn½ �cylx

2Λmn kmn½ �cyl (18.4.5)
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where the wavenumbers for the annular duct have been specifically identified by the

brackets []cyl.
For the annular duct it was shown in Section 17.2, Eq. (17.2.14), that

ψmn Rð Þ� Rc

2R

� �1=2

cos nπ R�bð Þ=Hð Þ (18.4.6)

where H¼a�b is the width of the annulus and the mode normalization factor is

Λmn½ �cyl ¼
ða
b

ð2π
0

jψmnj2RdRdφ¼ πRcH

and the wavenumber is

μ�mn
� 	cyl ¼�kM� kmn½ �cyl

β2
, kmn½ �cyl ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βnπ=kHð Þ2

q
(18.4.7)

If the same source is placed in a rectilinear duct with the same heightH and a cross axis

dimension L¼2πRc then the sound field is given by the derivative of the Green’s

function for rectangular duct modes. For the source located at (0,0,ξ3
(o)) we obtain

@ eGe

@x
¼�

X∞
m¼�∞

X∞
n¼1

μ�mn
� 	rec ψmn ξ3ð Þ½ �rec ψmn ξ oð Þ

3

� �h irec
e2πimξ2=L+ i μ

�
mn½ �recξ1

2 Λmn½ �rec kmn½ �rec
(18.4.8)

where the mode shape for a rectangular duct is [ψmn(ξ3)]
rec¼cos(nπξ3/H) and the

normalization is Λmn½ �rec ¼HL=2
To show the equivalence of this result with the field in the cylindrical duct

substitute ξ1¼x, ξ2¼φRc, ξ3¼R�b, and L¼2πRc. The mode normalization factors

and the phase terms match exactly in each case, but the mode amplitudes differ by a

factor of

�kM� kmn½ �rec kmn½ �cyl
�kM� kmn½ �cyl kmn½ �rec

ffiffiffiffiffiffiffiffi
RRo

R2
c

s
(18.4.9)

For the rectilinear duct we have that

kmn½ �rec ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βnπ=kHð Þ2� βmπ=kLð Þ2

q

which when compared to Eq. (18.4.7) shows that the wavenumbers are almost iden-

tical in the limit that βmπ/kL≪1 which occurs at frequencies well above cut on fre-

quency of the radial mode. However, close to the cut on frequency the error may be
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large because the modes in the rectangular duct will cut on at a lower frequency than

the modes in the cylindrical duct.

The amplitude ratio (18.4.9) shows that the modal amplitudes are similar in each

case with an error that tends to zero for well cut on modes and a factor that depends on

the source position in the duct. For broadband sources that are uniformly distributed

across the duct the factor of √Ro/Rc will average to a factor close to one so the main

source of error is the mismatch in wavenumbers close to the cut on frequency of the

radial modes. However, the modal sound power tends to zero at this frequency and so

the largest error tends to occur where the sound power is zero anyway. Remarkably

therefore the rectilinear model of the annular duct has a well defined and simple cor-

rection factor to give the mode amplitudes for a dipole source in an annular duct at

frequencies not close to cut off, and can be used quite accurately.

18.5 Wake evolution in swirling flows

The dominant source of noise from high bypass ratio turbofan engines is the inter-

action of the wake from the fan with downstream stator vanes. The wake originates

at the trailing edges of the fan blades and evolves as a function of distance down-

stream. To correctly calculate the interaction noise caused by the stator vanes the

wake propagation must be correctly estimated. This is a nontrivial problem because

there is also a mean swirling flow downstream of the fan associated with axial

vorticity that is concentrated in the blade wakes, and this swirl can be an important

contributor to the evolution of the wakes and thus the unsteady flow that impacts the

stator vanes.

To illustrate how wakes propagate in a swirling mean flow consider the idealized

situations illustrated in Fig. 18.8. Fig. 18.8A and B illustrates the evolution of a

fan-blade in a nonrotating flow. In this case the wake remains in the same plane as

it started and evolves in an approximately self-similar manner as discussed in

Chapter 9. If a solid body rotation is added to the mean flow, or the fan rotates, then

the wake follows a helical path as shown in Fig. 18.8C and D. At the downstream posi-

tion shown in Fig. 18.8D the wake is still radial, but no longer in the plane in which it

started. A more complex situation occurs when the swirling flow includes both solid

body rotation and a flow component that is represented by an irrotational vortex, so the

azimuthal velocity isUφ¼ΩoR�Γ/2πR. In this case the wake is distorted as shown in
Fig. 18.8E and no longer lies along a radial line at the downstream position.

We can estimate the impact of the swirl on the velocity perturbation in the wake by

considering its evolution using Cauchy’s equation, which was derived in Chapter 6.

It was shown that the vorticity at a downstream location ω was related to its initial

value ω(∞) by the solution to the vorticity equation that may be written in the form

ω x, tð Þ¼ δl ið Þ

hi
ω ∞ð Þ
i X� iU∞tð Þ (18.5.1)
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where X represents drift coordinates and the vectors δl(i ) are the sides of the material

volume as shown in Fig. 6.3. In the case of a wake that is initiated along a radial line

the initial vorticity is primarily in the radial direction. There is also streamwise vor-

ticity produced by the spanwise shedding of lift from the blades that contributes to the

rotational component of the overall swirl. Near the spanwise ends of the blade this

vorticity can become concentrated into hub and tip vortices that cause an unsteady

flow near the duct walls.

Consider the fate of the vorticity under the action of this swirl. If the swirl approx-

imates a solid body rotation, as shown in Fig. 18.8D, then the vortex lines remain

radial or streamwise and are not stretched by the mean flow. However, if the angular

velocity of the swirl varies significantly with radius then an initially radial material

line in the wake will be rotated as shown in Fig. 18.9, to an angle βv to the radial direc-
tion. Consequently, the initially radial vorticity of the wake will be reoriented to have

both radial and azimuthal components. Since there is no radial mean flow in this ide-

alized view, the radial extent of the material lines will be unchanged by this distortion

so that the radial component of the vector material volume length δl(R) remains con-

stant. Consequently, the overall cross-sectional length of these material lines will be

(A) (B)

(C) (D)

(E) (F)

Fig. 18.8 Wake evolution in a swirling flow downstream of a fan blade. (A) No rotation, 3D

view and (B) downstream cross-sectional view. (C) Fan blade rotation at angular speed Ω in a

swirling flow in solid body rotation with angular speed Ωo, 3D view and (D) downstream

cross-sectional view. (E) Effect of swirling flow Uφ¼ΩoR�Γ/2πR on wake shape, 3D view

and (F) downstream cross-sectional view.
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increased by a factor of (1+ tan2βv)
1/2¼ sec βv and, by Eq. (18.5.1), the strength of the

initially radial vorticity must be increased by the same factor. The swirl therefore

amplifies the cross-plane vorticity in the wake as well as changing its structure. This

amplification tends to increase the streamwise velocity deficit in the wake, countering

its turbulent decay. Note that if the axial mean flow velocity downstream of the fan

varies radially, the initially radial wake vorticity will suffer a similar distortion that

will tend to reorient it into the axial direction.

It was shown in Chapter 9 that the wake downstream of an airfoil of large span was

self similar and can be modeled as having a streamwise mean-velocity distribution,

u ξ, xð Þ¼U∞�Uw xð Þe� ξ=Lw xð Þð Þ2 (18.5.2)

where x is the distance downstream of the trailing edge, ξ is the distance from the cen-

terline of the wake andUw(x) is the centerline velocity deficit. The lengthscale Lw(x) is
the wake half width which increases as (x�xc)

1/2 where xc is a reference location near
the trailing edge. The continuity of the mass flux requires that Uw(x)Lw(x) is constant.
This provides a simple model for the velocity deficit in the wake that can be used as an

input to rotor stator interaction noise calculations.

In a swirling flow the streamwise decay of a fan-blade wake can impact the axial

vorticity embedded within it. As the velocity deficit in the wake decays in the down-

stream direction the material volume of the particles in the wake must be stretched as

illustrated in Fig. 18.10 (note this is the same effect of the stretching shown in Fig. 6.4

because the velocity on the centerline of the wake U∞�Uw(x) increases with x). The
amount of stretching that takes place is given by

δl 1ð Þ�� ��
h1

¼U∞�Uw xð Þ
U∞�Uw 0ð Þ> 1 (18.5.3)

To ensure that the material volume remains constant, there must be a simultaneous

contraction of the streamlines as the wake evolves, which is indicative of particles

dl(R)

bv

Fig. 18.9 Distortion of a material volume by a swirling flow.
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being entrained into the wake. The effect of the stretching is therefore to rotate the

diagonal of the material volume is illustrated in Fig. 18.10. As a consequence the

mean axial vorticity will also be rotated so as to have an azimuthal component that

will be experienced as a disturbance when it encounters a downstream stator. In the

far wake Uw(x) tends to zero and so Eq. (18.5.3) shows that the stretching asymptotes

to a constant value that depends on U∞/(U∞�Uw(0)) and is independent of down-

stream distance. Consequently, in a swirling mean flow, the axial vorticity field in

the far wake will be distorted in a way that retains a characteristic of the initial wake

deficit.

The discussion above describes some of the issues with wake evolution and dem-

onstrates how the swirl in the flow can affect the velocity deficit in the far wake. More

detailed discussion of these effects are given by Cooper and Peake [11] who give a

high frequency asymptotic method for calculating the evolution of the wake. To obtain

greater accuracy a fully viscous RANS calculation of the mean flow can provide the

details of the wakes downstream of the fan and this is the accepted approach for

calculating the velocity deficits in the wakes as they enter a downstream set of

stator vanes.

18.6 Fan tone noise

As described in Section 18.1 fan noise can be either tonal or broadband. Tone noise is

caused by the blades or stators being subjected to a periodic disturbance that causes

sound radiation at the blade passing frequencies. In this section we will use the rec-

tilinear cascade model to calculate the amplitude of each mode in the duct that is

u

u

Axial material line

Fig. 18.10 The evolution of the material volume on the centerline of a wake in a swirling flow

shown along a helical line of constant radius.
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caused by the interaction of the mean blade wakes that are incident on a set of down-

stream stator vanes. It will be assumed that there are B identical blades in the fan that

are incident on a stator with V vanes and that the mean-velocity deficit in the blade

wakes is given by the self-similar wake profile specified by Eq. (18.5.2).

18.6.1 The upwash coefficients

The acoustic power in each mode was defined by Eq. (18.3.14) for a harmonic gust of

the type

w � n¼woe
�iωt+ ik1x + ik2y + ik3z

in the coordinate system defined in Fig. 18.5. To determine the mode amplitudes

for tone noise caused by regular blade wakes we need to determine the wave ampli-

tudes and wavenumbers that correspond to a suitable model of the blade wakes. In

general, the wakes can be defined in the (ξ01,ξ
0
2,ξ

0
3) coordinates illustrated in

Fig. 18.11.

ξ′2

′1ξ

Ue

s

xy

θs

λw

WR

WRθs

Uc

co

Fig. 18.11 The geometry for a set of blade wakes incident on a set of fixed stator vanes.
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This figure depicts a set of parallel rotor wakes that are rotating with angular speed

Ω at a radius R. The wakes are aligned at an angle θs to the duct axis to account for

swirl and the local convection velocity is Uc along the wakes. It is assumed that the

wakes are evolving slowly so that there is no change in perturbation velocity in the ξ01
direction. The wakes are identical so the perturbation velocity is periodic and the dis-

tance between the wakes normal to the axis of the duct is λw, and is equal to the blade
spacing of the upstream fan. Consequently, the perturbation velocity w will be

periodic in the ξ02 direction with a period given by λwcos θs.
In addition we will assume that the wakes are trapped by the end walls of an annular

duct and can be described by a set of modes that satisfies the duct wall boundary condi-

tions and, if we assume the wakes are incompressible, are divergence free. The velocity

component will then have its own modal shape, and the components normal to the duct

walls must be zero. The perturbation velocity can then be expanded in a Fourier series

w � n¼
X∞
j¼�∞

X∞
n¼0

wnj cos
nπξ’3
H

� �
e2πijξ

’

2=λW cosθs (18.6.1)

To calculate the upwash on the blades and the wavenumbers of the gust we need to

express the ξ02coordinate in terms of the x and y coordinate that are aligned with the

vanes, as shown in Fig. 18.11. A rotation of the axes and a correction for the motion of

the wakes relative to the stationary frame of reference gives

ξ02 ¼ x�Uetð Þ sin χo + y cos χo
The periodicity of the wakes is determined by the rotational speed of the fan Ω, the

swirl speed isΩo, and the axial flow speedUwhich convects the wakes downstream of

the fan. If there was no swirl then the stator vanes would be aligned with the duct axis,

but in the presence of swirl they have a finite pitch angle. Taking this into account

Fig. 18.11 shows that the angle of the wake to the axial flow direction and the resolved

flow speeds are given by

θs ¼ tan�1 Ω�Ωoð ÞR
U

� �
Ue ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 +Ω2

oR
2

q
Ue sin χo ¼ΩR cos θs

Substituting for sin χo and noting that if there are B blades on the fan then the

periodicity of the wakes requires that Bλw¼2πR, we obtain

ξ02
λw cos θs

¼ BΩ

2πUe
x�Uet + y cot χoð Þ

Consequently, the upwash on the blade for which y¼0 is given as

w � n¼�
X∞
j¼�∞

X∞
n¼0

wjn cos
nπz

H

� �
e�ijBΩ t�x=Ueð Þ (18.6.2)

494 Rotating Blades and Duct Acoustics



The blade wakes therefore excite the stator vanes at frequencies jBΩ which

are multiples of the blade passing frequency and the upwash is expanded in a

harmonic series that is consiste nt with the inputs required in Section 18.3.

For each blade we can also calculate the interblade phase angle. Since the distance

between the vane leading edges gives a displacement in ξ02 ¼ s cos θs we obtain the

phase shift of the gust between each blade passage as

σ¼ 2πjs=λw

This further simplifies if there are B wakes so λw¼2πR/B and V stator vanes so

s¼2πR/V giving

σ¼ 2πjB=V (18.6.3)

for each coefficient j.
We can then use these results in Eq. (18.3.14) to obtain the sound power in

each mode for a harmonic gust so that the modal sound power is (in terms of the

coefficients defined in Eq. (18.3.27)), is

W� ¼ ρoVsbUe

2

X∞
p¼�∞

X∞
n¼0

εnH
pð Þ
0n jBΩð Þ

X∞
m¼�∞

jwmV�pj2 (18.6.4)

18.6.2 Unskewed self-similar wakes

To estimate rotor stator interaction noise we need to specify the Fourier series coef-

ficients wjn. For wakes that are unskewed as shown in Fig. 18.8C and D, only the n¼0

term is excited and we can obtain the Fourier series coefficients from a simple model

of the wake deficit. In Chapter 9 we showed that wakes were in general self similar and

well modeled by the function

u ξ01, ξ
0
2

� �¼U∞�Uw ξ01
� �

e�ξ
02
2 =L

2
w ξ1ð Þ

In general, the velocity deficit UWðξ01Þ and the wake half width LWðξ01Þ are slowly

varying and so can be taken as constant in the evaluation of the Fourier series

coefficients. Since there are multiple wakes and the axis of the wake makes an

angle χo with the mean flow direction we can specify the upwash velocity on each

blade as

w � n¼Uw sin χo
X∞

m¼�∞
e� ξ’2 +mλw=cosθsð Þ2=L2w
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The Fourier series coefficients in Eq. (18.6.1) are then determined as

wj0 ¼Uw sin χo
λw cos θs

X∞
m¼�∞

ð λw cosθsð Þ=2

� λw cosθsð Þ=2
e� ξ02�mλw cosθsð Þ2=L2w�2πijξ02=λw cosθsdξ02

¼Uw sin χo
λw cos θs

ð∞
�∞

e�ξ
02
2 =L

2
w�2πijξ02=λw cosθsdξ02

¼Uw sin χo
ffiffiffi
π

p
e� jπLw=λw cosθsð Þ2

This result highlights the relative importance of the wake width Lw and the wake spac-
ing λw. For narrow wakes that are widely spaced a large number of terms will contrib-

ute to the unsteady load. However, if the wake is dispersed so that Lw approaches the

value of λw then the number of terms that have significant amplitudes are greatly

reduced.

To illustrate this point Fig. 18.12 shows the effect of increasing the wake width on

the magnitude of the upwash harmonics plotted on a dB scale. It is seen that the levels

of each harmonic decay rapidly as the wake width is increased, and so filling in the

wakes can effectively reduce the tone noise from a fan dramatically. Conversely very

narrow wakes can increase the levels significantly. The corresponding effect on the

radiated sound power is shown in Fig. 18.13.
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Fig. 18.12 The upwash velocity coefficients for different wake widths in dB for different

harmonics for Lw/λwcosθs¼0.1, 0.2, and 0.3.
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18.7 Broadband fan noise

In Section 18.3 we showed that the power spectrum from a fan or set of stator vanes for

an arbitrary gust was defined by Eq. (18.3.27) as

SWW ωoð Þ¼ ρoBsbU

2

X
p,n

H
pð Þ
0n ωð Þ

X
m

,Ep�mB,n, ωð Þ
( )

(18.3.27)

This represents a double summation of the product of two terms. Those terms which are

embraced using {} represent the influence of the turbulence model on the result. The

terms outside the braces represent the blade response to the turbulence and give the radi-

ated sound power for eachmode, where p represents the azimuthal mode order and n the
radial mode order. The definition of the functionH0n

(p) can be found in Eq. (18.3.27) and

the definition of the function Ekn for a turbulent flow is given by Eq. (18.3.29) as

Ekn ωð Þ¼ 2πð Þ2δ
UBhb2

Φww �γo,2πk=Bh + γod=h,0ð Þ (18.3.29)

where Φww is the wavenumber spectrum of the incoming turbulence. Various empir-

ical models are available for the wavenumber spectra of the turbulent flow. The most
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Fig. 18.13 The normalized tone sound power levels for a set of blade wakes incident

on a fan showing the effect of increase in the wake width. The blade wake spectrum is based

on a wake width ratio of Lw/λwcos θs¼0.4 (circles) and Lw/λwcos θs¼0.1 (squares).
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commonly used is the isotropic von Kármán spectrum, Eq. (9.1.8), which is rewritten

here as

Φww kx, ky, kz
� �¼ �w255Γ 5=6ð Þ

k3e9
ffiffiffi
π

p
Γ 1=3ð Þ

� � 1� k2y=k
2
s

� �
k2s =k

2
e

� �
4π 1 + k2s =k

2
e

� �17=6
0
@

1
A

ke ¼
ffiffiffi
π

p
Lf

Γ 5=6ð Þ
Γ 1=3ð Þ k2s ¼ k2x + k

2
y + k

2
z

(18.7.1)

The important issue here is that the wavenumber spectrum depends on only two

parameters, ks and 1 � k2y=k
2
s

� �
, which, by using the parameters required for the

evaluation of Eq. (18.3.29) become, after some manipulation,

ks ¼ ω

Uo

� �2

+
2π p�mBð Þ

Bs

� �2
" #1=2

1� k2y
k2s

¼ ω

ksU

� �2

(18.7.2)

where Uo¼Uecos χ is the flow velocity along the axis of the duct. The wavenumber

spectrum is a maximum when ks is smallest and the result given in Eq. (18.7.2) shows

that this will occur when p¼mB.
The characteristics of the inflow turbulence are changed if the turbulence is

anisotropic. This can be modeled by introducing different lengthscales for different

directions. In general, if the turbulence lengthscale is stretched in a particular direc-

tion then, to ensure the flow remains divergenceless, the turbulence intensity in that

direction must be increased by the same ratio. An expression for the wavenumber

spectrum for anisotropic turbulence Φij
(A) can then be obtained from the isotropic

wavenumber spectrum Φij by using the lengthscales Li in each direction and the

wavenumber k
Að Þ
i ¼ k1L1=Lo,k2L2=Lo,k3L3=Loð Þ where Lo is a reference lengthscale.

The result is

Φ Að Þ
ij kð Þ¼ L1L2L3

L3o

LiLjΦij k
Að Þ� �

L2o

" #
ij

(18.7.3)

where no summation of repeated indices is implied for the term in square brackets

given by []ij. In this case we assume that the stretching takes place in the

direction of the axial flow in the duct which lies at an angle χ to the x axis in

Fig. 18.11. In this case, using the parameters required for (Eq. 18.7.3) we find k
Að Þ
i ¼

�ωL1=UoLo,2π p � mBð ÞL2=BsLo,0ð Þ and so the anisotropic spectrum can be evalu-

ated by multiplying Φww by (L1L2L3/Lo
3) and using
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k
Að Þ
s ¼ ωL1

UoLo

� �2

+
2π p�mBð ÞL2

BsLo

� �2
" #1=2

1� k2y
k2s

 ! Að Þ
¼ ωL1L2

k
Að Þ
s UL2o

 !2 (18.7.4)

Increasing the lengthscale in the axial flow direction relative to the lengthscale in the

cross flow direction will cause L1>L2 and so ks
(A) will be influenced more strongly by

the frequency dependent factor.

To illustrate themodal soundpowerdistribution forbroadbandnoise fromaset of stator

vanesdownstreamofa fan,Fig. 18.14showsamodalplotof the soundpower foreachspin-

ning mode, propagating in the downstream direction from the fan. The contribution from

each radial mode has been summed to give the power in each spinning mode order. The

vertical axis shows frequency and the horizontal axis shows the spinning mode order.

The spectrum is given by summing themodal powers for each frequency. The plot shows

that thepower is concentrated incertainbandsof spinningmodesand thecorotatingmodes

that spin in the same direction as the fan tends to dominate for this configuration. The plot

also shows howmore andmore spinningmodes cut on as the frequency increases, and that

thesoundpower levels in themodes that are just cuton(at theedgesof the inverted triangle)

can be dominant. This result emphasizes the importance of correctlymodeling broadband

noise predictions at frequencies close to cut off.
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Fig. 18.14 A spinning mode plot showing the sound power in each spinning mode for a high

bypass ratio turbofan engine. The vertical scale shows the frequency and the horizontal

scale shows the spinning mode order. The number of modes that are cut on and radiate nonzero

power increases with the frequency.
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Appendix A: Nomenclature

A.1 Symbol conventions, symbol modifiers, and Fourier
transforms

Vectors are denoted using a bold character, such as x for position vector, or in terms of

their Cartesian components, e.g., x1, x2, x3, or xi. Tensors are denoted in terms of their

Cartesian components using double subscript notation, for example, pij for the com-

pressive stress tensor.

In general, the mean value of a variable is denoted using subscript “o” (as in the

mean pressure, po), or using the expected value operator denoted as E[ ] or using

an overbar (as in the mean square pressure fluctuation, p02 ). The fluctuating part of

a variable is indicated using a prime, as in the fluctuating density ρ0 ¼ρ�ρo. For some

common variables special symbols are defined for the mean and fluctuating parts that

do not follow these conventions. For example, Ui and ui for the mean and fluctuating

velocity components, respectively. The estimated value of a variable or statistic (used
in discussing measurements) is indicated by triangular brackets, as in the estimated

value of the mean square velocity fluctuation u21

D E
. The dot accent is used to indicate

partial derivative with respect to time, as in the time rate of change of velocity poten-

tial, _ϕ.
In certain situations, most notably Lighthill’s analogy, variations in the thermody-

namic variables are properly referenced to their ambient values indicated using an

infinity subscript, for example ρ∞. In these circumstances, the prime is used to indi-

cate variation from the ambient value, e.g., ρ0 ¼ρ�ρ∞. The text has been written to

make clear which meaning of the prime is intended whenever the distinction is

significant.

The complex amplitude is indicated using a caret accent, as in the pressure ampli-

tude of a harmonic wave p̂ where p0 ¼ p̂e�iωt. The time Fourier transform is indicated

using a tilde accent, and a wavenumber transform is indicated using a double tilde

accent. We repeat here the Fourier transform definitions used in this book (also given

in Chapters 1 and 3) for easy reference. Specifically, we define the Fourier transform
of a time history as

ep ωð Þ ¼ 1

2π

ðT
�T

p0 tð Þeiωtdt



where T tends to infinity, and the inverse Fourier transform as

p0 tð Þ¼
ð∞
�∞

ep ωð Þe�iωtdω

where ω is angular frequency and we are using the symbol i to represent the square

root of �1. We define the one-dimensional Fourier transform of a variation over
distance as

f
�

k1ð Þ¼ 1

2π

ðR∞

�R∞

f x1ð Þe�ik1x1dx1

where R∞ tends to infinity, and the inverse transform as

f x1ð Þ¼
ð∞
�∞

f
�
k1ð Þeik1x1dk1

with two and three dimensional forms that are the result of repeated application of the

above two expressions. Here k1 is the wavenumber in the x1 direction. Note that in the
forward time transform the exponent is positive, whereas it is negative in the forward

spatial transform. Thus the four-fold Fourier transform of a quantity a( ) varying in

space and time would be calculated as,

a
�

k,ωð Þ¼ 1

2πð Þ4
ðR∞

�R∞

ðR∞

�R∞

ðR∞

�R∞

ðT
�T

a x, tð Þeiωt�ik � xdtdx1dx2dx3

In other texts or fields of study the convention used for the fourfold Fourier transform

is often different. Most importantly some more mathematically oriented texts, such as

the book by Noble [1] on the Weiner Hopf Method, the exponent +iωt+ ik�x is used,

and the factors of 2π may be shifted to the inverse transform, or replaced by √2π in

both the transform and inverse transform. The final results of any derivation may of

course be used to obtain the results in another convention by changing the sign of k (or

ω or multiplying by factors of 2π, etc.). However, some care needs to be exercised if

the result includes a multivalued function for which a branch cut has been defined,

such as in the results presented in Chapter 13.

A.2 Symbols used

Symbols used are tabulated below in alphabetical order with Roman symbols listed

before Greek symbols, and lower-case characters before upper case.
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Symbol Definition

a Distance, representing;

Airfoil semichord

Radius of small sphere, Sections 3.4 and 3.5

Streamwise spacing between shed vortices, Section 7.4

Duct outer radius, Fig. 17.2B

Amplitude of undisturbed gust, representing;

Velocity, Eq. (6.3.4)

Velocity potential, Eq. (13.4.1)

b Distance representing;

Span

Duct inner radius, Fig. 17.2B

b, bj Spectral densities of the output of a phased array at the jth focus point,
Eqs. (12.2.7), (12.3.4)

c Airfoil chord length

Local unsteady speed of sound

cm Weighting function, Chapter 12

cn Fourier coefficients of sound from a rotor blade, Eq. (16.3.5)

co Speed of sound

cp Specific heat at constant pressure

cv Specific heat at constant volume

c∞ Free stream or ambient sound speed

d Distance, representing;

Semispan

Distance between monopole sources

Radial position of line vortex, Section 7.2

Cylinder diameter, Section 7.4

Pinhole diameter, Section 10.4

Source separation, Fig. 12.4

Chordwise blade displacement, Fig. 18.4

e Specific internal energy

e Viscous force per unit mass

eT Specific total energy

f Frequency in Hz

f(r) Longitudinal correlation function of homogeneous turbulence,

Section 9.1

f(x,t) Scalar function defining a surface, Section 5.1

fi Rotor blade surface loading per unit area, Section 16.2.1
�f i Normalized frequency 2πωδi*/U, Eq. (15.3.2)
fn Third octave band mid-band frequency

fs Sampling frequency

g(r) Lateral correlation function of homogeneous turbulence, Section 9.1

g(1) First order leading edge blade response function, Eq. (13.4.5)

g(1+2) Second order leading edge blade response function, Eq. (13.4.6)

gte Trailing edge blade response function, Eq. (13.3.9)
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h Specific enthalpy

Distance, representing

Off center position of shed vortex, Section 7.4

Off chord position of incident vortex, Section 7.5

Test section height, Section 10.1

x2 distance between source and shear layer, Section 10.2, Fig. 10.17

Cavity depth, Section 10.4

Perpendicular distance from source to array, Fig. 12.4

Vortex-blade separation, Fig. 14.7

Root-mean-square roughness height, Eq. (15.4.22)

Rotor blade thickness, Chapter 16

Cascade blade spacing, Fig. 18.5

hi Initial length of material volume i
ho Mean specific enthalpy

h∞ Free stream specific enthalpy

i Square root of �1

i, j, k Unit vectors in directions x1, x2, x3
k Acoustic wavenumber

Turbulence wavenumber magnitude, Section 9.1

k(o) Acoustic wavenumber vector in the direction of the observer,

Eq. (4.7.8)

k(w) Wavenumber vector of sinusoidal ribs (k1
(w), 0,k3

(w)), Eq. (15.4.28)

k, ki Wavenumber vector

k1
(o) Streamwise acoustic wavenumber with Prandtl Glauert scaling,

Eq. (6.5.6)

k13
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 + k

2
3

p
k3
(o) Spanwise acoustic wavenumber with Prandtl Glauert scaling,

Eq. (6.5.6)

ke Wavenumber scale of the largest eddies, Eq. (9.1.9)

Kn( ) Modified Bessel function of the second kind of order n
ko Acoustic wavenumber with Prandtl Glauert scaling, Eq. (6.5.6)

lp(ω) Frequency-dependent spanwise pressure lengthscale, Eq. (15.2.12)

m Azimuthal mode order, Eq. (17.2.2)

n, ni Surface normal unit vector

Unit vector normal to a streamline in two dimensions, Fig. 6.3

n Radial mode order, Section 17.2.2

n(o), nj
(o) Unit outward normal vector

p Pressure

p Vector of Fourier transforms of measured microphone signals,

Eq. (12.2.15)

p0 Pressure fluctuation, pressure perturbation

p̂ Complex amplitude of the acoustic pressure

pbl Boundary layer pressure fluctuation in the absence of the trailing edge,

Section 15.2

pc Corrected sound pressure, Section 10.2

pi Incident acoustic pressure

pij Compressive stress tensor, pδij�σij
pm Measured sound pressure, Section 10.2
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po Mean pressure

pref Reference pressure

prms Root mean square pressure

ps Scattered acoustic pressure, Section 3.5

pt Sound pressure just after refraction, Section 10.2

p∞ Free stream or ambient pressure

q, qn Time Fourier transform of effective source strengths, Eq. (12.2.2) and

Section 12.2.7, diagonal elements of B

qm Radial phase function, Eq. (17.6.3)

r Radial coordinate, radial distance

rc Corrected propagation distance of measured sound, Fig. 10.17

re Observer radius with Prandtl Glauert scaling, Eq. (6.5.5)

rg Source to observer distance with Prandtl Glauert scaling, Eq. (6.5.3)

rm Observer distance from source, Fig. 10.17

ro Distance to flow origin in distortion example, Section 6.3

Distance from source to array center, Chapter 12

rr Distance from the retarded source position to the observer, Figs. 15.3

and 15.6

ry Distance of the source point from the trailing edge, Fig. 15.1

s Specific entropy

Distance traveled by shed vortex, Section 7.4

Laplace transform frequency, Chapter 13

Blade index number, Chapter 18

Blade spacing, Fig. 18.4

s Unit vector along a streamline in two-dimensions, Fig. 6.3

t Time, observer time

t Unit vector out of plane of flow of Fig.6.3, s�n

tg Observer time with Prandtl Glauert scaling, Eq. (6.5.1)

u Scale of velocity fluctuation due to largest eddies, Section 8.1

u( ) Time varying convection speed of shed vortex during acceleration,

Section 7.4

u(∞), ui
(∞) Undisturbed gust velocity at the inflow boundary, Eq. (6.2.6)

u(g) Goldstein’s velocity perturbation, Eq. (6.1.9)

u(h) Goldstein’s composite velocity perturbation, Eq. (6.1.12)

u, ui Velocity fluctuation

u+ Mean velocity in boundary layer inner variables, Eq. (9.2.15)

u2 Upwash velocity of gust, Eq. (14.1.7)

un Surface normal velocity fluctuation

Velocity component in direction of separation distance, Section 9.1

uo Surface velocity of sphere, Eq. (3.4.1)

ur Velocity fluctuation in the direction perpendicular to the trailing edge,

Fig. 15.1

us Velocity component normal to direction of separation distance,

Section 9.1

ut Velocity component normal to direction of separation distance and us,
Section 9.1

uη Kolmogorov velocity scale, Section 8.1

uτ Friction velocity, Section 9.2.2
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v̂ Complex amplitude of the acoustic velocity

v, vi Velocity vector

vo Amplitude of sphere oscillations, Section 3.4

vr, vθ Polar velocity components aligned with the trailing edge, Fig. 15.1

w Complex potential, Eq. (2.7.10)

w0 Complex velocity, Eq. (2.7.11)

w( ) Window function

w, wi Deviation of the velocity from U
∞ð Þ
ieew2

Planar wavenumber transform of u2(y1, 0, y3), Eq. (14.1.10)

wc
0 Convection velocity in the mapped domain, Section 2.7

wm
( j ) Array steering vector for microphone m and focus point j, Eq. (12.2.4)

wo Amplitude of step gust

x, xi Position, far-field position of observer

x Axial duct coordinate, Fig. 17.2A

x0 Observer position in frame moving with uniform flow, Eq. (5.4.1)

x, x0 Cascade chordwise position, Fig. 18.5 and Fig. 18.7

x+
2 Distance from the wall in inner variables, Eq. (9.2.15)

xo Downstream-pointing axial location, Fig. 18.1

y, yi Position, near-field position of source

y0 Observer position in frame moving with uniform flow, Eq. (5.4.1)

y, y0 Cascade blade-normal position, Fig. 18.5 and Fig. 18.7

y(c) Centroid of noise generating surface

y(v) Line vortex coordinate, Section 7.2

z, zi Position, moving coordinates, rotor blade based coordinates

z Complex coordinate, x1+ ix2, y1+ iy2
Liner acoustic impedance, Section 17.3

z Unit vector aligned with line vortex, Fig. 14.7

A Acoustic wave amplitude, Eq. (3.3.1)

Pinhole area, Section 10.4

Wavenumber multiplier, Eq. (13.3.9)

A( ) Fourier transform of the scattered pressure, Eq. (13.2.7)

A�( ), A+( ) Half-range Fourier transforms of the scattered pressure, Eqs. (13.2.8),

(13.2.9)

Amn Duct mode amplitude, Chapter 17

B Integer factor used in frequency averaging, Section 11.6.1

Parameter equal to Uc= c∞ 1�M2
� �� �

, Eq. (15.2.11)

Number of blades, Chapters 16 and 18

B Matrix of estimated source auto and cross spectra from which the

source image is extracted, Eq. (12.2.18)

B( ) Component function of the wavenumber transform of the scattered

field, Section 13.2.2

C, Cmn Cross-spectral matrix of microphone signals, Eqs. (12.2.8), (12.2.16)

C�( ), C+( ) Half-range Fourier transform of the gradient of the scattered pressure,

Chapter 13

Cab Cospectrum between a and b, Section 8.4

Cd Drag coefficient of 2D body

Cf Friction coefficient Cf�τw=
1

2
ρU2

e
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CL Coefficient of fundamental of cylinder lift fluctuations

Cp Nondimensional acoustic pressure due to loading noise, Eq. (16.2.5)

Cq Nondimensional acoustic pressure due to thickness noise, Eq. (16.2.19)

D Cavity diameter, Section 10.4

D( ) Fourier transform of the potential jump across a blade, Eq. (18.3.9)

D/Dt Substantial derivative

Do/Dt Substantial derivative for convection with the mean flow

D∞/Dt Substantial derivative relative to uniform motion at U∞ or U
∞ð Þ
i

E Energy spectrum function of homogeneous turbulence

E[ ] Expected value

E2( ) Modified Fresnel integral function, Eq. (13.2.3)

F, Fi Force on the fluid (imposed by an aerodynamic body for example)

F2 Negative of the lift force on an airfoil

F�( ) Laplace transform of the scattered field in the limit as the x1 axis is
approached from the positive side for x1<0, Eq. (13.2.14)

F() Array sensitivity function, Chapter 12

F+( ) Laplace transform, with respect to x1 of the scattered field in the limit as

the x1 axis is approached from the positive side for x1>0,

Eq. (13.2.13)

FA, FB, FK1, FK2,

FΔK

Component parts of model trailing edge noise spectral forms Fi,

Section 15.3

Fi Model spectral forms for trailing edge noise spectra SPLi, Section 15.3

FD Rotor blade drag force due to an element of its span ΔR
Fjn Point spread function at focus point yj due to a source at yn,

Eq. (12.2.11)

FL Rotor blade thrust force due to an element of its span ΔR
G Green’s function, G(x,tjy,τ)
G Matrix of source Green’s functions, Eq. (12.2.15)

G�(s), G+(s) Positive and negative range Laplace transforms of the x2 gradient of the
scattered field, in the limit as the x1 axis is approached for x1<0,

Section 13.4.1

Gaa Single sided time autospectrum of quantity a, Section 8.4

Ge Green’s function in the fixed frame with a free stream, Eq. (5.4.2)

Gg Green’s function with Prandtl Glauert scaling, Eq. (6.5.1)

Go Free field Green’s function, Eq. (3.9.17)

Go
# Free field Green’s function for image sources in the wall, Eq. (4.5.3)

GT Tailored Green’s function, Section 4.5

H Stagnation enthalpy

Distance in x2 between source and observer, Fig. 10.17

H0 Stagnation enthalpy fluctuation

H( ), Hs( ) Heaviside step function

Hn
(1)( ) Hankel function of the first kind of order n

Ho Mean stagnation enthalpy

I Acoustic intensity vector E[(ρv)0H0], Eq. (2.6.16).
I Integrated source level, Section 12.3.5

Ir Radial component of the acoustic intensity vector

Jn( ) Bessel function of the first kind of order n
J+(s), J�(s) Factorizations of γ, Eq. (13.2.16)
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K1 ω/Uc

L Flow scale, representing

Size of the eddies

Lengthscale of the turbulence

Scale of the mean flow distortion

Vortex length

Pinhole depth (Section 10.4), microphone array length (Chapter 12)

L Amiet’s generalized lift function, Eq. (15.2.11)

Leff Effective pinhole depth, Section 10.4

Lf Longitudinal integral scale, Eq. (9.1.4)

Lg Lateral integral scale, Eq. (9.1.4)

Lij Integral scale of ui in direction xj, Eq. (8.4.29)
Lw Wake half width, Section 9.2.1

Streamwise gust scale, Eq. (14.1.2)

M Mach number

Mass of fluid oscillating in pinhole

Total number of array microphones, Chapter 12

Mr Mach number in direction of observer

Nrec Number of records used in spectral analysis, Chapter 11

Po Amplitude of pressure perturbation

Q Acoustic monopole strength

Q, Qi Heat flux vector, Section 2.6.1

Q, Qmn Cross-spectral matrix of source strengths, Eq. (12.2.17)

Q̂ Complex amplitude of the potential disturbance, Section 6.3

Qab Quadrature spectrum between a and b, Section 8.4

Qm,n Fourier series components of the rotor noise source term, Eq. (16.3.15)

R Gas constant

Distance, representing

Radius of circle, Section 2.7

Distance from rotor axis, Fig. 16.11

Radial distance from the duct axis, Fig. 17.2A

Shear layer reflection coefficient, reflected over incident pressure

amplitude

R∞ Distance interval of Fourier wavenumber transform chosen such that

�R∞ to R∞ encompasses the entire spatial variation

Raa Auto correlation function of quantity a, Eq. (8.4.3)
Rab Cross correlation function between a and b, Eq. (8.4.18)
Re Reynolds number, see Section 2.3.2

Red Cylinder diameter Reynolds number, Section 7.4

Reθ Boundary layer momentum thickness Reynolds number, Section 9.2.2

Rij Velocity correlation tensor, Section 8.4.3, Eq. (9.1.3)

Rn Radius segment in Amiet’s approximation, Eq. (16.4.4)

Rtip Rotor tip radius

S Surface, area

S( ) Sears function

S(ω) Normalized spectral shape function, Chapter 15

S(1) Unsteady lift per unit span as a function of frequency, Eq. (14.1.4)

Saa Double sided time autospectrum of quantity a, Eq. (8.4.2)
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Sab Cross spectral density between a and b, Eq. (8.4.20)
SFF Wavenumber frequency spectrum of the unsteady blade loading,

Eq. (14.3.1)

So Closed surface of integration in Ffowcs-Williams Hawkings equation,

Section 5.1

SPL Sound pressure level

SPLi One-third octave band spectra due to the suction (i¼ s) and pressure

(i¼p) side boundary layers, and angle of attack (i¼α), Section 15.3
SPLn nth band of one-third octave sound pressure level, Eq. (8.4.9)

Spp Far-field sound frequency spectrum

St Strouhal number

S∞ Exterior surface of infinite volume, Section 5.1

T Time period of Fourier frequency transform chosen such that �T to T
encompasses the entire time history

Time period of Green’s function integration (�T to T), Eq. (3.9.8)
Shear layer transmission coefficient, transmitted over incident pressure

amplitude

T Integral timescale, Eq. (8.4.5)

Te Temperature

Tij Lighthill stress tensor, Eq. (4.1.4)

To Total sampling time

Tp Rotor rotation period

Tv Thrust disturbance timescale, Eq. (16.2.7)

U Reference flow velocity

U, Ui Mean velocity

U∞ Nominal wind tunnel free stream velocity, Section 10.1

U ∞ð Þ, U ∞ð Þ
i

Constant velocity vector of uniformly moving medium, Eq. (4.2.3)

Uc Convection speed

Ue Boundary layer edge velocity

Uo Axial forward velocity of rotor, Fig. 16.11

Ur Source velocity in direction of observer

Us Translational velocity of surface, Eq. (5.2.11)

Velocity of shear layer surface wave, Eqs. (10.2.3), (10.2.4)

Uw Wake centerline velocity deficit, Section 9.2.1

U∞ Free stream velocity

V Volume

Number of stator vanes, Section 18.6

V, Vi Velocity of moving surface, Eq. (5.1.12)

Vb Blade velocity, Section 18.3.5

Vo Volume exterior to So in Ffowcs-Williams Hawkings equation,

Section 5.1

V∞ Infinite volume, Section 5.1

W Complex potential in the unmapped domain, Section 2.7

W0 Complex velocity in the unmapped domain, Section 2.7

Wa Expected acoustic sound power output, Eq. (2.6.14)

Wc
0 Convection velocity in the unmapped domain, Section 2.7

Wi Uniform axial flow, Chapter 18

Wm Array weighting for mth microphone, Chapter 12
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Ws Expected power generated due to steady contributions, Eq. (2.6.13)

WT Total power generated by a system, Eq. (2.6.11)

X1, X2, X3 Drift coordinates, Eq. (6.2.1)

Xm Axial dependency of ϕ̂m, Eq. (17.2.4)

Yi Kirchoff coordinates (Eq. 7.3.3)

Ym( ) Bessel function of the second kind of order m
α Free-stream angle, angle of attack, angle of surface

Wavenumber of the scattered pressure field in the x1 direction,
Eq. (13.2.4)

Wavenumber parameter for duct acoustics, Eq. (17.2.8)

α0 Wind tunnel geometric angle of attack, Section 10.1

αw Orientation of ribs in the y1y3 plane, Fig. 15.13
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
Negative of the zero lift angle of attack for a Joukowski foil, Section 2.7

βo Location on the real axis of the inverse Laplace transform, Eq. (13.2.15)

Blade pitch angle, Fig. 16.22

βa Nondimensional liner admittance, Eq. (17.3.5)

χmn Cut off ratio, Eq. (17.2.17)

χo Angle between wake and stator-relative flow direction, Fig. 18.11

θs Angle between wake and duct axis, Fig. 18.11

δ Boundary layer thickness

δ( ) Dirac delta function, Eq. (3.9.3)

δ(x) Dirac delta function (3D), Eq. (3.9.4)

δ* Boundary layer displacement thickness

δ[ ] Uncertainty interval

δH Far-field sound (in terms of stagnation enthalpy) from segment of

vortex pair, Section 7.2

δi* Trailing edge boundary layer displacement thickness for the suction

(i¼ s) and pressure (i¼p) sides, Section 15.3

δij Kronecker delta

δl(i ) Displacement coordinate giving the edge length of a material volume

δq Heat added per unit mass, Eq. (2.4.2)

δw Work done, per unit mass, Eq. (2.4.2)

ε Small parameter, number tending to zero

Rate of viscous dissipation per unit mass, Section 8.1

ϕ Velocity potential

Phase angle, Eq. (3.3.1)

Azimuthal rotor angle in the observer frame, Fig. 16.11

ϕo Azimuthal angle of rotor far-field observer, Eq. (16.3.10)

ϕ1 Azimuthal rotor angle in the blade frame, Fig. 16.11

ϕ22 Planar wavenumber upwash frequency spectrum

ϕij Planar wavenumber spectrum of uiuj, e.g., Eq. (8.4.32)
ϕLE, ϕTE Azimuthal angle of rotor blade leading and trailing edges, in the

blade-fixed frame

ϕ̂m
Complex Fourier coefficients of the velocity potential of the in-duct

sound field, Eq. (17.2.2)

ϕm Phase shift needed to steer array to direction θs, Chapter 12
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ϕqq Spanwise wavenumber transform of airfoil surface pressure jump,

Section 15.2

ϕr Out of plane directivity angle measured from the retarded source

position, Fig. 15.6

ϕv Angle between vortex and blade span, Fig. 14.7

ϕx Directivity angle measured from the trailing edge, Fig. 15.1

γ Ratio of specific heats

Combination of k and α, Eq. (13.2.5)
γab
2 Coherence spectrum between a and b, Eq. (8.4.23)

η Kolmogorov lengthscale, Section 8.1

Wake similarity coordinate x2/Lw, Section 9.2.1

φ Angle given by the gust wavenumbers scaled using Mach number,

Section 14.1.3

Azimuthal angle in duct, Fig. 17.2A

φe Angle of propagation of acoustic wave produced by gust,

Section 14.1.3

φij Wavenumber spectrum, e.g., Eq. (9.1.2)

κ von Karman constant, Eq. (9.2.18)

Magnitude of the wavenumber vector component in the x1, x2 plane
scaled on β2, Eq. (13.3.7)

Wavenumber parameter representing constant terms in Goldstein’s

equation for duct acoustics, see Eq. (17.2.6)

κ Product of the wavenumber vector and the drift gradient, Eq. (6.3.6)

Modified wavenumber, Eq. (15.4.17)

κe Turbulence kinetic energy, Eq. (8.3.3)

λ Acoustic wavelength

μ Dynamic viscosity

Angle of the observer to the path of the source, Eq. (5.3.6)

Scaled frequency, ko(1�M)c, Eq. (14.1.5)

μ, μ�mn Axial wavenumber of the in-duct sound field, Eqs. (17.2.7), (17.2.16)

μt Boussinesq eddy viscosity, Eq. (8.3.3)

ν Kinematic viscosity

θ Angle measured from the x1 axis, directivity angle

Polar angle in the complex plane, arctan(x2/x1), Section 2.7

Momentum thickness of a wake (Section 9.2.1) or boundary layer

(Eq. 9.2.9)

Angle subtended by source to array normal, Chapter 12

θo Polar angle of rotor far-field observer, Eq. (16.3.10)

θab Phase spectrum between a and b, Eq. (8.4.24)
θc Corrected directivity angle of measured sound, Fig. 10.17

θe Directivity angle, Eq. (14.2.7)

θι Incident wave polar angle, Fig. 10.16

θm Observer angle from source, Fig. 10.17

θr Reflected wave polar angle, Fig. 10.16

Directivity angle from the flow direction measured from the retarded

source position, Figs. 15.3 and 15.6

θs Direction in which array is steered, measured relative to array normal,

Chapter 12
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θt Transmitted wave polar angle, Fig. 10.16

θx Directivity angle in a plane perpendicular to the trailing edge, Fig. 15.1

θy Angle of the source point in a plane perpendicular to the trailing edge,

Fig. 15.1

ρ Density

ρ0 Density fluctuation, density perturbation

ρ∞ Free stream or ambient density

ρo Mean density

ρaa Correlation coefficient function of quantity a, Eq. (8.4.5)
ρab Cross correlation coefficient function between a and b, Eq. (8.4.19)
σ Reduced frequency ωa/U∞, nondimensional frequency

Interblade phase angle, Section 18.3

Distance along a streamline, Section 6.2

σij Viscous stress tensor

τ Time, source time

τ* Retarded time, Eq. (3.9.19)

τc Corrected time of measured sound, Section 10.2

τg Source time with Prandtl Glauert scaling, Eq. (6.5.1)

τη Kolmogorov timescale, Section 8.1

τm Time of measured sound, Section 10.2

Time segment in Amiet’s approximation for broadband rotor noise,

Eq. (16.4.4)

τw Viscous shear stress at a wall

υ Specific volume, Section 2.6

ω Angular frequency, radians per second

ω, ωι Vorticity, disturbance vorticity

ω(∞) Disturbance vorticity at the inflow boundary

ωo Vorticity of the mean flow

ωo Angular frequency of unsteady force, Section 5.3

ωn Natural frequency of microphone cavity, Section 10.4

ξ Shear layer displacement normal to the flow, Chapter 10

Rough surface height in the y2 direction, Fig. 15.10
Displacement at a liner surface, Eq. (17.3.1)

ξ1, ξ2 Position in the unmapped domain, Section 2.7

ξ1 Chordwise distance from the rotor blade leading edge

ξ1,ξ2,ξ3 Vortex aligned coordinates, Fig. 14.7

ξ01,ξ02,ξ03 Wake aligned coordinates, Fig. 18.11

ξ Observer position with Prandtl Glauert scaling, Eq. (6.5.1)

ψ1, ψ2, ψ Stream function, Eq. (2.7.1)

ψι Incident wave azimuthal angle, Fig. 10.16

ψm Radial dependency of ϕ̂m, Eq. (17.2.4)

ψ t Transmitted wave azimuthal angle, Fig. 10.16

ζ Complex coordinate in the unmapped domain, ξ1+ iξ2, Section 2.7

Source position with Prandtl Glauert scaling, Eq. (6.5.1)

Mach number parameter, Eq. (10.2.28)

Δp Pressure jump across the airfoil chord (upper minus lower surface)

Δt Sampling period

Δϕ Potential jump across the airfoil chord
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Reference

[1] B. Noble, Methods Based on the Wiener-Hopf Technique for the Solution of Partial

Differential Equations, Chelsea Publishing Company, New York, NY, 1958.

Δω Frequency resolution of numerical Fourier transform, Section 11.5

Φij Wavenumber frequency spectrum of uiuj, e.g., Eq. (8.4.33)
Φpp Wavenumber frequency spectrum of pressure, e.g., Eq. (8.4.35)

Γ Circulation, Eq. (2.7.3), line vortex strength

Wavenumber spectrum of roughness height normalized on h2,
Eq. (15.4.23)

Λ Nondimensional blade response function for acoustic far field,

Eq. (14.2.4)

Λo Sweep angle of the trailing edge, Fig. 15.1

Λmn Normalization parameter for ψm, Eqs. (17.2.11)

Σ Area of rough surface projected onto the y1y3 plane, Eq. (15.4.22)
Area measured on the rotor blade planform, Fig. 16.10

Σo Total planform area of rotor, Fig. 16.10

Ω Angular velocity of;

Surface about origin of z, Eq. (5.2.11)

Rotor, Fig. 16.11

Vortex pair system, Section 7.2

Angular frequency of fundamental of vortex shedding, Section 7.4

Ωo Sampling frequency in radians per second
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Appendix B: Branch cuts

We have frequently referred to choosing the correct branch cut to fully define a multi-

valued function. For example, in Chapter 13 we have required that the real part of

γ¼ (α2�k2)1/2¼ (�(s2+k2))1/2 and the imaginary part of κ¼ k2o�ν2
� �1=2

be positive.

These are multivalued functions and so they can only be fully defined for restricted

values of the complex variables s, α, ν, or ko. The purpose of this appendix is to fully

explain what is implied by these conditions.

First we note that the square root of a complex number z is given by

z1=2 ¼ r1=2eiθ=2

and is only completely defined if θ is restricted to the range

ϑ< θ< ϑ+ 2π

where ϑ defines the angle of the branch cut relative to the branch point at z¼0. The

value of the complex number is discontinuous across the branch cut and its value

jumps from r1=2 exp ϑ=2 + πð Þ to r1/2 exp(ϑ/2). Consequently, the magnitude of z1/2

stays the same but it’s phase jumps by a factor of π.

Computer languages such as Matlab or Fortran define the square root of a complex

number to have a positive real part, and so we will use the notation that a square root in

rectangular brackets represents this case, so

z½ �1=2 ¼Reiϕ �π=2<ϕ< π=2

Branch cut Re(z)

Im(z)
Branch cut

Re(z)

Im(z)

(A) (B)

j
J

Fig. B.1 The definition of branch cuts and branch points: (A) the branch cut for [z]1/2 and
(B) the branch cut for an arbitrary branch.



This branch cut lies along the negative real axis as shown in Fig. B.1A and is defined

by ϑ¼�π. If we want to evaluate a square root with a different branch cut at a dif-

ferent angle then we evaluate

ze�i ϑ+ πð Þ
h i1=2

ei ϑ + πð Þ=2 ¼Reiϕ ϑ=2<ϕ< ϑ=2 + π

as shown in Fig. B.1B. It is sometimes convenient to define z¼ r exp i φ+ ϑð Þð Þ so
ϕ¼φ=2 + ϑ=2 0<φ< 2π

An important example is given by the evaluation of [z2]1/2 which has a positive real

part, and so is not equal to z which can have both positive and negative real parts.

In this case the branch cut prevents the correct evaluation of the function

(z2)1/2 for negative real values of z. To overcome this problem we need to evaluate

z2
� �1=2 ¼ z½ �1=2 z½ �1=2

each term on the right has the same branch cut and so the jump in phase across the

branch cut is now 2π and the function is correctly evaluated.

An important extension of this occurs when we evaluate (z2�a2)1/2, where a is real,
because if it is evaluated directly as [z2�a2]1/2 then the result will only have a positive
real part. In some applications that is a requirement, but in others, such as in potential

flow, we need to evaluate this function for all values. To eliminate the ambiguity we

specify the function as

z2�a2
� �1=2 ¼ z�a½ �1=2 z+ a½ �1=2

This function has two branch points, as shown in Fig. B.2, and the branch cuts from

each branch point extend to �∞ on the real axis. However, when z<a on the branch

cut both [z�a]1/2 and [z+a]1/2 have a phase shift of π and so the net phase shift is 2π,
and the function is continuous. The remaining part of the branch cut forms a slit in the

complex plane between z¼�a and z¼a.

Branch cut

z = −a

Re(z)

Im(z)

z = a

Fig. B.2 The branch cut for (z2�a2)1/2 that forms a slit in the complex plane.
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We can extend this concept and define branch cuts at different angles for each

point, and allow the branch points to be at some arbitrary location zo so

z2� z2o
� �1=2 ¼ z� zoð Þe�i ϑ1 + πð Þ

h i1=2
z+ zoð Þe�i ϑ2 + πð Þ

h i1=2
ei ϑ1 + ϑ2ð Þ=2 + iπ ¼Reiϕ

where the phase lies in the range

ϑ1 + ϑ2
2

<ϕ<
ϑ1 + ϑ2

2
+ 2π

An example is shown in Fig. B.3 in which the branch cuts have angles ϑ1 ¼ 0 and

ϑ2 ¼�π. We can also specify the phase ϕ using the angles to the branch cut defined

in Fig. B.1B. These give

ϕ¼ φ1 +φ2ð Þ=2 + ϑ1 + ϑ2ð Þ=2

For example, in Fig. B.3 we see that on the imaginary axis at z¼ i∞ the value of

(φ1+φ2) is 2π, but in the vicinity of the origin it is reduced to a minimum but is never

less than π. At z¼� i∞ the value has increased again to 2π. On the imaginary axis it

follows that the phase ϕ must lie in the range

0<ϕ< π=2

and so this choice of branch cut ensures that the function z2 � z2o
� �1=2

has a positive

real and imaginary part on the imaginary axis.

Branch cut

z = –zo

z = zo

Branch cut j 2

j1

Re(z)

Im(z)

Fig. B.3 The branch cuts for z2 � z2o
� �1=2

that ensure it is real valued on the imaginary axis.
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Appendix C: The cascade blade

response function

This appendix describes the solution to the problem defined in Section 18.3.

The solution for the jump in potential across a blade that is part of a rectilinear cascade,

as shown in Fig. 18.5, in response to a harmonic gust defined as woexp(�iωt+ ik1x+
ik2y+ ik3z) is given by

Δϕ̂ xð Þ¼
ð∞
�∞

D α, k1, σð Þe�iαxdα

where it is shown in Chapter 18, Ref. [12] that

D α, k1, σð Þ¼ �iwo

2πð Þ2 α + k1ð ÞJ + αð ÞJ� �k1ð Þ�
X
n

An +Cnð Þei α�δnð Þc

i ω+ αUð Þ α�δnð Þ
J� δnð Þ
J� αð Þ

� �( )

�
X
m

Bm

α� εmð Þ
J+ εmð Þ
J + αð Þ

� �( )

where

Ao ¼wo ω� k1Uð Þ
2πð Þ2j �k1ð Þ δo ¼�k1

An ¼ wo ω+ δnUð Þ
2πð Þ2 δn + k1ð ÞJ0+ δnð ÞJ� �k1ð Þ δn ¼ κM + θn�1 n> 0

with

J0+ δnð Þ¼ j0 δnð Þ
J� δnð Þ

j0 δnð Þ¼ κM�δnð Þhβ2
4π 1� cos δnd + σð Þcos n�1ð Þπð Þð Þ

2 n¼ 1

1 n> 1

�

and the coefficients Bm are obtained as the solutions to the equations

Bmf g¼ 1½ �� Fmn½ � Lmn½ �½ ��1 Fmn½ � Anf g +AoGmf g



where

Fmn ¼� ei εm�δnð Þc

i ω+ εmUð Þ εm�δnð Þ
J� δnð Þ
J0� εmð Þ

� �

Gm ¼� ei εm�δoð Þc

i ω + εmUð Þ εm�δoð Þ
J� δoð Þ
J0� εmð Þ

� �

Lmn ¼ i ω + δmUð Þ
εn�δmð Þ

J+ εnð Þ
J0+ δmð Þ

� �

The coefficients Cn are obtained from

Co ¼ 0

Cn ¼
X
m

i ω+ δnUð Þ
εm� δnð Þ

J + εmð Þ
J0+ δnð Þ

� �
Bm n> 0

The split functions are defined as

J + αð Þ¼ κeβ sin κehβð Þ
4π cos κehβð Þ� cos ρð Þð Þ

Y∞
m¼0

1� α� koMð Þ=θmð Þ
Y∞

m¼�∞
1� α� koMð Þ=η�m
� �eΦ

J� αð Þ¼

Y∞
m¼0

1� α� koMð Þ=ϑmð Þ
Y∞

m¼�∞
1� α� koMð Þ=η +

m

� �e�Φ

The functionΦmust be chosen so that both J+ and J� have algebraic growth as α tends
to infinity and is given by

Φ¼�i α� koMð Þ
π

hβ log 2 cos χeð Þ + χedf g

The singularities of these functions are given by

θm ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e �

mπ

βh

� 	2
s

ϑm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e �

mπ

βh

� 	2
s
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η�m ¼�fm sin χe� cos χe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e � f 2m

q

fm ¼ σ + koMd�2πmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 + hβð Þ2

q

where tan χε¼d/hβ. Finally, we have used the variables

M¼Ue=co

β2 ¼ 1�M2

ko ¼ω=coβ
2

κ2e ¼ k2o� k3=βð Þ2

ρ¼ σ + koMd

so

j αð Þ¼ ζ

4π

sin ζhð Þ
cos ζhð Þ� cos α� koMð Þd + ρð Þ

� 


ζ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e � α� koMð Þ2

q

Appendix C: The cascade blade response function 521



This page intentionally left blank



Index

Note: Page numbers followed by f indicate figures, and t indicate tables.

A

Acoustically compact thin airfoils, 130–134
Acoustic duct modes, 479–480
Acoustic far field, 59, 82, 92, 103, 354–358
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Acoustic perturbations, 113
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Acoustic propagation, 64–65, 108, 113
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Acoustic wave equation, 49–51
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225f
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leading edge noise, 170–171, 171f
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Airfoil (Continued)
streamlines, of flow, 157–158, 158f
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turbulent wake, 165, 165f
in uniform flow, 130, 131f
unsteady load, 157–159, 159f

Aliasing, 272

Amiet’s approximation, 423–424, 426–427
Amiet’s theory, 369–376, 369f
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advantage of, 369

Curle’s equation, 369

Amplitude modulation, 429–431
Analytical models, 458
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229f

unsteady load, 154–156
Arbitrary gust, 352–354
Array design
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logarithmic array, 315
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transducers, 315–316

Array processing

algorithms, 316–317
background, 307–309
design, 315–316
signal-to-noise ratio, 314

source images and point spread function,

311–313
source strength, 309–311
steering vectors, 313–314

Array-processing algorithms, 316–317
Array shading, 305

Autocorrelation function, 171

Averaging, 167–170
turbulence, 167–170
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Barotropic flow, 32–33
Basic delay and sum processing
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array shading, 305

beam steering, 303

broadband noise sources, 306–307
principles, 299–302
resolution, 299–302

source levels, 304–305
spatial aliasing, 299–302

Beam steering, 303

Bernoulli’s equation, 22, 33–34
Bessel functions, 260, 419, 440–441, 441f
Bessel’s equation, 440–441
Biot Savart law, 46–48, 47f
Blade loading noise, 469–471
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400–401f
Blade response function, 161

aeroacoustics, 148–149
Amiet’s method, 434–435
compressible flow, 361–364
helicopter rotors, 402–403
high-frequency approximation, 152–153
Howe’s approximation, 150–151, 152f,

154f
illustration of, 404f, 411
incompressible flow model, 148–149
Kirchhoff coordinate, 149, 150f
Kussner’s function, 153, 154f
Kutta condition, 151, 151f
leading and trailing edge loading pulses,

149–150, 151f
leading edge noise, 152–153
parallel, 434

Sears function, 151–153
small-scale turbulence, 423–424
thin airfoil theory, 149

trailing tip vortices, 405, 434, 434f
unsteady load, 149–150, 152
upwash velocity spectrum, 361–364
vortex, 149–150
wake vorticity, 150–151

Blade-to-blade correlation, 432–434
Blade vortex interactions (BVI), 361–364,

362f, 434–435
Blasius theorem, 39–40
Blockage effect, 227–230
Body force, 14–15
Boundary element method, 88–90, 113
Boundary integral methods, 113

Boundary layer turbulence, 193.

See also Turbulent Boundary Layer

Boussinesq’s hypothesis, 168–169
BPF. See Blade-passing frequency (BPF)
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definition of, 515f, 516
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Matlab/Fortran, 515

multivalued function, 515

real axis, 516, 516f
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Broadband fan noise, 497–499
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amplitude modulation, 429–431
blade-to-blade correlation, 432–434
open rotors, 423–429

Broadband noise sources, 306–307
Brooks, Pope, and Marcolini (BPM) method,

376–382
Buzz-saw noise, 464

BVI. See Blade vortex interactions (BVI)
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Cargill’s method, 209
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474–485
acoustic duct modes, 479–480
acoustic modes, arbitrary gust, 480–484
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harmonic gust, 519–520
potential across, jump in, 519–520
rectilinear cascade model, 475–479
singularities, 520–521
sound power spectrum, 484–485
split functions, 520

Cauchy’s equation, 489–490
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Causality condition, 65–67
CFD. See Computational fluid dynamics

(CFD)

Chase model spectrum, 217

CLEAN algorithm, 320

Closed test section, 223–225, 225f, 228f
Coherence, 178–179
Coherent structures, 33, 163

Complex Fresnel integral, 349–350, 350f
Complex potentials, 41

airfoil thickness effects, 157

angle of attack, 154–155
ideal flow, 35–36

Complex velocity, 34–35
ideal flow, 34–35

Compressible flow blade response, 345–354
arbitrary gust, 352–354
Blade vortex interactions, 361–364
first-order solution, 347–350
leading edge solutions, 346–347
step gust, 345–346
trailing edge solutions, 346–347
unsteady lift in, 351–352

Compressive stress tensor, 15, 86–87
Computational domain, 110

Computational fluid dynamics (CFD), 95,

108, 112–113
Condenser microphones, 247–248
Conformal mapping, 40–46, 154–155

angles of intersection, 40

complex function, 40

complex potential, 41

critical points, 40

effects, on space, 40, 42–43t
Joukowski mapping, 40, 44, 45f
Kutta condition, 41, 44

lift coefficient, 41

Milne Thompson circle theorem, 46

Routh’s correction, 46

streamlines, 40–41
unsteady load, 154–155

Constant temperature anemometry (CTA),

262

Continuity equation, 99

averaging of, 168

control volume, 11, 12f
divergence theorem, 11–12
energy equation, 26

fluid density, 13

ideal flow, 34

mass, 11–12
in tensor notation, 12

Control volume, 11, 12f, 14–16
analysis, 204

energy equation, 27

fully developed plane wake, 197–198
plane wake, 196f

Convected wave equation, 108

Convection velocity, 183, 212–213,
212f, 254

Convective ridge, 182–183
Convolution theorem, 284–285
Cooling effects, 264–265
Corcos spectrum, 218
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Correlated sources and directionality,

321–323
Correlation function, 172–173, 295–297

fast Fourier transform, 295

inverse Fourier transform, 296

Cosine directionality, 310–311, 321
Cospectrum, 178

Critical points, 40

Crocco’s equation, 21–22, 28
velocity perturbation, 137

Cross correlation coefficient, 177

Cross-spectral density (CSD), 178, 311–314
Cross-spectrum matrix, 316–317, 320
Curle’s equation, 309–310, 369, 383

turbulence, 166–167
Curle’s theorem, 101, 130–131, 449

Doak’s approach, 79

Green’s function, 81

Lighthill’s wave equation, 78

surface integral, 78–80
turbulent flow, 79

volume integral, 79–80
Cylindrical duct, 438–446, 439f

Duct liners, 444–446
general formulation, 438–439
hard-walled, 439–444
modal propagation, 444–446

D

d’Alembert’s solution, 51

DAMAS method, 318–319, 319f
Deconvolution methods

CLEAN algorithm, 320

DAMAS method, 318–319, 319f
integrated source maps, 320–321
source spectra, 317–318

Density perturbation, 115–116
Dipole directionality, 321, 322f
Dipole sources, 59–62, 60–61f, 82–86, 104

cosine directionality, 61f
Ffowcs-Williams and Hawkings equation,

424

quadrupole, 61

scaling law, 84

Dirac delta function, 65–67, 69, 71, 357, 469,
472

Heaviside function, 96

Tyler Sofrin condition, 472

Direct Navier Stokes (DNS), 163, 167, 170,

185, 214

Discrete Fourier transform (DFT), 280–281
Displacement coordinates, 123–124, 123f
Dissipation range, 164–165
Dissipative process, 19

Divergence theorem, 11–12, 15, 25, 67, 97
continuity equation, 11–12
energy equation, 25

Green’s functions, 67

incompressible flow, 143

Tailored Green’s functions, 89

DNS. See Direct Navier Stokes (DNS)
DNW-NWB low-speed wind tunnel, 227,

227–228f
Doak’s approach, 79

Doppler factor, 427–428
Doppler frequency shift, 106, 411, 428

Doppler shift, 309

Drift coordinates, 157–158, 158f
displacement coordinates, 123–124, 123f
entropy perturbation, 121

irrotational mean flow, 122

mean flow, 120, 120f
Taylor series expansion, 123–124
tensor notation, 123–124
turbulent eddies, stretching of, 122

for two-dimensional potential mean flow,

122–123
upstream boundary conditions, 120

Duct acoustics

cylindrical duct, 438–446, 439f
decay of cutoff modes, 445

duct inlets, 457–461
duct liners, 446–449
Goldstein’s equation, 438–439
Green’s function, 449–451
high bypass-ratio turbofan engine, 437, 438f
nonuniform mean flow, 453–457
sound power, 451–453

Ducted fans, 463–466
noise sources, 463–464
thickness noise, 464, 467–469

Duct liners, 446–449
Duct mode amplitudes, 466–474

blade loading noise, 469–471
in duct sound power, 473–474
fan tone noise, 471–473
thickness noise, 467–469

526 Index



E

Eddy structures, 165

Eddy viscosity, 168–169
Edge scattering

importance of, 327

leading edge response, 339–341
Schwartzschild problem, 328–336
trailing edge correction, 341–342
uniform flow, 336–338

Effective perceived noise level (EPNL), 6

Energy and acoustic intensity

energy equation, 24–27
sound power, 27–29

Energy cascade, 164

Energy equation

acoustic waves, 26

continuity equation, 26

control volume, 27

divergence theorem, 25

energy per unit mass, 24–25
entropy fluctuations, 26

first law of thermodynamics, 24–25
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isentropic flow, 26
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stresses, 24–25
tensor notation, 26

Energy spectrum function, 189–190
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Entropy, 19

Entropy fluctuations, 26

Entropy perturbation, 121

Equivalent inverse numerical

transform, 281

F

Fan noise

broadband fan noise, 497–499
cascade blade response function, 474–485
ducted fans, 463–466
duct mode amplitudes, 466–474
rectilinear model, 485–489
tone noise, 492–496
wake evolution, in swirling flows, 489–492

Fan tone noise, 471–473
unskewed self-similar wakes, 495–496
upwash coefficients, 493–495

Far field approximation, 91, 299–301, 300f,
424–427

Prantl–Glauert transformation, 135–136
Far-field directionality and scaling, 356

Far-field sound, 148, 390

Fast Fourier transform algorithm, 280, 295

Ffowcs-Williams and Hall’s analysis, 368

Ffowcs Williams and Hawkings equation,

99–104
free stream, sources in, 108–110
generalized derivatives, 95–99
incompressible flow estimates, of acoustic

source terms, 112–114
moving sources, 104–107
surfaces, 110–112

Filter function, 261

Finite element methods, 457

Finite span, 357–358
impulsive gusts, 357–358

Flow perturbation, 125

Flow variable, 96–97
Fluctuating vorticity, 182

Fluid density, 13

Fluid motion

energy and acoustic intensity, 24–29
equation of continuity, 11–13
fluid dynamic concepts, 29–48
momentum equation, 14–16
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thermodynamic quantities, 17–21
vorticity role, 21–24

Four-fold Fourier transform, 501–502
Fourier cosine series expansion, 482

Fourier series, 419, 430, 454

Fourier transform, 7–8, 70–72, 90–93,
170–171, 176, 306, 501–502

Free field Green’s function, 100–101
Frequency averaging, 292

Frequency domain, 284–290, 289f
convolution theorem, 284–285
measurement process, 286–287, 286–287f
window function, 288, 289f

Frequencydomainpredictionmethods, 417–423
Harmonic analysis, 417–423

Frequency domain solutions, 70–72
Frequency spectra
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Gauge pressure, 74–75, 99
Generalized Fourier transforms, 336

Generalized Laplace transforms, 336

control theory, 332

s plane, 332, 332–333f
Goldstein’s Wave equation, 115–116, 137,

438–439
continuity equation, 115–116
density perturbation, 115–116
inviscid flow, 115

isentropic flow, 116–117
linearized Euler equations, 115

mean flow, 115–116, 119
rapid distortion theory (RDT), 117

velocity potential, 117–118
Goody’s equation, 216

Green’s function, 70, 72, 81, 100, 102,

309–310, 383–384, 449–451, 466
acoustic propagation, 64–65
Cartesian coordinates, 65–67
causality condition, 65–67
cylindrical coordinates, 449–450
differential equation, 450

Dirac delta function, 65–67, 69
divergence theorem, 67

duct mode amplitudes, 453

far-field approximation, 140

Ffowcs-Williams and Hawkings equation,

449

in fixed frame, 109

Fourier transform, 449–450
homogeneous equation, 450

inhomogeneous wave equation, 64–65
point monopole volume displacement

source, 451

Prantl–Glauert transformation, 135

radiating surfaces, 67

sound field, 67

source time, 69

surface integral, 68–69
Ground-based acoustic arrays, 307–308
Gust, 33

velocity, 125–127
vorticity, 127
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Hankel functions, 133

Hanning window, 290

Hard-walled ducts, 439–444
Bessel functions, 440–441, 441f
Bessel’s equation, 440–441
mode shapes, 442–444, 442f

Harmonic analysis

amplitude of, 422, 423f
loading and thickness noise, 417–423
point-loading approximation, 420–421

Harmonic gust, 519–520
Harmonic sound wave, 237

Harmonic time dependence, 52–53, 57
Harmonic time signal, 62–63
Heaviside step function, 95, 95f
Helmholtz equation, 52, 71

Helmholtz resonator, 256–257, 256f
Helmholtz’ theorems, 46

Helmholtz’ vortex theorems, 33

Hermitian transpose, 316–317
High bypass-ratio turbofan engine,

437, 438f
High-frequency approximation,

126–127
Homentropic flow, 144

Homogeneity, 180

of turbulent flow, 180–181
Homogeneous equation, 450

Homogeneous isotropic turbulence

Liepmann spectrum, 194–195, 195f
mathematical description, 185–190, 186f,
188–189f

von Kármán spectrum, 190–194, 193f
Homogeneous turbulence, 185

velocity correlations in, 186–187,
186f

velocity fluctuations for, 186

Hot-wire anemometers, 261–262, 265
Hot-wire probe, 262, 262f
quad, 263–264, 264f
X-array, 263–264, 264f

Howe’s approximation

angle of attack, 156

blade vortex interactions, 150–151,
152f, 154f

Howe’s wave equation, 138

Hybrid acoustic test section, 230–232
Hybrid anechoic tunnel, 230, 231f
Kevlar acoustic windows, 246

sound attenuation, 246–247
Hydrodynamic pressure fluctuations, 93
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Ideal flow, 33–40, 35f
aerodynamic surfaces, 33

Bernoulli’s equation, 33–34
Blasius theorem, 39–40
circular streamline, 37, 37f
complex potential, 35–36, 38
complex velocity, 34–36
continuity equation, 34

inverse point, 38

irrotational flow, 35

Kutta Joukowski theorem, 39–40
Laplace’s equation, 34–35
method of images, 35–36
Milne Thompson circle theorem, 37–38
Stokes’ theorem, 35

stream function, 34

velocity potential, 33

vortex, 35–36, 36f
Incident sound wave, 236

Incompressible flow, 76

blade vortex interactions, 148–154, 149f
surface forces in, 142–146, 143f
turbulent boundary layer wall-pressure

spectrum, 214

Incompressible flow blade response,

345–346
limitations of, 345

step gust, 345–346
Incompressible flow calculation, 112–114
Inertial subrange, 164–165
Inhomogeneous Helmholtz equation, 88

Inhomogeneous turbulent flows

fully developed plane wake, 196–203,
199–203f

turbulent boundary layer wall-pressure

spectrum, 213–218, 215f, 218f
zero pressure gradient turbulent boundary

layer, 203–213, 204f, 206–207f,
209–212f

Instability wave, 308

Integral length scale, 180

Integral over volume, 188–189, 189f
Integral time scale, 172, 209–211, 210f
Integrated source maps, 320–321
Internal reflection, 244–245, 244f
Inverse discrete Fourier transform

(IDFT), 280

Inverse Fourier transform, 90–91, 192
Inviscid flow, 92–93, 115
Goldstein’s equation, 115

Inviscid panel method, 232–233
Irrotational flow, 21–24, 35
Irrotational mean flow, 122

Isentropic bulk modulus, 17

Isentropic flow, 26

Isotropy, 186–187

J

Japan Aerospace Agency (JAXA), 230–232,
232f

Jet noise source images, 308–309
Joukowski airfoil, 157, 158f
Joukowski mapping, 40, 44, 45f
conformal mapping, 40, 44, 45f

K

Kelvin’s circulation theorem, 31

Kelvin’s theorem, 132

k-epsilon model, 168–169
Kevlar acoustic windows, 246

King’s law, 262

Kirchhoff coordinate, 144

blade vortex interactions, 149, 150f
Kolmogorov’s hypothesis, 164–165, 190–191
Kronecker delta, 10, 277–278
Kussner’s function, 153, 154f
Kutta condition, 41, 44, 130–134

angle of attack, 155–156
blade vortex interactions, 151, 151f
conformal mapping, 41, 44

L

Lamb vector, 140, 145

Large eddy simulation (LES), 163, 169–170,
377

filter size, 170

grid resolution, 170

turbulence models, 169–170
Leading edge interaction, 354–356
Leading edge noise, 157–161, 158–161f
acoustic far field, 354–358
airfoil, in turbulent stream, 359–360
Blade vortex interactions, 361–364
compressible flow blade response,

345–354
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Leading edge pulse, 159–160
Leading edge response, 339–341
Leading edge scattering problem, 338–342

trailing edge correction, 341–342
LES. See Large eddy simulation (LES)

Liepmann spectrum, 194–195, 195f
Lift coefficient, 41, 147–148
Lighthill’s acoustic analogy, 3, 73–75

Curle’s theorem, 78–82
dipole sources, 82–86
Fourier transforms, 90–93
limitations, 75–78
monopole sources, 82–86
quadrupole sources, 82–86
tailored Green’s functions, 86–90
turbulent boundary layer wall-pressure

spectrum, 213

wavenumber, 90–93
Lighthill’s equation, 365–366, 449, 466
Lighthill’s model, 308–309
Lighthill’s stress tensor

incompressible flow calculation, 113

moving frame, 108

Lighthill’s wave equation, 75

Linear acoustics

acoustic intensity, 62–64
acoustic wave equation, 49–51
dipole sources, 59–62, 61f
far field approximations, 58–59
Fourier transforms, 70–72
frequency domain solutions, 70–72
Green’s functions, 64–70
harmonic time dependence, 52–53
monopole sources, 59–62
plane waves, 51–52
quadrupole sources, 59–62, 62f
sound generation, by small sphere,

53–56, 53f
sound power output, 62–64
sound scattering, by small sphere,

56–57
spherical waves, 51–52
superposition, 58–59

Linear array, sensitivity of, 301

Linearized Euler equations, 474

acoustically compact thin airfoils,

130–134, 131f
drift coordinates, 120–124, 120–121f,
123f

Goldstein’s equation, 115–120
Kutta condition, 130–134
Prantl–Glauert transformation,

134–136
rapid distortion theory, 124–130,
128f, 130f

Line array, 299–300, 300f, 315–316
Line singularities, 46

Local vorticity, 129

Logarithmic array, 315

Longitudinal quadrupole, 61

M

Mach number, 106, 114, 275

Mean flow

drift coordinates, 120, 120f
Goldstein’s equation, 115–116, 119
velocity measurement, 261

Mean-square velocity, 192–193
von Kármán spectrum, 192–193

Mean-velocity profile

fully developed plane wake, 200, 200f
zero pressure gradient turbulent boundary

layer, 207–208, 207f
Measured data

averaging and convergence, 277–279
calculating spectra, 290–292
correlation functions, 295–297
frequency domain, 284–290, 289f
limitations of, 271–273
numerical Fourier transform, 280–284,
282f, 284t

phase spectra, 293–294, 294f
spatial correlations, 297

uncertainty, 274–276
uncertainty estimates, 292, 293t
wavenumber spectra, 297

Microphone

arrays, 307–308
McMasters Henderson airfoil section,

253, 253f
mounting, in anechoic wall jet wind tunnel,

250–251, 250f
nose cone, 252, 253f
open lattice array, 250–251, 252f
pinhole, 258–259
sound measurement, 248, 248f
spatial sensitivity distribution, 260, 260f
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strut, 253

turbulent pressure fluctuation

measurement, 254–256
Milne Thompson circle theorem, 37–38, 46

conformal mapping, 46

ideal flow, 37–38
Modal propagation, 444–446
Momentum equation

averaging of, 168

considerations, 14–15
Reynolds numbers, 167–168
viscous stresses, 15–16

Monopole source, 59–62, 82–86, 309–310
Moving sources, 104–107
acoustic field, 104–105
Doppler frequency shift, 106

Mach number, 106

reception time, 107, 107f
retarded time, 105, 107

stationary fluid, 104–105
for subsonic source speeds, 105, 106f
for supersonic source speeds, 105, 106f, 107
surface integral, 105

Moving surface, 100

Multivalued function, 515

Munt’s exact solution, 209

N

NACA 0012 airfoil section, 229–230,
229–230f, 232–233

NASA Glenn 9- by 15-foot low-speed wind

tunnel, 224, 225f
NASA LaRC Research Center, quiet flow

facility at, 226f
Navier Stokes equation, 15–16
Nondimensional Fourier series coefficients,

422

Nonnegative least squares algorithm, 318–319
Nonuniform mean flow, 453–457
No slip condition, 32–33, 203, 205
Numerical domain, 110

Numerical Fourier transform, 280–284,
282f, 284t

DFT, 280–281
IDFT, 280

Nyquist frequency, 283

square pulse, 282, 282f
structure of, 284, 284t

Nyquist frequency, 272–273

O

One-dimensional Fourier transform,

501–502
Open-jet test section, 225–228, 228f
Open rotor noise, 423–429
blade vortex interactions, 434–435
broadband noise, 399–406, 400–401f,
423–429

haystacking, broadband noise, 429–434
loading noise, 406–412
supersonic tip speeds, 416

thickness noise, 413–416
tone noise, 399–406

Optical flow diagnostics, 265

Overheat ratio, 262

P

Particle image velocimetry (PIV), 265–266,
266–267f, 271, 274f

Particle velocity fluctuation, 234

Perceived noise level (PNL), 6–7
Periodic vortex shedding, 147

Perturbation potential, 124–126
Phased arrays

array processing, 307–317
correlated sources and directionality,

321–323
deconvolution methods, 317–321
delay and sum processing, 299–307

Phase spectra, 293–294, 294f
cross and auto-spectral density, 293

wrapping, 293

Phase wrapping, 293

Pinhole cavity, 257

Pistonphone, 248

PIV. See Particle image velocimetry (PIV)

Plane sound wave, 234, 235f
Plane waves, 51–52
Point-loading approximation, 420–421
Point spread function, 313–314
array design, 315, 316f
DAMAS algorithm, 318–319, 319f

Poisson sum formula, 483

Potential mean flow, 131–132
Prantl-Glauert coordinates, 354

Prantl–Glauert transformation

far-field approximation, 135–136
free-field Green’s function, 135
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Prantl–Glauert transformation (Continued)
Green’s function, 135

sound radiation, 134–136
unsteady flow, 134–135

Pressure fluctuation, 5

turbulent boundary layer wall-pressure

spectrum, 214

Pressure force, 14

torque, 31

Pressure jump, 92–93
Pressure perturbations, 49

Pressure stresses, 83–84
Pulsating spheres, 58

Q

QinetiQ 5 m wind tunnel, 223–224, 224f
Quad hot-wire probe, 263–264, 264f
Quadrupole source, 59–62, 62f, 82–86,

104

Quad-spectrum, 178

Quasi periodicity, 202

R

RANS. See Reynolds averaged Navier Stokes
(RANS)

Rapid distortion theory (RDT)

accelerating flow, 128–129
boundary conditions, 125

Cauchy’s theorem, 128

flow perturbation, 125

gust velocity, 125–127
gust vorticity, 127

high-frequency approximation, 126–127
high-frequency gust, 126

local vorticity, 129

perturbation potential, 124–126
vector triple product theorem, 127

vortical gust, 129

wind tunnel contraction, 128, 128f
Reception time, 107, 107f
Rectification effect, 263–264
Rectilinear cascade model, 475–479

advantage of, 474–475
uniform flow, 475–476, 476f

Rectilinear model, 485–489
axial dipole, 487–489
mode matching, 485–487

Refracted wavefronts, 245, 245f

Retarded time, 105, 107

effects, 91

Reynolds averaged Navier Stokes (RANS),

163, 169–170, 464–465, 492
Reynolds normal stresses, 201

Reynolds number, 16, 33, 73, 86, 131, 164,

375–377, 379, 471
fully developed plane wake, 197

Reynolds shear stress, 201

Reynolds stresses. See Turbulent stresses
Reynolds-stress profiles, 200, 200f
Roughness elements, 384–385
Roughness noise, 383–394
Curle’s equation, 383

elements, 384–385
Green’s function, 383–384

Routh’s correction, 46

S

Schulz-Grunow formula, 205–206, 206f
Schwartzschild problem, 328–336

boundary value problem, 328–329, 328f
generalized Fourier transforms, 336

generalized Laplace transforms, 336

radiation condition, 331–336
Weiner Hopf method, 328–336

Schwarzschild solution, 371–372
Sears function, 133, 134f, 151–153, 345
Sears problem, 132–133, 132f
Self-induced flow, 145–146
Self-noise, 365

Semi-infinite circular duct, 458, 458f
Semi-infinite flat plate, 339, 339f
Shearing motions, 164

Shear layer refraction

acoustic particle velocity, 237

harmonic sound wave, 237

incident sound wave, 236

particle velocity fluctuation, 234

plane sound wave, 234, 235f
Snell’s law, 236–237
surface wave, 236

transmitted sound wave, 236

Shear layer thickness effects, 245–246
Signal-to-noise ratio, 314

Singing airfoil, 113

Skin-friction coefficient, 205–206, 206f
Snell’s law, 236–237

hybrid anechoic tunnels, 246
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Two-dimensional planar jet, corrections

for, 239, 242–243
Sound generation

small sphere, 53–56, 53f
turbulent flow, 73, 74f

Sound levels and annoyance, quantifying, 5–7
Sound measurement

B&K model 4190, 249–250, 249f
conventional condenser microphones,

247–248
large diameter microphones, 249

low Mach number, 247–248
microphones, 248, 248f
open lattice array, 250–251, 252f
Panasonic WM-64PNT, 248f, 250
pistonphone, 248

rotor testing, 252

Sennheiser KE 4-211-2, 248f, 250
sound pressure fluctuations, 252

turbulent pressure fluctuations, 252

wavelength, 249–250
Sound power, 27–29

output, 62–64
spectrum, 484–485

Sound pressure fluctuations, 252

Sound pressure level (SPL), 5, 7, 174–175,
376–378

Sound propagation, 51

Sound radiation, 53, 134–136
translating sphere, 54, 55f, 56

Sound scattering, by small sphere, 56–57
Sound waves and turbulence, 4–5, 4f
Source

directionality, 309

in free stream, 108–110
strength, 309–311

Source images and point spread function,

311–313, 313f
Source-imaging approach, 308

Source spectra, 317–318
Spacetime correlation function, 279

Spanwise correlation, 202–203
Spanwise duct mode, 465

Spanwise integral lengthscales, 211

Spanwise velocity fluctuations, 211

Spanwise wavenumber transform, 370–371
Spatial aliases, 299–302
Spatial correlation, 179–183, 297
Spectral density, 173f, 174

Spherical polar angles, 235

Spherical waves, 51–52
Spinning vortex pair, 139, 139f
Spiral arrays, 315–316, 316f
SPL. See Sound pressure level (SPL)

s plane, 332, 332–333f
Split functions, 520

Stagnation enthalpy, 11, 21–22, 27, 138
acoustic variable, 138

Starting vortex, 32

Stationary fluid, 104–105
Stationary surface, 142, 143f
Steering vector, 311–314
Stochastic variable, 166

Stokes’ theorem, 30–31, 35
Stream function, 29–30
Streamlines, 29–33, 40–41
Stream surface, 29–30
Streamwise correlation, 202, 202f
Streamwise force, 145

Streamwise velocity correlations, 212–213
Streamwise velocity fluctuations, 211–212
Strouhal number, 148

Sturm Liouville equation, 442, 453

Sturm Liouville problem, 447

Sturm Liouville theory, 443

Subsonic source speeds, 105, 106f
Superposition and far field approximations,

58–59
Supersonic source speeds, 105, 106f, 107
Supersonic tip speeds, 416

Surface integral, 68–69, 78–80, 101
Curle’s theorem, 78–80
moving sources, 105

Tailored Green’s functions, 86–87
Surface pressure, 112–113

fluctuations, 93, 213

Surface velocity, 55, 98

Swirling flows

material volume, 490–491, 491–492f
wake evolution, 489–492, 490f

Symbol and analysis conventions, 7–8
Symbol conventions, 501–502
Symbol modifiers, 501–502

T

Tailored Green’s function, 113, 213–214
acoustic waves, 87–88
boundary element methods, 88
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Tailored Green’s function (Continued)
compressive stress tensor, 86–87
frequency domain approach, 88

hard flat surface, 87, 87f
inhomogeneous Helmholtz equation, 88

integral formulas for, 89–90
Lighthill’s wave equation, 86

surface integral, 86–87
Taylor series expansion, 58, 275, 447

drift coordinates, 123–124
Taylor’s frozen flow hypothesis, 172, 371

Taylor’s hypothesis, 4–5, 185
von Kármán spectrum, 192–193

Temperature drift, 262–263
Tensor notation, 26, 62–63

Cartesian coordinates, 9

Kronecker delta function, 10

stagnation enthalpy, 11

Tensors, 501

Thermodynamic quantities

acoustic waves, 17

constant pressure, 18

constant volume, 18

dissipative process, 17, 19

enthalpy, 18–19
entropy, 19

first law of thermodynamics, 17

isentropic bulk modulus, 17, 20

isentropic flow, 20–21
reversible heat addition, 19

second law of thermodynamics, 19

sensitivity coefficients, 18

Thickness noise, 413–416
Thin airfoil theory, 131–132
Three-dimensional vortex filament, 46

Time correlations

of single variable, 170–176
of two variables, 177–179

Time delay correlation functions, 172, 173f,
175, 209–211, 210f

Time delay cross correlation function, 177

Time varying unsteady flows, 169–170
Tone noise, 399–406

frequency domain prediction methods,

417–423
time domain prediction methods, 406–416

Trailing edge correction, 341–342
Trailing edge noise

Amiet’s equation, 377

Amiet’s theory, 369–377, 369f
BPM, 376–382
directivity angles, 378f
origin and scaling of, 365–368

Trailing edge solutions, 346–347
Transducers, 315–316
Transmitted sound wave, 236

Triangular weighting, 305

Turbulence, 4–5. See also Turbulence and

stochastic processes; Turbulent flows

Turbulence and stochastic processes

for aeroacoustic analysis, 170–183
averaging and expected value, 165–167
computational approaches, 167–170
governing equations, 167–170
nature of, 163–165

Turbulence stresses, 208, 209f
Turbulent boundary layer, 203–213, 204f
buffer layer, 207–208
control volume analysis, 204

definition, 203–204
friction velocity, 205

integral timescales, 209–211, 210f
irrotational flow, 204

law of the wake, 206–207
law of the wall, 206–207
linear sublayer, 207–208
log layer, 208

mean-velocity profile, 204–205,
207–208, 207f

no-slip condition, 203, 205

Reynolds number, 205

Schulz-Grunow formula, 205–206, 206f
skin-friction coefficient, 205–206, 206f
spanwise integral lengthscales, 211

streamwise pressure, 203–204
time delay correlation functions, 209–211,
210f

transition, 205

turbulence stresses, 208, 209f
velocity fluctuations, 209

wall shear stress, 209

zero-time delay correlation coefficient,

211–212, 211f
Turbulent boundary layer wall-pressure

spectrum

Chase model spectrum, 217

Corcos spectrum, 218

Goody’s equation, 216
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incompressible flow, 214

integrand, 214

Lighthill’s analogy, 213

pressure fluctuation, 214

Reynolds number, 217

surface pressure fluctuations, 213

tailored Green’s function, 213–214
wall-pressure frequency spectrum, 214

wavenumber-frequency spectrum, 218, 218f
Turbulent flows, 349

homogeneous isotropic turbulence

Liepmann spectrum, 194–195, 195f
mathematical description, 185–190,
186f, 188–189f
von Kármán spectrum, 190–194, 193f

inhomogeneous turbulent flows

fully developed plane wake, 196–203,
199–203f
turbulent boundary layer wall-pressure

spectrum, 213–218, 215f, 218f
zero pressure gradient turbulent

boundary layer, 203–213, 204f,
206–207f, 209–212f

Turbulent motions, 33

Turbulent pressure fluctuation measurement,

252

array of 24, 1/2-in, 259–260, 259f
Bessel function, 260

convection velocity, 254

filter function, 261

friction velocity, 254

Helmholtz resonator, 256–257, 256f
low Mach number, 254–255
microphone, 254

NACA 0012 airfoil, 255

pinhole cavity, 257

pressure transducers, 255

Turbulent stresses, 168–169
Turbulent velocity fluctuations, 179

Two-dimensional panel method, 229

Two-dimensional turbulent boundary layer,

180–181, 180f
velocity fluctuations, 180–181, 180f

Two-point correlation function, 187, 188f
Tyler and Sofrin model, 200f, 209

U

Uncertainty, 274–276, 293t
averaging, 277–279, 279t, 293t

dynamic pressure measurement, 276

estimates, 292

interval, 274–275
Mach number, 275

Taylor expansion, 275

Uniform flow, 76–78, 108, 336–338
Unsteady flow

Kutta condition in, 133

Prantl–Glauert transformation,

134–135
Unsteady load

airfoil thickness effects, 157–159, 159f
angle of attack, 154–157, 155–156f

Unsteady Reynolds averaged Navier Stokes

(URANS), 163, 169

Upstream boundary conditions, 120

drift coordinates, 120

Upwash velocity spectrum, 361–364

V

Velocity fluctuations, 172, 173f, 209
Velocity measurement

acoustic source, 261

calibration, 262–263
constant temperature anemometry (CTA),

262

cooling effects, 264–265
hot-wire anemometers, 265

hot-wire anemometry, 261–262
King’s law, 262

mean flow, 261

optical flow diagnostics, 265

overheat ratio, 262

particle image velocimetry (PIV), 265–266,
266–267f

quad hot-wire probe, 263–264, 264f
rectification effect, 263–264
seeding, 265

static nonuniform background, 267–268
temperature drift, 262–263
vorticity fields, 266–267
X-array hot-wire probe, 263–264, 264f

Velocity perturbation, 76, 78

for inviscid flow, 137

Velocity potential, 22

Goldstein’s equation, 117–118
Velocity signal, boundary layer turbulence,

172, 173f
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Velocity variable, 96–97
Virginia Tech Stability Wind Tunnel,

224, 225f
Viscous force torque, 31

Viscous instability, 163

Viscous shear stresses, 14

Viscous stresses, 15–16, 83–84
Volume integral, 102, 144

Curle’s theorem, 79–80
von Kármán spectrum

boundary layer turbulence, 193

Gamma function, 190–191
integral scale, 192–193
inverse Fourier transforms, 192

Kolmogorov’s hypothesis, 190–191
mean-square velocity, 192–193
Taylor’s hypothesis, 192–193
turbulence kinetic energy, 190–191
wavenumber spectrum, 191–192

von Kármán turbulence model, 360

von Kármán vortex street, 146, 146f, 148, 163
Vortex filaments, 46–48
Vortex lines, 30

Vortex sound

Aeolian tones, 146–148, 146f
airfoil thickness, 157–161, 158–159f
angle of attack, 154–157, 155–156f
blade vortex interactions, in incompressible

flow, 148–154, 149f
incompressible flow, surface forces in,

142–146, 143f
theory of, 137–139
two line vortices, in free space, 139–142,
139f

Vortex street, 33

Vortex velocity, 157

Vortical gust, 125–126, 129
Vorticity, 29–33, 138–140, 145
Vorticity equation, 23

W

Wake centerplane, 202, 202f
Wake, Fully developed

airfoil, drag coefficient, 199–200
control volume, 197–198
integral lengthscales, 201, 201f
magnitude analysis, 198

mean-velocity profile, 200, 200f

momentum thickness, 198

quasi periodicity, 202

Reynolds averaged Navier Stokes

equations, 198

Reynolds number, 197

Reynolds-stress profiles, 200, 200f
spanwise correlation, 202–203
streamwise correlation, 202, 202f
streamwise lengthscales, 201

two-dimensional body, 196–197
viscous scales, 197

wake centerplane, 202, 202f
zero-time delay correlation coefficient,

202–203, 203f
Wake vorticity, 150–151
Wall-pressure, 182, 183f
wavenumber frequency spectrum, 182,

183f
Wall-pressure frequency spectrum, 214, 216

Wall shear stress, 209

Wavenumber-frequency spectrum, 218, 218f
Wavenumber methods, 90–93
Wavenumber spectrum, 179–183, 188–189,

191–192, 297
Weiner Hopf method, 209, 328–336,

477–479, 502
generalized Fourier transforms, 336

radiation condition, 331–336
Schwartzschild solution, 329–331

Weiner Hopf solution, 213

Wentzel-Kramers-Brillouin (WKB) method,

454–455
duct modes, 453, 457f
high-frequency limit, 454

principle of, 454–455
Window function, 288, 289f
Windowing array data, 305

Wind tunnel acoustic corrections

hybrid anechoic tunnels, 246–247
shear layer refraction, 234–238, 235f
shear layer thickness and curvature,

245–246
two-dimensional planar jet, corrections for,

238–245
Wind tunnel contraction, 128, 128f
Wind tunnel corrections, two-dimensional

planar jet

amplitude correction, 243f, 244
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internal reflection, 244–245, 244f
Mach number, 240, 240f, 244–245
out-of-plane sound ray, 241–242, 242f
ray tube, 241–242, 241f
shear layer, 238–241
Snell’s law, 239, 242–243
wavefronts, of sound propagating, 245

wind tunnel, sound measurement in,

238–239, 238f

X

X-array hot-wire probe, 263–264, 264f
Xfoil, 379

Z

Zero time delay, 173, 178

Zero-time delay correlation coefficient,

202–203, 203f, 211–212, 211f
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