

Copyright

Getting	Started	with	Arduino	and	Go

Agus	Kurniawan

1st	Edition,	2015

Copyright	©	2015	Agus	Kurniawan

*	Cover	photo	is	credit	to	Fajar	Ramadhany,	Bataviasoft,	http://bataviasoft.com/.

**	Arduino	logo	is	taken	from	http://www.arduino.cc/	.

	

http://bataviasoft.com/
http://www.arduino.cc/

Table	of	Contents
Copyright

Preface

1.	Preparing	Development	Environment

1.1	Arduino

1.1.1	Arduino	Uno

1.1.2	Arduino	Leonardo

1.1.3	Arduino	Mega	2560

1.1.4	Arduino	Due

1.2	Electronic	Components

1.2.1	Arduino	Starter	Kit

1.2.2	Fritzing

1.2.3	Cooking-Hacks:	Arduino	Starter	Kit

1.2.4	Arduino	Sidekick	Basic	kit

1.3	Go

1.4	Arduino	Software

1.5	Testing

2.	Hello	World:	Arduino	and	Go

2.1	Arduino	World

2.1.1	Arduino	Hardware	Driver	on	Windows	8/8.1

2.1.2	Simple	Testing

2.2	Arduino	and	Go

2.3	Testing	Serial	Port	using	Go

2.4	Testing	for	Arduino	and	Go

3.	Exploring	Go	Packages	for	Arduino

3.1	Getting	Started

3.2	Gobot

3.3	go-firmata

3.4	Reading	Digital	Input

3.4.1	gobot

3.4.2	go-firmata

4.	Analog	Sensor

4.1	Sensor	Devices

4.2	Reading	Sensor

4.3	Running	Program

5.	RGB	LED

5.1	RGB	LED

5.1.1	Arduino	Analog	output	(PWM)

5.1.2	Controlling	RGB	LED	Color

5.2	Arduino	Implementation

5.3	Go	Implementation

Source	Code

Contact

Preface

This	book	was	written	to	help	anyone	want	to	get	started	with	Arduino	and	Go.	It
describes	the	basic	elements	of	the	integration	of	Arduino	and	Go.

Agus	Kurniawan

Depok,	March	2015

1.	Preparing	Development	Environment

1.1	Arduino

Arduino	is	an	open-source	electronics	prototyping	platform	based	on	flexible,	easy-to-use
hardware	and	software.	This	board	uses	Atmel	microcontroller	series.	There	are	many
Arduino	hardware	models	that	you	can	use.	Further	information	about	Arduino	products,
you	can	visit	on	website	http://arduino.cc/en/	.

You	must	one	Arduino	hardware	to	follow	practices	in	this	book.	I	recommend	to	obtain
one	of	the	following	Arduino	hardware:

Arduino	Uno
Arduino	Leonardo
Arduino	Mega	2560
Arduino	Due

You	can	buy	this	product	on	your	local	electronic	store.	You	also	can	order	it	by	online.
Find	it	on	http://arduino.cc/en/Main/Buy.	The	following	is	the	list	of	Arduino	store	you
can	buy

Arduino	store,	http://store.arduino.cc/
Amazon,	http://www.amazon.com
Cooking-hacks,	http://www.cooking-hacks.com/index.php/shop/arduino.html
RS	Components,	http://www.rs-components.com
Element	14,	http://www.element14.com
EXP-Tech,	http://www.exp-tech.de

Because	Arduino	is	an	open-source	hardware,	people	can	build	it.	It’s	called	Arduino
compatible.	Generally	it’s	sold	in	low	prices.

1.1.1	Arduino	Uno

The	Arduino	Uno	is	a	microcontroller	board	based	on	the	ATmega328.	You	can	download
the	datasheet	file,	http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf	.

Further	information	about	Arduino	Uno,	you	can	read	it	on
http://arduino.cc/en/Main/ArduinoBoardUno	.

http://arduino.cc/en/
http://arduino.cc/en/Main/Buy
http://store.arduino.cc/
http://www.amazon.com
http://www.cooking-hacks.com/index.php/shop/arduino.html
http://www.rs-components.com
http://www.element14.com
http://www.exp-tech.de
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf
http://arduino.cc/en/Main/ArduinoBoardUno

1.1.2	Arduino	Leonardo

The	Arduino	Leonardo	is	a	microcontroller	board	based	on	the	ATmega32u4.	Download
datasheet	for	this	product	on
http://www.atmel.com/dyn/resources/prod_documents/7766S.pdf	.

Visit	this	product	to	get	the	further	information	on
http://arduino.cc/en/Main/ArduinoBoardLeonardo	.

1.1.3	Arduino	Mega	2560

The	Arduino	Mega	2560	is	a	microcontroller	board	based	on	the	ATmega2560.	You	can
download	the	datasheet	file	on
http://www.atmel.com/dyn/resources/prod_documents/doc2549.PDF.

Further	information	about	Arduino	Mega	2560,	you	can	visit	on

http://www.atmel.com/dyn/resources/prod_documents/7766S.pdf
http://arduino.cc/en/Main/ArduinoBoardLeonardo
http://www.atmel.com/dyn/resources/prod_documents/doc2549.PDF

http://arduino.cc/en/Main/ArduinoBoardMega2560	.

1.1.4	Arduino	Due

The	Arduino	Due	is	a	microcontroller	board	based	on	the	Atmel	SAM3X8E	ARM	Cortex-
M3	CPU.	You	can	download	the	datasheet,	http://www.atmel.com/Images/doc11057.pdf.

If	you	want	to	know	about	Arduino	Due,	I	recommend	to	visit	this	website,
http://arduino.cc/en/Main/ArduinoBoardDue.

http://arduino.cc/en/Main/ArduinoBoardMega2560
http://www.atmel.com/Images/doc11057.pdf
http://arduino.cc/en/Main/ArduinoBoardDue

1.2	Electronic	Components

We	need	electronic	components	to	build	our	testing,	for	instance,	Resistor,	LED,	sensor
devices	and	etc.	I	recommend	you	can	buy	electronic	component	kit.

1.2.1	Arduino	Starter	Kit

Store	website:	http://arduino.cc/en/Main/ArduinoStarterKit

1.2.2	Fritzing

Store	website:	http://shop.fritzing.org/	.

You	can	buy	Fritzing	Starter	Kit	with	Arduino	UNO	or	Fritzing	Starter	Kit	with	Arduino
Mega.

http://arduino.cc/en/Main/ArduinoStarterKit
http://shop.fritzing.org/

1.2.3	Cooking-Hacks:	Arduino	Starter	Kit

Store	website:	http://www.cooking-hacks.com/index.php/shop/arduino/starter-
kits/arduino-starter-kit.html

http://www.cooking-hacks.com/index.php/shop/arduino/starter-kits/arduino-starter-kit.html

1.2.4	Arduino	Sidekick	Basic	kit

Store	website:	http://www.seeedstudio.com/depot/arduino-sidekick-basic-kit-p-775.html

Alternative	online	store

http://www.amazon.com/Arduino-Sidekick-Basic-Kit-Version/dp/B007B14HM8/

http://www.exp-tech.de/Zubehoer/Arduino-Sidekick-Basic-Kit.html

http://www.seeedstudio.com/depot/arduino-sidekick-basic-kit-p-775.html
http://www.amazon.com/Arduino-Sidekick-Basic-Kit-Version/dp/B007B14HM8/
http://www.exp-tech.de/Zubehoer/Arduino-Sidekick-Basic-Kit.html

1.3	Go

The	official	web	of	Go	could	be	found	on	https://golang.org/.	What	is	Go?	Based	on
information	from	website,	we	could	know	what	it	is.	Go	is	an	open	source	programming
language	that	makes	it	easy	to	build	simple,	reliable,	and	efficient	software.

Installation	of	Go	application	is	easy.	For	Windows	and	Mac	Platform,	you	download
setup	file	from	Go	website,	http://golang.org/doc/install.	Run	it	and	follow	installation
commands.

The	next	step	is	to	configure	GOROOT	path.	For	Windows	platform,	you	can	add
GOROOT	variable	on	Environment	Variables.	For	Mac/Linux,	you	can	it	on	your	bash
profile.

https://golang.org/.
http://golang.org/doc/install

For	Windows	platform,	you	can	add	GO	installation	path,	for	instance	my	Go	installation
path	is	c:/go/bin,	into	PATH	variable	on	Environment	Variables.

After	configured,	you	can	verify	Go	version	by	typing	this	command	on	your	Terminal	or
CMD	for	Windows.

$	go	version

A	sample	output	can	be	seen	in	Figure	below,	Mac	platform.

The	output	of	program	on	Windows	platform.

In	this	book,	I	don’t	explore	all	programming	language	for	Go.	You	can	read	it	on	several
book	or	website.	I	have	already	written	a	book	about	Go	Programming	by	Example.	You
can	get	this	book	on	this	link,	http://blog.aguskurniawan.net/post/Go-Programming-by-
Example.aspx	.

http://blog.aguskurniawan.net/post/Go-Programming-by-Example.aspx

1.4	Arduino	Software

To	develop	application	based	on	Arduino	board,	we	need	Arduino	software.	You	can
obtain	it	on	http://arduino.cc/en/Main/Software	.	Please	install	based	on	your	platform.

If	your	platform	is	Ubuntu,	you	can	install	by	writing	this	script
sudo	apt-get	install	arduino

For	Windows	platform,	you	can	download	setup	file	and	install	it.

The	following	is	a	screenshot	of	Arduino	software	on	Ubuntu	platform.

Here	is	Arduino	software	on	Windows	8	platform.

http://arduino.cc/en/Main/Software

If	you	run	Arduino	software	on	Windows	platform,	you	should	configure	arduino.exe
running	as	Administrator.	You	can	change	it	by	editing	file	property.	Click	Compatibility
and	then	checked	Run	this	program	as	an	administrator.

1.5	Testing

For	testing,	I	used	Arduino	Uno	R3	and	Arduino	Mega	2560	on	Ubuntu	and	Windows	8.1
platforms.

I	also	used	Arduino	Sidekick	Basic	kit	for	electronic	components.

2.	Hello	World:	Arduino	and	Go

This	chapter	explains	how	to	work	with	Arduino	and	Go	for	getting	started.

2.1	Arduino	World

After	you	installed	Arduino	software,	you	can	plugin	Arduino	hardware	into	computer	via
USB.

Then	you	execute	Arduino	software.	In	general	it	will	detect	Arduino	hardware	include
Arduino	type	and	model.

2.1.1	Arduino	Hardware	Driver	on	Windows	8/8.1

On	Windows	platform,	you	may	get	a	problem	about	Arduino	hardware	driver.	It	doesn’t
be	recognized	on	Windows	Device	Manager	as	below.

You	can	update	this	device	driver	by	navigating	hardware	driver	on	the	driver	folder	of
Arduino	software	installation	folder,	for	instance	E:\arduino-1.0.2\drivers	.

Sometime	you	may	get	a	problem	especially	for	x64	edition	about	digital	signature	of
Arduino	driver,	shown	in	Figure	below.

Configure	to	ignore	the	digital	signature	settings	on	your	Windows.	Normally	you	can	do
it	by	pressing	F8	key	on	restarting	Windows.	Then	choose	Disable	Driver	signature
Enforcement.

For	Windows	8,	you	can	do	by	clicking	Restart	menu	and	pressing	SHIFT	key.	Select
Troubleshoot.	Then	select	Advanced	options.

On	Advanced	options	display,	select	Startup	settings,	shown	in	Figure	below.

Click	Restart	button.	Then	Windows	8	will	restart.	After	that,	select	Disable	driver
signature	enforcement.

Now	you	can	install	Arduino	driver	on	your	Windows.

If	success,	you	can	see	Arduino	hardware	on	The	Device	Manager	as	below.

You	can	see	your	Arduino	hardware	running	on	COM8.

2.1.2	Simple	Testing

Now	you’re	ready	to	get	started.	For	illustration,	I	use	the	sample	code	from	Arduino,
Blink.	You	can	visit	on	http://arduino.cc/en/Tutorial/Blink	for	configuration.

For	this	scenario,	you	need	LED	and	resistor.	Attach	resistor	to	pin	13.	Negative	pin	of
LED	is	attached	to	pin	GND.	You	can	see	the	hardware	configuration	as	below.

http://arduino.cc/en/Tutorial/Blink

On	Arduino	software,	Click	File	->	Examples	->	01.Basics	->	Blink.

Then	you	will	get	a	sample	code	of	Blink	app.

Now	try	to	connect	your	Arduino	into	computer.

Compile	and	upload	Blink	app	to	Arduino	hardware.	If	success,	you	can	see	the	LED	will
be	on/off	every	second.

2.2	Arduino	and	Go

To	communicate	between	Arduino	and	computer,	we	can	use	a	serial	communication.	It
means	Go	gives	command	and	receives	data	via	serial	port.

On	Go,	we	can	use	several	Go	packages.	The	following	is	a	list	of	Go	package	for
communicating	with	serial	port:

GoSerial,	https://code.google.com/p/goserial/
go-serial,	https://github.com/jacobsa/go-serial

In	this	section,	I	just	show	you	how	to	use	GoSerial	to	communicate	with	serial	port.

https://code.google.com/p/goserial/
https://github.com/jacobsa/go-serial

2.3	Testing	Serial	Port	using	Go

Now	you	can	connect	your	Arduino	to	computer.	For	Windows	platform,	you	can	verify
by	opening	Device	Manager	and	expand	Ports	(COM	&	LPT).	You	can	see	COM	your
Arduino	used.

For	Debian/Ubuntu/Mac,	you	can	check	it	by	typing	on	terminal
ls	/dev/ttyACM*

You	can	see	Arduino	serial	port.	Here	is	a	sample	output.
/dev/ttyACM0

Now	we	create	project	called	serialtest	by	creating	a	folder,	serialtest.
$	mkdir	serialtest

$	cd	serialtest

Create	a	file,	called	main.go.	Write	the	following	code.
package	main

import	(

				"github.com/tarm/goserial"

				"fmt"

)

func	main()	{

				c	:=	&serial.Config{Name:	"COM6",	Baud:	9600}

				s,	err	:=	serial.OpenPort(c)

				if	err	!=	nil	{

								panic(err)

				}

				defer	s.Close()

				fmt.Println("connected")

}

Note:	change	your	serial	port.	In	this	section,	my	Arduino	is	connected	to	COM6	in
Windows	platform.

Because	we	use	external	package	from	Github,	you	must	install	git	runtime.

To	install	Go	library	from	Github,	you	must	instal	git,	http://git-scm.com/	.	Download	it
based	on	your	platform.	If	you	use	Windows	platform,	don’t	forget	to	set	it	on	PATH	on
Environment	Variables.

http://git-scm.com/

The	next	step	is	to	configure	GOPATH.	It	represents	our	workspace	path,	for	instance,	my
workspace	path	is	D:\PE_PRESS\eBook\arduino_go\codes.	In	Linux/Mac,	you	can
define	your	own	workspace	path	in	under	your	account	home	path,	for	instance.	Further
information,	you	can	read	it	on	https://golang.org/doc/code.html	.

If	you	use	Linux/Mac,	you	can	define	GOPATH	using	export	command	or	you	add	it	on
your	profile	file.

$	mkdir	$HOME/go

$	export	GOPATH=$HOME/go

If	you	use	Windows	platform,	you	open	Environment	Variables.	You	can	open	it	from
Advanced	system	settings.	Then,	click	Environment	Variables	button.	Add	GOPATH
on	your	user	and	System	variables.

https://golang.org/doc/code.html

Now	we	can	install	goserial	library	from	Github.	Type	the	following	command.
$	go	get	github.com/tarm/goserial

Save	this	code	on	main.go	file.

Now	you	can	build	and	run	this	program.	Don’t	forget	to	connect	your	Arduino	into	PC
via	USB.

$	go	build

$	go	run	main.go

A	program	output	can	be	seen	in	Figure	below.

2.4	Testing	for	Arduino	and	Go

Now	we	test	for	communicating	between	Arduino	and	Go.	In	this	scenario,	we	build
Arduino	app	to	send	data	to	serial	port.	Then,	Go	app	will	receive	this	message	by
listening	on	serial	port.

The	first	step	is	to	create	Arduino	app.	From	Blink	Arduino	app,	you	can	modify	this
code.	Write	this	code:

int	led	=	13;

void	setup()	{																	

		pinMode(led,	OUTPUT);					

		Serial.begin(9600);

}

void	loop()	{

		digitalWrite(led,	HIGH);		

		Serial.write("LEAD	is	HIGH\n");

		delay(1000);															

		digitalWrite(led,	LOW);		

		Serial.write("LEAD	is	LOW\n");

		delay(1000);

}

Explanation

On	setup(),	we	activate	serial	port	on	9600	baud	rate	and	LED	on	pin	13
On	loop(),	we	write	HIGH	on	pin	13	and	then	send	a	message	“LEAD	is	HIGH\n”	to
serial	port
We	also	do	it	again.	It	writes	LOW	value	and	sends	a	message	“LEAD	is	LOW\n”	to
serial	port

Save	this	code	as	blinked.	Compile	and	upload	this	code	to	Arduino	hardware.

Make	sure	you	already	configure	Arduino	board	and	serial	port	of	Arduino	board.

You	can	compile	by	clicking	icon	checked	and	deploy	to	Arduino	by	clicking	icon	arrow.

You	can	check	the	serial	port	response	using	Serial	Monitor.	Click	menu	Tools	->	Serial
Monitor.	You	will	see	messages	from	Arduino	hardware.

On	the	next	step,	we	create	Go	app.	Basically	we	create	a	Go	app	to	listen	incoming
messages	from	serial	port.	Create	a	project,	called	serialdemo,	by	creating	folder,
serialdemo.

$	mkdir	serialdemo

$	cd	serialdemo

Create	a	file,	called	main.go.	Write	the	following	code.
package	main

import	(

				"github.com/tarm/goserial"

				"fmt"

				"strings"

)

func	main()	{

				//	open	serial	port	Arduino

				//	change	port	value	based	on	your	platform

				c	:=	&serial.Config{Name:	"COM6",	Baud:	9600}

				s,	err	:=	serial.OpenPort(c)

				if	err	!=	nil	{

								panic(err)

				}

				defer	s.Close()

				//	read	data	in	background

				go	func()	{

								buf	:=	make([]byte,	128)

								str	:=	""

								for		{

												n,	err	:=	s.Read(buf)

												if	err	!=	nil	{

																panic(err)

												}

												str	=	fmt.Sprintf("%s%s",str,string(buf[:n]))

												if	strings.Index(str,"\n")>=0	{

																ind	:=	strings.Index(str,"\n")

																temp	:=	str[:ind+1]

																str	=	fmt.Sprintf("%s",str[ind+1:])

																fmt.Printf("%s",temp)

												}

								}

				}()

				//	press	ENTER	to	exit

				fmt.Println("press	Enter	to	exit..")

				var	input	string

				fmt.Scanln(&input)

				fmt.Println("done")

}

Note:	change	your	Arduino	serial	port.

Save	this	code	on	main.go	file.

Now	you	can	build	and	run	this	program.	Don’t	forget	to	connect	your	Arduino	into	PC
via	USB.

$	go	build

$	go	run	main.go

Here	is	a	sample	of	program	output.

You	can	see	the	incoming	message	from	serial	port	of	Arduino.	To	exit	from	program,	you
press	ENTER	from	your	PC	keyboard.

3.	Exploring	Go	Packages	for	Arduino

In	this	chapter	I’m	going	to	explain	how	to	use	external	Go	packages	to	access	Arduino
directly.

3.1	Getting	Started

To	access	Arduino,	we	can	do	in	many	ways.	One	of	them	is	to	use	Firmata	protocol,
http://firmata.org/	.	You	find	many	Go	packages	which	implement	Firmata	protocol.	The
following	is	a	list	of	Go	package	to	implement	Firmata	protocol.

Gobot,	http://gobot.io/
go-firmata,	https://github.com/kraman/go-firmata
gofirmata,	https://github.com/choffee/gofirmata

To	use	Arduino	with	Firmata	protocol	on	Arduino,	we	must	load	Firmata	protocol	module
on	Arduino.	Firstly	we	must	load	Firmata	protocol	on	your	Arduino	board.	Open	Arduino
software	and	click	menu	File	->	Examples	->	Firmata	->StandardFirmata	.

http://firmata.org/
http://gobot.io/
https://github.com/kraman/go-firmata
https://github.com/choffee/gofirmata

Then	you	obtain	Firmata	codes.

Now	you	can	compile	and	deploy	Firmata	Protocol	code	into	your	Arduino	board.	Don’t
forget	to	select	your	Arduino	board	model	and	serial	port.

The	next	step	is	to	build	a	simple	app,	blinking	led,	using	Go	with	Gobot	and	go-firmata
packages.

3.2	Gobot

Gobot	is	a	framework	for	robotics,	physical	computing,	and	the	Internet	of	Things,	written
in	the	Go	programming	language.	Further	information	about	gobot,	you	can	visit	the
official	website	on	http://gobot.io/.	

In	this	section,	we	try	to	access	Arduino	via	gobot.	To	install	gobot	package,	you	must
install	the	following	runtime:

git,	http://git-scm.com/
mercurial,	http://mercurial.selenic.com/wiki/Download

Now	you	can	install	gobot	package	with	the	following	command
$	go	get	-d	-u	github.com/hybridgroup/gobot/...

You	also	install	Firmata	for	Gobot	package.	Type	this	command.
$	go	get	github.com/hybridgroup/gobot	&&	go	install	github.com/hybridgroup/gobot/platforms/firmata

http://gobot.io/
http://git-scm.com/
http://mercurial.selenic.com/wiki/Download

For	illustration,	we	build	a	simple	app,	blinking	led.	We	use	LED	on	the	board,	LED	on
pin	13.	

Now	we	create	project	called	ledgobot	by	creating	a	folder,	ledgobot.
$	mkdir	ledgobot

$	cd	ledgobot

Create	a	file,	called	main.go.	Write	the	following	code.
package	main

import	(

				"fmt"

				"time"

				"github.com/hybridgroup/gobot"

				"github.com/hybridgroup/gobot/platforms/firmata"

				"github.com/hybridgroup/gobot/platforms/gpio"

)

func	main()	{

				gbot	:=	gobot.NewGobot()

				//	change	Arduino	port,	windows	COMx.	Linux	/dev/ttyACMx

				firmataAdaptor	:=	firmata.NewFirmataAdaptor("arduino",	"COM6")

				led	:=	gpio.NewLedDriver(firmataAdaptor,	"led",	"13")

				//	function	to	run	led	blinking

				work	:=	func()	{

								gobot.Every(1*time.Second,	func()	{

												fmt.Println("led	toggling..")

												led.Toggle()

								})

				}

				gbot.AddRobot(gobot.NewRobot("bot",

								[]gobot.Connection{firmataAdaptor},

								[]gobot.Device{led},

								work,

))

				gbot.Start()

}

Save	this	code	and	run	it.

Now	you	can	build	and	run	this	program.	Don’t	forget	to	connect	your	Arduino	into	PC
via	USB.

$	go	build

$	go	run	main.go

On	console,	you	can	see	the	output	as	below.

Then,	you	can	see	LED	is	blinking	on	the	Arduino	board.

3.3	go-firmata

The	second	Firmata	package	for	Go	is	go-firmata.	You	can	read	it
on	https://github.com/kraman/go-firmata	.	You	can	install	this	package	by	typing	this
command.

$	go	get	github.com/kraman/go-firmata

For	illustration,	we	build	a	simple	app,	blinking	led.	We	use	LED	on	the	board,	LED	on
pin	13.	

Now	we	create	project	called	firmataclient	by	creating	a	folder,	firmataclient.
$	mkdir	firmataclient

$	cd	firmataclient

Create	a	file,	called	main.go.	Write	the	following	code.
package	main

import	(

				"fmt"

				"time"

				"github.com/kraman/go-firmata"

)

func	main()	{

				board,	err	:=	firmata.NewClient("COM6",57600)

				if	err!=nil	{

								panic(err)

				}

				defer	board.Close()

				fmt.Println("SetPinMode")

				board.SetPinMode(13,firmata.Output)

				go	func()	{

								fmt.Println("go	run")

								for		{

												fmt.Println("LED	ON")

												board.DigitalWrite(13,true)

												time.Sleep(1	*	time.Second)

												fmt.Println("LED	OFF")

												board.DigitalWrite(13,false)

												time.Sleep(1	*	time.Second)

								}

				}()

				//	press	ENTER	to	exit

				fmt.Println("press	Enter	to	exit..")

https://github.com/kraman/go-firmata

				var	input	string

				fmt.Scanln(&input)

				fmt.Println("done")

}

Save	this	code	and	run	it.

Now	you	can	build	and	run	this	program.	Don’t	forget	to	connect	your	Arduino	into	PC
via	USB.

$	go	build

$	go	run	main.go

On	console,	you	can	see	the	output	as	below.

3.4	Reading	Digital	Input

After	created	a	blinking	led,	we	can	continue	to	build	app	which	reads	digital	input.	We
need	a	switch/button	and	a	LED.	Connect	your	digital	switch	on	Arduino	digital	pin	6	and
LED	on	Arduino	digital	9.

3.4.1	gobot

You	create	project	called	gobutton	by	creating	a	folder,	gobutton.
$	mkdir	gobutton

$	cd	gobutton

Create	a	file,	called	main.go.	Write	the	following	code.
package	main

import	(

				"fmt"

				"time"

				"github.com/hybridgroup/gobot"

				"github.com/hybridgroup/gobot/platforms/firmata"

				"github.com/hybridgroup/gobot/platforms/gpio"

)

func	main()	{

				gbot	:=	gobot.NewGobot()

				//	change	Arduino	port,	windows	COMx.	Linux	/dev/ttyACMx

				firmataAdaptor	:=	firmata.NewFirmataAdaptor("myFirmata",	"COM6")

				//	create	a	button	on	digital	pin	6	and	a	led	on	digital	pin	9

				button	:=	gpio.NewButtonDriver(firmataAdaptor,	"myButton",	"6")

				led	:=	gpio.NewLedDriver(firmataAdaptor,	"led",	"9")

				work	:=	func()	{

								gobot.On(button.Event("push"),	func(data	interface{})	{

												fmt.Println("button	is	pressed")

												led.On()

								})

								gobot.On(button.Event("release"),	func(data	interface{})	{

												fmt.Println("button	is	released")

												led.Off()

								})

				}

				gbot.AddRobot(gobot.NewRobot("bot",

								[]gobot.Connection{firmataAdaptor},

								[]gobot.Device{button,led},

								work,

))

				gbot.Start()

}

Save	this	code	and	run	it.

Now	you	can	build	and	run	this	program.	Don’t	forget	to	connect	your	Arduino	into	PC
via	USB.

$	go	build

$	go	run	main.go

Press	the	button	so	you	can	see	LED	is	ON.

On	console,	you	can	see	the	output	as	below.

A	sample	output	on	hardware	schema.

3.4.2	go-firmata

Create	project	called	firmatabutton	by	creating	a	folder,	firmatabutton.
$	mkdir	firmatabutton

$	cd	firmatabutton

Create	a	file,	called	main.go.	Write	the	following	code.
package	main

import	(

				"fmt"

				"time"

				"github.com/kraman/go-firmata"

)

func	main()	{

				board,	err	:=	firmata.NewClient("COM6",57600)

				if	err!=nil	{

								panic(err)

				}

				defer	board.Close()

				//	LED	on	digital	pin	9

				board.SetPinMode(9,firmata.Output)

				//	button	on	digital	pin	6

				board.SetPinMode(6,firmata.Input)

				board.EnableDigitalInput(6,true)

				go	func()	{

								for	buttonVal	:=	range	board.GetValues(){

												,val,	:=	firmata.FirmataValue(buttonVal).GetDigitalValue()

												if	val[6]==true	{

																fmt.Println("LED	ON")

																board.DigitalWrite(9,true)

												}else{

																fmt.Println("LED	OFF")

																board.DigitalWrite(9,false)

												}

												time.Sleep(700	*	time.Millisecond)

								}

				}()

				//	press	ENTER	to	exit

				fmt.Println("press	Enter	to	exit..")

				var	input	string

				fmt.Scanln(&input)

				fmt.Println("done")

}

Save	this	code	and	run	it.

Now	you	can	build	and	run	this	program.	Don’t	forget	to	connect	your	Arduino	into	PC
via	USB.

$	go	build

$	go	run	main.go

Press	the	button	so	you	can	see	LED	is	ON.

On	console,	you	can	see	the	output	as	below.

4.	Analog	Sensor

In	this	chapter	I’m	going	to	explain	how	to	access	sensor	data	on	Arduino	with	sensor
device.	In	this	section,	I	use	go-firmata,	https://github.com/kraman/go-firmata	to	develop
Go	application	to	access	sensor	device	on	Arduino.

https://github.com/kraman/go-firmata

4.1	Sensor	Devices

Arduino	can	be	interfaced	with	sensor	devices.	You	can	see	the	list	of	sensor	interface	on
http://playground.arduino.cc/Main/InterfacingWithHardware	.

In	this	scenario,	we	use	cheap	sensor	devices,	Themistors	and	LDR	(Light	Dependent
Resistors).	Thermistor	can	be	used	to	measure	temperature	and	LDR	can	be	used	to
measure	light	and	dark	based	on	illumination.

I	have	Thermistor	503	and	LDR	from	Arduino	Sidekick	Basic	kit.

For	building	sensor	hardware,	we	need	2	resistors,	50k	ohm	and	10k	ohm.	If	your
thermistor	is	10k	ohm,	you	should	use	a	resistor	with	10k	ohm.

The	following	is	a	circuit	schema	for	Thermistor	and	LDR	sensors.

http://playground.arduino.cc/Main/InterfacingWithHardware

One	of	sensor	pin	is	connected	to	5V	Arduino	pin.	We	use	a	divider	approach.	Thermistor
503	is	attached	to	the	Analog	In	of	Arduino,	A0.	Otherwise,	LDR	is	attached	to	A2.

You	may	attach	LED	as	the	indicator	for	sensor	reading	state.	You	can	use	a	solution	on
chapter	2,	Blink	app.

Here	is	a	sample	of	hardware	implementation.

You	also	can	use	Arduino	shield	which	sensor	devices	are	be	connected,	for	instance,	I	use
Linker	kit	from	http://store.linksprite.com/linker-kit/	with	the	following	sensor	items:

LDR,	http://store.linksprite.com/ldr-ambient-light-module-of-linker-kit-for-pcduino-
arduino/
Temperature	sensor,	http://store.linksprite.com/thermal-module-of-linker-kit-for-
pcduino-arduino/

Hardware	implementation	can	be	seen	in	Figure	below.

http://store.linksprite.com/linker-kit/
http://store.linksprite.com/ldr-ambient-light-module-of-linker-kit-for-pcduino-arduino/
http://store.linksprite.com/thermal-module-of-linker-kit-for-pcduino-arduino/

4.2	Reading	Sensor

How	to	read	the	sensor	data	from	Arduino?.	We	use	go-
firmata,	https://github.com/kraman/go-firmata.	To	access	Arduino	Analog	from	Firmata,
we	can	convert	the	following	pin:

Arduino	analog	A0	–>	Firmata	pin	14
Arduino	analog	A1	–>	Firmata	pin	15
Arduino	analog	A2	–>	Firmata	pin	16
Arduino	analog	A3	–>	Firmata	pin	17

Firstly,	we	create	project	called	sensordemo	by	creating	a	folder,	sensordemo.
$	mkdir	sensordemo

$	cd	sensordemo

Create	a	file,	called	main.go.	Write	the	following	code.
package	main

import	(

				"fmt"

				"math"

				"time"

				arduino	"github.com/kraman/go-firmata"

)

func	main()	{

				board,	err	:=	arduino.NewClient("COM6",57600)

				if	err!=nil	{

								panic(err)

				}

				defer	board.Close()

				//	LDR	on	A0	=	Pin	14

				err1	:=	board.EnableAnalogInput(14,true)

				if	err1!=nil	{

								panic(err1)

				}

				//	Temperature	on	A2	=	Pin	16

				err2	:=	board.EnableAnalogInput(16,true)

				if	err2!=nil	{

								panic(err2)

				}

				go	func()	{

								for		{

https://github.com/kraman/go-firmata

												for	sensorVal	:=	range	board.GetValues(){

																pin,val,_	:=	arduino.FirmataValue(sensorVal).GetAnalogValue()

																fmt.Println(pin,":",val)

																if	pin==16	{

																				//	linker	kit

																				temperatureC	:=	CalculateTempLinkerKit(float64(val))

																				//	Thermistor

																				//temperatureC	:=	CalculateThermistor(float64(val))

																				fmt.Println("Temperature:",temperatureC,	"degrees	C"

																}

																if	pin	==	14	{

																				//	if	you	use	LDR

																				//ldr	:=	val

																				//	if	you	use	LDR	from	linker	kit

																				ldr	:=	CalculateLDR(float64(val))

																				if	ldr	<	10	{

																								fmt.Println("LDR:",ldr,	"Dark")

																				}else	if	ldr	<200	{

																								fmt.Println("LDR:",ldr,	"Dim")

																				}else	if	ldr	<500	{

																								fmt.Println("LDR:",ldr,	"Light")

																				}else	if	ldr	<800	{

																								fmt.Println("LDR:",ldr,	"Bright")

																				}else{

																								fmt.Println("LDR:",ldr,	"Very	bright")

																				}

																}

																time.Sleep(1000	*	time.Millisecond)

												}

												time.Sleep(1	*	time.Second)

								}

				}()

				//	press	ENTER	to	exit

				fmt.Println("press	Enter	to	exit..")

				var	input	string

				fmt.Scanln(&input)

				fmt.Println("done")

}

//	based	on	http://playground.arduino.cc/ComponentLib/Thermistor2

func	CalculateThermistor(rawADC	float64)	float64	{

				temp	:=	math.Log(((10240000	/	rawADC)	-	10000))

				temp	=	1	/	(0.001129148	+	(0.000234125	+	(0.0000000876741	*	temp	*	temp))	

				temp	-=	273.15					//	Convert	Kelvin	to	Celsius

				return	temp

}

//	LDR	from	linker	kit

//	http://store.linksprite.com/ldr-ambient-light-module-of-linker-kit-for-pcduino-arduino/

func	CalculateLDR(sensorValue	float64)	float64	{

				val	:=	float64(1023-sensorValue)*10/sensorValue;

				return	val

}

//	Temperature	sensor	from	linker	kit

func	CalculateTempLinkerKit(rowADC	float64)	float64{

				voltage	:=	float64(rowADC)	*	5.0

				voltage	/=	1024.0;

				temperatureC	:=	(voltage	-	0.5)	*	100

				return	temperatureC

}

This	code	works	for	LDR	&	Thermistor	and	Linker	kit.	You	can	remark	one	of	them.

Save	this	code	and	run	it.

You	can	see	that	LDR	sensor	value	is	converted	to	light	information,	for	instance	dark,
dim,	light,	bright,	very	bright.

Save	this	code.

4.3	Running	Program

Now	you	can	execute	your	program.	Type	this	command.
$	go	build

$	go	run	main.go

You	can	see	a	sample	output	as	below.

5.	RGB	LED

This	chapter	explains	how	to	control	RGB	LED	connected	to	Arduino	board	using	Go.	We
explore	how	to	access	PWM	(Pulse	Width	Modulation)	Arduino.

5.1	RGB	LED

In	this	scenario	we	build	a	Go	application	to	control	RGB	LED	color	using	Arduino
Analog	output	(PWM).	RGB	LED	has	4	pins	that	you	can	see	it	on	Figure	below.

To	understand	these	pins,	you	can	see	the	following	Figure.

Note:

Pin	1:	Red
Pin	2:	Common	pin

Pin	3:	Green
Pin	4:	Blue

Now	we	can	start	to	build	a	Go	application	and	hardware	implementation.

5.1.1	Arduino	Analog	output	(PWM)

Please	be	careful	if	you	want	to	work	with	Arduino	PWM.	If	you	have	Arduino	Mega,	you
will	see	PWM	label	so	you	obtain	PWM	pins	easily	but	if	you	have	Arduino	Uno,	it	writes
DIGITAL	(PWM	~).	It	means	your	PWM	pins	can	be	found	on	DIGITAL	pins	which	pin
with	~,	for	instance,	~3,~5,~6,~9,	~10,	~11.

For	Arduino	Mega	2560,	you	can	see	PWM	pins	on	picture	below	(see	red	arrow).

For	Arduino	Uno	R3,	you	can	see	PWM	pins	as	below.

5.1.2	Controlling	RGB	LED	Color

Firstly	we	implement	RGB	LED	hardware.	The	following	is	a	hardware	schema.

For	our	testing,	we	configure	the	following	PWM	pins.

Arduino	Mega	2560:

RGB	LED	pin	1	(red)	is	connected	to	Arduino	PWM	pin	4
RGB	LED	pin	2	is	connected	to	Arduino	VCC	5V
RGB	LED	pin	3	(green)	is	connected	to	Arduino	PWM	pin	3
RGB	LED	pin	4	(blue)	is	connected	to	Arduino	PWM	pin	2

Arduino	Uno	R3:

RGB	LED	pin	1	(red)	is	connected	to	Arduino	PWM	pin	9
RGB	LED	pin	2	is	connected	to	Arduino	VCC	5V
RGB	LED	pin	3	(green)	is	connected	to	Arduino	PWM	pin	10
RGB	LED	pin	4	(blue)	is	connected	to	Arduino	PWM	pin	11

Here	is	a	sample	implementation	with	Arduino	Uno	R3.

5.2	Arduino	Implementation

Now	we	implement	our	RGB	LED	controller	in	Arduino.	This	is	for	testing.	Open	Firstly,
we	define	our	RGB	LED	pins.	The	following	is	RGB	LED	pins	for	Arduino	Mega	2560.

int	redPin	=	4;

int	greenPin	=	3;

int	bluePin	=	2;

We	can	define	RGB	LED	pins	for	Arduino	Uno	R3.
int	redPin	=	11;

int	greenPin	=	10;

int	bluePin	=	9;

Now	we	initialize	pins	on	setup().
void	setup()

{

				pinMode(redPin,	OUTPUT);

				pinMode(greenPin,	OUTPUT);

				pinMode(bluePin,	OUTPUT);

				Serial.begin(9600);

}

We	define	a	function,	called	setColor().	This	function	aims	to	write	RGB	values	on	PWM
pins.

void	setColor(int	red,	int	green,	int	blue)

{

		analogWrite(redPin,	red);

		analogWrite(greenPin,	green);

		analogWrite(bluePin,	blue);

}

Now	we	control	RGB	values	on	RGB	LED,	for	instance,	Red,	Green,	Blue,	Yellow,
Purple,	Aqua.

void	loop()

{

		setColor(255,	0,	0);		//	red

		Serial.println("red");

		delay(1000);

		setColor(0,	255,	0);		//	green

		Serial.println("green");

		delay(1000);

		setColor(0,	0,	255);		//	blue

		Serial.println("blue");

		delay(1000);

		setColor(255,	255,	0);		//	yellow

		Serial.println("yellow");

		delay(1000);

		setColor(80,	0,	80);		//	purple

		Serial.println("purple");

		delay(1000);

		setColor(0,	255,	255);		//	aqua

		Serial.println("aqua");

		delay(1000);

}

Save	this	code,	called	test_rgb_arduino.ino.

Compile	and	verify	this	code.	If	success,	you	can	upload	it	to	Arduino	board.

If	success,	you	can	see	RGB	LED	blinking	with	different	colors.	Here	is	a	sample	output
of	RGB	LED	with	Arduino	Mega	2560.

5.3	Go	Implementation

In	this	section,	we	create	Go	application	to	control	RGB	LED	color.	We	use	the	same
scenario	as	previous	section.	For	testing,	I	used	go-firmata
package,	https://github.com/kraman/go-firmata	.	Don’t	forget	to	load	standard	Firmata
library	on	your	Arduino.	Further	information,	you	read	it	on	section	3.1.

I	have	tested	PWM	on	pin	9,10	and	11	didn’t	work.	After	printed	all	pin	mapping,	I	have
the	following	pin	mapping.

You	print	your	pin	mapping	by	modifying	code	client.go	from	go-firmata	package	as
follows.

func	(c	*FirmataClient)	SetPinMode(pin	byte,	mode	PinMode)	(err	error)	{

		if	c.pinModes[pin][mode]	==	nil	{

						

				err	=	fmt.Errorf("Pin	mode	%v	not	supported	by	pin	%v",	mode,	pin)

				return

		}

				//	print	all	pin	mapping

				for	k,	v	:=	range	c.pinModes	{

				

								fmt.Println(k,"--",v)

				

				

				}

		cmd	:=	[]byte{byte(SetPinMode),	(pin	&	0x7F),	byte(mode)}

		err	=	c.sendCommand(cmd)

		return

}

Then,	test	it.

From	this	case,	I	connect	RGB	LED	on	Arduino	pin1	for	RGB	red,	Arduino	pin	3	for
RGB	green	and		Arduino	pin	9	for	RGB	blue.

Now	we	create	project	called	rgbdemo	by	creating	a	folder,	rgbdemo.
$	mkdir	rgbdemo

$	cd	rgbdemo

Create	a	file,	called	main.go.	Write	the	following	code.
package	main

import	(

				"fmt"

				"time"

				arduino	"github.com/kraman/go-firmata"

)

func	main()	{

				board,	err	:=	arduino.NewClient("COM6",57600)

				if	err!=nil	{

								panic(err)

				}

				defer	board.Close()

				//	define	RGB	pin

				board.SetPinMode(1,arduino.PWM)		//	red

				board.SetPinMode(3,arduino.PWM)	//	green

				board.SetPinMode(9,arduino.PWM)	//	blue

				go	func()	{

								for		{

												SetColor(board,255,	0,	0)		//	red

												fmt.Println("red")

												time.Sleep(2	*	time.Second)

												SetColor(board,0,	255,	0)		//	green

												fmt.Println("green")

												time.Sleep(2	*	time.Second)

												SetColor(board,0,	0,	255)		//	blue

												fmt.Println("blue")

												time.Sleep(2	*	time.Second)

												SetColor(board,255,	255,	0)		//	yellow

												fmt.Println("yellow")

												time.Sleep(2	*	time.Second)

												SetColor(board,80,	0,	80)		//	purple

												fmt.Println("purple")

												time.Sleep(2	*	time.Second)

												SetColor(board,0,	255,	255)		//	aqua

												fmt.Println("aqua")

												time.Sleep(2	*	time.Second)

								}

				}()

				//	press	ENTER	to	exit

				fmt.Println("press	Enter	to	exit..")

				var	input	string

				fmt.Scanln(&input)

				fmt.Println("done")

}

func	SetColor(client	*arduino.FirmataClient,	red	byte,	green	byte,	blue	

				client.AnalogWrite(1,	red)

				client.AnalogWrite(3,	green)

				client.AnalogWrite(9,	blue)

}

Save	this	code	and	run	it.

Now	you	can	build	and	run	this	program.	Don’t	forget	to	connect	your	Arduino	into	PC
via	USB.

$	go	build

$	go	run	main.go

On	console,	you	can	see	the	output	as	below.

and	you	also	see	RGB	LED	blinking	with	different	colors.

Source	Code

You	can	download	source	code	on
http://www.aguskurniawan.net/book/gocodes_123e1.zip	.

http://www.aguskurniawan.net/book/gocodes_123e1.zip

Contact

If	you	have	question	related	to	this	book,	please	contact	me	at	aguskur@hotmail.com	.	My
blog:	http://blog.aguskurniawan.net

http://blog.aguskurniawan.net

	Copyright
	Preface
	1. Preparing Development Environment
	1.1 Arduino
	1.1.1 Arduino Uno
	1.1.2 Arduino Leonardo
	1.1.3 Arduino Mega 2560
	1.1.4 Arduino Due

	1.2 Electronic Components
	1.2.1 Arduino Starter Kit
	1.2.2 Fritzing
	1.2.3 Cooking-Hacks: Arduino Starter Kit
	1.2.4 Arduino Sidekick Basic kit

	1.3 Go
	1.4 Arduino Software
	1.5 Testing

	2. Hello World: Arduino and Go
	2.1 Arduino World
	2.1.1 Arduino Hardware Driver on Windows 8/8.1
	2.1.2 Simple Testing

	2.2 Arduino and Go
	2.3 Testing Serial Port using Go
	2.4 Testing for Arduino and Go

	3. Exploring Go Packages for Arduino
	3.1 Getting Started
	3.2 Gobot
	3.3 go-firmata
	3.4 Reading Digital Input
	3.4.1 gobot
	3.4.2 go-firmata

	4. Analog Sensor
	4.1 Sensor Devices
	4.2 Reading Sensor
	4.3 Running Program

	5. RGB LED
	5.1 RGB LED
	5.1.1 Arduino Analog output (PWM)
	5.1.2 Controlling RGB LED Color

	5.2 Arduino Implementation
	5.3 Go Implementation

	Source Code
	Contact

