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PREFACE 

OBJECTIVES 

The main objective of a basic mechanics course should be to develop in. 
the engineering student the ability to analyze a given problem in a simple 
and logical manner and to apply to its solution a few fundamental and 
well"understood principles. This text is designed for the first course in me
chanics of materials-or strength of materials-offered to enginee1ing stu
dents in the sophomore or junior year. The authors hope that it will help 
instmctors achieve this goal in that particular course in the same way that 
their other texts may have helped them in statics and dynamics. 

GENERAL APPROACH 

In this text the study of the mechanics of materials is based on the 
understanding of a few basic concepts and on the use of simplified 
models. This approach makes it possible to develop all the necessary 
formulas in a rational and logical manner, and to clearly indicate the 
conditions under which they can be safely applied to the analysis and 
design of actual engineering structures and machine components. 

Free-body Diagrams Are Used Extensively. Throughout the 
text free-body diagrams are used to determine external or internal forces. 
The use of "picture equations'' will also help the students understand the 
superposition of loadings and the resulting stresses and deformations. 

Design Concepts Are Discussed Throughout the Text When
ever Appropriate. A discussion of the application of the factor of safety 
to design can be found in Chap. 1, where the concepts of both allowable 
stress design and load and resistance factor design are presented. 

Optional Sections Offer Advanced or Specialty Topics. Top
ics such as residual stresses, torsion of noncircular and thin-walled 
members, bending of curved beams, shearing stresses in non-symmetrical 
members, and failure criteria, have been included in optional sections for 
use in courses of varying emphases. To preserve the integrity of the sub
ject, these topics are presented in the proper sequence, wherever they log-
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·eface ically belong. Thus, even when not covered in the course, they are highly 
visible and can be easily referred to by the students if needed in a later 
course or in engineering practice. For convenience all optional sections 
have been indicated by asterisks. 

CHAPTER ORGANIZATiON 

It is expected that students using this text will have completed a 
course in statics. However, Chap. 1 is designed to provide them with 
an opportunity to review the concepts learned in that course, while 
shear and bending-moment diagrams are covered in detail in Sees. 5.2 
and 5.3. The properties of moments and centroids of areas are 
described in Appendix A; this material can be used to reinforce the 
discussion of the determination of normal and shearing stresses in 
beams (Chaps. 4, 5, and 6). 

The first four chapters of the text are devoted to the analysis of 
the stresses and of the corresponding deformations in various struc~ 
tural members, considering successively axial loading, torsion, and 
pure bending. Each analysis is based on a few basic concepts, 
namely, the conditions of equil~brium of the forces exerted on the 
member, the relations existing between stress and strain in the rna~ 
terial, and the conditions imposed by the supports and loading of 
the member. The study of each type of loading is complemented by 
a large number of examples, sample problems, and problems to be 
assigned, all designed to strengthen the students' understanding of 
the subject. 

The concept of stress at a point is introduced in Chap. 1, where 
it is shown that an axial load can produce shearing stresses as well 
as normal stresses, depending upon the section considered. The fact 
that stresses depend upon the orientation of the surface on which 
they are computed is emphasized again in Chaps. 3 and 4 in the 
cases of torsion and pure bending. However, the discussion of com
putational techniques-such as Mohr's circle-used for the trans~ 
formation of stress at a point is delayed until Chap. 7, after students 
have had the opportunity to solve problems involving a combina~ 
tion of the basic loadings and have discovered for themselves the 
need for such techniques. 

The discussion in Chap. 2 of the relation between stress and strain 
in various materials includes fiber-reinforced composite materials. 
Also, the study of beams under transverse loads is covered in two 
separate chapters. Chapter 5 is devoted to the determination of the 
normal stresses in a beam and to the design of beams based on the 
allowable normal stress in the material used (Sec. 5.4). The chapter 
begins with a discussion of the shear and bending~moment diagrams 
(Sees. 5.2 and 5.3) and includes an optional section on the use of sin
gularity functions for the determination of the shear and bending mo
ment in a beam (Sec. 5.5). The chapter ends with an optional section 
on nonprismatic beams (Sec. 5.6). 



Chapter 6 is devoted to the determination of shearing stresses in 
beams and thin-walled members under transverse loadings. The for
mula for the shear flow, q = VQ/l, is derived in the traditional way. 
Mofe advanced aspects of the design of beams, such as the deter
mination of the principal stresses at the junction of the flange and 
web of a W-beam, are in Chap. 8, an optional chapter that may be 
covered after the transformations of stresses ~ave been discussed in 
Chap. 7. The design of transmission shafts is in that chapter for the 
same reason, as well as the determination of stresses under combined 
loadings that can now include the determination of the principal 
stresses, principal planes, and maximum shearing stress at a given 
point. 

Statically indeterminate problems are first discussed in Chap. 2 and 
considered throughout the text for the various loading conditions en
countered. Thus, students are presented at an early stage with a method 
of solution that combines the analysis of deformations with the conven
tional analySis of forces used in statics. In this way, they will have be
come thoroughly familiar with this fundamental method by the end of 
the course. In addition, this approach helps the students realize that 
stresses themselves are statically indeterminate and can be computed Ol).ly 
by considering the corresponding distribution of strains. 

The concept of plastic deformation is introduced in ~hap. 2, where 
it is applied to the analysis of members under axial loading. Problems 
involving the plastic deformation of circular shafts and of prismatic 
beams are also considered in optional sections of Chaps. 3, 4, and 6. 
While some of this material can be omitted at the choice of the in
structor, its inclusion in the body of the text will help students realize 
the limitations of the assumption of a linear stress-strain relation and 
serve to caution them against the inappropriate use of the elastic tor
sion and flexure formulas. 

The determination of the deflection of beams is discussed in Chap. 9. 
The first part of the chapter is devoted to the integration method and 
to the method of superposition, with an optional section (Sec. 9.6) based 
on the use of singularity functions. (This section should be used only 
if Sec. 5.5 was covered earlier.) The second part of Chap. 9 is optional. 
It presents the moment-area method in two lessons. 

Chapter 10 is devoted to columns and contains material on the design 
of steel, aluminum, and wood columns. Chapter 11 covers energy meth
ods, including Castigliano's theorem. 

PEDAGOGICAL FEATURES 

Each chapter begins with an introductory section setting the purpose 
and goals of the chapter and describing in simple terms the material to 
be covered and its application to the solution of engineering problems. 

Chapter Lessons. The body of tl1e text has been divided into 
units, each consisting of one or several theory sections followed by samM 
ple problems and a large number of problems to be assigned. Each unit 
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·eface corresponds to a well-defined topic and generally can be covered in one 
lesson. 

Examples and Sample Problems. The theory sections include 
many examples designed to illustrate the material being presented and 
facilitate its understanding. The sample problems are intended to show 
some of the applications of the theory to the solution of engineering prob
lems. Since they have been set up in much the same form that students 
will use in solving the assigned problems. the sample problems serve the 
double purpose of amplifying the text and demonstrating the type of neat 
and orderly work that students should cultivate in their own solutions. 

Homework Problem Sets. Most of the problems are of a prac
tical nature and should appeal to engineering students. They are pri
marily designed, however, to illustrate the material presented in the 
text and help the students understand the basic principles used in 
mechanics of materials. The problems have been grouped according to 
the portions of material they illustrate and have been arranged in order 
of increasing difficulty. Problems requiring special attention have been 
indicated by asterisks. Answers to problems are given at the end of the 
book, except for those with a number set in italics. 

Chapter Review and Summary. Each chapter ends with a review 
and summary of the material covered in the chapter. Notes in the mar
gin have been included to help the students organize their review work, 
and cross references provided to help them find the portions of mate
rial requiring their special attention. 

Review Problems. A set of review problems is included at the 
end of each chapter. These problems provide students further opportu
nity to apply the most important concepts introduced in the chapter. 

Computer Problems. The availability of personal computers 
makes it possible for engineering students to solve a great number of 
challenging problems. A group of six or more problems designed to be 
solved with .a computer can be found at the end of each chapter. De
veloping the algorithm required to solve a given problem will benefit 
the students in two different ways: (I) it will help them gain a better 
understanding of the mechanics principles involved; (2) it will pro
vide them with an opportunity to apply the skills acquired in their 
computer programming course to the solution of a meaningful engi
neering problem. 

Fundamentals o! Engineering Examination. Engineers who 
seek to be licensed as Professional Engineers must take two exams. 
The first exam, the Fundamentals of Engineering Examination, in
cludes subject material from Mechanics of Materials. Appendix E lists 
the topics in Mechanics of Materials that are covered in this exam 
along with problems that can be solved to review this material. 
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This chapter is devoted to the study of the stresses occurring in f'!lany of the elements contained in this excavator, 
.such as two-force members, pxles, bolts,· and pins. · 



2 Introduction-Concept of Stress 1.1. INTRODUCTION 

The main objective of the study of the mechanics of materials is to pro
vide the future engineer with the means of analyzing and designing var~ 
ious machines and load-bearing structures. 

Both the analysis and the design of a given structure involve the de~ 
tennination of stresses and deformations. This first chapter is devoted to 
the concept of stress. 

Section 1.2 is devoted to a short review of the basic methods of statics 
and to their application to the detennination of the forces in the members 
of a simple structure consisting of pin-connected members. Section 1.3 will 
introduce you to the concept of stress in a member of a structure, and you 
will be shoWn how that stress can be determined from the force in the mem
ber. After a short discussion of engineering analysis and design (Sec. 1.4), 
you will consider successively the normal stresses in a member under ax~ 
ial loading (Sec. 1.5), the shearing stresses caused by the application of 
equal and opposite transverse forces (Sec. 1.6), and the bearing stresses ere~ 
ated by bolts and pins in the members they connect (Sec. 1.7). These vari~ 
ous concepts will be applied in Sec. 1.8 to the deternrination of the stresses 
in the members of the simple structure considered earlier in Sec. 1.2. 

The first part of the chapter ends with a description of the method you 
should use in the solution of an assigned problem (Sec. 1.9) and with a dis~ 
cussion of the numerical accuracy appropriate in engineering calculations 
(Sec. 1.10). 

In Sec. 1.11, where a two~force member under axial loading is con~ 
sidered again, it will be observed that the stresses on an oblique plane in~ 
elude both normal and shearing stresses, while in Sec. 1.12 you will note 
that six components are required to describe the state of stress at a point in 
a body under the most general loading conditions. 

Finally, Sec. 1.13 will be devoted to the determination from test spec~ 
imens of the ultimate strength of a given material and to the use of a fac~ 
tor of safety in the computation of the allowable load for a structural com~ 
ponent made of that material. 

1.2. A SHORT REVIEW OF THE METHODS OF STATICS 

In this section you will revi~w ·the basic methods of statics while de~ 
tennining the forces in the members of a simple structure. 

Consider the structure shown in Fig. 1.1, which was designed to 
support a 30-kN load.· It consists of a boom AB with a 30 X 50-mm 
rectangular cross section and of a rod BC with a 20~mri1-diameter cir
·cular cross section. The boom and the rod are connected by a pin at B 
and are supported by pins and brackets at A and C, respectively. Our 
first step should be to draw a free-body diagram of the structure by de
taching it from its supports at A and C, and showing the reactions that 
these supports exert on the structure (Fig. 1.2). Note that the sketch of 
the structure has been simplified by omitting all unnecessary details. 
Many of you may have recognized at this point that AB and BC are two
force members. For those of you who have not, we will pursue our 
analysis, ignoring that fact and assuming that the directions of the re~ 
actions at A and Care unknown. Each of these reactions, therefore, will 



Fig. 1.1 

be represented by two components, Ax and Ay at A, and Cx and Cy at 
C. We write the following three equilibrium equations: 

+~ 2: Me= 0: A,(0.6 m) - (30 kN)(0.8 m) = 0 

±.l:F = O· ' . 

+tl:F, = 0: 

A,= +40kN 
A,+ C, = 0 

Cx =-Ax Cx = -40kN 

A,.+ c,.- 30kN = 0 
A,+ C, = +30kN 

(1.1) 

(1.2) 

(1.3) 

We have found two of the four unknowns, but cannot determine the 
other two from these equations, and no additional independent equation 
can be obtained from the free-body diagram of the structure. We must 
now dismember the structure. Considering the free-body diagram of the 
boom AB (Fig. 1.3), we write the following equilibrium equation: 

+~ 2: M8 = 0: -A,(0.8 m) = 0 A,= 0 (1.4) 

Substituting for A, from (1.4) into (1.3), we obtain c, = +30 kN. Ex
pressing the results obtained for the reactions at A and C in vector form, 
we have 

A=40kN-> C, = 40kN<-,C, = 30kNt 

We note that the reaction at A is directed along the axis of the boom 
AB and causes compression in that member. Observing that the com
ponents Cx and Cy of the reaction at Care, respectively, proportional to 
the horizOntal and vertical components of the distance from B to C, we 
conclude that the reaction at Cis equal to 50 kN, is directed along the 
axis of the rod BC, and causes tension in that member. 

1.2. Review of the Methods of Statics 3 

c, 

c 
c,. 

0.6 m 

j 
......;l.....,-+=;;;;===="=""'!a 

A.r AI 

f-.---o.sm-

30kN 

Fig.1.2 

Aj B 

1--o.sm-
B, 

30kN 

Fig. 1.3 
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(a) (b) 

Fig.1.4 

Fac 
c 

B F'sc 

~·c=~==~==~~= 
FAB A B F't~a · 

Fig. 1.5 

These results could have been anticipated by recognizing that AB 
and BC are two-force members, i.e., members that are subjected to 
forces at only two points, these points being A and B for member AB, 
and B and C for member BC. Indeed, for a two-force member the lines 
of action of the resultants of the forces acting at each of the two points 
are equal and opposite and pass through both points. Using this prop
erty, we could have obtained a simpler solution by considering the free
body diagram of pin B. The forces on pin B are the forces FAn and F nc 
exerted, respectively, by members AB and BC, and the 30-kN load 
(Fig. L4a). We can express that pin B is in equilibrium by drawing 
the corresponding force triangle (Fig. 1.4b). 

Since·.the force F8 c is directed along member BC, its slope is 
the same as that of BC, namely, 3/4. We can, therefore, write the 
proportion 

FAe Fse 30 kN -=-=--
4 5 3 

from which we obtain 

Fee= 50kN 

The forces FA8 and F~c exerted by pin B, respectively, on boom AB 
and rod BC are equal and opposite to FA8 and Fee (Fig. !.5). 

c 

B F'Bc 

Fig.1.6 

Knowing the forces at the ends of each of the members, we can 
now determine the internal forces in these members. Passing a section 
at some arbitrary point D of rod BC, we obtain two portions BD and 
CD (Fig. !.6). Since 50-kN forces must be applied at D to both por
tions of the rod to keep them in equilibrium, we conclude that an in
ternal force of 50 kN is produced in rod BC when a 30-kN load is ap
plied at B. We further check from the directions of the forces F se and 
F~c in Fig. 1.6 that the rod is in tension. A similar procedure would 
enable us to determine that the internal force in boom AB is 40 kN and 
that the boom is in compression. 
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1.3. STRESSES IN THE MEMBERS OF A STRUCTURE 1.3. Stresses in the Members of a Structure 5 

While the resu,lts obtained in the preceding section represent a first and 
necessary step in the analysis of the given structure, they do nOt tell_ 
us whether the given load can be safely supported. Whether rod BC, 
for e~ample, will break or not under this loading depends not only 
upon the value found for the internal force F80 but also upon the cross-· 
sectional area of the rod and the material of which the rod is m·acte. 
Indeed, the· 'in.ternal force F~c actually represents the resultant .Qf ele
mentary forces distri_~uted ·over _the eridre area A of the cross· section 
(Fig. 1.7) and the average i':tensity of these distributed forces is equal_ 
to the force per unit area,\f8c/A,: in the section. Whether or notthe 
rod will break under the 'given loading clearly depends upon.the abil
ity of the material to withstand the corresponding value(F8c/4 of the 
intensity of the distributed internal forces. It thus depehds·-tlpon the 
force F sc. the cross-sectional area A, and the material of the rod. 

The force per unit area, or intensity of the: forces distributed over 
a given section) is called the stress on that section and is denoted by 
the Greek letter 0' (sigma). The stress in a member of cross-sectional 
area A subjected to an axial loa~ig. 1.8) is therefore obtaineifl)y 

-··a;-viCITilgfhe magmtude l'oflfieJOaally thl" area A: 
- ", ___ , ____ ----· ---~-- ...... ---~--- ____ ;;:-_~:-----~----------·· "----·-----~-- -----~ ..... "'"" 

p 
u.=---:-

A 
(1.5) 

A positive sign will be used to indicate a tensile stress (member in ten~ 
sion) and a negative sign to indicate a compressive stress (member in 
compression). 

With P expressed in newtons (N) and A in square meters (m2
), the 

stress 0' will be expressed in N/m2 This unit is called a pascal (Pa). 
However, one finds that the pascal is an exceedingly small quantity 

Fig. 1.7 

and that, in practice, multiples of this unit must be used, namely, the {a) 

kilopascal (kPa), the megapascal (MPa), and the gigapascal (GPa). We Fig. 1.8 

have 

'·. I kPa = 103 Pa = 103 N/m2 

I MPa = 106 Pa = 106 N/m2 

I GPa = 109 Pa = 109 N/m2 

p 

(b) 



6 lntroduction-Concept of Stress 1.4. ANALYSIS AND DESIGN 

Considering again the structure of Fig. 1.1, let us assume that rod BC 
is made of a steel with a maximum allowable stress a an = 165 MPa. 
Can rod BC safely support the load to which it will be subjected? The 
magnitude of the force F sc in the rod was found earlier to be 50 kN. 
Recalling that the diameter of the rod is 20 mm, we use Eq. (1.5) to 
detennine the stress created in the rod by the given loading. We have 

P = F8c = +50kN =+50 X 103 N 

(
20mm)' A= wr2 = 7r -

2
- = w(IO X 10-3 m)'= 314 X 10-6 m2 

P +50 X !03 N 
u =- = =+!59 X !06 Pa = +159MPa 

A 314 X 10-6 m2 

Since the value obtained for (J' is smaller than the value a all of the al" 
lowable stress in the steel used, we conclude that rod BC can safely 
support the load to which it will be subjected. To be complete, our analy
sis of the given structure should also include the determination of the 
compressive stress in boom AB, as well as an investigation of the stresses 
produced in the pins and their bearings. This will be discussed later in 
this chapter. We should also determine whether the deformations pro
duced by the given loading are acceptable. The study of deformations 
under axial loads will be the subject of Chap. 2. An additional con
sideration, required for members in compression involves the stability 
of the member, i.e., its ability to support a given load without expe
riencing a sudden change in configuration. This will be discussed in 
Chap. 10. 

The engineer's role is not limited to the analysis of existing struc
tures and machines subjected to given loading conditions. Of even greater 
importance to the engineer is the design of new structures and machines, 
that is, the selection of appropriate components to perform a given task. 
As an example of design, let us return to the structure of Fig. l.l, and 
assume that aluminum with an allowable stress a all = 100 MPa is to be 
used. Since the force in rod BC will still be P = F sc = 50 kN under the 
given loading, we must have, from Eq. (1.5), 

p 
O'an =A 

P 50Xl03 N 
A = - = ...:..:.___::...:.,.::..:.. 

<T," 100 X 106 Pa 

and, since A = 7Tr2, 

6 m' 
= 12.62 x I0-3 m = 12.62 mm 

d = 2r = 25.2 mm 

We conclude that an aluminum rod 26 mm or more in di~meter will be 
adequate. 



1.5. AXIAL LOADING; NORMAL STRESS 

As we have already indicated, rod BC of the example considered in the 
preceding section is a two-;:force_ m~mber and, therefore, the forces F Be 
and F8c acting· on its ends B and C)(Fig. 1.5) are directed along the 
axis·of the rod. We say~dlfi'fthe FOcfis tinder axial loading. An actual 
example of structural members under axial loading is provided by the 
members of the bridge truss shown in Fig. 1.9. 

Fig. 1.9 This bridge truss consists of two-force members that may "be in tension 
or in compression. 

Returning to rod BC of Fig. 1.5, we recall that the section we passed 
through the rod to determine the internal force in the rod and the cor
responding stress was perpendicular to the axis of the rod; the internal 
force was therefore normal to the plane of the section (Fig. 1.7) and the 
corresponding stress is described as a normal stress. Thus, formula (1.5) 
gives us the normal stress in a member under axial loading: 

..... --------------. 
p 

(]' = - (1.5) 
A 

We should also note that, in formula (1.5), cr is obtained by divid
ing the magnitude P of the resultant of the internal forces distributed 
over the cross section by the area A of the cross section; it represents, 
therefore, the average value of the stress over the cross section, rather 
than the stress at a specific point of the cross section. 

To define the stress at a given point Q of the cross section, we 
should consider a small area li.A (Fig. 1.10). Dividing the magnitude 
of LI.F by LI.A, we obtain the average value of the stress over li.A. Let
ting LI.A approach zero, we obtain the.stQoss at point Q: 

/; =. lim LI..FJ ( 1.6) 
-AA--J.o ·a~ 

1.5. Axial Loading; Nonna! Stress 7 

Fig. 1.10 
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(a) (b) (d) 

Fig. 1.11 

Fig. 1.12 

In general, the value obtained for the stress a at a given point Q of 
the section is different from the value of the average stress given by 
formula (!.5), and " is found to vary across the section. In a slender 
rod subjected to equal and opposite concentrated loads P and P1 (Fig. 
l.lla), this variation is small in a section away from the points of ap
plication of the concentrated loads (Fig. l.llc), but it is quite notice
able in the neighborhood of these points (Fig. l.llb and d). 

It follows from Eq. (1.6) that the magnitude of the resultant of the 
distributed internal forces is 

But the conditions of equilibrium of each of the portions of rod shown 
in Fig. 1.11 require that this magnitude be equal to the magnitude P of 
the concentrated loads. We have, therefore, 

(1.7) 

which means that the volume under each of the stress surfaces in Fig. 
1.!1 must be equal to the magnitude P of the loads. This, however, is 
the only information that we can derive from our knowledge of statics, 
regarding the distribution of normal stresses in the various sections of 
the rod. The actual distribution of stresses in any given section is stat
ically indetenninate. To learn more about this distribution, it is neces
sary to consider the deformations resulting from the particular mode of 
application of the loads at the ends of the rod. This will be discussed 
further in Chap. 2. 

In practice, it will be assumed that the distribution of normal stresses 
in an axially loaded member is uniform, except in the immediate vicin
ity of the points of application of the loads. The value " of the stress 
is then equal to a-ave and can be obtained from formula (1.5). However, 
we should realize that, when we assume a uniform distribution of 
stresses in the section, i.e., when we assume that the internal forces are 
uniformly distributed across the section, it follows from elementary stat
icst that the resultant P of the internal forces must be applied at the 
centroid C of the section (Fig. 1.12). T~i

. bution of stress is possible only if the line of action of the concentrated 
)q_q¢.§_g_p~£P,-_pp~j-~_fihrough ·me· ?:entroiaO]ifiesecttfirtcOiiSld~red 
(Fig. 1:13). This type of loiilinglii caiiedceiitnc7oadmg-aiii:l"wfl!'&e 
assumed to take place in all straight two-force members found in trusses 
and pin-connected structures, such as the one considered in Fig. 1.1. 

tSee Ferdinand P. Beer and E. Russell Johnston, Jr., Mechanics for Engineers, 4th ed., 
McGraw-Hill, New York, 1987, or Vector Mechanics for Engineers, 6th ed., McGraw-Hill, 
New York, 1996, sees. 5.2 and 5.3. 



p 

Fig. 1.13 

However, if)l .tw,q.::[orce member is loaded axially, but eccentrically as (a) 

shown inFig. l.l4aj we find from the conditions of equilibrium of the Fig. 1.14 
portion of'fiiembef shown in Fig. 1.14b that the internal forces in a 
given section must be equivalent to a force.-P-app,Ued at the centroid of 
the section and a couple M of momen(ll!. =~The distribution of 
forces-and, thus, the corresponding distribution of stresses-cannot be 
uniform. Nor can the distribution of stresses be symmetric as shown in Fig. 
1.11. This point will be discussed in detail in Chap. 4. 

1.6. SHEARING STRESS 

The internal forces and the corresponding stresses discussed in Sees. 
1.2 and 1.3 were normal to the section considered. A very different type 
of stress is obtained when transverse forces P and P' are applied to a 
member AB (Fig. 1.15). Passing a section at C between the points of 
application of the two forces (Fig. l.l6a), we obtain the diagram of por· 
lion AC shown in Fig. l.l6b. We conclude that internal forces must ex· 
ist in the plane of the section, and that their resultant is equal toP. These 
elementary internal forces are called shearing forces, and the magni
tude P of their resultant is the shear in the section. Dividing the shear 

p 

P' 

p 

(a) 

A c I p 

~. 
P'l 

P' (b) 

Fig.1.15 Flg. 1.16 

1.6. Shearing Stress 9 

P' 

(b) 
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D 

Fig. 1.18 

P by the area A of the cross section, we obtain the average shearing 
stress in the section. Denoting the shearing stress by the Greek letter T 

(taU), we Write 

(1.8) 

It should be emphasized that the value obtained is an average value 
of the shearing stress over the entire section. Contrary to what we said 
earlier for n01mal stresses, the distribution of shearing stresses across 
the section cannot be assumed uniform. As you will see in Chap. 6, the 
actual value T of the shearing stress varies from zero at the surface of 
the member to a maximum value 'T max that may be much larger than the 
average value T ave· 

Fig. 1.17 Cutaway view of a connection with a bolt in shear. 

Shearing stresses are commonly found in bolts, pins, and rivets 
used to connect various structural members and machine components 
(Fig. 1.17). Consider the two plates A and B, which are connected by a 
bolt CD (Fig. 1.18). If the plates are subjected to tension forces of mag
nitude F, stresses will develop in the section of bolt. corresponding to 
the plane EE'. Drawing the diagrams of the bolt and of the portion lo
cated above the plane EE' (Fig. 1.19), we conclude that the shear Pin 
the section is equal to F. The average shearing stress in .the section is 
obtained, according to formula (1.8), by dividing the shear P = F by 
the area A of the cross section: 

p F 
'Tave=A=A (1.9) 

(b) 

Fig.1.19 
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Fig. 1.20 

The bolt we have just considered is said to be in single shear. Dif
ferent loading situations may arise, however. For example, if splice 
plates C and D are used to connect plates A and B (Fig. 1.20), shear 
will take place ,in bolt HJ in each of the two planes KK' and LL' (and 
similarly in bolt EG). The bolts are said to be in double shear. To de
termine the average shearing stress in each plane, we draw free-body 
diagrams of bolt HJ and of the portion of bolt located between the two 
planes (Fig. 1.21). Observing that the shear Pin eri.Ch of the sections is 
P = F/2, we conclude that the average shearing stress is 

P F/2 F 
r =-=-=-

ave A A 2A (L!O) 

1.7. BEARING STRESS IN CONNECTIONS 

Bolts, pins, and rivets create stresses in the members they connect)llong 
the bearing surface, or surface of contact. For example, consider again 
the two plates A and B connected by a bolt CD that we have discussed 
in the preceding section (Fig. L!S). The bolt exerts on plate A a force 
P equal and opposite to the force F exerted by the plate on the bolt 
(Fig. 1.22). The force P represents the resultant of elementary forces 
distributed on the inside surface of a half-cylinder of diameter d and of 
length t equal to the thickness of the plate. Since the distribution of 
these forces-and of the corresponding stresses-is quite complicated, 

Fig. 1.21 

.. , 

one uses in practice an average nominal value crb of the stress, called the Fig. 1.22 

bearing stress, obtained by dividing the load P by the area of the rectan-
gle representing the projection of the bolt on the plate section (Fig. 1.23). 
Since this area is equal to td, where t is the plate thickness and d the di
ameter of the bolt, we have 

(1.11) 
Fig. 1.23 

1.7. Bearing Stress in Connections 11 

J 
(a) 

~p 

F==-[;~~ 

~·· 

(b) 
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.~"' '.0 

Fig. 1.24 

1.8. APPLICATION TO THE ANALYSIS AND DESIGN 
OF SIMPLE STRUCTURES 

We are now in a position to determine the stresses in the members and 
connections of various simple two-dimensional structures and, thus, to 
design such structures. 

As an example, let us return to the structure of Fig. 1.1 that we 
have already considered in Sec. 1.2 and let us specify the supports and 
connections at A, B, and C. As shown in Fig. 1.24, the 20-mm-diameter 
rod BC has flat ends of 2Q .. ·x 45Qmm rectangular cross section, ~hile 
boom AB has a 30 X 50-mm rectangular cross section and is fitted with 
a clevis at end B. Both members are connected at B by a pin from which 
the 30-kN load is suspended by means of a U-shaped bracket. Boom 
AB is supported at A by a pin fitted into a double bracket, while 
rod BC is connected at C to a single bracket. All pins are 25 mm in 
diameter. 

Flat end 

FRONT VIEW 

B 

END VIEW 

mm 

TOP VIEW OF BOOM AB 

d=25mm 

a. Determination of the Normal Stress in Boom AB and Rod 
BC. As we found in Sees. 1.2 and 1.4, the force in rod BC is 
F8c = 50 kN (tension) and the area of its circular cross section is 
~- 3..14..~0~6 m. 2; the conesponding average normal stress is 

= + 159 N!Pa) However, the flat parts of the rod are also under 
- - -----~--.... ____ .....-



tension and at the narrowest section, where a hole is located, we have 

A = (20 mm)(40 mm -' 25mm) = 300 x w-6 m2 

-' 
The corresponding average value of the stress, therefore, is 

P 50Xl03 N 
(O"sc{o.~d =A= 300 X 10 6 m' = 167 MPa 

Note that this is an~averagf! value; close to the hole, the stress will ac
tually reach a much larger value, as you will see in Sec. 2.18. It is clear 
that, under an increasing load, the rod will fail near one of the holes 
rather than in its cylindrical portion; its design, therefore, could be im
proved by increasing the width or the thickness of the flat ends of the 
roct. 

Turning now our attention to boom AB, we recall from Sec. 1.2 that 
the force in the boom is FAB = 40 kN (compression). Since 
the area of the boom's rectangular cross section is A = 30 mm 
X 50 mm = 1.5 X 10-3

m
2

, th~-~Y.~!.~.g~·-Y~I!:l~~J~fJhe.)lQP:Q~J.,,~J[~,§~jn 
.ll:l.~,_m~i.!!,.P~~~-?._f_~~~r_qfi, betWeen pins A and B, is 

crAB = 
40 

X IO' N = -26.7 X 106 Pa = -26.7 MPa 
1.5 X 10-3 m2 

·Note that the sections of minimum area at A and B are not under stress, 
since the boom is in compression, and,\ th~refore, pushes on the pins 
(instead of pulling on the pins as rod BC does). 

b. Determination of the Shearing Stress in Various Connec
tions. To determine the shearing stress in a connection such as a bolt, 
pin, or rivet, we first clearly show the forces exerted by the various 
members it connects. Thus, in the case of pin C of our example (Fig. 
1.25a), we draw Fig. 1.25b, showing the 50-kN force exerted by mem
ber BC on the pin, and the equal and opposite force exerted by the 
bracket. Drawing now Lhe diagram of the portion of the pin loca,ted 
below the plane' DD' where shearing stresses occur (Fig. 1.25c), we 
conclude that the shear in that plane is P = 50 kN. Since the cross-
~~-cl~~b \ --

(
25mm)

2 
A = 1rr2 = 1r -

2
- = 1r(12.5 X 10-3 m)2 = 491 X 10-6m2 ' 

we find that the average value of the shearing stress in the pin at C is 

P 50 X 103 N 
Tm =A= 491 X 106m2= 102MPa 

Considering now the pin at A (Fig. 1.26), we note that it is in dou
ble shear. Drawing the free-body diagrams of the pin and of the por-

1.8. Analysis and Design of Simple Structures 13 

(a) 

::yd,25mm 

. Fb SOkN~ 

(b) (c) 

Fig. 1.25 

" 

d ::o25mm 

H 

-_,...,,...--D' 
~40lcN ·-~N 

tion of pin located between the planes DD' and EE' where shearing F6 
stresses occur, we conclude that P = 20 kN and that 

' E' ·-
p 20kN 

- r,'"' = A = 491 X 10 'm' = 40.7 MPa 
(b) 

Fig. 1.26 

(c) 
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Fig. 1.27 

(a) 

f: 
tQ"' 15 kN 

(b) 

tQ"' 1.5kN 

(c) 

Considering the pin at B (Fig. 1.27a), we note that the pin may be 
divided into five portions which are acted upon by forces exerted by 
the boom, rod, and bracket. Considering successively the portions DE 
(Fig. 1.27b) and DG (Fig. !.27c), we conclude that the shear in section 
E is PE = 15 kN, while the shear in section G is Pc = 25 kN. Since 
the loading <;>f the pin is symmetric, we conclude that the maximum 
value of the shear in pin B is Pc = 25 kN, and that the largest shear
ing stresses occur in sections G and H, where 

Pa 
'Tave =A 

25kN 

491 X !0 6 m' = 50.9 MPa 

c. Determination ol the Bearing Stresses. To determine the 
nominal bearing stress at A in member AB, we use formula (1.11) of 
Sec. 1.7. From Fig. 1.24, we have t = 30 mm and d = 25 mm. Re
calling that P = FAa = 40 kN, we have 

p 40kN 
u, = td = (30 mm)(25 mm) = 53·3 MPa 

To obtain the bearing stress in the bracket at A, we use t = 2(25 mm) 
=50mmandd=25mm: 

p 40kN 
if' = td = (50 mm)(25 mm) = 32·0 MPa 

The bearing stresses at B in member AB, at B and C in member 
BC, and in the bracket at C are found in a similar way. 

1.9. METHOD OF PROBLEM SOLUTION 

You should approach a problem in mechanics of materials as you would 
approach an actual engineering situation. By drawing on your own ex~ 
perience and intuition, you will find it easier to understand and formu
late the problem. Once the problem has been clearly stated, hOwever, 
there is no place in its solution for your particular fancy. Your solution 
must be based on the fundamental principles of statics and on the prin
ciples you will learn in this course. Every step you take must be justi
fied on that basis, leaving no room for your "intuition." After an an
swer has been obtained, it should be checked. Here again, you may call 
upon your common sense and personal experience. If not completely 
satisfied with the result obtained, you should carefully check your for
mulation of the problem, the validity of the methods used in its solu
tion, and the accuracy of your computations. 

The statement of the problem should be clear and precise. It should 
contain the given data and indicate what information is required. A sim
plified drawing showing all essential quantities involved should be in
cluded. The solution of most of the problems you will encounter will 
necessitate that you first determine the reactions at supports and interM 



nal forces and couples. This will require the drawing of one or several 
free~ body diagrams, as was done in ~ec. 1.2, from which you will write 
equilibrium equations. These equations can be solved for the unknown 
forces,· from Which the required stresses and defonnations will be 
computed. 

After the answer has been obtained, it should be carefully checked. 
Mistakes in reasoning can often be detected by carrying the units 
through your computations and checking the units obtained for the ap.~ 
swer. For example, in the design of the rod discussed in Sec. 1.4, we 
found, after carrying the units through our computations, that the re~ 
quired diameter of the rod was expressed in millimeters, which is the 
correct unit for a dimension; if another unit had been found, we would 
have known that some mistake had been made. 

Errors in computation will usually be found by substituting the nu
merical values obtained into an equation which has not yet been used 
and verifying that the equation is satisfied. The importance of correct 
computations in engineering cannot be overe111:phasized. 

1.1 0. NUMERICAL ACCURACY 

The accuracy of the solution of a problem depends upon two items: 
(I) the accuracy of the given data and (2) the accuracy of the compu
tations performed. 

The solution cannot be more accurate than the less accuritte of these 
two items. For example, if the loading of a beam is known to be 300 
kN with a possible error of 400 N either way, the relative error which 
measures the degree of accuracy of the data is 

3~
0~; = o.oo13 = 0.13% 

In computing the reaction at one of the beam supports, it would then 
be meaningless to record it as 57288 N. The accuracy of the solution 
cannot be greater than 0.13%, no matter how accurate the computations 
are, and the possible error in the answer may be as large as 
(0.131100) (57288 N) = 74 N. The answer should be properly recorded 
as 57280 :!: 74 N. 

In engineering problems, the data are seldom known with an ac
curacy greater than 0.2%. It is therefore seldom justified to write the 
answers to such problems with an accuracy greater than 0.2 percent. A 
practical rule is to use 4 figures to record numbers beginning with a 
"1" and 3 figures in all other cases. Unless otherwise indicated, the data 
given in a problem should be assumed known with a comparable 
degree of accuracy. A force of 160 N, for example, should be read 
160.0 N, and a force of 60 N should be read 60.00 N. 

Pocket calculators and computers are widely used by practicing en
gineers and engineering students. The speed and accuracy of these de
vices facilitate the numerical computations in the solution of many prob
lems. However, students should not record more significant figures than 
can be justified merely because they are easily obtained. As noted above, 
an accuracy greater than 0.2% is seldom necessary or meaningful in the 
solution of practical engineering problems. 

1.10. Numerical Accuracy 15 
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SAMPlE PROBlEM 1.1 
In the hanger shown, the upper portion of link ABC is 10 mm thick and the 
lower portions are each 6 mm thick. Epoxy resin is used to bond the upper 
and lower portions together at B. The pin at A is of 10 nun diameter while a 
6 rom-diameter pin is used at C. Determine (a) the shearing stress in pin A, 
(b) the shearing stress in pin C, (c) the largest normal stress in link ABC, (d) 
the average shearing stress on the bonded surfaces at B, (e) the bearing stress 
in the link at C. 

SOLUTION 

Free Body: Entire Hanger. Since the link ABC is a two-force member, 
the reaction at A is vertical; the reaction at D is represented by its components 
Dx and Dy. We write 

+1 2-M0 ~ 0: (2000 N)(375 mm) - FAc(250 mm) ~ 0 

FAc = +3000 N FAc = 3000 N tension 

a. Shearing Stress in Pin A. Since this 10 rom-diameter pin is in single 
shear, we write 

/ 

Tt~ = 38.2 MPa <tJ 

b. Shearing Stress in Pin C. Since this 6 rom-diameter pin is in double 
shear, we write 

lFAc 1500 N 
Tc=--~ . 

A j1r(6 mm)2 
"c~ 53.1 MPa ~ 

10-mm diameter 
6-mm &11meter t Fc~c"' 1.500 N c. Largest Normal Stress in Link ABC. The largest stress is found 

where the area is smallest; this occurs at the cross section at A where the 
10-mm hole is located. We have 

1.'500 N 

16 

mm 

FAc . 3000 N 3000 N 
17

A ~ A"" ~ (10 mm)(30 mm -10 mm) ~ 200 mm' 
O'c = 15 MPa 4ll 

d. Average Shearing Stress at B. We note that bonding exists on both 
mm sides of the upper portion of the link and that the shear force on each side is 

· F 1 = (3000 N)/ 2 = 1500 N. The average shearing stress on each surface is thus 

F 1 "'!.'500N 

6 mm diameter 

1500N 
(30 mm)( 45 mm) 

T 8 = 1.1 MPa ~ 

e. Bearing Stress in Link at C. For each portion of the link, F 1 = 1500 N 
and the nominal bearing area is (6 mm)(6 mm) = 36 mm2

. 
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mm 

P = BOkN 

SAMPLE PROBLEM 1.2 

The steel tie bar shown is to be designed to carry a tension force of magnitude 
P = 120 kNwhen bolted between double brackets at A and B. The bar will be 
fabricate'd from 20~mm-thick plate stoc~ .. -.For-.the-grade o . .f Slierto"be.JJ_sed, the 
~m allowable ~tresses are:J\')~ .. !.?5 _!vf:tjl~!__~--lO(!,MP~)o-b = 
3.50 MPa))esign the tie bar by determming tne required _Vfftues-of (a) the 
dtameterd of the bolt, (b) .the dimension b at each end of the bar, (c) the 
dimension h of the bar. 

SOLUTION 

__ j:J,, __ ,Piameter of the Bolt. Since the bolt is in double shear, F1 = 
!'"' -----
zP .. ~ 60kK) 

I~· 60kN y 100 MPa ~ 1 ,,~11 
4'TT.aY 

{') v 
.-;;; 

d~27.6mm 

We will use d = 28 mi_!J ~ --- \ 
At this point we check the bearing stress between the 20-mm-thick plate and 
the 28-mm-diameter bolt. /;,·· 

p 120 kN 
r; ~ Ul ~ (0.020 m)(0.028 m) ~ 214 MPa < 350 MP:/ OK 

b. Dimension b at EaCh.. Rnd of the Bar. We consider one of the end 
portions of the bar. Recalling that the thickness of the steel plate is t = 20 mm 
and that the average tensile stress must not exceed 175 MPa, we write 

. · r7:1 !P ..J2 60 kN 
<j' :"oc=S: +.· !h. 1 175 MPa ~ (O 02 ) 

~···-... . ~J . m a 
a= 17.14mm 

·.,~~.~" b ~ d + 2a ~ 28 mm + 2(17.14 mm) b ,;:·~~~m "'i 

c. Dimension h of the Bar. Recalling that the thickness of the steel plate 
i_~_f = 20_ nun, we have 

p 
(J =-

th 

120 kN 
175 MPa ~ (0.020 m)h h ~ 34.3 mm 

We will use h = 35 mm <!11 

17 
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Fig. P1.1 and P1 .2 

c 

B 

1.1 Two solid cylindtical rods AB and BC are welded together at B and 
loaded as shown. Knowing that d1 = 50 mm and d2 = 30 mm, find average 
normal stress at the midsection of (a) rod AB, (b) rod BC. 

1.2 Two solid cylindrical rods AB and BC are welded together at Band 
loaded as shown. Knowing that the average normal stress must not exceed 140 

d1 MPa in either rod, determine the smallest allowable values of d1 and d2. 

1.3 Two solid cylindrical rods AB and BC are welded together at Band 
loaded as shown. Determine the average normal stress at the midsection of 
(a) rod AB, (b) rod BC. 

75 rnm 

p 

Fig, P1.3 

1.4 In Prob. 1.3, determine the magnitude of the force P for which the 
tensile stress in rod AB has the same magnitude as the compressive stress in 
rod BC. 

1200 N 1.5 Two steel plates are to be held together by means of 16-mm-diameter 
high-strength steel bolts fitting snugly inside cylindrical brass spacers. Know
ing that the average normal stress must not exceed 200 MPa in the bolts and 
130 MPa in the spacers, determine the outer diameter of the spacers that yields 
the most economical and safe design. 

Fig. P1.5 

l200N 

Fig. P1.6 

1.6 A strain gage located at Con the surface of bone AB indicates that 
the average normal stress in the bone is 3.80 MPa when the bone is subjected 
to two 1200-N forces as shown. Assuming the cross section of the bone at 
C to be annular and knowing that its outer diameter is 25 mm, determine the 
inner diameter of the bone's cross section at C. 

( 

\ 
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Fig. P1.7 

1. 7 Knowing that the central portion of the link BD has a unifonn cross~ 
sectional area of 800 mm2, determine the magnitude of the load P for which 
the normal stress in that portion of BD is 50 MPa. · 

1.8 Link AC has a uniform rectangular cross section 3 mm thick and 
25 mm wide. Determine the nonnal stress in the central portion of the link. 

r.::\Each of the four vertical links has an 8 X 36-mm uniform rectan-· 
gula't-~ section and each of the four pins has a 16-mm diameter. Determine 
the maximum value of the average norma stress in the links. connecting 
(a) points Band D, (b) points C and E. 

20 

Fig. P1.9 

1.1 0 Two horizontal 20 kN force.s are applied to pin B of the assembly 
shown. Knowing that a pin of 20 mrn diameter is used at each connection, de
termine the maximum value of the average normal stress (a) in link AB, (b) in 
link BC. 

1.11 The rigid bar EFG is supported by the truss system shown. Know
ing that the member CG is a solid circular rod of 18 mm diameter, determine 
the normal stress in CG. 

1.12 The rigid bar EFG is supported by the truss system shown .Deter
mine the cross-sectional area of member AE for which the normal stress in the 
member is 105 MPa. 

Problems 19 

Fig. P1.8 

12mm 

Fig. P1.10 

n·JDO· .. ~--"r---;;... 
0.9m 

..l_c·•~ :;-_;~==f==~G 

LL2m1-L2m+lk~:J 
Fig. P1.11 and P1.12 
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60mm 

Fig. P1.14 

l.'5mm\ 

~--!-
/ 1--1 \ 

Steel 90 mm Wood 

Fig. P1.15 

1.13 Two hydraulic cylinders are used to control the position of the ro
botic arm ABC. Knowing that the control rods attached at A and D each have 
a 20-mm diameter and happen to be parallel in the position shown, determine 
the avera.ge normal stress in (a) member AE, (b) member DO. 

150 mm 

I 

Fig. P1.13 

1.14 A couple M of magnitude 1500 N · m is applied to the crank of an 
engine. For the position shown, determine (a) the force P required to hold 
the engine system in equilibrium, (b) the average normal stress in the con
necting rod BC, which has a 450-mm2 uniform cross section. 

1.15 When the force P reached 8 kN, the wooden specimen shown failed 
in shear along the surface indicated by the dashed line. Determine the average 
shearing stress along that surface at the time of failure. 

1.16 The wooden members A and 8 are to be joined by plywood splice 
plates that will be fully glued on the surfaces in contact. As part of the design 
of the joint, and knowing that the clearance between the ends of the members 
is to be 6 mm, determine the smallest allowable length L if the average shear
ing stress in the glue is not to exceed 840 kPa. 

25kN 

Fig. P1.16 

! 



1.17 A load P is applied to a steel rod supported as shown by an alu
minum plate into whiCh a 15-mm-diameter hole has been drilled, Knowing that 
the shearing stress must not exceed 126 MPa in the steel rod and 70 MPa in 
the aluminum plate, determine the largest load P that may be applied to the rod, 

1.18 Two wooden planks, each 12 ffim thick and 225 mm wide, are lOmm 
joined by the dry mortise joint shown, Knowing that the wood used shears off 
along its grain when the average shearing stress reaches 8 MPa, determine the 
magnitude P of the axial load that will cause the joint to faiL 1.'5 

l rl6mm 

11-16mm 

Fig. P1.18 

1.19 The axial force in the column supporting the timber beam shown 
is P = 75 leN. Determine the smallest allowable length L of the bearing plate 

Fig. P1.17 

if the bearing stress in the timber is not to exceed 3.0 MPa. Fig. P1.19 

1.20 A 40-kN axial load is applied to a short wooden post that is sup
ported by a concrete footing resting on undisturbed soil. Determine (a) the 
maximum bearing stress on the concrete footing, (b) the size of the footing for 
which the average bearing stress in the soil is 145 kPa. 

Fig. P1.20 

1.21 An axial load P is supported by a short W200 X 59 column of 
cross-sectional area A = 7560 mm2 and is distributed to a concrete foundation 
by a square plate as shown. Knowing that the average normal stress in the col
umn must not exceed 200 MPa and that the bearing stress on the concrete 
foundation must not exceed 20 MPa, determine the side a of the plate that 
will provide the most economical and safe design, Fig. P1.21 

Problems 21 
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Fig. P1.22 

Fig. P1.23 

o-
5mm 

Fig. P1.25 and P1.26 

1.22 Three wooden planks are fastened together by a series of bolts to 
form a column. the diameter of each bolt is 12 mm and the inner diameter of 
each washer is 16 mm, which is slightly larger than the diameter of the holes 
in the planks. De~ermine the smallest allowable outer diameter d of the wash
ers, knowing that the average normal stress in the bolts is 35 MPa and that the 
bearing stress between the washers and the planks must not exceed 8 MPa. 

1.23 A 0.12-mm-diameter steel rod AB is fitted to a round hole near end 
C of the wooden member CD. For the loading shown, detennine (a) the max
imum average normal stress in the wood, (b) the distance b for which the 
average shearing stress is 620 k.Pa on the surfaces indicated by the dashed lines, 
(c) the average bearing stress on the wood. 

~e hydraulic cylinder CF, which partially controls the position of 
ro~~en locked in the position shown. Member BD is 16 rom thick 
and is connected to the vertical rod by a 10-mrn-diameter bolt. Detennine (a) 
the average shearing stress in the bolt, (b) the bearing stress at C in member 
BD. 

H 
45mm 

Fig. P1.24 

1.25 A 6-mm-diameter pin is used at connection C of the pedal shown. 
Knowing that P = 500 .N, determine (a) the average shearing stress in the pin, 
(b) the nominal bearing stress in the pedal at C, (c) the nominal bearing stress 
in each support bracket at C. 

1.26 Knowing that a force P of magnitude 750 N is applied to the pedal 
shown, determine (a) the diameter of the pin at C for which the average shear
ing stress in the pin is 40 MPa, (b) the corresponding bearing stress in the pedal 
at C. (c) the corresponding bearing stress in the each support bracket at C. 

1.27 For the assembly and loading of Prob. 1.9, determine (a) the 
average shearing stress in the pin at B, (b) the average bearing stress at Bin mem
ber BD, (c) the average bearing stress at B in member ABC, knowing that this 
member has a 10 X 50-mm unifonn rectangular cross section. 

1.28 For the assembly and loading of Prob. 1.10, determine (a) the av
erage shearing stress in the pin at C, (b) the average bearing stress at C in mem
ber BC, (c) the average bearing stress at B in member BC. 



1.11. STRESS ON AN OBLIQUE PLANE UNDER 
AXIAL LOADING 

In the preceding sections, axial forces exerted on a two-force mem
ber (Ffg. 1.28a) were _found to cause normal stresses in that member 
(Fig; 1.28b);evhlte transverse forces exerted on bolts and pins (Fig 1.29a) 
were found to cause shearing stresses in those connections (Fig. 1.29b). 
The reasori such a relation was observed between axial forces and nor-

~marstreSSes ·on··one-Flana;···an<r·trarisv·ers·e lorces- ana ·sneariitg-stres:res·---. 
·on·· the .Other: __ ~aS beca~se stress~s.we_r~b_t;:ing .. det~rmiA~-~- only_on._plal)es 

-··perpehOic_iilai tO''thi aXls ()f the_ meinber_or connection. AS_yOu will see 
in this section, axial fOrces cause both nonnal and shearing stressCs on 
planes which are not perpendicular to the axis of the member. Simi
larly, transverse forces exerted on a bolt or a pill cause both f.IOrmal ·and 
shearing stresses on planes which are not perpendicular to the axis of 
the bolt or pin. 

(a) 

Fig. 1.29 

(b) 

Consider the two-force member of Fig. 1.28, which is subjected to 
axial forces P and P'. If we pass a section forming an angle () with a · 
normal plane (Fig. 1.30a) and draw the free-body diagram of the por
tion of member located to the left of that section (Fig. 1.30b), we find 
from the equilibrium conditions of the free body that the distributed 
forces acting on the section must be equivalent to the force P. 

Resolving Pinto components F and V, respectively normal and tan
gential to the sectio~. (Fig. 1.30c), we have 

. ---·-··--·-

, F'= Pcos 0 V = PsinB (1.12) 
------------···· ~--; 

The force F represents the resultant of normal forces distributed over 
the section, and the force V the resultant of shearing forces (Fig. 1.30d). 
The average values of the corresponding nonnal and shearing stresses 
ar~ _obtained b,Y dividing, __ respecti~ely, F and V by the area Aq of the 
se.cl:iOll:·" · ...... · .. · _____ .... ··· · · -

/ \ 

i. F i , V 
dT = - ) T = - (1.13) 
'- ·--~-----~~---- \ . . Aq 

1.11. Stress on an Oblique Plane Under 23 
Axial Loading 

(a) 

(b) 

Flg. 1.28 

(a) 

(b) 

(d) Substituting for:;:.>urd-Vfr~m (1.12) into (1.13). and observing from 
Fig. 1.30c that Ao = A0 cos 8;-.pr Ae = A0/cos 8, where A0 denotes the Fig. 1.30 

, I // 



24 Introduction-Concept of Stress 

(a) Axial loading 

P!A0 

(b) Stresses for 0"' 0 

(c) Stresses for 0"' 45" 

r,.,"' P/2A 11 

PI2A0 

(d) Stresses for 0 "' -45" 

Fig. 1.31 

Fig. 1.32 

area of a section perpendicular to the axis of the member, we obtain 

PcosB P sin f) 
cr= 

A0/cos 8 
T= 

A0/cos 8 

or 

p 
a= -cos2 8 

Ao 
p . 8 r = -sm cos f) 
Ao 

(1.14) 

We note from the first of Eqs. (1.14) that the normal stress a is 
maximum when iJ = 0, i.e., when the plane of the section is perpendi~ 
cular to the axis of the member, and that i~ _approaGh.~s zero as 8 ap~ 
preaches 90". We check that the. value of ci when 8 = Q- is 

/" -' ' 

p 
a=

m Ao 
(1.15) 

as we found earlier in Sec. 1.3. The second of Eqs. (1.14) shows that 
the shearing stress Tis zero for 8 = 0 and 8 = 90", and that for 8 = 45" 
it reaches its maximum value 

p p 
T = -sin 45" cos 45" = -

m ~ Uo 
(1.16) 

The first of Eqs. (1.14) indicates that, when f)= 45", the normal stress 
u' is also equal to P /2A0: 

p p 
a'= -cos2 45" =-

Ao 2Ao 
(1.17) 

The results obtained in Eqs. (1.15), (1.16), and (1.17) are shown 
graphically in Ftg. 1.31. We note that the same loading may produce 
either a normal stress Um = P/A0 and no shearing stress (Fig. 1.3lb), 
or a normal and a shearing stress of the same magnitude 
u' = Tm = P/2A0 (Fig. 1.31 c and d), depending u'pon the orientation It 
of the section. 

1.12. STRESS UNDER GENERAL LOADING CONDITIONS; 
COMPONENTS OF STRESS 

The examples of the previous sections were limited to members under 
axial loading and connections under transverse loading. Most structural 
members and machine components are under more involved loading 
conditions. 

Consider a body subjected to several loads Pi> P2, etc. (Fig. 1.32). 
To understand the stress condition created by these loads at some point 
Q within the body,- we.~~all first pass a section through Q, using a plane 
parallel to the yz plane. The portion of the body to the left of the sec
tion is subjected to some of the original loads, and to normal and shear~ 
ing forces distributed over the section. We shall denote by LlFx and 
Ll_!x;respeCtively, the normal and the shearing forces acting on a small 



(a) (b) 

Fig. 1.33 

area b.A surrounding point Q (Fig. 1.33a). Note that the superscript x 
is used to indicate that the forces IJ.Fx and Ll V' act on a surface per~ 
pendicular to the x axis. While the normal force LlFx has a well"defined 
direction, the shearing force A vx may have any direction in the plane 
of the section. We therefore resolve IJ. yx into two component forces, 
A V~ and 11 v;, in directions parallel to the y and z axes, respectively 
(Fig. 1.33 b). Dividing now the magnitude of each force by the area 
AA, and letting b.A approach zero, we define the three stress compo-
nents shown in Fig. 1.34: r' ~-----. 

(:. = lim ~F' 
M->0 uA 

(l.l8) 
Av: 

Tx~ = 2f~o ,4A 

We note that the first subscript in crx, T .ry• and Txz is used to indicate that 
the stresses under consideration are 'exerted on a surface pelpendicu
lar to the x axis. The second subscript in r.l), and rn identifies the di-
rection of the component. The nonnal stress O"x is positive if the corre
sponding arrow points in the positive x direction, i.e., if the body is in 
tension, and negative otherwise. Similarly, the shearing stress compo
nents Txy and rxz are positive if the corresponding arrows point, re
spectively, in the positive y and z directions. 

The above analysis may also be carried out by considering the por
tion of body located to the right of the vertical plane through Q (Fig. 
1.35}. The same magnitudes, but opposite directions, are obtained for 
the 'normal and shearing forces Ll.Fx, Ll v;, and Ll V;. Therefore, the same 
values are also obtained for the corresponding stress components, but 
since the section in Fig. 1.35 now faces the negative x axis, a positive 
sign for O"x will indicate that the corresponding arrow points in the neg
ative x direction. Similarly, positive signs for r .ry and r x~ will indicate 
that the corresponding arrows point, respectively, in the negative y and 

1.12. Stress Under General Loading Conditions 2:5 

<Y,,. 

' 

Fig. 1.34 

z directions, as shown in Fig. 1.35. Fig. 1.35 
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y 

Fig. 1.36 

y 

Fig. 1.37 

Fig. 1.38 

Passing a section through Q parallel to the zx plane, we define in 
the same manner the stress components, ay, Tyz• and Tyx· Finally, a sec* 
tion through Q parallel to the xy plane yields the components O"z, T u• 
and 'Tzy-

To facilitate the visualization of the stress condition at point Q, we 
shall consider a small cube of side a centered at Q and the stresses ex
erted on each of the six faces of the cube (Fig. 1.36). The stress com
ponents shown in the figure are a-x• a-Y' and a-~, which represent the nor
mal stress on faces respectively perpendicular to the x, y, and z axes, 
and the six shearing stress components T xy• Txz• etc. We recall that, ac
cording to the definition of the shearing stress components, T xy repre
sents the y component of the shearing stress exerted on the face per
pendicular to the x axis, while T yx represents the x component of the 
shearing stress exerted on the face perpendicular to they axis. Note that 
only three faces of the cube are actually visible in Fig. 1.36, and that 
equal and opposite stress components act on the hidden faces. While 
the stresses acting on the faces of the cube differ slightly from the 
stresses at Q, the error involved is small and vanishes as side a of the 
cube approaches zero. 

Important relations among the shearing stress components will now 
be derived. Let us consider the free-body diagram of the small cube 
centered at point Q (Fig. 1.37}. The normal and shearing forces acting 
on the various faces of the cube are obtained by multiplying the corre
sponding stress components by the area LlA of each face. We first write 
the following three equilibtium equations: 

SF,= 0 (1.19) 

Since forces equal and opposite to the forces actually shown in Fig. 
1.37 are acting on the hidden faces of the cube, it is clear that Eqs. 
(1.19) are satisfied. Considering now the moments of the forces about 
axes Qx1

, Qi, and Qz1 drawn from Q in directions respectively paral
lel to the x, y, and z axes, we write the three additional equations 

SM,. = 0 SM,. = 0 SM,- = 0 (1.20) 

Using a projection on the x 1
/ plane (Fig. 1.38), we note that the only 

forces with moments about the z axis different from zero are the shear
ing forces. These forces fonn two couples, one of counterclockwise 
(positive) moment ( T xy LlA )a, the other of clockwise (negative) moment 
-(T,, LIA)a. The last of the three Eqs. (1.20) yields, therefore, 

+ ~ SM, = 0: (T"" LIA)a- (T,, LIA)a = 0 

from which we conclude that 

(1.21) 

The relation obtained shows that they component of the shearing stress 
exerted on a face perpendicular to the x axis is equal to the x compo-

r 



nent of the shearing stress exerted on a face perpendicular to the y axis. 
From the remaining two equations (1.20), we derive in a similar man
ner the relations 

(1.22) 

We conclude from Eqs. (1.21) and (1.22) that only six stress com
ponents are required to define the condition of stress at a given point 
Q, instead of nine as originally· assumed. These six components are 
O'x, O'y, O'z, T xy• TY<' and Tv:· We also note that, at a given point, shear 
cannot take place in one plane only; an equal shearing stress must be 
exerted on another plane perpendicular to the first one. For example, 
considering again the bolt of Fig. 1.29 and a small cube at the center 
Q of the bolt (Fig. 1.39a), we find that sheruing stresses Of equal mag
nitude must be exerted on the two horizontal faces of the cube and on 
the two faces that are perpendicular to the forc~s P and P' (Fig. 1.39b ). 

Before concluding our discussion of stress components, Jet us con
sider again the case of a member under axial loading. If we consider a 
small cube with faces respectively parallel to the faces of the member 
and reCall the results obtained in Sec. 1.11, we find that the conditions 
of stress in the member may be described as shown in Fig. 1.40a; the 
only stresses are normal stresses 0' x exerted on the faces of the cube 
which are perpendicular to the x axis. However, if the small.cube is ro
tated by 45° about the z axis so that its new orientation matches the ori
entation of the seclions considered in Fig. 1.3lc and d, we conclude that 
normal and shearing stresses of equal magnitude are exerted on four 
faces of the cube (Fig. !.40b). We thus observe that the same loading 
condition may lead to different interpretations of the stress situation at 
a given point, depending upon the orientation of the element considered. 
More will be said about this in Chap 7. 

1.13. DESIGN CONSIDERATIONS 

In the preceding sections you learned to determine the stresses i~_w.ds.,~ 
bolts,_ and pins under simple loadingJ~pnditions. In later chapters you 

=wnr1eafl·lto·de~tC.fffiifie·-s·tre-SSe8in mo~;-compiex situations. In engi
neering applications, however, the determination of stresses is seldom 
an end in itself. Rather, the knowledge of stresses is used by engineers 
to assist in their most important task, namely, the design of structures 
and machines that will safely and economically perform a specified 
function. · .. __ 

a. Determination of the Ultimate Strength of a Material. An 
important element to be considered by a designer is how the material 
that has been selected will behave under a load. For a given material, 
this is determined by performing specific tests on prepared samples of 
the material. For example, a test specimen of steel may be prepared and 
placed in a laboratory testing machine to be subjected to a known cen
tric axial tensile force, as described in Sec. 2.3. As the magnitude of 
the force is increased, various changes mth~Specimen are measured, 
for _example, changes in i~s length and its diameter. Eventually the largest 

1.13. Design Considerations 
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Fig. 1.41 

Fig. 1.42 

force which may be applied to the specimen is reached, and the speci
men either breaks or begins to carry less load. This largest force is called 
the ultimate load for the test specimen and is denoted by P u· Since the 
applied load is centric, we may divide the ultimate load by the original 
cross-sectional area of the rod to obtain the ultimate normal stress of 
the material used. This stress, also known as the ultimate strength in 
tension of the material, is 

Pu 
uu=A (1.23) 

Several test procedures are available to determine the ultimate 
shearing stress, or ultimate strength in shear, of a materiaL The one 
most commonly used involves the twisting of a circular tube (Sec. 3.5). 
A more direct, if less accurate, procedure consists in clamping a rec
tangular or round bar in a shear tool (Fig. 1.41) and applying an in
creasing load P until the ultimate load Pu for single shear is obtained. 
If the free end of the specimen rests on both of the hardened dies (Fig. 
1.42), the ultimate load for double shear is obtained. In either case, the 
ultimate shearing stress Tu is obtained by dividing the ultimate load by 
the total area over which shear has taken place. We recall that, in the 
case of single shear, this area is the cross-sectional area A of the spec
imen, while in double shear it is equal to twice the cross-sectional area. 

b. Allowable Load and Allowable Stress; Factor of Safety. The 
maximum load that a structural member or a machine component will 
be allowed to carry under normal conditions of utilization is consider
ably smaller than the ultimate load. This smaller load is referred to as 
the allowable load and, sometimes, as the working load or design load. 
Thus, only a fraction of the ultimat~-load capacity of the member is uti
lized when the allowable load is applied. The remaining portion of the 
load-carrying capacity of the member is kept in reserve to assure its 
safe performance. The ratio of the ultimate load to the allowable load 
is used to define the factor of safety. t We have 

rr:----------·------- ultimate load 
' Factor of safety = F.S. = 

1 
(1.24) 

.: 1 allowab e load 

An alternat~ve-detlrutloil--Of'the facto~ of--~~~~~;~~~~~::n the use of 
stresses: 

ultimate stress 
Factor of safety = F.S. = -""=:::::_== 

allowable stress 
(1.25) 

The two expressions given for the factor of safety in Eqs. (1.24) and 
(1.25) are identical when a linear relationship exists between the load 
and the stress. In most engineering applications, however, this rela
tionship ceases to be linear as the load approaches its ultimate value, 
and the factor of safety obtained from Eq. (1.25) does not provide a 

tin some fields of engineering, notubly aeronautical engineering, the margin of safety is 
used in place of the factor of safety. The margin of safety is defined as the factor of safety 
minus one; that is, margin of sa~ety "" F.S. - LOO. 



true assessment of the safety of a given design. Nevertheless, the 
allowable-stress method of design,.based on the use of Eq. (1.25), is 
widely used. 

c. Selection of an Appropriate Factor of Safety. The selection 
of th~ factor of safety to be used for various applications is one of the 
most important engineering tasks. On the one hand, if a factor of safety 
is chosen too small, the possibility of failure becomes unacceptably 
large; on the other hand, if a factor of safety is chosen unnecessarily 
large, the result is an uneconorriical or nonfunctional design. The choice 
of the factor of s~fety that is appropriate for a giVen design application 
requires engineding judgment based on many considerations, such as 
the following: 

1. Variations that may occur in the properties of the member un
der consideration. The composition, strength, and dimensions 
of the member are all subject to small variations during man
ufacture. In addition, material propert;ies may be altered and 
residual stresses introduced through heating or deformation 
that may occur during manufacture, storage, transportation, or 
construction. 

2. The number of loadings that may be expected during the life of 
the structure or machine. For most materials the ultimate stress 
decreases as the number of load applications is increased. This 
phenomenon is known as fatigue and, if ignored, may result in 
sudden failure (see Sec. 2.7). 

3. The type of loadings that are planned for in the design, or that 
may occur in the future. Very few loadings are known with com~ 
plete accuracy-most design loadings are engineering estimates. 
In addition, future alterations or changes in usage may introduce 
changes in the actual loading. Larger factors of safety are also re
quired for dynamic, cyclic, or impulsive loadings. 

4. The type of failure that may occur. Brittle materials fail sud
denly, usually with no prior indication that collapse is immi
nent. On lhe olher hand, ductile materials, such as structural 
steel, normally undergo a substantial deformation called yield
ing before failing, thus providing a warning that overloading 
exists. However, most buckling or stability failures are sudden, 
whether the material is brittle or not. When the possibility of 
sudden failure exists, a larger factor of safety should be used 
than when failure is preceded by obvious warning signs. 

5. Uncertainty due to methods of analysis. All design methods are 
based on certain simplifying assumptions which result in cal
culated stresses being approximations of actual stresses. 

6. Deterioration that may occur in the future because of poor 
maintenance or because of unpreventable natural causes. A 
larger factor of safety is necessary in locations where condi
tions such as corrosion and decay are difficult to control or even 
to discover. 

7. The importance of a given member to the integrity of the whole 
structure. Bracing and secondary members may in many cases 
be designed with a factor of safety lower than that used for pri
mary members. 

1.13. Design Considerations 29 



30 Introduction-Concept of Stress In addition to the above considerations, there is the additional con~ 
sideration concerning the risk to life and property that a failure would 
produCe. Where a failure would produce no risk to life and only mini~ 
mal risk to property, the use of a smaller factor of safety can be con
sidered. Finally, there is the practical consideration that, unless a care
ful design with a nonexcessive factor of safety is used, a structure or 
machine might not perform its design function. For example, high fac~ 
tors of safety may have an unacceptable effect on the weight of an 
aircraft 

For the majority of structural and machine applications, factors of 
safety are specified by design specifications or building codes written 
by committees of experienced engineers working with professional so
cieties, with industries, or with federal, state, or city agencies. Exam~ 
pies of such design specifications and building codes are 

1. Steel; American Institute of Steel Construction, Specification 
for Structur,al Steel Buildings 

2. Concrete: American Concrete Institute, Building Code Re~ 
quirement for Structural Concrete 

3. Timber: American Forest and Paper Association, National 
Design Specification for Wood Construction 

4. Highway bridges: American Association- of State Highway 
Officials, Standard Specifications for Highway Bridges 

*d. Load and Resistance Factor Design. As we saw above, the 
allowable-stress method requires that all the uncertainties associated 
with the design of a structure or machine element be grouped into a 
single factor of safety. An alternative method of design, which is gain~ 
ing acceptance chiefly among structural engineers, makes it possible 
through the use of three different factors to distinguish between the un
certainties associated with the structure itself and those associated with 
the load it is designed to support. This method, referred to as Load and 
Resistance Factor Design (LRFD ), further allows the designer to dis
tinguish between uncertainties associated with the live load, PL, that is, 
with the load to be supported by the structure, and ~e dead load, P D• 

that is, with the weight of the portion of structure contributing to the 
total load. 

When this method of design is used, the ultimate load, P U• of the 
structure, that is, the load at which the structure ceases to be useful, 
should first be determined. The proposed design is then acceptable if 
the following inequality is satisfied: 

(!.26) 

The coefficient 4> is referred to as the resistance factor; it accounts for 
the uncertainties associated with the structure itself and will normally 
be less than 1. The coefficients -y 0 and -y L are referred to as the load 
factors; they account for the uncertainties associated, respectively, with 
the dead and live load and will normally be greater than 1, with YL gen
erally larger than 'Yo· While a few examples or assigned problems 
using LRFD are included in this chapter and in Chaps. 5 and 10, the 
allowable-stress method of design will be used in this text. 
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SAMPLE PROBLEM 1.3 

Two forces are applied to the bracket BCD as shown. (a) Knowing that the 
control rod AB is to be made of a steel having an ultimate normal stress of 600 

1.5 kN · MPa, determine the diame;ter of the rod for which the factor of safety with re
spect to failure will be 3.3. (b) The pin at Cis to be made of a steel having an 
ultimate shearing stress of 350 MPa. Determine the diameter of the pin C for 
which the factor of safety with respect to shear will also be 3.3. (c) Determine 
the required thickness of the bracket supports at C knowing that the allowable 
bearing stress of the steel used is 300 MPa. 

SOLUTION 

Free Body: Entire Bracket. The reaction at Cis represented by its com
ponents ex and c, .. 
+12:Mc~O: 

:!:F, ~ 0: 
'ZFy = 0: 

?(0.6 m) - (50 kN)(0:3'mf"'"(l5 kN)(Q.6 m) ~ 0 P ~ 40 kN 

C, ~ 40kN 

c,=65kN 
c = Vc~ + c; = 76.3 ~ij. 

a. Control Rod AB. "Since the factor of safety is to be 3.3, the allow
able stress is 

600 MPa = 181.8 MPa 
3.3 

For P = 40 kN the cross-sectional area required is 

A ~ .!_ ~ 40
kN = 220 X 10"6 m2 

req O"an 181.8MPa 

dA 8 = 16.74 mm ~ 

b. Shear in Pin C. For. a factor of safety of 3.3, we have 

-rv 350 MPa': /· 
-r, 11 = -- = = 106.1 MPa 

F.S. 3.3 

Smce the pm IS m double s~ar, we wnte 

.. - , A [f12 i (76 3 kN)/2 

req 'r~u-... 106.1 MP<Lt 360 mm2 

de= 21.4 mm Use: de = 22 mm ~ 

tc The next larger size pin available is of 22-mm diameter and should be used. 

-r1 t r 1 c ~- c. Bearing at C. Using d = 22 mm, the nominal bearing area of each 
- I 

2 .,<1 bracket is 22t. Since the force carried by each bracket is C/2 and the allowable 
\.;' "' bearing stress is 300 MPa, we write 

d =22m .•. · ,,\ .•• ,, ••... · :/ Thus 22t ~ 127.2A,, ~ ;,~ ~ (73~~ :;:2 = !272 mm' 

, Y f[ ~··5.78 ~'fil·"'- Use: t = 6 mm «<Il 

.----_...---
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SAMPLE PROBLEM 1.4 

The rigid beam BCD is attached by bolts to a control rod at B, to a hydraulic 
cylinder at C, and to a fixed support at D. The diameters of the bolts used are: 
d8 = d0 = 10 mm, d, = 12 mm. Each bolt acts in double shear and is made 
from a steel for which the ultimate shearing stress is -ru = 280 MPa. The con~ 
trol rod AB has a diameter dA = 11 mm and i.s made of a steel for which the 
ultimate tensile stress is a-u= 420 MPa. If the minimum factor of safety is to 
be 3.0 for the entire unit, detennine the largest upward force which may be ap
plied by the hydraulic cylinder at C. 

SOLUTION 

The factor of safety with respect to failure must be 3.0 or more in each of the 
three bolts and in the control rod. These four independent criteria will be con
sidered separately. 

Free Body: Beam BCD. We first determine the force at C in terms of 
the force at B and in terms of the force at D. 

+1 LMD ~ 0: 
+1 2-Ms ~ 0: 

8(350 mm) - C(200 mm) ~ 0 

- D(350 mm) + C(l50 mm) ~ 0 

c ~ 1.7508 (!) 

C ~ 2.33D (2) 

Contl"ol Rod. For a factor of safety of 3.0 ~-~ .~<}Ve 

cru 420 MPa .. ·· 
cr,u =- ~ --- = 140 MPa 

F.S. 3.0 

The allowable force in the control rod is 

B ~ u,,(A) ~ (I40Mea}l.,-(ll X I0-3 m)1 ~ 13.3kN 

Using Eq. (1) we find the largest ·permitted value of C: 

c ~ !.7508 ~ 1.750(13.3 kN) c~ 23.28 kN <1 

Bolt at B. Tau = Tu/ F.S. = (280 MPa)/3 = 93.33 MPa. Since the bolt is 
in double shear, the allowable magnitude of the force B exerted on the bolt is 

8 ~ 2F1 ~ 2(r,,A) ~ 2(93.33 MPa)(j.,-)(10 X llf"3m)2 ~ 14.66 kN 

From Eq. (!): c ~ !.7508 ~ !.750(14.66 kN) c~ 25.66 kN <1 

Bolt at D. Since this bolt is the same as bolt B, the allowable force is 
D ~ 8 ~ 14.66 kN. From Eq. (2): -

c ~ 2.33D ~ 2.33(14.66 kN) c~ 34.16 kN <1 

Bolt at C. We again have Tau = 93.33 MPa and write 

C ~ 2F, ~ 2(r,,A) ~ 2(93.33 MPa)(j.,-)(12 X W 3m)2 c~ 2!.ll kN <1 

Summary. We have found separately four maximum allowable values 
of the force C. In order to satisfy all these criteria we must choose the small
est value, namely: C= 21.11 kN ..:>!! 



1.29 Two wooden members of uniform rectangular cross section are 
joined by the simple glued scarf splice shown. Knowing that P = 11 kN, 
determine the normal and shearing stresses in the glued splice. 

Fig. P1.29 and P1.30 

1.30 Two wooden members of uniform rectangular cross section are 
joined by the simple glued scarf splice shown. Knowing that the maximum al
lowable shearing stress in the glued splice is 620 kPa, determine (a) the largest 
load P that can be safely applied, (b) the corresponding tensile stress in the 
splice. 

1.31 The 5.6 kN load P is supported by two wooden members of uni
form cross section that are joined by the simple glued sca1f splice shown. De
termine the normal and shearing stresses in the glued splice. 

1.32 Two wooden members of uniform cross section are joined by the 
simple scarf splice shown. Knowing that the maximum allowable tensile stress 
in the glued splice is 525 kPa, determine (a) the largest load P that can be 
safely supported, (b) the corresponding shearing stress in the splice. 

1.33 A steel pipe of 300-mm outer diameter is fabricated from 6-mm-thick 
plate by welding along a helix that forms an angle of 25° with a plane per
pendicular to the axis of the pipe. Knowing that a 250-kN axial force P is 
applied to the pipe, determine the normal and shearing stresses in directions 
respectively normal and tangential to the weld. 

1.34 A steel pipe of 300-mm outer diameter is fabricated from 6-mm-thick 
plate by welding along a helix that forms an angle of 25° with a plane per
pendicular to the axis of the pipe. Knowing that the maximum allowable nor
mal and shearing stresses in the directions respectively normal and tangential 
to the weld are 0' = .$0 MPa and T = 30 MPa, determine the magnitude P of 
the largest axial force that can be applied to the pipe. 

Fig. P1.31 and P1.32 

Fig. P1.33 and P1.34 

33 



34 Introduction-Concept of Stress 1.35 A 960-kN load P is applied to the granite block shown. Determine 
the resulting maximum value of (a) the nonnal stress, (b) the shearing stress. Spec
ify the orientation of the plane on which each of these maximum values occurs. 

1.36 A centric load P is applied to the granite block shown. Knowing 
that the resulting maximum value of the shearing stress in the block is 17 MPa, 
determine (a) the magnitude of P, (b) the orientation of the surface on which 
the maximum shearing stress occurs, (c) the normal stress exerted on the sur
face, (d) the maximum value of the normal stress in the block. 

1.37 Link AB is to be made of a steel for which the ultimate normal 
stress is 450 MPa. Determine the cross-sectional area for AB for which the fac
tor of safety will be 3.50. Assume that the link will be adequately reinforced 

mm around the pins at A and B. 

Fig. P1.35 and P1.36 

Q 

F 
12mm 

Q' 

Fig. P1.40 

r j,r:-~:~ 
·''~ B 

1.4 m l 28kN 

Fig. P1.41 and P1.42 

p 

Fig. P1.37 Fig. P1.38 and P1.39 

1.38 The horizontal link BC is 6 mm thick, has a width w = 30 rum, 
and is made of a steel with a 450-MPa ultimate strength in tension. What 
is the factor of safety ·if the structure shown is designed to support a load 
P~40kN?, 

1.39 The horizontal link BC is 6 mm thick and is made of a steel with 
a 450-MPa ultimate strength in tension. What should be the width w of the link 
if the structure shown is to be designed to support a load P = 32 kN with a 
factor of safety equal to 3? 

1.40 A steel loop ABCD of length 1.2 m and of 10-mm diameter is placed 
as shown around a 24-mm-diameter aluminum rod A C. Cables BE and DF, each 
of 12-mm diameter, are used to apply the load Q. Knowing that the ultimate 
strength of the steel used for the loop and the cables is 480 MPa, determine the 
largest load Q that can be applied if an overall factor of safety of 3 is desired. 

1.41 Members AB and BC of the truss shown are made of the same 
alloy. It is known that a 20-mm-square bar of the same alloy was tested to fail
ure and that an ultimate load of 120 kN was recorded. If a factor of safety of 
3.2 is to be achieved fOr both bars, determine the required cross-sectional area 
of (a) bar AB, (b) bar AC 

1.42 Members AB and BC of the truss shown are made of the same 
alloy. It is known that a 20-mm-square bar of the same alloy was tested to failure 
and that an ultimate load of 120 kN was recorded. If bar AB has a cross-sectional 
area of 225 mm2, detennine (a) the factor of safety for bar AB, (b) the cross
sectional area of bar AC if it is to have the same factor of safety as bar AB. 



1.43 Three steel bolts are to be used to attach the steel plate shown to 
a wooden beam. Knowing that the plate will support a liO-kN load, that the 
ultimate shearing stress for the steel used is 360 MPa, and that a factor of safety 
of 3.35 is desired~ determine the required diameter of the bolts. 

1.44 Three 18-mm-diameter steel boltS are to be used to attach the steel 
plate Shown to a wooden beam. Knowing that the plate will support a 110-kN 
load and that the ultimate shearing stress for the steel used is 360 MPa, deter
mine the factor of safety for this design. 

·1.45 Two plates, each 3 mm thick, are used to splice a plastic strip as 
shown. Knowing that the ultimate shearing stress of the bonding between the 
surfaces is 900 kPa, determine the factor of safety with respect to shear when 
P = 1.3 kN. Fig. P1.43 and P1.44 

F 
6mm 

Fig. P1.45 

1.46 Two wooden members of 90 X 140 mm uniform rectangular cross 
section are joined by the simple glued scarf splice shown. Knowing that the 
maximum allowable shearing stress in the glued splice is 520 k.Pa, determine 
the largest axial load P that can be safely applied. 

140mm 

Fig. P1.46 

1.47 A load P is supported as shown by a steel pin that has been in
serted in a short wooden member hanging from the ceiling. The ultimate 
strength of the wood used is 60 MPa in tension and 7.5 MPa in shear, while 
the ultimate strenith of the steel is 145 MPa in shear. Knowing that b = 40 
mm, c = 55 mm, and d = 12 mm, determine the load P if an overall factor of 
safety of 3.2 is desired. 

1.48 For the support of Prob. 1.47, knowing that the diameter of the pin 
is d = 16 mm and that the magnitude of the load is P = 20 kN, determine 
(a) the factor of safety'for the pin, (b) the required values of b and c if the fac
tor of safety for the wooden members is the same as that found in part a for the pin. 

Problems 35 
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Fig. P1.49 

A 
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Fig. P1.51 

1.49 A steel plate 8 mm thick is embedded in a horizontal concrete stab 
and is used to anchor a high-strength vertical cable as shown. The diameter of 
the hole in the plate is 20 mm, the ultimate strength of the steel used is 250 
MPa, and the ultimate bonding stress between plate and concrete is 2 MPa. 
Knowing that a factor of safety of 3.60 is desired when P = 10 kN, determine 
(a) the required width a of the plate, (b) the minimum depth b to which a plate 
of that width should be embedded in the concrete slab. (Neglect the normal 
stresses between the concrete and the lower end of the plate.) 

1.50 Determine the factor of safety for the cable anchor in Prob. 1.49 
when P = 12 kN, knowing that a = 50 mm and b = 190 mm. 

1.51 Link AC is made of a steel with a 450-MPa ultimate normal stress 
and has a 6 X 12-mm uniform rectangular cross section. It is connected to a 
support at A and to member BCD at C by 10-mm-diameter pins, while member 
BCD is connected to its support at B by a 8-mm-diameter pin; all of the pins 
are made of a steel with a 170-MPa ultimate shearing stress and are in single 
shear. Knowing that a factor of safety of 3.25 is desired, determine the largeSt 
load P that may be applied at D. Note that link AC is nofteinforced around 
the pin holes. 

1.52 Solve Prob. 1.51, assuming that the structure has been redesigned 
to use 8-mm-diameter pins at A and Cas well as at B and that no other change 
has been made. 

1.53 In the structure shown, an 8-mm-diameter pin is used at A, and 
12-mm-diameter pins are used at Band D. Knowing that the ultimate shear
ing stress is 100 MPa at all connections and that the ultimate normal stress is 
250 MPa in each of the two links joining B and D, determine the allowable 
load P if an overall factor of safety of 3.0 is desired. 

L 
Bmm<r 

I 

Top view 

~200 nHn........J---180 mm-1
1
, I 1 ~mm m a . .)_l 

,, B cl 

A 
B c 

20mm p 

Front view 

Fig. P1.53 and P1.54 

1.54 In an alternative design for the structure of Prob. 1.53, a pin of 
10-mm-diameter is to be used at A. Assum.ing that all other specifications 
remain unchanged, determine the allowable load P if an overall factor of safety 
of 3.0 is desired. 



1.55 In the steel structure shown, a 6~mm~diameter pin is used at C and 
lO~mm-diameter pins lire used at B and D. The ultimate shearing stress is 150 
MPa at all connections, and the ultimate normal stress is 400 MPa in link BD. 
Knowing that a factor of safety of 3 is desired, determine the largest load P that 
can be applied at A. Note .that link BD is not reinforced around the pin holes. 

~ 
D .0 

Front view -- D 

~ ::::.-lSmm 

1'' .. 
............ -<--6 mm 

A 0 · .... ·f.ot~ B 

l----
B c 

,, 
mm <--120mm Side view 

A ®,; 
Top view 

Fig. P1.55 

1.56 Solve Prob. 1.55, assuming that the structure has been redesigned 
to use 12~mm-diameter pins at B and D and no other change has been made. 

*1.57 The Load and Resistance Factor Design method is to be used to 
select the two cables that will raise and lower a platform supporting two win~ 
dow washers. The platform weighs 72 kg and each of the window washers is 
assumed to weigh 88 kg with equipment. Since these workers are free to move 
on the platform, 75% of their total weight and the weight of their equipment 
will be used as the design live load of each cable. (a) Assuming a resistance 
factor¢ 0.85 and load factors Yo= 1.2 and Yr..= 1.5, determine the re
quired minimum ultimate load of one cable. (b) What is the conventional fac
tor of safety for the selected cables? 

*1.58 A 40-kg platform is attached to the end B of a 50-kg wooden beam 
AB, which is supported as shown by a pin at A and by a slender steel rod BC 
with a 12-kN ultimate load. (a) Using the Load and Resistance Factor Design 
method with a resistance factor ¢ = 0.90 and load factors 'Yo= 1.25 and 
"'YL = 1.6, determine the largest load that can be safely placed on the platfonn. 
(b) What is the corresponding conventional factor of safety for rod BC? 

Fig. P1.58 
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Axial loading. Normal stress . 

p 

Fig. 1.8a 

This chapter Was devoted to the concept of stress and to an intro
duction to the methods used for- the analysis and design of machines 
and load~bearing structures_. _ , . _·- .. _ .· . · .... 

Section 1.2 presented a short review of the methods of statics 
and of their application to the determination of the reactions eXerted 
by its supports on a simple structure cOnsisting of pin-connected 
members. Emphasis wa.s placed on the use_Of iifri'e~bOdy __ diagram 
to obtain equilibrium equations which were solved for the Unknown 
reactions. Free-body . ~iagrams were also ·used to find _the .internal 
forces in the various members of the structure. 

The concept of stress was first introduced in Sec. 1.3 by con-· 
sidering a two-force member under an axial loading. The ·nonnal 
strf!Ss in ~at member was obtained by dividing the magnitude P of 
the load by the cross-sectional area A of the member (Fig. 1.8a).We 
wrote 

p 
{]'= 

A 
(1.5) 

Section 1.4 was devoted tO a short discussion of the two princi
pal tasks of an engineer, namely, the analysis and the design of struc
tures and machines. 

As noted in Sec. 1.5, the value of 0' obtained from Eq. (i.5) rep
resents the average stress over the section rather than the stress at a 
specific point Q of the section. Considering a small area .6.A sur
rounding Q and the magnitude tlF of the force exerted on .6.A, we 
defined the stresS· a:t point Q as · 

. 0' = lim AF 
M ....... o llA · 

(1.6) 

In general, the value obtained for the stress a at point Q is dif
ferent from the value of the average stress given by formula (1.5) 
and is found to vary across the section. However, this variation is 
small in any section away from the points of application of the loads. 
In practice, therefore, the distribution of the nonnal stresses in an 
axially loaded member is assumed to be unifonn, except in the jmw 
mediate vicinity of the points of application of the loads. 

However, for the distribution of stresses to be uniform in a given 
section, it is necessary that the line of action of the loads P and P 1 

pass through the centroid C of the section. Such a loading is called 
a centric. axial loading. In the case of an -eccentric axial loading,_ the 
distribution of stresses is_ not unifonn. Stresses in members subjected 
to an eccelltric axialloaqing will be discussed in Chap 4. 



When equal and opposite transverse forces P and P' of'magni
tude Pare applied to a member AB (Fig .. 1.16a), shearing stres~es T 

are created over any section located between the points of applica
tion of the two forces [Sec 1.6]. These stresses vary greatly across 
the section and their distribution cannot be assumed uniform. How
ever dividing the magnitude P-referred to as the shear in the se:ctioll
by the cross¥sectional area A, we defined the average.:shearing stress 
over the section: 

(1.8) 

Shearing stresses are found in bolts, pins, or rivets cOnnecting 
two structural members or machine components. For.example, in the 
case of bolt CD (Fig. 1.18), which is in single shedr, we wrote 

P F 
'Tave=A=A (1.9). 

while, in the case of bolts EG and HJ (Fig. 1.20), which are both in 
doubl.e shear, we had · 

P F/Z 
T ::::::-::::::-.. -ave A A 

F 
ZA 

(1.10) 

Bolts, pins, and rivets also create stresses in the members they 
connect, along the bearing surface, or sulface of contact [Sec. 1.7]. 
The bolt CD of Fig. 1. 18, for example, creates stresses on the semi
cylindrical surface of plate A with which it is in contact .(Fig. 1.22). 
Since the distribution of these stresses is quite complicated, one uses 
in practice an average nominal value u b of the stress, called bearing 
stress, obtained by dividing the load P by the area of the rectangle 
representing the projection of the bolt on the plate section. Denot
ing by t the thickness of the plate and by d the diameter of the bolt, 
we wrote 

p p 
<rb =A = td (1.11) 

In Sec. 1.8, we applied the concept introduced in the previous 
sections to the analysis of a simple structure consisting of two pinM 
connected members supporting a given load. We deternrined suc
cessively the normal stresses in the two members, paying special at¥ 
tention to their narrowest sections, the shearing stresses in the 
various pins; and the bearing stress at each connection. 

The method you should use in solving a problem in mechanics 
of materials was described in Sec. 1.9. Your solution should begin 
with a clear and precise statement of the problem. You will the~ draw 
one or several free~body diagrams that you will use to write equ~
librium equations. These equations ,will_ be solved for unknown 
forces, from which the required stresses and deforinations -cail be 
computed. Once the answer has been obtained, it should be carefully 
checked. ./ · 

Review and Summary for Chapter 1 

Transverse Forces. Shearing stress 

p 

P' 

Fig. 1.16a 

Single and double shear 
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Bearing stress 

Fig. 1.22 

Method of solution 
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Stresses on an oblique section 

Fig. 1.30a 

Stress under general loading 

Fig. 1.36 

Factor of safety 

Load and Resistance Factor Design 

The first part of the chapter ended with a discussion of numer~ 
ical accuracy in engineering, which stressed the fact that the accu
racy of an answer can never be greater than the accuracy of the given 
data [Sec. 1.!0]. 

In Sec. 1.11, we considered the stresses created On an oblique 
section in a two~force member under axial loading. We found that 
both noimal and shearing stresses occurred in such a situation. De
noting by 0 the angle formed by the section with a nonnal plane (Ftg. 
1.30a) and by A0 the area of a section perpendicular to the axis of 
the member, we derived the follo.wing expressiOns for the normal 
stress q and the shearing stress T'on the oblique section: 

T = i_sin8cos8 
Ao 

(1.14) 

We observed from these formulas that the nonnal stress is maximum 
and equal to qm = P/A0 f?r 0 = 0, while the shearing stress is max
imum and equal to rm ~\P/2A0 for 8 =·45°. We also noted that 
r = 0 when 0 = 0, whil~ = P/2A0 when 0 = 45'. 

Next, we discussed th · state of stress at a point Q in a body un
der the most general load ng condition [Sec .. 1.12]. Consider. ing a 
small cube centered at Q Fig. 1.36), we denoted by O'x the normal 
stress exerted on a face o the cube perpendicular to the x axis, and 
by r xy and r xz• respective , the y and z components of the shearing 
stress exerted on the saD) face of the cube. Repeating this procedure 
for the other two faces of the cube and observing that 
r xy = T yx• T yz = r zy• and r i!X = T xz> we concluded that six stress com~ 
ponents are required to define the state of stress at a given point Q, 
namely, 0' x• 0' Y' 0' z• T xy• T yz• and T zt· 

Section 1.13 was devoted to a discussion of the various concepts 
used in the design of engineering structures. The ultimate load of a 
given structural member or machine component is the load at which 
the member or component is expected to fail; it is computed from 
the ultimate stress or ultimate strength of the material used, as de
termined by a laboratory test on a specimen of that material. The ul~ 
timate load should be considerably larger than the allowable load, 
i.e., the load that the member or component will be allowed to carry 
under normal conditions. The ratio of the ultimate load to the al
lowable load is defined as the factor of safety: 

ultimate load 
Factor of safety = F.S. = allowable load (1.26) 

The determination of the factor of safety that should be used in the 
design of a given structure depends upon a number of considerations, 
some of which were listed in this section. 

Section 1.13 ended with the discussion of an alternative approach 
to design, known as Load and Resistance Factor Design, which al
lows the engineer to distinguish between the uncertainties associated 
with the structure and those associated with the load. 



1.59 · For the Pratt bridge truss and loading shown, determine the aver~ 
age stress in member BE, knowing that the cross-sectional area of that mem- 360 kN 360 kN -'360 kN 
her is 3750 mm2• Fig. P1.59 

1.60 Knowing that !ink DE is 25 mm wide and 3 mm thick, determine 
the normal stress in the central portion of that link when (a) 0 = 0, (b) 0 = 90°. 

l___c r!oommr-30omm 

50mm ~ 18 1 

~r~ -~ 
200mm ::· 

L 
2-10 N 8 

Fig. P1.60 

1.61 Two wooden planks, each 22 mm thick and 160 mm wide, are 
joined by the glued mortise joint shown. Knowing that the joint will fail when 
the average shearing stress in the glue reaches 820 !cPa, determine the small
est allowable length d of the cuts if the joint is to withstand an axial load of 
magnitude P = 7.6 kN. 

P' 

Fig. P1.61 

1.62 Link AB, of width b = 50 mm and thickness t = 6 mm, is used to 
support the end of a horizontal beam. Knowing that the average normal stress 
in the link is -140 MPa, and that the average shearing stress in each of the 
two pins is 84 MPa, detennine (a) the diameter d of the pins, (b) the average 
bearing stress in the link. Fig. P1 .62 

41 



42 !ntroduct!on-Concept ot Stress 

Fig. P1.63 

Fig •. P1.65 

Fig. P1.67 

1.63 Two identical linkage-and-hydraulic-cylinder systems control the 
position of the forks of a fork-lift truck. The load supported by the one system 
shown is 6 k.N. Knowing that the thickness of member BD is 16 mm, deter
mine (a) the average shearing stress in the 12-mm-diameter pin at B, (b) the 
bearing stress at B in member BD. 

1.64 Determine the largest load P that may be applied at A when (:) = 60", 
knowing that the average shearing stress in the 10-mm-diameter pin at B must 
not exceed 120 MPa and that the average bearing stress in member AB and in 
the bracket at B must not exceed 90 MPa. 

Fig. P1.64 

l6 mm 1.65 The 900-kg load may be moved along the beam BD to any posi
diameter tion between stops at E and F. Knowing that uJu = 42 MPa for the steel used 

in rods AB and CD, determine where the stops should be placed if the permit
ted motion of the load is to be as large as possible. 

1.66 Two wooden members of 75 X 125-mm uniform rectangular cross 
section are joined by the simple glued joint sh0wn. Knowing that P = 3.6 kN 
and that the ultimate strength of the glue is 1.1 MPa in tension and 1.4 MPa 
in shear, determine the factor of safety. 

p 

Fig. P1.66 

1.67 Each of the two vertical links CF connecting the two horizontal 
members AD and EG has a 10 X 40~mm uniform rectangular cross section and 
is made of a steel with an ultimate strength in tension of 400 MPa, while each 
of the pins at C and F has a 20~mm diameter and is made of a steel with an 

24 kN ultimate strength in shear of 150 MPa. Determine the overall factor of safety 
for the links CF and the pins connecting them to the horizontal members. 



1.68 A force P is applied as shown to a st~el reinforcing bar that has 
been embedded in a block of concrete. Determine the smallest length L for 
which the full allowable normal stress in the bar may be developed. Express 
the result in terms of the diameter d of the bar, the allowable normal stress CT an 
in the st~el, and the average allowable bond stress 'Tall between the concrete 
and the cylindrical surface of the bar. (Neglect the normal stresses between the 
concrcite and the end of the bar.) 

1.69 The two portions of member AB are glued together along a plane 
forming an angle () with the horizontal. Knowing that the ultimate stress lor 
the glued joint is 17 MPa in tension and 9 MPa in shear, determine (a) the 
value of() for which the factor of safety of the member is maximum, (b) the 
corresponding value of the factor of safety. (Hint: Equate the expressions ob
tained for the factors of safety with respect to normal stress and shear.) 

Fig. P1.69 and P1.70 

1. 70 The two portions of member AB are glued together along a plane 
forming an angle f) with the horizontal. Knowing that the ultimate stress for 
the glued joint is 17 MPa in tension and 9 MPa in shear, determine the range 
of values of f) for which the factor of safety of the members is at least 3.0. 

The following problems are designed to be solved with a computer. 

1.C1 A solid steel rod consisting of n cylindrical elements welded to~ 
gether is subjected to the loading shown. The diameter of element i is denoted 
by d,. and the load applied to its lower end by P, with the magnitude P1 of this 

Fig. P1.68 

n 

load being assumed positive if P1 is directed downward as shown and negative Element 1 
otherwise. (a) Write a computer program that can be used to determine the 
average stress in eacl!. element of the rod. (b) Use this program to solve Probs. 
l.l and 1.3. Fig. P1.C1 

Computer Problems 43 
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Fig. P1.C2 

12 mm 

Fig. P1.C3 

1.C2 A 20-kN load is applied as shown to the horizontal member ABC. 
Member ABC has a 10 X 50-mm uniform rectangular cross section and is sup
ported by four vertical links, each of 8 X 36-mm unifonn rectangular cross 
section. Each of the four pins at A, B, C, and D has the same diameter d and 
is in double shear. (a) Write a computer program to calculate for values of d 
from 10 to 30 mm, using 1-mm increments, (I) the maximum value·of-the av
erage normal stress in the links connecting pins B and D, (2) the av.erage nor
mal stress in the links connecting pins C and E, (3) the average shearing stress 
in pinE, (4) the average shearing stress in pin C, (5) the average bearing stress 
at B in member ABC, (6) the average bearing stress at C in member ABC. 
(b) Check your program by comparing the values obtained ford = 16 mm with 
the answers given for Probs. 1.9 and 1.27. (c) Use this program to find the per
missible values of the diameter d of the pins, knowing that the allowable val
ues of the normal, shearing, and bearing stresses for the steel used are, re
spectively, 150 MPa, 90 MPa, and 230 MPa. (d) Solve part c, assuming that 
the thickness of member ABC has been redu.ced from !0 to 8 mm. 

1.C3 Two horizontal 20 kN forces are applied to pin B of the assembly 
shown. Each of the three pins at A, B, and C has the same diameter d and is in 
double shear. (a) Write a computer program to calculate for values of d from 
12.5 to 37.5 mm, using 1.25 mm increments, (l) the maximum value of the av
erage normal stress in member AB, (2) the average normal stress in member BC, 
(3) the average shearing stress in pin A, (4) the average shearing stress in piri C, 
(5) the average bearing stress at A in member AB, (6) the average bearing stress 
at C in member BC, (7) the average bearing stress at Bin member BC. (b) Check 
your program by comparing the values obtained for d = 20 mm with the an
swers given for Probs. 1.10 and 1.28. (c) Use this program to find the permis
sible values of the diameter d of the pins, knowing that the allowable values of 
the normal, shearing, and bearing stresses for the steel used are, respectively, 
150 MPa, 90 MPa and 250 MPa. (d) Solve part c, assuming that a new design 
is being investigated, in which the thickness and width of the two members are 
changed, respectively, from 12 mm to 8 mm and from 45 mm to 60 mm. 

...--·450 mm----300 mm--1 
Fig. P1.C4 

1.C4 A 16 kN force P forming an angle a with the vertical is applied 
as shown to member ABC, which is supported by a pin and bracket at C and 
by a cable BD fanning an angle f3 with the horizontal. (a) Knowing that the 
ultimate load of the cable is 100 kN, write a computer program to construct a 
table of the values of the factor of safety of the cable for values of a and (3 
from 0 to 45", using increments in a and (3 corresponding to 0.1 increments in 
tan a and tan {3. (b) Check that for any given value of a the maximum value 
of the factor of safety is obtained for (3 38.66" and explain why. (c) De~ 
termine the smallest possible value of the factor of safety for (3 = 38.66", as 
well as the corresponding value of a, and explain the result obtained. 



1.C5 A load P is supported as shown by two wooden members of uni
form rectangular cross section that are joined by a simple glued scarf splice. 
(a) Denoting by cru and Tu, respectively, the ultimate strength of the joint in 
tension and in shear, write a computer program which, for given values of 
a, b, P, tJu, and Tu, and for values of a from 5 to 85° at so intervals, can be 
used t9 calculate (1) the normal stress in the jOint, (2) the shearing stress in the 
joint, (3) the factor of safety relative to failure in tension, (4) the factor of safety 
relative to failure in shear, (5) the overall factor of safety for the glued joint. 
(b) Apply this program, using the dimensions and loading of the members of 
Probs. 1.29 and 1.31, knowing that CJu = 1.26 MPa and ru = 1.50 MPa for 
the glue used in Prob. 1.29, and that <ru = l.O MPa and Tu = 1.5 MPa for the 
glue used in Prob. l.3l. (c) Verify in each of these two cases that the shear
ing stress is maximum for a = 45°. 

1.C6 Member ABC is supported by a pin and bracket at A and by two 
links, which arc pin-connected to the member at Band to a fixed support at D. 
(a) Write a computer program to calculate the allowable load Pnn for any given 
values of (I) the diameter d1 of the pin at A, (2) the common diameter d2 of 
the pins at Band D, (3) the ultimate normal stress cru in each of the two links, 
(4) the ultimate shearing stress Tu in each of the three pins, (5) the desired 
overall factor of safety F.S. Your program should also indicate which of the 
following three stresses is critical: the normal stress in the links, the shearing Fig. P1.C5 
stress in the pin at A, or the shearing stress in the pins at Band D. (band c) Check 
your program by using the data of Probs. 1.53 and 1.54, respectively, and com-
paring the answers obtained for P~u with those given in the text. (d) Use your 
program to determine the allowable load Pa11 , as well as which of. the stresses 
is critical, when d 1 = d2 = 15 min, CJ u = 110 MP for the aluminum links, 
-ru = 100 MPa for steel pins, and F.S. = 3.2. 

Top view 
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Stress and 
Stramn-Axla~ Loading 

This chapter is devoted to the study of deformations occurring in structural components subjected tO axial loading. 
The change in length of the diagonal stays was carefully accounted for in the design of this cable~stayed bridge 
in the Port of Houston. 



2.1. INTRODUCTION 

In Chap. 1 we analyzed the stresses created in various members and 
connections by the loads applied to a structure or machine. We also 
learned to design simple members and connections so that they would 
not fail under specified loading conditions. Another important aspect of 
the analysis and design of structures relates to the defonnations caused 
by the loads applied to a structure. Clearly, it is important to avoid de~ 
formations so large that they may prevent the structure from fulfilling 
the purpose for which it was intended. But the analysis of deformations 
may also help us in the determination of stresses. Indeed, it is not al~ 
ways possible to determine the forces in the members of a structure by 
applying only the principles of statics. This is because statics is based 
on the assumption of undeformable, rigid structures. By considering enM 
gineering structures as deformable and analyzing the deformations in 
their various members, it will be possible for us to compute forces that 
are statically indeterminate, i.e., indeterminate within the framework of 
statics. Also, as we indicated in Sec. 1.5, the distribution of stresses in 
a given member is statically indetenninate, even when the force in that 
member is -known. To determine the actual distribution of stresses within 
a member, it is thus necessary to analyze the deformations that take 
place in that member. In this chapter, you will consider the deforma
tions of a structural member such as a rod, bar, or plate under axial 
loading. 

First, the normal strain € in a member will be defined as. the defor
mation of the member per unit length. Plotting the stress 0' versus the strain 
€ as the load applied to the member is increased will yield a stress-strain 
diagram for the material used. From such a diagram we can determine some 
important properties of the material, such as its modulus of elasticity, and 
whether the material is ductile or brittle (Sees. 2.2 to 2.5). You will also 
see in Sec. 2.5 that, while the behavior Of most materials is independent of 
the direction in which the load is applied, the response of fiber-reinforced 
composite materials depends upon the direction of the load. 

From the stress-strain diagram, we can also determine whether the 
strains in the specimen will disappear after the load has been removed
in which Case the material is said to behave elastically-or whether a per
manent set or plastic deformation will result (Sec. 2.6). 

Section 2.7 is devoted to the phenomenon of fatigue, which causes 
structural or machine components to fail after a very large number of re
peated loadings, even though the stresses remain in the elastic range. 

The first part of the chapter ends with Sec. 2.8, which is devoted to 
the determination of the deformation of various types of members under 
various conditions of axial loading. 

In Sees. 2.9 and 2.10, statically indeterminate problems will be con
sidered, i.e., problems in which the reactions and the internal forces can
not be determined from statics alone. The equilibrium equations derived 
from the freeMbody diagram of the member under consideration must be 
complemented by relations involving deformations; these relations will be 
obtained from the geometry of the problem. 

In Sees. 2.11 to 2.15, addi~ional constants associated with isotropic 
materials-i.e., materials with mechanical characteristics independent of 
direction-will be inrroduced. They include Poisson S ratio, which relates 

2.1.lntroduction 47 
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lateral and axial strain, the bulk modulus, which characterizes the change 
in volume of a material under hydrostatic pressure, and the modulus of 
rigidity, which relates the components of the shearing stress and shearing 
strain. Stress-strain relationships for an isotropic material under a multi
axial loading will also be derived. 

In Sec. 2.16, stress-strain relationships involving several distinct val
ues of the modulus of elasticity, Poisson's ratio, and the modulus of rigid
ity, will be developed for fiber-reinforced composite materials under a 
multiaxialloading. While these materials are not isotropic, they usually dis
play special properties, known as orthotropic properties, which facilitate 
their study. 

In the text material described so far, stresses are assumed uniformly 
distributed in any given cross section; they are also assumed to remain 
within the elastic range. The validity of the first assumption is discussed in 
Sec. 2.17, while stress concentrations near circular holes and fillets in flat 
bars are considered in Sec. 2.18. Sections 2.19 and 2.20 are devoted to the 
discussion of stresses and deformations in members made of a ductile ma
terial when the yield point of the material is exceeded. As you will see, per~ 
manent plastic deformations and residual stresses result from such loading 
conditions. 

2,2, NORMAL STRAIN UNDER AXIAL LOADING 

Let us consider a rod BC, of length Land uniform cross-sectional area 
A, which is suspended from B (Fig, 2.1a). If we apply a load P to end 
C, the rod elongates (Fig, Lib). Plotting the magnitude P of the load 
against the deformation 0 (Greek letter delta), we obtain a certain load
deformation diagram (Fig. 2.2). While this diagram contains informa~ 
tion useful to the analysis of the rod under consideration, it cannot be 
used directly to predict the deformation of a rod of the same material 
but of different dimensions. Indeed, we observe that, if a deformation 
0 is produced in rod BC by a load P, a load 2P is required to cause the 
same deformation in a rod B' C' of the same length L, but of cross
sectional area 2A (Fig. 2.3). We note that, in both cases, the value of 
the stress is the same: a = P/A. On the other hand, a load P applied 

p 

Fig. 2.2 
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to a rod B"C'; of the same cross~sectional area A, but of length 2L, 
causes a deformation 28 in that rod (Fig. 2.4), i.e., a deformation twice 
as large as the deformation 0 it produces in rod BC. But in both cases 
the ratio of the deformation over the length of the rod is the same; it is 
equal to 0/L. This observation brings us to intrOduce the concept of 
strain: We define the normal strain in a rod under axial loading as the 
deformation per unit length of that rod. Denoting the normal strain by 
E (Greek letter epsilon), we write 

/) 
e=-

L 
(2.1) 

Plotting the stress 0' = PI A against the strain e = 8/L, we obtain 
a curve that is characteristic of the properties of the material and does 
not depend upon the dimensions of the particular specimen used. This 
curve is called a stress-strain diagram and will be discussed in detail 
in Sec. 2.3. 

Since the rod BC considered in the preceding discussion had a uni
fonn cross section of area A, the normal stress u could be assumed to 
have a constant value PIA throughout the rod. Thus, it was appropriate 
to define the strain e as the ratio ofthe total defonnation /5 over the to
tal length L of the rod. In the case of a member of variable cross
sectional area A, however, the normal stress u = PI A varies along the 
member, and it is necessary to define the strain at a given point Q by 
considering a small element of undeforrned length Ax (Fig. 2.5). De
noting by A8 the deformation of the element under the given loading, 
we define the normal strain at point Q as 

M do 
e= lim-=-

a.x....,.o!J.x dx 
(2.2) 
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Fig. 2.6 Typical tensile-test specimen. 

Since deformation and length are expressed in the same units, the 
normal strain € obtained by dividing 0 by L (or dO by dx) is a dimen
sionless quantity. Thus, the same numerical value is obtained for the 
normal strain in a given member, whether SI metric units or U.S. 
customary units are used. Consider, for instance, a bar of length 
L = 0.600 m and uniform cross section, which undergoes a deforma
tion 8 = 150 X 10-6 m. The corresponding strain is 

8 150 X 10-6 m 
E =- = ='::-';:':":''--::_: = 250 X 10-6 m/m = 250 X 10-6 

L 0.600 m 

Note that the deformation could have been expressed in micrometers: 
8 = 150 p.m. We would then have written 

8 150 }Lffi 
• = - = --- = 250 }Lm/m = 250 1". 

L 0.600 m 

and tead the answer as "250 micros." 

2.3. STRESS-STRAIN DIAGRAM 

We saw in Sec. 2.2 that the diagram representing the relation between 
stress and strain in a given material is an important characteristic of the 
material. To obtain the stress-strain diagram of a material, one usually 
conducts a tensile test on a specimen of the materiaL One type of spec
imen commonly used is shown in Fig. 2.6. The cross-sectional area of 
the cylindrical central portion of the specimen h~s been accurately de
termined and two gage marks have been inscribed on that portion at a 
distance L0 from each other. The distance L0 is known as the gage length 
of the specimen. 



Fig. 2.7 This machine is used to test tensile test specimens, such as those 
shown in this chapter. 

The test specimen is then placed in a testing machine (Fig. 2.7), 
which is used to apply a centric load P. As the load P increases, the 
distance L between the two gage marks also increases (Fig. 2.8). The 
distance Lis measured with a dial gage, and the elongation a = L - L0 

is recorded for each value of P. A second dial gage is often used si
multaneously to measure and record the change in diameter of the spec
imen. From each pair of readings P and a, the stress 0' is computed by 
dividing P by the original cross-sectional area Au of the specimen, and 
the strain E by dividing the elongation a by the original distance Lo be
tween the two gage marks. The stress-strain diagram may then be ob
tained by plotting E as an abscissa and 0' as an ordinate. 

Stress-strain diagrams of various materials vary widely, and differ
ent tensile tests conducted on the same material may yield different re
sults, depending upon the temperature of the specimen and the Speed 
of loading. It is possible, however, to distinguish some common char
acteristics among the stress-strain diagrams of various groups of mate
rialS and to divide materials into two broad categories on the basis 
of these characteristics, namely, the ductile materials and the brittle 
materials. 

Ductile materials, which comprise stmctural steel, as well as many 
alloys of other metals, are characterized by their ability to yield at nor
mal temperatures. As the specimen is subjected to an increasing load, 
its length first increases linearly with the load and at a very slow rate. 
Thus, the initial portion of the stress-strain diagram is a straight line 
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Fig. 2.8 Test specimen with tensile load. 

ODTu K"JTU'PHANES:l 
]J.!ETU LIBELEY 



52 Stress and Strain-Axial Loading 

Fig. 2.9 Stress-strain diagrams of two 
typical ductile materials. 
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Fig. 2.10 Tested specimen of a ductile materiaL 

with a steep slope (Fig. 2.9). However, after a critical value ay of the 
stress has been reached, the specimen undergoes a large deformation 
with a relatively small increase in the applied load. This deformation 
is caused by slippage of the material along oblique surfaces and is due, 
therefore, primarily to shearing stresses. As we can note from the stress
strain diagrams of two typical ductile materials (Fig. 2.9), the elonga
tion of the specimen after it has started to yield can be 200 times as 
large as its deformation before yield. After a certain maximum value of 
the load has been reached, the diameter of a portion of the specimen 
begins to decrease, because of local instability (Fig. 2.10a). This phe
nomenon is known as necking. After necking has begun, somewhat 
lower loads are sufficient to keep the specimen elongating further, un
til it finally ruptilreS-.{Fig. 2.10b). We note that rupture occurs along a 
cone-shaped surface tha~orms an angle of approximately 45° with the 
original surface of the specimen. This indicates that shear is primarily 
responsible for the failure of ductile materials, and confirms the fact 
that, under an axial load, shearing stresses are largest on surfaces form
ing an angle of 45° with the load (cf. Sec. 1.11). The stress O"y at which 
yield is initiated is called the yield strength of the material, the stress 
O"u corresponding to the maximum load applied to the specimen· is 
known as the ultimate strength, and the stress 0'8 corresponding to rup
ture is called the breaking strength. 

Rupture 

Fig. 2.11 Stress-strain diagram for a typical 
brittle materiaL 

Brittle materials, which comprise cast iron, glass, and stone, are...-
characterized by the fact that rupture occurs without any noticeable prior 
change in the rate of elongation (Fig. 2.11). Thus, for brittle materials, 
there is no difference between the ultimate strength and the breaking 
strength. Also, the strain at the time of rupture is much smaller for brit-
tle than for ductile materials. From Fig. 2.12, we note the absence of 
any necking of the specimen in the case of a brittle material, and ob~ 
serve that rupture occurs along a surface perpendicular to the load. We 
conclude from this observation that normal stresses are primarily re~ 
sponsible for the failure of brittle materials. 't 

tThe tensile tests described in this section were assumed to be conducted at nonnal tem· 
peratures. However, a material that is ductile at nonnal temperatures may display the char
acteristics of a brittle material at very low temperatures, while a normally brittle material may 
behave in a ductile fashion at very high temperamres. At temperatures other than nonnal, 
therefore, one should refer to a material in a ductile state or to a material in a brirtle state, 
rather than to a ductile or brittle material. 



Fig. 2.12 Tested specimen of a brittle material. 

The stress-strain diagrams of Fig. 2.9 show that structunll steel and 
aluminum, while both ductile, have different yield characteristics. In 
the case of structural steel (Fig. 2.9a), the stress remains constant over 
a large range of values of the strain after the onset of yield. Later the 
stress must be increased to keep elongating the specimen, until the max
imum value cr 0 has been reached. This is due to a property of the ma
terial known as strain-hardening. The yield strength of structural steel 
can be determined during the tensile test by watching the load shown 
on the display of the testing machine. After increasing steadily, the load 
is observed to suddenly drop to a slightly lower value, which is main
tained for a certain period while the specimen keeps elongating. In a 
very carefully conducted test, one may be able to distinguish between 
the upper yield point, which corresponds to the load reached just be
fore yield starts, and the lower yield point, which corresponds to the 
load required to maintain yield. Since the upper yield poin.t is transient, 
the lower yield point should be used to determine the yield strength of 
the material. 

In the case of aluminum (Fig. 2.9b) and of many other ductile rna~ 
terials, the onset of yield is not characterized by a horizontal portion of 
the stress~strain curve. Instead, the stress keeps increasing-although 
not linearly-until the ultimate strength is reached. Necking then begins, 
leading eventually to rupture. For such materials, the yield strength err can 
be defined by the offset method. The yield strength at 0.2% offset, for ex~ 
ample, is obtained by drawing through the point of the horizontal axis of 
abscissaE= 0.2% (orE= 0.002), a line parallel to the initial straight-line 
portion of the stress-strain diagram (Fig. 2.13). The stress cry correspon
ding to the point Y oJ?tained in this fashion is defined as the yield strength 
at 0.2% offset. 
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54 Stress and Strain-Axial loading A standard measure of the ductility of a material is its percent elon
gation, which is defined as 

L8 L0 
Percent elongation = 100 L 

() 

where L0 and L8 denote, respectively, the initial length of the tensile 
test specimen and its final length at rupture. The specified minimum 
elongation for a 50~mm gage length for commonly used steels with 
yield strengths up to 350 MPa is 21%. We note that this means that the 
average strain at rupture should be at least 0.21 mrnlmm. 

Another measure of ductility which is sometimes used is the per
cent reduction in area, defined as 

A0 - A8 Percent reduction in area = 100 ::::ccc__:_:;c 
Ao 

where A0 and A8 denote, respectively, the initial cross-sectional area of 
the specimen and its minimum cross-sectional area at rupture. For struc
tural steel, percent reductions in area of 60 to 70% are common. 

Thus far, we have discussed only tensile tests. If a specimen made 
of a ductile material were loaded in compression instead of tension, the 
stress-strain curve obtained would be essentially the same through its 
initial straight-line portion and through the beginning of the portion cor
responding to yield and strain-hardening. Particularly noteworthy is the 
fact that for a given steel, the yield strength is the same in both tension 
and compression. For larger values of the strain, the tension and com~ 
pression stress-strain curves diverge, and it should be noted that neck
ing cannot occur in compression. For most brittle materials, one finds 
that the ultimate strength in compression is much larger than the ulti
mate strength in tension. This is due to the presence of flaws, such as 
microscopic cracks or cavities, which tend to weaken the material in 
tension, while not appreciably affecting its resistance to compressive 
failure. 

uu. tcns;on ----- Rupture, tension 

Linear elastic range 

Rupture, compression 

Fig. 2.14 Stress-strain diagram for concrete. 



An example of brittle material with different properties in tension 
and compression is provided by concrete, whose stress-strain diagram 
is shown in Fig. 2.14. On the tension side of the diagram, we first ob
serve a linear elastic range in which the strain is proportional to the 
stress. After the yield pOint has been reached, the strain increases faster 
than the stress until rupture occurs. The behavior of the material in com
pression is different. First, the linear elastic range is significantly larger. 
Second, rupture does not occur as the stress reaches its maximum valu~. 
Instead, the stress decreases in magnitude while the strain keeps in
creasing until rupture occurs. Note that the modulus of elasticity, which 
is represented by the slope of the stress-strain curve in its linear por
tion, is the same in tension and compression. This is true of most brit
tle materials. 

'2.4. TRUE STRESS AND TRUE STRAIN 

We recall that the stress plotted in the diagranis of Figs. 2.9 and 2.11 
was obtained by dividing the load P by the cross-sectional area A0 of 
the specimen measured before any deformation had taken place. Since 
the cross-sectional area of the specimen decreases as P increases, the 
stress plotted in our diagrams does not represent the actual stress in the 
specimen. The difference between the engineering stress(]" = PI A0 that 
we have computed and the true stress a,= PIA obtained by dividing 
P by the cross!sectional area A of the deformed specimen bcicomes ap
parent in ductile materials after yield has started. While the engineer
ing stress a, which is directly proportional to the load P, decreases with 
P during the necking phase, the true stress (]"1, which is proportional to 
P but also inversely proportional to A, is observed to keep increasing 
until rupture of the specimen occurs. 

Many scientists also use a definition of strain different from that 
of the engineering strain e = 0/Lo. Instead of using the total elonga
tion 8 and the original value L0 of the gage length, they use all the suc
cessive values of L that they have recorded. Dividing each increment 
AL of the distance between the gage marks, by the corresponding value 
of L, they obtain the elementary strain .Ae = ALIL. Adding the suc
cessive values of Ae they define the true strain e: 

e, = 2:/>e = 2:(/>L(L) 

With the summation replaced by an integral, they can also express the 
true strain as follows: Yield 

(2.3) 

The diagram obtained by plotting true stress versus true strain (Fig. 

2.4. True Stress and True Strain 

Rupture 

' 

2.15) reflects more accurately the behavior of the material. As we have e., 

already noted, there is no decrease in true stress during the necking Fig. 2•15 True stress versus true strain tor a 
phase. Also, the results obtained from tensile and from compressive typical ductile material. 
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Fig. 2.16 Stress-strain diagrams for 
iron and different grades of steeL 

tests will yield essentially the same plot when true stress and true strain 
are used. This is not the case for large values of the strain when the 
engineering stress is plotted versus the engineering strain. However, 
engineers, whose responsibility is to detennine whether a load P will 
produce an acceptable stress and an acceptable deformation in a given 
member, will want to use a diagram based on the engineering stress 
u = P / A0 and the engineering strain E = fJ/L0, since these expressions 
involve data that are available to them, namely the cross-sectional area 
A0 and the length Lo of the member in its undeformed state. 

2.5. HOOKE'S LAW; MODULUS OF ELASTICITY 

Most engineering structures are designed to undergo relatively small 
defonnations, involving only the straight-line portion of the correspond-
ing stress-strain diagram. For thar initial portion of the diagram (Fig. \ 
2.9), the stress a is directly proportional to the strain £, and we can 
write 

0' = EE (2.4) 

This relation is known as Hooke S law, after the English mathematician 
Robelt Hooke (1635-1703). The coefficient E is called the nwdulus of 
elasticity of the material involved, or also Young's modulus, after the Eng~ 
lish scientist Thomas Young (1773-1829). Since the strain e is a dimen~ 
sionless quantity, the modulus E is expressed in the same units as the stress 
0', namely in pascals or one of its multiples. 

The largest value of the stress for which Hooke's law can be used 
for a given material is known as the proportional limit of that materiaL 
In the case of ductile materials possessing a well-defined yield point, 
as in Fig. 2.9a, the proportional limit almost coincides with the yield 
point. For other materials, the proportional limit cannot be defined as 
easily, since it is difficult to determine with accuracy the value of the 
stress 0' for which the relation between cr and e ceases to be linear. But 
from this very difficulty we can conclude for such materials that using 
Hooke's law for values of the stress slightly larger than the actual pro
portional limit will not result in any significant error. 

Some of the physical properties of structural metals, such as 
strength, ductility, and corrosion resistance, can be greatly affected by 
alloying, heat treatment, and the manufacturing process used. For ex
ample, we note from the stress~strain diagrams of pure iron and of three 
different grades of steel (Fig. 2.16) that large variations in the yield 
strength, ultimate strength, and final strain (ductility) exist among these 
four metals. All of them, however, possess the same modulus of elas
ticity; in other words, their "stiffness," or ability to resist a defonnation 
within the linear range, is the same. Therefore, if a high-strength steel 
is substituted for a lower-strength steel in a given structure, and if all 
dimensions are kept the same, the structure will haVe an increased load
carrying capacity, but its stiffness will remain unchanged. 



For each of the materials considered so far, the relation between 
normal stress and normal strain, O" .= Ee, is independent of the direc
tion of loading, This is because the mechanical properties of each ma
terial, including. its modulus of elasticity E, are independent of the di
rection considered. Such materials are said to be isotropic. Materials 
whose properties depend upon the direction considered are said to be 
anisotropic. An important class of anisotropic materials consists of 
fiber-reinforced composite materials. 

These composite materials are obtained by embedding fibers of a 
strong, stiff material into a weake'r, softer material, referred to as a ma
trix. Typical materials used as fibers are graphite, glass, and polymers, 
while various types of resins are used as a matrix. Figure 2.17 shows a 
layer, or lamina, of a composite material consisting of a large number 
of parallel fibers embedded in a matrix. An axial load applied to the 
lamina along the x axis, that is, in a direction parallel to the fibers, will 
create a normal stre,s O" x in the lamina and a corresponding nonnal 
strain Ex which will satisfy Hooke's law as the .load is increased and as 
long as the elastic limit of the lamina is not exceeded. Similarly, an ax
ialload applied along they axis, that is, in a direction perpendicular to 
the lamina, will create a normal stress O" Y and a normal strain Ey satis
fying Hooke's law, and an axial load applied along the z axis will cre
ate a normal stress Uz and a normal strain €z which again satisfy Hooke's 
law. However, the moduli of elasticity Ex> E>" and Ez corresponding, re
spectively, to each of the above loadings will be different. Because the 
fibers are parallel to the x axis, the lamina will offer a much stronger 
resistance to a loading directed along the x axis than to a loading di
rected along the y or z axis, and Ex will be much larger than either £1' 
oc~ . 

A fiat laminate is obtained by superposing a number of layers or 
laminas. If the laminate is to be subjected only to an axial load caus
ing tension, the fibers in all layers should have the same orientation as 
the load in order to obtain the greatest possible strength. But if the lam~ 
inate may be in compression, the matrix material may not be sufficiently 
strong to prevent the fibers from kinking or buckling. The lateral sta
bility of the laminate may then be increased by positioning some of the 
layers so that their fibers will be perpendicular to the load. Positioning 
some layers so that their fibers are oriented at 300,45°, or 60° to the 
load may also be used to increase the resistance of the laminate to in
plane shear. Fiber~reinforced composite materials will be further dis
cussed in Sec. 2.16, where their behavior under multiaxialloadings will 
be considered. 

2.6. ELASTIC VERSUS PLASTIC BEHAVIOR OF A MATERIAL 

If the strains caused in a test specimen by the application of a given 
load disappear when the load is removed, the material is said to behave 
elastically. The largest value of the stress for which the material bew 
haves elastically is called the elastic limit of the material. 

If the material has a well-defined yield point as in Fig. 2.9a, the 
elastic limit, the proportional limit (Sec. 25), and the yield point are 
essentially equaL In other words, the material behaves elastically and 
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linearly as long as the stress is kept below the yield point. If the 'eld 
point is reached, however, yield takes place as described in S '. 2.3 
and, when the load is removed, the stress and strain decrease · n a lin
ear fashion, along a line CD parallel to the straight-line port' nAB of 
the loading curve (Fig. 2.18). The fact that e does not retu'rn ,o zero af
ter the load has been removed indicates that a permanent set' or plastic 
deformation of the material has taken place. For most materials, the 
plastic deformation depends not only upon the maximum value reached 
by the stress, but also upon the time elapsed before the load is removed. 
The stress-dependent part of the plastic deformation is referred to 
as slip, and the time-dependent part-which is also influenced by the 
temperature-as creep. 

When a material does not possess a well-defined yield point, the elas
tic limit cannot be detennined with precision. However, assuming the 
elastic limit equal to the yield strength as defined by the offset method (Sec. 
2.3) results in only a small error. Indeed, referring to Fig. 2.13, we note 
that the straight line used to determine point Y also represents the unload
ing curve after a maximum stress O'y has been reached. While the material 
does not behave truly elastically, the resulting plastic strain is as small as 
the selected offset. 

If, after being loaded and unloaded (Fig. 2.19), the test specimen is 
loaded again, the new loading curve will closely follow the earlier unloading 
curve until it almost reaches point C; it will then bend to the right and con
nect with the curved portion of the original stress-strain diagram. We note 
that the straight-line portion of the new loading curve is longer than the 
corresponding portion of the initial one. Thus, the proportional limit and 
the elastic limit have increased as a result of the strain-hardening that oc
curred during the earlier loading of the specimen. However, since the point 
of rupture R remains unchanged, the ductility of the specimen, which should 
now be measured from point D, has decreased. 

We have assumed in our discussion that the specimen was loaded twice 
in the same direction, i.e., that both loads were tensile loads. Let us now 
consider the case when the second load is applied in a direction opposite 
to that of the first one. 

We assume that the material is mild steel, for which the yield strength 
is the same in tension and in compression. The initial load is tensile and 
is applied until point C has been reached on the stress-strain diagram (Fig. 
2.20). After unloading (point D), a compressive load is applied, causing 
the material to reach point H, where the stress is equal to -o-y. We note 
that portion DH of the stress-strain diagram is curved and does not show 
any clearly defined yield point. This is referred to as the Bauschinger ef
fect. As the compressive load is maintained, the material yields along line 
HJ. 

If the load is removed after point J has been reached, the stress returns 
to zero along line JK, and we note that the slope of JK is equal to the mod
ulus of elasticity E. The resulting permanent set AK may be positive, neg
ative, or zero, depending upon the lengths of the segments BC and HI. If 
a tensile load is applied again to the test specimen, the portion of the stress
strain diagram beginning at K (dashed line) will curve up and to the right 
until the yield stress a y has been reached. 
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If the initial loading is large enough to cause strain-hardening of 
the material (point C'), unloading takes place along line C'D'. As the 
reverse lo"ad is applied, the stress becomes compressive, reaching its 
maximum value at H' and maintaining it as the material yields along 
line H'f. We note that while the maximum value of the compressive 
stress is less than (T y, the total change in stress between C' and H' is 
still equal to 2cr y. 

If point K or K' coincides with the origin A of the diagram, the per
manent set is equal to zero, and the specimen may appear to have re
turned to its original condition. However, internal changes will have 
taken place and, while the same loading sequence may be repeated, the 
specimen will rupture without any warning after relatively few repeti~ 
tions. This indicates that the excessive plastic deformations to which 
the specirrien was subjected have caused a radical change in the char~ 
acteristics of the materiaL Reverse loadings into the plastic range, there
fore, are seldom allowed, and only under carefully controlled condi~ 
tions. Such situations occur in the straightening of damaged material 
and in the final alignment of a structure or machine. 

2.7. REPEATED LOADINGS; FATIGUE 

In the preceding sections we have considered the behavior of a test specM 
imen subjected to an axial loading. We recall that, if the maximum stress 
in the specimen does not exceed the elastic limit of the material, the 
specimen returns to its initial condition when the load is removed. You 
might conclude that a given loading may be repeated many times, pro
vided that the stresses remain in the elastic range. Such a conclusion is 
correct for loadings repeated a few dozen or even a few hundred times. 
However, as you will see, it is not correct when loadings are repeated 
thousands or millions of times. In such cases, rupture will occur at a 
stress much lower than the static breaking strength; this phenomenon 
is known as fatigue. A fatigue failure is of a brittle nature, even for rna~ 
terials that are normally ductile. 
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Fatigue must be considered in the design of all structural and ma
chine components that are subjected to repeated or to fluctuating loads. 
The number of loading cycles that may be expected during the useful 
life of a component varies greatly. For example, a beam supporting an 
industrial crane may be loaded as many as two million times in 25 years 
(about 300 loadings per working day), an automobile crankshaft will 
be loaded about half a billion times if the automobile is driven 200,000 
miles, and an individual turbine blade may be loaded several hundred 
billion times during its lifetime. 

Some loadings are of a fluctuating nature. For example, the pas
sage of traffic over a bridge will cause stress levels that will fluctuate 
about the stress level due to the weight of the bridge. A more severe 
condition occurs when a complete reversal of the load occurs during 
the loading cycle. The stresses in the axle of a railroad car, for exam
ple, are completely reversed after each half-revolution of the wheel. 

The number of loading cycles required to cause the failure of a 
specimen through repeated successive loadings and reverse loadings 
may be determined experimentally for any given maximum stress level. 
If a series of tests is conducted, using different maximum stress levels, 
the resulting data may be plotted as a (J'-n curve. For each test, the max
imum stress a is plotted as an ordinate and the number of cycles n as 
an abscissa; because of the large number of cycles required for rupture, 
the cycles n are plotted on a logarithmic scale. 

A typical (J'-n curve for steel is shown in Fig. 2.21. We note that, 
if the applied maximum stress is high, relatively few cycles are required 
to cause rupture. As the magnitude of the maximum stress is reduced, 
the number of cycles required to cause rupture increases, until a stress, 
known as the endurance limit, is reached. The endurance limit is the 
stress for which failure does not occur, even for an indefinitely large 
number of loading cycles. For a low-carbon steel, such as structural 
steel, the endurance limit is about one-half of the ultimate strength of 
the steel. 

For nonferrous metals, such as aluminum and copper, a typical (]' -n 
curve (Fig. 2.21) shows that the stress at failure continues to decrease 
as the number of loading cycles is increased. For. such metals, one de
fines the fatigue limit as the stress corresponding to failure after a spec
ified number of loading cycles, such as 500 million. 

Examination of ~est specimens, of shafts, of springs, and of other 
components that have failed in fatigue shows that the failure was initi
ated at a microscopic crack or at some similar imperfection. At each 
loading, the crack was very slightly enlarged. During successive load~ 
ing cycles, the crack propagated through the material until the amount 
of undamaged material was insufficient to carry the maximum load, and 
an abrupt, brittle failure occurred. Because fatigue failure may be ini
tiated at any crack or imperfection, the surface condition of a specimen 
has an important effect on the value of the endurance limit obtained in 
testing. The endurance limit for machined and polished specimens is 
higher than for rolled or forged components, or for components that are 
corroded. In applications in or near seawater, or in other applications 
where corrosion is expected, a reduction of up to 50% in the endurance 
limit can be expected. 



2.8. DEFORMATIONS OF MEMBERS UNDER AXIAL LOADING 

Consider a homogeneous rod BC of .length Land uniform cross section 
of area A subjected to a centric axial load P (Fig. 2.22). If the result~ 
ing axial stress .<r = PI A does not exceed the proportional limit of the 
material, we may apply Hooke's law and write 

u = E~ (2.4) 

from Which it follows that 

d p 
e=-=-

E AE 
(2.5) 

Recalling that the strain € was defined in Sec. 2.2 as E = B/L, we have 

, 
and, substituting for E from (2.5) into (2.6): 

. 
8 

= PL 

AE 

(2.6) 

(2.7) 

Equation (2.7) may be used only if the rod is homogeneous (con~ 
stantE), has a uniform cross section of area A, and is loaded at its ends. 
If the rod is loaded at other points, or if it consists of several portions 
of various cross sections and possibly of different materials, we must 
divide it into component parts that satisfy individually tlie required 
conditions for the application of formula (2.7). Denoting, respectively, 
by Pi> L;, A;, and E; the internal force, length, cross~sectional area, and 
modulus of elasticity corresponding to part i, we express the deforma~ 
tion of the entire rod as 

(2.8) 

We recall from Sec. 2.2 that, in the case of a rod of variable cross 
section (Fig. 2.5), the strain E depends upon the position of the point Q 
where it is computed and is defined as € = d5/dx. Solving for d5 and 
substituting forE from Eq. (2.5), we express the deformation of an el
ement of length dx as 

The total deformation 5 of the rod is obtained by integrating this ex
pression over the length L of the rod: 

8 = rL p dx 
)
0 

AE 
(2.9) 

Formula (2.9) should be used in place of (2.7), not only when the cross
sectional area A is a function of x, but also when the internal force P 
depends upon x, a~js the case for a rod hanging under its own weight. 
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Determine the deformation of the steel rod shown in Fig. 2.23a 
under the given loads (E = 200 GPa). 

!-

We divide the rod into three component parts shown in 
Fig. 2.23b and write 

c 

A458lmm2 

c D 

':' :300 kN 180 kN 

! 300 mm I 300 mm 400 mm 

(") 

A 

(b) 

(B c 
D 

1 !20 kN 
i 180kN i 
' ' 

bookN 
' ' ' ' 

I : 
' ' IP3~ 
: l:20kN 

P,~~-·S~N 
180 kN 

B C 

P,~N 
(c) 300 kN 180kN 

Fig. 2.23 
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L, ~L,~300mm 

A 1 = A1 = 580 mm2 

L, ~ 400 mm 
A 3 = 190 mm2 

To find the internal forces Pl> P 2, and P 3, we must pass sec
tions through each of the component parts, drawing each time 
the free-body diagram of the portion of rod located to the right 
of the section (Fig. 2.23c). Expressing that each of the free 
bodies is in equilibrium, we obtain successively 

P, ~ 240 kN ~ 240 X 101 N 

P2 ~ -60 kN ~ -60 X 102 N 

P3 ~ 120 kN ~ !20 X 103 N 

Carrying the values obtained into Eq. (2.8}, we have 

O = 2: P,L; = _!_ (P1L1 + P2L2 + P3L3 ) 

i A;E; E At A2 A3 

~ 1 [ (240 X !03)(0.3) 
200 X 109 580 X 10 6 

(-60 X 101)(0.3) (120 X 103)(0.4)] 
+ 580 X 10 6 + 190 X 10"6 

0.3457 X 109 
0 = = 1.73 X 10-3 m = 1.73 mm 

200 X 

Fig. 2.24 

The rod BC of Fig. 2.22, which was used to derive formula (2.7), 
and the rod AD of Fig. 2.23, which has just been discussed in Exam
ple 2.01, both had one end attached to a fixed support. In each case, 
therefore, the deformation a of the rod was equal to the displacement 
of its free end. When both ends of a rod move, hOwever, the deforma
tion of the rod is measured by the relative displacement of one end of 
the rod with respect to the other. Consider, for instance, the assembly 
shown in Fig. 2.24a, which consists of three elastic bars of length L 
connected by a rigid pin at A. If a load Pis applied at B (Fig. 2.24b), 
each of the three bars will deform. Since the bars AC and AC' are at
tached to fixed supports at C and C', their common deformation is mea~ 
sured by the displacement a A of point A. On the other hand, since both 
ends of bar AB move, the deformation of AB is measured by the dif
ference between the displacements a A and aB of points A and B, i.e., by 
the relative displacement of B with respect to A. Denoting this relative 
displacement by 881A, we write 

62 

PL 
88/A = 8s - a A = AE (2.10) 

where A is the cross-sectional area of AB and E is its modulus of 
elasticity. 
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SAMPLE PROBLEM 2.1 

The rigid bar BDE is supported by two links AB and CD. Link AB is made of 
aluminum (E = 70 GPa) and has a cross-sectional area of 500 mm2; link CD is 
made of steel (E = 200 GPa) and has a cross-sectional area of 600 mm2• For 
the 30-kN force shown, determine the deflection (a) of B, (b) of D, (c) of E. 

SOLUTION 

Free Body: Bar BDE 

+1'EM8 = 0: -(30 kN)(0.6 m) + FCD(02 m) = 0 
F co = + 90 kN F co 90 kN tension 

-(30 kN)(OA m) - FA8(02 m) = 0 
FAB = -60kN FAn = 60 kN compression 

a. Deflection of B. Since the internal force in link AB is compressive, 
we have P = -60·kN 

PL ( -60 X 103 N)(03 m) 
6 i! =- = = -514 X 10- m 8 AE (500 X 10-6 m2)(70 X 109 Pa) 

The negative sign indicates a contraction of member AB, and, thus, an up
ward deflection of end B: 

88 = 0.5\4mmt <'f! 

b. Def!ectkm of D. Since in rod CD, P = 90 kN, we write 

PL (90 X 103 N)(0.4 m) 
8 0 = AE = 7( 6::0-:co ""x-J"'o"''m''::c)("czo'::o-x-'"IO:o,-::P-ca) 

1!0 = 0300 mm t <II 

c. Deflection of E. We denote by B' and D' the displaced positions of 
points Band D. Since the bar BDE is rigid, points B', D: and E' lie in a straight 
line and we write 

88' 8H 0.5l4mm 
DD' = HD 0.300mm 

EE' HE a, 
-=-
DD' HD 0.300 mm 

(200mm)- x 
x = 73.7 mm 

X 

(400 mm) + (73.7 mm) 
73.7 mm 

1!, = L928 mm t <II 
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SAMPLE PROBLEM 2.2 

The rigid castings A and B are connected by two 18 rum-diameter steel bolts 
CD and GH and are in contact with the ends of a 38 mm~diameter aluminum 
rod EF. Each bolt is single-threaded with a pitch of 2.5 mm, and after being 
snugly fitted, the nuts at D and H are both tightened one-quarter of a turn. 
Knowing that E is 200 GPa for steel and 70 GPa for aluminum, determine the 
normal stress in the rod. 

SOLUTION 

Deformations 

Bolts CD and GH. Tightening the nuts causes tension in the bolts. Be
cause of symmetry, both are subjected to the same internal force P& and un
dergo the same deformation Ob. We have 

P,L, P;(450 mm) 
8 = +-- = + = +8.842 X 10-6 Pb (1) 
' A,£, ),;(18 mm)'(200 X 103 N/mm2

) 

Rod EF. The rod is in compression. Denoting by P,. the magnitude of 
the force in the rod and by h,- the defonnation of the rod, we write 

il ~ - p ,L, ~ - P,(300 mm) ~ -3 779 X 10-' p (2) 
r A,E, hr(38 mm?(70 X 103 N/mm 2) 

Displacement of D Relative to B. Tightening the nuts one-quarter of a 
turn causes ends D and H of the bolts to undergo a displacement of ~(2.5 mm) 
relative to casting B. Considering end D, we write 

5018 = h2.5 mm) = 0.625 mm (3) 

But 5018 = 50 - 58 , where h0 and 88 represent the displacements of D and B. 
If we assume that casting A is held in a fixed position while the nuts at D and 
Hare being tightened, these displacements are equal to the deformations of the 
bolts and of the rod, respectively. We have, therefore, 

0018 = lh,- 8, (4) 

Substituting from (l), (2), and (3) into (4), we obtain 

0.625 mm ~ 8.842 X 10-o P; + 3.779 X 10-6 P, (5) 

Free Body: Casting B 

±;..2;F=O: P,-2Pb=O 

Forces in Bolts and Rod 
Substituting for Pr from (6) into (5), we have 

0.625 mm ~ 8.842 X w-oP; + 3.779 X 10-'(2?;) 

P6 ~ 38.1 X 10 3 N ~ 38.1 kN 

P, ~ 2P6 ~ 2(38.1 kN) ~ 76.2 kN 

Stress in Rod 

(6) 

P, 72.6 kN 
u=-= 

r Ar br(38 mm/ 
u, ~ 67.19 MPa 41 
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2.1 A steel rod thar is L6 mm long stretches 1 mm when a 8-kN tensile 
load is applied to it. Knowing that E = 200 GPa, determine (a) the smallest 
diameter rod that should be used, (b) the corresponding normal stress caused 
by the load. 

' 
2.2 A 60-m-long steel wire is subjected to 6 kN tensile force. Knowing 

that E = 200 GPa and that the length of the rod increases by 48 mm, determine 
(a) the smallest diameter that may be selected for the wire, (b) the correspon
ding normal stress. 

2.3 A control rod made of yellow brass must not stretch more than 
3 mm when the tension in the wire is 3.2 kN. Knowing that E = 105 GPa and 
that the maximum allowable normal stress is 220 MPa, determine (a) the small
est diameter that can be selected for the rod, (b) the corresponding maximum 
length of the rod. 

2.4 Two gage marks are placed exactly 250 mm apart on a 12-mm
diameter aluminum rod withE= 73 GPa and an ultimate strength of 140 MPa. 
Knowing that the distance between the gage marks is 250.28 mm after a load 
is applied, determine (a) the stress in the rod, (b) the factor of safety. 

2.5 A nylon thread is subjected to a 8-N tension force. Knowing that 
E = 5 GPa and that the length of the thread increases by l.l %, determine (a) 
the diameter of the thread, (b) the stress in the thread. 

2.6 A cast-iron tube is used to support a compressive load. Knowing 
that E = 69 GPa and that the maximum allowable change in length is 0.025%, 
determine (a) the maximum normal stress in the tube, (b) the minimum wall 
thickness for a load of 7.2 kN if the outside diameter of the tube is 50 mm. 

2. 7 A 9-m length of 6 rom-diameter steel wire is to be used in a hanger. 
It is noted that the wire stretches 11 mm when a tensile force P is applied. 
Knowing that E = 200 GPa, determine (a) the magnitude of the force P, 
(b) the corresponding normal stress in the wire 

2.8 A square aluminum bar should not stretch more than 1.4 mm when 
it is subjected to a tensile load. Knowing that E = 70 GPa and that the allow
able tensile strength is 120 MPa, determine (a) the maximum allowable length 
of the pipe, (b) the required dimensions of the cross section if the tensile load 
is 28 kN. 

2.9 A 9-k.N tensile load will be applied to a 50-m length of steel wire 
with E = 200 GPa. Determine the smallest diameter wire that can be used, 
knowing that the normal stress must not exceed 150 MPa and that the increase 
in the length of the wire should be at most 25 mm. 
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Fig. P2.13 

[ 

2.10 A block of 250~mm length and 50 X 40~mm cross section is to 
support a centric compressive load P. The material to be used is a bronze for 
which E = 95 GPa. Determine the largest load that can be applied, knowing 
that the normal stress must not exceed 80 MPa and that the decrease in length 
of the block should be at most 0.12% of its original length. 

2.11 A 1.5-m-long aluminum rod must not stretch more than 1 mm and 
the normal stress must not exceed 40 MPa when the rod is subjected to a 3-kN 
axial load. Knowing that E = 70 GPa, detennine the required diameter of the rod. 

2.12 A nylon thread is to be subjected to a 10-N tensile load. Knowing 
that E = 3.5 GPa, that the maximum allowable normal stress is 42 MPa and 
that the length of the thread must not increase by more than 1%, determine the 
required diameter of the thread. 

2.13 The 4-mm-diameter cable BC is made of a steel with E = 200 GPa. 
Knowing that the maximum stress in the cable must not exceed 190 MPa and 
that the elongation of the cable must not exceed 6 mm, find the maximum load 
P that can be applied as shown. 

2.14 The aluminum rod ABC (E = 70 GPa), which consists of two 
cylindrical portions AB and BC, is to be replaced with a cylindrical steel rod 
DE (E = 200 GPa) of the same overall length. Determine the minimum re
quired diameter d of the steel rod if its vertical deformation is not to exceed 
the deformation of the aluminum rod under the same load and if the allowable 
stress in the steel rod is not to exceed 165 MPa. 

llOkN 110 kN 

I A D 

300mm- 38mm 

j 
B r= -.s8mm - -d 

450mm 

l c E 

Fig. P2.14 

2.15 The specimen shown has been cut from a 5-mm-thick sheet of 
vinyl(£= 3.10 GPa) and is subjected to a 1.5-kN tensile load. Determine 
(a) the total deformation of the specimen, (b) the deformation of its central 
portion BC. 

Dimensions in mm 

A BlOC D 

P'=ItkN[. I ·:L_:~. I ~. P=J,5kN 25 25 f,p=lil> 
~ 

1-40-.l.--so _j_ 40 -·1 
Fig. P2.15 
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2.16 A single axial load of magnitude P =58 kN is applied at end 

C of the brass rod ABC. Knowing that E = I 05 GPa, determine the diameter 
d of portion BC for which the deflectiOn of point C will be 3 mm. 

Fig. P2.16 

2.17 Both po;tions of the rod ABC are made of an aluminum for which 
E = 70 GPa. Knowing that the magnitude of Pis 4 kN, determine (a) the 
value of Q so that the deflection at A is zero, (b) the corresponding deflec~ 
tion of B. 

p 

A r 
0.4 ll1 

20-mm diameter 

t ·~ 
05m ,!1 .1 .... ;J.·:. ·.·•. 60-mm diameter i~ 

JJL = 178 kN 

Fig. P2. 17 and P2.18 Fig. P2.19 

2.18 The rod ABC is made of an aluminum for which E.= 70 GPa. 
Knowing that P = 6 kN and Q = 42 kN, determine the deflection of (a) point 
A, (b) point B. 

2.19 Two solid cylindrical rods are joined at B and loaded as shown. 
Ro9- AB is made of steel (E = 200 GPa), and rod BC of brass (E = 105 GPa). 
Determine (a) the total deformation of the composite rod ABC, (b) the deflec
tion of point B. 

2.20 A 3-mm-thick hollow polystyrene cylinder (E = 3 GPa) and a 
rigid circular plate (only part of which is shown) are used to support a 
250-mm-long steel rod AB (E = 200 GPa) of 6 mm diameter. If an 3.2 kN 
load P is applied at ,1}: determine (a) the elongation of rod AB, (b) the deflec
tion of point B, (c) the average normal stress in rod AB. 
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~ :3.2 kN 

Fig. P2.20 
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r c 

1.8 m · 

L~, 
Flg. P2.22 

,1---,c~o~·::·ci'ii"':=;~o F 

l80mm 

+-) ~ ld'-o ::::··;E>· ~d~ l Bl~ ... ~~,£ 

260mm 

p 

j_ _..;,Au .£,_., 
18 kN 

Fig. P2.25 

1-240 mm -~ 18 kN 

2.21 For the steel truss (E = 200 GPa) and loading shown, detennine the 
deformations of members AB and AD, knowing that their cross~sectional areas 
are 2500 mm2 and 1800 mm2, respectively. 

200kN 

Fig. P2.21 

2.22 The steel frame (E = 200 GPa) shown has a diagonal brace BD 
with an area of2000 mm2

. Determine the largest allowable load P if the change 
in length of member BD is not to exceed 1.5 mm. 

2.23 Members AB and BE of the truss shown consist of 25-mm-diameter 
steel rods (£ = 200 GPa). For the loading shown, determine the elongation of 
(a) rod AB, (b) rod BE. 

!!50 kN 

A 

t··~>'·~~ 
0.9m 

7.5kN 

L•l>'. i===s::t''==~ 

Fig. P2.23 

2.24 Each of the links AB and CD is made of aluminum (E = 75 GPa) 
and has a cross-sectional area of 125 mm2

• Knowing th~t they support the rigid 
member BC, determine the deflection of point £. 

Fig. P2.24 

2.25 Members ABC and DEF are joined with steel links(£ = 200 GPa). 
Each of the links is made of a pair of25 X 35-mm plates. Determine the change 
in length of (a) member BE, (b) member CF. 



D 1 ~ 

c I" r-:0';1 B 
A o. ,,,,;,,;,[ ··~··:xN?·' ___±_ 

'1.]_' . /9ll~;m 
~ 0.32m---i 
0.08m 

Fig. P2.26 

2.26 The length of the 2~mm-diameter steel wire CD has been adjusted 
so that with no load applied, a gap of 1.5 mm exists between the end B of the 
rigid beam ACB and a contact point E. Knowing that E = 200 GPa, determine 
where a 20-kg block should be placed on the beam in order to cause contact 
between B and E. 

2.27 Members AB and CD are 30-mm-diameter steel rods, and mem
bers BC and AD are 22-mm-diameter steel rods. When the turnbuckle is tight
ened, the diagonal member AC is put in tension. Knowing that E = 200 GPa, 
determine the largest allowable tension in AC so that the deformations in mem
bers AB and CD do not exceed l.O mm. 

2.28 For the structure in Frob. 2.27, determine (a) the distance h so that 
the deformations in members AB, BC, CD, and AD are equal, (b) the corre
sponding tension in member A C. 

2.29 Determine the deflection of the apex A of a homogeneous parab
oloid of revolution of height h, density p, and modulus of elasticity E, due to 
its own weight 

Fig. P2.29 

2.30 A homogeneous cable of length Land uniform cross section is sus
pended from one end. (a) Denoting by p the density (mass per unit volume) 
of the cable and byE its modulus of elasticity, determine the elongation of the 
cable due to its own weight. (b) Show that the same elongation would be ob
tained if the cable were horizontal and if a force equal to half of its weight 
were applied at each end. 

2.31 Denoting byE the "engineering strain" in a tensile specimen, show 
that the true strain is €1 = l n( 1 + €). 

2.32 The volume of a tensile specimen is essentially constant while plas
tic deformation occurS. If the initial diameter of the specimen is d 1, show that 
when the diameter is d, the true strain is €1 = 2 ln(d1/d). 
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70 Stress and Strain-Axial Loading 2.9. STATICALLY INDETERMINATE PROBLEMS 

In the problems considered in the preceding section, we could always 
use free~body diagrams and equilibrium equations to determine the in
ternal forces produced in the various portions of a member under given 
loading conditions. The values obtained for the internal forces were 
then entered into Eq. (2.8) or (2.9) to obtain the deformation of the 
member. 

There are many problems, however, in which the internal forces 
cannot be determined from statics alone. In fad, in most of these prob
lems the reactionS themselves-which are external forces--cannot be 
determined by simply drawing a free-body diagram of the member and 
writing the corresponding equilibrium equations. The equilibrium equa
tions must be complemented by relations involving deformations ob
tained by considering the geometry of the problem. Because statics is 
not sufficient to determine either the reactions or the internal forces, 
problems of this type are said to be statically indeterminate. The fol
lowing examples will show how to handle this type of problem. 

A rod of length L, cross-sectional area A 1, and modulus of elas
ticity E!> has been placed inside a tube of the same length L, 
but of cross-sectional area A2 and modulus of elasticity E2 (Fig. 
2.25a). What is the deformation of the rod and tube when a 
force P is exerted on a rigid end plate as shown? 

Denoting by P1 and P2, respectively, the axial forces in 
the rod and in the tube, we draw free-body diagrams of all 
three elements (Fig. 2.25b, c, d). Only the last of the diagrams 
yields any significant information, namely: 

(a) 

(b) 

(c) 

(d) 

Fig. 2.25 

(2.11) 

Clearly, one equation is not sufficient to determine the two 
unknown internal forces P 1 and P2• The problem is statically 
indeterminate. 

However, the geometry of the problem shows that the 
deformations 81 and 82 of the rod and tube must be equal. 
Recalling Eq. (2.7), we write 

(2.12) 

Equating the deformations 81 and 82, we obtain: 

(2.13) 

Equations (2.11) and (2.13) can be solved simultaneously for 
P1 and P2: 

Either of Eqs. (2.12) can then be used to determine the com
mon deformation of the rod and tube. 



A bar AB of length L and uniform crosS section is attached to 
rigid supports at A and B before being loaded. What are the 
stresses in portiotls AC and BC due to the application of a load 
P at point C (Fig. 2.26a)? 

(a) 

Fig. 2.26 

(b) 

,C 
cl ~-----~, lbi 

(«) t 

::m IE" 
Fig. 2.27 

Drawing the free-body diagram of the bar (Fig. 2.26b ), 
we obtain the equilibrium equation 

(2.l4) 

Since this equation is not sufficient to determine the two 
unknown. reactions RA and R8, the problem is statically 
indeterminate. 

However, the reactions may be determined if we observe 
:.'"rom the geometry that the total elongation 8 of the bar must 
be zero. Denoting by 81 and 82, respectively, the elongations 
of the po1tions AC and BC, we write 

or, expressing 01 and 02 in terms of the corresponding internal 
forces ? 1 and ? 2: 

(2.l5) 

But we note from the free-body diagrams shown respectively 
in parts band c of Fig. 2.27 that P 1 = R11 and P2 = -R8 • Car
rying these values into (2.15), we write 

(2.l6) 

Equations (2.14) and (2.16) can be solved simultaneously for 
R11 and R8 ; we obtain R11 = PLJL and R8 = PLJL. The 
desired stresses <T 1 in AC and <T2 in BC are obtained by 
dividing, respectively, P 1 = R11 and P2 = -R8 by the cross
sectional area of the bar: 

PL2 
<T, = AL 

Superposition Method. We observe that a structure is statically in
determinate whenever it is held by more supports than are required to 
maintain its equilibrium. This results in more unknown reactions than 
available equilibrium equations. It is often found convenient to desig
nate one of the reactions as redundant and to eliminate the correspon
ding support. Since the stated conditions of the problem cannot be ar
bitrarily changed, the redundant reaction must be maintained in the 
solution. But it will be treated as an unknown load that, together with 
the other loads, must produce deformations that are compatible with the 
original constraints. The actual solution of the problem is carried out 
by considering separately the deformations caused by the given loads 
and by the redundant reaction, and by adding-or superposing-the re
sults obtained. t 

tThe general conditiO!J5- under which the combined effect of several loads can be obtained 
in this way are discussed in Sec. 2.12. 

71 



r 

Determine the reactions at A and B for the steel bar and load
ing shown in Fig. 2.28, assuming a close fit at both supports 
before the loadS are applied. 

Fig. 2.28 

We consider the reaction at B as redundant and release 
the bar from that support. The reaction R8 is now considered 
as an unknown load (Fig. 2.29a) and will be determined from 
the condition that the deformation 0 of the rod must be equal 
to zero. The solution is carried out by considering separately 
the deformation 8L caused by the given loads (Fig. 2.29b) 
and the deformation OR due to the redundant reaction R8 

(Fig. 2.29c). 

The deformation aL is obtained from Eq. (2.8) after the 
bar has been divided into four portions, as shown in Fig. 2.30. 
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Following the same procedure as in Example 2.0 l, we write 

P1 = 0 P2 = P3 = 600 X 103 N P4 = 900 X 103 N 

A! = A2 = 400 X 10-6 m2 A3 = A4 = 250 X 10-6 m2 

L1 = ~ = L3 = L4 = 0.150 m 

Fig. 2.30 

Substituting these values into Eq. (2.8), we obtain 

~ P,L, ( 600 X IO'N s, ~ L.- ~ 0 + -:-:-':'---:-:-'::<', 
i"" 1 A;E 400 X 10-6 m2 

600 X IO'N 900 X IO'N )O.l50m 
+ 250 X 10-6 m2 + 250 X 10-6 m2 --E-

S, = 1.125 X 10
9 

E (2.17) 

Considering now the deformation OR due to the redundant 
reaction R8, we divide the bar into two portions, as shown in 
Fig. 2.31, and write 

P1 =P2 =-R8 

AI = 400 X 10-6m2 A2 =· 250 X 10-6 m2 

L, 0_ ~ 0.300 m 

Fig. 2,31 



Substituting these values into Eq. (2.8), we obtain 

(2.18) 

E;<pressing that the total deformation 5 of the bar must be 
zero, we write 

(2.19) 

and,- substituting for fh and OR from (2.17) and (2.18) into 
~1~ . 

8 
~ 1.125 X 

E 

Solving for R8 , we have 

(1.95 X 103)R8 

E 

R8 = 577 X I03 N ~ 577 kN 

0 

The reaction RA at the upper support is obtained from the 
free-body diagram of the bar (Fig. 2.32). We write 

+tZ:F,. ~ 0; R,- 300kN- 600kN + R8 = 0 

R, = 900 kN - R8 = 900 kN - 577 kN ~ 323 kN 

Determine the reactions at A and B for the steel bar and load
ing of Example 2.04, assuming now that a 4.50-mm clearance 
exists between the bar and the ground before the loads are ap
plied (Fig. 2.33). Assume E = 200 GPa. 

A 

A= 250mm2 

GOOkN 

r····~········ 
4.5 mm B B 

Fig. 2.33 
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A 

c 

J .'300kN 

;,; 

B 

l· 600kN 

R, 
Fig. 2.32 

Once the reactions have been determined, the stresses and 
strains in the bar can easily be obtained. It should be noted 
that, while the total deformation of the bar is zero, each of its 
component parts does defonn under the given loading and re
straining conditions. 

We follow the same procedure as in Example 2.04. Con
sidering the reaction at B as redundant, we compute the de
fonnations OL and OR caused, respectively, by the given loads 
and by the redundant reaction R8. However, in this case the 
total deformation is not zero, but 5 = 4.5 mm. We write 
therefore 

(2.20) 

Substituting for lh and OR from (2.17) and (2.18) into (2.20), 
and recalling that E = 200 GPa = 200 X 109 Pa, we have 

8 
= 1.125 X 109 

200 X 109 

(1.95 X 10')R8 

200 x 109 

Solving for R8, we obtain 

4.5 X 10-3 m 

R8 115.4 X 10' N ~ 115.4 kN 

The reaction at A is obtained from the free-body diagram of 
the bar (Fig. 2.32); 

+fZ:F,. = 0; R,- 300kN- 600kN + R8 = 0 

R, = 900 kN R8 ~ 900 kN - 115.4 kN ~ 785 kN 
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(b) 

Fig. 2.34 

t 

2.10. PROBLEMS INVOLVING TEMPERATURE CHANGES 

All of the members and structures that we have considered so far were 
assumed to remain at the same temperature while they were being 
loaded. We are now going to consider various situations involving 
changes in temperature. 

Let us first consider a homogeneous rod AB of uniform cross sec~ 
tion, which rests freely on a smooth horizontal surface (Fig. 2.34a). If 
the temperature of the rod is raised by L1 T, we observe that the rod elonM 
gates by an amount 07 which is proportional to both the temperature 
change llT and the length L of the rod (Fig. 2.34b). We have 

(2.21) 

where a is a constant characteristic of the material, called the coeffi
cient of thermal expansion. Since 87 and L are both expressed in units 
of length, a represents a quantity per degree C, or per degree F, de
pending whether the temperature change is expressed in degrees Cel
sius or in degrees Fahrenheit. 

With the deformation B7 must be associated a strain e7 = 87/ L. Re
calling Eq. (2.21). we conclude that 

e7 = aLl.T (2.22) 

The strain Er is referred to as a thermal strain, since it is caused by the 
change in temperature of the rod. In the case we are considering here, 
there is no stress associated with the strain e7. 

Let us now assume that the same rod AB of length Lis placed be
tween two fixed supports at a distance L from each other (Fig. 2.35a). 
Again, there is neither stress nor strain in this initial condition. If we 
raise the temperature by Ll.J: the rod cannot elongate because of the re
straints imposed on its ends; the elongation 07 of the rod is thus zero. 
Since the rod is homogeneous and of uniform cross section, the strain 
Er at any point is Er = Or/Land, thus, also zero. However, the supports 
will exe1t equal and opposite forces P and P1 on the rod after the tern
perature has been raised, to keep it from elongating (Fig. 235b). It thus 
follows that a state of stress (with no corresponding strain) is created in 
the rod. 

1----L--..J 

A 
(a) 

B 

A 8 

(b) 

Fig. 2.35 
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As we prepare to determine the stress 0' created by the temperature 2.10. Problems Involving Temperature Changes 75 
change D.T, we obsefve that the prol)lem we have to solve is staticaUy 
indeterminate. Therefore, we should first compute the magnitude P of 
the reactions at .the supports from the condition that the elongation of 
the rod is zero. Using the superposition method described in Sec. 2.9, 
we detach the rod from its support B (Fig. 2.36a) and let it elongate 
freely as it undergoes the temperature change D.T (Fig. 2.J6b). Ac
cording to formula (2.21), the corresponding elongation is 

Applying now to end B the force P representing the redundant reaction, 
and recalling formula (2.7), we obtain a second deformation (Fig. 2.36c) 

8 = PL 
P AE 

Expressing that the total deformation 0 must be zero, we have 

PL 
8 = 8r + op = a(!1T)L +- = 0 

AE 

from which we conclude that 

P = -AEa(!1T) 

and that the stress in the rod due to the temperature change llT is 

p 
<r =- = -Ea(!1T) 

A 
(2.23) 

It should be kept in mind that the result we have obtained here and 
our earlier remark regarding the absence of any strain in the rod apply 
only in the case of a homogeneous rod of unifonn cross section. Any 
other problem involving a restrained structure undergoing a change in 
lernperature must be analyzed on its own merits. However, the same 
general approach can be used; i.e., we can consider separately the de
formation due to the temperature change and the deformation due to 
the redundant reaction and superpose the solutions obtained. 

Determine the values of the stress in portions AC and CB of 
the steel bar shown (Fig. 2.37) when the temperature of the 
bar is -45°C knowing that a close fit exists at both of the 
rigid supports when the temperature is +24°C. Use the values 
E = 200 GPa and a= 1L7 X I0-6;oc for steel. 

We first determine the reactions at the supports. Since the 
problem is statically indeterminate, we detach the bar from its 
support at B and let i~_yndergo the temperature change 

liT= (-45°C)- (24°C) = -69°C 

(.:;) 

Fig. 2.36 
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(c) 

Fig. 2.38 

The corresponding deformation (Fig. 2.38b) is 

or= a(IH)L = (1!.7 X l0-6JOC)(-69°C)(600mm) 

= -0.484 mm 

Applying now the unknown force R8 at end 8 (Fig. 2.38c), we 
use Eq. (2.8) to express the corresponding deformation OR. Sub
stituting 

L1 = Lt = 300mm 

A1 = 380 mm2 A2 = 750 mm2 

P1 = P2 = R8 E = 200 GPa 

into Eq. (2.8), we write 

PILl P2Lt 
OR=--+--

AlE A2E 

R8 ( 300 mm 300mm \ 
= 200 GPa 380 mm2 + 750 mm2J 

= (5.95 X 10-6 mm!N)R8 

Expressing that the total deformation of the bar must be zero 
as a result of the imposed constraints, w~ write 

8 = 87 +OR= 0 
= -0.484 mm + (5.95 x w-6 mm!N)R8 = 0 

from which we obtain 

R8 = 81.34 X l03 N = 81.34 kN 

The reaction at A is equal and opposite. 

Noting that the forces in the two portions of the bar are 
P 1= P2 = 81.34 kN, we obtain the following values of the 
stress in portions AC and CB of the bar: 

P, 81.34 kN 
O"j =- = 

380 mm2 = 214.1 MPa 
A, 

P, 81.34 kN 
0"2 =- = 

750 mnl 
= 108.5 MPa 

A, 

We cannot emphasize too strongly the fact that, while the 
total deformation of the bar must be zero, the deformations of 
the portions AC and CB are not zero. A solution of the prob
lem based on the assumption that these deformations are zero 
would therefore be wrong. Neither can the values of the strain 
in AC or CB be assumed equal to zero. To amplify this point, 
let us determine the strain EAc in portion A C of the bar. The 
strain EAc can be divided into two component parts; one is the 
thermal strain €7 produced in the unrestrained bar by the tem
perature change AT (Fig. 2.38b). From Eq. (2.22) we write 

e,. =a t:.T = (11.7 X 10-6/ 0 C)(-69°C) 

= -807.3 X 10-6 mm/mm 

The other component of EAc is associated with the stress <r 1 

due to the force R8 applied to the bar (Fig. 2.38c). From 
Hooke's law, we express this component of the strain as 

E 

+214.1 MPa 
-"'--'-'-'-= = + 1070.5 X 10-6 mm/mm 

200GPa 

Adding the two components of the strain in AC, we obtain 

EAC = €r + ~ = -807.3 X 10-6 + 1070.5 X 10-6 

= +263.2 X 10-6 mm/mm 

A similar computation yields the strain in portion CB of the 
bar: 

Ece = €7 + ~ = -807.3 X 10-6 + 542.5 X 10-6 

= -264.8 X 10-6 mm/mm 

The deformations 5Ac and 5c8 of the two portions of the 
bar are expressed respectively as 

o,c = <,c(AC) = (263.2 X 10-6)(300 mm) 

= 0.079mm ·::.. o0,~f!b 

oc8 = <ca( CB) = ( -264.8 X 10-6)(300 mm) 

= -0.079mm 

We thus check that, while the sum 8 = 5Ac + lies of the two 
deformations is zero, neither of the deformations is zero. 
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SAMPLE PROBLEM 2.3 

The 12-mm-diameter rod CE and the 18Hmm-diameter rod DF are attached to 
the rigid bar ABCD as shown. Knowing that the rods are III:ade of aluminum 
and using E 70 GPa determine (a) the force in each rod caused by the load
ing shown, (b) the corresponding deflection of point A. 

SOLUTION 

Statics. Considering the free bOdy of bar ABCD, we note that the reac
tion at B and the forces exerted by the rods are indeterminate. However, using 
statics, we may write 

+12:M8 ~ 0: (40kN)(450mm)- Fa(300mm)- FoF(500mm) ~ 0 
300FCE + 500FoF ~ !8000 (!) 

Geometry. After application of the 40-k.N load, the position of the bar 
is A'BC'D'. From the similar triangles BAA', BCC', and BDD' we have 

~=~ 
300mm 500mm 

Oc = 0.600 (2) 

~=~ 
450mm 500mm 

(3) 

Deformations. Using Eq. (2.7), we have 

Substituting for Oc and 80 into (2), we write 

Be = 0.68o F ceLce = 0.6 F oFLoF 
AceE AoFE 

Lor Ace (750 m~[t 1r(12 mmi] Fce=0.6-L A-F0 F=0.6 -
600 

, )2 FoF Fce=0.333F0 r 
ce DF m 4'1T(l8mm 

Force in Each Rod. Substituting for 'Fee into (1) and recalling that all 
forces have been expressed in leN, we have 

300(0.333FDF) + 500FoF ~ !8000 

Fe,~ 0.333F0 , ~ 0.333(30 kN) 

Deflections. 

FoFLDF 
8o = ~~- = 

A orE 

The deflection of point D is 

(30 X !03 N)(750 mm) 

j,-(!8)'(70GPa) 

Using (3), we write 

8A ~ 0.980 ~ 0.9(1.26 mm) 

FoF=30k.N <l 

F-;e·= lO kN "'<! 

00 = 1.26 mm 
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SAMPLE PROBLEM 2.4 

The rigid bar CDE is attached to a pin support at E and rests on the 30~mm
diameter brass cylinder BD. A 22-mm-diameter steel rod AC passes through a 
hole in the bar and is secured by a nut which is snugly fitted when the tem
perature of the entire assembly is 20°C. The temperature of the brass cylinder 
is then raised to sooc while the steel rod remains at 20"C. Assuming that no 
stresses were present before the temperature change, detennine the stress in 
the cylinder. 

Rod AC: Steel 
E ~ 200GPa 
a ~ 1 L7 X 10-6/oc 

SOLUTION 

Cylinder BD: Brass 
E~ 105GPa 
a ~ 20.9 X 10-6JOC 

Statics. Considering the free body of the entire assembly, we write 

+1 2-ME ~ 0: R,(0.75 m) - R8(0.3 m) ~ 0 R, ~ 0.4R8 (1) 

Deformations. We use the method of superposition, considering R8 as 
redundant. With the support at B removed, the temperature rise of the cylinder 
causes point B to move down through Or. The reaction R8 must cause a de
flection 8 1 equal to Or so that the final deflection of B will be zero (Fig. 3). 

Deflection 8 7. Because of a temperature rise of 50° - 20° = 30°C, the 
length of the brass cylinder increases by 8y. 

s,. ~ L(tlT)a ~ (0.3 m}(30°C)(20.9 x 10-'rC) ~ !88.! x 10-6 m t 

D E 

B . ·-'-"-.\:::::::::::::::::::: . 

s,. + 
CD A ® A. 

Deflection 81• We note that 8v = 0.48c and 81 = 8v + 881v. 

_ R,L _ R,(0.9 m) _ 
4 

X _9 t 
Be- AE - l1r(0.022 m)'(200 GPa) -

1
1.

8 10 
R, 

Bo ~ 0.408c ~ 0.4(11.84 X l0-9R,) ~ 4.74 X 10-9RAt 

_ R8L _ R8(0.3 m} _ _
9 

Ssw- AE - l1T(0.03 m)'(IOS GPa}- 4.04 x 10 R, t 

We recall from (1) that RA = 0.4R8 and write 

81 ~ Bv + 881v ~ [ 4.74(0.4R8) + 4.04R8 )!0-9 ~ 5.94 X I0-9R8 t 

188.1 X 10-6m= 5.94 X 10-9 R8 R8 ~ 31.7 kN 

R8 31.7 kN 
as= A = £1T(0.03? u8 = 44.8 MPa ....:<3 Stress in Cylinder: 



2.33 Compressive centric forces of 160 kN are applied at both ends of 
the assembly shown by means of rigid plates. Knowing that Es = 200 GPa and 
Ea = 70 GPa, determine (a) the normal stresses in the steel core and the alu
minum shell, (b) the deformation of the assembly. 

2-34 The length of the assembly decreases by 0.15 mm when an axial Aluminum 
force is applied by means of rigid end plates. Determine (a) the magnitude of shell 
the applied force, (b) the corresponding stress in the steel core. 

2.35 An axial centric force of magnitude P = 450 kN is applied to the Fig. P2.33 
composite block shown by means of a rigid end plate. Knowing that h = l 0 mm, 
determine the normal stress in (a) the brass core, (b) the aluminum plates. 

2.36 For the composite block shown in Prob. 2.35, determine (a) the 
value of h if the portion of the load carried by the aluminum plates is half the 
portion of the load carried by the brass core, (b) the total load if the stress in 
the brass is 80 MPa. 

2.37 The 1.5-m concrete post is reinforced with six steel bars, each with 
a 28-mm diameter. Knowing that Es = 200 GPa and Ec = 25 GPa, determine 
the normal stresses in the steel and in the concrete when a 1550-kN axial cen
tric force P is applied to the post. 

25 

Brass she!! 
E = lOSGPa 

Fig. P2.34 

Brass core 

(E"' 105 CPa) 

Fig. P2.35 

..._Steel col"e 

Fig. P2.37 
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80 Stress and Strain-Axial Loading 

Dimensions in mm 

Fig. P2.39 

Fig. P2.41 

2.38 For the post of Prob. 2.37, determine the maximum centric force 
that may be applied if the allowable normal stress is 160 MPa in the steel and 
18 MPa in the concrete. 

2.39 Two cylindrical rods, one of steel and the other of brass, are joined 
at C and restrained by rigid supports at A and E. For the loading shown and 
knowing that E, = 200 GPa and El> = 105 GPa, determine (a) the reactions at 
A and E, (b) the deflection of point C. 

2.40 Solve Prob. 2.39, assuming that rod AC is made of brass and rod 
CE is made of steel. 

2.41 Three steel rods (E = 200 GPa) support a 36~kN load P. Each of 
the rods AB and CD has a 200-mm2 cross-sectional area and rod EF has a 
625-mm2 cross-sectional area. Determine (a) the change in length of rod EF, 
(b) the stress in each rod. 

2.42 A 250-nun-long aluminum tube (E = 70 GPa) of 36-nun outer di
ameter and 28-mm inner diameter may be closed at both ends by means of 
single-threaded screw-on covers of 1.5-mm pitch. With one cover screwed on 
tight, a solid brass rod (E = 105 GPa) of 25-mm diameter is placed inside the 
tube and the second cover is screwed on. Since the rod is slightly longer than the 
tube, it is observed that the cover must be forced against the rod by rotating it one
quarter of a turn before it can be tightly closed. Determine (a) the average 
normal stress in the tube and in the rod, (b) the deformations of the tube and of 
the rod. 

36mm 28mm 

Fig. P2.42 

2.43 A steel tube (£, = 200 GPa) with a 30-mm outer diameter and a 
3-mm thickness is placed in a vise that is adjusted so that its jaws just touch 
the ends of the tube without exerting any pressure ·on them. The two forces 
shown are then applied to the tube. After these forces are applied, the vise is 
adjusted to decrease the distance between its jaws by 0.2 mm. Determine (a) the 
forces exerted by the vise on the tube at A and D, (b) the change in length of 
the portion BC of the tube. 

Fig. P2.43 

2.44 Solve Prob, 2.43, assuming that after the forces have been applied, 
the vise is adjusted to increase the distance between its jaws by 0.1 mrn. 



I\ 
' 

2.45 The steel rods BE and CD each have a diameter of 16 mm 
(E = 200 GPa). The ends are threaded with a pitch of 2.5 mm. Knowing that 
after being snugly fit, the nut at B is tightened one full turn, determine (a) the 
tension ~n rod CD, (b) the deflection of point C of the rigid member ABC. 

Fig. P2.45 

2.46 The rigid bar AD is supported by two steel wires of 1.5 mm 
diameter (E = 200 GPa) and a pin and bracket at D. Knowing that the wires 
were initially taut, determine (a) the additional tension in each wire when a 

200mm 
f-----Y'E 

Fig. P2.46 

900 N load Pis applied at D, (b) the corresponding deflection of point D. 25 

2.47 The brass shell (a&= 20.9 X 10-6/"C) is fully bonded. to the steel 
core (as= 11.7 X 10-6j<'C). Determine the largest allowable increase in tern~ 
perature if the stress in the steel core is not to exceed 55 MPa. 

2.48 The assembly shown consists of an aluminum shell (Ea = 70 GPa, 
aa = 23.6 X 10-6/"'C) fully bonded to a steel core (Es = 200 GPa, 
as = 11.7 X 10-6/"'C) and is unstressed at a temperature of 20"'C. Consider~ 
ing only axial deformations, determine the stress in the aluminum shell when 
the temperature reaches 180"'C. 

Fig. P2.48 

2.49 Solve Prob. 2.48, assuming that the core is made of brass (Eb = 105 
GPa, ab = 20.9 X 10-6/"'C). 

2.50 A 1.2-m concrete post is reinforced by four steel bars, each of 
18 mm diameter. Knowing that £~ = 200 GPa, as = 11.7 X 10-6/"'C and 

Brass shell 
E"" 105 CPa 

Fig. P2.47 

Ec = 25 GPa and g:c = 9.9 X 10-6/"'C , determine the normal stresses 200 
induced in the steel and in the concrete by a temperature rise of 27"'C. Fig. P2.50 

~ ( 
.-.c 

mm 

Problems 81 

p 



82 Stress and Strain-Axial Loading 2.51 A steel railroad track (E, = 200 GPa, as = 11.7 X 10-6 j<'C ) was 
laid out at a temperature of -1.0°C. Determine the normal stress in the rails 
when the temperature reaches 52°C, assuming that the rails (a) are welded to 
form a continuous track, (b) are 12-m long with 6-mm gaps between them. 

2.52 A rod consisting of two cylindrical portions AB and BC is re
strained at both ends. Portion AB is made of steel (Es = 200 GPa, as = 11.7 
X I0-6/"C) and portion BC is made of brass (Eb = 120 GPa, ab = 18.7 
X l0-6/°C). Knowing that the rod is initially unstressed, determine (a) the 
normal stresses induced in portions AB and BC by a temperature rise of 18°C, 
(b) the corresponding deflection of point B. 

I 
305mm 

75-mm diameter 

1- _- 57.15-,nm diameter 

38lmm 

L 
Fig. P2.52 

2.53 A rod consisting of two cylindrical portions AB and BC is restrained 
at both ends. PortionAB is made of brass (Eb = 105 GPa, ah = 20.9 X l0-6rC) 
and portion BC is made of aluminum (E11 = 72 GPa, aa = 23.9 X 10-6

/
0 C). 

Knowing that the rod is initially unstressed, determine (a) the normal stresses 
induced in portions AB and BC by a temperature rise of 42°C, (b) the corre
spOnding deflection of point B. 

r 
60-mm diameter 

1.3 m 

L 
Fig. P2.53 

2.54 In Prob. 2.42, determine the average normal stress in the tube 
and the rod, assuming that the temperature was 15°C when the nuts were 
snugly fitted and that the final temperature is 55°C. (For aluminum, 
a = 23.6 X 106/°C; for brass, a = 20.9 X 106/ 0 C). 



2.55 At room temperature (20°C) a 0.5-mm gap exists between the ends 
of the rods shown. At a later time when the temperature has reached 140°C, 
detennine (a) the normal stress in the iluminum rod, (b) the change in length 
of the aluminum ~od. 

2.56 Knowing that a 0.5-nun gap exiSts when the temperature is 24°C, 
detenri.ine (a) the temperature at which the nonnal stress in the aluminum bar will 
be equal to -75 MPa, (b) the corresponding exact length of the aluminum bar. 

0.5 rnm 

11-350 mm ~- 450 mm --•1, 

~',:::~:~:,,:~:::::;;!!!!:::~~' 
Bronze Aluminum 
A = 1500 mm2 A = 1800 mm2 

E=105GPa E=73GPa 
a= 21.6 X 10-6;oc a"" 23.2 X 10-6;oC 

Fig. P2.56 and P2.57 

2.57 Determine (a) the compressive force in the bars shown after a tem
perature rise of 82°C, (b) the corresponding change in length of the bronze bar. 

2.58 Two steel bars (E$ = 200 GPa and as = 11.7 X 10-6JOC) are 
used to reinforce a brass bar (Eb = 105 GPa, ab = 20.9 X 10-6;oC) that is 
subjected to a load P = 25 kN. When the steel bars were fabricated, the 
distance between the centers of the holes that were to fit on the pins was 
made 0.5 mm smaller than the 2 m needed. The steel bars were then placed 
in an oven to increase their length so that they would just fit on the pins. 
Following fabrication, the temperature in the steel bars dropped back to room 
temperature. Determine (a) the increase in temperature that was required to 
fit the steel bars on the pins, (b) the stress in the brass bar after the load is 
applied to it. 

Fig. P2.58 

2.59 Determine the maximum load P that may be applied to the brass 
bar of Prob. 2.58 if the allowable stress in the steel bars is 30 MPa and the al
lowable stress in the brass bar is 25 MPa. 

2.60 An aluminum rod (Ea = 70 GPa, aa = 23.6 X 10-6rC) and a steel 
link (Es = 200 GPa, a, = 11.7 X 10-6rC) have the dimensions shown at a 
temperature of 20°C. The steel link is healed until the aluminum rod can be 
fitted freely into it The temperature of the whole assembly is then raised to 
150°C. Determine (a) the final stress in the rod, (b) in the link. 

Aluminum 
A= 2000mm2 

E=75GPa 
a = 23 X 10-6/"C 

Fig. P2,55 

Problems 

Stainless steel 
A""' 800mm2 

E = 190 CPa 
a= 17.3 X 10-6/'C 

Dimensions in mm 

0.15 

200 

Fig. P2.60 

': 

P1 
~ A 

' ' ' ' V?{ v!..J Section A-A 
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84 Stress and Strain-AXial Loading 

(b) 

Fig. 2.39 

P' 

Fig. 2.40 

2.11. POISSON'S RATIO 

We saw in the earlier part of this chapter that, when a homogeneous 
slender bar is axially loaded, the resulting stress and strain satisfy 
Hooke's law, as long as the elastic limit of the material is not exceeded. 
Assuming that the load Pis directed along the x axis (Fig. 2.39a), we 
have cr x = PI A, where A is the cross-sectional area of the bar, and, from 
Hooke's law, 

E.;= cr,/E (2.24) 

where E is the modulus of elasticity of the material. 
We also note that the normal stresses on faces respectively per

pendicular to they and z axes are zero: cry= az = 0 (Fig. 2.39b). It 
would be tempting to conclude that the corresponding strains Ey and € 4 

are also zero. This, however, is not the case. In all engineering materi
als, the elongation produced by an axial tensile force P in the direction 
of the force is accompanied by a contraction in any transverse direc
tion (Fig. 2.40).t In this section and the following sections (Sees. 2.12 
through 2. 15), all materials considered will be assumed to be both ho
mogeneous and isotropic, i.e., their mechanical properties will be as
sumed independent of both position and direction. It follows that the 
strain must have the same value for any transverse direction. Therefore, 
for the loading shown in Fig. 2.39 we must have Ey = Ez. This common 
value is referred to as the lateral strain. An important constant for a 
given material is its Poisson's ratio, named after the French mathe~ 
matician Simeon Denis Poisson (1781-1840) and denoted by the Greek 
letter v (nu). It is defined as 

v= 

or 

lateral strain 

axial stra~n 
(2.25) 

(2.26) 

for the loading condition represented in Fig. 2.39. Note the use of ami
nus sign in the above equations to obtain a positive value for v, the ax~ 
ial and lateral strains having opposite signs for all engineering materi~ 
als.t Solving Eq. (2.26) fore, and e,, and recalling (2.24), we write the 
following relations, which fully describe the condition of strain under 
an axial load applied in a direction parallel to the x axis: 

(]', 
E=
' E 

(2.27) 

tit would also be tempting, but equally wrong, to assume that the volume of the rod re
mains unchanged as a result of the combined effect of the axial elongation and transverse 
contraction (see Sec. 2.13). 

tHowever, some experimental materials, such as polymer foams, expand lateral!y when 
stretched. Since the axial and lateral strains have then the same sign, the Poisson's ratio of 
these materials is negative. (See Roderic Lakes, "Foam Structures with a Negative Poisson's 
Ratio," Sdence, 27 February !987, Volume 235, pp. 1038-1040.) 



rr 
The cross-sectional area of the rod is A 500~mm-long, 16-mm-diameter rod made of a homogenous, 

isotropic material.is obs~rved to increase in length by 300 p.,m, 
and to decrease in diameter by 2.4 ,urn whe~ subjected to an 
axial .12-k.N load. Determine the modulus of elasticity and 
Poisson's ratio of the material. 

A= 7Tr2 = 7r(8 X 10-3 mf = 201 X ro-6 m2 

Choosing the x axis along the axis of the rod (Fig. 2.41), we 
write 

P 12Xl03 N 
ax= A 201 X 106m2= 59.7MPa 

y 
1!, 300 l'ffi 

£.,. = - = ------ = 600 x w-6 

L SOOmm 

= ~ = -zA Mm = -tso x w-6 

E:v d 16mm 

From Hooke's law, u., = EE,,., we obtain 

12kN~ E = (Tx 

€, 

Fig. 2.41 and, from Eq. (2.26), 

2.i2. MULTIAXIAL LOADING; GENERALIZED HOOKE'S LAW 

All the examples considered so far in this chapter have dealt with slen
der members subjected to axial loads, i.e., to forces directed along a 
single axis. Choosing this axis as the x axis, and denoting by P the in
ternal force at a given location, the corresponding stress components 
were found to be O"x =PIA, (J'r = 0, and O"z = 0. 

Let us now consider structural elements subjected to loads acting 
in the directions of the three coordinate axes and producing normal 
stresses ux, O"y, and O"z which are all different from zero (Fig. 2.42). This 
condition is referred to as a multiaxialloading. Note that this is not the 
general stress condition described in Sec. 1.12, since no shearing 
stresses are included among the stresses shown in Fig. 2.42. 

Fig. 2.42 

'· v = _ _.:... = 

'·· 

59.7 MPa ~ 99.5 GPa 
600Xl0 6 

--,1~50c.:.:X.,:lc:0-,
6 

~ 0.25 
600 x w-' 
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86 Stress and Strain-Axial Loading 

y 

y 

(b) 

Fig. 2.43 

Consider an element of an isotropic material in the shape of a cube 
(Fig. 2.43a). We can assume the side of the cube to be equal to unity, 
since it is always possible to select the side of the cube as a unit of 
length. Under the given multiaxial loading, the element will deform 
into a rectangular parallelepiped of sides equal, respectively, to 
1 + Ex, 1 + Ey, and 1 + Ez, where Ex, Ey, and Ez denote the values of 
the normal strain in the directions of the three coordinate axes (Fig. 
2.43b). You should note that, as a result of the deformations of the other 
elements of the material, the element under consideration could also 
undergo a translation, but we are concerned here only with the actual 
deformation of the element, and not with any possible superimposed 
rigid-body displacement. 

In order to express the strain components Ex, Ey, Ez in terms of the 
stress components ax, cry, azo we will consider separately the effect of 
each stress component and combine the results obtained. The approach 
we propose here will be used repeatedly in this text, and is based on 
the principle of superposition. This principle states that the effect of a 
given combined loading on a structure can be obtained by determining 
separately the effects of the various loads and combining the results ob~ 
tained, provided that the following conditions are satisfied: 

1. Each effect is linearly related to the load that produces it. 
2. The deformation resulting from anY given load is small and 

does not affect the conditions of application of the other loads. 

In the case of a multiaxial loading, the first condition will be sat~ 
isfied if the stresses do not exceed the proportional limit of the mate~ 
rial, and the second condition will also be satisfied if the stress on any 
given face does not cause deformations of the other faces that are large 
enough to affect the computation of the stresses on those faces. 

Considering first the effect of the stress component a :x• we recall 
from Sec, 2.11 that ax causes a strain equal to a xf E in the x direction, 
and strains equal to -va jE in each of they and z directions. Simi~ 
lady, the stress component a Y' if applied separately, will cause a strain 
ay!E in they direction and strains -vay!E in the other two directions. 
Finally, the stress component qz causes a strain qzf£ in the z direction 
and strains -va JE in thex andy directions. Combining the results ob
tained, we conclude that the components of strain corresponding to the 
given multiaxialloading are 

O':x VO'y V(J'~ 
E = +----
' . E E E 

V(J':x (J'y V(J'z 
E =--+--

y E E E 

vcr, 
E =-
' E 

TJ(J'y . {J'z 
-+
E E 

(2.28) 
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The relations (2.28) are referred to as the generalized Hooke S law 
for the multiaxial loading of a homqgeneous isotropic material. As we 
indicated earlier, the results obtained are valid only as long as the 
stresses· do not exceed the proportional limit, and as long as the defor~ 
rnations involved remain small. We also recall that a positive value for 
a stress component signifies tension, and a negative value compression. 
Similarly, a positive value for a strain component indicates expansion 
in the· corresponding direction, and a negative value contraction. 

2.13. Dilatation; Bulk Modulus 87 

The steel block shown (Fig. 2.44) is subjected to a uniform 
pressure on all its faces. Knowing that the change in length of 
edgeAB is -30 X 10-3 mm, detennine (a) the change in length 
of the other two edges, (b) the pressure p applied to the faces 
of the block. Assume E = 200 GPa and v = 0.29. · 

(a) Change in Length of Other Edges. Substituting 
u x = u Y = O"z = -pinto the relations (2.28), we find that the 
three strain components have the common value 

Since 

E, ~ o.fAB ~ (-30 X 10-3 mm)/(100mm) 

= -300 X 10-6 mm/mm 

.we obtain 

£y = €"z = fix = -300 X 10-6 mm/mm 

from which it follows that 

8
3 
~ <,(BC) ~ (- 300 X 10-6)(50 mm) ~ -15 X 10-l nun 

o, ~ <,(BD) ~ (- 300 X 10-6)(75 mm) ~ -22.5 X 10-3 mm 

Fig. 2.44 (b) Pressure. Solving Eq. (2.29) for p, we write 

EE, (200 GPa)( -300 X 10-6) 

p ~ - 1 - 2v ~ 1 - 0.58 

'2.13. DILATATION; BULK I\IIODULUS 

In this section you will examine the effect of the normal stresses u x• u Y' 

and u z on the volume of an element of isotropic material. Consider the 
element shown in Fig. 2.43. In its unstressed state, it is in the shape of 
a cqbe of unit volume; and under the stresses u x• u Y' u z• it deforms into 
a rectangular parallelepiped of volume 

v ~ (1 + <,)(1 + <,)(I + <,) 

Since the strains Ex, ey, ez, are much smaller than unity, their products 
will be even smaller and may be omitted in the expansion of the prod~ 
uct. We have, therefore, 

/ 

p ~ 142.9 MPa 



88 Stress and Strain-Axial Loading Denoting by e the change in volume of our element, we write 

e=v-1 = 1 +ex+Ey+Ez-l 

or 

e = Ex +: Ey + Ez (2.30) 

Since the element had originally a unit volume, the quantity e repreM 
sents the change in volume per unit volume; it is referred to as the diM 
latation of the material. Substituting for Ex, Ey, and €~ from Eqs. (2.28) 
into (2.30), we write 

E 

1~2v< '· · 
e ;c ~(u, +u, +u,) (2.31)t 

A case of special interest is that of a body subjected to a uniform 
hydrostatic pressure p. Each of the stress components is then equal to 
-p and Eq. (2.31) yields 

3(1 - 2v) 
e= 

E 

Introducing the constant 

E 
k= 3(1 2v) 

we write Eq. (2.32) in the fonn 

e = _p_ 
k 

p (2.32) 

(2.33) 

(2.34) 

The constant k is known as the bulk modulus or modulus of compres
sion of the materiaL It is expressed in the same units as the modulus 
of elasticity E, that is, in pascals. 

Observation and common sense indicate that a stable material subM 
jected to a hydrostatic pressure can only decrease in volume; thus the 
dilatation e in Eq. (2.34) is negative, from which it follows that the bulk 
modulus k is a positive quantity. Referring to Eq. (2.33), we conclude 
that 1 - 2v > 0, or v < ~. On the other hand, we recall from Sec. 2.11 
that v is positive for all engineering materials. We thus conclude that, 
for any engineering material, 

O<v<~ (2.35) 

We note that an ideal material having a value of v equal to zero could 
be stretched in one direction without any lateral contraction. On the 
other hand, an ideal material for which v = ~. and thus k = oo, would 

tSince the dilatation e represents a change in volume, it must be independent of the ori
entation of the element cOnsidered. It then follows from Eqs. (2.30) and (2J l) that the quan
tities €, + .:.,. + .:, and CJ"x + CJ"}. + CJ"~ are also independent of the orientation of the element. 
This pi:operty will be verified in Chap. 7. 
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u I 
be perfectly incompressible (e = 0). Referring to Eq. (2.31) we also 
note that, since v < ! in the elast~c range, stretching an engineering 
material in one direction, for example in the x direction 
(<Tx > 0, cry= .u~ = 0), will result in an increase of its volume 
(e > O).t 
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Determine the change in volume !::. V of the steel block shown in 
Fig. 2.44, when it is subjected to the hydrostatic pressure 
p = 180 MPa. UseE 200 GPa and v = 0.29. 

Since the volume V of the block in its unstressed state is 

V = (80 mm)(40 mm)(60 mm) = 192 X 103 mm' 

From Eq. (2.33), we determine the bulk modulus of steel, 

E 
k 

200 GPa 
3(1 - 0.58) = 158.7 GP, 

and since e represents the change in volume per unit volume, 
e = !::. V/V, we have 

and, from Eq. (2.34), the dilatation, ~ V = eV = ( -1.134 X 10-3)(192 X 103 mm3) 

e = _f_ = 
k 

180MPa _ _ X _3 
158.7 GPa - l.lla 10 

2.14. SHEARING STRAIN 

When we derived in Sec. 2.12 the relations (2.28) between normal 
stresses and normal strains in a homogeneous isotropic material, we asM 
sumed that no shearing stresses were involved. In the more general stress 
situation represented in Fig. 2.45, shearing stresses T xy• Tyz• and T <:< will 
be present (as well, of course, as the corresponding shearing stresses 
T-'··n T Z,l" and Txz). These stresses have no direct effect on the normal 
strains and, as long as all the deformations involved remain small, they 
will not affect the derivation nor the validity of the relations (2.28). The 
shearing stresses, however, will tend to deform a cubic element of rna~ 
terial into an oblique parallelepiped. 

Fig. 2.45 

tHowever, in the plastic range, the volume of the materia! remains nearly constant. 

AV = -218 mm3 
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Fig. 2.46 

Fig. 2.47 

y 

Fig. 2.48 

' 

Consider first a cubic element of side one (Fig. 2.46) subjected to 
no other stresses than the shearing stresses T xy and -ryx applied to faces 
of the element respectively perpendicular to the x andy axes. (We re
call from Sec. 1.12 that -r xy = T yx·) The element is observed to deform 
into a rhomboid of sides equal to one (Fig. 2.47). Two of the angles 
formed by the four faces under stress are reduced from I to I - y xy• 

while the other two are increased from I to ~ + y XJ' The small angle 
/'xy (expressed in radians) defines the shearing strain correspon~ing to 
the x and y directions. When the deformation involves a reduction of 
the angle formed by the two faces oriented respectively toward the pos
itive x andy axes (as shown in Fig. 2.47), the shearing strain 'Yxy is said 
to be positive; otherwise, it is said to be negative. 

We should note that, as a result of the deformations of the other el
ements of the material, the element under consideration can also un
dergo an overall rotation. However, as was the case in our study of nor
mal strains, we are concerned here only with the actual deformation 
of the element, and not with any possible superimposed rigid-body 
displacement. t 

Plotting successive values of T xy against the corresponding values 
of 'Y xy• we obtain the shearing stress-strain diagram for the material un
der consideration. This can be accomplished by carrying out a torsion 
test, as you will see in Chap. :3. The diagram obtained is similar to the 
normal stress-strain diagram obtained for the same material from the 
tensile test deSctibed earlier in this chapter. However, the values ob
tained for the yield strength, ultimate strength, etc., of a given material 
are only about half as large in shear as they are in tension. As was the 
case for normal stresses and strains, the initial portion of the shearing 
stress-strain diagram is a straight line. For values of the shearing stress 

tin defining the strain Y . .,., some authors arbitrarily assume that the actual deformation of 
the element is accompanied by a rlgld-body rotation such that the horizontal faces of the el
ement do not rotate. The strain Y~y is then represented by the angle through which the other 
two faces have rotated (Fig. 2.48). Others assume a rigid-body rotation such that the hori
zontal faces rotate through h,Y counterclockwise and the ver1ical faces through h-'Y clock
wise (Fig. 2.49). Since both assumptions are unnecessary and may lead to confusion, we pre
fer in this text to associate the shearing strain y,y with the change in the angle fonned by the 
two faces, rather than with the rotation of a given face under restrictive conditions. 

Fig. 2.49 



that do not exceed the proportional limit in shear, we can therefore write 
for any homogeneoUs isotropic mat~rial, 

(2.36) 

This i"elation is known as Hooke's law for shearing stress and strain, 
and the constant G is called the modulus of rigidity or shear modulus 
of the material. Since the strain 1'.zy was defined as ·an angle in radians, 
it is dimensionless, and the modulus G is expressed in the same units 
as r , that is, in pascals. The mOdulus of rigidity G of any given rna~ 

" terial is less than one~half, but more than one-third of the modulus of 
elasticity E of that material. t 

Considering now a small element of material subjected to shearing 
stresses 'Tyz and T zy (Fig. 2.50a), we define the shearing st~ain 'Yyz as the 
change in the angle formed by the faces under stress. The shearing strain 
'Yv: is defined in a similar way by considering an element subjected to 
shearing stresses 'Tv: and rx~ (Fig. 2.50b). For values of the stress that 
do not exceed the proportional limit, we can write the two additional 
relations 

(2.37) 

where the constant G is the same as in Eq. (2.36). 
For the general stress condition represented in Fig. 2.45, and as 

long as none of the stresses involved exceeds the corresponding pro~ 
portional limit, we can apply the principle of superposition and com
bine the results obtained in this section and in Sec. 2.12. We obtain the 
following group of equations representing the generalized Hooke's law 
for a homogeneous isotropic material under the most general stress 
condition. 

fTx V(J"y VCJ0 Ex=+-----
£ E E 

vv, 
E = -
' E 

V(Jy + CJt 

E E 
(2.38) 

An examination of Eqs, (2.38) might lead us to believe that three 
dis~inct constants, E, v, and G, must first be determined experimentally, 
if we are to predict the deformations caused in a given material by an 
arbitrary combination of stresses, Actually, only two of these constants 
need be detennined experimentally for any given materiaL As you will 
see in the next section, the third constant can then be obtained through 
a very simple computation. 

tSee Prob. 2.9L 
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y 

' 
(a) 

y 

(b) 

Fig. 2.50 
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A rectangular block of a material with a modulus of rigidity 
G = 630 MPa is bonded to two rigid horizontal plates. The 
lower plate is ·fixed, while the upper plate is subjected to a hor
izontal force P (Fig. 2.51). Knowing that the upper plate moves 
through I mm under the action of the force, determine (a) the 
average shearing strain in the material, (b) the force P exerted 
on the upper plate. 

(a) Shearing Strain. We select coordinate axes centered at 
the midpoint C of edge AB and directed as shown (Fig. 2.52). 
According to its definition, the shearing strain y,!i is equal to 
the angle formed by the vertical and the line CF joining the 
midpoints ofedgesAB and DE. Noting that this is a very small 
angle and recalling that it should be expressed in radians, we 
write 

1mm 
"/ . .;y ~ tan 'Y.ry = 50 mm 'Yxy = 0.020 rad 

(b) Force Exerted on Upper Plate. We first determine 
the shearing stress 1',,1 in the material. Using Hooke's law for 
shearing stress and strain, we have 

1'w = Gyxy = (630 MPa)(0.020 rad) = 12.6 MPa 

The force exerted on the upper plate is thus 

P = '"A = (12.6 MPa)(200 mm)(62 mm) = 156.2 kN 

50 

Flg. 2.51 

50 

Fig. 2.52 

2.15. FURTHER DISCUSSION OF DEFORMATIONS UNDER 
AXIAL LOADING; RELATION AMONG E, v, AND G 

P' 

Fig. 2.53 

92 

(b) 

We saw in Sec. 2.11 that a slender bar subjected to an axial tensile load 
P directed along the x axis will elongate in the x direction and contract 
in both of the transverse y and z directions. If E.{ denotes the axial strain, 
the lateral strain is expressed as c1 = E< = -vc.n where v is Poisson's 
ratio. Thus, an element in the shape of a cube of side equal to one and 
oriented as shown in Fig. 2.53a will deform into a rectangular paral
lelepiped of sides 1 + Ex, 1 - VEx, and 1 - vE.r (Note that only one 
face of the element is shown in the figure.) On the other hand, if the 
element is oriented at 45° to the axis of the load (Fig. 2.53b), the face 
shown in the figure is observed to deform into a rhombus. We conclude 
that the axial load P causes in this element a shearing strain y' equal 
to the amount by which each of the angles shown in Fig. 2.53b increases 
or decreases. t 

tNote that the load P also produces nonnal strains in the element shown in Fig. 2.53b (see 
Prob. 2.74). 



r 
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The fact that shearing strains, as well as normal strains, result from 
an axial loading should not come to_ us as a surprise, since we already 
observed at the end of Sec. 1.12 that an axial load P causes normal and 
shearing stresse~ of equal magnitude on four of the faces of an element 
oriented at 45° to the axis of the membe:r. This was illustrated in Fig. 
1.40, which, for convenience, has been repeated here. It was also shown 
in Sec. 1.11 that the shearing stress is maximum on a plane forming an 
angle of 45° with the axis of the load. It follows from Hooke's law for 
shearing stress and strain that the shearing strain y' associated with the 
element of Fig. 253b is also maximum: y' = 'Ym· 

While a more detailed study of the transformations of strain will 
be postponed until Chap. 7, we will derive in this section a relation bew 
tween the maximum shearing strain y' = 'Ym associated with the elew 
ment of Fig. 2.53b and the nonnal strain Ex in the direction of the load. 
Let us consider for this purpose the prismatic element obtained by in
tersecting the cubic element of Fig. 2.53a by a diagonal plane (Fig . 
2.54a and b). Referring to Fig. 2.53a, we conclude that this new ele
ment will deform.into the element shown in Fig. 2.54c, which has horw 
izontal and vertical sides respectively equal to 1 + Ex and 1 - vEx. But 
the angle formed by the oblique and horizontal faces of the element of 
Fig. 2.54b is precisely half of one of the right angles of the cubic elew 

(a) 

Fig. 2.54 

~(};j)··.· .. ··.·· ... A·.·: . :··~-. 
1 . 

(b) 

ment considered in Fig. 2.53b. The angle {3 into which this angle de
forms must therefore be equal to half of 1T /2 - 'Ym· We write 

{3 = _2:. - 'Ym 
4 2 

Applying the formula for the tangent of the difference of two angles, 
we obtain 

tan 2:. - tan 'Y m 
4 2 

tan f3 ~ ---'----"--
_...- 7T' 'Ym 

1 + tan4tan2 

1 - tan 'Ym 
2 

l+tan~m 

2.15. Further Discussion of Deformations 
Under Axial Loading 

(a) 

' vf',U' 
P' u ~~ _J_45' .. r,,=£t '- ~1'"' 

u' 
\ p 

u "'M 
Fig. 1.40 {repeated) 
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i i 

or, since y ,/2 is a very small angle, 

1 
_ 'Ym 

2 
tanfl = --

1 + Ym 
2 

But, from Fig. 2.54c, we observe that 

1- VE 
tan{3 = ---" 

1 +Ex 

(2.39) 

(2.40) 

Equating the right-hand members of (2.39) and (2.40), and solving for 
Ym• we write 

Ym = 
(1 + v)<, 

1 v 
1 +--· 

2 ' 

Since Ex << 1, the denominator in. the expression obtained can be as
sumed equal to one; we have, ¥r'efore, 

-----<=(I + v)<, (2.41) 

which is the desired relation between the maximum shearing strain Ym 
and the axial strain Ex. 

To obtain a relation among the constants E, v, and G, we recall that, 
by Hooke's law, Ym = T 11jG, and that, for an axial loading, Ex = ajE. 
Equation (2.41) can therefore be written as 

or 

rm ax 
-=(I+ v)
G E 

E cr, 
-=(I+ v)
G Tm 

(2.42) 

We now recall from Fig. 1.40 that ax = PI A and r m = P /2A, where A 
is the cross-sectional area of the member. It thus follows that ax/r m = 2. 
Substituting this value into (2.42) and dividing both members by 2, we 
obtain the relation 

E 
-=I +v 
2G 

(2.43) 

which can be used to determine one of the constants E, v, or G from 
the other two. For example, solving Eq. (2.43) for G, we write 

G= E 
2(1 + v) 

(2.43') 



•2.16. STRESS-STRAIN RELATIONSHIPS FOR FIBER· 
REINFORCED COMPOSITE MATERIALS 

Fiber-reinforce<). composite materials were briefly discussed in Sec. 2.5. 
It was shown at that ti~e that these materials are obtained by embed
ding ~bers of a strong, stiff material into a weaker, softer material, re
ferred to as a matrix. It was also shown that the relationship between 
the normal stress and the corresponding normal strain created in a lam
ina, or layer, of a composite material depends upon the direction in 
which the load is applied. Differe~t moduli of elasticity, Ex, EY, and Ez, 
are therefore required to describe the relationship between normal stress 
and normal strain, according to whether the load is applied in a direc
tion parallel to the fibers, in a direction perpendicular to the layer, or 
in a transverse direction. 

Let us consider again the layer of composite material discussed in 
Sec. 2.5 and let us subject it to a uniaxial tensile load parallel to its 
fibers~ i.e., in the x direction (Fig. 2.55a). To simplify our analysis, it 
will be assumed that the properties of the fibers and of the matrix have 
been combined, or "smeared," into a fictitious equivalent homogeneous 

(a) (b) 

Fig. 2.55 

material possessing these combined properties. We now consider a small 
element of that layer of smeared material (Fig. 2.55b). We denote by 
<rx the corresponding normal stress and observe that <ry = <rz = 0. As 
indicated earlier in Sec. 2.5, the corresponding normal strain in the x 
direction is Ex = <r )E:n where Ex is the modulus of elasticity of the 
composite material in the x direction. As we saw for isotropic materi
als, the elongation of the material in the x direction is accompanied by 
contractions in the y and z directions. These contractions depend upon 
the placement of the fibers in the matrix and will generally be differ
ent. It follows that the lateral strains Ey and Ez will also be different, and 
so will the corresponding Poisson's ratios: ., 

v = -
ry <, and (2.44) 

Note that the first subscript in each of the Poisson's ratios vxy and vxz 
in Eqs. (2.44) refers to the direction of the load, and the second to the 
direction of the contraction. 

It follows from the above that, in the case of the multiaxialload
ing of a layer of a s;omposite material, equations similar to Eqs. (2.28) 
of Sec. 2.12 can be used to describe the stress-strain relationship. In the 

2.16. Fiber-reinforced Composite Mat~rials 95 



96 Stress and Strain-Axial Loading present case, however, three different values of the modulus of elastic~ 
ity and six different values of Poisson's ratio will be involved. We 
write 

ax VyxO'y 11:1.:/J'z 
E =-------
x£x Ey E2 

V;ry(Tx ify Vzyifz 
E = ---+----
y ExEyEt. 

(2.45) 

7J x;,if x VyzO' y (j z 
E = ------+-
<Ex EyEz 

Equations (2.45) may be considered as defining the transformation f 
stress into strain for the given layer. It follows from a general prop rty 
of such transformations that the coefficients of the stress compo nts 
are symmetric, i.e., that 

(2.46) 

These equations show that, while different, the Poisson's ratios v xy and 
Vyx are not independent; either of them can be obtained from the other 
if the corresponding values of the modulus of elasticity are known. The 
same is true of Vyz and v zy• and of v zx and v xz· 

Consider now the effect of the presence of shearing stresses on the 
faces of a small element of smeared layer. As pointed out in Sec. 2.14 
in the case of isotropic materials, these stresses come in pairs of equal 
and opposite vectors applied to opposite sides of the given element and 
have no effect on the normal strains. Thus, Eqs. (2.45) remain valid. 
The shearing stresses, however, will create shearing strains which are 
defined by equations similar to the last three of the equations (2.38) of 
Sec. 2.14, except that three different values of the modulus of rigidity, 
Gxy. Gyz• and Gzx, must now be used. We have · 

Txy 
'Yxy = (} 

·'Y 

(2.47) 

The fact that the three components of strain ex, eY, and €z can be 
expressed in terms of the normal stresses only and do not depend upon 
any shearing stresses characterizes orthotropic materials and distin~ 
guishes them from other anisotropic materials. 

As we saw in Sec. 2.5, a flat laminate is obtained by superpos~ 
ing a number of layers or laminas. If the fibers in all layers are given 
the same orientation to better withstand an axial tensile load, the lam
inate itself will be orthotropic. If the lateral stability of the laminate is 
increased by positioiling some of its layers so that their fibers are at a 
right angle to the fibers of the other layers, the resulting laminate will 
also be orthotropic. On the other hand, if any of the layers of a lami
nate are positioned so that their fibers are neither parallel nor perpen
dicular to the fibers of other layers, the lamina, generally, will not be 
orthotropic. t 

tFor more information on fibeNeinforced composite materials. see Hyer, M. W., Stress 
Analysis of Fiber-Reinforced Composite Materials, McGraw-Hill, New York, 1998. 



A 60~mm cube is made from layers of gr~phite epoxy with fibers 
aligned -in the x qirection. The cube is subjected to a compres
sive load of 140 kN in the x direction. The properties of the 
composite material are: Ex= 155.0 GPa, EY = 12.10 GPa, 
E~ = 12.10 GPa, Vxy = 0.248, V11~ = 0.248,andvy, = 0.458. 
Detemllne the changes in the cube dimensions, knowing that 
(a) the cube is free to expand in they and z directions (Fig.' 2.56); 
(b) the cube is free to expand in the z~irection, but is restrained 
frorll expanding in the y direction by two fixed frictionless 
plates (Fig. 2.57). 

(a) Free in y and z Directions. We first determine the 
stress cr 11 in the direction of loading. We have 

P -140 X l03N 
<r, ~A~ (0.060 m)(0.060 m) ~ - 38·89 MPa 

Since the cube is not loaded or restrained in the y and z di
rections, we have o- ,. = cr ~ = 0. Thus, the right-hand mem
bers of Eqs. (2.45) ri:duce to their first terms. Substituting the 
given <\ata into these equations, we write 

E, = ?3_ = -38.89 MPa = -250.9 X 10-6 
· E, 155.0 GPa 

(0.248)( -38.89 MPa) _ _
6 

155.0 GPa - +62.22 X 10 

(0.248)( -38.69 MPa) _ ' _
6 

155.0 GPa - + 62·22 X lO 

The changes in the cube dimensions are obtained by multi
plying the corresponding strains by the length L = 0.060 m 
of the side of the cube: 

8, ~ <,,L ~ ( -250.9 X W 6)(0.060 m) ~ -15.05 J.'ffi 

o,. ~ <,L ~ ( +62.2 X 10-6)(0.060 m) ~ +3.73 J.tffi 

8, ~ <,L ~ ( +62.2 x w-')(0.060 m) ~ + 3.73 "m 

(b) Free in z Direction, Restrained in y Direction. The 
stress in the x direction is the same as in part a, namely, 
crx = -38.89 MPa. Since the cube is free to expand in the z 
direction as in part a, we again have cr 4 = 0. But since the 
cube is now restrained in the y direction, we should expect a 
stress cr v different from zero. On the other hand, since the cube 
cannot Cxpand in the y direction, we must have By = 0 and, 
thus, Ey =- 8/L = 0. Making cr, = 0 and Ey = 0 in the sec
ond of Eqs. (2.45), solving that equation for crY' and substi
tuting the given data, we have 

(E,.) (12.10) 
o-, ~ £, ""'"' ~ 155.0 (0.248)( -38.89 MPa) 

= -752.9 kPa 

Now that the three components of stress have been determined, 
we can use the first and last of Eqs. (2.45) to compute the strain 
components €11 and E~- But the first of these equations contains 

Fig. 2.56 

Fig. 2.57 

Poisson's ratio Vy11 and, as we saw earlier, this ratio is not equal 
to the ratio v_,y which was among the given data. To find v >"·' 

we use the first of Eqs. (2.46) and write 

v,,, ~ (~)ve ~ (:~;~)0248) ~ 0.01936 

Making cr:: = 0 in the first and third of Eqs. (2.45) and sub
stituting in these equations the given values of E.n Ey, v 11,, and 
"'r•• as well as the values obtained for 0' ~·· o-y, and vy.n we have 

CT11 VyPy -38.89 MPa 
€ =----~ 

'" E'" Ey 155.0 GPa 

€ ~ 
' 

(0.01936)( -752.9 kPa) ~ _
249

.
7 

X w-• 
12.10 GPa 

_ v,,,,o-, ~ (0.248)( -38.89 MPa) 

E, Ey 155.0 GPa 

(0.458)( -752.9 kPa) 
6 

12.10 GPa ~ + go.n X w-

The changes in the cube dimensions are obtained by multi
plying the corresponding strains by the length L = 0.060 m 
of the side of the cube: 

8, ~ <~ ~ ( -249.7 X 10-6)(0.060 m) ~ -14.98 J.tm 

8, ~ <,L ~ (0)(0.060 m) ~ 0 

o, ~ <,L ~ ( +90.72 X 10-6)(0.060 m) ~ + 5.44 J.tffi 

Comparing the results of parts a and b, we note that the dif
ference between the values obtained for the deformation 8,. in 
the direction of the fibers is negligible. However, the differ
ence between the values obtained for the lateral deformation 
8t is not negligible. This deformation is clearly larger when 
the cube is restrained from deforming in the y direction. 
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SAMPlE PROBlEM 2.5 
A circle of diameter d = 225 mm is scribed on an unstressed aluminum plate 
of thickness t 18 mm Forces acting in the plane of the plate later cause nor~ 
mal stresses ax = 84 MPa and 0'~ = 140 MPa. ForE = 70 GPa and v = ~, 
determine the change in (a) the length of diameter AB, (b) the length of 
diameter CD, (c) the thickness of the plate, (d) the volume of the plate. 

SOLUTION 

Hooke's Law. We note that a1 = 0. Using Eqs. (2.28) we find the strain in 
each of the coordinate directions. 

1 [ 1 l -=-- (84MPa)-0--(140MPa) = +0.533X 10 3 mm/mm 
70 GPa 3 

VO'x O'y 110'~ 
15. = --+--

y E E E 

1 [ 1 1 l = -- --(84 MPa) + 0- -(140 MPa) = -1.067 X 10-3 mm/mm 
70GPa 3 3 

' 

= 70 ~Pa [ -~(84MPa)- 0 + (140MPa) l = +1.600 X 10-'mm/mrn 

a. Diameter AB. The change in length is 881A = r<xd. 

8R/A = •,d = ( +0.533 X 10-3 mm/mm)(225 mm) 

88 tt = 1+0.12 mm <Ill 

b. Diameter CD. 

8c;o = E,d = ( + 1.600 X 10-3 mm/mm)(225 mm) 

8c;0 = +0.36 mm ~ 

c. Thickness. Recalling that t = 18 mm. we have 

8, = e,t = (-1.067 X 10-3 mm/mm)(18 mrn) 

81 = -0.0192 mm -<:l3 

d. Volume of the Plate. Using Eq. (2.30), we write 

e = e" + ey + e~ = ( +0.533 - 1.067 + 1.600) 10-3 = + 1.067 X 10-3 

AV = eV = + 1.067 x w-'[(380 mm)(380 mm)(18 mm)] 

AV= +2733mm3 ..olll 



2.61 In a standard tensile test, an aluminum rod of 20-mm diameter is 
subjected to a tension force of P = 30 kN. Knowing that v = 0.35 and E = 70 
GPa, determine (a) the elongation of the rod in an 150-mm gage length, (b) the 
change in diameter of the rod. 

2.62 A 2.75-kN tensile load is applied to a test coupon made from 
l .6-mm flat steel plate (E = 200 GPa,v = 0.30). Determine the resulting change 
(a) in the 50-mrn gage length, (b) in the width of portion AB of the test coupon, 
(c) in the thickness of portion AB, (d) in the cross-sectional area of portion AB. 

l2mm 

Fig. P2.62 

2.63 A standard tension test is used to determine the properties of an ex
perimental plastic. The test specimen is a 16-mm-diameter rod and it is sub
jected to a 3.2-kN tensile force. Knowing that an elongation of 11 mrn and a 
decrease in diameter of 0.625 mm are observed in a 125-mrn gage length, de
termine the modulus of elasticity, the modulus of rigidity, and Poisson's ratio 
of the material. 

2.64 The change in diameter of a large steel bolt is carefully measured 
as the nut is tightened. Knowing that E = 200 GPa and v = 0.29, determine 
the internal force in the bolt, if the diameter is observed to decrease by 13 /km. 

Fig. P2.64 

2.65 A line of slope 4:10 has been scribed on a cold-rolled yellow-brass 
plate, 15Q..mm wide and 6-mm thick. Using the data available in Appendix B, 
determine the slopepf the line when the plate is subjected as shown to a 

p 

r 20-mm diameter 
150 mm 

l 
P' 

Fig. P2.61 

p 

r 16-mm diameter 
125mm 

l 
P' 

Fig. P2.63 

180~kN centric axial load. Fig. P2.65 
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u!l = 80 MPa 

o:~"" 160 MPa 

Fig. P2.67 

Fig. P2.69 

2.66 A 2-m length of an aluminum pipe of 240-mm outer diameter and 
10-mm wall thickness is used as a short column and carries a centric axial load 
of 640 leN. Knowing that E = 73 GPa and v = 0.33, determine (a) the change 
in length of the pipe, (b) the change in its outer diameter, (c) the change in its 
wall thickness. 

Fig. P2.66 

2.67 A 20-mm square has been scribed on the side of a large steel pres
sure vessel. After pressurization, the biaxial stress condition of the square is as 
shown. Using the data available in Appendix B, for structunl steel, determine 
the percent change in the slope of diagonal DB due to the pressurization of the 
vessel. 

2.68 A fabric used in air-inflated structures is subjected to a biaxial load
ing that results in normal stresses a-_.= 120 MPa and O"y = 160 MPa. Know
ing that the properties of the fabric can be approximated as E = 87 GPa and 
v = 0.34, detennine the change in length of (a) side AB, (b) side BC, (c) di
agonal A C. 

y 

Fig. P2.68 

2.69 The aluminum rod AD is fitted with a jacket that is used to apply 
a hydrostatic pressure of 42 MPa to the 300-mm portion BC of the rod. Know
ing that E = 70 GPa and v = 0.36, determine (a) the change in the total length 
AD, (b) the change in diameter at the middle of the rod. 

2.70 For the rod of Prob. 2.69, determine the forces that should be ap
plied to the ends A and D of the rod (a) if the axial strain in portion BC of the 
rod is to remain zero as the hydrostatic pressure is applied, (b) if the total length 
AD of the rod is to remain unchanged. 
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2. 71 For a member under axial loading, express the normal strain €' in 
a direction forming an angle of 45° with the axis of the load in tenns of the 
axial strain Ex by (a) comparing the hy]_)othenuses of the triangles shown in 
Fig. 2.54, which represent respectively an element before and after defonna
tion, (b) Using the" values of the con·esponding stresses cr' and u" shown in 
Fig. 1.40, and the generalized Hooke's law. 

2.72 The homogeneous plate ABCD is subjected to a biaxial loading as 
shown. It is known that u, = u 0 and that the change in icngth of the plate in 
the x direction must be zero, that is, .€,. = 0. Denoting by E the modulus of 
elasticity and by v Poisson's ratio, determine (a) the required magnitude of 
cr." (b) the ratio 0'0/e:. 

2.73 In many situations physical constraints prevent strain from occur
ring in a given direction, for example €~ = 0 in the case shown, where longi
tudinal movement of the long prism is prevented at every point Plane sections 
perpendicular to the longitudinal axis remain plane and the same distance apart 
Show that for this situation, which is known as plan,e strain, we can express 
u :• e., .• and e.v as follows: 

0'~ = v(u_,. + u>.) 

€x =~[(I - v2)u_,.- v{l + v)o-y] 

- 1 [ 2 €_1• - E (I - v )u_,. - v( l + v )o-x] 

Fig. P2.73 

2.74 In many situations it is known that the normal stress in a given 
direction is zero, for example, u~ = 0 in the case of the thin plate shown. 
For this case, which is known as plane stress, show that if the strains Ex and 
Ey have been determined experimentally, we can express u'", uy, and Ez as 
follows: 

Problems 101 
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Fig. P2.72 

cr:,. 

Fig. P2.74 
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Dimensions in mm 

Fig. P2.75 

2.75 The plastic block shown is bonded to a rigid support and to aver
tical plate to which a 240-kN load P is applied. Knowing that for the plastic 
used G = 1050 MPa, determine the deflection of the plate, 

2.76 What load P should be applied to the plate of Prob. 2.75 to pro
duce a 1.5-mm deflection? 

2. 77 A vibration isolation unit consists of two blocks of hard rubber ) 
bonded to a plate AB and to rigid supports as shown. Knowing that a force of 
magnitude P = 24 kN causes a deflection 8 = 1.5 mm of plate AB, determine 
the modulus of rigidity of the rubber used. 

Fig. P2.77 and P2.78 

2.78 A vibration isolation unit consists of two blocks of hard rubber with 
a modulus of rigidity G = 19 MPa bonded to a plate AB and to rigid supports 
as shown. Denoting by P the magnitude of the force applied to the plate and 
by 8 the corresponding deflection, determine the effective spring constant, 
k = P/0, of the system. 

2.79 An elastomeric bearing (G = 0.9 MPa) is used to support a bridge 
girder as shown to provide flexibility during earthquakes. The beam must not 
displace more than 10 mm when a 22-kN laterallo.ad is applied as shown. 
Knowing that the maximum allowable shearing stress is 420 kPa, determine 
(a) the smallest allowable dimension b, (b) the smallest required thickness a. 

Fig. P2.79 
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2.80 For the elastomeric bearing in Pro b. 2. 79 with b = 220 mm and 
a = 30 mm, determine the shearing modulus G and the shear stress r for a 
maximum lateral load P = 19 kN and a· maximum displacement 8 = 12 mm. 

2.81 Two blocks of rubber with a modulus of rigidity G = 12 MPa 
are bonded to rigid supports and to a plate AB. Knowing that c = 100 mm 
and P ·= 40 kN, determine the smallest allowable dimensions a and b of the 
blocks if the shearing stress i:n the rubber is not to exceed 1.4 MPa and the de" 
flection of the plate is to be at least 5 mm. 

2.82 Two blocks of rubber with a modulus of rigidity G = 10 MPa 
at'e bonded to rigid supports and to a plate AB. Knowing that b = 200 mm 
and c = 125 mm, determine the largest allowable load P and the smallest a!~ 
lowable thickness a of the blocks if the shearing stress in the rubber is not to 
exceed 1.5 MPa and the deflection of the plate is to be at least 6 mm. Fig. P2.81 and P2.82 

*2.83 Determine the change in volume of the 50~mm gage length seg~ 
ment AB in Prob. 2.62 (a) by computing the dilatation of the material, (b) by 
subtracting the original volume of portion AB from its final volume. 

*2.84 · Determine the dilatation e and the change in volume of the 
200~mm length of the rod shown if (a) the rod is made of steel withE = 200 
GPa and v = 0.30, (b) the rod is made of aluminum withE = 73 GPa and 
v = 0.35. 

/ 25-mm diameter 
45kN . i 4!5kN 
~·!Wf'>j0t@~ 

~-200mm~ 
Fig. P2.84 

*2.85 (a) For the axial loading shown, determine the change in height 
and the change in volume of the brass cylinder shown. (b) Solve part a, as
suming that the loading is hydrostatic with a-~ = a-)'= O"z = -70 MPa. 

"2.86 A 150-mm diameter solid steel sphere is lowered into the ocean 
to a point where the pressure is 50 MPa (about 5 km below the surface). Know
ing that E = 200 GPa and v = 0.30, determine (a) the decrease in diameter of 
the sphere, (b) the decrease in volume of the sphere, (c) the percent increase 
in the density of the sphere. 

*2.87 A vibration isolation support consists of a rod A of radius R1 and 
a tube B of inner radius R2 bonded to a 80-mm-long hollow rubber cylinder 
with a modulus of rigidity G = 10.93 MPa. Determine the required value of 
the ratio R-/R1 if a lO~kN force P is to cause a 2-mm deflection of rod A. 

"2.88 A vibration isolation support consists of a rod A of radius 
R1 = 10 mm and a tube B of inner radius R2 = 25 mm bonded to an 80-mm-long 
hollow rubber cylinder with a modulus of Jtigidity G = 12 MPa. Determine the 
largest allowable forc~e-P that may be applied to rod A if its deflection is not 

Fig. P2.85 

to exceed 2.50 mm. Fig. P2.87 and P2.88 
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y 

Fig. P2.91 

E_,"" 50 CPa 
E!J"" 15.2 cp., 
Ez"" 15.2GPa 

Vxz = 0.254 
Vxy"" 0.254 
Vzy""' OA28 

Fig. 2.58 

*2.89 The material constants E, G, k, and v are related by Eqs. (2.33) 
and (2.43). Show that any one of these constants may be expressed in tenns of 
any other two constants. For example, show that (a) k = GE/(9G - 3E) and 
(b) v ~ (3k - 2G)/(6k + 2G). 

*2.90 Show that for any given material, the ratio GIE of the modulus of 
rigidity,over the modulus of elasticity is always less than~ but more than t. 
[Hint: Refer to Eq. (2.43) and to Sec. 2.13.] 

*2.91 A composite cube with 40~mm sides and the properties shown is 
made with glass polymer fibers aligned in the x direction. The cube is con
strained against deformations in they and z directions and is subjected to a ten~ 
sile load of 65 kN in the x direction. Determine (a) the change in the length 
of the cube in the x direction, (b) the stresses cr., crY' and cr ~· 

*2.92 The composite cube of Prob. 2.91 is constrained against defor~ 
mation in the z direction and elongated in the x direction by 0.035 mm due to 
a tensile load in the x direction. Determine (a) the stresses ux, ay, and az, (b) the 
change in the dimension in the y direction. 

2.17. STRESS AND STRAIN DISTRIBUTION UNDER AXIAL 
LOADING; SAINT-VENANT'S PRINCIPLE 

We have assumed so far that, in an axially loaded member, the normal 
stresses are uniformly distributed in any section perpendicular to the 
axis of the member. As we saw in Sec. 1.5, such an assumption may 
be quite in error in the immediate vicinity of the points of application 
of the loads. However, the detennination of the actual stresses in a given 
section of the member requires the solution of a statically indetermi
nate problem. 

In Sec. 2.9, you saw that statically indeterminate problems involv
ing the determination of forces can be solved by considering the de
formations caused by these forces. It is thus reasonable to conclude that 
the determination of the stresses in a member requires the analysis or' 
the strains produced by the stresses in the member. This is essentially 
the approach found in advanced textbooks, where the mathematical the
ory of elasticity is used to determine the distribution of stresses corre
sponding to various modes of application of the loads at the ends of the 
member. Given the more limited mathematical means at our disposal, 
our analysis of stresses will be restricted to the particular case when 
two rigid plates are used to transmit the loads to a member made of a 
homogeneous isotropic material (Fig. 2.58). 

If the loads are applied at the center of each plate, t the plates will 
move toward each other without rotating, causing the member to get 
shorter, while increasing in width and thickness. It is reasonable to as
sume that the member will remain straight, that plane sections will re-

tMore precisely, the common line of action of the loads should pass through !he centroid 
of the cross section (cf. Sec. 1.5). 
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P' 

(b) 

main plane, and that all elements of the member will deform in the same 
way, since such an assumption is clearly compatible with the given end 
conditions. This is illustrated in Fig. 2.59, which shows a rubber model 
before and after loading.;!: Now, if all elements deform in the same way, 
the distribution of strains throughout the member must be uniform. In 
other words, the axial strain Ey and the lateral strain Ex = -ve>. are con
stant. But, if the stresses do not exceed the proportional limit, Hooke's 
law applies and we may write uy = Eey, from which it follows that the 
normal stress a-Y is also constant. Thus, the distribution of stresses is 
uniform throughout the member and, at any point, 

On the other hand, if the loads are concentrated, as illustrated in Fig. 
2.60, the elements in the immediate vicinity of the points of applica
tion of the loads are subjected to very large stresses, while other ele
ments near the ends of the member are unaffected by the loading. This 
may be verified by observing that strong deformations, and thus large 
strains and large stresses, occur near the points of application of the 
loads, while no defonnation takes place at the corners. As we consider 
elements farther and farther from the ends, however, we note a pro
gressive equalization of the deformations involved, and thus a more 
nearly unifonn distribution of the strains and stresses across a section 
of the member. This is further illustrated in Fig. 2.61, which shows 
the result of the calcUlation by advanced mathematical methods of the 

tNote that for long, slender members, another configuration is possible, and indeed will 
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prevail, if the load is suffi~iently large; the member buckles and assumes a curved shape. This P' 
will be discussed in Chap. 10. Fig. 2.60 
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P' 

if min ""0.9730"ave 

ifona.~ "" 1.027crave 

ifmin = 0.6680"ave 

if'""' = l.3870',we 

ifmin = 0.198crave 

ifma.x = 2.57SO"~ve 

Fig. 2.61 

distribution of stresses across various sections of a thin rectangular plate 
subjected to concentrated loads. We note that at a distance b from ei
ther end, where b is the width of the plate, the stress distribution is 
nearly unifonn across the section, and the value of the stress 0'

1 
at any 

point of that section can be assumed equal to the average value P/A. 
Thus, at a distance equal to, or greater than, the width of the member, 
the distribution of stresses across a given section is the same, whether 
the member is loaded as shown in Fig. 2.58 or Fig. 2.60. In other words, 
except in the immediate vicinity of the points of application of the loads, 
the stress distribution may be assumed independent of the actual mode 
of application of the loads. This statement, which applies not only to 
axial loadings, but to practically any type of load, is known as Saint
Venant's principle, after the French mathematician and engineer Adhe
mar Barre de Saint-Venant (1797-1886). 

While Saint-Venant's principle makes it possible to replace a 
given loading by a simpler one for the purpose of computing the stresses 
in a structural member, you should keep in mind two important points 
when applying this principle: 

1. The actual loading and the loading used to compute the stresses 
must be statically equivalent. 

2. Stresses cannot be computed in this manner in the immediate 
vicinity of the points of application of the loads. Advanced the~ 
oretical or experimental methods must be used to determine the 
distribution of stresses in these areas. 

You should also observe that the plates used to obtain a uniform 
stress distribution in the member of Fig. 2.59 must allow the member 
to freely expand laterally. Thus, the plates cannot be rigidly attached to 
the member; you must assume them to be just in contact with the mem~ 
ber, and smooth enough not to impede the lateral expansion of the 
member. While such end conditions can actually be achieved for a 
member in compression, they cannot be physically realized in the case 
of a member in tension. It does not matter, however, whether or not an 
actual fixture can be realized and used to load a member so that the dis~ 
tribution of stresses in the member is uniform. The important thing is 
to imagine a model that will allow such a distribution of stresses, and 
to keep this model in mind so that you may later compare it with the 
actual loading conditions. 



2.18. STRESS CONCENTRATIONS 

As you saw in the preceding section,. the stresses near the points of ap~ 
plication of concentrated loads can reach values much larger than the 
average value of the stress in the member. When a structural member 
contains a discontinuity; such as a hole or a sudden change in cross sec~ 
tion, high localized stresses can also occur near the discontinuity. Fig~ 
ures 2.62 and 2.63 show the distribution of stresses in critical sections 
corresponding to two such situations. Figure 2.62 Tefers to a flat bar 
with a circular hole and shows the stress distribution in a section pass
ing through the center of the hole~ Figure 2.63 refers to a flat bar con
sisting of two portions of different widths connected by fillets; it shows 
the stress distribution in the narrowest part of the connection, where the 
highest stresses occur. 

,---... ~-: 
P' 

()""\'(;'' 

Fig. 2.62 Stress distribution ~·ear· circular 
hole in flat bar under axial loading. 

These results were obtained experimentally through the use of a 
photoelastic method. Fortunately for the engineer who has to design a 
given member and cannot afford to carry out such an analysis, the re
sults obtained are independent of the size of the member and of the ma
terial used; they depend only upon the ratios of the geometric parame
ters involved, i.e., upon the ratio r/d in the case of a circular hole, and 
upon the ratios r/d and D/d in the case of fillets. Furthennore, the de
signer is more interested in the maximum value of the stress in a given 
section, than in the actual distribution of stresses in that section, since 
his main concern is to determine whether the allowable stress will be 
exceeded under a given loading, and not where this value will be ex
ceeded. For this reason, one defines the ratio 

K =(}'max 

(}'ave 
(2.48) 

of the maximum stress over the average stress computed in the critical 
(narrowest) section of the discontinuity. This ratio is referred to as the 
stress-concentration factor of the given discontinuity. Stress-concentration 
factors can be comyuted once and for all in terms of the ratios of 
the geometric parameters involved, and the results obtained can be 
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Fig. 2.63 Stress distribution near fillets 
in flat bar under axial loading. 



1 OS stress and Strain-Axial Loading expressed in the fonn of tables or of graphs, as shown in Fig. 2.64. To 
determine the maximum stress occuning near a discontinuity in a given 
member subjected to a given axial load P, the designer needs only to 
compute the average stress a-ave = PIA in the critical section, and multi
ply the result obtained by the appropriate value of the stress-concentration 
factor K. You should note, however, that this procedure is valid only as 
long as u max does not exceed the proportional limit of the material, since 
the values of K plotted in Fig. 2.64 were obtained by assuming a lin~ 
ear relation between stress and strain. 
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Fig. 2.64 Stress concentration factors for flat bars under axial loadingt 

Note that the average stress must be computed across the narrowest 
section: u~w = P/td, where tis the thickness of the bar. 

Determine the largest axial load P that can be safely supported 
by a flat steel bar consisting of two portions, both 10 mm thick 
and, respectively, 40 and 60 mm wide, connected by fJllets of 
radius r = 8 mm. Assume an allowable normal stress of 165 
MPa. 

We first compute the ratios 

p_ = 60 rnm = 1.50 
d 40mm 

r · 8mm 
d = 40mm = 0·20 

Using the curve in Fig. 2.64b corresponding to D/d = 1.50, 
we find that the value of the stress-concentration factor corre
sponding to r/d = 0.20 is 

K = 1.82 

u,~~~-•••mowu••~---Y= 
1'/d 

(b) Flat bars with fillets 

Carrying this value into Eq. (2.48). and solving for O'ave• we 
have 

(T max 
<T = --

ave 1.S2 

But a max cannot exceed the allowable stress IT all = 165 MPa. 
Substituting this value for 17 ma~· we find that the average stress 
in the narrower portion (d = 40 mm) of the bar should not ex
ceed the value 

165 MPa 
O"avo = ~ = 90.7 MPa 

Recalling that O'ave = P/A, we have 

P = A<T,~ = (40 mm)(!O mm)(90.7 MPa) = 36.3 X 10' N 

p = 36.3 kN 

tW. D. Pi!key, Peterson's Stress Concentration Factors, 2"d ed., John Wiley & Sons, New 
York, 1997. 



2.19. PLASTIC DEFORMATIONS 

The results obtained in the preceding sections were based on the as
suffiption of a linear stress-strain relationship. In other words, we 
assumed that the proportional limit of the material was never exceeded. 
This is a reasonable assumption in the Case of brittle materials, which 
ruptUre without yielding. In the case of ductile materials, however, this 
assumption implies that the yield strength of the material is not ex
ceeded. The deformations will then remain within the elastic range a·nct 
the structural member under consideration will regain its original shape 
after all loads have been removed. If, on the other hand, the stresses in 
any part of the member exceed the yield strength of the material, plas
tic deformations occur and most of the results obtained in earlier sec
tions cease to be valid, A more involved analysis, based on a nonlinear 
str'ess-strain relationship, must then be carried out. 

While an analysis taking into account the actual stress-strain rela~ 
tionship is beyond the scope of this text, we gain considerable insight 
into plastic behavior by considering an idealized elastoplastic material 
for which the stress-strain diagram consists of the two straight-line seg
ments shown in Fig, 2,65. We may note that the stress~strain diagram 
for mHd steel in the elastic and plastic ranges is similar to this ideal
ization. As long as the stress O" is less than the yield strength O"y, the 
material behaves elastically and obeys Hooke's law, cr = EE. When cr 
reaches the value O" y, the material starts yielding and keeps deforming 
plastically under a constant load. If the load is removed, unloD.ding takes 
place along a straight-line segment CD parallel to the initial portion AY 
of the loading curve. The segment AD of the horizontal axis represents 
the strain conesponding to the permanent set or plastic defonnation re
sulting from the loading and unloading of the specimen. While no ac
tual material behaves exactly as shown in Fig. 2.65, this stress-strain 
diagram will prove useful in discussing the plastic deformations of duc
tile materials such as mild steel. 
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y c 
i----i-- x Rupture 

A D 

Fig. 2.65 

A rod of length L == 500 mm and cross-sectional area 
A == 60 mm2 is made of an elastoplastic material having a 
modulus of elasticity E == 200 GPa in its elastic range and a 
yield point cr r = 300 MPa. The rod is subjected to an axial 
load until it is stretched 7 mm and the load is then removed. 
What is the resulting permanent set? 

£ == CTy = 300 X J<J6Pa _ 1.
5 

X 10_3 

r E 200Xl09 Pa 

Referring to the diagram of Fig. 2.65, we find that the 
maximum strain, represented by the abscissa of point C, is 

Be 7 mm _3 
£c = L = 500 mm = 14 X 10 

On the other hand, the yield strain, represented by the abscissa 
of point Y, is ./ 

The strain after unloading is represented by the abscissa Eo of 
point D. We note from Fig, 2.65 that 

Eo = AD = YC == ec - £r 

= I4 x w-3 - u x w-3 = 125 x w- 3 

The permanent set is the deformation 50 corresponding to the 
strain E0 • We have 

li0 ~eo£~ (12.5 X 10-3)(500 mm) ~ 6.25 mm 



A 0.75 m-long cylindrical rod of cross-sectional area 
A = 48 mm2 is placed inside a tube of the same length and 
of cross-seCtional area A, = 62 mm2

• The ends of the rod and 
tube are attached to a rigid support on one side, and to a rigid 
plate on the other, as shown in the longitudinal section of 
Fig. 2.66. The rod and tube are both assumed to be elasto
plastic, with moduli of elasticity Er = 210 GPa and E, = 105 
GPa and yield strengths ((TF)r = 250 MPa and ((T,)y = 310 
MPa. Draw the load-deflection diagram of the rod-tube as
sembly when a load P is applied to the plate as shown. 

~0.75m 
Fig. 2.66 

We first determine the internal force and the elongation 
of the rod as it begins to yield: 

(P,), ~ (o-,),A, ~ (250 MPa)(48 mm') ~ 12 kN 

(a-,), 250 MPa 
(8,), ~ (<,),L ~ -L = --- (0.75 m) 

Er 210 GPa 

= 0.89mm 

Since the material is elastoplastic, the force-elongation di
agram of the rod alone consists of an oblique straight line and 
of a horizontal straight line, as shown in Fig. 2.67a. Follow
ing the same procedure for the tube, we have 

(P,), = (o-,),A, ~ (310MPa)(62 mm') = 19.2 kN 

(a-,), 310 MPa 
(8,), = (<,)rL ~ -E L ~ --- (0.75 m) 

, 105 GPa 

= 2.21 mm 

110 

P1 (kN) 

19.2 

7.7 

0 

0 

Fig. 2.67 

Y, 

0.89 
(") 

Y, 

0.89 
(b) 

2.21 mm 8 (mm) 
(,) 

The load-deflection diagram of the tube alone is shown in Fig. 
2.67b. Observing that the load and deflection of the rod-tube 
combination are, respectively, 

we draw the required load-deflection diagram by adding the 
ordinates of the diagrams obtained for the rod and for the tube 
(Fig, 2.67c). Points Yr and Y1 correspond to the onset of yield 
in the rod and in the tube, respectively. 



If the load P applied to the rod-tube assembly of Example 2.14 
is increased frol)1 zero to 25 kN and decreased back to zero, 
determine (a) the maximum elongation of the assembly, (b) the 
permanent set after the load has been remoVed. 

(a) llflaximum Elongation. Referring to Fig. 2.67c, we ob
serve that the load P rna~ = 25 kN corresponds to a pOint lo
cated on the segment Y,Y1 of the l_oad-deflection diagram of 
the assembly. Thus, the rod has reached the plastic range, with 
P, = (P,)r = 12 kN and Ur = (U,)y = 250 MPA, while the 
tube is still in the elastic range, with 

PI = p - P, = 25 kN - 12 kN = 13 kN 

= 210MPa 

o-1 210 MPa a,"" <,L ~ -L ~ --- (0.75 m) ~ !.5 rum 
E1 105 GPa 

The maximum elongation of the assembly, therefore, is 

(b) Permanent Set. As the load P decreases from 25 kN 
to zero, the internal forces P,. and P1 both decrease along a 
straight line, as shown in Fig. 2.68a and b, respectively. The 
force P, decreases along line CD parallel to the initial portion 
of the loading curve, while the force P1 decreases along the 
original loading curve, since the yield stress was !lOt exceeded 
in the tube. Their sumP, therefore, will decrease along a line 
CE parallel to the portion OY, of the load-deflection curve of 
the assembly (Fig. 2.68c). Referring to Fig. 2.67c, we find that 
the slope of OY" and thus of CE, is 

19.7kN 
m ~ --- = 22.1 k.N/mm 

0.89m 

The segment of line FE in Fig. 2.68c represents the deforma
tion 8' of the assembly during the unloading phase, and the 
segment OE the permanent set 8P after the load P has been re
moved. From triangle CEF we have 

fjr = _PmaK = 25kN 
m 22.1 kN/mm 

-l.l3lmm 

P,(kN) 

12 

0 

P1(kN) 

13 

0 

P(kN) 

Y, c 
/' 

/ ' 
/ : 

/ ' 
/ ' / ' D/ ' 

/ 15 / 
/ 

(,) 

c 
-------------

1.5 

(b) 

c 
25 -------------~, l 

Y,. I J 

19.2 -------- / : 
I : 

/ l Pnwx 
I l 

I ' 
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I : 
I ' 

'E lp 

lei 
Fig. 2.68 

The permanent set is thus 

8,.(mm) 

Y, 

Y, 

8(mm) 

o, = 8,,"' + 8' = 1.5 mm - 1.131 mm 

~ 0.369 rum 

111 
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(a) 

(b) 

p 

(a) 

(d) 

Fig. 2.69 Distribution of stresses in 
elastoplastic material under increasing 
load. 

We recall that the discussion of stress concentrations of Sec. 2.18 
was canied out under the assumption of a linear stress-strain relation
ship. The stress distributions shown in Figs. 2.62 and 2.63, and the val
ues of the stress-concentration factors plotted in Fig. 2.64 cannot be 
used, therefore, when plastic deformations take place, i.e., when the 
value of CT rna~ obtained from these figures exceeds the yield strength CTy. 

Let us consider again the flat bar with a circular hole of Fig. 2.62, 
and let us assume that the material is elastoplastic, i.e., that its stress
strain diagram is as shown in Fig. 2.65. As long as no plastic defor
mation takes place, the distribution of stresses is as indicated in Sec. 
2.18 (Fig. 2.69a). We observe that the area under the stress-distribution 
curve represents the integral J CT dA, which is equal to the load P. Thus 
this area, and the value of u max• must increase as the load P increases. 
As long as cr max :S cr r' all the successive stress distributions obtained as 
P increases will have the shape shown in Fig. 2.62 and repeated in Fig. 
2.69a. However, asP is increased beyond the value Py corresponding 
to CTmax = CTy (Fig. 2.69b), the stress-distribution curve must flatten in 
the vicinity of the hole (Fig. 2.69c), since the stress in the material con
sidered cannot exceed the value CT y. This indicates that the material is 
yielding in the vicinity of the hole. As the load P is further increased, 
the plastic zone where yield takes place keeps expanding, until it reaches 
the edges of the plate (Fig. 2.69d). At that point, the distribution of 
stresses across the plate is uniform, CT = cry, and the corresponding 
value P = Pu of the load is the largest which may be applied to the bar 
without causing rupture. 

It is interesting to compare the maximum value P y of the load which 
can be applied if no permanent deformation is to be produced in the 
bar, with the value Pu which will cause rupture. Recalling the defini
tion of the average stress, CTave""" P/A, where A is the net cross
sectional area, and the definition of the stress concentration factor, 
K = 0' max/ CT ave, we write 

0" maxA 
P=cr A=--

ave K (2.49) 

for any value of CT m~ that does not exceed CT y. When CT ma~ = CT y (Fig. 
2.69b), we have P = Py, and Eq. (2.49) yields 

CTyA 
P,=

K 
(2.50) 

On the other hand, when P = Pu (Fig. 2.69d), we have CTave = O'y and 

Pu = CTyA 

Comparing Eqs. (2.50) and (2.51), we conclude that 

Pu 
Py=

K 

(2.51) 

(2.52) 



•2.20 RESIDUAL STRESSES 

In Example 2.13 of the preceding section, we considered a rod that was 
stretched beyond the yield point. As the load was removed, the rod did 
not regain its originalleJ?.gth; it had been permanently deformed. How
ever, after the load was removed, all stresses disappeared. You should 
not assume that this will always be the case. Indeed, when only some 
of the parts of an indeterminate structure undergo plastic deformations, 
as in Example 2.15, or when different parts of the structure undergo 
different plastic deformations, the. stresses in the various parts of the 
structure will not, in general, return to zero after the load has been re
moved. Stresses, called residual stresses, will remain in the various parts 
of the structure. 

While the computation of the residual stresses in an actual struc
ture can be quite involved, the following example will provide you 
with a general understanding of the method to be used for their 
determination. 

Determine the residual stresses in the rod and tube of Exam
ples 2.14 and 2.15 after the load P has been increased from 
zero to 25 kN and decreased back to zero. 

P,(kN) 

We observe from the diagrams of Fig. 2. 70 that after the 
load P has retumed to zero, the intemal forces Pr and P1 are 
not equal to zero. Their values have been indicated by point E 
in parts a and b, respectively, of Fig. 2.70. It follows that the 
corresponding stresses are not equal to zero either after the as
sembly has been unloaded. To determine these residual stresses, 
we shall determine the reverse stresses a; and a; caused by the 
unloading and add them to the maximum stresses O'r = 250 
MPa and 0'1 = 210 MPa found in part a of Example 2.15. 

The strain caused by the unloading is the same in the rod 
and in the tube. It is equal to 8'/L, where 8' is the deforma
tion of the assembly during unloading, which was found in Ex
ample 2.15. We have 

0' -1.13lmm 
€' =- = = -1.51 X 10-3 mm/mm 

L 0.75 m 

The corresponding reverse stresses in the rod and tube are 

u; ~ <'E, ~ (-1.51 X !0-3)(210GPa) ~ -317.1 MPa 
u; = €'E1 = (-1.51 X l0-3)(105GPa) = -158.6MPa 

The residual stresses are found by superposing the stresses due 
to loading and the reverse stresses due to unloading. We have 

12 

P1 (kN) 

13 

P{kN) 

25 

19.2 

0 

0 
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114 Stress and Strain-Axial Loading Plastic deformations caused by temperature changes can also result 
in residual stresses. For example, consider a small plug that is to be 
welded to a large plate. For discussion purposes the plug will be con
sidered as a small rod AB that is to be welded across a small hole in 
the plate (Fig. 2.71). During the welding process the temperature of the 
rod will be raised to over 1 OQQ<>C, at which temperature its modulus of 
elasticity, and hence its stiffness and stress, will be almost zero. Since 
the plate is large, its temperature will not be increased significantly 
above room temperature (20°C). Thus, when the welding is completed, 
we have rod AB at T = 1000°C, with no stress, attached to the plate 
which is at 20°C. 

Fig. 2.71 

As the rod cools, its modulus of elasticity increases and, at about 
500°C, will approach its normal value of about 200 GPa. As the tem
perature of the rod decreases further, we have a situation similar to that 
considered in Sec. 2.10 and illustrated in Fig. 2.35. Solving Eq. (2.23) 
for 6.T and making a equal to the yield strength, O'y = 300 MPa, of av
erage steel, and a = 12 X 10-6;oC, we find the temperature change that 
will cause the rod to yield: 

D.T = _.!!_ = 
Ea 

300MPa = -l2soc 
(200 GPa) (12 X I0-6/ 0 C) 

This means that the rod will start yielding at about 375°C and will keep 
yielding at a fairly constant stress level, as it cools down to room tem
perature. As a result of the welding operation, a residual stress ap
proximately equal to the yield strength of the steel used is thus created 
in the plug and in the weld. 

Residual stresses also occur as a result of the cooling of metals 
which have been cast or hot rolled. In these cases, the outer layers cool 
more rapidly than the inner core. This causes the outer layers to reac
quire their stiffness (£ returns to its normal value) faster than the inner 
core. When the entire specimen has returned to room temperature, the 
inner core will have contracted more than the outer layers. The result 
is residual longitudinal tensile stresses in the inner core and residual 
compressive stresses in the outer layers. 

Residual stresses due to welding, casting, and hot rolling can be 
quite large (of the order of magnitude of the yield strength). These 
stresses can be removed, when necessary, by reheating the entire spec
imen to about 600°C, and then allowing it to cool slowly over a period 
of 12 to 24 hours. 
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SAMPlE PROBlEM 2.6 

The rigid beam ABC is suspended from two steel rods as shown and is ini
tially horizontal. The midpoint B of the beam is deflected 10 mm downward 
by the slow application of the force Q, after which the force is slowly removed. 
Knowing that the steel used for the rods is e!astoplastic with E = 200 GPa 
and (T r = 300 MPa, determine (a) the required maximum value of Q and the 
corresponding position of the. beam, (b) the final position of the beam. 

SOLUTION 

Statics. Since Q is applied at the midpoint of the beam, we have 

PAD= Pee and 

Elastic Action. The maximum value of Q and the maximum elastic de
flection of point A occur when u = ur in rod AD. 

(P,D)m, = <TyA = (300 MPa)(400 mm2
) = 120 kN 

Qm~x = 2(PAo)max 2(120 kN) Qon,x = 240 kN <t1 

"'r (300 MPa) OA = eL = -L = (2m) = 3 mm 
' E 200 GPa 

Since Pee= PAD= 120 kN, the stress in rod CE is 

PC£ 120kN 
(TeE= A= 500 mm2 = 240 MPa 

The corresponding deflection of point C is 

.:, _ _ (TceL _ (240 MPa)(s ) _ uc, - eL - E - 200 GPa m - 6 mm 

The corresponding deflection of point B is 

58 , = !(OA, + Oc,) = !{3 mm + 6 mm) = 4.5 mm 

Since we must have 58 = 10 mm, we conclude that plastic defonnation will 
occur. 

Plastic Deformation. For Q = 240 kN, plastic deformation occurs in 
rod AD, where (TAD = (Ty = 300 MPa, Since the stress in rod CE is within 
the elastic range, Oc remains equal to 6 mm. The deflection OA for which 
8 8 = 10 mm is obtained by writing 

Unloading. As force Q is slowly removed, the force PAD decreases along 
line HJ parallel to the initial portion of the load-deflection diagram of rod AD. 
The final deflection of point A is 

8A) = 14mm- 3mm = ll mm 

Since the stress in rod CE remained within the elastic range, we note that the 
final deflection of point C is zero. 
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Fig. P2.95 and P2.96 

lOmm 

lOmm 

Fig. P2.98 
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2.93 Knowing that cr all = 120 MPa, determine the maximum allowable 
value of the centric axial load P. 

l5mm 

Fig. P2.93 and P2.94 

2.94 Two holes have been drilled through a long steel bar that is sub
jected to a centric axial load as shown. For P = 32 kN, determine the maximum 
value of the s'tress (a) at A, (b) at B. 

2.95 Knowing that P = 40 kN, determine the maximum stress when 
(a) r = 12 mm, (b) r = 15 mm. 

2.96 Knowing that, for the plate shown, the allowable stress is ll 0 MPa, 
determine the maximum allowable value of P when (a) r = lO mm, (b) r = 
l8mm. 

Fig. P2.97 

2.97 For P = 35 kN, determine the minimum plate thickness t required 
if the allowable stress is 125 MPa. 

2.98 Knowing that the hole has a diameter of 10 mm, determine (a) the 
radius r1 of the fillets for which the same maximum stress occurs at the hole 
A and at the fillets, (b) the corresponding maximum allowable load P if the 
allowable stress is 105 MPa. 



2.99 A hole is to be ddlled in the plate at A. The diameters of the bits 
available to drill the hole range from 12 to 24 mm in 3~mm increments. 
(a) Determine the diameter d of the laigest bit that can be used if the allow
able loa4 at the hole is to exceed that at the fillets. (b) If'the allowable stress 
in the phite is 145 MPa, what is the corresponding allowable load P? 

Fig. P2.99 and P2.1 00 

2.100 (a) For P = 58 kN and d = 12 mm, determine the maximum 
stress in the plate shown. (b) Solve part a, assuming that the hole at A is notddlled. 

2.101 The cylindrical rod AB has a length L = 1.5 m and a 18~mm 
diameter; it is made of mild steel that is assumed to be elastoplastic with 
E = 200 GPa and <ry = 250 MPa. A force Pis applied to the bar and then re
moved to give it a permanent set SP" Determine the maximum value of the force 
p and the maximum amount 8, by which the bar should be stretched if the de
sired value of 8P is (a) 2.5 mm, (b) 5 mm. 

2.102 The cylindrical rod AB has a length L = 1.8 m and a 30-mm 
diameter; it is made of a mild steel that is assumed to be elastoplastic with 
E = 200 GPa and O'y = 250 MPa. A force P is applied to the bar ·until end A 
has moved down by an amount 8"'. Determine the maximum value of the force 
P and the permanent set of the bar after the force has been removed, knowing 
that (a) Sm = 3 mm, (b) 8"' = 6 mm. 

2.103 Rod ABC consists of two cylinddcal portions AB and BC; it is 
made of a mild steel that is assumed to be e!astoplastic with E = 200 GPa and 
O"y = 250 MPa. A force P is applied to the rod and then removed to give it a 
permanent set 8P = 2 mm. Determine the maximum value of the force P and 
the maximum amount 8"' "by which the rod should be stretched to give it the 
desired permanent set. 

I 

l-
0.8m 

1_ 

40·mm 
diameter 

diameter 

Fig. P2.103 and P2.104 

2.104 Rod ABC consists of two cylindrical portions AB and BC; it is 
made of a mild steel that is assumed to be elastoplastic with E = 200 GPa and 
O'y = 250 MPa. A force Pis applied to the rod until its end A has moved down 
by an amount Bm = 5~-mm. Determine the maximum value of the force P and 
the permanent set of the rod after the force has been removed. 

B 

I 
LA 

p 

Fig. P2.1 01 and P2.1 02 

Problems 117 
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A 

.-- 9-mm diameter 

1.25 m 

l 

P' 

Fig. P2.109 

2.105 Rod AB is made of a mild steel that is assumed to be elastoplas
tic with E = 200 GPa and (r r = 345 MPa. After the rod has been attached to 
the rigid lever CD, it is found that end Cis 6 mm too high. A vertical force Q 
is then applied at C until this point has moved to position C'. Determine the 
required magnitude of Q and the deflection 81 if the lever is to snap back to a 
horizontal position after Q is removed . 

2.106 Solve Prob. 2.105, assuming that the yield point of the mild steel 
is 250 MPa. 

2.107 Rod AB consists of two cylindrical portions AC and BC, each 
with a cross-sectional area of 2950 mm2• Portion AC is made of a mild steel 
with E = 200 GPa and Ciy = 250 MPa, and portion CB is made of a high
strength steel with E = 200 GPa and a r = 345 MPa. A load P is applied at C 
as shown. Assuming both steels to be elastoplastic, determine (a) the maxi
mum deflection of C if Pis gradually increased from zero to 1625 kN and then 
reduced back to zero, (b) the maximum stress in each portion of the rod, (c) the 
permanent deflection of C. 

,. 

r 
320mm 

t-
320mm 

_L 8 

Fig. P2.107 

2. 108 For the composite rod of Prob. 2.107, if P is gradually increased 
from zero until the deflection of point C reaches a maximum value of 8m = 0.5 
mm and then decreased back to zero, determine (a).the maximum value of P, 
(b) the maximum stress in each. 

2.109 Two tempered-steel bars, each 4.76 mm thick, are bonded to a 
12.5-mm mild-steel bar. This composite bar is subjected as shown to a cen
tric axial load of magnitude P. Both steels are elastoplastic with E = 200 
GPa and with yield strengths equal to 690 MPa and 345 MPa, respectively, 
for the tempered and mild steel. The load Pis gradually increased from zero 
until the deformation of the bar reaches a maximum value 8m = 1.016 mm 
and then decreased back to zero. Determine (a) the maximum value of P, (b) 
the maximum stress in the tempered~steel bars, (c) the permanent set after 
the load is removed. 

2.11 0 For the composite bar of Prob. 2.109, if P is gradually increased 
from zero to 436 kN and then decreased back to zero, detennine (a) the max
imum deformation of the bar, (b) the maximum stress in the tempered~steel 
bars, (c) the permanent set after the load is removed. 



2.111 Each cable has a cross~sectional area of 100 mm2 and is made of 
an elastoplastic material for which O'y = 345 MPa and E = 200 GPa. A force 
Q is applied at C to the rigid bar ABC' and is gradually increased from 0 to 
50 kN al)d then reduced to zero. Knowing that the cables were initially taut, 
determine (a) the Inaximu.m stress that occurs in cable BD, (b) the maximum 
deflection of point C, (c) the final displacement of point C. (Hint: In part c, 
cable CE is not taut.) 

2.112 Solve Prob. 2.111, assuming that the cables· are replaced by rods 
of the same cross-sectional area and material. Further assume that the rods are 
braced so that they can carry compreSsive forces. 

2.113 A uniform steel rod of cross-sectional area A is attached to rigid 
supports and is unstressed at a temperature of 7°C. The steel is assumed 
to be elastoplastic with O'y =- 250 MPa and E = 200GPa. Knowing that 
a = 11.7 X 10-6/°C, determine the stress in the bar (a) when the temper
ature is raised to !60°C, (b) after the temperature has returned to 7°C. 

f.----L---1 
Fig. P2.113 

2.114 The steel rod ABC is attached to rigid supports and is unstressed 
at a temperature of 20°C. The steel is assumed elastoplastic, with 0' y = 250 
MPa and E = 200 GPa. The temperature of both portions of the rod is then 
raised to l20°C. Knowing that o: = 11.7 X 10-6;oC, determine (a) the stress 
in portion AC, (b) the deflection of point C. 

Fig. P2.114 

*2.115 Solve Prob. 2.114, assuming that the temperature of the rod is 
raised to l20°C and then returned to 20"C. 

2.116 The rigid bar ABC is supported by two links, AD and BE, of uni
fonn 37.5 X 6-mm rectangular cross section and made of a mild steel that is 
assumed to be elastoplastic with E =- 200 GPa and O'y = 250 MPa. The mag
nitude of the force Q applied at B is gradually increased from zero to 260 kN. 
Knowing that a = 0.640 m, detennine (a) the value of the normal stress in 
each link, (b) the maximum deflection of point B. 

2.117 Solve Prob. 2.116, knowing that a = 1.76 m and that the magni
tude of the force Q applied at B is gradually increased from zero to 135 kN. 

Problems 
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Ffg. P2.116 



120 Stress and Strain-Axial Loading *2.118 Solve Prob. 2.116, assuming that the magnitude of the force Q 
applied at B is gradually increased from zero to 260 kN and then decreased 
back to zero. Knowing that a = 0.640 m, determine (a) the residual stress in 
each link, (b) the final deflection of point B. Assume that the links are braced 
so that they can carry compressive forces without buckling. 

*2.119 A narrow bar of aluminum is bonded to the side of a thick steel 
plate as shown. Initially, at T1 = 21°C, all stresses are zero. Knowing that the 
temperature will be slowly raised to T2 and then reduced to T1, determine (a) the 
highest temperature T2 that does not result in residual stresses, (b) the temper
ature T2 that will result in a residual stress in the aluminum equal to 400 MPa. 
Assume o:., = 23 X 10-6/<>C for the aluminum and as = 11.7 X 10-6/<>C for 
the steel. Further assume that the aluminum is elastoplastic, withE= 75 GPa and 
Uy = 400 MPa. (Hint: Neglect the small stresses in the plate.) 

Fig. P2.119 

2.120 Bar AB has a cross-sectional area of 1200 mm2 and is made of a 
steel that is assumed to be elastoplastic withE = 200 GPa and O'y = 250 MPa. 
Knowing that the force F increases from 0 to 520 kN and then decreases to 
zero, determine (a) the permanent deflection of point C, (b) the residual stress 
in the bar. 

Fig. P2.120 

2.121 Solve Prob. 2.120, assuming that a= 180 mm. 

*2.122 For the composite bar of Prob. 2.109, determine the residual 
stresses in the tempered~steel bars if P is gradually increased from zero to 436 
kN and then decreased back to zero. 

*2.123 For the composite bar in Prob. 2.109, determine the residual 
stresses in the tempered-steel bars if P is gradually increased from zero until 
the defonnation of the bar reaches a maximum value Sm = 10 mm and is then 
decreitsed back to zero. 



This chapter· was devoted to the introduction ofthe.conc(;!pt-of Srrain, 
to the discussion of the relatio~ship between stress and ·strain in var~ 
ious types of materials, and to the determination of the_ 9.efoimations 
of structUral components under axial loading. . .. 

Considering a rod of length L and uniform cross section an~I de~ 
noting by 15 its deformation under an axial load I' (Fig. 2.1), We. de
fined the normal strain e in the rod as the deformation per unit length 
[Sec. 2.2]: · · 

15 
e=-

L 
(2.1) 

In the case of a rod of variable cross section, the normal strain was 
defined at any given point Q by considering a small element of rod 
at Q. Denoting by Ll.x the length of the element (U1d by .Ll.li its de
formation under the given load~ we wrote 

M do 
e = lim - = - (2.2) 

~x-1-0 Ax dx 

Normal strain 

L 

c J 
& 

A t 
r 

(b) 

B 

c 

Plotting the stress q versus the stfain e as the load increased,. we 
obtained a stresswstrain diagram for the material used [Sec. 2.3]. 
From such a diagram, we were able to distinguish between brittle 
and ductile materials: A specimen made of a brittle material ruptures 
without any noticeable prior change in the rate of elongation (Fig. 
2.11), while a specimen made of a ductile material yields after a crit
ical stress O'y, called the yield strength, has 'been reached, i.e., ·the 
specimen undergoes a large deformation before rupturing, with a rel
atively small increase in the applied load (Fig. 2.9). An example of 
brittle material with different properties in tension and in compres
sion was provided by concrete. 

Stress-strain diagram 
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122 Stress and Strain-Axia! Loading 

Fig. 2.17 
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Fig. 2.18 

Fatigue. Endurance limit 

Elastic deformation under axial loading 

We noted in Sec. 2.5 that the· initial portiOn Of the stre~s~straih 
diagram is a straight line. This means that for small deformations._ · 
the stress is directly proportional to the s~ain: 

O" = Ee ·. (2..4) .•... 

This relation is known as Hooke's law and the coefficient E as the 
modulus of elasticity of the material. The largest stress for which Eq. 
(2.4) applies is the proportional limit of the material. 

Materials considered up to this point were isotropic, i.e., their 
properties were independent of direction. In Sec. 2.5 we also cqn~ 
sidered a class of anisotropic materials, i.e., materials whose prop:
erties depend upon direction. They were.fi,bef-reinforced COmp_Os
ite materials, made of fibers of a strorig, stiff material embedded 
in layers of a weaker, softer material (Fig. 2.17). We saw that dif
ferent moduli of elasticity had to be used, depending tipbn the· di-
rection of loading. · · · 

. . . 

If the strains caused in a test specimen by the appliCation of a 
given load disappear when the load is removed, the material is said 
to behave elastically, and the largest stress for which this occurs is 
called the elastic limit of the material [Sec. 2.6]. If the elastic limit 
is exceeded, the stress and strain decrease in a linear fashion when 
the load is removed and the strain does not return to zero (Fig. 2.18), 
indicating th~t a permanent set or plaSti'C deformation of the mate..: 
rial has taken place. 

In Sec. 2.7, we discussed the phenomenon of fatigue, which 
causes the failure of structural or machine components after a very 
large number of repeated loadings, even though the stresses remain 
in the elastic range. A standard fatigue test consists in determining 
the number n of successive loading-and-unloading cycles required 
to cause the- failure of a specimen for any given maximum stress 
level a-, and plotting the resulting· a--n curve . .The value of O" for 
which failure does not occur, even for an indefinitely large number 
of cycles, is ~mown as _the endurance limit of the. material use~ }n 
the test. · · · 

Section 2.8 was devoted to the determination of the elastic de
formations of various types of machine and structural cOmPonents 
under various conditions of axial loading. We saw that if a rod of 

B length Land uniform cross section of area A is subjected at its end 
to a centric axial load P (Fig. 2.22), the corresponding deforma~ 
tion is 

L 

c 
0 

A t 
p 

Fig. 2.22 

c 

a= PL 
AE 

(2.7) 

If the rod is loaded at several points or consists of several parts· of 
various cross sections and possibly of different materials, the defor
mation a of the rod must be expressed as the sum of the deforma,
tions of its component parts [Example 2.0 I]: 

a= 2: P;L, 
i AiEi 

(2.8) 
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Section 2.9 was devoted to the solution of statically indetermi~ 
nate problems, i.e., problems in Which the reactions and the internal 
forces cannot be determined from statics alone. The equilibrium 
equations derived from the freeMbody diagram of the mefllber under 
consideration were complemented by relations involving deformaM 
tions and obtained from the geometry of the problem. The forces in 
the rOd and in the tube of Fig. 2.25a, for instance, weie.'determ.ined 
by obserVing, on one hand, that their sum· is equal to P, and on the 
other, that they cause equal deformations in the rod and in the tube 
[Example 2.02]. Similarly, the reactions at the supports of the bar of 
Fig. 2.26 could not be obtained from the free-body diagram of the 
bar alone [Example 2.03]; but they could be detennined by ex
pressi~g that the total elongation of the bar must be equal tp zero. 

In SeC. 2. 10, we considered problems involving temperature 
changes. We first observed that if the temperature of an unrestrained 
rod AB of length L is increased by ~ T, its elongation is 

or= a(flT)L (221) 

where a is the coefficient of thermal expansion of the materiaL We 
noted that the corresponding strain, called thermal strain, is 

€ 7 = a~r (2.22) 

and that no stress is associated with this strain. However, if the rod 
AB is restrained by fixed supports (Fig. 2.35a), stresses develop in 

A B 

Fig. 2.35a 

the rod as the temperature increases, because of the reactions at the 
supports. To deternline the magnitude P of the reactions, we detached 
the rod from its support at B (Fig. 2.36) and considered separately 
the deformation 8r of the rod as it expands freely because of the tem
perature change, and the deformation 8 p caused by the force P re
quired to bring it back to its original length, so that it may be reat
tached to the support at B. Writing that the total deformation 
8 = Br + 8p is equ'al to zero, we obtained an equation that could be 
solved for P. While the final strain in rod AB is clearly zero, this 
will generally not be the case for rods and bars consisting of ele~ 
ments of different cross sections or materials, since the deformations 
of the various elerfi'ents will usually not be zero [Example 2.06]. 

Review and Summary for Chapter 2 123 

Statically indeterminate problems 

(b) 

Problems with temperature changes 

kl 
Fig. 2.36 
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Latera! strain. Poisson's ratio 

Multiaxial loading 

Fig. 2.42 

Dilatation 

Bulk modulus 

Fig. 2.39a 

·-.When an axial load P is applied to a -homogeneous, slend~r bar 
(Fig. 239a), it causes a strain, not only along the axis of the bar but 
in any transverse direction as well [Sec. 2.11]. This strain is referre4 
to 'as 'the.lateral strain, 'and the ratio of the lateral Strain over ihe ax
ial .strain is called Poisson's ratio and is denoted by _v (Greek lett~r 
nu). We wrote· · · 

latetil strain 
axial strain 

(2.25) 

Recalling that the axial strain in the·.-bar is ex = · u ;;e,. We ex
pressed as follows the condition of strain under an axial loading in 
the x direction: 

cr, 
e=
' E 

(2.27) 

This result was extended in Sec. 2.12 to the case of a multiax~ 
ial loading causing the state of stress shown in Fig~ 2.42. The ·re
sulting strain condition was described by the following relatiOns, re
ferred to as the generalized Hooke's law for a multiaxialloading. 

O'x VO'y VO'~ 
€ = +----
' E E E 

VO'x _O'y VO'~ 
€ = --+-'---
' E E E 

vcr, 
€ =-
' E 

VUy . U~ -+
E E 

(2.28) 

If an element of material is subjected to the stresses Ux, cry; uz, 
it will defonn and a certain change of volume will result [Sec. 2.13]. 
The change in volume per unit volume is referred to as the dilata
tion of th_e material and is denoted by e. We showed that 

1- 2v . ' 
e = -E- (cr, + cr, + <J',) (2.31) 

When a material is subjected to a hydrostatic pressure p, we hilve 

p 
e = --

k 
(2.34) 

Where k is known as the bulk inodUlus of the material: 

k= E 
3(1 ~ 2v) 

(2.33) 



y 

Fig. 2.45 Fig. 2.47 

As we saw in Chap. ·1, the state ofstreSs in a material under the 
most general loading condition involves she~ng stresses, as well as 
normal stresses (Fig. 2.45). The shearing stresses tend to deform a 
cubic element of material into an oblique parallelepiped [Sec. 2.14]. 
Considering, for instance, the stresses ·r ;cy and 'Tyx shown in Fig. 2.47 
(which, we recall, are equal in _magnitude), we noted that they cause 
the angles fanned by the faces on which they act to ~ither increase 
or decrease by a small angle y xy; this angle, expressed in radians, de
fines the shearing strain corresponding to the· x and y directions. 
Defining in a similar way the shearing strains 'Yrz and 'Yw we wrote 
the relations 

'T:J.y = 0xr 'Tyz = Gyyz 'T ex == G'Yzx (236;-37) 

which are valid for any homogeneous isotropic material whhin its 
proportional limit in shear. The constant G is called the .·modulus of 
rigidity of the material and the relations obtained express Hooke's 
law for shearing stress and strain. Together with Eqs. (2.28), they 
form a group of equations representing the generalized HoOke's law 
for a homogeneous isotropic material under the most general stress 
condition. · 

We observed in Sec. 2.15 that while an axial load exerted on a 
slender bar produces only nonnal strains-both axial and transverse
on an element of material oriented along the axis of the bar, it will 
produce both normal and shearing strains on an element rotated 
through 45" (Fig. 2.53), We also noted that the three constants E, 

(a) _,...- (b) 

Fig. 2.53 
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Fiber-reinforced composite materials 

Saint-Venant's principle 

Stress concentrations 

Plastic deformations 

v, and G are not independent; they satisfy the relation. 

E 
-= 1 +v 
2G 

(2.43) 

which may be used to determine any of the three constants in tenus 
of the other two. 

Stress-strain relationships for fiber-reinforced composite mate
rials were discussed in an optional section (Sec. 2.16). Equations 
similar to Eqs. (2.28) and (2.36, 37) were derived for these materi
als, but we noted that direction-dependent moduli of elasticitj, Pois
son's ratios, and moduli of rigidity had to be used. 

In Sec. 2.17, we discussed Saint-Venant's principle, which states 
that except in the immediate vicinity of the points of application of 
the loads, the distribution of stresses in a given member is independent 
of the actual mode of application of the loads. This principle makes 
it possible to assume a unifonn distribution of stresses in a member 
subjected to concentrated axial loads, except close to the points of 
application of the loads, where stress concentrations will occur. 

Stress concentrations. will also occur in structural members near 
a discontinuity, such as a hole or a sudden change in cross section 
[Sec. 2.18]. The ratio of the maximum value of the stress occuning 
near the discontinuity over the average stress computed in the criti
cal section is referred to as the stress-concentration factor of the dis~ 
continuity and is denoted by K: 

(2.48) 

Values of K for circular holes and fillets in flat bars were given in 
Fig. 2.64 on p. 108. 

In Sec. 2.19, we discussed the plastic deformations which occur 
in structural members made of a ductile material when the stresses 
in some part of the member exceed the yield strength of the mate
rial. Our analysis was carried out for an i9ealized elastoplastic ma
terial characterized by the stress~ strain diagram shown in Fig. 2.65 

A D 
Fig. 2.65 

[Examples 2.13, 2.!4, and 2.15]. Finally, in Sec. 2.20, we observed 
that when an indeterminate structure undergoes plastic defonnations, 
the stresses do not, in general, returri to zero after the load has. been 
removed. The ·stresses remaining in the various parts of the structure 
are called residual stresses and may be detennined by adding the 
maximum stresses reached during the loading phase and the reverse 
stresses corresponding to the unloading phase [Example 2.16], 



2.124 The brass stripAB has been attached to a fixed support atil and 
rests on a rough support at B. Knowing that the coefficient of friction is 0.60 
between the strip and the support at B, determine the decrease in temperature 
for which slipping will impend. 

Brass strip: 
E=l05GPa 
o: ""'20 X l0-6f'C 

Fig. P2.124 

2.125 Link BD is made of brass (E = 105 GPa) and has a cross-sectional 
area of 250 mm2

• Link CE is made of aluminum (E = 72 GPa) and has a cross
sectional area of 450 mm2

. Determine the maximum force P that can be 
applied vertically at point A if the deflection of A is not to exceed 0.35 mm. 

2.126 The uniform wire ABC, of unstretched length 2l, is attached to 
the supports shown, and a vertical load Pis applied at the midpoint B. Denot
ing by A the cross-sectional area of the wire and by E the modulus of elastic
ity, show that, for 8 << l, the deflection at the midpoint B is 

al A 

Fig. P2.126 

a ~1,/? 
\jA£ 

B 

p 

c 

2.127 Two cylindrical rods, CD made of steel (E = 200 GPa) and AC 
made of aluminum (£ = 72 GPa), are joined at C and restrained by rigid sUp
ports at A and D. Determine (a) the reactions at A and D, (b) the deflection of 
point C. 

2.128 The concrete post (Ec = 25 GPa and ac = 9.9 X 10-6fOC) is re
inforced with six steel bars, each of 22-mm diameter (E, 200 GPa and 
as = 11.7 X 10-6;oc;;, Determine the normal stresses induced in the steel and 

Fig. P2.127 

in the concrete by a temperature rise of 35°C. Fig. P2. 128 

mm 

127 
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25 

Fig. P2.129 

Fig. P2.131 

2.129 The block shown is made of a magnesium alloy for which 
E = 45 GPa and v = 0.35. Knowing that cr .. = -140 MPa, determine (a) the 
magnitude of a Y for which the ch<Ulge in the height of the block will be zero, 
(b) the corresponding ch<Ulge in the area of the face ABCD, (c) the correspon
ding change in the volume of the block. 

''-
100 kN 

A t 

Fig. P2.130 

2.130 Knowing that E = 200 GPa, determine (a) the value of() for which 
the deflection of point B is down and to the left along a line forming an angle of 
36° with the horizontal, (b) the corresponding magnitude .of the deflection of B. 

2.131 Steel wires of 3.25-rnm diameter are used at A and B while an 
aluminum wire of 2-mm diameter is used at C. Knowing that each wire is ini
tially taut, determine the additional tension in each wire when a 900-N force 
Pis applied to the midpoint of the lower edge of the plate. UseE_. = 200 GPa 
for steel and Ea = 70 GPa for aluminum. 

2.132 The steel bars BE and AD each have a 6 X 18-mm cross section. 
Knowing that E = 200 GPa, determine the deflections of points A, B, and C 
of the rigid bar ABC. 

2.133 In Prob. 2.132, the 3.2-kN force caused point C to deflect to the 

3.2kN 

Fig. P2.132 

right. Using a= 11.7 X 1<f'/°C, detennine (a) the overall change in temper
ature that causes point C to return to its original position, (b) the corresponding 
total deflection of points A and B. 



2.134 The steel tensile specimen ABCD (E = 200 GPa and crv = 350 
MPa) is loaded in tension until the maximum strain is € = 0.0025. '(a) Ne
glecting the effect of the fillets on the ·change in length of the specimen, de~ 
termlne the resulting overall length AD of the specimen after the load is 
removed. (b) Foliowing the removal of the load in part a, a compressive load 
is applied until the maximum compressive stfain is € = 0.0020. Determine the 
resulting change in length AD after the compressive load is removed. 

2.135 The uniform rod BC h<!s a cross-sectional area A and is made of 
a mild steel that can be assumed to be elastoplastic with a modulus of elasticity 
E and a yield strength cry. Using the block..:and-spring system shown, it is de
sired to simulate the deflection of end C of the rod as the axial force P is grad
ually applied and removed; that is, the deflection of points C and C' should be 
the same for all values of P. Denoting by f.L the coefficient of friction between 
the block and the horizontal surface, derive an expression for (a) the required 
mass m of the block, (b) the required constant k of the spring. 

1-<---L------.j 

Fig. P2.135 

The following problems are designed to be solved with a computer. Write 
each program so that it can be used with SI units and in such a way that 
solid cylindrical elements may be defined by either their diameter or their 
crossMsectional area. 

Fig. P2.134 

2.C1 A rod consisting of n elements, each of which is homogeneous 
and of uniform cross section, is subjected to the loading shown. The length 
of element i is denoted by L1, its cross-sectional area by A1, modulus of elas
ticity by E1, and the load applied to its right end by P11 the magnitude P1 of Fig. P2.C1 
this load being assumed to be positive if P1 is directed to the right and neg-
ative otherwise. (a) Write a computer program that can be used to determine 
the average normal stress in each element, the deformation of each element, 
and the total deformation of the rod. (b) Use this program to solve Probs. 
2.18 and 2.19. 

Computer Problems 129 
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Fig. P2.C2 

Fig. P2.C4 

Fig. P2.C6 

2.C2 Rod AB is horizontal with both ends flxed; it consists of n ele~ 
ments, each of which is homogeneous and of uniform cross section, and is sub~ 
jected to the loading shown. The length of element i is denoted by L;, its 
cross-sectional area by A1, its modulus of elasticity by E1, and the load applied 
to its right end by P1, the magnitude P; of this load being assumed to be pos
itive if P1 is directed to the right and negative otherwise. (Note that P1 = 0.) 
(a) Write a computer program that can be used to determine the reactions at A 
and B, the average normal stress in each element, and the deformation of each 
element. (b) Use this program to solve Probs. 2.39 and 2.40. 

2.C3 Rod AB consists of n elements, each of which is homogeneous and 
of uniform cross section. End A is fixed, while initially there is a gap 80 be
tween end B and the fixed vertical surface on the right. The length of element 
i is denoted by L;, its cross-sectional area by A1, its modulus of elasticity by E1, 

and its coefficient of thennal expansion by a1• After the temperature of the rod 
has been increased by AT, the gap at B is closed and the vertical surfaces 
exert equal and opposite forces on the rod. (a) Write a computer program that 
can be used to determine the magnitude of the reactions at A and B, the nor
mal stress in each element, and the deformation of each element. (b) Use this 
program to solve Probs. 2.52, 2.53, 2.55, and 2.57. 

2.C4 Bar AB has a length L and is made of two different materials of 
given cross-sectional area, modulus of elasticity, and yield strength. The bar is 
subjected as shown to a load P that is gradually increased from zero until the 
deformation of the bar has reached a maximum value Bm and then decreased 
back to zero. (a) Write a compmer program that, for each of 25 values of 8m 
equally spaced over a range extending from 0 to a value equal to 120% of the 
deformation causing both materials to yield, can be used to determine the max
imum value Pm of the load, the maximum normal stress in each material, the 
permanent defonnation 8P of the bar, and the residual stress in each material. 
(b) Use this program to solve Probs. 2.109 and 2.110. 

Fig. P2.C5 

2.C5 The plate has a hole centered across the width. The stress con
centration factor for a flat bar under axial loading with a centric hole is: 

(2') (2')' (2')' K"" 3.00-3.13 D + 3.66 D - 1.53 15· 

where r is the radius of the hole and D is the width of the bar. Write a com
puter program to detennine the allowable load P for the given values of r, D, 
the thickness t of the bar, and the allowable stress a , 11 of the material. Know
ing that r = 6 mm, D = 75 mm and a~H = 110 MPa, detennine the allowable 
load P for values of t from 3 mm to 18 mm, using 3 mm increments. 

2.C6 A solid truncated cone is subjected to an axial force P as shown. 
The exact elongation is (PL)/(21Tc2E). By replacing the cone by n circular cylin
ders of equal thickness, write a computer program that can be used to calculate 
the elongation of the truncated cone. What is the percentage error in the answer 
obtained from the program using (a) n = 6, (b) n = 12, (c) n = 60. 
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This chapter is devOted to the study of torsion and of the stresses and deformations it causes. In the 
hydroelectric plant-shown here turbines exert torques on the vertical shafts that turn the rotors of electric 
generators. 
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Fig. 3.1 

3.1. INTRODUCTION 

In the two preceding chapters you studied how to calculate the stresses 
and strains in structural members subjected to axial loads, that is, to 
forces directed along the axis of the member. In this chapter struc
tural members and machine parts that are in torsion will be consid
ered. More specifically, you will analyze the stresses and strains in 
members of circular cross section subjected to twisting couples, or 
torques, T and T' (Fig. 3.1). These couples have a common magni
tude T, and opposite senses. They are vector quantities and can be 
represented either by curved arrows as in Fig. 3.1a, or by couple vec
tors as in fig. 3.lb. 

Members in torsion are encountered in many engineering applica
tions. The most common application is provided by transmission shafts, 
which are used to transmit power from one point to another. For ex
ample, the shaft shown in Fig. 3.2 is used to transmit power from the 
engine to the rear wheels of an automobile. These shafts can be either 
solid, as shown in Fig. 3.1, or hollow. 

Fig. 3.2 In the automotive power train shown, the shaft transmits power from the 
engine to the rear wheels. 



Generator 

Fig. 3.3 

Consider the system shown in Fig. 3.3a, which consists of a steam 
turbine A and an electric generator B connected by a transmission 
shaft AB. By breaking the system into its three component parts (Fig. 
3.3b), you can see that the turbine exerts a twisting couple or torque 
T on the shaft and that the shaft exerts an equal torque on the gen~ 
erator. The generator reacts by exerting the equal and opposite torque 
T' on the shaft, and the shaft by exerting the torque T' on the 
turbine. 

You will first analyze the stresses and deformations that take place 
in circular shafts. In Sec. 3.3, an important property of circular shafts 
is demonstrated: When a circular shaft is subjected to torsion, every 
cross section remain$ plane and undistorted. In other words, while the 
various cross sections along the shaft rotate through different angles, 
each cross section rotates as a solid rigid slab. This property will en~ 
able you to determine the distribution of shearing strains in a circular 
shaft and to conc!u,de that the shearing strain varies linearly with the 
distance from the axis of the shaft. 

3.1. Introduction 133 



134 Torsion Considering deformations in the elastic range and using Hooke's 
law for shearing stress and strain, you will determine the distribution 
of shearing stresses in a circular shaft and derive the elastic torsion for
mulas (Sec. 3.4). 

In Sec. 3.5, you will learn how to find the angle of twist of a cir
cular shaft subjected to a given torque, assuming again elastic defor
mations. The solution of problems involving statically indeterminate 
shafts is considered in Sec. 3.6. 

In Sec. 3.7, you will study the design of transmission shafts. In or
der to accomplish the design, you will learn to determine the required 
physical characteristics of a shaft in terms of its speed of rotation and 
the power to be transmitted. 

The torsion formulas cannot be used to determine stresses near sec
tions where the loading couples afe applied or near a section where an 
abrupt change in the diameter of the shaft occurs. Moreover, these for-
mulas apply only within the elastic range of the material. 

In Sec. 3.8, you will learn how to account for stress concentrations 
where an abrupt change in diameter of the shaft occurs. In Sees. 3.9 to 
3. 11, you will consider stresses and deformations in circular shafts made 
of a ductile material when the yield point of the material is exceeded. 
You will then learn how to detennine the permanent plastic deforma
tions and residual stresses that remain in a shaft after it has been loaded 
beyond the yield point of the material. 

In the last sections of this chapter, you will study the torsion of 
noncircular members (Sec. 3.12) and analyze the distribution of stresses 
in thin-walled hollow noncircular shafts (Sec. 3.13). 

3.2. PRELIMINARY DISCUSSION OF THE STRESSES 
IN A SHAFT 

Considering a shaft AB subjected at A and B to equal and opposite 
torques T and T', we pass a section perpendicular to the axis of the 
shaft through some arbitrary point C (Fig. 3.4). The free-body diagram 
of the portion BC of the shaft must include the elementary shearing 
forces dF, perpendicular to the radius of the shaft, that portion AC ex-

Fig. 3.4 



erts on BC as the shaft is twisted (Fig. 3.5a). But the conditions of equi
librium for BC require that the sys.tem of these elementary forces be 
equivalent to an internal torque T, equal and opposite toT' (Fig. 3.5b). 
Denoting by p the perpendicular distance from the force dF to the axis 
of the shaft, and expressing that the sum of the moments of the shear
ing forces dF about the axis of the shaft is equal in magnitude to the 
torque T, we write 

fpdF = T 
. / 

or, since dF = r dA, where r is the shearing stress ori the element of 
area dA, 

fp(TdA)=T (3.1) 
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W.hile the relation obtained expresses an important condition that 
must be satisfied by the shearing stresses in any given cross section of 
the shaft, it does not tell us how these stresses are distributed in the Fig. 

3·5 

cross section. We thus observe, as we already did in Sec. 1.5, that the 
actual distribution of stresses under a given load is statically indeter-
minate', i.e., this distribution cannot be determined by the methods of 
statics. However, having assumed in Sec. 1.5 that the normal stresses 
prOduced by an axial centric load were uniformly distributed, we found 
later (Sec. 2. 17) that this assumption was justified, except ir; the neigh-
borhood of concentrated loads. A similar assumption with respect to the 

~ 
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Axis of shaft ·-- . .._ 

Fig. 3.6 

distribution of shearing stresses in an elastic shaft would be wrong. We 
must withhold any judgment regarding the distribution of stresses in a 
shaft until we have analyzed the deformations that are produced in the 
shaft. This will be done in the next section. 

One more observation should be made at this point. As was indi~ 
cated in Sec. 1.12, shear cannot take place in one plane only. Consider 
the very small element of shaft shown in Fig. 3.6. We know that the 
torql!e applied to the shaft produces shearing stresses 7 on the faces 
perpendicular to the axis of the shaft. But the conditions of equilibrium 
discussed in Sec. 1.12 require the existence of equal stresses on the 
faces formed by the two planes containing the axis of the shaft. That 
such shearing stresses actually occur in torsion can be demonstrated. 
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B 

Fig. 3.8 

(b) 

Fig. 3.9 

Fig. 3.7 

by considering a "shaft" made of separate slats pinned at both ends to 
disks as shown in Fig. 3.7a. If markings have been painted on two adH 
joining slats, it is observed that the slats slide with respect to each other 
when equal and opposite torques are applied to the ends of the "shaft" 
(Fig. 3.7b). While sliding will not actually take place in a shaft made 
of a homogeneous and cohesive material, the tendency for sliding will 
exist, showing that stresses occur on longitudinal planes as well as on 
planes perpendicular to the axis of the shaft. t 

3.3. DEFORMATIONS IN A CIRCULAR SHAFT 

Consider a circular shaft that is attached to a fixed support at one end 
(Fig. 3.8a). If a torque Tis applied to the other end, the shaft will twist, 
with its free end rotating through an angle 4> called the angle of twist 
(Fig. 3.8b). Observation shows that, within a certain range of values of 
T, the angle of twist ¢ is proportional to T. It also shows that ¢ is pro
portional to the length L of the shaft. In other words, the angle of twist 
for a shaft of the same material and same cross section, but twice as 
long, will be twice as large under the same torque T. One purpose of 
our analysis will be to find the specific relation existing among ¢, L, 
and T; another purpose will be to determine th.e distribution of shear
ing stresses in the shaft, which we were unable to obtain in the pre
ceding section on the basis of statics alone. 

At this point, an important property of circular shafts should be 
noted: When a circular shaft is subjected to torsion, every cross section 
remains plane and undistorted. In other words, while the various cross 
sections along the shaft rotate through different amounts, each cross 
section rotates as a solid rigid slab. This is illustrated in Fig. 3.9a, which 
shows the deformations in a rubber model subjected to torsion. The 
property we are discussing is characteristic of circular shafts, whether 
solid ·or hollow; it is not enjoyed by members of noncircular cross sec~ 
tion. For example, when a bar of square cross section is subjected 
to torsion, its various cross sections warp and do not remain plane 
(Fig. 3.9b). 

tThe twisting of a cardboard tube that has been slit lengthwise provides another demon~ 
stration of the existence of shearing stresses on longitudinal planes. 



The cross sections of a circular shaft remain plane and undistorted 
because a circular shaft is axisymmetric, i.e., its appearance remains the 
same when it is viewed from a fixed position and rotated about its axis 
through· an arbitrary angle. (Square bars, on the other hand, retain 
the same appearance only if they are rotated through 90° or 180c .) 
As we will see presently, the axisymmetry of circular shafts may be 
used to prove theoretically that their cross sections remain plane and 
undistorted. . 

Consider the points C and D located on the circumference of a 
given cross section of the shaft, arid let C' and D' be the positions they 
will occupy after the shaft has been twisted (Fig. 3.10a). The axisym
metry of the shaft and of the loading requires that the rotation which 
would have brought D into C should now bring D' into C'. Thus, C' 
and D' must lie on the circumference of a circle, and the arc C' D' must 
be equal to the arc CD (Fig. 3.!0b). We will now examine whether the 
circle on which C' and D' lie is different from the original circle. Let 
us assume that C' and D' do lie on a different circle and that the new 
circle is located to the left of the original circle, ·as shown in Fig. 3.10b. 
The same situation will prevail for any other cross section, since all the 
cross sections of the shaft are subjected to the same internal torque T, 
and an Observer looking at the shaft from its end A will conclude that 
the loading causes any given circle drawn on the shaft to move away. 
But an observer located at B, to whom the given loading looks the same 
(a clockwise couple in the foreground and a cOunterclockwise couple 
in the background) will reach the opposite conclusion, i.e., that the cir
cle moves toward him. This contradiction proves that our assumption 
is wrong and that C and D' lie on the same circle as C and D. Thus, 
as the shaft is twisted, the original circle just rotates in its own plane. 
Since the same reasoning may be applied to any smaller, concentric cir
cle located in the cross section under consideration, we conclude that 
the entire cross section remains plane (Fig. 3.11). 

The above argument does not preclude the possibility for the var
ious concentric circles of Fig. 3.11 to rotate by different amounts when 
the shaft is twisted. But if that were so, a given diameter of the crosl:> 
section would be distorted into a curve which might look as shown in 
Fig. 3.12a. An observer looking at this curve from A would conclude 
that the outer layers of the shaft get more twisted than the inner ones, 
while an observer looking from B would reach the opposite conclusion 
(Fig. 3.12b). This inconsistency leads us to conclude that any diame
ter of a given cross section remains straight (Fig. 3.12c) and, there
fore, that any given cross section of a circular shaft remains plane and 
undistorted. 

(a)/ (b) 

Fig. 3.12 
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(a) 

(b) 

Fig. 3.10 

Fig. 3.11 

(c) 
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(b) 

Fig. 3.13 

ld I 

~ 
Fig. 3.14 

Our discussion so far has ignored the mode of application of the 
twisting couples T and T'. If all sections of the shaft, from one end to 
the other, are to remain plane and undistorted, we must make sure that 
the couples are applied in such a way that the ends of the shaft them
selves remain plane and undistorted. This may be accomplished by ap
plying the couples T and T' to rigid plates, which are solidly attached to 
the ends of the Shaft (Fig. 3.13a). We can then be sure that all sections 
will remain plane and undistorted when the loading is applied, and that 
the resulting deformations will occur in a uniform fashion throughout 
the entire length of the shaft. All of the equally spaced circles shown 
in Fig. 3.13a will rotate by the same amount relative to their neighbors, 
and each ·af the straight lines will be transformed into a curve (helix) 
intersecting the various circles at the same angle (Fig. 3.13b). 

The derivations given in this and the following sections will be 
based on the assumption of rigid end plates. Loading conditions en
countered in practice may differ appreciably from those corresponding 
to the model of Fig. 3.13. The chief merit of this model is that it helps 
us define a torsion problem for which we can obtain an exact solution, 
just as the rigid-end-plates model of Sec. 2.17 made it possible for us 
to define an axial-load problem which could be easily and accurately 
solved. By virtue of Saint-Venant's principle, the results obtained for 
our idealized model may be extended to most engineering applications. 
However, we should keep these results associated in our mind with the 
specific model shown in Fig. 3.13. 

We will now determine the distribution of shearing strains in a cir
cular shaft of length L and radius c which has been twisted through an 
angle¢ (Fig. 3.14a). Delaching from the shaft a cylinder of radius p, 
we consider the small square element formed by two adjacent circles 
and two adjacent straight lines traced on the surface of the cylinder be~ 
fore any load is applied (Fig. 3.14b). As the shaft is subjected to a tor
sional load, the element deforms into a rhombus (Fig. 3.14c). We now 
recall from Sec. 2.14 that the shearing strain y in a given element is 
measured by the change in the angles formed by the sides of that ele
ment. Since the circles defining two of the sides of the element con
sidered here remain unchanged, the shearing strain y must be equal to 
the angle between lines AB and A'B. (We recall that y should be ex~ 

1 pressed in radians.) 
We observe from Fig. 3.14c that, for small values of y, we can ex~ 

press the arc length AA' as AA' = Ly. But, on the other hand, we have 
AA' = p¢. It follows that Ly = p¢, or 

(3.2) 

where y and 4> are both expressed in radians. The equation obtained 
shows, as we could have anticipated, that the shearing strain y at a given 
point of a shaft in torsion is proportional to the angle of twist</>. It also 
shows that y is proportional to the distance p from the axis of the shaft 
to the point under consideration. Thus, the shearing strain in a circu
lar shaft varies linearly with the distance from the axis of the shaft. 



It follows from Eq, (3.2) thanhe shearing strain is maximum on 
the surface of the shaft, where p = .c, We have 

c¢ 
'Ymax = L (3.3) 

Eliminating¢ from Eqs. (3.2) and (3.3), we can express the shearing 
strain y at a distance p from the axis of the shaft as 

.P 
Y = C'Ymax (3.4) 

3.4. STRESSES IN THE ELASTIC RANGE 

No particular stress~strain relationship has been assumed so far in our 
discussion of circular shafts in torsion, Let uS now consider the case 
when the torque T is such that all shearing stresses in the shaft remain 
below the yield strength Ty. We know from Chap. 2 that, for all practi
cal purposes, this means that the stresses in the shaft will remain be
low the proportional limit and below the elastic limit as well. Thus, 
Hooke's law will apply and there will be no permanent deformation. 

Recalling Hooke's law for shearing stress and strain fron:t Sec. 2.14, 
we write 

T ~ Gy (3.5) 

where G is the modulus of rigidity or shear modulus of the material. 
Multiplying both members of Eq. (3.4) by G, we write 

p 
Gy = C G'Ymax 

or, making use of Eq. (3.5), 

p 
T=crmax (3.6) 

The equation obtained shows that, as long as the yield strength (or pro~ 
portionallimit) is not exceeded in any part of a circular shaft, the shear
ing stress in the shaft varies linearly with the distance p from the axis 
of the shaft. Figure 3.15a shows the stress distribution in a solid circu~ 
lar shaft of radius c, and Fig. 3.15b in a hollow circular shaft of inner 
radius c1 and outer radius c2• From Eq. (3.6), we find that, in the latter 
case, 

c, 
Tmin = -Tmax c, (3.7) 

3.4. Stresses in the Elastic Range 139 
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140 Torsion T 

(a) 

Fig. 3.15 (repeated) 

We now recall from Sec. 3.2 that the sum of the moments of the 
elementary forces exerted on any cross section of the shaft must be 
equal to the magnitude T of the torque exerted on the shaft: 

Jp(TdA)=T 

Substituting forT from (3.6) into (3.1), we write 

T max 2 
T= fpTdA = -Jp dA 

c 

(3.1) 

But the integral in the last member represents the polar moment of 
inertia J of the cross section with respect to its center 0. We have 
therefore 

or, solving for Tmax> 

Tmaxl 
T=-

c 

Tc 
Tmax = J 

(3.8) 

(3.9) 

Substituting forT max from (3.9) into (3.6), we eJ<:press the shearing stress 
at any distance p from the axis of the shaft as 

Tp 
r=-

J 
(3.10) 

Equations (3.9) and (3.10) are known as the elastic torsion formulas. 
We recall from statics that the polar moment of inertia of a circle of ra* 
dius cis J = ! wc4

. In the case of a hollow circular shaft of inner ra
dius c1 and outer radius c2, the polar moment of inertia is 

(3.11) 

We note that Twill be expressed in N · m, c or p in meters, and J 
in m4

; we check that the resulting shearing stress will be expressed in 
N/m2

, that is, pascals (Pa). 



\ 

lTmax 
T~-

c 
(3.12) 

A hollow cylindrical steel shaft is 1.5 m long and has inner 
and outer diamet~rs respectively equal to 40 and 60 mm (Fig. 
3.16). (a) What is the largest torque that can be applied to the 
shaft i.f the sQearing stress is not to exceed 120 MPa? (b) What 
is the corresponding minimum value of the shearing stress in 
the shaft? 

Recalling that the polar moment of inertia J of the cross sec~ 
tion is given by Eq. (3.11), where c1 = !(40 mm) = 0.02 m 
and c2 = !(60 mm) = 0.03 m, we write 

Substituting for J and Tmnx into (3.12), and letting c = c2 

= 0.03 m, we have 

hmaK (1.021 X 10-6 m4){120 X 106 Pa) 
T ~ - ~ =:.cc:.__.c..-:-:-:c'-'----'-'-C-'-' 

c 0.03 m 

= 4.08kN · m 

Fig. 3.16 

(a) Largest Permissible Torque. The largest torque 
T that can be applied to the shaft is the torque for which 
r max = 120 MPa. Since this value is less than the yield strength 
for steel, we can use Eq. (3.9). Solving this equation forT, we 
have 

(b) Minimum Shearing Stress. TI1e minimum value 
of the shearing stress occurs on the inner surface of the shaft. 
It is obtained from Eq. (3.7), which expresses that -r min and 
r m"x are respectively proportional to c1 and c2: 

c1 0.02 m 
Tmin = -rm"x = -,-(120MPa) = 80MPa 

c2 0.0-' m 

The torsion formulas (3.9) and (3.10) were derived for a shaft of 
unifotm circular cross section subjected to torques at its ends. However, 
they can also be used for a shaft of variable cross section or for a shaft 
subjected to torques at locations other than its ends (Fig. 3.17a). The 
distribution of shearing stresses in a given cross section S of the shaft is 
obtained from Eq. (3.9), where J denotes the polar moment of inertia of 
that section, and where T represents the internal torque in that section. 
The value ofT is obtained by drawing the free-body diagram of the por
tion of shaft located on one side of the section (Fig. 3.17b) and writing 
that the sum of the torques applied to that portion, including the inter
nal torque T, is zero (see Sample Prob. 3.1) . 

. Up to this point, our analysis of stresses in a shaft has been lim
ited to shearing stresses. This is due to the fact that the element we had 
selected was oriented in such a way that its faces were either parallel 
or perpendicular to the axis of the shaft (Fig. 3.6). We know from ear
lier discussions (Sees. 1.11 and 1.12) that normal stresses, shearing 
stresses, or a combination of both may be found under the same load
ing condition, depe~ing upon the orientation of the element which has 

Fig. 3.17 

T 

s 
(b) 
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142 Torsion been chosen. Consider the two elements a and b Ioqated on the surface 
of a circular shaft subjected to torsion (Fig. 3.18). Since the faces of 
element a are respectively parallel and perpendicular to the axis of the 

;'--------f~ T shaft, the only stresses on the element will be the shearing stresses de~ 
fined by formula (3.9), namely 'T max = Tel J. On the other hand, the 
faces of element b, which form arbitrary angles with the axis of the 
shaft, will be subjected to a combination ofnonnal and shearing stresses. 

Fig. 3.18 

(a) (b) 

Fig. 3.19 

Fig. 3.20 

Fig. 3.21 

Let us consider the particular case of an element c (not shown) at 
45° to the axis of the shaft. In order to determine the stresses on the . 
faces of this element, we consider the two triangular elements shown in 
Fig. 3.19 and draw their free~ body diagrams. In the case of the element 
of Fig. 3.19a, we know that the stresses exerted on the faces BC and 
BD are the shearing stresses 'T max = Tel J. The magnitude of the corre~ 
spending shearing forces is thus 'Tmax.Ao, where A0 denotes the area of 
the face. Observing that the components along DC of the two shearing 
forces are equal and opposite, we conclude that the force F exerted on 
DC must be perpendicular to that face. It is a tensile force, and its mag~ 
nitude is 

(3. 13) 

The con·esponding stress is obtained by dividing the force F by the area 
A of face DC. Observing that A ~ A0 Vl, we write 

(3.14) 

A similar analysis of the element of Fig. 3.19b shows that the stress on 
the face BE is u = -T max· We conclude that the stresses exerted on the 
faces of an element c at 45° to the axis of the shaft (Fig. 3.20) are nor~ 
mal stresses equal to ±'T max. Thus, while the element a in Fig. 3.20 is 
in pure shear, the element c in the same figure is subjected to a tensile 
stress on two of its faces, and to a compressive stress on the other two. 
We also note that all the stresses involved have the same magnitude, 
Tc!J.t 

As you learned in Sec. 2.3, ductile materials generally fail in shear. 
Therefore, when subjected to torsion, a specimen J made of a ductile 
material breaks along a plane perpendicular to its longitudinal axis (Fig. 
3.21a). On the other hand, brittle materials are weaker in tension than 
in shear. Thus, when subjected to torsion, a specimen made of a brittle 
material tends to break along surfaces which are perpendicular to the 
direction in which tension is maximum, i.e., along surfaces forming a 
45° angle with the longitudinal axis of the specimen (Fig. 3.2lb). 

tSiresses on elements of arbitrary orientation, such as element b of Fig. 3.18, will be dis
cussed in Chap. 7. 



T 8 =l4kN·m 

Tc = 26 kN · m 

T0 =6kN-m 

c1 =45mm 

""'cz=60mm 

B 

SAMPlE PROBlEM 3.1 
Shaft BC is hollow with inner and outer diameters of 90 mm and 120 mm, re
spectively. Shafts AB and CD are solid and of diameter d. For the loading 
shown, determine (a) the maximum and minimum shearing stress in shaft BC, 
(b) the required diameter d of shafts AB and CD if the allowable shearing stress 
in these shafts is 65 MPa. 

SOLUTION 

Equations of Statics. Denoting by TAB the torque in shaft AB, we pass a 
section through shaft AB and, for the free body shown, we write 

(6 kN · m) - T" ~ 0 TAB 6k.N•m 

We now pass a sectjon through shaft BC and, for the free body shown, we have 

(6kN · m) + (I4kN · m)- T8c~ 0 T8c = 20 kN · m 

a. Shaft BC. For this hollow shaft we have 

J ~ %(cj - cj) ~ %[(0.060)'- (0.045)'] ~ 13.92 x I0-6 m' 

Maximum Shearing Stress. On the outer surface, we have 

T8cc, (20 kN · m)(0.060 m) 
'Tma~ = 86.2 MPa <I Tmax = 7 z = --1- l3.9Z X 10-6 m4 

Minimum Shearing Stress. We write that the stresses are proportional 
to the distance from the axis of the shaft. 

'Tmin = :i 
1'max Cz 

'Tmin 45mm 
86.2 MPa = 60 mm 

'Tmin = 64.7 MPa <il 

b. Shafts AB and CD. We note that in both of these shafts the magni
tude of the torque is T = 6 kN · m and -r ~11 = 65 MPa. Denoting by c the ra
dius of the shafts, we write 

Tc 
-r=-

J 
65MPa ~ (6kN. m)c 

:!!.. c4 
2 

c3 = 58.8 X 10-6 m3 c = 38.9 X 10-3 m 

d ~ 2c ~ 2(38.9 mm) d ~ 77.8 mm <l 
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SAMPLE PROBLEM 3.2 
The preliminary design of a large shaft connecting a motor to a generator calls 
for the use of a hollow shaft with inner and outer diameters of 100 mm and 
150 mm, respectively. Knowing that the allowable shearing stress is 84 MPa, 
determine the maximum torque that can be transmitted (a) by the shaft as de~ 
signed, (b) by a solid shaft of the same weight, (c) by a hollow shaft of the same 
weight and of 200-mm outer diameter. 

SOLUTION 

a. Hollow Shaft as Designed. For the hollow shaft we have 

1 ~ %(cj- cj) ~ %[(75 mm)'- (50 mm)') ~ 39.88 X 106 mm' 

Using Eq. (3.9), we write 

Tc, 
Tmax=J 

T(75 mm) 
84 MPa ~ -::::-::-:-":--'7.-:c 

39.88 X 106 mm' 
T ~ 44.7 kN · m 41 

b. Solid Shaft of Equal Weight. For the shaft as designed and this solid 
shaJt to have the same weight and length, their cross-sectional areas must be 
equal. 

Ata) = AtbJ 
w[(75 mm)' - (50 mm)'J ~ wcj 

Since T uu = 84 MPa, we write 

Tc; 
'fmax=J 84 MPa~ T(55.9mm) ,. 

2(55.9 mm)' 

c3 = 55.9mm 

T~ 23.1 kN· m 41 

c. Hollow Shaft of 200~mm Diameter. For equal weight, the cross~sec
tional areas again must be equal. We determine the inside diameter of the shaft 
by writing 

A(a) =A(c) 

w[(75 mm)' (50 mm)') ~ w[(lOO mm)'- cl) c5 = 82.9 mm 

For c5 = 82.9 mm and c4 = 100 mm, 
,. 

1 ~ 2[(100 mm)' - (82.9 mm)'J ~ 82.89 X 106 mm' 

With Tan = 84 MPa and c4 = 100 mrn, 

Tc, 
7m~x = J 

T(!OO mm) 
84 MPa ~ 

82
.
89 

x 
10

, mm' T ~ 69.6 kN · m 41 



3.1 (a) For the hollow shaft and loading shown, determine the maxi
mum shearing stress. (b) Determine the diameter of a solid shaft for which the 
maximum shearing stress in the loading shown is the same as in part a. 

3.2 (a) Detennine the torque that can be applied to a solid shaft of90~mm 
outer diameter without exceeding an allowable shearing stress of 70 MPa. 
(b) Solve part a, assuming that the solid shaft is replaced by a hollow shaft of the 
same mass and of 90-mm inner diameter. · Fig. P3.1 

3.3 Determine the torque T that causes a maximum shearing stress of 
80 MPa in the steel cylindrical shaft shown. 

Fig. P3.3 and P3.4 

3.4 For the cylindrical shaft shown, determine the maximum shearing 
stress caused by a torque of magnitude T = 1.5 kN · m. 

3.5 (a) For the 60-mm-diameter solid cylinder and loading shown, de
termine the maximum shearing stress. (b) Determine the inner diameter of the 
hollow cylinder, of 80-mm outer diameter, for which the maximum stress is Fig. P3.5 
the same as in part a. 

3.6 (a) Detennine the torque that can be applied to a solid shaft of 20-mm 
diameter without exceeding an allowable shearing stress of 80 MPa. (b) Solve 
part a, assuming that the solid shaft has been replaced by a hollow shaft of the 
same cross-sectional area and with an inner diameter equal to half of its own 
outer diameter. 

3.7 The solid spindle AB has a diameter d, = 38 mm and is made of a 
steel with an allowable shearing stress of 84 MPa, while sleeve CD is made of 
a brass with an allowable shearing stress of 50 MPa. Determine the largest 
torque T that can be applied at A. 

3.8 The solid spindle AB is made of a steel with an allowable shearing 
stress of 84 MPa, and sleeve CD is made of a brass with an allowable shear
ing stress of 50 MPa. Determine (a) the largest torque T that can be applied 
at A if the allowable shearing stress is not to be exceeded in sleeve CD, (b) the 
corresponding required value of the diameter d, of spindle AB. 

,~--A, 

lOOmm 

t 
D 

200mm 

~·~· ~ -7.'5mm 
Fig. P3.7 and P3.8 

N·m 

(b) 

1115 



146 Torsion 3.9 Knowing that each of the shafts AS, SC, and CD consist of solid 
circular rods, determine (a) the shaft in which the maximum shearing stress 
occurs, (b) the magnitude of that stress. 

Z70N-m 

90N ·m 

A 

Fig. P3.9 and P3.1 0 

110N-m 

3.10 Knowing that a 10 mm~diameter hole has been drilled through each 
of the shafts AS, BC, and CD, determine (a) the shaft in which the maximum 
shearing stress occurs, (b) the magnitude of that stress. 

3.11 The torques shown are exerted on pulleys A, B, and C. Knowing 
that both shafts are solid, determine the maximum shearing stress in (a) shaft 
AB, (b) shaft BC. 

800N-m 

400N 

Fig. P3.11 and P3.12 

3.12 The shafts of the pulley assembly shown are to be redesigned. 
Knowing that the allowable shearing stress in each shaft is 60 MPa, determine 
the smallest allowable diameter of (a) shaft AB, (b) shaft BC. 



Fig. P3.13 

3.13 Under normal operating conditions, the electric motor exerts a 
torque of 2.8 kN · m on shaft AB. Knowing that each shaft is solid, determine 
the maximum shearing stress in (a) shaft AB, (b) shaft BC, (c) shaft CD. 

3.14 In order to reduce the total mass of the assembly of Prob. 3.13, a 
new design is being considered in which the diameter of shaft BC will be 
smaller. Determine the smallest diameter of shaft BC for which the maximum 
value of the shearing. stress in the assembly will not be increased.· 

3.15 The solid shaft shown is formed of a brass for which the allowable 
shearing stress 55 MPa. Neglecting the effect of stress concentrations, deter
mine smallest diameters d118 and d8c for which the allowable shearing stress is 
not exceeded. 

3.16 Solve Prob. 3.15, assuming that the direction of Tc is reversed. 

3.17 Shaft AB is made of a steel with an allowable shearing stress of 
90 MPa and shaft BC is made of an aluminum with an allowable shearing 
stress of 60 MPa. Knowing that the diameter of shaft BC is 50 mm and 
neglecting the effect of stress concentrations, determine (a) the largest torque 
T that can be applied at A if the allowable stress is not to be exceeded in shaft 
BC, (b) the corresponding required diameter of shaft AB. 

Fig. P3.15 and P3. 16 

T 

A 

3.18 Shaft AB has a 30-mm diameter and is made of a steel with an Fig. P3•17 and P3·18 

allowable shearing stress of 90 MPa, while shaft BC has a 50-mm diameter 
and is made of an aluminum alloy with an allowable shearing stress of 60 MPa. 
Neglecting the effect of stress concentrations, determine the largest torque 
T that can be applied at A. 

3.19 The allowable shearing stress is 100 MPa in the 36-mm·diameter 
steel rod AB and 60 MPa in the 40-mm-diameter rod BC. Neglecting the 
effect of stress concentrations, determine the largest torque that can be applied 
at A. 

3.20 The allowable shearing stress is 100 MPa in the steel rod AB and 
60 MPa in the brass rod BC. Knowing that a torque of magnitude 
T = 900 N · m is applied at A and neglecting the effect of stress concentra-
tions, determine the required diameter of (a) rod AB, (b) rod BC. Fig. P3.19 and P3.20 
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148 Torsion 3.21 Two solid steel shafts are connected by the gears shown. A torque 
of magnitude T = 900 N · m is applied to shaft AB. Knowing that the allow
able shearing stress is 5 MPa and considering only stresses due to twisting, 
determine the required diameter of (a) shaft AB, (b) shaft CD. 

Fig. P3.21 and P3.22 

3.22 Shaft CD is made from a 66-mm-diameter rod and is connected to 
the 48-mm-diameter shaft AB as shown. Considering only stresses due to twist
ing and knowing that the allowable shearing stress is 60 MPa for each shaft, 
determine the largest torque T that can be applied. 

3.23 A torque of magnitude T = 900 N · m is applied at D as shown. 
Knowing that the diameter of shaft AB is 60 mm and that the diameter of 
shaft CD is 45 mm, determine the maximum shearing stress in (a) shaft AB, 
(b) shaft CD. 

m 

Fig. P3.23 and P3.24 

3.24 A torque of magnitude T = 900 N · m is applied at D as shown. 
Knowing that the allowable shearing stress is 50 MPa in each shaft, determine 
the required diameter of (a) shaft AB, (b) shaft CD. 

3.25 Under normal operating conditions a motor exerts a torque of 
magnitude Tp = 150 N ·mat F. The shafts are made of a steel for which the 
allowable shearing stress is 75 MPa. Knowing that for the gears r0 = 200 mm 
and rc = 75 mm, determine the required diameter of (a) shaft CDE, (b) shaft 
FGH. 

/ 



Fig. P3.25 and P3.26 

3.26 Under normal operating conditions a motor exerts a torque of mag
nitude TF at F. The shafts are made of a steel for which the allowable shear
ing stress is 85 MPa and have diameters dcv£ = 22· mm and dFGH = 20 mm. 
Knowing that rv = 150 mm and r0 = 100 mm, determine the largest allow
able value of T F· 

3.27 The two solid shafts are connected by gears as shown and are made 

lOOmm 

of a steel for which the allowable shearing stress is 60 MPa. Knowing that a 60 mm 
torque of magnitude Tc = 600 N ·misapplied at C and that the assembly is 
in equilibrium, determine the required diameter of (a) shaft BC, (b) shaft EF. 

3.28 The two solid shafts are connected by gears as shown and are made 
of a steel for which the allowable shearing stress is 50 MPa. Knowing the 
diameters of the two shafts are, respectively, d8c = 40 mm and deF = 30 mm 
determine the largest torque Tc that can be applied at C. 

3.29 (a) For a given allowable shearing stress, determine the ratio Tlw Fig. P3.27 and P3.28 
of the maximum allowable torque T and the weight per unit length w for the 
hollow shaft shown. (b) Denoting by (T!w)0 the value of this ratio for a solid 
shaft of the same radius c2, express the ratio Tlw for the hollow shaft in terms 
of (Tiw)0 and c 1/c2• 

@ . . . 

Fig. P3.29 

3.30 While the exact distribution of the shearing stresses in a hollow
cylindrical shaft is as shown in Fig. P3.30a, an approximate value can be 
obtained forT max by assuming that the stresses are uniformly distributed over 
the area A of the cross-section, as shown in Fig. P 3.30b, and then further asw 
suming that all of the elementary shearing forces act at a distance from 0 equal 
to the mean radius !(c1 + c2) of the cross section. This approximate value 
r0 = T/Arn, where Tis the applied torque. Determine the ratio T rna/To of the 
true value of the max~mum shearing stress and its approximate value r 0 for 
values of c/c2, respectively, equal to 1.00, 0.95, 0.75, 0.50, and 0. 
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150 Torsion 

Fig. 3.22 

Fig. 3.23 Torsion testing machine. 

3.5. ANGLE OF TWIST IN THE ELASTIC RANGE 

In this section, a relation will be derived between the angle of twist ¢ 
of a circular shaft and the torque T exerted on the shaft. The entire shaft 
will be assumed to remain elastic. Considering first the case of a shaft 
of length Land of uniform cross section of radius c subjected to a torque 
Tat its free end (Fig. 3.22), we recall from Sec. 3.3 that the angle of 
twist ¢ and the maximum shearing strain Ymax are related as follows: 

c¢ 
Ymax = [ (3.3) 

But, in the elastic range, the yield stress is not exceeded anywhere in 
the shaft, Hooke's law applies, and we have Ymax = Tmax/G or, recall
ing Eq. (3.9), 

T max Tc 
Ymax =a= JG (3.15) 

Equating the right-hand members ofEqs. (3.3) and (3.15), and solving 
for ¢, we write 

TL 
<jJ=

JG 
(3.16) 

where¢ is expressed in radians. The relation obtained shows that, within 
the elastic range, the angle of twist 4> is proportional to the torque T 
applied to the shaft. This is in accordance with the experimental evi~ 
deuce cited at the beginning of Sec. 3.3. 

Equation (3.16) provides us with a convenient method for deter~ 
mining the modulus of rigidity of a given material. A specimen of the 
material, in the form of a cylindrical rod of known diameter and length, 
is placed in a torsion testing machine (Fig. 3.23). Torques of increas~ 
ing magnitude T are applied to the specimen, and the corresponding 
values of the angle of twist 4> in a length L of the specimen are recorded. 
As long as the yield stress of the material is not exceeded, the points 
obtained by plotting ¢ against 1' will fall on a straight line. The slope 
of this line represents the quantity JG/L, froni which the modulus of 
rigidity G may be computed. 

tJ ,-



What torque should be applied to the end of the shaft of Ex
ample 3.01 to prod~1ce a twist of2"? Use the value G = 77 GPa 
for the modulus of rigidity of steel. 

and recalling from Example 3.01 that, for the given cross 
section, 

we have 

JG 
T=-</>= 

L 

] = 1.021 X 10-6 m4 

Solving Eq. (3.16) forT, we write 

JG 
T=L</> 

Substituting the given values 

G=77Xl09 Pa 

( ,~l.~02~1~X~1~0~-6~m~'~)(~77~X~1~0~9 ~Pa~) 3 - (34.9 X 10- rad) 
1.5 m 

L = 1.5 m 

"" = 2¢ -- = 34.9 X ro-3 rad (
2" rad) 

"' 360° 

What angle of twist will create a shearing stress of 70 MPa on 
the inner surface of the hollow steel shaft of Examples 3.01 
and 3.0:2? 

T = !.829 X 103 N · m = !.829 kN · m 

. = 7min = 70 X l0
6

Pa = 909 X 10_6 
'Ymtn G 77 X 109 Pa 

The method of attack for solving this problem that first 
comes to mind is to use Eq. (3.10) to find the torque T corre
sponding to the given value of 7, and Eq. (3.16) to determine 
the angle of twist tjJ corresponding to the value of T just found. 

Recalling Eq. (3.2), which was obtained by expressing the 
length of arc AA' in Fig. 3.l4c in tenns of both y and¢, we 
have 

A more direct solution, however, may be used. From 
Hooke's law, we first compute the shearing strain on the inner 
surface of the shaft: 

</J = LYmin 

c, 
1500 mm (909 X !0-6) = 68.2 X !0-J rad 
20mm 

To obtain the angle of twist in degrees, we write 

</> = (68.2 X !0-J rad)( 
3600 

) = 3.91° 
21r rad 

Formula (3. 16) for the angle of twist can be used only if the shaft 
is homogeneous (constant G), has a uniform cross section, and is loaded 
only at its ends. If the shaft is subjected to torques at locations other 
than its ends, or if it consists of several portions with various cross sec
tions and possibly of different materials, we muSt divide it into com
ponent parts that satisfy individually the required conditions for the ap
plication of formula (3.16). In the case of the shaft AB shown in Fig. 
3.24, for eXample, four different parts should be considered: AC, CD, 
DE, and EB. The total angle of twist of the shaft, i.e., the angle through 
which end A rotates with respect to end B, is obtained by adding alge
braically the angles of twist of each component part. Denoting, respec~ 
tively, by T1, L1, J,, and G1 the internal torque, length, cross-sectional po- Fig. 3.24 

Jar moment of inertia, and modulus of rigidity corresponding to part i, 
the total angle of twist of the shaft is expressed as 

(3.17) 

The internal torque ,'T; in any given part of the shaft is obtained by pass
ing a section through that part and drawing the free-body diagram of 

151 



152 Torsion 

Fig. 3.25 

the portion of shaft located on one side of the section. This procedure, 
which has already been explained in Sec. 3.4 and illustrated in Fig. 3.17, 
is applied in Sample Prob. 3.3. 

In the case of a shaft with a variable circular cross section, as shown 
in Fig. 3.25, formula (3.16) may be applied to a disk of thickness dx. 
The angle by which one face of the disk rotates with respect to the other 
is thus 

Tdx 
d¢=

JG 

where J is a function of x which may be determined. Integrating in x 
from 0 to L, we obtain the total angle of twist of the shaft: 

4> = ILTdx 
o JG 

(3.18) 

The shaft shown in Fig. 3.22, which was used to derive formula 
(3.16), and the shaft of Fig. 3.16, which was discussed in Examples 3.02 
and 3.03, both had one end attached to a fixed support. In each case, there
fore, the angle of twist </> of the shaft was equal to the angle of rotation 
of its free end. When both ends of a shaft rotate, however, the angle of 
twist of the shaft is equal to the angle through which one end of the shaft 
rotates with respect to the other. Consider, for instance, the assembly 
shown in Fig. 3.26a, consisting of two elastic shafts AD and BE, each 
of length L, radius c, and modulus of rigidity G, which are attached to 
gears meshed at C. If a torque Tis applied atE (Fig. 3.26b), both shafts 
will be twisted. Since the end D of shaft AD is fixed, the angle of twist 
of AD is measured by the angle of rotation </>A of end A. On the other 
hand, since both ends of shaft BE rotate, the angle of twist of BE is equal 
to the difference between the angles of rotation </>8 and <f>e, i.e., the an
gle of twist is equal to the angle through which end E rotates with re
spect to end B. Denoting this relative angle of rotation by <f>E;B• we write 

Fixed support 

I 

TL 
4>£/B = ¢£ - </>s = JG 

Fixed end 

I 
L r D t::---- ----

'·'-,-•-, 

l 
L 

l 
(b) 

Fig. 3.26 (a) 



For the assembly of Fig. 3.26, knowini that rA = 2r8 , deter
n1ine the. angle of~otation of end E of shaft BE when the torque 
T is applied at E. 

Observing that the arcs CC' and CC" in Fig. 3.26b must be 
equal, we write rAJA = r8¢8 and obtain 

We first determine the torque TAD exerted on shaft AD. 
Observing that equal and opposite forces F and F' are applied 
on the two gears at C (Fig. 3.27), and recalling that rA = 2r8, 
we conclude that the torque exerted on shaft AD is twice as 
large as the torque exerted on shaft BE; thus, TAD = 2T. 

We have, ~erefore, 

Considering now shaft BE, we recall that the angle of twist 
of the shaft is equal to the angle <Pe;s through which end E ro
tates with respect to end B. We have 

Fig. 3.27 

The angle of rotation 9f end E is obtained by writing 

Since the end D of shaft AD is fixed, the angle of rota
tion ¢A of gear A is equal to the angle of twist of the shaft and 
is obtained by writing 

3.6. STATICALLY INDETERMINATE SHAFTS 

You saw in Sec. 3.4 that, in order to determine the stresses in a shaft, 
it was necessary to first calculate the internal torques in the various parts 
of the shaft. These torques were obtained from statics by drawing the 
free-body diagram of the portion of shaft located on one side of a given 
section and writing that the sum of the torques exerted on that portion 
was zero. 

There are situations, however, where the internal torques cannot 
be determined from statics alone. In fact, in such cases the external 
torques themselves, i.e., the torques exerted on the shaft by the supports 
and connections, cannot be determined from the free-body diagram of 
the entire shaft. The equilibrium equations must be complemented by 
relations involving the deformations of the shaft and obtained by con
sidering the geometry of the problem. Because statics is not sufficient 
to determine the external ancl internal torques, the shafts are said to be 
statically indeterm!Jlate. The following example, as well as Sample 
Prob. 3.5, will show how to analyze statically indeterminate shafts. 

4TL TL STL 
~-+-=-

JG JG JG 
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A circular shaft AB consists of a 250-mm-long, 22 mm-diam
eter steel cylinder, in which a 125-mm-long, 16-mm-diameter 
cavity has been drilled from end B. The shaft is attached to 
fixed supports at both ends, and a 120-N · m torque is applied 
at its midsection (Fig. 3.28). Determine the torque exerted on 
the shaft by each of the supports. 

Fig. 3.28 

(c) 

Fig. 3.29 
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Drawing the free-body diagram of the shaft and denoting 
by TA and T8 the torques exerted by the supports (Fig. 3.29a), 
we obtain the equilibrium equation 

TA + T8 = 120 N · m 

Since this equation is not sufficient to determine the two un
known torques TA and T 8 , the shaft is statically indeterminate. 

However, TA and T 8 can be determined if we observe that 
the total angle of twist of shaft AB must be zero, since both of 
its ends are restrained. Denoting by ¢ 1 and ¢2, respectively, 
the angles of twist of portions AC and CB, we write 

From the free-body diagram of a small portion of shaft in
cluding end A (Fig. 3.29b), we note that the internal torque T1 

in AC is equal to TA; from the free-body diagram of a small 
portion of shaft including end B (Fig. 3.29c), we note that the 
internal torque T2 in CB is equal to T8 . Recalling Eq. (3.16) 
and observing that portions AC and CB of the shaft are twisted 
in opposite senses, we write 

Solving for T8, we have 

Substituting the numerical data 

L1 = L-;. = 125 mm 

J1 = !1r(O.Oll m/ = 230 X 10-6 m4 

J, ~ j1T[(O.Oll m)'- (0.008 m)'] ~ !65.6 X I0-6 m' 

we obtain 

Substituting this expression into the original equilibrium equa
tion, we write 

!.72 T, ~ !.20 N · m 

T, ~ 69.8 N • m T8 ~ 50.2 N · m 



60mm 

30 mm 

AB BG CD 

SAMPlE PROBlEM 3.3 
The horizontal shaft AD is attached to a fixed base at D and is subjected to the 
torques shown. A 44·mm~diameter hole has been drilled into portion CD of the 
shaft. Knowing that the entire shaft is made of steel for which G = 77 GPa, 
determine the angle of twist at end A. 

·m 

SOLUTION 

Since the shaft consists of three portions AB, BC, and CD, each of uniform 
cross section and each with a constant internal torque, Eq. (3.17) may be used. 

Statics. Passing a section through the shaft between A and B and using 
the free body shown, we find 

"ZM, = 0: (250 N · m) - T" = 0 TA 8 =250N·m 

Passing now a section between B and C, we have 

· m "ZM, = 0: (250 N · m) + (2000 N · m) - T8c = 0 T8c = 2250N · m 

. 

. 
. 

22mm 

Since no torque is applied at C, 

Tcv = T8c = 2250N • m 

Polar Moments of Inertia 

Tr Tr 
leo= 2(ci- cj) = 2[(0.030m)4

- (0.022m}'] = 0.904 X !0-6 m4 

Angle of Twist. Using Eq. (3.17) and recalling that G = 77 OPa for the 
entire shaft, we have 

¢A 2: T1L; = _!_(TAsLAn + TscLsc + TCDLco) 
1 l;G G lAs 18c leo 

= _1 -[ (250 N · m)(0.4 m) + (2250)(0.2) + (2250)(0.6) l 
</>, 77 GPa 0.0795 X 10-6 m' 1.272 X 10-6 0.904 X 10-6 

= 0.01634 + 0.00459 + 0.01939 = 0.0403 rad 

360° 
</>, = (0.0403 rad) --

21T rad 
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rc"" 60mm 

rc"' 60 mm 
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r8 "" 22mm 

r8 ,22mm 

SAMPLE PROBLEM 3.4 

Two solid steel shafts are connected by the gears shown. Knowing that for each 
shaft G = 77 GPa and that the allowable shearing stress is 55 MPa, determine 
(a) the largest torque T0 that may be applied to end A of shaft AB, (b) the cor~ 
responding angle through which end A of shaft AB rotates. 

SOLUTION 

Statics. Denoting by F the magnitude of the tangential force between 
gear teeth, we have 

Gear B. "ZM8 ~ 0: F(22 mm) - T0 ~ 0 

Gear C. 2.Mc ~ 0: F(60 mm) - TCD ~ 0 
TeD= 2.7370 (1) 

Kinematics. Noting that the peripheral motions of the gears are equal, 

we write 

rc 60mm cp8 ~ cl>c- ~ c/>c-
29 

~ 2.734>c (2) 
r8 ... mm 

a. Torque T0 

Shaft AB. With TAB = T0 and c = 9.5 mm, together with a maximum 
permissible shearing stress of 55 MPa, we write 

TABC To(9.5 X 10-1 m) 
r ~ -- 55MPa T0 = 74.1 N·m <I 

J ~7T (9.5 X 10-3 m/ 
Shaft CD. From (1) we have Teo = 2.73T0 . With c = 12.5 mm and 

'Tall = 55 MPa, we write 

Tc0 c 2.73T0(12.5 X 10-3 m) 
r ~ -- 55MPa = T0 = 61.8N·m <l 

1 j.,.(12.5 X !0 3 m)' 

Maximum Permissible Torque. We choose the smaller value obtained 
for T0 

T0 = 6l.8N· m -«11 

b. Angle of Rotation at End A. We first compute the angle of twist for 
each shaft. 

Shaft AB. For TAB ""' T0 = 61.8 N · m, we have 

T,L (61.8 N · m)(0.6 m) 

"''
18 ~ JG ~ j.,.(0.0095 m)'(77 X !09 Pa) 

~ 0.0376 rad ~ 2.15° 

Shaft CD. Teo~ 2.73T0 ~ 2.73(61.8 N · m) ~ 168.7 N · m 

TcoL (168.7 N · m)(0.9 m) 
1> ~ -- ~ ~ 0.0514 rad= 2.95° 

C/D JG j.,.(0.0125 m)'(77 X !09 Pa) 

Since end D of shaft CD is fixed, we have ¢c = ¢c;o = 2.95". Using (2), 
we find the angle of rotation of gear B to be 

</>8 ~ 2.734>c ~ 2.73(2.95°) ~ 8.05° 

For end A of shaft AB, we have 

¢A = 4>a + ¢A/B = 8,05" + 2.15° 



I 

I 
I 

0.5 m 

T, r::= 
~~: 38mm ··"· ·;:·, 

30mm . 

Aluminum 
G1 = 27GPa 
h"" }[(38 l'J'illl)

4
- (30 mm)4

] 

= 2.oo.1 x w-6m4 

G1 = 77 CPa 
]J = i((25mm)4 

= 0.614 X l0-6m4 

SAMPLE PROBLEM 3.5 

A steel shaft and an aluminum tube are connected to a fixed support and to a 
rigid disk as shown in the cross section. Knowing that the initial stresses are 
zero, determine the maximum torque T0 that can be applied to the disk if the 
allowable stresses are 120 MPa in the steel shaft and 70 MPa in the aluminum 
tube. Use G = 77 GPa for steel and G = 27 GPa for aluminum. 

SOLUTION 

Statics. Free Body of Disk. Denoting by T 1 the torque exerted by the 
tube on the disk and by T 2 the torque exerted by the shaft, we find 

(!) 

Deformations. Since both the tube and the shaft are connected to the 
rigid disk, we have 

"'' = ¢,: 
T1L1 T20. 
J1G1 lzG2 

T1(0.5 m) T2 (0.5 m) 
(2.003 X 10-6 m4)(27 GPa) (0.614 X 10-6 m')(77 GPa) 

(2) 

Shearing Stresses. We assume that the requirement 'T ~lum ::5 70 MPa is 
critical. For the aluminum tube, we have 

ralumll (70 MPa)(2.003 X 10-6 m4) 
T1 =--= 3690N·m 

c1 0.038 m 

Using Eq. (2), we compute the corresponding value T2 and then find the max~ 
imum shearing stress in the steel shaft 

T, = 0.874T1 = 0.874(3690) = 3225 N · m 
T2c, (3225 N · m)(0.025 m) 

Tsted = ~ = 0.614 X lO G m4 = 131.,3 MPa 

We note that the allowable steel stress of 120 MPa is exceeded; our assump
tion was wrong. Thus the maximum torque T0 will be obtained by making 
'T~1ec! = 120 MPa. We first determine the torque T2. 

Tsteell2 (120 MPa)(0.614 X 10-6 m4
) 

T2 = -- = 2950 N · m 
c2 0.025 m 

From Eg. (2), we have 

2950 N · m = 0.874T1 T1 = 3375 N · m 

Using Eq. (1), we obtain the maximum permissible torque 

T0 = T1 + T2 = 3375 N · m + 2950 N · m 

T0 = 6325 kN · m -<1 
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Fig. P3.31 

Fig. P3.32 

Fig. P3.34 
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3.31 For the aluminum shaft shown (G = 27 GPa), determine (a) the 
torque T that causes an angle of twist of 4;, (b) the angle of twist caused by 
the same torque T in a solid cylindrical shaft of the same length and cross
sectional area. 

3.32 (a) For the solid steel shaft shown (G = 77 GPa), determine the 
angle of twist at A. (b) Solve part (a), assuming that the steel shaft is hollow 
with a 30-mm outer diameter and a 20~mm inner diameter. 

3.33 Detennine the largest allowable diameter of a 3-m long steel rod 
( G = 77 GPa) if the rod is to be twisted through 30 i without exceeding a shear
ing stress of 84 MPa. 

3.34 The ship at A has just started to drill for oil on the ocean floor at 
a depth of 1500 m. Knowing that the top of the 200-mm-diameter steel drill 
pipe ( G = 77.2 GPa) rotates through two complete revolutions before the drill 
bit at B starts to operate, determine the maximum shearing stress caused in the 
pipe by torsion. 

800N·nl 

Fig. P3.35 

3.35 The torques shown are exerted on pulleys A, 8, and C. Knowing 
that both shafts are solid and made of brass ( G = 39 GPa), determine the angle 
of twist between (a) A and B, (b) A and C. 



Fig. P3.36 

3.36 The electric motor exerts a 500 N · m torque on the aluminum shaft 
ABCD when it is rotating at a constant speed. Knowing that G = 27 GPa and 
that the torques exerted on pulleys B and C are as shown, determine the angle 
twist between (a) Band C, (b) Band D. 

3.37 The aluminum rod AB (G = 27 GPa) is bonded to the brass rod 
BD (G = 39 GPa). Knowing that portion CD of the brass rod is hollow and 
has an inner diameter of 40 mm, determine the angle of twist at A. 

Fig. P3.37 

3.38 Solve Prob. 3.37, assuming that portion BD is a solid 60-mm
diameter rod of length 625 mm. 

3.39 Two solid shafts are connected by gears as shown. Knowing that 
G = 77.2 GPa for each shaft determine the angle through which end A rotates 
when TA = 1200 N · m. 

Fig. P3.39 
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160 Torsion 3.40 Solve Prob. 3.39, assuming that the diameter of each shaft is 54 rnm. 

3.41 A coder F. used to record in digital form the rotation of shaft A, is 
connected to the shaft by means of the gear train shown, which consists of four 
gears and three solid steel shafts each of diameter d. Two of the gears have a 
radius rand the other two a radius nr. If the rotation of the coder F is prevented, 
determine in terms ofT, !, G, J, and n the angle through which end A rotates. 

Fig. P3.41 

3.42 For the gear train described in Prob. 3.41, determine the angle 
through which end A rotates when T = 0.6 N · m, l = 60 mm, d = 2 mm, 
G = 77 GPa, and n = 2. 

3.43 Two shafts, each of 22-mm diameter are connected by the gears 
shown. Knowing that G = 77 GPa and that the shaft at F is fixed, determine 
the angle through which end A rotates when a 130 N • m torque is applied at A. 

Fig. P3.43 



3.44 Solve Prob. 3.43, assuming that after a design change the radius 
of gear B is 150 mm and the radius of g~ar E is 110 mm. 

3.45 The design specifications of a 1.8-m-long solid circular transmis
sion shaft require that the angle of twist of the shaft not exceed 0.5° when .a 
torque of 7 kN · m is applied. Determine the required diameter of the shaft, 
knowing that the shaft is made of a steel with an aUowable shearing stress of 
87 MPa and a modulus of rigidity of 77 GPa. 

3.46 The design specifications of a 1.2-m-long solid transmission shaft 
require that the angle of twist of the shaft not exc?:ed 4 ° when a torque of 
750 N · m is applied. Determine the required diameter of the shaft, knowing 
that the shaft is made of a steel with an allowable shearing stress of 90 MPa 
and a modulus of rigidity of 77.2 GPa. 

3.47 The design of the gear-and-shaft system shown requires that steel 
shafts of the same diameter be used for both AB and CD. It is further required 
that 'rm,1x s 55 MPa and that the angle ¢ 0 through which end D of shaft CD ro
tates not exceed 2°. Knowing that G = 77 GPa, determine the required diameter 
of the shafts. 

0.45m----l 
-......._ 

Fig. P3.47 and P3.48 

0.6m 

3.48 In the gear-and-shaft system shown, the shaft diameters are 
dAD = 50 mm aod dco = 38 mm. Knowing that G = 77 GPA, detennine the 
angle through which end D of shaft CD rotates. 

/ 
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162 Torsion 

Fig. P3.49, P3.50, and P3.51 

40 

5mm 

Fig. P3.54 and P3.55 

3.49 The solid cylindrical rod BC is attached to the rigid lever AB and 
to the fixed support at C. The vertical force P applied at A causes a small dis· 
placement /:::,. at point A. Show that the corresponding maximum shearing stress 
in the rod is 

where d is the diameter of the rod and G its modulus of rigidity. 

3.50 and 3.51 The solid cylindrical rod BC of length L = 0.6 m is 
attached to the rigid lever AB of length a = 0.4 m and to the support at C. 
Design specifications require that the displacement of A not exceed 25 mm 
when a 400-N force Pis applied at A. For the material indicated determine the 
required diameter of the rod. 

3.50 Steele 84 MPa, G = 77 GPa. 
3.51 Aluminum: T m~x = 62 MPa, G = 27 GPa. 

3.52 A torque of magnitude T = 4 kN · m is applied at end A of the 
composite shaft shown. Knowing that the modulus of rigidity is 77 GPa for 
the steel and 27 GPa for the aluminum, determine (a) the maximum shearing 
stress in the steel core, (b) the maximum shearing stress in the aluminum jacket, 
(c) the angle of twist at A. 

Fig. P3.52 and P3.53 

3.53 The composite shaft shown is to be twisted by applying a torque 
T at end A. Knowing that the modulus of rigidity is 77 GPa for the steel 
and 27 GPa for the aluminum, determine the largest angle through which 
end A can be rotated if the following allowable stresses are not exceeded 
'Ts1eel = 60 MPa and ,.~luminum = 45 MPa. 

3.54 The composite shaft shown consists of a 5-mm-thick brass jacket 
(Gbrass = 39 GPa) bonded to a 40-mm-diameter steel core (Gste<:J = 77,2 GPa). 
Knowing that the shaft is subjected to a 600 N · m torque, determine (a) the 
maximum shearing stress in the brass jacket, (b) the maximum shearing stress 
in the steel core, (c) the angle of twist of B relative to A. 

3.55 For the composite shaft of Prob. 3.54, the allowable shearing stress 
in the brass jacket is 20 MPa and 45 MPa in the steel core. Determine (a) the 
largest torque that can be applied to the shaft, (b) the corresponding angle of 
twist of B relative to A. 



Fig. P3.56 

3.56 Two solid steel shafts (G = 77.2 GPa) are connected to a coupling 
disk B and to fixed supports at A and C. For the loading shown, determine 
(a) the reaction at each support, (b) the maximum shearing stress in shaft 
AB, (c) the maximum shearing stress in shaft BC. 

3.57 Solve Prob. 356, assuming that shaft AB is replaced by a hollow 
shaft of the same outer diameter and of 25-mm inner diameter. 

3.58 At a time when rotation is prevented at the lower end of each shaft, 
an 80 N · m torque is applied to end A ofshaftAB. Knowing that G :=: 77.2 GPa 
for both shafts, determine (a) the maximum shearing stress in shaft CD, (b) the 
angle of rotation at A. 

Fig. P3.58 

3.59 Solve Prob. 3.58, assuming that the 80 N · m torque is applied to 
end C of shaft CD. 

3.60 A solid shaft and a hollow shaft are made of the same material and 
are of the same weight and length. Denoting by n the ratio c1/c2, show that the 
ratio Ts !Tn of the torque T. in the solid shaft to the torque Th in the hollow 

shaft is (a) ~1 + n2
) if the maximum shearing stress is the same in 

each shaft, (b) (1 - n)/(1 + n2
) if the angle of twist is the same for each shaft. 
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164 Torsion 3.61 A torque Tis applied as shown to a solid tapered shaft AB. Show 
by integration that the angle of twist at A is 

Fig. P3.61 

3.62 An annular plate of thickness t and modulus G is used to connect 
shaft AB of rad.ius r 1 to tube CD of radius r2 •. Knowing that a torque T to end 
A of shaft AB and that end D of tube CD is fixed, (a) determine the magnitude 
and location of the maximum shearing stress in the annular plate, (b) show that 
the angle through which end B of the shaft rotates with respect to end C of the 
tube is 

Fig. P3.62 and P3.63 

3.63 An annular brass plate ( G = 39 GPa), of thickness t = 6 mm, is used 
to connect the brass shaft AB, of length L1 = 50 mm and radius r1 = 30 mm, 
to the brass tube CD, of length ~ = 125 mm, inner radius r2 = 75 mm, and 
thickness t = 3 mm. Knowing that a 2.8 kN • m torque T is applied to end A· 
of shaft AB and that end D of tube CD is fixed, determine (a) the maximum 
shearing stress in the shaft-plate-tube system, (b) the angle through which end 
A rotates. (Hint: Use the formula derived in Prob. 3.62 to solve part b.) 



rei!"' 3.7. DESIGN OF TRANSMISSION SHAFTS 

I The principal speCifications to be met in the design of a transmission 
shaft ar.e the power to be transmitted and the speed of rotation of the 
shaft. The role Of the designer is to select the material and the dimen
sions . of the cross section of the shaft, s·o that the maximum shearing 
stress allowable in the material will not be exceeded when the shaft is 
transmitting the required power at the specified speed. 

To determine the torque exerted on the shaft,· we recall from ele
mentary dynamics that the power P associated with the rotation of a 
rigid body subjected to a torque T is 

P = Tw (3.19) 

where w is the angular velocity of the body expressed in radians per 
second. But w = 2Trj, where f is the frequency of the rotation, Le., the 
number of revolutions per second. The unit of frequency is thus 1 s- 1 

and is called a hertz (Hz). Substituting for w ihto Eq. (3.19), we write 

P = 2'TT JT (3.20) 

We verify that, with f expressed in Hz and Tin N · m, the power 
will be expressed inN· mi.;, that is, in watts (W). Solving Eq. (3.20) 
for T, we obtain the torque exerted on a shaft transmitting the power P 
at a frequency of rotation J, 

(3.21) 

where P, J, and Tare expressed in the units indicated above. 
After having determined the torque T that will be applied to the 

shaft and having selected the material to be used, the designer will carry 
the values of T and of the maximum allowable stress into the elastic 
torsion formula (3.9). Solving for Jlc, we have 

J T 
-=--
C T max 

(3.22) 

and obtain in this way the minimum value allowable for the parameter 
J I c. We check that T will be expressed in N • m, T max in Pa (or N An2), 

and J I c will be obtained in m3
. In the case of a solid circular shaft, 

J = 41Tc4
, and Jlc = !1rc3

; substituting this value for Jlc into Eq. (3.22) 
and solving for c yields the minimum allowable value for the radius of 
the shaft. In the case of a hollow circular shaft, the critical parameter 
is Jlc2, where c2 is the outer radius of the shaft; the value of this pa~ 
rameter may be computed from Eq. (3.11) of Sec. 3.4 to determine 
whether a given cross section will be acceptable. 

3.7. Design of Transmission Shafts 165 



166 Torsion 

What size of shaft should be used for the rotor of a 3.7-kW 
motor operating at 3600 rpm if the shearing stress is not to ex~ 
ceed 60 MPa in the shaft? 

We first express the power of the motor in N • m/ s and 
its frequency in cycles per second (or hertzes). 

P ~ 3.7 kW ~ 3700 N · m/s 

1Hz 
j~(3600rpm)60 rpm ~60Hz~ 6os-• 

The torque exerted on the shaft is given by Eq. (3.21): 

P 3700 N · m/s 
T ~ - ~ ~ 98.2 N · m 

2"/ 2'f(60s-') 

A shaft consisting of a steel tube of 50-mm outer diameter is 
to transmit IOO kW of power while rotating at a frequency of 
20 Hz. Determine the tube thickness which should be used if 
the shearing stress is not to exceed 60 MPa. 

The torque exerted on the shaft is given by Eq. (3.21): 

P !OOX !03 W 
T ~ - ~ 795.8 N · m 

2" f 2" (20Hz) 

From Eq. (3.22) we conclude that the parameter J/c1 mttst be 
at least equal to 

J T 795.8 N · 111 
-~-~ 

60 X l06 N/m3 (3.23) 

Substituting for T and T max into Eq. (3.22), we write 

l = _T_ = 9.82N· m = l63.7mm3 
60MPa C Tmax 

But J/c = 1?Tc3 for a solid shaft. We have, therefore, 

~1rc3 = 163.7 mm3 

c = 4.7mm 

d = 2c = 9.4 mm 

A l 0-mm shaft should be used. 

But, from Eq. (3.10) we have 

1 " " - ~- (cj- cj) ~ --
0 

[(0.025)'- cj) 
Cz 2c2 0.05 

(3.24) 

Equating the right-hand members of Eqs. (3.23) and (3.24): 

(0.025)' - cj ~ O.OSO (!3.26 X !0-6) 

" ct = 390.6 X 10-9 - 211.0 X 10-9 = 179.6 X 10-9 m4 

Ct = 20.6 X 10-3 m = 20.6 mn'l. 

The corresponding tube thickness is 

c2 - c1 = 25 mm - 20.6 mm = 4.4 mm 

A tube thickness of 5 mm should be used. 



r. 3.8. STRESS CONCENTRATIONS IN CIRCULAR SHAFTS 3.8. Stco" coooeotmt;o, ;, c;,"'"'" shaft' 

The torsion formula T max = Tc/J was derived in Sec. 3.4 for a circular 
: shaft o.f uniform cross section. Moreover, we had assumed earlier in 
! Sec. 3.3 that the shaft .was loaded at its ends through rigid end plates 

I 
solid~y attached to it In practice, howeVer, the torques are usually ap~ 
plied to the shaft through flange couplings (Fig. 3.30a) or through gears 

i connected to the shaft by keys fitted into keyways (Fig. 3.30b). In both 
1 cases one should expect the distribution of stresses; in and near the sec~ 
1 tion where the torques are applied, to be different from that given by (tl) 

· the torsion formula. High concentrations of stresses, for example, will 
occur in the neighborhood of the keyway shown in Fig. 3.30b. The de~ 
termination of these localized stresses may be carried out by experi.:. 
mental stress analysis methods or, in some cases, through the use of the 
mathematical theory of elasticity. 

As we indicated in Sec. 3.4, the torsion formula can also be used 
for a shaft of variable circular cross section. In the case of a shaft with (b) 

an abrupt change in the diameter of its cross·section, however, stress Fig. 3.30 
concentrations will occur near the discontinuity, with the highest 
stresses occurring at A (Fig. 3.31). These stresses may be reduced 

Fig. 3.31 

l.S 
through the use of a fillet, and the maximum value of the shearing stress 
at the fillet can be expressed as 1.7 ~ 

Tc 
'Tmax = Kj (3.25) 

where the stress Tc/J is the stress computed for the smaller-diameter 
shaft, and where K is a stress~concentration factor. Since the factor K 
depends only upon the ratio of the two diameters and the ratio of the 
radius of the fillet to the diameter of the smaller shaft, it may be com
puted once and for all and recorded in the form of a table or a graph, 
as shown in Fig. 3.32. We should note, however, that this procedure for 
determining localized shearing stresses is valid only as long as the value 
ofT max given by Eq. (3.25) does not exceed the proportional limit of 
the material, since the values of K plotted in Fig. 3.32 were obtained 
under the assumption of a linear relation between shearing stress and 
shearing strain. If plastic deformations occur, they will result in val~ 
ues of the maximum stress lower than those indicated by Eq. (3.25). 

i"W. D. Pilkey, Peten'On S Stress Concemration Factors, 2nd ed., John Wiley & Sons, New 
York, 1997. / 

1.5 

K 1.4 

1.3 

1.2 

1. 1 

l.O 

q,.l.lll t . -~--1-·-----. vg .. l.2f D 

l \'< L.- fr rn 1.6\3~ 

~ ~ /~-z I 
:§~-25 !-.......:: 

"'~ 
0 0.0.5 0.10. 0.1-5 0.20 0.25 0.30 

rid 
Fig. 3.32 Stress-concentration factors for 
fillets in circular shafts. t 

167 



9.5mm 
r = 14mm 

T
11 

= 6.96kN · m 

'~'m = TK\X"" 4.5.8 MPa 

Tb = 7.71 kN. m r = 24 mm 

168 

SAMPlE PROBlEM 3.6 
The stepped shaft shown is to rotate at 900 rpm as it transmits power from a 
turbine to a generator. The grade of steel specified in the design has an allow
able shearing stress of 55 MPa. (a) For the preliminary design shown, deter
mine the maximum power that can be transmitted. (b) If in the final design the 
radius of the fillet is increased so that r 24 mm, what will be the percent 
change, relative to the preliminary design, in the power that can be transmitted? 

SOLUTION 

a. Preliminary Design. Using the notation of Fig. 3.32, we hav~: 
D = 190 mm, d = 95 mm, r = 14 mm. 

D 190 mm 
-~--~2 
d 95mm 

r 14mm 
-~-- ~0.!5 
d 95mm 

A stress concentration factor K = 1.33 is found from Fig. 3.32. 

Torque. Recalling Eq. (3.25), we write 

T=!_ 7
max 

c K 
(!) 

where Jfc refers to the smaller-diameter shaft: 

J/c = ~1rc3 = ~11' (47.5 mmY = 168.3 X 103 mm3 

and where 
'Tmax 55 MPa K ~ 13:3 ~ 41.35 MPa 

Substituting into Eq. (1), we find T = (168.3 X 103 mm3)(41.35 MPa) 
~ 6.96 kN · m. 

. lfu . 
Powe1: Smce f= (900rpm)-

0
-- =15Hz= 15 s- 1

, we wnte 
6 rpm 

P" ~ lnfT ~ 2rr(!5s-')(6960N· m) ~ 656kN · rnls ~656kW 

P, ~ 656kW <!I 

b. Final Design. For r = 24 mm, 

D 
-~2 
d 

r 24mm 
- ~ -- ~ 0.250 
d 95mm 

Following the procedure used above, we write 

'T max 55 MPa - ~ --- = 45.8 MPa 
K 1.20 

K ~ 1.20 

T 7,
7 ;x = (168.3 X 103 mm3)(45.8 MPa) = 7.71 k.N · m 

P, ~ 2n JT ~ 2n (15 s-')(77!0 N · m) ~ 727kW 

Percent Change in Power 

Percent change = I OO _P ,_-_P_" ~ 100 .:_72;::.7-:--~65e::.6 
Pa 656 

+ 10.82% ~ 



3.64 Using an allowable shearing stress of 30 MPa, design a solid steel 
shaft to transmit 9 kW at speed of (a) 1200 rpm, (b) 2400 rpm. 

3.65 Using an allowable shearing stress of 50 MPa, design a solid steel 
shaft to transmit 15 kW at a frequency of (a) 30Hz, (b) 60Hz. 

3.66 Determine the maximum shearing stress in a s9lid shaft of 12-mm 
diameter as it transmits 2.5 kW at a frequency of (a) 25Hz, (b) 50 Hz. 

3.67 Determine the maximum shearing stress in a solid shaft of 38-mm 
diameter as it transmits 55 kW at a speed of (a) 750 rpm, (b) 1500 rpm. 

3.68 A steel drive shaft is 1.8 m long and its outer and inner diameters 
are respectively equal to 56 mm and 42 mm. Knowing that the shaft transmits 
180 kW while rotating at 1800 rpm, determine (a) the maximum shearing stress, 
(b) the angle of twist of the shaft (G = 77 GPa). 

3.69 One of two hollow drive shafts of a cruise ship is 40 m long, and 
its outer and inner diameters are 400 mm and 200 mm, respectively. The shaft 
is made of a steel for which T~u = 60 MPa and G = 77.2 GPa. Knowing that 
the maximum speed of rotation of the shaft is 160 rpm, determine (a) the 
maximum power that can be transmitted by one shaft to its propeller, (b) the 
corresponding angle of twist of the shaft. 

3.70 While a steel shaft of the cross section shown rotates at 120 rpm, 
a stroboscopic measurement indicates that the angle of twist is 2" in a 3.6-m 
length. Using G = 77 GPa, determine the power being transmitted. 

3.71 Determine the required thickness of the 50-mm tubular shaft of 
Example 3.07, if it is to transmit the same power while rotating at a frequency 
of 30Hz. 

3.72 The design of a machine element calls for a 40~mm-outer·diameter 
shaft to transmit 45 kW. (a) If the speed of rotation is 720 rpm, determine the 
maximum shearing stress in shaft a. (b) If the shaft of rotation can be increased 
50% to l 080 rpm, determine the largest inner diameter of shaft b for which the 
maximum shearing stress will be the same in each shaft. 

/(a) 

Fig. P3.72 

(b) 

F!g. P3.70 
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Fig. P3.73 

3.73 A Steel pipe of 72-mm outer diameter is to be used to transmit a 
torque of 2500 N • m without exceeding an allowable shearing stress of 55 
MPa. A series of 72-mm-outer-diameter pipes is available for use. Knowing 
that the wall thickness of the available pipes varies from 4 mm to 10 mm in 
2-mm increments, choose the lightest pipe that can be used. 

3.74 A 2.5-m-long solid steel shaft is to transmit 10 kW at a frequency 
of 25 Hz. Determine the required diameter of the shaft, knowing that G == 77.2 
GPa, that the allowable shearing stress is 30 MPa, and that the angle of tWist 
must not exceed 4°. 

3.75 A 1.5-m-long solid steel shaft of 22-mm diameter is to transmit 
12 kW. Determine the minimum frequency at which the shaft can rotate, know
ing that G == 77.2 GPa, that the allowable shearing stress is 30 MPa, and that 
the angle of twist must not exceed 3.5°. 

3.76 The two solid shafts and gears shown are used to transmit 12 kW 
from the motor at A operating at a speed of 1260 rpm, to a machine tool at D. 
Knowing that each shaft has a diameter of 25 mm, determine the maximum 
shearing stress (a) in shaft AB, (b) in shaft CD. 

Fig. P3.76 and P3.77 

3.77 The two solid shafts and gears shown are used to transmit 12 kW 
from the motor at A operating at a speed of 1260 rpm, to a machine tool at D. 
Knowing that the maximum allowable shearing stress is 55 MPa, determine 
the required diameter (a) of shaft AB, (b) of shaft CD. 

3.78 A steel shaft must transmit 150 kW at speed of 360 rpm. Knowing 
that G = 77.2 GPa, design a solid shaft so that the maximum stress will not ex
ceed 50 MPa and the angle of twist in a 2.5-m length must not exceed 3°. 



3.79 A 2.5~m-long steel shaft of 30-mm diameter rotates at a frequency 
of 30 Hz. Determine the maximum power that the shaft can transmit, know
'na that G = 77.2 GPa, that the allowable shearing stress is 50 MPa, and that 
lo · ' d75" the angle of tWlS~ must not excee . . 

3.80 A 38-mm-diamerer steel shaft of length 1.2 m will be used to trans
mit 45 kW between a motor and a pump. Knowing that G = 77 GPa, deter
mine the lowest speed of rotation at which the stress does not exceed 60 MPa 
and the angle of twist does not exceed 2°. 

3.81 A 1.5-m-long solid steel shaft of 22-mm diameter is to transmit 
13.5 kW. Determine the minimum speed at which the shaft can rotate, know
ing that G = 77 GPa, that the allowable shearing stress is 30 MPa, and that 
the angle of twist must not exceed 3.5°. 

3.82 A 1.5-m~long tubular steel shaft of 38-mm outer diameter d 1 is to 
be made of a steel for which ra11 = 65 MPa and G = 77.2 GPa. Knowing that 
the angle of twist must not exceed 4° when the shaft is subjected to a torque 
of 600 N · m, determine the largest inner diameter· d2 which can be specified 
in the design. 

3.83 A 1.5-m-long tubular steel shaft of 38-mm outer diameter d 1 and 
30-mm inner diameter d2 is to transmit 100 kW between a turbine and a gen
erator. Determine the minimum frequency at which the shaft can rotate, know
ing that G = 77.2 GPa, that the allowable shearing stress is 60 MPa, and that 
the angle of twist must not exceed 3°. 

3.84 The stepped shaft shown rotates at 450 rpm. Knowing that 
r = 12 mm, determine the maximum power that can be transmitted without 
exceeding an allowable shearing stress of 50 MPa. 

3.85 The stepped shaft shown rotates at 450 rpm. Knowing that 
r = 5 mm, determine the maximum power that can be transmitted without ex
ceeding an allowable shearing stress of 50 MPa. 

3.86 Knowing that the stepped shaft shown must transmit 45 kW speed 
of 2100 rpm, determine the minimum radius r of the fillet if an allowable shear
ing stress of 50 MPa is not to be exceeded. 

T 

Fig. P3.86 and P3.87 

3.87 The stepped shaft shown must transmit 45 kW. Knowing that the 
allowable shearing ~t~ess in the shaft is 40 MPa and that the radius of the fil
let is r = 6 mm, determine the smallest permissible speed of the shaft. 

Problems i 71 

Fig. P3.82 and P3.83 

~~~~~,--r 
12.5 mm 
j_ 

Fig. P3.84 and P3.85 
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Full quarter-circular fll!et 
extends to edge of larger shaft 

Fig. P3.88, P3.89, and P3.90 

3.88 A torque of magnitude T = 22 N · m is applied to the stepped 
shaft shown, which has a full quarter-circular fillet. Knowing that D = 
25 mm, determine the maximum shearing stress in the shaft when (a) d = 
20 mm, (b) d ~ 23 mm. 

3.89 In the stepped shaft shown, which has a full quarter-circular fillet, 
D = 30 mm and d = 25 mm. Knowing that the speed of the shaft is 2400 rpm 
and that the allowable shearing stress is 50 MPa, determine the maximum power 
that can be transmitted by the shaft 

3.90 In the stepped shaft shown, which has a full quarter-circular fillet, 
the allowable shearing stress is 80 MPa. Knowing rhat D = 30 mm, determine 
the largest allowable torque that can be applied to the shaft is (a) d = 26 mm, 
(b)d ~ 24 mm. 

•a.9. PLASTIC DEFORMATIONS IN CIRCULAR SHAFTS 

When we derived Eqs. (3.10) and (3.16), which define, respectively, 
the stress distribution and the angle of twist for a circular shaft sub
jected to a torque T, we assumed that Hooke's law applied throughout 
the shaft. If the yield strength is exceeded in some portion of the shaft, 
or if the material involved is a brittle material with a nonlinear shear~ 
ing-stress-strain diagram, these relations cease to be valid. The purpose 
of this section is to develop a more general method-which may be used 
when Hooke's iaw does not apply-for detennining the distribution of 
stresses in a solid circular shaft, and for computing the torque required to 
produce a given angle of twist. 

We first recall that no specific stress-strain relationship was as
sumed in Sec. 3.3, when we proved that the shearing strain y varies lin~ 

Fig. 3.33 

early with the distance p from the axis of the shaft (Fig. 3.33). Thus, 
we may still use this property in our pfesent analysis and write 

p 
"Y = ( "Yma~ (3.4) 

where c is the radius of the shaft. 

l 



Assuming that the maximum value T max of the shearing stress T has 
been specified, the plot ofT versus p may be obtained as follows. We 
first determine from the shearing-stress-strain diagram the value of 1'max 
corresponding to 7 max (Fig. 3.34), and caiTy this value into Eq. (3.4). 
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Fig. 3.34 

Then, for each value of p, we determine the corresponding value of 1' 
from Eq. (3.4) or Fig. 3.33 and obtain from the stress-strain diagram of 
Fig. 3.34 the shearing stress r corresponding to this value of 1'· Plot
ting 'T against p yields the desired distribution of stresses (Fig. 3.35). 

We now recall that, when we derived Eq. (3.1) in Sec. 3.2, we as
sumed no particular relation between shearing stress and strain. We may 
therefore use Eq. (3.1) to determine the torque T corresponding to the 
shearing-stress distribution obtained in Fig. 3.35. Considering an an-
nular element of radius p and thickness dp, we express the element of Fig. 3.35 
area in Eq. (3.1) as dA = 2-rrp dp and write 

or 

T = r pT(2-rrp dp) 
0 

T = 2rrfc p2r dp 
0 . 

where T is the function of p plotted in Fig. 3.35. 

(3.26) 

If T is a known analytical function of y, Eq. (3.4) may be used to 
express r as a function of p, and the integral in (3.26) may be deter
mined analytically. Otherwise, the torque T may be.obtained through a 
numerical integration. This computation becomes more meaningful if 
we note that the integral in Eq. (3.26) represents the second moment, 
or moment of inertia, with respect to the. vertical axis of the area in 
Fig. 3.35 located above the horizontal axis and bounded by the stress" 
distribution curve. 

An important value of the torque is the ultimate. torque T u which 
causes failure of the shaft. This value may be determined from the ul
timate shearing stress 7 u of the material by choosing 7 max = r u and 
cariying out the computations indicated earlier. However, it is found 
more convenient in practice to determine T u experimentally by twist
ing a specimen of a. given material until it breaks. Assuming a ficti
tious linear distribution of stresses, Eq. (3.9) is then used to determine 
the corresponding maximum shearing stress Rr: 

Tuc 
-" Rr = J (3.27) 

' p 
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' 

y 

Fig. 3.37 

The fictitious stress Rr is called the modulus of rupture in torsion of 
the given materiaL It may be used to determine the ultimate torque T u 
of a shaft made of the same material, but of different dimensions, by 
solving Eq. (3.27) forT u· Since the actual and the fictitious linear stress 
distributions shown in Fig. 3.36 must yield the same value T u for the 

' 

Fig. 3.36 

ultimate torque, the areas they define must have the same moment of 
inertia with respect to the vertical axis. It is thus clear that the modu
lus of rupture Rr will always be larger than the actual ultimate shear
ing stress 7 u· 

In some cases, we may wish to determine the stress distribution 
and the torque T corresponding to a given angle of twist </J. This may 
be done by recalling the expression obtained in Sec. 3.3 for the shear
ing strain y in terms of</>, p, and the length L of the shaft: 

p</J y=z: (3.2) 

With <P and L given, we may determine from Eq. (3.2) the value of 
y corresponding to any given value of p. Using the stress-strain di
agram of the material, we may then obtain the corresponding value 
of the shearing stress T and plot T against p., Once the shearing-stress 
distribution has been obtained, the torque T may be determined an
alytically or numerically as explained earlier. 

•3.10. CIRCULAR SHAFTS MADE OF AN 
ELASTOPlASTIC MATERIAl 

Further insight into the plastic behavior of a shaft in torsion is obtained 
by considering the idealized case of a solid circular shaft made of an 
elastoplastic material. The shearing-stress-strain diagram of such a ma
terial is shown in Fig. 3.37. Using this diagram, we can proceed as in
dicated earlier and find the stress distribution across a section of the 
shaft for any value of the torque T, 

As long as the shearing stress 'T does not exceed the yield strength 
Ty, Hooke's law applies, and the stress distribution across the section 
is linear (Fig. 3.38a), with T m~ given by Eq. (3.9): 

Tc 
Tmax = J (3.9) 



As the torque increases, T max eventually reaches the value Ty (Fig. 
3.38b). Substituting this value into ,Eq. (3.9), and solving for the cor
responding value of T, we obtain the value T y of the torque at the on
set of yield: 

J 
Ty = -ry 

c 
(3.28) 

The value obtained is referred to as the maximum elastic torque, sin~e 
it is the largest torque for which the deformation remains fully elastic. 
ReCalling that for a solid circulaf shaft 1/c = t1rc3

, we have 

(3.29) 

As the torque is further increased, a plastic region develops in the 
shaft, around an elastic core of radius py (Fig. 3.38c). In the plastic re
gion the stress is uniformly equal to Ty, while in the elastic core the 
stress varies linearly with p and may be expressed as 

Ty 
T =-p 

Pr 
(3.30) 

As T is increased, the plastic region expands until, at the limit, the de
formation is fully plastic (Fig. 3.38d). 

Equation (3.26) will be used to determine the value of the torqUe 
T corresponding to a given radius Prof the elastic core. Recalling that 
r is given by Eq. (3.30) for 0 :::= p :::s py, and is equal' to Ty for 
Pr :::;;_ p :::; c, we write 

(3.31) 

or, in view of Eq. (3.29), 

T~ ±y (1- _!_P~) 
3 r 4 c3 (3.32) 

where Ty is the maximum elastic torque. We note that, as Pr approaches 
zero, the torque approaches the limiting value 

4 
T ~ -T 

p 3 y 
(3.33) 

This value of the torque, which corresponds to a fully plastic deforma
tion (Fig. 3.38d), is called the plastic torque of the shaft considered. 
We note that Eq. (3)3) is valid only for a solid circular shaft made of 
an elastoplastic material. 

Since the distribution of strain across the section remains linear af
ter the onset of yield, Eq. (3.2) remains valid and can be used to ex
press the radius py_.of the elastic core in terms of the angle of twist ¢. 
If 1> is large enough to cause a plastic deformation, the radius Prof the 

3.i0. Circular Shafts Made of an 
Elastoplastic Material 

T 

T 

' p 

(b) 

,, 

' 
' 

Pr ' p 

(c) 

T ,,. 

(d) 

Fig. 3.38 
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T 

2¢r 3¢r ¢ 

Fig. 3.39 

elastic core is obtained by making y equal to the yield strain Yr in Eq. 
(3.2) and solving for the corresponding·value Prof the distance p. We 
have 

Lyy 
py=-

4> 
(3.34) 

Let us denote by </>r the angle of twist at the onset of yield, i.e., when 
Pr = c. Making 4> = 4>r and py = c in Eq. (3.34), we have 

Lyy 
c=-

4>r 
(3.35) 

Dividing (3.34) by (3.35), member by member, we obtain the follow
ing relation:t 

(3.36) 

If we carry into Eq. (3.32) the expression obtained for py/c, we ex
press the torque T as a function of the angle of twist ¢, 

T=~Tr(l-±::) (3.37) 

where Ty and ¢r represent, respectively, the torque and the angle of 
twist at the onset of yield. Note that Eq. (3.37) may be used only for 
values of</> larger than r/Jy. For <P < <Pr. the relation between T and 4> 
is linear and given by Eq. (3.16). Combining both equations, we obtain 
the plot ofT against <P represented in Fig. 3.39. We check that, as cf> in
creases indefinitely, T approaches the limiting value TP = ~Ty corre
sponding to the case of a fully developed plastic zone (Fig. 3.38d). 
While the value TP cannot actually be reached, we note from Eq. (3.37) 
that it is rapidly approached as <P increases. For cf> = 2cf>y, T is within 
about 3% of TP, and for 4> = 3</>r within about 1%. 

Since the plot ofT against</> that we have obtained for an idealized 
elastoplastiC material (Fig. 3.39) differs greatly from the shearing-stress
strain diagram of that material (Fig. 3.37), it is clear that the shearing
stress-strain diagram of an actual material cannot be obtained directly 
from a torsion test canied out on a solid circular rod made of that ma
terial. However, a fairly accurate diagram may be obtained from a tor~ 
sion test if the specimen used incorporates a portion consisting of a thin 
circular tube.* Indeed, we may assume that the shearing stress will have 
a constant valuer in that portion. Equation (3.1) thus reduces to 

1' =pAT 

where p denotes the average radius of the tube and A its cross-sectional 
area. The shearing stress is thus proportional to the torque, and sucM 
cessive values of r can be easily computed from the corresponding val
ues ofT. On the other hand, the values of the shearing strain y may be 
obtained from Eq. (3.2) and from the values of¢ and L measured on 
the tubular portion of the specimen. 

tEquation (3.36) applies to any ductile material with a well-defined yield point, since its 
derivation is independent of the shape of the stresNtrain diagram beyond the yield point. 

fin order to minimize the possibility of failure by buckling, the specimen should be made 
so that the length of the tubular portion is no longer than its diameter. 



A solid circular shaft, 1.2 m long and 50 mm in diameter, is 
subjected to a 4.60.kN · m torque at each end (Fig. 3AO). As
suming the shaft to be made of an elastoplastic material with 
a yield -strength in shear of 150 MPa and a modulus of rigid
ity of 77 GPa, determine (a) the radius of the elastic core, 
(b) the angle of twist of the shaft 

Solving Eq. (3.32) for (py/c)3 and substituting the values ofT 
and T y, we- have 

(!!!:)3 = 4 - 3T = 4 - 3(4.60 kN. m) 0.250 
c Tr 3.68 kN · m 

!!!: = 0.630 
c 

py = 0.630(25 mm) = 15.8 mm 

(b) Angle of Twist. We first determine the angle of 
twist <Pr at the onset of yield from E<j. (3.16): 

TrL (3.68 X 103 N · m)(l.2 m) 
</>r = JG = (614 X 10·9 m4)(77 X 109 Pa) 

= 93A X 10-3 rad 
Fig. 3.40 

(a) Radius of Elastic Core. We first deterinine the 
torque Ty at the onset of yield. Using Eq. (3.28) with 
ry = 150 MPa, c = 25 mm, and 

Solving Eq. (3.36) for ¢ and substituting the values obtained 
for <f>r and py/c, we write 

J ~ ~7TC4 = ~7T(25 X 10-; m)4 = 614 X 10-9 m4 
</> = .1.>:_ = 93.4 X 10-3 rad = 148.3 X 10-3 rad 

py/C 0.630 

we write or 

Jr, (614 X 10·9m')(150 X 106 Pa) 
Tr = 7 = 25 x 10 3m = 3.68 kN. m ( 

360' ) 
<{> = (148.3 x 10·3 rad) -- = 8.50' 

27T rad 

'3.11. RESIDUAL STRESSES IN CIRCULAR SHAFTS 

In the two preceding sections, we saw that a plastic region will develop 
in a shaft subjected to a large enough torque, and that the shearing stress 
T at any given point in the plastic region may be obtained from the 
shearing-stress-strain diagram of Fig. 3.34. If the torque is removed, the 
resulting reduction of stress and strain at the point considered will take 
place along a straight line (Fig. 3.41). As you will see further in this 
section, the final value of the stress will not, in general, be zero. There 
will be a residual stress at most points, and that stress may be either 
positive or negative. We note that, as was the case for the normal stress, 
the shearing stress will keep decreasing until it has reached a value 
equal to its maximum value at C minus twice the yield strength of the 
materiaL 

y 

Fig. 3.41 
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T 

Consider again the idealized case of the elastoplastic material char~ 
acterized by the shearing-stress-strain diagram of Fig. 3.37. Assuming 
that the relation between T and y at any point of the shaft remains lin
ear as long as the stress does not decrease by more than 2-ry, we can 
use Eq. (3.16) to obtain the angle through which the shaft untwists as 
the torque decreases back to zero. As a result, the unloading of the shaft 
will be represented by a straight line on the T-<P diagram (Fig. 3.42). 
We note that the angle of twist does not return to zero after the torque 
has been removed. Indeed, the loading and unloading of the shaft re
sult in a permanent deformation characterized by the angle 

(3.38) 

where ¢ corresponds to the loading phase and may be obtained from T 
by solving Eq, (3.38), and where¢' corresponds to the unloading phase 
and may be obtained from Eq. (3.16). 

The residual stresses in an elastoplastic material are obtained by 
applying the principle of superposition in a manner similar to that de
scribed in Sec. 2.20 for an axial loading. We consider, on one hand, the 
stresses due to the application of the given torque T and, on the other, 
the stresses due to the equal and opposite torque which is applied to 
unload the shaft. The first group of stresses reflects the elastoplastic be
havior of the material during the loading phase (Fig. 3.43a), and the 
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second group the linear behavior of the same material during the un
loading phase (Fig. 3.43b). Adding the two groups of stresses, we ob
tain the distribution of the residual stresses in the shaft (Fig. 3.43c). 

We note from Fig. 3.43c that some residual stresses have the same 
sense as the original stresses, while others have the opposite sense. This 
was to be expected since, according to Eq. (3.1), the relation 

Jp(TdA)=O (3.39) 

must be verified after the torque has been removed. 
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For the shaft of Example 3.08 determine (a) the pennanent 
twist, (b) the distribution of residual stresses, after the 
4.60 kN • m torque has been removed. 

(a) Permanent Twist. We recall from Example 3.08 
that the angle of twist corresponding to the given torque is 
q, = 850°. The angle¢' through which the shaft untwists as 
the torque is removed is obtained from Eq. (3.16). Substitut
ing the given data, 

T ~ 4.60 X 103 N · m 

L ~ 1.2 m 

and the value J = 614 X 10-9 m4 obtained in the soiution of 
Example 3.08, we have 

or 

TL (4.60 X 103 N · m)(1.2 m) 

</>' ~ JG ~ (614 X 10·9 m4)(77 X 109 Pa) 

= 116.8 X 10-~ rad 

360° 
¢>' = (1!6.8 x w·' rad)- d ~ 6.69° 

2'TTra 

r(Mh) I 
150 ~---· 

+ 
p 

~-~-- : 
-: 

15.8 mm 

25 mm 

7(MPa) 

-118.4 

The permanent twist is therefore 

4>, ~ q, - 4>' ~ 8.50° - 6.69° ~ 1.81° 

(b) Residual Stresses. We recall from Example 3.08 
that the yield strength is 7r = 150 MPa and that the radius of 
the elastic· core corresponding to the given torque is 
py = 15.8 mm. The distribution of the stresses in the loaded 
shaft is thus as shown in Fig. 3.44a. 

The distribution of stresses due to the opposite 
4.60 kN • m torque required to unload the shaft is linear and 
as shown in Fig. 3.44b. The maximum stress in the distribu~ 
tion of the reverse stresses is obtained from Eq. (3.9); 

Tc (4.60 x !03 N · m)(25 x w·' m) 
7~nx=-= 

1 614 x 10 9 m4 

~ 187.3 MPa 

Superposing the two distributions of stresses, we obtain 
the residual stresses shown in Fig. 3.44c. We check that, even 
though the reverse stresses exceed the yield strength T y, the as
sumption of a linear distribution of these stresses is valid, since 
they do not exceed 2-r Y· 

r(MPa) 

p 

-187.3 -------

(o) (b) kl 

Fig. 3.44 
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SAMPLE PROBLEM 3.7 

Shaft AB is made of a mild steel which is assumed to be elastop!astic with 
G = 77 GPa and Ty = 145 MPa. A torque Tis applied and gradually increased 
in magnitude. Determine the magnitude ofT and the corresponding angle of 
twist (a) when yield first occurs, (b) when the deformation has become fully 
plastic. 

SOLUTION 

Geometric Properties 

The geometric properties of the cross section are 

c1 = !(38 mm} = 19 mm c2 = t(58 mm) = 29 mm 

J = &1r(c~ c1) = !7T[(29 mm)4 
- (19 mm)4] = 906.3 X 103 mm3 

a. Onset of Yield. For Tmax = Ty = 145 MPa, we find 

, r,J (145 MPa)(9063 X !03 mm3
) r, ~- ~ ~-~'-'::-:;,-----' 

c2 29 mm 

Ty = 4.53 k.N · m <€1 

Making p = c2 andy = yy in Eq. (3.2) and solving for¢, we obtain the value 
of1y 

yyL r,L (145 MPa)(1500 mm) 
<Pr ~ - ~ - ~ ~ 0,097 rad 

c2 c2G (29 mm)(77 GPa) 

b. Fully Plastic Deformation. When the plastic zone reaches the inner 
surface, the stresses are uniformly distributed as shown. Using Eq. (3.26), we 
write 

~ J1T(145 MPa)[(0,029 m)' - (0.019 m)'] 

TP = 5.32 kN · m <4 

When yield first occurs on the inner surface, the deformation is fully plastic; 
we have from Eq. (3.2): 

y,L r,L (145 MPa)(1.5 m) 
<P ----- ~ 0.150 rad 1 - c, - c,G - (0,019 m)(77 GPa) 

<Pr ~ 859" <l 

For larger angles of twist, the torque remains constant; the T-¢ diagram of the 
shaft is as shown. 



(1) 

/ 
¢1= 8.59° 

SAMPLE PROBLEM 3.8 
For the shaft of Sample Prob. 3.7, detennine the residual stresses and the per
manent angle of twist after the torque Tp = 5.32 kN' · m has been removed. 

SOLUTION 

Referring to Sample Prob. 3.7, we recall that when the plastic zone first reached 
the inner surface, the applied torque was Tp = 5.32 kN · m and the correspon
ding angle of twist was ¢1 = 8.59°. These values are shown in Fig. l. 

Elastic Unloading. We unload the shaft by applying a 5.32 kN · m torque 
in the sense shown in Fig. 2. During this unloading, the behavior of the mate
rial is· linear. Recalling from Sample Prob. 3.7 the values found for c1, c2, and 
J, we obtain the following stresses and angle of twist: 

Tc2 (5.32 kN · m)(0.029 m) 
Tmax = J = 

9063 
X lO 9 m4 = 170MPa 

c1 19 mm 
7min = T m3x- = (170 MPa)--- = 111 MPa 

· c2 29mm 

TL · (5320N • m)(1.5 m) 
1>' =- = = O.ll4rad = 6.53° 

JG (906.3 X 10-9m' )(77 GPa) 

Residual Stresses and Permanent Twist. The resul!s of the loading 
(Fig. 1) and the unloading (Fig. 2) are superposed (Fig. 3) to obtain the resid~ 
ual stresses and the permanent angle of twist ¢p· 

(2) (3) 

rr = 145 MPa 
Ill MPa 

+ 
T2 = 25 MPa 

.5.:32 kN 

¢'"" 6.53° 170 MPa ¢p = 1.89° 
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3.91 A 50~mm~diameter solid shaft is made of a mild steel that is as~ 
sumed to be elastoplastic with Ty = 140 MPa. Determine the maximum shear~ 
ing stress and the radius of the elastic core caused by the application of a torque 
of magnitude (a) 3 kN • m, (b) 4 kN · m. 

3.92 A 38~mm-diameter solid shaft is made of a mild steel that is as~ 
sumed to be elastoplastic with Ty = 145 MPa. Detennine the maximum shear~ 
ing stress and the radius of the elastic core caused by the application of a torque 
of magnitude (a) 1.2 kN · m, (b) 1.8 kN · m. 

3.93 It is observed that a straightened paper clip can be twisted through 
several revolutions by the application of a torque of approximately 60 N · m. 
Knowing that the diameter of the wire in the paper clip is 0.9 mm, determine 
the approximate value of the yield stress of the steel. 

3.94 A 30-mm~diameter solid rod is made of an elastoplastic material 
with Ty = 35 MPa. Knowing that the elastic core of the rod is of diameter 
25 mm, determine the magnitude of the torque applied to the rod. 

3.95 The solid circular shaft shown is made of a steel that is assumed 
to be elastoplastic with Ty = 145 MPa. Determine that magnitude T of the 
applied torque when the plastic zone is (a) 16 mm deep, (b) 24 mm deep. 

3.96 For the shaft and loading of problem 3.95, assuming that G = 77.2 
GPa determine the angle of twist in a 1.5-m length of the shaft. 

3.97 The shaft AB is made of a material that is elastoplastic with T y = 90 
MPa and G = 30 GPa. For the loading shown, determine (a) the radius of the 
elastic core of the shaft, (b) the angle of twist at end B. 

Fig. P3.97 

3.98 A 18-mm-diameter solid circular shaft is made of material that 
is assumed to be elastoplastic with Ty 140 MPa and G = 77 GPa. For a 
1.2-m length of the shaft, determine the maximum shearing stress and the 
angle-of twist caused by a 200 N · m torque. 



3.99 A solid circular rod is made of a material that is assumed to be 
·1 stoplastic. Denoting by Ty and ¢r, re~pectively, the torque and the angl~ of 
~aist at the onset of yield, detennine the angle of twist if the torgue is increased 
to (a) T ~ 1.1 T, (b) T ~ 1.25T, (c) T ~ 1.3T. 

3.1. 00 A 30-mm-diameter solid circulai shaft is made of a material that 
·s assumed to be elastoplastic with Ty = 125 MPa and G = 77 GPa. For an 
~.4-m length of the shaft, determine the maximum shearing stress and the an
gle of twist caused by a 850 N · m torque. 

3.101 The hollow shaft shown "is made of steel which is assumed to be 
elastoplastic with ry = 145 MPa and G = 77.2 GPa. Determine the magnitude 
T of the torgue and the corresponding angle of twist (a) at the onset of yield, 
(b) when the plastic zone is 10 mm deep. 

25mm 

Fig. P3.101 

3.102 For the shaft of Frob. 3.101, determine (a) the angle of twist at 
which the shaft first becomes fully plastic, (b) the corresponding magnitude T 
of the torgue. Sketch the T-4> curve for the shaft. 

3.103 A steel rod is machined to the shape shown to form a tapered 
solid shaft to which torques of magnitude T =· 8500 N · m are applied. As
suming the steel to be elastoplastic with Ty = 145 MPa and G = 77 GPa, 
determine (a) the radius of the elastic core in portion AB of the shaft, (b) the 
length of portion CD that remains fully elastic. Fig. P3.103 

3.104 If the torques applied to the tapered shaft of Prob. 3.103 are 
slowly increased, determine (a) the magnitude T of the largest torques that 
can be applied to the shaft, (b) the length of the portion CD that remains fully 
elastic. 

3.105 Considering the partially plastic shaft of Fig. 3.38a, derive Eq. 
(3.32) by recalling that the integral in Eq. (3.26) represents the second moment 
about the -r axis of the area under the T"fJ curve. 

3.106 A solid brass rod of30~mm diameter is subjected to a torgue that 
causes a maximum shearing stress of 95 MPa in the rod. Using the 1"""}' diagram 
shown for the brass used, determine (a) the magnitude of the torque, (b) the 
angle of twist in a 0.6-m length of the rod. 

3.107 A solid brass rod of 20-mm diameter and 0.75Mmm length is 
twisted through an angle of 10 i· Using the '~'""Y diagram shown for the brass 
used, detennine (a) the-magnitude of the torgue applied to the rod, (b) the max~ 
imum shearing stress in the rod. 

r(MPa) 
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Fig. P3.106 and P3.107 

/ 

0.002 

Problems 183 

/ 

o.oo: 
y 



1184 Torsion 3.108 A solid aluminum rod of 40~mm diameter is subjected to a torque 
which produces in the rod a maximum shearing strain of 0.008. Using the r-y 
diagram shown for the aluminum alloy used, determine (a) the magnitude of the 
torque applied to the rod, (b) the angle of twist in a 750-mm length of the rod. 

-r (MPa) 

!50 

125 

100 

75 

50 

25 v 
/ 

--/ 

/ 

0 0.002 0.004 0.006 0.008 0.010 
y 

Fig. P3.108 

3.109 The curve shown in Fig. P3.108 can be approximated by the 
relation 

T = 27.8 X 109y - 1.390 X 1012 ·y2 

Using this relation and Eqs. (3.2) and (3.26), solve problem 3.108. 

3.110 The solid circular shaft AB is made of a steel that is assumed to 
be elastoplastic with Ty = 145 MPa and G = 77.2 GPa. The torque T is 
increased until the radius of the elastic core is 6 mm. Determine the maximum 
residual shearing stress in the shaft after the torque T is removed. 

Fig. P3.110 

3.111 The solid circular drill rod AB is made of a steel that is assumed 
to be elastoplastic with Ty = 154 MPa and G = 77 GPa. Knowing that a torque 
T 8475 N · m is applied to the rod and then removed, determine the maxi
mum ·residual shearing stress in the rod. 



3.112 In Prob. 3.111, determine the permanent angle of twist of the rod. 

3.113 The hollow shaft AB is rriade of a mild steel that is assumed to 
be elast()plastic with 'T y = 125 MPa and G = 77 GPa. The magnitude T of the 
torque is slowly fncreaseQ until the plastic zone first reaches the inner surface; 
the torque is then removed. Determine (a)· the maximum residual shearing 
stress: (b) the permanent angle of twist. 

18mm 

Fig. P3.113 

3.114 The solid shaft shown is made of a steel that is assumed to be 
elastoplastic with ry = 145 MPa and G = 77.2 GPa. The torque is increased 
in magnitude until the shaft has been twisted through 6°; the torque is then re
moved. Determine (a) the magnitude and location of the maximum residual 
shearing stress, (b) the permanent angle of twist. 

16mm 

Fig. P3.1t4 

3. 115 In Pro b. 3.110, determine the permanent angle of twist of the shaft. 

3.116 A torque T applied to a solid rod made of an elastoplastic mate~ Tr 
rial is increased until the rod is fully plastic and then removed. (a) Show that 
the distribution of residual shearing stresses is represented in the figure. (b) De
termine the magnitude of the torque due to the stresses acting on the portion 
of the rod located within a circle of radius c0. 

3.117 After the hollow shaft ofProb. 3.113 has been loaded and unloaded 
as described in that problem, a torque T 1 of sense opposite to the original torque 
Tis applied to the shaft. Assuming no change in the value of Ty, determine the 
magnitude T1 of the torque T 1 required to initiate yield in this second loading, Fig. P3.116 
and compare it with the magnitude T r of the torque T that caused the shaft to 
yield in the original loading. 

3.118 After the solid shaft of Prob. 3.114 has been loaded and unloaded 
as described in that problem, a torque T 1 of sense opposite to the original torque T 
is applied to the shaft. Assuming no change in the value of ¢r, detennlne the 
angle of twist ¢ 1 for which yield is initiated in this second loading, and compare 
it with the angle t/Jr for which the shaft started to yield in the original loading. 
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Fig. 3.45 

Ia) 

T::.t 

ib) 

Fig. 3.46 

Fig. 3.47 

•3.12. TORSION OF NONCIRCULAR MEMBERS 

The formulas obtained in Sees. 3.3 and 3.4 for the distributions of strain 
and stress under a torsional loading apply only to members with a cir
cular cross section. Indeed, their derivation was based on the assump
tion that the cross section of the member remained plane and undis
torted, iind we saw in Sec. 3.3 that the validity of this assumption 
depends upon the axisymmetry of the member, i.e., upon the fact that 
its appearance remains the same when it is viewed from a fixed posi
tion and rotated about its axis through an arbitrary angle. 

A square bar, on the other hand, retains the same appearance only 
when it is rotated through 90° or 180°. Following a line of reasoning 
similar to that used in Sec. 3.3, one could show that the diagonals of 
the square cross section .of the bar and the lines joining the midpoints 
of the sides of that section remain straight (Fig. 3.45). However, be-
cause of the lack of axisymmetry of the bar, any other line drawn in its 
cross section will defoiTil when the bar is twisted, and the cross section 
itself will be warped out of its original plane. 

It follows that Eqs. (3.4) and (3.6), which define, respectively, the 
distributions of strain and stress in an elastic circular shaft, cannot be 
used for noncircular members. For example, it would be wrong to as
sume that the shearing stress in the cross section of a square bar varies 
linearly with the distance from the axis of the bar and is, therefore, 
largest at the comers of the cross section. As you will see presently, the 
shearing stress is actually zero at these points. 

Consider a small cubic element located at a comer of the cross sec
tion of a square bar in torsion and select coordinate axes parallel to the 
edges of the element (Fig. 3.46a). Since the face of the element per
pendicular to the y axis is pru.t of the free surface of the bar, all stresses 
on this face must be zero. Referring to Fig. 3.46b, we write 

Tyy = 0 TY' = 0 (3.40) 

":,~ For the same reason, all stresses on the face of the element perpendi
cular to the z axis must be zero, and we write 

T,_,=O Tzy=O (3.41) 

It follows from the first of Eqs. (3.40) and the fJrst of Eqs. (3.41) that 

Txy=O T = 0 
~ 

(3.42) 

Thus, both components of the shearing stress on the face of the element 
perpendicular to the axis of the bar are zero. We conclude that there is 
no shearing stress at the comers of the cross section of the bar. 

By twisting a rubber model of a square bar, one easily verifies that 
no deformations-and, thus, no stresses-occur along the edges of the 
bar, while the largest defonnations-and, thus, the largest stresses-occur 
along the center line of each of the faces of the bar (Fig. 3.47). 

The determination of the stresses in noncircular members subjected to 
a torsional loading is beyond the scope of this text. However, results ob
tained from the mathematical theory of elasticity for straight bars with a 
uniform rectangular cross section will be indicated here for convenience. t 

tSee S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3d ed., McGraw-Hit!, New 
York, 1969, sec. 109. 
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Denoting by L the length of the bar, by a and b, respectively, the wider and 
narrower side of its cross section, an? by T the magnitude of the torques 
applied to the bar (Fig. 3.48), we find that the maximum shearing stress 

T 

Fig. 3.48 

occurs along the center line of the wider face of the bar and is equal to 

T 
Tmax = -b2 c1a 

The angle of twist, on the other hand, may be expressed as 

1> = ...!!::._ 
c2ab3G 

(3.43) 

(3.44) 

The coefficients Ct and c2 depend only upon the ratio a/band are given 
in Table 3.1 for a number of values of that ratio. Note that Eqs. (3.43) 
and (3.44) are valid only within the elastic range. 

TABLE 3.1. Coefficients for 
Rectangular Bars in Torsion 

alb c, c, 

1.0 0.208 0.1406 
1.2 0.219 0.1661 
1.5 0.231 0.1958 
2.0 0.246 0.229 
2.5 0.258 0.249 
3.0 0.267 0.263 
4.0 0.282 0.281 
5.0 0.291 0.291 

10.0 0.312 0.312 
00 0.333 0.333 

We note from Table 3.1 that for a/b 2:! 5, the coefficients c1 and c2 
are equal. It may be shown that for such values of a/b, we have 

c1 = c2 = t(l - 0.630b/a) (for alb "' 5 only) (3.45) 

The distribution-of shearing stresses in a noncircular member may 
be visualized more easily by using the membrane analogy. A homoge
neous elastic membrane attached to a fixed frame and subjected to a uni
fonn pressure on Ol)e of its sides happens to constitute an analog of the 
bar in torsion, i.e., the determination of the deformation of the membrane 
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Tangent of 
m,.,. 

Horizontal 

Fig. 3.49 

depends upon the solution of the same partial differential equation as 
the detennination of the shearing stresses in the bar. t .More specifi
cally, if Q is a point of the cross section of the bar and Q' the corre
sponding point of the membrane (Fig. 3.49), the shearing stress T at Q 
will have the same direction as the horizontal tangent to the membrane 
at Q', and its magnitude will be proportional to the maximum slope of 
the membrane at Q' .:j: Furthennore, the applied torque will be propor
tional to the volume between the membrane and the plane of the fixed 
frame. In the case of the membrane of Fig. 3.49, which is attached to 
a rectangular frame, the steepest slope occurs at the midpoint N' of the 
larger side of the frame. Thus, we verify that the maximum shearing 
stress in a bar of rectangular cross section will occur at the midpoint N 
of the larger side of that section. 

The membrane analogy may be used just as effectively to visual
ize the shearing stresses in any straight bar of uniform, noncircular cross 
section. In particular, let us consider several thin-walled members with 
the cross sections shown in Fig. 3.50, which are subjected to the same 
torque. Using the membrane analogy to help us visualize the shearing 
stresses, we note that, since the same torque is applied to each mem
ber, the same volume will be located under each membrane, and the 
maximum slope will be about the same in each case. Thus, for a thin
walled member of uniform thiCkness and arbitrary shape, the maximum 
shearing stress is the same as for a rectangular bar with a very large value 
of a/band may be detennined from Eq. (3.43) with c1 = 0.333.§ 

-l 

L 

Fig. 3.50 

tSee ibid. sec. 107. 
:j:This is the slope measured in a direction perpendicular to the horizontal tangent at Q'. 
§It could also be shown that the angle of twist may be detennined from Eq. (3.44) with 

c1 = 0.333. 



'3.13. THIN-WALLED HOLLOW SHAFTS 

In the preceding section we saw that the determination of stresses in 
noncirc\]lar members generally requires the use of advanced mathe
matical methods. Iri th<? case of thin-walled hollow noncircular shafts, 
howeyer, a good approximation of the distribution of stresses in the 
shaft can be obtained by a simple computation. 

Consider a hollow cylindrical member of noncircular section sub
jected to a torsional loading (Fig. 3.51).t While the thickness t of the 
wall may vary within a transvers~ section, it will be assumed that it re
mains small compared to the other dimensions of the member. We now 
detach from the member the colored portion of wall AB bounded by 
two transverse planes at a distance D.x from each other, and by two lon
gitudinal planes perpendicular to the walL Since the portion AB is in 
equilibrium, the sum of the forces exerted on it in the longitudinal x di
rection must be zero (Fig. 3.52). But the only forces involved are the 
shearing forces FA and F 8 exerted on the ends of portion AB. We have 
therefore 

(3.46) 

We now express FA as the product of the longitudinal shearing stress 
T A on the small face at A and of the area tA Ax of that face: 

FA = rA(tA l'>x) 

We note that, while the shearing stress is independent of the x coordi
nate of the point considered, it may vary across the wall; thus, T A rep
resents the average value of the stress computed across the wall. Ex
pressing F8 in a similar way and substituting for FA and F8 into (3.46), 
we write 

or (3.47) 

Since A and B were chosen arbitrarily, Eq. (3.47) expresses that the 
product Tt of the longitudinal shearing stress T and of the wall thick
ness t is constant throughout the member. Denoting this product by q, 
we have 

q = Tt = constant (3.48) 

We now detach a small element from the wall portion AB (Fig. 
3.53). Since the upper and lower faces of this element are part of the 
free surface of the hollow member, the stresses on these faces are equal 
to zero. Recalling relations (1.21) and (1.22) of Sec. 1.12, it follows 
that the stress components indicated on the other faces by dashed ar
rows are also zero, while those represented by solid arrows are equal. 
Thus, the shearing stress at any point of a transverse section of the hol
low member is parallel to the wall surface (Fig. 3.54) and its average 
value computed acr9ss the wall satisfies Eq. (3.48). 

tThe wall of the member must enclose a single cavity and must not be slit open. In other 
words, the member shouJd be topologically equivalent to a hollow circular shaft. 
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Fig. 3.51 
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Fig. 3.52 

Fig. 3.53 

Fig. 3.54 
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dF 

Fig. 3.55 

dF 

Fig. 3.56 

At this point we can note an analogy between the distribution of 
the shearing stresses r in the transverse section of a thin-walled hollow 
shaft and the distribution of the velocities v in water flowing through a 
closed channel of unit depth and variable width. While the velocity v 
of the water varies from point to point on account of the variation in 
the width t of the channel, the rate of flow, q = vt, remains constant 
throughout the channel, just as rt in Eq. (3.48). Because of this anal
ogy, the product q = rt is referred to as the shear flow in the wall of 
the hollow shaft. 

We will now derive a relation between the torque T applied to a 
hollow member and the shear flow q in its wall. We consider a small 
element of the wall section, of length ds (Fig. 3.55). The area of the el
ement is dA = t ds, and the magnitude of the shearing force dF exerted 
on the element is 

dF = TdA = T(tds) = (Tt)ds = qds (3.49) 

The moment dM0 of this force about an arbitrary point 0 within the 
cavity of the member may be obtained by multiplying dF by the per
pendicular distance p from 0 to the line of action of dF. We have 

dM0 =pdF= p(q ds) = q(p ds) (3.50) 

But the product p ds is equal to twice the area det of the colored trian
gle in Fig. 3.56. We thus have 

dM0 = q(2dii) (3.51) 

Since the integral around the wall section of the left-hand member of 
Eq. (3.51) represents the sum of the moments of all the elementary 
shearing forces exerted on the wall section, and since this sum is equal 
to the torque T applied to the hollow member, we have 

T = ~ dM0 = ~ q(ldii) 

The shear flow q being a constant, we write 

T = 2qii (3.52) 

where a is the area bounded by the center line of the wall cross sec
tion (Fig. 3.57). 

Fig. 3.57 

The shearing stress T at any given point of the wall may be ex
pressed in tezms of the torque T if we substitute for q from (3.48) into 
(3.52) and solve forT the equation obtained. We have 

7' 
T=-

2ttl. 
(3.53) 

where t is the wall thickness at the point considered and a the area 
bounded by the center line. We recall that T represents the average value 



f:" " """ of the shearing stress across the wall. However, for elastic deformations 

the distribution of stresses across the wall may be assmped uniform, 
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I
I and Eq" (353) will yield the actuai value of the shearing stress at a 

given point of the wall. 
The angle of twist -of a thin~ walled l;lollow shaft may be obtained 

by using the method of energy (Chap" ll)" Assuming an elastic defor
mation, it may be shownt that the angle of twist of a thin~walled shaft 
of length L and modulus of rigidity G is 

TL fds 
</> = 4ct2G 7 (354) 

where the integral is computed along the center line of the wall section. 

Structural aluminum tubing of 60 X 100-mm rectangular cross 
section was fabiicated by extiusion. Detennine the shearing 
stress in each of the four walls of a portion of such tubing 
when it is subjected to a torque of 2.7 kN · m, assuming (a) a 
uniform 4-mm wall thickness (Fig. 3.58a), (b) that, as a result 
of defective fabrication, walls AB and AC are 3~mm thick, and 
walls BD and CD are 5-mm thick (Fig. 3.58b). 

J---J 100 mm -----j B 

I:=~ 
I l_]:jr-

_L__ . 

C f D 
(b) 

Fig. 3.58 

tSee Prob. 11.70. 

(a) Tubing of Uniform Wall Thickness. The area 
bounded by the center line (Fig. 3.59) is 

il = (96 mm)(56 mm) = 5376 mm2 

Since the thickness of each of the four walls is t = 4 mm, we 
find from Eq. (3.53) that the shearing stress in each wall 
is 

T 2700N•m 
r = - = = 62.8 MPa 

2til 2(0"004 m)(5376 X to-6 m2 ) 

Ar--96mm---Js I ~--------------------; 

56mm :[£]=4mm \ 

L : t=4mm : ' , 
' ' ~-------------------J 

C 1 D 

Fig. 3.59 

(b) Tubing with Variable Wall Thickness. Observ
ing that the area d bounded by the center line is the same as 
in part a, and substituting successively t = 3 mm and t = 5 mm 
into Eq. (3.53), we have 

2700N·m 
r =r = =83.7MPa 

AB AC 2(0"003 m)(5376 X 10 6 m2 ) 

and 

2700N·m 
Too = Teo = = 50.2 MPa 

2W005 m)(5376 X w-' m2
) 

We note that the stress in a given wall depends only upon its 
thickness. 
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t = 6mm 

r 1 
40mm 34mm 

L~~_l 
11~34mm-~J 
~40mm-

(3) 

SOLUTION 

SAMPlE PROBLEM 3.9 

Using T 311 = 40 MPa, determine the largest torque that may be 
applied to each of the brass bars and to the brass tube shown. 
Note that the two solid bars have the same crossHsectional area, 
and that the square bar and square tube have the same outside 
dimensions. 

1. Bar with Square Cross Section. For a solid bar of rectangular cross 
section the maximum shearing stress is given by Eq. (3.43) 

T 
'Tma~ =-b, 

c,a 

where the coefficient c1 is obtained from Table 3.1 in Sec. 3.12. We have 

a=b=0.040m 
a - = !.00 c1 = 0.208 
b 

For 'T 111a~ = 'Tall = 40 MPa, we have 

T, 
40 

MPa = 0.208(0.040 m)' 
T1 = 532N · m ....e.! 

2. Bar with Rectangular Cross Section. We now have 

a= 0.064 m b = 0.025 m 
a b = 2.56 

Interpolating in Table 3.1: c1 = 0.259 

T, 
'Tma~ = -b' c,a 

T 
40MPa = 0.259(0.064~)(0.025m)2 T, = 414 N · m ~ 

3. Square Thbe. For a tube of thickness t, the shearing stress is given by 
Eq. (3.53) 

where il is the area bounded by the center line of the cross section. We have 

a = (0.034 m)(0.034 m) = l.l56 X 10-3 m2 

We substitute 'T = 'Tall = 40 MPa and t = 0.006 m and solve for the allowable 
torque: 

T 
T=-

2t(l 

T3 
T3 = 555 N · m «! 40 

MPa = 2(0.006 m)(l.l56 X 10-3 m2) 



3.119 Knowing that T = 800 N · m and that G = 39 GPa, determine 
for each of the cold-rolled yellow brass bars shown the maximum shearing stress 
and the angle of twist of end B. 

3.120 Using Tan = 50 MPa and knowing that G = 39 GPa, determine 
for each of the cold-rolled yellow brass bars shown the largest torque T that 
can be applied and the corresponding angle of twist at end R 

3.121 Knowing that the magnitude of the torque Tis 200N · m and 
that G = 27 GPa, determine for each of the aluminum bars shown the maxi
mum shearing stress and the angle of twist at end B. 

(a) 

(b) 

Fig. P3.121 and P3.122 

3.122 Using Tau = 70 MPa and G = 27 GPa, determine for each of the 
aluminum bars shown the largest torque T that can be applied and the corre
sponding angle of twist at end B. 

3. 123 Each of the three steel bars shown is subjected to a torque of mag
nitude T = 275 N · m. Knowing that the allowable shearing stress is 50 MPa, 
determine the required dimension b for each bar. 

3.124 Each of the three aluminum bars shown is to be twisted through 
an angle of 2°. Knowing that b = 30 mm, ra~ 1 =50 MPa, and G = 27 GPa, 
determine the shortest allowable length of each bar. 

3.125 Each of the three steel bars shown is subjected to a torque of mag
nitude T = 550 N · nv.Knowing that the allowable shearing stress is 55 MPa, 

(b) 

Fig. P3.119 and P3.120 

determine the required dimension b for each bar. Fig. P3.123, P3.124, P3.125 and P3.126 
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A 

B 

T, 

Fig. P3.127 and P3.128 

a 

a 

b- b 

W200 X 46.1 

Fig. P3.132 

3.126 Each of the three aluminum bars shown is to be twisted through 
an angle of 1.25°. Knowing that b = 38 mm, Tau= 50 MPa, and G = 27 GP~, 
detennine the shortest allowable length of each bar. 

3.127 Shafts A and B are made of the same material and have the sanie 
cross~sectional area, but A has a circular cross section and B has a square cross 
section. Determine the ratio of the maximum torques TA and T0 that can be 
safely applied to A and B, respectively. 

3.128 Shafts A and B are made of the same material and have the same 
length and cross~sectional area, but A has a circular cross section and B has a 
square cross section. Determine the ratio of the maximum values of the angles 
4>A and ¢n through which shafts A and B, respectively, can be twisted. 

3.129 Determine the largest allowable square cross section of a steel 
shaft of length 6 m if the maximum shearing stress is not to exceed 120 MPa 
when the shaft is twisted through one complete revolution. Use G = 77.2 GPa. 

3.130 A 1.25Mm~long steel angle has an L127 X 76 X 6.4 cross section. 
From Appendix C, we find that the thickness of the section is 6.4 mm and that 
its area is 1252 mm2. Knowing that Tall = 60 MPa and that G = 77.2 GPa, and 
ignoring the effect of stress concentration, determine (a) the largest torque T 
that can be applied, (b) the corresponding angle of twist. 

Fig. P3.130 

3.131 A 340 N · m torque is applied to a 1.8~m-long steel angle with 
an Ll02 X 102 X 9.5 cross section. From Appendix C, we find that the thick
ness of the section is 9.5 mm and that its area is 1850 mm2

• Knowing that 
G = 77 GPa, determine (a) the maximum shearing stress along line a-a, (b) 
the angle of twist. 

~ "~: •:m 
' Fig. P3.131 

3.132 An 2.4-m steel member with a W200 X 46.1 cross section is sub
jected to a 560 N · m torque. The properties of the rolled-steel section are given 
in Appendix C. Knowing that G = 77 GPa, determine (a) the maximum shear
ing stress along line aMa, (b) the maximum shearing stress along line b-b, (c) 
the angle of twist. (Hint: consider the web and flanges separately and obtain a 
relation between the torques exerted on the web and a flange, respectively, by 
expressing that the resulting angles of twist are equal.) 



3.133 A 3-m-long steel member has a W250 X 58 cross section. Know
ing that G = 77.2 GPa and that the allowable shearing stress is 35 MPa, 
determine (a) the largest torque T that Can be applied, (b) the Corresponding 
angle of twist. Refer to Appendix C for the dimensions of the cross section and 
neglect the effect Of stress concentrations. (See hint of Prob. 3.132.) 

Fig. P3.133 

3.134 A 7 kN · m torque is applied to a hollow aluminum shaft having 
the cross section shown. Neglecting the effect of stress concentrations, deter~ 
mine the shearing stress at points a and b. 

3.135 A 5 kN • m torque is applied to a hollow shaft having the cross 
section shown. Neglecting the effect of stress concentrations, determine the 
shearing stress at points a and b. 

10 rnm 

l 
t [";====:=iii 

- -smm t 

Fig. P3.135 

a 

5mm 

r
, 50m~ 

--5mm 

'Ti!J§;:',,_¥=, ==p'· ~ 
b 

7.5mm 
Fig. P3.136 

3.136 A 5600 N · m torque is applied to a hollow shaft having the cross 
section shown. Neglecting the effect of stress concentrations, determine the 
shearing stress at points a and b. 

3.137 A 750 N · m torque is applied to a hollow shaft having the cross 
section shown and a .uniform 6~mm wall thickness. Neglecting the effect of 
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I - .. ....-12mm 

lOOmm- -12mm I 
1 

6mm 

~· j 

~-l50mm~ 
Fig. P3.134 

a 

30mm 

r 
6Dmm 

l 
stress concentrations, determine the shearing stress at points a and b. Fig. P3.137 
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l 
F lm 

d 50mm 

-'"j i '=r 
50mm 

~==='.;J 
f.-75mm -..j 

Fig. P3.139 

3.138 A hollow member having the cross section shown is formed from 
sheet metal of 2-mm thickness. Knowing that the shearing stress must not 
exceed 3 MPa, determine the largest torque that can be applied to the member. 

r--somm--'"j f ]wmm 
SOmm 

l 
~--~ 

lOmm 

Fig. P3.138 

3.139 and 3.140 A hollow member having the cross section shown is to 
be formed from sheet metal of 1.5 mm thickness. Knowing that a 140 N · m 
torque will be applied to the member, determine the smallest dimension d that 
can be used if the shearing stress is not to <exceed 5 MPa. 

1 'l d 

'l 
sod_~ 

f.-75mm-l 
Fig. P3.140 

3.141 A hollow cylindrical shaft was designed with the cross section 
shown in Fig. (1) to withstand a maximum torque T0 . Defective fabrication, 
however, resulted in a slight eccentricity e between the inner and outer cylin
drical surfaces of the shaft as shown in Fig. (2). (a) Express the maximum 
torque T that can be safely applied to the defective shaft in terms of T0, e, and 
t. (b) Calculate the percent decrease in the allowable torque for values of the 
ratio .eft equal to 0.1, 0.5, and 0.9. 

(1) 

Fig. P3.141 

(2) 



3.142 A cooling tube having the cross section shown is formed from a sheet 
of stainless steel of 3~nun thickness. The radii c1 = 150 mm and c2 = lOO mm 
are measured to the center line of the Sheet metal. Knowing that a torque of 
magnitude T = 3 kN · m is applied to the tube, determine (a) the maximum 
shearing stress in' the tube;, (b) the magnitude of the torque carried by the outer 
circular shell. Neglect the dimension of the sinall opening where the outer and 
inner Shells are connected. 

Fig. P3.142 and P3.143 

3.143 A cooling tube having the cross section shown is formed from 
a sheet of stainless steel of thickness t. The radii c1 and c2 are measured to 
the center line of the sheet metal. Knowing that a torque T is applied to the 
tube, determine in terms ofT, c1, c2, and t the maximum shearing stress in 
the tube. 

3.144 Equal torques are applied to thin-walled tubes of the same 
length L, same thickness t, and same radius c. One of the tubes has been slit 
lengthwise as shown. Determine (a) the ratio r 1)ra of the maximum shear
ing stresses in the tubes, (b) the ratio ¢b1¢a of the angles of twist of the 
shafts. 

3.145 A hollow cylindrical shaft of length L, mean radius c,, and uni- (a) 

form thickness t is subjected to a torque of magnitude T. Consider, on !he one Fig. P3.144 
hand, the values of the average shearing stress rave and the angle of twist ¢ 
obtained from the elastic torsion formulas developed in Sees. 3.4 and 3.5 and, 
on the other hand, the corresponding values obtained from the formulas 
developed in Sec. 3.13 for thin~walled shafts. (a) Show that the relative en·or 
introduced by using the thin-walled-shaft formulas rather than the elastic tor-
sion formulas is the same for rave and¢ and that the relative error is positive 
and proportional to the ratio tlc,w (b) Compare the percent error corresponding 
to values of the ratio tlcm of 0.1, 0.2, and 0.4. 

Fig. P3.145 
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Deformations in circular shafts 

Fig. 3.14 

Shearing stresses in elastic range 
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This chapter was devoted to the analysis and design of shafts sub
jected to twisting couples, or torques. Except for the last two sec
tions of the chapter, our discus13ion was limited to cirCular shafts. 

In a preliminary disCussion [Sec. 3.2], it was pointed out that the 
distribution of stresses in the cross section of a circular shaft is stat
ically indeterminate. The determination of these stresses, therefore, 
requires a prior analysis of the deformations occurring in the shaft 
[Sec. 3.3]. Having demonstrated that in a circular shaft subjected to 
torsion, every cross section remains plane and imdistorted, We de
rived the following expression for the shearing strain in a small el
ement with sides parallel and perpendicular to the axis of the shaft 
and at a distance p from that axis: 

p</> 
y = z: (3.2) 

where </> is the angle of twist for a length L of the shaft (Fig. 3.14). 
Equation (3.2) shows that the shearing strain in· a circular shaft 
varies linearly with the distance from the axis of the shaft. It follows 
that the strain is maximum at the surface of the shaft, .where p is 
equal to the radius c of the shaft. We wrote 

c<P 
'Ymax = J: 

p 
'Y = C'Ymax: (3.3, 4) 

Considering shearing stresses in a circular shaft withh:i the elas
tic range [Sec. 3.4] a_nd recalling Hooke's laW for shearing stress and 
strain, T = Gy, we derived the relation 

p 
r = -r C m~ (3.6) 

which shows that within the elastic range, the shearing stress r in a 
circular shaft also varies linearly with the distance from the axis of 
the shaft. Equating the sum of the moments of the elementary forces 
exerted on any section of the shaft to the magnitude T of the torque 
appJied to the shaft, we derived the elastic torsion formulas 

Tc 
Tmax=J 

Tp 
'T =-

J 
(3.9, 10) 

where c is the radius Of the Cross section-and J its certtroidal polar 
moment of inertia. We _noted that J = !1rc4 for a solid shaft and 
J = !1r(ci ct) for a hollow shaft of inner radius c1 and outer ra
dius c2• 



Fig. 3.20 

We noted that while the element a in Fig. 3.20 is in pure ·~hear, 
the element c in the same figure is subjected to normal stresseS of 
the same magnitude, Tel J, two .of the normal stressys being .tensile 
and two compressive. This explains why in a torsion test ductile ma
terials, which generally fail in shear, will break along a plane per
pendicular to the axis of the specimen, While brittle materials, which 
are weaker in tension than in shear, will break along surfaces form-
ing a 45° angle with that axis. . . 

Review and Summary for Chapter 3 

In Sec. 3.5, we found that within the elastic range, the angle of Angle of twist 
twist ¢ of a circular shaft is proportional to the torque T applied to 
it (Fig. 3.22). Expressing </> in radians, we wrOte 

where L = length of shaft 

¢ = TL 
JG 

J = polar moment of inertia of cross section 
G = modulus of rigidity of material 

(3.16) 

If the shaft is subjected to torques at locations other than its ends or 
consists of several parts of various cross sections and possibly of dif
ferent materials, the angle of twist of the shaft must be expressed as 
the algebraic sum of the angles of twist of its component parts [Sam
ple Prob. 3.3]: 

(3.17) 

We observed that when both ends of a shaft BE rotate (Fig. 
3.26b), the angle of twist of the shaft is equal to the difference be
tween the angles of rotation <{>8 and ¢£ of its ends. We also noted 
that when two shafts AD and BE are connected by gears A and B, 
the torques applied, respectively, by gear A on shaft AD and by gear 
B on shaft BE are directly proportional to the radii rA and r 8 of the 
two gears-since· the forces applied on each other by the gear teeth at 
Care equal and opposite. On the other hand, the angles ¢>A and ¢8 through
which the two gears rotate are inversely proportional to rA and rs-since 
the arcs CC' and CC" described by the gear teeth are equal (Example 
3.04 and Sample Prob. 3.4]. 

If the reactions at the supports of a shaft or the internal torques can
not be determined from statics alone, the shaft is said to be statically 
indeterminate [Sec. 3.6}. The equilibrium equations obtained from free
body diagrams must then be complemented by relations involving the 
deformations of the shaft and obtained from the gepmetry of the prob
lem [Example 3.0:V,Sample Frob. 3.5]. 

Fig. 3.22 

Fixed end 

(b) 

Fig. 3.26b 

Statically indeterminate shafts 
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Transmission shafts 

Stress concentrations 

Fig. 3.31 

Plastic deformations 

In Sec. 3.7, we discussed the design of transmission shafts. We first 
observed that the power P transmitted by a shaft is 

P = 21rjT (3.20) 

where T is the torque exerted at each end of the shaft and f the fre
quency or speed of rotation of the shaft. The unit of frequency is the 
revolution per second ( s -I) or hertz (Hz). T is expressed in newton
meters (N · m) and Pin watts (W). 

To design a shaft to transmit a given power P at a frequency f, you 
should first solve Eq. (3.20) for T. Carrying this value and the max
imum allowable value ofT for the material rised into the elastic for
mula (3.9), you will obtain the corresponding value of the parame
ter J/c, from which the required diameter of the shaft may be 
calculated [Examples 3.06 and 3.07]. 

In Sec. 3.8, we discussed stress concentrations in circular shafts. 
We saw that the stress concentrations resulting from an abrupt change 
in the diameter of a shaft can be reduced through the use of a fillet 
(Fig. 3.31). The maximum value of the shearing stress at the fillet is 

Tc 
'Tmax = Kj (3.25) 

where the stress Tc/J is computed for the smaller-diameter shaft, and 
where K is a stress-concentration factor. Values of K were plotted in 
Fig. 3.32 on p. 167 against the ratio r/d, where r is the radius of the 
fillet, for various values of D/d. 

Sections 3.9 through 3.11 were devoted to the discussion of plas
tic deformations and residual stresses in circular shafts. We first 
recalled that even when Hooke's law does not apply, the distribu
tion of strains in a circular shaft is always linear [Sec. 3.9]. If the 
shearing~stress-strain diagram for the material is known, it is then 
possible to plot the shearing stress T against the distance p from the 
axis of the shaft for any given value ofT max (Fig. 3.35). Summing 

' 

Fig. 3.35 

the contributions to the torque of annular elements of radius p and 
thickness dp, we expressed the torque T as 

T = rpr(Z1rp dp) = 21r i>r dp (3.26) 
0 0 

where T is the function of p plotted in Fig. 3.35. 



. r 
I 

An important value of the torque is the ultimate torque T u which 
causes failure: of'the shaft. This value can be determined, either ex
periro~ntaJly, .or _by carrying out the computations indicated aboVe 
with 'T~ax Chosen ciqua.l to the ultimate shearing stress Tu of the rna~ 
teria~. From T 0 , and assUming a linear Stress distribution (Fig 3.36), 
we determined the corresponding fictitious stress Rr = Tuc/J, 
known as the modulus of rupture in torsion of the given material. 

Considering the idealized_ case of a solid circUlar shaft made of 
an elastoplastic material [Sec. 3:.10], we first noted that, as long as 
'T · does not exceed the yield strength r y of the material, the stress 
di;~ibution across a section of the shaft is linear (Fig. 3.38a). The 
torque Ty corresponding to T max = Ty (Fig. 3.38b) i~ known as the 
maximum elastic torque; for a solid circular shaft of radius c, we 
have 

(3.29) 

As the torque increases, a plastic region develops in the shaft around 
an elastic core of radius Pr· The torque T corresponding to a given 
value of py was found to be 

.<3.32) 

(a) (b) (c) 

Fig. 3.38 

We noted that as Pr approaches zero, the torque approaches a limit
ing value TP, called the plastic torque of the shaft considered: 

4 
T =-Ty 

p 3 (3.33) 

Plotting the torque T against the angle of tWist 4> of a solid cir"7 
cular shaft (Fig. 3.39), we obtained the segment of straight line OY 
defined by Eq. (3.16), followed by a curve approaching the straight 
line T = Tp and defined by the equation 

(3.37) 

Review and Summary for Chapter 3 

Modulus of rupture 

Fig. 3.36 

,' Rr 
,' rv 

' p 

Solid shaft of elastoplastic material 

'I 
mTrTTn 'r 

p 

(d) 

T 

Ty == !Tr --------------------------· 
y 

Ty 
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Permanent deformation. Residual stresses 

Torsion of noncircular members 

Bars of rectangular cross section 

T 

Thin~walled hollow ·shafts 

Fig. 3.57 

Loading a circular shaft beyond the onset of yield and unload
ing it [Sec. 3.11] results in a permanent deformation characterized 
by the angle of twist¢, = ¢ - ¢', where¢ corresponds to the load
ing phase described in the previous paragraph, and <P' to the un
loading phase represented by a straight line in Fig. 3.42. There will 

T 

Fig. 3.42 

also be residual stresses in the shaft, which can be determined by 
adding the maximum stresses reached during the loading phase and 
the reverse stresses corresponding to the unloading phase [Example 
3.09]. 

The last two sections of the chapter dealt with the torsion of non~ 
circular members. We first recalled that the derivation of the forw 
mulas for the distribution of strain and stress in circular shafts was 
based on the fact that due to the axisymmetry of these members, 
cross sections remain plane and undistorted. Since this property 
does not hold for noncircular members, such as the square bar of 
Fig. 3.45, none of the formulas derived earlier can be used in their 
analysis [Sec. 3.12]. 

It was indicated in Sec. 3.12 that in the case of straight bars with 
a uniform rectangular cross section (Fig. 3.48), the maximum shear
ing stress occurs along the center line of the wider face of the bar. 
Formulas for the maximum shearing stress and the angle of twist 
were given without proof. The membrane analogy for visualizing the 
distribution of stresses in a noncircular member was also discussed. 

We next analyzed the distribution of stresses in noncircular thin
walled hollow shafts [Sec. 3.13]. We saw that the shearing stress is 
parallel to the wall surface and varies both across the wall and along 
the wall cross section. Denoting by T the average value of the shear
ing stress computed across the wall at a given point of the cross secw 
tion, and by t the thickness of the wall at that point (Fig. 3.57), we 
showed that the product q = rt, called the shear flow, is constant 
along the cross section. 

Furthermore, denoting by T the torque applied to the hollow shaft 
and by a the area bounded by the center line of the wall cross sec
tion, we expressed as follows the average shearing stress r at any 
given point of the cross section: 

T 
r=-

2tct 
(3.53) 



3.146 The aluminum rod BC ( G = 27 GPa) is bonded to the brass 
for AB (G = 39 GPa). Knowing that each rod is solid and has a diameter of 
12 mm, determine the angle of twist (a) at B, (b) at C. 

1.2 m 

t-
1.8 m Aluminum 

I I JIG 

~-34N·m 
Fig. P3.146 

3.147 In the bevel-gear system shown, a= 18.43°. Knowing that the 
allowable shearing stress is 55 MPa in each shaft and that the system is in equi
librium, determine the largest torque TA that can be applied at A. 

3.148 A torque T is applied to the 20-mm-diameter steel rod AB. 
Assuming that the steel is elastoplastic with G = 77.2 GPa and 7y = 145 MPa, 
determine (a) the torque T when the angle of twist at A is 25°, (b) the corre
sponding diameter of the elastic core of the shaft. 

Fig. P3.148 

t 
q:> 

Tn 

Fig. P3.147 

l2mm 
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A 

Fig. P3.150 and P3.151 

3.149 The shaft-disk-belt arrangement shown is used to transmit 2 kyv' 
from point A to point D. (a) Using an allowable shearing stress of 66 MPa, 
determine the required speed of shaft AS. (b) Solve part a, assuming that the 
diameters of shafts AB and CD are, respectively, 18 mm and 15 mm. 

Fig. P3.149 

3.150 The aUowab!e stress is 50 MPa in the brass rod AB and 25 MPa 
in the aluminum rod BC. Knowing that a torque of magnitude T = 125 N • m 
is applied at A, determine the required diameter (a) of rod AB, (b) of rod BC. 

3.151 The solid rod BC has a diameter of30 mm and is made of an alu
minum for which the allowable shearing stress is 25 MPa. Rod AB is hollow 
and has an outer diameter of 25 nun; it is made of a brass for which the allow
able shearing stress is 50 MPa. Determine (a) the largest inner diameter of rod 
AB for which the factor of safety is the same for each rod, (b) the largest torque 
that can be applied at A. 

3.152 The steel jacket CD has been attached to the 40-rnm-diameter steel 
shaft AE by means of rigid flanges welded to the jacket and to the rod. The outer 
diameter of the jacket is 80 mm and its wall thickness is 4 nun. If 500 N · m 
torques are applied as shown, determine the maximum shearing stress in the jacket 

3.153 Knowing that the internal diameter 9f the hollow shaft shown is 
d = 22 mm, determine the maximum shearing stress caused by a torque of 

T magnitude T = 1000 N · m. 
Fig. P3.152 

Fig. P3.153 and P3.154 

3. 154 Knowing that d = 30 mm, determine the torque T that causes a 
maximum shearing stress of 50 MPa in the hollow shaft shown. 

3.155 Two shafts are made of the same material. The cross section of 
shaft A is a square of sideband that of shaft B is a circle of diameter b. KnowH 
ing that the shafts are subjected to the sam~ torque, determine the ratio TAhs 
of the maximum shearing stresses occurring in the shafts. 

A 

Fig. P3.155 
B 



3.156 The long, hollow, tapered shaft AB has a uniform thickness t. De~ 
noting by G the modulus of rigidity, sh~w that the angle of twist at end A is 

TL cA + cs 
¢A = 41TGt c~c~ 

3.157 The torques shown are exerted on pulleys A and B. Knowing t11at 
the steel shafts are solid and that G = 77.2 GPa, determine the angle of twist 
between (a) A and B, (b) A and C. 

TA ""'300N ·ll'l 

30mm 

T8 =400N·m 

Fig. P3.157 

The following problems are designed to be solved with a computer. 

3.C1 Shaft AB consists of n homogeneous cylindrical elements, which 
can be solid or hollow. Its end A is fixed, while its end B is free, and it is sub
jected to the loading shown. The length of element i is denoted by L1, its outer 
diameter by OD1, its inner diameter by ID1, its modulus of rigidity by G1, and 
the torque applied to its right end by T" the magnitude T1 of this torque being 
assumed to be positiveJf T1 is observed as counterclockwise from end Band 
negative otherwise. (Note that ID,. = 0 if the element is solid.) (a) Write a com~ 
puter program that can be used to determine the maximum shearing stress in 
each element, the angle of twist of each element, and the angle of twist of the 
entire shaft. (b) Use t~i,s program to solve Probs. 3.36, 3.37, and 3.157. 
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Fig. P3.C3 

Fig. P3.C4 

3.C2 The assembly shown consists of n cylindrical shafts, which can be 
solid or hollow, connected by gears and supported by brackets (not shown). 
End A1 of the first shaft is free and is subjected to a torque T0, while end B, 
of the last shaft is fixed. The length of shaft A;B, is denoted by L1, its outer di~ 
ameter by OD1, its inner diameter by ID1, and its modulus of rigidity by G,. 
(Note that ID; = 0 if the element is solid.) The radius of gear A1 is denoted by 
a,, and the radius of gear B; by b1• (a) Write a computer program that can be 
used to detennine the maximum shearing stress in each shaft, the angle of twist 
of each shaft, and the angle through which end A1 rotates. (b) Use this program 
to solve Probs. 3.42, 3.43, and 3.44. 

Fig. P3.C2 

3.C3 Shaft AB consists of n homogeneous cylindrical elements, which 
can be solid or hollow. Both of its ends are fixed, and it is subjected to the 
loading shown. The length of element i is denoted by L;, its outer diameter by 
OD,, its inner diameter by ID1, its modulus of rigidity by G;, and the torque ap
plied to its right end by T1, the magnitude T; of this torque being assumed to 
be positive ifT1 is observed as counterclockwise from end Band negative other
wise. Note that ID1 = 0 if the element is solid and also that T1 = 0. Write a 
computer program that can be used to detennine the reactions at A and B, the 
maximum shearing stress in each element, and the angle of twist of each ele
ment Use this program (a) to solve Prob. 3.56, (b) to determine the maximum 
shearing stress in the shaft of Example 3.05. 

3.C4 The homogeneous, solid cylindrical shaft AB has a length L, a di
ameter d, a modulus of rigidity G, and a yield strength Ty. It is subjected to a 
torque T that is gradually increased from zero until the angle of twist of the 
shaft has reached a maximum value ¢m and then decreased back to zero. 
(a) Write a computer program that, for each of 16 values of¢,., equally spaced 
over a range extending from 0 to a value 3 times as large as the angle of twist 
at the onset of yield, can be used to detennine the maximum value T,.. of the 
torque, the radius of the elastic core, the maximum shearing stress, the per
manent twist, and the residual shearing stress both at the surface of the shiut 
and at the interface of the elastic core and the plastic region. (b) Use this pro
gram to obtain approximate answers to Probs. 3.111, 3.112, and 3.114. 



, s.C5 The exact expression is given in Prob. 3.61 for the angle of twist 
f the solid tapered shaft AB when a torque T is applied as shown. Derive an 

0 
proximate expression for the angle of twist by replacing the tapered shaft by 

apcyiindrical shafts .of equal length and of radius r1 = (n + i - 4)(c/n), where 
:::::. 1, 2, ... , n. Using forT, L, G, and c value_s of your choice,. determine the 
percentage en-or in the approximate expression when (a) n = 4, (b) n = 8, 
(c) n ~ 20, (d) n ~ 100. 

Fig. P3.C5 

3.C6 A torque T is applied as shown to the long, hollow, tapered shaft 
AB of uniform thickness t. The exact expression for the angle of twist of the 
shaft can be obtained from the expression given in Prob. 3.156. Derive an ap
proximate expression for the angle of twist by replacing the ta~ered shaft by 
n cylindrical rings of equal length and of radius r1 = (n + i - z)(c!n), where 
i = 1, 2,.,., n. Using for T, L, G, c and t values of your choice, determine 
the percentage error in the approximate expression when (a) n = 4, (b) n = 8, 
(c) n ~ 20, (d) n ~ 100. 

Fig. P3.C6 
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The athlete shown holds the barbell with his hands placed at equal distances from the weights. This resUlts in 
pure bending in the center portion of the bar. The normal stresses and the curvature resulting from pure bend~ 
ing will be determined in this chapter. 



4.1. INTRODUCTION 

In the preceding chapters you studied how to determine the stresses in 
prismatic members subjected to axial loads or to twisting couples. In 
this chapter and in the following two you will analyze the stresses and 
Strains.in prismatic members subjected to.bending. Bending is a major 
concept used in the design of many machine and structural components, 
such as beams and girders. 

This chapter will be devoted to the analysis of prismatic members 
subjected to equal and opposite couples M and M' acting in the same 
longitudinal plane. Such members are said to be in pure bending. In most 
of the chapter, the members will be assumed to possess a plane of sym
metry and the couples M and M' to be acting in that plane (Fig. 4.1 ). 

Fig. 4.1 

An example of pure bending is provided by the bar of a typical barbell 
as it is held overhead by a weight lifter as shown on the opposite page. 
The bar carries equal weights at equal distances from the hands of the 
weight lifter. Because of the symmetry of the free~body diagram of the 
bar (Fig. 4.2a), the reactions at the hands must be equal and opposite to 
the weights. Therefore, as far as the middle portion CD of the bar is con
cerned, the weights and the reactions can be replaced by two equal and 
opposite 9.6 N · m couples (Fig. 4.2b), showing that the middle portion 
of the bar is in pure bending. A similar analysis of the axle of a small 
trailer (Fig. 4.3) would show that, between the two points where it is at
tached to the trailer, the axle is in pure bending. 

As interesting as the direct applications of pure bending may be, 
devoting an entire chapter to its study would not be justified if it were 
not for the fact that the results obtained will be used in the analysis of 
other types of loadings as well, such as eccentric axial loadings and 
transverse loadings. 

Fig. 4.3 !n the small trailer shown, the center portion of the 
axle is in pure bending. 
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Fig. 4.4 
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Fig. 4.6 

Figure 4.4 shows a 300~mm steel bar clamp used to exert 600-N forces 
on two pieces of lumber as they are being glued together. Figure 4.5a shows 
the equal and opposite forces exerted by the lumber on the clamp. These 
forces result in an eccentric loading of the straight portion of the clamp. 
In Fig. 4.5b a section CC' has been passed through the clamp and a free~ 

c C' 

P=600N 

(a) (b) 

Fig. 4.5 

body diagram has been drawn of the upper half of the clamp, from which 
we conclude that the internal forces in the section are equivalent to a 600~N 
axial tensile force Panda 72-N · m ·couple M. We can thus combine our 
knowledge of the stresses under a centric load and the results of our forth
corning analysis of stresses in pure bending to obtain the distribution of 
stresses under an eccentric load. This will be further discussed in Sec. 4.12. 

The study of pure bending will also play an essential role in the study 
of beams, i.e., the study of prismatic members subjected to various types 
of transverse loads. Consider, for instance, a cantilever beam AB support
ing a concentrated load P at its free end (Fig. 4.6a). If we pass a section 
through Cat a distance x from A, we observe from the free-body diagram 
of AC (Fig. 4.6b) that the internal forces in the section consist of a force 
P' equal and opposite to P and a couple M of magnitude M = Px. The dis
tribution of normal stresses in the section can be obtained from the couple 
M as if the beam were in pure bending. On the other hand, the shearing 
stresses in the section depend on the force P', and you will learn in Chap. 
6 how to determine their distribution over a given section. 

The first part of the chapter is devoted to the analysis of the stresses 
and deformations caused by pure bending in a homogeneous member pos
sessing a plane of symmetry and made of a material following Hooke's 
law. In a preliminary discussion of the stresses due to bending (Sec. 4.2), 
the methods of statics will be used to derive three fundamental equations 
which must be satisfied by the normal stresses in any given cross section 
of the member. In Sec. 4.3, it will be proved that transverse sections re-



main plane in a member subjected to pure bending, while in Sec. 4A for
mulas will be developed that can be used to detennine the normal stresses, 
as well as the radius of curvature for that member within the elastic range. 

In Sec. 4.6, you will study the stresses and deformations in composite 
members made of more. than one material, such as reinforced-concrete 
beams, which utilize the best features of steel and concrete and are exten
sively used in the construction of buildings and bridges. You will learn to 
draw a transformed section representing the section of a member made of 
a homogeneous material that undergoes the same deformations as the com
posite member under the same loading. The transformed section will be 
used to find the stresses and deformations in the original composite mem
ber. Section 4.7 is devoted to the determination of the stress concentrations 
occurring at locations where the cross section of a member undergoes a 
sudden change. 

In the next part of the chapter you will study plastic deformations in 
bending, i.e., the deformations of members which are made of a material 
which does not follow Hooke's law and are subjected to bending. After a 
general discussion of the deformations of such rilembers (Sec. 4.8), you 
will investigate the stresses and deformations in members made of an 
elastoplastic material (Sec. 4.9). Starting with the maximum elastic mo
ment My, which corresponds to the onset of yield, you will consider the ef
fects of increasingly larger moments until the plastic moment Mp is reached, 
at which time the member has yielded fully. You will also learn to deter
mine the permanent deformations and residual stresses that result from 
such loadings (Sec. 4.11). It should be noted that during the past half-cen
tury the elastoplastic property of steel has been widely used to produce de
signs resulting in both improved safety and economy. 

In Sec. 4.12, you will learn to analyze an eccentric axial loading in a 
plane of symmetry, such as the one shown in Fig. 4.4, by superposing the 
stresses due to pure bending and the stresses due to a centric axial loading. 

Your study of the bending of prismatic members will conclude with 
the analysis of unsymmetric bending (Sec. 4.13), and the study of the gen
eral case of eccentric axial loading (Sec. 4.14). The final section of the 
chapter will be devoted to the determination of the stresses in curved mem
bers (Sec. 4.15). 

4.2. SYMMETRIC MEMBER IN PURE BENDING 

Consider a prismatic member AB possessing a plane of symmetry and 
subjected to equal and opposite couples M and M 1 acting in that plane 
(Fig. 4.7a). We observe that if a section is passed through the member 
AB at some arbitrary point C, the conditions of equilibrium of the por
tion AC of the member require that the internal forces in the section be 
equivalent to the couple M (Fig. 4.7b). Thus, the internal forces in any 
cross section of a symmetric member in pure bending are equivalent to 
a couple. The moment M of that couple is referred to as the bending 
moment in the section. Following the usual convention, a positive sign 
will be assigned toM when the member is bent as shown in Fig. 4.7a, 
i.e., when the concavity of the beam faces upward, and a negative sign 
otherwise. Fig. 4.7 

(b) 
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212 Pure Bending Denoting by (J"x the normal stress at a given point of the cross sec
tion and by T xy and Txz the components of the shearing stress, we ex
press that the system of the elementary internal forces exerted on the 
section is equivalent to the couple M (Fig. 4.8). 

Fig.4.8 

We recall from statics that a couple M actually consists of two equal 
and opposite forces. The sum of the components of these forces in any 
direction is therefore equal to zero. Moreover, the moment of the cou
ple is the same about any axis perpendicular to its plane, and is zero 
about any axis contained in that plane. Selecting arbitrarily the z axis 
as shown in Fig. 4.8, we express the equivalence of the elementary in
ternal forces and of the couple M by writing that the sums of the com
ponents and of the moments of the elementary forces are equal to the 
corresponding components and mOments of the couple M: 

x components: (4.1) 

moments about y axis: fzu, dA = 0 (4.2) 

moments about z axis: (4.3) 

Three additional equations could be obtained by setting equal to zero 
the sums of the y components, z components, and moments about the 
x axis, but these equations would involve only the components of the 
shearing stress and, as you will· see in the next section, the components 
of the shearing stress are both equal to zero. 

Two remarks should be made at this point: ( 1) The minus sign in 
Eq. (4.3) is due to the fact that a tensile stress (u, > 0) leads to a neg
ative moment (clockwise) of the normal force (J'x dA about the z axis. 
(2) Equation (4.2) could have been anticipated, since the application of 
couples in the plane of symmetry of member AB will result in a distri
bution of normal stresses that is symmetric about the y axis. 

Once more, we note that the actual distribution of stresses in a giVen 
crosS section cannot be determined from statics alone. It is statically 
indeterminate and may be obtained only by analyzing the deformations 
produced in the member. 



'\ 
4.3. DEFORMATIONS IN A SYMMETRIC MEMBER 

IN PURE BENDING 

Let us now analyze the deformations of a prismatic member possessM 
ing a plane of symmetry and subjected a~ its ends to equal and oppo
site couples M and M' acting in the plane of symmetry. The member 
will bend under the action of the couples, but will remain symmetric 
with respect to that plane (Fig. 4.9). Moreover, since the bending mo-

Fig. 4.9 

ment M is the same in any cross section, the member will bend uni
formly. Thus, the line AB along which the upper face of the member 
intersects the plane of the couples will have a constant curvature. In 
other words, the line AB, which was originally a straight line, will be 
transformed into a circle of center C, and so will the line A' B' (not 
shown in the figure) along which the lower face of the member inter
sects the plane of symmetry. We also note that the line AB will decrease 
in length when the member is bent as shown in the figure, i.e., when 
M > 0, while A' B' will become longer. 

Next we will prove that any cross section perpendicular to the axis 
of the member remains plane, and that the plane of the section passes 
through C. If this were not the case, we could find a pointE of the orig
inal section through D (Fig.4.10a) which, after the member has been 
bent, would not lie in the plane perpendicular to the plane of symme
try that contains line CD (Fig. 4.10b). But, because of the symmetry of 
the member, there would be another point E1 that would be transformed 
exactly in the same way. Let us assume that, after the beam has been 
bent, both points would be located to the left of the plane defined by 
CD, as shown in Fig. 4.10b. Since the bending moment M is the same 
throughout the member, a similar situation would prevail in any other 
cross section, and the points corresponding to E and E' would also move 
to the left. Thus, an observer at A would conclude that the loading causes 
the points E and E1 in the various cross sections to move forward (to
ward the observer). But an observer at B, to whom the loading looks 
the same, and who observes the points E and E' in the same positions 
(except that they are now inverted) would reach the opposite conclu
sion. This inconsistency leads us to conclude that E and E' will lie in 
the plane defined by CD and, therefore, that the section remains plane 
and passes through C. We should note, however, that this 'discussion 
does not rule out the possibility of deformations within the plane of the 
section (see Sec. 4..5} 
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Fig. 4.10 
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(a) Longitudinal, vertical section 
(plane of ~ymmetry) 

M' 

M 

(b) Longitudinal. horizontal section 

Fig. 4.11 

Suppose that the member is divided into a large number of small 
cubic elements with faces respectively parallel to the three coordinate 
planes. The property we have established requires that these elements 
be transformed as shown in Fig. 4.11 when the member is subjected to 
the couples M and M'. Since all the faces represented in the two pro~ 
jections of Fig. 4.11 are at 90° to each other, we conclude that 
Yxy = 'Yzx = 0 and, thus, that Txy = T.xz = 0. Regarding the three stress 
components that we have not yet discussed, namely, uy, uz, and TY<' we 
note that they must be zero on the surface of the member. Since, on the 
other hand, the deformations involved do not require any interaction be
tween the elements of a given transverse cross section, we can assume 
that these three stress components are equal to zero throughout the mem
ber. This assumption is verified, both from experimental evidence and 
from the theory of elasticity, for slender members undergoing small de
fonnations.t We conclude that the only nonzero stress component ex
erted on any of the small cubic elements considered here is the normal 
component u x· Thus, at any point of a slender member in pure bend
ing, we have a state of uniaxial stress. Recalling that, forM > 0, lines 
AB and A' B' are observed, respectively, to decrease and increase in 
length, we note that the strain Ex and the stress ux are negative in the 
upper portion of the member (compression) and positive in the lower 
portion (tension.) 

It follows from the above that there must exist a surface parallel to 
the upper and lower faces of the member, where Ex and ux are zero. 
This surface is Called the neutral surface. The neutral surface intersects 
the plane of symmetry along an arc of circle DE (Fig. 4, 12a), and it in
tersects a transverse section along a straight line called the neutral axis 
of the section (Fig. 4.12b). The origin of coordinates will now be se-

(a) Longitudinal, vertical section 
(plane of symmetry) 

Fig. 4.12 

Neutral 

(b) Transverse section 

lected on the neutral surface, rather than on the lower face of the mem
ber as done earlier, so that the distance from any point to the neutral 
surface will be measured by its coordinate y. 

t AlSo see Prob. 4.38. 



Denoting by p the radius of arc DE (Fig. 4.12a), by 0 the central 
·angie corresponding to DE, and obsel':'Ving that the length of DE is equal 
to the length L of the undeformed member, we write 

L = pe (4.4) 

Considering now the arc JK located at a distance y above the neutral 
~urface, we note that its length L' is 

L' = (p - y)e (4.5) 

Since the original length of arc JK was equal to f.,, the deformation of 

JKis 
8 = L'- L 

or, if we substitute from (4.4) and (4.5) into (4.6), 

8 = (p - y)e - pe = -ye 

(4.6) 

(4.7) 

The longitudinal strain Ex in the elements of JK is obtained by dividing 
8 by the original length L of JK. We write 

or 

8 -ye 
€ =-=--
' L p& 

Ex:::;=_-~ 
p 

(4.8) 

The minus sign is due to the fact that we have assumed the bending 
moment to be positive and, thus, the beam to be concave upward. 

Because of the requirement that transverse sections remain plane, 
identical deformations will occur in all planes parallel to the plane of 
symmetry. Thus the value of the strain given by Eq. (4.8) is valid any~ 
where, and we conclude that the longitudinal nonnal strain Ex varies 
linearly with the distance y from the neutral suiface. 

The strain Ex reaches its maximum absolute value when y itself is 
largest. Denoting by c the largest distance from the neutral surface 
(which corresponds to either the upper or the lower surface of the mem
ber), and by e, the maximum absolute value of the strain, we have 

c 
E =

m p (4.9) 

Solving (4.9) for p and substituting the value obtained into (4.8), we 
can also write 

y 
E = --e 

' C m 
(4.10) 

We conclude our analysis of the defonnations of a member in pure 
bending by observing that we are still unable to compute the strain or 
stress at a given point of the member, since we have not yet located the 
neutral surface in the member. In order to locate this surface, we must 
first specify the stress~strain relation of the material used. t 

tLet us note, however, that if the member possesSes both a vertical and a horizontal plane 
of symmetry (e.g., a member with a rectangular cross section), and if the stress-strain curve 
is the same in tension and~ compression, the neutral surface will coincide with the plane of 
symmetry (cf. Sec. 4.8). 
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Fig. 4.13 

4.4. STRESSES AND DEFORMATIONS IN THE 
ELASTIC RANGE 

We now consider the case when the bending moment M is such that the 
normal stresses in the member remain below the yield strength a y. This 
means that, for all practical purposes, the stresses in the member will 
remain below the proportional limit and the elastic limit as well. There 
will be no permanent deformation, and Hooke's law for uniaxial stress 
applies. Assuming the material to be homogeneous, and denoting by E 
its modulus of elasticity, we have in the longitudinal x direction 

(4.11) 

Recalling Eq. (4.10), and multiplying both members of that equa
tion by E, we write 

or, using (4.11), 

y 
a =·--a 

x C m 
(4.12) 

where am denotes the maximum absolute value of the stress. This re~ 
'"--'1.--'--rJ.,. suit shows that, in the elastic range, the normal stress varies linearly 

with the distance from the neutral surface (Fig. 4.13). 
It should be noted that, at this point, we do not know the location 

of the neutral surface, nor the maximum value am of the stress. Both 
can be found if we recall the relations (4.1) and (4.3) which were ob
tained earlier from statics. Substituting first for ax from (4.12) into (4.1), 
we write 

from which it follows that 

(4.13) 

This equation shows that the first moment of the cross section about its 
neutral axis must be zero. t In other words, for a member subjected to 
pure bending, and as long as the stresses remain in the elastic range, 
the neutral axis passes through the centroid of the section. 

We now recall Eq. (4.3), which was derived in Sec. 4.2 with re
spect to an arbitrary horizontal z axis, 

J (-yo-xdA) = M (4.3) 

Specifying that the z axis should coincide with the neutral axis of the 
cross section, we substitute for ax from (4.12) into (4.3) and write 

tSe0 Appendix A for a discussion of the moments of areas. 



J ( -y)( -~a-,) dA = M 

:mJldA=·M (4.14) 

Recalling that in the case of pure bending the neutral axis passes through 
the centroid of the cross section, we note that I is the moment of inei:
tia, or second moment, of the cross section with respect to a centroidal 
axis perpendicular to the plane of the couple M. Solving (4.14) forum, 
we write thereforet 

Me 

1 
(4.15) 

Substituting for o-, from (4.15) into (4.12), we obtain the normal 
stress crx at any distance y from the neutral axis: 

_My 
I 

(4.16) 

Equations (4.15) and (4.16) are called the elastic flexure formulas, and 
the normal stress O':x caused by the bending or "flexing" of the member· 
is often referred to as the flexural stress. We verify that the stress is com
pressive (ux < 0) above the neutral axis (y > 0) when the bending mo
ment M is positive, and tensile (ax > 0) when M is negative. 

Returning to Eq. (4.15), we note that the ratio I/c depends only 
upon the geometry of the cross section. This ratio is called the elastic 
section modulus and is denoted by S. We have 

Elastic section modulus = S = i 
c 

(4.17) 

Substituting S for 1/c into Eq. (4.15), we write this equation in the al
ternative form 

M 
um=s (4.18) 

Since the maximum stress u m is inversely proportional to the elastic 
section modulus S, it is clear that beams should be designed with as 
large a value of S as practicable. For example, in the case of a wooden 
beam with a rectangular cross section of width b and depth h, we have 

I j_bh3 

S =- = -12
- = lbh2 = lAh (4.19) 

ch/2 6 6 

where A is the cross-sectional area of the beam. This shows that, of two 
beams with the same cross-sectional area A (Fig. 4.14), the beam with 
the larger depth h will have the larger section modulus and, thus, will 
be the more effective in resisting bending.:j: 

tWe reca!l that the bending moment was assumed to be positive. If the bending moment 
is negative, M should be replaced in Eq. (4.15) by its absolute value !MI. 

iHowever, large values of the ratio h/b could result in lateral instability of the beam. 
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(a) S-beam 

Fig. 4.16 

N.A. 

(b)W-beam 

In the case of structural steel, American standard beams (S-bearns) 
and wide-flange beams (W-bearns), Fig. 4.15, are preferred to other 

Fig. 4.15 Wide-flange steel beams form the frame of 
many buildings. 

shapes because a large portion of their cross section is located far from 
the neutral axis (Fig. 4.16). Thus, for a given cross-sectional area and 
a given depth, their design provides large values of I and, consequently, 
of S. Values of the elastic section modulus of commonly manufactured 
beams can be obtained from tables listing the various geometric prop
erties of such beams. To determine the maximum stress u m in a given 
section of a standard beam, the engineer needs only to read the value 
of the elastic section modulus S in a table, and divide the bending mo
ment M in the section by S. 

The deformation of the member caused by the bending moment M 
is measured by the curvature of the neutral surface. The curvature is 
defined as the reciprocal of the radius of curvature p, and can be ob
tained by solving Eq. (4.9) for 1/p: 

_=Em 

p c 
(4.20) 

But, in the elastic range, we have Em = u m!E. Substituting for Em into 
(4.20), and recalling (4.15), we write 

or 

1 = um = J_ Me 
p Ec Ec I 

1 M 
p EI 

(4.21) 



,.f. ·,. el bar of 20 X 60-mm rectangular cross section is sub
Ase · d . I .. h . I ;···ted to two equal·an oppostte coupes actmg m t e vertlca 
~·~ne of symmetry of the bar (Fig. 4.17). Deter~ne the value 
Sr the bCnding moment M that causes the bar to y1eld. Assume 

lrr "" 2~0 MPa. 

Since the neutral axis must pass .through the centroid C 
f the cross section, we have c = 30 mm. (Fig. 4.18). On the 

~ther hand, the centroidal moment of inertia of the rectangu

lar cross section is 

I= fzbh 3 = ff(20 mm)(60 mm? = 360 X 103 mm4 

Solving Eq. (4.15) forM, and substituting the above data, we 

have 
I 360 X 10-9 m4 • . 

M ~ -u,. ~ (250 MPa) 
c 0.03 m 
M~3kN·m 

An aluminum rod with a semicircular cross section of radius 
r = 12 mm (Fig. 4. 19) is bent into the shape of a circular arc 
of mean radius p = 2.5 m. Knowing that the flat face of the 
rod is turned toward the center of curvature of the arc, deter
mine the maximum tensile and compressive stress in the rod. 
UseE = 70 GPa. 

Fig. 4.19 

We could use Eq. (4.21) to determine the bending mo
ment M corresponding to the given radius of curvature p, and 
then Eq. (4.15) to detennine Um. However, it is simpler to use 
Eq. (4.9) to determine E,, and Hooke's law to obtain Um-

;IZJ??vA 
Fig. 4.2o' 

Fig. 4.17 

Fig. 4.18 

The ordinate Y of the centroid C of the semicircular cross 
section is 

_ 4r 4(12 mm) 
y ~ 3.,- ~ h 5.093 mm 

The neutral axis passes through C (Fig. 4.20) and the distance 
c to the point of the cross section farthest away from the neu
tral axis is 

c = r - Y = 12 mm - 5.093 mm = 6.907 mm 

Using Eq. (4.9), we write 

c 
Em=-

p 

6.907 X IO-' m ~ 2.763 X I O-J 
2.5 m 

and, applying Hooke's law, 

u m ~ E<m ~ (70 X !09 Pa)(2.763 X ro- 3) ~ I93.4 MPa 

Since this side of the rod faces away from the center of cur
vature, the stress obtained is a tensile stress. The maximum 
compressive stress occurs on the flat side of the rod. Using the 
fact that the stress is proportional to the distance from the neu
tral axis, we write 

5.093mm 

6
.
907 

mm (!93.4 MPa) 

~ -I42.6 MPa 
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220 Pure Bending 4.5. DEFORI\IIATIONS IN A TRANSVERSE CROSS SECTION 

When we proved in Sec. 4.3 that the transverse cross section of a mem~ 
ber in pure bending remains plane, we did not rule out the possibility 
of deformations within the plane of the section. That such deformations 
will exist is evident, if we recall from Sec. 2.11 that elements in a state 
of uniaxial stress, fYx * 0, a Y = 0'2 = 0, are deformed in the transverse 
y and z directions, as well as in the axial x direction. The normal strains 
Ey and E2 depend upon Poisson's ratio v for the material used and are 
expressed as 

or, recalling Eq. (4.8), 

vy 
E=-

y p 

vy 
E=
' p 

(4.22) 

The relations we have obtained show that the elements located 
above the neutral surface (y > 0) will expand in both the y and z di~ 
rections, while the elements lOcated below the neutral surface (y < 0) 
will contract. In the case of a member of rectangular cross section, the 
expansion and· contraction of the various elements in the vertical di~ 
rection will compensate, and no change in the vertical dimension of the 
cross section will be observed. As far as the defonnations in the hori~ 
zontal transverse z direction are concerned, however, the expansion of 
the elements located above the neutral surface and the corresponding 
contraction of the elements located below that surface will result in the 
various horizontal lines in the section being bent into arcs of circle 
(Fig. 4.21). The situation observed here is similar to that observed earlier 
in a longitudinal cross section. Comparing the second of Eqs. (4.22) with 
Eq. (4.8), we conclude that the neutral axis of the transverse section 
will be bent into a circle of radius p' = p/v. The center C' of this cir~ 
cle is located below the neutral surface (assuming M > 0), i.e., on the 
side opposite to the center of curvature C of the member. The recipro~ 
cal of the radius of curvature p' represents the curvature of the trans~ 
verse cross section and is called the anticlastic curvature. We have 

. I v 
Anticlastic curvature = -; = -

p p 
(4.23) 

In our discussion of the deformations of a symmetric member in 
pure bending, in this section and in the preceding ones, we have ig~ 
nored the manner in which the couples M and M' were actually apM 
plied to the member. If all transverse sections of the member, from one 
end to the other, are to remain plane and free of shearing stresses, we 



Neutral 
surface 

Fig. 4.21 

/ 
p 

C' 

must make sure that the couples are applied in such a way that the ends 
of the member themselves remain plane and free of shearing stresses. 
This can be accomplished by applying the couples M and M' to the 
member through the use of rigid and smooth plates (Fig. 4.22). The el
ementary forces exerted by the plates on the member will be normal to 
the end sections, and these sections, while remaining plane, will be free 
to deform as described earlier in this section. 

We should note that these loading conditions cannot be actually re~ 
alized, since they require each plate to exert tensile forces on the cor
responding end section below its neutral axis, while allowing the sec
tion to freely deform in its own plane. The fact that the rigid-end-plates 
model of Fig. 4.22 cannot be physically realized, however, does not de
tract from its importance, which is to allow us to visualize the loading 
conditions corresponding to the relations derived in the preceding sec
tions. Actual loading conditions may differ appreciably from this ide
alized model. By virtue of Saint-Venant's principle, however, the rela
tions obtained can be used to compute stresses in engineering situations, 
as long as the section considered is not too close to the points where 
the couples are applied. 

4.5. Deformations In a Transverse 221 
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M' M 

(~) 
~ 

Fig. 4.22 
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SAMPLE PROBLEM 4.1 

The rectangular tube shown is extruded from an aluminum alloy for which 
o-r = 275 MPa, O'"u = 415 MPa, and E = 73 GPa. Neglecting the effect of 
fillets, determine (a) the bending moment M for which the factor of safety will 
be 3.00, (b) the corresponding radius of curvature of the tube. 

SOLUTION 

Moment of Inertia. Considering the cross-sectional area of the tube as the 
difference between the two rectangles shown and recalling the fonnula for the cen~ 
troidal moment of inertia of a rectangle, we write 

I= /,(80 mm)(120 mm)3 - ;1,(68 mm)(108 mm) 3 1 = 4.38 X 106 nun4 

Allowable Stress. For a factor of safety of 3.00 and an ultimate stress of 
415 MPa, we have 

au 415 MPa 
a~11 = F.S. = ~ = 138 MPa 

Since 0' all < <Ty, the tube remains in the elastic range and we can apply there~ 
suits of Sec. 4.4. 

a. Bending Moment. With c = 4(120 mm) = 60 mm, we write 

Me 
O'an = [ M =! = 4.38 X 10-

6
m

4
( JSM ) 

cuan 0.06 m 1 Pa M= 10.1kN·m ~ 

b. Radius of Curvature. Recalling that E = 73 GPa we substitute this 
value and the values obtained for 1 and Minto Eq. (4.21) and find 

1 M 10.1 kN · m - = - = c------'-'=C......::"--c;--oc
p El (73 GPa)(4.38 X 10 6 m4

) 

p = 31.7 m 

= 0.0316m- 1 

p = 31.7 m ~ 

Alternative Solution. Since we know that the maximum stress is 
O"an = 138 MPa, we can detennine the maximum strain Em and then use Eq. (4.9), 

E =ann= 138 MPa = 1.89 X 10-3mm/mm 
m E 73GPa 

c 60mm 
p = ;: = 1.89 X 10 3 

p=31.7m p=31.7m~ 
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SAMPLE PROBLEM 4.2 

A cast-iron machine part is acted upon by the 3 kN · m couple shown. Knowing 
that E = 165 GPa and neglecting the effect of fillets, determine (a) the maxi
mum tensile and compressive stresses in the casting, (b) the radius of curvature 
of the casting. 

SOLUTION 

Centroid. We divide the T-shaped cross section into the two rectangles 
shown and write 

Area, mm2 Y,mm 

1 (20)(90) ~ 1800 50 
2 (40)(30) - 1200 20 

2:A - 3000 

YA, mm3 

90 X 103 

24 X 103 

2:yA- 114 X 10' 

YU ~ 2:yA 
f(JOOO) ~ 114 X 106 

Y= 38mm 

Centroidal Moment of Inertia. The parallel-axis theorem is used to de
tennine the moment of inertia of each rectangle with respect to the axis x' that 
passes through the centroid of the composite section. Adding the moments of 
inertia of the rectangles, we write 

I, ~ 2:(/ +Ad') ~ 2:(/,_bh3 +Ad') 
~ /,_(90)(20)3 + (90 X 20)(12)' + /,_(30)(40)3 + (30 X 40)(18)' 
= 868 X 103 mm4 

I = 868 X 10-9 m4 

a. Maximum Tensile Stress. Since the applied couple bends the cast
ing downward, the center of curvature is located below the cross section. The 
maximum tensile stress occurs at point A, which is farthest froin the center of 
curvature. 

MeA (3 kN • m)(0.022 m) 
O'A = -/- 868 X 10-9 m4 a-A= +76.0 MPa <JJ 

Maximum Compressive Stress. This occurs at point B; we have 

Mc8 (3 kN · m)(0.038 m) 
<Yo=--~-= 868 X 10 9 m4 0'8 = -131.3MPa <l 

b. Radius of Curvature. From Eq. (4.21), we have 

1 M JkN·m -=-= 
P El (165 GPa)(868 X 10 9 m') 

= 20.95 X 10-3 m-! u = 47.7 m <l 
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Fig. P4.1 

r 200mm-l 
YJ ~ 

~ x 220mm 

M, =t---1 _1 . 

l2mm 

Fig. P4.3 
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4.1 and 4.2 Knowing that the couple shown acts in a vertical plane, 
detennine the stress at (a) point A, (b) point B. 

A g M=tN 

~~J 
1.640 mm 

Fig. P4.2 

4.3 Using an allowable stress of 155 MPa, determine the largest bend~ 
ing moment M that can be applied to the wide-flange beam shown. Neglect the 
effect of fillets. 

4.4 Solve Prob. 4.3, assuming that the wide-flange beam is bent about 
they axis by a couple of moment M1. 

4.5 A beam of the cross section shown is extruded from an aluminum 
alloy for which cry= 250 MPa and u 0 = 450.MPa. Using a factor of safety 
of 3.00, determine the largest couple that can be applied to the beam when it 
is bent about the z axis. 

y 

Fig. P4.5 

4.6 Solve Prob. 4.5, assuming that the beam is bent about the y axis. 



4.7tht'ough 4.9 Two vertical forces are applied to a beam of the cross 
shown. Determine the maximum tensile and compressive stresses in 
BC of the beam. · 

60 kN 60 kN 

£J~" ,,!i 
,,,ul.5m~'"' 

1.0 m 1.0 m 

Fig. P4.7 

lOmm lOmm 

4r4r 
I 

',, SOrum 

o_l 
::; ~~.! 10 mm 

l-somm_.jl 
Fig. P4.9 

4.10 Two equal and opposite couples of magnitude M = 25 kN ·mare 
applied to the channel-shaped beam AR Observing that the couples cause the 
beam to bend in a horizontal plane, determine the stress at (a) point C, (b) point 
D, (c) point E. 

A 
Fig. P4.10 

4.11 Knowing that a beam of the cross section shown is bent about a 
horizontal axis and that the bending moment is 8 kN · m, determine the total 
force acting on the top flange. 

4.12 Knowing that a beam of the cross section shown is bent about a 
vertical axis and that the bending moment is 4 kN • m, determine the total force 
acting on the shaded portion of the lower flange. 

Problems 225 

100 kN lOOkN 
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y 

' 

Fig. P4.11 and P4.12 
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y ,. 
~ ·C 

' 
Bmm 

-1 l____,.j 1-r ) 30mm \' 
8mm "'-- 8mm 

Fig. P4.13 

Fig. P4.16 

4.13 Knowing that a beam of the cross section shown is bent about a 
horizontal axis and that the bending moment is 900 N • m, determine the total 
force acting on the shaded portion of the beam. 

4.14 Solve Prob. 4.13, assuming that the beam is bent about a vertical 
axis and that the bending moment is 900 N · m. 

4.15 Knowing that for the extruded beam shown the allowable stress is 
120 MPa in tension and 150 MPa in compression, determine the largest cou
ple M that can be applied. 

1•-80mm-•1 

Fig. P4.15 

4.16 Knowing that for the extruded beam shown the allowable stress is 
84 MPa in tension and 110 MPa in compression, determine the largest couple 
M that can be applied. 

4.17 For the casting shown, determine the largest couple M that can 
be applied without exceeding either of the following allowable stresses: 
O'an = +42 MPa, 0'~ 11 = -100 MPa. 

.Lr-lOOmm----1_ 
_I c':!• U· './i ;,j j t '-' 50mm 

12mm 

12 mm--1 f.-

r-40mm-1 

~J:v·· .. t l . I 
-- ··.•· .. :Imm 

I 20mm I 

·~ i I )M 
Fig. P4.17 Fig. P4.18 

4.18 The beam shown is made of a nylon for which the allowable stress 
is 24 MPa in tension and 30 MPa in compression. Determine the largest cou~ 
ple M that can be applied to the beam. 

4.19 Solve Prob. 4.18, assuming that d = 40 mm. 



4.20 Knowing that for the beam shown the allowable stress is 84 MPa 
in tension and 110 MPa in compression, determine the largest couple M that 
can be applied. 

Fig. P4.20 

4.21 Knowing that O'an = 165 MPa for the steel strip AB, determine (a) 
the largest couple M that can be applied, (b) the cOrresponding radius of cur
vature. Use E = 200 GPa. 

4.22 Straight rods of 6-mm diameter and 30-m length are stored by 
coiling the rods inside a drum of 1.25-m inside diameter. Assuming that the 
yield strength is not exceeded, determine (a) the maximum stress in a coiled rod, 
(b) the corresponding bending moment in the rod. UseE= 200 GPa. 

Fig. P4.22 

4.23 It is observed that a thin steel strip of 1.5 mm width can be bent 
into a circle of 10-mm diameter without any resulting permanent deformation. 
Knowing that E = 200 GPa, determine (a) the maximum stress in the bent 
strip, (b) the magnitude of the couples required to bend the strip. 

4.24 A 56 N · m couple is applied to the steel bar shown. (a) Assuming 
that the couple is applied about the z axis as shown, determine the maximum 
stress and the radius of curvature of the bar. (b) Solve part a, assuming that 
the couple is applied about they axis. UseE = 200 GPa. 

Fig. P4.24 
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Fig. P4.21 
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Fig. P4.23 



228 Pure Bending 4.25 A couple of magnitude M is applied to a square bar of side a. For 
each of the orientations shown, detennine the maximum stress and the curva
ture of the bar. 

(a) 

Fig. P4.25 

(b) 

4.26 A 24 kN • m couple is applied to the W200 X 46.1 rolled-steel 
beam shown. (a) ASsuming that the couple is applied about the z axis as 
shown, determine the maximum stress and the radius of curvature of the 
beam. (b) Solve part a, assuming that the couple is applied about they axis. 
Use E = 200 GPa. 

Fig. P4.26 

4.27 A portion of a square bar is removed by milling, so that its cross 
section is as shown. The bar is then bent about its horizontal axis by a couple 
M. Considering the case where h = 0.9h0, express the maximum stress in the 
bar in the form (j m = k(jo where (jo is the maximum stress that would have 
occurred if the original square bar had been bent by the same couple M, and 
determine the value of k. 

Fig. P4.27 



4.28 In Prob. 4.27, determine (a) the value of h for which the maximum 
stress O"m is as small as possible, (b) the corresponding value of k. 

4.29 For the bar and loading of Example 4.01, determine (a) the radius 
of curvature p, (b) the radius of curvature p' of a transverse cross section, 
(c) the angle between the sides of the bar that were originally vertical. Use 
E = 200 GPa and v = 0.29. 

4.30 For the aluminum bar and loading of Sample Problem 4.1, det~r
mine (a) the radius of curvature p' of a transverse cross section, (b) the angle 
between the sides of the bar that were originally vertical. Use E = 73 GPa 
and v = 0.33. 

4.31 A W200 X 31.3 rolled-steel beam is subjected to a couple M of 
moment 45 k.N • m. Knowing that E = 200 GPa and v = 0.29, determine 
(a) the radius of curvature p, (b) the radius of curvature p' of a transverse cross 
section. 

y 

Fig. P4.31 

4.32 It was assumed in Sec. 4.3 that the normal stresses O"y in a mem
ber in pure bending are negligible. For an initially straight clastic member of 
rectangular cross section, (a) derive an approximate expression for 0' Y as a func
tion of y, (b) show that (o-y)m"" = -(c/2p)(u_.)111ax and, thus, that ITy can bene
glected in all practical situations. (Hint: Consider the free-body diagram of the 
portion of beam located below the surface of ordinate y and assume that the 
distribution of the stress u xis still linear.) 

y 

!{ ' 2 

y"" +c 

-~ 
' y::::: _, 2 
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Me -= 
Fig. 4.23 

4.6. BENDING OF MEMBERS MADE OF SEVERAL MATERIALS 

The derivations given in Sec. 4.4 were based on the aSsumption of a 
homogeneous material with a given modulus of elasticity E. If the mem
ber subjected to pure bending is made of two or more materials with 
different moduli of elasticity, our approach to the determination of the 
stresses in the member must be modified. 

Consider, for instance, a bar consisting of two portions of different 
materials bonded together as shown in cross section in Fig. 4.23. This 
composite bar will deform as described in Sec. 4.3, since its cross sec-

2 tion remains the same throughout its entire length, and since no as
sumption was made in Sec. 4.3 regarding the stress-strain relationship 
of the material or materials involved. Thus, the normal strain Ex still 
varies linearly with the distance y from the neutral axis Of the section 
(Fig. 4.24a and b), and formula (4.8) holds: 

y 

(a) (b) 

• = _r 
' p 

y 

(c) 

Fig. 4.24 Strain and stress distribution in bar made of two materials. 

(4.8) 

However, we cannot assume that the neutral axis passes through the 
centroid of the composite section, and one of the goals of the present 
analysis will be to determine the location of this axis. 

Since the moduli of elasticity £ 1 and £ 2 of the two materials are 
different, the expressions obtained for the normal stress in each mate
riai will also be different. We write 

E,y 
0"1 = £1€x = -p 

E,y 
<T2 = EzEx = -p 

(4.24) 

and Obtain a stress-distribution curve consisting of two segments of 
straight line (Fig. 4.24c). It follows from Eqs. (4.24) that the force dF1 

exerted on an element of area dA of the upper portion of the cross sec
tion is 

(4.25) 

while the force dF 2 exerted on an element of the same area dA of the 



I 

l 

1ower portion is 
E,y 

dF2 = o-2 dA = -- dA 
p 

(4.26) 

:But, denoting b)r n the. ratio £ 2/£1 of the two moduli of elasticity, we 
, can express dFz as 

dF
2 

= - (nE,)y dA = - E,y (n dA) 
p p 

(4.27) 

Comparing Eqs. (4.25) and (4.27), we note that the same force dF2 

would be exerted on an element of area n dA of the first material. In 
other words, the resistance to bending of the bar would remain the same 
if both portions were made of the first material, provided that the width 
of each element of the lower pmiion were multiplied by the factor n. 
Note that this widening (if n > 1 ), or narrowing (if n < 1 ), must be 
effected in a direction parallel to the neutral axis of the section, since 
it is essential that the dist.ance y of each element from the neutral axis 
remain the same. The new cross section obtained in this way is called 
the transformed section of the member (Fig. 4.25). 

Since the transfonned section represents the cross section of a mem
ber made of a homogeneous material with a modulus of elasticity Er. 
the method described in Sec. 4.4 can be used to determine the neutral 
axis of the section and the normal stress at various points of the section. 
The neutral axis will be drawn through the centroid of the transformed 
section (Fig. 4.26), and the stress crx at any point of the corresponding 

y 

Fig. 4.26 Distribution of stresses in trans· 
formed section. 

fictitious homogeneous member will be obtained from Eq. (4.16) 

My 
CTx = -~ (4.16) 

where y is the distance from the neutral surface, and I the moment of 
inertia of the transformed section with respect to its centroidal axis. 

To obtain the stress 0' 1 at a point located in the upper portion of 
the cross section of the original composite bar, we simply compute the 
stress crx at the corresponding point of the transformed section. How
ever, to obtain the stress o-2 at a point in the lower portion of the cross 
section, we must multiply by n the stress cr x computed at the corre
sponding point of the transformed section. Indeed, as we saw earlier, 
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Fig. 4.25 Transformed section for composite bar. 



232 Pure Bending the same elementary force dF2 is applied to an element of area n dA of 
the transformed section and to an element of area dA of the original 
section. Thus, the stress a 2 at a point of the original section must ben 
times larger than the stress at the corresponding point of the transformed 
section. 

The deformations of a composite member can also be determined 
by using the transformed section. We recall that the transformed sec~ 
tion represents the cross section of a member, made of a homogeneous 
material of modulus E~> which deforms in the same manner as the com~ 
posite member. Therefore, using Eq. (4.21), we write that the curvature 
of the composite member is 

M 

p E) 

where I is the moment of inertia of the transformed section with respect 
to its neutral axis. 

A bar obtained by bonding together pieces of steel 
(E, = 200 GPa) and brass (Eb = 100 GPa) has the cross sec
tion shown (Fig. 4.27). Determine the maximum stress in the 
steel and in the brass when the bar is in pure bending with a 
bending moment M = 4.5 k.N • m. 

formed section about its centroidal axis is 

I= fibh3 = fi(56 mm)(75 mm)3 = 1.97 x 106 mm4 

and the maximum distance from the neutral axis is c = 37.5 mm. 
Using Eq. (4.15), we find the maximum stress in the trans
formed section: 

The transformed section corresponding to an equivalent 
bar made entirely of brass is shown in Fig. 4.28. Since 

Es 200 GPa 
n=-=---=2.0 

E, lOOGPa 

the width of the central portion of brass, which replaces the 
original steel portion, is obtained by multiplying the original 
width by 1.933, we have 

(18 mm)(2l0) ~ 36 mm 

Note that this change in dimension occurs in a direction par
allel to the neutral axis. The moment of inertia of the trans-

Brass 

Fig. 4.27 

Brass 

Me (4.5 x 103 N · m)(37.5 X 103 m) 
0'"' = J = 1.97 X lO 6 m4 = 85.7 MPa 

The value obtained also represents the maximum stress in the 
brass portion of the original composite bar. The maximum 
stress in the steel portion, however, will be larger than the value 
obtained for the transformed section, since the area of the cen
tral portion must be reduced by the factor n = 2 when we 
return from the transformed section to the original one. We 
thus conclude that 

(O'brosJm~• = 85.7 MPa 

(O'brnss)m"' = (2)(85.7 MPa) = 171.4 MPa 

Fig. 4.28 



An important example of structural members made of two differ~ 
nt materials is furnished by reinfqrced concrete beams (Fig. 4.29). 
~hese beams, when subjected to positive bending moments, are rein
forced by steel rods placed a short distance above their lower face (Fig. 

4.30a). Since concrete is very weak in tension, it will crack below the 
neutral surface and the steel rods will carry the entire tensile load, while 
the upper part of the concrete beam will carry the compressive load. 

To obtain the transformed section of a reinforced concrete beam, 
we replace the total cross~sectional area A,. of the steel bars by an equiv
alent area nA5 , where n is the ratiO E/Ec of the moduli of elasticity of 
steel and concrete (Fig. 4.30b). On the other hand, since the concrete 
in the beam acts effectively only in compression, only the portion of 
the cross section located above the neutral axis should be used in the 
transformed section. 

The position of the neutral axis is obtained by determining the dis
tance x from the upper face of the beam to the centroid C of the trans
formed section. Denoting by b the width of the _beam, and by d the dis
tance from the upper face to the center line of the steel rods, we write 
that the first moment of the transformed section with respect to the neu-

(e) 

Fig. 4.30 

(b) kl 

tral axis must be zero. Since the first moment of each of the two por
tions of the transf01med section is obtained by multiplying its area by 
the distance of its own centroid from the neutral axis, we have 

X 
(bx)l- nA,(d- x) = 0 

or 

l 2 bx'- + nA,x - nA,d = 0 (4.28) 

Solving this quadratic equation for x, we obtain both the position of the 
neutral axis in the be~m, and the portion of the cross section of the con~ 
crete beam which is effectively used. 

The determination of the stresses in the transformed section is car
ried out as explained earlier in this section (see Sample Prob. 4A). The 
distribution of the c.ompressive stresses in the concrete and the result
ant Fs of the tensile forces in the steel rods are shown in Fig. 4.30c. 

Fig. 4.29 

4.6. Bending of Members Made 233 
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234 Pure Bend!ng 4.7. STRESS CONCENTRATIONS 

3.0 

2.8 

2. 6 
\ 

' 

The formula am = Me/! was derived in Sec. 4.4 for a member with a 
plane of symmetry and a uniform cross section, and we saw in Sec. 4.5 
that it was accurate throughout the entire length of the member only if 
the couples M and M' were applied through the use of rigid and smooth 
plates. Under other conditions of application of the loads, stress con~ 
centrations will exist near the points where the loads are applied. 

Higher stresses will also occur if the cross section of the member 
undergoes a sudden change. Two particular cases of interest have been 
studied, t the case of a flat bar with a sudden change in width, and the 
case of a flat bar with grooves. Since the distribution of stresses in the 
critical cross sections depends only upon the geometry of the members, 
stress~concentration factors can be determined for various ratios of the 
parameters involved and recorded as shown in Figs. 4.31 and 4.32. The 
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Fig. 4.31 Stress-concentration factors for flat bars with fillets 
under pure bending.t 
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Fig. 4.32 Stress-concentration factors for flat bars with grooves 
under pure bending.t 
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of the maximum stress in the critical cross section can then be 

exr"essea as 
. • Me 

um=_KT (4.29) 

K is the stress-concentration factor, and where c and I refer to 
section, i.e., to the section of width d in both of the cases 

.considet·eahere. An examination of Figs. 4.31 and 4.32 clearly shoWs 
importance of using fillets and grooves of radius r as large as 

practical. 
Finally, we should point out that, as was the case for axial loading 

and torsion, the values of the factors K have been computed under the 
assumption of a linear relation between stress and strain. In many ap
plications, plastic deformations will occur and result in values of the 
maximum stress lower than those indicated by ~q. (4.29). 

4.7. Stress Concentrations 

Grooves 10 mm deep are to be cut in a steel bar which is 
60 mm wide and 9 mm thick (Fig. 4.33). Determine the small
est allowable width of the grooves if the stress in the bar is not 
to exceed 150 MPa when the bending moment is equal to 
!SON· m. 

The value of the stress Mc/1 is thus 

Me (180 N · m)(20 X 10-3 m) 
- = = 75MPa 

I 48 X 10-9 m4 
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H-r 
Substituting this value for Me/! into Eq. (4.29) and making 
O"m = 150 MPa, we write 

Fig. 4.33 

We note from Fig. 4.33a that 

T
H;J, 

. 

. 

b =9mm 

(b) 

d= 60mm- 2(10mm) = 40mm 
c = !d = 20 mm b = 9 mm 

The moment of inertia of the critical cross section about its 
neutral axis is 

I= Tzbd3 = ft(9 X 10-3 m)(40 X 10-3 m)3 

= 48 X 10-9 m4 

150 MPa = K(75 MPa) 
K=2 

We have, on the other hand, 

D 60mm 
-=--= 1.5 
d 40mm 

Using the curve of Fig. 4.32 corresponding to D/d = I .5, we 
find that the value K = 2 corresponds to a value of r/d equal 
to 0.13. We have, therefore, 

r d = 0.13 

r = 0.13d = 0.13(40 mm) = 5.2 mm 

The smallest allowable width of the grooves is thus 

2r = 2(5.2 mm) = 10.4 mm 



r200mm-J _j_ 

1
20mm 

300mm 

0.020 m Yl l r--16(0.200 ~) = 3.2 m----J 

m 

m 
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SAMPlE PROBlEM 4.3 
Two steel plates have been welded together to form a beam in the shape of a 
T that has been strengthened by securely bolting to it the two oak timbers 
shown. The modulus of elasticity is 12.5 GPa for the wood and 200 GPa for 
the steel. Knowing that a bending moment M = 50 kN · m is applied to the 
composite beam, determine (a) the maximum stress in the wood, (b) the stress 
in the steel along the top edge. 

SOLUTION 

Transformed Section. We first compute the ratio 

Es 200GPa 
n=-=---= 16 

E. 12.5 GPa 

Multiplying the horizontal dimensions of the steel portion of the section by 
n = 16, we obtain a transformed section made entirely of wood. 

Neutral Axis. The neutral axis passes through the centroid of the trans
formed section. Since the section consists of two rectangles, we have 

Y ~ _:Ey_A ~ c:-::-.,_(o_,.t_,6-:::0-:::m::')('-3._2_,m_x::-::o:::.0-20_mc:)'c:+=0=--
2:A 3.2 m X 0.020 m + 0.470 m X 0.300 m 

0.050 m 

Centroidal Moment of Inertia. Using the parallel-axis theorem: 

I ~ t,(0.470)(0.300)' + (0.470 X 0.300)(0.050)' 
+12(3.2)(0.020)3 + (3.2 X 0.020)(0.160 - 0.050)2 

1 = 2.19 X 10-3 m4 

a. Maximum Stress in Wood. The wood farthest from the neutral axis 
is located along the bottom edge, where c2 = 0.200 m. 

Mc2 (50 X 103 N • m)(0.200 m) 
a...,=-~-= 2.19 X 10-3 m4 

a,.. = 4.57 MPa ~ 

b. Stress in Steel. Along the top edge c1 = 0.120 m. From the trans
formed section we obtain an equivalent stress in wood, which must be multi
plied by n to obtain the stress in steel. 

Me,( ,s.-o_x_,-JO.,-'_N_·_m-')(C'0-.1,-20.-m_.,.) 
<r ~ n- ~ (16)-

s I 2.19 X 10-3 m4 

a,, = 43.8 MPa ~ 



q: = 12.9 MPa 

SAMPLE PROBlEM 4.4 

A concrete floor slab is reinforced by 16"mm-diameter steel rods placed 38 
mm above the lower face of the slab and spaced 150 mm on centers. The mod~ 
ulus of elasticity is 25 GPa for the concrete used and 200 GPa for the steeL 
Knowing that a bending moment of 4.5 kN · m is applied to each 0.3 m width 
of the slab, determine (a) the maximum stress in the concrete, (b) the stress in 
the steeL 

SOLUTION 

Transformed Section. We consider a portion of the slab 300 nun wide, in 
which there are two 16"mm·diameter rods having a total cross-sectional area 

Since concrete acts only in compression, all tensile forces are carried by the 
steel rods, and the transformed section consists of the two areas shown. One 
is the portion of concrete in compression (located above the neutral axis}, and 
the other is the transformed steel area nAs. We have 

Es 200GPa 
n = - = --- = 8.0 

Ec 25 GPa 

nAs = 8.0(402 mm) = 3216 mm2 

Neutral Axis. The neutral axis of the slab passes through the centroid 
of the transformed section. Summing moments of the transformed area about 
the neutral axis, we write 

300x (~)- 3216 (100- x) = 0 x = 36.8 mm 

Moment of Inertia. The centroidal moment of inertia of the transfonned 
area is 

I= \(300)(36.8) + 3216(100- 36.8)2 = 12.8 X 106 mm' 

a. Maximum Stress in Concrete. At the top of the slab, we have 
c1 = 36.8 mm and 

Me, (4500 N • m)(0.0368 m) 
0" =-= 

c I 12.8 X 10 6 m4 
O'c = 12.9 MPa -41 

b. Stress in Steel. For the steel, we have c2 = 63.2 mm., n = 8.0 and 

Me 2 ( 4500 N • m)(0.0632 m) 
0' = n- = 8.0 0'

5 
= 177.8 MPa ~ 

s I 12.8XI0 6 m4 
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8mm 

Fig. P4.33 
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~l~l~ 
6mm 

Fig. P4.37 

4.33 and 4.34 A bar having the cross section shown has been formed 
by securely bonding brass and aluminum stock. Using the data given below, 
determine the largest permissible bending moment when the composite bar is 
bent about a horizontal axis. 

Aluminum Brass 

Modulus of elasticity 70 GPa 105 GPa 
Allowable stress 100 MPa 160MPa 

8mm 8mm 

r 
32mm 

l 
Fig. P4.34 

4.35 and 4.36 For the composite bar indicated, determine the largest 
pennissible bending moment when the bar is bent about a vertical axis. 

4.35 Bar of Prob. 4.33. 
4.36 Bar of Prob. 4.34. 

4.37 Three wooden beams and two steel plates are securely bolted 
together to form the composite member shown. Using the data given below, 
detennine the largest pennissible bending moment when the member is bent 
about a horizontal axis. 

Wood Steel 

Modulus of elasticity 14 GPa 200 GPa 
Allowable stress 14MPa 150 MPa 

4.38 For the composite member of Pro b. 4.37, determine the largest per
missible bending moment when the member is bent about a vertical axis. 



~ 4 $9 and 4.40 A steel bar (Es = 210 GPa) and an aluminum bar 
'·;:::.·70 GPa) are bonded together to form the composite bar shown. Deter~ 

the maximum stress in (a) the alUminum, (b) the steel, when the bar is 
aboUt a horiz.ontal axis, with M = 60 N · m. 

Fig. P4.39 

4.41 and 4.42 The 150 X 250~mm timber beam has been strengthened 
by bolting to it the steel reinforcement shown. The modulus of elasticity for 
wood is 12 GPa and for steel 200 GPa. Knowing that the beam is bent about 
a horizontal axis by a couple of moment M = 50 kN · m, detennine the max¥ 
imum stress in (a) the wood, (b) the steel. 

Fig. P4.41 

4.43 and 4.44 For the composite bar indicated, detennine the radius of 
curvature caused by the couple of moment 60 N • m. 

4.43 Bar of Prob. 4.39. 
4.44 Bar of Prob. 4.40. 

4.45 and 4.46 For the composite bealn indicated, determine the radius 
of curvature caused by the couple of moment 50 kN · m. 

4.45 Bar of Prob. 4.41. 
4.46 Bar of Prob. 4.42. 

4.47 The reinforced concrete beam shown is subjected to a positive 
bending moment of 175 kN · m. Knowing that the modulus of elasticity is 
25 GPa for the concrete and 200 GPa for the steel, determine (a) the stress in 
the steel, (b) the maximum stress in the concrete. 

Fig. P4.47 

./ 

Problems 239 

Steel 

Fig. P4.40 

Fig. P4.42 



240 Pure Bending 4.48 Solve Prob. 4.47, assuming that the 450-mm depth is increased to 
500 nun. 

4.49 A concrete beam is reinforced by three steel rods placed as shown. 
The modulus of elasticity is 20 GPa for the concrete and 200 GPa for the steeL 
Using an allowable stress of 9.45 MPa for the concrete and 140 MPa for the 
steel, determine the largest allowable positive bending moment in the beam. 

r 
400mm 

l~ 
I 200 mm 

Fig. P4.49 

22-mm diameter 

4.50 Knowing that the bending moment in the reinforced concrete beam 
is +200 kN • m and that the modulus of elasticity is 25 GPa for the concrete 
and 200 GPa for the steel, determine (a) the stress in the steel, (b) the maxi
mum stress in the concrete. 

600mm 

IY''' \:":,lqmm j 

I 300mm I 
Fig. P4.50 

4.51 A concrete slab is reinforced by 16-mrn-diameter rods placed on 
140-mm centers as shown. The modulus of elasticity is 20 GPa for the concrete 
and 200 GPa for the steel. Using an allowable streS$ of 9 MPa for the concrete 
and 140 MPa for the steel, determine the largest bending moment per foot of 
width that can be safely applied to the slab. 

Fig. P4.51 



· h re E and EI are the moduli of concrete and steel, respectively, and dis the 
~s~ance "from the top of the beam to the reinforcing steel. 

l 
d 

J 
Fig. P4.52 

4.53 For the concrete beam shown, the modulus of elasticity is 24 GPa 
for the concrete and 200 GPa for the steel. Knowing that b = 200· mm and 
d = 550 mm, and using an allowable stress of 12 MPa for the concrete and 
140 MPa for the steel, determine (a) the required area As of the steel rein
forcement if the beam is to be balanced, (b) the largest allowable bending moM 
ment. (See Frob. 4.52 for definition of a balanced beam.) 

4.54 For the concrete beam shown, the modulus of elasticity is 25 GPa 
for the concrete and 200 GPa for the steel. Knowing that b = 200 mm and 
d = 450 mm and using an allowable stress of 12.5 MPa for the concrete and 
140 MPa for the steel, determine (a) the required area As of the steel rein
forcement if the beam is to be balanced, (b) the largest allowable bending 
moment. (See Prob. 4.52 for definition of a balanced beam.) 

4.55 and 4.56 Five metal strips, each of 12 X 38Mmm cross section, 
are bonded together to form the composite beam shown. The modulus of elas
ticity is 200 GPa for the steel, 105 GPa for the brass, and 70 GPa for the 
aluminum. Knowing that the beam is bent about a horizontal axis by couple 
of moment 1.4 kN · m, determine (a) the maximum stress in each of the three 
metals, (b) the radius of curvature of the composite beam. 

Aluminum 12mm 

Brass 12mm 

Steel 12mm 

Brass 12mm 

Aluminum 12mm 

/ 
Fig. P4.55 

Problems 241 

Fig. P4.53 and P4.54 

f.-38mm-J 
Fig. P4.56 
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+• 

~~r,:*'IIm 
j!':,~:J 
f--.~ 
50mm 

Fig. P4.59 

Fig. P4.61 and P4.62 

mm 

Fig. P4.63 and P4.64 

M 

4.57 A steel pipe and an aluminum pipe are securely bonded together 
to fonn the composite beam shown. The modulus of elasticity is 210 GPa for 
the steel and 70 GPa for the aluminum. Knowing that the composite beam is 
bent by couple of moment 500 N • m, determine the maximum stress (a) in the 
aluminum, (b) in the steel. 

Fig. P4.57 

4.58 Solve Prob. 4.57, assuming that the 6-mm-thick inner pipe is made 
of aluminum and that the 3-mm-thick outer pipe is made of steel. 

4.59 The rectangular beam shown is made of a plastic for which the 
value of the modulus of elasticity in tension is one-half of its value in com
pression. For- a bending moment M = 600 N · m, determine the maximum 
(a) tensile stress, (b) compressive stress. 

*4.60 A rectangular beam is made of material for which the modulus of 
elasticity is E1 in tension and Ec in compression. Show that the curvature of 
the beam in pure bending is 

1 M 
-=-
p E,l 

where 

4.61 Semicircular grooves of radius r must be milled as shown in the 
sides of a steel member. Using an allowable stress of 55 MPa, determine the 
largest bending moment that can be applied to the member when the radius r 
of the semicircular grooves is (a) r = 10 mm, (b) r = 18 mm. 

4.62 Semicircular grooves of radius r must be milled as shown in the 
sides of a steel member. Knowing that M = 450 N • m, determine the maxi-
mum stress in the-member when (a) r 10 mm, (b) r = 18 mrn. 

4.63 Knowing that M = 250 N · m, determine the maximum stress in 
the beam shown when the radius r of the fillets is (a) 4 mm. (b) 8 mm. 

4.64 Knowing that the allowable stress for the beam shown is 90 MPa, 
determine (a) the allowable bending moment M when the radius r of the fil
lets is (a) 8 mm, (b) 12 mm. 



4 65 The allowable stress used in the design of a steel bar is 80 MPa. 
·: ~ine the largest cOuple M that can. be applied to the bar (a) if the bar is 
.D.et~crned with grooves having semicircular portions of radius r = 15 mm, as 
q~s~n in Fig. 4.65~, (b) if the bar is redesigned by removing the material above 
~~grooves as shown in Fig. 4.65b. 

(a) (b) 

Fig. P4.65 and P4.66 

4.66 A couple of moment M = 2 kN · m is to be applied to the end of 
a steel bar. Determine the maximum stress in the bar (a) if the bar is designed 
with grooves having semicircular portions of radius r = 10 mm, as shown in 
Fig. 4.65a, (b) if the bar is redesigned by removing the material above the 
grooves as shown in Fig. 4.65b. 

'4.8. PLASTIC DEFORMATIONS 

When we dedved the fundamental relation u:x = -My/! in Sec. 4.4, 
we assumed that Hooke's law applied throughout the member. If the 
yield strength is exceeded in some portion of the member, or if the ma
terial involved is a brittle material with a nonlinear stress-strain dia
gram, this relation ceases to be valid. The purpose of this section is to 
develop a more general method for the determination of the distdbu
tion of stresses in a member in pure bending, which can be used when 
Hooke's law does not apply. 

We first recall that no specific stress-strain relationship was as
sumed in Sec. 4.3, when we proved that the normal strain Ex varies lin
early with the distance y from the neutral surface. Thus, we can still 
use this property in our present analysis and write 

y 
€ = --E 

' C m 
(4.10) 

where y represents the distance of the point considered from the neu
tral surface, and c the maximum value of y. 

4.8. Plastic Oefonnations 243 
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M' M 

( ) 
Fig. 4.34 

y 

Fig. 4.36 

However, we cannot assume anymore that, in a given section, the 
neutral axis passes through the centroid of that section, since this prop
erty was derived in Sec. 4.4 under the assumption of elastic deforma
tions. In general, the neutral axis must be located by trial and error, un
til a distribution of stresses has been found, which satisfies Eqs. (4.1) 
and (4.3) of Sec. 4.2. However, in the particular case of a member pos
sessing both a vertical and a horizontal plane of symmetry, and made 
of a material characterized by the same stress-strain relation in tension 
and in compression, the neutral axis will coincide with the horizontal 
axis of symmetry of the section. Indeed, the properties of the material 
require that the stresses be symmetric with respect to the neutral axis, 
i.e., with respect to some horizontal axis, and it is clear that this con
dition will be met, and Eq. (4.1) satisfied at the same time, only if that 
axis is the horizontal axis of symmetry itself. 

Our analysis will first be limited to the special case we have just 
described. The distance yin Eq. (4.10) is thus measured from the hor
izontal axis of symmetry z of the cross section, and the distribution of 
strain Ex is linear and symmetric with respect to that.axis (Fig. 4.34). 
On the other hand, the stress-strain curve is symmetric with respect to 
the origin of coordinates (Fig. 4.35). 

Fig. 4.35 

The distribution of stresses in the cross section of the member, i.e., 
the plot of ux versus y, is obtained as follows. Assuming that Umax has 
been specified, we first determine the corresponding value of Em from 
the stress~strain diagram and carry this value into Eq. (4. 10). Then, for 
each value of y, we determine the corresponding value of Ex from 
Eq. (4.10) or Fig. 4.34, and obtain from the stress-strain diagram of Fig. 
4.35 the stress ux corresponding to this value of Ex. Plotting G'x against 
y yields the desired distribution of stresses (Fig. 4.36). 

We now recall that, when we derived Eq. ( 4.3) in Sec. 4.2, we as
sumed no particular relation between stress and strain. We can thereM 
fore use Eq. (4.3) to determine the bending moment M corresponding 
to the stress distribution obtained in Fig. 4.36. Considering the partie~ 
ular case of a member with a rectangular cross section of width b, we 
express the element of area in Eq. (4.3) as dA = b dy and write 

M= -bJ'yu,dy (4.30) 
_,. 

where ux is the function of y plotted in Fig. 4.36. Since ux is an odd 



I I 

function of y, we can write Eq. (4.30) in the alternative form 

(4.31) 

If CTx is a known analytical function of Ex, Eq. (4.10) can be used 
to express ax as a function of y, and the integral in (4.31) can bed~~ 
termined analytically. Otherwise, the bending moment M can be ob~ 
tained through a numerical integration. This computation becomes more 
meaningful if we note that the integral in Eq. (4.31) represents the first 
moment with respect to the horizontal axis of the area in Fig. 4.36 that 
is located above the horizontal axis and is bounded by the stress
distribution curve and the vertical axis. 

An important value of the bending moment is the ultimate bending 
moment M u that causes failure of the member. This value can be de
termined from the ultimate strength O" u of th~ material by choosing 
O"max = O"u and carrying out the computations indicated earlier. How
ever, it is found more convenient in practice to determine Mu experi
mentally for a specimen of a given material. Assuming a fictitious lin
ear distribution of stresses, Eq. (4.15) is then used to determine the 
corresponding maximum stress R8 : 

(4.32) 

The fictitious stress R8 is called the modulus of rupture in bending of 
the given material. It can be used to determine the ultimate bending mo
ment M u of a member made of the same material and having a cross 

Fig. 4.37 

section of the same shape, but of different dimensions, by solving Eq. 
(4.32) for Mu. Since, in the case of a member with a rectangular cross 
section, the actual arld the fictitious linear stress distributions shown in 
Fig. 4.37 must yield the same value Mu for the ultimate_ bending mo
ment, the areas they define must have the same first moment with re
spect to the horizoq_tal axis. It is thus clear that the modulus of rupture 
R8 will always be larger than the actual ultimate strength u u· 
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Fig. 4.38 

'4.9. MEMBERS MADE OF AN ELASTOPLASTIC MATERIAL 

In order to gain a better insight into the plastic behavior of a member 
in bending, let us consider the case of a member made of an elasto
plastic material and first assume the member to have a rectangular 
cross section of width b and depth 2c (Fig. 4.38). We recall from Sec. 
2.17 that the stress~strain diagram for an idealized elastoplastic mate
rial is as shown in Fig. 4.39. 

' 

As long as the normal stress u x does not exceed the yield strength 
ay, Hooke's law applies, and the stress distribution across the section 
is linear (Fig. '4.40a). The maximum value of the stress is 

Me 
am= I (4.15) 

As the bending moment increases, u m eventually reaches the value Uy 

(Fig. 4.40b). Substituting this value into Eq. (4.15), and solving for the 
corresponding value of M, we obtain the value My of the bending mo
ment at the onset of yield: 

I 
My= -ay 

c 
(4.33) 

The moment My is referred to as the maximum elastic moment, since 
it is the largest moment for which the deformation remains fully elas
tic. Recalling that, for the rectangular cross section considered here, 

I b(2c)3 2 · 
-=--= bc2 

c 12c 3 
(4.34) 

we write 

(4.35) 

As the bending moment further increases, plastic zones develop in 
the member, with the stress uniformly equal to -uy in the upper zone, 
and to +ay in the lower zone (Fig. 4.40c). Between the plastic zones, 
an elastic core subsists, in which the stress ax varies linearly withy, 

(4.36) 

where Yr represents half the thickness of the elastic core. As M in
creases, the plastic zones expand until, at the limit, the deformation is 
fully plastic (Fig. 4.40d). 

Equation (4.31) will be used to determine the value of the bending 
moment M corresponding to a given thickness 2yy of the elastic core. 



Recalling that (J'x is given by Eq. (4.36) for 0:::;; y ::= yy, and is equal to 
-c7y for Yr :s y :s c, we write 

M = -2b ry (- ~>) dy- 2b ry(-ur) dy 
0 . ;Yy 

- 2 2 2 2 - 3byy(J'y + be (J'y- byy(J'y 

(4.37) 

or, in view of Eq. (4.35), 

M = ~M,(l - .!_y}) 
2 3 c2 (4.38) 

where My is the maximum elastic moment. Note that as Yr approaches 
zero, the bending moment approaches the limiting value 

3 
M =-M p 2 y (4.39) 

This value of the bending moment, which corresponds to a fully plas~ 
tic deformation (Fig. 4.40d), is called the plastic moment of the mem
ber considered. Note that Eq. (4.39) is valid only for a rectangular mem~ 
ber made of an elastoplastic material. 

You should keep in mind that the distribution of strain across the 
section remains linear after the onset of yield. Therefore, Eq. (4.8) of 
Sec. 4.3 remains valid and can be used to determine the half~thickness 
Yr of the elastic core. We have 

Yr = Eyp (4.40) 

where Ey is the yield strain and p the radius of curvature corresponding 
to a bending moment M =::: MY· When the bending moment is equal to 
My, we have yy = c and Eq. (4.40) yields 

c = €ypy (4.41) 

where py is the radius of curvature corresponding to the maximum elas~ 
tic moment M,. Dividing (4.40) by (4.41) member by member, we ob
tain the relationt 

c py 
(4.42) 

Substituting for yy/c from (4.42) into Eq. (4.38), we express the bend
ing moment M as a function of the radius of curvature p of the neutral 
surface: 

M = ~M (1 -!P') 
2 y 3 p} (4.43) 

Note that Eq. (4.43) js valid only after the onset of yield, i.e., for val
ues of M larger than My. ForM < My, Eq. (4.21) of Sec. 4.4 should 
be used. 

tEquation (4.42) applie.rto any member made of any ductile materia! with a well-defined 
yield point, since its derivation is independent of the shape of the cross section and of the 
shape of the stress-strain diagram beyond the yield point. 

4.9. Members Made of an 24 7 
Elastop!astic Materia! 

(a)M<My 

y 

(b)M=My 

y 
PLASTIC -uy 

Fig. 4.40 

' 

(c)M>My 

y 

' 

' ay 
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(b) 

Fig. 4.41 

We observe from Eq. (4.43) that the bending moment reaches the 
value MP =!My only when p = 0. Since we clearly cannot have a zero 
radius of curvature at every point of the neutral surface, we conclude 
that a fully plastic deformation cannot develop in pure bending. As you 
will see in Chap. 5, however, such a situation may occur at one point 
in the case of a beam under a transverse loading. 

The stress distributions in a rectangular member corresponding re
spectively to the maximum elastic moment My and to the limiting case 
of the plastic moment MP have been represented in three dimensions in 
Fig. 4.41. Since, in both cases, the resultants of the elementary tensile 
and compressive forces must pass through the centroids of the volumes 
representing the stress distributions and be equal in magnitude to these 
volumes, we check that 

and 

Rp = bcuy 

and that the moments of the corresponding couples are, respectively, 

My= (~c)Ry = jbc2o-, (4.44) 

and 

( 4.45) 

We thus verify that, for a rectangular member, MP = 1My as required 
by Eq. (4.39). 

For beams of nonrectangular cross section, the computation of the 
maximum elastic moment My and of the plastic moment Mp will usu~ 
ally be simplified if a graphical method of analysis is used, as shown 
in Sample Prob. 4.5. It will be found in this more general case that the 
ratio k = M/My is generally not equal to~· For structural shapes such 
as wide-flange beams, for example, this ratio varies approximately from 
1.08 to 1.14. Because it depends only upon th~ ·shape of the cross sec
tion, the ratio k = Mp/My is referred to as the shape factor of the cross 
section. We note that, if the shape factor k and the maximum elastic 
moment My of a beam are known, the plastic moment MP of the beam 
can be obtained by multiplying My by k: 

(4.46) 

The ratio Mp!uy obtained by dividing the plastic moment MP of a 
member by the yield strength u y of its material is called the plastic sec
tion modulus of the member and is denoted by Z. When the plastic section 
modulus Z and the yield strength u y of a beam are known, the plastic 
moment MP of the beam can be obtained by multiplying ay by Z: 

(4.47) 

Recalling from Eq. (4.18) that Mr =Say, and comparing this relation 
with Eq. (4.47), we note that the shape factor k = M,/My of a given 



cross section can be expressed as the ratio of the plastic and elastic sec 4.9. Members Made of an 
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tion moduli: 
k = M, = ·z.,.r = ~ 

My Suy S 
(4.48) 

Considering the particular case of a rectangular beam of width b 
and depth h, we note from Eqs. (4.45) and (4.47) that the plastic sec
tion modulus of a rectangular beam is 

M bc2uy 
Z = _!!_ = -- = bc2 = !bh2 

Uy Uy 

On the other hand, we recall from Eq. (4.19) of Sec. 4.4 that the elas
tic section modulus of the same beam is 

s = !bh2 

Substituting into Eq. (4.48) the values obtained for Z and S, we verify 
that the shape factor of a rectangular beam is 

z lbh2 3 
k=-=-=-

s lbh2 2 

A member of uniform rectangular cross section 50 by 
120 mm (Fig. 4.42) is subjected to a bending moment 
M = 36.8 kN · m. Assuming that the member is made of an 
elastoplastic material with a yield strength of 240 MPa and a 
modulus of elasticity of 200 GPa, determine (a) the thickness 
of the elastic core, (b) the radius of curvature of the neutral 
surface. 

b=50mm 

I 

c=60mm 

c = 60mm 

Fig. 4.42 

(a) Thickness of Elastic Core. We first determine 
the maximum elastic moment My. Substituting the given data 
into Eq. (4.34), we have 

I 2 2 
-=-be'= -(50 X 10·' m)(60 X 10"3 m)2 

c 3 3 
= 120 X 10-6 m3 

and carrying this value, as well as u y = 240 MPa, into 
.Eq. (4.33), 

M, = l_<Ty = (120 X 10"6 m3)(240 MPa) = 28.8 kN · m 
c 

Substituting the values of M and My into Eq. ( 4.38), we have 

3 ( 1y}) 36.8 kN · m = 2(28.8 kN · m) 1- 3"2 

(~)' =0444 !:!: = 0.666 
c 

and, since c = 60 mm, 

yy = 0.666(60 mm) = 40 mm 

The thickness 2yy of the elastic core is thus 80 mm. 

(b) Radius of Curvature. We note that the yield 
strain is 

O"y 240 X 106 Pa 
Ey = E = 200 X 109 Pa 

1.2 x w-3 

Solving Eq. (4.40) for p and substituting the values obtained 
fcir yy and Ey, we write 

p = ~ = 40 X 10-
3

m = 33.3 m 
Ey 1.2 X 10 3 
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(a) 

(b) 

Fig. 4.43 

u, 

-u, 

Fig. 4.44 

'4.10. PLASTIC DEFORMATIONS OF MEMBERS WITH A 
SINGLE PLANE OF SYMMETRY 

In our discussion of plastic deformations, we have assumed so far that 
the member in bending had two planes of symmetry, one containing the 
couples M and M', and the other perpendicular to that plane. Let us 
now consider the more general case when the member possesses only 
one plane of symmetry containing the couples M and M'. However, 
our analysis will be limited to the situation where the deformation is 
fully plastic, with the normal stress uniformly equal to -uy above the 
neutral surface, and to +uy below that surface (Fig. 4.43a). 

As indicated in Sec. 4.8, the neutral axis cannot be assumed to co
incide with the centroidal axis of the cross section when the cross sec
tion is not symmetric with respect to that axis. To locate the neutral 
axis, we consider the resultant R 1 of the elementary compressive forces 
exerted on the portion A1 of the cross section located above the neutral 
axis, and the resultant R2 of the tensile forces exerted on the portion A2 
located below the neutral axis (Fig. 4.43b). Since the forces R 1 and R2 

form a couple equivalent to the couple apglied to the member, they must 
have the same magnitude. We have therefore R1 = R2, or A 1uy = A2uy, 
from which we conclude that A 1 = A2• In other words, the neutral axis 
divides the cross section into portions of equal areas. Note that the axis 
obtained in this fashion will not, in general, be a centroidal axis of t11e 
section. 

We also observe that the lines of action of the resultants R 1 and R2 
pass through the centroids C1 and C2 of the two portions we have just 
defined. Denoting by d the distance between C1 and C2, and by A the 
total area of the cross section, we express the plastic moment of the 
member as 

An example of the actual computation of the plastic moment of a mem
ber with only one plane of symmetry is given in Sample Prob. 4.6. 

•4.11. RESIDUAL STRESSES 

We saw in the preceding sections that plastic zones will develop in a 
member made of an elastoplastic material if the bending moment is 
large enough. When the bending moment is decreased back to zero, the 
corresponding reduction in stress and strain at any given point can be 

e_, represented by a straight line on the stress-strain diagram, as shown in 
Fig. 4.44. As you will see presently, the final value of the stress at a 
point will not, in general, be zero. There will be a residual stress at most 
points, and that stress may or may not have the same sign as the max
imum stress reached at the end of the loading phase. 

Since the linear relation between ux and Ex applies at all points of 
the member during the unloading phase, Eq. (4.16) can be used to obtain 
the change in stress at any given point. In other words, the unloading 
phase can be.handled by assuming the member to be fully elastic. 



The residual stresses are obtained by applying the principle of su
perposition in a mahner similar to t.hat described in Sec. 2.20 for an ax
ial centric loading and used again in Sec. 3.11 for torsion. We consider, 
on one hand, the stresses due to the application of the given bending 
moment M and, on the other, the revers.e stresses· due to the equal and 
opposite bending moment -M which is applied to unload the member. 
The first group of stresses reflect the elastoplastic behavior of the roaM 
terial during the loading phase, and the second group the linear beM 
havior of the same material during the unloading phase. Adding the two 
groups of stresses, we obtain the distribution of residual stresses in the 
member. 
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For the member of Example 4.05, determine (a) the distribu~ 
tion of the residual stresses, (b) the radius of curvature, after 
the bending moment has been decreased from its maximum 
value of 36.8 kN · m back to zero. · 

(a) Distribution of Residual Stresses. We recall 
from Example 4.05 that the yield strength is <Yy = 240 MPa 
and that the thickness of the elastic core is 2yy = 80 rrun. The 
distribution of the stresses in the loaded member is thus as 
shown in Fig. 4.45a. 

The distribution of the reverse stresses due to the oppo
site 36.8 kN · m bending moment required to unload the mem
ber is linear and as shown in Fig. 4.45b. The maximum stress 
u;11 in that distribution is obtained from Eq. (4.15). Recalling 
from Example 4.05 that 1/c = 120 X 10-6 m3

, we write 

, Me 36.8kN • m 
<Y"' = [ = 120 X 10-6m3 = 306.7 MPa 

Superposing the two distributions of stresses, we obtain 
the residual stresses shown in Fig. 4.45c. We check that, even 

though the reverse stresses exceed the yield strength u y, the 
assumption of a linear distribution of the reverse stresses is 
valid, since they do not exceed 2o- r· 

(b) Radius of Curvature After Unloading. We can 
apply Hooke's law at any point of the core IYI < 40 rrun, since 
no plastic deformation has occurred in that portion of the mem
ber. Thus, th_e residual strain at the distance y = 40 rrun is 

o-,. -35.5 X 106 Pa 
E =-= =-l77.5X 
' E 200 X Pa 

w-6 

Solving Eq. (4.8) for p and substituting the appropriate values 
of y and E~, we write 

40 X 10-3 m 
177.5 X !0-o ~ 225 m 

The value obtained for p after the load has been removed rep
resents a permanent deformation of the member. 

y(mm) y(mm) y(mm) 

+ 

. (a) (b) (c) 

Fig. 4.45 
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SAMPLE PROBLEM 4.5 

Beam AB has been fabricated from a high-strength low-alloy steel that is as
sumed to be elastoplastic with E = 200 GPa and uy = 350 MPa. Neglecting 
the effect of fillets, detennine the bending moment M and the corresponding 
radius of curvature (a) when yield first occurs, (b) when the flanges have just 
become fully plastic. 

SOLUTION 

a. Onset of Yield. The centroidal moment of inertia of the section is 

I~ 1,(300 mm)(400 mm)3
- i\(300 mm- 20 mm)(350 mm)' 

= 600 x 106 mm4 

Bending Moment. For Umax = Uy = 350 MPa and c = 200 mm, we have 

<ryl (350MPa)(600X l0-6 mm) 
My=-;;-= 0.

2 
m My= 1.05 X l03 k..N · m ~ 

Radius of Curvature. Noting that, at c = 200 mm, the strain is Ey= uy/E 
~ (350 MPa)/(200 GPa) ~ 0.00175, we have from Eq. (4.41) 

C = Ey/Jy 200 mm ~ 0.00175p, py= 114m <!I 

b. Flang€s FuUy Plastic. When the flanges have just become fully plas
tic, the strains and stresses in the section are as shown in the figure below. 

We replace the elementary compressive forces exerted on the top flange and 
on the top half of the web by their resultants R 1 and R2, and similarly replace the 
tensile forces by R3 and R4. 

R, ~ R, ~ (350 MPa)(0.3 m)(0.025 m) ~ 2.63 X lO' kN 

R2 ~ R3 ~ j(350 MPa)(0.175 m)(0.02 m) ~ 613 kN 

'r 
Strain 

distribution 
Stress 

distribution 
Resultant 

force 

R, 

mm 

mm 

Bending Moment. Summing the moments of R., R2, R3, and ~ about 
the z axis, we write 

M ~ 2[R,(O.J875 m) + R2(0.1l67 m)) 

~ 2[(2.63 X 103)(0.1875) + (613)(0.1l67)] M ~ l.l3 X 103 kN·m <11 

Radius of Curvature. Since Yr = 175 mm for this loading, we have from 
Eq. (4.40) 

0.175 mm ~ (0.00!75)p p~lOOm<ll 



r-lOOmm-j 
20 mmL L__c_f'?p--i 

SAMPLE PROBLEM 4.6 

Determine the plastic moment MP of a beam with the cross section shown when 
the beam is bent about a horizontal axis. Assume that the material is elasto
plastic with a yield strength of 240 MPa. 

SOLUTION 

Neutral Axis. When the deformation is fully plastic, the neutral axis di
vides the cross section into two portions of equal areas. Since the total area is 

A ~ (!00)(20) + (80)(20) + (60)(20) ~ 4800 mm2 

the area located above the neutral axis must be 2400 mm2. We write 

(20)(!00) + 20y ~ 2400 y = 20mm 

Note that the neutral axis does not pass through the centroid of the cross section. 

Plastic Moment. The resultant R; of the elementary forces exerted on 
the partial area A; is equal to 

R; = A;ay 

and passes through the centroid of that area. We have 

R, ~ A,u, ~ [(0.100 m)(0.020 m)]240 MPa ~ 480 kN 
R2 ~ A,u, ~ [(0.020 m)(0.020 m)]240 MPa ~ 96 kN 
R3 ~ A,u, ~ [(0.020 m)(0.060 m)]240 MPa ~ 288 kN 
R, ~ A,u, ~ [(0.060 m)(0.020 m)]240 MPa ~ 288 kN 

(Tr ""240 MP\\ 
yl 

30mm 

mm 
70mm 

The plastic moment Mp is obtained by summing the moments of the forces 
about the z axis. 

M, ~ (0.030 m)R, + (O.OlO m)R2 + (0.030 m)R3 + (0.070 m)R, 
~ (0.030 m)(480 kN) + (O.OlO m)(96 kN) 

+ (0.030 m)(288 kN) + (0.070 m)(288 kN) 
~44.16kN·m M1, 44.2kN · m ~ 

Note: . Since the cross section is not symmetric about the z axis, the sum 
of the moments of R1 and R2 is not equal to the sum of the moments of R3 
and R4 . 

253 



SAMPLE PROBLEM 4.7 

For the beam of Sample Prob. 4.5, determine the residual stresses and the per~ 
manent radius of curvature after the 1130 kN · m couple M has been removed. 

SOLUTION 

Loading. In Sample Prob. 4.5 a couple of moment M = 1130 kN · m was 
applied and the stresses shown in Fig. 1 were obtained. 

Elastic Unloading. The beam is unloaded by the application of a cou~ 
ple of moment M = -1130 kN • m (which is equal and opposite to the couple 
originally applied). During this tmloading, the action of the beam is fully elas~ 
tic; recalling from Sample Prob. 4.5 that I = 600 X 106 nun4 we compute the 
maximum stress 

Me (1130 kN · m)(0.2 m) 
0'~ = [ = 600 X 10 6 m4 = 377 MPa 

The stresses caused by the unloading are shown in Fig. 2. 

Residual Stresses. We superpose the stresses due to the loading (Fig. 1) 
and to the unloading (Fig. 2) and obtain the residual stresses in the beam (Fig. 3). 

+ 
M"" 11.'30 kN. m ll30kN·m 

(I) 

"" -27 MPa (compression) 

a',.= 377 MPa 

(2) 

- 20 MPa + 27 MPa 
I 

-27 MP<\ 
(3) 

Permanent Radius of Curvature. At y = 175 mm the residual stress 
is a= -20 MPa. Since no plastic deformation occurred at this point, Hooke's 
law can be used and we have Ex= a/E. Recalling Eq. (4.8), we write 

y yE 
p= --= --= 

<, <T 

(0.175 m)(200 GPa) 
20MPa = +1750m p = 1750m 4!1 

We note that the residual stress is tensile on the upper face of the beam and 
compressive on the lower face, even though the beam is concave upward. 



4.67 A bar having the cross section shown is made of a steel that is 
assumed to be elastoplastic withE = 200 GPa and Uy = 330 MPa. Determine 
the bending moment Mat which (a) yield first occurs, (b) the plastic zones at 
the top and bottom of the bar are 2 mm thick. 

8mm 

Fig. P4.67 

4.68 For the steel bar of Prob. 4.67, determine the thickness of 
the plastic zones at the top and bottom of the bar when (a) M = 30 N.m, 
(b) M ~ 35 N.m. 

4.69 The prismatic bar shown is made of a steel that is assumed to be 
elastoplastic with cry = 300 MPa and is subjected to a couple M parallel to the 
x axis. Determine the moment M of the couple for which (a) yield first occurs, 
(b) the elastic core of the bar is 4 mm thick. 

Fig. P4.69 

4.70 Solve Prob. 4.69, assuming that the couple M is parallel to the 
z axis. 

4.71 A solid square rod of side 15 mm is made of a steel that is assumed 
to be elastoplastic with E = 200 GPa and ur = 330 MPa. Knowing that a cou
ple M is applied and maintained about an axis parallel to a side of the cross 
section, determine the moment M of the couple for which the radius of curva
ture is 1.8 m. 

255 
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I-- 60 mm __.j 
Fig. P4.73 

i25mm 
50mm 

L_ _ __jj%mm 
%mm--l W !-25mm 

25mm 

Fig. P4.75 

4.72 For the solid square rod of Prob. 4.71, determine the moment M 
for which the radius of curvature is 0.9 m. 

4.73 and 4.74 A beam of the cross section shown is made of a steel 
that is assumed to be elastoplastic E = 200 GPa and Uy = 240 MPa. For 
bending about the z axis, determine the bending moment at which (a) yield first 
occurs, (b) the plastic zones at the top and bottom of the bar are 30 mm thick. 

Fig. P4.74 

4. 75 and 4. 76 A beam of the cross section shown is made of a steel 
that is assumed to be elastoplastic E = 200 GPa and Uy = 300 MPa. For bend
ing about the z axis, determine the bending moment and radius of curvature at 
which (a) yield first occurs, (b) the plastic zones at the top and bottom of the 
bar are 25 mm thick 

Fig. P4.76 

4.77 through 4.80 For the beam indicated, determine (a) the fully plas-
tic moment MP, (b) the shape factor of the cross section. 

4.77 Beam of Prob. 4.73. 
4.78 Beam of Prob. 4.74. 
4.79 Beam of Prob. 4.75. 
4.80 Beam of Prob. 4.76. 



4.81 and 4.82 Determine the plastic moment Mp of a steel beam of the 
cross section shown, assuming the steel to be elastoplastic with a yield strength 
of 240 MPa. 

. 

~---~-25 mm-1-J 
lOmm lOmm 
Fig. P4.81 

!Oii,m 

l ' 
25mm 

J 

4.83 Determine the plastic moment Mp of the cross section shown 
assuming the steel to be elastoplastic with a yield strength of 250 :MPa. 

I 100 mm I _j_ 

I
t12mm 

12 mm _-=..rm 
----rl2 mm 

1--1 
50mm 

Fig. P4.83 

4.84 De.termine the plastic moment MP of the cross section shown, 
assuming the steel to be elastoplastic with a yield strength of 330 MPa. 

Fig. P4.84 

4.85 A thick~walled pipe of the cross section shown is made of a steel 
that is assumed to be elastoplastic with a yield strength O'y. Derive an expres~ 
sion for the plastic moment MP of the pipe in terms of c~> c2, and O'y. 

~ 
~ 
Fig. P4.85 and P4.86 

4.86 Determine the plastic moment Mp of a thick~walled pipe of the cross 
section shown, knowing that c1 = 60 mm, c2 = 40 mm, and O'y = 240 MPa. 

Problems 257 

30mm 

Fig. P4.82 



~58 Pure Bending 4.87 and 4.88 For the beam indicated, a couple of moment equal to 
the full plastic moment MP is applied and then removed. Using a yield strength 
of 240 MPa, determine the residual stress at y = 45 mm. 

4.87 Beam of Prob. 4.73. 
4.88 Beam of Prob. 4.74. 

4.89 and 4.90 For the beam indicated, a couple of moment equal to 
the full plastic moment MP is applied and then removed. Using a yield strength 
of 290 MPa, determine the residual stress at (a) y = 25 rum, (b) y = 50 mm. 

4.89 Beam of Prob. 4.75. 
4.90 Beam of Prob. 4.76. 

4.91 .A bending couple is applied to the beam of Frob. 4.73, causing 
plastic zones 30 mm thick to develop at the top and bottom of the beam. 
After the couple has been removed, determine (a) the residual stress at y = 45 
mm, (b) the points where the residual stress is zero, (c) the radius of curvature 
corresponding to the permanent defonnation of the beam. 

4.92 A bending couple is applied to the beam of Prob. 4.75, causing 
plastic zones 50 mm thick to develop at the top and bottom of the beam. 
After the couple has been removed, determine (a) the residual stress at 
y = 50 nun, (b) the points where the residual stress is zero, (c) the radius of 
curvature corresponding to the permanent deforination of the beam. 

4.93 A rectangular bar that is straight and unstressed is bent into an arc 
of circle of radius p by two couples of moment M. After the couples are 
removed, it is observed that the radius of curvature of the bar is PR· Denoting 
by Pr the radius of curvature of the bar at the onset of yield, shown that the 
radii of curvature satisfy the following relation; 

_I_= !.{1- ~!'_[!- !.(£.)']} 
PR P 2 Pr 3 Pr 

4.94 A solid bar of rectangular cross section is made of a material that 
is assumed to be elastoplastic. Denoting by Mr and py, respectively, the bend
ing moment and radius of curvature at the onset of yield, determine (a) the 
radius of curvature when a couple of moment M = 1.25 M r is applied to the 
bar, (b) the radius of curvature after the couple is removed. Check the results 
obtained by using the relation derived in Prob. 4.93. 

4.95 The prismatic bar AB is made of a steel that is assumed to be elasto
plastic and for which E = 200 GPa. Knowing that the radius of curvature of 
the bar is 2.4 m when a couple of moment M = 350 N · m is applied as shown, 
determine (a) the yield strength of the steel, (b) the thickness of the elastic core 
of the bar. · 

Fig. P4.95 

J 



r , 

4.96 The prismatic bar AB is made of an aluminum alloy for which the 
tensile stress-strain diagram is as shown. Assuming that the u~€. diagram is 
the same in compression as in tension, 'determine (a) the radius of curvature 
of the bar when the maximum stress is 250 MPa, (b) the corresponding value 
of the bending mOment. (}jint: For part b, plot O" versus y and use an approxi
mate method of integration.) 

q (MPa) 

300 f-,,,-,,.,--,-, 

200 H-++tHH-t+-H 

100 rh'H+H-t+-H 

0 

Fig. P4.96 
0.005 0.010 € 

A 

4.97 The prismatic bar AB is made of a bronze alloy for which the ten
sile stress-strain diagram is as shown. Assuming that the eN: diagram is the 
same in compression as in tension, determine (a) the m.aximum stress in the 
bar when the radius of curvature of the bar is 2.5 m, (b) the corresponding 
value of the bending moment. (See hint given in Prob. 4.96.) 

IT(MPa) ' 'ifi!V 30mm 
A 

350 -v 
I 

280 

210 

I 
140 

70 
1/ 

0 

Fig. P4.97 
0.004 0.008 € 

4.98 A prismatic bar of rectangular cross section is made of an alloy for 
which the stress-strain ~iagram can be represented by the relation for € = kif' 
for u > 0 and E = -lkcrMI for cr < 0. If a couple M is applied to the bar, show 
that the maximum stress is 

I + 2n Me 
(T ~----

m 3n I 
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~~ 
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A (a) B 

(b) 

Fig. 4,48 

(b) 

Fig. 4.49 

4.12. ECCENTRIC AXIAL LOADING IN A PLANE 
OF SYMI\IIETRY 

We saw in Sec. 1.5 that the distribution of stresses in the cross section 
of a member under axial loading can be assumed uniform only if the 
line of action of the loads P and P' passes through the centroid of the 
cross section. Such a loading is said to be centric. Let us now analyze 
the distribution of stresses when the line of action of the loads does not 
pass through the centroid of the cross section, i.e., when the loading is 
eccentric. 

Two examples of an eccentric loading are shown in Figs. 4.46 and 
4.47. In the case of the highway light, the weight of the lamp causes 
an eccentric loading on the post. Likewise, the vertical forces exerted 
on the press cause an eccentric loading on the back column of the press. 

Fig. 4.46 Fig. 4.47 

In this section, our analysis will be limited to members which pos
sess a plane of symmetry, and it will be assumed that the loads are 
applied in the plane of symmetry of the member (Fig. 4.48a). The in
ternal forces acting on a given cross section may then be represented 
by a force F applied at the centroid C of the section and a couple M 
acting in the plane of symmetry of the member (Fig. 4.48b). The con
ditions of equilibrium of the free body AC require that the force F be 
equal and opposite to P' and that the moment of the couple M be equal 
and opposite to the moment of P' about C. Denoting bY d the distance 
from the centroid C to the line of action AB of the forces P and P', we 
have 

F=P and M=Pd (4.49) 

We now observe that the internal forces in the section would have 
been represented by the same force and couple if the straight portion 
DE of member AB had been detached from AB and subjected simulta
neously to the centric loads P and P' and to the bending couples M and 
M' (Fig. 4.49). Thus, the stress distribution due to the original eccen
tric loading can be obtained by superposing the unifonn stress distri~ 

/ i 
' 



bution corresponding to the centric loads P and P' and the linear dis
uibution corresponding to the benqing couples M and M' (Fig. 4.50). 
We write 

+ 
Fig. 4.50 

or, recalling Eqs. (1.5) and (4.16): 

u,{jF; (4.50) 

where A is the area of the cross section and I its centroidal moment of 
inertia, and where y is measured from the centroidal axis of the cross 
section. The relation obtained shows that the distribution of stresses 
across the section is linear but not uniform. Depending upon the geom
etry of the cross section and the eccentricity of the load, the combined 
stresses may all have the same sign, as shown in Fig. 4.50, or some 
may be pOsitive and others negative, as shown in Fig. 4.51. In the lat
ter case, there will be a line in the section, along which O"x = 0. This 
line represents the neutral axis of the section. We note that the neutral 
~xis does not _£Qjn_cide with the G~PtrOidal_ axis Qf the S~Ctj"Qfl:···siiice· 
a-:-~or:Y~ o:·,-·--·-·· ~- . -· . ---- ----------------·--------· 
~ 

+ 
Fig. 4.51 

The results obtained are valid only to the extent that the conditions 
of applicability of the superposition principle (Sec. 2.12) and of Saint
Venant's principle (Sec. 2.17) are met. This means that the stresses in
volved must not ext;:eed the proportional limit of the material, that the 
deformations due to bending must not appreciably affect the distanced 
in Fig. 4.48a, and that the cross section where the stresses are com
puted must not be too close to points D or E in the same figure. The 
first of these requir.ements clearly shows that the superposition method 
cannot be applied to plastic deformations. 

4.12. Eccentric Axial Loading In a 261 
Plane of Symmetry 



An open~link chain is obtained by bending low-carbon steel 
rods of 12:mm diameter into the shape shown (Fig. 4.52). 
Knowing .that the chain c¥fles a load of 700 N, determine 
(a) the largest tensile and compressive stresses in the straight 
portion of a link, (b) the distance between the centroidal and 
the neutral axis of a cross section. 

700N 

Fig. 4.52 

(a) Largest Tensile and Compressive Stresses. 
The internal forces in the cross section are equivalent to a cen~ 
tric force Panda bending couple M (Fig. 4.53) of magnitudes 

P = 700N 
M = Pd = (700 N)(0.016 m) = 11.2 N · m 

iOON 

Fig. 4.53 
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The corresponding stress distributions are shown in parts a and 
b of Fig. 4.54. The distribution due to the centric force P is 
uniform and equal to O"o = P/A. We have 

A= 7Tc2 = 1r(6mm)2 = 113.1 mrn2 

P 700N 
0'0 = - = 2 = 6.2 MPa 

A 113.1mm 

72.2 MPa q~ 

\.-... 
6.2 MPa 

(a) 

Fig. 4.54 

(b) 

y 

-66 MPa 
~59.8 MPa 

(a) 

The distribution due to the bending couple M is linear with a 
maximum stress 0' m = Mc/1. We write 

I= ~1TC4 = a7T(6 mmt = 1017.9 mm4 

Me (11.2 X 103 N • mm)(6mm) 
r.r = = =66MPa 

m I 1017.9 mm4 

Superposing the two distributions, we obtain the stress distri~ 
bution corresponding to the given eccentric loading (Fig. 
4.54c). The largest tensile and compressive stresses in the sec~ 
tion are found to be, respectively, 

a 1 = a 0 +a,= 6.2 + 66 = 72.2MPa 
ac = CJ0 - am = 6.2 - 66 = -59.8 MPa 

{b) Distance Between Centroidal and Neutral 
Axes. The distance y0 from the centroidal to the neutral axis 
of the section is obtained by setting ux = 0 in Eq. (4.50) and 
solving for y0: 

P Myo 
0=---

A I 

= (£)(!_) = (6.2 MPa) 1017.9 X 10-" m
4 

Yo A M 11.2N•m 

Yo= 0.56 mm 



P' 

Section a-a 

m 

m 

B 

SAMPlE PROBlEM 4.8 
Knowing that for the cast iron link shown the allowable stresses are 30 MPa 
in tension and 120 MPa in compression, determine the largest force P which 
can be applied to the lin¥.. (Note: The T~shaped cross section of the link has 
previously been considered in Sample Prob. 4.2.) 

SOLUTION 

Properties of Cross Section. From SamJ.:lle Frob. 4.2, we have 

A = 3000 mm2 = 3 X 10-3 m2 Y = 38 mm = 0.038 m 
I = 868 X 10-9 m4 

We now write: d = (0.038 m) - (0.010 m) = 0.028 m 

Force and Couple at C. We replace P by an equivalent force-couple 
system at the centroid C. 

P=P M = P(rf) = ?(0.028 m) = 0.028 P 

The force P acting at the centroid causes a uniform stress distribution (Fig. 1). 
The bending couple M causes a linear stress distribution (Fig. 2). 

p 
3 /10-' = 333? <lo =A (Compression) 

Me, (0.028?)(0.022) 
= 710? (Tension) (Tj = -~-

868X10 9 

Me8 (0.028?)(0.038) 
= l226P (Compression) (j2'= -~-

868 X lO 9 

Superposition. The total stress distribution (Fig. 3) is found by super
posing the stress distributions caused by the centric force P and by the couple 
M. Since tension is positive, and compression negative, we have 

P Me,. 
<l,. = -A+ -

1
- = -333? + 710P = +377? (Tension) 

P Mc8 
CT8 = -A- -

1
- = -333?- l226P = -l559P (Compression) 

Largest Allowable Force. The magnitUde of P for which the tensile 
stress at point A is equal to the allowable tensile stress of 30 MPa is found by 
writing 

<lA = 377P = 30MPa p = 79.6 kN <1 

We also determine the magnitude of P for which the stress at B is equal to the 
allowable compressive stress of 120 MPa. · 

<T8 = -l559P = -l20 MPa p = 77.0kN <1 

The magnitude of the largest force P that can be applied without exceeding ei
ther of the allowable stresses is the smaller of the two values we have found. 

P = 77.0 kN <l 

263 



30 

mm 

Fig. P4.102 
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4.99 Two forces P can be applied separately or at the same time to a 
plate that is welded to a solid circular bar of radius r. Determine the largest 
compressive stress in the circular bar, (a) when both forces are applied, (b) when 
only one of the forces is applied. 

Fig. P4.99 

4.100 As many as three axial loads each of magnitude P = 40 kN can 
be applied to the end of a W200 X 31.3 rolled~steel shape. Determine the stress 
at point A, (a) for the loading shown, (b) if loads are applied at points 1 and 
2 only. 

90 

90 

Fig. P4.100 and P4.101 

·4.1 01 As many as three axial loads each of magnitude P = 40 kN can 
be applied to the end of a W200 X 31.3 rolled-steel shape. Determine the stress 
at point A, (a) for the loading shown, (b) if loads are applied at points 2 and 
3 only. 

4.102 Knowing that the magnitude of the horizontal force Pis 8 kN, 
determine the stress at (a) point A, (b) point B. 



,~ \ 

4.103 The vertical portion of the press shown consists of a rectangular 
tube of wall thickness t = 10 mm. Knowing that the press has been tightened 
on wooden planks being glued together until P = 20 kN, detennine the stress 
at (a) point A, (b) point B. 

Section a-a 

4.104 Solve Prob. 4.103, assuming that t = 8. mm. 

4.105 A short column is made by nailing two 25 X 1 OO~mm planks to 
a 50 X 100-mm timber. Determine the largest compressive stress created in 
the column by a 50-kN load applied as shown at the center of the top section 
of the timber if (a) the column is as described, (b) plank 1 is removed, (c) both 
planks are removed. 

50kN 

Fig. P4.105 

4.106 A milling operation was used to remove a portion of a solid bar of 
square cross section. Knowing that a = 30 mm, d = 20 mm, and u all = 60 MPa, 
detennine the magnitude P of the largest forces that can be safely applied at the 
centers of the ends of the bar. 

Fig: P4.106 and P4.107 

4.107 A milling operation was used to remove a portion of a solid bar 
of square cross section. Forces of magnitude P = 18 kN are applied at the cen
ters of the ends of th9_.,bar. Knowing that a= 30 mm and O'~n = 135 MPa, 
determine the smallest allowable depth d of the milled portion of the bar. 
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266 Pure Bending 4.108 The four forces shown are applied to a rigid plate supported by 
a solid steel post of radius a. Knowing that P = 100 kN and a = 40 mm, 
determine the maximum stress in the post when (a) the force at Dis removed, 
(b) the forces at C and Dare removed. 

Fig. P4.108 

4.109 Knowing that the allowable stress in section ABD is 70 MPa, 
determine the largest force P that can be applied to the bracket shown. 

22 

Fig. P4.109 

4.110 An offset h must be introduced into a solid circular rod of diam
eter d. Knowing that the maximum stress after the offset is introduced must 
not exceed 5 times the stress in the rod when it is straight, determine the largest 
offset that can be used. 

d 

P'. r-·*~----~~p ~io"z't ·cy·(''f.:st?H''*' f"\ ·• e : 

h 

P' l _j_ 
~:;.t :.;z. ;;:;:::' 

d 
Fig. P4.110and P4.111 

p 

' 

4.111 An offset h must be introduced into a metal tube of 18-mm outer 
diameter and 2-mm wall thickness. Knowing that the maximum stress after the 
offset is introduced must not exceed 4 times the stress in the rod when it is 
straight, determine the largest offset that can be used. 

, I 

I 
I 

I 

i 
J 



4.112 The shape shown was formed by bending a thin steel plate. 
Assuming that the thickness t is small compared to the length a of a side of 
the shape, determine the stress (a) at A, (b) at B, (c) at C. 

4.11',3 Knowing that the allowable stress in section a*a of the hydraulic 
press shown is 40 MPa in tension and 80 MPa in compression, determine the 
largest force P that can be exerted by the press. 

Secl;ion a-a 

Dimensions in mm 

Fig. P4.113 

4.114 Knowing that the clamp shown has been tightened on wooden 
planks being glued together until P = 400 N, determine in section awa (a) the 
stress at point A, (b) the stress at point D, (c) the location of the neutral 
axis. 

Fig. P4.114 

4.115 The four bars shown have the same cross*sectional area. For the 
given loadings, show that (a) the maximum compressive stresses are in the ratio 
4:5:7:9, (b) the maxif!lllm tensile stresses are in the ratio 2:3:5:3. (Note: the 

A 

Fig. P4.112 

cross section of the triangular bar is an equilateral triangle.) Fig. P4.115 
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Fig. P4.119 

y 

P' 

~ 
A 

A,E 

~eotion "'" rJj 50 rm 
~36mm C 50mm 

__j_ 

F' !--100 mm-J 

Fig. P4.116 

4.116 In order to provide access to the interior of a hollow square 
tube of 6-mm wall thickness, the portion CD of one side of the tube has 
been removed. Knowing that the loading of the tube is equivalent to two 
equal and opposite 60-kN forces acting at the geometric centers A and E of 
the ends of the tube, determine (a) the maximum stress in section a-a, (b) the 
stress at point F. Given: the centroid of the cross section is at C and 
le = 2 X 106 mm4

• 

20 

k---1-somm--l,~ 
40mm 40mm 

Fig. P4.117 

p 

Section a-a 

4.117 Knowing that the allowable stress is 150 MPa in section a-a of 
the hanger shown, determine (a) the largest vertical force P that can be 
applied at point A, (b) the corresponding location of the neutral axis of 
section a-a. 

4.118 Solve Prob 4.117, assuming that the vertical force Pis applied at 
point B. 

4.119 Three steel plates, each of 25 X 150-mm cross section, are 
welded together to form a short H-shaped column. Later, for architectural 
reasons, a 25-mm strip is removed from each side of one of the flanges. 
Knowing that the load remains centric with respect to the original cross sec
tion, and that the allowable stress is 100 MPa, determine the largest force 
P (a) that could be applied to the original column, (b) that can be applied 
to the modified column. 

.J 



4.120 The C-shaped steel bar is used as a dynamometer to determine the 
magnitude P of the forces shown. Knowing that the cross section of the bar is 
a square of side 40 mm and the strain on the inner edge was measured and found 
to be 450 fk, determine the magnitude P of the forces. UseE = 200 GPa. 

P' 

40mm 

Fig. P4.120 

4.121 An eccentric force P is applied as shown to a steel bar of 
25 X 90-mm cross section. The strains at A and B have been measured and 
found to be 

Knowing that E = 200 GPa, determine (a) the distanced, (b) the magnitude 
of the force P. 90 

4.122 Solve prob. 4.121, assuming that the measured strainS are 

€ 8 = +420 p., 

4.123 A short length of a rolled-steel column supports a rigid plate on 
which two loads P and Q are applied as shown. The strains at two points A 
and Bon the center·line of the outer faces of the flanges have been measured 
and found to be 

€A = -400 X 10-6 mm/mm e8 = -300 x w-6 mm/ mm 

Knowing that E = 200 GPa, determine the magnitude of each load. 

A = 6450 mm2 

I" ""114 x 106mm4 

Fig. P4.123 

Fig. P4.121 

Problems 269 



270 Pure Bending 

y 

(a) 

(b) 

Fig. 4.55 

Fig. 4.56 

4.124 The eccentric axial force P acts at point D, which must be located 
25 mm below the top surface of the steel bar shown. For P = 60 kN, deter~ 
mine (a) the depth d of the bar for which the tensile stress at point A is max: 
imum, (b) the corresponding stress at point A. 

Fig. P4.124 

4.125 For the bar and loading of Prob. 4.124, determine (a) the depth 
d of the bar for which the compressive stress at point B is maximum, (b) the 
corresponding stress at point B. 

4.13. UNSYMMETRIC BENDING 

Our analysis of pure bending has been limited so far to members pos~ 
sessing at least one plane of symmetry and subjected to couples acting 
in that plane. Because of the symmetry of such members and of their 
loadings, we concluded that the members would remain symmetric with 
respect to the plane of the couples and thus bend in that plane (Sec. 
4.3). This is illustrated in Fig. 4.55; part a shows the cross section of a 
member possessing two planes of symmetry, one vertical and one hor~ 
izontal, and part b the cross section of a member with a single, vertical 
plane of symmetry. In both cases the couple exerted on the section acts 
in the vertical Plane of symmetry of the member and is represented by 
the horizontal couple vector M, and in both cases the neutral axis of the 
cross section is found to coincide with the axis of the couple. 

Let us now consider situations where the bending couples do not 
act in a plane of symmetry of the member, either because they act in a 
different plane, or because the member does not possess any plane of 
symmetry. In such situations, we cannot assume that the member will 
bend in the plane of the couples. This is illustrated in Fig. 4.56. In each 
part of the figure, the couple exerted on the section has again been as~ 

y 

(a) (b) ld 



sumed to act in a vertical plane and has been represented by a hori
zontal couple vector M. However, since the vertical plane is not a plane 
of symmetry, we cannot expect the "member to bend in that plane, or 
the neutral axis .of the section to coincide with the axis of the couple. 

We p_ropose to detennine the precis~ conditions under which the 
neutral axis· of a cross section of arbitrary shape coincides with the axis 
of the couple M representing the forces acting on that section. Such a 
section is shown in Fig. 4.57, and both the couple vector M and the 
neutral axis have been assumed to be directed along the z axis. We ri-

y y 

Fig. 4.57 

call from Sec. 4.2 that, if we then express that the elementary internal 
forces axdA form a system equivalent to the couple M, we obtain 

x components: 
moments about y axis: 
moments about z axis: 

jCT,dA = 0 
fzCT,dA = 0 
J( -yCT,dA) = M 

(4.!) 

(4.2) 

(4.3) 

As we saw earlier, when all the stresses are within the proportional 
limit, the first of these equations leads to the requirement that the neu
tral axis be a centroidal axis, and the last to the fundamental relation 
<rx = -My/!. Since we had assumed in Sec·. 4.2 that the cross section 
was symmetric with respect to they axis, Eq. (4.2) was dismissed as 
trivial at that time. Now that we are considering a cross section of ar
bitrary shape~ Eq. (4.2) becomes highly significant. Assuming the 
stresses to remain within the proportional limit of the material, we can 
substitute ux = -unJ!Ic into Eq. (4.2) and write 

or fyzdA = 0 (4.51) 

The integral fyzdA represents the product of inertia lyz of the cross sec
tion with respect to they and z axes, and will be zero if these axes are 
the principal centroidal axes of the cross section. t We thus conclude 
that the neutral axis of the cross section will coincide with the axis of 
the couple M representing the forces acting on that section if, and only 
if, the couple vector Misdirected along one of the principal centroidal 
axes of the cross section. 

tSee Ferdinand P. Beer and E. Russell Johnston, Jr., Mechanics for Engineers, 4th ed., 
McGraw-Hi!!, New York,~}987, or Vector Mechanics for Engineers, 7th ed., McGraw-Hi!!, 
New York, 2004, sees. 9.8-9.10. 
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272 Pure Bending We note that the cross sections shown in Fig. 4.55 are symmetric 
with respect to at least one of the coordinate axes. It follows that, in 
each case, the y and z axes are the principal centroidal axes of the sec
tion. Since the couple vector M is directed along one of the principal 
centroidal axes, we verify that the neutral axis will coincide with the 
axis of the couple. We also note that, if the cross sectio~s are rotated 
through 90' (Fig. 4.58), the couple vector M will still be directed along 
a principal centroidal axis, and the neutral axis will again coincide with 

y 

(a) (b) 

Fig. 4.58 

the axis of the couple, even though in case b the couple does not act in 
a plane of symmetry of the member. 

In Fig. 4.56, on the other hand, neither of the coordinate axes is an 
axis of symmetry for the sections shown, and the coordinate axes are 
not principal axes. Thus, the couple vector M is not directed along a 
principal centroidal axis, and the neutral axis does not coincide with 
the axis of the couple. However, any given section possesses principal 
centroidal axes, even if it is unsymmetric, as the section shown in Fig. 
4.56c, and these axes may be determined analytically or by using Mohr's 
circle.t If the couple vector M is directed along one of the principal 
centroidal axes of the section, the neutral axis will coincide with the 
axis of the couple (Fig. 4.59) and the equations derived in Sees. 4.3 and 
4.4 for symmetric members can be used to determine the stresses in 
this case as well. 

y 
y 

(a) (b) 

Fig. 4.59 

As you will see presently, the principle of superposition can be used 
to determine stresses in the most general case of unsymmetric bending. 

tSee Ferdinand P. Beer and E. Russell Johnston, Jr., Mechanics for Engineers, 4th ed., 
McGraw-Hill, New York, 1987, or Vector Mechanics for Engineers, 7th ed., McGraw-Hill, 
New York, 2004, sees. 9.8-9.10. · 



Consider first a member with a vertical plane of symmetry, which is 
subjected to benc;lirig couples M at:td M' acting in a plane fonning an 
angle (} With the vertical plane (Fig. 4.60). The couple vector M repre
senting the for~es acting on a given cross section will form the same 

Fig. 4.60 

angle(} with the horizontal z axis (Fig. 4.61) .. Resolving the vector M 
into component vectors M, and My along the z andy axes, respectively, 
we write 

Mz = Mcos(} My= Msin(} (4.52) 

Since they and z axes are the principal centroidal axes of the cross sec
tion, we can use Eq. (4.16) to determine the stresses resultirig from the 
application of either of the couples represented by Mz and My. The cou
ple M, acts in a vertical plane and bends the member in that plane 

Fig. 4.61 

(Fig. 4.62). The resulting stresses are Fig. 4.62 

M,y 
(}' = ---

" I, 
(4.53) 

where Il is the moment of inertia of the section about the principal cen
troidal z axis. The negative sign is due to the fact that we have com
pression above the xz plane (y > 0) and tension below (y < 0). On the 
other hand, the couple My acts in a horizontal plane and bends the mem
ber in that plane (Fig. 4.63). The resulting stresses are found to be 

M,z 
O'x = +-

I, 
(4.54) 

where ly is the moment of inertia of the section about the principal cen
troidal y axis, and where the positive sign is due to the fact that we have 
tension to the left of the vertical xy plane (z > 0) and compression to 
its right (z < 0). The distribution of the stresses caused by the original 
couple M is obtaine:d by superposing the stress distributions defined by 
Eqs. (4.53) and (4.54), respectively. We have 

(4.55) 

Fig. 4.63 
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27 4 Pure Bending 

Fig. 4.65 

We note that the expression obtained can also be used to compute 
the stresses in an unsymmetric section, such as the one shown in Fig. 
4.64, once the principal centroidal y and z axes have been detennined. 

y 

Fig. 4.64 

On the other hand, Eq. (4.55) is valid only if the conditions of appli
cability of the principle of superposition are met. In other words, it 
should not be used if the combined stresses exceed the proportional 
limit of the material, or if the deformations caused by one of the com
ponent couples appreciably affect the distribution of the stresses due to 
the other. 

Equation (4.55) shows that the distribution of stresses caused by 
unsymmetric bending is linear. However, as we have indicated earlier 
in this section, the neutral axis of the cross section will not, in general, 
coincide with the axis of the bending couple. Since the normal stress 
is zero at any point of the neutral axis, the equation defining that axis 
can be obtained by setting 0'" = 0 in Eq. (4.55). We write 

or, solving for y and substituting for Mz and My from Eqs. (4.52), 

(4.56) 

The equation obtained is that of a straight line of slope m = (Iz/Iy) tan e. 
Thus, the angle 4> that the neutral axis forms with the z axis (Fig. 4.65) 
is defined by the relation 

l, 
tan¢= -tane 

I, 
(4.57) 

where 8 is the angle that the couple vector M forms with the same axis. 
Since lz and ly are both positive, </> and 8 have the same sign. Further
more, we note that</> > 8 when Iz > ly, and</> < 0 when l 2 < ly. Thus, 
the neutral axis is always located between the couple vector M and the 
principal axis corresponding to the minimum moment of inertia. 



A 180 N · m couple is applied to a wooden beam, of rectan
gular cross sectiOfl: 40 by 90 rum, in a plane forming an angle 
of 30° with the vertical (Fig. 4.66). Determine (a) the maxi
mum srress in the beam, (b) the angle that the neutral surface 
forms with the horizontal plane. 

"Fig. 4.66 

(a) Maximum Stress. The components M~ and My of 
the couple vector are first determined (Fig. 4.67): 

M, =(!SON· m)cos30' = 155.9N · m 

M, =(!SON· m)sin30' = 90N · m 

y 

D E 

"-4--., J.... 
lf ... .,. 

c 
,5L ,({. ·. 

l80N ·l 
:~..: 
I 

~.i;-~ 
8= m 

_l 
AI-- B 

20mm 

Fig. 4.67 

We also compute the moments of inertia of the cross sec
tion with respect to the z and y axes: 

I,= ,',(0.04 m)(0.09 m)3 = 2.43 X 10-6 m' 

I,= ,',{0.09 m)(0.04 m)3 = 0.48 X 10-6 m' 

The largest tensile stress due to Mz occurs along AB and is 

M;y (155.9N • m)(0.045 m) 
a 1 = f; = ZA

3 
X 10_6 m4 = 2.89 MPa 

The largest tensile stress due to My occurs along AD and is 

. My. (90 N · m)(0.02 m) 
a2 = -I = 6 4 = 3.75 MPa 

Y 0.48 x 10 m 

The largest tensile stress due to the combined loading, there
fore, occurs at A and is 

O"max = 0"1 + 0"2 = 2.89 + 3.75 = 6.64 MPa 

The largest compressive stress has the same magnitude and oc
curs at E. 

(b) Angle of Neutral Surface with Horizontal 
Plane. The angle ¢ that the neutral surface forms with the 
horizontal plane (Fig. 4.68) is obtained from Eq. (4.57): 

y 

Fig. 4.68 

lz 2.43 X 10-6 m4 

tan¢ =-tan() = 6 4 tan 30° = 2.9 
I, 0.48 X 10- m 

"'= 72.4' 

The distribution of the stresses across the section is shown in 
Fig. 4.69. 

Fig. 4.69 6.64 MPa 
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A 

(b) 

Fig. 4.70 

4.14. GENERAL CASE OF ECCENTRIC AXIAL LOADING 

In Sec. 4.12 you analyzed the stresses produced in a member by an ec~ 
centric axial load applied in a plane of symmetry of the member. You 
will now study the more general case when the axial load is not applied 
in a plane of symmetry. 

Consider a straight member AB subjected to equal and opposite ec
centric axial forces P and P 1 (Fig. 4.70a), and let a and b denote the 
distances from the line of action of the forces to the principal centroidal 
axes of the cross section of the member. The eccentric force P is stat~ 
ically equivalel).t to the system consisting of a centric force P and of 
the two couples My and Mz of moments My = Pa and M, = Pb repre
sented in Fig. 4.70b. Similarly, the eccentric force P 1 is equivalent to 
the centric force P 1 and the couples M; and M~. 

By virtue of Saint-Venant's principle (Sec. 2.17), we can replace 
the original loading of Fig. 4.70a by the statically equivalent loading 
of Fig. 4.70b in order to determine the distribution of stresses in a sec
tion S of the member, as long as that section is not too close to either 
end of the member. Furthermore, the stresses due to the loading of Fig. 
4.70b can be obtained by superposing the stresses corresponding to the 
centric axial load P and to the bending couples My and Mz, as long as 
the conditions of applicability of the principle of superposition are sat
isfied (Sec. 2.12). The stresses due to the centric load P are given by 
Eq. (1.5), and the stresses due to the bending couples by Eq. (4.55), 
since the corresponding couple vectors are directed along the principal 
centroidal aXes of the section. We write, therefore, 

(4.58) 

where y and z are measured from the principal centroidal axes of the 
section. The relation obtained shows that the distribution of stresses 
across the section is linear. 

In computing the combined stress ux from Eq. (4.58), care should 
be taken to correctly detennine the sign of each of the three terms in 
the right-hand member, since each of these tenns can be positive or 
negative, depending upon the sense of the loads P and P' and the lo
cation of their line of action with respect to the principal centroidal axes 
of the cross section. Depending upon the geometry of the cross section 
and the location of the line of action of P and P', the combined stresses 
O'x obtained from Eq. (4.58) at various points of the section may all 
have the same sign, or some may be positive and others negative. In 
the latter case, there will be a line in the section, along which the stresses 
are zero. Setting ux = 0 in Eq. (4.58), we obtain the equation of a 
straight line, which represents the neutral axis of the section: 



A vertica14.80-k.N'load is applied as shown on a wooden post 
of rectangular crqss section, 80 by 120 mm (Fig. 4.71). (a) De
termine the stress at points A, B, C, and D. (b) Locate the neu
tral axis of the cross section. 

"I 
!'"'4.SOkN 

Fig. 4.71 Fig. 4.72 

(a) Stresses. The given eccentric load is replaced by 
an equivalent system consisting of a centric load P and two 
couples M.,. and Mz represented by vectors directed along the 
principal centroidal axes of the section (Fig. 4.72). We have 

M, ~ (4.80 k:N)(40 mm) ~ 192 N · m 

M, ~ (4.80 k:N)(60 mm - 35 mm) = 120 N • m 

We also compute the area and the centroidal moments of in
ertia of the cross section: 

A ~ (0.080 m)(0.120 m) 9.60 X 10-3 m2 

I,~ /i(0.120m)(0.080m)3 ~ 5.12 X 10-6 m4 

I,= ,',(0.080 m)(0.120 m)3 ~ 11.52 X 10-' m4 

The stress u 0 due to the centric load Pis negative and unifonn 
across the section. We have 

p -4.80k:N 
uo =A= 9.60 X 10-3 m2 -0.5 MPa 

The stresses due to the bending couples M.,. and Mz are lin
early distributed across the section, with maximum values 
equal, respectively, to 

M;.m., (192 N • m)(40 mm) 
u ~ -- = = 1.5 MPa 1 

/.,. 5.12 X 10-6 m4 

M,Xmu (120 N · m)(60 mm) 
O'z = -- = = 0.625 MPa 

10 11.52 X 10-6 m4 

/ 

The stresses at the comers of the section are 

CTy = Uo ::!: O't :±: 0'2 

where the signs must be detennined from Fig. 4.72. Noting 
that the stresses due to M.,. are positive at C and D, and nega
tive at A and B, and that the stresses due to M'- are positive at 
B and C, ·and negative at A and D, we obtain 

u, ~ -0.5 - 1.5 - 0.625 ~ -2.625 MPa 

u 8 ~ -0.5 - 1.5 + 0.625 ~ - 1.375 MPa 

uc ~ -0.5 + 1.5 + 0.625 + 1.625 MPa 
u0 ~ -0.5 + 1.5 - 0.625 = +0.375 MPa 

1.625 Ml'a ~-SOmml 

B G/1 O.l7.5MP" 

lz=lc ~A 
1-J.;J;.s Ml'u I D 
j---SOmm-

,,, 
Fig. 4.73 

-2.615 MPa 

(b) 

(b) Neutral Axis. We note that the stress will be zero 
at a point G between B and C, and at a point H between D and 
A (Fig. 4.73). Since the stress distribution is linear, we write 

BG 1.375 
BG = 36.7 mm --= 

80mm 1.625 + 1.375 

HA 2.625 
HA = 70mm 

80mm 2.625 + 0.375 

The neutral axis can be drawn through points G and H 
(Fig. 4.74). 

Fig. 4.74 

The distribution of the stresses across the section is shown in 
Fig. 4.75. 

Fig. 4.75 
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SAMPLE PROBLEM 4.9 

A horizontal load P i~ applied as shown to a short section of an S250 X 37.8 
rolled-steel member. Knowing that the compressive stress in the member is not 
to exceed 82 MPa, determine the largest perrnis~ible load P. 

SOLUTION 

Properties of Cross Se<:tion. The following data are taken from Appendix C. 

Area: A = 4820 mm2 

Section moduli: s .. = 402 X 103 nun3 

Force and Couple at C. We replace P by an equivalent force-couple 
system at the centroid C of the cross section. 

M, = (120 mm)P M, = (38 mm)P 

Note that the couple Vectors M .. and My are directed along the principal axes 
of the cross section. 

Normal Stresses. The absolute values of the stresses at points A, 8, D, 
and E due, respectively, to the centric load P and to the couples Mx and My are 

p p = 207 X 10-6 P 
O't =A 4820 mm2 

Mx 120P 
0

_6 
CT2 = - = 3 3 = 298 X 1 P 

S, 402 X 10 mm 

M, 38P 
a-3 = S: = 47.5 X 103 mm3 800 X-10-6 P 

p Superposition. The total stress at each point is found by superposing 
the stresses due to P, Mx, and My. We determine the sign of each stress by 
carefully examining the sketch of the force-couple system. 

erA = -a! + 0"2 + 0"3 = ~ 207 X 10-6p + 298 X 10-6P + 800 X 10-6P 
= + 891 x w-'p 

a-s= -o-~ + o-2 - u3 = -201 x w-6P + 298 x w-6P- soo x w-6P 
= - 709 x w-6p 

O'o = -al - U2 + 0"3 = -207 X 10-6p- 298 X 10-6P + 800 X 10-6p 
= + 295 x w-'p 

CY£ = -at - CT2- u 3 = - 207 X 10-6P- 298 X l0-6P- 800 X 10-6P 
= - 1305 x w-'p 

Largest Permissible Load. The maximum compressive stress occurs at 
point E. Recalling that lTau = 82 MPa, we write 

O"an = uE -82 MPa = -1305 X 10-6P P = 62.8 kN -<4 
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*SAMPLE PROBLEM 4.10 

A couple of magnitude M0 = 1.5 kN · m acting in a vertical plane is applied 
10 a beam having the Z-shaped cross section shown. Determine (a) the stress 

I !
80 ~m ]

11

Y at point A, (b) the angle that the neutral axis forms with the horizontal plane. 
The moments and product of inertia of the section with respect to the y and z 

A .• ----r axes have been computed and are as follows: 

12 m'm I _.. _f-12 mm f ly = 3.25 X 10-6 m4 

c . 100 mm 1, = 4.18 X 10-6 m4 
M()"'" 1 .. 5kN ·m f. 

12 
r.~-. _l ly~ = 2.87 X 10-6 m4 

t 

Iy~(l0-6 m4) 

Y(3.25, 2.87) 

0 u 

N.A. " 

SOLUTION 

Principal Axes. W~ draw Mohr's circle and detennine the orientation of 
the principal axes and the corresponding principal moments of inertia. 

2e FZ 2·87 2e so so e. ~ 40.4° tan m EF 0.465 m = . 

R2 ~ (EF)2 + (FZ)2 ~ (0.465)2 + (2.87)2 R ~ 2.91 X 10-6 m' 
lu = lmin = OU = l~ve - R = 3.72- 2.91 = 0.810 X 10-6 m4 

lv = lmax = OV =lave+ R = 3.72 + 2.91 = 6.63 X 10-6 m4 

Loading. The applied couple M 0 is resolved into components parallel to 
the principal axes. 

Mu = Mo sin Om = 1500 sin 40.4<> = 972 N · m 

Mv = M0 cos Om = 1500 cos 40.4° = 1142 N · m 

a. Stress at A. The perpendicular distances from each principal axis to 
point A are 

uA = YA cos Om + ZA sin Om= 50 cos 40.4<> + 74 sin 40.4° = 86.0 mm 
11A = -y,~ sin 8, + Zn cos 8, = -50 sin 40.4<> + 74 cos 40.4° = 23.9 mm 

Considering separately the bending about each principal axis, we note that Mu 
produces a tensile stress at point A while Mv produces a compressive stress at 
the same point. 

M,v, M,u, (972 N · m)(0.0239 m) (1142 N • m)(0.0860 m) 
O'A = +--- -- + -

111 lv 0.810 X 10-6 m4 6.63 X 10-6m4 

~ +(28.68 MPa)- (14.81 MPa) 0', ~ + 13.87 MPa ~ 

b. Neutral Axis. Using Eq. (4.57), we find the angle¢ that the neutral 
axis forms with the v axis. 

I, 6.63 
tan¢ = -tan em = --tan 40.4° 

I, 0.810 "'~ 81.8' 

The angle f3 formed by the neutral axis and the horizontal is 

fJ ~ 1> - e. ~ 81.8' - 40.4° ~ 41.4' 
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Fig. P4.126 

Fig. P4.129 

W310 X 38.7 15° 

A 

Fig. P4.132 

280 

4.126 through 4.128 The couple Misapplied to a beam of the cross 
section shown in a plane forming an angle f3 with the vertical. Determine the 
stress at (a) point A, (b) point B, (c) point D. 

Fig. P4.127 Fig. P4.128 

4.129 through 4.131 The couple M is applied to a beam of the cross 
section shown in a plane forming an angle f3 with the vertical. Determine the 
stress at (a) point A, (b) point B, (c) point D. 

M=SkN·m 

Fig. P4.130 Fig. P4.131 

4.132 The couple M acts in a vertical plane and is applied to a beam 
oriented as shown. Determine (a) the angle that the neutral axis forms with the 
_horizontal, (b) the maximum tensile stress in the beam. 



4.133 and 4.134 The couple M acts in a vertical plane and is applied 
to a beam oriented as Shown. Determine (a) the angle that the neutral axis forms 
with the horizontal, (b) the maximum tensile stress in the beam. 

Fig. P4.133 

4.135 through 4.137 The couple M acts in a vertical plane and is 
applied to a beam oriented as shown. Determine (a) the angle that the neutral 
axis forms with the horizontal, (b) the maximum .tensile stress in the beam. 

I,/"" 281 X 1<i' mm4 

I=·= 176.9X l03mm4 

Fig. P4.135 

*4.138 and *4.139 The couple M acts in a vertical plane and is applied 
to a beam oriented as shown. Determine the stress at point A. 

r27mm 

pll::!=·!~! ~;; 52:mm 1 
, __ <11===1==- ·,_,_ -L 

I C 150mm 

M=6l8kN ,-l8mm j 

100 mm-lA 

I~= 3.65 X 106 mm4 

I== 10.1 X 106 mm4 

Jy~ = 3.45 X 106 mm4 

Fig. P4.138 

C200 X 17.1 

M == 2.8kN · m 

14.4 mm 

Fig. P4.134 

Fig. P4.137 

Problems 

z, = 1.894 X 106 mm4 

L = 0.614 X 106 mm4 

ly:"" +0.800 X 106 mm4 

Fig. P4.139 

23i 
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GOON mm 

2000 N 

Fig. P4.142 

4.140 A rigid circular plate of 125-mm radius is attached to a solid 
150 X 200-mm rectangular post, with the center of the plate directly above the 
center of the post. If a 4-kN force P is applied at E with fJ = 30°, determine 
(a) the stress at point A, (b) the stress at point B. (c) the point where the neu
tral axis intersects line ABD. 

Y = 4 kN 

Fig. P4.140 

4.141 In Prob. 4.140, determine (a) the value of fJ for which the stress 
at D reaches its largest value, (b) the corresponding values of the stress at A, 
B, C, and D. 

4.142 For the loading shown, determine (a) the stress at points A and 
B, (b) the point where the neutral axis intersects line ABD. 

4.143 Solve Prob. 4.142, assuming that the magnitude of the force 
applied at G is increased from 1.0 kN to 1.6 k.N. 

4.144 A horizontal load P of magnitude 100 kN is applied to the beam 
shown. Determine the largest distance a for which the maximum tensile stress 
in the beam does not exceed 75 MPa. 

Dimensions in mm 
Fig. P4.144 



4.145 An axial load P of magnitude 50 kN is applied as shown to a 
short section of W150 X 24 rolled-steel member. Determine the largest dis
tance a for which the maximum compreSsive stress does not exceed 90 MPa. 

Fig. P4.145 

4.146 The Z section shown is subjected to a couple M0 acting in a 
vertical plane. Determine the largest permissible value of the moment M0 

of the couple if the maximum stress is not to exceed 80 MPa. Given: 
lmax = 2.28 X 10-6 mm4,/min = 0.23 X 10-6 mm4

, principal axes 25.7°--q;j and 
64.3°d. 

4.147 Solve Prob. 4.146 assuming that the couple Mo acts in a hori~ 
zontal plane. 

4.148 A beam having the cross section shown is subjected to a couple 
M0 that acts in a vertical plane. Determine the largest permissible value of the 
moment M0 of the couple if the maximum stress in the beam is not to exceed 
84 MPa. Given: ly = lz = 4.7 X 106 mm4, A = 3064 mm2

, kmin = 25 mm, 
(Hint: By reason of symmetry, the principal axes form an angle of 45° with 
the coordinate axes. Use the relations lmin = A~;n and /min + /max = ly + fl.) 

Fig. P4.148 

Problems 283 
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Fig. P4.150 

4.149 Solve Prob. 4.148, assuming that the couple M0 acts in a hori~ 
zontal plane. 

4.150 A couple M0 acting in a vertical plane is applied to a 
W310 X 23.8 rolled~steel beam, whose web fonns an angle e with the verti~ 
cal. Denoting by a 0 the maximum stress in the beam when () = 0, determine 
the angle of inclination (} of the beam for which the maximum stress is 20'0. 

4.151 A beam having the cross section shown is subjected to a couple 
M 0 acting in a vertical plane. Detennine the largest pennissible value of the 
moment M0 of the couple if the maximum stress is not to exceed 100 MPa. 
Given: ly [2 = b4!36 and ly;. = b4/72. 

Fig. P4.151 

4.152 A beam of unsymrnetric cross section is subjected to a couple M0 
acting in the vertical plane xy. Show that the stress at point A, of coordinates 
y and z, is 

where ly, lz, and lyz denote the moments and product or inertia of the cross sec~ 
tion with respect to the coordinate axes, and M0 the moment of the couple. 

Fig. P4.152 and P4.153 

4.153 A beam of unsymmetric cross section is subjected to a couple M0 
acting in the horizontal plane xz. Show that the stress at point A, of coordinates 
y and z, is 

zl< - ylrz 
-,-:_~2 My 
lyfz- lyz 

where lr, lz. and lyz denote the moments and product of inertia of the cross sec* 
tion with respect to the coordinate axes, and My the moment of the couple. 



4.154 (a) Show that, if a vertical force P is applied at point A of the 
section shown, the equation of the neut:al axis BD is 

(~)x + (~)z ~-I 
where kz and kx denote the radius of gyration Of the cross section with respect to 
the z axis and the x axis, respectively. (b) Further show that, if a vertical force 
Q is ~pplied at any point located on line BD, the stress at point A will be zero. 

4.155 (a) Show that the stress !J,t corner A of the prismatic member shown 
in Fig. P4.155a will be zero if the vertical force Pis applied at a point located 
on the line 

_:'_ + _z_ ~ I 
b/6 h/6 

4.15. Bending of Curved Members 235 

(b) Further show that, if no tensile stress is to occur in the member, the force Fig. P4.154 
P must be applied at a point located within the area bounded by the line found 
in part a and three similar lines corresponding to the condition of zero stress 
at B, C, and D, respectively. This area, shown in Fig. 4.155b, is known as the 
kern of the cross section. 

(a) 

Fig. P4.155 

"4.15. BENDING OF CURVED MEMBERS 

Our analysis of stresses due to bending has been restricted so far to 
straight members. In this section we will consider the stresses caused 
by the application of equal and opposite couples to members that are 
initially curved. Our discussion will be limited to curved members of 
uniform cross section possessing a plane of symmetry in which the 
bending couples are applied, and it will be assumed that all stresses 
remain below the proportional limit. 

If the initial curvature of the member is small, i.e., if its radius of 
curvature is large compared to the depth of its cross section, a good ap
proximation can be obtained for the distribution of stresses by assum
ing the member to be straight and using the fonnulas derived in Sees. 
4.3 and 4.4. t However, when the radius of curvature and the dimensions 
of the cross section of the member are of the same order of magnitude, 
we must use a different method of analysis, which was first introduced 
by the German en~i)leer E. Winkler (1835-1888). 

tSee Prob. 4.185. 
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Fig. 4.76 

Consider the curved member of uniform cross section shown in Fig. 
4.76 .. Its transverse section is symmetric with respect to the y axis (Fig. 
4.76b) and, in its unstressed state, its upper and lower surfaces intersect the 
vertical xy plane along arcs of circle AB and FG centered at C (Fig. 4.76a). 

y 

c 

r l 
R r 

I \- y 

: IN. A. 

(b) 

We now apply two equal and opposite couples M and M' in the plane of 
symmetry of the member (Fig. 4.76c). A reasoning similar to that of Sec. 
4.3 would show that any transverse plane section containing C will remain 
plane, and that the various arcs of circle indicated in Fig. 4.76a will be 
transformed into circular and concentric arcs with a center C' different frorp. 
C. More specifically, if the couples M and M' are directed as shown, the 
curvature of the various arcs of circle will increase; that is A' C' < A C. We 
also note that the couples M and M' will cause the length of the upper sur
face of the member to decrease (A' B' < AB) and. the length of the lower 
surface to increase (F' G' > FG). We conclude that a neutral surface must 
exist in the member, the length of which remains constant The intersection 
of the neutral surface with the xy plane has been represented in Fig. 4.76a 
by the arc DE of radius R, and in Fig. 4.76c by the arc D' E' of radius R'. 
Denoting by (} and 0' the central angles corresponding respectively to DE 
and D' E', we express the fact that the length of the neutral surface remains 
constant by writing 

R8 = R'8' (4.59) 

Considering now the arc of circle JK located at a distance y above 
the neutral surface, and denoting respectively by r and r' the radius of 
this arc before and after the bending couples have been applied, we ex
press the deformation of JK as 

8 = r'8'- r() (4.60) 



Observing from Fig. 4.76 tl1at 

r = R- y r' = R'- y 

and substituting, these expressions into Eq. (4.60), we write 

8 = (R' - y)O' - (R - y)O 

or, recalling Eq. (4.59) and setting 0' - e = M, 

8 = -yM 

(4.61) 

(4.62) 

The normal strain ex in the elements of JK is obtained by dividing the 
deformation 5 by the original length rOof arc JK. We write 

8 118 
€ =-= 

X rO re 

or, recalling the first of the relations (4.61), 

E = _ A8_y_ 
" e R- y (4.63) 

The relation obtained shows that, while each transverse section remains 
plane, the normal strain Ex does not vary linearly with the distance y 
from the neutral surface. 

The normal stress ax can now be obtained from Hooke's law, 
O'x = Eex, by substituting for ex from Eq. (4.63). We have 

EM 
(J' =---
" e R y (4.64) 

or, alternatively, recalling the first of Eqs. (4.61), 

EM R- r (}" = ------" e r 
(4.65) 

Equation (4.64) shows that, like Ex, the normal stress Ux does not vary 
linearly with the distance y from the neutral surface. Plotting O":r: versus 
y, we obtain an arc of hyperbola (Fig. 4.77). 

y 

I 
\ N. A. 

'--+--' 

Fig.4.n 

/ 

y 

u, 
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Fig. 4.78 

In order to determine the location of the neutral surface in the merp.~ 
ber and the value of the coefficient E !10/0 used in Eqs. (4.64) and 
(4.65), we now recall that the elementary forces acting on any trans
verse section must be statically equivalent to the bending couple M. 
Expressing, as we did in Sec. 4.2 for a straight member, that the sum 
of the elementary forces acting on the section must be zero, and that 
the sum of their moments about the transverse z axis must be equal to 
the bending moment M, we write the equations 

Iu,dA=O 

and 

I(-yu,dA) = M 

Substituting for u, from (4.65) into Eq. (4.1), we write 

_IE M R - r dA = 0. 
0 r 

IR- r 
-r-dA =0 

RI~-IdA=O 

(4.1) 

(4.3) 

from which it follows that the distance R from the center of curvature 
C to the neutral surface is defined by the relation 

A 

R= I~ 
(4.66) 

We note that the value obtained for R is not equal to the distance 
r from C to the centroid of the cross section, since r is defined by a 
different relation, namely, · 

- 1 I r =A rdA (4.67) 

We thus conclude that, in a curved member, the neutral axis of a trans
verse section does Mt pass through the centroid of that section (Fig. 4.78). t 
Expressions for the radius R of the neutral surface will be derived for 
some specific cross-sectional shapes in Example 4.10 and in Probs. 
4.207 through 4.209. For convenience, these expressions are shown in 
Fig. 4.79. 

tHowever, an interesting property of the neutral surface can be noted if we write Eq. (4.66) 
in the alternative fonn 

(4.66') 

Equation (4.66') shows that, if the member is divided into a large number of fibers of cross
sectional area dA., the curvature !/R of the neutral surface will be equal to the average value 
of the curvature 1/r of the various fibers. 
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Fig. 4.79 Radius of neutral surface for various cross-sectional shapes. 

c 

Substituting now for ffx from (4.65) into Eq. (4.3), we write 

J
Et.OR-rydA=M 

8 r 

or, since y = R - r, 

E t.OJ(R- r)
2 
dA = M 

8 r 

Expanding the square in the integrand, we obtain after reductions 

E :
8 

[ R2 J ~ - 2RA + J r dA l = M 

Recalling Eqs. (4.66) and (4.67), we note that the first term in the 
brackets is equal to RA, while the last term is equal to TA. We have, 
therefore, 

EM 
--(RA - 2RA + rA) = M 

8 

and, solving forE t.0/8, 

E t.8 M 
-=~=-= 8 A(r- R) 

(4.68) 

Referring to Fig. 4.76, we note that M > 0 forM> 0. It follows that 
r - R > 0, orR < r, regardless of the shape of the section. Thus, the 
neutral axis of a transverse section is always located between the cen
troid of the section and the center of curvature of the member (Fig. 
4.78). Setting r - R = e, we write Eq. (4.68) in the form 

E t.8 M 
8 Ae 

(4.69) 

c 
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290 Pure Bend!ng Substituting now forE M/0 from (4.69) into Eqs. (4.64) and (4.65), 
we obtain the following alternative expressions for the normal stress ax 
in a curved beam: 

My 
<r = X . Ae(R- y) 

(4.70) 

and 

M(r- R) 
<r = X Aer 

(4.71) 

We sh.ould note that the parameter e in the above equations is a 
small quantity obtained by subtracting two lengths of comparable size, 
Rand r. In order to determine Ux with a reasonable degree of accuracy, 
it is therefore necessary to compute R and r very accurately, particu
larly when both of these quantities are large, i.e., when the curvature 
of the member is small However, as we indicated earlier, it is possible 
in such a case to obtain a good approximation for Ux by using the for
mula ux = -My/! developed for straight members. 

Let us now determine the change in curvature of the neutral sur
face caused by the bending moment M. Solving Eq. (4.59) for the cur
vature 1/R' of the neutral surface in the deformed member, we write 

1 0' 

R' R 8 

or, setting 0' = 0 + M and recalling Eq. (4.69), 

_!_ = _1_(1 + AO) = _1_(1 + ~) 
R' R 0 R EAe 

from which it follows that the change in curvature of the neutraJ sur
face is 

M 
R' R EAeR 

(4.72) 

A curved rectangular bar has a mean radius 'f = 150 mm and 
a cross section of width b = 60 mm and depth h = 36 mm 
(Fig. 4.80). Determine the distance e between the centroid and 
the neutral axis of the cross section. 

c 

We first derive the expression for the radius R of the neu
tral surface. Denoting by r 1 and r2, respectively, the inner and Fig. 4.80 



outer radius of the bar (Fig. 4.81), we use Eq. (4.66) and write 

h 
R~-r, 

ln
r, 

For the given data, we have 

rl = r- ~h = 150- 18 = 132 mm 

r2 = r + ~h = 150 + 18 = 168 mm 

Substituting for h, r 1, and r2 into Eq. (4.73), we have 

h 36mm 
R ~ -- ~ -- = 149.3mm 

ln~ ln~ 
r1 132 

(4.73) 

The distance between the centroid and the neutral axis of the 
cross section (Fig. 4.82) is thus 

e r - R = 150 - 149.3 = 0.7 mm 

We note that it was necessary to calculate R with five significant 
figures in order to obtain e with the usual degree of accuracy. 

For the bar of Example 4.1 0, determine the largest tensile and 
compressive stresses, knowing that the bending moment in the 
bar isM= 900 N· m. 

We use Eq. (4.71) with the given data, 

M ~ 900 N · m A ~ bh ~ (60 mm)(60 mm) ~ 2160 mm2 

and the values obtained in Example 4.10 for Rand e, 

R = 149.3mm e = 0.7mm 

Making first r = r2 = 168 mm in Eq. (4.71), we write 

M(r2 - R) 
CTmax = Aer2 

(900 N • m)(0.168 m- 149.3 m) 

~ (2160 x 10 6 m2 )(0.7 x 10 2 m)(0.168 m) 

(T max 64.3 MPa 

c 

Fig. 4.81 

Centroid 

Fig. 4.82 

Making now r = r 1 = 132 mm in Eq. (4.71), we have 

M(r,- R) 
(T min 

Aer1 

(900 N • m)(O.l32 m- 149.3 m) 

~ (2160 X 10 6 m2 )(0.7 X 10 2 m)(0.132 m) 

CTmin = -75.4MPa 

Remark. Let us compare the values obtained for u max 
and u min with the result we would get for a straight bar. Us
ing Eq. (4.15) of Sec. 4.4, we write 

Me 
U"rnax,min = ±: [ 

(900 N · m)(0.018 m) 
= ::t ±69.44MPa 

/,(0.06 m)(0.036)2 
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20mm-J f-- SAMPlE PROBlEM 4.11 

J!JJi~;~ A machine component has a T-shaped cross section and is 
loaded as shown. Knowing that the allowable compressive 
stress is 50 MPa, determine the largest force P that can be ap
plied to the component. Section a·a 

SOLUTION 

Centroid of the Cross Section. We locate the centroid D of the cross section 

AI>mm2 

1 (20)(80) = 1600 
2 (40)(20) =BOO 

2: A1 - 2400 

f 1,mm 

40 
70 

f1A11 mm3 

64 X 103 

56 X 103 

't:f1A1 120 X 103 

i':EA1 = :Ei'1A1 

f(2400) = 120 X 103 

i' = 50 mm = 0.050 m 

Force and Couple at D. The internal forces in section a-a are equiva
lent to a force P acting at D and a couple M of moment 

:==IB ~2 SOmm . 
60mm 

M = P(50 mm + 60 mm) = (0.110 m)P 

Superposition. The centric force P causes a uniform compressive stress 
on section a-a. The bending couple M causes a varying stress distribution [Eq . 
( 4. 71 )]. We note that the couple M tends to increase the curvature of the mem
ber and is therefore positive (cf. Fig. 4.76). The total stress at a point of sec
tion a-a located at distance r from the center of curvature C is 

=p.="'" 

' C• 

p 
(I'=--

. A 

+ 

iH (r-R) 
u=--

Aer 
B 

r 

u = _I'_ + _M_,_(r:--_R_:_) 
A Aer 

(1) 

Radius of Neutral Surface, We now determine the radius R of the neutral 
surface by using Eq. (4.66). 

R=~= 2400mm
2 

J~ t80mrm)dr + r(20~)dr 
r, r1 

2400 2400 
40.866 + 11.756 = 45·61 mm 50 90 

801n
30 

+ 201n
50 

= 0.04561 m 

We also compute: e = r - R = 0.05000 m - 0.04561 m = 0.00439 m 

Allowable Load. We observe that the largest compressive stress. will 
occur at point A where r = 0.030 m. Recalling that a an = 50 MPa and using 
Eq. (1), we write 

_
50 

X 
10

, Pa = P + (0.110 P)(0.030 m- 0.04561 m) 
2.4 x w- 3 m2 (2.4 x w- 3 m2)(0.00439 m)(0.030 m) 

-50 X 106 = -417P- 5432P P = 8.55 kN «! 



4.156 For the curved bar shown, determine the stress at point A when 
(a) h = 50 mm, (b) h = 60 mm. 

24mm 

B 1.1-
~ ~=i'' ~A~ 50mm 

600 N · m --'({'-- 600 N · m-~--L 
Fig. P4.156 and P4.157 

4.157 For the curved bar shown, determine the stress at points A and B 
when h = 55 mm. 

4.158 For the curved bar and loading shown, determine the stress points 
A and B when r 1 = 40 mm. 

Fig. P4.158 and P4.159 

4.159 For the curved bar and loading shown, determine the stress point 
A when (a) r 1 = 30 mm, (b) r 1 = 50 mm. 

4.160 The curved portion of the bar shown has an inner radius of 20 mm. 
Knowing that the line of action of the 3-kN force is located at a distance 
a = 60 mm from the- vertical plane containing the center of curvature of the 
bar, determine the largest compressive stress in the bar. 

4.161 Knowing that the allowable stress in the bar is 150 MPa, deter
mine the largest perrpissible distance a from the line of action of the 3-kN force 
to the vertical plane containing the center of curvature of the bar. Fig. P4.160 and P4.161 
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Fig. P4.165 

4.162 Steel links having the cross section shown are available with dif
ferent central angles {3. Knowing that the allowable stress is 100 MPa, deter~ 
mine the largest force P that can be applied to a link for which {3 = 90°. 

6mm 

1.1 
~~m 

A j 
l5mm 

..... ·--~--------------~---L 
Fig. P4.162 

4.163 Solve Prob. 4.162, assuming that {3 = 60°. 

4.164 For the split ring shown, determine the stress at (a) point A, 
(b) point B. 

fig. P4.164 

4.165 and 4.166 Knowing that M = 20 kN · m, determine the stress 
at (a) point A, (b) point B. 

Fig. P4.166 



4.167 Three plates are welded togetl1er to form the curved beam shown. 
For the given loading, determine the distance e between the neutral axis and 
the centroid of the cross section. 

c 
Fig. P4.167 and P4.168 

4. 168 Three plates are welded together to form the curved beam shown. 
ForM = 900 N · m, determine the stress at (a) point A, (b) point B, (c) the 
centroid of the cross section. 

4.169 The bar shown has a circular cross section of 15-mm diameter. 
Knowing that a = 30 mm, determine the stress at (a) point A, (b) point B. 

200 N 

B A.C 

15mm 

.. 1 ',., .... ,, <-·-·: 

12mm 

200 N 
,_,_~ 

Fig. P4.169 and P4.170 

4.170 The bar shown has a circular cross section of 15-mm diameter. 
Knowing that the allowable stress is 55 MPa, determine the largest permissi
ble distance a from the line of action of the 200-N forces to the plane con
taining the center of curvature of the bar. 

4.171 The split ring shown has an inner radius r1 = 20 mm and a circu
lar cross section of diameter d = 32 mm. For the loading shown, determine 
the stress at (a) point A, (b) point B. 

4.172 The split ring shown has an inner radius r1 = 16 nun and a circu
lar cross section of giameter d = 32 mm. For the loading shown, determine 
the stress at (a) point A, (b) point B. Fig. P4.171 and P4.172 
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296 Pure Bending 4.173 Knowing that the machine component shown has a trapezoidal 
cross section with a = 90 mm and b = 62 rnm, detennine the stress at (a) 
point A, (b) point B. 

)900N-m 

4.174 Knowing that the machine component shown has a trape~ 
zoidal cross section with a = 62 rnm and b = 90 mm, determine the stress at 
(a) point A, (b) point B. 

4.175 For the crane hook shown, determine the largest tensile stress in 
section a-a. 

35mm 
25mm J 

~&f!l r 
160mJ1 a 

Section a-a 
15 kN 

Fig. P4.175 

4.176 For the curved beam and loading shown, determine the stress at 
(a) point A, (b) point B. 

"'-" 
250N·m 

Section a-a 

Fig. P4.176 



4.177 and 4.178 Knowing that M = 560 N • m, detennine the stress 
at (a) point A, (b) point B. 

Fig. P4.177 

4.179 Show that if the cross section of a curyed beam consists of two 
or more rectangles, the radius R of the neutral surface can be expressed as 

R = A 

In G;) '(;;)"(~)'' l 
where A is the total area of the cross section. 

4.180 through 4.182 Using Eq. (4.66), derive the expression for 
R given in Fig. 4.79 for 

4.180 A circular cross section. 
4.181 A trapezoidal cross section. 
4.182 A triangular cross section. 

4.183 For a curved bar of rectangular cross section subjected to a bend
ing couple M, show that the radius stress at the neutral surface is 

cr = M (1 -!:!. - In~) 
' Ae R r 1 

and compare the value of err for the curved bar of Examples 4.10 and 4.11. 
(Hint: consider the freeMbody diagram of the portion of the beam located above 
the neutral sutface.) 

Fig. P4.183 
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62 rnm 

Fig. P4.178 

1 
b, 

j I 
- I 

1

1-'I-i 
--rz-~ 

I 
1---c,---4 

Fig. P4.179 



Fig. 4.1 

Normal strain in bending 

Fig. 4.12a 

Normal stress in elastic range 

Fig. 4.13 

Elastic flexure formula 
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This chapter was devoted to the analysis of members in pure bend~ 
ing. That is, we considered the stresses and defonnation in members 
subjected to equal and opposite couples M and M' acting in the same 
longitudinal plane (Fig. 4.!). , 

We fiist studied members possessing a plane of symmetry and 
subjected to couples acting in that plane. Considering possible de~ 
formations of the member, we proved that transverse sections remain 
plane as a member is defonned [SeC. 4.3]. We then noted that a rriem
ber in pure bending has a neutral surface along which normal strains 
and stresses are zero and that the longitudinal normal strain Ex varies 
linearly with the distance y from the neutral surface: 

• = _r 
' 

(4.8) 
p 

where pis the radius of curvature of the neutral surface (Fig. 4.12a). 
The intersection of the neutral surface with a transverse section is 
known as the neutral axis of the section. 

For members made of a material that folloWs Hooke's law [Sec. 
4.4}, we found that the normal stress Ux varies linearly with the dis
tance from the neutral axis (Fig. 4.13). Denoting by u 111 the maxi~ 
mum stress we wrote 

y 
u = --u 

' C m 
(4.12) 

.. ' . 

whe~e .c is the largest distanc~ from the neuiral axis· to a point in the 
section. 

By setting the sum of the elementary forces, u x dA, equal to zero, 
we proved that the neutral axis passes through the centroid of the 
cross section of a member in pure bending. Then by setting the sum 
of the moments of the elementary forces equal to the bending mo
ment, we derived the elastic flexure formula for the maximum nor
mal stress 

Me 
Um = I (4.15) 

where I is the moment of inertia of the cross section with respect to 
the neutral axis. We also obtained the 11onnal stress at any distance 
y from the neutral axis: 

My 
(}" =--

' I 
(4.16) 



Noting that 1 and c depend only on the geometry of the cross 
section, we introduced the elastic section modulus 

S=!_ 
c 

(4.17) 

and then used the section modulus to write an alternative expression 
for the maximum normal stress: 

M 
" = .m S (4.18) 

Recalling that the curvature of a member is the reCiprocal of its 
radius of curvature, we expressed the curvature of the member as 

M 
-=-
p EI 

(4.21) 

In Sec. 4.5, we completed our study of the bending of homoge
neous members possessing a plane of syinmetry by noting· that 
deformations occur in the plane of a transverse cross section and 
result in anticlastic curvature of the members. 

-Next we considered the bending of members made of several 
materials with different moduli of elasticity [Sec. 4.6]. While trans
verse sections remain plane, we found that, in general, the neutral 
axis does not pass through the centroid of the compOsite cross sec
tion (Fig. 4.24). Using the ratio of the moduli of elasticity· of the rna-

(,) 

Fig. 4.24 

y 

(b) 

y 

(c) 

terials, we obtained a transfonned section corresponding to an equiv~ 
alent member made entirely of one material. We then used the meth
ods previously developed to determine the stresses in this equivalent 
homogeneous member (Fig. 4.26) and then again used the ratio of 
the moduli of elaSticity to determine the stresses in the composite 
beam [Sample Probs. 4.3 and 4.4]. 
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Elastic section modulus 

Curvature of member 

Antlclastic curvature 

Members made of several materials 

Fig. 4.26 

In Sec. 4.7, stress concentrations that occur in members in pure Stress concentrations 
bending were discussed and charts giving stress concentration, fac-
tors for flat bars with fillets and grooves were presented in Figs. 4.31 
and 4.32. / 
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Fig. 4.39 

Plastic deformations 

Eccentric axial loading 

M 

~:]d 
A 

Fig. 4.48b 

We next investigated members made of materials that do not fol
low Hooke's law [Sec. 4.8]. A rectangular beam made of an elasto
plastic material (Fig. 4.39) was analyzed as the magnitude of the' 
bending moment was increased. The maximum elastic moment My 
occurred when yielding was initiated in the beam (Fig. 4.40). As the 
bending moment was further increased, plastic Zones developed and 
the size of the elastic core of the member decreased [Sec.- 4.9]. Fi
nally the beam became fully plastic and we obtained the maximum 
or plastic moment Mp. In Sec. 4.11, we found thatpennanent defor
mations and residual stresses remain in a member after the lOads that 
caused yielding have been removed. 

y 

(a)M<My 

y 
PLASTIC -ul 

PLASTIC 

(c)M>My 

Fig. 4.40 

(b)M=My 

y 

' 

PLASTIC 

(d)M,M1, 

In Sec. 4.12, we studied the stresses in members loaded eccentri
cally in a plane of symmetry. Our analysis made use of methods de
veloped earlier. We replaced the eccentric load by a force-couple 
system located at the centroid of the cross section (Fig. 4.48b) and 
then superposed stresses due to the centric load and the bending cou
ple (Fig. 4.51): 

p My (}' =---
' A I 

(4.50) 

+ 
Fig. 4.51 



.·>_ ... : __ :._-':: The. __ bending ~fmembe~s Of unsymffzetTic cross~ Section Was C6n~ 
' ~id~red next [Sec. 4.13]. We found that the flexure.formula may be 
:::pS~_(i, provide#, .that' the couple vector _M is direct~d _along one ()f the 
· princiPal centroidal ax~s of the cross Section. When necessary we re-

Fig. 4.60 

solved M into.components along the principal axes and superposed 
the stresses due to the component couples (Figs. 4.60 and 4.61). 

M~y MyZ 
(T = ~-+-.-

x lz ly 
(4.55) 

For the .couple M sho'wn in Fig. 4.65, _We detennined the Oiien
tation of the neutral axis by writing 

I, 
tan¢ ;=-tan 8 .(4.57) 

I, 

The general case of eccentric axial loading was considered in 
Sec. 4.14, where we again replaced the load by a force-couple sys
tem located at the centroid. We then superposed the stresses due to 
the centric load and two component couples directed along the prin
cipal_axes: 

p M,y M,z 
(}' = - - + - (4.58) 

x A Jz fy 

The chapter concluded with ·the -analysis of stresses in curved 
members (Fig. 4.76a). While transverse sections remain plane when 
the member is subjected to bending, we found that the stresses do 
not vary linearly and the neutral surface does not pass through the 
centroid of the section. The distance R from the center of curvature 
of the member to the neutral surface was found to be 

A R=-·-

.. J~ (4.66) 

where A is the area of the crOss section. ·The normal stress at a dis
tance y from the neutral surface: was expressed as 

(}' = X 

My 

. Ae(R- y) 
(4.70) 

where M is the bending moment and e the distance from the cen
troid of the section'to the neutral surface. 
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Unsymmetric bending 

Fig. 4.61 

Fig. 4.65 

General eccentric axial loading 

Curved members 

Fig. 4.76a 
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4.184 A vertical force P of magnitude 80 kN is applied at a point C lo~ 
cated on the axis of symmetry of the cross section of a short column. Know~ 
ing that y = 125 mm, determine (a) the stress at point A, (b) the stress at point 
B, (c) the location of the neutral axis. 

y 

(") (b) 

Fig. P4.184 and P4.185 

4.185 A vertical force P of magnitude 80 kN is applied at a point C lo
cated on the axis of symmetry of the cross section of a short column. Determine 
the range of values of y for which tensile stresses do not occur in the column. 

4.186 Determine the stress at points A and B, (a) for the loading shown, 
(b) if the 60-kN loads are applied at points 1 and 2 ~mly. 

150mm 

Fig. P4.186 



4.187 Straight rods of 8~mm diameter and 60"m length are sometimes 
used to clear underground conduits of obstructions or to thread wires through 
a new conduit. The rods are made of hi'gh~strength steel and, for storage and 
transportation, are wrapped on spools of 1.5~m diameter. Assuming that the 
yield strength is nOt exceeqed, determine (a} the maximum stress in a rod, when 
the rod, which was initially straight, is wrapped on a spool, (b) the correspon~ 
ding bi::nding moment in the rod. Use E = 200 GPa. 

Fig. P4.187 

4.1 (18 A couple M will be applied to a beam of rectangular cross sec~ 
tion that is to be sawed from a log of circular cross section. Determine the 
ratio dlb for which (a) the maximum stress 0'111 will be as small as possible, 
(b) the radius of curvature of the beam will be maximum. 

4.189 A copper strip (E = 105 GPa) and an aluminum strip (E = 75 
GPa} are bonded together to form the composite bar shown. Knowing that the 
bar is bent about a horizontal axis by a couple of moment 35 N · m, determine 
the maximum stress in (a) the aluminum strip, (b) the copper strip. 

f.-z4mm_.j 
Fig. P4.189 

j:::: 

4.190 Three 120 X 10-mm steel plates have been welded together to 
fonn the beam shown. Assuming that the steel is elastoplastic with E = 200 
GPa and (]'y = 300 MPa, determine (a) the bending moment for which the plas
tic zones at the top and bottom of the beam are 40 mm thick, (b) the corre
sponding radius of curvature of the beam. 

r-120 mm --j __i 

" ' l!Omm 

~~ -1·--~1 120 mm 

!Omm J 
!i>j;·~.~;;·.,,·]--::C:~==''Cl··, --r 10 mm 

/ 

Fig. P4.190 
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Fig. P4.193 

Fig. P4.191 

""------""~ D 

l-40mm-..J-.-40mm..J 

4.191 and 4.192 Two WlOO X 19.3 rolled sections are welded together 
as shown. Knowing that for the steel alloy used Uy = 250 MPa and uu = 400 
MPa and using a factor of safety of 3.0, detennine the largest couple that can 
be applied when the assembly is bent about the z axis. 

y 

z--'~-•C 

Fig. P4.192 

4.193 The couple M is applied to a beam of the cross section shown in 
a plane forming an angle f3 with the vertical. Determine the stress at (a) point 
A, (b) point B, (c) point D. 

E 
Fig. P4.194 

4.194 Show that, if a solid rectangular beam is bent by a couple applied 
in a plane containing one diagonal of the rectangular cross section, the neutral 
axis will lie along the other diagonal. 

4.195 The curved bar shown has a cross section of 40 X 60 mm and an 
inner radius r1 = 15 mm. For the loading shown, determine the largest tensile 
and compressive stresses in the bar. 

120N-m 

Fig. P4.195 



The following problems are designed to be solved with a computer. 

4.C1 Two aluminum strips and a steel strip are to be bonded together 
to form a composite member of width b = 60 mm and depth h =. 40 mm. The 
modulus of elasticity is 200 GPa for the steel and 75 GPa for the aluminum. 
Knowing that M = 1500 N · m, write a computer program to calculate the max
imum stress in the aluminum and in the steel for values of a from 0 to 20 mm 
using 2-mm increments. Using appropriate smaller increments, determine 
(a) the largest stress that can occur in the steel, (b)'the corresponding value 
of a. 

4.C2 A beam of the cross section shown, made of a steel that is assumed 
to be elastoplastic with a yield strength ur and a modulus of elasticity E, is 
bent about the x axis. (a) Denoting by Yr the half thickness of the elastic core, 
write a computer program to calculate the bending moment M and the radius 
of curvature p for values of Yr from ~ d to t d using decrements equal to! t1. 
Neglect the effect of fillets. (b) Use this program to solve Prob. 4.190. 

Fig. P4.C2 

4.C3 A 900 N · m couple M is applied to a beam of the cross section 
shown in a plane forming an angle j3 with the vertical. Noting that the centroid 
of the cross section is located at C and that they and z axes are principal axes, 
write a computer program to calculate the stress at A, B, C, and D for values 
of j3 from 0 to 180° U$ing 10° increments. (Given: ly = 2.59 X 106 mm4 and 
lz 0.62 X 106 mm4

.) 

Fig. P4.C3 Dimensions in inches 
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Fig. P4.C4 

' 
/M 

Fig. P4.C6 

4.C4 Couples of moment M = 2 kN · m are applied as shown to a 
curved bar having a rectangular cross section with h = 100 mm and 
b = 25 nun. Write a computer program and use it to calculate the stresses at 
points A and B for values of the ratio rtlh from 10 to 1 using decrements of 
l, and from 1 to 0.1 using decrements of 0.1. Using appropriate smaller in
crements, determine the ratio r 1/h for which the maximum stress in the curved 
bar is 50 percent larger than the maximum stress in a strainght bar of the same 
cross section. 

M 

( 

Fig. P4.C5 

4.C5 The couple M is applied to a beam of the cross section shown. 
(a) Write a computer program that can be used to calculate the maximum ten
sile and compressive stresses in the beam. (b) Use this program to solve Probs. 
4.7, 4.8, and 4.9. 

4.C6 A solid rod of radius c = 30 nun is made of a steel that is assumed 
to be elastoplastic withE = 200 GPa and O"y = 290 MPa. The rod is subjected 
to a couple of moment M that increases from zero to the maximum elastic 
moment !vfy and then to the plastic moment MP. Denoting by Yr the half thick
ness of the elastic core, write a computer program and use it to calculate the 
bending moment M and the radius of curvature p for values of Yr from 30 mm 
to 0 using 5-mm decrements. (Hint: Divide the cross section into 80 horizon
tal elements of 1-mm height.) 

4.C7 The machine element of Prob. 4.178 is to be redesigned by re
moving part of the triangular cross section. It is believed that the removal of a 
small triangular area of width a will lower the maximum stress in the element. 
In order to verify this design concept, write a computer program to calculate 
the maximum stress in the element for values of a from 0 to 25 nun using 
2.5-mm increments. Using appropriate smaller increments, determine the 
distance a for which the maximum stress is as small as possible and the 
corresponding value of the maximum stress. 

150 
c .. ----

Fig. P4.C7 

l 
I 
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The beams S.!Jpporting the multiple oVerhead cranes system shown in this picture are subjected to transverse 
loads causing the bea~s to bend .. The normal stresses resulting from such loadings will be determined in 
this chapter. 
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(a) Con<:entrated loads 

m1nT1111Til 
%-'B '#! ':1: 

(b) Distributed load 

Fig. 5.2 

Statically 
Determinate 
Beams 

Statically 
Indetenninate 
Beams 

Fig. 5.3 

L---j 
(a) Simply supported beam 

(d) Continuous beam 

5.1. INTRODUCTION 

This chapter and most of the next one will be devoted to the analysis 
and the design of beams, i.e., structural members supporting loads ap
plied at various points along the member. Beams are usually long, 
straight prismatic members, as shown in the photo on the previous page. 
Steel and aluminum beams play an important part in both structural and 
mechanical engineering. Timber beams are widely used in home con
struction (Fig. 5.1). In most cases, the loads are perpendicular to the 
axis of the beam. Such a transverse loading causes only bending and 
shear in the beam. When the loads are not at a right angle to the beam, 
they also produce axial forces in the beam. 

Fig. 5.1 

The transverse loading of a beam may consist of concentrated loads 
P1, P2, ••• , expressed in newtons or kilonewtons (Fig. 5.2a), of a distrib
uted load w, expressed in N/m, kN/m (Fig. 5.2b), or of a combination of 
both. When the load w per unlt length has a constant value over part of 
the beam (as between A and Bin Fig. 5.2b), the load is said to be uniformly 
distributed over that part of the beam. 

Beams are classified according to the way in which they are supported. 
Several types of beams frequently used are shown in Fig. 5.3. The distance 
L shown in the various parts of the figure is called the span. Note that the 
reactions at the supports of the beams in parts a, b, and c of the figure in
volve a total of only three unknowns and, therefore, can be determined by 

(b) Overhanging beam 

(e) Beam fixed at one end 
and simply supported 

at the other end 

(c) Cantilever beam 

f---L----j 
(j) FLxed beam 



the methods of statics. Such beams are said to be statically determinate and 
will be discussed ~n this chapter and. the next. On the other hand, the re
actions at the supports of the beams in parts d, e, andf of Fig. 5.3 involve 
more than three. unknowns and cannot be determined by the methods of 
statics alone. The properties of the beams v.rith regard to their resistance to 
deformations must be taken into consideration. Such beams are said to be 
statically indeterminate and their analysis will be postponed until Chap. 9, 
where defonnations of beams will be discussed. 

Sometimes two or more beams are connected by hinges to form a si·n
gle ·continuous structure. Two examples of beams hinged at a point H are 
shown in Fig. 5.4. It will be noted that the reactions at the supports involve 
four unknowns and cannot be determined from the free-body diagram of 
the two-beam system. They can be detennined, however, by considering 
the free-body diagram of each beam separately; six unknowns are involved 
(including two force components at the hinge), and six equations are 
available. 

It was shown in Sec. 4.1 that if we pass a section through a point C 
of a cantilever beam supporting a concentrated lOad Pat its end (Fig. 4.6), 
the internal forces in the section are found to consist of a shear force P' 
equal and opposite to the load P and a bending couple M of moment equal 
to the moment of P about C. A similar situation prevails for other types of 
supports and loadings. Consider, for example, a simply supported beam AB 
carrying two concentrated loads and a unifonnly distributed load (Fig. 
5.5a). To determine the internal forces in a section through poiqt C we first 
draw the free~body diagram of the entire beam to obtain the reactions at 
the supports (Fig. 5.5b). Passing a section through C, we then draw the 
free~body diagram of AC (Fig. 5.5c), from which we determine the shear 
force V and the bending couple M. 

The bending couple M creates normal stresses in the cross section, 
while the shear force V creates shearing stresses in that section. In most 
cases the dominant criterion in the design of a beam for strength is the 
maximum value of the normal stress in the beam. The determination of the 
normal stresses in a beam will be the subject of this chapter, while shear
ing stresses will be discussed in Chap. 6. 

Since the distribution of the nonnal stresses in a given section depends 
only upon the value of the bending moment Min that section and the geo
metry of the section, t the elastic flexure fonnulas derived in Sec. 4.4 can 
be used to determine the maximum stress, as well as the stress at any given 
point, in the section. We writet 

IMic 
(J =-

m I (J = > 
-My 

I 
(5.1, 5.2) 

where I is the moment of inertia of the cross section with respect to a 
centroidal axis perpendicular to the plane of the couple, y is the dis
tance from the neutral surface, and c is the maximum value of that dis
tance (Fig. 4.13). We also recall from Sec. 4.4 that, introducing the 

tit is assumed that the distribution of the normal stresses in a given cross section is not 
affected by the deformations caused by the shearing stresses. This assumption will be veri
fied in Sec. 6.5. 

:j:We recall from Sec. 4:2 that M can be positive or negative, depending upon whether the 
concavity of the beam at the point considered faces upward or downward. Thus, in the case 
considered here of a transverse loading, the sign of M can vary along the beam. On the other 
hand, Um is a positive quantity, the absolute value of Misused in Eq. (5.1). 
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31 0 Analysis and Design of Beams for Bending elastic section modulus S = 1/c of the beam, the maximum value 0"111 

of the normal stress in the section can be expressed as 

IMI 
O",=s (5.3) 

The fact that cr m is inversely proportional to S underlines the impor~ 
tance of selecting beams with a large section modulus. Section moduli 
of various rolled~steel shapes are given in Appendix C, while the sec
tion modulus of a rectangular shape can be expressed, as shown in Sec. 
4.4, as 

(5.4) 

where b and h are, respectively, the width and the depth of the cross 
section. 

Equation (5.3) also shows that, for a beam of unifcirm cross section, 
O"m is proportional to !MI : Thus, the maximum value of the normal stress 
in the beam occurs in the section where IMI is largest. It follows that one 
of the most important parts of the design of a beam for a given loading 
condition is the determination of the location and magnitude of the largest 
bending moment. 

This task is made easier if a bending-moment diagram is drawn, i.e., 
if the value of the bending moment M is determined at various points of 
the beam and plotted against the distance x measured from one end of the 
beam. It is further facilitated if a shear diagram is drawn at the same time 
by plotting the shear V against x. 

The sign convention to be used to record the values of the shear and 
bending moment will be discussed in Sec. 5.2. The values of V and lv1 will 
then be obtained at various points of the beam by drawing free-body dia
grams of successive portions of the beam. In Sec. 5.3 relations among load, 
shear, and bending moment will be derived and used to obtain the shear 
and bending-moment diagrams. This approach facilitates the determination 
of the largest absolute value of the bending moment and, thus, the deter
mination of the maximum normal stress in the beam. 

In Sec. 5.4 you will learn to design a beam for bending, i.e., so that 
the maximum normal stress in the beam will not exceed its allowable value. 
As indicated earlier, this is the dominant criterion in the design of a beam. 

Another method for the determination of the maximum values of the 
shear and bending moment, based on expressing V and Min terms of sin
gularity functions, will be discussed in Sec. 5.5. This approach lends itself 
well to the use of computers and will be expanded in Chap. 9 to facilitate 
the determination of the slope and deflection of beams. 

Finally, the design of nonprismatic beams, i.e., beams with a variable 
cross section, will be discussed in Sec. 5.6. By selecting the shape and size 
of the variable cross section so that its elastic section modulus S = I/ c 
varies along the length of the beam in the same way as JMI, it is possible 
to design beams for which the maximum normal stress in each section is 
equal to the allowable stress of the material. Such beams are said to be of 
const(mt strength. 
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• sHEAR AND BENDING-MOMENT DIAGRAMS 

A" indicated in. Sec. 5.1, the determination of the maximum absolute 
~ues of the shear and of the bending moment in a beam are greatly 

tcilitated if V arid M are plotted against the distance x measured from 
a e end of the beam. Besides, as you will see in Chap. 9, the k.nowl
~~ge of Mas a function of xis essential to the determination of the de-

flection of a beam. . . 
· In the examples and sample problems of this sect1on, the shear and 
bending-moment diagrams will be obtained by determining the values 
of y and M at selected points of the beam. These values will be found 
in the usual way, i.e., by passing a section through the point where they 
are to be determined (Fig. 5.6a) and considering the equilibrium of the 
portion of beam located on either side of the section (Fig. 5.6b). Since 
the shear forces V and V' have opposite senses, recording the shear at 
point C with an up or down arrow would be meaningless, unless we in
dicated at the same time which of the free bodies AC and CB we are 
considering. For this reason, the shear V will be recorded with a sign: 
a plus sign if the shearing forces are directed as shown in Fig. 5.6b, 
and a minus sign otherwise. A similar convention will apply for the 
bending. moment M. It will be considered as positive if the bending 
couples are directed as shown in that figure, and negative otherwis~. t 
Summarizing the sign conventions we have presented, we state: 

The shear V and the bending moment Mat a given point of a beam 
are said to be positive when the internal forces and coupleS acting on 
each portion of the beam are directed as shown in Fig. 5.7a. 

These conventions can be more easily remembered if we note that 

1. The shear at any given point of a beam is positive when the 
external forces (loads and reactions) acting on the beam tend 
to shear off the beam at that point as indicated in Fig. 5. 7b. 

2. The bending moment at any given point of a beam is positive 
when the external forces acting on the beam tend to bend the 
beam at that point as indicated in Fig. 5.7c. 

It is also of help to note that the situation described in Fig. 5.7, in 
which the values of the shear and of the bending moment are positive, 
is precisely the situation that occurs in the left half of a simply sup
ported beam carrying a single concentrated load at its midpoint. This 
particular case is fully discussed in the next example. 

f)'Md 
v *# 
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Fig. 5.6 

(~') 
' ' 

(a) Internal forces (b) Effect of ex:temal forces (c) Effect of external forces 
(positive bending moment) {positive shear and positive bending moment) (positive shear) 

Fig. 5.7 

tNote that this convention is the same that we used earlier in Sec. 4.2 



Draw the shear and bending-moment diagrams for a simply 
supported Peam AB of span L subjected to a single concen
trated load Pat it midpoint C (Fig. 5.8). 

We first determine the reactions at the supports from the 
free-body diagram of the entire beam (Fig. 5.9a); we find that 
the magnitude of each reaction is equal to P /2. 

Next we cut the beam at a point D between A and C and 
draw the free-body diagrams of AD and DB (Fig. 5.9b). As
suming that shear and bending moment are positive, we direct 
the internal forces V and V' and the internal couples M and 
M' as indicated in Fig. 5.7a. Considering the free body AD 
and writing that the sum of the vertical components and the 
sum of the moments about D of the forces acting on the free 
body are zero, we find V = + P /2 and M = + Px/2. Both the 
shear and the bending moment are therefore positive; this may 
be checked by observing that the reaction at A tends to shear 
off and to bend the beam at D as indicated in Figs. 5.7b and c. 
We now plot V and M between A and C (Figs. 5.9d and e); the 
shear has a constant value V = P /2, while the bending mo
ment increases linearly from M = 0 at x = 0 to M = P L/ 4 
at x = L/2. 

Cutting, now, the beam at a point E between C and B and 
considering the free body EB (Fig. 5.9c), we write that the sum 
of the vertical components and the slim of the moments about 
E of the forces acting on the free body are zero. We obtain 
V = -P/2andM = P(L- x)/2. Theshearisthereforeneg
ative and the bending moment positive; this can be checked 
by observing that the reaction at B bends the beam at E as in
dicated in Fig. 5.7c but tends to shear ·it off in a manner op~ 
posite to that shown in Fig. 5.7b. We can complete, now, the 
shear and bending-moment diagrams of Figs. 5.9d and e; the 
shear has a constant value V = -P/2 between C and B, while 
the bending moment decreases linearly from M = PL/4 at 
x=L/2toM=Oatx=L. 
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Fig. 5.8 
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Fig. 5.9 
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We note from the foregoing example that, when a beam is subjected 
only to concentrated loads, the she~ is constant between loads and the 
bending moment varies linearly between loads. In such situations, there
fore, the shear and bending-moment diagrams can easily be drawn, once 
the values of V and M have been obtained at sections selected just to 
the left and just to the right of the points where the loads and reactions 
are applied (see Sample Prob. 5.1). 
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Draw the shear and bending-moment diagrams for a cantilever 
beam AB of span L supporting a uniformly distributed load w 
(Fig. 5.10). 

We cut the beam at a point C between A and B and draw 
the free-body diagram of AC (Fig. 5.1la), directing V and M 
as indicated in Fig. 5.7a. Denoting by x the distance from A 
to C and replacing the distributed load over AC by its result
ant wx applied at the midpoint of AC, we write 

+ t:u, ~ o: -wx- V = 0 V = -wx 

+j2:Mc ~ 0: 

We note that the shear diagram is represented by an oblique 
straight line (Fig. 5.llb) and the bending-moment diagram by 
a parabola (Fig. 5.1lc). The maximum values of V and M both 
occur at B, where we have 

V8 = -wL 

B 

Fig. 5.10 

v 

M 

Fig. 5.11 
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40kN 

14kN 

SAMPLE PROBLEM 5.1 

For the timber beam and loading shown, draw the shear and bending~ moment 
diagrams and determine the maximum normal stress due to bending. 

SOLUTION 

Reactions. Considering the entire beam as a free body, we find 

RD ~ 14 kN t 
Shear and Bending~Moment Diagrams. We first determine the inter~ 

nal forces just to the right of the 20-kN load at A. Considering the stub of beam 
to the left of section 1 as a free body and assuming V and M to be positive 
(according to the standard convention), we write 

+tLF, ~ 0: 
+jiM,~ 0: 

-20 I<N - v, ~ 0 

(20 I<N)(O m) + M, ~ 0 

We next consider as a free body the portion of beam to the left of section 2 
and write 

+tiF, ~ 0: 
+jiM,~ 0: 

-20 I<N - v, ~ 0 
(20 I<N)(2.5 m) + M, ~ 0 

v, ~ -20 I<N 

M2 = -50 kN · m 

The shear and bending moment at sections 3, 4, 5, and 6 are determined 
in a similar way from the free-body diagrams shown. We obtain 

v~ = +26 kN M3= -50kN·m 

v4 = +26kN M4= +28kN·m 

Vs = -l4kN M5 = +28kN·m 
V6 ~ -14kN M6 = 0 

For several of the latter sections, the results may be more easily obtained by 
considering as a free body the portion of the beam to the right of the section. 
For example, for the portion of the beam to the right Of section 4, we have 

+tiF,~O: 
+jiM,~ 0: 

v,- 401<N + l41<N ~ 0 
-M4 + (l41<N)(2 m) ~ 0 

v4 = +26kN 
M4 = +28 kN · m 

We can now plot the six points shown on the shear and bending-moment 
diagrams. As indicated earlier in this section, the shear is of constant value be~ 
tween concentrated loads, and the bending moment varies linearly; we obtain 
therefore the shear and bending-moment diagrams shown. 

Maximum Normal Stress. It occurs at B, where !MI is largest. We use 
Eq. (5.4) to determine the section modulus of the beam: 

s ~ jbh2 ~ j(O.OSO m)(0.250 m)' ~ 833.33 X w-6 m' 

Substituting this value and IMI = IMsl = 50 X 103 N · minto Eq. (5.3): 

IM,I (50 X 103 N · m) 6 u ~ -- = = 60.00 X 10 Pa 
'" S 833.33 X l0-6 

Maximum normal stress in the beam = 60.0 MPa <illl 
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- 226.8 kN 

-429.3 kN · m 

SAMPLE PROBLEM 5.2 

The structure shown consists of a W250 X 167 rolled-steel beam AS and of 
two short members welded together and to the beam. (a) Draw the shear and 

· bending-moment diagrams for the beam and the given loading. (b) Detennine 
the maximum normal stress in sections just to the left and just to the right of 
point D. 

SOLUTION 

Equivalent Loading of Beam. The 45-k.N load is replaced by an equiv
alent force-couple system at D. The reaction at 8 is determined by consider
ing the beam as a free body. 

a. Shear and Bending-Moment Diagrams 

From A to C. We determine the internal forces at a distance x from point 
A by "considering the portion of beam to the left of section 1. That part of the 
distributed load acting on the free body is replaced by its resultant, and we 
write 

+i:EF, ~ 0: 
+1:EM, ~ 0: 

-45x- V ~ 0 
45x(!x) + M ~ 0 

V= -45x kN 
M ~ -22.5x' kN · m 

Since the free~body diagram shown can be used for all values of x smaller than 
2.4 m, the expressions obtained for V and Mare valid in the region < x < 2.4 m. 

From C to D. Considering the portion of beam to the left of section 2 
and again replacing the distributed load by its resultant, we obtain 

+i:EF,~o: -ws-v~o 

+1:EM2 ~ 0: l08(x -1.2) +M ~ 0 
v~ -wskN 

M ~ 129.6 - 108x kN · m 

These expressions are valid in the region 2.4 m < x > 3.3 m. 

From D to B. Using the position of beam to the left of section 3, we ob
tain for the region 3.3 m < x < 4.8 m. 

v~ -153kN M ~ 305.1- 153x kN ·m 

The shear and bending~ moment diagrams for the entire beam can now be plot· 
ted. We note that the couple of moment 27 kN · m applied at point D intro
duces a discontinuity into the bending-moment diagram. 

b. Maximum Normal Stress to the Left and Right of Point D. From 
Appendix C we find that for the W250 X 167 rolled-steel shape, S = 2.08 
X 106 mm3 about the X-X axis. 

To the left of D: We have IMI = 226.8 kN · m. Substituting for IMI 
and S into Eq. (5.3), we write 

IMI 226.8 X 103 N • m 
um =- ~ 3 3 = 109MPa u, = 109MPa <(! 

S 2.08 X 10 m 

To the right of D: We have IMI = 199.8 kN · m. Substituting for 
IMI and S into Eq. (5.3), we write 

IMI 199.8 X 103 N · m 
(Tm = S = 

2
.0S X = 96MPa a"'= 96MPa 
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Fig. P5.1 

Fig. P5.3 
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5.1 through 5.6 For the beam and loading shown, (a) draw the shear 
and bending~moment diagrams, (b) determine the equations of the shear and 
bending-moment curves. 

w 

f.--- L,--__.J 

Fig. P5.2 

Fig. P5.4 

Fig. P5.6 

5.7 and 5.8 Draw the shear and bending~moment diagrams for the beam 
and loading shown, and determine the maximum absolute value (a) of the shear, 
(b) of the bending moment. 

24 kN 24 kN 2,1 kN 24 kN 

:l! c,L DL~J sz· J B 

[_4@075m~3m-LJ 
0.75m 

Fig. P5.8 



5.9 and 5.10 Draw the shear and bendingwmoment diagrams for the 
beam and loading shown, and determine the maximum absolute value (a) of 
the shear, (b) of the bending moment.· 

5.11 and 5.12 Draw the shear and bending~moment diagrams for the 
beam and loading shown, and determine the maximum absolute value (a) of 
the shear, (b) of the bending moment. 

7.5 N 7.? N 

Fig. P5.11 

5.13 and 5.14 Assuming that the reaction of the ground to be uniformly 
distributed, draw the shear and bending~moment diagrams for the beam AB and 
determine the maximum absolute value of (a) of the shear, (b) of the bending 
moment. 

36kN 

-"'" 0.9m 0.9m 0.9m 0.9m 

Fig. P5.13 
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3kN 3.6kN 

C D 
Af'E~~-~"\B 

It" I 
0.9m 1.2 m 0.6m 

Fig. P5.15 

25 2.5 !0 !0 !0 
kN kN kN kN kN 

c F ic 
A -"'J','·"· "B 

_,.r,c6 @ 0.375 m "" 2.25 m ~-'C' •• 

Fig. P5.19 
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S200 X 27.4 

5.15 and 5.16 For the beam and loading shown, determine the maxi
mum normal stress due to bending on a transverse section at C. 

Fig. P5.16 

5.17 For the beam and loading shown, determine the maximum normal 
stress due to bending on a transverse section at C. 

lOOkN 100 kN 

W410 X 114 

:I 
-~-Z25m~J' 
0.75m 

-<-0.75 m 

Fig. P5.17 

5.18 For the beam and loading shown, determine the maximum normal 
stress due to bending on section a-a. 

30 kN 50 kN 50 kN .'30 kN 

~. cJ ,kJ ,4~W*S2 
,.:'··< fa b I . c::!b 

[:;::o4m_J' 
Fig. P5.18 

5. 19 and 5.20 For the beam and loading shown, determine the maxi
mum normal stress due to bending on a transverse section at C. 

Fig. P5.20 

6kN 

I 
I 

W310 X 32.7 

m--l--2.1 m_,... 



5.21 and 5.22 Draw the shear and bending-moment diagrams for 
the beam and loading shown and determine the maximum normal stress due 
to bending. · 

100 kN 100 kN 100 kN 

c D 
A •· ·J', :·.m .. ,s N. • B 

J'T:J-18 m_J~~~ 
E 

I 
5310 X 52 

0.3m 0.6m 0.6m 

Fig. P5.21 

5.23 and 5.24 Draw the shear and bending-moment diagrams for 
the bea:m and loading shown and determine the maximum normal stress due 
to bending. 

9kN/m 

jjjjjjlc lO~Tm 

A.~'.""; .L;-'!1!;···· ·u~l 
'T 

2m 2m 2m 

W200 X 22.5 

'l~'' ~-24 m-'J 
0.8 m 0.8 m 

O.Bm 

Fig. P5.22 

Fig. P5.23 Fig. P5.24 

5.25 Draw the shear and bending-moment diagrams for the beam and 
loading shown and determine the maximum normal stress due to bending. 

W360 X 32.9 
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320 Analysis and Design of Beams for Bending 5.26 Knowing that P = 10 kN, draw the shear and bending~moment 
diagrams for beam AB and determine the maximum normal stress due 
to bending. 

5.27 Determine (a) the magnitude of the upward force P for which the 
maximum absolute value of the bending moment in the beam is as small as 
possible, (b) the corresponding maximum nonnal stress due to bending. (Hint: 
Draw the bending-moment diagram and equate the absolute values of the largest 
positive and negative bending moments obtained.) 

Fig. P5.26 and P5.27 

5.28 Determine (a) the distance a for which the absolute value of the 
bending moment in the beam is as small as possible, (b) the corresponding 
maximum normal stress due to bending. (See hint of Prob. 5.27 .) 

20 kN 40 kN 

l C D~ 
X 

W360 X 32.9 

Fig. P5.28 

5.29 For the beam and loading shown, detennine (a) the distance a for 
which the absolute value of the bending moment in the beam is as small as 
possible, (b) the corresponding maximum nonnal stress due to bending. (See 
hint of Prob. 5.27.) 

.500 kN 12 rnm 

-soomm- 1-1 

~~~~~~dB ~~~m 

Fig. P5.29 



5.30 and 5.31 Draw the shear and bending~moment diagrams for 
the beam and loading shown and determine the maximum normal stress due 
to bending. · 

Fig. P5.30 

W310 X 60 

Fig. P5.31 

5.32 A solid steel bar has a square cross section of side b and is sup
ported as shown. Knowing that for steel p = 7860 kg/m3, determine the 
dimension b for which the maximum normal stress due to bending is 
(a) 10 MPa, (b) 50 MPa. 

Fig. P5.32 

b 

H 
~:Jb 

5.33 A solid steel rod of diameter d is supported as shown. Knowing 
that for steel y = 7860 kg/m3

, determine the smallest diameter d that can be 
used if the normal stress due to bending is not to exceed 28 MPa. 

Fig. P5.33 

Problems 321 
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(a) 

(b) 

Fig. P5.12 

5.3. RELATIONS AMONG LOAD, SHEAR, 
AND BENDING MOMENT 

When a beam carries more than two or three concentrated loads, or 
when it carries distributed loads, the method outlined in Sec. 5.2 for 
plotting shear and bending moment can prove quite cumbersome. The 
construction of the shear diagram and, especially, of the bending
moment diagram will be greatly facilitated if certain relations existing 
among load, shear, and bending moment are taken into consideration. 

Let us consider a simply supported beam AB carrying a distributed 
load w per unit length (Fig. 5.12a), and let C and C' be two points of 
the beam at a distance 8.x from each other. The shear and bending mo
ment at C will be denoted by V and M, respectively, and will be as
sumed positive; the shear and bending moment at C' will be denoted 
byV+Ll.VandM+Ll.M. 

We now detach the portion of beam CC' and draw its free-body di
agram (Fig. 5.12b). The forces exerted on the free body include a load 
of magnitude w 8.x and internal forces and couples at C and C'. Since 
shear and bending moment have been assumed positive, the forces and 
couples will be directed as shown in the figure. 

Relations between Load and Shear. Writing that the sum of the ver
tical components of the forces acting on the free body CC' is zero, we 
have 

+t};F,~O: V - (V + 8 V) - w Ll.x ~ 0 
AV ~ -w Ll.x 

Dividing both members of the equation by 8.x and then letting 8.x ap~ 
proach zero, we obtain 

dV 
dx ~ -w (5.5) 

Equation (5.5) indicates that, for a beam loaded as shown in Fig. 5.12a, 
the slope d VI dx of the shear curve is negative; the numerical value of 
the slope at any point is equal to the load per unit length at that point. 

Integrating (5.5) between points C and D, ·we write 

J
"" V0 - Vc ~ - wdx 

"' 
(5.6) 

V0 - Vc ~ -(area underload curve between C and D) (5.6') 

Note that this result could also have been obtained by considering the 
equilibrium of the portion of beam CD, since the area under the load 
curve represents the total load applied between C and D. 

It should be observed that Eq. (5.5) is not valid at a point where a 
concentrated load is applied; the shear curve is discontinuous at such a 
point, as seen in Sec. 5.2. Similarly, Eqs. (5.6) and (5.6') cease to be 
valid when concentrated loads are applied between C and D, since they 
do not take into account the sudden change in shear caused by a con
centrated load. Equations (5.6) and (5.6'), therefore, should be applied 
only between successive concentrated loads. 

l. I 



Relations between Shear and Bending Moment. Returning to the 
free~body diagram of Fig. 5.12b, a:qd writing now that the sum of the 
moments about C' is zero, we have 

Ax 
(M + AM) - M- .V i1x + w f).xz = 0 

1 
AM = V Ax - }w (Ax)' 

Dividing both members of the equation by Ax and then letting Ax ap
proach zero, we obtain 

dM 
-=V 
dx 

(5.7) 

Equation (5.7) indicates that the slope dM/dx of the bending-moment 
curve is equal to the value of the shear. This is true at any point where 
the shear has a well-defined value, i.e., at any point where no concen
trated load is applied. Equation (5.7) also shoWs that V = 0 at points 
where M is maximum. This property facilitates the determination of the 
points where the beam is likely to fail under bending. 

Integrating (5.7) between points C and D, we write 

I"' Mv- Me= Vdx 

'" 
(5.8) 

M0 - Me= area under shear curve between C and D (5.8') 

Note that the area under the shear curve should be considered positive 
whyre the shear is positive and negative where the shear is negative. 
Equations (5.8) and (5.8') are valid even when concentrated loads are 
applied between C and D, as long as the shear curve has been correctly 
drawn. The equations cease to be valid, however, if a couple is applied 
at a point between C and D, since they do not take into account the 
sudden change in bending moment caused by a couple (see Sample 
Prob. 5.6). 

Draw the shear and bending~moment diagrams for the simply 
supported beam shown in Fig. 5.13 and determine the maxi
mum value of the bending moment. 

From the free"body diagram of the entire beam, we de
tennine the magnitude of the reactions at the supports. 

Next, we draw the shear diagram. Close to the end A of the 
beam, the shear is eqtial to RA, that is, to ~wL, as we can check 
by considering as a free body a very small portion of the beam. 

5.3. Relations among Load, Shear, 323 
and Bending Moment 

1----L---.....j 

At~,ll!lt!J*! }B 
R;~- 2 wL R8- 2 wL 

Fig. 5.13 



Using Eq. (5.6), we then detennine the shear Vat any distance 
x from A; we write 

v~ VA=- fwd.x = -wx 
0 

V = VA - wx = 4wL wx = w(~L- x) 
1 v 
pvL 

The shear curve is thus an oblique straight line which crosses 
the x axis at x = L/2 (Fig. 5.14a ). Considering, now, the bend
ing moment, we first observe thatMA = 0. The valueM of the 
bending moment at any distance x from A may then be ob
tained from Eq. (5.8); we have 

M- MA = fvdx 
0 

M = fw(jL- x)dx = jw(Lx- i') 
0 

The bending-moment curve is a parabola. The maximum value 
of the bending moment occurs when x = L/2, since V (and 
thus dM/dx) is zero for that value of x. Substituting x = L/2 
in the last equation, we obtain Mm~x wL2/8 (Fig. 5.14b). 

Fig. 5.14 
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In most engineering applications, one needs to know the value of 
the bending moment only at a few specific points. Once the shear dia
gram has been drawn, and after M has been determined at one of the 
ends of the beam, the value of the bending moment can then be ob
tained at any given point by computing the area under the shear curve 
and using Eq. (5.8'). For instance, since MA = 0 for the beam of Ex
ample 5.03, the maximum value of the bending moment for that beam 
can be obtained simply by measuring the area of the shaded triangle in 
the shear diagram of Fig. 5.14a. We have 

I LwL wL2 

Mm~ = 222 = -8-

We note that, in this example, the load curve is a horizontal straight 
line, the shear curve an oblique straight line, and the bending-moment 
curve a parabola. If the load curve had been an obliqUe straight line 
(first degree), the shear curve would have been a parabola (second de
gree) and the bending-moment curve a cubic (third degree). The shear 
and bending-moment curves will always be, respectively, one and two 
degrees higher than 'the load curve. With this in mind, we should be 
able to sketch the shear and bending-moment diagrams without actu
ally determining the functions V(x) and M(x), once a few values of the 
shear and bending moment have been computed. The sketches obtained 
will be more accurate if we make use of the fact that, at any point where 
the curves are continuous, the slope of the shear curve is equal to -w 
and the slope of the bending-moment curve is equal to V. 
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SAMPLE PROBLEM 5.3 

Draw the shear and bending-moment diagrams for the beam and loading shown. 

SOLUTION 

Reactions. Considering the entire beam as a free body, we write 

+j:l:M, ~ 0: 
D(7.2 m) - (90 kN)(L8 m) - (54 kN)(4.2 m) - (52.8 kN)(8.4 m) ~ 0 

D ~ 115.6 kN D ~ !15.6 kN i 
+i 2-F,. ~ 0: A,. -90 kN - 54 kN + ll5.6 kN - 52.8 kN ~ 0 

A, ~ + 81.2 kN A, ~ 081.2 kN i 
...!,. 'ZFx = 0: Ax = 0 Ax = 081.2 kN 

We also note that at both A and E the bending moment is zero; thus, two points 
(indicated by dots) are obtained on the bending-moment diagram. 

Shear Diagram. Since dV I dx = -w, we find that between concentrated 
loads and reactions the slope of the shear diagram is zero (i.e., the shear is con
stant). The shear at a'ny point is determined by dividing the beam into two parts 
and considering either part as a free body. For example, using the portion of 
beam to the left of section 1, we obtain the shear between B and C: 

+i 2:F,, ~ 0: +8L2kN-90kN- v~o v ~ -8.8 kN 

We also find that the shear is +52.8 kN just to the right of D and zero at end E. 
Since the slope dV/dx = -w is constant between D and E, the shear diagram 
between these two points is a straight line. 

Bending-Moment Diagram. We recall that the area under the shear 
curve between two points is equal to the change in bending moment between 
the same two points. For convenience, the area of each portion of the shear di
agram is computed and is indicated in parentheses on the diagram. Since the 
bending moment MA at the left end is known to be zero, we write 

M8 - MA = +146.2 M8 = +146.2 kN · m 

Me- M8 = -21.1 Me= +125.1 kN · m 

M0 - Me= -188.4 M0 = -63.3 kN · m 

Me- MD = +63.3 Me= 0 

Since Me is known to be zero, a check of the computations is obtained. 
Between the concentrated loads and reactions the shear is constant; thus, 

the slope dM/dx is constant and the bending-moment diagram is drawn by con~ 
necting the known points with straight lines. Between D and E where the shear 
diagram is an oblique straight line, the bending-moment diagram is a parabola. 

From the V and M diagrams we note that VmM = 81.2 kN and Mmax = 
146.2 kN · m. 
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SAMPlE PROBlEM 5.4 
The W360 X 79 rolled~steel beam AC is simply supported and carries the uni
formly distributed load shown. Draw the shear and bending-moment diagrams 
for the beam and determine the location and magnitude of the maximum nor
mal stress due to bending. 

SOLUTION 

Reactions. Considering the entire beam as a free body, we find 

Rc~40kNt 

Shear Diagram. The shear just to the right of A is VA = + 80 kN. Since 
the change in shear between two points is equal to minus the area under the 
load curve between the same two points, we obtain V 8 by writing 

V8 - v, ~ -(20 kN/m)(6 m) ~ -120 kN 
V8 ~ -120 + V, ~ -120 + 80 ~ -40kN 

The slope dV/dx. -w being constant between A and B, the shear diagram 
between these two points is represented by a straight line. Between B and C, 
the area under the load curve is zero; therefore, 

Vc = V8 = -40kN 

and the shear is constant between B and C . 

Bending-Moment Diagram. We note that the bending moment at each 
end of the beam is zero. In order to detennine the maximum bending moment, 
we locate the section D of the beam where V -= 0. We write 

V0 - VA= -wx 
0- 80 kN ~ -(20 kN/m)x 

and, solving for x: x = 4m -<>til 

The maximum bending moment occurs at point D, where we have 
dM/dx = V = 0. The areas of the various portions of the shear diagram are 
computed and are given (in parentheses) on the diagraffi. Since the area of the 
shear diagram between two points is equal to the change in bending moment 
between the same two points, we write 

MD-MA= +160kN·m 

M8 - MD=- 40kN · m 
Mc-Ms= -120kN·m 

M0 ~ +160kN · m 

M8 = +120kN · m 
Me= 0 

The bending-moment diagram consists of an arc of parabola followed by a seg
ment of straight line; the .slope of the parabola at A is equal to the value of V 
at that point. 

Maximum Normal Stress. It occurs at D, where !MI is largest. From 
Appendix C we find that for a W360 X 79 rolled-steel shape, S = 1280 mm3 

about a horizontal axis. Substituting this Value and IMI = 
!MD] = 160 X 103 N ·minto Eq. (5.3), we write 

<r m ~ l~ol ~~~OX X1 ~~~6 ·m~ ~ 125.0 X !06 Pa 

Maximum normal stress in the beam = 125.0 MPa -<ICI 
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SAMPLE PROBLEM 5.5 
Sketch the shear and bending-moment diagrams for the cantilever beam shown. 

SOLUTION 

Shear Diagram. At the free end of the beam, we find VA = 0. Between 
A and B, the area under the load curve is !w0a; we find V8 by writing 

BetweenB and C, the beam is not loaded; thus Vc = V8 .AtA, we have w = w0 
x and, according to Eq. (5.5), the slope of the shear curve is dV/dx = -w0 , while 

at B the slope is dV/dx = 0. Between A and B, the loading decreases linearly, 
and the shear diagram is parabolic. Between B and C, w = 0, and the shear 
diagram is a horizontal line. 

-a) 

Bending-Moment Diagram. The bending moment MA at the free end 
of the beam is zero. We compute the area under the shear curve and write 

M 8 - MA = -~ w0a2 
M 8 = -t w0a2 

Me- M8 = -~w0a(L a) 

Me= -~w0a(3L- a) 

The sketch of the bending-moment diagram is completed by recalling that 
dM/dx = V. We find that between A and B the diagram is represented by a 
cubic curve with zero slope at A, and between 8 and C by a straight line. 

SAMPLE PROBlEM 5.6 
The simple beam AC is loaded by a couple of moment T applied at point B. 
Draw the shear and bending-moment diagrams of the beam. 

SOLUTION 

The entire beam is taken as a free body, and we obtain 

T 
Rc ~ -t 

L 

Ml i _..----1rt 
""""'---~~~. . ... ~· ' 

The shear at any section is constant and equal to TIL. Since a couple is ap
plied at B, the bending-moment diagram is discontinuous at B; it is represented 
by two oblique straight lines and decreases suddenly at B by an amount equal 
toT. 

-T(l- f:} 
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3.5 kN/m 

Fig. P5.44 
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5.34 Using the method of Sec. 5.3, solve Prob. 5.la. 

5.35 Using the method of Sec. 5.3, solve Prob. 5.2a. 

5.36 Using the method of Sec. 5.3, solve Prob. 5.3a. 

5.37 Using the method of Sec. 5.3, solve Prob. 5.4a. 

5.38 Using the method of Sec. 5.3, solve Pr0b. 5.5a. 

5.39 Using the method of Sec. 5.3, solve Prob. 5.6a. 

5.40 Using the method of Sec. 5.3, solve Prob. 5.?a. 

5.41 Using the method of Sec. 5.3, solve Prob. 5.8a. 

5.42 Using the method of Sec. 5.3, solve Prob. 5.9a. 

5.43 Using the method of Sec. 5.3, solve Prob. 5.10a. 

5.44 and 5.45 Draw the shear and bending-moment diagrams for the 
beam and loading shown, and determine the maximum absolute value (a) of 
the shear, (b) of the bending moment. 

120N 120N 
Fig. P5.45 

5.46 Using the method of Sec. 5.3, solve Prob. 5.15. 

5.47 Using the method of Sec. 5.3, solve Prob. 5.16. 

5.48 Using the method of Sec. 5.3, solve Prob. 5.17. 

5.49 Using the method of Sec. 5.3, solve Prob. 5.18. 



5.50 and 5.51 Determine (a) the equations of the shear and bending~ 
moment curves for the beam and loading shown, (b) the maximum absolute 
value of the beQding moment in the beain. 

Fig. P5.50 

5.52 Determine (a) the equations of the shear and bending~moment 
curves for the beam and loading shown, (b) the maximum absolute value of 
the bending moment in the beam. 

Fig. P5.52 

5.53 For the beam and loading shown, determine the equations of the 
shear and bending~moment curves and the maximum absolute value of the 
bending moment in the beam. knowing that (a) k = I, (b) k = 0.5. 

WI 
i w,l I 
' I; 

I ' -kw0 
/ 

L i 
Fig. P5.53 

Problems 329 

WI . 

~ A~x 

f---L----1 
Fig. P5.51 



330 Analysis and Design of Beams for Bending 

60kN 

c 
120 kN 

r·· I.LL4mj;:~8''"·' f..\!J 0. m 
0.4 m 

Fig. P5.54 

45 kN/m 

Fig. P5.56 

10 kN 

W250 X 49.1 

l80mm 

B 
~ 
200mm 

5.54 and 5.55 Draw the shear and bending-moment diagrams for the 
beam and loading shown and determine the maximum normal stress due to 
bending. 

16 kN/m 

Jf.LIJJlll '"~·".. I 
"·''L' L ''"!''' S150 X 18.6 

1.5m- lm___,_j 

Fig. P5.55 

5.56 and 5.57 Draw the shear and bending-moment diagrams for the 
beam and loading shown and determine the maximum normal stress due 
to bending. 

24 kN 
30 kNhn J 

:f!JJI.ll&. . ""i tB I 
'"T''' L "' .;, I W200 X 46.1 
~l.Bm- l.Bm-r:. 

0.6m 
Fig. P5.57 

5.58 and 5.59 Draw the shear and bending-moment diagrams for 
the beam and-loading shown and determine the maximum normal stress due 
to bending. 



5.60 and 5.61 Draw the shear and bending-moment diagrams for the 
beam and loading shown and determine the maximum normal stress due 
to bending. 

X 
W4l0 X 114 

Flg. P5.60 

*5.62 The beam AB supports two concentrated loads P and Q. The 
normal stress due to bending on the bottom edge of)he beam is +55 MPa at 
D and + 37.5 MPa at F. (a) Draw the shear and bending-moment diagrams for 
the beam. (b) Determine the maximum normal stress due to bending that occurs 
in the beam. 

~E~~s u Lj 
0.4 m 0.3 m 

Fig. P5.62 

*5.63 The beamAB supports a uniformly distributed load of7 kN/m and 
two concentrated loads P and Q. The normal stress due to bending on 
the bottom edge of the lower flange is + 100 MPa at D and + 73 MPa at E. 
(a) Draw the shear and bending-moment diagrams for the beam. (b) Determine 
the maximum normal stress due to bending that occurs in the beam. 

W200 X 46.1 

0.45 rn 0.45m 
h,.---2.4m ---i 

Fig. P5.63 

400mm 

Fig. P5.61 

2kN 
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332 Analysis and Design of Beams for Bending * 5.64 Beam AB supports a uniformly distributed load of 2 kN/m and 
two concentrated loads P and Q. It has been experimentally determined that 
the normal stress due to bending in the bottom edge of the beam is -56.9 MPa 
at A and -29.9 MPa at C. Draw the shear and bending-moment diagrams for 
the beam and determine the magnitudes of the loads P and Q. 

Fig. P5.64 

5.4. DESIGN OF PRISMATIC BEAMS FOR BENDING 

As indicated in Sec. 5.1, the design of a beam is usually controlled by 
the maximum absolute value IM!max of the bending moment that will 
occur in the beam. The largest normal stress am in the beam is found 
at the surface of the beam in the critical section where !Mim~x occurs 
and can be obtained by substituting IM!m., for IMI in Eq. (5.1) or Eq. 
(5.3).t We write 

IMim"C 
am=--~--

IMI"'" am= --s- (5.1', 5.3') 

A safe design requires that O" m :5 a all, where O" au is the allowable stress 
for the material used. Substituting O"au for am in (5.3') and solving for 
S yields the minimum allowable value of the section modulus for the 
beam being designed: 

S . = IMim., 
mm O"aiJ 

(5.9) 

The design of common types of beams, such as timber beams of 
rectangular cross section and rolled-steel beams of various cross
sectional shapes, will be considered in this section. A proper procedure 
should lead to the most economical design. This means that, among 
beams of the same type and the same material, and other things being 
equal, the beam with the smallest weight per unit length-and, thus, 
the smallest cross~sectional area-should be selected, since this beam 
will be the least expensive. 

tFor beams that are not symmetrical with respect to their neutral surface, the largest of the 
distances from the neutral surface to the surfaces of the beam should be used for c in Eq. 
(5.1) and in the computation of the section modulus S ""' 1/c. 



The design procedure will include the following stepst: 

1. First determine the value o(cr all for the material selected from 
a table o.f properties of materials or from design specifications. 
You can also compute this val1,1e by dividing the ultimate 
strength cr u of the material by an appropriate factor of safety 
(Sec. 1.13). Assuming for the time being that the value of ua11 
is the same in tension and in compression, proceed as follows. 

2. Draw the shear and bending-moment diagrams corresponding 
to the specified loading conditions, and determine the maxi
mum absolute value IMimnx of the bending moment in the beam. 

3. Determine from Eq. (.5.9) the minimum allowable value Smin of 
the section modulus of the beam. 

4. For a timber.beam, the depth h of the beam, its width b, or the 
ratio-h/b characterizing the shape of its cross section will prob
ably have been specified. The unknown dimensions may then 
be selected by recalling from Eq. (4.19) of Sec. 4.4 that band 
h must satisfy the relation ! bh2 = S ~ ·smin· 

5. For a rolled-steel beam, consult the appropriate table in Ap
pendix C. Of the available beam sections, consider only those 
with a section modulus S ~ Smin and select from this group the 
s~ction with the smallest weight per unit length. This is the 
most economical of the sections for which S ~ Smin· Note that 
this is not necessarily the section with the smallest yalue of S 
(see Example 5.04). In some cases, the selection of a section 
may be limited by other considerations, such as the allowable 
depth of the cross section, or the allowable deflection of the 
beam (cf. Chap. 9). 

The foregoing discussion was limited to materials for which ua11 is 
the same in tension and in compression. If O"an is different in tension 
and in compression, you should make sure to select the beam section 
in such a way that 0"111 ::.;: u nu for both tensile and compressive stresses. 
If the cross section is not symmetric about its neutral axis, the largest 
tensile and the largest compressive stresses will not necessarily occur 
in the section where IMI is maximum. One may occur where M is max~ 
imum and the other where M is minimum. Thus, step 2 should include 
the determination of both Mmax and Mmin• and step 3 should be modi
fied to take into account both tensile and compressive stresses. 

Finally, keep in mind that the design procedure described in this 
section takes into account only the normal stresses occurring on the sur
face of the beam. Short beams, especially those made of timber, may 
fail in shear under a transverse loading. The determination of shearing 
stresses in beams will be discussed in Chap. 6. Also, in the case of 
rolled-steel beams, normal stresses larger than those considered here 
may occur at the junction of the web with the flanges. This will be dis
cussed in Chap. 8. 

tWc assume that all beams considered in this chapter are adequately braced to prevent lat
eral buckling, and that bearing plates arc provided under concentrated loads applied to rolled
steel beams to prevent loc~,buckling (crippling) of the web. 
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Select a wide-flange beam to support the 60-k.N load as shown 
in Fig. 5.15. The allowable normal stress for the steel used is 
165 MPa. . 

4. Referring to the table of Properties of Rolled-Steel 
Shapes in Appendix C, we note that the shapes are 
arranged in groups of the same depth and that in each 
group they are listed in order of decreasing weight. 
We choose in each group the lightest beam having a 
section modulus S = 1/c at least as large as Smin and 
record the results in the following table. 60kN 

B 

Shape S, mm3 

W530 X 66 1340 
W460 X 52 942 
W410 X 60 1060 
W360 X 64 1030 
W310 X 74 1060 

1. The allowable normal stress is given: u ~n = 165 MPa. W250 X 80 984 

2. The shear is constant and equal to 60 k.N. The bend
ing moment is maximum at B. We have 

IMimo. ~ (60kN)(2.4m) ~ 144kN·m 

3. The minimum allowable section modulus is 

The most economical is the W 460 X 52 shape since it weighs 
only 52 kg/m even though it has a larger section modulus than 
two of the other shapes. We also note that the total weight of 
the beam will be (2.4 m) X (52 kg) ~ 124.8 kg ~ 1.22 kN. 
This weight is small compared to the 60-k.N load and can be 
neglected in our analysis. 
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144kN·m 
= 872.7 x 103 mm3 

165 MPa 

*Load and Resistance Factor Design. This alternative method of de
sign was briefly described in Sec. 1.13 and applied to members under 
axial loading. It can readily be applied to the design of beams in bend
ing. Replacing in Eq. (1.26) the loads Pu, PL, and Pu, respectively, by 
the bending moments M D• M L> and My, we write 

(5.10) 

The coefficients 'YD and 'YL are referred to as the load factors and the 
coefficient 4> as the resistance factor. The moments MD and ML are the 
bending moments due, respectively, to the dead and the live loads, while 
M u is equal to the product of the ultimate strength u u of the material 
and the section modulus S of the beam: M u = Su u· 

J 



14.4 kN 

A_,. 

v 

20kN 

20 
,_-,-_,kN 

(+24) 

c 

-17.2 kN 

SAMPLE PROBLEM 5.7 
A 3.6 m~long overhanging timber beam AC with an 2.4~m span AB 
is to be designed to support the distributed and concentrated loads 
shown.- Knowing that timber of 100-mm nominal width (90-mm ac~ 
tual width) with a 12-MPa allowable stress is to be used, determine 
the minimum required depth h of the beam. 

SOLUTION 

Reactions. Considering the entire beam as a free body, we write 

+i2:M, = O:B(2.4m)- (14.4kN)(I.2m)- (20kN)(3.6m) = 0 
B=37.2kN B=37.2kNt 

±.,.ZF_.. = 0: A_..= 0 

+t2:F, = 0: A, + 37.2 kN -14.4 kN- 20 kN = 0 
A,=-2.8kN A=2.8kNt 

Shear Diagram. The shear just to the right of A is VA = Av = -2.8 kN. 
Since the change in shear between A and B is equal to minus the area under 
the load curve between these two points, we obtain V 8 by writing 

V8 - V, = -(6 kN/m)(2.4 m) = -14.4 kN 
v, = v,- 14.4 kN = -2.8 kN -14.4 kN = -17.2 kN 

The reaction at B produces a sudden increase of 37.2 kN in V, resulting in a 
value of the shear equal to 20 kN to the right of B. Since no load is applied 
between B and C, the shear remains constant between these two points. 

Determination of IMim~~· We first observe that the bending moment is 
equal to zero at both ends of the beam: MA = Me= 0. Between A and B the 
bending moment decreases by an amount equal to the area under the shear 
curve, and between B and C it increases by a corresponding amount. Thus, the 
maximum absolute value of the bending moment is IMima~ = 24 kN · m. 

Minimum Allowable Section Modulus. Substituting into Eq. (5.9) the 
given value of 0" 011 and the value of IMimax that we have found, we write 

IMI 24kN·m 
S · = ~ = "---'-----'- = 2 x 106 mm3 

mm 0"3u 12 MPa 

Minimum Required Depth of Beam. Recalling the formula developed 
in part 4 of the design procedure described in Sec. 5.4 and substituting the val
ues of band Smin• we have 

M90 mm)h2 ;::: 2 X 106 mm3 h ;::: 365.2 mm 

The minimum required depth of the beam is h=366mm <>:i 
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.50kN 

A 

A.t 
Ay 

I 
v 

52kN 

(67.6) 
A 

-58kN 
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SAMPLE PROBLEM 5.8 

A 5-m-long, simply supported steel beam AD is to carry the distributed and con~ 
centrated loads shown. Knowing that the allowable normal stress for the grade 
of steel to be used is 160 MPa, select the wide-flange shape that should be used. 

SOLUTION 

Reactions. Considering the entire beam as a free body, we write 

+j:l:M, = 0: D(5 m) - (60 kN)(1.5 m) - (50 kN)(4 m) = 0 
D = 58.0kN D = 58.0kNt 

~ ~Fx = 0: Ax = 0 

+ t:l:F3 = 0: A, + 58.0 kN - 60 kN - 50 kN = 0 
A, = 52.0 kN A = 52.0 kN t 

Shear Diagram. The shear just to the right of A is VA = Ay = + 52.0 kN. 
Since the change in shear between A and B is equal to minus the area under 
the load curve between these two points, we have 

V8 = 52.0 kN- 60 kN = -8 kN 

The shear remains constant between Band C, where it drops to ~58 kN, and 
keeps this value between C and D. We locate the section E of the beam where 
V = 0 by writing 

Ve- VA= -wx 
0- 52.0 kN = -(20 kN/m)x 

Solving for x we find x = 2.60 m. 

Determination of IM!max• The bending moment is maximum at E, 
where V = 0. Since M is zero at the support A, its maximum value at E is 
equal to the area under the shear curve between A and E. We have, therefore; 
IMI., = M, = 67.6 kN · m. 

Minimum Allowable Section Modulus. Substituting into Eq. (5.9) the 
given value of u an and the value of [Mim~~ that we have found, we write 

!Mimax 67.6 kN · m 6 3 3 
S · = -- = = 422.5 X 10- m3 = 422.5 X 10 mm 

mm O'an 160 MPa 

Selection of Wide~ Flange Shape. From Appendix C we compile a list 
of shapes that have a section modulus larger than Sm;o and are also the light~ 
est shape in a given depth group. 

Shape 

W410 X 38.8 
W360 X 32.9 
W310 X 38.7 
W250 X 44.8 
W200 X 46.1 

We select the lightest shape available, namely 

637 
474 
549 
535 
448 

W360 X 32.9 <ll 



5.65 and 5.66 For the beam and loading shown, design the cross sec
tion of the beam, knowing that the grade of timber used has an allowable 
normal stress of 12 MPa. 

1.8 kN 3.6kN 

~ ~ 40mm 

~~F ~-Q~I ~c~r ~sillh 
O.Bm 0.8m 0.8m 

Fig. P5.65 

5.67 and 5.68 For the beam and loading shown, design the cross sec
tion of the beam, knowing that the grade of timber used has an allowable nonnal 
stress of 12 MPa. 

3 kN/m b 

1J 111! I! !!Ill D;·lr2b 
-~ L5m__J 

Fig. P5.67 

5.69 and 5.70 For the beam and loading shown, design the cross sec
tion of the beam, knowing that the grade of timber used has an allowable 
normal stress of 12 MPa. 

Fig. P5.69 

25kN/m\ 

t~ 
---2 .. '5m__:j 

Fig. P5.66 

20 kN 20 kN J :k:t t:j,: t .. b ~ 

It I IJJ ~~mm 
0.6m 0.6m 0.9 m 0.6m 0.6 m 

Fig. P5.68 

2 . .'5kN 

0.6m 

Fig. P5.70 

2 . .'5kN 

0.6m 
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250kN 

Fig. P5.71 

lOOkN 
lOOkN lOOkN 

B C D 
A t::;:·-; .'l'*' ••.. t . ,,.'"' : E 

'tJ~1 IJ_l8m_j 0.6m 0.6m 
0.6m 

Fig. P5.73 

80kN 

30kN/m 

B c!HIHHH 

Fig. P5.75 

SOkN 80kN 

B E 

'''tl[l8mw·; 
0.6m 0.6m · 0.6m0.6m 

Fig. P5.77 

5.71 and 5. 72 Knowing that the allowable stress for the steel USed is 165 
MPa, select the most economical wide~flange beam to support the loading shown. 

100 kN 

I 40 kN/m 

lllllllllllll tt'' ·"'~·~·· ·~ 
''1'::_27ml- 4.5m ~l 

Fig. P5.72 

5.73 and 5.74 Knowing that the allowable stress for the steel used is 
160 MPa, select the most economical wide~flange beam to support the load
ing shown. 

50 kN/m 

·[t~ll~t 
2..4m---

0.8m 0.8m 

Fig. P5.74 

5.75 and 5.76 Knowing that the allowable stress for the steel used is 
160 MPa, select the most economical S~Shape beam to support the loading shown. 

80kN 

5.77 and 5.78 Knowing that the allowable stress for the steel used is 
165 MPa, select the most economical S-shape beam to support the loading 
shown. 

200 kN 200 kN 200 kN 

·trl:::ht 
0.6m 0.6m 0.6m 

Fig. P5.78 

J 



5.79 Two metric rolled-steel channels are to be welded back to back and 
used to support the loading shown. Knowing that the allowable normal stress 
for the steel used is 200 MPa, determine the most economical channels that 
can be used. 

80kN 

Fig. P5.79 

5.80 Two metric rolled-steel channels are to be welded along their edges 
and used to support the loading shown. Knowing that the allowable normal 
stress for the steel used is 150 MPa, determine the most economical channels 
that ·can be used. 

5.81 Two Ll02 X 76 rolled-steel angles are bolted together and used to 
support the loading shown. Knowing that the allowable normal stress for the 
steel used is 165 MPa, determine the minimum angle thickness that can be 
used. 

BkN 

150mm 
1~1 

lifT 
lOOmm 

Fig. P5.81 

5.82 A steel pipe of 10-mm diameter is to support the loading shown. 
Knowing that the stock of pipes available has thicknesses varying from 6 mm 
to 24 mm in 3-mm increments, and that the allowable normal stress for the steel 
used is 165 MPa, determine the minimum wall thickness t that can be used. 

5.83 Assuming the upward reaction of the ground to be unifonnly dis
tributed and knowing that the allowable normal stress for the steel used is 165 
MPa, Select the most economical wide-flange beam to support the loading shown. 

800kN 800kN 

J t 
Fig. P5.83 

5.84 Assuming the upward reaction of the ground to be uniformly distrib
uted and knowing that the allowable nonnal stress for the steel used is 170 MPa, 
select the most economical wide-flange beam to support the loading shown. 
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;ci:~o 
t:- 4@ 0.675 m = 2.7 m _:j 

Fig. P5.80 

Fig. P5.82 

Total load= 2 MN 

t 
l 

0 
~ 
lOOmm 

,1,p&tfJ~~E92, 
0.75 m 0.75 m 

Fig. P5.84 



340 Analysis and Design of Beams for Bending 5.85 Determine the allowable value of P for the loading shown, know
ing that the allowable normal stress is +55 MPa in tension and -125 MPa 
in compression. 

P 25nun 

-lr 
~ -125mm 

,clbJ 

17 

.. 5~ . -~25tmm 

mm 

Fig. P5.85 

5.86 Solve Prob. 5.84, assuming that the T-shaped beam is inverted. 

5.87 and 5.88 Determine the largest permissible value of P for the beam 
and loading shown, knowing that the allowable normal stress is + 80 MPa in 
tension and -140 MPa in compression. 

p p 96mml 1·-· 1 r r ~~L 
A!"l?.;• s::i!!fk Jil.·'.'.'.DD.. I'J-J 48mm 

r_ c~::.&_ dh_l2mm ·r· .I k-If 

C ~-l2mm 
A '-l\g,:;;;· ~-~~ D [§J~ 48mm 

.. ?,: I" 'P.. I 1\,_ 
- 0.4 m~-- 96 mm 
0.2 m 0.2 m 

Fig. P5.87 

Fig. P5.89 

1..--1--o.sm-1---J l2mm 
0.2Sm 0.15m 

Fig. P5.88 

5.89 Beam ABC is bolted to beams DB£ and FCG. Knowing that the 
allowable normal stress is 165 MPa, select the most economical wide~flange 
shape that can be used (a) for beam ABC, (b) for beam DB£, (c) for beam 
FCG. 

6.5kN 



5.90 Beams AB, BC, and CD have the cross section shown and are pin~ 
connected at B and C. Knowing that the allowable normal stress is + ll 0 MPa 
in tension and -150 MPa in compressiOn, determine (a) the largest permissible 
value of w if beam BC is not to be overstressed, (b) the corresponding maximum 
distance a for which the cantilever beams AB and CD and not overstressed. 

12.5 mm 

r-200mm-Jj 1 
~ l)nm 

-II-
12.5 mm 

Fig. P5.90 Fig. P5.91 

5.91 Beams AB, BC, and CD have the cross section shown and are pin
connected at B and C. Knowing that the allowable normal stress is + 110 MPa 
in tension and -150 MPa in compression, determine (a) the largest permissible 
value of P if beam BC is not to be overstressed, (b) the corresponding maxi
mum distance a for which the cantilever beams AB and CD are not overstressed. 

5.92 A uniformly distributed load of 84 kN/m is to be supported over 
the 5-m span shown. Knowing that the allowable normal stress for the steel 
used is 165 MPa, determine (a) the smallest allowable length l of beam CD if 
the W310 X 74 beam AB is not to be overstressed, (b) the most economical 
W shape that can be used for beam CD. Neglect the weight of both beams. 

S-1 kN/m 

Fig. P5.92 

5.93 A 240-kN load is to be supported at the center of the 5-m span 
shown. Knowing that the allowable normal stress for the steel used is 165 MPa, 
determine (a) the smallest allowable length l of beam CD if the W310 X 74 
beam AB is not to be overstressed, (b) the most economical W shape that can 
be used for beam CD. Neglect the weight of both beams. 

240kN 

Fig. P5.93 
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342 Analysis and Design of Beams for Bending *5.94 A bridge of length L = 15 m is to be built on a secondary road 
whose access to trucks is limited to two-axle vehicles of medium weight. It 
will consist of a concrete slab and of simply supported steel beams with an 
ultimate strength o-u 420 MPa. The combined weight of the slab and beams 
can be approximated by a uniformly distributed load w = 11 kN/m on each 
beam. For the purpose of the design, it is assumed that a truck with axles 
located at a distance a = 4 m from each other will be driven across the 
bridge and that the resulting concentrated loads P1 and P2 exerted on each 
beam could be as large as 95 kN and 25 kN, respectively. Determine the 
most economical wide-flange shape for the beams, using LRFD with the 
load factors 'Yo = 1.25, 'YL = 1.75 and the resistance factor¢ = 0.9. [Hint: 
It can be shown that the maximum value of IM L! occurs under the larger load 
when that load is located to the left of the center of the beam at a distance 
equal to aPiP1 + P2).] 

Fig. P5.94 

*5.95 Assuming that the front and rear axle loads remain in the same 
ratio as for the truck of Prob. 5.94, determine how much heavier a truck could 
safely cross the bridge designed in that problem. 

*5.96 A roof structure consists of plywood and roofing material sup
ported by several timber beams of length L = 16 m. The dead load carried by 
each beam, including the estimated weight of the beam, can be represented by 
a uniformly distributed load w0 = 350 N/m. The live load consists of a snow 
load, represented by a uniformly distributed load wL = ·600 N/m, and a 6~kN 
concentrated load P applied at the midpoint C of each beam. Knowing that the 
ultimate strength for the timber used is o-u = 50 MP<1 and that the width of the 
beam is b = 75 mm, determine the minimum allowable depth h of the beams, 
using LRFD with the load factors 'Yo= 1.2, 'YL = 1.6 and the resistance factor 

"'= 0.9. 

p 

Fig. P5.96 

*5.97 Solve Prob. 5.96, assuming that the 6-kN concentrated load P 
applied to each beam is replaced by 3-kN concentrated loads P1 and P2 applied 
at a distance of 4 m from each end of the beams. 
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'5.5. USING SINGULARITY FUNCTIONS TO DETERMINE 
SHEAR AND BENDING MOMENT IN A BEAM 

Reviewing the work done in the preceding sections, we note that the 
shear and bending moment could only rarely be described by single an
alytical functions. In the case of the cantilever beam of Example 5.02 
(Fig. 5.10), which supported a uniformly distributed load w, the shear 
and bending moment could be represented by single analytical func
tions, namely, V = -wx and M = -!wx2

; this was due to the fact that 
no discontinuity existed in the loading of the beam. On the other hand, 
in the case of the simply supported beam of Example 5.01, which was 
loaded only at its midpoint C, the load P applied at C represented a sin
gularity in the beam loading. This singularity resulted in discontinuities 
in the shear and bending moment and required the use of different an
alytical functions to represent V and Min the portions of beam located, 
respectively, to the left and to the right of point C. In Sample Prob. 5.2, 
the beam had to be divided into three portions, in each of which dif
ferent functions were used to represent the shear and the bending mo
ment. This situation led us to rely on the graphical representation of 
the functions V and M provided by the shear and bending
moment diagrams and, later in Sec. 5.3, on a graphical method of in
tegration to determine V and M from the distributed load w. 

The purpose of this section is to show how the use of singularity 
functions makes it possible to represent the shear V and the bending 
moment M by single mathematical expressions. 

Consider the simply supported beam AB, of length 2a, which car
ries a uniformly distributed load w0 extending from its midpoint C to 
its right-hand support B (Fig. 5.16). We first draw the free-body dia
gram of the entire beam (Fig. 5.17a); replacing the distributed load by 
an equivalent concentrated load and, summing moments about B, we 
write 

Next we cut the beam at a point D between A and C. From the free· 
body diagram of AD (Fig. 5.17b) we conclude that, over the interval 
0 < x < a, the shear and bending moment are expressed, respectively, 
by the functions 

V1(x) = lw0a and M1(x) = lwoax 

Cutting, now, the beam at a pointE between C and B, we draw the free
body diagram of portion AE (Fig. 5.17 c). Replacing the distributed load 
by an equivalent concentrated load, we write 

+tl:F, = 0: 

+~l:ME = 0: 

lwoa - w0(x - a) - V2 = 0 

-lwoax + Wo(x- a)[l(x- a)] + M, = 0 

and conclude that, over the interval a < x < 2a, the shear and bend
ing moment are expressed, respectively, by the functions 

V2(x) = lw0a- w0(x- a) and M2(x) = lw0 ax -lwo(x- a)' 

5.5. Using Singularity Functions 343 

Fig. 5.16 

R.,i-----2a 
(a) t R, 

(b) 

IV(I(X- a) H !<x-a) 

(a) 

Fig. 5.17 



344 Analysis and Design of Beams for Bending As we pointed out earlier in this section, the fact that the shear and 
bending moment are represented by different functions of x, depending 
upon whether x is smaller or larger than a, is due to the discontinuity 
in the loading of the beam. However, the functions V1(x) and V2(x) can 
be represented by the single expression 

V(x) = lw0a- w0(x- a) (5.11) 

if we specify that the second tenn should be included in our computa~ 
tions when x ;=:::: a and ignored when x < a. In other words, the brack~ 
ets ( ) should be replaced by ordinary parentheses ( ) when x ;=:::: a 
and by zero when x < a. With the same convention, the bending 
moment can be represented at any point of the beam by the single 
expression 

(5.12) 

From the convention we have adopted, it follows that brackets ( ) 
can be differentiated or integrated as ordinary parentheses. Instead of 
calculating the bending moment from free-body diagrams, we could 
have used the method indicated in Sec. 5.3 and integrated the expres
sion obtained for V(x): 

M(x) - M(O) = r V(x) dx = 
0 

r jw,adx- r w,(x- a)dx 
0 0 

After integration, and observing that M(O) = 0, we obtain as before 

M(x) = 1w0ax- !wo(x- a)l 

Furthermore, using the same convention again, we note that the dis~ 
tributed load at any point of the beam can be expressed as 

w(x) = w0(x - a)0 (5.13) 

Indeed, the brackets should be replaced by zero for x < a and by paren
theses for x;:: a; we thus check that w(x) = 0 for x < a and, defining 
the zero power of any number as unity, that (x - a)0 = (x a)0 = 1 
and w(x) = w0 for x;:: a. From Sec. 5.3 we recall that the shear could 
have been obtained by integrating the function -w(x). Observing that 
V = 1w0 a for x = 0, we write 

V(x) - V(O) ~ - r w(x) dx ~ - r w0(x - a)0 dx 
0 0 

V(x) -J w0a = -w0(x - a)' 

Solving for V(x) and dropping the exponent 1, we obtain again 

V(x) = J w0a - w0(x - a) 



The expressions (x a)0
, (x - a), (x - a)2 are called singularity 

functions. By definition, we have, f<,>r n =:::: 0, 

\x a"'= · {(x- a.)" 
I. 0 . 

whenx =:::a 
whenx <a (5.14) 

We also note that whenever the quantity between brackets is positive 
or zex:o, the brackets should be replaced by ordinary parentheses, and 
whenever that quantity is negative, the bracket itself is equal to zero. 

(a)n = 0 (b) n = 1 (c)n = 2 

Fig. 5.18 

The three singularity functions corresponding respe9tively to 
n = 0, n = 1, and n = 2 have been plotted in Fig. 5.18. We note that 
the function (x - a)O is discontinuous at x = a and is in the shape of 
a "step." For that reason it is referred to as the step function. Accord
ing to (5.14), and with the zero power of any number defined as unity, 
we havet 

and 

(x- a)0 = g whenx?: a 
whenx <a 

It follows from the definition of singularity functions that 

(5.15) 

J (x - a)" dx = -
1
-(x - a)"+ 1 for n " 0 (5.16) 

n + 1 

_<i_(x - a/' = n(x - ay•- 1 

dx 
forn =:::: 1 (5.17) 

Most of the beam loadings encountered in engineering practice can 
be broken down into the basic loadings shown in Fig. 5.19. Whenever 
applicable, the corresponding functions w(x), V(x), and M(x) have been 
expressed in terms of singularity functions and plotted against a color 
background. A heavier color background was used to indicate for each 
loading the expression that is most easily derived or remembered and 
from which the other functions can be obtained by integration. 

tSince (x - a)0 is discontinuous at x - a, it can be argued that this function should be 
left undefined for x = a or that it should be assigned both of the values 0 and 1 for x = a. 
However, defining (x - a'0 as equal to 1 when x = a, as stated in (5.15), has the advantage 
of being unambiguous and, thus, readily applicable to computer programming (cf. page 348). 
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Loading Shear Bending Moment 

v 
r'-:-1 
0-~'""' .,,,ri#[,~· \---X 0 ' 

Mo 

(a) 

ot:~[ 
M 

;,(;jjiffl,; \---X 0 
a 

X 

(b) 
M(x)=-P<x-a>l 

v M 

0 
a 

' 0 X 

V(x)=-w0<x-a>1 M(x)""- iwo<x -a>2 

v M 

0 
a 

' 0 X 

V(x) =- t<x- a >2 ;VI (x) = - 6_ < x -a >3 

v M 

0 
a 

0 

'V(x) =- M() - k < _ >n+2 
X --{n+l){n+2) X a 

Fig. 5.19 Basic loadings and corresponding shears and bending moments expressed 
in terms of singularity functions. · 

After a given beam loading has been broken down into the basic 
loadings of Fig. 5.19, the functions V(x) and M(x) representing the shear 
and bending moment at any point of the beam can be obtained by adding 
the corresponding functions associated with each of the basic loadings 
and reactions. Since all the distributed loadings shown in Fig. 5.19 are 



open~ended to the right, a distributed loading that does not extend to 
the right end of the beam or that i:? discontinuous should be replaced 
as shown in Fig. 5.20 by an equivalent combination of open~ended load~ 
ings. (See also Example 5.05 and Sample Prob. 5.9.) 

As you will see in Sec. 9.6, the use of singularity functions also 
greatly simplifies the determination of beam deflections. It was in con
nection with that problem that the approach used in this section was 
first suggested in 1862 by the German mathematician A. Clebsch (1833-
1872). However, the British mathematician and engineer W. H. Macaulay 
(1853-1936) is usually given credit for introducing the singularity func
tions in the form used here, and the brackets ( ) are generally referred to 
as Macaulay's brackets.t 

tW. H. Macaulay, "Note on the Deflection of Beams," Messenger of Mathematics, vo!. 48, 
pp. 129-130, 1919. 

For the beam and loading shown (Fig. 5.2la) and using sin
gularity functions, express the shear and bending moment as 
functions of the distance x from the support at A. 

We first determine the reaction at A by drawing the free
body diagram of the beam (Fig. 5.2lb) and wliting 

±~LFx- = 0: A,,= 0 

-A1(3.6 m) + (1.2 kN)(3 m) 
+(1.8 kN)(2.4 m) + 1.44 kN · m ~ 0 

A,~ 2.60 kN 

Next, we replace the given distributed loading by two 
equivalent open-ended loadings (Fig. 5.2lc) and express the 
distributed load w(x) as the sum of the corresponding step 
functions: 

w(x) ~ +w0(x- 0.6)0 - w0(x- 1.8)0 

The function V(x) is obtained by integrating w(x), re
versing the + and - signs, and adding to the result the con
stants Ay and -P(x- 0.6)0 representing the respective con
tributions to the shear of the reaction at A and of the 
concentrated load. (No other constant of integration is re
quired.) Since the concentrated couple does not directly affect 
the shear, it should be ignored in this computation. We write 

(b) 

(o) 
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T-b~-----~ 
w(;\') = wo<x- a >0 - w0 <x- b >0 

Fig. 5.20 

P=LQkN 
tvo"" L5 kN/m 

!\'10 = 1.44 kN · 111 

C · D 

"""''" tl J.-1 
. 

. !.Zm _:r••• 
0.6m 0.8m l.Om 

P=l.2kN 
ijl./3 kN 

1----3.6 m --4 

V(x) ~ -w0(x - 0.6)1 + w0(x - 1.8)1 + A1 - P(x - 0.6)0 
Ay = 2.6 kN 

Fig. 5.21 

- t{i(J = - 1.-'5 kN/m 



348 Analysis and Design of Beams for Bending 

For the beam and loading of Example 5.05, detennine the nu~ 
merical values of the shear and bending moment at the mid~ 
point D. 

Making x = 1.8 m in the expressions found for V(x) and 
M(x) in Example 5.05, we obtain 

V(1.8) ~ -1.5(1.2)' + 1.5(0)' + 2.6- 1.2(1.2)0 

M(1.8) ~ -0.75(1.2)2 + 0.75(0)2 

+ 2.6(1.8) 1.2(1.2)' - 1.44(-0.8)0 

Recalling that whenever a quantity between brackets is 
positive or zero, the brackets should be replaced by ordinary 
parentheses, and whenever the quantity is negative, the bracket 
itself is equal to zero, we write 

In a similar way, the function M(x) is obtained by integrating 
V(x) and adding to the result the constant - M0(x - 2.6)0 rep~ 
resenting the contribution of the concentrated couple to the 
bending moment. We have 

M(x) ~ -jw0(x- 0.6)2 + jw,(x- !.8)2 

+ A,x - P(x - 0.6)' - M0(x - 2.6)0 

Substituting the numerical values of the reaction and loads 
into the expressions obtained for V(x) and M(x) and being care~ 
ful not to compute any product or expand any square involv~ 
ing a bracket, we obtain the following expressions for the shear 
and bending moment at any point of the beam: 

V(x) = -1.5(x - 0.6)' + 1.5(x - 1.8)' 
+2.6 - 1.2(x - 0.6)0 

M(x) = -0.75 (x - 0.6)' + 0.75(x - 1.8)2 

and 

+2.6x - 1.2(x- 0.6)' - 1.44(x- 2.6)0 

V(1.8) ~ -1.5(1.2)' + 1.5(0)' + 2.6 - 1.2(1.2)0 

~ -1.5(1.2) + 1.5(0) + 2.6 - 1.2(1) 
~ -!.8+0+2.6-1.2 

V(I.8) ~ -0.4 kN 

M(l.8) ~ -0.75(!.2)' + 0.75(0)2 

+ 2.6(!.8)- !.2(!.2)' - !.44(0) 

= -1.08 + 0 + 4.68 - 1.44 - 0 

M(I.8) ~ +2.16kN · m 

Application to Computer Programming. Singularity functions are 
particularly well suited to the use of computers. First we note that the 
step function (x - a)0, which will be represented by the symbol STP, 
can be defined by an IF !THEN/ELSE statement as being equal to I for 
X ~ A and to 0 otherwise. Any other singularity function (x - a)", with 
n 2::':: 1, can then be expressed as the product of the ordinary algebraic 
function (x- a)" and the step function (x - a)0. 

When k different singularity functions are involved, such as 
(x - a1)

11
, where i = 1, 2, ... , k, then the corresponding step functions 

STP(I), where I = I, 2, ... , K, can be defined by a loop containing a 
single IF/THEN/ ELSE statement. 
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SAMPLE PROBLEM 5.9 

For the beam and loading shown, determine (a) the equations defining the shear 
and bending moment at any point, (b) the shear and bending moment at points 
C, D, and E. 

SOLUTION 

, · ~" Reactions. The total load is -2' w 0 L; because of symmetry, each reaction ~(),.... ..... - -~ :..wu 
A,_~-·~ 

8 
=A . '"c ... _ _ " 

8 
is equal to half that value, namely, !w0L. 

I~ I I ( 2wu D
1
istributed Loadd. The given distributed loading is replaced by two 

L/2 L/2 4w0 equiva ent open-ende loadings as shown. Using a singularity function to ex-
Slope "" - L press the second loading, we write 

( 
') 2w0 4w0 w(x) ~ k,x + k2 x - 2L ~ L x - L(x - jL) (I) 

(2) <l 

We obtain M(x) by. integrating (2); since there is no concentrated couple, no 
constant of integration is needed: 

tv0 _3 2w0 ( , )' , M(x) = --;c +- x- -L" + -w Lr. 
3L 3L 2 -1u 

(3) <l 

b. Shear and Bending Moment at C, D, and E 

At Point C: Making x = ~Lin Eqs. (2) and (3) and recalling that when
ever a quantity between brackets is positive or zero, the brackets may be re

A 1---"c----"''---T----T- x placed by parentheses, we have 
E B 

D ' ' ' ' - & w0L 

- iwoL 

M Aw0L2 

Mz WoLZ 

\ 

"----,:--_je---'o----'c-' 
A D E B 

w0 2w0 Vc ~ -L(jL)' + L(o)' + lwoL Vc= 0 --<1 

Me~ - ;~ (jL)3 + 
2~0 (o)' + !w0L(jL) 

At Point D: Making x = kL in Eqs. (2) and (3) and recalling that a 
bracket containing a negative quantity is equal to zero, we write 

w0 (' )' 2w0 ( 1 )' , 3 V0 =-J:4L +£-4L +4w0L V0 =16w0L<(l 

Mo ~ - Wo ()L)' + 2wo(-,1L)' + )w,L()L) Mo ~ 11912 w,L' <l 
3L 3L 

At PointE: Making x = ~Lin Eqs. (2) and (3), we have 

w0 2w0 
VE = -L(~L? + L(!L)Z + !w0L 

w0 2w0 Me~ -
3
L (jL)3 + y;()L)3 + )w0L(lL) 
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SAMPlE PROBlEM 5. i 0 
The rigid bar DEF is welded at point D to the steel beam AB. For the loading 
shown, determine (a) the equations defining the shear and bending moment at 
any point of the beam, (b) the location and magnitude of the largest bending 
moment. 

SOLUTION 

Reactions. We consider the beam and bar as a free body and observe 
that the total load is 4300 N. Because of symmetry, each reaction is equal to 
2150 N. 

Modified Loading Diagram. We replace the 700-N load applied at F 
by an equivalent force-couple system at D. We thus obtain a loading diagram 
consisting of a concentrated couple, three concentrated loads (including the 
two reactions), and a uniformly distributed load 

w(x) = 750 kN/m (1) 

a. Equations for Shear and Bending Moment. We obtain V(x) by in
tegrating (I), changing the sign, and adding constants repre.senting the respec
tive contributions of RA and P to the shear. Since P affects V(x) only for val
ues of x larger than 3.3 m, we use a step function to express its contribution. 

V(x) = -750 + 2150 - 700~< - 3.3)" (2) <l 

We obtain M(x) by integrating (2) and using a step function to represent the 
contribution of the concentrated couple MD: 

M(x) = -375x2 + 2150x- 700~<- 3.3)'- 630~'- 3.3)" (3) <l 

b. Largest Bending Moment. Since M is maximum or minimum when 
V = 0, we set V = 0 in (2) and solve that equation for x to find the location 
of the largest bending moment. Considering first values of x l.ess than 3.3 m 
and noting that for such values the bracket is equal to zero, we write 

-750x + 2150 = 0 x = 2.86 m 

Considering now values of x larger than 3.3 m, for which the bracket is equal 
to 1, we have 

-750x + 2150 - 700 = 0 x = 1.93 m 

Since this value is not larger than 3.3 m, it must be rejected. Thus, the value 
of x corresponding to the largest bending moment is 

X,= 2.86 m-<!! 

Substituting this value for x into Eq. (3), we obtain 

MmM = -375(2.86)' + 2150(2.86)- 700(-0.44)'- 630(-0.44)0 

and, recalling that brackets containing a negative quantity are equal to zero, 

Mm~ = - 375(2.86)2 + 2150(2.86) M,.,as = 3081 N · m .<J!.!I 

The bending-moment diagram has been plotted. Note the discontinuity at point 
D due to the concentrated couple applied at that point. The values of M just to 
the left and just to the right of D were obtained by making x = 3.3 in Eq. (3) 
and replacing the step function (x - 3.3)0 by 0 and 1, respectively. 



5.98 through 5.100 (a) Using singularity functions, write the equa" 
tions defining the shear and bending moment for the beam and loading shown. 
(b) Use the equation obtained forM to determine the bending moment at point 
E and check your answer by drawing the free~body diagram of the portion of 
the beam to the right of E. 

p 

Fig. P5.98 Fig. P5.99 

5.101 through 5.103 (a) Using singularity functions, write the equa~ 
tions defining the shear and bending moment for the beam and loading shown. 
(b) Use the equation obtained forM to determine the bending moment at point 
C and check your answer by drawing the free~body diagram of the entire beam. 

·~;ii'~.t~.-, 
c !:: 

1-
Fig. P5.101 Fig. P5.102 

5.104 (a) Using singularity functions, write the equations for the she~r 
and bending moment for beam ABC under the loading shown. (b) Use the 
equation obtained for M to determine the bending moment just to the right of 
point B. 

p 

Fig. P5.104 

5.105 (a) Using singularity functions, write the equations for the shear and 
bending moment for ..beam ABC under the loading shown. (b) Use the equation 
obtained forM to determine the bending moment just to the right of point D. 

Fig. P5.100 

c 

Fig. P5.103 

p 

A ;·~': ·#' ,:.,·: 

I,-L/3-1-L/3-1-L/3-1 
Fig. P5.105 
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352 Analysis and Design of Beams for Bending 5.106 through 5.109 (a) Using singularity functions, write the equa7 
tions for the shear and bending moment for the beam and loading shown. 
(b) Determine the maximum value of the bending moment in the beam. 

Fig. P5.106 

80kN 
80 kN 80 kN 

B C D 
A --,~:''·' '~~-: .·.;;.· . ,, .. 

tLI~L~8m 
0.6m0.6m 0.6m 

Fig. P5.108 

rOkNB l~25kN D 

A~~~~~~E 

f---+1 T-': LosmD 

.50kN 

0.3 m 0.4 m 0.2 m 

Fig. P5.110 

40kN/m 

Fig. P5.109 

5.110 and 5.111 (a) Using singularity functions, write the equations 
for the shear and bending moment for the beam and loading shown. (b) DeterM 
mine the maximum normal stress due to bending. 

ZHN 

I Sl50 X 18.0 :J:bw25o x 28.4 

Fig. P5.111 

5.112 and 5.113 (a) Using singularity functions, find the magnitude 
and location of the maximum bending moment for the beam and loading shown. 
(b) Determine the maximum normal stress due to bending. 

60 kN 60 kN 

lBkN·."' ...... 
8 PW. !llJU .. l~ ..•.. '.'kN·m ¥ (~> __ ,_:!i~Mmk, --~"--_._c) d1 s31oxsz 

Tl2mL2.4m_j" 
:I 

W530 X 66 

Fig. P5.112 Fig. P5.113 
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5.114 and 5.115 A beam is being designed to be supported and loaded 
as shown. (a) Using singularity functions, find the magnitude and location of 
the maximum bending moment in the beam. (b) Knowing that the allowable 
normal s.tress for the steel to be used is 165 MPa, find the most economical 
wide~ flange shape· that can be used. 

Fig. P5.114 

5.116 and 5.117 A timber beam is being designed to be supported and 
loaded as shown. (a) Using singularity functions, find the magnitude and 
location of the maximum bending moment in the be.am. (b) Knowing that the 
available stock consists of beams with an allowable stress of 12 MPa and a 
rectangular cross section of 30-mm width and depth h varying from 80 mm to 
160 mm in 10-mm increments, determine the most economical cross section 
that can ·be used. 

480 N/m 

:l ... ggp IUllJJ~ Yr .,' ~ j" ' 1\JJ. 
1 .... -1.5 m -<-- 2.5 m __:j .. ' 

Fig. P5.116 

5.118 through 5.121 Using a computer and step functions, calculate the 
shear and bending moment for the beam and loading shown. Use the specified 
increment 6.L, starting at point A and ending at the right-hand support. 

12 kN 6L=0.4m 

l_::c_, m----1, 
1.2m 

Fig. P5.118 

Problems 353 

00kN 

Fig. P5.115 

500 N/m 

~~~~~ 
')2_!.6m -z.<m-T 

Fig. P5.117 

t::..L =0.25m 
120kN J C .3GkN/m 

tl~ 
2m 1m 

Fig. P5.119 

AL = 150mm 

16 kN 

Fig. P5.121 

30mm 
-1 l-

It 
h 

J. 



354 Analysis and Design of Beams for Bending 5.122 and 5. i 23 For the beam and loading shown, and using a com
puter and step functions, (a) tabulate the shear, bending moment, and maximum 
normal stress in sections of the beam from x = 0 to x = L, using the incre
ments AL indicated, (b) using smaller increments if necessary, determine with 
a 2 percent accuracy the maximum normal stress in the beam. Place the origin 
of the x axis at end A of the beam . 

3kN 

Fig. P5.122 

W200 X 22.5 

L=5m 
t:.L"" 0.25 m 

50mm 
-11-

. 5 kN 

20 kN/m 

BllJjl!ljJJic 
A ·::·:·~::::·: .. 

L2 mJ:_3 m-----t+c-1 
Fig. P5.123 ( 

50mm 
->I-

II300mm 
L""6m 
t:.L"" 0.5m 

5.124 and 5.125 For the beam and loading shown, and using a com
puter and step functions, (a) tabulate the shear, bending moment, and maximum 
normal stress in sections of the beam from x = 0 to x = L, using the incre
ments !::.L indicated, (b) using smaller increments if necessary, determine with 
a 2 percent accuracy the maximum normal stress in the beam. Place the origin 
of the x axis at end A of the beam. 

·_-:D l}oomm 
···r~--· -"-~--1 _c .. n ------'~ 

OA5 m 0.6 m 0.45 m 

L2kN 

Fig. P5.124 

L"" 1.5m 
AL"' O.G75 m 

Fig. P5.125 

'5.6. NONPRISI\IlATIC BEAMS 

W310 X 44.5 

L=4.5m 
D.L = 0.375 m 

Our analysis has been limited so far to prismatic beams, i.e., to beams 
of uniform cross section. As we saw in Sec. 5.4, prismatic beams are 
designed so that the normal stresses in their critical sections are at moSt 
equal to the allowable value of the normal stress for the material being 
used. It follows that, in all other sections, the nonnal stresses will be 
smaller, possibly much smaller, than their allowable value. A prismatic 
beam, therefore, is almost always overdesigned, and considerable sav
ings of material can be realized by using nonprismatic beams, i.e., beams 
of variable cross section. The cantilever beams shown in the bridge dur~ 
ing construction in Fig. 5.22 are examples of nonprismatic beams. 

Since the maximum normal stresses am usually control the design 
of a beam, the desigh of a nonprismatic beam will be optimum if the 
section modulus S = 1/c of every cross section satisfies Eq. (5.3) of 
Sec. 5.1. Solving that equation for S, we write 

!M! S=
a au 

(5.18) 

A beam designed in this manner is referred to as a beam of constant 
strength. 
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Fig. 5.22 

For a forged or cast structural or machine component, it is possi
ble to· vary the cross section of the component along its length and to 
eliminate most of the unnecessary material (see Example 5.07). For a 
timber beam or a rolled-steel beam, however, it is not possible to vary 
the cross section of the beam. But considerable savings of material can 
be achieved by gluing wooden planks of appropriate lengths to a tim
ber beam (see Sample Prob. 5.11) and using cover plates in portions of 
a rolled-steel beam where the bending moment is large (see Sample 
Prob. 5.12). 

A cast-aluminum plate of uniform thickness b is to support a 
uniformly distributed load w as shown in Fig. 5.23. (a) De
termine the shape of the plate that will yield the most eco
nomical design. (b) Knowing that the allowable normal stress 
for the aluminum used is 72 MPa and that b = 40 mm, 
L = 800 mm, and w = 135 kN/m, determine the maximum 
depth h0 of the plate. 

Bending Moment. Measuring the distance x from A 
and observing that VA = MA = 0, we use Eqs. (5.6) and (5.8) 
of Sec. 5.3 and write 

V(x) =- J'wdx = -wx 
0 

M(x) = r V(x)dx = - r wxdx = -! wx' 
0 0 

(a) Shape of Plate. We recall from Sec. 5.4 that the 
modulus S of a rectangular cross section of width b and depth 
hisS=~ bh2• Carrying this value into Eq. (5.18) and solving 
for h2

, we have 

(5.19) 

Fig. 5.23 

and, after substituting IMI = ! w.xl, 

h2 = 3w.i or h = (~)112 

x (5.20) 
bO'au bO'au 

Since the relation between h and x is linear, the lower edge of 
the plate is a straight line. Thus, the plate Providing the most 
economical design is of triangular shape. 

(b) Maximum Depth h0• Making x = Lin Eq. (5.20) 
and substituting the given data, we obtain 

[ 
3(135 kN/m) l ,,., 

h0 = (0.040 m)(7Z MPa) (800 mm) = 300 mm 
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20kN 20kN 

A.~~t~D 
20kN 

v 
A f '$1 E 
~~----~OkN 

h- 1.2 m 

AI B) 
2~kN 

_,___,j 

20kN 

20kN 

M 

SAMPlE PROBLEM 5.11 

A 3.6-m-long beam made of a timber with an allowable normal stress of 16 
MPa and an allowable shearing stress of 3 MPa is to carry two 20-k.N loads lo
cated at its third points. As shown in Chap. 6, a beam of uniform rectangular 
cross section, 100 mm wide and 115 mm deep, would satisfy the allowable 
shearing stress requirement. Since such a beam would not satisfy the allowable 
normal stress requirement, it will be reinforced by gluing planks of the same 
timber, l 00 mm wide and 30 mm thick, to the top and bottom of the beam in 
a symmetric manner. Determine (a) the required number of pairs of planks, (b) 
the length of the planks in each pair that will yield the most economical design. 

SOLUTION 

Bending Moment. We draw the free-body diagram of the beam and find 
the following expressions for the bending moment: 

From A to B (0 $ x :;s; 1.2 m): M = (20 kN)x 

From B to C (1.2 m s x :;s; 2.4 m): 
M ~ (20 kN) x (20 kN)(x - 1.2 m) ~ 24 kN · m 

a. Number of Pairs of Planks. We fust determine the required total 
depth of the reinforced beam between B and C. We recall from Sec. 5.4 that 
S = k bh2 for a beam with a rectangular cross section of width b and depth h. 
Substituting this value into Eq. (5.17) and solving for h2, we have 

h' ~ 6IMI (1) 
bO'a!l 

Substituting the value obtained forM from B to C and the given values of b 
and 0' all> we write 

h' ~ 6(24kN · m) 
0.09 m2 

(0.1 m)(l6 MPa) 
h ~ 300mm 

Since the original beam has a depth of 115 mm, the planks must provide an 
additional depth of 185 mrn. Recalling that each pair of planks is 62 mm thick: 

Required number of pairs of planks = 3 -<! 

b. Length of Planl\s. The bending moment was found to be 
M = (20 kN)x in the portion AB of the beam. Substituting this expression and 
the given values of band ua11 , into Eq. (1) and solving for x, we have 

_ (0.1 m)(l6 MPa) 
2 

X- 6(20kN) h 
h' 

x~---

0.075 m 
(2) 

Equation (2) defines the maximum distance x from end A at which a given depth 
h of the cross section is acceptable. Making h = 115 m, we find the distance 
x 1 from A at which the original prismatic beam is safe: x1 = 0.1763 m. From 
that point on, the original beam should be reinforced by the first pair of planks. 
Making h = 115 mm + 62 rnm = 177 mm yields the distance x2 = 0.418 m 
from which the second pair of planks should be used, and making h = 238 mm 
yields the distance x3 = 0.755 m from which the third pair of planks should be 
used. The length 1,. of the planks of the pair i, where i = 1, 2, 3, is obtained by 
subtracting 2x1 from the 3.6-m length of the beam. We find 

/ 1 = 3.25 m, l1 = 2.76 m, /3 = 2-09m 41 

The comers of the various planks lie on the parabola defined by Eq. (2). 



!6 SAMPlE PROBlEM 5.12 
m

1
m ~b-1 

. ..t. ..... .J ! Two steel plates, each 16 mm thick, are welded as shown to a W690 X 125 

8 
[~-..... ,. .. " beam to reinf?rce it. Kno~ing that O'au = 160 MPa for both the beam a~d the 

. . : - . · plates, determme the reqmred value of (a) the length of the plates, (b) the width 
" · ·· of the plates. 
, .. _._ W690 X 125 

500kN 

SOLUTION 

Bending Moment. We first find the reactions. From the free body of a 
portion of beam of length x :::;; 4 m, we obtain M between A and C: 

M ~ (250kN)x (1) 

J c a. Required Length of Plates. We first determine the maximum allow-
A Sii]JiliiJIJil!li~===·}'iJ;-~,@~m·-~;,~ .. Wf~.i! ~~;1:~.("1'=-:".:-qB able length x, of the portion AD of the unreinforced beam. From Appendix C 
f we · find that the section modulus of a W690 X 125 beam is 

S = 3510 X 106mm', orS = 3.51 X 10-2 m3• Substituting forS and 0"~ 11 into 
Eq. (5.17) and solving forM, we write 

250 kN M ~ So-.,11 ~ (3.51 X 10·3 m3)(160 X 103 kNim2) ~ 561.6 kN • m 

250 kN 

' b------~ tr ,'. 1 

lf--J 
t~~ 

Substituting forM in Eq. (l ), we have 

561.6 kN • m ~ (250 kN)x, Xnr = 2.246 m 

The required lengih l of the plates is obtained by subtracting 2 x, from the 
length of the beam: 

l ~ 8 m - 2(2.246 m) ~ 3.508 m l = 3.51 m <1 

b. Required Width of Plates. The maximum bending moment occurs 
in the midsection C of the beam. Making x = 4 min Eq. (1), we obtain the 
bending moment in that section: 

M ~ (250 kN)(4 m) ~ 1000 kN • m 

In order to use Eq. (5.1) of Sec. 5.1, we now determine the moment of in
ertia of the cross section of the reinforced beam with respect to a centroidal 
axis and the distance c from that axis to the outer surfaces of the plates. From 
Appendix C we find that the moment of inertia of a W690 X 125 beam is 
Ib = 1190 X 106 mm4 and its depth is d = 678 mm. On the other hand, de
noting by t the thickness of one plate, by b its width, and by Y the distance of 
its centroid from the neutral axis, we express the moment of inertia lp of the 
two plates with respect to the neutral axis: 

I,~ 2(!,bt' + Ay 2
) ~ (!t')b + 2bt(jd + !t)2 

Substituting t = 16 mm and d = 678 mm, we obtain I" = (3.854 
X 106 mm3)b. The moment of inertia I of the beam and plates is 

I~ 111 + I, ~ 1190 X 106 mm' + (3.854 X 106 mm3)b (2) 

and the distance from the neutral axis to the surface is c = ~ d + t = 355 mm. 
Solving Eq. (5.1) for I and substituting the values of M, 0"811 , and c, we write 

I~ IMic ~ (1000 kN. m)(355 mm) ~ 2.219 X 10·' m' ~ 2219 x 106 mm' 
O"all 160 MPa 

Replacing I by this value in Eq. (2) and solving forb, we have 

2219 X 106 mm4 = 1190 X 106 mm4 + (3.854 X 106 mm3)b 
b=267mm<.ll 
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Fig. P5.126 

Fig. P5.128 

Fig. P5.130 
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5.126 and 5.127 The beam AB, consisting of a cast~iron plate of 
uniform thickness band length L, is to support the load shown. (a) Knowing that 
the beam is to be of constant strength, express h in terms of x, L, and h0• (b) De
tennine the maximum allowable load if L = 0.9 m, h0 = 300 nun, b = 30 mm, 
and a ru1 = 165 :MPa. 

Fig. P5.127 

5.128 and 5.129 The beam AB, consisting of a cast-iron plate of uni
form thickness b and length L, is to support the distributed load w(x) shown. 
(a) Knowing that the beam is to be of constant strength, express h in terms of x, 
L, and h0. (b) Determine the smallest value of h0 if L = 750 rrun, b = 30 mm, 
w0 = 300 k.N/m, and a all = 200 MPa. 

Fig. P5.129 

5.130 and 5.131 The beam AB, consisting of an aluminum plate of 
uniform thickness b and length L, is to support the load shown. (a) Knowing 
that the beam is to be of constant strength, express h in tenns of x, L, and h(j 
for portion AC of the beam. (b) Determine the maximum allowable load if 
L = 800 mm, h0 = 200 mm, b = 25 mm, and G'au = 72 MPa. 

Fig. P5.131 



5 
132 and 5.133 A preliminary design on the use of a simply supported 

· timber beam indicated that a beam with a rectangular cross section 
':CP'0510"''"wide and 200 mm deep would be required to safely support the load 

in part a of the figure. It was then decided to replace that beam with a 
, huilt·UP beam obtained by gluing together, as shown in part b of the figure, 

ieces of the same timber as the original beam and of 50 X 50-mm cross 
. pn petennine the length l of the two outer pieces of timber that will yield 

sectiOrn· e factor of safety as the original design. 
the sa. 

(a) 

(b) 

Fig. P5.132 

5.134 and 5.135 A preliminary design on the use of a cantilever pris
matic timber beam indicated that a beam with a rectangular cross section 
50 mm wide and 250 mm deep would be required to safely support the load 
shown in part a of the figure. It was then decided to replace that beam with a 
built~up beam obtained by gluing together, as shown in part b of the figure, 
five pieces of the same timber as the original beam and of 50 X 250 mm cross 
section. Determine the respective lengths /1 and !2 of the two inner and outer 
pieces of timber that will yield the factor of safety as the original design. 

p 

<ij. 
Fig. P5.134 

Problems 359 

(a) 

(b) 

Fig. P5.133 

A 

A 

(b) 

Fig. P5.135 
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Fig. P5.136 

5.136 and 5.137 A machine element of cast aluminum and in the shape 
of a solid of revolution of variable diameter d is being designed to support the 
load shown. Knowing that the machine element is to be of constant strength, 
express d in terms of x, L, and d0• 

Fig. P5.137 

5.138 A transverse force P is applied as shown at end A of the conical 
taper AB. Denoting by d0 the diameter of the taper at the A, show that the maxi
mum normal stress occurs at point H, which is contained in a transverse sec
tion of diameter d = 1.5 d0• 

Fig. P5.138 

5.139 A cantilever beam AB consisting of a steel plate of uniform depth 
h and variable width b is to support the distributed load w along its center line 
AB. (a) Knowing that the beam is to be of constant strength, express b 
in terms of x, L, and b0. (b) Determine the maximum allowable value of w if 
L = 0.4 m, b0 = 200 mm, h = 20 mm, and <T,u = 165 MPa. 

Fig. P5.139 

5.140 Assuming that the length and width of the cover plates used with 
the beam of Sample Prob. 5.12 are, respectively, l = 4 m and b = 285 mm, 
and recalling that the thickness of each plate is 16 mm, determine the maxi
mum normal stress on a transverse section (a) through the center of the beam, 
(b) just to the left of D. 



5.141 Knowing that a an = 150 MPa, detennine the largest concentrated 
load p that can be applied at end E of th.e beam shown. 

Fig. P5.141 

5.142 Two cover plates, each 16 mm thick, are welded to a W760 
X 147 beam as shown. Knowing that I = 3 m and b = 300 min, determine 
the maximum normal stress on a transverse section (a) through the center of 
the beam, (b) just to the left of D. 

4.50 kN/m 

Fig. P5.142 and P5.143 

5.143 Two cover plates, each 16 mm thick, are welded to a W760 
X 147 beam as shown. Knowing that a. 11 = 150 MPa for both the beam and 
the plates, detennine the required value of (a) the length of the plates, (b) the 
width of the plates. 

5.144 Two cover plates, each 7.5 mm thick, are welded to a W460 X 74 
beam as shown. Knowing that l = 5 m and b = 200 mm, determine the maxi
mum nonnal stress on a transverse section (a) through the center of the beam, 
(b) just to the left of D. 

Fig. P5.144 and P5.145 

5.145 Two cover plates, each 7.5 mm thick, are welded to a W460 X 74 
beam as shown. Knowing that a an = 150 MPa for both the beam and the plates, 
detennine the required...value of (a) the length of the plates, (b) the width of 
the plates. 

Problems 361 
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Fig. P5.150 

5.146 Two cover plates, each 12 mm thick, are welded to a W690 
X 125 beam as shown. Knowing that l = 3 m and b = 260 mm, determine 
the maximum normal stress on a transverse section (a) through the center of 
the beam, (b) just to the left of D. 

Fig. P5.146and P5.147 

5.147 Two cover plates, each 12 rom thick, are welded to a W690 
X 125 beam as shown. Knowing that O"a11 = 165 MPa for both the beam and 
the plates, determine the required value of (a) the length of the plates, (b) the 
width of the plates. 

5.148 For the tapered beam shown, determine (a) the transverse section 
in which the maximum normal stress occurs, (b) the largest distributed load w 
that can be applied, knowing that O"all = 140 MPa. 

Fig. P5.148 and P5.149 

5.149 For the tapered beam shown, knowing that w = 160 kN/m, 
detennine (a) the transverse section in which the maximum normal stress occurs, 
(b) the corresponding value of the normal stress. · 

5.150 For the tapered beam shown, determine (a) the transverse section 
in which the maximum normal stress occurs. (b) the largest distributed load w 
that can be applied, knowing that O"an = 165 MPa. 

18mm 

-11-
~_r, 

Fig. P5.151 

5.151 For the tapered beam shown, determine (a) the transverse section 
in which the maximum normal stress occurs, (b) the largest concentrated load 
P that can be applied, knowing that O'au = 165 MPa. 

l 



This chapter was devoted to the analysis and design of beams Under 
transverse loadings. Such loadings can consist of concentrated loads 
or distributed loads and the beams themselves are classified accord
ing to the way they are supported (Fig. 5.3). Only statically deter, 
minate beams were considered in this chapter, the analYsis of stati
cally indeterminate .beams being postponed Uf:~-til Chap.· 9. 

Considerations for the design of 
prismatic beams 

Statically 
Determinate 
Beam's 

Statically 
Indeterminate 
Beams 

Fig. 5.3 

(a) Simply supported beam 

(d) Continuous beam 

l .1'·· ~T"--> 

(b) Overhanging beam 

··;& 
f---L---1 

(e) Beam fixed at one end 
and simply supported 

at the other end 

1--L--
(c) Cantilever beam 

{f) Fixed beam 

While transverse loadings cause . both bending and shear in a 
beam, the normal stresses caused by bending are the dominant cri
terion in the design of a beam for strength [Sec. 5.1]. Therefore, this 
chapter dealt only with the determination of the normal stfesses in 
a beam, the effect of shearing stresses being examined in the next 
one. 

Normal stresses due to bending 

We recalled from Sec. 4.4 the flexure formula for the determi
nation of the maximum value u m of the nonnal stress in a given sec
tion of the beam, 

IM!c 
(J'm =-~- (5.1) 

where I is the moment of inertia of the cross section with respect to 
a centroidal axis perpendicular to the plane of the bending couple M 
and c is the maximum distance from the neutral sUrface (Fig. 4.13). Fig. 4.13 

363 
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Shear and bending-moment 
diagrams 

!5'.d 
v 

(<1) Internal forces 
(positive shear and positive bending moment) 

Fig. 5.7a 

Relations among load, shear, 
and bending moment 

We also recalled from Sec. 4.4 that, introducing the elastic section 
modulus S = I/ c of the beam, the maximum value am of the normal 
stress in the section can be expressed as 

JMJ 
(J =-· 

m S (5.3) 

It follows from Eq. (5.1) that the maximum normal stress oc
curs in the section where IMI is largest, at the point farthest from 
the neural axis. The determination of the maximum value of IMI 
and of the critical section of the beam in which it occurs is greatly 
simplified if we draw a shear diagram and a bending-moment dia
gram. These diagrams represent, respectively, the variation of the 
shear and of the bending moment along the beam and were obtained 
by determining the values of V and M at selected points of the beam 
[Sec. 5.2}. These values were found by passing a section through 
the point where they were to be determined and drawing the free
body diagram of either of the portions of beam obtained in this fash
ion. To avoid any confusion regarding the sense of the shearing force 
V and of the bending couple M (which act in opposite sense on the 
two portions of the beam), we followed the sign convention adopted 
earlier in the text and illustrated in Fig. 5.7a (Examples 5.01 and 
5.02, Sample Probs. 5.1 and 5.2]. 

The construction of the shear and bending-moment diagrams is 
facilitated if the following relations are taken into account [Sec. 5.3]. 
Denoting by w the distributed load per unit length (assumed posi
tive if directed downward), we wrote 

dV 
dx = -w 

or, in integrated form, 

dM 

dx 
v (5.5, 5.7) 

VD- Vc= -(areaunderloadcurvebetweenCandD) (5.6') 
M0 - Me= area under shear curve between C and D (5.8') 

Equation (5.6') makes it possible to draw the shear diagram of a 
beam from the curve representing the distributed load on that beam 
and the value of Vat one end of the beam. Similarly, Eq. (5.8') makes 
it possible to draw the bending-moment diagram from the shear di~ 
agram .and the value of M at one en<;l. of the beam. However, con
centrated loads introduce discontinuities in the shear diagram and 
concentrated couples in the bending-moment diagram, none of which 
is accounted for in these equations (Sample Probs. 5.3 and 5.6]. Fi
nally, we noted from Eq. (5.7) that the points of the beam where the 
bending moment is maximum or minimum are also the points where 
the shear is zero [Sample Prob. 5.4]. 

l 
i 



A proper proce.dure for the design of a prismatic beam was de-
scribed in Sec. 5.4 and is summarized here: · 

Having d~tennined u all for the material used and as~uming that · 
the de$ign ·of the beam is Controlled by the maximum nonnal stress 
in the beam, Compute· the minimum allowable value Of the section 
modUlus: · 

S = IMim~ 
.. min O"aJt (5.9) 

. For a timber beam of rectangular cross section, S = ~ bh2, where 
b is the width of the beam and h its depth. The dimensions of .the 
section, therefore, must be selected so that ! b_h2 2:::: SmiJr · 

For a rolled-steel beam, consult the apprOpriate table in Appen~ix C. 
6f the available beam sections, Consider only those with a s~ction ·mod
ulus S <2.:: SmJn and select froffi this group the secdon with the smalleSt 
weight per unit length. This is the most economical of the sections· for 
which S ;::::: Smin· 

In Sec. 5.5, we discussel:.l. an alternadve method fOr the detenninzi.
tion of the maximum values of the shear and bending moment based on 
the use of the singularity functions {x - a)11

• By definition, and for n <2.:: 0, 
we had 

lx _a"' __ {(x- a)" whenx 2: a 
1 1 0 whenx <a '(5.!4) 

We noted that whenever the quantity between brackets is positive or 
zero, the brackets should be replaced b)r ordinary parentheses, and 
whenever that quantity is negative, the bracket itSelf is equal to zero. 
We also noted that singularity functions can be integrated and dif
ferentiated as ordinary binomials. Finally, we observed that the sin
gularity function corresponding to n = 0 iS discontinuOus at .x = a 
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Design of prismatic beams 

Singularity functions 

(Fig. 5.18a). This function is called t~e step function. We ,~rote Step function 

(x-a)'= {I whenx2:a 
0 whenx <a 

(a)n ==O 

Fig. 5.18a 

(5.15) 
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Using singularity functions to 
express shear and bending moment 

Fig. 5.8 

Equivalent open~ended loadings 

Fig. 5.20 

Nonprismatic beams 

Beams of constant strength 

The use of singularity functions makes it possible to represent 
the shear or the bending moment in a beam by a single expression, 
valid at any point of the beam. For example, the contribution to the 
shear of the concentrated load P applied at the midpoint C of a sim~ 
ply supported beam (Fig. 5.8) can be represented .by -:-P(x- !L)0, 

since this expression is equal to zero to the left of C, and to - P to 
the right of C. Adding the contribution of the reaction RA = !Pat A, 
we express the shear at any point of the beam as 

V(x) = jP - P(x -jL)0 

The bending moment is obtained by integrating this expression: · 

M(x) = jPx- P(x -jL)' 

The singularity functions representing, respectively, the load, 
shear, and bending moment corresponding to Various basic loadings 
were given in Fig. 5.19 on page 346. We noted that a distributed 
loading that does not extend to the right end of the beam, or whkh 
is discontinuous, should be replaced by an equivalent combinatfon 
of open~ended loadings. For instance, a uniforrrily distributed load 
extending from x = a to x = b (Fig. 5.20) should be expressed as 

w(x) = w0(x - a)0 - w0(x- b)0 

The contribution of this load to the shear and to the bending moment 
can be obtained 'through two successive integrations. Care should be 
taken, however, to also include in the expression· for V(x) the con
tribution of concentrated loads and reaction$, and to include in the 
expression for M(x) the contribution of concentrated couples [Ex~ 
amples 5.05 and 5.06, Sample Probs. 5.9 and 5.10]. We also observed 
that singularity functions are particularly well suited to the use of 
computers. 

We were concerned so far only with prismatic beams, i.e., beams 
of uniform cross section. Considering in Sec. 5.6 the design of non
prismatic beams, i.e., beams of variable cross section, we saw that 
by selecting the shape and size of the cross section so that its elas
tic section modulus S = I/c varied along the beam in the same way 
as the bending moment M, we were able to design beams for which 
CT111 at each section was equal to O"an· Such beams, called beams of 
constant strength, clearly provide a more effective use of the mate
rial than prismatic beams. Their section modulus at any section along 
the beam was defined by the relation 

M 
S=

o-~lll 
(5.18) 

J 



5.152 Draw the shear and bending-moment diagrams for the beam and 
loading shown, and determine the maximum absolute value (a} of the shear, 
(b) of the bending moment 

5.153 Determine the largest pennissible distributed load w for the beam 
shown, knowing that the allowable nonnal stress is + 84 MPa in tension and 
-205 MPa in compression, 

5.154 Solve Prob. 5.153, assuming that the cross section ofthe beam is 
reversed, with the flange of the beam resting on the supports at B and C. 

5.155 (a) Using singularity functions, find the magnitude and location 
of the maximum bending moment for the beam and loading shown. (b) De
termine the maximum normal stress due to bending. 

lOkN 
~ 80 kN/m 

A l=i JlllU I till!~ :X: W530 X 150 

I~J~~1- 4 m _J 
l m 1m 

Fig. P5.155 

5.156 Draw the shear and bending-moment diagrams for the beam and 
loading shown and determine the maximum normal stress due to bending. 

5.157 Beam AB, of length L and square cross section of side a, is sup
ported by a pivot at C and loaded as shown. (a) Check that the beam is in equi
librium. (b) Show that the maximum stress due to bending occurs at C and is 
equal to w,L2/(l.5a)3

• 

Fig. P5.157 

5.158 Knowing that rod AB is in equilibrium under the loading shown, 
draw the shear and bending-moment diagrams and detennine the maximum 
normal stress due to bending. 

75 
L:!IE.=~;;:;;:=~;::==~B ID 

I 
200 mm 200 mm 

Fig. P5.152 

Fig. P5.153 

140 kN/m 30 mm 

~·A···\hJJ.! 1,i!I. LJc -~7;,, . _tj' ILJ:, _j_ . . . ..• '___,.j 
1-o.sm B 

1
56mm 

0.2 m 

Fig. P5.156 

w1 = 750 kN/m T f--1 

\I ~~~ 

·r~·Cii 
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Fig. P5.158 
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10 kN/m 120 mm r ~.~ u 111; IJ. 
Fig. P5.159 

3kN 3kN 

............ ~~· 45.:~ 
I 300 I 200 I 200 I 300 •·''l'' 

Dimensions in mm 
Fig. P5.161 

5.159 For the beam and loading shown, design the cross section of the 
beam, knowing that the grade of timber used bas an allowable normal stress 
of 12 MPa. · 

B 

18 kN/m 
Fig. P5.160 

5.160 For the beam and loading shown, design the cross section of the 
beam, knowing that the grade of timber used has an allowable normal stress 
of 12 MPa. 

5.161 Draw the shear and bending-moment diagrams for the beam and 
loading shown, and determine the maximum absolute value (a) of the shear, 
(b) of the bending moment. 

20 kN/m 

A~Q~~.cc~gsi 
--~ 

Fig. P5.162 

5.162 Knowing that the allowable normal stress for the steel used is 165 
MPa, select the most economical wide-flange beam to support the loading shown. 

5.163 Determine (a) the magnitude of the counterweight W for which 
the maximum value of the bending moment in the beam is as small as possible, 
(b) the corresponding maximum stress due to bending. (See hint of Pro b. 5.27 .) 

Fig. P5.163 



The following problems are designed to be solved with a computer. 

5.C1 Several concentrated loads P1 (i = l, 2, ... , n) can be applied to a 
beam as shown. Write a computer program that can be used to calculate the 
shear, bending moment, and normal stress at any point of the beam for a given 
loading of the beam and a given value of its section modulus. Use this pro
gram to solve Probs. 5.18, 5.21, and 5.25. (Hint: Maximum values will occur 
at a support or under a load.) 

5.C2 A timber beam is to be designed to support a distributed load and 
up to two concentrated loads as shown. One of the dimensions of its uniform 
rectangular cross section has been specified and the other is to be determined 
so that the maximum normal stress in the beam will not. exceed a given al- Fig. P5.C1 
lowable value o-~n· Write a computer program that can be used to calculate at 
given intervals 1:1L the shear, the bending moment, and the smallest acceptable 
value of the unknown dimension. Apply this program to solve the following 
problems, using the intervals b.L indicated: (a) Prob. 5.65 (b.L = O.l m), (b) 
Prob. 5.69 (i1L ~ 0.2 m), (c) Prob. 5.70 (11L ~ 0.3 m). 

Fig. P5.C2 

5.C3 Two cover plates, each of thickness £,are to be welded to a wide
flange beam of length L, which is to support a uniformly distributed load w. 
Denoting by o-all the allowable normal stress in the beam and in the plates, by 
d the depth of the beam, and by Jb and s~.~, respectively, the moment of inertia 
and the section modulus of the cross section of the unreinforced beam about a 
horizontal centroidal axis, write a computer program that can be used to cal
culate the required value of (a) the length a of the plates, (b) the width b of 
the plates. Use this program to solve Prob. 5.145. Fig. P5.C3 

I 
P, 
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: I 

Fig. P5.C5 

lOO kN 1.8 m 100 kN 

Fig. P5.C4 

5.C4 Two 100-kN loads are maintained 1.8 m apart as they are moved 
slowly across the 6-m beam AB. Write a computer program and use it to cal
culate the bending moment under each load and at the midpoint C of the beam 
for values of x from 0 to 7 m at intervals 6.x = 0.45 m. 

5.C5 Write a computer program that can be used to plot the shear and 
bending-moment diagrams for the beam and loading shown. Apply this pro
gram with a plotting interval 6.L = 0.9 m to the beam and loading of (a) Prob. 
5.72, (b) Prob. 5,115. 

Fig. P5.C6 

5.C6 Write a computer program that can be used to plot the shear and 
bending-moment diagrams for the beam and loading shown. Apply this pro
gram with a plotting interval 11L = 0.025 m to the beam and loading of 
Prob. 5.112. 



A reinforced concrete deck will be aUached to each of the steel sections 
st).own to form a composite box girder bridge. In this (fhapter the shearing 
stresSes will be determined in various types of beams and girders. 
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Fig. 6.2 

6.1.1NTRODUCTION 

You saw in Sec. 5.1 that a transverse loading applied to a beam will re~ 
sult in normal and shearing stresses in any given transverse section of 
the beam. The normal stresses are created by the bending couple M in 
that section and the shearing stresses by the shear V. Since the domi~ 
nant criterion in the design of a beam for strength is the maximum value 
of the normal stress in the beam, our analysis was limited in Chap. 5 
to the determination of the normal stresses. Shearing stresses, however, 
can be important, particularly in the design of short, stubby beams, and 
their analysis will be the subject of the first part of this chapter. 

Fig. 6.1 

Figure 6.1 expresses graphically that the elementary normal and 
shearing forces exerted on a given transverse section of a prismatic 
beam with a vertical plane of symmetry are equivalent to the bending 
couple M and the shearing force V. Six equations can be written to ex~ 
press that fact. Three of these equations involve only the nonnal forces 
Ux dA and have already been discussed in Sec. 4.2; they are Eqs. (4.1), 
(4.2), and (4.3), which express that the sum of the nonnal forces is zero 
and that the sums of their moments about the y and z axes are equal to 
zero and M, respectively. Three more equations involving the shearing 
forces T xy dA and T xz dA can now be written. One of them expresses that 
the sum of the moments of the shearing forces. about the x axis is zero 
and can be dismissed as trivial in view of the symmetry of the beam 
with respect to the xy plane. The other two involve the y and z com
ponents of the elementary forces and are 

y components.: 

z components: 

(6.1) 

(6.2) 

The first of these equations shows that vertical shearing stresses must 
exist in a transverse section of a beam under transverse loading. The 
second equation indicates that the average horizontal shearing stress in 
any section is zero. However, this does not mean that the shearing stress 
Txz is zero everywhere. 

Let us now consider a small cubic element located in the vertical 
plane of symmetry of the beam (where we know that Txz must be zero) 
and examine the stresses exerted on its faces (Fig. 6.2). As we have just 
seen, a nonnal stress u x and a shearing stress T xy are exerted on each 
of the two faces perpendicular· to the x axis. But we know from Chap. 
1 that, when shearing stresses T xy are exerted on the vertical faces of an 



element, equal stresses must be exerted on the horizontal faces of the 
same element. We thus conclude that l.ongitudinal shearing stresses must 
exist in any member subjected to a transverse loading. This can be ver~ 
ified by considering a cantilever beam made of separate planks clamped 
together at one end (Fig~ 6.3a). When a tr~nsverse load Pis applied to 
the free end of this composite beam, the planks are observed to slide 
with respect to each other (Fig. 6.3b). In contrast, if a couple M is ap
plied to the free end of the same composite beam (Fig. 6.3c), the var
ious planks will bend into concentric arcs of circle and will not slide 
with· respect to each other, thus verifying the fact that shear does not 
occur in a beam subjected to pure bending (cf. Sec. 4.3). 

While sliding does not actually take place when a transverse load 
P is applied to a beam made of a homogeneous and cohesive material 
such as steel, the tendency to slide does exist, showing that stresses oc
cur on horizontal longitudinal planes as well as on vertical transverse 
planes. In the case of timber beams, whose resistance to shear is weaker 
between fibers, failure due to shear will occur along a longitudinal plane 
rather than a transverse plane (Fig. 6.4). · 

In Sec. 6.2, a beam eleinent of length Ax bounded by two trans
verse planes and a horizontal one will be considered and the shearing 
force AH exerted on its horizontal face will be determined, as well as 
the shear per unit length, q, also known as shear flow. A formula for 
the shearing stress in a beam with a vertical plane of symmetry will be 
derived in Sec. 6.3 and used in Sec. 6.4 to determine the sheariqg stresses 
in common types of beams. The distribution of stresses in a narrow rec
tangular beam will be further discussed in Sec. 6.5, 

The derivation given in Sec. 6.2 will be extended in Sec. 6.6 to 
cover the case of a beam element bounded by two transverse planes and 
a curved surface. This will allow us in Sec. 6.7 to determine the shear
ing stresses at any point of a symmetric thin-walled member, such as 
the flanges of wide~ flange beams and box beams. The effect of plastic 
deformations on the magnitude and distribution of shearing stresses will 
be discussed in Sec. 6.8. 

In the last section of the chapter (Sec. 6.9), the unsymmetric load
ing of thin-walled members will be considered and the concept of shear 
center will be introduced. You will then learn to determine the distri
bution of shearing stresses in such members. 

Fig. 6.4 
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(b) 

(c) 

Fig. 6.3 
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Fig. 6.7 

6.2. SHEAR ON THE HORIZONTAL FACE 
OF A BEAM ELEMENT 

iP, lp' w 

l"'lliTIIH"'!Il 
AL·,'·. ·.'·- .-- · ··:-ci 
~ I 
. I=--'----.! 
Fig. 6.5 

Consider a prismatic beam AB with a vertical plane of symmetry that 
supports various concentrated and distributed loads (Fig. 6.5). At a dis
tance x from end A we detach from the beam an element CDD' C of 
length ax extending across the width of the beam from the upper sur
face of the beam to a horizontal plane located at a distance y1 from the 
neutral axis (Fig. 6.6). The forces exerted on this element consist of 

y 

Fig. 6.6 

vertical shearing forces V'c and V'v, a horizontal shearing force AH 
exerted on the lower face of the element, elementary horizontal normal 
forces O"c dA and a-0 dA, and possibly a load w ~x (Fig. 6.7). We write 
the equilibrium equation 

~H + I (a-0 - a-c) dA = 0 

" 
where the integral extends over the shaded area a of the section located 
above the line y = y,. Solving this equation for ~Hand using Eq. (5.2) 
of Sec. 5.1, u = My/!, to express the normal stresses in terms of the 
bending moments at C and D, we have 

~H = Mo- Me i y dA 

I " 
(6.3) 



The integral in (6.3) represents the first moment with respect to the neu
tral axis of the portion a of the cross section of the beam that is located 
above the line y = y1 and will be deiloted by Q. On the other hand, re
calling Eq. (5.7). of Sec. 5.5, we can express the increment M0 -Me 
of the bending moment· as 

M0 - Me = !1M= (dM/dx) !1x = V !1x 

Substituting into (6.3), we obtain the following expression for the hor
izontal shear exerted on the beam element 

VQ 
!1H=-!1x 

l 
(6.4) 

The same result would have been obtained if we had used as a free 
body the lower element C' D' D" C", rather than the upper element 

Fig. 6.8 

CDD' C' (Fig. 6.8), since the shearing forces LlH and LlH' exerted by 
the two elements on each other are equal and opposite. This leads us 
to observe that the first moment Q of the portion Ct' of the cross section 
located below the line y = y 1 (Fig. 6.8) is equal in magnitude and op
posite in sign to the first moment of the portion a located above that 
line (Fig. 6.6). Indeed, the sum of these two moments is equal to the 
moment of the area of the entire cross section with respect to its cen
troidal axis and, thus, must be zero. This property can sometimes be 
used to simplify the computation of Q. We also note that Q is maxi
mum for y 1 = 0, since the elements of the cross section located above 
the neutral axis contribute positively to the integral (5.5) that defines 
Q, while the elements located below that axis contribute negatively. 

The horizontal shear per unit length, which will be denoted by the 
letter q, is obtained by dividing both members of Eq. (6.4) by !1x: 

!1H VQ 
q =r;;=[ (6.5) 

We recall that Q is the first moment with respect to the neutral axis of 
the portion of the cross section located either above or below the point 
at which q is being s;omputed, and that I is the centroidal moment of 
inertia of the entire cross-sectional area. For a reason that will become 
apparent later (Sec. 6.7), the horizontal shear per unit length q is also 
referred to as the shear flow. 
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A beam is made of three planks, 20 by 100 mm in cross sec~ 
tion, nailed together (Fig. 6.9). Knowing that the spacing be~ 
tween nails ls 25 nun and that the vertical shear in the beam 
is V = 500 N, determine the shearing force in each nail. 

We first detem1ine the horizontal fOrce per unit length, q, 
exerted on the lower face of the upper plank. We use Eq. (6.5), 
where Q represents the first moment with respect to the neu
tral axis of the shaded area A shown in Fig. 6.1 Oa, an9 where 
I is the moment of inertia about the same axis of the entire 
cross~sectional area (Fig. 6.10b). Recalling that the first mo
ment of an area with respect to a given axis is equal to the 
product of the area and of the distance from its centroid to the 
axis, t we have 

Q ~ Ay ~ (0.020 m X 0.100 m)(0.060 m) 
= 120 X ro-6 m3 

I~ ;',(0.020 m)(0.100 m)' 
+2[ ;',(0.100 m)(0.020 m)' 
+(0.020 m X 0.100 m)(0.060 m)'J 

~ 1.667 x 10·6 + 2(o.o667 + 7.2)10_, 
= 16.20 X 10-6 m4 

Substituting into Eq. (6.5), we write 

r-!OOmm-•1 _i 

20mm 

I 
lOOmm 

_L 
20mm 

t 
Fig. 6.9 

_Lfj~'ml IOlOOml 

I 
-r- T 

0.020 m ""f.060_m_ 

(a) 

Fig. 6.10 

N.A. 

.> f.-o.020 m 

(b) 

VQ (500N)(l20 X 10-6 m3) 

q ~ I ~ 16.20 X 10-6 m' 3704N/m Since the spacing between the nails is 25 mm, the shearing 
force in each nail is 
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F ~ (0.025 m)q ~ (0.025 m)(3704 N/m) ~ 92.6 N 

6.3. DETERMINATION OF THE SHEARING 
STRESSES IN A BEAM 

Consider again a beam with a vertical plane of symmetry, subjected to 
various concentrated or distributed loads applied in that plane. We saw 
in the preceding section that if, through two vertical cuts and one hor
izontal cut, we detach from the beam an element of length b..x (Fig. 
6.11 ), the magnitude b..H of the shearing force exerted on the horizon-

orr tal face-of the element can be obtained from Eq. (6.4). The average 
shearing stress Tave on that face of the element is obtained by dividing 
b..H by the area b..A of the face. Observing tha~A = t Llx, where t is 
the width of the element at the cut, we write , 

11H VQ 11x 
T =-=---

ave b..A I t Llx 

or 

VQ 
'rave= ft (6.6) 

tSee Appendix A. 



r-
' 

We note that, since the shearing stresses r x:y and r yx exerted respectively 
on a transverse and a horizontal plane through D 1 are equal, the ex
pression Obtained alSO representS the average Value OfT xy along the line 
D'1D'2 (Fig. 6.12). 

Fig. 6.12 

We observe that r yx = 0 on the upper and Io:-ver faces of the beam, 
since no forces are exerted on these faces. it follows that T xy = 0 along 
the upper and lower edges of the transverse section (Fig. 6.13). We also 
note that, while Q is maximum for y = 0 (see Sec. 6.2), we cannot con
clude thi:tt Tave will be maximum along the neutral axis, since Tave de
pends upon the width t of the section as well as upon Q. 

As long as the width of the beam cross section remains small com
pared to its depth, the shearing stress varies only slightly along the line 
D' 1 D' 2 (Fig. 6.12) and Eq. (6.6) can be used to computeT"' at any point 
along D't D'2. Actually, T XJ' is larger at points D\ and D'2 than at D', but 
the theory of elasticity showst that, for a beam of rectangular section of 
width b and depth h, and as long as b :5 h/4, the value of the shearing 
stress at points C1 and C2 (Fig. 6.14) does not exceed by more than 0.8% 
the average value of the stress computed along the neutral axis.t 

6.4. SHEARING STRESSES T 'Y IN COMMON 
TYPES OF BEAMS 

We saw in the preceding section that, for a narrow rectangular beam, 
i.e., for a beam of rectangular section of width b and depth h with 
b :5 !h, the variation of the shearing stress T ;ry across the width of the 
beam is less than 0.8% of Tave· We can, therefore, use Eq. (6.6) in prac~ 
tical applications to determine the shearing stress at any point of the 
cross section of a narrow rectangular beam and write 

VQ 
Txy=!t (6.7) 

where t is equal to the width b of the beam, and where Q is the first 

tSee S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw Hill, New York, 
3d ed., 1970, sec. 124. 

tOn the other hand, for large values of b/h, the value T "'·"of the stress at C1 and C2 may 
be manY times larger then the average value T "'" computed along the neutral axis, as we may 
see from the following table: 

b/h 0.25 o.s 2 4 6 10 20 50 

r,.,h • .,. 1.008 1.033 1.126 1.396 1.988 2.582 3.770 6.740 15.65 
'fm;"/'fav< 0.996 0.983 0.940 0.856 0.805 0.800 0.800 0.800 0.800 
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0 

-ry,,."" 0 

Fig. 6.13 

Fig. 6.14 



378 Shearing Stresses in Beams and 
Thin-Walled Members 

Fig. 6.15 

Fig. 6.16 

Fig. 6.17 

moment with respect to the neutral axis of the shaded area A (Fig. 6. 15). 
Observing that the distance from the neutral axis to the centroid C' 

of A is Y = !(c + y), and recalling that Q = AY, we write 

Q = Aji = b(c- y)l(c + y) = jb(c2
- y') (6.8) 

Recalling, on the other hand, that I= bh3/12 = ~bc3 , we have 

VQ 3 c2 - y' 
T =-=----v 
" lb 4 bc3 

or, noting that the cross-seCtional area of the beam is A = 2bc, 

T =_3__1:'(1-i) (6.9) 
xy 2A c2 

Equation (6.9) show's that the distribution of shearing stresses in a 
transverse section of a rectangular beam is parabolic (Fig. 6.16). As we 
have already observed in the preceding section, the shearing stresses 
are zero at the top and bottom of the cross section (y = ±c). Making 
y = 0 in Eq. (6.9), we obtain the value of the maximum shearing stress 
in a given section of a narrow rectangular beam: 

3V 
'T = -

max lA (6.10) 

The relation obtained shows that the maximum value of the shearing 
stress in a bearri of rectangular cross section is 50% larger than the value 
V/A that would be obtained by wrongly assuming a uniform stress 
distribution across the entire cross section. 

In the case of an American standard beam (S~beam) or a wide
flange beam (W-beam), Eq. (6.6) can be used to determine the average 
value of the shearing stress 'Txy over a section aa' or bb' of the trans
verse cross section of the beam (Figs. 6.17a and b). We write 

VQ 
'Tave = ft (6.6) 

where V is the vertical shear, t the width of the section at the elevation 
considered, Q the first moment of the shaded area with respect to the 
neutral axis cc1

, and I the moment of inertia of the entire cross~sectional 
area about cc'. Plotting 'Tave against the vertical distance y, we obtain 
the curve shown in Fig. 6.17c. We note the discontinuities existing in 
this curve, which reflect the difference between the values of t corre
sponding respectively to the flanges ABGD and A' B' G' D' and to the 
webEFF£1. 

y 

(,) (b) (c) 



In the case of the web, the shearing stress r .ry varies only very 
slightly across the section bb', an~ can be assumed equal to its aver
age value T ave· This is not true, however, for the flanges. For example, 
considering the horizontal line DEFG, we note that Txy is zero between 
D and E and between F and G, since these two segments are part of 
the free surface of the beam. On the other hand the value of T).y between 
E and F can be obtained by making t = EF in Eq. (6.6). In practice, 
one usually assumes that the entire shear load is carried ~y the web, 
and that a good approximation of the maximum value of the sheadng 
stress in the cross section can be obtained by dividing V by the cross
se.:tional area of the web. 
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v 
'fmax =A

wob 

(6.11) 

We should note, however, that while the vertical component r .ry of 
the shearing stress in the flanges can be neglected, its horizontal com
ponent Txz has a significant value that will be determined in Sec. 6.7. 

Knowing that the allowable shearing stress for the timber beam 
of Sample Prob. 5.7 is '~"au = 1.75 MPa, check that the design 
obtained in that sample problem is acceptable from the point 
of view of the shearing stresses. 

We recall from the shear diagram of Sample Prob. 5.7 that 
Vmax = 20 leN. The actual width of the beam was given 
as b = 90 mm and the value obtained for its depth was 

Knowing that the allowable shearing stress for the steel beam 
of Sample Prob. 5.8 is 'Ta11 = 90 MPa, check that the 
W360 X 32.9 shape obtained in that sample problem is ac
ceptable from the point of view of the shearing stresses. 

We recall from the shear diagram of Sample Prob. 5.8 
that the maximum absolute value of the shear in the beam is 
lVI max = 58 kN. As we saw in Sec.· 6.4, it may be assumed in 
practice that the entire shear load is carried by the web and 
that the maximum value of the shearing stress in the beam 
can be obtained from Eq. (6.11). From Appendix C we find 
that for a W360 X .32..9 shape the depth of the beam and the 

h = 366 mm. Using Eq. (6. 10) for the maximum shearing 
stress in a narrow rectangular beam, we write 

3 v 3 v 3(20kN) 
7 

"'" ~ 2 A ~ 2 bh ~ 2(0.09 m)(0.366 m) = 0·91 MPa 

Since T max < -r an• the design obtained in Sample Prob. 5.7 is 
acceptable. 

thickness of its web are, respectively, d = 349 mm and 
tw = 5.8 mm. We thus have 

A.,b ~ d tw ~ (349 mm)(5.8 mm) ~ 2024 mm2 

Substituting the values of !V!max and Aweb into Eq. (6.11), we 
obtain 

lVI"'"' 58 kN 
T ~ -- = = 28.7MPa 

max Aweb 2024 

Since T max < Tall• the design obtained in Sample Prob. 5.8 is 
acceptable. 
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Fig. 6.19 

'6.5. FURTHER DISCUSSION OF THE DISTRIBUTION OF 
STRESSES IN A NARROW RECTANGULAR BEAM 

Fig. 6.18 

Consider a narrow cantilever beam of rectangular cross section of width 
band depth h subjected to a load Pat its free end (Fig. 6.18). Since the 
shear V in the beam is constant and equal in magnitude to the load P, 
Eq. (6.9) yields 

T = ~!'.(1- i) 
.ry 2A c2 (6.12) 

We note from Eq. (6.12) that the shearing stresses depend only upon 
the distance y from the neutral surface. They' are independent, there~ 
fore, of the distance from the point of application of the load; it fol~ 
lows that all elements located at the same distance from the neutral sur
face undergo the same shear deformation (Fig. 6.19). While plane 
sections do not remain plane, the distance between two corresponding 
points D and D' located in different sections remains the same. This 
indicates that the normal strains Ex, and thus the normal stresses u:x, are 
unaffected by the shearing stresses, and that the assumption made in 
Sec. 5.1 is justified for the loading condition of Fig. 6.18. 

We conclude that our analysis of the stresses in a cantilever beam 
of rectangular cross section, subjected to a concentrated load P at its 
free end, is valid. The correct values of the shearing stresses in the beam 
are given by Eq. (6.12), and the nonnal stresses at a distance x from 
the free end are obtained by making M = - Px in Eq. (5.2) of Sec. 5.1. 
We have 

Pxy 
u =+

' I 
(6.13) 



The validity of the above statement, however, depends upon the end 
conditions. If Eq. (6.!2) is to apply everywhere, then the load P must 
be distributed parabolically over the free~end section. Moreover, the 
fixed~end support must be of such a nature that it will allow the type 
of shear deformation indicated in Fig. 6J9. The resulting model (Fig. 
6.20} is highly unlikely to be encountered in practice. However, it fol
lows from Saint-Venant's principle that, for other modes of application 
of the load and for other types of fixed-end supports, Eqs. (6.12) and 
(6.13) still provide us with the correct distribution of stresses, exce"pt 
close to either end of the beam. 

p 

Fig. 6.20 

When a beam of rectangular cross section is subjected to several 
concentrated loads (Fig. 6.21), the principle of superposition can be 
used to detennine the normal and shearing stresses in sections located 
between the points of application of the loads. However, since the loads 
P2, P3, etc., are applied on the surface of the beam and cannot be as
sumed to be distributed parabolically throughout the cross section, the 
results obtained cease to be valid in the immediate vicinity of the points 
of application of the loads. 

When the beam is subjected to a distributed load (Fig. 6.22), the 
shear varies with the distance from the end of the beam, and so does 
the shearing.stress at a given elevation y. The resulting shear deforma~ 
tions are such that the distance between two corresponding points of 
different cross sections, such as D1 and o;, or D2 and D2, will depend 
upon their elevation. This indicates that the assumption that plane sec
tions remain plane, under which Eqs. (6.12) and (6.13) were derived, 
must be rejected for the loading. condition of Fig. 6.22. The error in
volved, however, is small for the values of the span-depth ratio en
countered in practice. 

We should also note that, in portions of the beam located under a 
concentrated or distributed load, normal stresses <r y will be exerted on 
the horizontal faces of a cubic element of material, in addition to the 
stresses T.ry shown in Fig. 6.2. 

6.5. Distribution of Stresses in a Narrow 381 
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Fig. 6.21 

Fig. 6.22 
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SAMPLE PROBLEM 6.1 

Beam AB is made of three planks glued together and is subjected, in its plane 
of symmetry, to the loading shown. Knowing that the width of each glued joint 
is 20 mm, determine the average shearing stress in each joint at section n-n of 
the beam. The location of the centroid of the section is given in the sketch and 
the centroidal moment of inertia is known to be I = 8.63 X 10-6 m4, 

SOLUTION 

Vertical Shear at Section n-n. Since the beam and loading are both 
symmetric w~th respect to the center of the beam, we have A = B = 1.5 kN t. 

A=l.5kN 

Considering the portion of the beam to the left of section n-n as a free body, 
we write 

+t 2.F, ~ 0: I.5kN-v~o v~I.5kN 

Shearing Stress in Joint a. We pass the section a-a through the glued 
joint and separate the cross-sectional area into two parts. We choose to deter
mine Q by computing the first moment with respect t6 the neutral axis of the 
area above section a-a. 

Q Ay, ~ [(0.100 m)(0.020 m))(0.0417 m) ~ 83.4 x 10-6 m3 

Recalling that the width of the glued joint is t = 0.020 m, we use Eq. (6.7) to 
determine the average shearing stress in the joint. 

VQ (1500 N)(83.4 X 10-6 m3) 
1' =-= 

'"' It (8.63 X 10-6 m4)(0.020 m) 
1'ave = 725 kPa -<$.1 

Shearing Stress in jOint b. We now pass section b-b and compute Q by 
using the area below the section. 

Q ~ Aji2 ~ [(0.060 m)(0.020 m))(0.0583 m) ~ 70.0 X w-6 m' 

VQ (1500 N)(70.0 X w-6 m3) 
7avc=-= 64 1'ave=608kPa~ 

It (8.63 X IO m )(0.020 m) 
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SAMPlE PROBlEM 6.2 
A timber beam AB of span ~ m and nominal width 100 mm (actual width 
= 90 mm) is to support the three. concentrated loads shown. Knowing that 
for the grade of timber used O"an 12 MPa and 'Tan = 0.8 MPa, determine the 
minimum required depth d of the beam. 

SOLUTION 

Maximum Shear and Bending Moment. After drawing the shear and 
bending-moment diagrams, we note that 

Mm~x = 10.95 kN · m 

vm~x = 14.5 kN 

Design Based on Allowable Normal Stress. We first express the elas
tic section modulus Sin terms of the depth d. We have 

1 1 1 s =- = -bd2 = -(90)d2 = 15d2 

c 6 6 

For Mma>: = 10.95 kN · m and O'Gu = 12 MPa, we write 

Mmax 
S=

u all 

d' = 60833 

10.95 kN · m 

12MPa 

d=246mm 

We have satisfied the requirement that um ::s 12 MPa. 

Check Shearing Stress. For Vmax = 14.5 kN and d = 246 mm, we find 

3 Vma~ 3 14.5 kN 
""' = 2 A = 2 (90 mm)(246 mm) T, = 0·982 MPa 

Since 'Tau = 0.8 MPa, the depth d = 246 rom is not acceptable and we must 
redesign the beam on the basis of the requirement that r m :s: 0."8 MPa. 

Design Based on Allowable Shearing Stress. Since we now know that 
the allowable shearing stress controls the design, we write 

3 14.5 kN 
0.8 MPa = - ( )d 2 90mm 

d = 322mm 41 

The normal stress is, of course, less than O'aJI = 12 MPa, and the depth of 
322 mm is fuJly acceptable. 

Comment. Since timber is normally available in depth increments of 
50 mm, a 100 mm X 350-mm nominal size timber should be used. The actual 
cross section would then be 90 mm X 325 nun. 

383 
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Fig. P6.1 

20mm 

80mm 

20mm 

Fig. P6.3 and P6.4 

Fig. P6.5 

16 x 200 mm 

6.1 Three boards, each of 38 X 90-mm rectangular cross section, are 
nailed together to form a beam that is subjected to a vertical shear of I kN. 
Knowing that the spacing between each pair of nails is 60 mm, determine the 
shearing force in each nail. 

Fig. P6.2 

6.2 Three boards, each 50 mm thick, are nailed together to forffi a beam 
that is subjected to a vertical shear. Knowing that the allowable shearing force 
in each nail is 600 N, determine the allowable shear if the spacing s between 
the nails is 75 nun. 

6.3 A square box beam is made of two 20 X 80-mm planks and two 
20 X 120-mm planks nailed together as shown. Knowing that the spacing 
between the nails is s = 50 mm and that the allowable shearing force in eacl). 
nail is 300 N, determine (a) the largest allowable vertical shear in the beam, 
(b) the corresponding maximum shearing stress in the beam. 

6.4 A square box beam is made of two 20 X 80-mm planks and two 
20 X 120-mm planks nailed together as shown. Knowing that the spacing 
between the nails is s = 30 mm and that the vertical shear in the beam is 
V = 1200 N, determine (a) the shearing force in each nail, (b) the maximum 
shearing stress in the beam. 

6.5 The American Standard rolled-steel beam shown has been reinforced 
by attaching to it two 16 X 200-mm plates, using 18-mm-diameter bolts spaced 
longitudinally every 120 mm. Knowing that the average allowable shearing 
stress in the bolts is 90 MPa, determine the largest permissible vertical shear
ing force. 

6.6 Solve Prob. 6.5, assuming that the reinforcing plates are only 
12 mm thick. 



6.7 and 6.8 A column is fabricated by connecting the rolled-. 
steel members shown by bolts of 18-mm diameter spaced longitudinally every 
125 mm. Determine the average shearing stress in the bolts caused by a shear
ing forct; of 120 ~N parallel to the y axis. 

350mm X lOmm 

C250 X 37 

Fig. P6.7 

6.9 through 6.12 For the beam and loading shown, consider section 
n-n and determine (a) the largest shearing stress in that section, (b) the shear
ing stress at point a. 

j_l-250mm--Jtr 
25mm ==:~f 

l 15mm 
250mm 

10 =t-1 
l5mm 

Fig. P6.9 

0.3m 
r---i 

Fig. P6.10 

Fig. P6.8 

40 kN 40 kN 12 

16 

Dimensions in mm 

Fig. P6.12 
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W6l0 X 155 

···r:-Ls mL27 m--~ 
Fig. P6.17 

·[!~~.1} 
L/4 LIZ L/4 

Fig. P6.19 

6.13 Two steel plates of 12 X 200-mm rectangular cross section are 
welded to the W310 X 52 beam as shown. Detennine the largest allowable 
vertical shear if the shearing stress in the beam is not to exceed 90 MPa. 

W310 X 52 12mm X 200mm 

Fig. P6.13 __ 

6.14 ·solve Prob. 6.13, assuming that the two steel plates are (a) replaced 
by 8 X 200-mm plates, (b) removed. 

6.15 For the beam and loading shown, determine the minimum required 
depth h, knowing that for the grade of timber used, u~u = 12 MPa and 
'~'au = 0.9 MPa. 

2A kN 4.8 kN 

~ A :tir·-
clm-Llm-Llm~r 

Fig. P6.16 

6.16 For the beam and loading shown, determine the minimum required 
width b, knowing that for the grade of timber used cr~11 = 12 MPa and 
7 nll = 825 kPa. 

6.17 For the wide-flange beam with the loading shown, detennine the largest 
load P that can be applied, knowing thar the maximum normal stress is 165 MPa 
and the largest shearing stress using the approximation 7, = VI A web is I 00 MPa. 

W360 X 122 
B 

Afic·~~~~~~E 

'I I I I 
0.6m \ 0.6m 

0.6m 

Fig. P6.18 

6.18 For the wide~flange beam with the loading shown, determine the 
largest load P that can be applied, knowing that the maximum normal stress is 
160 MPa and the largest shearing stress using the approximation 7 111 = VIAweb 
is 100 MPa. 

6.19 A timber beam AB of length Land rectangular cross section car~ 
ries a unifonnly distributed load w and is supported as shown. (a) Show that 
the ratio 7,/ a, of the maximum values of the shearing and normal stresses in 
the beam is equal to 2h!L, where hand L are, respectively, the depth and the 
length of the beam. (b) Determine the depth hand the width b of the beam, 
knowing that L = 5 m, w = 8 k.N/m, 7, = 1.08 MPa, and 0', = 12 MPa. 



6.20 A timber beam AB of length L and rectangular cross· section car~ 
ries a single concentrated load P at its midpoint C. (a) Show that the ratio 
-r11,/ a-, of the maximum values of the she<iling and normal stresses in the beam 
is equal to 2h!L, where h and L are, respectively, the depth and the length of 
the beam. (b) Determine tbe depth h and the width b of the beam, knowing 
that L =." 2 m, P = 40 kN, 1" m = 960 kPa, and" a- 111 = 12 MPa. 

6.21 and 6.22 For the. beam and loading shown, consider section n~n 
and determine the shearing stress at (a) point a, (b) point b. 

Fig. P6.21 and P6.23 

50 kN .'50 kN 

Fig. P6.22 and P6.24 

6.23 and 6.24 For the beam and loading shown, determine the largest 
shearing stress in section n-n. 

6.25 through 6.28 A beam having the cross section shown is subjected 
to a vertical shear V. Determine (a) the horizontal line along which the shear
ing stress is maximum, (b) the constant kin the following expression for the 
maximum shearing stress 

where A is the cross-sectional area of the beam. 

Fig. P6.20 

Fig. P6.25 Fig. P6.26 Fig. P6.27 
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{a) 

Fig .. 6.23 

Vet ro 
C D 

Fig. 6.25 

(b) 

6.6. LONGITUDINAL SHEAR ON A BEAM ELEMENT 
OF ARBITRARY SHAPE 

Consider a box beam obtained by nailing together four planks, as shown 
in Fig. 6.23a. You learned in Sec. 6.2 how to determine the shear per 
unit length, q, on the horizontal surfaces along which the planks are 
joined. But could you determine q if the planks had been joined along · 
vertical surfaces, as shown in Fig. 6.23b? We examined in S(;1c: 6.4 the 
distribution of the vertical components r .• y of the ·stresses on a trans
verse section of a W-beam or an S-beam and found that these stresses 
had a fairly constant value in the web of the beam and were negligible 
in its flanges. But what about the horizontal components T xz of the 
stresses in· the flanges? 

To answer these questions we must extend the procedure developed 
in Sec. 6.2 for the determination of the shear per unit length, q, so that 
it will apply to the cases just described. 

Fig. 6.5 (repeated) 

Consider the prismatic beam AB of Fig. 6.5, which has a vertical 
plane of symmetry and supports the loads shown. At a distance x from 
end A we detach again an element CDD 1 C' of length Llx. This element, 
however, will now extend from two sides of the beam to an arbitrary 
curved surface (Fig. 6.24). The forces exerted on the element include 

y 

F!g. 6.24 

vertical shearing forces V1c and V 1n, elementary horizontal normal 
forces ere dA and ern dA, possibly a load w Llx, and a longitudinal shear
ing force LlH representing the resultant of the elementary longitudinal 
shearing forces exerted on the curved surface (Fig. 6.25). We write the 
equilibrium equation 

!J.H+ f (a-0 -a-c)dA=O 

" 
±,"F=O· "' " . 

y.rhere the integral is to be computed over the shaded area a of the sec-
tion. We observe that the equation obtained is the same as the one we 



obtained in Sec. 6.2, but that the shaded area ctover which the integral 
is to be computed now extends to the curved surface. 

The remainder of the derivatiori is the same as in Sec. 6.2. We find 
that· the longitudinal shear exerted on the beam element is 

(6.4) 

where I is the centroidal moment of inertia of the entire section, Q the 
first moment of the shaded area a with respect to the neutral axis, and 
V the vertical shear in the sectiori. Dividing both members of Eq. (6.4) 
by Llx, we obtain the horizontal shear per unit length, or shear flow: 

!1H VQ 
q=-=-

!1x I 

A square box beam is made of two 18 X 76~mm planks and 
two 18. X 112-nun planks, nailed together as shown (Fig. 
6.26). Knowing that the spacing between nails is 44 mm and 
that the beam is subjected to a vertical shear of magnitude 
V = 2.5 kN, determine the shearing force in each nail. 

We isolate the upper plank and consider the total force 
per unit length, q, exerted on its two edges. We use Eq. (6.5), 
where Q represents the first moment with respect to the neu~ 
tral axis of the shi.tded area A' shown in Fig. 6.27a, and where 
I is the moment of inertia about the same axis of the entire 
cross-sectional area of the box beam (Fig. 6.27b). We have 

Q = A'y = (18 mm)(76 mm)(47 mm) = 64296 mm3 

Recalling that the moment of inertia of a square of side a about 
a centroidal axis is I= 1za4

, we write 

I= ~(112 mm/- fz(76 mm)4 = 10332 mm4 

Substituting into Eq. (6.5), we obtain 

VQ (2.5 kN)(64296 mm') 
q = -l = 4 = 15.6 N/mm 

10332 mm 

Because both the beam and the upper plank are symmetric with 
respect to the vertical plane of loading, equal forces are ex~ 
erted on both edges of the plank. The force per unit length on 
each of these edges is. thus !q = h15.6) = 7.8 N/mm. Since 
the spacing between nails is 44 mm, the shearing force in each 
nail is 

F = (44HUU)(7.8 N/mm) = 343.2 N 

(65) 

A' 

Fig. 627 
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18mm~ I 7Bmm I IJ_8mm 
JD. :· . 18mm 
I 1'.\ ·,1t 

112Lmm \ '. 

',' . '".. ,•, 

Fig. 6.26 

N.A. 1 
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Fig. 6.30 

y 

Fig. 6.31 

6.7. SHEARING STRESSES IN THIN-WALLED MEMBERS 

We saw in the preceding section that Eq. (6.4) maY be used to deter
mine the longitudinal shear AH exerted on the walls .of a beam element 
of arbitrary shape and Eq. (6.5) to determine the corresponding shear 
flow q. These equations will be used in this seCtion to calculate both 
the shear flow and the average shearing stress in thin-walled members 
such as the flanges of wide-flange beams (Fig. 6.28) and box beams, · 
or the wal1s of structural tubes (Fig. 6.29). 

Fig. 6.29 

Consider, for instance, a segment of length Ax of a wide-flange 
beam (Fig. 6.30a) and let V be the vertical shear in the transverse sec
tion shown. Let us detach an element ABB' A' of the upper flange (Fig. 
6.30b). The longitudinal shear D.H exerted on that element can be ob~ 
tained from Eq. (6.4): 

VQ 
b.H ~ T b.x (6.4) 

Dividing D.H by the area D.A = t D.x of the cut, we obtain for the av
erage shearing stress exerted on the element the same expression that 
we had obtained in Sec. 6.3 in the case of a horizontal cut: 

VQ 
'Tave = h (6.6) 

Note. that T ave now represents the average value of the shearing stres~ 
T zx over a vertical cut, but since the thickness t of the flange is small, 
there is very little variation ofT z.x across the cut. Recalling that 'Txz = T zx 

(Fig. 6.31), we conclude that the horizontal component 'Txz of the shear
ing stress at any point of a transverse section of the flange can be ob
tained from Eq. (6.6), where Q is the first moment of the shaded area 
about the neutral axis (Fig. 6.32a). We recall that a similar result was 
obtained in Sec. 6.4 for the vertical component T.ry of the shearing stress 
in the web (Fig. 6.32b). Equation (6.6) can be used to determine shear-
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(a) 

Fig. 6.32 

y 

i\ 
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ing stresses in box beams (Fig. 6.33), half pipes (Fig. 6.34), and other 
thinNwalled members, as long as the loads are applied in a plane of symN 
metry of the member. In each case, the cut must be perpendicular to 
the surface of the member, and Eq. (6.6) will yield the component of 
the shearing stress in the direction of the tangent to that surface. (The 
other component may be assumed equal to zero, in view of the prox~ 
imity of the two free surfaces.) 

Comparing Eqs. (6.5) and (6.6), we note that the product of the 
shearing stress T at a given point of the section and of the· thickness t 
of the section at that point is equal to q. Since V and I are constant in 
any given section, q depends only upon the first moment Q and, thus, 
can easily be sketched on the section. In the case of a box beam, for 
example (Fig. 6.35), we note that q grows smoothly from zero at A to 
a maximum value at C and C' on the neutral axis, and then decreases 
back to zero as E is reached. We also note that there is no sudden vari
ation in the magnitude of q as we pass a corner at B, D, B', or D', and 
that the sense of q in the horizontal portions of the section may be eas
ily obtained from its sense in the vertical portions (which is the same 
as the sense of the shear V). In the case of a wide-flange section (Fig. 
6.36), the values of q in portions AB and A' B of the upper flange are 
distributed symmetrically. As we turn at B into the web, the values of 
q corresponding to the two halves of the flange must be combined to 
obtain the value of q at the top of the web. After reaching a maximum 
value at C on the neutral axis, q decreases, and at D splits into two 
equal parts corresponding to the two halves of the lower flange. The 
name of shear flow commonly used to refer to the shear per unit length, 
q, reflects the similarity between the properties of q that we have just 
described and some of the characteristics of a fluid flow through an 
open channel or pipe. t 

So far we have assumed that all the loads were applied in a plane 
of symmetry of the member. In the case of members possessing two 
planes of symmetry; such as the wide-flange beam of Fig. 6.32 or the 
box beam of Fig. 6.33, any load applied through the centroid of a given 

tWe reca!l that the concept of shear flow was used to analyze the distribution of shearing 
stresses in thin-walled hcrfiow shafts (Sec. 3.13). However, while the shear flow in a hollow 
shaft is constant, the shear flow in a member under a transverse loading is not. 
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Fig. 6.34 

r 

Fig. 6.35 Variation of 'q in box-beam section. 
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Fig, 6.38 (PL > My} 

cross section can be resolved into components along the two axes of 
symmetry of the section. Each component will cause the member to 
bend in a plane of symmetry, and the corresponding shearing stresses 
can be obtained from Eq. (6.6). The principle of superposition can then 
be used to determine the resulting stresses. 

However, if the member considered possesses no plane of symrne~ 
try, or if it possesses a single plane of symmetry and is subjected to a 
load that is not contained in that plane, the member is observed to bend 
and twist at the same time, except when the load is applied at a spe~ 
cific point, called the shear center. Note that the shear center generally 
does not coincide with the centroid of the cross section. The determi~ 
nation of the shear center of various thin~ walled shapes is discussed in 
Sec. 6.9. 

'6.8. PLASTIC DEFORMATIONS 

Consider a cantilever beam AB of length L and rectangular cross sec~ 
tion, subjected at its free end A to a concentrated load P (Fig. 6.37). 
The largest value of the bending moment occurs at the fixed end B and 
is equal to M = PL. As long as this value does not exceed the maxi~ 
mum elastic moment My, that is, as long as PL :s; My, the normal stress 
(}'x will not exceed the yield strength cry anywhere in the beam: How~ 
ever, asP is increased beyond the value My/L, yield is initiated at points 
B and B' and spreads toward the free end of the beam. Assuming the 
material to be elastoplastic, and considering a cross section CC' located 
at a distance x from the free end A of the beam (Fig. 6.38), we obtain 
the half~thickness Yr of the elastic core in that section by making 
M = Px in Eq. (4.38) of Sec. 4.9. We have 

3 ( ly}) 
Px = 2 My 1 - 3 c2- (6.14) 

where c is the half-depth of the beam. Plotting Yr against x, we obtain 
the boundary between the elastic and plastic zones. 

As long as PL < lM,, the parabola defined by Eq. (6.14) inter
sects the line BB', as shown in Fig. 6.38. However, when PL reaches 

..#'='19--YY"" 0 the value !Mr, that is, when PL = MP, where Mp is the plastic moment 

p 

Fig. 6.39 (PL = Mp =~My) 

defined in Sec. 4.9, Eq. (6.14) yields yy = 0 for x = L, which shows 
that the vertex of the parabola is now located in section BB', and tha.t 
this section has become fully plastic (Fig. 6.39). Recalling Eq. (4.40) 
of Sec. 4.9, we also note that the radius of curvature p of the neutral 
surface at that point is equal to zero, indicating the presence of a sharp 
bend in the beam at its fixed end. We say that a plastic hinge has de~ 
veloped at that point. The load P = Mp!L is the largest load that can 
be supported by the beam. 



The.above discussion was based only on the analysis of the nor
mal stresses in the beam. Let us n~w examine the distribution of the 
shearing stresses in a section that has become partly plastic. Consider 
the portion of b~-am CC'D"D located between the transverse sections 
CC' and DD', and above the horizontal plane D" C" (Fig. 6.40a). If 
this portion is located entirely in the plastic zone, the normal stresses 
exerted on the faces CC" and DD" will be uniformly distributed and 
equal to the y~eld strength O'"y (Fig. 6.40b). The equilibrium of the fr~e 

D c Ur D C_(Tr 
,,,, 0 ~ 

' ' = D",....C" 
6H 

' ' : (b) 

p:;;;,: 
D' C' 

(,) 

Fig. 6.40 

body CC"D"D thus requires that the horizontal shearing force AH ex
erted on its lower face be equal to zero. It follows that the average value 
of the horizontal shearing stress Tyx across the beam at C" is zero, as 
well as the average value of the vertical shearing stress T ,ry. We thus 
conclude that the vertical shear V = P in section CC' must be distrib
uted entirely over the portion EE' of$hat section that is located within 
the elastic zone (Fig. 6.41). It can be shownt that the distribution of the 
shearing stresses over EE' is the same as in an elastic rectangular beam 
of the same width b as beam AB, and of depth equal to the thickness 
2yy of the elastic zone. Denoting by A' the area 2byy of the elastic por
tion of the cross section, we have 

r = ~!'_(1- L) 
xy 2 A' y~ 

(6.15) 

The maximum value of the shearing stress occurs for y = 0 and is 

(6.16) 

As the area A' of the elastic portion of the section decreases~ T max 

increases and eventually reaches the yield strength in shear Ty. Thus, 
shear contributes to the ultimate failure of the beam. A more exact analy
sis of this mode of failure should take into account the combined effect 
of the nonnal and shearing stresses. 

tSie Prob. 6.55. 
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SAMPlE PROBlEM 6.3 

Knowing that the vertical shear is 200 kN in a W250 X 101 rolled-steel beam, 
determine the horizontal shearing stress in the top flange at a point a located 
108 mm from the edge of the beam. The dimensions and other geometric data 
of the rolled-steel section are given in Appendix C. 

i' . ;,J SOLUTION 
1 132--= 1222mm 

___ 
2_,_f We ISolate the shaded portion of the flange by cutting along the dashed line 

18mm x 300 mm 

that passes through point a. 

Q = (108 mm)(l9.6 mm)(122.2 mm) = 258.7 X 103 mm3 

VQ (200 kN)(258.7 X 103 mm3
) 

'(=-= 
It (164 X 106 mm4)(19.6 mm) 

1' = 16.1 MPa ~ 

SAMPlE PROBLEM 6.4 
• Solve Sample Prob. 6.3, assuming that 18 X 300-mm plates have been attached 

to the flanges of the W250 X 101 beam by continuous fillet welds as shown. 

SOLUTION 

For the composite beam the centroidal moment of inertia is 

I= 164 X !06 mm'' + 2[/,(300 mm)(18 mm)3 + (300 mm)(l8 mm)(l41 mm)2] 
l = 379 X l06 mm4 

Since the top plate and the flange are connected only at the welds, we find the 
shearing stress at a by passing a section through the flange at a, between the 
plate and the flange, and again through the flange at the symmetric point a'. 

For the shaded area that we have isolated, we have 

t = 2t1 = 2(l9.6 mm) 39.2 mm 

Q = 2[(108 mm)(19.6 mm)(122.2 mm)] + (300 mm)(18 mm)(l41 mm) 
Q = 1.28 X 106 mm3 

VQ (200 kN)(L28 X !06 mm3
) 

T=-= T=l7.2MPa<ll 
It (379 X 106 mm4 )(39.2 mm) 
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SAMPlE PROBlEM 6.5 
The thin-walled extmded beam shown is made of aluminum and has a uniform 
3~mm wall thickness.' Knowing that the shear in the beam is 5 kN, determine 
(a) the shearing stress at point A, (b) the maximum sheating stress in the beam. 
Note: The dimensions given are to lines midway between the outer and inner 
smfaces of the beam. 

SOLUTION 

Centroid. We note that AB = AD = 65 mm. 

- 2: yA 2[(65 mm)(3 mm)(JO mm)] 
Y ~ _2:_A_ ~ ::c2[7( 6;-:5,-cm""m-;)-;;(3:-m-'m-"):;-] -:+-'(;':50:c-m-m'-'J(c:-3 -m-m"'") 

Y = 21.67 mm 

Centroidal Moment of Inertia. Each side of the thin·walled beam can 
be considered as a parallelogram and we recall that for the case shown 
/ 1, = bh3/12 where b is measured parallel to the axis nn. 

b ~ (3 mm)/cos f3 ~ (3 mm)/(12/13) ~ 3.25 mm 
I~ 2:(1 + Ad2) ~ 2[;',(3.25 mm)(60 mm)3 

+ (3.25 mm)(60 mm)(8.33 mm)2
] +[;',(50 mm)(3 mm)3 

+ (50 mm)(3 mm)(2L67 mm)2] 

I= 214.6 X 103 mm4 I= 0.2146 X 10-6 m4 

a. Shearing Stress at A. If a shearing stress 'T A occurs at A, the shear 
flow will be qA = TAt and must be directed in one of the two ways shown. But 
the cross section and the loading are symmetric about a vertical line through 
A, and thus the shear flow must also be symmetric. Since neither of the possi
ble shear flows is symmetric, we conclude that 'T A = 0 ~ 

b. Maximum Shearing Stress. Since the wall thickness is constant, the 
maximum shearing stress occurs at the neutral axis, where Q is maximum. 
Since we know that the shearing stress at A is zero, we cut the section along 
the dashed line shown and isolate the shaded portion of the beam. In order to 
obtain the largest shearing stress, the cut at the neutral axis is made perpendi
cular to the sides, and is of length t = 3 mm. 

(
38.33 mm) Q ~ [(3.25 mm)(38.33 mm)] 

2 
~ 2387 mm3 

Q = 2.387 X 10-6 m3 

VQ (5 kN)(2.387 X 10-6 m3) 

'~'E = fr = (0.2146 X 10-6 m4)(0.003 m) '~'m:•>: = 7£ = 18·54 MPn <11 

39!i 
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6.29 The built~up timber !Jearn is subjected to a 6-kN vertical shear. 
Knowing that the longitudinal spacing of the nails is s = 60 mm and that each 
nail is 90 mm long, determine the shearing force in ea_ch nail. 

6.30 The built-up timber beam is subjected to a vertical shear of 5 k.N. 
Knowing that the allowable shearing force in the nails is 300 N, determine the 
largest permissible spacing s of the nails. 

50mm 

It: 
250mm 

l:: t 
50 

50mm 
Fig. P6.30 

6.31 The built-up beam shown is made by gluing together two 
20 X 250-mm plywood strips and two 50 X 100-mrp.planks. Knowing that the 
allowable average shearing stress in the glued joints is 350 k.Pa, determine the 
largest permissible vertical shear in the beam. 

6.32 The built-up beam was made by gluing together several wooden 
planks. Knowing that the beam is subjected to a 5-k.N shear, determine the av
erage shearing stress in the glued joint (a) at A, (b) at B. 

Dimensions in mrn 

Fig. P6.32 



6.33 Several planks are glued together to form the box beam shown. 
Knowing that the beam is subjected to a vertical shear of 3 kN, determine the 
average shearing stress in the glued joint (a) at A, (b) at B. 

Dimensions in mm 
Fig. P6.33 

6.34 Knowing that a W360 X 122 rolled-steel beam is subjected to a 
250-kN vertical shear, determine the shearing stress .(a) at point A, (b) at the 
centroid C of the section. 

6.35 An extruded aluminum beam has the cross section shown. Know
ing that the vertical shear in the beam is ISO kN, determine the shearing stress 
at (a) point a, (b) point b. 

Dimesions in mm 

Fig. P6.35 

6.36 Knowing that a given vertical shear V causes a maximum shearing 
stress of 75 MPa in the hat-shaped extrusion shown, determine the correspon
ding shearing stress at (a) point a, (b) point b. 

6.37 and 6.38 The extruded beam shown has a uniform wall thickness 
of 3 mm. Knowing that the vertical shear in the beam is 8 kN, determine the 
shearing stress at each of the five points indicated. 

• 30mm 

L ~'*""""' 
I I 

~· 30mm 30mm 
Fig. P6.37 
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Fig. P6.34 
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Fig. P6.36 
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Fig. P6.41 

Fig. P6.45 

6.39 The vertical shear is 25 kN in a beam having the cross section 
shown. Knowing that d = 50 mm, determine the shearing stress at (a) point a, 
(b) point b. u 

8 mm 

Fig. P6.39 and P6.40 

6.40 The vertical shear is 25 kN in a beam having the cross section 
shown. Determine (a) the distanced for which T 11 = 'Tb, (b) the corresponding 
shearing stress at points a and b. 

6.41 An extmded beam has the cross section shown and a uniform wall 
thickness of 5 mm. Knowing that a given vertical shear V causes a maximum 
shearing stress 1' = 60 MPa, determine the shearing stress at the four points 
indicated. 

6.42 Solve Prob. 6.41 assuming that the beam is subjected to a hori
zontal shear V. 

6.43 A beam consists of three planks connected as shown by 10-rnm~ 

diameter bolts spaced every 300 mm along the longitudinal axis of the beam. 
Knowing that the beam is subjected to a 10-kN vertical shear, determine the 
average shearing stress in the bolts. 

Fig. P6.43 Fig. P6.44 

6.44 A beam consists of five planks of 38 X 150-mm cross section con
nected by steel bolts with a longitudinal spacing of 220 mm. Knowing that the 
shear in the beam is vertical and equal to 8 kN and that the allowable average 
shearing stress in each bolt is 50 MPa, determine the smallest permissible bolt 
diameter that may be used. 

6.45 Two 20 X 450-mm steel plates are bolted to four Ll52 X 152 X 
19.0 angles to form a beam with the cross section shown. The bolts have a 
22-mm diameter and are spaced longitudinally every 125 mm. Knowing that 
the allowable average shearing stress in the bolts is 90 MPa, determine the 
largest permissible vertical shear in the beam. (Given: I .. = 1896 X 106 mm4

). 



6.46 Four 102 X 102 X 9.5 steel angles shapes and a 12 X 400-mm 
steel plate are bolted together to form a beam with the cross section shown. 
The bolts are of 22*mm diameter and are.spaced longitudinally every 120 mm. 
Knowing. that the beam is subjected to a vettical shear of 240 k.N, determine 
the average shearillg stress. in each bolt. 

Fig. P6.46 

6.47 A plate of 6*mm thickness is corrugated as shown and then used 
as a beam. For a vertical shear of 5 k.N, determine (a) the maximum shearing 
stress in the section, (b) the shearing stress at point .B. Also sketch the shear 
flow in the cross section. 

6.48 An extruded beam has the cross section shown and a uniform wall 
thickness of 3 mm. For a vertical shear of 10 kN, determine (a) the shearing 
stress at point A, (b) the maximum shearing stress in the beam. Also sketch the 
shear flow in the cross section. 

['--60mm----j A 

';,'' ''"" \!;~ 

1\ ,, 1

3r 
U-28 ~m_.j"_j 
16mm 16mm 

Fig. P6.48 

6.49 A plate of 4-mm thickness is bent as shown and then used as a 
beam. For a vertical shear of 12 k.N, determine (a) the shearing stress at point 
A, (b) the maximum shearing stress in the beam. Also sketch the shear flow in 
the cross section. 

6.50 A plate of thickness t is bent as shown and then used as a beam. 
For a vertical shear of 2.4 k.N, determine (a) the thickness t for which the maxi
mum shearing stress is 2 MPa, (b) the corresponding shearing stress at point 
E. Also sketch the shear flow in the cross section. 

I' 
120mm 

L ·""A """"''-;> ll:.:i3£=:G 

1-<-;;75;-m-m->-!1~,.50;;-m->J+• 75 m m I 
Fig. P6.50 
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Fig. P6.52 

(a) 

Fig. P6.53 

{IJ) 

• 6.51 The design of a beam requires welding four horizontal plates to a 
vertical 12 X 120-mm plate as shown. For a vertical shear V, determine the di
mension h for which the shear ±low through the welded surface is maximum. 

12mm 

I 
60mm }, 1 • 12mm 

60nHll 
}, 

•;,.;t-'> 1__::::: 

l=no mm_j ~llO mm_j 
l2mm 

Fig. P6.51 

6.52 (a) Determine the shearing stress at point P of a thin-walled pipe 
of the cross section shown caused by a vertical shear V. (b) Show that the 
maximum shearing stress occurs for(} = 90° and is equal to 2V/A, where A is 
the cross-sectional area of the pipe. 

6.53 and 6.54 An extruded beam has a unifmm wall thickness t. Denot
ing by V the vertical shear and by A the cross-sectional area of the beam, 
express the maximum sheating stress as T max = k(VIA) and determine the con
stant k for each of the two orientations shown. 

""'o··.·· .. · \o"""' .. ··· ... ··. ·· I .. • 
~.·· ._, ' 

,_ ' -· . .· ~ 

(") 

Fig. P6.54 

(!J) 

6.55 For a beam made of two or more materials with different moduli 
of elasticity, show that Eq. (6.6) 

= VQ 
7 ~vc It 

remains valid provided that both Q and I are computed by using the trans
formed section of the beam (see Sec. 4.6) and provided further that t is the 
actual width of the beam where 7 ave is computed. 

6.56 A composite beam is made by attaching the timber and steel por
tions shown with bolts of 12-mm diameter spaced longitudinally every 200 mm. 
The modulus of elasticity is 10 GPa for the wood and 200 GPa for the steel. 
For a vertical shear of 4 kN, detennine (a) the average shearing stress in the 
bolts, (b) the shearing stress at the center of the cross section. (Hint: Use the 
method indicated in Prob. 6.55.) 



6.57 A composite beam is made by attaching the timber and steel por
tions shown with bolts- of 16-mm diameter spaced longitudinally every 200 
mm, The modulus of elasticity is 13 GPa for the wood and 200 GPa for the 
steeL For. a vertical shear of 16 kN, determine (a) the average shearing stress 
in the bolts, (b) the· shearing stress at the center of the cross section. (Hint: Use 
the method indicated in Prob. 6.55.) · 

J5 mJI75mt 
Fig. P6.57 

6.58 A steel bar and an aluminum bar are bonded together as shown to 
form a composite beam. Knowing that the vertical shear in the beam is 6 kN 
and that the mqdulus of elasticity is 210 GPa for the steel and 70 GPa for the 
aluminunl, determine (a) the average stress at the bonded surface, (b) the max
imum shearing stress in the beam. (Hint: Use the method indicated in Prob. 6.55.) 

6.59 A steel bar and an aluminum bar are bonded together. as shown 
to form a composite beam. Knowing that the vertical shear in the beam is 
16 kN and that the modulus of elasticity is 200 GPa for the steel and 73 GPa 
for the aluminum, determine (a) the average stress at the bonded surface, (b) 
the maximum shearing stress in the beam. (Hint: Use the method indicated in 
Prob. 6.55.) 

6.60 Consider the cantilever beam AB discussed in Sec. 6.8 and the por
tion ACKJ of the beam that is located to the left of the transverse section CC' 
and above the horizontal plane JK, where K is a point at a distance y < Yr 
above the neutral axis (Fig. 6.60). (a) Recalling that Cix = O"ybetween C and E 
and 0",, = (cr r1Yr)Y between E and K, show that the magnitude of the horizon
tal shearing force H exerted on the lower face of the portion of beam ACKJ is 

H = l. b<Tr(2c- Yr- t) 
2 Yr 

(b) Observing that the shearing stress at K is 

. I!.H . l I!.H l aH 
'Tn,= hm-= hm--=-

·. tlA ..... o AA Ar->0 b 6.x b ax 

and recalling that Yr is a function of x defined by Eq. (6.14), derive Eq. (6.15). 

p Plastic 

A C E 

I ___________________ 8 K~ry' 
. C' 

1---r----j 
-"" Neutral axis 

Fig. P6.60 
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Fig. 6.42 

(V"" P,M = Px) 

Fig. 6.43 

Fig. 6.45 

(V = P,M = Px) 

Fig. 6.44 

"6.9. UNSYMMETRIC LOADING OF THIN-WALLED 
MEMBERS; SHEAR CENTER 

Our analysis of the effects of transverse loadings in Chap. 5 and in the 
preceding sections of this chapter was limited to members possessing 
a vertical plane of symmetry and to loads applied·in that plane. The 
members were observed to bend in the plane of loading (Fig. 6.42) ahd, 
in any given cross section, the bending couple M and the shear V 
(Fig. 6.43) were found to result in normal and shearing stresses defined, 
respectively, by the formulas 

and 

My 
(J' =-

" I 

VQ 
'rave= Jt 

(4.16) 

(6.6) 

In this section, the effects of transverse loadings on thin-walled 
members that do not possess a vertical plane of symmetry will be ex
amined. Let us assume, for example, that the channel member of 
Fig. 6.42 has been rotated through 900 and that the line of action of P 
still passes through the centroid of the end section. The couple vector 
M representing the bending moment in a given cross section is still di-' 
rected along a principal axis of the sectiOn (Fig. 6.44), and the neutral 
axis will coincide with that axis (cf. Sec. 4.13). Equation (4.16), there
fore, is applicable and can be used to compute the normal stresses in 
the section. However, Eq. (6.6) cannot be used to determine the shear
ing stresses in the section, since this equation was derived for a mem
ber possessing a vertical plane of sYmmetry (cf. Sec. 6.7). Actually, the 
member will be observed to bend and twist under the applied load (Fig. 
6.45), and the resulting distribution of shearing stresses will be quite 
different from that defined by Eq. (6.6). 

The following question now arises: Is it possible to apply the ver
tical load P in such a way that the channel member of Fig. 6.45 will 
bend without twisting and, if so, where should the load P be applied? 
If the member bends without twisting, then the shearing stress at any 
point of a given cross section can be obtained from Eq. (6.6), where Q 
is the first moment of the shaded area with respect to the neutral axis 
(Fig. 6.46a), and the distribution of stresses will look as shown in· Fig. 
6.46b, with T = 0 at both A and E. We note that the shearing force ex-

(,) (b) 

Fig. 6.46 

i 
J 



erted on a small element of cross-sectional area dA = t ds is dF = 
rdA = rt ds, ot dF = q ds (Fig. 6.47a), where q is the shear flow 
q = Tt_ = VQ/1 at the point considered. The resultant of the shearing 
forces exerted on t~e elements of the upper flange AB of the channel is 
found to be a horizontal force F (Fig. 6.47~) of magnitude 

F= rqds 
A 

(6.17) 

Because of the syrnmetry of the channel section about its neutral axis, 
the resultant of the shearing forces exerted on the lower flange DE is ll 
force F' of the same magnitude as F but of opposite sense. We con
clude that the resultant of the shearing forces exerted on the web BD 
must be equal to the vertical she~r V in the section: 

V= rqds 
B 

(6.18) 

We now observe that the forces F and F' form a couple of moment 
Fh, where h is the distance between the center lines of the flanges AB 
and DE (Fig. 6.48a). This couple can be eliminated if the vertical shear 
V is moved to the left through a distance e such that the moment of V 
about B is equal to Fh (Fig. 6.48b). We write Ve = Fh or 

Fh 
e=-

V 
(6.19) 

and conclude that, when the force Pis applied at a distance e to the left 
of the center line of the web BD, "the member bends in a vertical plane 
without twisting (Fig. 6.49). 

The point 0 where the line of action of P intersects the axis of sym
metry of the end section is called the shear center of that section. We 
note that, in the case of an oblique load P (Fig. 6.50a), the member will 
also be free of any twist if the load P is applied at the shear center of 
the section. Indeed, the load P can then be resolved into two compo
nerits P~ and Py (Fig. 6.50b) con-esponding respectively to the loading 
conditions of Figs. 6.42 and 6.49, neither of which causes the member 
to twist. 

6.9. Unsymmetric Loading of Thin-Walled 
. Members; Shear Center 

BrA 
:~E 

F' 

(/;) 
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Determine the shear center 0 of a channel section of uniform 
thickness (Fig. 6.51), knowing that b = 100 mm, h = 150 mm, 
andt=4mm. 

Assuming that the member does not twist, we first deter
mine the shear flow q in flange AB at a distance s from A (Fig. 
6.52). Recalling Eq. (6.5) and observing that the first moment 
Q of the shaded area with respect to the neutral axis is 
Q ~ (st)(h/2), we write 

VQ Vsth 
q~-~-

1 21 
(6.20) 

where V is the vertical shear and I the moment of inertia of 
the section with respect to the neutral axis. 

Recalling Eq. (6.17), we determine the magnitude of the 
shearing force F exerted on flange AB by integrating the shear 
flow q from A to B: 

F~ l
b lb Vsth Vth lb 
qds = --ds =- sds 

0 o 21 21 o 

Vthb2 

F~--
41 

(6.21) 

The distance e from the center line of the web BD to the shear 
center 0 can now be obtained from Eq. (6.19): 

Fh Vthb2 h th2b2 

e=-=---~--

V 41 V 41 
(6.22) 

The moment of inertia I of the channel section can be expressed 
as follows: 

f = fweb + 2/tlaoge 

~ .l...,h, + 2[J...b,, + bt("-)'] 
12 12 2 

Neglecting the term containing {3, which is very small, we have 

(6.23) 

404 
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r'-1 1 , :.n 

h/2 

N.A. __________ L 

D 1:1::=::·2J· E 

Fig. 6.52 

Substituting this expression into (6.22), we write 

3b' b 
e~---~-·--

6b + h h 
2 +-

3b 

(6.24) 

We note that the distance e does not depend upon t and can 
vary from 0 to b/2, depending upon the value of the ratio h/3b. 
For the given channel section, we have 

and 

h 150 mm 
3b ~ 3(100 mm) ~ 05 

100mm 
e~---=40mm 

2 + 0.5 



For the channel section of Example 6.05 detennine the distri
bution of the shearing stresses caused by a 1 0-kN vertical shear 
V applied at the shear center 0 (Fig. 6.53). 

Shearing stresses in flanges. Since V is applied at 
the shear center, there is no torsion, and the stresses in flange 
ABare obtained from Eq. (6.20) of Example 6.05. We have 

q VQ Vh 
T=-=-=-s 

t It 2I 
(6.25) 

which shows that the stress distribution in flange AB is linear. 
Letting s = b and substituting for I from Eq. (6.23), we ob
tain the value of the shearing stress at B: 

Vhb 6Vb 
(6.26) 7' = = 

• 2(-/,th2)(6b + h) th(6b + h) 

Letting V = 10 kN, and using the given dimensions, we have 

6(10 kN)(100 mm) 
78 = (4 mm)(150 mm)(6 X 100 mm + 150 mm) 

= 13.3 MPa 

Shearing stresses in web. The distribution of the 
shearing stresses in the web BD is parabolic, as in the case of 
a W-beam, and the maximum stress occurs at the neutral axis. 
Computing the first moment of the upper half of the cross sec
tion with respect to the neutral axis (Fig. 6.54), we write 

Q = bt(lh) + lht(jh) = !ht(4b + h) (6.27) 

Substituting for I and Q from (6.23) and (6.27), respectively, 
into the expression for the shearir;.g stress, we have 

VQ V(jht)(4b + h) 
7 rna~ = ft = i?,th2(6b + h)t 

or, with the given data, 

3V(4b +h) 

2th(6b +h) 

3(10 kN)(4 X 100 mm + 150 mm) 
7"'~ = ~27(4,.cm'-'m~)(:;:15:-;'0"m'-m-c):7(6~X":1':;0:CO-m::.m.:_+=:..::;1::;50;c-m-;m) 

= 18.3 MPa 

Distribution of stresses over the section. The dis
tribution of the shearing stresses over the entire channel sec
tion has been plotted in Fig. 6.55. 

Fig. 6.53 

Fig. 6.54 

Fig. 6.55 

V=lOkN 

B,.,-~~,' 

0 

T b=lOOmm 

e=40mm 
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For the channel section of Example 6.05, and neglecting stress 
concentrations, determine the maximum shearing stress caused 
by a 1 O~k.N vertical shear V applied at the centroid C of the 
section, which is located 28.5 mm to the right of the center 
line of the web BD (Fig. 6.56). 

Equivalent force~coup/e system at shear center. 
The shear center 0 of the cross section was determined in Ex
ample 6.05 and found to be at a distance e = 40 mm to the 
left of the center line of the web BD. We replace the shear V 
(Fig. 6.57a) by an equivalent force-couple system at the shear 
center 0 (Fig. 6.57b). This system consists of a 10-kN force 
V and of a torque T of magriitude 

T = V(OC) = (10 kN)(40 mm + 28.5 mm) 

= 0.685 kN · m 

Stresses due to bending. The l 0-kN force V causes 
the member to bend, and the coiTesponding distribution of 
shearing stresses in the section (Fig. 6.57 c) was determined in 
Example 6.06. We recall that the maximum value of the stress 
due to this force was found to be 

Stresses due to twisting. The torque T causes the 
member to twist, and the corresponding distribution of stresses 
is shown in Fig. 6.57d. We recall from Sec. 3.12 that the mem
brane analogy shows that, in a thin-walled member of uniform 
thickness, the stress caused by a torque Tis maximum along 

v 

c ·---

(b) 

Fig. 6.57 

406 

V=lOkN 
B 

l 
A_i 

1 ,····=--r 
4mm 

c 150[_ 1-
D~mm JE 

c;OOmm 
Fig. 6.56 

the edge of the section. Using Eqs. (3.45) and (3.43) with 

a= 100 mm + 150 mm + 100 mm = 350mm 

b = t = 4 mm b/a = 0.0114 

we have 

c, = j(l - 0.630b/a) = !(1 - 0.630 X 0.0114) = 0.331 

- T 685kN·in 
(Tm~x)twl~ting = c

1
ab2 = (0.331)(350)(4mm)2 = 370 MPa 

Combined stresses. The maximum stress due to the 
combined bending and twisting occurs at the neutral axis, on 
the inside surface of the web, and is 

-rma~ = 18.3 MPa + 370 MPa = 388.3 MPa 

V = 10 kN b. t 
_i 
-r 

- !__.;B:: ::3--A 
0 + "l r: · T-0685kN.m 

Bending 

(c) 

. 

. 

Twisting 

(d) 

. 
I 

l 
! 



Turning our attention to thin-walled members possessing no plane 
of symmetry, we noW consider the c~se of an angle shape subjected to 
a vertical load P. If the member is oriented in such a way that the load 
P is perpendicular to one of the principal centroidal axes Cz of the cross 
section, the couple vector M representing the bending moment in a 
given section will be directed along Cz (Fig. 6.58), and the neutral axis 
will coincide with that axis (cf. Sec. 4.13). Equation (4.16), therefore, 
is applicable and can be used to compute the nonnal stresses in the sec
tion. We now propose to determine where the load P should be applied 
if Eq. (6.6) is to define the shearing stresses in the section, i.e., if the 
member is to bend without twisting. 

Let us assume that the shearing stresses in the section are defined 
by Eq. (6.6). As in the case of the channel member considered earlier, 
the elementary shearing forces exerted on the section can be expressed 
as dF = q ds, with q = VQ/1, where Q represents a first moment with 
respect to the neutral axis (Fig. 6.59a). We note that the resultant of the 

y 

(b) 

Fig. 6.59 

shearing forces exerted on portion OA of the cross section is a force F 1 
directed along OA, and that the resultant of the shearing forces exerted 
on portion OBis a force F2 along OB (Fig. 6.59b). Since both F 1 and 
F2 pass through point 0 at the corner of the angle, it follows that their 
own resultant, which is the shear V in the section, must also pass through 
0 (Fig. 6.59c). We conclude that the member will not be twisted if the 
line of action of the load P passes through the comer 0 of the section 
in which it is applied. 

The same reasoning can be applied when the load P is perpendi~ 
cular to the other principal centroidal axis Cy of the angle section. And, 
since any load P applied at the corner 0 of a .cross section can be re
solved into components perpendicular to the principal axes, it follows 
that the member will not be twisted if each load is applied at the cor
ner 0 of a cross section. We thus conclude that 0 is the shear center of 
the section. 

Angle shapes with one vertical and one horizontal leg are encoun
tered in many structufes. It follows from the preceding discussion that 
such members will not be twisted if vertical loads are applied along the 

6.9. Unsymmetric Loading of Thln~Walled 407 
Members; Shear Center 

Fig. 6.58 

B 

kl 
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center line of their vertical leg. We note from Fig. 6.60 that the result
ant of the elementary shearing forces exerted on the vertical portion OA 
of a given section will be equal to the shear V, while the resultant of 
the shearing forces on the horizontal portion OB will be zero: 

This does not ffiean, however, that there will be no shearing stress in 
the horizontal leg of the member. By resolving the shear V into com
ponents perpendicular to the principal centroidal axes of the section and 
computing the shearing stress at every point, we would verify that T is 
zero at only one point between 0 and B (see Sample Prob. 6.6). 

Another type of thinwwalled member frequently encountered in 
practice is the Z shape. While the cross section of a Z shape does not 
possess any axis of symmetry, it does possess a center of symmetry 0 
(Fig. 6.61). This means that, to any point H of the cross section corre
sponds another point H' such that the segment of straight line HH' is 
bisected by 0. Clearly, the center of symmetry 0 coincides with the 
centroid of the cross section. As you will see presently, point 0 is also 
the shear center of the cross section. 

As we did earlier in the case of an angle shape, we assume that the 
loads are applied in a plane perpendicular to one of the principal axes 
of the section, so that this axis is also the neutral axis of the section 
(Fig. 6.62). We further assume that the shearing stresses in the section 
are defined by Eq. (6.6), i.e., that the member is bent without being 
twisted. Denoting by Q the first moment about the neutral axis of porw 
tion AH of the cross section, and by Q' the first moment of portion 
EH', we note that Q' = -Q. Thus the shearing stresses at Hand H' 
have the same magnitude and the same direction, and the shearing forces 
exerted on small elements of area dA located respectively at H and H' 
are equal forces that have equal and opposite moments about 0 (Fig. 
6.63). Since this is true for any pair of symmetric elements, it follows 
that the resultant of the shearing forces exerted on the section has a zero 
moment about 0. This means that the shear V in the section is directed 
along a line that passes through 0. Since this analysis can be repeated 
when the loads are applied in a plane perpendicular to the other prin
cipal axis, we conclude that point 0 is the shear center of the section. 



SAMPLE PROIBLIEM 6.6 

Determine the distribution of shearing stresses in the thin-walled angle shape 
DE of uniform thickness t for the loading shown. 

SOLUTION 

Shear Center. We recall from Sec. 6.9 that the shear center of the cross 
section of a thin-walled angle·shape is located at hs comer. Since the load P 
is applied at D, it causes bending but no twisting of the shape. 

Principal Axes. We locate the centroid C of a given cross section AOB. 
Since the y' axis is an axis of symmetry, the y' and z' axes are the principal 
centroidal axes of the section. We recall that for the parallelogram shown 
!,, = fa bh3 and !,, = 1 bh3

. Considering each leg of the section as a parallel
ogram, we now determine the centroidal moments of inertia li and 1:< 

L ~ z[.l_(-'-)(a cos 45')3
] ~ .1_ ta 3 

) 3 cos 45° 3 

L = z[J...(-'-)ca cos 45°?] = _!_ ta 3 

' 12 cos 45° 12 

Superposition. The shear V in the section is equal to the load P. We re
solve it into components parallel to the principal axes. 

Shearing Stresses Due to V,.-. We determine the shearing stress at point 
e of coordinate y: · 

Y' = Ha + y) cos 45° - ~a cos 45" = iY cos 45" 

Q ~ t(a - y)ji' ~ lt(a - y)y cos 45' 
V,,Q (P cos 45')[jt(a- y)y cos 45'] 3P(a - y)y 

Tt = ""J7 = (Tita3)t ta:, 

The shearing stress at point f is represented by a similar function of z. 

Shearing Stl-esses Due to V~·· We again consider point e: 

Z' = ~(a + y) cos 45° 

Q =(a - y)tZ' = !(a2 
- y2)r cos 45° 

V,,Q (P cos 45')[l(a2 - y')tcos 45'] 3P(a2 -y') 
72 

= /;t = (kta3)t 4ta3 

The shearing stress at point f is represented by a similar function of z. 

Combined Stresses.. Along the Vertical Leg. The shearing stress at 
pointe is 

3P(a2 -y') 3P(a - y)y 
Te = 'Tz + r! = 3 + 3 

4ta ta 

3P(a - y) 
=--:40-ta''-"'-[(a + y) + 4y J 

3P(a - y)(a + 5y) 
Te = -<] 

4ta3 

Along the Horizontal Leg. 

3P(a2 - z2) 

The shearing stress at point f is 

3P(a - z)z 
Tf ::= 72 - T! = 4fa3 ta 3 

3P(a - z) 
--'c-;-

3 
-"-[(a+ z)- 4z] 

4ta 

71 
~ 3P(a - z)(a - Jz) -<1 

4ta3 
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Fig. P6.65 

6.61 through 6.64 Determine the location of the shear center 0 of a 
thin-walled beam of uniform thickness having the cross section shown. 

D 8 

8
1 

ol-,-~ -t 
_j_ 

El--2a--IF 
Fig. P6.63 

6.65 and 6.66 An extruded beam has the c~oss section shown. Deter
mine (a} the location of the shear center 0, (b) the distribution of the shearing 
stresses caused by the 12 kN vertical shearing force applied at 0. 

t= 3mm 

Fig. P6.66 



r 6.67 and 6.68 For an extruded beam having the cross section shown, 
determine (a) the location of the shear. center 0, (b) the distribution of the 
shearing stresses caused by the vertical shearing force V shown applied at 0. 

lz "' 1.149 X 106 mm4 

Fig. P6.67 

6.69 through 6.74 Determine the location of the shear center 0 of a 
thin~ walled beam of uniform thickness having the cross section shown. 

Fig. P6.69 

1 

38mm 

1 

B~~ 50mm 

0 0 
L,-1 l EL_:r 

j38mm ( 

Fig. P6.72 

Fig. P6.70 

Fig. P6.73 

6mm 

V=35kN 

30mm L 
I: "" 0.933 x 106 mm4 

Fig. P6.68 

0 

Fig. P6.71 

Fig. P6.74 
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Fig. P6.75 

Fig. P6.77 

Fig. P6.81 

6.75 and 6.76 A thin~walled beam has the cross section shown. 
Detennine the location of the shear center 0 of the cross section. 

6.77 and 6.78 A thin-walled beam of uniform thickness has the cross 
section shown. Detetmine the dimension b for which the shear center 0 of the 
cross section is located at the poi_nt indicated. 

Fig. P6.78 

6.79 For the angle shape and loading of Sample Prob. 6.6, check that 
f q dz 0 along the horizontal leg of the angle and f q dy = P along its 
vertical leg. 

6.80 For the angle shape and loading of Sample Frob. 6.6, (a) determine 
the points where the shearing stress is maximum and the corresponding values 
of the stress, (b) verify that the points obtained are located on the neutral axis 
corresponding to the given loading. 

*6.81 A steel plate, 160 mm wide and 8 mm thick, is bent to form the 
channel shown. Knowing that the vertical load P acts at a point in the 'midM 
plane of the web of the channel, determine (a) the torque T that would cause 
the channel to twist in the same way that it does under the load P, (b) the 
maximum shearing stress in the channel caused by the load P. 

*6.82 Solve Prob. 6.81, assuming that a 6-mm-thick plate is bent to fonn 
the channel shown. 

1 
I 

j 



*6.83 The cantilever beam AB, consisting of half of a thin-walled pipe of 
30-mm mean radius and 1 0-mm wall thickness, is subjected to a 2-kN vertical 
load. Knowing that the line of action of the load passes through the centroid C 
of the cross section of the beam, determine (a) the equivalent force-couple sys
tem at the shear ceflter of the cross section, (b) the maximum shearing stress in 
the bea~. (Hint: The shear center 0 of this crOss section was shown in Prob. 
6.73 to be located twice as far from its vertical diameter as its centroid C.) 

lUlU 

Fig. P6.83 

*6.84 Solve Prob. 6.83, assuming that the thickness of the beam is 
reduced to 6 mm. 

*6.85 The cantilever beam shown consists of a Z shape of 6-mm thick
ness. For the given loading, determine the distribution of the sheariilg stresses 
along line A'B' in the upper horizontal leg of the Z shape. The x' andy' axes 
are the principal centroidal axes of the cross section and the corresponding 
moments of inertia are lx' = 69.2 X 106 mm4 and are J)', =5.7 X 106 mm4

• 

y 

300 

(a) (b) 
Fig. P6.85 

*6.86 For the cantilever beam and loading of Frob. 6.85, determine the 
distribution of the shearing stress along line B' D' in the vertical Web of the 
Z shape. 

*6.87 Detennine·the distribution of the shearing stresses along line D' B' 
in the horizontal leg of the angle shape for the loading shown. The x' and y' 
axes are the principal centroidal axes of the cross section. 

*6.88 For the angle shape and loading of Frob. 6.87, detennine the dis-
tribution of the shearing stresses along line D' A' in the vertical leg. Fig. P6.87 

x' 
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Stresses on a beam element 

Fig. 6.2 

Horizontal shear in a beam 

This chapter was devote_d' to :-th~' ~~~-ixsi~ ;.of beajns arid thinMwalled 
members under transverse loadings~·:.·_-:-:::.-_-·:-:·,:"·>.·.-.-·-:-: 

In Sec. 6.1 we co:nsidefed a small eieinent lOCated in· the VertiM 
cal plane of symmetry of' a beam urider a .:transVerSe loading (Flg. 
6.2) and found that normal stresses O'x and shearing stresses r xy were 
exerted on the transverse faces of that :elemerit, while shearing 
stresses Tyx• equal in magnitude to Txy, were eXerted on its horizonM 
t_al faces. 

In Sec. 6.2 we Considered a prismatic beam AB with a vertical 
plane of symmetry supporting various concentrated and distributed 
loads (Fig. 6.5). At a distance x from end A we detached from the 

Fig. 6.5 

beam an element CDD' C' of length Ax extending across the width 
of the beam from the upper surface of the beam to a horizontal plane 
located at a distance y, from the neutral axis (Fig. 6.6). We found 

y 

Fig.6.6 

that the magnitude of the shearing forc_e Ll.H exerted on the lower 
face·of the beam element was · 

VQ 
!1H = -!1x 

I 
(6.4) 

wheie V = vertical shear -in the given transverse· section 
Q = first moment with respect to the neutral axis Of 

the shaded portion (l of the sectio~ 
j = centroidal_mOmellt of inertia of the'·eriti're brOss

seCtional area 



The ho.rizontal s~ear per unit length; pr shear flow,· which ·w~s 
denoted by the letter q, was obtained by dividing both members of 
Eq. (6.4) by llx: · · · · · 

LlH VQ 
q=ih=! (6.5) 

Dividing both members of Eq. (6.4) by the area LlA of the hor
izontal face of the element and observing that b.A = t b.x, where t 
is the width of the element at the cut, we obtained in Sec. 6.3 the 
following expression for the avefage .shearing stress on the hori
zontal face of the element 

VQ 
'rave= ft. (6.6) 

We further noted that, since the shearing stresses T xy and T ;x exerted, 
respectively, on a transverse and a horizontal plane through D' are 
equal, the expression in (6.6) also represents the, aVerage value ofT ;ry 

along the lineD; D2 (Fig. 6.12). 

C" 
' D" 

' 
Fig. 6.12 

In Sees. 6.4 and 6.5 we analyzed lhe shearing stresses in a beam 
of rectangular cross section. We found that the distribution of stresses 
is parabolic and that the maximum stress,. which occurs at the cen-
ter of the section, is ·. 

(6.10) 

where A is the area of the rectangular section. For'wideMflange be·~uns, 
we found that a good approximation of the maximum shearing s.tress 
can be obtained by dividing the shear .V.by the cross-sectio11alarea 
of the web. . .. 

In Sec. 6.6 we showed that Eqs. (6;4) and (6.5) could still be 
used to detennine, respectively, the longitudinal shearing force b.H 
and the shear flow q exerted on a beam element if the element was 
bounded by an arbitrary curved. surface instead of a horizontal plane 
(Fig. 6.24). This made it possible for us in Sec. 6.7 to extend the use 

-1 1_,_, 
C D. a 

Fig. 6.24 

Aevrew and Summary for Chapter 6 415 

Shear f!ow 

Shearing stresses in a beam 

Shearing stresses in a beam 
of rectangular cross section 

Longitudinal shear on curved surface 
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Shearing stresses in 
thin-walled members 

Plastic deformations 

Unsymmetric loading 
shear center 

Or Eq:- ·(6.6)tCr._tiie detenninatlon· ·o'f th~ .averaie :Sh6axJllg ·streSs in 
thin-:walled members such as wide-flange beams and box beams, in 
the flanges of such members; and in their webs (Fig, 632)c. 

y y 

o-,--1+/--
NA 

(b) 

In Sec. 6.8 we considered the effect of plastic defonnations on 
the magnitude and distribUtion· of sheadng stresses. Fr_om Chap. 4 
we recalled that once plastic.deform-ation has be~n initiated, addi
tional loading causes plastic -zOnes to penetrate into the elastic core 
of a beam. After demonstrating-that shearing stresses can occur only 
in the elastic core of a beam, we noted that both an increase in load
ing and the resulting decrease in the size of the elastic core con
tribute to an increase in shearing stresses. 

In Sec. 6.9 we considered prismatic members that are not loaded 
in their plane of symmetry and observed that, in general, both bend
ing and twisting will occur. You learned to locate the point 0 of the 
cross section, known as the shear center, where the loads should be 
applied if the member is to bend without twisting (Fig. 6.49) and 
found that if the.loads are applied at that point, the following equa
tions remain valid: 

My 
(}" = -

' l 

VQ 
'Tave = ft (4.16, 6_6) 

Using the principle. of sUpefposition, .you also .learn~d to det~rrnine 
the stresses in unsyrnmetric thin-walled members such as channels, 
angles, and extruded beams [Example 6.07 and Sample Prob, 6.6] 

Fig. 6.49 



6.89 Three boards are nailed together to form the beam shown, which 
is subjected to a vertical shear. Knowing that the spacing between the nails is 
s = 75 mm and that the allowable shearing force in each nail is 400 N, deter~ 
mine the allowable shear. 

Fig. P6.89 

6.90 Two W200 X 46.1 rolled sections may be welded at A and B in 
either of the two ways shown in order to form a composite beam. Knowing 
that for each weld the ailowabie horizontal shearing force is 525 k.!"l'/m of weld, 
determine the maximum allowable vertical shear in the composite beam for 
each of the two arrangements shown. 

6.91 For the beam and loading shown, consider section n-n and deter~ 
mine (a) the largest shearing stress in that section, (b) the shearing stress at 
point a. 

Fig. P6.91 

(a.) 

Fig. P6.90 

B 

l 
(b) 

417 
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Dimensions in mm 

Fig. P6.94 

6.92 For the beam and loading shown, consider section n-n and deter
mine the shearing stress at (a) point a, (b) the shearing stress at poi~t b. 

100 kN lOOkN 

"' 
-1 

180mm L: 
Fig. P6.92' 

6.93 For the beam and loading shown in Prob. 6.92, determine the largest 
shearing stress in section n-n. 

6.94 The built-up wooden beam shown is subjected to a vertical shear 
of 8 kN. Knowing that the nails are spaced longitudinally every 60 mm at A 
and every 25 mm at B, determine the shearing force in the nails (a) at A, 
(b) at B. (Given:!~. = 1.504 X 109 rnm4

.) 

20mm:! rlOOmm~ r! B 

180 mm · 

L' 
20mm 

~c D 

Fig. P6.95 

6.95 Two 20 X 100-mm and two 20 X 180-mm boards are glued 
together as shown to form a 120 X 200-mm box beam. Knowing that the beam 
is subjected to a vertical shear of 3.5 kN, determine the average shearing stress 
in the glued joint (a) at A, (b) at B. 

6.96 The composite beam shown is made by welding C200 X 17.1 
rolled~steel channels to the flanges of a W250 X 80 wide-flange rolled-steel 
shape. Knowing that the beam is subjected to a vertical shear of 200 kN, 
determine (a) the horizontal shearing force per inch at each weld, (b) the shear
ing stress at point a of the flange of the wide-flange shape. 

Fig. P6.96 

_j 



6.97 Three plates, each 12 mm thick, are welded together to form the 
section shown. For a vertical shear of l 00 kN, determine the shear flow through 
the welded surfaces and sketch the sheadlow in the cross section. 

Fig. P6.97 

~~ 
., 200 mm 

'J 1~1 
lOOmm 

6.98 An extruded beam has the cross section shown. Determine (a) the 
location of the shear center 0, (b) the distribution of the shearing stresses caused 
by a 100-kN vertical shearing force applied at 0. 

l2mm 
B I 

'"'~' ->l% 

f 
t 

6mm->-{-+ 

0 

~~ 12mm 

200mm 

lOOkN 

D~;jE'-
75mm 

Fig. P6.98 

6.99 Determine the location of the shear center 0 of a thin-walled beam 
of uniform thickness having the cross section shown. 

E 
FiQ. P6.99 

6.1 00 For an extruded beam having the cross section shown, determine 
(a) the location of the shear center 0, (Q) the distribution of the shearing stresses 
caused by a vertical 2.5-kN force V applied at 0. 
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The following problems are designed to be solved with a computer. 

6.C1 A timber beam is to be designed to support a distributed load and 
up to two concentrated loads as shown. One of the dimensions of its uniform 
rectangular cross section has been specified and the other is to be determined 
so that the maximum normal stress and the maximum shearing stress in the 
beam will not exceed given allowable values r.r au and Tau· Measuring x from 
end A, write a computer program to calculate for successive cross sections, 
from x = 0 to x = L and using given increments dx, the shear, the bending 
moment, and the smallest value of the unknown dimension that satisfies in that 
section (1) the allowable normal stress requirement, (2) the allowable shearing 
stress requirement. Use this program to design the beams of uniform cross sec" 
tion of the following problems, assuming a all = 12 MPa and 1' all = 825 kPa, 
and using the increments indicated: (a} Prob: 5.65 (Ax= 0.1 m), (b) Prob. 5.159 
(Lix ~ 0.2 m). 

6.C2 A cantilever timber beam AB of length L and of uniform rectan~ 
gular section shown supports a concentrated load P at its free end and a uni
fonnly distributed load w along its entire length. Write a computer program to 
detennine the length L and the width b of the beam for which both the maxi
mum normal stress and the maximum shearing stress in the beam reach their 
largest allowable values. Assuming trau = 12.4 MPa and 1'a11 = 827 kPa, use 
this program to determine the dimensions Land b when (a) P = 4.448 kN and 
w ~ 0, (b) P ~ 0 and w ~ 2.2 kN/m, (c) P ~ 2.224 kN and w ~ 2.2 kN/m. 

6.C3 A beam having the cross section shown is subjected to a vertical 
shear V. Write a computer program that can be use!=~ to calculate the shearing 
stress along the line between any two adjacent rectangular areas forming 
the cross section. Use this program to solve (a) Prob. 6.10, (b) Prob. 6.12, 
(c) Prob. 6.21. 

Fig. P6.C3 



6.C4 A plate of uniform thickness tis bent as shown into a shape with 
a vertical plane of symmetry and is then used as a beam. Write a computer pro
gram that can be used to determine the distribution of shearing stresses caused 
by a vertical shear V. Use this program (a) to solve Prob. 6.47, (b) to find the 
shearing stress at a point E for the shape and load of Prob. 6.50, assuming a 
thickness t = 6 mm. 

yh 
rr=='=~-.1-.--1 ' 

Y2 

_,,_.j l 1 
xl----...J 

Fig. P6.C4 

6.C5 The cross section of an extruded beam is symmetric With respect 
to the x axis and consists of several straight segments as shown. Write a com
puter program that can be used .to determine (a) the location of the shear cen
ter 0, (b) the diStribution of shearing stresses caused by a vertical force ap
plied at 0. Use this program to solve Probs. 6.66 and 6.70. 

y 

Fig. P6.C5 

6.C6 A thin-walled beam has the cross section shown. Write a computer 
program that can be used to detennine the location of the shear center 0 of the 
cross section. Use the .Program to solve Prob. 6.75. 

Computer Problems 421 

Fig. P6.C6 



Transformations of 
Stress and Strain 

In the test setup shown the linear strain in the top surface of the bar is being measured by an electrical strain 
gage cemented to the top surface. This chapter deals with stresses and strains i'n structures and machine 
components. 



7.1. INTRODUCTION 

We saw in Sec. 1.12 that the most general state of stress at a given point 
Q may be represented by six components. Three of these components, 
rr x• u Y' and a z• define the normal stresses exerted on the faces of a small 
cubic element centered at Q and of the same orientation as the coordi
nate axes (Fig. 7.1a), and the other three, Txy, 'Tyz• and r<X,t the compo
nents of the shearing stresses on the same element. As we remarked at 
the time, the same state of stress will be represented by a different set 
of components if the coordinate a:!(es are rotated (Fig. 7.lb). We pro
pose in the first part of this chapter to determine how the components 
of stress are transformed under a rotation of the coordinate axes. The 
second part of the chapter will be devoted to a similar analysis of the 
transformation of the components of strain. 

y 
y' 

0 

(b) 

Fig. 7.1 

Our discussion of the transformation of stress will deal mainly with 
plane stress, i.e., with a situation in which two of the faces of the cu
bic element are free of any stress. If the z axis is chosen perpendicular 
to these faces, we have 0'" = T u = T zy = 0, and the only remaining stress 
components are O'x, O'y, and T TCY (Fig. 7 .2). Such a situation occurs in a 
thin plate subjected to forces acting in the midplane of the plate (Fig. 
7 .3). It also occurs on the free surface of a structural element or ma
chine component, i.e., at any point of the surface of that element or 
component that is not subjected to an external force (Fig. 7 .4). 
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Fig. 7.2 

Fig. 7.4 



~24 Transformations of Stress and Strain Considering in Sec. 7.2 a state of plane stress at a given point Q 
characterized by the stress components cr.r, crv, and T_<Y associated with 
the element shown in Fig. 7 .Sa, you will leain to determine the com
ponents 0',·, O'y, and T-N associated with that element after it has been 
rotated throuih an angie e ahout the z axis (Fig. 7 .Sb ). In Sec. 1.3, you 
will determine the value fJP of 8 for which the stresses crx· and crl are, 
respectively, maximum and minimum; these values of the normal stress 
are the principal stresses at point Q, and the faces of the corresponding 
element define the principal planes of stress at that point. You will also 
determine the value Bs of the angle of rotation for which the shearing 
stress is maximum, as well as the value of that stress. 

(a) (b) 

Fig. 7.5 

In Sec. 7.4, an alternative method for the solution of problems in
volving the transformation of plane stress, based on the use of Mohr's 
circle, will be presented. 

In Sec. 7.5, the three-dimensional state of stress at a given point 
will be considered and a formula for the determination of the normal 
stress on a plane of arbitrary orientation at that point will be developed. 
In Sec. 7 .6, you will consider the rotations of a cubic element about 
each of the principal axes of stress and note that the corresponding trans
fonnations of stress can be described by three different Mohr's circles. 
You will also observe that, in the case of a state of plane stress at a 
given point, the maximum value of the shearing stress obtained earlier 
by ·considering rotations in the plane of stress does not necessarily rep
resent the maximum shearing stress at that point. This will bring you 
to distinguish between in-plane and out-of-plane maximum shearing 
stresses. 

Yield criteria for ductile materials under plane stress will be de
veloped in Sec. 7.7, To predict whether a material will yield at some 
critical point under given loading conditions, you will determine th~ 
principal stresses O'a and O'b at that point and check whether O'm tYb, and 
the yield strength O'y of the material satisfy some criterion. Two crite
ria in common U$e are: the maximum-shearing-strength criterion and 
the maximum-distortion-energy criterion. In Sec. 7 .8, fr?Zcture criteria 
for brittle materials under plane stress will be developed in a similar 
fashion; they will involve the principal stresses O'a and tYb at some crit
ical point and the ultimate strength 0' u of the material. Two criteria will 
be discussed: the maximum-normal-stress criterion and Mohr's criterion. 



Thin-walled pressure vessels provide an important application of 
the analysis of plane stress. In Sec. 7 .9, we will discuss stresses in both 
cylindrical and spherical pressure vessels (Figs. 7.6 and 7.7). 

Flg. 7.6 Fig. 7.7 

Sections 7.10 and 7.11 will be devoted to a discussion of the trans
formation of plane strain and to Mohr's circle for plane strain. In Sec. 
7.12, we will consider the three-dimensional analysis of strain and see 
how Mohr's circles can be used to determine the maximum shearing 
strain at a given point. Two particular cases are of special interest and 
should not be confused: the case of plane strain and the case of plane 
stress. 

Finally, in Sec. 7.13, we discuss the use of strain gages to measure 
the normal strain on the surface of a structural element or machine 
component. You will see how the components € . ., Ey, and y'Y character
izing the state of strain at a given point can be computed from the mea
surements made with three strain gages forming a strain rosette. 

7.2. TRANSFORMATION OF PLANE STRESS 

Let us assume that a state of plane stress exists at point Q (with 
a-z = r u = r zy = 0), apd that it is defined by the stress components 
a-.v a-y, and r.ry associated with the element shown in Fig. 7.5a. We pro
pose to determine the stress components a-x'• a-Y• and r.t'y' associated 
with the element after it has been rotated through an angle fJ about the 
z axis (Fig. 7.5b), and to express these components in terms of 
(TX' O'y, 'T zy• and e. 
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(•I 
Fig. 7.5 (repeated) 

(b) 

In order to determine the nonnal stress u :c' and the shearing stress 
T x'y' exerted on the face perpendicular to the x' axis, we consider a 
prismatic element with faces respectively perpendicular to the x, y, and 
x' axes (Fig. 7.8a). We observe that, if the area of the oblique face is 
denoted by L\.A, the areas of the vertical and horizontal faces are re
spectively equal to L\.A costl and L\.A sinO. It follows that the forces ex
erted on the three faces are as shown in Fig. 7.8b. (No forces are ex-

6A cos 8 

erted on the triangular faces of the element, since the corresponding 
nonnal and shearing stresses have all been assumed equal to zero.) Us
ing components alorig the x' and/ axes, we write the following equi
librium equations: 

2-Fl = 0: 

u,t..A -u"(6.Acos8)cos8- 7zy(6.Acos8)sin8 
-u,(6.Asin8)sin8- 7"(6.Asin8)cos8 = 0 

7"''' 6.A + u"(6.A cos 8) sin 8 - 7 zy( 6.A cos 8) cos 8 
-u,(6.A sin 8) cos 8 + 7,,(6.A sin 8) sin 8 = 0 



Solving the first equation for crx' and the second for rx'y'• we have 

CTx• = crx cos2 e + cr.\' sin2 e + 2rX)' sin 0 cos() (7.1) 

'Tx'y' :=; -(crx- cr,1,) Sin(} COS(}.+ T.l){COS
2 fi- sin2 fi) (7.2) 

Recalling the trigonometric relations 

and 

sin2() = 2sinecose 

"1_+'-:c"'os:.:2:::0 cos2 8=···· 
2 

cos 2() = cos2 () - sin2 0 

1- cos28 
sin2 e = .:_..-...:== 

2 

we write Eq. (7.1) as follows: 

1+cos28 1-cos28 . 
cr.~· = cr.t 

2 
+ crY 2 + rx)• sm 20 

or 

crx· = 
2 

Using the relations (7.3), we write Eq. (7.2) as 

O'x- O'y . 
Tx'y' = ---

2
-- Sill 20 + T.ry COS 2f:) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

The expression for the normal stress cr \'' is obtained by replacing 0 in 
Eq. (7.5) by the angle 0 + 90° that thC y' axis forms with the x axis. 
Since cos (28 + 180") = -cos 28 and sin (28 + 180") = -sin 28. we 
have 

cr.t + O"y 
O"y• =--2--

O',t - O'y . 
--

2
-···· cos 28 - r .l.J' sm 20 

Adding Eqs. (7.5) and (7.7) member to member, we obtain 

(7.7) 

(7.8) 

Since cr~ = O"~· = 0, we thus verify in the case of plane stress that the 
sum of the normal stresses exerted on a cubic element of material is in~ 
dependent of the orjentation of that element. t 

tCf. footnote on page 88. 
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y 

Fig. 7.12 

in Eq. (7.5). It follows that the sum of the last two terms in that equa
tion must be zero. Thus, for 0 = Os, we writet 

or 

(7.15) 

This equation defines two values 20 s that are 180° apart, and thus two 
values Os that are 90° apart. Either of these values can be used to de
tennine the orientation of the element corresponding to the maximum 
shearing stress (Fig. 7.12). Observing from Fig: 7.9 that the maximum 
value of the shearing stress is equal to the radius R of the circle, and 
recalling the second of Eqs. (7.10), we write 

~(cr" · cr,)' 2 
'Tmax = --

2
-- + T"Y (7.16) 

As observed earlier, the normal stress corresponding to the condition 
of maximum shearing stress is 

(7.17) 

Comparing Eqs. (7.12) and (7.15), we note that tan 28, is the neg
ative reciprocal of tan 20P. This means that the angles 20s and 20P are 
90° apart and, therefore, that the angles Os and OP are 45° apart. We thus 
conclude that the planes of maximum shearing stress are at 45° to the 
principal planes. This confirms the results obt.iined earlier in Sec. 1.12 
in the case of a centric axial loading (Fig. 1.40) and in Sec. 3.4 in the 
case of a torsional loading (Fig. 3.20.) 

We should be aware that our analysis of the transformation of plane 
stress has been limited to rotations in the plane of stress. If the cubic 
element of Fig. 7, 7 is rotated about an axis other than the z axis, its 
faces may be subjected to shearing stresses larger than the stress de
fined by Eq. (7.16). As you will see in Sec. 7.5, this occurs when the 
principal stresses defined by Eq. (7.14) have the same sign, i.e., when 
they are either both tensile or both compressive. In such cases, the value 
given by Eq. (7.16) is referred to as the maximum in-plane shearing 
stress. 

tThis relation may also be obtained by differentiating -r_,.,,. in Eq. (7.6) and setting the de-
rivative equal to zero: dT_,-r.fd(} = 0. · 



FoP the state of plane stress shown in Fig. 7.13, determine 
(a) the princip~! planes, {b) the principal stresses, (c) the max
imum shearing stre'ss and the corresponding n<;>rmal stress. 

(a) Principal Planes. Following the usual sign con
vention, we write the stress components as 

Ux = +50 MPa uy=-10MPa 'Txy = +40 MPa 

Substituting into Eq. (7.12), we have 

2( +40) 80 
tan 20 = = -::::''--,~c; 

p "·' - Cfy 50 ( lO) 60 
20, = 53.)0 

()p = 26.6" 

and 
and 

180" + 53.1" = 233.1" 
116.6° 

(b) Principal Stresses. Formula (7.14) yields 

"' + ~("' cr,.)' O'm3~,min = :±: --- + T2
. 2 2 ~ 

= 20 :!: V(J0)2 + (40)' 

O'max = 20 +50= 70MPa 

O'rnin = 20-50 = -30MPa 

The principal planes and principal stresses are sketched in Fig. 
7.14. Making() = 26.6" in Eq. (7.5), we check that the normal 
stress exerted on face BC of the element is the maximum stress: 

50 - 10 50 + lO . u_... = --
2
-- + --

2
--cos 53.1" + 40 sm 53.1" 

= 20 + 30cos53.1" + 40sin53.1" = 70MPa = Umax 

O'ml" = 30 MPa 

A 

Fig. 7.14 

(c) Maximum Shearing Stress. Formula (7.16) 
yields 

Since U rna~ and u min have opposite signs, the value ob
tained for 'T max actually represents the maximum value of the 
shearing stress at the point considered. The orientation of the 
planes of maximum shearing stress and the sense of the shear
ing stresses are best determined by passing a section along the 
diagonal plane AC of the element of Fig. 7 .14. Since the faces 
AB and BC of the element are contained in the principal planes, 
the diagonal plane AC must be one of the planes of maximum 
shearing stress (Fig. 7.15). Furthermore, the equilibrium con
ditions for the prismatic element ABC require that the shear-

Fig. 7.15 

ing stress exerted on AC be directed as shown. The cubic ele
ment corresponding to the maximum shearing stress is shown 
in Fig. 7 .16. The normal stress on each of the four faces of the 
element is given by Eq. (7.17): 

, u~'+crv 50-10 
cr =<r =--~=---=20MPa ave 2 2 

q'"" 20 MPa 

=--r;;;' ......... --Z:.. = -18.4° 

q'=20MPn 

Fig. 7.16 
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t O'y = 56.6 MPu 

-r~r:::.::, 
-l 

Oinin"" 29.9 MPa 
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SAMPLE PROBLEM 7.1 

A single horizontal force P of magnitude 600 N is applied to end D of lever 
ABD. Knowing that portion AB of the lever has a diameter of 30 mm, deter
mine (a) the nonnal and shearing stresses on an element located at point H 
and having sides ·parallel to the x andy axes, (b) the principal planes and the 
principal stresses at point H. 

SOLUTION 

Force-Couple System. We replace the force P by an equivalent force
couple system at the center C of the transverse section containing point H: 

P ~ 600N T ~ (600N)(0.45m) ~ 270N ·m 

M, ~ (600 N)(0.25 m) ~ 150 N • m 

a. Stresses u.<> u,., 'T.w at Point H. Using the sign convention shown in 
Fig. 7 .2, we determine' the ·sense and the sign of each stress component by care
fully examining the sketch of the force-couple system at point C: 

Me 
(J" = +-= 

' I 
+ -"(1:.:50'-iN'----7• m2)0.:( 0:.:. 0:715:.:m2 ) 

l1r (O.Ql5 )' 

7 
~ + Tc ~ +=(2'-'70:,-:N'-;-:'· m':')O.:(OC'.OC:15:_;) 

" J !1T (0.015)' 

o-, ~ +56.6 MPa «< 

r.9 , = + 50.9 MPa ~ 

We note that the shearing force P does not cause any shearing stress at 
point H. 

b. Principal Planes and Principal Stresses. Substituting the values of 
the stress components into Eq. (7.12), we determine the orientation of the prin~ 
cipal planes: 

2T.ry 2(50.9) 
tan2B, ~ --_- ~ 

0 
_ 

566 
~ -1.80 

(J" X (J" y • 

2e, ~ -61.0° and 180° - 61.0° ~ + 119° 
8(! = -30.5° and 

Substituting into Eq. (7.14), we determine the magnitudes of the principal 
stresses: 

a,,+ 
O"max.min = 

2 

~ 0 
\

56
'
6 

± )(
0

- 2
56.6)' + (50.9)2 ~ +28.3 ± 58.2 

amox = +86.5 MPa 411 
a min = -29.9 MPa ~ 

Considering face ab of the element shown, we make Bp = -30.5° in Eq. (7.5) 
and find ax = 29.9 MPa. We conclude that the principal stresses are as shown. 



7.1 through 7.4 For the given state of stress, determine the normal and 
shearing stresses exerted on the oblique face of the shaded triangular element 
shown. Use a method of analysis based on the equilibrium of that element, as 
was done in the derivations of Sec. 7 .2. 

70 MPn 

Fig. P7.1 Fig. P7.2 Fig. P7.3 

7.5 through 7.8 For the given state of stress, determine (a) the prin
cipal planes, (b) the principal stresses. 

~~-~ ~n•-~o ~~-~ 
7.9 through 7.12 For the given state of stress, determine (a) the 

orientation of the planes of maximum in-plane shearing stress, (b) the corre
sponding normal stress. 

7.13 through 7.16 For the given state of stress, determine the normal 
and shearing stresses after the element shown has been rotated (a) 25" clock
wise, (b) 10" counterclockwise. 

Fig. P7.13 Fig. P7.14 Fig. P7.15 

84 MPn 

Fig. P7.4 

Fig. P7.8 and P7. 12 

Fig. P7.16 

433 



434 Transformations of Stress and Strain 

Fig. P7.17 

Fig. P7.19 

7.17 and 7.18 The grain of a wooden member fonns an angle of 15° 
with the vertical. For the state of stress shown, determine (a) the in~plane shear~ 
ing stress parallel to the grain, (b) the normal stress perpendicular to the grain. 

- 4.2MPa 

IVf/J.) 
Fig. P7.18 

7.19 The centric force P is applied to a short post as shown. Knowing 
that the stresses on plane a-a are u = -100 MPa and T = 35 MPa, determine 
(a) the angle {3 that plane a-a forms with the horizontal, (b) the maximum com
pressive stress in the post. 

50 

p 

Fig. P7.20 

7.20 Two members of unifonn cross section 50 X 80 nun are glued to
gether along plane a-a, that forms an angle or 25° with the horizontal. Knowing 
that the allowable stresses for the glues joint are u = 800 k.Pa and T = 600 kPa, 
determine the largest centric load P that can be applied. 

7.21 Two wooden members of 80 X 120-mm uniform rectangular cross 
section are joined by the simple glued scarf splice shown. Knowing that 
{3 = 22° and that the maximum allowable stresses in the joint are, respectively, 
400 kPa in tension (perpendicular to the splice) and 600 kPa in shear (parallel 
to the splice), detennine the largest centric load P that can be applied. 

Fig. P7.21 and P7.22 

7.22 Two wooden members of 80 X 120-rnm uniform rectangular cross 
section are joined by the simple glued scarf splice shown. Knowing that 
{3 = 25° and that centric loads of magnitude P = 10 kN are applied to the 
members as shown, determine (a) the inMplane shearing stress parallel to the 
splice, (b) the nonnal stress perpendicular to the splice. 



7.23 The axle of an automobile is acted upon by the forces and couple 
shown. Knowing that the diameter of the solid axle is 30 mm, determine (a) the 
principal planes and principal stresses ai point H located on top of the axle, 
(b) the ffii!-Ximum ~hearing stress at the same point 

7.24 Several forces are applied to the pipe assembly shown. Knowing 
that the· inner and outer diameters of the pipe are equal to 38 mm and 42 mm, 
respectively, determine (a) the principal planes and the principal stresses at 
point H located at the top of the outside surface of the pipe, (b) the maximum 
shearing stress at the same point 

Fig. P7.24 

7.25 The steel pipe AB has a I02~mm outer diameter and a 6*mm wall 
thickness. Knowing that ann CD is rigidly attached to the pipe, determine the 
principal stresses and the maximum shearing stress at point H. 

Fig. P7.25 and P7.26 

7.26 The steel pipe AB has a 102~mm outer diameter and a 6-mm wall 
thickness. Knowing that arm CD is rigidly attached to the pipe, determine the 
principal stresses and the maximum shearing stress at point K. 

Problems 435 
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Fig. P7.23 
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Fig. P7.27 

Fig. P7.29 

7.27 For the state of plane stress shown, detennine (a) the largest value 
ofT xy for which the maximum in-plane shearing stress is equal to or less than 
84 MPa, (b) the corresponding principal stresses. 

Fig. P7.28 

7.28 For the state of plane stress shown, detennine the largest value of 
u Y for which the maximum in-plane shearing stress is equal to ofless than 75 MPa. 

7.29 Detenuine the range of values of u x for which the maximum in
plane shearing stress is equal to or less than 70 MPa. 

Fig. P7.30 

7.30 For the state of plane stress shown, determine (a) the value of Txy 
for which the in-plane shearing stress parallel to the weld is zero, (b) the cor
responding principal stresses. 

7.4. MOHR'S CIRCLE FOR PLANE STRESS 

The circle used in the preceding· section to derive some of the basic for
mulas relating to the transfonnation of plane stress was first introduced 
by the Gennan engineer Otto Mohr (1835-1918) and is known as Mohr's 
circle for plane stress. As you will see presently, this circle can be used to 
obtain an alternative method for the solution of the various problems con
sidered in Sees. 7.2 and 7.3. This method is based on simple geometric 
considerations and does not require the use of specialized fonnulas. While 
originally designed for graphical solutions, it lends itself well to the use 
of a calculator. 



Consider a square element of a material subjected to plane stress 
(Fig. 7.17 a), and let a x• a>'' and T xy ~e the components of the stress ex
erted on the element·. We plot a point X of coordinates ax and -7 .nt• and 
a point· Y of coordinates a>' and + 'T xy (Fig. 7.17 b). If 'T xy is positiVe, as 
assumed in Fig. 7.17a, -point X is located below the a axis and pointY 
above, as shown in Fig. 7.17 b. If T xy is negative, X is located above the 
cr axis and Y below. Joining X and Y by a straight line, we define the 
point C of intersection of line XY with the a axis and draw the circle 
of center C and diameter XY. Noting that the abscissa of C and the ia
dius of the circle are respectiveJy·equal to the quantities O"ave and R de
fined by Eqs. (7 .10), we conclude that the circle obtained is Mohr's cir
cle for plane stress. Thus the abscissas of points A and B where the 
circle intersects the cr axis represent respectively the principal stresses 
cr m~x and O" min at the point considered. 

(b) 

Fig. 7.17 

We also note that, since tan (XCA) = 2r,.,/(cr, cr,), the angle 
XCA is equal in magnitude to one of the angles 28P that satisfy Eq. 
(7.12). Thus, the angle f)P that defines in Fig. 7.l7a the orientation of 
the principal plane corresponding to point A in Fig. 7.17b can be ob
tained by dividing in half the angle XCA measured on Mohr's circle. 
We further observe that if <rx > ar and T xy > 0, as in the case consid~ 
ered here, the rotation that brings CX into CA is counterclockwise. But, 
in that case, the angle OP obtained from Eq. (7J2) and defining the 
direction of the normal Oa to the principal plane is positive; thus, the 
rotation bringing Ox into Oa is also counterclockwise. We conclude that 
the senses of rotation in both parts of Fig. 7.17 are the same; if a coun
terclockwise rotation through 20P is required to bring CX into CA on 
Mohr's circle, a counterclockwise rotation through OP will bring Ox into 
Oa in Fig. 7.17a.t 

tThis is due to the facuhat we are using the circle of Fig 7.10 rather than the circle of 
Fig. 7.9 as Mohr's circle. 
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438 Transformations of Stress and Strain Since Mohr's circle is uniquely defined, the same circle can be ob
tained by considering the stress components (J'x·· <T'/, and T Ky'• corre
sponding to the x' and y' axes shown in Fig. 7 .18a. The point X1 of co
ordinates <Tx• and --rx'y'• and the point Y' of coordinates <Ty' and +-r Ky'• 

are therefore located on Mohr's circle, and the angle X'CA in Fig. 7.18b 
must be equal to twice the angle x'Oa in Fig. 7.18a. Since, as noted 

Fig. 7.18 

Fig. 7.19 

b 

\ 
r'(a-y'· +-r:<·y•) .------,,...__ 

y 

0 B 

ify· /

y' 

~'" 
(a) ~,. 

0 

(b) 

before, the angle XCA is twice the angle xOa, it follows that the angle 
XCX' in Fig. 7.18b is twice the angle xOx' in Fig. 7.18a. Thus the di
ameter X'Y' defining the normal and shearing stresses (J'x'• ay'• and Tx'y' 

can be obtained by rotating the diameter XY through an angle equal to 
twice the angle() formed by the x'and x axes in Fig. 7.l8a. We note 
that the rotation that brings the diameter XY into the diameter X' Y' in 
Fig. 7 .18b has the same sense as the rotation that brings the xy axes 
into the x' y' axes in Fig. 7 .18a. 

The property we have just indicated can be used to verify the fact 
that the planes of maximum shearing stress ire at 45° to the principal 
planes. Indeed, We recall that points D and E on Mohr's circle corre
spond to the planes of maximum shearing stress, while A and B corre
spond to the principal planes (Fig. 7.19b). Since the diameters AB and 
DE of Mohr's circle are at 900 to each other, it follows that the faces 
of the corresponding elements are at 45° to each other (Fig. 7.19a). 

E 



The construction of Mohr's circle for plane stress is greatly simpli~ 
tied if we consider separately each face of the element used to define the 
stress components. From Figs. 7.17 Md 7.18 we observe that, when the 
shearing stress exerted on a given face tends to rotate the element clock~ 
wise, the point on Mohr's circle con·espond~ng to that face is located above 
the u- axis. "When the shearing stress on a given face tends to rotate the 
element counterclockwise, the point corresponding to that face is located 
below the u axis (Fig. 7.20).i" As far as the normal stresses are concerned, 
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(a) Clockwise - Above 

Fig. 7.20 

(b) Counterclocbvise -- Below 

the usual convention holds, i.e., a tensile stress is considered as positive 
and is plotted to the right, while a compressive stress is considered as neg~ 
ative arid is plotted to the left. 

fThe following jingle is helpful in remembering this convention. "In the kitchen, the clock 

is above, and the counter is below." 

"I 
For the state of plane stress already considered in Example 
7.01, (a) construct Mohr's circle, (b) determine the principal 
stresses, (c) determine the maximum shearing stress and the 
corresponding normal stress. lO MPa I 

-t--40 MPa 

(a) Construction of Mohr's Circle. We note from 
Fig. 7.21a that the normal stress exerted on the face oriented 
toward the x axis is tensile (positive) and that the shearing 
stress exerted on that face tends to rotate the element coun
terclockwise. Point X of Mohr's circle, therefore, will be plot
ted to the right of the vertical axis and below the horizontal 
axis (Fig. 7.2lb). A similar inspection of the normal stress and 
shearing stress exerted on the upper face of the element shows 
that point Y should be plotted to the left of the vertical axis 
and above the horizontal axis. Drawing the line XY, we obtain 
the center C of Mohr's circle; its abscissa is 

CTave = 
50+(-lO) 

~ ~ 20MPa 
2 2 

Since the sides of the Shaded triangle are 

CF ~ 50 - 20 ~ 30 MPa and FX ~ 40MPa 

the radius of the circle is 
~·' 

R ~ CX ~ Yc-:(3"'0)"2 -+-,(4-:-:0::c;)2 ~ 50 MPa 

_Jr;J;Slj __ , 
~MPa 1 T(MPa)) 

(a) 10-;1 
Tl 
40 

l_ c 
B 

Fig. 7.21 

(b) 
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T(MPa)) 

10-;1 

II 
40 

l_ G 
B 

(b) 

Fig. 7.21b (repeated) 

Fig. 7.22 

(a) 

(b) Principal Planes and Principal Stresses. The 
principal stresses are 

crmw: = OA = OC + CA = 20 +50= 70MPa 

<rm'" ~ OB ~ OC- BC ~ 20-50 ~ -30MPa 

Recalling that the angle ACX represents 2()P (Fig. 7 .2lb), we 
write 

FX 40 
tan28 --=-

P CF 30 

28p = 53.1" 

Since the rotation which brings CX into CA in Fig. 7 .22b is coon~ 
terclockwise, the rotation that brings Ox into the axis Oa cor~ 
responding to CTmw: in Fig. 7.22a is also counterclockwise. 

(c) Maximum Shearing Stress. Since a further ro~ 
tation of 90° counterclockwise brings CA into CD in Fig. 
7 .22b, a further rotation of 45° counterclockwise will bring the 
axis Oa into the axis Od corresponding to the maximum shear
ing stress in Fig. 7 .22a. We note from Fig. 7 .22b that T max 

R = 50 MPa and that the corresponding normal stress is 
cr' = if ave = 20 MPa. Since point D is located above the (J 

axis in Fig. 7.22b, the shearing stresses exerted on the faces 
perpendicular to Od in Fig. 7 .22a must be directed so that they 
will tend to rotate the element clockwise. 

T(MPa)) 

I 
r, ... .~,,"" .'50 

"t-nf--ir-'-rr-+A"-Ll = u(MPa) 

28,=5.'3.1° 

(b) 



Mohr's circle provides a convenient way of checking the results ob~ 
tained earlier for stresses under a centric axial loading (Sec. 1.12) and 
under a torsional loading (Sec. 3.4). In the first case (Fig. 7.23a), we 
have Ux = P/A,. uy = 0, and T.zy::::: 0. The corresponding points X and 
Y define a circle of radius R = P /2A that passes through the origin of 

D 

(a) (b) 

Fig. 7.23. Mohr's circle for centric axial loading. 

coordinates (Fig. 7.23b). Points D and E yield the orientation of the 
planes of maximum shearing stress (Fig. 7.23c), as well as the values 
of Tmax and of the corresponding nomtal stresses u': 

p 
T = 0' 1 =R =-

max ZA (7.18) 

In the case of torsion (Fig. 7.24a), we have ux =cry= 0 and 
r XJ' = r max = Tel J. Points X and Y, therefore, are located on the r axis, 

r) 

_0,1-rr BWA u 

(a) 

Fig. 7.24. Mohr's circle for torsional loading. 

fX 
(b) 

and Mohr's circle is a circle of radius R = Tc/1 centered at the origin 
(Fig. 7.24b). Points A and B define the principal planes (Fig. 7.24c) and 
the principal stresses: 

Tc 
O'max,min = ±R = ±} (7.19) 
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T48MPu 

¢!"" 180"- 60°- 67A0 

¢;""' 52.6° 

20p"' 67.4" 

a(MPa) 

SAMPLE PROBlEM 7.2 

For the state of plane stress shown, determine (a) the principal planes and the 
principal stresses, (b) the stress components exerted on the element obtained 
by rotating the given element ~ounterclockwise through 30". 

SOLUTION 

Construction of Mohr's Circle. We note that on a face perpendicular 
to the x axis, the normal stress is tensile and the shearing stress tends to rotate 
the element clockwise; thus, we plot X at a point 100 units to the right of the 
vertical axis and 48 units above the horizontal axis. In a similar fashion, we 
examine the stress components on the upper face and plot point Y(60, -48). 
Joining points X and Yby a straight line, we define the center C of Mohr's cir
cle. The abscissa of C, which represents o-.we• and the radius R of the circle can 
be measured directly or calculated as follows: 

O",ve = OC =~(o-x+ o-y) = !(100 + 60) = 80 MPa 

R ~ V(CF}' + (FX)2 ~ V(20}' + (48)2 ~52 MPa 

a. Principal Planes and Principal Stresses. We rotate the diameter XY · 
clockwise through 28P until it coincides with the diameter AB. We have 

XF 48 
tan 28P = CF = 

20 
= 2.4 2e, ~ 67.4° J e,, ~ 33.7° J -<1 

The principal stresses are represented by the abscissas of points A and B: 

O"mM = OA = OC + CA = 80 + 52 

o-m;n = OB = OC - BC = 80 - 52 

o-.,u.,, = +132 MPa <I 

O'miu = + 28 MPa -<1 

Since the rotation that brings XY into AB is clockwise, the rotation that brings 
Ox into the axis Oa corresponding to o-m"'~ is also clockwise; we obtain the ori
entation shown for the principal planes. 

b. Stress Components on Element Rotated 30" ~· Points X' and Y' on 
Mohr's circle that correspond to the stress components on the rotated elem~nt 
are obtained by rotating XY counterclockwise through 28 = 60". We find 

"' ~ 180° 60° - 67.4° "' ~ 52.6° <a 
a •. = OK= OC- KC = 80 - 52 cos 52.6" o-.-t = + 48.4 MPa 41 

">' ~ OL ~ OC + CL ~ 80 + 52 cos 52.6° "·'· ~ + 111.6 MPa <a 
Txy = KX' =52 sin 52.6" T.,·/ = 41.3 MPa <IZI 

Since X' is located above the horizontal axis, the shearing stress on the face 
perpendicular to Ox' tends to rotate the element clockwise. 



y 
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E 

SAMPLE PROBLEM 7.3 

A state of plane stress consists of a tensile stress O"o = 56 MPa exerted on ver~ 
tical surfaces and of unknown shearing stresses. Determine (a) the magnitude 
of the shearing stress r 0 for which the largest normal stress is 70 MPa, (b) the 
corresponding maximum shearing stress. 

SOLUTION 

Construction of Mohr's Circle. We assume that the shearing stresses 
act in the senses shown. Thus, the shearing stress r0 on a face perpendicular 
to the x axis tends to rotate the element clockwise and we plot the point X of 
coordinates 56 MPa and r 0 above the horizontal axis. Considering a horizon
tal face of the element, we observe that cry = 0 and that r0 tends to rotate the 
elem~nt counterclockwise; thus, we plot point fat a distance r 0 below 0. 

We note that the abscissa of the center C of Mohr's circle is 

o-~..,r: = ~(crx + cry) =~(56+ 0) = 28 MPa 

The radius R of the circle is determined by observing that the maximum 
normal stress, cr ma~ = 70 MPa, is represented by the abscissa of point A and 
writing 

CTm;~~ = CTuve + R 
70MPa ~ 28MPa + R R ~ 42MPa 

a. Shearing Stress 7 0• Considering the right triangle CFX, we find 

CF CF 28 MPa 
cos 28 = - = - = --- 20 = 48.2°) 

P ex R 42MPa P 
Op=24.1°) 

7 0 = FX = R sin 28P = (42 MPa) sin 48.2" T 0 = 31.3 MPa .<:J 

b. Maximum Shearing Stress. The coordinates of point D of Mohr's 
circle represent the maximum shearing stress and the corresponding normal 
stress. 

'Tmax = R = 42MPa 
28, = 90"- 20p = 90°- 48.2° = 41.8") 

'Tmox = 42 MPa <1 

e, ~ 20.9') 

The maximum shearing stress is exerted on an element that is oriented as shown 
in Fig. a. (The element upon which the principal stresses are exerted is also 
shown.) 

Note. If our original assumption regarding the sense of 7 0 was reversed, 
we would obtain the same circle and the same answers, but the orientation of 
the elements would be as shown in Fig. b. 
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7.31 Solve Probs. 7.7 and 7.11, using Mohr's circle. 
7.32 Solve Probs. 7.8 and 7.12, using Mohr's circle. 
7.33 Solve Prob. 7.9, using Mohr's circle. 
7.34 Solve Prob. 7.10, using Mohr's circle. 
7.35 Solve Prob. 7.13, using Mohr's circle. 
7.36 Solve Prob. 7.14, using Mohr's circle. 
7.37 Solve Prob. 7.15, using Mohr's circle. 
7.38 Solve Prob. 7.16, using Mohr's circle. 
7.39 Solve Prob. 7.17, using Mohr's circle. 
7.40 Solve Prob. 7.18, usi~g Mohr's circle. 
7.41 Solve Prob. 7.19, using Mohr's circle. 
7.42 Sol~e Prob. 7.20, using Mohr's circle. 
7.43 Solve Prob. 7.21, using Mohr's circle. 
7.44 Solve Prob. 7.22, using Mohr's circle. 
7.45 Solve Prob. 7.23, using Mohr's circle. 
7.46 Solve Prob. 7.24, using Mohr's circle. 
7.47 Solve Prob. 7.25, using Mohr's circle. 

7.48 Solve Prob. 7.26, using Mohr's circle. 
7.49 Solve Prob. 7.27, using Mohr's circle. 

7.50 Solve Prob. 7.28, using Mohr's circle. 
7.51 Solve Prob. 7 .29, using Mohr's circle. 
7.52 Solve Prob. 7.30, using Mohr's circle. 

7.53 Solve Prob. 7.30, using Mohr's circle and assuming that the weld 
forms an angle of 60° with the horizontaL 

7.54 and 7.55 Detennine the principal planes and the principal stress 
for the state of plane stress resulting from the superposition of the two states 
of stress shown. 

+ 

Fig. P7.55 



7.56 and 7,57 Determine the principal planes and the principal stress 
for the state of plane stress resulting from the superposition of the two states 
of stress shown. 

+ 
Fig. P7.56 Fig. P7.57 

7.58 For the state of stress shown, determine the range of values of fJ 
for which the normal stress 0' :<' is equal to or less than 140 MPa. 

Fig. P7.58 and P7.59 

7.59 For the state of stress shown, determine the range of values of e 
for which the normal stress cr ;r:' is equal to or less than 70 MPa. 

7.60 For the state of stress shown, determine the range of values of 8 for 
which the magnitude of the ·shearing stress 7 :r!y' is equal to or less than 40 MPa. 

Fig. P7.60 

7.61 For the element shown, determine the range of values of 7 xy for 
which the maximum tensile stress is equal to or less than 60 MPa. 

Fig. P7.61 and P7 .62 

7.62 For the element shown, determine the range of values of 7 ;<;" for 
which the maximum in-plane shearing stress is equal to or less than 150 MPa. 

Problems 445 

+ 



446 Transfonnations of Stress and Strain 

0~--+---~~-,~~L----t q 

1',,1 

r---o;---i 
1-----u,---

Fig. P7.64 

y 

Fig. 7.25 

7.63 For the state of stress shown it is known that the normal and shear~ 
ing stresses are directed as shown and that ax = 98 MPa, a y = 63 MPa, and 
a min= 35 MPa. Determine (a) the orientation of the principal planes, (b) the 
principal stress £Tma.x• (c) the maximum in-plane shearing stress. 

Fig. P7.63 

7.64 The Moor circle shown corresponds to the state of stress given in 
Fig. 7.5a and b. Noting that O"x· = OC + (CX')cos(2eP- 28) and that 
rN = (CX') sin (28P- 26), derive the expressions for £Tx· and rx'xy given in 
Eqs. (7 .5) and (7.6), respectively. [Hint: Use sin (A + B) - sin A cos B + 
cos A sin B and cos (A + B) = cos A cos B - sin A sin B.] 

7.65 (a) Prove that the expression ax.(Fi - r;'i• Where ax', a-i, sand rx'y' 
are components of the stress along the rectangular axes x' andy', is independent 
of the orientation of these axes. Also, show that the given expression represents 
the square of the tangent drawn from the origin of coordinates to Mohr's 
circle. (b) Using the in variance property established in part a, express the shear
ing stress T:.y of terms of 17x, lTy, and the principal stresses £T max and (Fmin· 

7.5. GENERAL STATE Of STRESS 

In the preceding sections, we have assumed a state of plane stress with 
Uz = Tz.~ = 'Tzy = 0, and have considered only transformations of stress 
associated with a rotation about the z axis. We will now consider the 
general state of stress represented in Fig. 7 .la and the transformation 
of stress associated with the rotation of axes shown in Fig. 7 .lb. How~ 
ever, our analysis will be limited to the determination of the normal 
stress an on a plane of arbitrary orientation. 

Consider the tetrahedron shown in Fig. 7 .25. Three of its faces are 
parallel to the coordinate planes, while its fourth face, ABC, is perpen
dicular to the line QN. Denoting by Ll.A the area of face ABC, and by 
A.>:> Ay, Az the direction cosines of line QN, we find that the areas of the 
faces perpendicular to the x, y, and z axes are, respectively, 
( II.A )A,, ( II.A )A,. and (II. A )A,. If the state of stress at point Q is defined 
by the stress components u x• O"y, 0"2, r zy• 'Tyz• and T zx• then the forces ex~ 
erted on the faces parallel to the coordinate planes can be obtained by 
multiplying the appropriate stress components by the area of each face 
(Fig. 7.26). On the other hand, the forces exerted on face ABC consist 
of a nonnal force of magnitude un Ll.A directed along QN, and of a 
shearing force of magnitude r L\.A perpendicular to QN but of other~ 
wise unknown direction. Note that, since QBC, QCA, and QAB, re
spectively, face the negative x, y, and z axes, the forces exerted on them 
must be shown with negative senses. 



Fig. 7.26 

We now express that the sum of the components along QN of all 
the forces acting on the tetrahedron is zero. Ob$erving that the compo~ 
nent along QN of a force parallel to the x axis is obtained by multi
plying the magnitude of that force by the direction cosine A.n and that 
the components of forces parallel to they and z axes are obtained in a 
similar way, we write 

'i,F" = 0: o-, LlA - ( o-., LlA A,) A, - ( r.ry LlA A,)A,. - ( r., LlA A,)A, 
-( r,., LlA A,)A, - (o-, LlA A,)A, - ( r" LlA A,)A, 

-( T ~ LlA A,)A, - ( T zy LlA A,) A, - (o-, LlA. A,) A, = 0 

Dividing through by L1A and solving for am we have 

0'11 = O'xA; + O'yA~ + az,.\~ + 2TxyAxAy + 2TyzAyA~ + 2TzxA~Ax (7.20) 

We note that the expression obtained for the normal stress an is a 
quadratic form in Ax, Ay, and Az. It follows that we can select the coor~ 
dinate axes in such a way that the right-hand member of Eq. (7.20) re
duces to the three terms containing the squares of the direction cosines. t 
Denoting these axes by a, b, and c, the corresponding normal stresses 
by a a• (J b• and a c• and the direction cosines of QN with respect to these 
axes by Aa, Ab, and Ac, we write 

(7.21) 

The coordinate axes a, b, c are referred to as the principal axes of 
stress. Since their orientation depends upon the state of stress at Q, and 
thus upon the position of Q, they have been represented in Fig. 7.27 as 
attached to Q. The corresponding coordinate planes are known as the 
principal planes of stress, and the corresponding normal stresses (J a• (Jb• 

and (Jc as the principal stresses at Q.t 

tin Sec. 9.16 of F. P. Beer and E. R. Johnston, Vector Mechanics for Engineers, 7th ed., 
McGraw-Hill Book Comp<)ny, 2004, a similar quadratic fonn i$ found to represent the mo
ment of inertia of a rigid body with respect to an arbitrary axis. It is shown in Sec. 9.17 that 
this fonn is associated with a quadric suiface, and that reducing the quadratic fonn to tcnns 
containing only the squares of the direction cosines is equivalent to detcnnining the princi
pal axes of that surface. 

t.For a discussion of the' detennination of the principal planes of stress and of the plinci
pal stresses, seeS. P: Timoshenko and J. N. Goodier, Theory of Elasticity, 3d ed., McGraw
Hill Book Company, 1970, sec. 77. 
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Fig. 7.30 

Fig. 7.28 
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7.6. APPLICATION OF MOHR'S CIRCLE TO THE THREE
DIMENSIONAL ANALYSIS OF STRESS 

If the element shown in Fig. 7.27 is rotated about one of the principal 
axes at Q, say the c axis (Fig. 7 .28), the corresponding transformation 
of stress can be analyzed by means of Mohr's circle as if it were a trans
formation of plane stress. Indeed, the shearing stresses exerted on the 
faces perpendicular to the c axis remain equal to zero, and the normal 
stress u c is perpendicular to the plane ab in which the transformation 
takes place and, thus, does not affect this transformation. We therefore 
use the circle of diameter AB to determine the normal and shearing 
stresses exerted on the faces of the element as it is rotated about the c 
axis (Fig. 7 .29). Similarly, circles of diameter BC and CA can be used 
to determine the stresses on the element as it is rotated about the a and 
b axes, respectively. While our analysis will be limited to rotations about 

Fig. 7.29 

the principal axes, it could be shown that any other transformation of 
axes would lead to stresses represented in Fig. 7.29 by a point located 
within the shaded area. Thus, the radius of the largest of the three cir
cles yields the maximum value of the shearing stress at point Q. Not
ing that the diameter of that circle is equal to .the difference between 
(J' max and (J' min> we write 

"max= ![umax- O'min[ (7.22) 

where a max and u min represent the algebraic values of the maximum 
and minimum stresses at point Q. 

Let us now return to the particular case of plane stress, which was 
discussed in Sees. 7.2 through 7 .4. We recall that, if the x andy axes are 
selected in the plane of stress, we have uz = T zx =: T zy = 0. This means 
that the z axis, i.e., the axis perpendicular to the plane of stress, is one of 
the three principal axes of stress. In a Mohr~circle diagram, this axis cor
responds to the origin 0, where u =: -r = 0. We also recall that the other 
two principal axes correspond to points A and B where Mohr's circle for 
the xy plane intersects the u axis. If A and B are located on opposite sides 
of the origin 0 (Fig. 7 .30), the corresponding principal stresses represent 

j 



the maximum and minimum normal stresses at point Q, and the maxi
mum shearing stress is equal to the maximum "in-plane" shearing stress. 
As noted in Sec. 7 .3, the planes of maxJmum shearing stress correspond 
to points D and E of Mohr's circle and are at 45° to the principal planes 
corresponding to points A and B. They ar~, therefore, the shaded diago
nal planes shown in Figs. 7.31a and b. 

(a) (b) 

FiQ. 7.31 

If, on the other hand, A and B are on the same side of 0, that is, if 
era and crb have the same sign, then the circle defining Umax• Umin• and 
T max is not the circle corresponding to a transformation of stress within 
the .xy plane. If era> crb > 0, as assumed in Fig. 7.32, we have 
u max = CT0 , O" min = 0, and T max is equal to the radius of the circle de
fined by points 0 and A, that is, T max = ! O" max. We also note that the 
normals Qd' and Qe' to the planes of maximum shearing stress are ob
tained by rotating the axis Qa through 45° within the za plane. Thus, 
the planes of maximum shearing stress are the shaded diagonal planes 
shown in Figs. 7 .33a and b. 

(a) (b) 

Fig. 7.33 

7.6. Appllcation of Mohr's Circle to the 449 
Three-Dimensional Analysis of Stress 

Fig. 7.32 



For the state of plane stress shown in Fig. 7 .34, determine 
(a) the three principal planes and principal stresses, (b) the 
maximum shearing stress. 

Fig. 7.34 

(a) Principal Planes and Principal Stresses. We 
construct Mohr's circle for the transformation of stress in the 
.xy plane (Fig. 7.35). Point X is plotted 6 units to the right of 
the T axis and 3 units above the a axis (since the correspon
ding shearing stress tends to rotate the element clockwise). 

r) 

@)~ OB f~ (T 

y 

25 MPa 

T) 

Fig. 7.35 

Point Y is plotted 3.5 units to the right of the Taxis and 3 units 
below the a axis. Drawing the line XY, we obtain the center 
C of Mohr's circle for the .xy plane; its abscissa is 

(/".>'. + 40 + 25 
a ave = 

2 
= --

2
- = 32.5 MPa 

Since the sides Of the right triangle CFX are CF = 40 - 32.5 = 
7.5 MPa and FX = 20 MPa, the radius of the circle is 

R = ex= V(7.5)2 + (20)2 = 21.4 MPa 

The principal stresses in the plane of stress are 

u, = OA = OC + CA = 32.5 + 21.4 = 53.9 MPa 

u, = 08 = OC- BC = 32.5- 2!.4 = 11.1 MPa 

450 

Since the faces of the element that are perpendicular to the 
z axis are free of stress, these faces define one of the principal 
planes, and the corresponding principal stress is a z = 0. The 
other two principal planes are defined by points A and B on 
Mohr's circle. The angle 6P through which the element should 
be rotated about the z axis to bring its faces to coincide with 
these planes (Fig. 7.36) is half the angle ACX. We have 

FX 20 
tan20 =-=-

' CF 7.5 

28, = 69.4') 

b 

I 
.,3.9 'Y;(ll.lMP<> 

/;v:,?J: 
;:; ll.l MPa a 

Fig. 7.36 

{b) Maximum Shearing Stress. We now draw the 
circles of diameter OB and OA, which correspond respectively 
to rotations of the element about the a and b axes (Fig. 7 .37). 
We note that the maximum shearing stress is equal to the ra
dius of the circle of diameter OA. We thus have 

'T max = ~ 0" a = ~(53.9 MPa) = 26.95 MPa 

r) 

D" 
/ ....- ... -.- ,, ,,-,----. 

1/ ", 

' ' '--

Fig. 7.37 

Since points D' and E', which define the planes of maximum 
shearing stress, are located at the ends of the vertical diame
ter of the circle corresponding to a rotation about the b axis, 
the faces of the element of Fig. 7.36 can be brought to coin
cide with the planes of maximum shearing stress through a ro
tation of 45° about the b axis. 



'7.7. YIELD CRITERIA FOR DUCTILE MATERIALS UNDER 
PLANE STRESS 

Structural elements and machine components made of a ductile mate
rial are usually designed. so that the material will not yield under the ex
pected loading conditions. When the element or component is under uni
axial s'tress (Fig. 7 .38), the value of the normal stress trx that will cause 
the material to yield can be obtained readily from a tensile test conducted 

Fig. 7.38 

on a specimen of the same material, since the test specimen and the 
structural element or machine component are in the same state of stress. 
Thus, regardless of the actual mechanism that causes the material to 
yield, we can state that the element or component will be safe as long 
as CJx < try, where cry is the yield strength of the test specimen. 

On the other hand, when a structural element or machine compo
nent is in a state of plane stress (Fig. 7.39a), it is found convenient to 
use one of the methods developed earlier to detepnine the principal 
stresses tra and crb at any given point (Fig. 7.39b). The material can 
then be regarded as being in a state of biaxial stress at that point. Since 
this state is different from the state of uniaxial stress found in a speci
men subjected to a tensile test, it is clearly not possible to predict di
rectly from such a test whether or not the structural element or machine 
component under investigation will fail. Some criterion regarding the 
actual mechanism of failure of the material must first be established, 
which will make it possible to compare the effects of both states of 
stress on the material. The purpose of this section is to present the two 
yield criteria most freq.uently used for ductile materials. 

7.7. Yield Criteria for Ductile Materials 451 
under Plane Stress 

p 

p 

(b) 

Maximum-Shearing-Stress Criterion. This criterion is based on Fig. 7.39 

the observation that yield in ductile materials is caused by slippage of 
the material along oblique surfaces and is due primarily to shearing 
stresses (cf. Sec. 2.3). According to this criterion, a given structural 
component is safe as long as the maximum value T max. of the shearing 
stress in that component remains smaller than the corresponding value 
of the shearing stress in a tensile-test specimen of the same material as 
the specimen starts to yield. 

Recalling from Sec. 1.11 that the maximum value of the shearing 
stress under a centric axial load is equal to half the value of the corre
sponding nonnal, axial stress, we conclude that the maximum shearing 
stress in a tensile-test specimen is ! tr r as the specimen starts to yield. 
On the other hand, we saw in Sec. 7.6 that, for plane stress, the maxi
mum value T max of the shearing stress is equal to !!cr maxi if the princi
fal stresses are either both positive or both negative, and to 
2lcr max. - cr mini if the maximum stress is positive and the minimum stress 

/ 
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Fig. 7.40 

Fig. 7.41 

negative. Thus, if the principal stresses ua and ub have the same sign, 
the maximum-shearing-stress criterion gives 

io-,1 < O"y (7.23) 

If the principal stresses u a and ub have opposite signs, the maximum
shearing-stress criterion yields 

(7.24) 

The relations obtained have been represented graphically in Fig. 7 .40. 
Any given state of stress will be represented in that figure by a point 
of coordinates u a and u b• where u a and u b are the two principal stresses. 
If this point falls within the area shown in the figure, the structural com
ponent is safe. If it falls outside this area, the component will fail as a 
result of yield in the materiaL The hexagon associated with the initia
tion of yield in the material is known as Tresca 's hexagon after the 
French engineer Henri Edouard Tresca (1814-1885). 

Maximum-Distortion-Energy Criterion. This criterion is based 
on the detennination of the distortion energy in a given material, i.e., 
of the energy associated with changes in shape in that material (as op
posed to the energy associated with changes in volume in the same ma
terial). According to this criterion, also known as the von Mises crite
rion, after the Gennah-American applied mathematician Richard von 
Mises (1883-1953), a given structural component is safe as long as the 
maximum value of the distortion energy per unit volume in that mate
rial remains smaller than the distortion energy per unit volume required 
to cause yield in a tensile-test specimen of the same materiaL As you 
will see in Sec. 11.6, the distortion energy per unit volume in an isotropic 
material under plane stress is 

(7.25) 

where era and ub are the principal stresses and G the modulus of rigid
ity. In the particular case of a tensile-test specimen that is starting to 
yield, we have ua = Uy, ub = 0, and (ud)y = 0'~/6G. Thus, the maxi
mum-distortion-energy criterion indicates that the structural component 
is safe as long as ud < ( ud)r, or 

(7.26) 

i.e., as long as the point of coordinates O'a and ub falls within the area 
shown in Fig. 7 .41. This area is bounded by the ellipse. of equation 

(7.27) 

which intersects the coordinate axes at u a = ± u r and u b = ± u r· We 
can verify that the major axis of the ellipse bisects the first and third 
quadrants and extends from A (ua = ub = ur) to B (ua = ub = -uy), 
while its minor axis extends from C (ua = -ub = -0.577ur) to 
D (o-, = -o-, = 0.577o-,). 

The maximum-shearing-stress criterion and the maximum-distortion
energy criterion are compared in Fig. 7.42. We note that the ellipse 
passes through the vertices of the hexagon. Thus, for the states of stress 
represented by these six points, the two criteria give the same results. 



For any other state of stress, the maximum-shearing-stress criterion is 
more conservative than the maximum~distortion-energy critedoni since 
the hexagon is located within the ellipse. j 

A state of. stress of particular interest is that associated~i h yield 
in a torsion test. We recall from Fig. 7.;24 of Sec. 7.4 that, for. torsion, 
O'mirJ =-(]"max; thus, the COITesponding points in Fig. 7.42 e located 
on the bisector of the second and fourth quadrants. It follows that yield 
occurs in a torsion test when O"a = -(Tb = ± 0.5(Ty according to the 
maximum~shearing-stress criterion, and when O"a = -(Tb = ± 0.5770"y 
according to the maximum-distortion-energy criterion. But, recalling 
again Fig. 7.24, we note that O"a and ub must be equal in magnitude to 
'T max• that is, to the value obtained from a torsion test for the yield 
strength 'Ty of t~e material. Since the values of the yield strength Uy in 
tension and of the yield strength 'T y in shear are given for various duc
tile materials in Appendix B, we can compute the ratio 'Ty/O"y for these 
materials and verify that the values obtained range from 0.55 to 0.60. 
Thus, the maximum-distortion-energy criterion appears somewhat more 
accurate than the maximum-shearing-stress c'riterion as far as predict
ing yield in torsion is concerned. 

'7.8. FRACTURE CRITERIA FOR BRITTLE MATERIALS UNDER 
PLANE STRESS 

As we saw in Chap. 2, brittle materials are characterized by the fact 
that, when subjected to a tensile test, they fail suddenly through rupture
or fracture-without any prior yielding. When a structural element or 
machine compO!lent made of a brittle material is under uniaxial tensile 
stress, the value of the normal stress that causes it to fail is equal to the ul
timate strength uu of the material as determined from a tensile test, since 
both the tensile~test specimen and the element or component under inves
tigation are in the same state of stress. However, when a structural element· 
or machine component is in a state of plane stress, it is found convenient 
to first determine the principal stresses u a and (Tb at any given point, and 
to use one of the criteria indicated in this section to predict whether or 
not the structural element or machine component will fail. 

Maximum~Normal-Stress Criterion. According to this criterion, 
a given structural component fails when the maximum normal stress in 
that component reaches the ultimate strength o-u obtained from the ten~ 
sile test of a specimen of the same material. Thus, the st1uctural com
ponent will be safe as long as the absolute values of the principal stresses 
ua and ub are both less than (Tu: 

1",1 < "u (7.28) 

The maximum-normal-stress criterion can be expressed graphically as 
shown in Fig. 7.43. Ifthe point obtained by plotting the values ua and 
u b of the principal stresses falls within the square area shown in the 
figure, the structural component is safe. If it falls outside that area, the 
component will fail. 

The maximum~normal~stress criterion, also known as Coulomb's 
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Torsion 

Fig. 7.42 

~u 

. 

-~u "u 

~u 

criterion, after t4~ French physicist Charles Augustin de Coulomb 
(1736-1806), suffers from an important shortcoming, since it is based Fig. 7.43 
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Fig. 7.45 

Fig. 7.44 

q, 

O'ur 

q 

u, 

on the assumption that the ultimate strength of the material is the same 
in tension and in compression. As we noted in Sec. 2.3, this is seldom 
the case, because of the presence of flaws in the material, such as mi
croscopic cracks or cavities, which tend to weaken the material in ten
sion, while not appreciably affecting its resistance to compressiVe fail
ure. Besides, this criterion makes no allowance for effects other than 
those of the normal stresses on the failure mechanism of the material.t 

Mohr'S Criterion. This criterion, suggested by the German engi
neer Otto Mohr, can be used to predict the effect of a given state of 
plane stress on a brittle material, when results of various types of tests 
are available for that material. 

Let us fust assume that a tensile test and a compressive test have 
been conducted on a given material, and that the values Crur and IYuc 
of the ultimate strength in tension and in compression have been de
termined for that material. The state of stress corresponding to the rup
ture of the tensile4est specimen can be represented on a Mohr-circle di~ 
agram by the circle intersecting the horizontal axis at 0 and IYur (Fig. 
7 .45a). Similarly, the state of stress corresponding to the failure of the 
compressive-test specimen can be represented by the circle intersecting 
the horizontal axis at 0 and O'uc· Clearly, a state of stress represented 
by a circle entirely contained in either of these circles will be safe. Thus, 
if both principal stresses are positive, the state of stress is safe as long 
as 0' a < IYur and IYb < a 01-; if both principal stresses are negative, the 
state of stress is safe as long as I<T,I < I<Tucl and I<Tbl < I<Tucl- Plot
ting the point of coordinates O'a and ub (Fig. 7.45b), we verify that the 
state of stress is safe as long as that point falls within one of the square 
areas shown in that figure. 

In order to analyze the cases when O'a and O'b have opposite signs, 
we now assume that a torsion test has been conducted on the material 
and that its ultimate strength in shear, Tu, has been determined. Draw
ing the circle centered at 0 representing the state of stress correspon
ding to the failure of the torsion-test specimen (Fig. 7.46a), we observe 
that any state of stress represented by a circle entirely contained in that 
circle is also safe. Mohr's criterion is a logica~ extension of this obser-

t Another failure criterion known as the maximum-normal-strain criterion, or Saint
Venant's criterion, was widely used during the nineteenth century. According to this criterion, 
a given structural component is safe as long as the maximum value of the nonnal strain in 
that component remains smaller than the value €u of the strain at which a tensile-test speci
men of the same material will fail. But, as will be shown in Sec. 7.12, the strain is maximum 
along one of the principal axes of stress, if the deformation is elastic and the material homo
geneous and isotropic. Thus, denoting by E, and €b the values of the nonnal strain along the 
principal axes in the plane of stress, we write 

(7.29) 

Making use of the generalized Hooke's law (See. 2.12), we could express these relations in 
tenns of the principal stresses era and O'v and the ultimate strength O'u df the material. We 
would find that, according to the maximum-normal-strain criterion, the structural component 
is safe as long as the point obtained by plotting 0'~ and cr" falls within the area shown in Fig. 
7.44 where vis Poisson's ratio for the given materiaL 
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(a) 

Fig. 7.46 

'------f:uuc 

(b) 

vation: According to Mohr's criterion, a state of stress is safe if it is 
represented by a circle located entirely within the area bounded by the 
envelope of the circles corresponding to the available data. The re
maining portions of the principal-stress diagram can now be obtained 
by drawing various circles tangent to this envelOpe, determining the cor
responding values of O"a and (jb, and plotting the points of coordinates 
ITa and IT& (Fig. 7.46b). 

More accurate diagrams can be drawn when additional test results, 
corresponding to various states of stress, are available. If, on the other 
hand, the only avaihible data consists of the ultimate strengths o-07 and 
cr0c, the envelope in Fig. 7 .46a is replaced by the tangents AB and A' B' 
to the circles corresponding respectively to failure in tensiOn and fail
ure in compression (Fig. 7.47a). From the similar triangles drawn in 
that figure, we note that the abscissa of the center C of a circle tangent 
to AB and A'S' is linearly related to its radius R. Since era= OC + R 
and crb = OC-R, it follows that era and crv are also linearly related. 
Thus, the shaded area corresponding to this simplified Mohr's crite
rion is bounded by straight lines in the second and fourth quadrants 
(Fig. 7.47b). 

Note that in order to determine whether a structural component will 
be safe under a given loading, the state of stress should be calculated 

uuc 

(a) 

"uc 

at all critical points of the component, i.e., at all points where stress 
concentrations are likely to ciccur. This can be done in a number of cases (b) 

by using the stress-concentration factors given in Figs. 2.64, 3.32, 4.31, Fig. 7.47 

and 4.32. There are many instances, however, when the theory of elas-
ticity must be used to determine the state of stress at a critical point. 

Special care should be taken when macroscopic cracks have been 
detected in a structural component. While it can be assumed that the 
test specimen used to determine the ultimate tensile strength of the ma
terial contained the same type of flaws (i.e., microscopic cracks or cav
ities) as the structural component under investigation, the specimen was 
certainly free of any detectable macroscopic cracks. When a crack is 
detected in a structural component, it is necessary to determine whether 
that crack will tend to propagate under the expected loading condition 
and cause the compOnent to fail, or whether it will remain stable. This 
requires an analysis involving the energy associated with the growth of 
the crack. Such an analysis is beyond the scope of this text and should 
be carried out by t1)e methods of fracture mechanics. 
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SAMPLE PROBLEM 7.4 

The state of plane stress shown occurs at a critical point of a steel machine 
component. As a result of several tensile tests, it has been found that the ten
sile yield strength is cr r = 250 MPa for the grade of steel used. Determine the 
factor of safety with respect to yield, using (a) the maximum-shearing-stress 
criterion, and (b) the maximum-distortion-energy criterion. 

SOLUTION 

Mohr's Circle. We construct Mohr's circle for the given state of stress 
and find 

O'ave = oc = Ho-x + a"y) = h80 ~ 40) = 20MPa 

""' R ~ Y(CF)' + (FX)2 ~ Y(60)2 + (25)'- 65 MPa 

Principal Stresses 

"" ~ OC + CA ~ 20 + 65 ~ +85 MPa 
"b ~ OC- BC ~ 20-65 ~ -45MPa 

a. Maximum-Shearing-Stress Criterion. Since for the grade of steel 
used the tensile strength is a r = 250 MPa, the corresponding shearing stress 
at yield is 

Ty = ~O'y = !(250 MPa) = 125 MPa 

ForTm = 65 MPa: 
Ty 125 MPa 

F.S. = Tm = 65 MPa F.S. ~ 1.92 4 

b. Maximum~Distortion~Energy Criterion. Introducing a factor of 
safety into Eq. (7.26), we write 

0'~- upb + 0'~ = (;;.J 
For u" = +85 MPa, ub = -45 MPa, and try= 250 MPa, we have 

(85)2 
- (85)( -45) + (45)2 ~ (

250
)' 

F.S. 

250 
114.3 ~

F.S. 
F.S.~2.19 <il 

Comment. For a ductile material with u r = 250 MPa, we have drawn 
the hexagon associated with the maximum-shearing-stress criterion and the el
lipse associated with the maximum-distortion~energy criteriop.. The given state 
of plane stress is represented by point H of coordinates u" = 85 MPa and 
O'b = -45 MPa. We note that the straight line drawn through points 0 and H 
intersects the hexagon at point T and the ellipse at point M. For each criterion, 
the value obtained for F.S. can be verified by measuring the line segments in~ 
dicated and computing their ratios: 

OT 
(a) F.S. ~ OH ~ 1.92 

OM 
(b) F.S. ~ OH ~ 2.19 



7.66 For the state of stress shown, determine the maximum shearing 
stress when (a) cry = 20 MPa, (b) cry = 140 MPa. (Hint: Consider both in-plane 
and out-of-plane shearing stresses.) 

Fig. P7.66 and P7.67 
7.67 For the state of stress shown, determine the maximum shearing 

stress when (a) O'y = 40 MPa, (b) O"y = 120 MPa. (Hint: Consider both in-plane 
and out-of-plane shearing stresses.) 

7.68 For the state of plane stress shown, determine the maximum shear
ing stress when (a) O'x = 30 MPa and O"y = 90 MPa, (b) O"x = 70 MPa and 
vy = 10 MPa. (Hint: Consider both in-plane and out-of-plane shearing 
stresses.) 

7.69 For the state of plane stress shown, detennine the maximum shear
ing stress when (a) a .. = 0 and O'y = 60 MPa, (b) O'x = 105 MPa and O'y = 45 
MPa. (Hint: Consider both in-plane and out-of-plane shearing stresses.) Fig. P7.68 and P7.69 

7.70 and 7.71 For the state of stress shown, determine the maximum 
shearing stress when (a) a~= 0, (b) a<= +60 MPa, (c) a,= -60 MPa. 

MPa 

' 
/ 

Fig. P7.70 

98MPa 

Fig. P7.71 

210 MPa 

~' 
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yl 
HMPa 

Fig. P7.72 

yl 

Fig. P7.74 

yl 
70 MPa 

MPu 

Fig. P7.76 

7. 72 and 7. 73 For the state of stress shown, detennine the maximum 
shearing stress when (a) Uz = +20 MPa, (b) Uz = -20 MPa, (c) Uz = 0. 

yl 

Fig. P7.73 

7. 7 4 For the state of stress shown, determine two values of u y for which 
the maximum shearing stress is 75 MPa. 

yl 

Fig. P7.75 

7.75 For the state of stress shown, detennine two values of uy for which 
the maximum shearing stress is 52.5 MPa. 

7. 76 For the state of stress shown, determine the value of "I"."<Y for which 
the maximum shearing stress is 80 MPa. 

yl 

Fig. P7.77 

7.77 For the state of stress shown, determine the value of T xy for which 
the maximum shearing stress is (a) 63 MPa, (b) 84 MPa. 



7. 78 For the state of stress shown, determine two values of a>' for which 
the maximum shearing stress is 64 MPa. 

"I 

~~~72MP<> 
~~~~, 

::; 48 MPa 

Fig. P7.78 

7.79 For the state of stress shown, determine the range of values of rxz 

for which the maximum shearing stress is equal to or less than 90 MPa. 

*7.80 For the state of stress of Prob. 7.66, determine (a) the value of a, 
for which the maximum shearing stress is as small as possible, (b) the corre* 
sponding value of the shearing stress. 

7.81 The state of plane stress shown occurs in a machine component 
made of a steel with ay = 210 MPa. Using the maximum-distortion*energy 
criterion, determine whether yield occurs when (a) rxy = 42 MP~, (b) rxy = 
84 MPa, (c) rxy = 98 MPa. If yield does not occur, determine the correspon
ding factor of safety. 

7.82 Solve Prob. 7.81, using the maximum*shearing*stress criterion. 

7.83 The state of plane stress shown occurs in a machine component made 
of a steel with ay = 325 MPa. Using the maximum*distortion*energy criterion, 
determine whether yield will occur when (a) a 0 = 200 MPa, (b) u 0 = 240 MPa, 
(c) u 0 = 280 MPa. If yield does not occur, determine the corresponding fac* 
tor of safety. 

T 
Fig. P7.83 

7.84 Solve Prob.. 7.83, using the maximum-shearing*stress criterion. 

7.85 The 38*mm-diameter shaft AB is made of a grade of steel for 
which the yield strength is ay is 294 MPa. Using the maximum*shearing* 
stress criterion, determine the magnitude of the torque T for which yield oc~ 

Fig. P7.79 

Fig. P7.81 

curs when P = 240 kN. Fig. P7.85 
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Fig. P7.89 

49 MPa 

156Mp,, 
Fig. P7.91 

-I 
Fig. P7.93 

7.86 Solve Prob. 7 .85, using the maximum~distortion-energy criterion. 

7.87 The 38~mm-diameter shaftAB is made of a grade of steel for which 
the yield strength is O'y = 250 MPa. Using the maximum-shearing-stress cri
terion, determine the magnitude of the torque T for which yield occurs when 
p = 240 kN. 

Fig. P7.87 

7.88 Solve Prob. 7.87, using the maximum-distortion-energy criterion. 

7.89 and 7.90 The state of plane stress shown is expected in a cast
iron base. Knowing that for the grade of cast iron used 0' ur = 160 MPa and 
(J'uc = 320 MPa and using Mohr's criterion, determine whether rupture of the 
component will occur. 

Fig. P7.90 

7.91 and 7.92 The state of plane stress shown is expected to occur in 
an aluminum casting. Knowing that for the aluniinum alloy used 0' vr = 70 
MPa and O'uc = 210 MPa and using Mohr's criterion, detennine whether rup
ture of the component will occur. 

ll05 MPa 

-63MPa 

-l IMMP" 

Fig. P7.92 

7.93 The state of plane stress shown will occur at a critical point in a 
pipe made of an aluminum alloy for which O'ur = 75 MPaandO'uc = 150 MPa. 
Using Mohr's criterion, determine the shearing stress Ta for which failure should 
be expected. 



7.94 The state of plane stress shown will occur at a critical point in an 
aturninum casting that is made of an alloy for which u ur = 70 MP~ and 

""' 170 MPa. Using Mohr's criteridn, determine the shearing stress fr(l for 

~Kfch f~lure sh~uld be expected. j' 

-r _,, 
Fig. P7.94 

7.95 The cast-aluminum rod shown is made of an alloy for which 
uur = 60 MPa and uuc = 120 MPa. Using Mohr's criterion, determine the 
magnitude of the torque T for which failure should be expected, 

Fig. P7.95 

7.96 The cast-aluminum rod shown is made of an alloy for which 
crur = 70 MPa and uvc = 175 MPa. Knowing that the magnitude Tofthe ap
plied torques is slowly increased and using Mohr's criterion, determine the 
shearing stress "T(} that should be expected at rupture. 

Fig. P7.96 

7.97 A machine component is made of a grade of cast iron for which 
<rur = 56 MPa and c.ruc = 140 MPa. For each of the states of stress shown, 
and using Mohr's criterion, determine the normal stress c.r0 at which rupture of 
the component should be expected. 

(a) ,, 

Fig. P7.97 

(b) (c) 
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Fig. 7.48 

Fig. 7.49 

Fig. 7.51 

O'tdA 

Fig. 7.52 

7.9. STRESSES IN THIN-WALLED PRESSURE VESSELS 

Thin-walled pressure vessels provide an important application of the 
analysis of plane stress. Since their walls offer little resistance to bend
ing, it can be assumed that the internal forces exerted on a given por
tion of wall are tangent to the surface of the vessel (Fig. 7 .48). There
sulting stresses on an element of wall will thus be contained in a plane 
tangent to the surface of the vessel. 

Our anaiysis of stresses in thin-walled pressure vessels will be lim
ited to the two types of vessels most frequently encountered: cylindri
cal pressure vessels and spherical pressure vessels (Figs. 7.49 and 7.50). 

Fig. 7.50 

Consider a cylindrical vessel of inner radius rand wall thickness t 
containing a fluid under pressure (Fig. 7.51). We propose to detennine 
the stresses exerted on a small element of wall with sides respectively 
parallel and perpendicular to the axis of the cylinder. Because of the 
axisymmetry of the vessel and its contents, it is clear that no shearing 
stress is exerted on the element. The normal stresses a 1 and a 2 sho.wn 
in Fig. 7.51 are therefore principal stresses. The stress a 1 is known as 
the hoop stress, because it is the type of stress found in hoops used to 
hold together the various slats of a wooden barrel, and the stress a 2 is 
called the longitudinal stress. 

In order to detennine the hoop stress u 1, we detach a portion of the 
vessel and its contents bounded by the xy plane and by two planes par~ 
allel to the yz plane at a distance Llx from each other (Fig. 7 .52). The 
forces parallel to the z axis acting on the free body defined in this fash~ 
ion consist of the elementary internal forces a 1 dA on the wall sections, 
and of the elementary pressure forces p dA exerted on the portion of 
"fluid included in the free body. Note that p denotes the gage pressure of 
the fluid, Le., the excess of the inside pressure· over the outside atmo~ 
spheric pressure. The resultant of the internal forces 0' 1 dA is equal to the 
product of 0"1 and of the cross-sectional area 2t Ax of the wall, while 
the resultant of the pressure forces p dA is equal to the product of p and 
of the area 2r Ax. Writing the equilibrium equation 'SF2 = 0, we have 



ZF, = 0: o-1(21 t.x) - p(2r t.x) = 0 

an~, solving for the hoop stress cr1, , 

,., = p; ;30) 

To determine the longitudinal stress u 2, we now pass a section per
pendicular to the x axis and consider the free body consisting of the 
portion of the vessel and its contents located to the left of the section 

pdA 
Fig. 7.53 

(Fig. 7 .53). The forces acting on this free body are the elementary in
ternal forces u 2 dA on the wall section and the elementary pressure 
forces p dA exerted on the portion of fluid included in the free body. 
Noting that the area of the fluid section is '1Tr 2 and that the area of the 
wall section can be obtained by multiplying the circumference 2 'TTT of 
the cylinder by its wall thickness t, we write the equilibrium equation:t 

:ZF, = 0: 

and, solving for the longitudinal stress u 2, 

pr 
Uz = 2t (7.31) 

We note from Eqs. (7.30) and (7.31) that the hoop stress o-1 is twice as 
large as the longitudinal stress cr2: 

(7.32) 

fUsing the mean radius of the wall section, r,. = r + f l, in Computing the resultant of the 
forces on that section, we would obtain a more accurate value of the longitudinal stress, 
namely, 

P' 1 
O"z == 2i--, 

1+z, 
(7.31 ') 

However, for a thin-walled pressure vessel, the term t/Zr is sufficiently smaH to allow the use 
of Eq. (7.31) for engineering design and analysis. If a pressure vessel is not thin-wailed (Le., 
if t/Zr is not small), the stresses u 1 and u 2 vary across the wall and must be determined by 
the methods of the theory of elasticity. 

/ 
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Fig. 7.54 

Fig. 7.56 

Fig. 7.57 

/ 

Fig. 7.55 

B 1A 

' ' ' 

Drawing Mohr's circle through the points A and B that correspond 
respectively to the principal stresses 0' 1 and O'z (Fig. 7.54), and recall~ 
ing that the maximum in-plane shearing stress is equal to the radius of 
this circle, we have 

' pr 
'T max(in plane) = 2 0' 2 = 4 t 

(7.33) 

This stress· corresponds to points D and E and is exerted on an element 
obtained by rotating the original element of Fig. 7.51 through 4SO within 
the plane tangent to the surface of the vessel. The maximum shearing 
stress in the wall of the vessel, however, is larger. It is equal to the ra~ 
dius of the circle of diameter OA and corresponds to a rotation of 45° 
about a longitudinal axis and out of the plane of stress. t We have 

(7.34) 

We now consider a spherical vessel of inner radius rand wall thick~ 
ness t, containing a fluid under a gage pressure p. For reasons of sym~ 
metry, the stresses exerted on the four faces of a small element of wall 
must be equal (Fig. 7.55). We have 

To determine the value of the stress, we pass a section through the cen
ter C of the vessel and consider the free body consisting of the portion 
of the vessel and its contents located to the left of the section (Fig. 7.56). 
The equation of equilibrium for this free body is the same as for the 
free body of Fig. 7.53. We thus conclude that, for a spherical vessel, 

(7.36) 

Since the principal stresses u 1 and O'z are equal, Mohr's circle .for 
transformations of stress within the plane tangent to the surface of the 
vessel reduces to a point (Fig. 7.57); we conclude that the in-plane nor
mal stress is constant and that the in-plane maximum shearing stress is 
zero. The maximum shearing stress in the wall of the vessel, however, 
is not zero; it is equal to the radius of the circle of diameter OA and 
corresponds to a rotation of 45° out of the plane of stress. We have 

t pr 
Truax= 20"1 = 4 t (7.37) 

tit should be observed that, while the third principal stress is zero on the outer surface of 
the vessel, it is equal to -p on the inner surface, and is represented by a point C( -p, 0) on 
a Mohr-circle diagram. Thus, close to the inside surface of the vessel, the maximum shear
ing stress is equal to the radius of a circle of diameter CA, and we have 

For a thin-walled vessel, however, the tenn tlr is small, and we can neglect the variation of 
T "'"" across the wall section. This remark also applies to spherical pressure vessels. 
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SAMPlE PROBlEM 7.5 

A compressed-air tank is;Lpported by two cradles as shown; one of the cradles 
is designed so that i~6es not exert any longitudinal force on the tank. The 
cylindrical body of th tank has a 750-mm outer diameter and is fabricated from 
a 10-mm steel plate y butt welding along a helix that forms an angle of 25" 
with a transverse plane. The end caps are spherical and have a uniform wall 
thickness of 8 mm. For an internal gage pressure of 1.2 MPa, determine (a) the 
nom1al stress and the maximum shearing stress in the spherical caps, (b) the 
stresses in directions perpendicular and parallel to the helical weld. 

SOLUTION 

a. Spherical Cap. Using Eq. (7.36), we write 

p = 1.2 MPa, t = 8 mm, r = 375 - 8 = 367 mm 

pr (1.2 MPa)(367 mm) 
(]"-a----

! - 2 - 2t - 2(8 mm) a-= 27.5 MPa <:.! 

We note that for stresses in a plane tangent to the cap, Mohr's circle reduces 
to a point (A, B) on the hotizontal axis and that all in-plane shearing stresses 
are zero. On the surface of the cap the third ptincipal stress is zero and corre
sponds to point 0. On a Mohr's circle of diameter AO, point D' represents the 
maximum shearing stress; it occurs on planes at 45" to the plane tangem to the 
cap. 

T max = t(27.5 MPa) 7 111ux = 13.75 MPa <l 

b. Cylindrical Body of the Tank. We first determine the hoop stress o- 1 
and the longitudinal stress o-2. Using Eqs. (7.30) and (7.32), we write 

p = l.2MPa,t =10mm, r = 375- 10 =365 mm 

pr (1.2 MPa)(365 mm) 
u 1 =- = = 43.8 MPa o-2 = ~o- 1 = 21.9 MPa 

t IOmm 
O"ave = t{u; + o-2) = 32.85 MPa R = t{u1 - 0"2) = 10.95 MPa 

Stresses at the Weld. Noting that both the hoop stress and the longitu
dinal stress are principal stresses, we draw Mohr's circle as shown. 

An element having a face parallel to the weld is obtained by rotating the 
face perpendicular to the axis Ob counterclockwise through 25". Therefore, on 
Mohr's circle we locate the point X' corresponding to the stress components 
on the weld by rotating radius CB counterclockwise through 20 = 50". 

0" w = O"ave - R COS 50° = 32.85 - 10.95 COS 50° 
T w = R sin 50° = 10.95 sin 50" 

O"w = +25.8 MPa 4 
Tw = 8.39 MPa <l 

Since X' is below the horizontal axis, r w tends to rotate the element 
counterclockwise. 

\ .... :~.·' 

' -----0",~ = 2.5.8 MP(\ 

-r," = 8.39 MPa 

' \'-Weld 
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7.98 A spherical gas container made of steel has a 6-m outer diameter 
and a wall thickness of 9 mm. Knowing that the internal pressure is 500 kPa, 
determine the maximum normal stress and the maximum shearing stress in the 
container. 

7.99 The maximum gage pressure is known to be 10 MPa in a spherical 
steel pressure vessel having a 200-nun outer diameter and a 6-mm wall thick
ness. Knowing that the ultimate stress in the steel used is CF u = 400 MPa, 
determine the factor of safety with respect to tensile failure. 

7.100 Detennine the nonnal stress in a basketball of 240-mm outer diam
eter and 3-mm· wall thickness that is inflated to a gage pressure of 63 kPa. 

7.101 A spherical gas container having an outer diameter of 4.5 m arid 
a wall thickness of 22 mm is made of a steel for which E = 200 GPa and 
v = 0.29. KnOwing that the gage pressure in the container is increased from 
zero to 1.7 MPa, determine (a) the maximum normal stress in the container, 
(b) the increase in the diameter of the container. 

7.102 A spherical pressure vessel has an outer diameter of 3 m and a 
wall thickness of 12 mm. Knowing that for the steel used O" all = 80 MPa, 
E = 200 GPa, and v = 0.29, determine (a) the allowable gage pressure, (b) the 
corresponding increase in the diameter of the vessel. 

7.103 A spherical pressure vessel of 750-mm outer diameter is to be 
fabricated from a steel having an ultimate stress 0' u = 400 MPa. Knowing that 
a factor of safety of 4 is desired and that the gage pressure can reach 4.2 MPa, 
determine the smallest wall thickness that should be used. 

7.104 When filled to capacity, the unpressurized storage tank shown 
contains water to a height of 14.6 m above its base. Knowing that the lower 
portion of the tank has a wall thickness of 16 mrn, determine the maximum 
normal stress and the maximum shearing stress in the tank. (Density of 
water= 1000 kg/m3.) 

7.105 Determine the largest internal pressure that can be applied to a 
cylindrical tank of 1.75-m outer d~arp.eter and 16-mm wall thickness if the 
ultimate normal stress of the steel used is 450 MPa and a factor of safety of 
5.0 is desired. 

7.106 A storage tank contains liquified propane under a pressure of 1.5 
MPa at a temperature of 38°C. Knowing that the tank has an outer diameter of 
320 mrn and a wall thickness of 3 mm, determine the maximum normal stress 
and the maximum shearing stress in the tank. 



7.107 The bulk storage tank shown in Fig. 7.49 has an outer diameter 
of 3.5 m and a wall thickness of 20 mm. At a time when the internal pressure 
of the tank is 1.2 MPa, determine the maximum normal stress and the ~axi-
mum sh~aring stress in the tank. j 

7..108 A steel penstock has a 900-mm outer diameter, a 12;£m wall 
thickness, and connects a reservoir at A with a generating station at R Know
ing that the density of water is 1000 kg/m3

, determine the maximum normal 
stress and the maximum shearing stress in the penstock under static conditions. 

150m 

L_ 900mm 

Fig. P7.108and P7.109 

7.109 A steel penstock has a 900-mm outer diameter, a 12-mm wall 
thickness, and connects a reservoir at A with a generating station at B. Know
ing that the density of water is 1000 kg/m3 and that the allowable normal stress 
in the steel is 85 MPa, determine the smallest thickness that can be used for 
the penstock. 

7.110 The cylindrical portion of the compressed air tank shown is fab
ricated of 8~mm-thick plate welded along a helix forming an angle {3 = 30° 
with the horizontal. Knowing that the allowable stress normal to the weld is 
75 MPa, determine the largest gage pressure that can be used in the tank. 

Fig. P7.110 and P7.111 

7.111 The cylindrical portion of the compressed air tank shown is fab
ricated of 8-mm-thick plate welded along a helix forming an angle {3 = 30° 
with the horizontal. :Deter:mine the gage pressure that will cause a shearing 
stress parallel to the weld of 30 MPa. 
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m 

Fig. P7.112, P7.113, and P7.114 

7.112 The pressure tank shown has a 9-mm wall thickness and butt 
welded seams forming an angle {3 = 20° with a transverse plane. For a gage 
pressure of 580 kPa, determine (a) the nonnal stress perpendicular to the weld, 
(b) the shearing stress parallel to the weld. 

7.113 The pressure tank shown has a 9-mm wall thickness and butt 
welded seams forming an angle {3 with a transverse plane. Determine the range 
of values of {3 that can be used if the shearing stress parallel to the weld is not 
to exceed 9 MPa when the gage pressure is 580 kPa. 

7.114 The pressure tank shown has a 9-mm wall thickness and butt 
welded seams forming an angle {3 = 25° with a transverse plane. Determine 
the largest allowable gage pressure, knowing that the allowable normal stress 
perpendicular to the weld is 125 MPa and the allowable shearing stress paral
lel to the weld is 70 MPa. 

7.115 The steel pressure tank shown has a 750-mm inner diameter and 
a 9-mm wall thickness. Knowing that the butt welded seams form an angle 
{3 == 50° with the longitudinal axis of the tank and that the gage pressure in 
the tank is 1.4 MPa, determine (a) the normal stress perpendicular to the weld, 
(b) the shearing stress parallel to the weld. 

Fig. P7.115 and P7.116 

7.116 The pressurized tank shown was fabricated by welding strips of 
plate along a helix forming an angle (3 with a transverse plane. Determine the 
largest value of {3 that can be used if the normal stress perpendicular to the 
weld is not larger than 85 percent of the maximum stress in the tank. 

7.117 Square plates, each of 16~mm thickness, can be bent and welded 
together in either of the two ways shown to form the cylindrical portion of 
a compressed air tank. Knowing that the allowable normal stress perpendi
cular to the weld is 65 MPa, determine the largest allowable gage pressure 
in each case. 

Fig. P7.117 



7.118 The compressed-air tank AB has an inner diameter of 450 mm 
and a uniform wall tl!ickness of 6 mm. Knowing that the gage pressure in th~ tank 
is 1.2 MPa, detennine the maximum noimal stress and the maximum in-jJlane 
shearing stress at point a on the top of the tank. ·; 

7.119 For the compressed-air tank and loading ofProb. 7.118, deter
mine the maximum normal stress and the maximum in-plane shearing stress at 
point b on the top of the tank. 

7.120 A pressure vessel of 250-mm inner diameter and 6-mm wall thick
ness is fabricated from a 1.2-m section of spirally welded pipe AB and is 
equipped with two rigid end plates. The gage pressure inside the vessel is 
2 MPa and 40-k:N centric axial forces P and P' are applied to the end plates. 
Determine (a) the normal stress perpendicular to the weld, (b) the shearing stress 
parallel to the weld. 

Fig. P7.120 

7.121 Solve Prob. 7.120, assuming that the magnitude P of the two 
forces is increased to 120 kN. 

7.122 A torque of magnitude T = 12 kN ·misapplied to the end of a 
tank containing compressed air under a pressure to 8 MPa. Knowing that the 
tank has a 180-mm inner diameter and a 12-mm wall thickness,. Determine 
the maximum normal stress and the maximum shearing stress in the tank. 

7.123 The tank shown has a 180-mm inner diameter and a 12-mm wall 
thickness. Knowing that the tank contains compressed air under a pressure of 
8 MPa, determine the magnitude T of the applied torque for which the maxi
mum normal stress is 75 MPa. 

7.124 A brass ring of 126-mm outer diameter and 6-mm thickness fits 
exactly inside a steel ring of 126-mm inner diameter and 3-mm thickness when 
the temperature of botl;,l rings is 10°C. Knowing that the temperature of both 
rings is then raised to 52°C, detennine (a) the tensile stress in the steel ring, 
(b) the corresponding pressure exerted by the brass ring on the steel ring. 

/ 

7.125 Solve Prob. 7.124, assuming that the brass ring is 3 mm thick and 
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Fig. P7.118 

Fig. P7.122and P7.123 

STEEL 
ts""' 3 mm 
E, = 200 CPa 
a, = 11.7 X 1Q-6;oc 

BRASS 
tb"' 6mm. 

Eb = 100 CPa 
ab = 20.9 x 10·6rc 

the steel ring is 6 mm thick. Fig. P7.124 
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Fig. 7.61 
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'7.1 0. TRANSFORMATION OF PLANE STRAIN 

Transformations of strain under a rotation of the coordinate axes will 
now be considered. Our analysis will first be limited to states of plane 
strain, i.e., to situations where the deformations of the material take 
place within parallel planes, and are the same in each of these planes. 
If the z axis is chosen perpendicular to the planes in which the defor~ 
mations ta~e place, we have Ez = 'Yzx = 'Yzy = 0, and the only remain~ 
ing strain components are Ex, Ey, and 'Yxy· Such a situation occurs in a 
plate subjected along its edges to uniformly distributed loads and re
strained from expanding or contracting laterally by smooth, rigid, and 
fixed supports (Fig. 7.58). It would also be found in a bar of infinite 
length subjected on its sides to uniformly distributed loads since, by 
reason of symmetry, the elements located in a given transverse plane 
cannot move out of that plane. This idealized model shows that, in the 
actual case of a long bar subjected to uniformly distributed transverse 
loads (Fig. 7.59), a state of plane strain exists in any given transverse 
section that is not located too close to either end of the bar. t 

Fig. 7.59 

Let us assume that a state of plane strain exists at point Q (with 
E, = 'Yzx = Yzy = 0), and that it is defined by the strain components 
Ez, Ey, and Yxy associated with the x andy axes. As we know from Sees. 
2.12 and 2.14, this means that a square element of center Q, with sides 
of length D.s respectively parallel to the x andy_ axes, is deformed into 
a parallelogram with sides of length respectively equal to b.s (1 + Ex) 

and D.s ( 1 + Ey), forming angles of I - y xy and I + y xy with each other 
(Fig. 7 .60). We recall that, as a result of the deformations of the other 
elements located in the xy plane, the element considered may also un~ 
dergo a rigid-body motion, but such a motion is irrelevant to the deter~ 
mination of the strains at point Q and will be ignored in this analysis. 
Our purpose is to determine in terms of Ex, Ey, Yxy· and 8 the stress com
ponents Ex'• Ey'• and Yx'y' associated with the frame of reference x'y' ob~ 
tained by rotating the x and y axes through the angle 8. As shown in 
Fig. 7.61, these new strain components define the parallelogram into 
which a square with sides respectively parallel to the x' andy' axes is 
deformed. 

tit should be observed that a state of plane strain and a state of plane stress (cf. Sec. 7.1) 
do not occur simultaneously. except for ideal materials with a Poisson ratio equal to zero. The 
constraints placed on the elements of the plate of Fig. 7.58 and of the bar of Fig. 7.59 result 
in a stress o--, different from zero. On the other hand, in the case of the plate of Fig. 7 .3, the 
absence of any lateral restraint results in o-, = 0 and e, * 0. 



We first derive an expression for the normal strain E{ B) along a line 
AB forming an arbitrary angle B witp the x axis. To do so, we con~ider 
the right triangle ABC, which has AB for hypothenuse (Fig. 7.62a)) and 
the oblique triangle A 18 1 C into which triangle ABC is deform~d (Fig. 
7.62b). Denoting by L\sthe length of AB,we express the length A'B' 
as L\s [ l + e(e) ]. Similarly, denoting by L\x and L\y the length of sides 
AC and CB, we express the lengths of A'C' and C'B' as L\x (l + e,) 
and L\y (l + e,), respectively. Recalling from Fig. 7.60 that the right 
angle at C in Fig. 7.62a deforms into an angle equal to~ + 'Yxy in Fig. 
7 .62b, and applying the law of c·osines to triangle A' B' C', we write 

(A'B')2 = (A'C')2 + (C'B')2
- 2(A'C')(C'B')cos(~ + r,) 

(L\s)2[l + e(e)]' (llx)2(l + e,)' + (L\y)'(l + e,)' 

-2(1\x)(l + e,)(lly)(l + e,)cos(~ + r"') (7.38) 

But from Fig. 7.62a we have 

y 

0 

y 

0 
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e As B 
A~!:J.y 

I:J.:-c c 

(a) 

(b) 

Fig. 7.62 
L\x = (lls) cos e (7.39) 

and we note that, since y xy is very small, 

cos(~+ 'Yxy) = -sinyxy= -yxy (7.40) 

Substituting from Eqs. (7.39) and (7.40) into Eq. (7.38), recalling that 
cos2 B + sin2 8 = 1, and neglecting second-order terms in e(8), Ex, Ey, 

and 'Yxy• we write 

e(8) = Ex cos2 e + Ey sin2 e + 'Yxy sin B cos B (7.41) 

Equation (7.41) enables us to determine the normal strain e(B) in 
any direction AB in tenns of the strain components Ex, Ey, y xy• and the Y 

angle e that AB forms with the X axis. We check that, for e = 0, Eq. 
(7.41) yields e(O) = e, and that, fore = 90°, it yields e(90o) = e,. On 
the other hand, making e = 45° in Eq. (7.41), we obtain the normal 
strain in the direction of the bisector OB of the angle formed by the x 45" 

B 

and y axes (Fig. 7 .63). Denoting this strain by E08, we write 45" 
a:'--'-----,, 

(7.42) Fig. 7.63 

Solving Eq. (7.42) for y"', we have 

Y, = 2EoB- (e, + e,) (7.43) 

This relation makes it possible to express the shearing strain associ
ated with a given pair of rectangular axes in terms of the normal strains 
measured along these axes and their bisector. It will play a fundamen
tal role in our present derivation and will also be used in Sec. 7.13 in 
connection with the experimental determination of shearing strains. 



4 72 Transformations of Stress and Strain Recalling that the main purpose of this section is to express the 
strain components associated with the frame of reference x'y' of Fig. 
7.61 in terms of the angle f) and the strain components Ex, Er> and Y.'<)· 
associated with the x andy axes, we note that the normal strain Ex along 
the x' axis is given by Eq. (7 .41). Using the trigonometric relations (7.3) 
and (7.4), we write this equation in the alternative form 

Ex- Ey. ' ')ixy 
+ ---cos 28 + -sin 2e 2 . . . 2 (7 .44) 

2 

Replacing() by() + 90°, we obtain the normal strain along they' axis. 
Since cos (20 + 180') = -cos 20 and sin (20 + 180') = -sin 20, we 
have 

Ex -:ey, · . Yxy 
---. cos 2() - - sin 2() 

2 2 
(7.45) 

Adding Eqs. (7.44) and (7.45) member to member, we obtain 

(7.46) 

Since Ez = Ez· = 0, we thus verify in the case of plane strain that the 
sum of the normal strains associated with a cubic element of material 
is independent of the orientation of that element. t 

Replacing now() by f)+ 45° in Eq. (7.44), we obtain an expres
sion for the normal strain along the bisector OB' of the angle fmmed 
by the x' and y' axes. Since cos (2() + 90°) = -sin 2() and 
sin (20 + 90') = cos 20, we have 

Ex+ Ey 
Eos· = --2--

E -
' 

2 

'Y.I')' 
sin 2() + 2 cos 2() (7.47) 

Writing Eq. (7.43) with respect to the x' andy' axes, we express the 
shearing strain y11.· in tenus of the normal strains measured along the 
x' andy' axes and the bisector OB': 

Y,y = 2<08·- (<,· + <,-) (7.48) 

Substituting from Eqs. (7.46) and (7.47) into (7.48), we obtain 

y,,, = -(<,- e,) sin 28 + y,cos 28 (7.49) 

Equations (7.44), (7.45), and (7.49) are the desired equations defin
ing the transformation of plane strain under a rotation of axes in the 
plane of strain. Dividing all terms in Eq. (7 .49) by 2, we write this equa
tion in the alternative fonn 

Yx'y' Ex - Ey l'xv - = - ---sin 2() + -'-cos 28 
2 2 2 

(7.49') 

and observe that Eqs. (7.44), (7.45), and (7.49') for the transformation 
of plane strain closely resemble the equations derived in Sec. 7.2 for 
the transformation of plane stress. While the former may be obtained 
from the latter by replacing the normal stresses by the corresponding 
normal strains, it should be noted, however, that the shearing stresses 
Txy and rx'y' should be replaced by half of the corresponding shearing 
straiqs, i.e., by 4Yxr and !Yx'r'• respectively. 

fCf. footnote on page 88. 
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Since the equations for the transformation of plane strain are Qf the 
same form as the equations for the transformation of plane streSs, the 
use of Mohr's ·circle qan be extended to the analysis of plane/strain. 
Give~ the strain components E"" ey, and Yxr defining the de)P'rmation 
represented in Fig. 7 .60, we plot a point X( Ex, -!r xy) of absctssa equal 
to the normal strain Ex and of ordinate equal to minus half the shearing 
strain r~y· and a point Y(ey, +!rx:>.) (Fig. 7.64). Drawing the diameter 
XY, we define the center C of Mohr's circle for plane strain. The ab
sciSsa of C and the radius R of the circle are respectively equal to 

Ex+ Ey 
Eave= --

2
- and R = )(•· 2 .,)' + C";)' (7.50) 

We note that if l'xy is positive, as assumed in Fig. 7 .60, points X 
and Yare plotted, respectively, below and aboVe the horizontal axis in 
Fig. 7 .64. But, in the absence of any overall rigid~body rotation, the 
side of the element in Fig. 7.60 that is associated with Ex is observed 

0 

ty) 
Fig. 7.64 

to rotate counterclockwise, while the side associated with Ey is observed tr) 
to rotate clockwise. Thus, if the shear deformation causes a given side 
to rotate clockwise, the corresponding point on Mohr's circle for plane 
strain is plotted above the horizontal axis, and if the deformation causes 
the side to rotate counterclockwise, the corresponding poirit is plotted y 
below the horizontal axis. We note that this convention matches the con~ 

c 

D 

vention used to draw Mohr's circle for plane stress. o s+---.o"":-=--1 ~-'---;;, 
Points A and B where Mohr's circle intersects the horizontal axis J 

correspond to the principal strains Emax and Emin (Fig. 7 .65a). We find e,
1
,- X 

and (7.51) 

f----e"""'----1 
where e~ve and R are defined by Eqs. (7 .50). The corresponding value 
ep of the angle e is obtained by observing that the shearing strain is 
zero for A and B. Setting y,.,. = 0 in Eq. (7.49), we have 

(7.52) 

The corresponding axes a and b in Fig. 7 .65b are the principal axes of 
strain. The angle ev, which defines the direction of the principal axis 
Oa in Fig. 7.65b corresponding to point A in Fig. 7.65a, is equal to half 

b 

of the angleXCA measured on Mohr's circle, and the rotation that brings Fig. 7,65 
Ox into Oa has the same sense as the rotation that brings the diameter 
XY of Mohr's circle into the diameter AB. 

We recall from Sec. 2.14 that, in the case of the elastic deforma~ 
tion of a homogeneous, isotropic material, Hooke's law for shearing 
stress and strain applies and yields r xy = G-yxy for any pair of rectan
gular x andy axes. Thus, 'Yxy = 0 when r xy = 0, which indicates that 
the principal axes .Pf strain coincide with the principal axes of stress. 

(a) 

' 

(b) 



474 Transformations of Stress and Strain The maximum in-plane shearing strain is defined by points D and 
E in Fig. 7 .65a. It is equal to the diameter of Mohr's circle. Recalling 
the second of Eqs. (7.50), we write 

(7.53) 

Finally, we note that the points X' and Y' that define the compo
nents of strain corresponding to a rotation of the coordinate axes through 
an angle8 (Fig. 7.61) are obtained by rotating the diameter XYofMohr's 
circle in the same sense through an angle 2fJ (Fig. 7.66). 

0 ' 
Fig. 7.61 (repeated) 

In a material in a state of plane strain, it is known that the hor
izontal side of a 10 X 10-mm square elongates by 4 p,m, while 
its vertical side remains unchanged, and that the angle at the 
lower left comer increases by 0.4 X 10- 3 rad (Fig. 7.67). De
termine (a) the principal axes and principal strains, (b) the max
imum shearing strain and the corresponding normal strain. 

Fig. 7.67 

(a) Principal Axes and Principal Strains. We first 
determine the coordinates of points X and Yon Mohr's circle 
for strain. We have 

Since the side of the square associated with E.t rotates clock
wise, point X of coordinates Ex and I'Yx/21 is plotted above the 
horizontal axis. Since €y = 0 and the corresponding side ro-

Y' 

0 X' e 

X~ 
Fig. 7.66 

D 

X(400, 200) 

Y(O,- 200) 

E 

Fig. 7.68 

tates counterclockwise, point Y is plotted directly below the 
origin (Fig. 7 .68). Drawing the diameier XY, we determine the 
center C of Mohr's circle and its radius R. We have 

<, + 
OC = 

2 
= 200 I' OY = 200 I' 

R = V(oc)' + (OY)' = V(2ool')' + (200~<)'- 283~< 

The principal strains are defined by the abscissas of points A 
and B. We write 

<" = OA = OC + R = 200 I' + 283 I' = 4831' 
<, = OB =OC-R= 2001'- 2831' = -831' 



The principal axes Oa and Ob are shown in Fig. 7.69. Since 
OC = OY, the angle at C in triangle OCY is 45°. Thus, the an
gle 2(}P that brings XY into AB is 45° J afld the angle (}P bring
ing Ox into Oa is .22.5° J. 

(b) Maximum Shearing Strain. Points D and E define 
the maximum in-plane shearing strain which, since the prin
cipal strains have opposite signs, is also the actual maximum 
shearing strain (see Sec. 7.12). We have 

/'rna~ = 566 j.k 

The corresponding normal strains are both equal to 

,. ~ oc ~ 200 JL 

The axes of maximum shearing strain are shown in Fig. 7.70. 

'7.12. TI-IREE·DIMENSIONAL ANAlYSIS OF STRAIN 

) 

We saw in Sec. 7.5 that, in the most general case of stress, we can de
termine three coordinate axes a, b, and c, called the principal axes of 
stress. A small cubic element with faces respectively perpendicular to 
these axes is free of shearing stresses (Fig. 7 .27); i.e., we have 
Tab = T be = T ca = 0. As recalled in the preceding section, Hooke's law 
for shearing stress and strain applies when the deformation is elastic 
and the material homogeneous and isotropic. It follows that, in such a 
case, 'Yab = 'Ybc = Yea = 0, i.e., the axes a, b, and care also principal 
axes of strain. A small cube of side equal to unity, centered at Q and 
with faces respectively perpendicular to the principal axes, is deformed 
into a rectangular parallelepiped of sides 1 + Ea, 1 + Eb, and 1 + Ec 

(Fig. 7.71). 
b 

~~'y' 
~\ x): 

flf?· 
' Fig. 7.71 

Fig. 7.69 

Fig. 7.70 

b 

7.12. Three-Dimensional Analysis 475 
of Strain 

d 

\ 
~· a .. {if·~· 

/ cr,. O"J, 

' Fig. 7.27 (repeated) 
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;:,;= 

Fig. 7.71 (repeated) Fig. 7.72 

If the element of Fig. 7. 71 is rotated about one of the principal axes 
at Q, say the c axis (Fig. 7.72), the method of analysis developed ear
lier for the transformation of plane strain can be used to determine the 
strain components E.;, Ey, and Yxy associated with the faces perpendicu
lar to the c axis, since the derivation of this method did not involve any 
of the other strain components.t We can, therefore, draw Mohr's circle 
through the points A and B corresponding to the principal axes a and b 
(Fig. 7.73). Similarly, circles of diameters BC and CA can be used to 
analyze the transformation of Strain as the element is rotated about the 
a and b axes, respectively. 

ty) 

Fig. 7.73 

The three-dimensional analysis of strain by means of Mohr's cir
cle is limited here to rotations about principal axes (as was the case for 
the analysis of stress) and is used to detennine the maximum shearing 
strain Ymax at point Q. Since 'Ymax is equal to the diameter of the largest 
of the three circles shown in Fig. 7.73, we have 

(7.54) 

where €max and Emin represent the algebraic values of the maximum and 
minimum strains at point Q. 

Returning to the particular case of plane strain, and selecting the 
x andy axes in the plane of strain, we have €~ = 'Yu = 'Yzy = 0. Thus, 
the z axis is one of the three principal axes at Q, and the corresponding 

fWe note that the other four faces of the element remain rectangular and that the edges 
parallel to the c axis remain unchanged. · · 



point in the Mohr-circle diagram is the origin 0, where e = y = 0. If 
the points A and B that define the principal axes within the plan,e of 
strain fall on opposite sides of 0 (Fig. 7.74a), the corresponding prin
cipal strains represent the maximum and minimum normal straihs at 
point Q, and the maximum shearing strain is equal to the maxinui'm in
plane·shearing strain corresponding to points D and E. If, on ili:'e other 
hand, A and Bare on the same side of 0 (Fig. 7.74b), that is, if Ea and 
eb have the same sign, then the maximum shearing strain is defined by 
points D' and E' on the circle of diameter OA, and we have Ymax = Em~x· 

We now consider the particular case of plane stress encountered in 
a thin plate or on the free surface of a stmctural element or machine 
component (Sec. 7.1). Selecting the x andy axes in the plane of stress, 
we have er z = T z.x = T zy = 0 and verify that the z axis is a principal axis 
of stress. As we saw earlier, if the deformation is elastic and if the ma
terial is homogeneous and isotropic, it follows from Hooke's law that 
'Yzx = 'Yzy = 0; thus, the z axis is also a principal axis of strain, and 
Mohr's circle can be used to analyze the transformation of strain in the 
xy plane. However, as we shall see presently, it does not follow from 
Hooke's law that Ez = 0; indeed, a state of plane stress does not, in gen
eral, result in a state of plane strain. t 

Denoting by a and b the principal axes within the plane of stress, 
and by c the principal axis perpendicular to that plane, we let ux = erao 
CTy = erb, and CTz = 0 in Eqs. (2.28) for the generalized Hooke's law 
(Sec. 2.12) and write 

era verb 
E =---

a E E 
(7.55) 

(7.56) 

v 
€ = --(0' + (J') c £ a b 

(7.57) 

Adding Eqs. (7.55) and (7.56) member to member, we have 

(7.58) 

Solving Eq. (7.58) for 0', + O'b and substituting into Eq. (7.57), we 
write 

(7.59) 

The relation obtained defines the third principal strain in terms of the 
"in-plane" principal_strains. We note that, if B is located between A and 
Con the Mohr-circle diagram (Fig. 7.75), the maximum shearing strain 
is equal to the diameter CA of the circle corresponding to a rotation 
about the b axis, out of the plane of stress. 

tSee footnote on page 470. 

Fig. 7.74 

Fig. 7.75 

7.12. Three-Dlmenslonal Analysis 
of Strain 

D 

' 

E' 
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As a result of measurements made on the surface of a machine 
component with strain gages oriented in various ways, it has 
been established that the principal strains on the free surface 
are«:a= +400 X 10-6mm/mmand€b= -50 X 10-6mrn/mm. 
Knowing that Poisson's ratio for the given material is 
v = 0.30, determine (a) the maximum in-plane shearing strain, 
(b) the true value of the maximum shearing strain near the sur
face of the component. 

(b) Maximum Shearing Strain. We frrst determine the 
third principal strain €,. Since we have a state of plane stress on 
the surface of the machine component, we use Eq. (7.59) and write 

v 
Ec=-

1 
_ v(ea + Et>) 

~- 030 
(400 x w-6 - sox w-6 ) ~ -150 x w- 6 mro/mm 

0.70 

(a) Maximum ln~Piane Shearing Strain. We draw 
Mohr's circle through the points A and B corresponding to the 
given principal strains (Flg. 7 .76). The maximum in-plane 
shearing strain is defined by points D and E and is equal to 
the diameter of Mohr's circle: 

Drawing Mohr's circles through A and C and thrOugh B and 
C (Fig. 7. 77), we find that the maximum shearing strain is 
equal to the diameter of the circle of diameter CA: 

Ymax = 400 X 10-6 + 150 X 10-6 = 550 X 10-6 rad 

We note that, even though Ea and eb have opposite signs, the 
maximum in-plane shearing strain does not represent the true 
maximum shearing strain. l'max(lnptane} = 400 X 10-6 + 50 X 10-6 = 450 X 10-6 rad 

tr(l0-6rad)) 

D 

l t 
I'Y,.,,c,(inplmwl 

-,-:-"B+-i-:,--+---1-"A~-Ll __ .: (lo-6 mrnlmm) 
-50 +400 

Fig. 7.76 

A 

Fig. 7.78 
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Fig. 7.77 

"7.13. MEASUREMENTS OF STRAIN; STRAIN ROSETTE 

The normal strain can be determined in any given direction on the sur~ 
face of a structural element or machine component by scribing two gage 
marks A and B across a line drawn in the desired direction and mea
suring the length of the segment AB before and after the load has been 
applied. If L is the undeformed length of AB and 8 its defonnation, the 
normal strain along AB is €As = 8/L. 

A more convenient and more accurate method for the measurement 
of normal strains is provided by electrical strain gages. A typical elec
trical strain gage consists of a length of thin wire arranged as shown in 
Fig. 7. 78 and cemented to two pieces of paper. In order to measure the 
strain €As of a given material in the direction AB, the gage is cemented 
to the surface of the material, with the wire folds running parallel to 
AB. As the material elongates, the wire increases in length and decreases 
in diameter, causing the electrical resistance of the gage to increase. By 
measuring the current passing through a properly calibrated gage, the 



strain eA8 can be detennined accurately and continuously as the load is 
increased. 

The strain components Ex and ey Can be determined at a given pbint 
of the free surfac;e of a material by simply measuring the normal-;train 
along x and y axes drawn through that p9int. Recalling Eq. (7 .j'3) of 
Sec. 7.10, we note that a third measurement of normal straip', made 
along the bisector OB of the angle formed by the x andy axes, enables 
us to determine the shearing strain 'Yxy as well (Fig. 7.79): 

(7.43) 

B 

Fig. 7.79 

It should be noted that the strain components Ex, Ey, and y xy at a 
given point could be obtained from normal strain measurements made 
along any three lines drawn through that point (Fig. 7.80). Denoting re~ 
spectively by 81> 82, and 83 the angle each of the three lines forms with 
the x axis, by E1, Ez, and E3 the corresponding strain measurements, and 
substituting into Eq. (7.41), we write the three equations 

€1 = Ex COS
2 81 + Ey Sin2 8! + 'Y,ry sin 81 COS 81 

Ez = Ex cos2 82 + Ey sin2 82 + 'Yx:r sin 82 cos 82 

E3 = Ex cos2 83 + Ey sin2 83 + 'Yx:r sin 83 cos 83 

which can be solved simultaneously for Ex, Ey, and 'Y,ry·t 

(7.60) 

The arrangement of strain gages used to measure the three nonnal 
strains E !> e2, and e3 is known as a strain rosette. The rosette used to 
measure normal strains along the x and y axes and their bisector is re
ferred to as a 45° rosette. Another rosette frequently used is the 60o 
rosette (see Sample Prob. 7.7). 

Fig, 7.80 

fIt should be noted that the free surface on which the strain measurements are made is in 
a state of plane stress, while Eqs. (7.41) and (7.43) were derived for a state of plane strain. 
However, as observed earlier, the normal to the free surface is a principal axis of strain and 
the derivations given in Sec. 7.10 remain valid. 
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SAMPlE PROBLEM 7.6 

A cylindrical storage tank used to transport gas under pressure has an inner di~ 
ameter of 600 mm and a wall thickness of 18 mm. Strain gages attached to the 
surface of the tank in transverse and longitudinal directions indicate strains of 
255 X 10-6 and 60 X 10-6 mm/mm respectively. Knowing that a torsion 
test has shown that the modulus of rigidity of the material used in the tank is 
G = 77 GPa, determine (a) the gage pressure inside the tank, (b) the princi
pal stresses and the maximum shearing stress in the wall of the tank. 

SOLUTION 

a. Gage Pressure Inside Tank. We note that the given strains are the 
principal strains at the surface of the tank. Plotting the corresponding points A 
and B, we draw Mohr's circle for strain. The maximum in~plane shearing strain 
is equal to the diameter of the circle. 

Ymax(inpl~no) = €1- €1 = 255 X 10-6 -60 X 10-6 = 195 X 10-6 rad 

From Hooke's law for shearing stress and strain, we have 

1' max(in plane) = Gy max(in pion~) 
~ (77 GPa)(l95 X 10- 6 rad) 

~ 15MPa 

Substituting this value and the given data in Eq. (7.33), we write 

15 MPa ~ 
p(JOO mm) 
4(18 mm) 

Solving for the gage pressure p, we have 

p ~ 3.6 MPa <01 

b. Principal Stresses and Maximum Shearing Stress. Recalling that, 
for a thin-walled cylindrical pressure vessel, a- 1 = 2o-t. we draw Mohr's cir
cle for stress and obtain 

O'z = 21'n>a.>;(inpl~ne) = 2(15 MPa) = 30 MPa 
,., ~ 2o-, ~ 2(30 MPa) 

0'2 =30MPa -<d 
u 1 = 60MPa ~ 

The maximum shearing stress is equal to the radius of the circle of diameter 
OA and corresponds to a rotation of 45" about a longitudinal axis. 

1' ma.x = ~0'1 = O'z = 30 MPa 



' ' ' c' A 

b 

/ 

SAMPlE PROBlEM 7.7 
I 

Using a 60° rosette, the fqhowing strains have been determined at point Q 00 

the surface of a steel mayhine base: 

€1 =)O,u. E2 = 980,u €3 = 330,u. 

Using the coordinare axes shown, determine at point Q, (a) the strain campo· 
nents E,n e.~"' and l'.q• (b) the principal strains, (c) the maximum shearing strain. 
(Use v ~ 0.29.) 

SOLUTION 

a. Strain Components Ex, e~, Yxy· For the coordinate axes shown 

Subst!tuting these values into Eqs. (7.60), we have 

e1 = e,(l) + e,(O) + y9.(0)(l) 

'' ~ e,(0.500)2 + <,(0.866)2 + y".(0.866)(0.500) 
€3 ~ <J -0.500)2 + <1.(0.866)2 + y0.(0.866)( -0.500) 

Solving these equations for e., .. Ey, and y xy• we obtain 

Substituting the given values for e 1, e2, and e3, we have 

€,, = 40 ,u. '·· ~ \[2(980) + 2(330) - 40] 
y", (980 - 330)/0.866 

These strains are indicated on the element shown. 

<,. = +860 M <1 

Yx,r = 750j). ~ 

b. Principal Strains. We note that the side of the element associated 
with E,. rotates counterclockwise; thus, we plot point X below the horizontal 
axis, i.e., X(40, -375). We then plot Y(860, +375) and draw Mohr's circle. 

''"' ~ t(860 M + 40 M) = 450 M 
R ~ V(375 M)' + (410 M)' - 556 M 

375M 
tan2fJ = --

P 410 J.L 

Points A and B correspond to the principal strains. We have 

Ea =Eave- R = 450J,L- 556J.L 

Eb == Eave + R == 450 J.L + 556 J.L 

E, ~-106M <11 

E&=+I006J.L~ 

Since rJ~. = 0 on the surface, we use Eq. (7.59) to find the principal strain Ec: 

c. Maximum Shearing Strain. Plotting point C and drawing Mohr's 
circle through points B and C, we obtain point D' and write 

! I' max = !{1006 J.L + 368 p,) 'Ym~x = 1374 p, <0'1 
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7.126 through 7.129 For the given state of plane strain, use the method 
of Sec, 7.10 to determine the state of plane strain associated with axes x' and 
y' rotated through the given angle e. 

7.126 and 7.130 
7.127 and 7.131 
7.128 and 7.132 
7.129 and 7.133 

__ , 
Fig. P7.126 through P7.133 

E, Ey 

+240,u +1601' 
0 +3201' 

-8001' +4501' 
+5001' -3001' 

Yo B 

+1501' 60"J 
-1001' 30"1 
+2001' 25"J 

0 25"1 

7.130 through 7.133 For the given state of plane strain, use Mohr's 
circle to determine the state of plane strain associated with axes x' and y' r.otated 
through the given angle fJ. 

7.134 through 7.137 The following state of strain has been measured 
on the surface of a thin plate, Knowing that the surface of the plate is unstressed, 
determine (a) the direction and magnitude of the principal strains, (b) the maxM 
imum in-plane shearing strain, (c) the maximum shearing strain. (Use v t) 

E, Ey Y, 
7.134 +1601' -480 I' -600 I' 
7.135 -260 I' -601' +480 I' 
7.136 +30,u. +570,u. +720 I' 
7.137 -600 I' -400 I' +350 I' 

7.138 through 7.141 For the given state of plane strain, use Mohr's 
circle to determine (a) the orientation and magnitude of the principal strains, 
(b) the maximum in~plime strain, (c) the maximum shearing strain. 

7.138 
7.139 
7.140 
7.141 

-1801' 
+300 I' 
+400 I' 
+601' 

-260 I' 
+601' 

+200 I' 
+240 I' 

+3151' 
+ 100 I' 
+3751' 
-so" 



7.142 The strains detennined by the use of the rosette shown during the 
test of a machine element are 

€! = +600,u. €2 = +450,u. €3 = +75,u. i 
~etenn~ne (a) the ln-plane.principal strains, (b) the in-plane maximum ;hear-
mg stra.m. / 

' 
Fig. P7.142 

7.143 Determine the strain ex knowing that the following strains have 
been determined by use of the rosette shown: 

€1 = +480 X 10-6 mm/mm €2 = -120 X 10-6 mm/mm 

€3 = +80 X 10-6 mm/mm 

7.144 The rosette shown has been used to determine the following 
strains at a point on the surface of a crane hook: 

€t = +420,u ~4 = .+ 165,u 

(a) What should be the reading of gage 3? (b) Determine the prindpal strains 
and the maximum in-plane shearing strain. 

Fig. P7.144 

7.145 Determine the largest in-plane normal strain, knowing that the 
following strains have been obtained by the used of the rosette shown: 

€1 = -50 X 10-6 mm/mm €z = +360 X 10-6 mm/mm 

€3 = +315 X 10-6 mm/mm 

7.146 Show that the sum of the three strain measurements made with a 
60" rosette is independent of the orientation of the rosette and equal to 

€1 + €1 + €1 = 3€avg 

where €avg is the abscissa of the center of the corresponding Mohr's circle. 

Fig. P7.146 

Problems 483 

Fig. P7.143 

Fig. P7.145 
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Fig. P7.148 

7.147 Using a 45° rosette, the strains e1, Ez, and e3 have been determined 
at a given point. Using Mohr's circle, show that the principal strains are 

Emax.min = k(et + €3) :±: ~((et- €2? + (e2- e3/]l 

(Hint: The shaded triangles are congruent.) 

t> 

Fig. P7.147 

7.148 The given state of plane stress is known to exist on the surface 
of a machine component. Knowing that E = 200 GPa and G = 77 GPa, 
determine the direction and magnitude of the three principal strains (a) by 
determining the corresponding state of strain (use Eq. (2.43) and Eq. (2.38)] 
and then using Mohr's circle for strain, (b) by using Mohr's circle for stress 
to determine the principal planes and principal stresses and then detennlning 
the corresponding strains. 

7.149 The following state of strain has been determined on the surface 
of a cast-iron machine part: 

€ J = -720 X 10-6 mm/mm 

€3 = +660 X 

€z = -400 X 10-6 mm/mm 

10-6 mmlmm 

Knowing that E = 70 GPa and G = 28 GPa, determine the principal planes 
and principal stresses (a) by determining the corresponding state of plane stress 
[use Eq. (2.36), Eq. (2.43), and the first two equations of Prob. 2.74] and then 
using Mohr's circle for stress, (b) by using Mohr's circle for strain to deter
mine the orientation and magnitude of the principal strains and the correspon~ 
ding stresses. 

7.150 A single gage is cemented to a solid 100*mm*diameter steel shaft 
at an angle f3 = 25° with a line parallel to the axis of the shaft. Knowing 
that G = 79 GPa, determine the torque T indicated by a gage reading of 
300 X 1 o-6 mm/mm. 

50mm 

Fig. P7.150 



7.151 Solve Pro b. 7 .150, assuming that the gage forms an angle {3 ;::::: 35" 
with a line parallel to the axis of the s?aft. 

1 

7.152 A single strain gage forming an angle {3 = 18" with a h~r"~ontal 
plane is used to determine the gage pressure in the cylindrical steel tan shown. 
The cylindrical wall of the tank is 6 mm thick, has a 600-mm insid? iameter, 
and is made of a steel with E = 200 GPa and v = 0.30. Determine the pres
sure in the tank indicated by a strain gage reading of 280.u. 

Fig. P7.152 

7.153 Solve Prob. 7 .152, assuming that the gage forms an angle {3 = 35<> 
with a horizontal plane. 

7.154 A centric axial force P and a horizontal force Q are both applied 
at point C of the rectangular bar shown. A 45" strain rosette on the surface of 
the bar at point A indicates the following strains: 

e1 = -75 X 10-6 mm/mm e2 = +300 x w-6 mmfmm 
€3 = +250 X 10-6 mmfmm 

Knowing that E = 200 GPa and v = 0.30, determine the magnitudes of P and 
Q. 

. Fig. P7.154 

7.155 Solve Prob. 7.154, assuming that the rosette at point A indicates 
the following strains: 

e1 = -6(YX 10-6 mmfmm e2 = +410 X 10-6 mmfmm 
€3 = +200 X 10-6 mm/mm 

Problems 435 



Transformation of plane stress 

y \ 
y 

Fig. 7.11 
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The first part of this chapte~w,~~::·_devOt~d to a study of the transfor
mation of stress under a rotath'Jri of axes and to its application to the 
solution of engineering pro~Iem.s·, _and the second part to a similar 
study of the transforma~ion of.~tr:ain. · 

Fig. 7.5 

Considering first a state of plane stress at a given point Q [Sec. 
7.2} and denoting by ax, ay, and Txy the stress components associ
ated with the ele~ent shown in Fig. 7 .5a, we derived the following 
formulas defining the components u z, uy'• and T Xy' associated with 
that element after it had been rotated through an angle 8 about the z 
axis (Fig. 7.5b): 

(7.5) 

Ux + dy _ :...:.::&y 
Oj = 

2 
.~ .. -. -

2
-cos28- T" sin28 (7.7) 

(7.6) 

. . 
In Sec. 7 .3, we deteqrii~edthe values (}P of the angle of rotation 

whiCh correspond to .the maximum and minimum values of the nor
mal stress at point Q. We wrOte 

(7.12) 

. Theiwo vahies obt~ined fore, are90" apart (Fig. 7.11) illJd define 
the principal planes of stress at point Q. The corresponding values 

l 
I 

I 



of the normal stress are called the principal stresses at Q; ")we 

obtained . . z· 
. <r, + <Ty )((T' <r,)' 2 . 
. . CT m'ax, m'in_ =. --

2
-- ± -. -2-- _ +_ T .ty . (7 .1 ) 

We also noted that the corresponding value of the shearing tress is 
zero. Next, we determined the values 88 of the angle 0 for which the 
largest value of the shearing stress occurs. _We wrote 

(7.15) 

The two values obtained for Bs are 90° apart (Fig. 7.12). We also 
noted that the. planes of maximum shearing stress ate at 45° to the 
prinCipal planes. The maximum value of the shearing stress fora ro
tation in the plane of stres,_s is 

r7::---::-~-. '((T' <Ty)' 2 
'T ma~ = \f --

2
-- + : xy 

and the corresponding value of the normal stresses is 

O':x + O"y 
u' =cr =---ave . Z 

(7.16) 

(7.17). 

We saw in Sec. 7.4 that Mohr's circle provides an alternative 
method, based on simple geometric considerations, for the analysis 

b 

"I 
\ 

(b) 

Fig. 7.17 

of the transformation of plane stress. Given the state of stress shown 
in black in Fig. 7.17a, we plot point X of coordinates CTx, -Txy and 
pointY of coordinates CTy, +rxy (Fig. 7.17b). Drawing the circle of 
diameter XY, we obtain Mohr's circle. The abscissas of the points of 
intersection A and B of the circle with the horizontal axis represent 
the principal stresses, and the angle of rotation bringing the diame
ter XY into AB is twice the angle OP defining the principal planes in 
Fig. 7.17a, with bOth angles having the same sense. We also noted 
that diameter DE defines the maximum shearing stress and the ori
entation of the corresponding plane(Fig. 7.19b) [Example 7.02, Sam
ple Probs. 7.2 and 7.3]. 

/ 
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Principal planes. Principal stresses 

y 

u' 

u' 

Fig. 7.12 

Maximum in-plane shearing stress 

Mohr's circle for stress 

I 
'"'"' 90' I 

0 B c A q 

E 

Fig. 7.19b 
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General state of stress 

T) 

0 

Fig. 7.29 

Yield criteria for ductile materials 

Fig. 7.40 

Cons.iderini ·a general state of stress ·characterized b)r :Six stress 
components [Sec. 7 .5], we showed that the normal stress ori a plane 
of arbitrary orientation can be expressed as a quadratic form of the 
direction cosines of the nonnal to that plane .. This proves the ,exis
tence of three principal axes of stress and three principal stresses at 
anY given point. Rotating a. small cubic element about each· of the 
three. principal axes [Sec ... 7.6], we drew the corresponding_ Mohr's 
circles that yield the values of CT max• a rnin1 and T max {Fig .. 7.29). In 
the particular case of plane stress, and if the x and y axes are se
lected in the plane of stress, point C coincides with the oil gin 0. If 
A and B are located on opposite _sides of 0, the maximum shearing 
stress is equal to .. the maximum ."in-plane" shearing strt;ss as deter
mined in- Sees. 7.3 or 7 .4. If A and B are located on the same side 
of 0, _'this·wm 'not be the case, If era-> crb > 0, "for iristance the 
maximum shearing stress is equal to ! cr a and correspondS tO a 
rotation out of the plane of stress (Fig. 7.32). 

T) 

Fig. 7.32 

Yield criteria for ductile materials under plane stress were de
veloped in Sec. 7 .. 7. To predict whether a structural or machine com
ponent will fail at some critical point dUe to yield in the rriaterial, 
we fir~t determine the principal stresses era and ub at that pOint for 
the given loading condition. We theri plot the point of Coordinates 
u a and 0' b· If this pOint falls within' a certain area, the component is 
safe; if it falls outside, the component will fail. The area used with 
the maximum-shearing-strength criterion is shown in Fig. 7.40 and 
the area used with the maximunl-distortion-energy criterion in Fig. 
7.41. We note that both areas depend upon the value of the yield 
strength O'y of the materiaL 

Fig. 7.41 



I 

f'ract~re criteria for brittle nlaterials under plane stress were_ de~ 
Veloped in Sec. 7-.8 in a similar fashion. The most commonly· us~d 
·iS Mohr's criterion, which utilizes the results of various types of t~st 
.'available for a· giVen material. The shaded .area shown in Fig. ~47 b 
\s used when the ultimate strengths Uuy. and Uuc have been/ ter-

'-----fuuc 

(b) 

Fig. 7.47b 

mined, respectively, from a tension and a compression test. Again, 
· the principal stresses .u a and ub are determined ~t a given point _of 
the structural or machine component being investigated. If the cor
responding point falls within the shaded area, the· component is safe; 
if it falls _outside,_ the component will rupture. 

In Sec. 7.9, we discussed the stresses in thin-walled_ pressure 
vessels and derived fonnulas relating the stresses in the walls of _the 
vessels and the gage pressure p in the fluid they contain. In the case 
of a cylindrical vessel of inside radius rand thickness t (Fig. 7.51), 
we Obtained the following expressions .for the hoop stress u 1 and the 
longitudinal stress u 2: 

pr 
~2 = 2t (7.30, 7.31) 

We also found that the maximum shearing stress occurs out of .the 
plai_le of stress and is . 

pr 
'Tmax.=u2=

2
t (7.34) 
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Fracture criteria for brittle materials 

Cylindrical pressure vessels 

Fig. 7.51 

In .the caSe of a spherical vessel of inside radius r and thickness t ·Spherical pressure vessels 
(Fig. 7.55), we found that the two principal stresses are equal: 

pr 
Ut = ·(!'2 =.2t (7.36) 

Again, the maximum shearing stress Occurs out of the plane of stress; 
it is , · 

' pr 
'Tmax =2u1 ':=' 

4
t (7.37) 

Fig. 7.55 
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Transformation of plane strain 

Mohr's circle for strain 

D 

0 

f----E"'" 

b y 

(b) 

Fig. 7.65 

Strain gages. Strain rosette 

Fig. 7.80 

The last part of the chapter was devoted to the transformation 
of strain. In Sees. 7.10 and 7.11, we discussed the transformation of 
plane strain and introduced Mohr's circle for plane strain. The dis
cussion was similar to the corresponding discussion of the transfor
mation of stress, except that, where the shearing stress T was used, 
we now used !Y. that is, half the shearing strain. The formulas ob
tained for the transfonnation of strain under a rotation of axes through 
an angle e ,were 

Ex+Ey Ex-Ey 'Yxy 
'"' = -

2
- + -

2
-cos28 + 2sin28 (7.44) 

€x+Ey €x-Ey 'Yxy e,. = -
2
-- -

2
-cos28- 2sin28 (7.45) 

'Yxi = -(•"- <,)sin 28 + y"cos28 (7.49) 
Using Mohr's circle for strain (Fig. 7.65), we also obtained the fol
lowing relations defining the angle of rotation eP corresponding to 
the principal axes of strain and the values of the principal strains 
Emax: and Emio: 

tan 28, = (7.52) 
Ex- Ey 

Emax. =Eave+ R and Emin = €ave- R (7.51) 

where 

2 
and 

The maximum shearing strain for a rotation in the plane of strain 
was found to be 

'Ymax(inp!ane) = 2R = V(Ex- Eyf + Y; (7.53) 

Section 7.12 was devoted to the three-dimensional analysis of 
strain, with application to the determination of the maximum shear
ing strain in the particular caSes of plane strain illld plane stress. In 
the case of plane stress, we also found that the principal strain Ec in 
a direction perpendicular to the plane of stress could be expressed 
as follows in tenns of the "in-plane" principal strains Ea and Eb: 

(7.59) 

Finally, we discussed in Sec.? .13 the use of strain gages to mea
sure the nonnal strain on the surface of a structural element or ma
chine component Considering a strain rosette consisting of three 
gages aligned along lines forming respectively, angles 81, 82, and 83 
with the x axis (Fig. 7.80), we wrote the following relations among 
the measurements E L> € 2, e3 of the gages and the components 
Ex, Ey, 'Yxy characterizing the state of strain at that point: 

€ 1 = E..:COS
201 + Eysin2 81 + YxySin01 cos01 

E2 = Ex cos2 02 + Ey sin2 82 + 'Yxy sin (:)2 cos 82 (7.60) 
E3 =Ex cos2 83 + Ey sin2 83 + 'Yxy sin 03 cos 03 

These equations can be solved for Ex, Ey, and 'Y.ey• once e1, €2, and 
€3 have been determined. 



7.156 A 1.6-kN vertical force is ::lpplied at D to a gear attached to the solid 
25-mm diameter shaft AB. Determine the principal stresses and the maximum 
shearing stress at point H located as shown on the top of the shaft. 

50 

1.6kN 

Fig. P7.156 

7.157 Determine the largest internal pressure that can be applied to a 
cylindrical tank of 1.6-m outer-diameter and 16-mm wall thickness if the ulti
mate normal stress of the steel used is 450 MPa and a factor of safety of 5.0 
is desired. 

7.158 The grain of a wooden member forms an angle of 15° with the 
vertical. For the state of stress shown, determine (a) the in-plane shearing stress Fig. P7 .158 
parallel to the grain, (b) the normal stress perpendicular to the grain. 

7.159 The unpressurized cylindrical storage tank shown has a 5-mm 
wall thickness and is made of a steel having a 420-MPa ultimate strength in 
tension. Determine the maximum height h to which it can be filled with water 
if a factor of safety of 4.0 is desired. (Density of water = 1000 kg/m3

.) 

m 

/ 

Fig. P7.159 
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492 Transformations of Stress and Strain 

Fig. P7.160 

Fig. P7.164 and P7.165 

7.160 A mechanic uses a crowfoot wrench to loosen a bolt at E. Know
ing that the mechanic applies a vertical force of 100 Nat A, detennine the prin
cipal stresses and the maximum shearing stress at point H located as shown on 
top of the 18-mm diameter shaft. 

! 1.50 MPa 

-lOOMPa 

T 
Fig. P7.161 

7.161 The state of plane stress shown is expected to occur in a cast-iron 
machine base. Knowing that for the grade of cast iron used a ur = 160 MPa 
and auc = 320 MPa and using Mohr's criterion, determine whether rupture of 
the component will occur. 

Fig. P7.162 

7.162 The cylindrical tank AB has an 200-mm inner diameter and a 
8-mm wall thickness. Knowing that the pressure inside the tank is 4.2 MPa, 
determine the maximum normal stress and the maximum shearing stress at 
point K located on the top of the tank. 

7.163 Solve Pro b. 7 .162, assuming that the 40-k.N force applied at point 
D is directed vertically downward. 

7.164 Two steel plates of uniform crOss section l 0 X 80 mm are welded 
together as shown. Knowing that centric 1 00-k.N forces are applied to the 
welded plates and that {3 = 25°, determine (a) the in-plane shearing stress par
allel to the weld, (b) the normal stress perpendicular to the weld. 

7.165 Two steel plates of uniform cross section 10 X 80 mm are welded 
together as shown. Knowing that centric lOO~kN forces are applied to the 
welded plates and that the in-plane shearing stress parallel to the. grain is 
30 MPa, determine (a) the angle {3, (b) the corresponding normal stress per
pendicular to the grain. 



7.166 For the state of stress shown, detennine the maximum shearing 
stress when (a) CF, = 0, (b) CF: = +45 MPa, (c) CFz = -45 MPa. 

'I 
70 MPa 

Fig. P7.166 

7.167 The strains determined by the use of a rosette attached as shown 
to the surface of a machine element are 

€1 = -93.1 X 10-6 mm/mm 

€3 = +210 X 

€2 = +385 X 10-6 mm/mm 
w-6 mm/mm 

Determine (a) the orientation and magnitude of the principal strains in the plane 
of the rosette, (b) the maximum in-plane shearing stress. Fig. P7.167 

The following problems are to be solved with a COJ:nputer. 

7.C1 A state of plane stress is defined by the stress components Jx, Jy, 
and r:<J associated with the element shown in Fig. P7.Cla. (a) Write a com
puter program that can be used to calculate the stress components u ~. u 1, and 
r~y associated with the element after it has rotated through an angle I) about 
the z axis (Fig. P.7Clb). (b) Use this program to solve Probs. 7.14 through 
7.16. 

(a) 
/ 

(b) 

Fig. P7.C1 

Computer Problems 493 



494 Transfonnations of Stress and Strain 7.C2 A state of plane stress is defined by the stress components (J"" (JY' 

and 'Txy associated with the element shown in Fig. P7.Cla. (a) Write a com
puter program that can be used to calculate the principal axes, the principal 
stresses, the maximum in-plane shearing stress, and the maximum shearing 
stress. (b) Use this program to solve Probs. 7.7, 7.11, 7.66, and 7.67. 

7.C3 (a) Write a computer program that, for a given state of plane stress 
and a given yield strength of a ductile material, can be used to determine 
whether the material will yield. The program should use both the maximum 
shearing-strength criterion and the maximum-distortion-energy criterion. It 
should also print the values of the principal stresses and, if the material does 
not yield, calculate the factor of safety. (b) Use this program to solve Probs. 
7.83 and 7 .84. 

7.C4 (a) Write a computer program based on Mohr's fracture criterion 
for brittle materials that, for a given state of plane stress and given values of 
the ultimate strength of the material in tension and compression, can be used 
be used to detennine whether rupture will occur. The program should also print 
the values of the principal stresses. (b) Use this program to solve Probs. 7.91 
and 7.92 and to check the answers to Probs. 7.93 and 7.94. 

7.C5 A state of plane strain is defined by the strain components E"' t:,., 

and Yxy associated with the x and y axes. (a) Write a computer program thitt 
can be used to calculate the strain components e"'' Ey>, and 'Y.~·.v associated with 
the frame of reference x'y' obtained by rotating the x and y axes through an 
angle 8. (b) Use this program to solve Probs. 7.126 through 7.129. 

__ , 

Y\ ••. 
~' 

Fig. P7.C5 

7 .C6 A state of strain defined by the strain components E.,. E)', and Yxy as
sociated with the x andy axes. (a) Write a computer program that can be used 
to determine the orientation and magnihtde of the principal strains, the maximum 
in-plane shearing strain, and the maximum shearing strain. (b) Use this program 
to solve Probs. 7.134 through 7.137. 

7.C7 A state of plane strain is defined by the strain components ex, t:,,, 

and 'Yxy measured at a point. (a) Write a computer program that can be used to 
determine the orientation and magnitude of the principal strains, the maximum 
in-plane shearing strain, and the magnitude of the shearing strain. (b) Use this 
program to solve Probs. 7.138 through 7.141. 

7.C8 A rosette consisting of three gages forming, respectively, angles of 
8 t> 82, and 83 with the x axis is attached to the free surface of a machine com
ponent made of a material with a given Poisson's ratio v. (a) Write a computer 
program that, for given readings €1> t:2, and e3 of the gages, can be used to cal
culate the strain components associated with the x and y axes and to detennine 
the orientation and magnitude of the three principal strains, the maximum in-plane 
shearing strain, and the maximum shearing strain. (b) Use this program to solve 
Probs. 7.142 through 7.145. 



Due to gravity and wind load, the post supporting the sign shown is subjected simultaneously to compression, 
bending, and torsion. In this chapter you will learn to determine the stresses created by such combined loadings 
in structures and machine components. 
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(a) 

Fig. 8.1 

(a) 

Fig. 8.2 

(b) 

(b) 

'8.1. INTRODUCTION 

In the first part of this chapter, you will apply to the design of beams 
and shafts the knowledge that you acquired in Chap. 7 on the transfer~ 
mation of stresses. In the second part of the chapter, you will learn how 
to detennine the principal stresses in structural members and machine 
elements under given loading conditions. 

In Chap. 5 you learned to calculate the maximum normal stress u, oc~ 
curring in a beam under a transverse loading (Fig. 8. la) and check whether 
this value exceeded the allowable stress Uan for the given material. If it did, 
the design of the beam was not acceptable. While the danger for a brittle 
material is actually to fail in tension, the danger for a ductile material is to 
fail in shear (Fig. 8.1b). The fact that um > Uan indicates that IMlma~ is 
too large for the cross section selected, but does not provide any infonna
tion on the actual mechanism of failure. Similarly, the fact that r m > r a!l 

simply indicates that I Vj max is too large for the cross section selected. While 
the danger for a ductile material is actually to fail in shear (Fig. 8.2a), the 
danger for a brittle material is to fail in tension under the principal stresses 
(Fig. 8.2b). The distribution of the principal stresses in a beam will be dis~ 
cussed in Sec. 8.2. 

Depending upon the shape of the cross section of the beam and the 
value of the shear V in the critical section where IM! = IMimax• it may 
happen that the largest value of the normal stress will not occur at the top 
or bottom of the section, but at some other point within the section. As yoU 
will see in Sec. 8.2, a combination of large values of ux and r .ry near the 
junction of the web and the flanges of a W~beam or an S~beam can result 
in a value of the principal stress u max (Fig. 8.3) that is larger than the value 
of u m on the surface of the beam. 

I ' _,.,.. : · ... 

Fig. 8.3 

Section 8.3 will be devoted to the design of transmission shafts sub
jected to transverse loads as well as to torques. The effect of both the nor
mal stresses due to bending and the shearing stresses due to torsion will 
be taken into account. 

In Sec. 8.4 you will learn to detennine the stresses at a given point K 
of a body of arbitrary shape subjected to a combined loading. First, you 
will reduce the given loading to forces and couples in the section contain
ing K. Next, you will calculate the nonnal and shearing stresses at K. Fi
nally, using one of the methods for the transformation of stresses that you 
learned in Chap. 7, you will determine the principal planes, principal 
stresses, and maximum shearing stress at K. 



'8.2. PRINCIPAL STRESSES IN A BEAM 

Consider a prismatic beam AB subjected to some arbitrary transv~rse 
Ioadi~g (Fig. 8.4): We de~ote by V and k!• respe?tively, the shearimd 
bendmg momennn a section through a g1ven pomt C. We recall ;rom 
Chaps. 5 and 6 that, within the elastic limit, the stresses exerteft on a 
small e"Iement with faces perpendicular, respectively, to the x andy axes 
reduce to the normal stresses crm = Me/! if the element is at the free 
surface of the beam, and to the shearing stresses T m = VQ/It if the 
element is at the neutral surface (Fig. 8.5). 

y 

Fig. 8.5 

At any other point of the cross section, an element of material is 
subjected simultaneously to the normal stresses 

My 
ux= -~ (8.1) 

where y is the distance from the neutral surface and I the centroidal mo
ment of inertia of the section, and to the shearing stresses 

VQ 
'fxy= -It (8.2) 

where Q is the first moment about the neutral axis of the po1tion of the 
cross-sectional area located above the point where the stresses are com
puted, and t the width of the cross section at that point. Using either of 
the methods of analysis presented in Chap. 7, we can obtain the prin
cipal stresses at any point of the cross section (Fig. 8.6). 

The following question now arises: Can the maximum nonnal stress 
u max at some point within the cross section be larger than the value of 
u m = Mc/1 compute~ at the surface of the beam? If it can, then the de
termination of the largest normal stress in the beam will involve a great 
deal more than the computation of IMim, and the use of Eq. (8.!). We 
can obtain an answer to this question by investigating the distribution 
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Fig. 8.4 

y 
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Fig. 8.6 
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Fig. 8.7 

y = + dc--+--~=='"'+---1 
Y"" 

y"" ~ 

of the principal stresses in a narrow rectangular cantilever beam sub
jected to a concentrated load Pat its free end (Fig. 8.7). We recall from 
Sec. 6.5 that the normal and shearing stresses at a distance x from the 
load Panda distance y above the neutral surface are given, respectively, 
by Eq. (6.13) and Eq. (6.12). Since the moment of inertia of the cross 
section is 

bh3 (bh)(2c)2 Ac' 
I= U = 12 3 

where A is the cross-sectional area and c the half-depth of the beam, 
we write 

(8.3) 

and 

T,, = H(l- ~) (8.4) 

Using the method of Sec. 7.3 or Sec. 7 .4, the value of a max can be 
determined at any point of the beam. Figure 8.8 shows the results of 
the computation of the ratios 0' max/O'm and 0' min/0'111 in two sections of 
the beam, corresponding respectively to x = 2c and x = 8c. In eac,h 

x- 2c x- Be 
yk O"m;./O"m ()El>lt/a;,. ()min/(),., O"m,c/0",., 

1.0 0 -o-- 1.000 0 -o-- 1.000 

\ -qj_ 0.8 -0.010~ 0.810 -0.001 O.SOl 

\\ I 
0.6 -0.040--:::::.:o-- 0.640 -0.003~ 0.603 

\ I l 
OA -0.090 ~ 0.490 -0.007 + 0.407 

0.2 -0.160 );( 0.360 -0.017 1r 0.217 

0 -0.2-50 }( 0.250 -0.063 x 0.06.'3 

-0.2 -0.360 ):5" 0.160 -0.217 ~~ 0017 

- 0.4 -0.490 )5" 0.090 -0.407 --¢-- 0007 

-0.6 -0.640 --rp::::- 0.040 -0.603 -pooo3 

-0.8 -0.810 ~:::::- 0.010 -0.801 ---¢:;.::- 0.001 

- 1.0 -1.000 -o--o -1.000 -o---o 
Fig. 8.8. Distribution of principal stresses in two transverse sections of a rectangular cantilever beam supporting a single con
centrated load. 



section, these ratios have been determined at 11 different points, and 
the orientation of the principal axes has been indicated at each potnt. t 

It is clear that u max does not eXceed um in either of the two }seeM 
tions considered. in Fig. 8.8 and that, if it does exceed O" m elsewhljre, it 
will be in sections close to the load P, where crm is small con:p~·fed to 
r11A But, for sections close to the load P, ·saint-Venant's princ!Ple does 
not apply, Eqs. (8.3) and (8.4) cease to be valid, except in the very un
likely case of a load distributed parabolically over the end section (cf. 
Sec. 6.5), and more advanced methods of analysis taking into account 
the effect of stress concentrations should be used. We thus conclude 
that, for beams of rectangular cross· section, and within the scope of the 
theory presented in this text, the maximum normal stress can be ob
tained from Eq. (8.1). 

In Fig. 8.8 the directions of the principal axes were determined at 
11 points in each of the two sections considered. If this analysis were 
extended to a larger number of sections and a larger number of points 
in each section, it would be possible to draw two orthogonal systems 
of curves on the side of the beam (Fig. 8.9). Orie system would consist 
of curves tangent to the principal axes corresponding to u max and the 
other of curves tangent to the principal axes corresponding to u min- The 
curves obtained in this manner are known as the stress trajectories. A 
trajectory of the first group (solid lines) defines at each of its points the 
direction of the largest tensile stress, while a trajectory of the second 
group (dashed lines) defines the direction of the largest compressive 
stress.§ · 

The conclusion we have reached for beams of rectangular cross 
section, that the maximum normal stress in the beam can be obtained 
from Eq. (8.1), remains valid for many beams of nonrectangular cross 
section. However, when the width of the cross section varies in such a 
way that large shearing stresses r :-:y will occur at points close to the sur~ 
face of the beam, where cr x is also large, a value of the principal stress 
cr max larger than cr, may result at such points. One should be particu
larly aware of this possibility when selecting W-beams or S-beams, and 
calculate the principal stress O'max at the junctions b and d of the web 
with the flanges of the beam (Fig. 8.10). This is done by determining 
crx and r.\), at that point from Eqs. (8.1) and (8.2), respectively, and us
ing either of the methods of analysis of Chap. 7 to obtain cr max (see 
Sample Prob. 8.1). An alternative procedure, used in design to select 
an acceptable section, consists of using for T xy the maximum value of 
the shearing stress in the section, r max = V/Aweb• given by Eq. (6.11) of 
Sec. 6.4. This leads to a slightly larger, and thus conservative, value 
of the principal stress crmax at the junction of the web with the flanges of 
the beam (see Sample Prob. 8.2). 

tSee Prob. 8.C2, which refers to the program used to obtain the results shown in Fig. 8.8. 

;As will be verified in Prob. 8.C2, am,~ exceeds a,. if x s 0.544c. 

§A brittle material, such as concrete, will fail in tension along planes that are perpendicu
lar to the tensile-stress trajectories. Thus, to be effective, steel reinforcing bars should be 
placed so that they intersect these planes. On the other hand, stiffeners attached to the web 
of a plate girder will be ,effective in preventing buckling only if they intersect planes per
pendicular to the compressive-stress trajectOries. 
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Compressive 

Fig. 8.9. Stress trajectories. 

Fig. 8.10 



500 Principal Stresses under a Given Loading '8.3. DESIGN OF TRANSMISSION SHAFTS 

When we discussed the design of transmission shafts in Sec. 3.7, we 
considered only the stresses due to the torques exerted on the shafts. 
However, if the power is transferred to and from the shaft by means of 
gears or sprocket wheels (Fig. 8.1la), the forces exerted on the gear 
teeth or sprockets are equivalent to force~couple systems applied at the 
centers of the corresponding cross sections (Fig. S.llb). This means 
that the shaft is subjected to a transverse loading, as well as to a tor~ 
sionalloading. 

Fig. 8.11 

The shearing stresses produced in the shaft by the transverse loads 
are usually much smaller than those produced by the torques and will 
be neglected in this analysis. t The normal stresses due to the transverse 
loads, however, may be quite large and, as you will see presently, their 
contribution to the maximum shearing stress r max should be taken into 
account. 

tFor an application where the shearing stresses produced by the transverse loads must be 
considered, see Probs. 8.2 I and 8.22. 



Consider the cross section of the shaft at some point C. We repre
sent the torque T and the bending couples My and Mz acting, reSpec
tively, in a horizontal and a vertical plane by the couple vectors s~own 
(Fig. 8.-12a). Since any diameter of the section is a principal axis1bf in
ertia for the section, we can replace My and Mz by their resu~tant M 
(Fig. -8.12b) in order to compute the normal stresses <rx exertcil on the 
section. We thus find that u x is maximum at the end of the diameter 
perpendicular to the vector representing M (Fig. 8.13). Recalling t~at 
the values of the normal stresses at that point are, respectively, 
CTm ·=Me/! and zero, while the shearing stress is 'Tm = Tc/J, we plot 
the corresponding points X and Yon a Mohr-circle diagram (Fig. 8.14) 
and determine the value of the maximum shearing stress: 

Recalling that, for a circular or annular cross section, 2/ = J, we write 

- = "-VM2 + T' 1 mnx J (8.5) 

It follows that the minimum allowable value of the ratio 1/c for the 
cross section of the shaft is 

C 'Tall 
(8.6) 

where the numerator in the right~hand member of the expression ob-

Fig. 8.13 

B 

tained represents the maximum value of VM2 + y 2 in the shaft, and Fig. 8.14 
'Tuu the allowable shearing stress. Expressing the bending moment Min 
terms of its components in the two coordinate planes, we can also write 

J (VM~ + Mi + T2
)max 

c 'Tan 
(8.7) 

Equations (8.6) and (8.7) can be used to design both solid and hollow 
circular shafts and ?hould be compared with Eq. (3.22) of Sec. 3.7, 
which was obtained under the assumption of a torsional loading only. 

The determination of the maximum value of V M~ + M; + T 2 will 
be facilitated if the bending-moment diagrams corresponding to My and 
M~ are drawn, as well as a third diagram representing the values of T 
along the shaft (see Sample Prob. 8.3). 
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SAMPLE PROBLEM 8.1 

A 160-k.N force is applied as shown at the end of a W200 X 52 rolled-steel 
beam. Neglecting the effect of fillets and of stress concentrations, determine 
whether the nonnal stresses in the beam satisfy a design specification that they 
be equal to or less than 150 MPa at section A -A'. 

SOLUTION 

Shear and Bending Moment. At section A-A', we have 

M, ~ (160 kN)(0.375 m) ~ 60 kN · m 
v,~160kN 

Normal Stresses on Transverse Plane. Referring to the table of Prop
erties of Rolled-Steel Shapes in Appendix C, we obtain the data shown and 
then detennine the stresses u a and a lr 

At point a: 

MA 60k.N-m 
ua = S = 512 X lO 6m3= 1172MPa 

At point b: 

Yb 90.4 mm 
CT;~CT,-;:~(l17.2MPa)lO}mm ~ 102.9MPa 

We note that all normal stresses on the transverse plane are less than 150 MPa. 

Shearing Stresses on Transverse Plane 
At point a: 

Q~o 

At point b: 

Q ~ (204 X 12.6)(96.7) ~ 248.6 X 103 mm3 ~ 248.6 X 10-6 m3 

v,Q (160 kN)(248.6 x w-6 m3) 
T ~ - = = 95.5 MPa 
" It (52.7 X 10 6 m')(0.0079 m) 

Principal Stress at Point b. The state of stress at point b consists of the 
normal stress a~;, = 102.4 MPa and the shearing stress 'Tb = 95.5 MPa. We draw 
Mohr's circle and find 

Um~x = ~(Tb + R = ~(Tb + )(~ubJ + 'Tl 

~ 10~.9 + )(10~.9)' + (95.5)' 

a max = 159.9 MPa 

The specification, a mux .S 150 MPa, is nor satisfied 4J 

Comment. For this beam and loading, the principal stress at point b is 
36% larger than the normal stress at point a. For L <2:: 874 mm, the maximum 
normal stress would occur at point a. 



90kN 

48 kN/m 

A ··,><~·'- B 

181!.5 kNl 265 .. '5 kN t D I 
t--2.7m -3.3m~ 

1.5 llll 
V 184.5 kN : 

71.6kN : 

~~~~~--~~>+-~~'---, 

SAMPlE PROBlEM 8.2 

The overhanging beam AB ,supports a uniformly distributed load of 48 kN/m 
and a concentrated load/f 0 kN at C. Knowing that for the grade of steel to 
be used o-~ 11 = 165 MPa an r.11 = 100 MPa, select the wide-flange shape that 
should be used. 

SOLUTION 

Reactions at A and D. We draw the free-body diagram of the beam. 
From the equilibrium equations 'ZM0 = 0 and 2:MA = 0 we find the values of 
RA and R0 shown in the diagram. 

Shear and Bending-Moment Diagrams. Using the methods of Sees. 
5.2 and 5.3, we draw the diagrams and observe that 

IM1m:.~=323.2kN·m IVI.nox=l93.4kN 

Section Modulus. For I M I m:.x = 323.2 kN · m and cr all = 165 MPa, the 
minimum acceptable section modulus of the rolled-steel shape is 

IMim~x 323.2 kN · m 
Smin = ~ = 165 MPa 

Selection of Wide-Flange Shape. From the table of Properties of 
Rolled-Steel Shapes in Appendix C, we compile a list of the lightest shapes of 
a given depth that have a section modulus larger than Smin· 

Shape S (mm3) x 103 

W610 X 101 
W530 X 92 
W460 X 113 
W410 X 114 
W360 X 122 
W310 X 143 

2530 
2070 
2400 
2200 
2010 
2150 

We now select the lightest shape available, namely W530 X 92 <I 

Shearing Stress. Since we are designing the beam, we will conserva
tively assume that the maximum shear is unifonnly distributed over the web 
area of a W530 X 92. We write 

tf= 1.5.6 mm a ~a-"= 1.':56.1 MPu r = Vmax = 193.4 kN = 35.6 MPa < 100 MPa (OK) 

266.5 m»t;J__ Jt = "" " 147 wlP" "' A.,b 5436.6 

250.9 mm '; ~dnci~al Stress .a.t Point b. We check that the maximum principal stress 
·" · ·--··' at pomt b m the cntrcal section where M is maximum does not exceed 

O" all = 165 MPa. We write 

_r"""' 10.1 MPa --tOt--a-"= 147 MPn 

IYb = 147 MPa 

o;,"x = 147.1 MPa 

Mmax 323.2 kN · m 
,. ~ -- = = 156.1 MPa 

a S 2.07 X l0-6 m3 

y, (250.9 mm) 
,." ~ ,.,- ~ (156.1 MPa) 

66 5 
) ~ 147 MPa 

c (2 . mm 

v 54.9 kN 
C · ,. 1 7 ~-= =lOlMPa onserva JVe y, b Aweb 5436.6 X 10-6 mz . 

We draw Mohr's circle and find 

147 MPa /(147 MPa\' 
O"max = 4crb + R = ---

2
- + y --

2
-; + (10.1 MPa? 

O"max = 147.1 MPa :::5 165 MPa (OK) -tl 
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Dimensions in nnn 

yl T0 = 199N·m 
Tc "":39$ N ·m\ 

~A~i;;;;~C;;.;;;;;;;!\iiD;..;;;;;~,;;,;;;;;,.;;;- 2 

B 

yl 
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SAMPlE PROBlEM 8.3 
The solid shaft AB rotates at 480 rpm and transmits 30 kW from the motor M 
to machine tools connected to gears G and H; 20 kW is taken off at gear G 
and 10 kW at gear H. Knowing that Tan = 50 MPa, determine the smallest per~ 
missible diameter for shaft AB. 

SOLUTION 

Torques Exerted on Gears. Observing that f = 480 rpm = 8 Hz, we 
determine the torque exerted on gear E: 

P 30kW 
T, ~ 21rj ~ 21T(S Hz) ~ 597 N · m 

The corresponding tangential force acting on the gear is 

Te 597N·m 
Fe~ - ~ ~ 3.73 kN 

r£ 0.16 m 

A similar analysis of gears C and D yields 

20kW 
Tc ~ --- ~ 398 N · m 

21r(8 Hz) 
!OkW 

Tv= --- = 199 N · m 
21r(8 Hz) 

Fe~ 6.63 kN 

F0 ~ 2.49 kN 

We now replace the forces on the gears by equivalent force-couple systems. 

Bending~Moment and Torque Diag1.·ams 

A C D E B 

M~ .. m 

1244N·m llGON·m 

Critical Transverse Section. By computing V M~ + M7 + T 2 at all po
tentially critical sections, we find that its maximum value occurs just to the 
right of D: 

V'-M"';-:+-Mc-;;-i -:-+-::T"'·~ ~ Y(l160)' + (373)2 + (597)2 1357N · m 

Diameter of Shaft. For Tall = 50 MPa, Eq. (7 .32) yields 

1 yl M~ + A{; + T 2 
m"x 1357 N · m 

6 3 - ~ • ~ ~ 27.14 x 10' m 
c Tau 50MPa 

For a solid circular shaft of radius c, we have 

J 1T - = -c3 = 27 14 X 10-6 
c 2 . c ~ 0.02585 m ~ 25.85 rom 

Diameter = 2c = 51.7 mm -<1"4 



8.1 An overhanging W920 X 446 rolled-steel beam supports a load P 
as shown. Knowing that P = 1420 kN, a = 2.5 m, and 0'311 = 200 MPa, 
detennine (a) the maximum value of the normal stress um in the beam, (b) the 
maximum value of the principal stress a rna» at the junction of the flange and 
web, (c) whether the specified shape is acceptable as far as these two stresses 

p 

are concerned. Fig. P8.1 

8.2 Solve Prob. 8.1, assuming that P = 17751cN and a= 2.0 m. 

8.3 An overhanging W250 X 58 rolled-steel beam supports a load P 
as shown. Knowing that P = 400 kN, a = 250 mm, and u ,11 = 250 MPa, 
determine (a) the maximum value of the normal stress am in the beam, (b) 
the maximum value of the principal stress 0' max at the junction of the flange 
and web, (c) whether the specified shape is acceptable as far as these two 
stresses are concerned. 

8.4 Solve Prob. 8.3, assuming that P = 200 kN, a = 0.5m. 

8.5 and 8.6 (a) Knowing that ua11 = 165 MPa and Tall = 100 MPa, se~ 
lect the most economical wide-flange shape that should be used to support the 
loading shown. (b) Determine the values to be expected for c:rm, Tw and the prin
cipal stress O"mox at the junction of a flange and the web of the selected beam. 

80kN OOkN 

A~~~·~~~==~~~==~~jD 
I.-J_9m~j 

3m 3m 
Fig. P8.5 

8.7 and 8.8 (a) Knowing that <Tan= 160 MPa and T 3u = 100 MPa, 
select the most economical metric wide-flange shape that should be used to 
support the loading shown. (b) Detennine the values to be expected for u,, 
1"111, and the principal stress o-max at the junction of a flange and the web of 
the selected beam. 

J~ ~¥4( .. · ... ~1: 
11-,-,t<-, ·-

8

-3m--~-ti-;:.J,· 
Fig. P8.3 

Fig. P8.6 

250 kN 2-50 kN 2-50 kN 

A.~B~~J~Dl~E 
J:~ "~' ~r'l, 

·c 1 1 1 r 
0.9m 0.9m 0.9m 0.9m 

Fig. P8.8 
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y 

Fig. P8.15 

Fig. P8.17 

y 

Fig. P8.19 

8.9 through 8.14 Each of the following problems refers to a rolled
steel shape selected in a problem of Chap. 5 to support a given loading at a 
minimal cost while satisfying the requirement (]"m s O'au· For the selected 
design, detennine (a) the actual value of o-, in the beam, (b) the maximum 
value of the principal stress 0' max at the junction of a flange and the web. 

8.9 Loading of Prob. 5.76 and selected S510 X 98.3 shape. 
8.10 Loading ofProb. 5.73 and selected W460 X 74 shape. 
8.11 Loading ofProb. 5.71 and selected W690 X 125 shape. 
8.12 Loading of Prob. 5.78 and selected W380 X 64 shape. 
8.13 Loading of Prob. 5.75 and selected S310 X 47.3 shape. 
8.14 Loading of Prob. 5.74 and selected W250 X 28.4 shape. 

8.15 The 4-k.N force is parallel to the x axis, and the force Q is paral
lel to the z axis. The shaft AD is hollow. Knowing that the inner diameter is 
half the outer diameter and that Tau = 60 MPa, determine the smallest per
missible outer diameter of the shaft. 

y -80mm 

rlOOmm 

~120mm 

l 
Fig. P8.16 

8.16 The 6-kN force is vertical and the force Pis parallel to the z axis. 
Knowing that 1' an = 60 MPa, determine the smalli:st permissible diameter of 
the solid shaft AD. 

8.17 The vertical force P 1 and the horizontal force P2 are applied as 
shown to disks welded to the solid shaft AD. Knowing that the diameter of the 
shaft is 40 mm and that '~'au= 55 MPa, determine the largest permissible mag
nitude of the force P 2. 

8. 18 Solve Pro b. 8.17, assuming that_ the solid shaft AD has been 
replaced by a hollow shaft of the same material and of inner diameter 35 mm 
and outer diameter 45 mm. 

8.19 The two 2-kN forces are vertical and the force P is parallel to the 
z axis. Knowing that 1' all = 55 MPa, detennine the smallest permissible diam
eter of the solid shaft AE. 

8.20 For the gear-and-shaft system and loading ofProb. 8.19, detennine 
the smallest permissible diameter of shaft AE, knowing that the shaft is hol
low and has an inner diameter that is ~ the outer diameter. 



8.21 It was stated in Sec. 8.3 that the shearing stresses produced in a 
shaft by the transverse 'loads are usually much smaller than those product]d by 
the torques. In the preceding problemS their effect was ignored and i~ was 
assumed that the r:naximum shearing stress in a given section occurred a~·point 
H (Fig .. P8.2la) and was equal to the expressi?n obtained in Eq. (8.5/amely, 

rH = ']V&t + T2 

Show that the maximum shearing stress at point K (Fig. P8.2lb), where the 
effect of the shear V is greatest, can be expressed as 

rK ~ '} Y(M cos {3)' + (j cV + T)' 

where f3 is the angle between the vectors V and M. It is clear that the effect 
of the shear V cannot be ignored when rK ;;:,;:: rH. (Hint: Only the component 
of M along V contributes to the shearing stress at K.) 

8.22 Assuming that the magnitudes of the forces applied to disks A and 
C of Prob. 8.17 are, respectively, P1 = 4.8 kN and P2 = 3.6 kN, and using the 

(a) 

expressions given in Prob. 8.21, determine the values of rK and rH in a sec- (b) 

tion (a) just to the left of B, (b) just to the left of C. Fig. P8.21 

8.23 The solid shafts ABC and DEF and the gears shown are used to 
transmit 15 kW from the motor M to a machine tool connected to shaft DEF. 
Knowing that the motor rotates at 240 rpm and that r all = 50 MPa, determine 
the smallest permissible diameter of (a) shaft ABC, (b) shaft DEF: 

8.24 Solve Prob. 8.23, assuming that the motor rotates at 360 rpm. 

8.25 The solid shaft AE rotates at 600 rpm and transmits 45 kW from 
the motor M to machine tools connected to gears G and H. Knowing that 
r~u = 55 MPa and that 30 kW is taken off at gear G and 15 kW is taken off 
at gear H, determine the smallest permissible diameter of shaft AE. 

Fig. P8.25 

8.26 Solve Prob'. 8.25, assuming that 22 kW is taken off at gear G and 
22 kW is taken off at gear H. 

Fig. P8.23 

Problems 507 
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Fig. P8.27 

Fig. 8.15 

8.27 The solid shaft ABC and the gears shown are used to transmit 10 kW 
from the motor M to a machine tool connected to gear D. Knowing that the 
motor rotates at 240 rpm and that Tuu = 60 MPa, detennine the smallest per
missible diameter of shaft ABC. 

8.28 Assuming that shaft ABC of Prob. 8.27 is hollow and has an outer 
diameter of 50 mm, determine the largest pennissible inner diameter of the shaft. 

8.29 Tfle solid shaft AB rotates at 360 rpm and transmits 20 kW from 
the motor M to machine tools connected to gears E and F. Knowing that 
Tan = 45 MPa and assuming that 10 kW is taken off at each gear, determine 
the smallest permissible diameter of shaft AB. 

Fig. P8.29 

8.30 Solve Prob. 8.29, assuming that the entire 20 kW is taken off at 
gear E. 

'8.4. STRESSES UNDER COMBINED LOADINGS 

In Chaps. 1 and 2 you learned to determine the stresses caused by a 
centric axial load. In Chap. 3, you analyzed the distribution of stresses 
in a cylindrical member subjected to a twisting couple. In Chap. 4, you 
detennined the stresses caused by bending couples and, in Chaps. 5 and 
6, the stresses produced by transverse loads. As you will see presently, 
you can combine the knowledge you have acquired to determine the 
stresses in slender structural members or machine components under 
fairly general loading conditions. 

Consider, for example, the bent member ABDE of circular cross 
section, that is subjected to several forces (Fig. 8.15). In order to de
termine the stresses produced at points H or K by the given loads, we 
first pass a section through these points and determine the force-couple 
system at the centroid C of the section that is required to maintain the 
equilibrium of portion ABC. t This system represents the internal forces 

tThe force-couple system at C can also be defined as equivalent to the forces acting on 
the portion of the member located 10 the right of the section (see Example 8.01). 
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y J 

Fig. 8.16 

in the section and, in general, consists of three· force components and 
three couple vectors that will be assumed directed as shown (Fig. 8.16). 

The force P is a centriC axial force that produces nonnal stresses 
in the section. The couple vectors My and M~ cause the member to bend 
and also produce normal stresses in the section. They have therefore 
been grouped with the force Pin part a of Fig. 8.17 and the sums O".r 

of the nonnal stresses they produce at points Hand K have been shown 

(a) 

Fig. 8.17 

in part a of Fig. 8.18. These stresses can be detennined as· shown in (a) 

Sec. 4.14. Fig. 8.18 
On the other hand, the twisting couple T and the shearing forces 

V1, and V~ produce shearing stresses in the section. The sums -r.q and -rx~ 
of the components of the shearing stresses they produce at points H and 
K have been shown in part b of Fig. 8.18 and can be detennined as in
dicated in Sees. 3.4 and 6.3.t The normal and shearing stresses shown 
in parts a and b of Fig. 8.18 can now be combined and displayed at 
points Hand K on the surface of the member (Fig. 8.19). 

The principal stresses and the orientation of the principal planes at 
points Hand K can be determined from the values of O"x, -r.ry·• and -r_,, at 
each of these points by one of the methods presented in Chap. 7 
(Fig. 8.20). The values of the maximum shearing stress at each of these Fig. 8.19 

points and the corresponding planes can be found in a similar way. 
The results obtained in this section are valid only to the extent that 

the conditions of applicability of the superposition principle (Sec. 2.12) 
and of Saint-Venant's principle (Sec. 2.17) are met. This means that the 
stresses involved must not exceed the proportional limit of the mate
rial, that the deformations due to one of the loadings must not affect 
the detennination of the stresses due to the others, and that the section 
used in your analysis must not be too close to the points of application 
of the given forces. It is clear from the first of these requirements that 
the method presented here cannot be applied to plastic deformations. 

tNote that your present'"knowledge allows you to determine the effect of the twisting cou
pleT only in the cases of circular shafts, of members with a rectangular cross section (Sec. 
3.12), or of thin-walled hollow members (See. 3.13). 

Fig. 8.20 

v, 

(b) 

+ 

(b) 



Two forces P 1 and P2, of magnitude P 1 = 15 k.N and 
P2 = 18 k.N, are applied as shown to the end A of bar AB, 
which is welded to a cylindrical member BD of radius 
c = 20 mm (Fig. 8.21). Knowing that the distance from A to 
the axis of member BD is a = 50 mm and assuming that all 
stresses remain below the proportional limit of the material, 
determine (a) the normal and shearing stresses at point K of 
the transverse section of member BD located at a distance 
b = 60 mm from end B, (b) the principal axes and principal 
stresses at K, (c) the maximum shearing stress at K. 

Internal Forces in Given Section. We first replace 
the forces P 1 and P2 by an equivalent system of forces and 
couples applied at the center C of the section containing point 
K (Fig. 8.22). This system, which represents the internal forces 
in the section, consists of the following fOrces and couples: 

1. A centric axial force F equal to the force P 1, of 
magnitude 

2. A shearing force V equal to the force P2, of magnitude 

V= P2 = 18k:N 

3. A twisting couple T of torque T equal to the moment of 
P2 about the axis of member BD: 

T = P2a = (18 k:N)(50 mm) = 900 N · m 

4. A bending couple My, of moment My equal to the mo~ 
ment of P 1 about a vertical axis through C: 

M, = P,a = (15 k:N)(50 mm) = 750 N · m 

5. A bending couple Mz, of moment Mz equal to the moment 
of P2 about a transverse, horizontal axis through C: 

M, P2b = (18 k:N)(60 mm) = 1080 N · m 

The results obtained are shown in Fig. 8.23. 

a. Normal and Shearing Stresses at Point K. 
Each of the forces and couples shown in Fig. 8.23 can pro
duce a normal or shearing stress at point K. Our purpose is to 
compute separately each of these stresses, and then to add the 
normal stresses and add the shearing stresses. But we must 
first determine the geometric properties of the section. 

Geometric Properties of the Section. We have 

A = 1rc2 = 1r(0.020 m? = 1.257 X 10-3 m2 

ly = 14 = ~1rc4 = ~1T(0.020 m)4 = 125.7 X 10-9 m4 

lc = !1rc4 = !1r(0.020 m)4 = 251.3 X 10-9 m4 

We also determine the first moment Q and the width t of the 
area of the cross section located above the z axis. Recalling 
that Y = 4c/31T for a semicircle of radius c, we have 

510 

Fig. 8.21 P2 = 18kN 

Fig, 8.22 

Fig. 8.23 

Q = A'y = (L,-c')( 4
c) = 3_c3 = 3_(0.020 m)3 

2 3"3 3 
= 5.33 X 10-6 m3 

and 

t = 2c = 2(0.020 m) = 0.040 m 

Normal Stresses. We observe that normal stresses 
are produced at K by the centric force F and the bending cou
ple My, but that the couple Mt does not produce any stress at 
K, since K is located on the neutral axis corresponding to that 
couple. Determining each sign from Fig. 8.23, we write 

F M3 c -'-(7~50~N~·-m~)(0~.072_0~m~) 0'., = -- + -- = -119MPa + ----
A ly . 125.7 X 10 9 m4 

= -Il.9MPa + 119.3MPa 

O'x = + 107.4 MPa 



Shearing Stresses. These consist of the shearing 
stress (-r.,.)v due to the vertical shear V and of the shearing 
stress ( T.1~)twl.\t caused ·by the torque T. Recalling the values 
obtained for Q, t, !~,and lc, we write 

VQ (18 X 103 N)(5.33 X 10-6 m3) 

(r,o.)v = +IJ = + (125.7 x w-' m')(0.040 m) 

+19.1 MPa 

Tc (900 N · m)(0.020 m) 
(r.<;>.)twi$t = - Jc = 251.3 X l0-9.m4 -71.6 MPa 

Adding these two expressions, we obtain 7 10. at point K. 

T :ry = (r-').)V + (Txy)twist = + 19.1 MPa- 71.6 MPa 
T.ry = -52.5 MPa 

In Fig. 8.24, the normal stress «x and the shearing stresses and 
'~".rr have been shown acting on a square element located at K 
on the surface of the cylindrical member. Note that ·shearing 
stresses acting on the longitudinal sides of the element have 
been included. 

b. Principal Planes and Principal Stresses at 
Point K. We can use either of the two methods of Chap. 7 
to determine the principal planes and principal stresses at K. 
Selecting Mohr's circle, we plot point X of coordinates 
O"x = + 107.4 MPaand --rXI, = +52.5 MPa and point Yofco
ordinates «y = 0 and +r.n--;., -52.5 MPa and draw the circle 
of diameter XY (Fig. 8.25). Observing that 

OC =CD= l(l07.4) = 53.7 MPa DX = 52.5 MPa 

we determine the orientation of the principal planes: 

DX 52.5 
tan 29, = CD = 

53
.
7 

= 0.97765 

ep = 22.2"' J 

We now determine the radius of the circle, 

R = Y(53.7)' + (52.5)3 = 75.1 MPa 

and the principal stresses, 

O'mm = OC + R = 53.7 + 75.1 = 128.8 MPa 

O'min =OC-R= 53.7- 75.1 = -21.4 MPa 

The results obtained are shown in Fig. 8.26. 

c. Maximum Shearing Stress at Point K. This 
stress corresponds to points E and Fin Fig. 8.25. We have 

Tm•~ = CE = R = 75.1 MPa 

Observing that 2es = 90"' - zeP = 90"' - 44.4"' = 45.6", we 
conclude that the planes of maximum shearing stress form an 
angle eP = 22.8" ~ with the horizontal. The corresponding el
ement is shown in Fig. 8.27. Note that the normal stresses act
ing on this element arefepresented by OC in Fig. 8.25 and are 
thus equal to + 53.7 MPa. 
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J 
T,y = ·-.'52.5 !VIP<\ 

Fig. 8.24 

r(MPa)) 

Fig. 8.25 

u1,;n"" -21.4 MPn 

Fig. 8.26 

Fig. 8.27 

F 
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T 

, =6ZkN·mm 

""1 kN 

ll))ll 

39.5 MPa 

SAMPLE PROBLEM 8.4 

A horizontal 2~kN force acts at point D of crankshaft AB which is held in 
static equilibrium by a twisting couple T and by reactions at A and B. Know
ing that the bearings are self~aligning and exert no couples on the shaft, de~ 
termine the normal and shearing stresses at points H, 1, K, and L located at the 
ends of the vertical and horizontal diameters of a transverse section located 
62 mm to the lef-t of bearing B. 

SOLUTION 

Free Body. Entire Cranl<shaft. A = B = I kN 

-(2 kN)(45 mm) + T ~ 0 T~ 90kN·mm 

Internal Forces in Transverse Section. We replace the reaction B and 
the twisting couple T by an equivalent force~couple system at the center C of 
the transverse section containing H, 1, K, and L. 

T~90kN'mm 
M, ~ (I kN)(62 mm) ~ 62 kN · mm 

The geometric properties of the 22~mm~diameter section are 

A= 1r(l1 mm? = 380 mm2 I= ~7T(ll mm)4 = 11500 mm4 

1 = !1T(11 mm)4 = 23000 mm4 

Stresses Produced by Twisting Couple T. Using Eq. (3.8), we 
determine the shearing stresses at points H, 1, K, and L and show them in 
Fig. (a). 

Tc (90 kN · in)(Il rom) 
7 = J = 23000mm4 ~ 43 MPa 

Stresses Produced by Shearing Force V. The shearing force V pro~ 
duces no shearing stresses at points 1 and L. At points Hand K we first com~ 
pute Q for a semicircle about a vertical diameter and then determine the shear~ 
ing stress produced by the shear force V = l kN. These stresses are shown in 
Fig. (b). . 

(I )(4c) 2 2 Q = -1rc1 - = -c3 = -(11 mm? = 887 mm3 

2 3w3 3 

VQ (I kN)(887 mm3
) 

T = - = = 3.5 MPa 
It (11500 rom' )(22 mm) 

Stresses Produced by the Bending Couple MY' Since the bending cou~ 
ple M" acts in a horizontal plane, it produces no stresses at Hand K. Using Eq. 
(4.15), we determine the normal stresses at points J and Land show them in 
Fig. (c). 

IM,Ic (62 kN · mm)(ll rom) 
o- ~ -- = = 59.3MPa 

I 11500mm4 

Summary. We add the stresses shown and obtain the total normal and 
shearing stresses at points H, 1, K, and L. 



T{MPn)) 

o-y = 66.0 MPa 

O'onin 

SAMPLE PROBLEM 8.5 

Three forces are applied fs shown at points A, B, and D of a short steel post. 
Knowing that the hoyrn· zo tal cross section of the post is a 40 X 140-mm rec
tangle, determine the mcipal stresses, principal planes and maximum shear
ing stress at point H. 

SOLUTION 

Internal Forces in Section EFG. We replace the three applied forces 
by an equivalent force-couple system at the center C of the rectangular section 
EFG. We have 

V, = -30kN P = 50kN V, = -75 kN 
M, = (50kN)(0.130m)- (75kN)(0.200m) = -8.5kN · m 

. M, = 0 M, = (30kN)(0.100m) = 3kN · m 

We note that there is no twisting couple about they axis. The geometric 
properties of the rectangular section are 

A = (0.040 m)(0.140 m) = 5.6 X l0- 3 m' 
l, = /,(0.040m)(0.140m)3 = 9.15 X l0- 6 m' 
l, = ;';(0.140 m)(0.040 m)3 = 0.747 X w-• m' 

Normal Stress at H.. We note that normal stresses O'r are produced by 
the centric force P and by the bending couples M.r and M •. We determine the 
sign of each stress by carefully examining the sketch of the force-couple sys
tem at C. 

P IM.fa IM,Ib (}' = +-+-----
YAJ, fx 

50 kN (3 kN · m)(0.020 m) (8.5 kN · m)(0.025 m) 
+ 

5.6 X 10-3 rn2 0.747 X 10-6 m4 9.15 X 10 6 m4 

ITy = 8.93 MPa + 803 MPa - 23.2 MPa O'y = 66.0 MPa <I 

Shearing Stress at H. Considering first the shearing force V.,. we note 
that Q = 0 with respect to the z axis, since H is on the edge of the cross sec
tion. Thus Vx produces no shearing stress at H. The shearing force Vz does pro
duce a shearing stress at H and we write 

Q = A1y1 = [(0.040 m)(0.045 m)](0.0475 m) = 85.5 X w-• m3 

V,Q (75 kN)(85.5 x w-• m') 
r =-= Tyz= 17.52MPa <I 
" l,t (9.15 X l0-6 m')(0.040 m) 

Principal Stresses, Principal Planes, and Maximum Shearing Stress 
at H. We draw Mohr's circle for the stresses at point H 

17.52 
tan 28

1
, = --

0
-

33. 

R = Y(33.0)2 + (17.52)' = 37.4MPa 

CTmm = OA = OC + R = 33.0 + 37.4 

0' min = OB = OC - R = 33.0 - 37.4 

7',~•x = 37.4 MPa <i 

(}'max = 70.4 MPa -<1 

O'min = -7.4 MPa <13 
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Fig. P8.33 

Fig. P8.34 

514 

8.31 Two 4-k.N forces are applied to an L-shaped machine element AB 
as shown. Determine the normal and shearing stresses at (a) point a, (b) point 
b, (c) point c. 

f-<---- 300 mm ----1 

Fig. P8.31 and P8.32 

~1-:::T 
L2J~m 

!-.I 
20mm 

8.32 Two 4-kN forces are applied to an L-shaped machine element AB 
as shown. Determine the nonnal and shearing stresses at (a) point d, (b) pointe, 
(c) pointf 

8.33 For the bracket and loading shown, determine the normal and shear
ing stresses at (a) point a, (b) point b. 

8.34 and 8.35 Member AB has a uniform rectangular cross section of 
l 0 X 24 mrn. For the loading shown, determine the normal and shearing 
stresses at (a) point H, (b) point K. 

Fig. P8.35 



8.36 The cantilever beam AB has a rectangular cross section of 
514 X 200 mm. Knowing that the tension in the cable BD is 10 kl'f and 
neglecting the weight of the beam, detei-mine the normal and shearing stl!esses 
at the three poin~ indicated. J' 

8.37 A 6-kN force and a 1.0 kN · m couple are applied at the top of the 
62-mm-diameter cast-iron post shown. Determine the nonnal and shearing 
stresses at (a) point H, (b) point K. 

8.38 The billboard shown weights 32 kN and is supported by a struc
tural tube that has a 380-mm outer diameter and a 12-mm wall thickness. At 
a time when the resultant of the wind pressure is 12 kN located at the center 
C of the billboard, determine the normal and shearing stresses at point H. 

Fig. P8.38 

8.39 Two forces are applied to the pipe AB as shown. Knowing that the 
pipe has inner and oUter diameters equal to 35 and 42 mm, respectively, 
detennine the normal and shearing stresses at (a) point a, (b) point b. 

Problems 515 

Fig. PS.37 

N 

Fig. P8.39 



516 Principal Stresses under a Given Loading 

z 225 

y' 
1.'50N lOON 

Dimensions in mm 

Fig. P8.40 

Fig. P8.43 

8.40 Several forces are applied to the pipe assembly shown. Knowing 
that each section of pipe has inner and outer diameters equal to 36 and 42 mm, 
respectively, determine the normal and shearing stresses at point H located at 
the top of the outer surface of the pipe. 

Fig. P8.41 

8.41 A vertical force P of magnitude 250 N is applied to the crank at 
point A. Knowing that the shaft BDE has a diameter of 18 mm, determine the 
principal stresses and the maximum shearing stress at point H located at the 
top of the shaft, 50 mm to the right of support D. 

8.42 The steel pipe AB has a 72Mmm outer diameter and a 5-mm wall 
thickness. Knowing that the ann CDE is rigidly attached to the pipe, determine 
the principal stresses, principal planes, and the maximum shearing stress at 
point H. 

Fig. P8.42 

8.43 Three forces are applied to a 100-mrnMdiameter plate that is at
tached to the solid 45-mm diameter shaft AB. At point H, determine (a) the 
principal stresses and principal planes, (b) the maximum shearing stress. 



8.44 A 12-kN force is applied as shown to the 60-mm-diameter cast
iron post ABD. At point H, determine (a) the principal stresses and prin,cipal 
planes, (b) the maximum shearing streSs. i 

8.45 Three forces are applied to the bar shown. Determine t

7
he ~annal 

and shearing stresses at (a) point a, (b) point b, (c) point c. 

32 

mm 

Fig. P8.45 

8.46 Solve Prob. 8.45, assuming that the 750-N force is directed verti
cally upward. 

8.47 Three forces are applied to the bar shown. Determine the normal 
and shearing stresses at (a) point a, (b) point b, (c) point c. 

8.48 Solve Prob. 8.47, assuming that h = 300 mm. 

8.49 For the post and loading shown, determine the principal stresses, 
principal planes, and maximum shearing stress at point H. 

"I 
120 kN 

Fig. P8.49 and P8.50 

8.50 For the p.ost and loading shown, determine the principal stresses, 
principal planes, and maximum shearing stress at point K. 
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Fig. P8.44 

Fig. P8.47 



518 Prindpa! Stresses under a Given Loading 8.51 Two forces are applied to the small post BD as shown. Knowing 
that the vertical portion of the post has a cross section of 40 X 60 mm, 
determine the principal stresses, principal planes, and maximum shearing 
stress at point H. 

Fig. P8.51 

8.52 Solve Prob. 8.51, assuming that the magnitude of the 24-k.N force 
is reduced to 6 kN. 

8.53 Three steel plates, each 13 mm thick, are welded together to form 
a cantilever beam. For the loading shown, determine the nonnal and shearing 
stresses at points a and b. 

"I 
400m~ 75mmi:. c.~l. : ' 

"'.,!;([' . . ·... ~ 
. . gkN 150mm 

t"" 13mm 

Fig. P8.53 and P8.54 

8.54 Three steel plates, each 13 mm thick, are welded together to fonn 
a cantilever beam. For the loading shown, determine the normal and shearing 
stresses at points d and e. 



8.55 Knowing that the structural tube shown has a uniform wall thick
ness of 6 mm, dete;mine the normal and shearing stresses at the three p9ints 
indicated. · / 

8.56 Four forces are applied to a W200 X 41.7 rolled beam as ~iown. 
Deterll}ine the principal stresses and maximuin shearing stress at po~rl a. 

W200 X 41.7 

"I 

JE-· 
f-.1 
75mm 

Fig. P8.56 and P8.57 

8.57 Four forces are applied to a W200 X 41.7 rolled beam as shown. 
Determine the principal stresses and maximum shearing stress at point b. 

8.58 Two forces P 1 and P2 are applied as shown in directions perpendi
cular to the longitudinal axis of a W3l 0 X 60 beam. Knowing that P 1 = 20 kN 
and P2 = 12 k.N, detennine the principal stresses and the maximum shearing 
stress at point a. 

"I 75 mm 

I-· 
W310 X 60 

Fig. P8.58 

8.59 A vertical force P is applied at the center of the free end of can~ 
tilever beam AB. (a) If the beam is installed with the web vertical ({3 = 0) and 
with its longitudinal axis AB horizontal, determine the magnitude of the force 
P for which the normal-stress at point a is + 120 MPa. (b) Solve Part a, assum~ 
ing that the beam is installed with {3 = 3°. 

Problems 519 

:2.4 

mm 

Fig, P8.55 

Fig, PB.59 



520 Principal Stresses under a Given Loading 

Fig. P8.60 

Fig. P8.63 

8.60 A force P is applied to a cantilever beam by means of a cable 
attached to a bolt located at the center of the free end of the beam. Knowing 
that P acts in a direction perpendicular to the longitudinal axis of the beam, 
detennine (a) the normal stress at point a in terms of P, b, h, l, and {3, (b) the 
values of f3 for which the normal stress at a is zero. 

Fig. P8.61 

*8.61 The structural tube shown has a uniform wall thickness of 8 mm. 
Knowing that the 60~kN load is applied 4 mm above the base of the tube, de
tennine the shearing stress at (a) point a, (b) point b. 

*8.62 For the tube and loading of Prob. 8.61, determine the principal 
stresses and the maximum shearing stress at point b. 

*8.63 A 5-k.N force P is applied to a wire that is wrapped around bar 
AB as shown. Knowing that the cross section of the bar is a square of side 
d = 40 mm, determine the principal stresses and the maximum shearing stress 
at point a. 

Fig. P8.64 

*8.64 Knowing that the structural tube shown has a uniform wall thick
ness of 8 mm, determine the principal stresses, principal planes, and maximum 
shearing stress at (a) point H, (b) point K. 



This chapter was devoted to the . detennination of the pdncipal 
stresses in beams, tiansrriission shafts,· .<.md bOdies of arbitrary shape 
subjected to combined loadings. . . . · 

We first recalled in Sec. 8.2 the two fundamental relations derived 
in Chaps. 5 ri.nd 6 for the normal stress 'ux and the shearing Stress· T ;y 
at any given point of a cross section of a prismatic beam, 

My VQ 
<T, = -~ T, = -ft (8.1, 8.2) 

where V = shear in the section 
M = bending moment in the section 
y = distance of the point from the neutral surface 
I =- centroidal moment of inertia of the cross section 
Q =- first moment about the neutral ~xis of the portion of 

the cross section located above the given point 
t = width of the cross section at the given point 

Using one of the methods presented in Chap. 7 for the transforM 
mation of stresses, we were ·able to obtain the principal planes and 
principal stresses at the given point (Fig. 8.6). 

We investigated the distribution of the principal stresses in a narM 
row rectangular cantilever beam subjected to a concentrated load P 
at its free end and found that in any given transverse section
except close to the point of application of the load-the maximum 
principal stress u max did not exceed the maximum normal stress urn 
occurring at the surface of the beam. 

While this conclusion remains valid for many beams of nonrec
tangular cross section, it may not hold for W-beams or S-beams, 
where cr max at the junctions b and d of the web with the flanges of 
the beam (Fig. 8.1 0) may exceed the value of u m occurring at points 
a and e. Therefore, the design of a rolled-steel beam should include 
the computation of the maximum principal stress at these points. (See 
Sample Probs. 8.1 and 8.2.) 

d 

' ,.- Fig.8.10 

Principal planes and principal 
stresses in a beam 

_, 

Fig. 8.6 

/c.::'\;:/<:.'-.· 
·;·.s;~:~ll--o-m _· .·.· 
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Fig. 8.15 

Design of transmission shafts 
under transverse loads 

Stresses under general 
loading conditions 

In'Sec: 8.3, we considered the design of transmiSsion shafts sub~.·.:._:, 
jected to transverse loads as well as to torques. Taking into account·· 
the effect of both the normal stresses due to the bending moment p,,{ 
and the shearing stresses due to the torque Tin any giVen transvefse ',-i 
section of a cylindrical shaft (either solid or hollow), we found that 
the minimum allowable value of the ratio J/c for the cross section 
was 

(8.6) 

In preceding chapters, you learned to determine the stresses in 
prismatic members caused by axial loadings (Chaps. 1 and 2), tor
sion (Chap. 3), bending (Chap. 4), and transverse loadings (Chaps. 
5 and 6). In the second part of this chapter (Sec. 8.4), we combined 
this knowJedge to determine stresses Under more general loading 
conditions. 

Fig. 8.16 

For instance, to determine the stresses at poin't H or K of the bent 
member shown in Fig. 8.15, we passed a section through these points 
and replaced the applied loads by an equivalent force-couple system 
at the centroid C of the section (Fig. 8.16). The normal and shear
ing stresses produced at H or K by each Of the forces and couples 
applied at C were determined and then combined to obtain the re
sulting normal stress O'x and the resulting shearing stresses r xy and 
'1'xz at H or K. Finally, the principal stresses, the orientation of the 
principal planes, and the maximum shearing stress at point H or K 
were determined by one of the methods presented in Chap. 7 from 
the values obtained for u x• r.ry• and r."Z' 



8.65 (a) Knowing that u~u = 165 MPa and Tan = 100 MPa, select the 
most economical wide-flange shape that should be used to support the loading 
shown. (b) Determine the values to be expected forum, Tm, and the principal 
stress u max at the junction of a flange -and the web of the selected beam. 

20 kN/m 

:MJJI~, 
. 'L3.6m __:~l.8m 
Fig. P8.65 

8.68 Determine the smallest allowable diameter of the solid shaftABCD, 
knowing that Ta11 = 60 MPa and that the radius of disk B is r = 80. mm. 

8.67 Using the notation Sec. 8.3 and neglecting the effect of shearing 
stresses caused by transverse loads, show that the maximum normal stress in 
a cylindrical shaft can be expressed as 

_ c[('" ')' ( , 2 ')'] 0' max - } IYl), + M:;. · + My + Mz + T · max 

8.68 The solid shaft AB rotates at 450 rpm and transmits 20 kW from 
the motor M to machine tools connected to gears F and G. Knowing that 
7"011 = 55 MPa and assuming that 8 kW is taken off at gear F and 12 kW is 
taken otT at gear G, determine the smallest permissible diameter of shaft AB. 

Fig. P8.68 
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240kN 

Fig, P8.69 

p p 

Fig. P8.73 

8.69 Two forces are applied to the bar shown. At point a, determine 
(a) the principal stresses and principal planes, (b) the maximum shearing stresses. 

Yl 

Fig. P8.70 

8.70 The steel pile AB has a 100-mm outer diameter and an 8-mm wall 
thickness. Knowing that the tension in the cable is 40 kN, determine the nor
mal and shearing stress at point H. 

8.71 The axle of a small truck is acted upon by the forces and couple 
shown. Knowing that the diameter of the axle is 36 nun, detennine the normal 
and shearing stresses at poinr H located on the top of the axle. 

3kN 
Fig. P8.71 

8.72 For the truck axle and loading of Prob. 8.71, determine the princi~ 
pal stresses and the maximum shearing stress at point H. 

8.73 A close-coiled spring is made of a circular wire of radius r that is 
fanned into a helix of radius R. Determine the maximum shearing stress pro
duced by the two equal and opposite forces P and P'. (Hint: First determine 
the shear V and the torque Tin a transverse cross section.) 



8.74 Three forces are applied to a W150 X 29.8 rolled beam as shown. 
Determine the normal and shearing stresses at points a, b, and c. (Note. Points 
a and care located at the top and bottom surface of the flanges, resp7ctiv1ly) 

24 kN 12 kN 

l: 
' 

Fig. P8.74 

8. 75 Three forces are applied to the machine component ABD as shown. 
Knowing that the cross section containing point H is a 20 X 40-mm rectangle, 
determine the principal stresses and the maximum shearing stress at point H. 

Fig. P8.75 

8.76 The cantilever beam AB will be installed so that the 60-mm side 
forms an angle {3 between 0 and 90° with the vertical. Knowing that the 600-
N vertical forces is applied at the center of the free end of the beam, determine 
the norma! stress at point a when (a) j3 = 0, (b) {3 = 90°. (c) Also, determine 
the value of f3 for which the normal stress at point a is maximum and the cor
responding value of that stress. 

N 

Fig. P8.76 
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The following problems are designed to be solved with a computer. 

8.C1 Let us assume that the shear V and the bending moment M have 
been determined in a given section of a rolled-steel beam. Write a computer 
program to calculate in that section, from the data available in Appendix C, 
(a) the maximum normal stress um, (b) the principal stress Umax at the junction 
of a flange and the web. Use this program to solve parts a and b of the fol
lowing problems: 
(I) Prob. 8.1 (Use V = 1420 kN and M = 3550 kN · m) 
(2) Prob. 8.2 (Use V = 1775 kN and M = 3550 kN · m) 
(3) Prob. 8.3 (Use V = 400 kN and M = 100 kN • m) 
(4) Prob. 8.4 (Use V = 200 kN and M = 100 kN • m) 

8.C2 A cantilever beam AB with a rectangular cross section of width b 
and depth 2c supports a single concentrated load P at its end A. Write a com
puter program to cakulate, for any values of x!c and y!c, (a) the ratios um~!u,, 
and 0' min/0',., where 0' rna~ and u mio are the principal stresses at point K(x, y) and 
u m the maximum normal stress in the same transverse section, (b) the angle BP 
that the principal planes at K form with a transverse and a horizontal plane through 
K. Use this program to check the values shown in Fig. 8.8 and to verify that u rna~ 
exceeds u,. if x ~ 0.544c, as indicated in the second footnote on page 499. 

Fig. P8.C2 

8.C3 Disks D1, D2, .•• , D, are attaches as shown in Fig. 8.C3 to the solid 
shaft AB of length L, uniform diameter d, and allowable shearing stress r ,11 • 

Forces PI> P2, ••. , Pn of known magnitude (except for one of them) are applied 
to the disks, either at the top or bottom of its vertical diameter, or at the left or 
right end of its horizontal diameter. Denoting by r1 the radius of disk D; and by 
c1 its distance from the support at A, write a computer program to calculate (a) the 
magnitude of the unknown force P1, (b) the smallest permissible value of the 
diameter d of shaft AB. Use this program to solve Probs. 8.15 and 8.19. 



Fig. P8.C3 

8.C4 The solid shaft AB of length L, uniform diameter d, and allowable 
shearing stress Tan rotates at a given speed expressed in rpm (Fig, 8.C4). Gears 
Gl> G2, ••• , G, are attached to the shaft and each of these gears meshes with 
another gear (not shown), either at the top or bottom of its vertical diameter, 
or at the left or right end of its horizontal diameter. One of these 'other gears 
is connected to a motor and the rest of them to various machine tools. Denot~ 
ing by r1 the radius of disk G,., by c1 its distance from the support at A, and by 
P; the power transmitted to that gear ( + sign) or taken of that gear (- sign), 
write a computer program to calculate the smallest pennissible value of the 
diameter d of shaft AB. Use this program to solve Probs. 8.25 and 8.68. 

y 

Fig. P8.C4 

Computer Problems 527 



528 Principal Stresses under a Given Loading 

Fig. P8.C6 

8.C5 Write a computer program that can be used to calculate the nor
mal and shearing stresses at points with given coordinates y and z located on 
the surface of a machine part having a rectangular cross section. The internal 
forces are known to be equivalent to the force-couple system shown. Use this 
program to solve (a) Prob. 8.45a, (b) Prob. 8.47b. 

Fig. P8.C5 

8.C6 Member AB has a rectangular cross section of lO X 24 mm. For 
the loading shown, write a computer program that can be used to determine 
the normal and shearing stresses at points H and K for values of d from 0 to 
120 mm, using 15-mm increments. Use this program to solve Prob. 8.34. 

Fig. P8.C7 

""S.C7 The structural tube shown has a uniform wall thickness of 8 mm. 
A 40-kN force is applied to a bar (not shown) that is welded to the end of the 
tube. Write a computer program that can be used to determine, for any given 
value of c, the principal stresses, principal planes, and maximum shearing stress 
at point H for values of d from -75 mm to 75 mm, using 25-mm increments. 
Use this program to solve Frob. 8.64a. 



The photo shows a cable~stayed bridge during construction. The design 
of beams in the bridge deck is based on both strength considerations 
and deflection evaluations. 
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(a) Cantilever beam 

{ Ys""O J 
(b) Simply supported beam 

Fig. 9.1 

9.1. INTRODUCTION 

In the preceding chapter we learned to design beams for strength. In 
this chapter we will be concerned with another aspect in the design of 
beams, namely, the determination of the deflection. Of particular inter
est is the determination of the maximum deflection of a beam under a 
given loading, since the design specifications of a beam will generally 
include a maximum allowable value for its deflection. Also of interest 
is that a knOwledge of the deflections is required to analyze indetermi
nate beams. These are beams in which the number of reactions at the 
supports exceeds the number of equilibrium equations available to de
termine these unknowns. 

We saw in Sec. 4.4 that a prismatic beam subjected to pure bend
ing is bent into an arc of circle and that, within the elastic range, the 
curvature of the neutral surface can be expressed as 

M 
p El 

(4.2!) 

where M is the bending moment, E the modulus of elasticity, and I the 
moment of inertia of the cross section about its neutral axis. 

When a beam is subjected to a transverse loading, Eq. (4.21) re
mains valid for any given transverse section, provided that Sairit
Venimt's principle applies. However, both the bending moment and the 
curvature of the neutral surface will vary from section to section. De
noting by x the distance of the· section from the left end of the beam, 
we write 

M(x) 

p El 
(9.1) 

The knowledge of the curvature at various points of the beam will en~ 
able us to draw some general conclusions regarding the deformation of 
the beam- under loading (Sec. 9.2). 

To determine the slope and deflection of the beam at any given 
point, we first derive the following second-order linear differential equa~ 
tion, which governs the elastic curve characterizing the shape of the 
deformed beam (Sec. 9.3): 

d2y M(x) 

dx2 El 

If the bending moment can be represented for all values of x by a 
single function M(x), as in the case of the beams and loadings shown 
in Fig. 9.1, the slope 0 = dy/dx and the deflection y at any point of the 
beam may be obtained through two successive integrations. The two 
constants of integration introduced in the process will be determined 
from the boundary conditions indicated in the figure. 

Howexer, if different analytical functions are required to represent 
the bending moment in various portions of the beam, different differ-



ential equations will also be required, leading to different functions 
defining the elastic curve in the. various portions of the beam. In the 
case of the beam and loading of Fig·. 9.2, for example, two differ~ntial 
equations are r~quired, one for the portion of beam AD and the ;other 
for the portion DB. The first equation yjelds the functions 01 a'nd y 1, 

and the second the functions (}2 and y2• Altogether, four cor¢{ants of 
integration must be determined; two will be obtained by writing that 
the deflection is zero at A and B, and the other two by expressing that 
the portions of beam AD and DB have the same slope and the sarrie 
deflection at D. 

You wm observe in Sec. 9.4 that in the case of a beam supporting 
a distributed load w(x), the elastic curve can be obtained directly from Fig. 9.2 
w(x) through four successive integrations. The constants introduced in 
this process will be determined from the boundary values of V, M, fJ, 
andy. 

In Sec. 9.5, we will discuss statically indeterminate beams where 
the reactions at the supports involve four or more unknowns. The three 
equilibrium equations must be supplemented With equations obtained 
from the boundary conditions imposed by the supports. 

The method described earlier for the determination of the elastic 
curve when several functions are required to represent the bending 
moment M can be quite laborious, since it requires matching slopes 
and deflections at every transition point. You will see in Sec. 9.6 that 
the use of singularity functions (previously discussed in Se~. 5.5) con" 
siderably simplifies the determination of e and y at any point of the 
beam. 

The next part of the chapter (Sees. 9.7 and 9.8) is devoted to the 
method of superposition, which consists of detennining separately, and 
then adding, the slope and deflection caused by the various loads ap~ 
plied to a beam. This procedure can be facilitated by the use of the table 
in Appendix D, which gives the slopes and deflections of beams for 
various loadings and types of support. 

In Sec. 9.9, certain geometric properties of the elastic curve will be 
used to determine the deflection and slope of a beam at a given point 
Instead of expressing the bending moment as a function M(x) and in~ 
tegrating this function analytically, the diagram representing the varia
tion of M/ El over the length of the beam will be drawn and two moment
area theorems will be derived. The first moment~area theorem will 
enable us to calculate the angle between the tangents to the beam at 
two points; the second moment~area theorem will be used to calculate 
the vertical distance from a point on the beam to a tangent at a second 
point. 

The moment~area theorems will be used in Sec. 9.10 to determine 
the slope and deflection at selected points of cantilever beams and beams 
with symmetric loadings. In Sec. 9.11 you will find that in many ca':ies 
the areas and moments of areas defined by the M/El diagram may be 
more easily determiped if you draw the bending~moment diagram by 
pa'rts. As you study the moment-area method, you will observe that this 
method is particularly effective in the case of beams of variable cross 
section. 
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p 

B 

P.-'.= oo 

(b) 

Fig. 9.3 

Beams with unsymmetric loadings and overhanging beams will be 
considered in Sec. 9.12. Since for an unsymmetric loading the maxi
mum deflection does not occur at the center of a beam, you will learn 
in Sec. 9.13 how to locate the point where the tangent is horizontal in 
order to determine the maximum deflection. Section 9.14 will be de
voted to the solution of problems involving statically indeterminate 
beams. 

9.2. DEFORMATION OF A BEAM UNDER TRANSVERSE 
LOADING 

At the beginning of this chapter, we recalled Eq. (4.21) of Sec. 4.4, 
which relates the curvature of the neutral surface and the bending mo
ment in a beam in pure bending. We pointed out that this equation re
mains valid for any given transverse section of a beam subjected to a 
transverse loading, provided that Saint-Venant's principle applies. How
ever, both the bending moment and the curvature of the neutral surface 
will vary from section to section. Denoting by x the distance of the sec
tion from the left end of the beam, we write 

_ = M(x) 
p El 

(9.1) 

.Consider, for example, a cantilever beam AB of length L subjected 
to a concentrated load P at its free end A (Fig. 9.3a). We have 
M(x) = -Px and. substituting into (9.1), 

Px 
p El 

which shows that the curvature of the neutral surface varies linearly 
with x, from zero at A, where PA itself is infinite, to - PL/El at B,. where 
IPs I = EI/PL (Fig. 9.3b). 

Consider now the overhanging beam AD of Fig. 9.4a that supports 
two concentrated loads as shown. From the free-body diagram of the 
beam cFig. 9.4b), we finct that the reactions at the supports are 
RA = 1 kN and Rc = 5 kN, r~spectively, and draw the corresponding 
bending-moment diagram (Fig. 9.5a). We note from the diagram that 
M, and thus the curvature of the beam, are both zero at each end of the 
beam, and also at a point E located at x = 4 m. Between A and E the 
bending moment is positive and the beam is concave upward; between 

4 kN 2kN 

RA = 1 kN 

Fig. 9.4 

4kN 

Rc=SkN 

(b) 

2kN 



M 
3kN ·m 

4kN 2k'N 

-6kN·m 

Fig. 9.5 

E and D the bending moment is llegative and the beam is concave 
downward (Fig. 9.5b). We also note that the largest value of the cur
vature (i.e., the smallest value of the radius of curvature) occurs at the 
support C, where IMI is maximum. 

From the infonnation obtained on its curvature, we get a fairly good 
idea of the shape of the deformed beam. However, the analysis and de
sign of a beam usually require more precise information on the deflec
tion and the slope of the beam at various pointS. Of particular impor
tance is the knowledge of the maximum deflection of the beam. In the 
next section Eq. (9.1) will be used to obtain a relation between the 
deflection y measured at a given point Q on the axis of the beam and 

"the distance x of that point from some fixed origin (Fig. 9.6). There
lation obtained is the equation of the elastic curve, i.e., the equation of 
the curve into which the axis of the beam is transfonned under the given 
loading (Fig. 9.6b).t 

9.3. EQUATION OF THE ELASTIC CURVE 

We first recall from elementary calculus that the curvature of a plane 
curve at a point Q(x,y) of the curve can be expressed as 

d'y 

dx' 

p [~ + (:Jr (9.2) 

where dy/dx and d2y/ dXZ are the first and second derivatives of the func
tion y(x) represented by that curve. But, in the case of the elastic curve 
of a beam, the slope dy/dx is very small, and its square is negligible 
compared to unity. We write, therefore, 

- = cf'-y 
p dx' 

Substituting for 1/p from (9.3) into (9.1), we have 

d2y M(x) 
c~x'=m 

(9.3) 

(9.4) 

The equation obtained is a second-order linear differential equation; it 
is the governing differential equation for the elastic curve. 

tit should be noted that, in this chapter, y represents a vertical displacement, while it was 
used in previous chapters -r'o represent the distance of a given point in a transverse section 
from the neutral axis of that section. 
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Fig. 9.7 
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(a) Simply supported beam 
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(b) Overhanging beam 

(c) Cantilever beam 

Fig. 9.8 Boundary con"ditions for statically 
determinate beams. 

The product EI is known as the flexural rigidity and, if it varies 
along the beam, as in the case of a beam of varying depth, we must ex
press it as a function of x before proceeding to integrate Eq. (9.4). How
ever, in the case of a prismatic beam, which is the case considered here, 
the .flexural rigidity is constant. We may thus multiply both members 
of Eq. (8.4) by Eland integrate in x. We write 

dy I' El dx ~ M(x) dx + C1 

0 

(9.5) 

where C1 is a constant of integration. Denoting by B(x) the angle, 
measured in radians, that the tangent to the elastic curve at Q forms with 
the horizontal (Fig. 9. 7), and recalling that this angle is very small, we 
have 

dy 
dx ~ tan e = 8(x) 

Thus, we write Eq. (9.5) in the alternative fonn 

El 8(x) = r M(x) dx + C1 
0 

Integrating both members of Eq. (9.5) in x, we have 

Ely~ r [f M(x)dx + c,]dx + C2 

0 0 

Ely~ r dx r M(x)dx + C1x + C2 
0 0 

(9.5') 

(9.6) 

where C2 is a second constant, and where the first term in the right
hand member represents the function of x obtained by integrating twice 
in x the bending moment M(x). If it were not for the fact that the con
stants C1 and C2 are as yet undetermined, Eq. (9.6) would define the 
deflection of the beam at any given point Q, and Eq. (9.5) or (9.5') 
would similarly define the slope of the beam at Q. 

The constants C 1 and C2 are determined from the boundary condi~ 
tions or, more precisely, from the conditions imposed on the beam by 
its supports. Limiting our analysis in this section to statically determi
nate beams, i.e., to beams supported in such a way that the reactions at 
the supports can be obtained by the methods of statics, we note that 
only three types of beams need to be considered here (Fig. 9.8): (a) the 
simply supported beam, (b) the overhanging beam, and (c) the can~ 
tilever beam. 

In the first two cases, the supports consist of a pin and bracket at 
A and of a roller at B, and require that the deflection be zero at each of 
these points. Letting first x = xA> y = YA = 0 in Eq. (9.6), and then 
x = x8 , y = y8 = 0 in the same equation, we obtain two equations that 
can be solved for C1 and C2• In the case of the cantilever beam 
(Fig. 9.8c), we note that both the deflection and the slope at A must be 
zero. Letting X ~ XA, y ~ YA ~ 0 in Eq. (9.6), and X = XA, e ~ eA ~ 0 
in Eq. (9.5'), we obtain again two equations which can be solved for 
Ct and C2. 



The cantilever beam AB is of unifonn cross section and car~ 
ries a load P at its free end A (Fig. 9.9). Determine the equa~ 
tion of the elastic curve and the deflection and. slope at A. 

p 

Fig. 9.9 Fig. 9.10 

Using the free*body diagram of the portion AC of the 
beam (Fig. 9.10), where Cis located at a distance x from end 
A, we find 

M= -Px (9.7) 

Substituting forM into Eq. (9.4) and multiplying both mem~ 
bers by the constant E/, we write 

d'y 
El-= -Px 

dx' 

Integrating in x, we obtain 

(9.8) 

We now observe that at the fixed end B we have x = L and 
e = dy/dx = 0 (Fig. 9.11). Substituting these values into (9.8) 
and solving for C1, we have 

C1 = !PL2 

which we carry back into (9.8): 

The simply supported prismatic beam AB carries a uniformly 
distributed load w per unit length (Fig. 9.12). Detennine the 
equation of the elastic curve and the maximum deflection of 
the beam. 

Fig. 9.12 

' 
!f.\'~4 

A~DM F-=,_)v 
R.1 = fnL 
Fig. 9.13 

El dy = - ~Px2 + lp£2 
dx ' 

(9.9) 

lnleiiJatirlg both members of Eq. (9.9), we write 

Ely=- tPx'J + ~PL2x + C2 (9.10) 

But, at B we have x = L,y = 0. Substituting into (9.10), we 
have 

0 - tPL3 + ~PL3 + C2 
C2 = -1PL3 

Carrying the value of C2 back into Eq. (9.10), we obtain the 
equation of the elastic curve: 

or 

Ely = - tPK + !P{lx - iPL3 

p 
y ~ -( -x' + 3L2x- 2L3) 

6El 
(9.11) 

The deflection and slope at A are obtained by letting x = 0 
in Eqs. (9.11) and (9.9). We find 

and 

y 
[x = L, 0 = O] 

[x = L.y ""0] 

f----L----1 
Fig. 9.11 

Drawing the free~body diagram of the portion AD of the 
beam (Fig. 9.13) and taking moments about D, we find that 

M = fwLx - fwx2 (9.12) 

Substituting forM into Eq. (9.4) and multiplying both mem~ 
bers of this equation by the constant E!, we write 

d 2y 1 1 
EJ-=--wx2 +-wLx 

dx' 2 2 
(9.13) 

Integrating twice in x, we have 

El dy = - .!.wx3 + .!.wLx2 + C (9.14) 
dx 6 4 ' 

1 I 
Ely=- -wx4 + -wLx3 + C1x + C2 (9.15) 

24 12 
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Observing that y = 0 at both ends of the beam (Fig. 9.14), we 
first let X = 0 andy = 0 in Eq. (9.15) and obtain c2 = 0. We 
then make x = L and y = 0 in the same equation and write 

yl 
[.r =O·!I =o] !.1· =f,.IJ = o] 

~' 0 = -i.:iwL4 + fiwL4 + C1L 

C1 = - :/:iw£3 

f<----L---1 
Carrying the values of C1 and C2 back into Eq. (9.15), we ob
tain the equation of the elastic curve: 

Fig. 9.14 

Ely= - i4wx4 + fi.wL:x?- :f.iwL3x 

or 

(9.16) 

Substituting into Eq. (9.14) the value obtained for C1, we 
check that the slope of the beam is zero for x = L/2 and that 
the elastic curve has a minimum at the midpoint C of the beam 
(Fig. 9.15). Letting x = L/2 in Eq. (9.16), we have 

Fig. 9.15 

The maximum deflection or, more precisely, the maximum ab
solute value of the deflection, is thus 

w ( L
4 

L
3 

L) 5wL
4 

Yc = 24£1 -)6 + ZLS- L'2_ = - 384£1 
5wL4 

IYimo< = 384£1 

Fig. 9.16 A different function M(x) 
is required in each portion of the 
cantilever arms. 

In each of the two examples considered so far, only one free-body 
diagram was required to determine the bending moment in the beam. As 
a result, a single function of x was used to represent M throughout the 
beam. This, however, is not generally the case. Concentrated loads, re
actions at supports, or discontinuities in a distributed load will make it 
necessary to divide the beam into several portions, and to represent the 
bending moment by a different function M(x) in each of these portions 
of beam (Fig. 9.16). Each of the functions M(x) will then lead to a dif
ferent expression for the slope e(x) and for the deflection y(x). Since each 
of the expressions obtained for the deflection must contain two constants 
of integration, a large number of constants will have to be determined. 
As you will see in the next example, the required additional boundaty 
conditions can be obtained by observing that, while the shear and bend
ing moment can be discontinuous at several points in a beam, the de
flection and the slope of the beam cannot be discontinuous at any point. 

p 
For the prismatic beam and the loading shown (Fig. 9.17), de
termine the slope and deflection at point D. 

We must divide the beam into two portions, AD and DB, 
and determine the function y(x) which defines the elastic curve 
for each of these portions. 
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1. From A to D (x < L/4). We draw the free~body 
diagram of a portion of beam AE of length x < L/4 (Fig. 
9.18). Taking moments about E, we have 

or, recalling Eq. (9.4), 

d 2 3 
El __!_! = -Px 

dx2 4 

(9.17) 

(9.18) 

where y1(x) is the function which defines the elastic curve for 
portion AD of the beam. Integrating in x, we write 

dy! 3 2 
El e1 = EI- = -Px + C1 dx 8 

v, 

A~~~)M, 
~~ 

fP 
Fig, 9.18 

p 

Fig. 9.19 

(9.19) 

(9.20) 

2. From D to B (x > L/4). We now draw the free~ 
body diagram of a portion of beam A.E of length x > L/4 (Fig. 
9.19) and write 

M ~ 3
p x - P(x _I:_) (9.21) 2 4 4 

or, recalling Eq. (9.4) and rearranging terms, 

d2Y2 l 1 
El - ~ - -Px + -PL 

dx' 4 4 
(9.22) 

where Y2(x) is the function which defines the elastic curve for 
portion DB of the beam. Integrating in x, we write 

dh 1 1 
E/0 ~ EI- ~ --Pi'+ -PLx + C (9.23) 2 dx 8 4 3 

(9.24) 

Determination of the Constants of Jntearation. 
The conditions that must be satisfied by the constant; of inte~ 
gration 

1
have been summarized in Fig. 9.20. At the support A, 

) "I ~ 1·=1.·;.·="] 
A a -~ 

1·="'1•"'~·' 

[ .1· = tL.fil = 8~) 

[.1· ""tL. !II= !i~J 
Fig. 9.20 

where the deflection is defined by Eq. (9.20), we must have 
x = 0 and y1 = 0. At the support B, where the deflection is 
defined by Eq. (9.24), we must have x =Land Y2 = 0. Also, 
the fact that there can be no sudden change in deflection or in 
slope at point D requires that y1 = y2 and 61 = e2 when 
x = L/4. We have therefore: 

[x ~ 0, y, ~ 0], Eq. (9.20): 0 = C, (9.25) 

[ x ~ L, y2 ~ OJ, Eq. (9.24): 

(9.26) 

[x ~ L/4, e, ~ 02], Eqs. (9.19) and (9.23): 

..]_PL' + C, ~ _'7_PL2 + C3 (9.27) 
128 128 

[x ~ L/4, y, ~ y2], Eqs. (9.20) and (9.24): 

PL3 L ilPL3 L 
ill+ c,4 ~ 1536 + c,4 + c, (9281 

Solving these equations simultaneously, we find 

7PL2 11PL2 PL3 

c, ~ - 128 ' c, ~ O, c, = -128· c, ~ 384 

Substituting for C1 and C2 into Eqs. (9.19) and (9.20), we write 
that for x ::;;:; L/4, 

El e = ?_Px• - ?PLz 
' 8 128 

(9.29) 

1 7PL2 

Ely 1 = -Px3 - --x 
8 128 

(9.30) 

Letting x = L/4 in each of these equations, we find that the 
slope and deflection at point D are, respectively, 

and 
3PL3 

Yo~ - 256£/ 

We note that, since e0 * 0, the deflection at Dis not the max¥ 
imum deflection of the beam. 
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A 

[!J.-1=0) 
[8.-1= Oj 

y 

(!J.I=O) 

[M,1=0} 

B 

[ V,1=0J 
[MB=O) 

(a) Cantilever beam 

(b) Simply supported beam 

Fig. 9.21 Boundary conditions for 
beams carrying a distributed load. 

'9.4. DIRECT DETERMINATION OF THE ELASTIC CURVE 
FROM THE LOAD DISTRIBUTION 

We saw in Sec. 9.3 that the equation of the elastic curve can be ob
tained by integrating twice the differential equation 

(9.4) 

where M(x) is the bending moment in the beam. We now recall from 
Sec. 5.3 that, when a beam supports a distributed load w(x), we have 
dM/dx = V and dV/dx = -w at any point of the beam. Differentiat
ing both members of Eq. (9 .4) with respect to x and assuming EI to be 
constant, we have therefore 

d3y I dM V(x) 
Iii'= EJ"J; = El 

and, differentiating again, 

d 4y 1 dV _ w(x) 
dx4 = Eldx = El 

(9.31) 

We conclude that, when a prismatic beam supports a distributed load 
w(x), its elastic curve is governed by the fourth-order linear differen
tial equation 

d 4y = _ w(x) 

dx4 El 
(9.32) 

Multiplying both members of Eq. (9.32) by the constant EI and in
tegrating four times, we write 

d'y 
El dx' = -w(x) 

d'y J EI dx' = V(x) = - w(x) dx + C1 

d'y J J El dx' = M(x) = - dx w(x) dx + C1x + C2 (9.33) 

EI: = EIO(x) =- J dx J dx J w(x)dx + ~C,x' + C2x + C3 

EI y(x) = - J dx J dx J dx J w(x) dx + ~c,x' + ~C2x2 + C3x + C4 

l 



The four constants of integration can be determined from the boundary 
conditions. These conditions include: (a) the conditions imposed on the 
deflection or slope of the beam by its supports (cf. Sec. 9.3), and (bb the 
condition that V. and M be zero at the free end of a cantilever bealn, or 
that M be zero at both ends of a simply supported beam (cf. Sec! 5.3). 
This has been illustrated in Fig. 9.21. / 

The method presented here can be used effectively with cantilever or 
simply supported beams carrying a distributed load. In the case of over~ 
hanging beams, however, the reactions at the supports will cause discon~ 
tinuities in the shear, i.e., in the third derivative of y, and different func~ 
tions would be required to define the elastic curve over the entire beam. 

The simply supported prismatic beam AB carries a t.~niformly 
distributed load w per unit length (Fig. 9.22). Determine the 
equation of the elastic curve and the maximum deflection of 
the beam. (This is the same beam and loading as in Example 
9.02.) 

Since w = constant, the first three of Eqs. (9.33) yield 

d'y 
El-= -w 

dx' 
d'y 

El dx' = V(x) = -wx + C1 

d 2y 1 
El - = M(x) = --wx2 + Crx + C2 

dx2 2 
(9.34) 

Noting that the boundary conditions require that M 0 at both 
ends of the beam (Fig. 9.23), we first let x 0 and M = 0 in 
Eq. (9.34) and obtain C2 = 0. We then make x = Land M = 0 
in the same equation and obtain C1 = ~wL. 

Carrying the values of C1 and C2 back into Eq. (9.34), 
and integrating twice, we write 

we write 

Fig. 9.22 

(.r ""o.u"" o] 
[x=O,y=O} 
Fig. 9.23 

9.4. Direct Determination of the 539 
Elastic Curve 

(.\·=L.M=O] 
[x ""Ly = 0] 

0 = - -l:iwL4 + -&_wL4 + C3L 
C3 = - j;wL3 

d2y 1 1 
El- = --wx2 + -wLx 

dx2 2 2 

El dy _l_wx3 + lwLx2 + C 

Carrying the values of C3 and C4 back into Eq. (9.35) and 
dividing both members by E!, we obtain the equation of the 
elastic curve: 

dx 6 4 3 

1 1 
Ely= -

24 
wx4 + 

12 
wLx3 + C3x + C4 (9.35) 

But the boundary conditions also require that y = 0 at both 
ends of the beam. Letti,ng x = 0 and y = 0 in Eq. (9.35), we 
obtain C4 = 0; letting x = L and y = 0 in the same equation, 

w 
y = 

24
£/-x4 + 2Lx3 

- L'x) (9.36) 

The value of the maximum deflection is obtained by mak~ 
ing x = L/2 in Eq. (9.36). We have 

5wL4 

IYim" = 384£/ 
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(a) 

9.5. STATICALLY INDETERMINATE BEAMS 

In the preceding sections, our analysis was limited to statically deter~ 
minate beams. Consider now the prismatic beamAB (Fig. 9.24a), which 
has a fixed end at A and is supported by a roller at B. Drawing the free
body diagram of the beam (Fig. 9.24b), we note that the reactions in~ 
volve four unknowns, while only three equilibrium equations are avail~ 
able, namel~ 

');F, = 0 'LF, = 0 (9.37) 

Since only Ax can be determined from these equations, we conclude that 
the beam is statically indetenninate. 

However, we recall from Chaps. 2 and 3 that, in a statically inde-
M,E~ tenninate problem, the reactions can be obtained by considering the de-

- /.A1l· "f[·::·~!JI~~l!l~~· ~;·!. B formations of the structure involved. We should, therefore, proceed with 
As the computation of the slope and deformation along the beam. Follow~ 

1-----L----1 ing the method used in Sec. 9.3, we first express the bending moment 
Ay 8 M(x) at any given point of AB in terms of the distance x from A, the 

(b) given load, and the unknown reactions. Integrating in x, we obtain ex~ 
Fig. 9.24 pressions for e andy which contain two additional unknowns, namely 

the constants of integration C1 and C2. But altogether six equations are 
available to determine the reactions and the constants C1 and C2; they 
are the three equilibrium equations (9.37) and the three equations ex~ 
pressing that the boundary conditions are satisfied, i.e., that the slope 
and deflection at A are zero, and that the deflection at B is zero (Fig. 
9.25). Thus, the reactions at the supports can be determined, and the 
equation of the elastic curve can be obtained. 

Detennine the reactions at the supports for the prismatic beam 
of Fig. 9.24a. 

Equilibrium Equations. From the free-body diagram 
of Fig. 9.24b we write 

±> 2-Fx = 0: 

+t2:F, =. 0: 

+12:MA=0: 

A~= 0 
A

1
+B-wL=O 

MA + BL - !wL2 = 0 

(9.38) 

Equation of Elastic Curve. Drawing the free-body 
diagram of a portion of beam AC (Fig. 9.26), we write 

~~~' 
1>=0,6=0] 
[x ""0, y"' 0] 

Fig. 9.25 

A,. 

Fig. 9.26 

(9.39) 

Solving Eq. (9.39) forM and carrying into Eq. (9.4), we write 



d2y 1 
E!- = - -wx2 + A x - M 

Eq. (9.41) as follows: 
tJil2 y A 

Ely= -~wx4 + tAyx 3
- fMAx2 (9.42} 

Integrating in x, we have 

dy 1 1 . 
E!O = El- =- -wx3 +-A x2 - M x + C dx 6 2y A ! 

(9.40) 

But t~b third boundary condition requires that y = 0 for x = L. 
C7ing these values into (9.42), we write 

0 = -~WL4 +tAyL3
- !MAL2 

or 
(9.41) 

(9.43) 

Referring to the boundary conditions indicated in Fig. 9.25, 
we make x = 0, e = 0 in Eq. (9.40), x = O,y = 0 in Eq. 
(9.41), and conclude that C1 = C2 = 0. Thus, we rewrite 

Solving this equation simultaneously with the three equilib
rium equations (9.38), we obtain the reactions at the supports: 

Ax = 0 Ay = iwL MA = !wL2 B = iwL 

In the example we have just considered, there was one redundant 
reaction, i.e., there was one more reaction than could be determined 
from the equilibrium equations alone. The corresponding beam is said 
to be statically indeterminate to the first degree. Another example of a 
beam indeterminate to the first degree is provided in Sample Prob. 9.3. 
If the beam supports are such that two reactions are redundant (Fig. 
9.27a), the beam is said to be indeterminate to the second degree. While 
there are now five unknown reactions (Fig. 9.27b), we find that four 
equations may be obtained from the boundary conditions (Fig. 9.27c). 
Thus, altogether seven equations are available to determiile the five 
reactions and the two constants of integration. 

Fixed end 

A 

A, 

y 

A 

[.<=O,B=OJ 
[.<=O,g=O] 

Fig. 9.27 

(') 

w 

(b) 

(c) 

Frictionless 
surface 

B 

B )Ms 
B 

B 

[.<=L.B=O] 
[x =L,g = 0] 
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SAMPlE PROBlEM 9.1 

The overhanging steel beam ABC carries a concentrated load P at end C. For 
portion AB of the beam, (a) derive the equation of the elastic curve, (b) deter
mine the maximum deflection, (c) evaluate Ymax for the following data: 

W360 X 10I I~ 300 X 106 mm' E ~ 200 GPa 

P ~ 200 kN L ~ 4.5 m a = 1.2 m 

SOLUTION 

Free~Body Diagrams. Reactions: RA = Pa/LJ... R8 = P(l + a/L)! 
Using the free-body diagram of the portion of beam AD of length x, we fmd 

(0 <X < L) 

Differential Equation of the Elastic Curve. We use Eq. (9.4) and write 

d 2y a 
EI-= -P-x 

dx2 L 

Noting that the flexural rigidity El is constant, we integrate twice and find 

dy 1 a 
El dx ~ -2P[/ + C, (I) 

1 a 
Ely~ - 6PLx' + C,x + C, (2) 

Dete!'mination of Constants. For the boundary conditions shown, we have 

[x ~ O,y ~ O)c 
[x ~ L,y ~ O)c 

From Eq. (2), we find 

Again using Eq. (2), we write 

I a 1 
E/(0) ~ - 6PzL3 + C,L C, ~ +6PaL 

a. Equation of the Elastic Curve. 
(1) and (2), we have 

Substituting for C 1 and C2 into Eqs. 

dy !. a 1 
EI- ~ --P-x' +-PaL 

dx 2 L 6 
dy _ PaL [ · (x)'] ---1-3-
dx 6El L 

(3) 

1 a I 
Ely~ --P-x' + -PaLx 

6 L 6 
_PaL'[x (x)'] y-- ---

6El L L 
(4) ~ 

b. Maximum Deflection in Portion AB. The maximum deflection Ymax 
occurs at pointE where the slope of the elastic curve is zero. Setting dy/dx 0 
in Eq. (3), we determine the abscissa x 111 of point E: 

L 
x, ~ yl3 ~ 0.517L 

We substitute x,n/L 0.577 into Eq. (4) and have 

PaL2 PaL1 

YmO< ~ 
6
E/ [(0.577) - (0.577)3

) Ym"' ~ 0.0642 fl ~ 

c. Evaluation of Ym":<' For the data given, the value of Ymax is 

(200 X 103 N)(L2 m)( 4.5 m)2 

Ymax = 0.0642 
9 6 

, Y,m,.x = 5.2 mm <il 
(200X IO Pa)(300X 10-m") 



y 

[.t =·O.M=Oj [.1·=L.'J/=O] 

[x=O.y""O] [.r=L.y=OJ 

~· ~B 
f--1 -L--1 

SAMPlE PROBlEM 9.2 

For the beam and loadink shown, determine (a) the equation of the elastic 
, curve, (b) the slope a;il A, (c) the maximum deflection. 

' 

SOLUTION 

Differential Equation of the Elastic Curve. From Eq. (9.32), 

d4y • 7T'X 
El dx' = -w(x) = -w0 Sin L (I) 

Integrate Eq. (1) twice: 

d3y L 1TX 
EJ cb? = v = +wo-:; cos L + c! 

d2y L2 1TX 
El- = M= +w-sin- + Cx + C dxz o7T2 L ! 2 

Boundary Conditions: 

[x = O,M = 0]: 
[x=L,M=O]: 

Thus: 

From Eq. (3), we find 
Again using Eq. (3), we write 

Integrate Eq. (4) twice: 

dy L3 1TX 
EI- = E!e = -w0-cos- + C3 dx 1r3 L 

L4 1TX 
Ely= -w0 -sin- + CJX + C4 

rr' L 

Boundary Conditions: 

[x = O,y =OJ: 
(x = L,y =OJ: 

Using Eq. (6), we find C4 = 0 
Again using Eq. (6), we find C3 = 0 

(2) 

(3) 

(4) 

(5) 

(6) 

a. Equation of Elastic Curve 
L~ 1TX 

Elv = -w,,- f:in- <l 
. ?T.t L 

b. Slope at End A. For x = 0, we have 

L' 
EIOA = -w0-cos0 ,., 

c. Maximum Deflection. For x = !L 
L' " ELy = -w0- sin-

ma~ 7T4 2 
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SAMPLE PROBLEM 9.3 

For the uniform beamAB, (a) determine the reaction at A, (b) derive the equa
tion of the elastic curve, (c) determine the slope at A. (Note that the beam is 
statically indeterminate to the first degree.) 

SOLUTION 

Bending Moment. Using the free body shown, we write 

+J2:Mo = 0: R x - !(wox')~ -M = 0 M = R x - WoX
3 

A2L3 A 6L 

Differential Equation of the Elastic Curve. We use Eq. (9.4) and write 

d2y woY? 
EI-=Rx---

dx' ' 6L 

Noting that the flexural rigidity El is constant, we integrate twice and find 

dy l WoX
4 

El dx = E/0 = 2R,x2
-

24
L + C, (1) 

1 wo.-0i 
Ely= 6RAx3

- llOL + C1x + C2 (2) 

Bound~ry Conditions. The three boundary conditions that must be sat
isfied are shown on the sketch 

[x = 0, y = OJ: C2 = o (3) 

1 wof-,1 

[x = L, 0 =OJ: -R L2 
- -- + C = 0 (4) 

2 A 24 I 

l w0L4 

[x = L,y =OJ: -R L' - -- + C L + C = 0 (5) 
6 A 120 I 2 

a. Reaction at A. Multiplying Eq. (4) by L, subtracting Eq. (5) member 
by member from the equation obtained, and noting that C2 = 0, we have 

We note that the reaction is independent of E and /. Substituting RA = fowoL 
into Eq. (4), we have 

b. Equation of the Elastic Curve. Substituting for RA, cb and c2 into 
Eq. (2), we have 

c. Slope at A. We differentiate the above equation with respect to x: 

e = dy = ~( -Sx' + 6L'x' - L4) 
dx 120£/L 

Making x = 0, we have 
w,L' e =--

' 120£1 



In the following problems assume that the flexural rigidity £/ of ea<:h 
beam is constant. 

9.1 through 9.4 For the loading shown, determine (a) the equation of 
the elastic curve for the cantilever beam AB, (b) the deflection at the free end, 
(c) the slope at the free end. 

Fig. P9.1 

yl "" 

AI~ 
I L B ' 

Fig. P9.3 

9.5 and 9.6 For the cantilever beam and loading shown, determine 
(a) the equation of the elastic curve for portion AB of the beam, (b) the deflec
tion at B, (c) the slope at B. 

yi 

l ~-L/2-1- ~~ -.1 
Fig. P9.6 

9.7 For the be,a-m and loading shown, determine (a) the equation of the 
elastic curve for portion AB of the beam, (b) the slope at A, (c) the slope at B. 

y I 

Fig. P9.2 

f...-----L----1 
Fig. P9.4 

Fig. P9.5 

Fig. P9.7 
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Fig. P9.8 

~ ··.· Lu2-LL/2-J. 
Fig. P9.10 

Fig. P9.12 

'I 
A.~;;;;E;c ~~=~'B 

r: = 
15 ~ = 4.5m 

P""l.50kN 

Fig. P9.13 

9.8 For the beam and loading shown, detennine (a) the equation of the 
elastic curve for portion BC of the beam, (b) the deflection at midspan, (c) the 
slope at B. 

yl 

~=3~c~-.-:\:···z=_-.c!ij:ii!l!!!=l•--, 

L/2J_ L/2 CT' 

p 

:X 
w 

Fig. P9.9 

9.9 Knowing that beam AB is a Wl30 X 23.8 rolled shape and that 
P == 50 k.N, L = 1.25 m, and E 200 GPa, determine (a) the slope at A, 
(b) the deflection at C. 

9.10 Knowing that beam AB is an S200 X 27.4 rolled shape and that 
w0 = 60 kN/m, L = 2.7 m, and E = 200 GPa, determine (a) the slope at A, 
(b) the deflection at C. 

db 

X 

s 
L----4 

Fig. P9.11 

9.1'! (a) Detennine the location and magnitude of the maximum absolute 
deflection in AB between A and the center of the beam. (b) Assuming that beam 
AB is a W460 X 113, M0 224 kN · m and E = 200 GPa, determine the max
imum allowable length L so that the maximum deflection does not exceed 1.2 mm. 

9.12 For the beam and loading shown, (a) express the magnitude and 
location of the maximum deflection in tenus of w0, L, E, and J. (b) Calculate 
the value of the maximum deflection, assuming that beam AB is a W460 X 74 

x rolled shape and that w0 == 65 kN/m, L = 5.5 m, aild E = 200 GPa. 

9.13 For the beam and loading shown, determine the deflection at point 
C. Use E = 200 GPa. 

W360 X 44 W310 X 38.7 

Fig. P9.14 

9.14 For the beam and loading shown, knowing that a= 2m, w = 
50 kN/m, and E = 200 GPa, determine (a) the slope at support A, (b) the 
deflection at point C. 



9.15 Knowing that beam AE is a W360 X 101 rolled shape and that 
M0 = 310 kN · m, L = 2.4 m, a = 0.5 m, and E = 200 GPa, determine (q) the 
equation of the elastic curve for portiori BD, (b) the deflection at point C. 

/ 

Fig. P9.15 

9.16 Knowing that beam AE is an S200 X 27.4 rolled shape and that 
P = 17.5 kN, L = 2.5 m, a= 0.8 m, and E = 200 GPa, determine (a) the 
equation of the elastic curve for portion BD, (b) the deflection at the center C 
of the beam. 

9.17 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the slope at end A, (c) the deflection at the midpoint of 
the span. 

1---L-----l 
Fig. P9.17 

9.18 For the beam and loading shown, determine (a) the equation of the 
elastic curve, (b) the deflection at the free end. 

9.19 through 9.22 For the beam and loading shown, determine the 
reaction at the roller support. 

f----L.----1 

Fig. P9.19 

~--L----1 

Fig. P9.21 

Problems 547 

Fig. P9.18 

1----L---
Fig. P9.20 

1---L----J 
Fig. P9.22 



548 Deflection of Beams 

u: = w0(x./L)2 w0 

.i.~~sm~~B .~:~· ' ,_, ,,, ·. 

1---- L =3m ~:!;f"''' 
Fig. P9.23 

Fig. P9.25 

Fig. P9.27 

ci~1 
Fig. P9.29 

Fig. P9.31 

9.23 For the beam shown determine the reaction at the roller support 
when w0 = 20 kN/m. 

Fig. P9.24 

9.24 For the beam shown determine the reaction at the roller support 
when w0 = 65 kN/m. 

9.25 through 9.28 Determine the reaction at the roller support and 
draw the bending moment diagram for the beam and loading shown. 

Fig. P9.26 

Fig. P9.28 

9.29 and 9.30 
deflection at point C. 

Determine the reaction at the roller support and the 

Fig. P9.30 

9.31 and 9.32 Determine the reaction at the roller support and the 
deflection at point D if a is equal to U3. 

M, 

IT~'j 
Fig. P9.32 



9.33 and 9.34 Determine the reaction at A and draw the bending 
moment diagram for the beam and loa~ing shown. 

j 

9.6. S!ngu!atity Functions for Slope 549 
and Deflection 

Fig. P9.33 Fig. P9.34 

'9.6. USING SINGULARITY FUNCTIONS TO DETERMINE THE 
SLOPE AND DEFLECTION OF A BEAM 

Reviewing the work done so far in this chapter, we note that the inte~ 
gration method provides a convenient and effective way of determin~ 
ing the slope and deflection at any point of a prismatic beam, as long 
as the bending moment can be represented by a single analytical funcM 
tion M(x). However, when the loading of the beam is such that two dif~ 
ferent functions are needed to represent the bending moment over the 
entire length of the beam, as in Example 9.03 (Fig. 9.17), four con
stants of integration are required, and an equal number of equations, 
expressing continuity conditions at point D, as well as boundary con
ditions at the supports A and B, must be used to determine these con~ 
stants. If three or more functions were needed to represent the bending 
moment, additional constants and a corresponding number of additional 
equations would be required, resulting in rather lengthy computations. 
Such would be the case for the beam shown in Fig. 9.28. In this sec
tion these computations will be simplified through the use of the sin~ 
gularity functions discussed in Sec. 5.5. 

Fig. 9.28 !n this roof structure, each of the joists applies a concentrated load to the beam 
that supports it. 
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p 

U4 
--3U4~ 

D 

Fig. 9.17 (repeated) 

y 

Fig. 9.30 

Let us consider again the beam and loading of Example 9.03 (Fig. 
9.1 7) and draw the free-body diagram of that beam (Fig. 9.29). Using 

y p 

IB 
' D 

"• ., lp ,, 
Fig. 9.29 

the appropriate singularity function, as explained in Sec. 5.5, to repre~ 
sent the contribution to the shear of the concentrated load P, we write 

· 3P 
V(x) = 4 - P(x - !L)0 

Integrating in x and recalling from Sec. 5.5 that in the absence of any 
concentrated couple, the expression obtained for the bending moment 
will not contain any constant term, we have 

3P ( 1 ) M(x) = 4x- P x- 4L (9.44) 

Substituting for M(x) from (9.44) into Eq. (9.4), we write 

d2y 3P I 
EI dx' = 4x- P(x- 4L) (9.45) 

and, integrating in x, 

E/8 =Ely= ~Pi'- _l;_P(x- lL)' + C 
dx 8 2 4 I 

(9.46) 

1 1 
Ely= 3Px3

- 6P(x -jL)3 + C1x + C2 (9.47)t 

The constants C 1 and C2 can be determined from the boundary con~ 
ditions shown in Fig. 9.30. Letting x = 0, y = 0 in Eq. (9.47), we have 

0 = 0 - ~ P(O - jL)3 + 0 + C2 

which reduces to C2 = 0, since any bracket containing a negative quan
tity is equal to zero. Letting now x = L, y = 0, and C2 = 0 in Eq. (9.47), 
we write 

tThe continuity conditions for the slope and deflection at Dare "built-in" in Eqs. (9.46) 
and (9.47). Indeed, the difference between the expressions for the slope 81 in AD and the slope 
82 in DB is represented by the tenn -~P(x - !Lf in Eq. (9.46), and this term is equal to zero 
at D. Similarly, the difference between the expressions for the deflection y1 in AD and the de
flection y2 in DB is represented by the term -~P{x- !L)3 in Eq. (9.47), and this term is also 
equal to zero at D. 



Since the quantity between brackets is positive, the brackets can be re
placed by ordinary parentheses. Sol'-:ing for C1, we have 

9.6. Singularity Fun:;tions for Slope 551 
and Deflection 

. . . c, ~ - 7:Z~' j 
We check that the expressions obtained for the constants «.nd C2 

are the same that were found earlier in Sec. 9.3. But the need for ad
ditional constants c3 and c4 has now been eliminated, and we do not 
have to write equations expressing that the slope and the deflection are 
continuous at point D. 

For the beam and loading shown (Fig. 9.31a) and using sin
gularity functions, (a) express the slope and deflection as func
tions of the distance x from the support at A, (b) determine the 
deflection at the midpoint D. Use E = 200 GPa .and I = 
6.87 X 10-6 m4• 

A.~E~~~~!'¥-" -, 
D 

1-1.8 m ->-LJ_L!---';j_[-11 

l-26m__j \ B 
A!l "" 2.0 kN - tr0 = - 1..'5 kN/m 

(b) 

Fig. 9.31 

(a) We note that the beam is loaded and supported in the 
same manner as the beam of Example 5.05. Referring to that 
example, we recall that the given distributed loading was re
placed by the two equivalent open-ended loadings shown in 
Fig. 9.3lb and that the following expressions were obtained 
for the shear and bending moment: 

V(x) = -l.S(x - 0.6)' + L5(x- 1.8)' 
+ 2.6 - 1.2(x - 0.6)0 

M(x) ~ -0.75(x- 0.<5)2 + 0.75(x L8)' 
+ 2.6x - 1.2(x - 0.6)' - L44(x - 2.6)0 

Integrating the last expression twice, we obtain 

El e ~ -0.25(x - 0.6)3 + 0.25(x - 1.8)3 

+ L3x' - 0.6(x 0.6)2 
- 1.44 (x - 2.6)1 + C, (9.48) 

Ely = -0.0625(x - 0.6)' + 0.0625(x - 1.8)' 
+ 0.43332 - 0.2(x - 0.6)3 

- 0.72(x - 2.6)' 
+ c,x + c, (9.49) 

The constants C1 and C2 can be determined from the 
boundary conditions shown in Fig. 9.32. Letting x = 0, y == 0 
in Eq. (9.49) and noting that all the brackets contain negative 

(x=O.y=O] [x=:3.6. y=O] 

Fig. 9.32 

quantities and, therefore, are equal to zero, we conclude that 
C2 = O.Lettingnowx = 3.6,y = O,andC2 = OinEq.(9.49), 
we write 

0 = -0.0625(3.0)' + 0.0625(1.8)' 
+ 0.4333(3.6)3 - o.z(3.0)3 - o.72(t.o)' + c,(3.6) + o 

Since all the quantities between brackets are positive, the 
brackets can be replaced by ordinary parentheses. Solving for 
C1, we find C1 = -2.692. 

(b) Substituting for C1 and C2 into Eq. (9A9) and making 
x = x0 = 1.8 m, we find that the deflection at point Dis de~ 
fined by the relation 

Ely0 ~ -0.0625(!.2)' + 0.0625(0)' 
+ o.4333(L8)- 0.2(1.2)'- o.72(-o.8)'- 2.692(1.8) 

The last bracket contains a negative quantity and, therefore, is 
equal to zero. All the other brackets contain positive quanti~ 
ties and can be replaced by ordinary parentheses. We have 

Ely0 ~ -0.0625(1.2)' + 0.0625(0)' 
+ 0.4333(1.8)3 - 0.2(1.2)3 - 0- 2.692(1.8) ~ -2.794 

Recalling the given numerical values of E and /, we write 

(200 GPa)(6.87 X 10-6 m')y0 ~ -2.794 kN · m3 

YD =· -13.64 X 10-3 m = -2.03 mm 



:~.+ l~uz -·...--u2 -·1 

yl 
[x=O.y=Oj [x=L.'t""O] 

~.c~ 

1----L----1 
·' 
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SAMPLE PROBLEM 9.4 

For the prismatic beam and loading shown, determine (a) the equation of the 
elastic curve, (b) the slope at A, (c) the maximum deflection. 

SOLUTION 

Bending Mome11t The equation defining the bending moment of the 
beam was obtained in Sample Prob. 5.9. Using the modified loading diagram 
shown, we had [Eq. (3)]: 

w 0 3 2w0 ( , )' , M(x) = --x +- x- -L + -w Lx 
3L 3L 2 40 

a. Equation of the Elastic Curve. Using Eq. (9.4), we write 

, d
2
y w0 3 2w0 ( , )' , El-=--x +--x~-L +-wLx 

cb? 3L 3L 2 4 0 (1) 

and, integrating twice in x, 

W 0 4 'Wo( , )4 W 0L , £18 = --x +- x- -L + -x- + C 
12L. 6L . ' 8 ' ' (2) 

w(15 W0 ( ')5 woL~ Ely=--x +-x--L +--x+Cx+C 
60L30L' 24 ' ' 

(3) 

Bmmdary Comlitions. 
[x = 0, y = 0]: Using Eq. (3) and noting that each bracket ( ) contains 

a negative quantity and, thus, is equal to zero, we find C2 = 0. 

[x = L, y = 0]: Again using Eq. (3), we write 

WoL
4 

Wo (L)5 
WoL

4 
0 ~ ---+- - + -- + C L 

60 30L2 24' 

Substituting C1 and C2 into Eqs. (2) and (3), we have 

W 0 . W0 ( , ) W 0L 5 E/8 = --x4 +- x- -L 4 + --,2 - -w L' 
12L 6L 2 8 ' 192 ° 

b. Slope at A Substituting x = 0 into Eq. (4), we find 

5 
ElfJA = --w L2 

192 ° 

(4) 

(5) <l 

c. Ma:dmum Deflection, Because of the synunetry of the supports and 
loading, the maximum deflection occurs at point C, where x = !L. Substitut
ing into Eq. (5), we obtain 

L·' 
I' = .2.:!:_ t <J 
. "'"·' !20£/ 



SAMPlE tROSlEM 9.5 
The rigid barpEF is welded at point D to the uniform steel beam 
AB. For tte .()ading shown, determine (a) the equation of the elas¥ 
tic curve o the beam, (b) the deflection at the midpoint C of the 
beam. U e E = 200 GPa. 

SOLUTIO~! 

"I Bending Moment. The equation defining the bending moment of the 
!c,=/.)O!\/w b b · d'S P 0 U f i-r-rrrn'TlrrnTfTT1"Tnl earn was o tame m ample rob. 5.1 . sing the modi ied loading diagram 

A j ) ) !JJ H ) ) j j ~4 j jjj j j 
8 

shown and expressing x in metres, we had (Eq. (3)) 

····· ' '" ~ 0 ·( ' M(x) = -375x2 + 2150x- 700(x- 3.3)' - 630(x- 3.3)0 N · m 
1 111/) , ();)() !\ . 111 ft:>?' I! 
n

1 
= :2 i,')o:; ll = ;oo :-; V ~ Hu a. Equation of the Elastic Curve. Using Eq. (8.4), we write 

f---:l.3m ~-L5m-l El(d2yldx2
) = -375x2 + 2150x -70o(x- 3.3)'- 63o(x -- 3.3)0 N · m (!) 

and, integrating twice in x, 

EI e = -125i' + 1075x' - 350(x - 3.3)2 - 63o(x - 3.3)' + c, N- m2 (2) 

Ely= -31.25x4 + 358.3x3 - 116.7(x- 3.3)3 - 315(x- 3.3)2 

y jr X "" (1, !I = I) J l.r "" .r,.<.; llt. !I = () I 1 Clx + c2 N • m
3 

(3) 

A~--- ~-----· B x Boundmy Co11ditions. 

l
~~~ ~~- [x = 0, Y =OJ: Using Eq. (3) and noting that each bracket ( ) contains 

a negative quantity and, thus, is equal to zero, we find C2 = 0. 
---- 4.8 m ~c = 4.8 m, y = OJ: Again using Eq. (3) and noting that each bracket con~ 

tains a positive quantity and, thus, can be replaced by a parenthesis, we write 

o = -3!.25(4.8)' + 358.3(4.8)'- 116.7(1.5)'- 315(1.5)2 + c,(4.8) 
c, = -4570 

Substituting the values found for C1 and C2 into Eq. (3), we have 

El _,. = -3 I .25.1'' + 358.3.v3 - I I 6.7(.r - 3.3)3 - 3 15(.\' - 3.3)' 
~..J.570.r N · nr' ( 3'! <:i 

To determine El, we recall that E = 200 GPa and compute 

I= fibh 3 = h(25 mm)(75 mm? = 0.879 X w-6 m'1 

El = (200 X 109 Pa)(0.879 X 10-6 m') = 175.8 X !03 N - m2 

b. Def!€clion at Midpoint C Making x = 2.4 m in Eq. (3'), we write 

Elyc = -31.25(2.4)' + 358.3(2.4)3 - 116.7(-0.9)'- 315(-0.9)2 

-4570(2.4) 

Noting that each bracket ( ) is equal to zero and substituting for El its numerical 
value, we have yl 

A~""'-"'""'-.. -. -.-.·-,---"jf~-::.,-_ .-,_.-.-~.-.-_"=""'~B .t (175.8 X 10
3 

N' m
2
)Yc = ~7.02 X 10

3 
N · m

3 

I 
~--~ I and, solving for Yc: Yc = -0.04 m Yc = -40 mm <1 

--2.4 m c 2.4 m ~ Note that the deflection obtained is not the maximum deflection. 
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SAMPlE PROBlEM 9.6 

For the uniform beam ABC, (a) express the reaction at A in terms of P, L, a, 
E, and I, (b) determine the reaction at A and the deflection under the load when 
a~ L/2. 

SOLUTION 

Reactions. For the given vertical load P the reactions are as shown. We 
note that they are statically indeterminate. 

Shear and Bending Moment. Using a step function to represent the 
contribution of P to the shear, we write 

V(x) ~ R, - P(x - a)0 

Integrating in x, we obtain the bending moment 

M(x) ~ R,x - P(x - a)' 

1----L.----1 Equation of the Elastic Curve. Using Eq. (9.4), we write 

d'y 

y· 

p 

554 

EI di' ~ R,x - P(x - a)' 

Integrating twice in x, 

dy I I 
EI- ~ EIB ~ -R,x2 - -P(x- a)'+ C, 

d:x 2 2 
I I 

Ely= 6RAx3 ~ 6P(x - a}3 + C1x + C2 

f .r = 0- IJ "" 0 1 Boundwy Conditions. Noting that the bracket (x - a) is equal to zero 
( .\' = L B"" o J for x = 0, and to (L -a) for x = L, we write 

C2 = 0 

4RAL2 
- ~P(L- a? + C1 = 0 

*R,~L3 - iP(L- a? + C1L + C2 = 0 

(I) 

(2) 

(3) 

a. Reaction i:tt A. MuLtiplying Eq. (2) by L, subtracting Eq. (3) member 
by member from the equation obtained, and noting that C2 = 0, we have 

I I 
)"RAL3 -~;P(L- a)2[3L- (L-a))~ 0 

( ")'( ") RA~P 1- L 1+2L t<!l 

We note that the reaction is independent of E and /. 

b. Reaction at A and Deflection at B when a = !L. Making a = ~L 
in the expression obtained for R,~o we have 

RA ~ P(l - j)'(I + j) ~ 5?/!15 

Substituting a L/2 and R;~ = SP/16 into Eq. (2) and solving for Cl> we find 
cl = -PL2/32. Making X= L/2, cl = -PL2/32, and c2 = 0 in the expres
sion obtained for y, we have 

7PL3 

Y - --t <!I 
' - 768£/ 

Note that the deflection obtained is not the maximum deflection. 



Use singularity functions to solve lhe following problems and assume that 
the flexural rigidity EI of each beam is constant. 

9.35 and 9.36 For the beam and loading shown, determine (a) the equaw 
tion of the elastic curve, (b) the slope at end A, (c) the deflection of point C. 

Fig. P9.35 

9.37 and 9.38 For the beam and loading shown, determine (a) the equa
tion of the elastic curve, (b) the slope at the free end, (c) the deflection of the 
free end. 

Fig. P9.37 

9.39 and 9.40 For the beam and loading shown, determine (a) the slope 
at end A, (b) the deflection at point B, (c) the deflection at end D. 

Fig. P9.39 

Fig. P9.38 

Fig. P9.40 
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Fig. P9.41 

Fig. P9.43 

Fig. P9.44 

60 kN/m 8 kN 

X 
5150 X 18.6 ~i:_L2 mj_L2 mj" 

Fig. P9.46 

9.41 For the beam and loading shown, determine (a) the equation of the 
elastic curve, (b) the slope at point A, (c) the deflection at point C. 

9.42 For the beam and loading shown, determine (a) the equation of the 
elastic curve, (b) the deflection at point B, (c) the deflection at point C. 

9.43 For the beam and loading shown, determine (a) the equation of the 
elastic curve, (b) the deflection at the midpoint C. 

9.44 For the beam and loading shown, determine (a) the equation of the 
elastic curve, (b) the deflection at point B, (c) the deflection at point D. 

6.2kN 

X 
W310 X 60 

Fig. P9.45 

9.45 For the beam and loading shown, determine (a) the slope at end 
A, (b) the deflection at the midpoint C. UseE= 200 GPa. 

9.46 Fof the beam and loading shown, determine (a) the slope at end 
A, (b) the deflection at the midpoint C. UseE= 200 GPa. 

SOON 

Fig. P9.47 

9.47 For the beam and loading shown, determine (a) the slope at end 
A, (b) the deflection at point B. UseE = 200 GPa. 



9.48 For the timber beam and loading shown, determine (a) the slope 
at end A, (b) the deflection at the midpoint C. UseE= 12 GPa. 

/ 

Fig. P9.48 

9.49 and 9.50 For the beam and loading shown, determine (a) the 
reaction at the roller support, (b) the deflection at point C. 

Fig. P9.49 

9.51 and 9.52 For the beam and loading shown, determine (a) the 
reaction at the roller support, (b) the deflection at point B. 

9.53 For the beam and loading shown, determine (a) the reaction at point 
C, (b) the deflection at point B. UseE= 200 GPa. 

9.54 and 9.55 For the beam and loading shown, determine (a) the 
reaction at point A, (b) the deflection at point C. Use E = 200 GPa. 

1:3 kNhn 

Problerns 557 

U2--I---U2 

Fig. P9.50 

r J J 
Fig. P9.52 

Fig. P9.53 

u: == iO kN/m 

E. L"l! !JJJ )v=1 
-1' I I I I 

0.75 m 0.75 m 0.75 m 0.75 m 
Fig. P9.55 

X 
W410 X 60 

X 
W360 X 32.9 
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50 kN 50 kN 

"~r,, ~'~·~-CE=-~ ~,wf 
1.2 m 1.2 rn 1.2 m 

Fig. P9.56 

lOOkN 

Fig. P9.63 

X 
W200 X 52 

9.56 For the beam and loading shown, dete1mine (a) the reaction at point 
A, (b) the deflection at point B. UseE= 200 GPa. 

9.57 For the beam and loading shown, determine (a) the reaction at point 
A, (b) the slope at point C. 

9.58 For the beam and loading shown, determine (a) the reaction at point 
A, (b) the deflection at midpoint C. 

9.59 through 9.62 For the beam and loading indicated, determine the 
magnitude and location of the largest downward deflection. 

9.59 Beam and loading of Prob. 9.45. 
9.60 Beam and loading of Prob. 9.46. 
9.61 Beam and loading ofProb. 9.47. 
9.62 Beam and loading of Prob. 9.48. 

9.63 The rigid bars BF and DH are welded to the rolled-steel beam AE 
as shown. Determine for the loading shown (a) the deflection at point B, (b) the 
deflection at the midpoint C of the beam. Use E = 200 GPa. 

X 
WlOO X 19.3 W460 X 52 

0.15 m 

Fig. P9.64 

9.64 The rigid bar DEF is welded at point D to the rolled-steel beam 
AB. For the loading shown, determine (a) the slope at point A, (b) the deflec
tion at midpoint C of the beam. Use E = 200 GPa. 

9.7. METHOD OF SUPERPOSITION 

When a beam is subjected to several concentrated or distributed loads, 
it is often found convenient to compute separately the slope and de
flection caused by each of the given loads. The sloPe and deflection 
due to the combined loads are then obtained by applying the principle 
of superposition (Sec. 2.12) and adding the values of the slope or de
flection: corresponding to the various loads. 



Determine the slOpe and deflection at D for the beam and load
ing shown (Fig. 9.33); knowing that the flexural rigidity of the 
beam is El = 100 MN · m2

. 

The slope and deflection at any point of the beam can be 
obtained by superposing the slopes and deflections caused re
spectively by the concentrated load and by the distributed load 
(Fig, 9,34), 

150 kN 
:20kN!tn 

(a) 

Fig. 9.34 

Fig. 9.33 . 

Since the concentrated load in Fig. 9.34b is applied at 
quarter span, we can use the results obtained for the beam and 
loading of Example 9.03 and write 

dy w e ~ dx ~ 
24

£/( -4x3 + 6Lx2 
- L3

) (951) 

PL2 (150 X 103)(8)' 
(Oo)p ~ -32£/ ~ - 32(100 X lO') -3 X 10-3 rad 

Making w = 20 kN/m, x = 2m, and L = 8 m in Eqs. (9.51) 
and (9 .50), we obtain 

__ 3PL3 _ 3(150 X 103)(8)' _ _ X _
3 

(Yo)p- 256£/- 256(100 X 106) - 9 10 m 
= -9mm 

20Xl03 
-3 

(00 ), ~ 
24

(100 X 106)(-352) ~ -2,93 X 10 rad 

20Xl03 
-3 

(y0 ), ~ 24(100 X l0')(-912) ~ -7,60 X 10 m 

= -7.60 mm On the other hand, recalling the equation of the elastic curve 
obtained for a uniformly distributed load in Example 9.02, we 
express the deflection in Fig. 9 .34c as Combining the slopes and deflections produced by the con

centrated and the distributed loads, we have 
w 

y ~ --(-x4 + 2Li'- L3x) 
24£/ 

(950) Bo ~ (Oo)p + (Oo)w ~ -3 X l0- 3 - 2,93 X 10-3 

= -5.93 X 10-3 rad 

and, differentiating with respect to x, Yo ~ (Yo)p + (yo)w ~ -9 mm- 7,60 mm ~ -16,60 mm 

To facilitate the task of practicing engineers, most structural and me
chanical engineering handbooks include tables giving the deflections and 
slopes of beams for various loadings and types of support. Such a table 
will be found in Appendix D. We note that the slope and deflection of 
the beam of Fig. 9.33 could have been determined from that table. In
deed, using the information given under cases 5 and 6, we could have 
expressed the deflection of the beam for any value x :s L/4. Taking the 
derivative of the expression obtained in this way would have yielded 
the slope of the beam over the same interval. We also note that the 
slope at both ends .of the beam can be obtained by simply adding the 
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Fig. 9.35 The continuous beams supporting this 
highway overpass have three supports and are 
thus indeterminate. 

corresponding values given in the table. However, the maximum 
deflection of the beam of Fig. 9.33 cannot be obtained by adding the 
maximum deflections of cases 5 and 6, since these deflections occur at 
different points of the beam. t 

9.8. APPLICATION OF SUPERPOSITION TO STATICALLY 
INDETERMINATE BEAMS 

We often tiOd it convenient to use the method of superposition to de
termine the reactions at the supports of a statically indeterminate beam. 
Considering first the case of a beam indeterrninate to the first degree 
(cf. Sec. 9.5), such as the beam shown in Fig. 9.35, we follow the ap
proach described in Sec. 2.9. We designate one of the reactions as re
dundant and eliminate or modify accordingly the corresponding sup
port. The redundant reaction is then treated as an unknown load that, 
together with the other loads, must produce deformations that are 
compatible with the original supports. The slope or deflection at the 
point where the support has been modified or eliminated is obtained by 
computing separately the deformations caused by the given loads and 
by the redundant reaction, and by superposing the results obtained. Once 
the reactions at the supports have been found, the slope and deflection 
can be determined in the usual way at any other point of the beam. 

'tAn approximate value of the maximum deflection of the beam can be obtained by plotting 
the values of y corresponding to various values of x. The determination of the exact location 
and magnitude of the maximum deflection would require setting equal to zero the expression 
obtained for the slope of the beam and solving this equation for x. 

Determine the reactions at the supports for the prismatic beam 
and loading shown in Fig. 9.36. (This is the same beam and 
loading as in Example 9.05 of Sec. 9.5.) 

We consider the reaction at B as redundant and release 
the beam from the support. The reaction R8 is now considered 
as an unknown load (Fig. 9.37a) and will be determined from 
the condition that the deflection of the beam at B must be zero. 

(b) 

Fig. 9.37 

The solution is carried out by considering separately the de
flection (y8 )w caused at B by the uniformly distributed load w 
(Fig. 9.37b) and the deflection (y8)R produced at the same point 
by the redundant reaction R8 (Fig. 9.37c). 

Fig. 9.36 

(c) 

From the table of Appendix D (cases 2 and 1 ), we find that 



Writing that the deflection at B is the sum of these two quan~ 
tities and that it must be zero, we have 

and, solving for R8, R8 = ~wL Rs = iwL i 

Drawing the free-body diagram of the beam (Fig. 9.38) 
and .writing the corresponding equilibrium equations, we have 

+t2J,~O: R, + R8 - wL ~ 0 (9.52) 
RA = wL - R8 = wL - iwL = iwL 

RA = iwL i 

+j 2:M, ~ 0: M, + R8L- (wL)(jL) ~ 0 (9.53) 

MA = twL2 - R8L twL2 - ~wL2 = ~wL2 

MA =iwL2 i 
Alternative Solution. We may consider the couple 

exerted at the fixed end A as redundant and replace the fixed 
end by a pin-and-bracket support. The couple MA is now con
sidered as an unknown load (Fig. 9.39a) and will be deter-

(,) 

Fig~ 9.39 

mined from the condition that the slope of the beam at A must 
be zero. The solution is carried out by considering separately 
the slope (OA)w caused at A by the unifonnly distributed load 
w (Fig. 9.39b) and the slope (OA)M produced at the same point 
by the unknown couple MA (Fig 9.39c). 

Using the table of Appendix D (cases 6 and 7), and not
ing that in case 7, A and B must be interchanged, we find that 

) 

Fig. 9.38 

(b) 

and, solving forMA, 

9.8. Superposition for Statically 56~1 
Indeterminate Beams 

Writing that the slope at A is the sum of these two quantities 
and that it must be zero, we have 

The values of RA and R8 may then be found from the equilib
rium equations (9.52) and (9.53). 

The beam considered in the preceding example was indeterminate 
to the first degree. In the case of a beam indeterminate to the second 
degree (cf. Sec. 9.5}, two reactions must be designated as redundant, 
and the corresponding supports must be eliminated or modified ac
cordingly. The redundant reactions are then treated as unknown loads 
which, simultaneously and together with the other loads, must produce 
deformations which- are compatible with the original supports. (See 
Sample Prob. 9.9.) 



Loading I 

A t(; 

!I U.f! ! !.!J.! ! u B 

1---L----...j 
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SAMPLE PROBLEM 9.7 

For the beam and loading shown, determine the slope and deflection at point B. 

SOLUTION · 

Principle of Superposition. The given loading can be obtained by 
superposing the loadings shown in the following "picture equation." The beam 
AB is, of course, the same in each part of the figure. 

Load-ing I Loading II 

A u; 

For each of the loadings I and II, we now determine the slope and deflection 
at B by using the table of Beam Deflections and Slopes in Appendix D. 

Loading I 

wL3 

(6,), = - 6£/ 

Loading II 

w(L/2)3 wzJ 
(Oclu = + "'6i/ = + 48£1 

wL' 
(y,), = - 8£1 

w(L/2)4 wL' 
(Yclu = + ------sii[ = + 128£1 

In portion CB, the bending moment for loading II is zero and thus the elastic 
curve is a straight line. 

wL3 

(O,)u = (6clu = + 48£1 

Slope at Point B 

Deflection at B 



SAMPLE PROBLEM 9.8 

For the unifonn beam an~ loading shown, determine (a) the reaction at each 
. support, (b) the slope Jnd A. 

SOLUTION 

Principle of Superposition. The reaction R8 is designated as redundant 
and considered as an unknown load. The deflections due to the distributed load 
and to the reaction R8 are considered separately as shown below. 

~. ; lliU !JJI £k .. ' Bl . 
. . ~2!.13-•f-w-1 

For each loading th~ deflection at point B is found by using the table of Beam 
Deflections and Slopes in Appendix D. 

Distributed Loading. We use case 6, Appendix D 

w 
y ~ ---(x' - 2LX' + L1x) 

24£1 
At point B, x = ~L: 

(Ys)w ~ - 2:EI[ GL )' -2LGL )' + L'GL)] ~ -001132 ~~' 
Redundant Reaction Loading. From case 5, Appendix D, with a = ~L 

and b = !L, we have 

Pa2b2 R8 (2 )'(L)' R,L' 
(y,), ~ - 3E/L ~ + 3EIL 3L 3 ~ O 01646£i 

a. Reactions at Supports. Recalling that y8 = 0, we write 
Ys ~ (y,)w + (y,), fi!LL!flflt 

A B ~~c=0.0413wL wL4 R L3 

0 ~ -0.01l32El + 0.01646 ;I R8 ~ 0.688wL t <I 

Rc~ = O . .:til teL Rs"' 0.688 (CL Since the reaction R8 is now known, we may use the methods of statics to 
determine the other reactions: RA = 0.27lwL t Rc = 0.0413wL t <Zl 

b. Slope at End A. Referring again to Appendix D, we have 
wL3 wL3 

Dish·ibuted Loading. (8A)w = -
24

£/ = -0.04167E/ 

Redundant Reaction Loading. For P = -R8 = -0.688wL and b = iL 

(O ) ~ _ Pb(L' - b
2

) ~ + 0.688wL(!:.)[L' _ (!:.)'] (O ) ~ 0_03398 wL' 
AR 6£/L 6EIL 3 3 AR EI 

Finally, 0, ~ (O,)w + (0,)8 

wL3 wL3 wL3 

e, ~ -0.04167E/ + o.03398E/ ~ -o.00769E/ 
wL' e, ~ o.oo769EI""' <r 
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SAMPlE PROBlEM 9.9 
For the beam and loading shown, determine the reaction at the fixed support C. 

SOLUTION 

Principle of Superposition. Assuming the axial force in the beam to be 
zero, the beam ABC is indeterminate to the second degree and we choose two 
reaction components as redundant, namely, the vertical force Rc al)d the cou
ple Me. The deformations caused by the given load P, the force Rc, and the 
couple Me will be considered separately as shown. 

+ 

.·L_!n.~), .. -. )ij.c)p 

~~+ 

Pa~ 
Rc = [jf (a+ :3b) 

c ., 
{BI>ll' \Bc:!r' 

For each load, the slope and deflection at point C will be found by using the table 
of Beam Deflections and Slopes in Appendix D. 

Load P. We note that, for this loading, portion BC of the beam is straight 

Pa2 

(ec), ~ (e,), ~ -
2
£

1 
(yc), ~ (y,), + (e,),b 

Pa3 Pa2 Pa2 

~ - 3£/- 2El ~ - 6£/(2a + 3b) 

Force Rc 
RcL2 RcL3 

(ec)s ~ + 
2
£/ (Yc), ~ + 

3
£/ 

Couple Me 

Boundary Conditions. At end C the slope and deflection must be zero: 

[x ~ L, ec ~ 0]: Be~ (ec), + (Oc)8 + (Oc)M 
Pa2 RcL2 MeL 

0 ~ -- + --+- (1) 
2£/ 2£/ E/ 

[x ~ L.yc ~OJ: Yc ~ (yc), + (yc), + (yc)M 
Pa2 RcL3 McL2 

0 ~ - 6£/(2a + 3b) + 3£1 + 2£1 (2) 

Reaction Components at C. Solving simultaneously Eqs. (1) and (2), we 
find after reductions 

Pa2 

Rc ~ +f)( a + 3b) 
PCI~ 

Rc ~ -, (a+ 3b) t <1 
L 

Using the methods of statics, we can now determine the reaction at A. 



[\ 

Use the method of superposition to solve the following problems and 
assume that the flexural rigidity EI of each beam is constant. 

9.65 and 9.66 For the cantilever beam and loading shown, determine 
the slope and deflection at the free end. 

I-- U2 -+--U2 -1 
Fig. P9.65 

9.67 and 9.68 For the cantilever beam and loading shown, determine 
the slope and deflection at point B. 

Fig. P9.67 

9.69through 9.72 For the beam and loading shown, determine (a) the 
deflection at the C, (b) the slope at end A. 

BrJJ 
Fig. P9.69 

Fig. P9.71 

Fig. P9.68 

Fig. P9.70 

(t.:L2 

}JWJ IJJJJI Y: 
l-u2-~-uzJ 

Fig. P9.72 
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!500N 

44mm 

,!,~C-~;;ioi;;.75i;;mii; -;i; -~~o;;;;;
8

~.,.;J,L i 
Fig. P9.75 and P9.76 

140 kN 
80kN m 80kN·m 

9. 73 For the cantilever beam and loading shown, detennine the slope 
and deflection at end C. Use E = 200 GPa. 

t _J.~rk~ JkN SlOO;l!5 
~0.75m --o.sm--1 

Fig. P9.73 and P9.74 

9. 7 4 For the cantilever beam and loading shown, determine the slope 
and deflection at point B. UseE = 200 GPa. 

9.75 For the cantilever beam and loading shown, determine the slope 
and deflection at end C. Use E = 200 GPa. 

9.76 For the cantilever beam and loading shown, determine the slope 
and deflection at point B. Use E = 200 GPa. 

9.77and 9.78 For the beam and loading shown, determine (a) the slope 
at end A, (b) the deflection at point C. UseE= 200 GPa. 

20 kN/m 

llllllll!llll :R: 
Wl50 X 24 (A"'' Bl ' .~) I 

L' W410 X 46.1 

25m- 25 
f.,.~Ef 

Fig. P9.77 

r-~_f:J 
Fig. P9.79 

Fig. P9.81 

Fig. P9.78 

9.79 and 9.80 For the uniform beam shown, determine (a) the reac
tion at A, (b) the reaction at B. 

Fig. P9.80 

9.81 and 9.82 For the uniform beam shown, determine the reaction at 
each of the three supports. 

J c 

Fig. P9.82 

l 



9.83 and 9.84 For the beam shown, detennine the reaction at B. 

r,.,,, ,,KiJ IJ,JJ",t 
;;f.--vz--l-vz~' 

Fig. P9.83 

9.85 A central beam BD is joined at hinges to two cantilever beams AB 
and DE. All beams have the cross section shown. For the loading shown, 
determine the largest w so that the deflection at C does not exceed 3 mm. Use 
E ~ 200 GPa. 

w 

'j~Blli,~J uo~' 
I Hioge I I I Hioge I 

0.4m 0.4m 0.4m OAm 

Fig. P9.85 

_l 
ijFj/?J112 mm 

f-.-.1' 
24mm 

9.86 Beam CE rests on beam AB, as shown. Knowing that a W250 X 
49.1 rolled~steel shape is used for each beam, determine for the loading shown 
the deflection at point D. UseE= 200 GPa. 

9.87 Beam BD rests on the cantilever beam AE, as shown. Knowing that 
a square rod of side 18 mm is used for each beam, determine for the loading 
shown (a) the deflection at point C, (b) the deflection at point E. Use 
E ~ 200 GPa. 

SOON 

,,. ,,!·"' CJ 
380 mm 380 mm 380 mm 

Fig. P9.87 

lSmm 

Hl 
~18mm 

1 

9.88 Beam DE rests on the cantilever beam AC as shown. Knowing that 
a square rod of side 10 mm is used for each beam, detennine the deflection at 
end C if the 25-N • m.couple is applied (a) to end E of beam DE, (b) to end 
C of beam AC. Use E = 200 GPa. 

9.89 The cantilever beam BC is attached to the steel cable AB as shown. 
Knowing that the caQle is initially taught, determine the tension in the cable 
caused by the distributed load shown. Use E = 200 GPa. 

Problems 

~;;;;~~ 
.f.-_ V2 _j_ L/2 -~·· 

Fig. P9.84 

120kN 

D 
C ·1·!?. • ,.:;~~" E 
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~ 
W250X491 

0.6 m h-+71"2-m-..f-1~2oc-m-1 0 6 m 

-36m-

Fig. P9.86 

lOmm 

D E H 
) ~""· '"~~ "\ n J ',1.,, ~/1 ~;-!,<·<~? ~\Lllitl~ll 

120 mm 180 mm 

Fig. P9.88 

1---6 m--e-t•.· 
Fig. P9.89 

25N. m 

:X: 
W410 X 46.1 
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SOkN·m 

Fig. P9.91 

Fig. P9.93 

9.90 For the loading shown, knowing that beams AC and BD have the 
same flexural rigidity, determine the reaction at B. 

0.6 

Fig. P9.90 

9.91 Before the 80-kt"\f · m load is applied, a gap, 80 = 1.25 mm existed 
between the W410 X 38.8 beam and the support at C. Knowing that E = 200 
GPa, determine the reaction at each support after the couple is applied. 

50mm 

rl_1 
~50mm 

Fig. P9.92 

9.92 Before the uniformly distributed load w is applied, a gap, 80= 
l.2 mm, exists between the ends of the cantilever bars AB and CD. Knowing 
that E = 105 GPa and w = 30 kN/m, determine (a) the reaction at A, (b) the 
reaction at D. 

9.93 Two 24-mm-diameter aluminum rods are welded together to form 
the T-shaped hanger shown. Knowing that E = 70 GPa and G = 26 GPa, 
determine the deflection at (a) end A, (b) end B. 

3.50 N I""-
J. 250mm 

.. , 
A ':.··t;> 

Fig. P9.94 

9.94 A 22-mm-diameter rod BC is attached to the lever AB and to the 
fixed support at C. Lever AB has a uniform cross section 10 mm thick and 
25 mm deep. For the loading shown, detennine the deflection of point A. Use 
E = 200 GPa and G = 77 GPa. 



'9.9. MOMENT-AREA THEOREMS 

In Sec. 9.2 through Sec. 9.6 we used a mathematical method based ion 
the integration of a differential equation to detennine the deflection and 
slope of a beam at any given point. The bending moment was ex:jre sed 
as a function M(x) of the distance x measured along the beam, a two 
success·ive integrations led to the functions O(x) and y(x) repre enting, 
respectively, the slope and deflection at any point of the beam. In this 
section you will see how geometric properties of the elastic curve can 
be used to determine the deflection and slope of a beam at a specific 
point (Fig. 9.40). 

Consider a beam AB subjected to some arbitrary loading (Fig. 
9.41a). We draw the diagram representing the variation along the beam 
of the quantity M/EI obtained by dividing the bending moment M by 
the flexural rigidity El (Fig. 9.4lb). We note that. except for a dif
ference in the scales of ordinates, this diagram will be the same as 
the bending~moment diagram if the flexural rigidity of the beam is 
constant. 

Recalling Eq. (9.4) of Sec. 9.3, and the fact that dy/dx = 8, we 
write d8 d2y M 

dx=dx,=El 
or 

M 
d8 =- dx 

El 

Considering two arbitrary points C and D on the beam and inte-
grating both members of Eq. (9.54) from C to D, we write 

J
e, I'' M d8 = - dx 

El 
Oc xc 

or 

(9.55) 

where Oc and 00 denote the slope at C and D, respectively (Fig. 9.41c). 
But the right-hand member of Eq. (9.55) represents the area under the 
(M!Ef) diagram between C and D, and the left-hand member the angle 
between the tangents to the elastic curve at C and D (Fig. 9.41d). De
noting this angle by 0 ore• we have 

9.9. Moment-Area Theorems 569 

Fig. 9.40 The deflections of the beams support
ing the floors of a building should be taken into 
account in the design process. 

(b) 
M~ "~ 

A C D 8 

A B 
1) 

(d) 

8o1c = area under (M!EI) diagram 
between C and D 

(9.56) Fig. 9.41 

This is the first moment-area theorem. 

tThis relation can also be derived without referring to the results obtained in Sec. 9.3, by 
noting that the angle de formed by the tangents to the elastic curve at P and P' is also the 
angle formed by the corresponding normals to that curve (Fig. 9.42). We thus have de "" ds/ p 
where ds is the length of the arc PP' and p the radius of curvature at P. Substituting for 1/ p 

from Eq. (4.21), and noting that, since the slope at Pis very smal!, ds is equal in first ap" 
proximation to the horizontal distance dx between P and P', we write 

dB"" M_dx 
El 

(9.54) 

c 

Fig. 9.42 
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A 

Fig. 9.43 

"'I 1-:''~l"'r "vf=El 
A C P P' D B 

Fig. 9.44 

EI 

r~,,~l . • 

We note that the angle 801c and the area under the (M!Ef) diagram 
have the same sign. In other words, a positive area (i.e., an area located 
above the x axis) corresponds to a counterclockwise rotation of the tan
gent to the elastic curve as we move from C to D, and a negative area 

B corresponds to a clockwise rotation. 
Let us now consider two points P and P' located between C and 

D, and at a distance dx from each other (Fig. 9.43). The tangents to the 
elastic curve drawn at P and P1 intercept a segment of length dt on the 
vertical through point C. Since the slope 8 at P and the angle d8 formed 
by the tangents at P and P' are both small quantities, we can assume 
that dt is equal to the arc of circle of radius x 1 subtending the angle d8. 
We have, therefore, 

dt = x, d8 

or, substituting for dO from Eq. (9.54), 

M 
dt = x1 EI d.x (9.57) 

We now integrate Eq. (9.57) from C to D. We note that, as point P 
describes the elastic curve from C to D, the tangent at P sweeps the 
vertical through C from C to E. The integral of the left-hand member 
is thus equal to the vertical distance from C to the tangerit at D, This 
distance is denoted by t00 and is called the tangential deviation of C 
with respect to D. We have, therefore, 

(9.58) 

M~ 
~---------------~+---------o+~---' A c: Dl B 

' ' I I 

' ' A I I B --:-------- ---{-
' D 

tc~~ 
C' 

"'WS:l El~ 
A Cl Dl 8 

' ' ' ' ' ' ' ' A I I 8 --r----------r-
1 D 

D' 
Fig. 9.45 

(b) 

We now observe that (MJEI) dx represents an element of area un
der the (M!EI) diagram, and x 1 (M!EI) d.x the first moment of that 
element with respect to a vertical axis through C (Fig. 9.44). The right
hand member in Eq. (9.58), thus, represents the first moment with re
spect to that a~is of the area located under the (MIEI) diagram between 
C and D. · 

We can, therefore, state the second moment"area theorem as fol
lows: The tangential deviation tao of C with respect to D is equal to 
the first moment with respect to a vertical axis through C of the area 
under the (M!EI) diagram between C and D. 

Recalling that the first moment of an area with respect to an axis 
is equal to the product of the area and of the distance from its centroid 
to that axis, we may also express the second moment-area theorem as 
follows: 

lew = (area between C and D) X1 (9.59) 

where the area refers to the area under the (MJEI) diagram, and where 
X1 is the distance from the centroid of the area to the vertical axis through 
C (Fig. 9.45a). 



Care should be taken to distinguish between the tangential deviation 
of C with respect to D, denoted by tap. and the tangential deviation

1 
of 

D with respect to C, which is denoted by tD!c· The tangential deviatfon 
t01c represents the vertical distance from D. to the tangent to the ~l,Stic 
curve at C, and is obtained by multiplying the area under the ("jl/EI) 
diagram by the distance :X2 from its centroid to the vertical axis Ulrough 
D (Fig. 9.45b): 

t01c = (area between C and D) :X2 (9.60) 

We note that, if an area under the (MI El) diagram is located above 
the x axis, its first moment with respect to a vertical axis will be posi
tive; if it is located below the x axis, its first moment will be negative. 
We check from Fig. 9.45, that a point with a positive tangential devia~ 
tion is located above the corresponding tangent, while a point with a 
negative tangential deviation would be located b~low that tangent. 

'9. i 0. APPLICATION TO CANTILEVER BEAMS AND BEAMS 
WITH SYMMETRIC LOADINGS 

We recall that the first moment~area theorem derived in the preceding 
section defines the angle ODic between the tangents at two points C and 

9.10. Cantllever Beams and Beams with 571 
Symmetric Loadings 

80 "' eDIA 

Fig. 9.46 

D of the elastic curve. Thus, the angle 00 that the tangent at D forms 
with the horizontal, i.e., the slope at D, can be obtained only i(the slope A 

at Cis known. Similarly, the second moment-area theorem defines the 
vertical distance of one point of the elastic curve from the tangent at 
another point. The tangential deviation tDtc• therefore, will help us lo
cate point D only if the tangent at C is known. We conclude that the 
two moment-area theorems can be applied effectively to the determi
nation of slopes and deflections only if a certain reference tangent to 

Refere1H.:e tm;gent 

the elastic curve has first been detennined. 
In the case of a cantilever beam (Fig. 9.46), the tangent to the elas

tic curve at the fixed end A is known and can be used as the reference 
tangent. Since (}A = 0, the slope of the beam at any point Dis 00 = 001A 

and can be obtained by the first moment-area theorem. On the other 
hand, the deflection y0 of point D is equal to the tangential deviation 
t01A measured from the horizontal reference tangent at A and can be 
obtained by the second moment-area theorem. 

In the case of a simply supported beam AB with a symmetric load-
ing (Fig. 9.47a) or in the case of an overhanging symmetric beam with 
a symmetric loading (see Sample Prob. 9.ll), the tangent at the center 
C of the beam must be horizontal by reason of symmetry and can be 
used as the reference tangent (Fig. 9.47b). Since Oc = 0, the slope at 
the support B is 08 = 081c and can be obtained by the first momentM 
area theorem. We also note that IYI max is equal to the tangential devia
tion t81c and can, therefore, be obtained by the second moment~area 
theorem. The slope ai any other point D of the beam (Fig. 9.47c) is 
found in a similar fashion, and the deflection at D can be expressed as 

~l.,.,.,=tu;c 
Reference tangent Be""' Bstc 

(b) 
YD 

A B I 

~--=r;r"c 
Referenctt<mgent 8o =Bote tD!c 

(c) 

Fig. 9.47 



Determine the slope and deflection at end B of the prismatic 
cantilever beam AB when it is loaded as shown (Fig. 9.48), 
knowing that the flexural rigidity of the beam is 
E/ ~ 10MN · m2

. 

We first draw the free~body diagram of the beam (Fig. 
9.49a). Summing vertical components and moments about A, 
we find that the reaction at the fixed end A consists of a 50 kN 
upward vertical force RA and a 60 kN • m counterclockwise 
couple Mk Next, we draw the bending~ moment diagram (Fig. 
9.49b) and determine from similar triangles the distance x0 
from the end A to the point D of the beam where M = 0: 

x0 = 3- Xo = ~ 
60 90 150 

x0 = 1.2m 

Dividing by the flexural rigidity El the values obtained 
forM, we draw the (MIE!) diagram (Fig. 9.50) and compute 
the areas corresponding respectively to the segments AD and 
DB, assigning a positive sign to the area located above the x 
axis, and a negative sign to the area located below that axis. 
Using the first moment~area theorem, we write 

081A = 08 - eA = areafromAtoB = A1 +A2 

~ -l(l.2 m)(6 X W 3 m-') 
+ j(l.8 m)(9 X J0- 3 m-') 

= -3.6 X 10-3 + 8.1 X 10~3 

= +4.5 X 10-3 rad 

and, since f) A = 0, 

8e = +4.5 X 10-3 rad 

Using now the second moment-area theorem, we write 
that the tangential deviation letA is equal to the first moment 
about a vertical axis through B of the total area between A and 
B. Expressing the moment of each partial area as the product 
of that area and of the distance from its centroid to the axis 
through B, we have 

''" ~ A,(2.6 m) + A,(0.6 m) 
~ (- 3.6 X w-')(2.6 m) + (8.1 x w-')(0.6 m) 
= -9.36 mm + 4.86 mm = -4.50 mm 

Since the reference tangent at A is horizontal, the deflection 
at B is equal to telA and we have 

Ys = latA = -4.50 mm 

The deflected beam has been sketched in Fig, 9.51. 
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Fig. 9.48 

M11 "" 60kN · m 

(A,.:" v• 

R .. 1 =.50 kN 

M 

-60kN·m 

Fig. 9.49 

Fig. 9.51 

l 

I 
50kN 

I 

.SOkN 

90kN·m 

+90kN·m 

(b) 



'9.11. BENDING-MOMENT DIAGRAMS BY PARTS 

In many applications the detenninati-orr of the angle () 01c and of the; tan
gential deviation tD!c is simplified if the effect of each load is evalUated 
indeperidently. A separate (M/E/) diagram is drawn for each load, and 
the angle 001c is obtained by adding algebraically the areas u9der the 
varioUs diagrams. Similarly, the tangential deviation tDic is ob(ained by 
adding the first moments of these areas about a vertical axis through D. 
A bending-moment or (MIEI) diagram plotted in this fashion is said to 
be drawn by parts. 

When a bending-moment or (MIEI) diagram is drawn by parts, the 
various areas defined by the diagram consist of simple geometric shapes, 
such as rectangles, triangles, and parabolic spandrels. For convenience, 
the areas and centroids of these various shapes have been indicated in 
Fig. 9.52. 

Shape Area c 1-b--J 
Rectangle ~I bh b 

2 

...j 

c:b-1 
Triangle ~I "' b 

T 3 

lei 

Parabolic ~1 /;/, ,, 
spandrel •C j_ T ' 

-;-I 

~b--1 
Cubic l41 Ill! b 

spandrel j_ 4 ' 1-
rb--~ 

General l41 bh b 

spandrel ;;+I ;;+2 

~ 
1·-
' 

Fig. 9.52 Areas and centroids of common 
shapes. 

9.11. Bending-Moment Diagrams 573 
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Determine the slope and deflection at end B of the prismatic 
beam of Example 9.09, drawing the bending*moment diagram 
by parts. 

50kN 

M 

50kN 

-150kN-m 

M M 
iii ---3m-- iii 

Fig. 9.53 

We replace the given loading by the two equivalent load
ings shown in Fig. 9.53, and draw the corresponding bending
moment and (M/ EI) diagrams from right to left, starting at the 
free end B. 

Applying the first moment-area theorem, and recalling 
that OA = 0, we write 

88 = Bs:A =At + A2 
~ (9 X 10-3 m-')(3 m) -j(15 X 10-3 m-')(3 m) 

= 27 X 10-3 - 22.5 X 10-3 = 4.5 X 10-3 rad 

Applying the second moment-area theorem, we compute the 
ftrst moment of each area about a vertical axis through B and 
write 

Yo= t8,A = At(1.5 m) + A 2(2 m) 
~ (27 x w-')(1.5 m) - (22.5 x w-')(2 m) 

= 40.5 mm - 45 mm = -4.5 mm 

It is convenient, in practice, to group into a single drawing the 
two portions of the (M/El) diagram (Fig. 9.54). 
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~-3m-~ 
-<-L5 m-

9 x w-3 m-tf----,-~-+--~ 

Fig. 9.54 



For the prismatic beam AB and the loadfng shown (Fig, 9.55), 
determine the slo~e at a support and the maximum deflection. 

Fig. 9.55 

We first sketch the deflected beam (Fig. 9.56). Since the 
tangent at the center C of the beam is horizontal, it will be 
used as the reference tangent, and we have IYima• = tAlc· On 
the other hand, since 8c = 0, we write 

or 

From the free-body diagram of the beam (Fig. 9.57), we 
find that 

RA=R8 =wa 

Next, we draw the shear and bending-moment diagrams for 
the portion AC of the beam. We draw these diagrams by parts, 
considering separately the effects of the reaction RA and of the 
distributed load. However, for convenience, the two parts of 
each diagram have been plotted together (Fig. 9,58). We recall 
from Sec. 5.3 that, the disttibuted load being uniform, the cor
responding parts of the shear and bending-moment diagrams 
will be, respectively, linear and parabolic. The area and cen
troid of the triangle and of the parabolic spandrel can be ob
tained by referring to Fig. 9.52. The areas of the triangle and 
spandrel are found to be, respectively, 

and 

Al = _!_(2a)(2waz) = 2wa3 
2 El EI 

1 (wa') wa' 
A, ~ - J(a) 2EI ~ - 6EI 

Applying the first moment-area theorem, we write 

2wa3 wa3 llwa3 

&etA = Al + Az = EJ- 6El = 6El 

Recalling from Figs. 9.55 and 9.56 that a = ~L and 
eA = -e0A, we have 

e _ 11wa3 _ llwL3 

,-- 6EI --384EI 
Applying now the second moment-area theorem, we write 

t = 4a +A 7a = (2wa
3
)4a + (- wa

3
)7a = 19wa

4 

AIC Al 3 z 4 . EI 3 6EI 4 8El 

and 

IIJI,""=t..vc 

~~· 
Reference tMgent 

Fig. 9.56 

1'-'; ~"1 

L~-1 
R, 
Fig. 9.57 

R,~ = wa 

(2wi') 

Fig. 9.58 

R, 

575 
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~~ 2EI 

a-~ 

p r A '----'D'-'-----,B~ Mll 

Ra 

- :p=j 3=2PI =r' 
Mr=~ -~-3Pax 

EE•l
1
L_\ ~l._ t=== 2EI 1 

"' El 

SAMPLE PROBLEM 9.10 

The prismatic rods AD and DB are welded together to form the cantilever beam 
ADB. Knowing that the flexural rigidity is E/ in portion AD of the beam and 
2£1 in portion DB, determine, for the loading shown, the slope and detlection 
at end A. 

SOLUTION 

(M!Ef) Diagram. We first draw the bending~moment diagram for the 
beam and then obtain the (MIEI) diagram by dividing the value of Mat each 
point of the beam by the corresponding value of the flexural rigidity. 

Reference Tangent. We choose the horizontal tangent at the fixed end 
Bas the reference tangent. Since 88 = 0 and y8 = 0, we note that 

Reference tnng<mt 

-e,, \ ~ 
I , "*'' . . !, "~·· ·'··''''' 4(, . I . . 

-~-A 

~-\ 

- ~~; Slope at A. Dividing the (MIEI) diagram into the three triangular por-
tions shown, we write 

A, 
1 Pa Pa2 

---a=--
2 El 2El 
1 Pa Pa2 

A,~ -Z2EI" =- 4EI 

1 3Pa 3Pa2 

A3 =- 2 2Ela =- 4EJ 

Using the first moment-area theorem, we have 

Pa2 Pa2 3Pa2 3Pa2 

OstA =A! + A2 + A3 = - 2E!- 4El - 4El = - 2El 

3Pa2 

+--
2El 

Deflection at A. Using the second moment-area theorem, we have 

y, ~ 'A"~ A,Ga) + A,(~a) + A3Ga) 
~ (- Pa') 2a + (- Pa') 4a + (- 3Pa') 5a 

2EI 3 4E/ 3 4El 3 

23Pa3 23Pa3 

y, ~ - 12El YA ~ 12El.j. ~ 



Reference tnngent 

SAMPlE PROBlEM 9.11 
For the prismatic beam

7
and,Jloading shown, determine the slope and deflection 

at end E. 

SOLUTION 

(M/EI) Diagram. From a free-body diagram of the beam, we determine 
the reactions and then draw the shear and bending-moment diagrams. Since the 
flexural rigidity of the beam is constant, we divide each value of M by Eland 
obtain the (M/E/) diagram shown. 

Reference Tangent. Since the beam and its loading are symmetric with 
respect to the midpoint C, the tangent at Cis horizontal and is used as the ref
erence tangent. Referring to the sketch, we observe that, since ee = 0, 

8s = 8e + 8Eie = 8s1e 

Ys = tE!e - t01e 

(!) 

(2) 

Slope at E. Referring to the (!v//El) diagram and using the first moment
area theorem, we write 

Using Eq. (1), we have 

wa2 

e, ~ - lZEI (3L + 2a) 

Deflection at E. Using the second moment-area theorem, we write 

L ( wa
2
L) L wa2L

2 

to1e=Ar4= - 4El 4=- 16£/ 

t51e = A1 (a + ~) +A2 (
3
:) 

~ (-~;:)(a+~)+ (-~;;)(:a) 
wa3L wa2L2 wa4 

4EI 16EI 8EI 

Using Eq. (2), we have 

wa3L wa4 

Ys = tE!e - t01e = - 4El - SE/ 

1.UQ3 
YE ~ - SEI (2L + a) 

wa' 
y, ~- (2L + a)t <ll 

8EI 
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f---L---
Fig. P9.95 

Fig. P9.97 

26kN/m 

AE~~E~~ 
I t" cl, 

~2.2m----l 
0.5m 

Fig. P9.101 

578 

:I 
W250 X 28.4 

Use the moment-area method to solve the following problems. 

9.95 through 9.98 For the uniform cantilever beam and loading shown, 
detennine (a) the slope at the free end, (b) the deflection at the free end. 

Mo 

~"*' 
f---L----1 

Fig. P9.96 

UJ I L(Ll!Jll ~ 
lA L BJ 
Fig. P9.98 

9.99 and 9.100 For the uniform cantilever beam and loading shown, 
determine (a) the slope and deflection at (a) point B, (b) point C. 

P=%tc(l 

,, 

Fig. P9.100 

9.101 For the cantilever beam and loading shown, determine (a) the 
slope at point A, (b) the deflection at point A. UseE= 200 QPa. 

2.5 kN 2.5 kN 

J~'"' ,,,L~,.· ,~,iji!llip' t 
I 03J 075m~J 

Fig. P9.102 

db 
SlOO X 11.5 

9.102 For the cantilever beam and loading shown, detennine the slope 
and deflection at (a) end A, (b) point B. UseE= 200 GPa. 



9.103 Two C150 X 12.2 channels are welded back to back and loaded 
as shown. Knowing that E = 200 GPa, determine (a) the slope at point D, (b) 
the deflection at point D. · 

) 
X 

Cl50 X 12.2 

9.104 For the cantilever beam and loading shown, determine (a) the 
slope at point A, (b) the deflection at point A. UseE= 200 GPa. 

9.105 For the cantilever beam ABC, determine the deflection at (a) point 
B, (b) end C. 

9.106 For the cantilever beam and loading shown, determine the de~ 
flection and slope at end A caused by the moment M0. 

9.107 Two cover plates are welded to the rolled~steel beam as shown. 
Using E = 200 GPa, determine the slope and deflection at end C. 

12 x 225 mm 

~ 
W310 X 60 

Fig. P9.107 

9.108 Two cover plates are welded to the rolled-steel beam as shown. 
Using E = 200 GPa, determine the (a) slope at end A, (b) the deflection at 
end A. 

5 X lZOmm 

:t 
W250 X 22.3 

Fig. P9.108 

Fig. P9.104 

Fig. P9.106 

Problems 579 

120 kN/m 

W360 X 64 



580 Deflection of Beams 

Fig. P9.111 

((; ((; 

rrmB C Drrm 

fJJ~Ct 
Fig. P9.113 

Fig. P9.115 

9.109 through 9.114 For the prismatic beam and loading shown, 
detennine (a) the slope at end A, (b) the deflection at the center C of the beam. 

p 

,,,,~-,_, J L _,-_, 
a a-

L/2--r----UZ-

Fig. P9.110 

Fig. P9.112 

Fig. P9.114 

9.115 and 9.116 For the beam and loading shown, determine (a) the 
slope at end A, (b) the deflection at the center C of the beam. 

Fig. P9.116 

9.117 For the beam and loading shown and knowing that w = 8 kN/m, de
tennine (a) the slope at end A, (b) the deflection at midpoint C. UseE = 200 GPa. 

40kN·m u; 40kN·m 

(~n-L !"! J": Lfr-r-! 1,--,-1 !"'a~) j1 
'''T''' _j I W3l0 X 60 

f--sm --sm--1 
Fig. P9.117 



9.118 and 9.119 For the beam and loading shown, determine (a) the 
slope at end A, (b) the deflection at the midpoint of the beam. Use E = 200 ,GPa. 

X 
5250 X 37.8 

Ffg. P9.119 

9.120 For the beam and loading of Prob. 9.117, determine the value of w 
for which the deflection is zero at the midpoint C of the beam. Use E = 200 GPa. 

9.121 Knowing that the magnitude of the load Pis 30 kN, determine 
(a) the slope at end A, (b) the deflection at end A, (c) the deflection at mid
point C of the beam. Use E = 200 GPa. 

6 kl'\ p GkN 

B c 
A ''""-*"'"' 
I "'L 1 ~ IE Sl5~t6 

06mb- 14m 14m~06m 
Fig. P9.121 and P9.122 

9.122 For the beam and loading shown, determine (a) the load P for 
which the deflection is zero at the midpoint C of the beam, (b) the correspon
ding deflection at end A. Use E = 200 GPa. 

*9.123 A uniform rod AE is to be supported at two points B and D. 
Determine the distance a for which the slope at ends A and E is zero. 

1-u'-1 
B C D 

F!9· P9.123 and P9.124 

*9.124 A uniform rod AE is to be supported at two points Band D. 
Determine the distance a from the ends of the rod to the points of support, if 
the downward deflections of points A, C, and E are to be equal. 

Problems 581 

X 
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582 Deflection of Beams 

A ----r;--------7JB 

~1 
Reference 

t<\ngent 

Fig. 9.59 

ta;.~ 

A ---- ---------- B 

'9.12. APPLICATION OF MOMENT-AREA THEOREMS TO 
BEAMS WITH UNSYMMETRIC LOADINGS 

We saw in Sec. 9.10 that, when a simply supported or overhanging beam 
carries a symmetric load, the tangent at the center C of the beam is hor-

(a) izontal and can be used as the reference tangent. When a simply sup
ported or overhanging beam carries an unsymmetric load, it is gener
ally not possible to determine by inspection the point of the beam where 
the tangent iS horizontal. Other means must then be found for locating 
a reference tangent, i.e., a tangent of known slope to be used in apply~ 
ing either of the two moment-area theorems. 

It is usually most convenient to select the reference tangent at one 
(b) of the beam supports. Considering, for example, the tangent at the sup

port A of the simply supported beam AB (Fig. 9.59a), we determine its 
slope by computing the tangential deviation ts1A of the support B with 
respect to A, and dividing ts1A by the distance L between the supports. 
Recalling that the tangential deviation of a point located above the tan
gent is positive, we write 

D~)Bv 
(9.61) 

R&ference 
tangent 

Fig. 9.60 

Reference 
tungent 

Fig. 9.61 

Fig. 9.63 

E 

H 

Once the slope of the reference tangent has been found, the slope 
80 of the beam at any point D (Fig. 9.60) can be determined by using 
the first moment-area theorem to obtain (JD!A• and then writing 

(9.62) 

The tangential deviation t01A of D with respect to the support A can 
be obtained from the second moment-area theorem. We note that tDIA is 
equal to the segment ED (Fig 9.61) and represents the vertical distance 
of D from the reference tangent. On the other hand, the deflection Yv 
of point D represents the vertical distance of D from the horizontal line 
AB (Fig. 9.62). Since YD is equal in magnitude to the segment FD, it 

Fig. 9.62 

can be expressed as the difference between EF and ED (Fig. 9.63). Ob
serving from the similar triangles APE and ABH that 

EF HB 
X L 

or 

and recalling the sign conventions used for deflections and tangential 
deviations, we write 

X 
Yv =ED- EF = t01A- LtBIA (9.63) 



For the prismatic beam and loading shown (Fig. 9.64), deter
mine the slope and deflection at point D. 

Reference Tangent at Support A. We compute the 
reactions at the supports and draw the.(MIEI) diagram (Fig. 
9.65). We determine the tangential deviation t81A of the sup
port B with respect to the support A by applying the second 
moment-area theorem and computing the moments about aver
tical axis through B of the areas A1 and A2• We have 

1 L 3PL 3PL2 1 3L 3PL 9PL2 . 

A, ~ 2 4 16£1 ~ 128£1 A,~ 2 4 16£1 ~ 128£1 

tMA ~A, (~2 + Jf) +A,(~) 
3PL2 10L 9PL2 L 7PL3 

~---+---~ 
128£1 12 128£1 2 128£1 

The slope of the reference tangent at A (Fig. 9.66) is 

t81A 7PL2 

e, ~ - T ~ - 128£1 

Slope at D. Applying the first moment-area theorem 
from A to D, we write 

Thus, the slope at D is 

Deflection at D. We first determine the tangential de
viation DE= t01A by computing the moment of the area A1 

about a vertical axis through D: 

( L) JPL' L PL3 

DE= to/A =At l2 = 128£112 = 512EI 

The deflection at Dis equal to the difference between the seg
ments DE and EF (Fig. 9.66). We have 

Yo = DE - EF = totA - hetA 
PL3 1 7PL3 

~------

512£1 4 128£1 
3PL3 

YD ~ - 256£1 ~ -0.01172PL3/EI 

Fig. 9.64 

1!----L---~ 

M L 
EI 12 

A~-,D~----~Bv--> 

L-tJ-¥-
Fig. 9.65 

E 

Reference__.--"' 
tangent 

Fig. 9.66 
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584 Daf!ection of Beams '9.13. MAXIMUM DEFLECTION 

When a simply supported or overhanging beam carries an unsymmet~ 
ric load, the maximum deflection generally does not occur at the cen~ 
ter of the beam. This will be the case for the beams used in the bridge 
shown in Fig. 9.67, which is being crossed by the truck. 

Fig. 9.67 The deflections of the beams used for the bridge must be reviewed for different possible positions of the load. 

(") 

(b) 

Fig. 9.68 

Reference/ 
t<~rget 

To determine the maximum deflection of such a beam, we should 
locate the point K of the beam where the tangent is horizontal, and com~ 
pute the deflection at that point. 

Our analysis must begin with the determination of a reference tan~ 
gent at one of the supports. If support A is selected, the slope f) A of the 
tangent at A is obtained by the method indicated in the preceding sec
tion, i.e., by eomputing the tangential deviation t81A of support B with 
respect to A and dividing that quantity by the distance L between the 
two supports. 

Since the slope f)K at point K is zero (Fig. 9.68a), we must have 

Recalling the first moment-area theorem, we conclude that point K may 
be determined by measuring under the (M!EI) diagram an area equal 

."--~~~---8;--, to eKJA = -eA (Fig. 9.68b). 
Observing that the maximum deflection IYimax is equal to the tan

gential deviation tAlK of support A with respect to K (Fig. 9.68a), we 
can obtain IYimax by computing the first moment with respect to the ver
tical axis through A of the area between A and K (Fig. 9.68b). 

l 



Determine the maximum deflection of the beam of Example 9.12. 

Determination of Point K Where Slope Is Zero. 
We recall from Example 9.12 that the slope at point D, where 
the load is applied, is negative. It follows that point K, where 
the slope is zero, is located between D and the support B (Fig. 
9.69). Our computations, therefore, will be simplified if we 
relate the slope at K to the slope at B, rather than to the slope 
at A. 

Since the slope at A has already been determined in Ex
ample 9.12, the slope at B is obtained by writing 

Os = OA +BelA = OA +A! + Az 
7PL2 3PL2 9PL2 5PL2 

e, = - 128EI + 128£1 + 128£1 = 128£1 

Observing that the bending moment at ~ distance u .from end 
B isM= ftPu (Fig. 9.70a), we express the area A' located be
tween K and B under the (M/El) diagram (Fig. 9.70b) as 

, 1 Pu Pt? 
A =--u=-

2 4El 8E/ 

By the first moment-area theorem, we have 

08/K = Oe- eK =A' 

and, since 0 K = 0, 

Substituting the values obtained for 08 and A', we write 

5PL2 Pu2 

--= 
128£/ 8E/ 

and, solving for u, 

V5 
u = 4L = 0.559L 

Thus, the distance from the support A to point K is 

AK = L- 0.559L = 0.441L 

Maximum Deflection. The maximum deflection 
IY!max is equal to the tangential deviation t81K and, thus, to the 
first moment of the area A' about a vertical axis through B 
(Fig. 9.70b). We write 

, (2") Pu
2 (2") Pu

3 

IYima~ = ls/K = A 3 = 8El 3 = 12El 

Substituting the vaJue obtained for u, we have 

p (V5 )' lyl = -· -L = 0.01456PL3/El max 12£/ 4 · 

) 
p 

Fig. 9.69 

(b) 

Fig. 9.70 
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586 Deflection of Beams •9.14. USE OF MOMENT-AREA THEOREMS WITH STATICALLY 
INDETERMINATE BEAMS 

The reactions at the supports of a statically indeterminate beam can be 
determined by the moment-area method in much the same way that was 
described in Sec. 9.8. In the case of a beam indeterminate to the first 
degree, for example, we designate one of the reactions as redundant and 
eliminate or _modify accordingly the corresponding support. The re
dundant reaction is then treated as an unknown load, which, together 
with the other loads, must produce deformations that are compatible 
with the original supports. The compatibility condition is usually ex
pressed by writing that the tangential deviation of one support with re
spect to another either is zero or has a predetermined value. 

Two separate free-body diagrams of the beam are drawn. One shows 
the given loads and the corre!>ponding reactions at the supports that 
have not been eliminated; the other shows the redundant reaction and 
the corresponding reactions at the same supports (see Example 9.14). 
An M/El diagram is then drawn for each of the two loadings, and the 
desired tangential deviations are obtained by the second moment-area 
theorem. Superposing the results obtained, we express the required com
patibility condition and determine the redundant reaction. The other re
actions are obtained from the free-body diagram of beam. 

Once the reactions at the supports have been determined, the slope 
and deflection may be obtained by the moment-area method at any other 
point of the beam. 

Determine the reaction at the supports for the prismatic beam 
and loading shown (Fig. 9.71). 

We consider the couple exerted at the fixed end A as re
dundant and replace the fixed end by a pin-and-bracket sup
port. The couple MA is now considered as an unknown load 
(Fig. 9.72a) and will be determined from the condition that the 
tangen.t to the beam at A must be horizontal. It follows that 
this tangent must pass through the support B and, thus, that 
the tangential deviation t81A of B with respect to A must be 
zero. The solution is carried out by computing separately the 
tangential deviation (t81A)w caused by the uniformly distributed 
load w (Fig. 9.72b) and the tangential deviation (t81A)M pro
duced by the unknown couple MA (Fig. 9.72c). 

A 

(a) (b) 

Fig. 9.72 

Fig. 9.71 

B" 
(c) 

~ 
I 

I 
I 



Considering first the free¥body diagram of the beam un¥ 
der the known distributed load w (Fig. 9.73a), we determine 
the corresponding reactions at the supports A and B. We have 

(9.64) 

We can now draw the corresponding shear alld (M!EI) dia¥ 
grams (Figs. 9.73b and c). Observing that MIEI is represented 
by an arc of parabola, and recaliing the formula, A = ~ bh, for 
the area under a parabola, we compute the first moment of this 
area about a vertical axis through B and write 

(t,,)w~A~(~) GL~~)(D~ :: (9.65) 

Considering next the free~body diagram of the beam when 
it is subjected to the unknown couple MA (Fig. 9.74a), we de
termine the corresponding reactions at A and B: 

(9.66) 

Drawing the corresponding (MIEI) diagram (Fig. 9.74b), we 
apply again the second moment-area theorem and write 

v 

A 

(b) 

.M.. 

" 
wL2 

8El 

A 

(c) 

{R,.~)l . (RJJ)l 

~--L---..J 

B 

-iwL 

l~t 
------

I 
I 

jA, 

' L 

Fig. 9.73 

Combining the results obtained in (9.65) and (9.67), and 
expressing that the resulting tangential deviation letA must be 
zero (Fig. 9.72), we have 

!etA = (tntA)w + (ta!A)M = 0 
wL4 MAL2 

----~o 
24EI 3El 

and, solving forMA, 

MA = +iwL2 

Substituting for MA into (9.66), and recalling (9.64), we ob
tain the values of RA and R8: 

RA = (RA)l + (RA)2 = iwL + ~wL = jwL 

Rs = (R8) 1 + (R8h = !wL - ~wL = iwL 

(b) 

Fig. 9.74 

In the example we have just considered, there was a single redun
dant reaction, i.e., the beam was statically indeterminate to the first 
degree. The momentwarea theorems can also be used when there are 
additional redundant reactions. As discussed in Sec. 9.5, it is then nec
essary to write additiOnal equations. Thus for a beam that is statically 
indeterminate to the second degree, it would be necessary to select two 
redundants and write two equations considering the deformations of the 
structure involved. 

1---L---..J 
M 
jfl 

A 
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SAMPLE PROBLEM 9.12 

For the beam and loading shown, (a) determine the deflection at end A, 
(b) evaluate YA for the following data: 

W250 X 49.1: I= 70.6 X 106 mm' E = 200 GPa 
a= 0.9 m L = 1.6 m 

w = 200kN/m 

SOLUTION 

(MIEI) Diagram. We first draw the bending-moment diagram. Since the 
flexural rigidity El is constant, we obtain the (M!Ef) diagram shown, which 
consists of a parabolic spandrel of area A 1 and a triangle of area A2• 

1 ( wa') wa' 
A, = 3 - 2El a = - 6El 

A2 = ~ (- ~;;) L =- ~~~L 

Reference Tangent at 8. The reference tangent is drawn at point B as 
shown. Using the second moment-area theorem, we determine the tangential 
deviation of C with respect to B: 

t = 2L _ (- wa
2
L) 2L __ wa

1
L

2 

eta Az 3 - 4El 3 - 6EI 

From the similar triangles A"A'B and CC'B, we find 

, , _ (a)_ wa
2
L

2 (a) _ wa
3
L 

AA -tC!B L -- 6EI L -- 6El 

Again using the second moment-area theorem, we write 

3a ( wa') 3a wa
4 

tAte= At 4 = - 6EI 4 = - 8EI 

a. Deflection at End A 

YA = A"A' + tAIB = - wa"L - wa4 = - wa4 (~ !: + 1) 
6El 8EI 8E/ 3 a 

b. Evaluation of y,1• Substituting the data given, we write 

(200 X 103 N/m)(0.9 m)' ( 4 1.6 m) 
y, ~ 8(200 X 109 Pa)(70.6 X 10 6 m') 

1 + 3 0.9 m 

=3.9 X 10-3 m YA = 3.9 mm_J, <il 



!C"" 2.5 kN/m 
j jjjjjjjjj SAMPLIE PROIBLIE~ 9.13 

f~.~--·_···· T""" ·-•L_-_1" B d£: For the beam ~nd loading Jhown, determine the magnitude and location of the 
,, , , , . $ \ largest deflectmn, Use

7
E 200 GPa. 

a=l.4 m -<-b=2.2~n~ 
L"" 3.6 m _..j W230 X 22.3 

A 
B 

1 A OA Ym B 

'~"~~ 
ew .. l 

Reference tangent 

SOLUTION 

Reactions. Using the free-body diagram of the entire beam, we find 

R, ~ 16.81 kN t R8 ~ 38.2kNt 

(M/El) Diagram. We draw the (M!Ef) diagram by parts, considering 
separately the effects of the reaction RA and of the distributed load. The areas 
of the triangle and of the spandrel are 

A =! RAL L = RAL
2 

A = .!:_ (- wb
2
)b = _ wb

3 

I 2£1 2£/ 2 3 2£1 6£1 

Reference Tangent. The tangent to the beam at support A is chosen as 
the reference tangent. Using the second moment-area theorem, we determine 
the tangential deviation t81A of support B with respect to support A: 

L b (R,L') L ( wb') b R,L3 wb' 
tEIA=A 13+_A2 4= 2£/ 3+ - 6£! 4= 6£/-24£/ 

Slope at A 
(1) 

Largest Deflectiot1. The largest deflection occurs at point K, where the 
slope of the beam is zero. We write therefore 

{)K ={)A + {)KIA = 0 (2) 

But 
RAx;1 w ( 3 

()KIA = A3 + A4 = 2EI - 6£1 x,. -a) (3) 

We substitute .for eA and f) KIA from Eqs. (1) and (3) into Eq. (2): 

- ( ~;;- 2::;J + [ ~;;- 6~1 (x"'- a)'] ~ 0 

Substituting the numerical data, we have 

103 103 103 

-29.53- + 8 405x2 - - 4.167(x - 1.4)3 - ~ 0 
EI . "' EI "' EI 

Solving by trial and error for xm, we find Xm = 1.890 m <ll 

Computing the moments of A3 and A4 about a vertical axis through A, we have 

IYim = tMK ~ A2 ~"' +A, [a + ~ (xm -a)] 

R,x;" wa ( )' w ( )' 
=- 3£/ - 6EI Xm - a - 8El Xm - a 

Using the given data, RA = 16,81 kN, and I= 28.9 X w-6 m4
, we find 

y, = 6.39 mm t <I 
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SAMPLE PROBlEM 9.14 

For the uniform beam and loading shown, determine the reaction at B. 

SOLUTION 

The beam is indeterminate to the first degree. We choose the reaction R8 as 
redundant and consider separately the distributed loading and the redundant re~ 

action loading. We next select the tangent at A as the reference tangent. From 
the similar triangles ABB' and ACC', we find that 

1 ! l l i l I l H I l ! 'c'· ,.,, 3 

Af:,,l,• •;' , '"''?, rR,l, For each loading, we dra~~he (~~IE!) ~::,g::::: then determine the t~~: 
l
_,_L' ·: I - -gential deviations of B and C with respect to A. 

M ! Distributed Loading. Considering the (MIEI) diagram from end A to 
Ei 1-'-1- an arbitrary point X, we write 

I ~~L..· 

AL==:;;;;;;;;~•~~~~~~~>E~L~";;.x._,-, -x (txtA)w =AI~+ A21 = (l ~t x)~ + (- k ~~ x)1 = ~~~ (2L- x) 
I ....... L .... ~ ............. __ 2£1 

M 
iiT 

M 
iiT 

590 

•1 Letting successively x = L and x = ~L, we have 

B C 
wL4 4 wL'' 

(tctA)w = 24£1 (tBIA)w = 243m 

Redundant Reaction Loading 

L L ( 1 R8L L) L ( 1 R8L ) L 4 R8L
3 

(tc;,), • A, 9 + A, 3 • 2 3£1 3 9 + - 2 3£1 L 3 • - Sl m 
2L [ I 2R8 L (2L)]2L 4 R8L

3 

(talA) a • As 9 • - 2 9£1 J 9 • - 243 £1 

Combined Loading. Adding the results obtained, we write 

wL4 4 R8L3 4 (wL4 
- R8L3

) 

tcJA = 24£/ - Sllif tBJA = 243 EI 

Reaction at B. Substituting for tc;A and ts;A into Eq. (1), we have 

(
wL' _ ~ R8L

3
). ~[~ (wL'- R8L

3
)] 

24£1 81 £1 2 243 £1 

R8 • 0.6875wL R 8 = 0.688wLt <I 



Use the moment-are~ method to solvC the following problems. 

9.125 through 9.128 For the prismatic beam and loading shown, 
determine (a) the deflection at point D, (b) the slope at end A. 

Fig. P9.125 

JJ 

9.129 For the beam and loading shown, determine (a)'the slope at point 
A, (b) the deflection at point D. UseE = 200 GPa. 

f''F~_t 
1.5 m 1.5 m 

X 
W250 X 44.8 

Fig. P9.129 

9.130 For the timber beam and loading shown, determine (a) the slope 
at point A, (b) the deflection at point D. UseE= 10 GPa. 

9.131 For the l;Jeam and loading shown, determine (a) the slope at end 
A, (b) the deflection at point D. Use E 200 GPa. 

Fig. P9.126 

jjjjjjjD 

Fig. P9.128 

90mm 

H 

I t 
190mm 

_l 

Fig. P9.130 

20 kN/m 

lllll!!llllll 
~ ... ".··.··· •''''@· ,;@!!, ,&.B . Dl ., .l.. 30kN, ···r··· 

L6m~~OB .m 

:b 
Wl50 X 24 

Fig. P9.131 
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l20kN/m 

9.132 For the beam and loading shown, determine (a) the slope at point 
A, (b) the deflection at point E. UseE= 200 GPa. 

,~D~~~::;LB :X 
1!.2 mll.2 m:r·• W310 X 38 7 

A£5~10 ;ifM\ -P-•·· [ 
0.6m 

Fig. P9.132 

Fig. P9.136 

Fig. P9.134 

5.5 kN 

~·~---·' -L-~4--r\ J 
Fig. P9.133 

9.133 For the beam and loading shown, determine (a) the slope at point 
C, (b) the deflection at point C. 

9.134 For the beam and loading shown, determine (a) the slope at point 
A, (b) the deflection at point D. 

160kN 

~~d••• D :X 
W410 X 114 

Fig. P9.135 

9.135 For the beam and loading shown, determine (a) the slope at point 
B, (b) the deflection at point D. UseE= 200 GPa. 

9.136 For the beam and loading shown, determine (a) the slope at point J: D, (b) the defle:ction at point E. UseE= 200 GPa. 

W310 x 60 9.137 Knowing the beam AD is made of a solid steel bar, determine the 
(a) slope at point B, (c) the deflection at point A. Use E = 200 GPa. 

r2kN 3kNim 

A F~ til~ ''*'"l:: 
Lt25mt25mJ' 

0.20m 

Fig. P9.137 

9.138 Knowing that the beam AB is made of a solid steel rod of diameter 
d = 18 mm, determine for the loading shown (a) the slope at point D. (b) the 
deflection at point A. Use E = 200 GPa. 

l 

I 
' I 



9.139 and 9.140 For the beam and loading shown, determine (a) the 
slope at end A, (b) the slope at end B, (c) the deflection at the midpoint C. 

EI 
.• ""' ---?A". 

U2 _:r 
Fig. P9.139 

9.141 through 9.144 For the beam and loading shown, determine the 
magnitude and location of the largest downward deflection. 

9.141 Beam and loading of Prob. 9.125. 
9.142 Beam and loading ofProb. 9.127. 
9.143 Beam and loadillg ofProb. 9.129. 
9.144 Beam and loading ofProb. 9.132. 

9.145 For the beam and loading of Prob. 9)35, determine the largest 
upward deflection in span AB. 

9.146 For the beam and loading of Prob. 9.138, determine the largest 
upward deflection in span DE. 

9.147 through 9.150 For the beam and loading shown, determine the 
reaction at the roller support. 

Fig. P9.147 

w 

Fig. P9.149 

9.151 through 9.152 For the beam and loading shown, detennine the 
reaction at each support. 

Fig. P9.151 

Problems 593 

~ .. JILl LUI ~-~·.··· EI c.......::i:.· -,,-~··;·__,_B 

.. Luz-L:~· 
Fig. P9.140 

f----L---->1 
Fig. P9.148 

f---L----1 
Fig. P9.150 
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:X: 
W310 X 44.5 

Fig. P9.153 

9.153 and 9.154 Determine the reaction at the roller support and draw 
the bending~moment diagram for the beam and loading shown. 

120kN~ ~40kN 

r D• h 

f:IIJ --3.6m----1 
Fig. P9.154 

"')?' 
~ 

W360 X 57.8 

9.155 For the beam and loading shown, determine the spring constant 
k for which the force in the spring is equal to one~ third of the total load on 
the beam. 

lllllllllllll 
~"""'· . . ;,·r;· . ·"" J:;; 
L "*' _J''''' L_::r_L 

Fig. P9.155 and P9.156 

9.156 For the beam and loading shown, determine the spring constant 
k for which the bending moment at B is M8 = -wL2110. 

This chapter was devoted to the determination of slopes and deflec
tions of beams under transverse loadings. Two approaches were used. 
First we used a mathematical method based on the method of inte
gration of a differential equation to get the slopes and deflections at 
any point along the beam. We then used the moment-area method to 
find the slopes and deflections at a given point along the beam. Par
ticular emphasis was placed on the computation of the maximum de
flection of a beam under a given loading. We also applied these meth
ods for determining deflections to the analysis of indeterminate 
beams, those in which the number of reactions at the supports ex
ceeds the number of equilibrium equations available to determine 
these unknowns. 



We noted in Sec. 9.2 that Eq. (4.21) of Se. c. 4.4, w.hich relate. sti the 
curvature 1/p of the neutral surfaCe and the bending moment M n a 
prismatic beam in pure bending, can be applied to a beam und r a 
transVerse loading, but that both M and 1/ p will vary from~e tion 
to section. Denoting by x the distance from th~ left e~d of the . e.am, 
we wrote 

_ = M(x) 

P EJ 
(9,1) 

This equation enabled us to determine the radius of curvature· of the 
neutral surface for any value of x and to draw some general condu-: 
sions regarding the shape of_ the deformed beam. 

In Sec. 9.3, we discussed how to obtain a relation between the de
flection y of a beam, measured at a given point Q, and the distance 
x of that ·point from some fixed origin _(Fig. 9.6b)._ Such a relation 
defines the elastic curve of a beam. Expressing the curvature 1/ p in 
tenns of the derivatives of the function y(x) and substituting into 
(9,1), we obtained the following second-order linear differential 
equation: 

(9.4) 

Integrating this equation twice, we obtained the followirig expres
sions defining the slope &(x) = dy!dx and the deflection y(x), 
respectively: 

dy (' 
El dx = L M(x) dx + c, 

0 

(9.5) 

Ely= r dx rM(x) dx + C1x + C2 
0 0 

(9.6) 

The product El is known as the flexural rigidity of the 9eam; C1 and 
C2 are two constants of integration that can be determined from the 
boundary conditions imposed on the beam by its supports (Fig. 9.8) 
[Example 9.01]. The maximum deflection can then be obtained by 
deternrining the value of x for which the slope is zero and the cor
responding value of y [Example 9.02, Sample Prob. 9.1]. 

(a) Simply supported beam (b) Overhanging beam 

Fig. 9.8 Boundary conditions for statically determinate beams. 
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Deformation of a beam 
under transverse loading 

y r, 

Fig. 9.6b 

Boundary conditions 

(c) Cantilever beam 
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Fig. 9.20 

'I 

I Y.\=OJ 
lB.\"" 0) 

Elastic curve defined by 
different functions 

[ x = t LJf1 = e2 J 

[.1· ""tL. !.11"' Y2J 

B 

[ I'_...=OJ 
[;\!11 =0) 

When the loading is such that different analytical functions are 
required to represent the bending moment in various portions of the 
beam, then different differential equations are also required, leading 
to different functions representing the slope 8(x) and the deflection 
y(x) in the various portions of the beam. In the case of the beam and 
loading considered in Example 9.03 (Fig. 9.20), two differential 
equations were required, one for the portion of beam AD and the 
other for the portion DB. The first equation yielded the functions 8 1 
and y 1, and the second the functions 82 and y2• Altogether, four con
stants of integration had to be determined; two were obtained by 
writing that the deflections at A and B were zero, and the other two 
by expressing that the p011ions of beam AD and DB had the same 
slope and the same deflection at D. 

We observed in Sec. 9.4 that in the case of a beam supporting a 
distributed load w(x), the elastic curve can be determined directly 
from w(x) through four successive integrations yielding V, M, 8, and 
yin that order. For the cantilever beam of Fig. 9.21a and the simply 
supported beam of Fig. 9.21b, the resulting four constants of inte
gration can be detennined from the four boundary conditions indi~ 
eated in each part of the figure [Example 9.04, Sample Prob. 9.2]. 

y 

ly.\=IJ I 
1.\l\= () J 

[!JIJ""" Uj 

[.IIJJ= 0] 

(a) Cantilever beam (b) Simply supported beam 

Fig. 9.21 Boundary conditions for beams carrying a distributed load. 

Statically indeterminate beams 

(a) 

Fig. 9.24 

In Sec. 9.5, we discussed statically indeterminate beams, i.e., 
beams supported in such a way that the reactions at the supports in
volved four or more unknowns. Since only three equilibrium equa
tions are available to determine these unknowns, the equilibrium· 
equations had to be supplemented by equations obtained from the 
boundary conditions imposed by the supports. In the case of the beam 
of Fig 9.24, we noted that the reactions at the supports involved four 
unknowns, namely, MA, Ax, Ay, and B. Such a beam is said to be in
determinate to the first degree. (If five unknowns were involved, the 

~---L---11 
A~ B 

(b) 



beam would be indeterminate to the second degree.) Expressing th,e 
bending moment M(x) in terms of the four unknowns and integrat
ing twice [Example 9.05], we detennined the slope O(x) and the db
flection ·y(x) in tenus of the same unknowns and the constants of In
tegration C1 and C2. The six unknowns involved in this computapon 
were obtained by solving simultaneously the three equilibrium,Cqua
tions for the free body of Fig. 9.24b and the three equations ex
pressing that 0 = 0, y = 0 for x = 0, and that y = 0 for x = L (Fig. 
9.25) [see also Sample Prob. 9.3]. 

The integration method provideS an effective ·way for determin
ing the slope and deflection at any point of a prismatic beain, as lohg 
as the bending moment M can be represented by a single analytical 
function. However, when several functions are required to represent 
M over the entire length of the beam, this method can become quite 
labodous, since it requires matching slopes and deflectioris at every 
transition point. We saw in Sec. 9.6 that the use of singularity june~ 
tions (previously introduced in Sec. 5.5) consid,erably simplifies the 
determination of 0 andy at any point of the beam. Considedng again 

p 

U4 --3L/41 
A ''~'' ,d(:' ·.·:··lq;t·' ,::;;"\iff B 

D 

Fig. 9.17 

the beam of Example 9.03 (Fig. 9.17) and drawing its free:body 
diagram (Fig. 9.29), we expressed the shear at any point of the 
beam as 

3? , 1 )' V(x) = 4 - P\x - 4L 

where the step function \x - !L)0 is equal to zero when the quantity 
inside the brackets ( ) is negative, and equal to one otherwise. In
tegrating three times, we obtained successively 

M(x) = 3: x - P(x -lL) (9.44) 

El 0 = El: = jPJ? - 4P(x -lL)2 + C1 (9.46) 

(9.47) 

where the brackets ( ) should be replaced by zero when the quan
tity inside is negative, and by ordinary parentheses otherwise. The 
constants C1 and C2 were determined from the boundary conditions 
shown in Fig. 9.30"'[Example 9.06; Sample Probs. 9.4, 9.5, and 9.6]. 
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y 

~~t--' 
[.,=0.0=0] 

A 

[x = O,y"" 0] 
Fig. 9.25 

Use of singularity functions 

y p 

D 

fP 
Fig. 9.29 

y 

["'=O.y=O] 

Fig. 9.30 

·-·' "'" ... B x 

[x ""'L.y = 0] 

B 
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A 

Method of superposition 

Statically indeterminate beams 
by superposition 

I Us"" 0 I 

A 

R, 
(a) 

Fig. 9.37 

First moment-area theorem 

The next section was devoted to the method of superposition, 
which consists of determining separately, and then adding, the slope 
and deflection caused by the various loads applied to a beam [Sec. 
9.7]. This procedure was facilitated by the use of the table of Ap
pendix D, which gives the slopes and deflections of beams for var
ious loadings and types of support [Example 9.07, Sample Prob. 9.7]. 

The m~thod of superposition can be used effectively with stati
cally indeterminate beams [Sec. 9.8]. In the case of the beam of Ex
ample 9.08 (Fig. 9.36), which involves four unknown reactions and 
is thus indetenninate to the first degree, the reaction at B was con-

Flg. 9.36 

sidered as redundant and the beam was released from that support. 
Treating the reaction R8 as an unknown load and considering sepa
rately the deflections caused at B by the given distributed load and 
by R8, we wrote that the sum of these deflections was zero (Fig. 
9.37). The equation obtained was solved for R8 {see also Sample 
Prob. 9.8]. In the case of a beam indeterminate to the second degree, 
Le., with reactions at the supports involving five unknowns, two re
actions must be designated as redundant, and the corresponding sup
ports must be eliminated or modified accordingly [Sample Prob. 9.9]. 

+ ----Bl) A 

R" 

(y,;)". 
(b) lei 

We next studied the determination of deflections and slopes of 
beams using the moment-aYea method. In order to derive the 
moment-area theorems [Sec. 9.9], we first drew a diagram repre
senting the variation along the beam of the quantity M! EI obtained 
by dividing the bending moment M by the flexural rigidity El (Fig. 
9.41). We then derived the first moment-area theorem, which may 
be stated as follows: The area under the (M!EI) diagram between 
two points is equal to the angle between the tangents to the elastic 
curve drawn at these points. Considering tangents at C and D, we 
wrote 

fJ01c = area under (M!EI) diagram 
between C and D 

(9.56) 



(a) 

(b) ~~ 
A C D B 

A B 
D 

(d) ~D'C 
Fig. 9.41 First moment~area theorem 

Again using the (M!EI) diagram and a sketch of the deflected 
beam (Fig. 9.45), we drew a tangent at point D and considered the 
vertical distance taD• which is called the tangential deviation of C 
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M 
ill 

1-'·-1 
~ !L---o1--'~'--;f"'-,;--, 

A c: Dl B 

' ' ' ' ' ' A __ : __________ j_ B 

' ' ' D c 

C' 

M~ ill~ 
A Cl Dl B 

' ' ' ' ' ' ' ' A I I B --r----------j"-
' D 

D' 

(') 

(b) 

Fig. 9.45 Second moment~area theorem 

with respect to D. We then derived the second moment-area theo- Second moment-area theorem 
rem, which may be stated as follows: The tangential deviation tc!D 
of C with respect to D is equal to the first moment with respect to 
a vertical axis through C of the area under the (M/ El) diagram be-
tween C and D. We were careful to distinguish between the tangen-
tial deviation of C with respect to D (Fig. 9.45a). 

tao = (area between C and D) X1 (9.59) 

and the tangential deviation of D with respect to C (Fig. 9.45b): 

tDfc = (area between C and D) X2 (9.60) 



600 Deflection of Beams 
I~ Sec. 9.10 we learned to determine the slope and deflection at 

points of cantilever beams and beams with symmetric loadings. For 
cantilever beams, the tangent at the fixed support is horizontal (Fig. 
9.46); and for symmetrically loaded beams, the tangent is horizon
tal at the midpoint C of the beam (Fig. 9.47). Using the horizontal 
tangent as a reference tangent, we were able to determine slopes and 
deflections by using, respectively, the first and second moment-area 
theorems [Example 9.09, Sample Probs. 9.10 and 9.11]. We noted 
that to find a deflection that is not a tangential deviation (Fig. 9.47c), 
it is necessary to first determine which tangential deviations can be 
comb;ined to obtain the desired deflection. 

(a) 

Fig. 9.47 

A 

Cantilever Beams 
Beams with symmetric loadings 

p 

Fig. 9.46 

YD 
p p 

~l.,.,.,=tmc 
Rd"erence tangent e/J"" Blllc 

~--~~r"" 
Rd"erence tungent Bo- BI)Jc IDle 

(b) (a) 

Bending-moment diagram by parts 

In many cases the application of the moment-area theorems is 
simplified if we consider the effect of each load separately [Sec. 
9.11]. To do this we drew the (M!EI) diagram by parts by drawing 
a separate (MIEI) diagram for each load. The areas and the moments 
of areas under the several diagrams could then be added to deter
mine slopes and tangential deviations for the original beam and load
ing [Examples 9.10 and 9.11]. 

Unsymmetric loadings 
In Sec. 9.12 we expanded the use of the moment-area method to 

cover beams with unsymmetric loadings. Observing that locating a 
horizontal tangent is usually not possible, we selected a reference 
tangent at one of the beam supports, since the slope of that tangent 
can be readily determined. For example, for the beam and loading 
shown in Fig. 9.59, the slope of the tangent at A can be obtained by 
computing the tangential deviation t81A and dividing it by the disM 

A ----r"--------/;B 

~r 
,r, {b) 

Reference/ 
tangent 

Fig. 9.59 

l 
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tance L between the supports A and B . . Then, using both momeht- 1 

area theorems and simple: geometry, we. could determine thezlo~ e 

9.12] .. · . . . 
and deflection at any point of the beam [Example 9.12, Sample P.·r. b .. 

The maximum deflection of an unsymmetrically loaded bea gen- Maximum deflection 
erally does not occur at midspan. The approach indicated in the pre-
ceding paragraph was used to determine point K where the maxi-
mum deflection occurs and the magnitude of that deflection [Sec. · 
9.13]. Observing that the slope at K is zero (Fig. 9.68), we concluded 

Fig. 9.68 

Reference/ 
tmget 

that (}KIA = -eA. Recalling the first moment-area theorem, we de
termined the location of K by measuring under the (M!El) diagram 
an area equal to fJ KIA. The maximum deflection was then obtained 
by computing the tangential deviation tNK [Sample Probs. 9.12 
and 9.13]. 

In the last section of the chapter [Sec. 9.14] we applied the 
moment~area method to the analysis of statically indeterminate 
beams. Since the reactions for the beam and loading shown in Fig. 
9.71 cannot be determined by statics alone, we designated one of the 
reactions of the beam as redundant (MA in Fig 9.72a) and consid
ered the redundant reaction as an unknown load. The tangential de~ 
viatio.n of B with respect to A was considered separately for the dis~ 
tributed load (Fig. 9.72b) and for the redundant reaction (Fig. 9.72c). 
Expressing that· under the combined action of the distributed load 
and of the couple MA the tangential deviation of B with respect to 
A must be zero, we wrote 

tRIA = (tBIA)u; + (tBIA)M = 0 

From this expression we determined the magnitude of the redundant 
reaction MA [Example 9.14, Sample Prob. 9.14]. 

Statically indeterminate beams 

Fig. 9.71 

8" 

'(iUJJ~~ -4':A ~~~L~+ ~"'" 
8' 

(b) k) 
Fig. 9.72 
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Fig. P9.157 

y I 7T.t 

AWJ.~~c_, 
Bfu 

f..---L I 
Fig. P9.159 

Fig. P9.161 
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9.157 For the beam and loading shown, determine the deflection at point 
C. Use E ~ 200 GPa. 

3u; yl 

A 
B ITlll D E "i? 

~$$$~· ~0:_, .!b 
H!ll!l!!!l!L w 

1-L/3 -1-L/3 .• 1-L/3 -~ 
Fig. P9.158 

9. 158 Uniformly distributed loads are applied to beam AE as shown. 
(a) Selecting the x axis through the centers A and E of the end sections of the 
beam, determine the equation of the elastic curve for portion AB of the beam. 
(b) Knowing that the beam is a W200 X 35.9 rolled shape and that L = 3m, 
w = 5 kN!m, and E = 200 GPa, determine the distance of the center of the 
beam from the x axis. 

9.159 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the slope at the free end, (c) the deflection at the free end. 

1-<----L 
Fig. P9.160 

9.160 For the beam and loading shown, determine the magnitude and 
location of the maximum deflection. 

9.161 For the prismatic beam and loading shown, determine the mag¥ 
nitude and location of the largest downward deflection. 

SkN 

9.162 For the timber beam and loading shown, determine (a) the slope 
at end A, (b) the deflection at the midpoint C. Use E = II GPa. 

"""'l 

I 



9.163 The rigid bar BDE is welded at point B to the rolled~steel beam 
A C. For the loading shown, determine (a) the slope at point A, (b) the d~flec-

tion at point B. Use E ~ 200 GP:

0 

kN/m ) 

X 
W410 X 85 

Fig. P9.163 

9.164 Knowing that P = 8 kN, determine (a) the slope at end A, (b) the 
deflection at the midpoint C. Use E = 200 GPa. 

9.165 The two beams shown have the same cross section and are joined 
by a hinge at C. For the loading shown, determine (a) the slope at point A, 
(b) the deflection at point B. UseE= 200 GPa. 

A B c 

Fig. P9.165 

D _j_ 
[1] 30 mm 

-1 17 
30mm 

9.166 For the loading shown, and knowing that beams AB and DE have 
the same flexural rigidity, determine the reaction (a) at B, (b) at E. 

9.167 A hydraulic jack can be used to raise point B of the cantilever 
beam ABC. The beam was originally straight, horizontal, and unloaded. A 
20-kN load was then applied at point C, causing this point to move down. De
termine (a) how much point B should be raised to return point C to its origi
nal position, (b) the final value of the reaction at B. UseE = E = 200 GPa. 

20kN 

.~~¢~c 

.ll8m-L,J 
Wl30 X 23.8 

Fig. P9.167 

9.168 Determine the reaction at A and draw the bending moment diagram 
for the beam and loading shown. 

Review Problems 603 

r rkN r 
A k -;;:~,- i .;E X 
I 

'I J ,,,,, I W200Xl9.3 

-----~-1.7 m -<-1.7 m-l-
1 m 1m 

Fig. P9.164 

D 

Fig. P9.166 



Fig. P9.C1 

I 

Fig. P9.C2 

604 

The following problems are designed to be solved with a computer. 

9.C1 Several concentrate loads can be applied to the cantilever beam AB. 
Write a computer program to calculate the slope and deflection of beam AB from 
x = 0 to x = L, using given increments Llx. Apply this program with increments 
Llx = 50 mm to the beam and loading of Probs. 9.73 and Prob. 9.74. 

9.C2 The 6Mm beam AB consists of a W530 X 92 rolled-steel shape and 
supports a 50~kN/m distributed load as shown. Write a computer program and 
use it to calculate for values of a from 0 to 6 m, using 0.3-m increments, (a) 
the slope and deflection at D, (b) the location and magnitude of the maximum 
deflection. Use E 200 GPa. 

db 
W530 X 92 

Fig. P9.C3 

9.C3 The cantilever beam AB carries the distributed loads shown. Write 
a computer program to calculate the slope and deflection of beam AB from 
x = 0 to x = L using given increments Ax. Apply this program with increments 
Ll.x = 100 mm, assuming that L = 2.4 m, w = 36 kN/m, and (a) a = 0.6 m, 
(b) a = 1.2 m, (c) a= 1.8 m. UseE= 200 GPa. 

9.C4 The simple beam AB is of constant flexural rigidity Eland carries 
several concentrated loads as shown. Using the Method of Integration, write a 
computer program that can be used to calculate the slope and deflection at 
points along the beam from x = 0 to x = L using given increments Llx. Ap· 
ply this program to the beam and loading of (a) Prob. 9.13 with LU = 0.3 m, 
(b) Prob. 9.16 with llx = 0.05 m, (c) Prob. 9.129 llx = 0.25 m. 

Fig. P9.C4 



Fig. P9.C5 

9.C5 The supports of beam AB consist of a fixed support at end A and 
a roller support located at point D. Write a computer program that can be used 
to calculate the slope and deflection at the free end of the beam for values of 
a from 0 to L using given increments b.. a. Apply this program to calculate the 
slope and deflection at point B for each of the following cases: 

(o) 

(b) 

L 

16m 
3m 

0.15 m 

0.2 m 

w 

24 kN/m 
18 k.N/m 

E 

200 GPa 

200 GPa 

Shape 

W410 X 65 

W460 X 113 

9.C6 For the beam and loading shown, use the Moment~Area Method to 
write a computer program to calculate the slope and deflection at points along 
the beam from x = 0 to x = L using given increments 6.x. Apply this program 
to calculate the slope and deflection at each concentrated load for the beam of 
(a) Prob. 9.77 with 6.x = 0.5 m, (b) Prob. 9.119 with Llx = 0.5 m. 

Computer Problems 605 

9.C7 Two 52~kN loads are maintained 2.5 m apart as they are moved f---L -----i 
slowly across beam AB. Write a computer program to calculate the deflection Fig. P9.C6 
at the midpoint C of the beam for values of x from 0 to 9 m, using 0.5-m in~ 
crements. Use E = 200 GPa. 

X 
W460 X 113 

Fig. P9.C7 

9.C8 A uniformly distributed load w and several distributed loads P1 
may be applied to the cantilever beam AB. Write a computer program to de
termine the reaction at the roller support and apply this program to the beam 
and loading of (a) Prob. 9.53a, (b) Prob. 9.154. 

Fig. P9.C8 



Columns 

A steel wide-flange column is being tested in the 
five-million-pound universal testing machine at 
Lehigh University, Bethlehem, Pennsylvania. The 
analysis and design of members supporting axial 
compressive loads will be discussed in this chapter. 



10.1.1NTRODUCTION 

In the preceding chapters, we had two primary concerns: (I) the strel{l.gth 
of the structure, i.e., its ability to support a specified load without ex~ 
periencillg excessive stress; (2) the ability of the structure to suptfort a 
specified load without undergoing unacceptable deformations)il this 
chapte.r, our concern will be with the stability of the structure, f.e., with 
its ability to support a given load without experiencing a sudden change 
in its configuration. Our discussion will relate chiefly to columns, i.e., 
to the analysis and design of vertical prismatic members supporting ax~ 
ialloads. 

In Sec. 10.2, the stability of a simplified model of a column, con~ 
sisting of two rigid rods connected by a pin and a spring and support~ 
ing a load P, will first be considered. You will observe that if its equi~ 
librium is disturbed, this system will return to its original equilibrium 
position as long asP does not exceed a certain value Pcro called the crit
ical load. However, if P > Pw the system will move away from its 
original position and settle in a new position of equilibrium. In the first 
case, the system is said to be stable, and in the second case, it is said 
to be unstable. 

In Sec. 10.3, you will begin the study of the stability of elastic 
columns by considering a pin-ended column subjected to a centric ax
ial load. Euler'sformula for the critical load of the column will be de
rived and from that formula the corresponding critical normal stress in 
the column will be determined. By applying a factor of safety to the 
critical lOad, you will be able to determine the allowable load that can 
be applied to a pin-ended column. 

In Sec. 10.4, the analysis of the stability of columns with different 
end conditions will be considered. You will simplify these analyses by 
learning how to determine the effective length of a column, i.e., the 
length of a pin-ended column having the same critical load. 

In Sec. 10.5, you will consider columns supporting eccentric axial 
loads; these columns have transverse deflections for all magnitudes of 
the load. An expression for the maximum deflection under a given load 
will be derived and used to determine the maximum normal stress in 
the column. Finally, the secant formula which relates the average and 
maximum stresses in a column will be developed. 

In the first sections of the chapter, each column is initially assumed 
to be a straight homogeneous prism. In the last part of the chapter, you 
will consider real columns which are designed and analyzed using em
pirical fonnulas set forth by professional organizations. In Sec. 10.6, 
formulas will be presented for the allowable stress in columns made of 
steel, aluminum, or wood and subjected to a centric axial load. In the 
last section of the chapter (Sec. 10.7), the design of columns under an 
eccentric axial load will be considered. 

1 0.1. Introduction 607 
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Fig. 10.1 Fig. 10.2 

1 0.2. STABILITY OF STRUCTURES 

Suppose we are to design a column AB of length L to support a given 
load P (Fig. 10.1). The column will be pin-connected at both ends and 
we assume that P is a centric axial load. If the cross-sectional area A 
of the column is selected so that the value u = PIA of the stress on a 
transverse section is less than the allowable stress u al! for the material 
used, and if the deformation 0 = PL/AE falls within the given specifi
cations, we rilight conclude that the column has been properly designed. 
However, it may happen that, as the load is applied, the column will 
buckle; instead of remaining straight, it will suddenly become sharply 
curved (Fig. 10.2). Figure 10.3 shows a column similar to that in the 
opening photo of this chapter after it has been loaded so that it is no 
longer straight; the column has buckled. Clearly, a column that buck
les under the load it is to support is not properly designed. 

Fig. 10.3 Buckled column 

Before getting into the actual discussion of the stability of elastic 
columns, some insight will be gained on the problem by considering a 
simplified model consisting of two rigid rods AC and BC connected at 
C by a pin and a torsional spring of constant K (Fig. 10.4). 

l 
' 



p p 

A A .. 

2M 

·C 
• c c 

constant K 

B B i 

P' P' 

(a) (b) 

Fig, 10.4 Fig. 10.5 

If the two rods and the two forces P and P' are perfectly aligned, 
the system will remain in the position of equilibrium shown in 
Fig. l0.5a as long as it is not disturbed. But suppose that we move C 
slightly to the right, so that each rod now forms a small angle 6.() with 
the vertical (Fig. 10.5b). Will the system return to its original equilib~ 
rium position, or will it move further away from that position? In the 
first case, the system is said to be stable, and in the second case, it is 
said to be unstable. 

To determine whether the two~ rod system is stable or unstable, we 
consider the forces acting on rod AC (Fig. 10.6). These forces consist 
of two couples, namely the couple formed by P and P', of moment 
P(L/2) sin !:J.fJ, which tends to move the rod away from the vertical, and 
the couple M exerted by the spring, which tends to bring the rod back 
into its original vertical position. Since the angle of deflection of the 
spring is 2 M, the moment of the couple M is M = K(2 M). If the 
moment of the second couple is larger than the moment of the first cou
ple, the system tends to return to its original equilibrium position; the 
system is stable. If the moment of the first couple is larger than the mo
ment of the second couple, the system tends to move away from its 
original equilibrium position; the system is unstable. The value of the 
load for which the two couples balance each other is called the critical 
load and is denoted by Per· We have 

(!0.1) 

or, since sin D.fJ = D.fJ, 

Per= 4K/L (!0.2) 

Clearly, the system is stable for P < Pcro that is, for values of the load 
smaller than the critical value, and unstable for P > Per· 

Let us assume that a load P > Per has been applied to the two rods 
of Fig. 10.4 and that the system has been disturbed. Since P > Pep 
the system will move further away from the vertical and, after some 
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p 

P' 

Fig. 10.6 
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c 

P' 

B ' 

(b) 

oscillations, will settle into a new equilibrium position (Fig. 10.7a). Con~ 
sidering the equilibrium of the free body AC (Fig. 10.7b), we obtain an 
equation similar to Eq. (10.1), but involving the finite angle 8, namely 

P(L/2) sin 8 = K(28) 

or 

PL 8 
4K sinO 

(10.3) 

The value of 8 corresponding to the equilibrium position repre~ 
sented in Fig. 10.7 is obtained by solving Eq. (10.3) by trial and error. 
But we observe that, for any positive value of fJ, we have sin 8 < 8. 
Thus, Eq. (10.3) yields a value of 8 different from zero only when the 
left~hand member of the equation is larger than one. Recalling Eq. 
(10.2), we note that this is indeed the case here, since we have assumed 
P > Per· But, if we had assumed P < Pen the second equilibrium po
sition shown in Fig. 10.7 would not exist and the only possible equi
librium position would be the position corresponding tO 8 = 0. We thus 
check that, for P < Per> the position 8 = 0 must be stable. 

This observation applies to structures and mechanical systems in 
general, and will be used in the next section, where the stability of elas-
tic columns will be discussed. · 

1 0.3. EULER'S FORMULA FOR PIN-ENDED COLUMNS 

Returning to the column AB considered in the preceding section 
(Fig. 10.1), we propose to determine the critical value of the load P, 
i.e., the value Per of the load for which the position shown in Fig. 10.1 
ceases to be stable. If P > Per• the slightest misalignment or distur
bance will cause the column to buckle, i.e., to assume a curved shape 
as shown in Fig. 1 0.2. 

Fig.10.1 
(repeated) 

Fig. 10.2 
(repeated) 

Our approach will be to determine the conditions under which the 
configuration of Fig. 10.2 is possible. Since a column can be consid
ered as a beam placed in a vertical position and subjected to an axial 
load, we proceed as in Chap. 9 and denote by x the distance from end 



A of the column to a given point Q of its elastic curve, and by y the de
flection of that point (Fig. 10.8a). It follows that the x axis will be ver
tical and directed downward, and the y axis horizontal and direct

1
kd to 

the right. Considering the equilibrium of the free body AQ (Fi~. 1 .8b), 
we find that the bending moment at Q i$ M = -Py. Substitut" g this 
value- forM in Eq. (9.4) of Sec. 9.3, we write 

d 2y M P 
dx2 = El = - Ely (lOA) 

or, transposing the last tetm, 

d'y p 
dx2 + Ely= O (10.5) 

This equation is a linear, homogeneous differential equation of the sec
ond order with constant coefficients. Setting 

p 
p2 =

El 

we write Eq. (10.5) in the form 

d'y 
dx' + p'y = 0 

(!0.6) 

(!0.7) 

which is the same as that of the differential equation for simple harmonic 
motion except, of course, that the independent variable is now the 
distance x instead of the timet. The general solution of Eq. (10.7) is 

y=Asinpx+Bcospx (!0.8) 

as we easily check by computing d 2y/ dx 2 and substituting for y and 
d 2y(dx 2 into Eq. (!0.7). 

Recalling the boundary conditions that must be satisfied at ends A 
and B of the column (Fig. !0.8a), we first make x = 0, y = 0 in 
Eq. (10.8) and find that B = 0. Substituting next x = L, y = 0, we 
obtain 

AsinpL = 0 (10.9) 

This equation is satisfied either if A = 0, or if sin pL = 0. If the first 
of these conditions is satisfied, Eq. (10.8) reduces to y = 0 and the 
column is straight (Fig. 10.1). For the second condition to be satisfied, 
we must have pL = mr or, substituting for p from (10.6) and solving 
for P, 

n27T2EJ 
p = ----

L' 
(10.!0) 

The smallest of the values of P defined by Eq. (!0.!0) is that corre
sponding to n = 1. We thus have 

(!0.!!) 

The expression.- obtained is known as Euler's formula, after the 
Swiss mathematician Leonhard Euler (1707 -1783). Substituting this 
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612 Columns expression for P into Eq. (10.6) and the value obtained for pinto Eq. 
(10.8), and recalling that B = 0, we write 

1TX 
y=AsinL (10.12) 

which is the equation of the elastic curve after the column has buckled 
(Fig. 10.2). We note that the value of the maximum deflection, Ym =A, 
is indeterminate. This is due to the fact that the differential equation 
(10.5) is a linearized approximation of the actual governing differential 
equation for the elastic curve. t 

If P < Per> the condition sin pL = 0 cannot be satisfied, and the 
solution given by Eq. (10.12) does not exist. We must then have A = 0, 
and the only possible configuration for the column is a straight one. 
Thus, for P <Per the straight configuration of Fig. 10.1 is stable. 

In the case of a column with a circular or square cross section, the 
moment of inertia I of the cross section is the same about any centroidal 
axis, and the column is as likely to buckle in one plane as another, ex~ 
cept for the restraints that can be imposed by the end connections. For 
other shapes of cross section, the critical load should be computed by 
making I= I min in Eq. (10.11); if buckling occurs, it will take place in 
a plane perpendicular to the corresponding principal axis of inertia. 

The value of the stress corresponding to the critical load is called 
the critical stress and is denoted by O'er· Recalling Eq. (10.11) and set
ting I= Ar2

, where A is the cross-sectional area and r its radius of gy
ration, we have 

or 

(10.13) 

The quantity 4/r is called the slenderness rat(o of the column. It is 
clear, in view of the remark of the preceding paragraph, that the mini
mum value of the radius of gyration r should be used in computing the 
slenderness ratio and the critical stress in a column. 

Equation (10.13) shows that the critical stress is proportional to the 
modulus of elasticity of the material, and inversely proportional to the 
square of the slenderness ratio of the column. The plot of O'er versus 
L/r is shown in Fig. 10.9 for structural steel, assuming E = 200 GPa 
and CJ y = 250 MPa. We should keep in mind that no factor of safety 
has been used in plotting O'er· We also note that, if the value obtained 
for cr" from Eq. (10.13) or from the curve of Fig. 10.9 is larger than 
the yield strength CJy, this value is of no interest to us, since the col~ 
umn will .Yield in compression and cease to be elastic before it has a 
chance to buckle. 

tWe recall that the equation d<yjd:r.2 "" M/El was obtained in Sec. 9.3 by assuming that 
the slope dy/dx of the beam could be neglected and that the exact expression given in Eq. 
(9.3) for the curvature of the beam could be replaced by 1/ p "" d2yjdx2. 
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Our analysis of the behavior of a column has been based so far on 
the assumption of a perfectly aligned centric load. In practice, this is 
seldom the case, and in Sec. 10.5 the effect of the eccentricity of the 
loading is taken into account. This approach will lead to a smoother 
transition from the buckling failure of long, slender columns to the com
pression failure of short; stubby columns. It will also provide us with 
a more realistic view of the relation between the slenderness ratio of a 
column and the load that causes it to fail. 

A 2-m-long pin-ended column of square cross section is to be 
madeofwood.AssumingE = 13 GPa, O'au = 12 MPa, and us
ing a factor of safety of 2.5 in computing Euler's critical load 
for buckling, determine the size of the cross section if the col
umn is to safely support (a) a 100-kN load, (b) a 200-k.N load. 

{a) For the 100~fcN Load. Using the given factor of 
safety, we make 

P" = 2.5( I 00 kN) = 250 kN L=2m E = 13 GPa 

in Euler's formula (10.11) and solve for I. We have 

P"L2 (250 X 102 N)(2 m)2 

I = -,.-, E- = '-,.-o,-::( 1-:3-cX-c-::1 O:i,':Pc-ac') - 7.794 X 10-6 m4 

Recalling that, for a square of side a, we have I = a4/12, we 
write 

a' 
- = 7.794 X 10-6 m4 

12 
a= 98.3 mm""" lOOmm 

We check the value of the normal stress in the column: 

p 100 kN 
,. =A,:" (O.!OOm)' = IOMPa 

Since CT is smaller than the allowable stress, a 100 X 100-mm 
cross section is acceptable. 

(b) For the 200-kN Load. Solving again Eq. (10.11) 
for I, but making now Per = 2.5(200) = 500 k:N, we have 

I= 15.588 X 10-6 m4 

a' 
12 = 15.588 x w-' a= 116.95 mm 

The value of the normal stress is 

p 200kN 
,. = A = (0.11695 m)' = 14.62 MPa 

Since this value is larger than the allowable stress, the dimen
sion obtained is not acceptable, and we must select the cross 
section on the basis of its resistanCe to compression. We write 

A = .!'__ = 
200 kN = 16.67 X 10-3 m2 

<Tall 12 MPa 

a2 = 16.67 x 10-3 m2 a= 129.1 mm 

A 130 X 130-mm cross section is acceptable. 
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Fig. 10.11 

10.4. EXTENSION OF EULER'S FORMULA TO COLUMNS WITH 
OTHER END CONDITIONS 

Euler's formula (10.11) was derived in the preceding section for a col~ 
umn that was pin~connected at both ends. Now the critical load Per will 
be determined for columns with different end conditions. 

In the case of a column with one free end A supporting a load P 
and one fixed end B (Fig. lOJOa), we observe that the column will 
behave as the-upper half of a pin~connected column (Fig. 10.10b). The 
critical load for the column of Fig. 10.10a is thus the same as for the 
pin~ended column of Fig. 10.1Gb and can be obtained from Euler's 

p 

:"1 ·'' 
L 
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(a) 

Fig.10.10 
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fonnula (10.11) by using a column length equal to twice the actual 
length L of the given column. We say that the effective length Le of the 
column of Fig. 10.10 is equal to 2L and substitute Le = 2L in Euler's 
fonnula: 

The critical stress is found in a similar way from the fonnula 

1T'E 
a" = (LJr)' 

(10.11') 

(10.13') 

The quantity Le/r is referred to as the effective slenderness ratio of the 
column and, in the case considered here, is equal to 2L/r. 

Consider next a column with two fixed ends A and B supporting a 
load P (Fig. 10.11). The symmetry of the supports and of the loading 
about a horizontal axis through the midpoint C requires that the shear 
at C and the horizontal components of the reactions at A and B be zero 
(Fig. 10.12). It follows that the restraints imposed upon the upper half 
AC of the column by the support at A and by the lower half CB are 



identical (Fig. 10.13). Portion AC must thus be symmetric about its 
midpoint D, and this point must be a point of inflection, where the b~nd~ 
ing moment is zero. A similar reasoning shows that the bending morllent 
at the midpoint .E of the lower half of the column must also be/ zero 
(Fig. 10.14a). Since the bending moment at the ends of a pinlmded 
column is zero, it follows that the portion DE of the co}limn of 
Fig. 10.14a must behave as a pin-ended column (Fig. 10.14b). We thus 
conclude that the effective length of a column with two fixed ends is 
L, = L/2. 

p p 
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U4 

D • ____!_ 
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"' :/ P' 
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P' 

Fig. 10.12 Fig. 10.13 

In the case of a column with one fixed end Band one pinHconnected 
end A supporting a load P (Fig. 10.15), we must write and solve the 
differential equation of the elastic curve to determine the effective length 
of the column. From the free~body diagram of the entire column 
(Fig. 10.16), we first note that a transverse force V is exerted at end A, 
in addition to the axial load P, and that V is statically indeterminate. 
Considering now the free~body diagram of a portion AQ of the column 
(Fig. 10.17), we .find that the bending moment at Q is 

Fig. 10.15 
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r 
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[x""' 0, y ""0] 
y 

P' 

I, 
Fig. 10.16 (repeated) 

Substituting this value into Eq. (9.4) of Sec. 9.3, we write 

d 2y M P V 
dx2 = El =-Ely- Elx 

Transposing the term containing y and setting 

p 
p2 =

EI 

as we did in Sec. 10.3, we write 

(10.6) 

(10.14) 

This equation is a linear, nonhomogeneous differential equation of the 
second order with constant coefficients. Observing that the left-hand 
members of Eqs. (10.7) and (10.14) are identical, we conclude that the 
general solution ofEq. (10.14) can be obtained by adding a particular 
solution of Eq. (10.14) to the solution (10.8) obtained for Eq. (10.7). 
Such a particular solution is easily seen to be 

or, recalling (10.6), 

v 
y =- --x 

p2El 

v 
y = --x 

p 
(10.15) 

Adding the solutions (10.8) and (10.15), we write the general solution 
of Eq. (10.14) as 

. v 
y =A smpx + Bcospx- px (10.16) 

The constants A and B, and the magnitude V of the unknown trans
verse force V are obtained from the boundary conditions indicated in 
Fig. (10.16). Making first x = 0, y = 0 in Eq.' (10.16), we find that 
B = 0. Making next x = L, y = 0, we obtain 

Finally, computing 

. v 
A smpL = PL 

dy v 
-=Apcospx-
dx p 

and making x = L, dy/dx = 0, we have 

v 
ApcospL = p 

(10.17) 

(10.18) 

l 
i 



Dividing (10.17) by (10.18) member by member, we conclude that a 
solution of the form (10.16) can exis! only if 

I 
. . tanpL ~ pL (17.19) 

Solving this equation by trial and error, we find that the smalle~/value 
of pL which satisfies (10.19) is 

pL ~ 4.4934 (10.20) 

Carrying the value of p defined by Eq. (10.20) into Eq. (10.6) and solv
ing for P, we obtain the critical load for the column of Fig. 10.15 

p ~ 20.19£/ 
cr L2 (10.21) 

1 0.4. Columns with Other End Conditions 

The effective length of the column is obtained by equating the right
hand members of Eqs. (10.11 ')and (10.21): 

Fig. 10.15 (repeated) 

7T
2£/ 20.19£/ 

L; L2 

Solving for Le, we find that the effective length of a column with one 
fixed end and one pin-connected end isLe = 0.699L = O.?L. 

The effective lengths corresponding to the various end conditions 
considered in this section are shown in Fig. 10.18. 

(a) One fixed end, 
one free end 

p 

~~l 
:\··JL,=2L 
'' '' '' '' '' ' ' \~ 

' ' ' 

(b) Both ends 
pinned 

(c) One ftxed end, 
one pinned end 

Fig. 10.18 EHective length of column for various end conditions. 

{d) Both ends 
frxed 
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SAMPlE PROBlEM 10.1 

An aluminum column of length L and rectangular cross section has a fixed end 
B and supports a centric load at A. Two smooth and rounded fixed plates re
strain end A from moving in one of the vertical planes of symmetry of the col
umn, but allow it to move in the other plane. (a) Determine the ratio alb of 
the two sides of the cross section corresponding to the most efficient design 
against buckling. (b) Design the most efficient cross section for the column, 
knowing that L = 0.5 m, E = 70 GPa, P = 20 kN, and that a factor of safety 
of 2.5 is required. 

SOLUTION 

Buckling in xy Plane. Referring to Fig. 10.18, we note that the effec
tive length of the column with respect to buckling in this plane is Le = 0.7L. 
The radius of gyration r, of the cross section is obtained by writing 

lz fi.ba3 A = ab 

and, since I, = Ar;, 

The effective slenderness ratio of the column with respect to buckling in the 
xy plane is 

0.7L 
(!) 

Buckling in xz Plane. The effective length of the column with respect 
to buckling in this plane is Le = 2L, and the corresponding radius of gyration 
is ry = b/VTi. Thus, 

Le 2L 
;:; = b/Vfi (2) 

a. Most Efficient Design. The most efficient design is that for which 
the critical stresses corresponding to the two possible modes of buckling are 
equaL Referring to Eq. (10.13'), we note that this will be the case if the two 
values obtained above for the effective slenderness ratio are equal. We write 

0.7L 2L 
a/Vfi = b/Vfi 

and, solving for the ratio a/b, 
a 0.7 
-=- ~ = 0.35 4 
b 2 

b. Design for Given Data. Since F.S. = 2.5 is required, 

P" =(FS.)P = (2.5)(20 kN) = 50 kN 

Using a = 0.35b, we have A = ab = 0.35b1 and 

P" 50000N 
a"'= A= 0.35e 

Making L = 0.5 min Eq. (2), we have Lef rv = 3.464/b. Substituting forE, Le/r, 
and O'er into Eq. (10.13'), we write · 

1r2E 50000 N 

"" = (L,/r)2 Q35b2 

n 2(70 X 109 Pa) 

(3.464/b)' 

b = 39.7 mm a = 0.35b = 13.9 mm <!l 



10.1 Knowing that the spring at A is of constant k and that the bar AB 
is rigid, determine the critical load Per· 

p r p 

A k~ r ww ! Al A 

lL 
' 

L L c. __:[. 

l J I 

K tL 
• B B • K ;~u 

Fig. P10.1 Fig. P10.2 Fig. P10.3 

10.2 Knowing that the torsional spring at B is of constant K and that the 
bar AB is rigid, determine the critical load Per· 

10.3 Two rigid bars AC and BC are connected by a pin at Cas shown. 
Knowing that the torsional spring at B is of constant K, determine the critical 
load Per for the system. 

10.4 Two rigid bars AC and BC are connected as shown to a spring of 
constant k. Knowing that the spring can act in either tension or compression, 
determine the critical load Per for the system. 

p 

Fig. P10.4 

10.5 The rigid bar AD is attached to two springs of constant k and is in 
equilibrium in the position shown. Knowing that the equal and opposite loads 
P and P' remain vertieal, determine the magnitude Per of the critical load for 
the system. Each spring can act in either tension or compression. 

p 

A 

B 

a 

_L 
D 

P' 
Fig. P10.5 
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62:0 Columns 

l.25 mm 

i 
16 mm 

! 0 
Fig. P10.9 

10.6 If m = 125 kg, h = 700 mm, and the constant of each spring is 
k = 2.8 kN/m, determine the range of values of the distance d for which the 
equilibrium of the rigid rod AB is stable in the position shown. Each spring 
can act in either tension or compression. 

Aj_ 

Fig. P10.6 

10.7 The steel rod BC is attached to the rigid bar AB and to the fixed 
support at C. Knowing that G = 77 GPa, determine the critical load Per of the 
system when d = 12 mm. 

p 

Fig. P10.7 and P10.8 

10.8 The steel rod BC is attached to the rigid bar AB and to the fixed 
support at C. Knowing that G = 77 GPa, determine the diameter of rod BC 
for which the critical load P cr of the system is 350 N. 

1 0.9 Detennine the critical load of an aluminum tube that is 1.5 m long 
and has a 16-mm outer diameter and a 1.25-mm wall thickness. UseE = 70 GPa. 

10.10 Determine the critical load of a round wooden dowel that is 
1.2 m long and has a diameter of (a) 9 mm, (b) 12 mm. Use E = 11 GPa. 



10.11 A column of effective length L can be made by gluing together 
identical planks in either of the arrangements shown. Determine the rat~o of 
the critical load using the arrangement ci to the critical load using the arr4nge-

-~ J 
r 
L 

-1 1- d/3 

(,) 

Fig. P10.11 

(b) 

10.12 Two brass rods used as compression members, each of 3-m 
effective length, have the cross sections shown. (a) Determine the wall thickness 
of the hollow square rod for which the rods have the same cross-sectional area. 
(b) Using E = 105 GPa, determine the critical load of each rod. 

10.13 Determine the radius of the round strut so that the round and 
square struts have the same cross-sectional area and compute the critical load 
for each strut Use E = 200 GPa. 

Fig. P10.13 and P10.14 

10.14 Determine (a) the critical load for the square strut, (b) the radius 
of the round strut for which both struts have the same critical load. (c) Express 
the cross-sectional area of the square strut as a percentage of the cross-sectional 
area of the round strut.· Use E = 200 GPa. 

10.15 A column of 8-m effective length is made from half of a 
W 410 X 60 rolled-steel shape. Knowing that the centroid of the cross section 
is located as shown, determine the factor of safety if the allowable centric load 
is 80 kN. Use E = 200 GPa. 

0'\fQ 
M~ a 160mml 

60mm 

Fig. P10.12 

y 

" " " r---- 11 ----1 
'----------~ 

Fig. P10.15 
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622 Columns 

I D' ' 

:"."""'; 
(a) (b) 

Fig. PtO.tB 

10.16 A single compression member of 8-m effective length is obtained 
by connecting two C200 X 17.1 steel channels with lacing bars as shown. 
Knowing that the factor of safety is 1.85, detennine the allowable centric load 
for the member. UseE = 200 GPa and d = 100 mm. 

]
-- [•'•',>' 

·'"• -----

Fig. P10.16 

10.17 A column of 4-m effective length is made by welding together 
two 89 X 64 X 6.4-mm angles as shown. Using E = 200 GPa, determine the 
factor of safety with respect to buckling for a centric load of 80 kN. 

o~:r 
6.4 mm--/ j 64 mm / 

Fig. P10.17 

10.18 A column of 3-m effective length is to be made by welding to
gether two Cl30 X 13 rolled-steel channels. Using E = 200 GPa, determine 
for each arrangement shown the allowable centric load if a factor of safety of 
2.4 is required.' · 

p 

20-mm diameter 

B I 
15-mm diameter 

10.19 Knowing that a factor of safety of 2.6 is required, determine the 
largest load P that can be applied to the structure shown. Use E = 200 OPa 
and consider only buckling in the plane of the structure. 



10.20 Knowing that P = 5.2 kN, determine the factor of safety for the 
structure shown. UseE = 200 GPa and consider only buckling in the plane of 
the structure. 

22-mm diameter 

Fig. P10.20 

10.21 Column AB carries a centric load P of magnitude 60 leN. Cables 
BC and BD are taut and prevent motion of point B in the xz plane. Using Euler's 
formula and a factor of safety of 2.2, and neglecting the tension in the cables, 
determine the maximum allowable length L. U~e E = 200 GPa. 

10.22 A W200 X 31.3 rolled-steel shape is used with the support and ca
ble arrangement shown in Prob. 10.21. Knowing that L = 7 m, detennine the al
lowable centric load P if a factor of safety of 2.2 is required. Use E = 200 GPa. 

10.23 Column ABC has a uniform rectangular cross section and is braced 
in the xz plane at its midpoint C. (a) Detennine the ratio bid for which the factor 
of safety is the same with respect to buckling in the xz and yz planes. (b) Using 
the ratio found in part a, design the cross section of the column so that the fac
tor of safety will be 3.0 when P = 4.4 kN, L = 1 m, and E = 200 GPa. 

'I 

Fig. P1 0.23 and P1 0.24 

10.24 Column ABC has a uniform rectangular cross section with 
b = 12 mm and d = 22 mm. The column is braced in the xz plane at its 
midpoint C and carries a centric load P of magnitude 3.8 kN. Knowing that 
a factor of safety of 3.2 is required, determine the largest allowable length 
L. Use E ~ 200 GPa. 

Problems 623 

Fig. P10.21 



624 Columns 10.25 A 25~mm~square aluminum strut is maintained in the position 
shown by a pin support at A and by sets of rollers at B and C that prevent 
rotation of the strut in the plane of the figure. Knowing that LA8 = 0.9 m, 
L8e = 1.2 m, and Lev= 0.3 m, detennine the allowable load P using a factor 
of safety with respect to buckling of 3.2. Consider only buckling in the plane 
of the figure and use E = 72 GPa. 

p 

D ---:T 
Lev 

/_1 

t 
Lac 

_1 
B 

Fig. P10.25 

10.26 For the strut of Prob. 10.25, knowing that LAB = 0.9 m, deter
mine (a) the largest values of Lac and Lev that may be used if the allowable load 
Pis to be as large as possible, (b) the magnitude of the corresponding allowable 
load. 

10.27 Two columns are used to support a block weighing 14 kN in each 
of the four ways shown. (a) Knowing that the column of Fig. (1) is made of 
steel with a 30-mm diameter, detennine the factor of safety with respect to 
buckling for the loading shown. (b) Detennine the diameter of each of the other 
columns for which the factor of safety is the same as the factor of safety obtained 
in part a. Use E = 200 GPa. 

::~ I 1.• M 3 

r -

2.4 m 

L 
C'i!:;~~: !~~\!., .'.'!'.•q 

(I) (2) (3) (4) 

Fig. P10.27 



1 0.28 Each of the five struts consists of an aluminum tube that has a 
32~mm outer diameter and a 4-mm wall thickness. Using E = 70 GPa alfd a 
factor of safety of 2.3, detennine the allOwable load P0 for each support ~on
dition shqwn. 

r 
2.0m 

L~--"~·. ~--.,., .. ~.,,, ~'-'""'~~ 
Ill 

Fig. P10.28 

(2) (3) (4) (5) 

'10.5. ECCENTRIC LOADING; THE SECANT FORMULA 

In this section the problem of column buckling will be approached in 
a different way, by observing that the load P applied to a column is 
never perfectly centric. Denoting by e the eccentricity of the load, i.e., 
the distance between the line of action P and the axis of the column 
(Fig. 10.19a), we replace the given eccentric load by a centric force P 
and a couple MA of moment MA = Pe (Fig. 10.19b). It is clear that, no 
matter how small the load P and the eccentricity e, the couple MA will 
cause some bending of the column (Fig. 10.20). As the eccentric load 

p 

r··.,_A 
,, 

-'I 
l.i 

L '' 

l .,"_ 
I' 

' B 

P' 

(a) 

Fig. 10.19 

p 

p• 

(b) 

1 0.5. Eccentric Loading; Secant Formula 625 

p 

P' 

Fig. 10.20 



626 Columns is increased, both the couple MA and the axial force P increase, and 
both cause the column to bend further. Viewed in this way, the prob
lem of buckling is not a question of determining how long the column 
can remain straight and stable under an increasing load, but rather how 
much the column can be pennitted to bend under the increasing load, 

p if the allowable stress is not to be exceeded and if the deflection Ymax 

;/"" is not to become excessive. 
MA""' Pe 

11
:"\.---.- We first write and solve the differential equation of the elastic curve, 

' y 

Fig. 10.21 

A 
(X "" 0, y ""O] <illc---1.-- y 

L/2 

+ U2 

_! 

Fig. 10.22 

proceeding in the same manner as we did earlier in Sees. 10.3 and 10.4. 
Drawing the free-body diagram of a portion AQ of the column and 
choosing the coordinate axes as shown (Fig. 10.21), we find that the 
bending moment at Q is 

M ~ -Py- MA ~ -Py- Pe 

Substituting the value of Minto Eq. (9.4) of Sec. 9.3, we write 

d'y _ M __ !'_ _ Pe 
dx2 - EI - Ely EI 

Transposing the term containing y and setting 

(10.22) 

p 
p2 =

EI 
(10.6) 

as done earlier, we write 

d'y 
dx? + p2y = -pze (10.23) 

Since the left~hand member of this equation is the same as that of Eq. 
(10.7), which was solved in Sec. 10.3, we write the general solution of 
Eq. (10.23) as 

y =A sinpx + Bcospx- e (10.24) 

where the last term is a particular solution of Eq. (10.23). 
The constants A and B are obtained from the boundary conditions 

shown in Fig. 10.22. Making first x ~ 0, y ~ 0 in Eq. (10.24), we have 

B=e 

Making next x = L, y = 0, we write 

Recalling that 

and 

A sinpL ~ e(1- cospL) 

pL pL 
sinpL = 2 sin 2 cos 2 

. pL 
- cospL = 2sm2 2 

and substituting into Eq. (10.25), we obtain, after reductions, 

pL 
A= etan2 

(10.25) 



Substituting for A and B into Eq. (10.24), we write the equation of the 
elastic curve: 

( 
pL ) J 

y = e tan 2 sinpx +cos px- 1 (1G.26) 

The value of the maximum deflection is obtained by setting~ L/2 
in Eq. (10.26). We have 

( 
pL pL pL ) 

y = e tan-sin-+ cos-- 1 
m~x 2 .2 2 

pL pL 

(

sin2 z + cos2 z 
=e 

pL 
cosz 

Y =e(secpL_l) max 2 

Recalling Eq. (10.6), we write 

Ym~ = e[sec( /&~)- 1] 

(10.27) 

(10.28) 

We note from the expression obtained that Ymax becomes infinite when 

;:; ~ = % (10.29) 

While the deflection does not actually become infinite, it nevertheless 
becomes unacceptably large, and P should not be allowed to reach the 
critical value which satisfies Eq. (10.29). Solving (10.29) for P, we have 

(10.30) 

which is the value that we obtained in Sec. 10.3 for a column under a 
centric load. Solving (10.30) for EI and substituting into (10.28), we 
can express the maximum deflection in the alternative form 

(10.31) 

The maximum stress u max occurs in the section of the column where 
the bending moment is maximum, i.e., in the transverse section through 
the midpoint C, and can be obtained by adding the normal stresses due, 
respectively, to the axial force and the bending couple exerted on that 
section (cf. Sec. 4.12). We have 

P MmaxC 
Umax = }\ + -

1
- (10.32) 

1 0.5. Eccentric Loading; Secant Formula 627 



628 Columns 

Fig. 10.23 

From the free-body diagram of the portionAC of the column (Fig. 10.23), 
we find that 

Mmax = PYmax + MA = P(Ymax + e) 

Substituting this value into (10.32) and recalling that I= Ar2, we write 

"m" =HI+ (Ym"r; e)cl (10.33) 

Substituting for Ymax. the value obtained in (10.28), we write 

(10.34) 

An alternative form for u max is obtained by substituting for Ymax from 
(10.31) into (10.33). We have 

P( ec 1T fk) u =- 1 +-sec- -
max A r2 2 Per 

(10.35) 

The equation obtained can be used with any end conditions, as long as 
the appropriate, value is used for the cdticalloacJ (cf. Sec. 10.4). 

We note that, since u max does not vary linearly with the load P, the 
principle of superposition does not apply to the determination of the 
stress due to the simultaneous application of several loads; the result~ 
ant load must first be computed, and then Eq. (10.34) or Eq. (10.35) 
can be used to determine the corresponding stress. For the same rea~ 
son, any given factor of safety should be applied to the load, and not 
to the stress. 

Making I= Ar2 in Eq. (10.34) and solving for the ratio PIA in 
front of the bracket, we write 

p 

A 
ec (!fhL') 1+-sec---
r2 2Ef\.r 

(10.36) 

where the effective length is used to make the formula applicable to 
various end conditions. This formula is referred to as the secant for~ 
mula; it defines the force per unit area, PIA, that causes a specified 



maximum stress G' rna~ in a column of given effective slenderness ratio, 
Lefr, for a given value of the ratio ec/r2, where e is the eccentricity) of 
the applied load. We note that, since PIA appears in both members, it 
is necessary to Solve a transcendental equation by trial and erroj to 
obtain the value of PIA corresponding to a given column and 1/tling 
condition. 

Equation (10.36) was used to draw the curves shown in Fig. 10.24 
for a steel column, assuming the values of E and uy shown in the fig
ure. These curves make it possible to determine the load per unit area· 
P/A, which causes the column to y!eld for given values of the ratios 
Lelr and ec/r2

• 

300 

250 

200 

l 
; 150 

~ 

100 

50 

0 

,=0 

50 100 

LJr 

o-1. ""250 MPa 
E = 200 GPa 

150 200 

Fig. 10.24 Load per unit area, PIA, causing yield in column. 

We note that, for small values of Lefr, the secant is almost equal 
to I in Eq. (10.36), and PIA can be assumed equal to 

A 1 +~ 
r' 

(10.37) 

a value that could be obtained by neglecting the effect of the lateral de
flection of the column and using the method of Sec. 4.12. On the other 
hand, we note from Fig. 10.24 that, for large values of Le/r, the curves 
corresponding to the various values of the ratio ec/r2 get very close to 
Euler's curve defined. by Eq. (10.13'), and thus that the effect of the 
eccentricity of the loading on the value of PIA becomes negligible. The 
secant fonnula is chiefly useful for intermediate values of Ljr. How
ever, to use it effectively, we should know the value of the eccentricM 
ity e of the loading, .and this quantity, unfortunately, is seldom known 
with any degree of accuracy. 

10.5. Eccentric Loading; Secant Formula 629 



(b) 

, ""22.5 mm 
e = 18 

630 

SAMPLE PROBLEM 1 0.2 

The uniform column AB consists of an 2.4-m section of structural tubing hav
ing the cross section shown. (a) Using Euler's fonnula and a factor of safety 
of two, determine the allowable centric load for the column and the corre
sponding normal stress. (b) Assuming that the allowable load, found in part a, 
is applied as shown at a point 18 mm from the geometric axis of the column, 
determine the horizontal deflection of the top of the column and the maximum 
normal stress in the column. Use E = 200 GPa. 

yl 

,-~ ·~ A= 2284 mm' I L I=3.33X 106mm4 

lOOmm. c :Jx ~=~~:~~ 
1{::~ 

lOOmm 

SOLUTION 

Effective Length. Since the column has one end fixed and one end free, 
its effective length is 

Le = 2(2.4 m) = 4.8 m 

Critical Load. Using Euler's formula, we write 

n'El n 2(200 X 109 Pa)(3.33 X 10-6 m') 
P" ~ (4.8 m') P" = 285.3 kN 

a. Allowable Load and Stress. For a factor of safety of 2, we find 

p ~ _!'_,_ ~ 285.3 kN 
an F.S. 2 Pau = 142.7 kN ~ 

and 

Pall 142.7 kN 
0" =A= 2284 X 10 6 m4 <7 = 62.5 kN ..q 

b. Eccentric Load. We observe that column AB and its loading are iden
tical to the upper half of the column of Fig. 10.19 which was used in the der
ivation of the secant formulas; we conclude that the formulas of Sec. 10.5 ap
ply directly to the case considered here. Recalling that Pa11/P~r = 4 and using 
Eq. (10.31), we compute the horizontal deflection of point A: 

~ (18 mm)(2.252- 1) Ym = 22.5 mm ool;l 

The maximum normal stress is obtained from Eq. (10.35): 

<> ~~[1 +!'O.sec(~ fP)] 
m A r2 2 \fP: 

142.7 X 10
3 

N [ (0.018 m)(0.05 m) ( " )] = 1+ sec--
2284 X 10-6 m2 (0.038 m)' 2v'2 

= (62.48 MPa)[1 + 0.6233(2.252)] <>, ~ 150.2 MPa <II 



10.29 An axial load Pis applied to the 30"mm-diameter steel rod AB as 
shown. For P = 35 kN and e = 1.5 mm, detennine (a) the deflection at the 
midpoint C of the rod, (b) the maximum stress in the rod. Use E = 200 GPa. 

Fig. P10.29 

30"mm 
diameter 

10.30 An axial load P of magnitude 560 kN is applied at a point on the 
x axis at a distance e = 8 mm from the·geometric axis of the W200 X 46.1 
rolled-steel column BC. Using E = 200 GPa, detennine (a) the horizontal 
deflection of end C, (b) the maximum stress in the column. 

Fig. P10.30 

10.31 Solve Pro b. 10.30 if the load P is applied parallel to the geometric 
axis of the column AB so that it intersects the x axis at e = 6 mm. 

631 



632 Columns 

32 

Fig. P10.32 

Fig. P10.34 

10.32 An axial load P is applied to the 32~mm-square aluminum bar BC 
as shown. When P = 24 kN, the horizontal deflection at end Cis 4 mm. Us
ing E = 70 GPa, determine (a) the eccentricity e of the load, (b) the maximum 
stress in the rod. 

Fig. P10.33 

36-mm 
diameter 

1 0.33 An axial load P is applied to the 36-mm:-diameter steel rod AB 
as shown. When P = 90 kN, it is observed that the horizontal deflection of the 
midpoint C is 0.8 rom. Using E 200 GPa, determine (a) the eccentricity e 
of the load, (b) the maximum stress in the rod. 

1 0.34 The axial load P is applied at a point located on the x axis at a 
distance e from the geometric axis of the rolled-steel column BC. When 
P = 350 kN, the horizontal deflection of the top of the column is 5 rom. Us
ing E = 200 GPa, determine (a) the eccentricity e of the load, (b) the maxi
mum stress in the column. 

Fig. P10.35 

10.35 An axial load P is applied at a point D that is 6 nun from the geo
metric axis of the square aluminum bar BC. Using E = 70 GPa, determine 
(a) the load P for which the horizontal deflection of end Cis 12 nun, (b) the 
corresponding maximum stress in the column. 



10.36 An axial load Pis applied at a point located on the x axis at a 
distance e = 12 mm from the geometric axis of the W250 X 58 rolled-steel 
column BC. Using E = 200 GPa, dete[mine (a) the load P for which th~ hor
izontal deflectio~ of the top of the column is 15 mm, (b) the corr7sp :nding 
maximum stress in the column. 

Fig. P10.36 

10.37 An axial load P is applied at a point located on the x axis at a 
distance e = 12 mm from the geometric axis of the W31 0 X 60 rolled-steel 
column BC. Assuming that L = 3.5 m and using E = 200 GPa, determine 
(a) the load P for which the horizontal deflection at end C is 15 nun, (b) the 
corresponding maximum stress in the column. 

10.38 Solve Prob. 10.37, assuming that L is 4.5 m. 

10.39 A brass pipe having the cross section shown has an axial load P 
applied 4 mm from its geometric axis. Using E = 120 GPa, determine (a) the 
load P for which the horizontal deflection at the midpoint Cis 5 mm, (b) the 
corresponding maximum stress in the column. 

Fig. P10.39 

Problems 633 
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634 Columns 

Fig. P10.41 

Fig. P10.43 and P10.44 

10.40 Solve Prob. 10.39, assuming that the axial load P is applied 
8 rom from the geometric axis of the column. 

1 0.41 The steel bar AB has a l 0 X l 0-mm square cross section and is 
held by pins that are a fixed distance apart and are located at a distance e = 0.9 
mm from the geometric axis of the bar. Knowing that at temperature T0 the 
pins are in contact with the bar and that the force in the bar is zero, determine 
the increase in temperat1.1re for which the bar will just make contact with point 
C if d = 0.3 inm. UseE = 200 GPa and the coefficient of thermal expansion 
a = 11.7 X l0-6/ 0 C, 

10.42 For the bar of Prob. 10.41, determine the required distanced for 
which the bar will just make contact with point C when the temperature 
increases by 60°C. 

10.43 An axial load Pis applied to the W250 X 44.8 rolled-steel col
umn BC that is free at its top C and fixed at its base B. Knowing that the 
eccentricity of the load is e = 12 mm and that for the grade of steel used 
O'y = 250 MPa and E = 200 GPa, determine (a) the magnitude of P of the 
allowable load when a factor of safety of 2.4 with respect to permanent 
deformation is required, (b) the ratio of the load found in part a to the mag
nitude of the allowable centric load for the column. (Hint: Since the factor 
of safety must be applied to the load P, not to the stress, use Fig. 10.24 to 
determine Py). 

10.44 Solve Prob. 10.43, assuming that the length of the column is re
duced to 1.5 m. 

10.45 A 3.5-m~long steel tube having the cross section and properties 
shown is used as a column. For the grade of steel used O'y = 250 MPa and 
E = 200 GPa. Knowing that a factor of safety of 2.6 with respect to perma
nent deformation is required, detennine the allowable load P when the eccen
tricity e is (a) 15 mm, (b) 7.5 mm. (See hint of Prob. 10.43). 

1Z7mm 

A"" 3400mm2 

I -= 7.93 X 10-6m<~ 

r = 48.3mm 

Fig. P10.45 and P10.46 

.l 
3.5m 

J 

10.46 Solve Prob. 10.45, assuming that the length of the steel tube is 
increased to 5 m. 



10.47 Axial loads of magnitude P = 80 kN are applied parallel to the 
geometric axis of the W200 X 22.5 rolled~steel column AB and intersect ;the x 
axis at a distance e from the geometric axis. Knowing that u an = 84 MP~ and 
E = 200 GPa, de~ermine the largest permissible length L when (a) eJ-, mm, 
(b) e = 12 mm. 

1 0.48 Axial loads of magnitude P = 600 kN are applied parallel to 
the geometric axis of the W250 X 80 rolled-steel column AB and intersect 
the x axis at a distance e from the geometric axis. Knowing that O"a11 = 84 
MPa and E = 200 GPa, determine the largest permissible length L when 
(a) e = 6 mm, (b) e = 12 mm. 

10.49 A 250-kN axial load P is applied to the W200 X 35.9 rolled
steel column BC which is free at its top C and fixed at its base B. Knowing 
that the eccentricity of the load is e = 6 mm, determine the largest per
missible length L if the allowable stress in the column is 80 MPa. Use 
E = 200 GPa. 

Fig. P1 0.49 and P1 0.50 

10.50 A 100-kN axial load Pis applied to the WI50 X 18 rolled-steel 
column BC which is free at its top C and fixed at its base B. Knowing that the 
eccentricity of the load is e = 6 mm, determine the largest permissible length 
L if the allowable stress in the column is 80 MPa Use E = 200 GPa. 

10.51 Axial loads of magnitude P = 175 kN are applied parallel to the 
geometric axis of a W250 X 44.8 rolled-steel column AB and intersect the axis 
at a distance e = 12 mm from its geometric axis. Knowing that O'y = 250 MPa 
and E = 200 GPa, determine the factor of safety with respect to yield. (Hint: 
Since the factor of safety must be applied to the load P, not to the stresses, use 
Fig. 10.24 to determine Py.) 

10.52 Solve Prob. 10.51, assuming that e = 0.16 mm and P = 155 kN. 

10.53 A 54-k.N axial load is applied with an eccentricity e = 10 mm to 
the circular steel rod BC that is free at its top C and fixed at its base B. Know
ing that the stock of rods available for use have diameters in increments of 
4 mm from 44 mm 1o 72 mm, determine the lightest rod that may be used if 

Fig. P1 0.47 and P1 0.48 

Fig. P10.51 and P10.52 

u 311 = llO MPa. UseE= 200 GPa. Fig. P10.53 
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636 Columns 10.54 Solve Prob. 10.53, assuming that the 54-k.N axial load will be 
applied to the rod with an eccentricity e = !d. 

10.55 An axial load of magnitude P = 200 kN is applied at a point 
located on the x axis at a distance e = 6 mm from the geometric axis of the 
wide-flange column BC. Knowing that E = 200 GPa, choose the lightest W8 
shape that can be used if <r all = 125 MPa. 

,. 

Fig. P10.55 and 10.56 

10.56 Solve Prob. 10.55, assuming that the magnitude of the axial load 
is P ~ 350 kN. 

10.6. DESIGN OF COLUMNS UNDER A CENTRIC LOAD 

In the preceding sections, we have determined the critical load of a col
umn by using ·Euler's formula, and we have investigated the deforma
tions and stresses in eccentrically loaded columns by using the secant 
formula. In each case we assumed that all stresses remained below the 
proportional limit and that the column was initially a straight homoge
neous prism. Real columns fall short of such an idealization, and in 
practice the design of columns is based on empirical formulas that re
flect the results of numerous laboratory tests. 

Over the last century, many steel columns have been tested by ap
plying to them a centric axial load and increasing the load until failure 
occurred. The results of such tests are represented in Fig. 10.25 where, 
for each of many tests, a point has been plotted with its ordinate equal 
to the normal stress O" cr at failure, and its abscissa equal to the corre
sponding value of the effective slenderness ratio, Lefr. Although there 
is considerable scatter in the test results, regions corresponding to three 
types of failure can be observed. For long columns, where LJr is large, 
failure is closely predicted by Euler's formula, and the value of U,;;r is 
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observed to depend on the modulus of elasticity E of the steel used, but 
not on its yield strength o-y. For very short columns and compression 
blocks, failure occurs essentially as a result of yield, and we have 
O"cr,:::::: <ry. Columns of intermediate length comprise those cases where 
failure is dependent on both O"y and E .. In this range, column failure is 
an extremely complex phenomenon, and test data have been used 
extensively to guide the development of specifications and design 
formulas. 

Empirical formulas that express an allowable stress or ciitical stress 
in terms of the effective slenderness ratio were first introduced over a 
century ago, and since then have undergone a continuous process of re
finement and improvement. Typical empirical formulas used to ap
proximate test data are shown in Fig. 10.26. It is not always feasible to 
use a single formula for all values of L/r. Most design specifications 

Stmight line: o-cr .,. c7 1 - k 1 ~ ----
(7cr ""' 0" 2 - k2 (!;f" 

Gordon-Rankine formula: 

I ., 
........ ., O"cr"" l+k3('7Y 

-----. 

Fig. 10.26 

use different formulas, each with a definite range of applicability. In 
each case we must check that the formula we propose to use is appli
cable for the value of Lir for the column involved. Furthermore, we 
must determine whether the formula provides the value of the critical 
stress for the column, in which case we must apply the appropriate fac
tor of safety, or whether it provides directly an allowable stress. 

10.6. Design of Columns under a 
Centric load 637 



638 Columns 

(a) 

Specific formulas for the design of steel, aluminum, and wood 
columns under centric loading will now be considered. Figure 10.27 
shows examples of columns that would be designed using these for
mulas. The design for the three different materials using Allowable 
Stress Design is first presented. This is followed with the formulas 
needed for the design of steel columns based on Load and Resistance 
Factor Design. t 

(b) 

Fig. 10.27 The water tank in (a) is supported by steel columns and the building in construction in 
(b) is framed with wood columns. 

\D 
O'y A ' ' ' 
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' ·~ 
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c, 
Fig. 10.28 

E 

Structural Steel-Allowable Stress Design. The formulas most 
widely used for the allowable stress design of steel columns under a 
centric load are found in the Allowable Stress Design Specifications of 
the American Institute of Steel Construction.:j: A parabolic expression 
will be used to predict u ~~~ for columns of short and intennediate lengths, 
and an Euler-type relation will be used for long columns. These rela
tions are developed in two steps: 

1. First a curve representing the variation of O'er with L/r is ob
tained (Fig. 10.28). It is important to note that this curve does not in
corporate any factor of safety. The portion AB of this curve is an arc of 
parabola defined by an equation of the fonn 

Ucr =<To- k(7J (10.38) 

while portion BE is part of Euler's curve DBE defined by the equation 

-rr'E 
<T" = (L/r)' (10.39) 

We note that, since Ucr = O'y for L/r = 0, the constant u 0 in Eq. (10.38) 
must be equal to Uy. On the other hand, it is assumed in theAISC spec~ 
ifications that at point B where the parabola joins Euler's curve, the crit~ 

tin specific design fonnulas, the letter L will always refer to the effective length of the 
column. 

;Manual of Steel Construction, Allowable Stress Design, 9th ed., American Institute of 
Steel Construction, New York, 1989. 



ical stress 'is equal to half of the yield stress. Denoting by Cc the value 
of L/r at that point, Eq. (10.38) yields therefore 

J 2 ! 
, i<Ty=cry-kCc J 

and k = <Ty/2C;. Substituting for cr0 and k into Eq. (10.38), we find that 

for ur"' c,: 0'" = O'y[ 1 - c~~]'] <!o.4o) 

and, recalling (!0.39), that 

Making <Tcr =!err and L/r = Cc in Eq. (10.41), we find that 

21r2E 
C'=--' O'y 

(10.41) 

(!0.42) 

2. A factor of safety must be introduced to obtain the final AISC 
design f01mulas defining cr811 as a function of L/r. For L/r 2.:: Cc, that 
is~ for long columns, a constant factor of safety of 1.92 is used. Divid
ing the value obtained in Eq. (10.41) for <Tcr by this factor of safety, and 
noting that the AISC specifications state that L/r preferably should not 
exceed 200, we writet 

(!D.43) 

For short and intennediate~length columns, the following formula is 
used to determine the factor of safety: 

F.S. = :1, + 3 _ .!.(L/r)' 
3 8 c, 8 c, (10.44) 

Dividing the expression obtained in (10.40) for <Tcr by this factor of 
safety, we write 

L - < c· r ,. 0'" O'y [ I (L/r)'] 
<Tall = F.S. = F.S. I - 2 C:: (!0.45) 

The formulas obtained can be used with SI or U.S. customary units. 
We observe that, by using Eqs. (10.42), (!0.43), (10.44), and 

(10.45), we can detennine the allowable axial stress for a given grade 
of steel and any given allowable value of L/r. The procedure is to first 
compute Cc by substituting the given value of cry into Eq (10.42). For 
values of L/r larger than Cc, we then use Eq. (10.43) to determine <Tan• 

and for values of L/r smaller than Cc, we determine <Tau from Eqs. 
(10.44) and (!0.45). For the convenience of the designer, values of the 
allowable stress have been tabulated in the AISC Manual of Steel Con· 
struction for different grades of steel and for all values of L/r from I 
to 200. The variation of <Tan with L/r is shown in Fig. 10.29 for differ
ent grades of structural steel. 

/ 

tThe AISC actually specifies u,1, = 12-rr~E/23(L/rf 

Fig. 10.29 
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Determine the longest unsupported length L for which the 
SlOO X 11.5 rolled*steel compression member AB can safely 
carry the Qentric load shown (Fig. 10.30). Assume O"y = 
250MPa and E = 200 GPa. 

If the 60*k.N load is to be safely supported, we must have 

P 60X 102N 
O"au =A= 1460 X 10 6 m2 

Fig. 10.30 

On the other hand, for the given yield strength, Eq. (10.42) 
gives 

C' = 2w
2
E = 21T

2
(200 X 10

9
) 15.79 X 10' 

c Uy 250 X 106 

c, = 125.7 

Assuming L/r 2::. C,, we use Eq. (10.43) and write 

'FT2£ 'FT
2(200 X 109 Pa) 1.028 X 1012 Pa 

"•" = 1.92(L/r)2 1.92(L/r)2 (L/r)2 

Equating this expression to the required value of a nil> we write 

1.028 X 1012 Pa _ 6 
(L/r)' - 41.1 X 10 Pa L/r = 158.2 

Our assumption that L/r 2::. C, was correct. Choosing the 
smaller of the two radii of gyration, we have 

From Appendix C we find that, for an S 100 X 11.5 shape, L L 

A = 1460 mm2 rx = 41.6 mm r,. = 14.8 mm 
158.2 L = 2.34 m 

r, 14.8 X 10-3 m 

640 

/u~u=C~-cz+ 

c, 
O'u!l"" (Lk)2 

I 

Fig. 10.31 

Lk 

Aluminum. Many aluminum alloys are available for use in structural 
and machine construction. For most columns the specifications of the 
Aluminum Associationt provide two formulas for the allowable stress 
in columns under centric loading. The variation of O" aJ! with L/r defined 
by these formulas is shown in Fig. 10.31. We note that for short columns 
a linear relation between O"au with L/r is used and for long columns an 
Euler-type fonnula is used. Specific fonnulas for use in the design of 
buildings and similar structures are given below for two commonly used 
alloys. 

Alloy 6061-T6: 

L/r < 66: "•" ~ [139- 0.868(L/r)]MPa (10.46') 

351 X 103 MPa 
Llr;, 66: (J all ::::; 

(L/r)2 
(10.47) 

Alloy 2014-T6: 

L/r <55: "•" = [212 - 1.585(L/r)] MPa (10.48') 

372 X 103 MPa 
Llr;, 55: 0" all ::::; 

(L/r)' 
(10.49) 

tSpecifications and Guidelines for Aluminum Structures, Aluminum Association, Inc., 
Washington D.C., 2000. 



Wood. FOr the design of wood columns the specifications of the Amer
ican Forest and Paper Associationt. provides a single equation th~t can 
be used to obtain the allowable stress for short, intennediate,~n long 
columns under.centric loading. For a column with a rectangula cross 
section of sides band d, where d < b, the variation of O"au wit L/d is 
shown in Fig. 10.32. 

0 50 

Ud 
Fig. 10.32 

For solid columns made from a single piece of wood or made by 
gluing laminations together, the allowable stress O"all is 

(10.50) 

where a-c is the adjusted allowable stress for compression parallel to 
the grain.:j: Adjustments used to obtain O"c are included in the specifi
cations to account for different variations, such as in the load duration. 
The column stability factor Cp accounts for the column length and is 
defined by the following equation: 

(10.51) 

The parameter c accounts for the type of column, and it is equal to 0.8 
for sawn lumber columns and 0.90 for glued laminated wood columns. 
The value of u cE is defined as 

(10.52) 

where Kcc is the Euler buckling coefficient Values of KCE are 0.300 for 
columns made from a single piece of structurally graded wood and 0.418 
for glued laminated columns. Columns in which L/d exceeds 50 are not 
permitted by the N~tional Design Specification for Wood Construction. 

tNational Design Specification for Wood Construction, American Forest and Paper Asso
ciation, American Wood Council, Washington, D.C., 1997. 

:j:ln the National Desi'gn Specification for Wood Construction, the symbol F is used for 

stresses. 
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C.nowing that column AB (Fig. 10.33) has an effective length 
,f 4.2 m, and that it must safely carry a 144-k.N load, design 
he column using a square glued laminated cross section. The 
noduius of elasticity for the wood is E = 11 GPa and the ad
usted allowable stress for compression parallel to the grain is 
'c""" 7MPa. 

We nOte that c = 0.90 and that Kce = 0.418 for glued 
aminated wood columns. We must compute the value of O" CE· 

Jsing Eq. (10.52) we write 

0.418(ll GPa) _ _
3 2 

( 
, )' - 0.26 X 10 d MPa 

4.2m/d 

Ve then use Eq. (10.51) to express the column stability factor 
n terms of d, with (O"cefO"c) = (0.26 X 10-3d 2 MPa)/(7 MPa) 
·7.1 x w-'d'. 

c, 1 + (ace/O"c) _ f[l + (O"ce/O"c)l2 
_ O"cdac 

2c V 2c c 

1 + 37.1 X 10-6d 2 
_ ~[l + 37.1 X 10-

6
d

2
]' 

2(0.90) 2(0.90) 

:ince the column must carry 144 kN, which is equal to a c d2, 
ve use Eq. (10.50) to write 

144kN 
O"au = O"cCp = 7 MPaCp 

:olving this equation for Cp and substituting the value obtained 
nto the previous equation, we write 

0.6X103 =1+37.1X10-6 d 2
_ /[1+37.1X10 6 d 2

]' 

d3 2(0.90) y 2(0.90) 

:olving ford by trial and error yields d = _160 mm. 

i42 

_r ~ 144kN 

n'~, 
4.2m ····~ L .. i/a·.··~·"····: r· ·. I. 

.: .•• / B 
~··.•···~ 

37.1 x w- 6 d 2 

0.90 

37.1 x w-' J' 
0.90 

Fig. 10.33 



*Structural Steel-Load and Resistance Factor Design. As we saw 
in Sec. 1.13, an alternative method of design is based on the deteJ;mi~ 
nation of the load at which the structure ceases to be usefuL Design is 
based on the inequality given by Eq. (1.26): j 

roPo + y,P, :5 </>Pu y/26) 

The approach used fOr the design of steel columns under a centric load 
as found in the Load and Resistance Factor Design Specifications Of 
the American Institute of Steel Co!1structiont is similar to that in the 
Allowable Stress Design Specifications. Two equations are used to ob~ 
tain the uti mate load P u. one for short and intermediate¥ length columns 
and another for long columns. To determine P U• the ratio L/ r is first 
converted to a slenderness parameter Ac. defined as 

Ac = ~ Jif (10.53) 

Short and interrnediate~length columns are those with Ac $ 1.5 and 
long columns are those with Ac 2: 1.5. 

The ultimate load for short and intermediate~length columns 
(Ac :5 1.5) is 

(10.54) 

The Euler relation forms the basis for the determination of the ultimate 
load for long columns. Thus, for long columns (Ac 2'.: 1.5), 

p = A(0.877) u A 2 err 
.c 

(10.55) 

We observe that, by using Eqs. (10.53), (10.54), and (10.55) with 
Eq. (1.26), we can determine if the design is acceptable. The procedure 
is to first determine the slenderness parameter Ac from Eq. (10.53). For 
values of L/r smaller than Ac, the ultimate load Pu for use with (1.26) 
is obtained from Eg. (10.54), and for values of L/r larger than Ac, the 
ultimate load Puis obtained from Eq. (10.55). We can then use Pu in 
Eq. (1.26) to determine if the design is acceptable. The Load andRe
sistance Factor Design Specifications of the American Institute of Steel 
Construction specify that the resistance factor cf> is 0.85. 

Note: The design formulas presented in this section are intended 
to provide examples of different design approaches. These for
mulas do not provide all the requirements that are needed for many 
designs, and the student should refer to the appropriate design 
specifications before attempting actual designs. 

tManual of Steel Consrtuction, Load & Resistance Factor Design, 3rd ed., American In
stitute of Steel Construction, Chicago, ll.., 2001. 
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Buckling in x;;; plane 
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SAMPLE PROBLEM 10.3 

Column AB consists of a W250 X 58 rolled~steel shape made of a grade of 
steel for which O'"y = 250 MPa and E = 200 GPa. Determine the allowable 
centric load P (a) if the effective length of the column is 7.2 min all direc
tions, (b) if bracing is provided to prevent the movement of the midpoint C in 
the xz plane. (Assume that the movement of point C in the yz plane is not af
fected b)' the bracing.) 

SOLUTION 

ly W250 X 58 

A"" 7420 mm2 

~-x r,=108mm 
~ ry=50.3mm 

We first compute the value of Cc corresponding to the given yield strength 
o-y = 250 MPa. 

2 
_ 27r2E _ 21T2{200 GPa) _ 

3 C,- --- OMP - 15.7 x 10 C, = 125.3 
uy 25 a 

a. Effective Length= 7.2 m. Since ry < r~, buckling will take place in 
the xz plane. For L = 7.2 m and r = ry = 50.3 mm the slenderness ratio is 

L 7200mm 
50 = 143.1 

.3mm 

Since L/r > Cc, we use Eq. (10.43), withE= 200 GPa 

rr'E rr2(200 GPa) 
<r all = 50.2 MPa 

l.92(Lf,)' 1.92(143.1)2 

Pan= <r~10 = (50.2 MPa)(7.42 X 10-3 m2
) P~11 = 372.5 MPa ..;! 

b. Bracing at Midpoint C. Since bracing prevents movement of point 
C in the xz plane but not in the yz plane, we must compute the slenderness ra~ 
tio corresponding to buckling in each plane and determine which is larger. 

xz Plane: Effective length = 3.6 m, r = r.v = 6.0503 m 

L/r = (3.6 m)/(0.0503 m) = 71.6 

yz Plane: Effective length = 7.2 m, r = r.( = 0.108 m 

L/r (7.2 m)/(0.108 m) = 66.7 

Since the larger slenderness ratio corresponds to a smaller allowable load, we 
choose L/r = 71.6. Since L/r < Cc, the column is of intermediate length and 

x we use Eqs. (10.44) and (10.45). We first compute the factor of safety, then 
the allowable stress, and finally the allowable load P. 

Buckling in yz plane F.S. = ~ + ~(L/r) _ l(L!r)' = _5. + ~( 71.6) _ !( 71.6 )' = 1.86 
3 8 c, 8 c, 3 8 125.3 8 125.3 

,.,
11 

= .:!.!._[! _ l_(L!rV] = 250 MPa [1 _ !( 71.6 )'] = 112.5 MPa 
F.S. 2 C,) 1.86 2 125.3 

Pan= 0'.10 = (112.5 MPa)(7420 X 10-6 m2) Pull = 834.8 kN «(! 
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SAMPlE PROBlEM 10.4 
I 

Using the aluminum71lo. 2014-T6, determine the smallest diameter rod which 
can be used to suppo the centric load P = 60 k:N if (a) L = 750 mm, 
(b) L ~ 300 mm. 

SOLUTION 

For the cross section of a solid circular rod, we have 

I = '!!_c4 A = 'rfc2 r = rz = r;;;174 = ~ 
4 'J A \j -:;;;;z z 

a. Length of 750 mm. Since the diameter of the rod is not known, a 
value of L/r must be assumed; we assume that L/r > 55 and use Eq. (10.49). 
For the centric load P, we have u = P/ A and write 

P 372 X 103 MPa 
A= O"au = (L/r)Z 

60 X 103 N 372 X 109 Pa 

For c = 18.44 mm, the slenderness ratio is 

L L 

r c/2 
750mm 

(18.44 mm)/2 

c = 18.44 mm 

81.3 >55 

Our assumption is correct, and for L = 750 mm, the required diameter is 

d ~ 2c ~ 2( 18.44 mm) d ~ 36.9 mm <1 

b. Length of 300 mm. We again assume that L/r > 55. Using 
Eq. (11.49), and following the procedure used in part a, we find that 
c 11.66 mm and L/r = 51.5. Since L/r is less than 55, our assumption is 
wrong; we now assume that L/r < 55 and use Eq. (10.48') for the design of 
this rod. 

~~O",u~ [2!2-1585(~)]MPa 
60 

X 
103 

N ~ [212 - L585 (
0
·
3 m)]w' Pa 

1TC
2 c/2 

c = 12.00 mm 

For c = 12.00 mm, the slenderness ratio is 

L L 

r c/2 
300mm 

50 
(12.00 mm)/2 

Our second assumption that L/ r < 55 is correct. For L = 300 mm, the required 
diameter is 

d ~ 2c"' 2(12.00 mm) d = 24.0mm 4.3 

645 
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Fig. P10.59 

10.57 A W200 X 46.1 rolled-steel shape is used to form a column of 
6-m effective length. Using allowable stress design, detennine the allowable 
centric load if the yield strength of the grade of steel used is (a) uy = 250 
MPa, (b) uy ~ 345 MPa. UseE~ 200 GPa. 

10.58 Using allowable stress design, determine the allowable centric 
load for a column of 6-m effective length that is made from the following 
rolled-steel shape: (a) W200 X 35.9, (b) W200 X 86. Use o-y = 250 MPa and 
E ~ 200 GPa. 

10.59 A column with the cross section shown has a 4-m effective length. 
Using allowable stress design, determine the largest centric load that can be 
applied to the column. Use O'y = 250 MPa and E = 200 GPa. 

' 
A "" 13.8 X 103 mm2 + 11 lx"' 26.0 X 106 mm4 

:: Iy "" 142.0 x 106 mm4 

" <;.::::_ -_-..:_ ';_-_-_-_-_l 

Fig. P10.60 

10.60 A column is made from half of a W360 X 216 rolled-steel shape, 
with the geometric properties as shown. Using allowable stress design, deter~ 
ntine the allowable centric load if the effective length of the column is (a) 4.0 m, 
(b) 6.5 m. Use (Ty = 345 MPa and E = 200 GPa. 

10.61 A compression member has the cross section shown and an ef
fective length of 1.5 m. Knowing that the aluntinum alloy used is 20 14~ T6, 
detennine the allowable centric load. 

Fig. P10.61 



10.62 Bar AB is free at its end A and fixed at its base B. Determine the 
allowable centric load P if the aluminum alloy is (a) 606l-T6, (b) 2014·T6. 

/ 

Fig. P10.62 

10.63 A sawn lumber column with a 190 X 140-mm cross section has 
a 5.5-m effective length. Knowing that for the grade of wood used the ad
justed allowable stress for compression parallel to the grain is CI c = 8.5 MPa 
and that E = 9 GPa, deterinine the maximum allowable centric load for the 
column. 

10.64 A column having a 3.5-m effective length is made of sawn lum
ber with a 114 X 140-mm cross section. Knowing that for the grade of wood 
used the adjusted allowable stress for compression parallel to the grain is 
Cic = 7.6 MPa and E = 10 GPa, determine the maximum allowable centric 
load for the column. 

10.65 The glue laminated column shown is made from four planks, each 
of 38 X 190-mm cross section. Knowing that for the grade of wood used the 
adjusted allowable stress for compression parallel to the grain is a-c = 10 MPa 
and E = 12 GPa, determine the maximum allowable centric load if the effec
tive length of the column is (a) 7 m, (b) 3m. 

10.66 An aluminum structural tube is reinforced by riveting two plates to 
it as shown for use as a column of 1.7-m effective length. Knowing that all ma
terial is aluminum alloy 2014-T6, determine the maximum allowable centric load. 

lOmm 

r ! 

50mm 

L 
lOmm 

Fig. P10.66 

r-190mm----j 

Fig. P10.65 

-r __±_ 38 mm 

j 38mm 

38mm 

38mm 
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I 
Fig. P10.67 

Fig. P10.69 

Fig. P10.71 

10.67 and 10.68 A compression member of 9-m effective length is 
obtained by welding two 10-mm-thick steel plates to a W250 X 80 rolled-steel 
shape as shown. Knowing that (]" r = 345 MPa and E = 200 GPa and using 
allowable stress design, determine the allowable centric load for the compres
sion member. 

DO 
Fig. P10.68 

10.69 A column of 6-m effective length is obtained by connecting two 
C250 X 30 steel channels with lacing bars as shown. Using allowable stress 
design, determine the allowable centric load for the column. Use cr r = 250 
MPa and E ~ 200 GPa. 

Fig. P10.70 

10.70 A column of 6.4-m effective length is obtained by connecting four 
89 X 89 X 9.5-mm steel angles with lacing bars as shown. Using allowable 
stress design, determine the allowable centric load for the column. Use 
ur = 345 MPa and E = 200 GPa. 

1 0. 71 A 260-kN centric load is applied to the column shown, which is 
free at its top A and fixed at its base B. Using aluminum alloy 2014-T6, select 
the smallest square cross section that can be used. 

Fig. P10.72 

10.72 A 72-kN centric load must be supported by an aluminum column 
as shown. Using the aluminum alloy 6061-T6, determine the minimum 
dimension b that can be used. 



10.73 An aluminum tube of 90~mm outer diameter is to carry a centric 
load of 120 k.N. Knowing that the stock of tubes available for use are made of 
alloy 2014~T6 and with wall thicknesses in increments of 3 mm from P mm 
to 15 mm, determine the lightest tube that can be used. /, 

J 120kN 

~~'A 
I . 

L' 
B 

90·mm outside 
di<l.meter 

Fig. P10.73 

10.74 A glue laminated column of 3~m effective length is to be made 
from boards of 24 X IOO~mm cross section. Knowing that for the grade of 
wood used, E = 11 GPa and the adjusted allowable stress for compression par
allel to the grain is u c = 9 MPa, determine the number of boards that must be 
used to support the centric load shown when (a) P 34 kN, (b) P = 17 kN. 

Fig. P10.74 

10.75 An 75-kN centric load is applied to a rectangular sawn lumber 
column of 6.5-m effective length. Using sawn lumber for which the adjusted 
allowable stress for compression parallel to the grain is uc = 7.3 MPa and 
knowing that E = 10 GPa, determine the smallest square cross section that 
may be used. Use b = 2d. Fig. P10.75 
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p 

3d 

Fig. P10,80 

10.76 The glued lamiilated column shown is free at its top A and fixed 
at its base B. Using wood that has an adjusted allowable stress for compression 
parallel to the grain CTc = 9.2 MPa and a modulus of elasticity E = 12 GPa, 
determine the smallest cross section that can support a centric load of 62 kN. 

Fig. P10.76 

10.77 A colurrm of 4.5-m effective length must carry a centric load of 
900 k.N. Knowing that CTy = 345 MPa and E = 200 GPa, use allowable stress 
design to select the wide-flange shape of 250-mm nominal depth that should 
be used. 

10.78 A column of 6.8-m effective length must carry a centric load 
of 1200 k.N. Using allowable stress design, select the wide-flange shape of 350-
mm nominal depth that should be used. Use O'y = 350 MPa and E = 200 GPa. 

10.79 A colurrm of 5-m effective length must carry a centric load of 
950 k.N .. Using allowable stress design, select the wide-flange shape of 250-
mm nominal depth that should be used. Use ay = 250 MPa and E = 200 GPa. 

10.80 A'centric load P must be supported by the steel bar AB. Using al
lowable stress design, determine the smallest dimension d of the cross section 
that can be used when (a) P = 108 k.N, (b) P = 166 k.N. Use ay = 250 MPa 
and E = 200 GPa. 

10.81 A square structural tube having the cross section shown is used 
as a column of 7 .8-m effective length to carry a centric load of 260 kN. Know
ing that the tubes available for use are made with wall thicknesses of 1.5 mm 
from 6 mm to 18m, use allowable stress design to determine the lightest tube 
that can be used. Use ay = 250 MPa and E = 200 GPa. 

l-!50mm-/ 
Fig. P10.81 



10.82 Solve Prob. 10.81, assuming that the effective length of the 
column is decreased to 6 m. 

10 •. 83 Two 89 X 64-mm angles are bolted together as shown for J;.se as 
a column of 2.4-in effect~ve length to carry a centric load of 180 kN)<now
ing that the angles available have thicknesses of 6.4 mm, 9.5 mm, and }2.7 mm, 
use aliowable stress design to determine the lightest angles that cafi be used. 
Use O'y = 250 MPa and E = 200 GPa. 

Fig. P10.83 

10.84 Two 89 X 64-mm angles are bolted together as shown for use as 
a column of 2.4-m effective length to carry a centric load of 325 kN. Know
ing that the angles available have thicknesses of 6.4 mm, 9.5 mm, and 12.7 mm, 
use allowable stress design to determine the lightest angles that can be used. 
Use o-y = 250 MPa and E = 200 GPa. 

*10.85 A column with a 5.8-m effective length supports a centric load, 
with ratio of dead to live load equal to 1.35. The dead load factor is 'Yo = 1.2, 
the live load factor 'YL = 1.6, and the resistance factor¢ = 0.85. Use load and 
resistance factor design to determine the allowable centric dead and live loads 
if the column is made of the following rolled-steel shape: (a) W250 X 67, 
(b) W360 x 101. Use O"y ~ 345 MPa and E ~ 200 GPa. 

*1 0.86 A rectangular tube having the cross section shown is used as a 
column of 4.4-m effective length. Knowing that o-y = 250 MPa and E = 200 
GPa, use load and resistance factor design to determine the largest centric Jive 
load that can be applied if the centric dead load is 220 k.N. Use a dead load fac
tor 'Yo = 1.2, a live load factor 'YL = 1.6 and the resistance factor 4> = 0.85. 

*10.87 A column of 5.5-m effective length must carry a centric dead 
load of 310 kN and a centric live load of 375 kN. Knowing that O'y = 250 MPa 
and E = 200 GPa, use load and resistance factor design to select the wide
flange shape of 310-mm nominal depth that should be used. The dead load fac
tor 'Yo = 1.2, the live load factor 'YL = 1.6 and the resistance factor¢ = 0.85. 

*1 0.88 The structural tube having the cross section shown is used as a 
column of 4.5-m effective length to carry a centric dead load of 210 kN and a 
centric live load of 240 kN. Knowing that the tubes available for use are made 
with wall thicknesses in increments of 2 mm from 4 mm to 10 mm, use load 
and resistance factor design to detennine the lightest tube that can be used. Use 
o-y = 250 MPa and E = 200 GPa. The dead load factor 'Yo = 1.2, the live load 
factor 'YL = 1.6 and the resistance factor 4> = 0.85. 

15[00 L,,,,. , 
f.--150 mm--1 

Fig. P10.88 
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Fig. 10.34 

+ 

Fig. 10.35 

10.7. DESIGN OF COLUMNS UNDER AN ECCENTRIC LOAD 

In this section, the design of columns subjected to an eccentric load will 
be considered. You will see how the empirical formulas developed in 
the preceding section for columns under a centric load can be modified 
and used when the load P applied to the column has an eccentricity e 
which is known. 

M = Pe We first recall from Sec. 4.12 that an eccentric axial load Pap-
plied in a plane of symmetry of the column can be replaced by an 
equivalent system consisting of a centric load P and a couple M of 
moment M = Pe, where e is the distance from the line of action of 
the load to the longitudinal axis of the column (Fig. 10.34). The nor
mal stresses exerted on a transverse section of the column can then 
be obtained by superposing the stresses due, respectively, to the cen
tric load P and to the couple M (Fig. 10.35), provided that the sec
tion considered is not too close to either end of the column. and as 
long as the stresses involved do not exceed the proportional limit of 
the material. The normal stresses due to the eccentric load P can thus 
be expressed as 

(j = (jcenhic + (jbencling (10.56) 

Recalling the results obtained in Sec. 4.12, we find that the maximum 
compressive stress in the column is 

P Me 
(jrnax =A+ [ (10.57) 

In a properly designed column, the maximum stress defined by 
Eq. ( 1 0.57) should not exceed the allowable stress for the column. Two 
alternative approaches can be used to satisfy this requirement, namely, 
the allowable~stress method and the interaction method. 

a. AHowable·Stress Method. This method is based on the assumption 
that the allowable stress for an eccentrically loaded column is the sarrte 
as if the column were centrically loaded. We must have, therefore, 
0" max :=:; cr all• where cr all is the allowable stress under a centric load, or 
substituting for a rnax from Eq. (10.57) 

P Me 
A +Jscran (10.58) 

The allowable stress is obtained from the fonnulas of Sec. 10.6 which, 
for a given material, express a au as a function of the slenderness ratio 
of the column. The major engineering codes require that the largest 
value of the slenderness ratio of the column be used to determine the 
allowable stress, whether or not this value corresponds to the actual 
plane of bending. This requirement sometimes results in an overly con
servative design. 



A column with a 50~mm~square cross section and 0.7~m ef~ 
fective length is m;lde of the aluminum alloy 2014~T6. Using 
the allowable~stress method, determine the maximum load P 
that can be safely supported with an eccentriCity of 20 mm. 

i next compute L/r = (700 mm)/(14.4 mm) = 48.6. 
L/r < 55, we use Eq. (10.48) to determine the al~ 

for the aluminum column subjected to a centric 
have 

o-, 11 = [212 - 1.585(48.6)] = 135 MPa 

We first compute the radius of gyration r using the given 
data 

We now use Eq. (10.58) with M = Pe and c =!(50 mm) 
= 25 m to determine the allowable load; 

P P(20 mm)(25 mm) 
--- + --- :S 135 MPa 
2500 mm2 520833 mm4 A= (50mm)2 =2500mm2 I =12(50mm)4 = 520833mm4 

p s 99.3 
520833 mm4 

2500 mm2 14.4 The maximum load that can be safely applied is 
p = 99.3 kN. 

b. Interaction Me-thod. We recall that the allowable stress for a col~ 
umn subjected to a centric load (Fig. 10.36a) is generally smaller than 
the allowable stress for a column in pure bending (Fig. 10.36b), since 
the former takes into account the possibility of buckling. Therefore, 
when we use the allowable-stress method to design an eccentrically 
loaded column and write that the sum of the stresses due to the centric 
load P and the bending couple M (Fig. 10.36c) must not exceed the al
lowable stress for a centrically loaded column, the resulting design is 
generally overly conservative. An improved method of design can be 
developed by rewriting Eq. 10.58 in the form 

PIA Me(! 
- + --"' 1 (10.59) 
O"an O'an 

and substituting for 0' an in the first and second terms the values of the 
allowable stress which correspond, respectively, to the centric loading 
of Fig. 10.36a and to the pure bending of Fig. 10.36b. We have 

_..:.P.;_:IA:c_ Me/! -;- + :::;; 1 
( (J' an)centdc ( (}" au)bending 

(10.60) 

The type of formula obtained is known as an interaction formula. 
We note that, when M = 0, the use of this formula results in the 

design of a centrically loaded column by the method of Sec. 10.6. On 
the other hand, when P = 0, the use of the formula results in the de
sign of a beam in pure bending by the method of Chap. 4. When P and 
Mare both different from zero, the interaction formula results in a de~ 
sign that takes into account the capacity of the member to resist bend
ing as well as axial loading. In all cases, (a au)centric will be determined 
by using the largest slenderness ratio of the column, regardless of the 
plane in which bend!ng takes place.t 

tThis procedure is required by all major codes for the design of steel, aluminum, and tim
ber compression members. In addition, many specifications call for the use of an additional 
factor in the second tenn of Eq. (10.60); this factor takes into account the additional su·esses 
resulting from the deflection of the column due to bending. 

p 

P' 

(a) 

Fig. 10.36 

~ .. 
(b) (c) 
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654 Columns When the eccentric load P is not applied in a plane of symmetry 
of the column, it causes bending about both of the principal axes of the 
cross section. We recall from Sec. 4.14 that the load p· can then be re
placed ~y a centric load p and two couples represented by the couple 

Fig. 10.37 

vectors M.,. and M, shown in Fig. 10.37. The interaction formula to be 
used in this case is 

Use the interaction method to detennine the maximum load 
P that can be safely supported by the column of Example 10.04 
with an eccentricity of 20 mm. The allowable stress in bend
ing is 165 MPa. 

The value of (a an) centric has already been determined in 
Example 10.04. We have 

(aau)ce 111 ric = 135 MPa (aall)bending = 165 MPa 

Substituting these values into Eq. (10.60), we write 

PIA Me/! . 
135 MPa + 165 MPa OS l.O 

IM.,.!Zmax/fx + 
( 0' au)bending 

(10.61) 

Using the numerical data from Example 1 0.04, we write 

P/2500 ?(20)(25)/520833 
---+ <10 
135 MPa 165 MPa - . 

P OS 113.9J<N 

The maximum load that can be safely applied is thus 
p = 113.9l<N 



200 mm p SAMPlE PROBL[\::M 10.5 

Using the allowable-streJs method, detennine the largest load P that can be 
safely carried by a w:Jo X 74 steel column of 4.5-m effective length. Use 
E = 200 GPa and ay T 250 MPa. 

SOLUTION 

/ W310X74 

I
' __jUJ y--n 

A= 9480 mm2 

r, = 132 mm 
r!l = 49.7 mm 
Sx""' 1060 X 103 mm3 

The largest slenderness ratio of the column is L/ry = (4.5 m)/(0.0497 m) 
= 90.5. Using Eq. (10.42) withE = 200 GPa and O"y = 250 MPa, we find that 
Cc = 125.7. Since L/r < Cc, we use Eqs. (10.44) and (10.45) and find 

P F.S. ~ l.890 and 
M::::: P(0.200 m) a~u = (O"au)cenlric = 97.9 MPa 

For the given column and loading, we have 

p Me M P(0.200 m) 

A 9.48 X I S 1.060 X 10 3 m3 

Substituting into Eq. (10.58), we write 

P Me 
A+/:::saau 

P P(0.200 rn) 
9.48 X 10 3 m2- + 0!-;.0'-;6:_-0:::X=::lO;'_::i,'-m-,3 < 97 '9 MPa p :::s 333k.N 

The largest allowable load P is thus P ~ 333 kN t <1 

SAMPlE PROBLEM i 0.6 

Using the interaction method, solve Sample Prob. 10.5. Assume (o-a11 )bending 

~ l50MPa. 

SOLUTION 

Using Eq. (10.60), we write 

---'P-'C/ Ac.:_ Me/ I ; + < 1 
( 0" all)cenlric (a all)bending 

Substituting the given allowable bending stress and the allowable centric stress 
found in Sample Prob. 10.5, as well as the other given data, we have 

'-'P/'C(9C:.4':8c,-X.,-C:l0:,--;:-' m='-'-) P(0.200 m)/(l.060 X !0"3 rn3
) ...... + < 1 

97.9 X !06 Pa !50 X 106 Pa 
P:::s428kN 

The largest allowable load P is thus P~428kNt<l 
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P= 

ly 

T_, 
~ 

I' 
P:=:380kN 

--.::: 
M = (880 kl\)(12.'5 mm) 

= -17 .. 5 X 101; N . mm 

W200 X 52 

A= 6660 mm2 

r~"" 89mm 

ry"" 51.7mm 

S, "" 512000 mm3 

L"" 4.8m 

W200 X 71 

A= 9100 mm2 

·r, =9L7mm 
ry ""52.8 mm 
S" = 709000 mm3 

L=4.8m 

W200X 59 ly 

":'1iC 
~--" 

A= 7.560 mm2 

rx = 89.9 mm 

·ry = 51.9 mm 
s" = 582000 mm3 

L=4.8m 

SAMPLE PROBLEM Hl.7 

A steel column having an effective length of 4.8 m is loaded ec<;entrically as 
shown. Using th~ interaction method, select the wide-flange shape of 200-mm 
nominal depth that should be used. Assume E = 200 GPa and (Ty = 250 MPa, 
and use an allowable stress in bending of 150 MPa. 

SOLUTION 

So that we can select a trial section, we use the allowable-stress method with 
o-all = 150 MPa and write 

P Me P Me 
O"aJJ = A + J; A+ Ar] (l) 

From Appendix C we observe for shapes of 200-mm nominal depth that 
c "'" 100 mm and rx = 89 mm. Substituting into Eq. (1), we have 

2 380kN (47.5 X 10
6
N•mm)(!00mm) A =

6
.
53 

X 
1
0'mm' 

150N/mm ~ -- + ( )' 
A A 89mm 

We select for a first trial shape: W200 X 52. 
Trial 1: W200 x 52. The allowable stresses are 

Allowable Bending Stress: (see data) (o-an)bendlng = 150 MPa 

Allowable Centric Stress: The largest slenderness ratio is L/ r
1 

= (4.8 m)/ 
(0.0517 m) ~ 92.8. ForE ~ 200 GPa and uy ~ 250 MPa, Eq. (10.42) 
yields Cc = 126.1 and we note that L/r < Cc. Using Eqs. (10.44) and 
( 10.45) we tind 

For the W200 X 52 trial shape, we have 

p 380 kN 
~ ~57MPa 

A 6660 mm2 

Me M 47.5X106 N·mm 
- ~- = ~ 92.8 MPa 
I sx 512000 mm 

With this data we find that the left~hand member of Eq. (10.60) is 

P/A Mc/1 57 MPa 92.8 MPa --- + = --- + = 1.21 
(O"an)centril!' (O"~u)bending 96.3 MPa 150 MPa 

Since 1.21 > 1.000, the requirement expressed by the interaction formula is 
not satisfied; we must select a larger trial shape. 

Trial 2: W200 x 71. Following the procedure used in triall, we write 

L 
r, 

4.8m 

0.0528 m 
90.9 (O'an)centric = 97.9 MPa 

p 380kN 
- ~ ~ 41.8MPa 
A 9100 mm2 

Me M 47.5 X 106N · mm 
-=-= ~67MPa 
I sx 709000 mm3 

Substituting into Eq. (10.60) gives 

___!!!.__ + Mc/1 ~ 41.8 MPa + 67 MPa ~ 0.874 < l.OOO 
(o-an)cMmc (o-au)bondmg 97.9 MPa 150 MPa 

The W200 X 71 shape is satisfactory but may be unnecessarily large. 
Trial 3: W200 x 59. Following again the same procedure, we find that 

the interaction formula is not satisfied. 

Selection of Shape. The shape to be used is W200 X 71 <01 



10.89 A steel compression member of 2.75-m effective length supports 
an eccentric load as shown. Using the allowable-stress method and assuming 
e = 40 mm, determine the load P. Use O"y = 250 MPa and E = 200 GPa. 

40mm 

5130 X 15 

Fig. P10.89 

10.90 Solve Prob. 10.89 using e = 60 mm. 

10.91 A column of 5.5-m effective length is made of the aluminum alloy 
2014-T6, for which the allowable stress in bending is 220 MPa. Using the 
interaction method, determine the aliowable load P, knowing that the eccen
tricity is (a) e = 0, (b) e = 40 mm. 

10.92 Solve Prob. 10.91, assuming that the effective length of the col
umn is 3.0 m. 

10.93 A sawn lumber column of 125 X 190-mm cross section has an 
effective length of 2.5 m. The grade of wood used has an adjusted allowable 
stress for compression parallel to the grain O" c = 8 MPa and a modulus of elas
ticity E = 8.3 GPa. Using the allowable-stress method, determine the largest 
eccentric load P that can be applied when (a) e = 12 mm, (b) e = 24 mm. 

y 

' 

Fig. P10.93 

15mm 

{[J 
~l52mm-l 

Fig. P10.91 
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z P=85kN 

Fig. P10.97 

10.94 Solve Prob. 10.93 using the interaction method and an allowable 
stress in bending of 9 MPa. 

10.95 An eccentric load P = 48 kN is applied at a point 20 mm from the 
geometric axis of a 50-mm-diameter rod made of the aluminum alloy 6061-T6. 
Using the interaction method and an allowable stress in bending of 145 MPa, 
determine the largest allowable effective length L that can be used. 

Fig. P10.95 

·10.96 Solve Prob. 10.95, assuming that the aluminum alloy used is 
2014-T6 and that the allowable stress in bending is 180 MPa. 

10.97 A rectangular column is made of a grade of sawn wood that has 
an adjusted allowable stress for compression parallel to the grain F c = 8.3 MPa 
and a modulus of elasticity E = 11.1 GPa. Using the allowable-stress method, 
determine the largest allowable effective length L that can used. 

10.98 Solve Prob. 10.97, assuming that P = 105 k.N. 

10.99 A steel compression member of 2.7-m effective length supports an 
eccentric load as shown. Using the allowable-stress method, detennine the maxi
mum allowable eccentricity e if (a) P = 120 kN, (b) P. = 75 k.N. Use cry= 250 
MPa and E = 200 GPa. 

Fig. P10.99 

10.100 Solve Prob. 10.99, assuming that the effective length of the col
umn -is increased to 3.6 m and that (a) P = 80 k.N, (b) P = 60 kN. 



10.101 Two 102 X 76 X 9.5~mm steel angles are welded together to 
forrh the column AB. An axial load P of .magnitude 60 kN is applied at po/int 
D. Using the allowable~stress method, determine the largest allowable lel}gth 
L. Assume E = 200 GPa and O'y = 250 MPa. J 

4.75 mm 

D l 
1- Frn=r=::rT 
l lJd'Y" j 75mm 75mm 

Fig. P10.101 

10.102 Solve Pro b. 10.101 using the interaction method with P = 80 kN 
and an allowable stress in bending of !55 MPa. 

10.103 A sawn lumber column of rectangular cross section has a 2.2~m 
effective length and supports a 41-k.N load as shown. The sizes available for 
use have b equal to 90 mm, 140 mm, 190 inm, and 240 mm. The grade of 
wood has an adjusted allowable stress for compression parallel to the grain 
u c = 8.1 MPa and E = 8.3 GPa. Use the allowable-stress method to deter
mine the lightest section that can be used. 

Fig. P10.103 

10.104 Solve Prob. 10.103, assuming that e = 40 mm. 

10.105 A compression member made of steel has a 1.62-m effective 
length and must support the 128-k.N load P as shown. For the material used, 
ay = 250 MPa and E ·= 200 GPa. Using the interaction method with an 
allowable bending stress equal to 150 MPa, detennine the smallest dimension 
d of the cross section that can be used. 

10.106 Solve Prob. 10.105, assuming that the effective length is 720 m.m 
and that the magnitude P of the eccentric load is 198 kN. · Fig. P10.105 
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Fig. P10.111 

10.107 A compression member of rectangular cross section has an 
effective length of 0.9 m and is made of the aluminum alloy 2014-T6 for which 
the allowable stress in bending is 165 MPa. Using the interaction method, 
detennine the Smallest dimension d of the cross section that can be used when 
e = 10 mni. 

Fig. P10.107 

10.108 Solve Prob. 10.107, assuming that e = 5 mm. 

10. 109 An aluminum tube of 80-mm outside diameter is to carry a load 
of 40 kN having an eccentricity e = 15 mm. Knowing that the stock of tubes 
available for use are made of aHoy 2014-T6 and have wall thicknesses in 
increments of 1.5 mm up to 12 mm, determine the lightest tube that may be 
used. Use the allowable-stress method of design. 

Fig. P10.109 

10.110 Solve Prob. 10.109 using the interaction method of design with 
an allowable stress in bending of 170 MPa. 

10. 111 A steel column of 7 .2-m effective length is to support an 83-k.N 
eccentric load P at a point D located on the x axis as shown. Using the allowable
stress method, select the wide-flange shape of 250--nun nominal depth that should 
be used. UseE = 200 GPa. cry = 250 .MPa. 



10.112 A steel column of 6.3-m effective length must carry a load of 
360 kN with an eccentricity of 52 mm as shown. Using the interaction met~od, 
select the wide-flange shape of 310-mm ·nominal depth that should be uded. 
UseE~ 200 GPa, ."' ~ 250 MPa and u,11 ~ 160 MPa in bending. ) 

Fig. P10.112 

10.113 A steel column having a 7.2-m effective length is loaded ec
centricaU)' as shown. Using the allowable stress method, select the wide-flange 
shape of 350-mm nominal depth that should be used. Use ay = 250 MPa and 
E ~ 200 GPa. 

Fig. P10.113 

10.114 Solve Prob. 10.113 using the interaction method, assuming that 
O'y = 350 MPa and an allowable stress in bending of 200 MPa. 

10.115 A steel tube of 80-mm outer diameter is to carry a 93-kN load 
P with an eccentricity of 20 mm. The tubes available for use·are made with 
wall thicknesses in increments of 3 mm from 6 mm to 15 mm. Using the 
allowable stress method, determine the lightest tube that can be used. Assume 
E = 200 GPa an_d CTy = 250 MPa. 

10.116 Solve Pr0b. 10.115 using the interaction method, with P = 165 
kN, e = 15 mm, and an allowable stress in bending of 150 MPa. 

e=20mm-~r-

I! 
'[1 

Fig. P10.115 
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Slenderness ratio 

This chapter was devoted to the design arid analysis of columns, i.e., 
prismatic members supporting axial loads. In order to gain insight 
into the behavior of columns, We first cOnsidered in Sec. 10.2 the 
equilibrium of a simple model and found that for values of the load 
P exceeding a certain value P~r• called the critical load, two equi
librium positions of the model were possible: the original position 
with zero transverse deflections and a second position involving de
flections that could be quite large. This led us to conclude that the 
first equilibrium position was unstable for P > Pw and stable for 
P < Pep since in the latter case it was the only possible equilibri!).m 
position. 

In Sec. 10.3, we considen!d a pin-ended column of length Land 
of constant flexural rigidity El subjected to an axial centric load P. 
Assuming that the column had buckled (Fig. 10.8), we noted that the 
bending moment at point Q was equal to - Py and wrote 

(10.4) 

Solving this differential equation, subject to the boundary conditions 
corresponding to a pin-ended column, we detennined the smallest 
load P for which buckling can take place. This load, known as the 
critical load and denoted by Pw is given .by Euler's formula: 

1r2EI 
Pcr=·--zy- (10.11) 

where L is the length of the column. For this load or any larger load, 
the equilibrium of the column is unstable and transverse deflections 
will occur. 

Denoting the cross-sectional area of the column by A and its ra
dius of gyration by r, we determined the critical stress u cr corre
sponding to the critical load Per: 

(10.13) 

The quantity L/r is called the slenderness ratio· and we plotted 
O'er as a function of L/r (Fig. 10.9). Since our analysis was based on 
stresses remaining below the yield strength of the material, we noted 
that the column would fail by yielding when O'er > Uy. 



. In Sec. 10.4, we discussed the critical load of columns with v<if-
ious end condi.tioris and wrote · · -;--. _ . 

. ·. . . . . - -1r2EJ I 
. p" - -,- . (10.11 

L . 
' 

where Le is the effective length of the column, i.e:, the length of an 
equivalent pin-ended column. The effective lengths of several 
columns with various end conditions were calculated and shown in 
Fig. 10.18 on page 617. 

In Sec. 10.5, we considered columns supporting an eccentric ax
ial load. For a pin-ended column subjected to a load P applied with 
an eccentricity e, we replaced the load by a centric axial load and a 
couple of moment MA = Pe (Figs. 10.19a and 10.20) and derived 
the following expression for the maximum transverse deflection: 

(10.28) 

We then determined the maximum stress in the column, and from 
the expression obtained for that stress, we derived the secantfonnula: 

P 0' max - = ----'7"--=--::--c--A I + ec sec(! {P L,) 
r 2 2\/EA r 

(10.36) 

This equation can be solved for the force per unit area, P/A, that 
causes a specified maximum stress 0' max in a pin-ended column or 
any other column of effective slenderness ratio Le/r. 

In the first part of the chapter we considered each column as a 
straight homogeneous prism. Since imperfections exist in all real 
columns, the design of real columns is done by using empirical for
mulas based on laboratory tests and set forth in specifications codes 
issued by professional organizations. In Sec. 10.6, we discussed the 
design of centrically loaded columns made of steel, aluminum, or 
wood. For each material, the design of the column was based on for
mulas expressing the allowable stress as a function of the slender
ness ratio L/r of the column. For structural steel, we also discussed 
the alternative method of Load and Resistance Factor Design. 

In the last section of the chapter [Sec. 10.7], we studied two meth
ods used for the design of columns under an eccentric load. The first 
method was the allowable-stress method, a conservative method in 
which it is assumed that the allowable stress is the same as if the 
column were centrically loaded. The allowble-stress method requires 
that the following inequality be satisfied: 

P Me 
A: + Is 0"," c1o.ss) 

The second method was the interaction method, a method used in 
most modern specifications. In this method the allowable stress for 
a centrically loaded column is used for the portion of the total stress 
due to the axial load· and the allowable stress in bending for the stress 
due to bending. Thus, the inequality to be satisfied is 

_P
7
!A_ Me/! ,, + $ 1 

/( 0' an)centric ( U a!l)bending 
(10.60) 
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Fig. P10.117 
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1 0.117 Supports A and B of the pin-ended column shown are at a fixed 
distance L from each other. Knowing that at a temperature T0 the force in the 
colurrm is zero and that buckling occurs when the temperature is T1 = T0 + AT, 
express AT in terms of b, L, and the coefficient of thermal expansion a. 

Fig. P10.118 

10.118 A frame consists of four L~shaped members connected by four 
torsional springs, each of constant K. Knowing that equal loads Pare. applied 
at points A and D as shown, determine the critical value Pc, of the loads applied 
to the frame. 

10.119 A compression member of 0.5-m effective length consists of a 
solid 25-mm-diameter aluminum rod. In order to reduce the weight of the mem~ 
ber by 25%, the solid rod is replaced by a hollow rod of the cross section 
shown. Determine (a) the percent reduction in the critical load, (b) the value 
of the critical load for the hollow rod. Use E = 73 GPa. 

I 
llOmm 

t- --·-- _, 

llOmm 

L lF'~'--'--'-=cu 
Fig. P10.120 

10.120 A column of 6.6-m effective length is to be made by welding 
two 220 X 12 mm plates to a W200 X 52 as shown. Determine the allowable 
centric load if a factor of safety of 2.3 is required. Use E = 200 GPa. 



10.121 Members AB and CD axe 30~mm~diameter steel rods, and mem
bers BC and AD are 22~mm·diameter ste!!l rods. When the turnbuckle is tight
ened, the diagonal member AC is put in tension. Knowing that a factor of safety 
with respect to bw;;kling of 2.75 is required, determine the largest arlo 

1
able 

tension in A C. Use E = 200 GPa and consider only buckling in the pi ne of 
the structure. 

Fig. P10.121 

10.122 (a) Considering only buckling in the plane of the structure shown 
and using Euler's formula, determine the value of () between 0 and 90° for 
which the allowable magnitude of the load Pis maximum. (b) De~ermine the 
corresponding maximum value of P knowing that a factor of safety of 3.2 is 
required. UseE = 200 GPa. 

10.123 The line of action of the 3lO·kN axial load is parallel to the geo
metric axis of the column AB and intersects the x axis at x = e. Using E = 200 
GPa, determine (a) the eccentricity e when the deflection of the midpoint C of 
the column is 9 mm, (b) the corresponding maximum stress in the column. 

:310 kN 

'Fig. P10.123 

10.124 A 110-kN axial load Pis applied to a Wl50 X 18 rolled-steel 
column BC that is free at its top C and fixed at its base B. Knowing that the 
eccentricity of the loa:d is e = 6 mm, determine the largest permissible length 

18·mm diameter 

16-mm diameter 

Fig. P1 0.122 

L if the allowable stress in the column is 95 MPa. UseE= 200 GPa. Fig. P10.124 
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Fig. 10.127 

10.125 A steel pipe having the cross section shown is used as a column. 
Using the AISC allowable stress design formulas, determine the allowable cen
tric load if the effective length of the column is (a) 5.4 m, (b) 7.8 m. Use O"y = 
250 MPa and E ~ 200 GPa. 

~150mm~~ 

t=7mm-Q.. . . 
'"., ,,• 

Fig. P10.125 

10.126 A column of 4.6-m effective length must carry a centric load of 
525 kN. Knowing that O"y = 345 MPa and E = 200 GPa, use the AISC 
allowable stress design formulas to select the wide-flange shape of 200-mm 
nominal depth that should be used. 

10.127 The compression member AB is made of a steel for which 
ay = 250 MPa and E = 200 GPa. It is free at its top A and fixed at its base B. 
Using the interaGtion method with an allowable bending stress equal to 120 MPa 
and knowing that the eccentricities ex and ey are equal, determine their largest 
allowable common value. 

Fig. P10.128 

10.128 A 180-kN axial load Pis applied to the rolled-steel column 
BC at a point on the x axis at a distance e = 62 mm from the geometric axis 
of the column. Using the allowable-stress method, select the wide-flange 
shape of 200-mm nominal depth that should be used. UseE = 200 GPa and 
0' r = 250 MPa. 



The following problems are designed-to be solved with a computer. 

10.C1 A solid steel rod having an effective length of 500 mm is to be 
used as a compression strut to carry a centric load P. For the grade of steel 
used, E = 200 GPa and O"y = 245 MPa. Knowing that a factor of safety of 2.8 
is required and using Euler's formula, write a computer program and use it to 
calculate the allowable centric load Pan for values of the radius of the rod from 
6 mm to 24 mm, using 2-mm increments. 

10.C2 An aluminum bar is fixed at end A and supported at end B so 
that it is free to rotate about a horizontal axis through the pin. Rotation about a 
vertical axis at end B is prevented by the brackets. Knowing that E = 70 GPa, 
use Euler's formula with a factor of safety of 2.5 to determine the allow
able centric load P for values of b from 20 mm to 38 mm, using 3-mm 
increments. 

1 O.C3 The pin-ended members AB and BC consist of sections of alu
minum pipe of 120-mm outer diameter and 10-mm wall thickness. Knowing 
that a factor of safety of 3.5 is required, determine the mass m of the largest 
block that can be supported by the cable arrangement shown for values of h 
from 4 m to 8 m, using 0.25-m increments. UseE = 70 GPa and consider only 
buckling in the plane of the structure. 

Fig. P10.C3 

10.C4 An axial load Pis applied at a point located on the x axis at a 
distance e = 12 mm from the geometric axis of the W200 X 59 rolled-steel 
column AB. Using E = 200 GPa, write a computer program and use it 
to calculate for values of P from 100 to 300 kN, using 20-kN increments, 
(a) the horizontal deflection at the midpoint C, (b) the maximum stress in 

Fig. P10.C2 

W200X 

the column. Fig. P1D.C4 

P' 
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168 Columns 10.C5 A column of effective length Lis made from a rolled-steel shape 
and carries a centric axial load P. The yield strength for the grade of steel use·d 
is denoted by O'y, the modulus of elasticity by E, the cross-sectional area of the 
selected shape·by A, and its smallest radius of gyration by r. Using the AISC 
design formulas for allowable stress design, write a computer program that can 
be used to determine the allowable load P. Use this program to solve (a) Prob. 
10.57, (b) Prob. !0.58, (c) Prob. !0.60. 

1 O.C6 A column of effective length Lis made from a rolled-steel shape 
and is loaded eccentrically as shown. The yield strength of the grade of steel 
used is denoted by O'y, the allowable stress in bending by 0'811 , the modulus 
of elasticity by E, the cross-sectional area of the selected shape by A, and its 
smallest radius of gyration by r. Write a computer program that can be used 
to determine the allowable load P, using either the allowable-stress method 
or the interaction method. Use this program to check the given answer for 
(a) Prob. !0.!!3, (b) Prob. 10.!!4. 

y 

Fig. P10.C6 



As the diver comes down on the diving board the poten
tial energy due to his elevation above the board will be 
converted into strain energy due to the bending of the 
board. The normal and shearing stresses resulting from 
energy loadings will be determined in this chapter. 
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Fig. 11.1 

11.1.1NTRODUCTION 

In the previous chapter we were concerned with the relations existing 
between forces and defonnations under various loading conditions. Our 
analysis was based on two fundamental concepts, the concept of stress 
(Chap. I) and the concept of strain (Chap. 2). A third important con
cept, the concept of strain energy, will now be introduced. 

In Sec. 11.2, the strain energy of a member will be defined as the in
crease in energy associated with the defonnation of the member. You will 
see that the strain energy is equal to the work done by a slowly increasing 
load applied to the member. The strain-energy density of a material will 
be defined as the strain energy per unit volume; it will be seen that it is 
equal to the area under the stress-strain diagram of the material (Sec. 11.3). 
From the stress-strain diagram of a material two additional properties will 
be defined, namely, the modulus of toughness and the modulus of resilience 
of the material. 

In Sec. 11.4 the elastic strain energy associated with normal stresses 
will be discussed, first in members under axial loading and then in mem
bers in bending. Later you will consider the elastic strain energy associated 
with shearing stresses such as occur in torsional loadings of shafts and in 
transverse loadings of beams (Sec. 11.5). Strain energy for a general state of 
stress will be considered in Sec. 11.6, where the maximum-distortion-energy 
criterion for yielding will be derived. 

The effect of impact loading on members will be considered in Sec. 
11.7. You will learn to calculate both the maximum stress and the maxi
mum deflection caused by a moving mass impacting on a member. Prop
erties that increase the ability of a structure to withstand impact loads 
effectively will be discussed in Sec. 11.8. 

In Sec. 11.9 the elastic strain of a member subjected to a single con
centrated load will be calculated, and in Sec. 11.10 the deflection at the 
point of application of a single load will be determined. 

The last portion of the chapter will be devoted to the determination of 
the strain energy of structures subjected to several loads (Sec. 11.11). Cas
tigliano's theorem will be derived in Sec. 11.12 and used in Sec. 11.13 to 
determine the deflection at a given point of a structure subjected to several 
loads. In the last Section Castigliano's theorem will b"e applied to the analy
sis of indeterminate structures (Sec. 11.14). 

11.2. STRAIN ENERGY 

Consider a rod BC of length L and uniform cross-sectional area A, which 
is attached at B to a fixed support, and subjected at C to a slowly in~ 
creasing axial load P (Fig. 11.1). As we noted in Sec. 2.2, by plotting 
the magnitude P of the load against the defonnation x of the rod, we 
obtain a certain load-defonnation diagram (Fig. 11.2) that is character
istic of the rod BC. 



Fig. 11.2 

Let us now consider the work dU done by the load P as the rod 
elongates by a small amount dx. This elementary work is equal to the 
product of the magnitude P of the load and of the small elongation dx. 
We write 

dU = Pdx (1 1.1) 

and note that the expression obtained is equal to the element of area of 
width dx located under the load~defonnation diagram (Fig. 11 .3). The 
total work U done by the load as the rod undergoes a deformation x1 

is thus 

U= rPdx 
0 

and is equal to the area under the load-defonnation diagram between 
x = 0 and x = x1• 

The work done by the load Pas it is slowly applied to the rod must 
result in the increase of some energy associated with the deformation 
of the rod. This energy is referred to as the strain energy of the rod. We 
have, by definition, 

('' 
Strain energy = U = J P dx 

0 

(11.2) 

We recall that work and energy should be expressed in units ob
tained by multiplying units of length by units of force. Thus, work and 
energy are expressed in N · m; this unit is called a joule (J). 

In the case of a linear and elastic deformation, the portion of the 
load-deformation diagram involved can be represented by a straight line 
of equation P = kx (Fig. 11.4). Substituting for Pin Eq. (11.2), we have 

U= rkxdx=4kxl 
0 

or 

(11.3) 

where P 1 is the value. of the load corresponding to the deformation x 1. 

11.2. Strain Energy 671 

Flg. 11.3 

p 
p = kx 

0 ""----;!------;c 
Fig. 11.4 
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Fig. 11.5 

The concept of strain energy is particularly useful in the determi
nation of the effects of impact loadings on structures or .machine com
ponents. Consider, for example, a body of mass m moving with a ve
locity v0 which strikes the end B of a rod AB (Fig. 11.5a). Neglecting 
the inertia of the elements of the rod, and assuming no dissipation of 
energy during the impact, we find that the maximum strain energy U m 

acquired by the rod (Fig. 11.5b) is equal to the original kinetic energy 
T = ~ mv5 of the moving body. We then determine the value P m of the 
static load which would have produced the same strain energy in the 
rod, and obtain the value am of the largest stress occurring in the rod 
by dividing Pm by the cross-sectional area of the rod. 

11.3. STRAIN-ENERGY DENSITY 

As we noted in Sec. 2.2, the load~deformation diagram for a rod BC 
depends upon the length L and the cross~sectional area A of the rod. 
The strain energy U defined by Eq. (11.2). therefore. will also depend 
upon the dimensions of the rod. In order to eliminate the effect of size 
from our discussion and direct our attention to the properties of the rna~ 
terial, the strain energy per unit volume will be considered. Dividing 
the strain energy U by the volume V = AL of the rod (Fig. ll.l). and 

. using Eq. (11.2), we have 

u 
v 

Recalling that PIA represents the normal stress (J"x in the rod, and 
x/L the normal strain ex, we write 

u I'· - = (J" de 
v ' ' 0 

where e1 denoi:es the value of the strain corresPonding to the elonga~ 
tion x1• The strain energy per unit volume, UIV, is referred to as the 
strain-energy density and will be denoted by the letter u. We have, 
therefore, 

I
,, 

Strain-energy density = u = (J"x dex 
0 

(11.4) 

The strain-energy density u is expressed in units obtained by dividing 
units of energy by units of volume. Thus, the strain-energy density is 
expressed in J/m3 or its multiples kJ/m3 and MJ/m3

. 

tWe note that l J/m1 and I Pa are both equal to I N/m2• Thus, strain-energy density and 
stress are dimensionally equal and could be expressed in the same units. 



Referring to Fig. 11.6, we note that the strain~energy density u is 
equal to the area under the stress~strain curve, measured from E~ = 0 
to Ex = € 1• If the material is unloaded, the stress returns to zen:), but 
there is a permanent deformation represented by the strain EP, anft only 
the portion of the strain energy per unit volume correspondi~ ~o the 
triangular area is recovered. The remainder of the: energy spent in de~ 
forming the material is dissipated in the form of heat. 

' 
Fig. 11.6 

The value of the strain-energy density obtained by setting e1 = ER 

in Eq. (11.4), where ER is the strain at rupture, is known as the modu
lus of toughness of the material. It is equal to the area under the entire 
stress-strain diagram (Fig. 1 1.7) and represents the energy per unit vol
ume required to cause the material to rupture. It is clear that the tough
ness of a material is related to its ductility as well as to its ultimate 
strength (Sec. 2.3), and that the capacity of a structure to withstand an 
impact load depends upon the toughness of the material used (Fig. 11.8). 

If the stress CFx remains within the proportional limit of the mate
rial, Hooke's law applies and we write 

(11.5) 

Substituting for cr" from (11.5) into (11.4), we have 

1€, EeT 
u= Eede=-

o X X 2 
(11.6) 

or, using Eq. (11.5) to express e 1 in terms of the corresponding stress 
O'J, 

ul 
u=-

2E 
(l 1.7) 

The value Uy pf the strain-energy density obtained by setting 
u 1 = cry in Eq. ( 11. 7), where 17 y is the yield strength, is called the mod
ulus of resilience of the material. We have 

Uy = cr} 
2E 

(11.8) 

11.3. Strain Energy Density 673 

Rupture 

Fig. 11.7 

Fig. 11.8 The railroad coupler is made of a duc
tile steel which has a large modulus of toughness. 
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Fig. 11.9 

The modulus of resilience is equal to the area under the straight-line 
portion OY of the stress-strain diagram (Fig. 11.9) and ~epresents the 
energy per u_p.it volume that the material can absorb without yielding. 
The capacity of a structure to withstand an impact load without being 
permanently deformed clearly depends upon the resilience of the ma
terial used. 

Since the modulus of toughness and the modulus of resilience rep
resent characteristic values of the strain-energy density of the material 
considered, they are both expressed in J/m3. t 

' 11.4. ELASTIC STRAIN ENERGY FOR NORMAL STRESSES 

Since the rod considered in the preceding section was subjected to 
uniformly distributed stresses ux., the strain-energy density was constant 
throughout the rod and could be defined as the ratio U/V of the strain 
energy U and the volume V of the rod. In a structural element or ma
chine part with a nonunifonn stress distribution, the strain-energy den
sity u can be defined by considering the strain energy of a small element 
of material of volume Ll V and writing 

or 

I!.V 
u= lim

~v ....... o D.V 

dU 
u=-

dV 
(11.9) 

The expression obtained for u in SeC. 11.3 in tenns of u x and e.~ re
mains valid, i.e., we still have 

(I 1.10) 

but the stress u '" the strain Ex, and the strain-energy density u will gen~ 
erally vary from point to point. 

For values·of u.r within the proportional limit, we may set u" = 
EE, in Eq. (ll.!O) and write 

1 1 1 u? 
U = -EE 2 ::::: -u E ::::: ........:_ 

2 x. 2 x. x. 2 E (11.11) 

The value of the strain energy U of a body subjected to uniaxial nor
mal stresses can be obtained by substituting for u from Eq. (11.11) into 
Eq. (11.9) and integrating both members. We have · 

f 
a-' 

u = 
2
;dv (11.12) 

The expression obtained is valid only for elastic deformations and is 
referred to as the elastic strain energy of the body. 

tHowever, refening to the footnote on page 672, we note that the modulus of toughness 
and the modulus of resilience could be expressed in the same units as stress. 



Strain Energy under Axial Loading. We recall from Sec. 2.17 that, 
when a rod is subjeCted to a centric axial loading, the normal str~sses 
crx can be assumed uniformly distributed in any given transverse/sec~ 
tion. Denoting Qy A the area of the section located at a distance ~jfrom 
the end B of the rod (Fig. 11.10), and by P the internal force Jn that 
section, we write ux =PIA. Substituting for cr:x into Eq. (11,1.12), we 
have 

11.4. Elastic Strain Energy for 67S 
Normal Stress9s 

or, setting dV = A dx, 

(11.13) Fig. 11.10 

In the case of a rod of uniform cross section subjected at its ends P' 
to equal and opposite forces of magnitude P (Fig. 11.11), Eq. (ll.l3) 
yields 

P2L 
U=-

2AE 

A rod consists of two portions BC and CD of the same mate~ 
rial and same length, but of different cross sections (Fig. 
11.12). Determine the strain energy of the rod when it is sub
jected to a centric axial load P, expressing the result in terms 
of P, L, E, the cross-sectional area A of portion CD, and the 
ratio n of the two diameters. 

Fig. 11.12 · 

We use Eq. (11.14) to compute the strain energy of each 
of the two portions, ap.d add the expressions obtained: 

(11.14) A 

Fig. 11.11 

or 

1 + n2 P2L 
u" = --::;;:;;:- 2AE (ll.t5) 

We check that, for n = 1, we have 

P'L 
U, = 2AE 

which is the expression given in Eq. (11.14) for a rod of length 
Land uniform cross section of area A. We also note that, for 
n > l, we have U" < U1; for example, when n = 2, we have 
U2 = (i} U1 • Since the maximum stress occurs in portion CD 
of the rod and is equal to u max = PI A, it follows that, for a 
given allowable stress, increasing the diameter of portion BC 
of the rod results in a decrease of the overall energy-absorbing 
capacity of the rod. Unnecessary changes in cross-sectional 
area should therefore be avoided in the design of members 
that may be subjected to loadings, such as impact loadings, 
where the energy-absorbing capacity of the member is criticaL 



<\ load P is supported at B by two rods of the same material 
md of the same uniform cross section of area A (Fig. 11.13). 
Deter:mine the strain energy of the system. 

But we note from Fig. ll.l3 that 

BC = 0.61 BD = 0.81 

and from the free-body diagram of pin B and the correspon-

c 

r 
1 

l 
FBC 

.~· 5 

p p 

Fig. '11.14 

Fig. 11.13 ding force triangle (Fig. 11.14) that 

Denoting by F8 c and F80, respectively, the forces in mem
Jers BC and BD, and recalling Eq. (11.14), we express the 
;train energy of the system as 

Fee= +0.6P Fao = -0.8P 

Substituting into Eq. (11.16), we have 

FldBC) FlD(BD) 
U=---+---

2AE 2AE 

Fig. 11.15 
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( 11.16) U = '-?
2
_,1[.:.:( 0--'. 6"-)

3
-c+c-'("-0.-'-'8 )-"

3
] 

2AE 

Strain Energy in Bending. Consider a beam AB subjected to a given 
loading (Fig. 11.15), and let M be the bending moment at a distance x 
from end A. Neglecting for the time being the effect of shear, and tak
ing into account only the normal stresses (}'x = My! I, we substitute this 
expression into. Eq. (11.12) and write 

I (]'' U= z?V= I M'y' 
--dV 
2£12 

Setting dV = dA dx, where dA represents an element of the cross
sectional area, and recalling that M2 /2£12 is a function of-': alone, we have 

Recalling that the integral within the parentheses represents the moment 
of inertia I of the cross section about its neutral axis, we write 

IL M' 
U= -dx 

0 2£/ 
(11.17) 



Determine the strain energy of the prismatic cantilever beam 
AB (Fig.· 11.16), taking into account only the effect of the nor-
mal stresses. 

The bending moment at a distance x from end A is 
M = - Px. Substitming this expression into Eq. (11.17), 
we write 

U = (r., p2x2 dx = p2L3 
)
0 

2El 6EI 

11.5. ELASTIC STRAIN ENERGY FOR SHEARING STRESSES 

When a material is subjected to plane shearing stresses T "'l' the strain
energy density at a given point can be expressed as 

(11.18) 

where 'Yxy is the shearing strain corresponding to 'fxy (Fig. li.17a). We 
note that the strain-energy density u is equal to the area under the shear
ing-stress-strain diagram (Fig. 11.17b). 

For values of 7 X)' within the proportional limit, we have T X)' = Gyxy• 
where G is the modulus of rigidity of the material. Substituting for T xy 

into Eq. (11.18) and performing the integration, we write 

(11.19) 

The value of the strain energy U of a body subjected to plane shear
ing stresses can be obtained by recalling from Sec. 11.4 that 

dU 
u=-

dV 
(11.9) 

Substituting for u from Eq. (11.19) into Eq. (11.9) and integrating both 
members, we have 

(11.20) 

This expression defines the elastic strain associated with the shear 
deformations of the body. Like the similar expression obtained in 
Sec. 11.4 for uniaxial normal stresses, it is valid only for elastic 
deformations. 

p 

B ,: 

f---L--~ 

Fig.11.16 

(a) 

o·"-----'---c
'Yxy 

(b) 

F!g.11.17 
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Fig. 11.18 

Fig. 11.19 

Strain Energy in Torsion. Consider a shaft BC of length L subjected 
to one or several twisting couples. Denoting by J the polar moment of 
inertia of the. cross section located at a distance x from s· (Fig. 11.18), 
and by T the internal torque in that section, we recall that the shearing 
stresses in the section are T xv = Tp/1. Substituting for T.ry into Eq. 
(11.20), we have · 

U = _!!_dV = --dV I T
2 I T2

p
2 

20 2GJ2 

Setting dV = dA dx, where dA represents an element of the cross
sectional area, and observing that T2/2GJ2 is a function of x alone, we 
write 

Recalling that the integral within the parentheses represents the polar 
moment of inertia J of the cross section, we have 

IL T' 
U= -dx 

0 
2GJ 

(11.21) 

In the case of a shaft of uniform cross section subjected at its ends 

1. to equal and opposite couples of magnitude T (Fig. 11.19), Eq. (11.21) 
yields 

(! 1.22) 

<\ circular shaft consists of two portions BC and CD of the 
;ame material and same length, but of different cross sections 
:Fig. 11.20). Determine the strain energy of the shaft when it 
s subj~cted to a twisting couple T at end D, expressing the 
·esult in terms ofT, L, G, the polar moment of inertia J of the 
;mailer cross section, and the ratio n of the two diameters. 

or 

Fig. 11.20 

We use Eq. (11.22) to compute the strain energy of each 
)f the two portions of shaft, and add the expressions obtained. 
\Toting that the polar moment of inertia of portion BC is equal 
:o n4J, we write 

We check that, for n = 1, we have 

T2L u =-
1 2GJ 

which is the expression given in Eq. (11.22) for a shaft of 
length L and uniform cross section. We also note that, for 
n > I, we have U, < U1; for example, when n = 2, we have 
U2 =(:H) U1: Since the maximum shearing stress occurs in 
the portion CD of the shaft and is proportional to the torque 
T, we note as we did earlier in the case of the axial loading of 
a rod that, for a given allowable stress, increasing the diameter 
of portion BC of the shaft results in a decrease of the overall 
energy-absorbing capacity of the shaft. 



Strain Energy under Transverse Loading. In Sec. 11.4 we obtained 
an expression for the strain energy of a beam subjected to a transvfrse 
loading. However, in deriving that expression we took into account only 
the effect of the_ nonnal stresses due to bending and neglected tryb ef
fect of the shearing stresses. In Example 11.05 both types of S}tesses 

11.5. Elastic Strain Energy for 679 
Shearing Stresses 

will be taken into account. / 

Determine the strain energy of the rectangular cantilever beam 
AB (Fig. 11.21), taking into account the effect of both normal 
and shearing stresses. 

We first recall from Example 11.03 that the strain energy 
due to the normal stresses ux is 

To determine the strain energy U r due to the shearing stresses 
rx;., we recall Eq. (6.9) of Sec. 6.4 and find that, for a beam 
with a rectangular cross section of width b and depth h, 

Substituting for r.">' into Eq. (11.20), we write 

1 (3 p )'J( l)' u~--- 1--dv 
r 2G2bh c2 

or, setting dV = b dy dx, and after reductions, 

U ~ 9
p' J' (1 - 2)"_ + !:'.)dyiL dx 

r 8Gbh2 -c c2 c4 o 

Performing the integrations, and recalling that c = h/2, we 
have 

The total strain energy of the beam is thus 

or, noting that !/A = h2/12 and factoring the expression for 
U., 

P
2
L

3 
( 3fh

2 
) ( 3Eh

2 
) ~- 1+~ ~u 1+--u 6£1 10GL2 " 10GL2 

(11.24) 

Fig. 11.21 

Recalling from Sec. 2.14 that G%:: E/3, we conclude that 
the parenthesis in the expression obtained is less than 
1 + 0.9(h!L/ and, thus, that the relative error is less than 
0.9(h!L)2 when the effect of shear is neglected. For a beam 
with a ratio hi L less than ~. the percentage error is less th~n 
0.9%. It is therefore customary in engineering practice to 
neglect the effe<;:t of shear in computing the strain energy of 
Slender beams. 



680 Energy Methods 11.6. STRAIN ENERGY FOR A GENERAL STATE OF STRESS 

In the preceding sections, we determined the strain energy of a body in 
a state of uniaxial stress (Sec. 11.4) and in a state of plane shearing 
stress (Sec. 11.5). In the case of a body in a general state of stress char
acterized by the six stress components u x• a Y' u z• 7 xy• 7 yz• and 7 w the 
strain-energy density can be obtained by adding the expressions given 
in Eqs. (ll.IO) and (ll.IS), as well as the four other expressions ob
tained through a permutation of the subscripts. 

In the case of the elastic deformation of an isotropic body, each of 
the six stress-strain relations involved is linear, and the strain-energy 
density can be expressed as 

(11.25) 

Recalling the relations (2.38) obtained in Sec. 2.14, and substituting for 
the strain components into (11.25), we have, for the most general state 
of stress at a given point of an elastic isotropic body, 

(11.26) 

If the principal axes at the given point are used as coordinate axes, the 
shearing stresses become zero and Eq. (11.26) reduces to 

(11.27) 

where ua, ub, and uc are the principal stresses at the given point 
We now recall from Sec. 7.7 that one of the criteria used to predict 

whether a given state of stress will cause a ductile material to yield, 
namely, the maximum-distortion-energy criterion, is based on the de
termination of the energy per unit volume associated with the distor
tion, or change in shape, of that material. Let us, therefore, attempt to 
separate the strain-energy density u at a given point into two parts, a 
part u1) associated with a change in volume of the material at that point, 
and a part ud associated with a distortion, or change in shape, of the 
material at the same point. We write 

(11.28) 

In order to determine u1) and ud, we introduce the average value (i 

of the principal stresses at the point considered, 

a· = -(J-"'-+___,(J-",_+_<J"", 
3 

(11.29) 

and set 

(11.30) 



(b) k) 

Thus, the given state of stress (Fig. 11.22a) can be obtained by super
posing the states of stress shown in Fig. I L22b and c. We note that the 
state of stress described in Fig. 11.22b tends to change the volume of 
the element of material, but not its shape, since all the faces of the 
element are subjected to the same stress Ci. On the other hand, it fol
lows from Eqs. (11.29) and (11.30) that 

(1!.31) 

which indicates that some of the stresses shown in Fig. 11.22c are ten
sile and others compressive. Thus, this state of stress tends to change 
the shape of the element. However, it does not tend to change its vol
ume. Indeed, recalling Eq. (2.31) of Sec. 2.13, we note that the dilata
tion e (i.e., the change in volume per unit volume) caused by this state 
of stress is 

I - 2v 
e = --E-(cr~ + crb + u~) 

ore= 0, in view ofEq. (11.31). We conclude from these observations 
that the portion u11 of the strain-energy density must be associated with 
the state of stress shown in Fig. 11.22b, while the portion ud must be 
associated with the state of stress shown in Fig. 11.22c. 

It follows that the portion u11 of the strain-energy density corre
sponding to a change in volume of the element can be obtained by 
substituting 0: for each of the principal stresses in Eq. (11.27). We 
have 

I 3(1-2v) 
u =- (30'2 - 2v(3a2)] = cr2 

" 2E 2E 

or, recalling Eq. (f!.29), 

(11.32) 

11.6. Strain Energy for a General 681 
State of Sires::> 



82 Energy Methods The portion of the strain-energy density corresponding to the dis
tortion of the element is obtained by solving Eq. ( 11.28) for ud and sub
stituting for u and "• from Eqs. (11.27) and (11.32), respectively. We 
write 

1 
ud = u- Uv = 

6
E [3(cr~ +crt+ cr;)- 6v(cracrb + crbcrc + crccra) 

- (1 - 2v)(u. + "& + u,)'] 

Expanding the square and rearranging terms, we have 

_I+v 2 2 2 2 
ud- ~[(era- 2uacrb + ab) + (ab- 2crbac +a c) 

+(a~- 2ucO"a +a;)) 

Noting that each of the parentheses inside the bracket is a perfect square, 
and recalling from Eq. (2.43) of Sec. 2.15 that the coefficient in front 
of the bracket is equal to 1/12G, we obtain the following expression 
for the portion ud of the strain-energy density, i.e., for the distortion en
ergy per unit volume, 

(11.33) 

In the case of plane stress, and assuming that the c axis is perpendicu
lar to the plane of stress, we have ac = 0 and Eq. (11.33) reduces to 

(11.34) 

Considering the particular case of a tensile-test specimen, we note 
that, at yield, we have ua = ay, ab = 0, and thus (ud)r = u~J6G. The 
maximum-distOI1ion-energy criterion for plane stress indicates that a 
given state of stress is safe as long as ud < (ud)r or, substituting for u11 
from Eq. (11.34), as long as · 

(7.26) 

which is the condition stated in Sec. 7.7 and represented graphically by 
the ellipse of Fig. 7.41. In the case of a general state of stress, the 
expression (11.33) obtained for ud should be used. The maximum
distortion-energy criterion is then expressed by the condition. 

(11.35) 

which indicates that a given state of stress is safe if the point of coor
dinates O"a, ub, uc is located within the surface defined by the equation 

(11.36) 

This surface is a circular cylinder of radius V273 O"y with an axis of 
symmetry forming equal angles with the three principal axes of stress. 



' ' ' ' ..}- Modulus of 

1 
resilience 

' 

SAMPLE PR018LE!I/l11.1 

During a routine manufactu~ng operation, rod AB must acquire an elastic strain 
energy of 13.6 N · m. U~i~J'E = 200 GPa, determine the required yield strength 
of the steel if the facto~;n safety with respect to permanent deformation is to 
be five. 

SOLUTION 

Factor of Safety. Since a factor of safety of five is required, the rod 
should be designed for a strain energy of 

U ~ 5(13.6 N · m) ~ 68 N · m 

Strain~ Energy Density. The volume of the rod is 

" V ~ AL ~ 4(18 mm)2(1500 mm) ~ 381700 mm3 

Since the rod is of uniform cross section, the required strain-energy density is 

_U_68000N·mm_
0178

N ml 3 
u - V - 381700 mm3 - · • m mm 

Yield Strength. We recall that the modulus of resilienc?- is equal to the 
strain-energy density when the maximum stress is equal to Uy. Using Eq. (11.8), 
we write 

,.; 
u=-

2£ 
cr!, 

0.178 N · mm/mm3 = -,.----'c,---, 
2( 200 X 103 Nlmm2

) 
cr 1- = 166.8 MPa <tl 

Comment. It is important to note that, since energy loads are not lin
early related to the stresses they produce, factors of safety associated with en
ergy loads should be applied to the energy loads and not to the stresses. 
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B 
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SAMPLE PROBLEM 11.2 

(a) Taking into account only the effect of normal stresses due to bending, de~ 
tennine the strain energy of the prismatic beam AB for the loading shown. (b) Eva!~ 
uate the strain energy, knowing that the beam is a W250 X 67, P = 160 kN, 
L = 3.6 m, a = 0.9 m, b = 2.7 m and E = 200 GPa. 

SOLUTION 

Bending Moment. Using the free-body diagram of the entire beam, we 
determine the reactions 

For portion AD of the beam, the bending moment is 

For portion DB, the bending moment at a distance v from end B is 

Pa 
M 2 =-v 

L 

a. Strain Energy. Since strain energy is a scalar quantity, we add the 
strain energy of portion AD to that of portion DB to obtain the total strain en
ergy of the beam. Using Eq. (11.17), we write 

U = VAD + VDe 

i' Ml i' Mj ~ -dx+ -dv 
o 2EI o 2£! 

~ 2~1 r e: X )'dx + 2~1 f(p: +V 
~ _1_ P' (b2a3 + a2b3) = p2a2b2 ~ + 

2£1 L2 3 3 6EIL2 ( b) 

or, since (a+ b)= L, 

b. Evaluation of the Strain Energy. The moment of inertia of a 
W250 X 67 rolled-steel shape is obtained from Appendix C and the given data 
is restated. 

p ~ 160 kN 
a= 0.9 m 

L = 3.6 m 

b = 2.7 m 

E ~ 200 GPa I = 104 X 106 mm4 

Substituting into the expression for U, we have 

(160 X l03 N)'(0.9 m)2(2.7 m)2 

U ~ -;-6(;::-20:'-;0:-:X..,-clO;:o9-;:P-;a ):-':( 1'::0';-4 -:-X-:1!:0:':6c-rn-:,;;-)('::3-:.6-m·) U ~ 336 N · m <I 



11.1 Determine the modulus of resilience for each of the following 
grades of structural steel: , 

(a) ASTM A709 Grade 50: <ry ~ 350 MPa 
(b) ASTM A9!3 Grade 65: <rr ~ 450 MPa 
(c) ASTM A709 Grade 100: <rr ~ 700 MPa 

11.2 Determine the modulus of resilience for each of the following 
aluminum alloys: 

(a) ll00-Hl4: E ~ 70 GPa, <ry ~ 55 MPa 
(b) 2014-T6: E ~ 75 GPa, <ry ~ 220 MPa 
(c) 6061-T6: E ~ 70 GPa, <ry ~ 150 MPa 

11.3 Determine the modulus of resilience for each of the following 
metals: 

(a) Stainless steel 
AISI 302 (annealed): 

(b) Stainless steel 
AISI 302 (cold-rolled): 

(c) Malleable cast iron: 

E ~ 190 GPa, <ry ~ 260 MPa 

E ~ 190 GPa, <rr ~ 520 MPa 
E = 165 GPa, O"y = 230 MPa 

o-(MPa) 

600 

450 

11.4 Determine the modulus of resilience for each of the following 300 
alloys: 

(a) Titanium: 
(b) Magnesium: 
(c) Cupronickel (annealed): 

E = 115 GPa, O'y = 875 MPa 
E = 45 GPa, O'y = 200 MPa 
E = 140 GPa, O'y = 125 MPa 

11.5 The stress"strain diagram shown has been drawn from data obtained 
during a tensile test of an aluminum alloy. Using E = 72 GPa, determine (a) the 

!50 

modulus of resilience of the alloy, (b) the modulus of toughness of the alloy. Fig. P11.5 

11.6 The stress"strain diagram shown has been drawn from data ob" 
tained during a tensile test of a specimen of structural steel. Using E = 200 
GPa, detennine (a) the modulus of resilience of the steel, (b) the modulus of 
toughness of the steel. 

o-(MPa) 

700 

560 

420 

Fig. P11.6 
0.002 
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686 Energy Methods 

P(kN) 

180 

135 

90 

45 

2.64 

Fig. P11.7 

p 

11.7 The loadMdeformation diagram shown has been drawn from data 
obtained during a tensile test of a 18~mm~diameter rod of an aluminum alloy. 
Knowing that the deformation was measured using a 400-mm gage length, 
determine ~a) the modulus of resilience of the alloy, (b) the modulus of tough
ness of the alloy. 

P(kN) 

100 

! r 
~f.·· 400mm 75 

_ls 
t q 

50 

P' 

8(mm) 

25 P' 

8.6 
8(mm) 

0.6 

Fig. P11.8 

11.8 The load-deformation diagram shown has been drawn from data 
obtained during a tensile test of structural steel. Knowing that the cross
sectional area of the specimen is 250 mm2 and that the deformation was meaM 
sured using a 500-mm gage length, determine (a) the modulus of resilience of 
the steel, (b) the modulus of toughness of the steel. 

11.9 Using E = 200 GPa, determine (a) the strain energy of the steel 
rod ABC when P = 35 k.N, (b) the corresponding strain energy density in por
tions AB and BC of the rod. 

p 

Fig. P11.9 



11.10 Using E = 200 GPa, determine (a) the strain energy of the steel 
rod ABC when P = 25 kN, (b) the corresponding strain*energy density in por-
tions AB and BC of the rod. · 

20-mm diameter 

l6·mm diameter 

Fig. P11.10 and P11.11 

11.11 Rod ABC is made of a steel for which the yield strength is 
O"y = 250 MPa and the modulus of elasticity is E = 200 GPa. Determine, for 
the loading shown, the maximum strain energy that can be acquired by the rod 
without causing any pennanent deformation. 

11.12 Rods AB and BC are made of a steel for which the yield strength 
is ur = 300 MPa and the modulus of elasticity is E = 200 GPa. Determine 
the maximtlm strain energy that can be acquired by the assembly without caus
ing permanent defonnation when the length a of rod AB is (a) 2 m, (b) 4 m. 

( 12-mm diameter 

B ( 8-mm diameter 

Fig. P11.12 

11.13 Rod BC is made of a steel for which the yield strength is 
uy = 300 MPa and the modulus of elasticity is E = 200 GPa. Knowing that 
a strain energy of 10 J must be acquired by the rod when the axial load P is 
applied, determine the diameter of the rod for which the factor of safety with 
respect to pennanent defonnation is six. 

Fig. P11.13 

Problems 687 



688 Energy Methods 11.14 Rod ABC is made of a steel for which the yield strength is 
ay = 450 MPa and the modulus of elasticity is E = 200 GPa. Knowing that 
a strain energy of 7 N · m must be acquired by the rod as the axial load P is 
applied, determine the factor of safety of the rod with respect to permanent 
deformatiOn. 

16-mm diameter 

10-mm diameter 

Fig. P11.14 

11.15 Show by integration that the strain energy of the tapered rod 
AB is 

1 P2L 
u~---

4 EAmin 

where Amin is the cross-sectional area at end B. 

Fig. P11.15 

11.16 Solve Prob. 11.15 using the stepped rod shown as an approxima~ 
tion of the tapered rod. What is the percentage error in the answer obtained? 

A 

Fig. P11.16 



11.17 through 11.20 In the truss shown, all members are made of the 
same material and have the uniform cross-sectional area indicated. Deterrpine 
the strain energy of the truss when the lOad P is applied. 

Problems 689 

/11-\ 
I ® 

B 

p 

-1--------i 
Fig. P11.17 Fig. P11.18 Fig. P11.19 

11.21 Each member of the truss shown is made of aluminum and has 
the cross-sectional area shown. Using E = 72 GPa, determine the strain energy 
of the truss for the loading shown. 

11.22 Solve Prob. 11.21, assuming that the 100-kN load is removed. 

11.23 through 11.26 Taking into account only the effect of normal 
stresses, determine the strain energy of the prismatic beam AB for the loading 
shown. 

p 

Fig. P11.23 

"1----- L ---->i 

Fig. P11.25 

c 

B 

Fig. P11.20 

Fig. P11.21 

rt±: 4);-==3'" i\iiilw. 

a b---• 

L 

Fig. P11.24 

w 

f.--- L----1 
Fig. P11.26 
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Fig. P11.27 

Fig. P11.29 

:t ''"'*" i~l X 
['">' ~~ I S200 X 27.4 

~l.Sm---~ 
Fig. P11.31 

11.27 Assuming that the prismatic beam AB has a rectangular cross sec
tion, show. that for the given loading the maximum value of the strain-energy 
density in the beam is 

where U is the strain energy of the beam and V is its volume. 

!-<---- L---->i 

Fig. P11.28 

11.28 Assuming that the prismatic beam AB has a rectangular cross sec
tion, show that for the given loading the maximum value of the strain-energy 
density in the beam is 

where U is the strain energy of the beam and V is its volume. 

11.29 and 11.30 Using E = 200 GPa, determine the strain energy due 
to bending for the steel beam and loading shown. 

80 kN 80 kN 

D E 
A .• ,. B 

~;6mLamLaO:~···· 
L-4.8m---J 

Fig. P11.30 

W310 X 74 

X 

11.31 and 11.32 Using E = 200 GPa, determine the strain energy due 
to bending for the steel beam and loading shown. 



11.33 In the assembly shown torques TA and T 8 are exerted on disks 
A and B, respectively. Knowing that both shafts are solid and made of aluminum 
(G = 73 GPa), determine the total strain'energy acquired by the assemblY,. 

' 

TA ""300N ·Ill J 
T 8 =400N-m 

0.75m 

u 
Fig. P11.33 

11.34 The design specifications for the steel shaft AB require that the 
shaft acquire a strain energy of 45 N · m as the 28 kN · m torque is applied. 
Using G = 77 GPa, detennine (a) the largest inner diameter of the shaft that 
can be used, (b) the corresponding maximum shearing stress in the shaft. 

2SkN·m 

Fig. P11.34 

11.35 Show by integration that the strain energy in the tapered rod 
AB is 

7 T2L 
u~---

48 GJmin 

where lmin is the polar moment of inertia of the rod at end B. 

11.36 The state of stress shown occurs in a machine component made 
of a grade of steel for which O'y = 450 MPa. Using the maximum~distortion~en~ 
ergy criterion, determine the range of values of u Y for which the factor of safety 
associated with the yield strength is equal to or larger than 2.2. 

11.37 The state of stress shown occurs in a machine component made 
of a grade of steel for which ay = 450 MPa Using the maximum~distortion~en~ 
ergy criterion, determine the factor of safety associated with the yield strength 
when (a) ay = +110 MPa, (b) O'y = -110 MPa. 

Problems 691 

Fig. P11.35 

"I 
i ~a, 

~:~. z/~:__5~: 
100 MPa 

Fig. P11.36 and P11.37 



692 Energy Methods 11.38 The state of stress shown occurs in a machine component made 
of a brass for which o-y = 160 MPa. Using the maximum"distortion-energy 
criterion, determine whether yield occurs when (a) o-z = +45 MPa, 
(b) u, ~ -45 MPa. 

yl 
20MPa 

Fig. P11.38 and P11.39 

11.39 The state of stress shown occurs in a machine component made 
of a brass for which o-y = 160 MPa. Using the maximum-distortion-energy 
criterion, determine the range of values of a-8 for which yield does not occur. 

11.40 For the state of stress shown in Fig. a, determine the stresses in 
an element oriented as shown in Fig. b. Compare the strain energy density in 
the given state by first using Fig. a and then by using Fig. b. Equating the two 
results obtained, show that 

E 
o~--

2(1 + v) 

l[Jf" 
(a) 

Fig. P11.40 

(b) 

11.41 Determine the strain energy of the prismatic beam AB, taking into 
account the effect of both normal and shearing stresses. 

Fig. P11.41 



11.7.1MPACT LOADING 

Consider a rod BD of uniform cross section which is hit at its end lj by 
a body of mass m moving with a velocity v0 (Fig. 11.23a). As the:;/ rod 
deforms under the impa<;:t (Fig. 11.23b), stresses develop within tl}b rod 
and reach a maximum value crm. After vibrating for a while, the ~6d will 
come to rest, and all stresses will disappear. Such a sequence 6f events 
is referred to as an impact loading (Fig. 11.24). 

In order to determine the maximum value u m of the stress occur
ring at a given point of a structure subjected to an impact loading, We 
are going to make several simplifying assumptions. 

First, we assume that the kinetic energy T = 4mvb of the striking 
body is transfeiTed entirely to the structure and, thus, that the strain en
ergy Um corresponding to the maximum deformation x, is 

(11.37) 

This assumption leads to the following two specific requirements: 

1. No energy should be dissipated during the impact. 
2. The striking body should not bounce off the structure and re~ 

tain part of its energy. This, in turn, necessitates that the iner
tia of the structure be negligible, compared to the inertia of the 
striking body. 

In practice, neither of these requirements is satisfied, and only part 
of the kinetic energy of the striking body is actually transfefred to the 
structure. Thus, assuming that all of the kinetic energy of the striking 
body is transferred to the structure leads to a conservative design of that 
structure. 

We further assume that the stress~strain diagram obtained from a 
static test of the material is also valid under impact loading. Thus, for 
an elastic deformation of the structure, we can express the maximum 
value of the strain energy as 

U = -!!!.dV f 
(72 

Ill 2£ (1138) 

In the case of the uniform rod of Fig. 11.23, the maximum stress 
0'111 has the same value throughout the rod, and we write U"' = 0'~ V/2£. 
Solving for 0'111 and substituting forUm from Eq. (11.37), we write 

(j = rw::;E = r;:;Ji;E 
m 'J-v ')V (11.39) 

We note from the expression obtained that selecting a rod with a large 
volume V and a low modulus of elasticity E will result in a smaller 
value of the maximum stress 0'111 for a given impact loading. 

In most problems, the distribution of stresses in the structure is not 
uniform, and forrnul~ (11.39) does not apply. It is then convenient to 
determine the static load P,n which would produce the same strain en~ 
ergy as the impact loading, and compute from P, the corresponding 
value 0'111 of the largest stress occurring in the structure. 
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(a) 

(b) 

v = 0 B 

Fig. 11.23 

Fig. 11.24 Steam alternately lifts a weight inside 
the pile driver and then propels it downward. This 
delivers a large impact load to the pile which is 
being driven into the ground. 



A body of mass m moving with a velocity v0 hits the end B of 
the nonuniform rod BCD (Fig. 11.25). Knowing that the di~ 
a meter of portion BC is twice the diameter of portion CD, de~ 
termlne the maximum value 0'111 of the stress in the rod. 

Fig. P11.25 

Making n = 2 in the expression (11.15) obtained in Ex
ample 11.01, we find that when rod BCD is subjected to a 
static load P m• its strain energy is 

U = 5P;,L 
m 16A£ 

(11.40) 

where A is the cross-sectional area of portion CD of the rod. 
Solving Eq. (11.40) for ?111 , we find that the static load that 

A block of weight W is dropped from a height h onto the free 
end of the cantilever beam AB (Fig. 11.26). Determine the max
imum value of the stress in the beam. 

rcra 
h fw 

Fig. 11.26 

As it falls through the distance h, the potential energy Wh 
of the block is transformed into kinetic energy. As a result of 
the impact, the kinetic energy in turn is transformed into strain 
energy. We have, therefore, t 

U, = Wh (11.42) 

tThe total distance through which the block drops is actually h + Ym• 
where y,., is the maximum deflection of the end of the beam. Thus, a more 
accurate expression for U.., (see Sample Prob. 11.3) is 

U, ~ W(h + y,.,) (11.42') 

However, when h :::V y,, we may neglect y,., and use Eq. (!1.42). · 
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produces in the rod the same strain energy as the given impact 
loading is 

16 U,AE 

5 L 

where U, is given by Eq. (11.37). The largest stress occurs in 
portion CD of the rod. Dividing P111 by the area A of that por~ 
tion, we have 

P, = 
A 

16 U,"E 
5 AL 

or, substituting for U, from Eq. (11.37), 

0', = 8 mv5E f¥!-v5E ---= 1265 --
5 AL . AL 

(11.41) 

Comparing this value with the value obtained for 0', in 
the case of the uniform rod of Fig. 11.24 and making V = AL 
in Eq. (11.39), we note that the maximum stress in the rod of 
variable cross section is 26.5% larger than in the lighter uni
form rod. Thus, as we observed earlier in our discussion of 
Example 11.01, increasing the diameter of portion BC of the 
rod results in a decrease of the energy-absorbing capacity of 
the rod. 

Recalling the expression obtained for the strain energy of 
the cantilever beam AB in Example 11.03 and neglecting the 
effect of shear, we write 

Solving this equation for P"" we find that the static force that 
produces in the beam the same strain energy is 

-)6UJI 
P,- L3 (11.43) 

The maximum stress a, occurs at the fixed end B and is 

IMic P,.;Lc 
u =--=--

/Jl I 1 

Substituting for Pm from (11.43), we write 

(11.44) 

or, recalling (11.42), 



i i .8. DESIGN FOR IMPACT LOADS 

Let us now compare the values obtained in the preceding section; for 
the maxim~rn stress u m (a) _in the rod of u~iform cross section of .Fig. 
11.23. (b) m the rod of vanable cross sectiOn of Example 11.06/ and 
(c) in the cantilever beam of Example 11.07, assuming that thejst has 
a circular cross section of radius c. 

(a) We first recall from Eq. (11.39) that, if U111 denotes the amount 
of energy transferred to the rod as a result of the impact loading, the 
maximum stress in the rod of uniform cross section is 

(J ~ rw;::E 
m v-v 

where V is the volume of the rod. 

(11.45a) 

(b) Considering next the rod of Example 11.06 and observing that 
the volume of the rod is 

V ~ 4A(L/2) + A(L/2) ~ 5AL/2 

we substitute AL ~ 2V/5 into Eq. (11.41) and write 

(J ~ rw;:E 
m \f-v (11.45b) 

(c) Finally, recalling that I = lrrc4 for a beam of circular cross sec
tion, we note that 

L(Iic2) ~ L{l1Tc41c2) ~ i(1Tc2L) ~ lV 
where V denotes the volume of the beam. Substituting into Eq. (11.44), 
we express the maximum stress in the cantilever beam of Exam
ple 11.07 as 

(!1.45c) 

We note that, in each case, the maximum stress O"m is proportional 
to the square root of the modulus of elasticity of the material and in
versely proportional to the square root of the volume of the member. 
Assuming all three members to have the same volume and to be of the 
same material, we also note that, for a given value of the absorbed en
ergy, the uniform rod will experience the lowest maximum stress, and 
the cantilever beam the highest one. 

This observation can be explained by the fact that, the distribution 
of stresses being uniform in case a, the strain energy will be uniformly 
distributed throughout the rod. In case b, on the other hand, the stresses 
in portion BC of the rod are only 25% as large as the stresses in por
tion CD. This uneven distribution of the stresses and of the strain en
ergy results in a maximum stress O" m twice as large as the correspon
ding stress in the unjfonn rod. Finally, in case c, where the cantilever 
beam is subjected to a transverse impact loading, the stresses vary lin
early along the beam as well as across a transverse section. The very 
uneven resulting distribution of strain energy causes the maximum stress 
&m to be 3.46 times-larger than if the same member had been loaded 
axially as in case a. 

11.8. Design for Impact Loads 695 



696 Energy Methods 

P, 
11----L----!\. 
----------- ~·' ;@,,.s;:..:=::='\ifBi 

A 

Fig. 11.27 

The properties noted in the three specific cases discussed in this 
section are quite general and can be observed in all types of structures 
and impact loadings. We thus conclude that a structure designed to with~ 
stand effectively an impact load should 

1. Have a large volume 
2. Be made of a material with a low modulus of elasticity and a 

high yield strength 
3. Be shaped so that the stresses are distributed as evenly as pos~ 

sible throughout the structure 

11.9. WORK AND ENERGY UNDER A SINGLE LOAD 

When we first introduced the concept of strain energy at the beginning 
of this chapter, we considered the work done by an axial load P applied 
to the end of a rod of unifonn cross section (Fig. 11.1). We defined the 
strain energy of the rod for an elongation x 1 as the work of the load P 
as it is slowly increased from 0 to the value P 1 corresponding to x 1• We 
wrote 

Strain energy = U = r1

P dx 
0 

(11.2) 

In the case of an elastic deformation, the work of the load P, and thus 
the strain energy of the rod, were expressed as 

(11.3) 

Later, in Sees. 11.4 and 11.5, we computed the strain energy of 
structural members under various loading conditions by determining the 
strain~energy density u at every point of the member and integrating u 
over the entire member. 

However, when a structure or member is subjected to a single con
centrated load, it is possible to use Eq. (11.3) to evaluate its elastic 
strain energy, provided, of course, that the relation between the load 
and the resulting deformation is known. For instance, in the case of the 
cantilever beain of Example I 1.03 (Fig. 11.27); we write 

U = !P1y1 

and, substituting for y 1 the value obtained from the table of Beam De· 
flections and Slopes of Appendix D, 

U = !p (P1L') = PjL' 
2 1 3EI 6El (!1.46) 

A similar approach can be used to determine the strain energy of a 
structure or member subjected to a single couple. Recalling that the el
ementary work of a couple of moment M·is M dO, where dO is a small 
angle, we find, since M and 0 are linearly related, that the elastic strain 
energy of a cantilever beam AB subjected to a single couple M 1 at its 
end A (Fig. 11.28) can be expressed as 

(11.47) 



where 81 is the slope of the beam at A. Substituting for 01 the value ob
tained from Appendix D, we write 

U ~ .!_M (M,L) ~ MjL 
Z'EI 2El 

(11.48) 

Iri a similar way, the elastic strain energy of a uniform circular shaft 
AB oflength L subjected at its end B to a single torque T, (Fig. 1!.29) 
can be expressed as 

(1!.49) 

Fig. 11.29 

Substituting for the angle of twist ¢ 1 from Eq. (3.16), we verify that 

U ~ .!_ (T•L) ~ TjL 
2T, JG 2JG 

as previously obtained in Sec. ll.5. 
The method presented in this section may simplify the solution of 

many impact-loading problems. In Example 11.08, the crash of an au
tomobile into a barrier (Fig. 11.30) is considered by using a simplified 
model consisting of a block and a simple beam. 

Fig. 11.30 As the aut6mobile crashes into the barrier considerable energy will be dis· 
sipated as heat during the permanent deformation of the automobile and the barrier. 

11.9, Work and Energy under a 697 
Single Load 



A block of mass m moving with a velocity v0 hits squarely the 
prismatic member AB at its midpoint C (Fig. 11.31). Deter~ 
mine (a) the !!quivalent static load P m• (b) the maximum stress 
Um in'the member, and (c) the maximum deflection Xm at point 
c. 

(a} Equivalent Static Load. The maximum strain en
ergy of the member is equal to the kinetic energy of the block 
before impact. We have 

U, = imv5 (11.50) 

On the other hand, expressing U"' as the work of the equiva
lent horizontal static load as it is slowly applied at the mid
point C of the member, we write 

Um = !P,x, (11.51) 

where x, is the deflection of C corresponding to the static load 
P m· From the table of Beam Deflections and Slopes of Ap
pendix D, we find that 

P,,.f} 
x, = 48EI (11.52) 

Substituting for x 111 from (11.52) into (11.51), we write 

1 P;,,L3 

U, = 2 48£/ 

Solving for P, and recalling Eq. (11.50), we find that the static 
load equivalent to the given impact loading is 

P, = 
48mv5EI 
--L-,- (11.53) 

B 

Rll"" 1Pm 
l~ 

.~, 

P,, c 

:C·~ tL 
<•; 

A A R,1=-!P,, 

Fig. 11.31 Fig. 11.32 

(b) Maximum Stress. Drawing the free-body diagram 
of the member (Fig. 11.32), we find that the maximum value 
of the bending moment occurs at C and is Mmax = P mL/.4. The 
maximum stress, therefore, occurs in a transverse section 
through C and is equal to 

·Substituting for P111 from (11.53), we write 

Um = 

(c) Maximum Deflection. Substituting into Eq. 
(11.52) the expression obtained for P"' in (11.53), we have 

mv5L3 

48£/ 

11.1 0. DEFLECTION UNDER A SINGLE LOAD 
BY THE WORK-ENERGY METHOD 
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We saw in the preceding section that, if the deflection x1 of a strUcture 
or member under a single concentrated load P 1 is known, the corre
sponding strain energy U is obtained by writing 

(11.3) 

A similar expression for the strain energy of a structural member un~ 
der a single couple M 1 is: 

(1 1.47) 



Conversely, if the strain energy U of a structure or member sub~ 
jected to a single concentrated load l'1 or couple M 1 is known, Eq. (11.3) 
or (11.47) can be used to determine the corresponding deflection x 1 or 
angle 01• In order to determine the deflection under a single load ap
plied to a structure consisting of several component parts, it is easier, 
rather than use one of the methods of Chap. 9, to first compute the strain 
energy of the structure by integrating the strain-energy density over its 
various parts, as was done in Sees. 11.4 and 11.5, and then use either 
Eq. (11.3) or Eq. (11.47) to obtain the desired deflection. Similarly, the 
angle of twist </> 1 of a composite $haft can be obtained by integrating 
the strain~energy density over the various parts of the shaft and solving 
Eq. (11.49) for ¢ 1• 

It should be kept in mind that the method presented in this section 
can be used only tf the given structure is subjected to a single concen· 
trated load or couple. The strain energy of a structure subjected to sev~ 
eral loads cannot be detennined by computing the work of each load 
as if it were applied independently to the structure (see Sec. 11.11). We 
can also observe that, even if it were possible to compute the strain en~ 
ergy of the structure in this manner, only one equation would be avail
able to determine the deflections corresponding to the various loads. In 
Sees. 11.12 and 11.13, another method based on the concept of strain 
energy is presented, one that can be used to detennine the deflection or 
slope at a given point of a structure, even when that structure is sub~ 
jected simultaneously to several concentrated loads, distrii{uted loads, 
or couples. 

A load P is supported at B by two uniform rods of the same 
cross-sectional area A (Fig. 11.33 ). Determine the vertical de
flection of point B. 

The strain energy of the system under the given load was 
determined in Example 11.02. Equating the expression ob· 
tained for U to the work of the load, we Write 

and, solving for the vertical deflection of B, 

Renlark. We should note that, once the forces in the 
two rods have been obtained (see Example 11.02), the defor
mations 8/J/c and 88/D of the rods could be obtained by the 
method of Chap. 2. Determining the vertical deflection of point 
B from these deformations, however, would require a careful 
geometric analysis of the various displacements involved. 

· The strain-energy method. used here makes such an analysis 
unnecessary. 

11.10. Deflection under a Single Load 699 
by the Work-Energy Method 

Fig. 11.33 



Detennine the deflection of end A of the cantilever beam AB 
(Fig. 1 1.34), taking into account the effect of (a) the normal 
stress~s only, (b) both the normal and shearing stresses, 

Fig. 11.34 

(a) Effect of Normal Stresses. The work of the 
force P as it is slowly applied to A is 

U =~PyA 

Substituting for U the expression obtained for the strain en
ergy of the beam in Example 11.03, where only the effect of 

A torque T is applied at the end D of shaft BCD (Fig. 11.35). 
Knowing that both portions of the shaft are of the same ma
terial and same length, but that the diameter of BC is twice the 
diameter of CD, determine the angle of twist for the entire 
shaft 

Fig. 11.35 
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the normal stresses was considered, we write 

and, solving for y11 , 

PL3 

YA = 3El 

(b) Effect of Normal and Shearing Stresses. We 
now substitute for U the expression (11.24) obtained in Ex
ample 11.05, where the effects of both the normal and shear
ing stresses were taken into account. We have 

and, solving for YA, 

PL
3 

( 3Eh
2

) 
YA = 3El 1 + 10GL2 

We note that the relative error when the effect of shear is ne
glected is the same that was obtained in Example 11.05, i.e., 
less than 0.9(h!Lf As we indicated then, this is less than 0.9% 
for a beam with a ratio h!L less than frl. 

The strain energy of a similar shaft was determined in Ex
ample 11.04 by breaking the shaft into its component parts BC 
and CD. Making n = 2 in Eq. (11.23), we have 

17 T 2L 
U = 32 2GJ 

where G is the modulus of rigidity of the material and J the 
polar moment of inertia of portion CD of the shaft Setting U 
equal to the work of the torque as it is slowly ilpplied to end 
D, and recalling Eq. (11.49), we write 

and, solving for the angle of twist ¢ 018 , 

17TL 
¢DJB = 32GJ 



Position 1 1Jm 

40mm 
H 
~14omm 

A D B 

~ 
Position 2 

SAMPLE PROBLEM 11.3 

The block D of mass m is released from rest and falls a dista·nce h before it 
strikes the midpoint C of the aluminum beam AB. Using E = 73 GPa, deter
mine (a) the maximum deflection of point C, (b) the maximum stress that Oc~ 
curs in the beam. 

SOLUTION 

Principle of Work and Energy. Since the block is released from rest, 
we note that in position I both the kinetic energy and the strain energy ru:e 
zero. In position 2, where the maximum deflection Ym occurs, the kinetic en
ergy is again zero. Referring to the table of Beam Deflections and Slopes of 
Appendix D, we find the expression for y,. shown. The strain energy of the 
beam in position 2 is 

I I48EI, 
U2 = zP,.,y,., = 2UYm 

24£[ ' 
V1= UYm 

We observe that the work done by the weight W of the block is W(h + Yn.). 
Equating the strain energy of the beam to the work done by W, we have 

24EI ? 

[}y;,, = W(h + Ym) (I) 

a. Maximum Deflection of Point C. From the given data we have 

El = (73 X I09 Pa)rz(0.04 m)' = I5.573 X I03 N · m2 

L = 1m h = 0.040 m W = mg = (80 kg)(9.81 m/s2
) = 784.8 N 

Substituting into Eq. (1), we obtain and solve the quadratic equation 

(373.8 X 103)y;,- 784.8y,- 31.39 = 0 Ym = 10.27 mm <l 

b. Max:imum Stress. The value of P,., is 

48El 48( 15.573 X !03 N • m) 
P, = fTYm = (I m)' (0.01027 m) P,. = 7677 N 

Recalling that 0', = Mmoxcll and Mmax = ± P,.L, we write 

(iP,.L)c 
O'm=--~-

! (7677 N)(1 m)(0.020 m) 

fi(0.040mt 
0'111 = 179.9 MPa <:! 

An approximation for the work done by the weight of the block can be ob
tained by omitting Ym from the expression for the work and from the right-hand 
member of Eq. (1), as was done in Example 11.07. If this approximation is 
used here, we find Ym = 9.16 mm; the error is 10.8%. However, if an 8-kg 
block is dropped from a height of 400 mm, producing the same value of Wh, 
omitting y,., from ti'Ie right-hand member of Eq. {1) results in an error of only 
1.2%. A further discussion of this approximation is given in Prob. 11.70. 
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500mm 

SAMPLE PROBLEM 11.4 

Members of the tru$S shown consist of sections of aluminum pipe with the 
cross-sectional areas indicated. Using E = 73 GPa, determine the vertical de
flection of pointE caused by the load P. 

SOLUTION 

Axial Forces in Truss Members. The reactions are found by using the 
free-body diagram of the entire truss. We then consider in sequence the equi
librium of joints, E, C, D, and B. At each joint we determine the forces indi
cated by dashed lines. At joint B, the equation "ZF" = 0 provides a check of 
our computations. 

P~_b_t:p J' ;\=21~ Fee r 
-------.oE 

B = 21P!8 B 

Member 

AB 
AC 
AD 
BD 
CD 
CE 
DE 

!()2 
!- ., 

}J-J; 
---- 15 

LFy=O:F011 = -¥P LFx=O:FAc= +JjP ZFy=O:FAo= +~P '2Fy=O:FAs=0 

LF, = 0: Fee= +ljP LFy = 0: Fco = 0 'iFx = 0: F80 = -'¥P "ZFx = 0: (Checks) 

F, L1,m 

0 0.8 
+ 15?/8 0.6 
+5?14 1.0 

-21?/8 0.6 
0 0.8 

+ 15?/8 1.5 
-17?/8 1.7 

Strain Energy. Noting that E is the same for all members, we express 
the strain energy of the truss as follows 

(1) 

where F; is the force in a given member as indicated in the following table and 
where the summation is extended over aU members of the truss. 

A~> m2 

500XI0 6 

5oo x w-6 

500 x 10-6 

1000 x 10-6 

1000 X 10-6 

5oo x 10-6 

1000 X 10-6 

/12 L; 
A; 

0 
4 219?2 

3 125?2 

4 134?2 

0 
10 547?2 

7 677?2 

F~L . 
2: -'-' ~ 29 700?3 

A; 

Returning to Eq. (1). we have 

U ~ (1/2£)(29.7 X 103?'). 

Principle of Work~Energy. We recall that the work done by the load P 
as it is gradually applied .is tPJe. Equating the work done by P to the strain 
energy U and recalling that E = 73 GPa and P = 40 kN, we have 

1 
3 

(29.7 X 103)(40 X 103
) 

Ye ~ E(29.7 X 10 P) ~ 
73 

X 
10

, 

Yli· = 16.27 X 10-3 m Ye = 16.27 mmJ.. <11.1 



11.42 A 5~kg collarD moves along the uniform rod .AB and has a speed 
v0 = 6 rn/s when it strikes a small plate attached to end A of the rod. Using 
E = 200 GPa and knowing that the aUowable stress in the rod is 250 MPa, 
determine the smallest diameter that can be used for the rod. 

Fig. P11.42 and P11.43 

11.43 A 6~kg collar has a speed v0 = 4.5 m/s when it striJs;es a small 
plate attached to end A of the 20~mm~diameter rod AB. Using E = 200 GPa, 
determine (a) the equivalent static load, (b) the maximum stress in the rod, 
(c) the maximum deflection of the A. 

11.44 The cylindrical block E has a speed v0 = 4.8 rn/s when it strikes 
squarely the yoke BD that is attached to the 22~mm-diameter rods AB and CD. 
Knowing that the rods are made of a steel for which O"y = 350 MPa and 
E = 200 GPa, determine the weight of block E for which the factor of safety 
is 5 with respect to permanent deformation of the rods. 

A 

ic 

l--105 m---.1 
Fig. P11.44 and P11.45 

11.45 The 8-kg cylindrical block E has a horizontal velocity v0 when it 
strikes squarely the yoke BD that is attached to the 22-mm-diameter rods AB 
and CD. Knowing that the rods are made of a steel for which O"y = 350 MPa 
and E = 200 GPa, determine the maximum allowable speed v0 if the rods are 
not to be permanently deformed. 

11.46 CollarD is released from rest in the- position shown and is stopped 
by a small plate attached at end C of the vertical rod ABC. Determine the mass 
of the collar for which the maximum nonnal stress in portion BC is 125 MPa. 

r 
4m 

~ 
2.5m 

L 
Fig. P11.46 

Bronze 
E = 105 GPa 
12-mm diameter 

Aluminum 
E""70GPa 
9-mm diameter 
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Fig. P11.48 

11.47 Solve Prob. 11.46, assuming that both portions of rod ABC are 
made of aluminum. 

11.48 The steel beam AB is struck squarely at its midpoini C by a 
4.5~kg block moving horizontally with a speed v0 = 2 m/s. Using E = 200 
GPa, determine (a) the equivalent static load, (b) the maximum normal stress 
in the beam, (c) the maximum deflection of the midpoint C of the beam. 

--~ 
c 

Fig. P11.49 

11.49 The post AB consists of a steel pipe of 80-mm diameter and 6~mm 
wall thickness. A 6-kg block C moving horiZontally with at velocity v0 hits the 
post squarely at A. Using E = 200 GPa, determine the largest speed v0 for 
which the maximum normal stress in the pipe does not exceed 180 MPa. 

11.50 Solve Prob. 1 L49, assuming that the post AB consists of a solid 
steel rod of 80-mm diameter. 

11.51 The 20-kg block Dis dropped from a height h = 0.18 m onto the 
steel beam AB. Knowing that E = 200 GPa, determine (a) the maximum de~ 
flection at pointE, (b) the maximum normal stress in the beam. 

11.52 and 11.53 The 2-kg block D is dropped from the position shown 
onto the end of a 16-mm-diameter rod. Knowing that E = 200 GPa, determine 
(a) the maximum deflection of end A, (b) the maximum bending moment in 
the rod, (c) the maximum normal stress in the rod. 



11.54 A block of weight W is placed in contact with a beam at some 
given point D and released. Show that the resulting maximum deflection at 
point D is twice as large as the deflection due to a static load W applied at D. 

11.55 A b"lock of weight W is dropped from a height h onto the hori
zonta_l beam AB and hits it at point D. (a) Show that the maximum deflection 
Ym at point D can be expressed as 

Ym = Ys{ 1 +) 1 + ~:) 
where Ym represents the deflection at' D caused by a static load W applied at 
that point and where the quantity in parenthesis is referred to at the impact fac
tor. (b) Compute the impact factor for the beam and the impact ofProb. 11.52. 

Fig. P11.55 and P11.56 

11.56 A block of weight W is dropped from a height h onto the horizon
tal beam AB and hits it point D. (a) Denoting by y., the exact value of the maxi
mum deflection at D and by y;,1 the value obtained by neglecting· the effect of 
this deflection on the change in potential energy of the block, show that the 
absolute value of the relative error is (y~ - YnYYm never exceeds y~/2h. 
(b) Check the result obtained in part a by solving part a of Prob. 11.52 with
out taking Ym into account when determining the change in potential energy of 
the load, and comparing the answer obtu.ined in this way with the exact answer 
to that problem. 

11.57 and 11.58 Using the method of work and energy, determine the 
deflection at point D caused by the load P. 

11.59 and 11.60 Using the method of work and energy, determine the 
slope at point D caused by the couple M 0. 

Fig. P11.59 

Problems 705 

Fig. P11.60 



706 Energy Methods 

Fig. P11.61 

Fig. P11.63 

Fig. P11.67 

11.61 and 11.62. Using the method of work and energy, determine the 
deflection at point C caused by the load P. 

Fig. P11.62 

11.63 Using the method of work and energy, detennine the slope at point 
B caused by the couple M 0. 

11.64 Using the method of work and energy, detennine the slope at point 
A caused by the couple M0. 

11.65 The 20-mm-diameter steel rod BC is attached to the lever AB and 
to the fixed support C. The uniform steel lever is 10 mm thick and 30 mm 
deep. Using the method of work and energy, determine the deflection of point 
A when L = 600 mm. Use E = 200 GPa and G = 77.2 GPa. 

Fig. P11.65 and P11.66 

11.66 The 20-mm-diameter steel rod BC is attached to the lever AB and 
to the fixed support C. The uniform steel lever is 10 mm thick and 30 mm deep. 
Using the method of work and energy, determine the length L of the rod BC for 
which the deflection at point A is 40 mm. Use E = 200 GPa and G = 77.2 GPa. 

11.67 A disk of radius a has been welded to end B of the solid steel 
shaft AB. A cable is the wrapped around the disk and a vertical force P is 
applied to end C of the cable. Knowing that the radius of the shaft is r and 
neglecting the deformations of the disk and of the cable, show that the deflec
tion of point C caused by the application of P is 

PL'( Er') 
Be = 3£1 1 + 1.5 GL' 



11.68 The 12~mm~diameter steel rod ABC has been bent into the shape 
shown. Knowing that E = 200 GPa and G = 77.2 GPa, determine the deflec
tion of end C caused by the 150¥N forCe. 

11.69 TwO steel shafts, each of 22-mm diameter, are connected by the 
gears. shown. Knowing that G = 77 GPa and that shaft DF is fixed at F, 
determine the angle through which end A rotates when a 135¥N · m torque is 
applied at A. Ignore the strain energy due to the bending of the shafts. 

Fig. P11.69 

11.70 The thin¥walled hollow cylindrical member AB has a noncircular 
cross section of nonuniform thickness. Using the expression given in Eq. (3.53) 
of Sec. 3.13, and the expression for the strain"energy density given in 
Eq. (11.19), show that the angle of twist of member AB is 

q,~TLlds 
4ct2G J t 

where ds is an element of the center line of the wall cross section and a is the 
area enclosed by that center line. 

T' 

/ 

Fig. P11.70 
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Fig. P11.68 
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Fig. P11.71 

Fig. P11.73 

80kN 

0.75'm 
A D__L 

(_18m~~-18m_J 
Fig. P11.75 

11.71 and 11.72 Each member of the truss shown has a unifonn cross
sectional area A. Using the method of worlc and energy, detennine the hori
zontal deflection of the point of application of the load P. 

r7tt 
·~-z---'-=1 
Fig. P11~72 

11.73 Each member of the truss shown is made of steel; the cross-sectional 
area of member BC is 800 mm2 and for all other members the cross-sectional 
area is 400 mm2• Using E = 200 GPa, determine the deflection of point D 
caused by the 60-kN load. 

lOOkN 

Fig. P11.74 

11.74 Each member of the truss shown is made of steel and has a uniform 
cross-sectional area of 1945 nun2• Using E = 200 GPa, determine the vertical 
deflection of joint A caused by the application of the 100-k.N load. 

11.75 Each member of the truss shown is made of steel and has a cross
sectional area of 3220 mm2• Using E = 200 GPa, determine the vertical 
deflection of point ·B caused by the 80-kN load. 

Fig. P11.76 

11.76 Members of the truss shown are made of steel and have the cross-
sectional areas shown. Using E 200 GPa, detennine the vertical deflection 
of joint C caused by the application of the 210-k.N load. 



•11.11. WORK AND ENERGY UNDER SEVERAL LOADS 

In this section, the strain energy of a structure subjected to several loads 
will be. considered and will be expressed in terms of the loads and the 
resulting deflections. 

11.11. Work and Energy under 709 
Several loads 

<:;:onsider an elastic beam AB subjeCted to two concentrated loads 
P 1 and P2. The strain energy of the beam is equal to the work of P1 and 
P2 as they are slowly applied to the beam at C1 and C2, respectively 
(Fig. 11.36). However, i'n order to evaluate this work, we must first ex
pre{is the deflections x1 a:nct x2 in terms of the loads P 1 and P2• 

P1 P2 

Let us assume that only P 1 is applied to the beam (Fig. 11.37). We 
note that both C1 and C2 are deflected and that their deflections are pro~ 
portional to the load P 1• Denoting these deflections by x 11 and x21 , re
spectively, we write 

(11.54) 

where a 1 1 and a 21 are constants called influence coefficients. These con
stants represent the deflections of C1 and C2, respectively, when a unit 
load is applied at C1 and are characteristics of the beam AB. 

Le:t us now assume that only P2 is applied to the beam (Fig. 11.38). 
Denoting by x12 and x22, respectively, the resulting deflections of C1 and 
C2, we write 

(11.55) 

Fig. 11.36 

P, 
Fig. 11.37 

where a 12 and a 22 are the influence coefficients representing the de
flections of C1 and C2, respectively, when a unit ~oad is applied at C2. 

Applying the principle of superposition, we express the deflections x 1 Fig. 11 •38 

and x2 of C, and C2 when both loads are applied (Fig. 11.36) as 

x1 = Xn + x12 = a!IPl + CX.tzPz 
Xz = XzJ + Xzz == .:YztPt + azzPz 

(11.56) 
(11.57) 

To compute the work done by P 1 and P 2, and thus the strain energy 

A 

of the beam, it is convenient to assume that P 1 is first applied slowly (a) 

at C1 (Fig. 11.39a). Recalling the first of Eqs. (11.54), we express the 
work of P 1 as 

(11.58) 

and note that P2 does no work while C2 moves through x21 , since it has 
not yet been applied to the beam. 

Now we slowly apply P2 at C2 (Fig. 11.39b); recalling the second 
of Eqs. (11.55), we express the work of P2 as 

(11.59) 

But, as P2 is slowly·applied at C2, the point of application ofP1 moves 
throj.tgh xl2 from c! to c,, and the load PI does work. Since PI is fully 

A 

(b) 

Fig. 11.39 
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I" I 

p p 

~ ------------------

(a) Load-displacement 
diagram for C 1 

Fig. 11.40 

(b) Load-displacement 
diagram for C2 

applied during this displacement (Fig. 11.40), its work is equal to P1x 12 
or, recalling the first of Eqs. (11.55), 

P1x 12 = P 1(a12P2) = a 12P 1P2 (11.60) 

Adding the expressions obtained in (11.58), (11.59), and (11.60), we 
express the strain energy of the beam under the loads P 1 and P 2 as 

(11.61) 

C'{ G:i 
A ____ ,_} _____ \ T----- B 

---~----:~----~ 

lfthe load P2 had first been applied to the beam (Fig. ll.4la), and 
then the load P1 (Fig. 11.4lb), the work done by each load would have 
been as shown in Fig. 11.42. Calculations similar to those we have just 
carried out would lead to the following alternative expression for the 
strain energy of the beam: 

(b) 

p 

U = l(a2,Pl + 2a21P,P1 + a 11P\) (11.62) 

Equating the right -hand members of Eqs. ( 11.61) and ( 11.62), we find 
that a 12 = a2 1> and thus conclude that the deflection produced at C1 by 
a unit load applied at C2 is equal to the deflection' produced at C2 by a 
unit load applied at C1• This is known as Maxwell's reciprocal theorem, 
after the British physicist James Clerk Maxwell (1831-1879). 

p 

Pt ----------------

(a) Load-displacement 
diagram for C 1 

Fig. 11.42 

(b) Load-displacement 
diagram for C2 



While we are now able to express the strain energy U of a struc
ture subjected to several loads as a. function of these loads, we cannot 
use the method of Sec. 11.10 to determine the deflection of such a struc
ture. Indeed, computing the strain energy U by integrating the strainM 
energy density u over the structure and substituting the expression obM 
rained into (11.61) would yield only one equation, which clearly could 
not be solved for the various coefficients a. 

"11.12. CASTIGLIANO"S THEOREM 

We recall the expression obtained in the preceding section for the strain 
energy of an elastic structure subjected to two loads P 1 and P2: 

(11.61) 

where a 11> a 12, and a22 are the influence coefficients a~sociated with 
the points of application C1 and C2 of the two loads. Differentiating 
both members ofEq. (I 1.61) with respect to ? 1 and recalling Eq. (11.56), 
we write 

au - = anP1 + a 12P2 = x1 aP, 
(11.63) 

Differentiating both members of Eq. (11.61) with respect to P2, recall
ing Eq. (11.57), and keeping in mind that a 12 = a 21 , we have 

au 
- = a12P1 + az2P2 = X2 aP, 

(11.64) 

More generally, if an elastic structure is subjected to n loads 
P 1, P 2, •.• , P,1, the deflection xi of the point of application of Pi, meaM 
sured along the line of action of Pi, can be expressed as the partial de
rivative of the strain energy of the structure with respect to the load Pi. 
We write 

au 
x·=-
1 aPj 

(11.65) 

This is Castigliano's theorem, named after the Italian engineer Alberto 
Castig1iano (1847-1884) who first stated it.t 

tin the case of an elastic structure subjected ton loads P 1, P2, ••• , P,., the deflection of 
the point of application of P;. measured along the line of action of P;, can be expressed as 

Xj""' 2.>.~:ikpk (11.66) 

' and the strain energy of the structure is found to be 

U=!LLauPlk (11.67) 

' ' Differentiating U with respect to P1, and observing that P; is found in tenns corresponding to 
either i = j or k = j, we write 

au 1 1 
&P; = z~a1,P, + 2 ~aiJP1 

11.12. Castig!!ano's Theorem 711 



712 Energy Methods Recalling that the work of a couple M is !MO, where 0 is the an~ 
gle of rotation at the point where the couple is sloWly applied, we note 
that Castigliano's theorem may be used to determine the slOpe of a beam 
at the point Of application of a couple MJ. We have 

8 = j!!_ 
1 aMj 

(11.68) 

Similarly, the angle of twist 4>J in a section of a shaft where a torque 
TJ is slowly applied is obtained by differentiating the strain energy of 
the shaft with respect to T/ 

iJU 
.pi = iJT 

J 

'11.13. DEFLECTIONS BY CASTIGLIANO'STHEOREM 

(11.69) 

We saw in the preceding section that the deflection xi of a structure at 
the point of application of a load P1 can be determined by computing 
the partial derivative OU/aPJ of the strain energy U of the structure. As 
we recall from Sees. 11.4 and 11.5, the strain energy U is obtained by 
integrating or summing over the structure the strain energy of each el~ 
ement of the structure. The calculation by Castigliano's theorem of the 
deflection xi is simplified if the differentiation with respect to the load 
P1 is carried out before the integration or summation. 

In the case of a beam, for example, we recall from Sec. 11.4 that 

u = r ~~dx (11.17) 

and determine the deflection xi of the point of application of the load 
PJ by writing 

(I 1.70) 

In the case of a truss consisting of n uniform members of length 
L1, cross~sectional area A1, and internal force F1, we recall Eq. (11.14) 
and express the strain energy U of the truss as 

~ FTL,. 
U=-::.,-

1•1 2A,E 
(11.71) 

The deflection xi of the point of application of the load PJ is obtained 
by differentiating with respect to PJ each term of the sum. We write 

(11.72) 



The cantilever beamAB supports a uniformly distributed load 
w and a concentrated load P as shown (Fig. 11.43). Know. 
ing that L =2m, w = 4 kN/m, P 6 .kN, and EI = 
5 MN · m2, determine the deflection at A. 

and its derivative with respect to P is 

aM 
-=-x aP 

1----L-----j Substituting forM and iJM/OP into Eq. (11.73), we write 

y, ~ _1_ r'(Px' + _l_wx')dx 
EI )

0 
2 

y = _!__(PL
3 

+ wL
4

) 
' El 3 8 

(11.75) 

Fig. 11.43 

Substituting the given data, we have 

YA = 5 x 106 N · m2 

The deflection YA of the point A where the load P is ap· 
plied is obtained from Eq. (11.70). Since Pis vertical and di· 
rected downward, YA represents a vertical deflection and is pos· 
itive downward. We have 

[ 
(6 X !03 N)(2 m)' (4 X !03 N/m)(2 m)4

] 

3 + 8 

au 
YA = aP = I'M aM 

--dx 
0 

EI iJP 
(11.73) YA = 4.8 X 10-3 m YA = 4.8 mm!. 

The bending moment M at a distance x from A is 

M ~ -(Px + lwx') (11.74) 

We note that the computation of the partial derivative iJM/iJP 
could not hMve been carried out if the numerical value of P 
had been substituted for Pin the expression (1 L74) for the 
bending moment. 

We can observe that the deflection xj of a structure at a given point 
Cj can be obtained by the direct application of Castigliano's theorem 
only if a load pj happens to be applied at cj in the direction in which 
x1 is to be determined. When no load is applied at Cj, or when a load 
is applied in a direction other than the desired one, we can still obtain 
the deflection x1 by Castigliano's theorem if we use the following pro~ 
cedure: We apply a fictitious or "dummy" load Q1 at Cj in the direction 
in which the deflection xj is to be determined and use Castigliano's the~ 
orem to obtain the deflection 

i!U 
X·=-

J i!Qj 
(11.76) 

due to Q1 and the actual loads. Making Q1 ~ 0 in Eq. (11.76) yields 
the deflection at cj in the desired direction under the given loading. 

The slope ej of a beam at a point c1 can be determined in a simi~ 
lar manner by applying a fictitious couple Mj at C1, computing the par~ 
tial derivative aU!aM1, and making M1 = 0 in the expression obtained. 
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The cantilever beam AB supports a uniformly distributed load 
w (Fig. 11.44 ). Determine the deflection and slope at A. 

Deflection at A. We apply a dummy downward load 
~ at A (Fig. 11.45) and write 

. au (' M aM 
YA = dQA = Jo EldQA dx 

The bending moment M at a distance x from A is 

M = -QAx -1wx2 

and its derivative with respect to QA is 

aM 
-= -x 
aQ, 

(11.77) 

(1 1.78) 

(l 1.79) 

Substituting forM and dM/dQA from (11.78) and (11.79) into 
(11.77), and making QA = 0, we obtain the deflection at A for 
the given loading: 

I iL wL4 
y,~- (-1wx')(-x)dx~+-

EJ0 2 8E/ 

Since the dummy load was directed downward, the positive 
sign indicates that 

Slope at A. We apply a dummy counterclockwise cou~ 
pie MA at A (Fig. 11.46) and write 

au 
eA='&M 

' 
Recalling Eq. (11.17), we have 

(' M aM 
)
0 

El dMA dx 
(I 1.80) 

The bending moment M at a distance x from A is 

(1 1.81) 

and its derivative with respect to MA is 

(I 1.82) 

714 

f----L-----1 

).l! LUI tlJ:l1f.•.· .. 
B t· 

'" 
Fig. 11.44 

Q, 
Fig. 11.45 

ft~J I UJ LLUq·.··· 
MA L ... ;··. 

Fig. 11.46 

Substituting forM and aM/dMA from (11.81) and (11.82) into 
(11.80), and making MA = 0, we obtain the slope at A for the 
given loading: 

e, ~_I_ J' ( -!wx')( -I) dx ~ + wL' 
EI 

0 
6£/ 

Since the dummy couple was counterclockwise, the positive 
sign indicates that the angle 8 A is also counterclockwise: 



A load P is supported at B by two rods of the same material 
and of the same ~ross~sectional area A (Fig. 11.47). Determine 
the horizontal and vertical deflection of poi~t B. 

c ' c 

r r 
:A :0 

,. 
;'i 

l l 

l l 
D D 

Fig. 11.47 Fig. 11.48 

We apply a dummy horizontal load Qat B (Fig. ll.48). 
From Castigliano's theorem we have 

au 
Ys = OP 

Recalling from Sec. 11.4 the expression (11.14) for the strain 
energy of a rod, we write 

Fjc(BC) F$0 (BD) 
U=---+---

2AE 2AE 

where Foe and F80 represent the forces in BC and BD, re~ 

spectively. We have, therefore, 

(I 1.83) 

and 

au Fsc(BC) oF8c Fso(BD) oF80 
Ys= aP=~ap-+~ap- (11.84) 

From the free-body diagram of pin B (Fig. 11.49), we obtain 

F8c = 0,6P + 0.8Q F8o 'C -0.8P + 0.6Q (1 1.85) 

Differentiating these expressions with respect to Q and P, we 
write 

&Foe 
aQ = o.8 

a Foe 
-=0.6 

aP 

Fac 

Fig. 11.49 

p 

OF so = 0.6 
aQ 

OF80 -= -0.8 
aP 

Q 

(11.86) 

Substituting from (11.85) and (11.86) into both (11.83) and 
· (11.84), making Q = 0, and noting that BC = 0.61 and 
BD = 0.8l, we obtain the horizontal and vertical deflections 
of point B under the given load P: 

(0.6P)(0.6i) ( -0.8P)(0.8i) ' 
x8 = AE (0.8) + AE (0.6) 

Pi = -0.096-
AE 

(0.6P)(0.6i) ( -0.8P)(0.8i) 
Ys = AE (0.6) + AE ( -0.8) 

Pi = +0.728-
AE 

Refening to the directions of the loads Q and P, we conclude 
that 

Pi 
x8 = 0.096 AE +--

Pi 
Y =0.728-.J, 8 AE 

We check that the expression obtained for the vertical deflec
tion of B is the same that was found in Example 11.09. 
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716 Energy Methods '11.14. STATICALLY INDETERMINATE STRUCTURES 

The reactions at the supports of a statically indeterminate ~lastic struc
ture can be determined by Castigliano's theorem. In the case of a struc~ 
ture indeterminate to the first degree, for example, we designate one of 
the reactions as redundant and eliminate or modify accordingly the cor~ 
responding support. The redundant reaction is then treated as an unM 
known load that, together with the other loads, must produce deforma
tions that are compatible with the original supports. We first calculate 
the strain energy U of the structure due to the combined action of the 
given loads and the redundant reaction. Observing that the partial de
rivative of U with respect to the redundant reaction represents the de~ 
flection (or slope) at the support that has been eliminated or modified, 
we then set this derivative equal to zero and solve the equation obtained 
for the redundant reaction. t The remaining reactions can be obtained 
from the equations of statics. 

tThis is in the case of a rigid support allowing no deflection. For other types of support, 
the partial derivative of U should be set equal to the allowed deflection. 

Deterrnii1e the reactions at the supports for the prismatic beam 
and loading shown (Fig. 11.50). 

The beam is statically indeterminate to the first degree. 
We consider the reaction at A as redundant and release the 
beam from that support. The reaction RA is now considered as 
an unknown load (Fig. 11.51) and will be detennined from the 
condition that the deflection YA at A must be zero. By Cas
tigliano's theorem YA = aUjaRA, where U is the strain energy 
of the beam under the distributed load and the redundant 
reaction. Recalling Eq. (11.70), we write 

(1 1.87) 

We now express the bending moment M for the loading 
of Fig. 11.5!. 

The bending moment at a distance x from A is 

(11.88) 

and its derivative with respect to RA is 

(1 1.89) 

Substituting forM and aM/aRA from (11.88) and (1 1.89) 
into (11.87), we write 

Fig. 11.50 

R, 
Fig. 11.51 

y ~ _1_ J'(R x'- lwr)dx ~ _l_(R,.f}- wL') 
AEIOA 2 E/3 8 

Setting YA = 0 and solving for RA, we have 

From the conditions of equilibrium for the beam, we find that 
the reaction at B consists of the following force and couple: 

R8 = ~wL 1' 



A load P is supported at B by three rodS of the same material 
and the.same cross-sectional area A (Fig. 1152). Determine 
the force in each ·rod. 

The structure is statically indeterminate to the first degree. 
We consider the reaction at Has redundant and release rod BH 
from hs support at H. The reaction RH is now considered as 
an unknown load (Fig. 11.53) and will be determined from the 
condition that the deflection YH of point H must be zero. By 
Castigliano's theorem YH = iJU/ORH, where U is the strain en
ergy of the three-rod system under the load P and the redun
dant reac"tion RH. Recalling Eq. (11.72), we write 

(11.90) 

We note that the force in rod BH is equal to RH and write 

(11.91) 

Then, from the free-body diagram of pin B (Fig. 11.54), we 
obtain 

F8c = 0.6?- 0.6RH F80 = 0.8RH- 0.8P (11.92) 

Differentiating with respect to RH the force in each rod, we 
write 

(11.93) 

Substituting from (11.91), (11.92), and (11.93) into 
(11.90), and noting that the lengths BC, BD, and BH are, re
spectively, equal to 0.6l, 0.8!, and 0.51, we write 

1 
YH = -[(0.6P- 0.6RH)(0.6l)( -0.6) 

AE · 
+ (0.8RH- 0.8?)(0.8/)(0.8) + RH(0.5l)(1)] 

Setting Yr{ = 0, we obtain 

1.228RH - 0. 728? = 0 

and, solving for RH, 

RH = 0.593? 

Carrying this value into Eqs. (11.91) and (11.92), we obtain 
the forces in the three rods: 

Foe= +0.244P F80 = -0.326? F8H = +0.593? 

I< D 

Fig. 11.52 

c 

D 

Fig. 11.53 

Fig. 11.54 

FBH"" Ru 
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Member F, aF/aQ 

AB 0 0 
AC + 15P/8 0 
AD +5P!4 + 5Q/4 ' 
BD -21P/8 - 3Q/4 -! 
CD -Q -1 
CE + 15P/8 0 
DE -17P/8 0 

718 

SAMPLE PROBLEM ii.5 

For_the truss and loading of Sample Prob. 11.4, determine the verti.cal deflec
tion of joint C. 

SOLUTION 

Castigliano's Theorem. Since no vertical load is applied at joint C, we 
introduce the dummy load Q as shown. Using Castigliano's theorem, and de
noting by F1 the force in a given member i caused by the combined loading of 
P and Q, we have, since E = constant, 

(1) 

Force in Members. Considering in sequence the equilibrium of joints 
E, C, B, and D. we detennine the force in each member caused by load Q. 

Joint D Force triangle 

Joint£: Fa=Fo£=0 

:J' F ""Q t _.; Joint C: FAc = 0; Fco = -Q 
Joint B: FA8 = 0; F8o = -lQ 

Fc~o'\ CD Fcn"'Q \\-\D-:j"Q 

'D ~ 
~o=~Q ~v=~Q 

The force in each member caused by the load P was previously found in 
Sample Prob. 11.4. The total force in each member under the combined action 
of Q and P is shown in the following table. Forming OF/ dQ for each mem
ber, we then compute (F;L;IA1)(aF,fdQ) as indicated in the table. 

L1,m A1,m2 (F1L1YF1 
A, (JQ 

0.8 500 X 10-6 0 
0.6 500 X 10-6 0 
1.0 500 X 10-6 +3125P +3125Q 
0.6 1000 x·10-6 + 1181P + 338Q 
0.8 1000 X 10-6 + 800Q 
1.5 500 X 10-6 0 
1.7 1000 X 10-6 0 

(
FL) aF 2; -'-' --' = 4306P + 4263Q 
A, aQ 

Defler:tlon of C. Substituting into Eq. (1), we have 

1 .._, (F,L,) aF, 1 
Yc = E .:. A, aQ = E (4306P + 4263Q) 

Since the load Q is not part of the original loading, we set Q = 0. Substitut
ing the given data, P = 40 kN and E = 73 GPa, we fmd 

4306(40 X 103 N) 
Yc = 73 X 109 Pa 

2.36 X 10-3 m Yc = 2.36 mm J. -<11 



W250 X 22.3 

w=27kNJm \ 

x:~ . l4JJ l IU~ ~ 
··E·" 

135 
I b•2.25mj .... 

a= . m 

L=3.6m---

Q 

I _,_4---b---· 
R.-~ -:----L----UR, 

SAMPlE PROBlEM 11.6 

For the beam and loading shown, determine the deflection at point D. Use 
E = 200 GPa. 

SOLUTION 

Castigliano's Theorem. Since the given loading does not include aver
tical load at point D, we introduce the dummy load Q as shown. Using Cas
tigliano's theorem and noting that El is constant, we write 

Yo. f ~e~)dx. L f Me~)dx (1) 

The integration will be performed separately for portions AD and DB. 

Reactions. Using the free-body diagram of the entire beam, we find 

wb' b wb(a + jb) at 
R,=u+Qzt Rs= L +Qz 

Portion AD of Beam. Using the free body shown, we find 

(
wb' b) 

M 1 = RAx = 2L + QL x 
aM1 bx -=+-
aQ L 

Substituting into Eq. (1) and integrating from A to D gives 

1 J aM, 1 J' (bx) RAa'b 
El M, aQdx = El 

0 
R,x L dx = JElL 

We substitute for R,., and then set the dummy load Q equal to zero. 

1 f OM1 wa
3
b3 

El M, aQ dx = 6ElL2 
(2) 

Portion DB of Beam. Using the free body shown, we find that the bend
ing moment at a distance v frOm end B is 

wv2 [wb(a + !b} a] wv2 

M2 = Rev - - = + Q- v - -
2 L L 2 

av 
+

L 

Substituting into Eq. (1) and integrating from point B where v = 0, to point 
D where v = b, we write 

1 J aM, 1 J' ( wv')(a") R8ab
3 

wab
4 

El M,aQdv = El 
0 

R,v- 2 L dv = 3ElL -SElL 

Substituting for R8 and setting Q = 0, 

1 J aM, [wb(a +~b)] ab3 wab
4 

El M,aQ dv = L 3ElL - SElL 
5a2b4 + ab5 

24EIL2 w 

Deflection at Point D. Recalling Eqs. (1), (2), and (3), we have 

(3) 

wab3 wab3 wab3 

Ya = --2 (4a2 + 5ab + b2
) = --2 (4a + b)(a +b)= --L(4a +b) 

24ElL 24ElL 24EI 

From Appendix C we find that I = 28.9 X 106 mm4 for a W250 X 22.3. 
Substituting for I, w, a, b, and L their numerical values, we obtain 

y11 = 6.36 mm ,J.. 4 
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From A to B 
tv.\·o 

r+1 
1 I I ! ! Ill) 

R .. r+ j,"i@l M, 

,___, 
(x S L) 

SAMPlE PROBlEM 11.7 

For the uniform beam and loading shown, detennine the reactions at the 
supports. 

SOLUTION 

Castigliano's Theorem. The beam is indetenninate to the first degree 
and we choose the reaction RA as redundant. Using Castigliano's theorem, we 
determine the deflection at A due to the combined action of RA and the dis~ 
tributed load. Since El is constant, we write 

J M (aM) 1 J aM 
YA = El ORA dx = EI MORA dx (1) 

The integration will be perfonned separately for portions AB and BC of the 
beam. Finally, RA is obtained by setting YA equal to zero. 

Free Body: Entire Beam. We express the reactions at Band C in terms 
of RA and the distributed load 

Portion AB of Beam. Using the free-body diagram shown, we find 

aM, 
--=x 
aR, 

Substituting into Eq. (1) and integrating from A to B, we have 

(2) 

1 J aM 1 f'( wx') 1 (R,L3 wL') El M, aR, dx = £i 
0 

RAx' - Z dx = El -3- - -8- (3) 

Portion BC of Beam. We have 

( 
3 ) wv

2 

M = 2R --wL v--
2 A 4 2 

aM, 
-=2v 
aR, 

Substituting into Eq. (1) and integrating from C, where v = 0, to B, where 
v=tL,wehave · · 

From c to B 
1 J M2 aM2 dv = __!_ IU2 (4RAv2 - 'iwLv2 - wv3) dv 

.E.. 0!(.'1.' EI ORA El 0 2 

(
'ritl ~ ~ ~('t' ~:· ~ ';;} ~('t' ~ ";:'') '" 

M2 L'"' "C , .Reaction at A: Adding the expressions obtained in (3) and (4), we de~ 
tenmne YA and set 1t equal to zero 

V2 n .=m _;l!cL 

c _.~ 4 
= __!_ (RAL

3 
_ wL

4
) + _!_ (RAL

3 
_ 5wL

4
) = :;:-1 y, El 3 8 EI 6 64 O 

(v-2) 13 13 
Solving for RA, RA = 

32 
wL RA = 

32 
'WL t 4.1 

Reactions at B and C. Substituting for RA into Eqs. (2), we obtain 



11.77 through 11.79 Using the information in Appendix D, compute 
the work of the loads as they are applied to the beam (a) if the load Pis applied 
first, (b) if the couple M is applied first. 

f----L ----1 
Fig. P11.77 

11.80 through 11.82 For the beam and loading shown, (a) compute the 
work of the loads as they are applied successively to the beam, usiitg the infor~ 
mation provided in Appendix D, (b) compute the strain energy of the beam by 
the method of Sec. 11.4 and show that it is equal to the work obtained in part a. 

J J J .. 
I 

L/2 -+-U2 ___.j t:l:l:~f 
Fig. P11.80 Fig. P11.81 

11.83 and 11.85 For the prismatic beam shown, determine the deflec~ 
tion of point D. 

Fig. P11.83 and P11.84 

11.84 and 11.86 For the pri,smatic beam shown, detennine the slope 
at point D. 

Fig. P11.82 

J:... , • .w·l 
l-uz-1-u2~· 

Fig. P11.85 and P11.86 
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Fig. P11.89 and P11.91 

:X: 
W200 X 19.3 

09 3SkN 

ric D 
A ····'=-·· B 

,_~L8m~ 5200 X 27.4 

Fig. P11.96 and P11.97 

11.87 For the prismatic beam shown, determine the slope at point A. 

Fig. P11.88 

11.88 For the prismatic beam shown, determine the slope at point B. 

11.89 and 11.90 For the prismatic beam shown, detennine the deflecM 
tion at point D. 

11.91 and 11.92 For the prismatic beam shown, detennine the slope 
at point D. 

11.93 For the beam and loading shown, determine the deflection of point 
B. Use E ~ 200 GPa. 

11.94 For the beam and loading shown, detennine the deflection of point 
A. Use E = 200 GPa. 

11.95 For the beam and loading shown, determine the deflection at point 
B. UseE ~ 200 GPa. 

l B 4kN JC • 
06m-l--o9m 

Fig. P11.95 

11.96 For the beam and loading shown, detennine the deflection at point 
C. UseE ~ 200 GPa. 

11.97 For the beam and loading shown, determine the slope at end A. 
UseE ~ 200 GPa. 



11.98 For the beam and loading shown, determine the slope at end A. 
Use E = 200 GPa. 

Fig. P11.98 

11.99 and 11.100 Each member of the truss shown is made of steel 
and has the cross~sectional area shown. Using E = 200 GPa, determine the de~ 
flection indicated. 

11.99 Vertical deflection of joint C. 
11.100 Horizontal deflection of point C. 

~ 3.'50kN 

L18m:J 
Fig. P11.99 and P11.100 

11 .1 01 and 11.102 Each member of the truss shown is made of steel 
and has the cross~sectional area shown. Using E = 200 GPa, determine the 
deflection indicated. 

11.1 01 Vertical deflection of joint C. 
11. 102 Horizontal deflection of point C. 

11. 103 and 11.104 Each member of !he LrUss shown is made of steel 
and has the cross~sectional area shown. Using E = 200 GPa, determine the de
flection indicated. 

11.103 Vertical deflection of joint C. 
11.1 04 Horizontal deflection of point C. 

Fig. P11.103and P11.104 

30kN 

11.105 For the.·unifonn rod and loading shown and using Castigliano's 
theorem, determine the deflection of point B. 

Problems 723 

1.5 m 

L, 

Fig. P11.101 and P11.102 

p 

Fig. P11.105 
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Fig. P11.106 

p 

A 

"L :; 
L--~c 

Fig. P11.109and P11.110 

f----L 

Fig. P11.111 

r .. ~t Ll LLI~~ 
'[:_ uz ~ uz---1 

Fig. P11.113 

11.106 For the beam and loading shown and using Castigliano's theo
rem, determine (a) the horizontal deflection of point B, (b) the vertical deflec
tion of point B. 

11.107 Three rods, each of the cams flexural rigidity El, are welded to fonn 
the frame ABCD. For the loading shown, detennine the deflection at point D. 

p 

B 

LA 
'''LL_j" 

Do 

Fig. P11.107 and P11.108 

11.108 Three rods, each of the cams flexural rigidity El, are welded to 
form the frame ABCD. For the loading shown, determine the angle formed by 
the frame at point D. 

11.109 A uniform rod of flexural rigidity EJ is bent and loaded as shown. 
Determine (a) the vertical deflection of point A, (b) the horizontal deflection 
of point A. 

11.110 A uniform rod of flexural rigidity El is bent and loaded as shown. 
Determine (a) the vertical deflection of point B, (b) the slope of BC at point B. 

11.111 through 11.114 Detennine the reaction at the roller support 
and· the draw the bending-moment diagram for the beam and loading shown. 

Fig. P11.112 

Fig. P11.114 



11.115 For the uniform beam and loading shown, determine the reacM 
tiOn at each support . 

11.116 Determine the reaction at the roller support and draw the 
bending-moment diagram for the beam and load shown. 

11.117 through 11.120 three members of the same material and same 
cross-sectional area are used to support the load P. Determine the force in 
member BC. 

r E 

~ ~ 
l 

~ 
B 

p 

Fig. P11.117 

I D 

~l 

L E 
B l----1 
p 

Fig. P11.119 

11.121 and 11.122 Knowing that the eight members of the indetenni
nate truss shown had the same uniform crossMsectional area, detennine the force 
in member AB. 

Fig. P11.121 

Problems 725 

il~~j' 
' ' Fig. P11.116 

·'<'"'· 
c 

B 

p 

Fig. P11.118 

B --
D~ 

30' l 
j 

p 

Fig. P11.120 

Fig, P11.122 
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Strain energy 

Strain"energy density 

Fig. 11.6 

Modulus of toughness 

726 

This chapter was devoted to the study of .strain e'nergy and to the 
ways in which it can be ·used to detennine the stresses and defor
mations in structures subjected to both static and impact loadings. 

In Sec. ll.2 we considered a uniform rod subjected to a slowly 
increasing axial load P (Fig 11.1). We noted that the area under the 

Fig. 11.3 

load"deformation diagram (Fig 11.3) represents the work done by P. 
This work is equal to the strain energy of the rod associated with 
the deformation caused by the load P: 

Strain energy = U = I x1 

P dx 
0 

(11.2) 

Since the stress is ·uniform throughout the rOd, we were able to 
divide the strain energy by the volume of ~e rod and obtain the strain 
energy per unit volume, which we defined as :the strain-energy den" 
sity of the material [Sec. 11.3]. We found that 

Strain:~energy density = u = i ~~ u x dEx 
0 

(11.4) 

and noted that the strain-energy density is equal to the area under 
the stress-strain diagram of the material (Fig. 11.6). As we saw in 
Sec. 11.4, Eq. (11.4) remains valid when the stresses are not uni
fonn!y distributed, but the strain-energy density will then vary from 
point to point. If the material is unloaded, there is a permanent strain 
EP and only the strain-energy density corresponding to the triangular 
area is recovered, the remainder of the energy having been dissipated 
in the form of heat during the deformation of the materiaL 

The area under the efitire stress-strain diagram was defined as the 
modulus of toughness and is a measure of the total energy that can 
be acquired by the material. 



If the normal stress u remains within the proportional limit of the 
matetial, the strain-energy density.u is expressed as 

(]"2 

u=-
2E 

The area under the stress-strain curve from zero strain to the strain 
Ey at yield (Fig. 11.9) is referred to as the modulus of reSflience _of 
the material and represents the energy per unit volume that the ma
terial can absorb without yielding. We wrote 

Uy = u} 
2E 

(11:8) 

In Sec. 11.4 we considered the strain energy associated with nor
mal stresses. We saw that if a rod of length L 3.nd variable cross
sectional area A is subjected at its end to a centric axial load P, the 
strain energy of the rod is 

(L P' 
U = J, 2AEdx (11.13) 

If the rod is of uniform cross section of area A, the strain energy is 

P2L 
U=-

2AE 
.(11.14) 

We saw that for a beam subjected to transverse loads (Fig. 11.15) 
the strain energy associated with the nom1al stresses is 

(L M' 
U = J, 2Eldx (11.17) 

where M is the bending moment and El the flexural rigidity of the 
beam. · 

The strain energy associated with shearing stresses was consid
ered in Sec. 11.5. We found that the strain-energy density for a ma
terial in pure shear is 

72 

" u=-
2G 

(11.19) 

where ·.,. xy is the shearing stress and G the modulus of rigidity of the 
material. 

For a shaft of length L and uniform cross section subjected at its 
inds to couples of magnitude T (Fig. 11.19) the strain energy was 
found to be 

T2L 
U=-

2GJ 
(11.22) 

where J is the polar moment of inertia of the cross-sectional area of 
the shaft. / 
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Modulus of resilience 

y 

Modulus 
of resilience 

Strain energy under axial load 

Strain energy due to bending 

Fig. 11.15 

Strain energy due to shearing stresses 

Strain energy due to torsion 

Fig. 11.19 
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General st;;tte of stress 

Impact loading 

Equivalent static load 

Members subjected to a single load 

P, 
!---L---~ 

A 

Fig. 11.27 

I~ Sec. 11.6 we considered the strain energy of an elastic isotropic 
material under a general state of stress and expressed . the strain
energy density at a given point in terms of the principal stresses 
G'a, G'b• aiJ.d 0"~ at that point: 

The strain-energy density at a given Point was divided into two parts: 
uv, associated with a change in volume of the material at that point, 
and ud• associated with a distortion of the material at the same point. 
We wrote u = Uv + ud, where 

and 

I 2v )' 
U, = -

6
--(G'a + G'b + G'c . E 

(11.32) 

ud = 1 ~0[(o-,- o-,)' + (<r,- o-,)' + (o-, o-,)2
] (11.33) 

Using the expression obtained for ud, we derived the maximum
distortion-energy criterion, which was used in Sec. 7.7 to predict 
whether a ductile material would yield under a given state of plane 
stress. 

In Sec. 11.7 we considered the impact loading of an elastic struc
ture being hit by a mass moving with a given velocity. We assumed 
that the kinetic energy of the mass is transferred entirely to the struc
ture and defined the equivalent static load as the load that would 
cause the same deformations and stresses as are caused by the im
pact loading. 

After discussing several examples, we noted that a structure de
signed to withstand effectively an impact load should be shaped in 
such a way that' stresses are evenly distributed thfoughout the struc
ture, and that the material used should have a low modulus of elas
ticity and a high yield strength [Sec. 11.8]. 

The strain energy of structural members subjected to a single load 
was considered in Sec. 11.9. In the case of the beam and loading of 
Fig. 11.27 we found that the strain energy of the beam is 

(11.46) 

Observing that the work done by the load Pis equal to !P1y1, we 
equated the work of the load and the strain energy of the beam and 
determined the deflection y1 at the point of application of the load 
[Sec. 11.10 and Example 11.10]. 



. The method just described is of limited value, since it is restricte'd 
to structures subjected to a single- concentrated load and to the de
termination Of the deflection at the point of application of that lQad~ 
In the. remairiing sections of the chapter, we presented a more gen
eral nlethod, which can be used to determine deflections at various 
points of structures subjected to several loads. 

In Sec. 11.11 we discussed the strain energy of a structure sub
jected to several loads, and in Sec. 11.12 introduced Castigliano's 
theorem, which states that the deflection x1, of the point of applka
tion of a load PJ measured along the line of action of P1 is equal to 
the partial derivative of the strain energy of the structure with re
spect to the load P1. We wrote 

. (11.65) 

We also found that we could use Castigliano's theorem to determine 
the slope of a beam at the point of -application of a couple M1 by 
writing 

au 
01 =aM. 

J 

(11.68) 

and the angle of twist in a section of a Shaft where a torque Ti is ap-
plied by writing · · 

au 
q,j =aT 

J 

(11.69) 

In Sec. 11.13, Castigliano's theorem was applied to the determi
nation of deflections and slopes at various points of a given struc
ture. The use of «dummy" loads enabled us to include points where 
no actual load was applied. We also observed that the calculation of 
a deflection x1 was simplified if the differentiation with respect to 
the load PJ was carried out before the integration. In the case of a 
beam, recalling Eq. (11.17), we wrote 

(11.70) 

Similarly, for a truss consisting of n members, the deflection xJ at 
the point of application of the load PJ was found by writing 

(11.72) 

The chapter concluded [Sec. 11.14] with the application of Cas
tigliano's theorem to the analysis of statically indeterminate struc
tures [Sample Prob. 11.7, Examples 11.15 and 11.16]. 
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Fig. P11.123 

rso 

A 

n 
Fig. P11.125 

X 
W250 X 22.3 

C E 

n " 

11.123 For the beam and loading shown determine the deflection at 
point B. Use E = 200 GPa. 

1 
1500m 

Fig. P11.124 

11.124 T[le ship at A has just started to drill for oil on the ocean floor 
at a depth of 1500 m. The steel drill pipe has an outer diameter of 200 mm and 
a uniform wall thickness of 12 mm. Knowing that the top of the drill pipe ro
tates through two complete revolutions before the drill bit at B starts to oper
ate and using G = 77 GPa, determine the maximum strain energy acquired by 
the drill pipe. 

11.125 The 45-kg collar C is released from rest in the position shown and 
is stopped by Plate BDF that is attached Ehe 22-mnHliameter steel rod CD and to 
the 16-mrn-diameter steel rods AB and EF. Knowing that for the grade of steel used 
O'a~1 165 ivi.Pa and E = 200 GPa, detennine the largest allowable distance h. 

11.126 Solve Prob. 11.125, assuming that the 22-mm-diameter steel rod 
CD is replaced by i. 22-mm-diameter rod made of an aluininum alloy for which 
crru1 = 140 MPa and E = 73 GPa. 

11.127 Rod AB is made of a steel for which the yield strength is 
cry= 450 .MPa and E = 200 GPa; rod BC is made of an aluminum alloy for 
which cry= 280 .MPa and E = 73 GPa. Determine the maximum strain energy 
that can be acquired by the composite rod ABC without causing any penna
nent deformations. 

10-mm 

Fig. P11.127 



11.128 Each member of the truss shown is made of steel and has a 
uil.iform cross-sectional area of 3220 ~m2• Using E = 200 GPa, determine 
the vertical deflection of joint C caused by the application of the 60-k.N load. 

11.129 The 1.35-kg block D is released from rest in the position shown 
and strikes a steel bar AB having the uniform cross section shown. The bar is 
supported at each end by springs of constant 3500 k:N/m. Using E = 200 GPa, 
determine the maximum deflection at the midpoint of the bar. 

Fig. P11.129 

1.35 kg 
D[jj_ 

I jso mm _j_ 
1-·,,4@!1118 min 

1--1' 
38mm 

11.130 Solve Prob. 11.129, assuming that the constant of each spring is 
7000 kN/m. 

11.131 Using E = 12 GPa, determine the strain energy due to bending 
for the timber beam and loading shown. 

Fig. P11.131 

90mm 

-1 r· 
~I240mm 

11.132 A 0.75-m length of aluminum pipe of cross-sectional area 
1190 mm2 is welded to a fixed support A and to a rigid cap B. The steel rod EF, 
of 18-mm diameter, is welded to cap B. Knowing that the modulus of elas
ticity is 200 GPa for the steel and 73 GPa for the aluminum, detennine (a) the 
total strain of the system when P = 40 kN, (b) the corresponding strain-energy 
density of the pipe CD and in the rod EF. 

11.133 Solve Frob. 11.132, when P = 35 kN. 

11.134 Rod AC is made of aluminum and is subjected to a torque T 
applied at C. Knowing that G = 73 GPa and that portion BC of the rod is hol
low and has an innet diameter of 16 mm, detennine the strain energy of the 

Fig. P11.132 

rod for a maximum shearing stress of 120 MPa. Fig. P11.134 
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Fig. P11.C1 
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The following problems are designed to be solved with a computer. 

11.C1 A rod consisting of n elements, each of which is homogeneous 
and of uniform cross sectiqn, is subjected to a load P applied at its free end. 
The length of element i is denoted by L1 and its diameter by d1• (a) Denoting 
by E the modulus of elasticity of the material used in the rod, write a computer 
program that can be used to determine the strain energy acquired by the rod 
and the deformation measured at its free end. (b) Use this program to deter~ 
mine the strain energy and deformation for the rods of Probs. 11.9 and 11.10. 

18X 150mm 

(:[ 

a~m_ll~a 
W200 X 26.6 

Fig. P11.C2 

11.C2 Two 18 X 150-rnrn cover plates are welded to a W200 X 26.6 
rolled-steel beam as shown. The 670-kg block is to be dropped from a height 
h = 50 mm onto the beam. (a) Write a computer program to calculate the max
imum normal stress on transverse sections just to the left of D and at the 
center of the beant for values of a from 0 to 1.5 musing 125-mm increments. 
(b) From the values considered in part a, select the distance a for which the 
maximum normal stress is a small as possible. UseE 200 GPa. 

11.C3 The 16-kg block Dis dropped from a height h onto the free end 
of the steel bar AB. For the steel used u all = 120 MPa and E = 200 GPa. 
(a) Write a computer program to calculate the maximum allowable height h 
for values of the length L from 100 mm to 1.2 m, using 100-mm increments. 
(b) From the values considered in part a, select the length corresponding to the 
largest allowable height. 

24mm 

M 
~~24mm 
~__l 

Fig. P11.C3 



i1.C4 TheblockDofmassm = 8kgisdroppedfromaheighth = 750 
nim onto the rolled~steel beam AB. Kn9wing that E = 200 GPa, write a com
puter program to calculate the maximum deflection of point E and the maxi
mum normal stre~s in the beam for values of a from 100 to 900 m, using 100~ 
mm increments. 

Fig. P11.C4 

11.C5 The steel rods AB and BC are made of a steel for which 
(]'y = 300 MPa and E = 200 GPa. (a) Write a computer program to calculate 
for values of a from 0 to 6 m, using 1-m increments, the maximum strain energy 
that can be acquired by the assembly without causing any permanent defonna
tion. (b) For each value of a considered, calculate the diameter of a unifonn rod 
of length 6 m and of th? same mass as the original assembly, and the maxi
mum strain energy that could be acquired by this uniform rod without causing 
permanent deformation. 

Fig. P11.C5 

11.C6 A 72-kg diver jumps from a height of 0.5 m onto end C of a div
ing board having the unifonn cross section shown. Write a computer program 
to calculate for values of a from 250 to 1250 mm, using 250"mm increments, 
(a) the maximum defection of point C, (b) the maximum bending moment in 
the board, (c) the equivalent static load. Assume that the diver's legs remain 
rigid and use E = 12 GPa. 

. ~]"• '"[" 

~t!''. Jc U' a :I . 400 mm 

·'" 3.6m----

Fig. P11.C6 

Computer Problems 733 





APPENDIX A Moments of Areas 736 

APPENDIX B Typical Properties of Selected Materials 
Used in Engineering 746 

APPENDIX C Properties of Rolled-Steel Shapest 748 

APPENDIX D Beam Deflections and Slopes 754 

APPENDIX E Fundamentals of Engineering Examination 755 

tCourtesy of the American Institute of Steel Construc1ion, Chicago, Illinois. 



!A P P E 1\1 ·D I )( 

y 

Fig. A.1 

y 

Fig.A.2 

736 

Moments of Areas 

A.1. FIRST MOMENT OF AN AREA; 
CENTROID OF AN AREA 

Consider an area A located in the zy plane (Fig. A.l). Denoting by x 
andy the coordinates of an element of area d.A, we define the first mo~ 
ment of the area A with respect to the x axis as the integral 

(A.l) 

Similarly, the first moment of the area A with respect to the y axis is 
defined as the integral 

Q,=JxdA 
A 

(A.2) 

We note that ea~h of these integrals may be posit~ve, negative, or zero, 
depending on the position of the coordinate axes. The first moments Qx 
and QY are expressed in m3 or mm3. 

The centroid of the area A is defined as the point C of coordinates 
x andy (Fig. A.2), which satisfy the relations 

JxdA=AX 
A 

(A.3) 

Comparing Eqs. (A. I) and (A.2) with Eqs. (A.3), we note that the f!rst 
moments of the area A can be expressed as the products of the area and 
of the coordinates of its centroid: 

Q, = Ay Q, =AX (A.4) 



When an area possesses an axis of symmetry, the first moment of 
the area with respect to that axis i.s zero. Indeed, consideling the area 
A of Fig. A.3, which is symmetric with respect to the y axis, we ob
serve that to every element of area dA of abscissa x corresponds an el
ement of area d.A' of abscissa -x. It (ollows that the integral in Eq. 
(A.2) is zero and, thus, that Q, = 0. It also follows from the first of the 
relations (A.3) that X = 0. Thus, if an area A possesses an axis of sym
metry, its centroid C is located on that axis. 

A A 

c c 

(a) (b) 

Fig. A.4 

Since a rectangle possesses two axes of symmetry (Fig. A.4a), the 
centroid C of a rectangular area coincides with its geometric center. 
Similarly, the centroid of a circular area coincides with the center of 
the circle (Fig. A.4b). 

When an area possesses a center of symmetry 0, the first moment 
of the area about any axis through 0 is. zero. Indeed, consideling the 
area A of Fig. A.5, we observe that to every element of area dA of co
ordinates x andy corresponds an element of area dA' of coordinates - x 
and -y. It follows that the integrals in Eqs. (A.l) and (A.2) are both 
zero, and that Q, = Q, = 0. It also follows from Eqs. (A.3) that 
X = Y = 0, that is, the centroid of the area coincides with its center of 
symmetry. 

When the centroid C of an area can be located by symmetry, the 
first moment of that area with respect to any given axis can be readily 
obtained from Eqs. (A.4). For example, in the case of the rectangular 
area of Fig. A.6, we have 

Q, = Ay = (bh){ih) = jbh2 

and 

Q, =AX= (bh)(jb) = jb2h 

In most cases, however, it is necessary to perform the integrations in
dicated in Eqs. (A.l) through (A.3) to determine the first moments and 
the centroid of a given area. While each of the integrals involved is ac
tually a double integral, it is possible in many applications to select el
ements of area dA in the shape of thin horizontal or vertical strips, and 
thus to reduce the computations to integrations in a single variable. This 
is illustrated in Example A.Ol. Centroids of common geometric shapes 
are indicated in a table inside the back cover of this book. 
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Fig. A.3 

Fig. A.5 
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' 

Fig. A.6 



For the triangular area of Fig. A.7, determine (a) the first mo~ 
ment Q .. of the area with respect to the x axis, (b) the ordinate 
y of th~ centroid of the area. 

(a) First Moment Ox· We select as an element.of area 
a horizontal strip of length u and thickness dy, and note that 
all the points within the element are at the same distance y 
from the x axis (Fig. A.8). From similar triangles, we have 

and 

u h- y 

b h 

h-y 
u=b-

h 

The frrst moment of the area with respect to the x axis is 

I i"hy bf" Q,~ ydA~ yb--dy~- (hy-j)dy 
A 0 h h 0 

~ -b[h-J _ Y_']'' 
h 2 3 0 

Q .. = ~bh2 

{b) Ordinate of Centroid. Recalling the flrst of Eqs. 
(A.4) and observing that A = ~bh, we have 

Q, ~ Ay lbh' ~ (jbh)y 
y = fh 

Fig.A.7 

y 

Fig. A.B 

y A.2. DETERMINATION OF THE FIRST MOMENT AND 

738 

y 

OL__.:...__L__.:...__.J __ , 

Fig.A.9 

CENTROID. OF A COMPOSITE AREA 

Consider an area A, such as the trapezoidal area shown in Fig. A.9, 
which may be divided into simple geometric shapes. As we saw in the 
preceding section, the first moment Qx of the area with respect to the x 
axis is repr~sented by the integral fy dA, which extends over the en
tire area A. Dividing A into its component parts A1, A2, A3, we write 

Q,= fydA= fydA+ fydA+ fydA 
A A1 A, A1 

or, recalling the second of Eqs. (A.3). 

where Y~>Yz, and )13 represent the ordinates of the centroids of the com
ponent areas. Extending this result to an arbitrary number of compo-



nent areas, and noting that a similar expression may be obtained for QY, 
We write 

A.2 Centroid of a Composite Area 739 

Q~ = ~ A,:X, (A.5) 

To obtain the coordinates X and Y of the ceiltroid C of the com
posite area A, we substitute Qx = AY and Qy = AX into Eqs. (A.5). We 
have 

ii' = ~ A,Y, . AX = ~ A,x, 
I 

Solving for X andY and recalling that the area A is the sum of the com
ponent areas A~o we write 

~A,y, 
Y=-.-'--
. ~A, 

Locate the centroid C of the area A shown in Fig. A.lO. 

60 

I A 

Ll-'-----'-' 
~1·-40-20 20 

(A.6) 

Dimensions in mm Dimensions in mm 
Fig. A.10 

Selecting the coordinate axes shown in Fig. A.ll, we note 
that the centroid C must be located on the y axis, since this 
axis is an axis of symmetry; thus, X = 0. 

Fig. A.11 

Area, mm2 

A1 (20)(80) = 1600 
A2 (40)(60) = 2400 

2; A1 4000 

70 
30 

2; Aji1 184 X 103 

l 

Dividing A into its component parts A1 and A2, we use the 
second of Eqs. (A.6) to determine the ordinate Y of the 
centroid. The actual computation is best carried out in tabular 
form. 

y = _2:_, _A_,5'_, = .:.18:..4:..;X:..;.:.1;:-0'..:m:::m~3 = 46 mm 

2; A, 4 X 10
3

mm
2 



Referring to the area A of Example A.02, we consider the hor~ 
izontal x' axis through its centroid C. (Such an axis is called 
a centroidal axis.) Denoting by A' the portion of A located 
above that axis (Fig. A.12), detennine the first moment of A' 
with respect to the x' axis. 

-'--- L_-f-_j --' 

Fig. A.12 

Solution. We divide the area A' into its components 
A 1 and A3 (Fig. A.l3). Recalling from Example A.02 that Cis 
located 46 mm above the lower edge of A, we determine the 
ordinates y; and Y3 of A1 and A3 and express the firsr moment 
Q~. of A' with respect to x' as follows: 

Q~ = A1)i; + A~J 
= (20 X 80)(24) + (14 X 40)(7) = 42.3 X !03 mm3 

Alternative Solution. We first note that since the cen~ 
troid C of A is located on the x' axis, the first moment Q.,· of 
the entire area A with respect to that axis is zero: 

Q,· = Aj' = A(O) = 0 

Denoting by A" the portion of A located below the x' axis and 
by Q'~ its first moment with respect to that axis, we have there
fore 

or 

which shows that the first moments of A'- and A" have the 
same magnitude and opposite signs. Referring to Fig. A.l4, 
we write 

Q~ = A,y~ = (40 X 46)( -23) = -42.3 X !o' mm3 

and 

740 

Dimensions in mm 

Fig. A.13 

Dimensions in mm 

Fig. A.14 



A.3. SECOND MOMENT, OR MOMENT OF INERTIA, 
OF AN AREA; RADIUS OF GYRATION 

Consider again an area A located in the xy plane (Fig. A.l) and the el~ 
ement of area ·dA of coordinates x and y. The second moment, or mo
ment of inertia, of the area A with respect to the x axis, and the second 
morilent, or moment of inertia, of A with respect to the y axis are de
fined, respectively, as 

I,= Ji'dA 
A 

(A.7) 

These integrals are referred to as rectangular moments of inertia, since 
they are computed from the rectangular coordinates of the element dA. 
While each integral is actually a double integral, it is possible in many 
applications to select elements of area dA in the shape of thin horizon
tal or vertical strips, and thus reduce the computations to integrations 
in a single variable. This is illustrated in Example A.04. 

We now define the polar moment of inertia of the area A with re~ 
spect to point 0 (Fig. A. IS) as the integral 

(A.8) 

where p is the distance from 0 to the element dA. While this integral 
is again a double integral, it is possible in the case of a circular area to 
select elements of area dA in the shape of thin circular rings, and thus 
reduce the computation of 10 to a single integration (see Example A.05). 

We note from Eqs. (A.7) and (A.8) that the moments of inertia of 
an area are positive quantities. Moments of inertia are expressed in m4 

or rnm4
• 

An important relation may be established between the polar mo
ment of inertia 10 of a given area and the rectangular moments of in
ertia lx and ly of the same area. Noting that p2 = :x? + 1. we write 

10 = Jp2 dA= J(i'+y')dA= Jy'dA+ fi'dA 
A A A A 

or 

(A.9) 

The radius of gyration of an area A with respect to the x axis is de
fined as the quantity rx, that satisfies the relation 

(A.IO) 

A.3 Second Moment or Moment of Inertia, 7 41 
of an Area 

y 

Fig. A.1 (repeated) 

y 

Fig. A.15 



7 42 Moments of Areas where lx is the moment of inertia of A with respect to the x axis. Solv
ing Eq. (A.!O) for r,, we have 

r = {!;_ 
X \jA. (A. I!) 

In a similar way, we define the radii of gyration with respect to they 
axis and the origin 0. We write 

ly = r;A r =fi ' A 
(A.l2) 

10 = rbA ro = fj (A.l3) 

Substituting for 10 , lx, and ly in terms of the corresponding radii of gy
ration in Eq. (A9), we observe that 

For the rectangular area of Fig. A.l6, determine (a) the mo
ment of inertia /, of the area with respect to the centroidal x 
axis, (b) the corresponding radius of gyration Y.t· 

(a) Moment of Inertia ix. We select as an element of 
area a horizontal strip oflength band thickness dy (Fig. A.l7). 
Since all the points within the strip are at the same distance y 
from the x axis, the moment of inertia of the strip with respect 
to that axis is 

dl, = l dA = y2(b dy) 

Integrating from y = - h/2 to y = + h/2, we write 

I,,= I l dA = f+hfll(b dy) = tb[l]~::0 
A -hfl 

= 'b(l!'_ + II'_) 3 8 8 

or 

{b) Radius of Gyration rx. From Eq. (A.lO), we have 

I,= r;A 

and, solving for r,, 

y 

r . 

.. •··.· 
h 

L 
0. ',•. 

·. 

' 

1-b--1 
Fig. A.16 

y 

+h/2 
'-.... 

0 X 

Fig. A.17 

(A.l4) 



For the circular area of Fig. A.18, determine (a) the polar mo~ 
ment of inertia 10 , (b) the rectangular moments of inertia /c 
and ly· 

(a) Polar Moment of Inertia. We select as an ele~ 
ment of area a ring of radius p and thickness dp (Fig. A.19). 
Since all the points within the ring are at the same distance p 
from the origin 0, the polar moment of inertia of the ring i:: 

y y 
dJ0 ~ p

2 dA = p2(2rrp dp) 

Integrating in p from 0 to c, We write 

lo = f p2 dA = rp2(2-rrp dp) = 2-rr r> dp 
' 0 0 

Fig. A.18 Fig. A.19 (b) Rectangular Moments of Inertia. Because of 
the symmetry of the circular area, we have /, = ly. Recalling 
Eq. (A.9), we write 

and, thus, 

The results obtained in the preceding two examples, and the moments of iner
tia of other common geometric shapes, are listed in a table inside the back 
cover of this book 

A.4. PARALLEL-AXIS THEOREM 

Consider the moment of inertia lx of an area A with respect to an arbi-
trary x axis (Fig. A.20). Denoting by y the distance from an element of 
area dA to that axis, we recall from Sec. A.3 that 

I,= fy'dA 
A y 

A 
Let us now draw the centroidal x' axis, i.e., the axis parallel to the x l 
axis which passes through the centroid C of the area. Denoting by y' -'---'--------
the distance from the element dA to that axis, we write y = y' + d, Fig. A.20 

where d is the distance between the two axes. Substituting for y in the 
integral representing I..:, we write 

I,= fy' dA = f (y' + d)'dA 
A A 

I,~ fy' 2 dA + 2d fy' dA + d2 fdA 
A A A 

(A.15) 

The first integral in Eq. (A.lS) represents the moment of inertial;;' of the 
area with respect to the centroidal X 1 axis. The second integral represents 

743 



7 44 Moments of Areas the fust moment Qx of the area with respect to the x' axis and is equal 
to zero, since the centroid C of the area is located on that axis. Indeed, 
we recall from Sec, A 1 that 

Q, ~ Ay' ~ A(O) ~ 0 

Finally, we observe that the last integral in Eq. (Al5) is equal to the 
total area A We have, therefore, 

(A.l6) 

This formula expresses that the moment of inertia Ix of an area with 
respect to. an arbitrary x axis is equal to the moment of inertia ix· of the 
area with respect to the centroidal x' axis parallel to the x axis, plus the 
product Ad2 of the area A and of the square of the distance d between 
the two axes. This result is known as the parallel~axis theorem. It makes 
it possible to determine the moment of inertia of an area with respect 
to a given axis, when its moment of inertia with respect to a centroidal 
axis of the same direction is known. Conversely, it makes it possible to 
determine the moment of inertia ix.' of an area A with respect to a cen~ 
troidal axis x: when the moment of inertia lx of A with respect to a par
allel axis is known, by subtracting from lx the product Ad2• We should 
note that the parallel-axis theorem may be used only if one of the two 
axes involved is a centroidal axis. 

A similar formula may be derived, which relates the polar moment 
of inertia J 0 of an area with respect to an arbitrary point 0 and the polar 
moment of inertia Ic of the same area with respect to its centroid C. 
Denoting by d the distance between 0 and C, we write 

A.5. DETERMINATION OF THE MOMENT OF 
INERTIA OF A COMPOSITE AREA 

(A.l7) 

Consider a composite area A made of several component parts A l> A2, 

and so forth. Since the integral representing the moment of inertia of A 
may be subdivided into integrals extending over A 1, A2, and so forth, 
the moment of inertia of A with respect to a given axis will be obtained 
by adding the moments of inertia of the areas A 1, A2, and so forth, with 
respect to the same axis. The moment of inertia of an area made of sev
eral of the common shapes shown in the table inside the back cover of 
this book may thus be obtained from the formulas given in that table. 
Before adding the moments of inertia of the component areas, however, 
the parallel-axis theorem should be used to transfer each moment of in
ertia to the desired axis. This is shown in Example A.06. 



Determine the moment of inertia ix of thC area shown with re
spect to the centro.idal x axis (Fig. A.21). 

Location of Centroid. The centroid C of the· area 
must first be located. However, this has already been done in 
Example A.02 for the given area. We recall from that exam
ple that Cis located 46 mm above the lower edge of the area A. 

Computation of Moment of Inertia. We divide the 
area A into the two rectangular areas A1 and A2 (Fig. A.22), 
and compute the moment of inertia of each area with respect 
to the x axis. 

Rectangular Area A1• To obtain the moment of iner
tia Ux) 1 of A1 with respect to the x axis, we first compute the 
moment of inertia of A1 with respect to its own centroidal axis 
x'. Recalling the formula derived in part a of Example A.04 
for the centroidal moment of inertia of a rectangular area, we 
have 

(1~"') 1 = fzbh 3 = 12(80 mm)(20mm}' = 53.3 X 103 mm4 

Using the parallel-axis theorem, we transfer the moment of in
ertia of A1 from its centroidal axis x' to the parallel axis x: 

(I,), = (/,), + A,dl = 53.3 X !03 + (80 X 20)(24)2 

= 975 X 103 mm4 

Rectangular Area A2• Computing the moment of in
ertia of A2 with respect to its centroidal axis x", and using the 
parallel-axis theorem to transfer it to the x axis, we have 

(J,.), = f,bh3 = n(40)(60)3 = 720 X !03 mm' 
(/,)2 = (f."),+ A2dl = 720 X 103 + (40 X 60)(16)2 

= 1334 x 103 mm4 

Entire Area A. Adding the values computed for the 
moments of inertia of A1 and 12 with respect to the x axis, we 
obtain the moment of inertia lx of the entire area: 

I,= (1,), + (/,), 975 X 103 + !334 X 103 

Jx = 2.31 X ~06 mm4 

t .--,-+-~-, 

t-'-1 --f--,;jf-+--i-' 
60 

L_'-----1--'-'--' 
20 20 

Dimensions in mm 

Fig. A.21 

Fig. A.22 

ly 

r--so+-----4 

Dimensions in mm 
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746 Appendix B. Typical Properties of Selected Materials Used in Engineering'·' 

Ultimate Strength Yield ·sti-en9th3 
.· . 

ModUlus' ModuluS Coefficient Ductility, .. · Com~res- of of of Thermal Percent 
DenSity Tension, . sian, Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongatio'n 

Material kg/m3 MPa . MPa MPa MPa MPa GPa GPa 1o-arc in 50 mm 

Steel 
Structural_ (ASTM-A36) 7860 400 250 145 200 77.2 11.7 21 
High~strength-low-alloy 

ASTM-A709 Grade 345 7860 450 345 200 77.2 11.7 21 
ASTM-A913 Grade 450 7860 550 450 200 77.2 11.7 17 
ASTM-A992 Grade 345 7860 450 345 200 77.2 11.7 21 

Quenched & tempered 
ASTM-A709 Grade 690 7860 760 690 200 77.2 11.7 18 

Stainless, AISI 302 
Cold-tolled '7920 860 520 190 75 17.3 12 
Annealed 7920 655 260 150 190 75 17.3 50 

Reinforcing Steel 
Medium strength 7860 480 275 200 77 11.7 
High strength 7860 620 415 200 77 11.7 

Cast Iron 
Gray Cast Iron 

4.5% C, ASTM A-48 7200 170 655 240 69 28 12.1 0.5 
Malleable Cast Iron 

2% C, I% Si, 
ASTMA-47 7300 345 620 330 230 165 65 12.1 10 

Aluminum 
Alloy 1100-H14 

(99%AI) . 2710 110 70 95 55 70 26 23.6 9 
Alloy 2014-T6 2800 455 275 400 230 75 27 23.0 13 
Alloy-2024-T4 2800 470 280 325 73 23.2 19 
Alloy-5456-H116 2630 315 185 230 !30 72 23.9 16 
Alloy 606!-T6 2710 260 165 240 140 70 26 23.6 17 
Alloy 7075-T6 2800 570 330 500 72 28 23.6 11 

Copper 
Ox)rgen-free copper 

(99.9% Cu) 
Annealed 8910 220 150 70 120 44 16.9 45 
Hard-drawn 8910 390 200 265 120 44 16.9 4 

Yellow-Brass 
(65% Cu, 35% Zn) 

Cold-rolled· 8470 510 300 410 250 105 39 20.9 8 
Annealed 8470 320 220 . 100 60 105 . 39. 20.9 65 

Red Brass 
(85% Cu, 15% Zn) 

Cold-rolled 8740 585 320 435 120 44 18.7 3 
Annealed 8740 270 210 70 120 44 18.7 48 

Tin bronze 8800 310 145 95 18.0 30 
(88 Cu, 8Sn, 4Zn) 

Manganese bronze 8360 655 330 105 21.6 20 
(63 Cu, 25 Zn, 6 AI, 3 Mn, 3 Fe) 

Aluminum bronze 8330 620 900 275 110 42 16.2 6 
(81 Cu, 4 Ni, 4 Fe, ll AI) 

(Table continued on page 747) 



Appendix B. Typical Properties of Selected Materials Used in Engineering'·' 747 
Continued from page 7 46 

U~timate Strength Yield Strengtha 

.·.:~o·du:,~s Modulus Coefficient Ductility, 
Com~res- · of Of Thermal Percent 

.Density Tension, sion, · ·'Shear, Tension, Shear, Elasticity, Rigidity, ExPansion, Elongation 
Material kg/m3 MPa MPa MPa MPa MPa GPa GPa 1o-6rc In so mm 
Magnesium Alloys 

Alloy AZ80 (Forging) 1800 345 160 250 45 16 25.2 6 
Alloy AZ31 (Extrusion) 1770 255 130 200 45 16 25.2 12 

Tit_anitJm · .· :., .. " .. :.'·>.· " . 
Alloy (6% AI, 4% V) 900 830 115 9.5 10 

Monel Alloy 400(Ni-Cu) 
Cold~worked 8830 675 585 345 180 13.9 22 
Annealed 8830 550 220 125 180 13.9 46 

CuprOnickel 
(90% Cu. 10% Ni) 

Annealed 8940 365 110 140 52 17.1 35 
Cold-worked ,8940 585 545 140 52 17.1 3 

Timber,4 air dry 
Douglas frr 470 \00 50 7.6 13 0.7 Varies 
Spruce, Sitka 415 60 39 7.6 10 0.5 3.0 to 4.5 
Shortleaf pine 500 50 9.7 12 
Westein white pine 390 34 7.0 10 
Ponderpsa pine , 415 55 36 7.6 9 
White oak 690 51 13.8 12 
Red oak 660 47 12.4 12 
Westem hemlock 440 90 50 10.0 11 
Shagbark hickory 720 63 16.5 15 
Redwood 415 65 42 6.2 9 

Concrete 
Medium strength 2320 28 25 9.9 
High Strength 2320 40 30 9.9 

Plastics 
Nylon, type 6/6, 1140 75 95 45 2.8 144 50 

(molding compound) 
Polycarbonate 1200 65 85 35 2.4 122 110 
Polyester, PBT !340 55 75 55 2.4 135 !50 

(thermoplastic) 
Polyester elast()~er 1200 45 40 0.2 500 
Polystyrene 1030 55 90 55 3.1 125 2 
Vinyl, rigid PVC 1440 40 70 45 3.1 135 40 

Rubber 910 15 !62 600 
Granite (Avg. values) 2770 20 240 35 70 4 7.2 
Marble (Avg. values) 2770 15 125 28 55 3 10.8 
Sandstone (Avg. values). 2300 7 85 14 40 2 9.0 
Glass, 98% silica 2190 50 65 4.1 80 

1Properties of metals very widely as a result of variations in composition, heat treatment, and mechanical working. 
2For ductile metals the compression strength is generally assumed to be equal to the tension strength. 
30ffset of 0.2 percent. ,.,-
'7imber properties are for loading parallel to the grain. 
5See also Marks' Mechanical Engineering Handbook, lOth ed., McGraw-Hill, New York, 1996; Annual Book of ASTM, American Society for Testing Materi-
als, Philadelphia, Pa.; Metals Handbook, American Society of Metals, Metals Park, Ohio; and Aluminum Design Manual, The Aluminum Association, Wash-
ington, DC. 



748 

Appendix C. Properties of Rolled-Steel Shapes 

W Shapes 
(Wide-Flange Shapes) 

·. Flange 
!-'-'-.-,---...:.---1 Web 

ThickK ThlckK 
Axis X-X:-

Area Deipth Width ness ness lx . ',Sx . or~·-:. ly, : Sy ·· ry··.-··.:· 
Deslgnationt A,mnr. -d,-mm b"!nm t,,mm ~;mm 106 nlm4 103 mni3 _,mm.· 106 n1ri14 · '103.rrifn3 .,mm 

W920 X 446 
201 

W840 X 299 
176 

W760 X 257 
147 

W690 X 217 
125 

W6!0 X 155 
101 

W530 X 150 
92 
66 

W460 X 158 
ll3 
74 
52 

W410 X ll4 
85 
60 
46.1 
38.8 

W360 X 55! 
216 
122 
101 
79 
64 
57.8 
44 
39 
32.9 

57000 
25600 

38100 
22400 

32600 
18700 

27700 
16000 

19700 
13000 

19200 
ll800 
8370 

20100 
14400 
9450 
6630 

14600 
!0800 
7580 
5890 
4990 

70100 
27600 
15500 
!2900 
10100 
8140 
7220 
5730 
4980 
4170 

933 
903 

855 
835 

773 
753 

695 
678 

611 
603 

543 
533 
525 

476 
463 
457 
450 

420 
417 
407 
403 
399 

455 
375 
363 
357 
354 
347 
358 
352 
353 
349 

423 
304 

400 . 
292 

381 
265 

355 
253 

324 
228 

312 
209 
165 

284 
280 
190 
!52 

261 
181 
178 
140 
140 

418 
394 
257 
255 
205 
203 
172 
171 
128 
127 

42.70 
20.10 

29.20 
18.80 

27.10 
17.00 

24.80 
16.30 

19.00 
14.90 

20.30 
15.60 
11.40 

23.90 
17.30 
14.50 
10.80 

19.30 
18.20 
12.80 
11.20 
8.80 

67.60 
27.70 
2!.70 
18.30 
16.80 
13.50 

. 13.10 
9.80 

10.70 
8.50 

24.0 
15.2 

18.2 
14.0 

16.6 
13.2 

15.4 
11.7 

12.7 
10.5 

12.7 
10.2 
8.9 

15.0 
10.8 
9.0 
7.6 

11.6 
10.9 
7.7 
7.0 
6.4 

42.0 
17.3 
13.0 
10.5 
9.4 
7.7 
7.9 
6.9 
6.5 
5.8 

8470 
3250 

4790 
2460 

3420 
1660 

2340 
ll90 

1290 
764 

1010 
552 
351 

796 
556 
333 
212 

462 
315 
216 
!56 
127 

2260 
712 
365 
302 
227 
178 
161 
122 
102.0 
82.7 

18200 385 
7200 356 

ll200 355 
.5890 331 

8850 324 
4410 298 

6730 . 291 
3510 273 

4220 256 
2530 242 

3720 229 
2070 2!6 
1340 205 

3340 199 
2400 196 
1460 188 
942 179 

2200 178 
. 1510 . '17! 

1060 : )69 
774 163 
637 160 

9930 180 
3800 161 
2010 153 
1690 153 
1280. 150 
1030 .. !148 
899 . '149,. 
693 146 
578 143 
474 141 

540 
94.4 

312 
78.2 

250 
52.9 

185 
44.1 

108 
29.5 

103 
23.8 
8.57 

91.4 
63.3 
16.6 
6.34 

57.2 
18.0 
12.1 
5.!4 
4.04 

825 
283 
61.5 
50.6 
24.2 
18.9 
ll.l 
8.!8 
3.75 
2.91 

2550 
621 

1560 
. 536 

1310 
399 

1040 
349 

667 
259 

660 
228 
104 

644 
452 
175 
83.4 

438 
199 
!36 
73.4 
57.7 

3950 
1440 
479 
397 
236 
186 
129 
95.7 
58.6 
45.8 

97.3 
60.7 

90.5 
59.1 

87.6 
53.2 

81.7 
52.5 

74.0 
47.6 

73.2 
44.9 
32.0 

67.4 
66.3 
41.9 
30.9 

62.6 
. 40.8 

40.0 
29.5 
28.5 

108 
101 
63.0 
62.6 
48.9 
48.2 
39:2 
37.8 
27.4 
26.4 

t A wide-flange shape is designated by the letter W followed by the nominal depth in millimeters and the mass in kilograms per meter. 

(Table continued on page 749) 



Appendix C. Properties of Rolled-Steel Shapes 
Continued from page 7 48 

W Shapes 
(Wide-Flange Shapes) 

Flange 
1-'-'~---'-'-i Web - Axis X·X 

7119 

Axis Y·Y 

· .. Area oepth .Width 
ThiCk' Thick' l-c---,-~'-c--c-'-,-~.,.c.f~c--7---'-.,.,..,~--

Desig.i'lati~Rt A,'nim2 .d,IJlrri bt> lnm 

W310 X 143 
107 
74 

60 
52 
44.5 

38.7 
32.7 
23.8 

18200 
13600 
9480 

7590 
6670 
5690 

4940 
4180 
3040 

W250 X 167 .21300 
101 ·. 12900 
80 10200 

67 8580 
58 7420 
49.1 6250 
44.8 5720 

32.7 4180 
28.4 3630 
22.3 2850 

W200 X 86 11000 
71 9100 
59 7560 
52 6660 
46.1 5860 
41.7 5310 
35.9 . 4580 
31.3 4000 
26.6 3390 
22.5 2860 
19.3 2480 

W150 X 37.1 .4730 
29.8 . 3790 
24.0 3060 
18.0 2290 
13.5 1730 

W130 X 28.1 3580 
23.8 3010 

W100 X 19.3 Z480 

323 
311 
310 

303 
'318 
313 

310 
313 
305 

289 
264 
256 

257 
252 
247 
266 

258 
260 
254 

222 
216 
210 
206 
203 
205 

. 201 
210 
207 
206 
203 

162 
157 
160 
153 
150 

131 
127 

106 

309 
306 
205 

203 
167 
166 

165 
102 
101 

265 
257 
255 

204 
203 
202 
148 

146 
102 
102 

209 
206 
205 
204 
203 
166 
165 
134 
133 
102 
102 

154 
153 
102 
102 
100 

128 
127 

103 

ness ness 111 .·: ".':.': .. • Sx 
t,;mm t,;,; tnrri .··~o6 mm4 103 ~in3 

22.9 
17.0 
16.3 

13.1 
13.2 
11.2 

9.7 
10.8 
6.7 

31.8 
19.6 
15.6 

15.7 
13.5 
11.0 
13.0 

9.1 
- !0.0. 

6.9 

20.6 
17.4 
14.2 
12.6 

. 11.0 
1L8 
10.2 
10.2 
8.4 
8.0 
6.5 

11.6 
9.3 

10.3 
7.1 
5.5 

10.9 
9.1 

8.8 

14.0 
10.9 
9.4 

7.5 
7.6 
6.6 

5.8 
6.6 
5.6 

19.2 
11.9 
9.4 

8.9 
8.0 
7.4 
7.6 

6.1 
6.4 
5.8 

13.0 
10.2 
9.1 
7.9 
7.2 
7.2 
6.2 
6.4 
5.8 
6.2 
5.8 

8.1 
6.6 
6.6 
5.8 
4.3 

6.9 
6.1 

7.1 

348 
248 
!65 

129 
119 
99.2 

85.1 
65.0 
42.7 

300 
164 
126 

104 
87.3 
70.6 
7I.l 

-48.9 
40.0 
28.9 

94.7 
76.6 
6I.l 
52.7 
45.5 
40.9 
34.4 
31.4 
25.8 
20.0 
16.6 

22.2 
17.2 
13.4 
9.17 
6.87 

10.9 
8.80 

4.77 

2150 
1590 
1060 

851 
748 ... 
634 ' 

549 

138 
135 
132 

130 .. 
134 
132. 

131 
125 
119 

4!5 
280 

2080 
1240 
984 

809 
693 
572 
535 

379 
308 
228 

853 
709 
582 
512 
448 
399 
342 
299 
249 
194 
164 

. 274 
219 
168 
120 
91.6 

166 
139 

90.0 

.·. 119 
113 
111 

IIO 
108 
106 
Ill 

108 
. 105 

101 

92.4 
91.7 
89.9 
89.0 
87.9 
87.8 
86.7 
88.6 
87.2 
83.6 
81.8 

68.5 
'67.4 
66.2 
63.3 
63.0 

55.2 
54.1 

43.9 

113 
8!.2 
23.4 

18.3 . 
10.3 
8.55 

7.27 
!.92 
I.l6 

98.8 
55.5 
43.1 

22.2 
18.8 
15.1 
7.03 

4.73 
1.78 
1.23 

31.4 
25.4 
20.4 
17.8 

. 15.3 
9.0i 
7.64 
4.1 
3.3 
1.42 
I.l5 

7.07 
5.56 
!.83 
1.26 
0.918 

3.81 
3.11 

1.61 

731 
531 
228 

180 
123 
103 

88.1 
37.6 
23.0 

746 
432 
338 

218 
185 
!50 
95.0 

64.8 
34.9 
24.1 

300 
247 
199 
175 
151 
109 
92.6 
6!.2 
49.6 
27.8 
22.5 

91.8 
72.7 
35.9 
24.7 
18.4 

59.5 
49.0 

31.3 

t A wide-flange shape is designated by the letter W followed by the nominal depth in millimeters and the mass in kilograms per meter. 

r, 
mm 

78.8 
77.3 
49.7 

49.1 
39.3 
38.8 

38.4 
2!.4 
19.5 

68.1 
65.6 
65.0 

51.0 
50.3 
49.2 
35.1 

33.7 
22.1 
20.8 

53.2 
52.8 
51.9 
51.7 
5l.l 
41.2 
40.8 
32.0 
31.2 
22.3 
2!.5 

38.7 
38.3 
24.5 
23.5 
23.0 

32.6 
32.1 

25.5 
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Appendix C. Properties of Rolled,Steel Shapes 

S Shapes 
(American Standard Shapes) 

, Area Depth Width ness ness t, s;·· ..... :: ... ~ r, 
DesignatiOnt A,mm2 d.mm b1, inm t,,mm t,,mm 106'mm4 103 mm3 mm 

S610 X 180 22900 622 204 27.7 20.3 1320 4240 240 34.9 341 39.0 
158 20100 622 200 27.7 15.7 1230 3950 247 32.5 321 39.9 
149 19000 610 184 22.1 18.9 995 3260 229 20.2 215 32.3 
134 17100 610 181 22.1 15.9 938 3080 234 19.0 206 33.0 
119 15200 610 178 22.1 12.7 878 2880 240 17.9 198 34.0 

S510 X 143 18200 516 183 23.4 20.3 700 2710 196 21.3 228 33.9 
128 !6400 516 179 23.4 16.8 658 2550 200 19.7 216 34.4 
112 14200 508 162 20.2 16.1 .530 2090 .193 12.6: !52 29.5 
98.3 12500 508 !59 20.2 12.8 495 1950 199 11.8 145 30.4 

S460 X 104 13300 457 159 17.6 18.1 385 1685 170 10.4 127 27.5 
81.4 10400 457 152 17.6 11.7 333 1460 179 8.83 113 28.8 

S380 X 74. 9500 381 143 15.6 14.0 201 1060 145 6.65 90.8 26.1 
64 8150 381 140 15.8 10.4 185 971 151 6.15 85.7 27.1 

S310 X 74 9480 305 139 16.7 17.4 126 826 115 6.69 93.2 26.1 
60.7 7730 305 133 16.7 11.7 113 741 121 5.73 83.6 26.8 
52 6650 305 129 13.8 10.9 95.3 625 120 4.19 63.6 24.8 
47.3 6040 305 127 13.8 8.9 90.5 593 122 3.97 61.! 25.3 

S250 X 52 6670 254 126 12.5 15.1 61.2 482 .95.8 3.59 . 55.7 22.9 
37.8 4820. 254 118 12.5 7.9 51.1 . ..402. .103 .. 2.86. 47.5 24.1 

S200 X 34 4370 203 106 10.8 11.2 26.8 264 78.3 1.83 33.8 20.2 
27.4 3500 203 102 10.8 6.9 23.9 235 82.6 1.60 30.6 21.1 

.S150 X 25.7 3270 !52 91 9.1 11.8 10.8. 142 57.5 1.00 21.3 17.2 
1$.6. '2370 152 85 9.1 "5.8 9.11 120 62.0 0.782 18.0 18.0 

Sl30 X 15 1890 127 76 8.3 5.4 5.07 79.8 51.8 0.513 13.2 16.3 

S100 X 14.1 1800 . 102 71 7.4 8.3 2.82 55.3 . 39.6 0.383. 10.5 14.4 
11.5 1460 102 68 7.4 4.9 2.53 49.6 41.6 0.328 . 9.41 14.8 

S75 X 11.2 1430 76 64 6.6 8.9 1.20 31.6 29.0 0.254 7.72 13.1 
8.5 1070 76 59 6.6 4.3 1.03 27.1 31.0 0.!90 6.44 13.3 

~An Amt:rican Standard Beam is designated by the letter S followed by the nominal depth in millimeters and the mass in kilograms per meter. 
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Appendix C. Properties ol Rolled-Steel Shapes ~~ x -x d 

C Shapes , -_:_1 ,. 
(American Standard Channels) 

J:/L 
Flange 

Web Axis X·X Axis Y·Y 
:.- ... .,_ ),,"-' ·,• ThickM: Thick··. 

Area · pepth Width ·neSS·· ness· I, S, r, I s, r, x 
· DesiQnationt ··A,mm2 :d,mm b,,m_m t,,mm t,.,~mm 106 mm4 · -103 mrri3 mm io"mm4 103 mm3 mm mm 

C380 X 74 9480 381 94 165 18.2 167 877 !33 4.54 6L5 2L9 20.2 
60 7570 381 89 16.5 132 144 756 !38 3.79 54.7 22.4 19.7 
50.4 6430 381 86 165 10.2 134 688 143 334 50.5 22-8 19.9 

C3!0 X 45 5690 305 80 12.7 13.0 67.2 441 !09 2.09 332 19.2 17.0 
' 37 4720 .305 77 JZ,7 9.8 59.7 ,391 1!2 1.83 30.5 19.7 17.0 

30.8 3920 305 74 12.7 7.2 53.4 350 1!7 1.57 27.7 20.0 17.4 

C250 X 45 5670 254 76 1Ll 17.1 42.7 336 86.8 158 26.5 16.7 16.3 
37 4750 254 73 1Ll 13.4 37.9 298 89.3 L38 24.0 17.0 15.6 
30 3780 254 69 1Ll 9.6 32.6 257 92.9 Ll4 2L2 17.4 15.3 
22.8 2880 254 65 1Ll 6.1 27.7 218 98.! 0.912 18.5 17.8 15.8 

C230 X 30 3800 229 67 10.5 IL4 25.4 222 81.8 0.997 19.! 162 14.7 
22. 2840 229 ' 63 10.5 7.2 2L2 185 86.4 0.796 J6j 16.7 14.9 
19.9 2530 229 61 10.5 5.9 19.8 173 88.5 0.708 15.4 16.7 15.0 

C200 X 27.9 3560 203 64 9.9 12.4 18.2 179 7!.5 0.817 16.4 15.! 14.3 
20.5 2660 203 59 9.9 7.7 !4.9 147 75.7 0.620 !3.7 15.4 13.9 
17.1 2170 203 57 9.9 5.6 13.4 J:i2 78.6 0538 12.6 15.7 14.4 

Cl.80 X 18.2 2310 J78 55 9.3 8.0 10.0 112 65.8 0.470 1L2 14.3 13.1 
14.6 1850 .178 53 9.3 5.3 8.83 99.2 69.1 0.400 102 !4.7 13.7 

C150 X 19.3 2450 152 54 8.7 ILl 7.11 93.6 53.9 0.420 102 13.! 12.9 
15.6 1980 152 51 8.7 8.0 6.21 81.7 56.0 0.347 9.01 132 125 
12.2 1540 152 48 8.7 5.1 5.35 70.4 58.9 0276 7.82 13.4 12.7 

CJ30 X 13 1710 127 48 8.1 8.3 3.70 58.3 46.5 0264 7.37 12.4 !2.2 
lOA '1310 127 47 8.1 4.8 3.25 5L2 49.8 0229 6.74 13.2 13.0 

C!OO X 10.8 1370 !02 43 7.5 82 L90 37.3 37.2 0.!72 5.44 11.2 11.4 
8.0 !020 !02 40 7.5 4.7 L61 3L6 39.7 0.130 4.56 11.3 1L5 

C75 X 8.9 1130 76.2 40 6.9 9.0 0.850 22.3 27.4 0.122 425 10.4 JL3 
7.4 '936 76.2 37 6.9 6.6 0.751 !9.7 28.3 0.0948 3.62 10. I 10.8 
6.! 765 76.2 35 6.9 4.3 '0.671 !7.6 29.6 0.0765 3.!6 10.0 10.8 

tAn American Standar4_ Channel is designated by the letter C followed by the nominal depth in millimeters and the mass in kilograms per meter. 





Appendix C. Properties of Rolled-Steel Shapes 

Angles 
Unequal Legs 

Axis X-X. 

Size and Mass per 
Thickness, Meter Area I, S, r, 
mm kg/m mm' 106 mm4 103 mm3 mm 

L203 X 152 X 25.4 65.5 8370 33.5 247 63.3 
19.0 50.1 6380 26.2 190 64.1 
12.7 34.1 4350 18.4 131 65.0 

Ll52 X 102 X 19.0 35.0 4470 10.1 102 47.5 
12.7 24.0 3060 7.20 70.8 48.5 
9.5 18.2 2320 5.56 54.0 49.0 

L127 X 76 X 12.7 19.0 2420 3.93 47.6 40.3 
9.5 14.5 1840 3.06 36.6 40.8 
6.4 9.8 1260 2.14 25.2 41.2 

Ll02 X 76 X 12.7 16.4 2100 2.12 31.1 31.8 
9.5 12.6 1600 1.66 24.0 32.2 
6.4 8.6 llOO 1.17 16.6 32.6 

L89 X 64 X 12.7 13.9 1780 1.36 23.3 27.6 
9.5 10.7 1360 1.07 18.0 28.0 
6.4 7.3 938 0.759 12.5 28.4 

L76 X 51 X 12.7 u.s 1450 0.795 16.4 23.4 
9.5 8.8 ll20 0.632 12.7 23.8 
6.4 6.1 772 0.453 8.90 24.2 

L64 X 51 X 9.5 7.9 1000 0.388 9.10 19.5 
6.4 5.4 695 0.280 6.39 20.1 

753 

y 

y z 

Axis Y-Y Axis z-z 

y I, s, r, X r, 
mm 1oG mm4 103 mm3 mm mm mm tan a 

67.4 16.0 145 43.7 41.9 32.4 0.541 
65.1 12.7 113 44.6 39.6 32.7 0.551 
62.7 8.96 78.1 45.4 37.3 33.0 0.556 

52.5 3.65 49.0 28.6 27.5 21.9 0.435 
50.3 2.64 34.4 29.4 25.3 22.2 0.446 
49.1 2.06 26.4 29.8 24.1 22.4 0.452 

44.4 1.06 18.6 20.9 19.0 16.3 0.355 
43.3 0.841 14.5 21.4 17.8 16.6 0.362 
42.1 0.598 10.1 21.8 16.6 16.8 0.369 

33.9 1.00 18.1 21.8 20.9 16.2 0.536 
32.8 0.792 14.1 22.2 19.8 16.3 0.545 
31.6 0.564 9.83 22.6 18.6 16.5 0.552 

30.6 0.581 12.7 18.1 18.1 13.7 0.491 
29.5 0.463 9.83 18.5 16.9 13.8 0.503 
28.3 0.333 6.91 18.8 15.8 13.9 0.512 

27.4 0.283 7.84 14.0 14.9 10.9 0.420 
26.2 0.228 6.ll 14.3 13.7 10.9 0.434 
25.1 0.166 4.32 14.7 12.6 11.1 0.446 

21.3 0.217 5.99 14.7 14.8 10.8 0.610 
20.2 0.158 4.24 15.1 13.7 10.8 0.621 

-·-··· 
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Appendix D. Beam Deflections and Slopes 

Maximum 
Beam and Loading Elastic Curve Deflection Slope at End Equation of Elastic Curve 

1 

y~ 0 L-----j ' PL3 PL2 p 

3EI 
y = -(x2 - 3Lx2) 

J : !./'""' lEI 6E/ 

2 

~ y~ 
::! 
':!: 0 L---:, _IJ~""' wL' wL3 w _•,j 
_1 .,,;.· ~,,,,, --.,;,·,- -- y = -- (x' - 4Lx' + 6L2x') 
j L---1 8El 6EI 24El 

3 

l=~~ y~ ,l "' ·····) 0 -----j ' ML2 ML M 
y = --x' 

'l'""" 2El El 2El 
:_1 L~M· 

4 

lt::r ·~ '-L~ For x::::.;: !L: 

' 
PL' PL2 p 0 +-- y = --(4x3 - 3L2x) 

~ 
48EI - !6E/ 48E/ 

r--L-·r -kL-1 y,,;" 

5 
p 

Y-Ll I 
Fora> b: For x < a: 

1'-i..E_I 
Pb(L2 - b2) 3P Pb(L2 

- b2) 
y = ~[x'- (L2 - b2)x] '--' b 

9VJEIL 
()A=-

6E/L A B ' 6E/L 
"'~'"' ·''""'t B 

)L'- b
2 Pa(L2 - a2) 

t-L~"t - ..... _j 
_1.!/ .. "" 

Forx=a: 
Pa2b1 

atx, = -
3
- e = + y=-3EIL 8 

6E/L 

6 

" 

'~ jJIJJ.II .. ~ 0 ' 5wL4 wL2 w 
+-- y = ---(x4 - 2Lx' + L2x) 

384£1 - 24E/ 24E! 
-lL-.. r::-L ---"'1' 2 I y,,_., 

7 

Y-L;:::J ML 
M ML' 

{)A=+-
M 

1·@· ·i? A ..-----, B 
6E/ 

L1x) ' 9VJEI e _ _ ML 
y = -- (:i' 

- -'- -.1 ; .. , .. 6E/L 

······r:-L---~· ,;:; 
8 - 3E/ 
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Fundamentals of 
Engineering E.xamination. 

Engineers are required to be licensed when their work directly affects 
the public health, safety, and welfare. The intent is to ensure that en~ 
gineers have met minimum qualifications, involving competence, abil
ity, experience, and character. The licensing process involves an initial 
exam, called the Fundamentals of Engineering Examination, profes
sional experience, and a second exam, called the Principles and Prac
tice of Engineering. Those who successfully complete these require
ments are licensed as a Professional Engineer. The exams are developed 
under the auspices of the National Council of Examiners for Engi
neering and Surveying. 

The first exam, the Fundamentals of Engineering Examination, can 
be taken just before or after graduation from a four~year accredited en
gineering program. The exam stresses subject material in a typical un~ 
dergraduate engineering program, including Mechanics of Materials. 
The topics included in the exam cover much of the material in this 
book. The following is a list of the main topic areas, with references 
to the appropriate sections in this book. Also included are problems that 
can be solved to review this material. 

Stresses (1.3-1.8; 1.11-1.12) 
Problems: 1.2, 1.10, 1.30, 1.38 

Strains (2.2-2.3; 2.5-2.6; 2.8-2.11; 2.14-2.15) 
Problems: 2.4, 2.14, 2.40, 2.47, 2.63, 2.68 

Torsion (3.2:..3.6; 3.13) 
Problems: 3.5, 3.27, 3.36, 3.52, 3.134, 3.138 

Bending ('\,2-4.6; 4.12) 
Problems: 4.9, 4.2!, 4.37, 4.47, 4.99, 4.107 
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Shear and Bending-Moment Diagrams (5.2-3) 
Problems: 5.5, 5.9, 5.42, 5.49 

Normal Stresses in Beams (5.1-3) 
Problems: 5.17, 5.20, 5.55, 5.59 

Shear (6.2-6.4; 6.6-6.7) 
Problems: 6.3, 6.12, 6.30, 6.36 

Transformation of Stresses and Strains (7.2-7.4; 7.7-7.9) 
Problems: 7.8, 7.19, 7.34, 7.39, 7.81, 7.83, 7.102, 7.109 

Deflection of Beams (9.2-9.4; 9.7) 
Problems: 9.3, 9.8, 9.71, 9.75 

Columns (10.2-10.4) 
Problems: 10.12, 10.23, 10.27 

Strain Energy (11.2-11.4) 
Problems: 1l.!O, ll.I4, 1l.l8 
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Accuracy, numerical, 15 
Allowable load, 28 
Allowable stress, 28 
Allowable-stress method, 652-653 
Aluminum columns, design of, 640 
American Standard Beam, 218 · 
American standard channels. See C shapes 
American standard shapes, properties of, 750 
Angle of rotation, relative, 152 
Angle of twist 

for circular shaft 
in elastic range, 152 
in plastic range, 175 

for rectarigular bar, 186 
for thin-walled hollow shaft, 191 

Angle shapes, 407, 409 
properties of, 752-753 

Anisotropic material, 57 
Anticlastic curvature, 220 
Areas of common shapes, 573, inside back cover 
Axial loading, 7, 48 

centric, 8 
elastic deformations under, 61 
Mohr's circle for, 441 
of columns, 607-617, 636-643 
plastic deformations under, 109-111 
strain due to, 104-106 
stress due to, 27, 104-106 

eccentric, 9 
general case of, 276, 277 
in plane symmetry, 260-262 
of column. 625-630, 652-654 

Bar with rectangular cross section 
torsion of, 187 

Bauschinger effect, 58 
Beams, 372. See also specific types of beams 

of constant strength, 354-355 
curved (see Curved members) 
deflection of (see.Deflection of beams) 
design of, 308-362 
made of several materials, 230 
nonprismatic, 3~4-357 
normal stresses in, 217, 309 

Beams-Cont. 
principal stresses in, 497-499 
reinforced-concrete, 233 
shearing stresses in, 309, 376-379 
slope of (see Slope of beams) 
types of, 308-309 

Bearing stress, 11, 14 
Bending, 209 

deformations in, 213-218 
in plane of symmetry, 209-251 
of curved members, 285-291 
of members made of several materials, 230 
plastic deformations in (see Plastic deformations, 

for beams in pure bending) 
stress in (see Normal stress, in bending) 
unsymmetric, 270-275 

Bending moment, 211 
sign convention for, 211, 311 
ultimate, 245 

Bending-moment diagram, 311-313 
by parts, 573-575 

Biaxial stress, 100, 101, 451 
Bolts, stress in, I 0 
Boundary conditions 

for beams carrying a distributed load, 538 
for statistically determinate beams, 534 
for statistically indeterminate beams, 540, 541 

Box beam, 391 
Bracing, 29 
Breaking strength, 52 
Brittle material, 51, 142 

fracture criteria for, 453-455 
Buckling, 29, 608 

local, 499 
Building codes, 30 
Bulk modulus, 88 

Cantilever beam, 308, 534 
analysis of, 571-572 

Castigliano, Alberto, 711 
Castigliano 's theorem, 711-712 

analysis of statically indeterminate structures by, 
716-717 

deflections by, 712-715 
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Centric load or centric loading. See Axial 
loading, centric 

Centroid 
of a Cross section, 216 
of an area, 736-740 

Centroidal axis 
of an area, 741-743 
principal, 271 

Centroids of common shapes, tables, 
inside back cover 

Changes in temperature, 74-76 
Channel section, 402-406 

shear center of, 404-405 
shearing stresses in, 405 

Channel shapes. See C shapes 
Circular hole, stress distribution near, 107 
Circular shafts 

deformations in, 136-139 
elastic torsion formula for, 140 
made of an elastoplastic material, 174-179 
of variable cross section, 152 
plastic deformations in, 174-179 
residual stresses in, 177-179 
statically indeterminate, 153 
strains in, 138 
stress-concentration factors for, 167 
stresses in, 134-142 

Clebsch, A., 347 
Clevis, 12 
Coefficient of thermal expansion, 74 

of selected materials, 746-747 
Columns, 607-654 

centric loading of, 607-617 
design of: under a centric load, 636-641 
design of: under an eccentric load, 652-654 
eccentric loading of, 625-629 

Combined loadings, stresses under, 508-510 
Common shapes, tables of areas and centroids of, 573, 

inside back Cover 
Components of stress, 24 
Composite beams, 230 
Composite materials, 57, 95-98 
Compression, modulus of, 88 
Computer programming of singularity functions, 348 
Concentrated load, 308 
Concrete, design specifications for, 30 
Connections, 14 
Constant strength, beams of, 354-355 
Coulomb, Charles Augustin de, 453 
Coulomb's criterion, 453 

Coupling, flange, 167 
'Cover plate, 355 
Cracks, 54, 455 
Creep, 58 
Crippling, 333 
Critical load, 609, 612 
Critical stress, 612 
C shapes, properties of, 751 
Curvature 

anticlastic, 220 
of composite member, 232 
of neutral surface, 218 
of transverse section of beam, 220 

Curved beams. See Curved members 
Curved members 

bending of, 285-291 
neutral surface in, 288 
stresses in, 290 

Cycles, loading, 60 
Cyclic loading, 29 
Cylindrical pressure vessels, 462 

Deflection of beams 
by Castigliano's theorem, 712-715 
by energy method, 698-699, 712-715 
by integration, 530-561 
by moment~area method, 569-588 
by superposition, 530-561 
table of, 754 

Deformations 
in bending, 213-218 
in circular shafts, 136-139 
in transverse cross section of beam, 220 
permanent (see Permanent deformations) 
plastic (see Plastic deformations) 
under axial loading, 61 

Density of selected materials, 746, 747 
Design, 6 · 

for impact loads, 695-696 
of beams, 308-362 
of columns: under a centric load, 636-641 
of prismatic beams, 332-334 
of transmission shafts, 165-166, 500-501 

Design load, 28 
Design specifications, 30 
Deviation, tangential, 570 
Dilatation, 88 
Displacement, relative, 62 
Distributed forces, 5 
Distributed load, 308 



Double shear,. 11 
Ductile material, 51, 142 

yield criteria.for, 451-453 
Ductility, 54 

of selected materials, 746-747 
Dynamic loading, 29. See also Impact loading 

Eccentric load or eccentric loading. 
See Axial loading, eccentric 

Effective length of column, 614 
for various end conditions, 617 

Effective slenderness ratio, 614 
Elastic core 

in beam, 246 
in circular shaft, 175 

Elastic curve, equation of, 533-537, 538-539 
Elastic flexure formulas, 217 
Elasticity, modulus of, 56 

of selected materials, 746-747 
Elastic limit, 57 
Elastic section modulus, 217 
Elastic strain energy. See Strain energy 
Elastic torque, maximum, 175 
Elastic torsion formulas, 140 
Elastic zone. See Elastic core 
Elastoplastic material, 109 

axial loading of member made of, 109-112 
bending of member made of, 246-251 
torsion of shaft made of, 174-179 

Elementary work, 671 
Elongation, percent, 54 

of selected materials, 746-747 
End conditions for columns, 617 
Endurance limit, 60 
Energy-absorbing capacity, 675, 694, 695 
Energy density, 672 
Energy loading. See Impact loading 
Energy methods, 670-717 

analysis of statically indeterminate structures 
by, 716-717 

deflections by, 698-699, 712-715 
Equation of elastic curve, 533-537, 538-539 
Equivalent static load, 694, 698 
Euler, Leonhard, 611 
Euler's formula, 6~1 

Factor of safety, 28 
Failure criteria, 451-455 
Fatigue, 29, 59 / 
Fatigue limit, 60 

Index 761 

Fiber-reinforced composite materials, 57, 95-98 
Fillet, stress distribution near 

in circular shaft, 167 
in flat bar: in bending, 234 

under axial loading, 107 
First 'moment 

of area, 736-740 
of ctoss section, 216 

Flange coupling, 167 
Flange of S- or W-beam, stresses in, 379, 391 
Flat bars, stress-concentration factors for 

in bending, 234 
1.mder axial loading, 108 

Flexural rigidity, 534 
Flexural stress, 217 
Flexure formulas, 217 
Fluctuating loading, 60 
Forces, distributed, 5 
Fracture criteria for b'"rittle materials, 453-455 
Fracture mechanics, 455 
Free-body diagram, 2 
Frequency, 165 

Gage length, 50 
Generalized Hooke's law. See Hooke's Law 
Gigapascal, 5 
Groove, stress distribution near, 234 
Gyration, radius of. See Radius, of gyration 

Hexagon of Tresca, 452 
Highway bridges, design specifications for, 30 
Hooke, Robert, 56 
Hooke's Law, 56 

for general state of stress 
of an isotropic material, 91 
of an orthotropic material, 96 

for the multiaxial loading 
of an isotropic material, 87 
of an orthotropic material, 96 

Hoop stress, 462 
Horizontal shear, 375, 388 
Hydrostatic pressure, 88 

Impact factor, 705 
Impact loading, 672, 693-694 

design for, 695-696 
Impulsive loading, 29. See also Impact loading 
Indeterminate. See entries beginning with term: 

Statically indeterminate 
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nertia, moment of. See Moment of inertia 
nfluence coefficient, 709 
ntegrat.ion method for deflection of beams, 530-561 
nteraction formula, 653 
nteraction method, 653 
nternal force, 61 
nternal torque, 141 
sotropic material, 57, 84, 87, 91 

oule (unit), 671 

(em, 285 
(eyway, 167 
Glopascal, 5 

.. amina, 57 

.. aminate, 57 

..a.teral strain, 84 

..imit 
elastic, 57 
endurance, 60 
fatigue, 60 
proportional, 56 

.. oad, 27-28. See also Loading(s) 
concentrated (see Concentrated load) 
critical, 609, 612 
distributed (see Distributed load) 
equivalent static, 694 

.. oad and Resistance Factor Design, 30, 334, 643 

...oad~defonnation diagram, 48 

.. oading cycles, 60 

.. oading(s) 
axial (see Axial loading) 
centric (see Axial loading, centric) 
combined, 508-510 
cyclic, 29 
dynamic, 29 (see also impact, below) 
eccentric (see Axial loading, eccentric) 
energy (see impact, below) 
fluctuating, 60 
impact, 672, 693-694 
impulsive, 29 
multiaxial, 85-87 
repeated, 59 
reverse, 60 
transverse, 372-408 

.. ocal buckling, 499 

.. ongitudinal stress in cylindrical pressure vessels, 
462-463 

.. ower yield point, 53 

Macaulay, W. H., 347 
Macaulay's brackets. See Singularity functions 
Macroscopic cracks, 455 
Material 

anisotropic, 57 
brittle, 51, 142 

fracture criteria for, 453-455 
ductile, 51, 142 

yield criteria for, 451,453 
elastoplastic (see Elastoplastic material) 
fiber~ reinforced composite, 57, 95-98 
isotropic, 57, 87,91 
orthotropic, 96 

Materials, table of typical properties of, 746-747 
Maximum deflection of beam 

by integration, 535, 542 
by moment-area method, 584-585, 589 

Maximum-distortion~energy criterion 
for general state of stress, 682 
for plane streSs, 452 

Maximum elastic moment, 246 
Maximum elastic torque, 175 
Maximum in-plane shearing strain, 474 
Maximum in-plane shearing stress, 430, 449 
Maximum-normal-strain criterion, 454 
Maximum-nonnal-stress criterion, 453-454 
Maximum shearing strain, 474, 476 
Maximum shearing stress, 430, 448 
Maximum~shearing~stress criterion, 451 
Maxwell, James Clerk, 710 
Maxwell's reciprocal theorem, 710 
Megapascal, 5 
Members, secondary, 29 
Membrane analogy, 187 
Microscopic cracks, 54, 455 
Modulus 

bulk, 88 
of compression, 88 
of elasticity, 56 

for selected materials, 746-747 
of resilience, 673 
of rigidity, 91 

for selected materials, 746-747 
of rupture: in bending, 245 

in torsion, 174 
of toughness, 673 
section: elastic, 217 

plastic, 248 
shear, 91 
Young's, 56 



Mohr, Otto, 436, 454 
Mohr's· circle 

for central axial loading, 441 
for moments and products of inertia, 279 
for plane strain, 473-474, 477 
for plane stress, 436-441, 448-449, 476--478 
for stresses: in cylindrical pressure vessels, 464 

in spherical pressure vessels, 464 
for three-dimensional strain, 475:....478 
for three~dimensional stress, 448-449 
for torsional loading, 441 

Mohr's criterion, 454-455 
Moment 

bending (see Bending moment) 
maximum elastic, 246 
plastic, 247 

Moment-area method for deflection of beams, 569-588 
Moment-area theorems, 569-571 
Moment of inertia 

of area, 741-745 
of beam section, 217 
of composite area, 744--745 
of cross section of shaft, 140 
polar, 140, 741 
rectangular, 7 41 

Moments of areas, 736-7 45 
Moments of inertia of common shapes, inside 

back cover 
Multiaxialloading 

generalized Hooke's law for, 87 
Multiaxial stress, 85 

Necking, 52 
Neutral axis 

for eccentric axial loading in plane of 
Symmetry, 260 

for general case of eccentric axial loading, 276-277 
for symmetric bending, 214 

in elastic range, 216 
in plastic range, 250 

for unsymmetric bending, 27 4 
Neutral surface 

of curved beam, 286 
of prismatic beam, 214 
radius of curvatt;tre of, 218, 247, 289 

Noncircular members 
torsion of solid, 186-188 
torsion of thin-walled hollow, 189-191 

Nonprismatic be!;l.mS, 354--355 

Normal strain 
in bending, 215 
under axial loading, 48-50, 105 

Normal stress 
due to centric axial loading, 27, 104-106 
due to combined loading, 508-510 
due to eccentric axial loading, 260, 276 
due to transverse loading, 308 
in bending 

of curved members, 290 
of prismatic members 

in elastic range, 212 
in plastic range, 244 

in torsion, 142 
maximum, in beams, 309 

Numerical accuracy, 15 

Offset method, 53 
Orthoi:ropic material, 96 
Overhanging beam, 534 

Parallel~axis theorem, 743-744 
Pascal (unit), 5 
Percent elongation, 54 

of selected materials, 746-747 
Percent reduction in area, 54 
Permanent deformations, 58 

in bending, 251 
in torsion. 178 
under axial loading, 109 

Permanent set, 58, 111 
Pin-ended columns, 610-613 
Pins, stress in, 10 
Plane strain, 101 

transformation of, 470-474 
Plane stress, 101, 423, 477 

transformation of, 425-441 
Plastic deformations, 58 

for beams in pure bending, 243-245 
made of an elastoplastic material 

and of nonrectangular cross 
section, 248-249 

Index 763 

and of rectangular cross section, 246-248 
with a horizontal and a vertical plane of 

symmetry, 243-249 
with a single vertical plane of symmetry, 250 

for beams under transverse loading, 392-393 
for circular shafts, 172-179 
under axial loading, 109-111 
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Plastic hinge, 392 
Plastic moment, 247 
Plastic .section modulus, 248 
Plastic torque, 175 
Plastic zone 

in circular shaft, 174 
in member in pure bending, 246 
in member under transverse 

loading, 392-393 
Poisson, Sim6on Denis, 84 
Poisson's ratio, 84 
Polar moment of inertia 

of area, 140, 741 
of cross section of shaft, 140 

Power, 165 
Pressure, hydrostatic, 88 
Pressure vessels, stresses in thin-walled, 462-464 
Principal axes of strain, 473-475 
Principal centroidal axes, 271 
Principal planes of stress, 429, 447 
Principal strains, 473,475 
Principal stresses, 429, 447 

in a beam, 497-499 
under a given loading, 509 

Principle of superposition, 86 
Prismatic beams, design of, 332-334 
Properties 

of rolled-steel shapes, 750-761 
of selected materials, 746-747 

Proportional limit, 56 
Pure bending, 209 

deformations in, 213-218 
stresses in (see Normal stress, in bending) 

Radius 
of curvature of neutral surface for prismatic 

beam, 218, 247 
of gyration: of area, 741-743 

of cross section of column, 612 
of neutral surface for curved beam, 289 

Reciprocal theorem, 710 
Reduction in area, percent, 54 
Redundant reaction 

for a beam, 560, 587 
under axial loading, 71 

Reference tangent, 571, 582 
Reinforced concrete beams, 233 
Relations 

among E, v, and G, 92-94 

_Relations-Cont. 
between load and shear, 322 
between shear and bending moment, 323-324 

Relative angle of rotation, 152 
Relative displacement, 62 
Repeated loadings, 59 
Residual stresses, 29 

in bending, 250-251 
in torsion, 177-179 
under axial loading, 113-114 

Resilience, modulus of, 673 
Reverse loading, 60 
Rigidity 

flexural, 534 
modulus of, 91 

for selected materials, 746-747 
Rolled-steel shapes, properties of, 748-753 
Rosette, strain, 479 
Rotation, relative angle of, 152 
Rupture, modulus of 

in bending, 245 
in torsion, 174 

Safety, factor of, 28 
Saint-Venant, Adhemar Barre de, 106 
Saint-Venant's criterion, 454 
Saint-Venant's principle, 106 
S-beam, 218. See also S shapes 
Secant formula, 628 
Secondary members, 29 
Second moment of an area, 741-745 
Section modulus 

'elastic, 217 
plastic, 248 

Shafts 
circular (see Circular shafts) 
design of, 165, 500-501 
noncircular (see Noncircular members) 
transmission (see Transmission shafts) 

Shape factor, 248 
Shear, 9, 311 

double, 11 
horizontal, 375-388 
single, 11 
vertical, 376 

Shear center, 392, 403 
of angle shape, 407 
of channel shape, 404 
of Z shape, 408 



Shear diagram, 311-313 
Shear·flow 

in thin-walled hollow shafts, 190 
under transverse loading, 375 

in thin-walled members, 391 
Shearing force, 372 
Shearing strain, 90 

in circular shafts, 138 
Shearing stress, 10, 373 

due to axial loading, 24, 27 
due to combined loading, 508-510 
due to transverse loading: of angle shape, 409 

of beam, 376-381 
of channel shape, 405 ~ 

of narrow rectangular beam, 378-381 
of S- and W-beams, 378 
of thin-waJled member, 390-392, 402-408 
of Z shape, 408 

in torsion: of circular shafts, 135, 139, 174-177 
of rectangular bar, 186-187 
of thin-walled hollow shaft, 190 

maximum, 430, 448 
maximum, in beam, 309 
maximum, in-plane, 430, 449 

Shearing stress and strain, Hooke's Law for, 91 
Shearing-stress-strain diagram, 174 
Shear modulus, 91 
a-71 curve, 60 
Sign convention 

for bending moment, 211, 311 
for shear, 311 
for shearing strain, 90 
for stress, 5, 25 

Simple structures, analysis of, 12 
Simply supported beam, 308 
Single shear, 11 
Singularity functions 

computer programming of, 348 
definition of, 345 
for shear and bending moment in 

beams, 343-358 
for slope and deflection of beams, 549-558 

SI units, table of, inside front cover 
Slenderness ratio, 612 

effective, 614 _ 
Slip, 58 
Slope of beams 

by Castigliano's theorem, 713 
by integratio1,1,method, 534, 538, 549 
by moment-area method, 570, 582 

Spherical pressure vessels, 464 
S shapes, properties of, 750 
Stability 

of columns, 607-654 
of structures, 608-610 

lndex 765 

Statically determinate beams, boundary conditions 
for, 534 

Statically indeterminate beams 
analysis of 

~Y Castigliano's theorem, 716-717 
by integration, 540-541 
by moment-area method, 586-587 
by superposition, 560-561 

.boundary conditions for, 540-541 
Statically indeterminate forces, 47 
Statically indeterminate problems, 70 
Statically indeterminate shafts, 153 
Steel, design specifications for, 30 
Steel beams, 218 

design of, 332-334 
properties of, 748-753 

Steel columns, design of, 638-340 
Step function, 345 
Stiffeners, 499 
Stiffness, 56 
Strain 

lateral, 84 
measurement of, 478 
normal (see Normal strain) 
principal, 473, 475 
principal axes of, 473-475 
shearing (see Shearing strain) 
thermal, 74 
transformation of, 470-478 
true, 55 

Strain energy, 670-672 
for general state of stress, 680-682 
for normal stresses, 67 4-677 

in bending, 676 
under axial loading, 675-676 

for shearing stresses, 677-679 
in torsion, 678-679 
under transverse loading, 679 

Strain-energy density 
for general state of stress, 680-682 
for normal stresses, 672-67 4 
for shearing stresses, 677 

Strain-hardening, 54 
Strain rosette, 479 
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trength 
breaking, 52 
ultimate, 28, 52 

of ~elected materials, 746-747 
yield, 52 

of selected materials, 746-747 
tress, 5 
allowable, 28 
bearing, 11, 14 
biaxial, 100, 451 
components of, 24 
critical, 612 
due to axial loading (see Normal stress) 
due to combined loading, 508-510 
due to transverse loading (see Shearing stress, due to 

transverse loading) 
flexural, 217 
general state of, 446-447 
hoop,462 
in bending (see Normal stress, in bending) 
in bolts, 11 
in pins, 11 
in rivets, 11 
in thin-walled pressure vessels, 462-464 
in torsion (see Shearing stress, in torsion) 
longitudinal, 462-463 
multiaxial, 85 
normal (see Nonnal stress) 
principal planes of, 429, 447 
principal (see Principal stresses) 
residual (see Residual stresses) 
shearing (see Shearing stress) 
sign convention for, 5, 25 
transformation of, 423-450 
true, 55 
ultimate, 28 
uniform distribution of, 8 
yield (see Yield strength) 
tress~concentration factors 
for circular shafts, 167 
for flat bars 

in bending, 234 
under axial loading, 107-108 

:ress~strain diagram, 50 
:ress trajectory, 499 
:ructures, analysis of, 12 
1perposition method, 71 
for deflection of beams, 558-561 
for determination of stresses, 508-510 

.lperposition principle, 86 

Symbols, xix 
Symmetric loading, deflection of beams with, 571-572 

Tangential deviation, 570 
Temperature changes, 74 
Tensile test, 51 
Testing machine, 51 

torsion, 150 
Thermal expansion, coefficient of, 74 

of selected materials, 746-747 
Thermal strain, 74 
Thin-walled hollow shafts, 189-191 
Thin~walled members 

under nonsymmetric transverse loading, 402-408 
under symmetric transverse loading, 390-392 

Thin~walled pressure vessels, 462-464 
Three~dimensional analysis 

of strain, 475-478 
of stress, 446-450 

Timber, design specifications for, 30 
Torque, 132 

internal, 141 
maximum elastic, 175 
plastic, 175 
ultimate, 173 

Torsion 
of circular shafts, 132-179 
of noncircular members, 186-188 
of rectangular bars, 187 
of thin-walled hollow shafts, 189-191 

Torsional loading, Mohr's circle for, 441 
Torsion formulas, 140 
Torsion testing machine, 150 
Toughness, modulus of, 673 
Transformation 

of plane strain, 470-474 
of plane stress, 425-426, 441 
of three~dimensional strain, 475-478 
of three~dimensional stress, 446-450 

Transformed section 
of beam. made of several materials, 231 
of reinforced concrete beam, 233 

Transmission shafts, 132 
design of, 165-166, 500-501 

Transverse cross section of beam 
curvature of, 220 
deformations in, 220 

Transverse loading, 308, 402 
Tresca, Henri Edouard, 452 
Tresca's hexagon, 452 



True strain, 55 
True stress, 55. 
Twist, angle of. See Angle of twist 
Twisting of thin-walled members under ti-ansverse 

lOading, 402 
Two-force members, 12 

Ultimate bending moment, 245 
Ultimate load, 28 
Ultimate strength, 28, 52 

of selected materials, 746-747 
Ultimate stress, 28 
Ultimate torque, 173 
Unsymmetric bending, 270-275 
Unsymmetric loading 

deflection of beam under, 582-584 
of thin-walled members, 402-408 

Upper yield point, 53 

Variable cross section 
beams of, 354-356 
shafts of, 152 

Vertical shear, 376 
von Mises, Richard, 452 
von Mises cdterion, 452 

Warping, 186 
Watt (unit), 165 
W-beam, 218. See also W shapes 
Web of S- or W-beam, stresses in, 378-379 
Wide-flange beam, 218 
Wide-flange shapes. See W shapes 
Wood columns, design of, 641 
Work· 

of a couple, 696 
of a load, 670--672, 696-697 
of several loads, 709-711 

Index 767 

Work-energy method for deflection under a single load, 
698-699 

Wqrking load, 28 
W shapes, properties of, 748-749 

Yield criteria for ductile materials, 451-453 
Yield or yielding, 51 
Yield point, 53 
Yield strength, 52 

of selected materials, 746-747 
Yield stress. See Yield strength 
Young, Thomas, 56 
Young's modulus, 56 

Z shape, 408 



Answers to pr~bl~ms with a _number set in straight type are given on this and the following pages. Answers to r bl · h 
number set m ttahc are not llsted. P 0 ems Wit a 

CHAPTER 1 

1.1 (a) 35.7 MPa. (b) 42.4 MPa. 
1.2 d 1 = 25.2 mm; d2 = 16.52 mrn. 
1.3 (a) 81.5 MPa. (b) 18.1 MPa. 
1.4 73.9 kN. 
1.7 62.7 kN. 
1.8 7.23 MPa. 
1.9 (a) 101.6 MPa. (b) -21.7 MPa. 
1.10 (a) 94.7 MPa. (b) -64.4 MPa. 
1.13 (a) 12.73 MPa. (b) -4.77 MPa. 
1.14 (a) 17.86 kN. (b) -41.4 MPa. 
1.15 5.93 MPa. 
1.16 304 nun. 
1.18 9.22kN. 
1.19 178.6 mm. 
1.20 (a) 3.33 MPa. (b) b ~ 525 mm. 
1.21 275 nun. 
1.23 (a) 3.97 MPa. (b) 202 mm. (c) 20.9 MPa. 
1.24 (a) 61 MPa. (b) 29.9 MPa. 
1.27 (a) 80.8 MPa. (b) 127.0 MPa. (c) 203 MPa. 
1.28 (a) 55.4 MPa. (b) 145 MPa. (c) 72.5 MPa. 
1.29 u = 498 kPa; 7 = 489 kPa 
1.30 (a) 13.95 kN. (b) 620 kPa. 
1.31 <r = 498 kPa; 7 = 288 kPa. 
1.33 0' = -37.l MPa; 7 = 17.28 MPa. 
1.34 337 kN. 
1.35 (a) 0 (tensile) at 8 = 90"; 42.7 MPa (compressive) at 

8 = 0". (b) 21.3 MPa at 8 = 45". 
1.38 2.34. 
1.39 30.8 mm. 
1.41 (a) 181.3 rrun2• (b) 213 mm2• 

1.42 (a) 3.97. (b) 265 mm'. 
1.43 20.8 mm. 
1.44 2.50. 
1.45 2.16. 
1.46 20.39 kN. 
1.49 (a) 38 mm. (b) 196 mm. 
1.51 800 N. 
1.53 3.72 kN. 
1.54 3.97 kN. 
1.55 1.683 kN. 
1.56 2.06 kN. 
1.57 (a) 2.78 kN. (b) 1.69. 
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1.58 (a) 362 kg. (b) 1.718. 
1.59 60.0 MPa. 
1.61 60.2 mm. 
1.62 (a) 25.2 mm. (b) 227.8 MPa. 
1.63 (a) 69 MPa. (b) 40.6 MPa. 
1.65 XIS= 0.693 m; Xp = 1.43 ffi. 

1.67 2.42. 
1.68 Lmin = 0'0nd/4rall· 
1.69 (a) 27.9°. (b) 3.26. 
1.C2 (c) 16 mm ::5 d ::5 22 rom. (d) 18 mm :$ d :::;; 22 mrn. 
1.C3 (c) 17.5 mm ::5 d ::5 27.5 nun. 

(d) 21.25 mm:::; d:::;; 31.25 mm. 
1.C4 (b) For {3 = 38.66", tan {3 = 0.8; BD is perpendicular 

to BC. 

1.C5 

1.C6 

(c) F.S. = 3.58 for a = 26.6"; P is perpendicular to 
line A C. 

(b) Member of Fig. P 1.31,/or a= 60°: 
(1) 490 kPa; (2) 282.905 kPa; (3) 2.143; (4) 5.295; 
(5) 2.143. 
Member of Fig. P 1.31, for a= 60°: 
(1) 498 kPa; (2) 288 kPa; (3) 2.14; (4) 5.30; (5) 2.14. 

(d) Pa11 = 5.79 kN; stress in links is critical. 

C.HAPTER 2 

2.1 (a) 9 mm. (b) 125 MPa. 
2.2 (a) 6.91 mm. (b) 160.0 MPa. 
2.3 (a) 4.3 mm. (b) 1.43 m. 
2.4 (a) 81.8 MPa. (b) 1.712. 
2.6 (a) 17.25 MPa. (b) 2.82 mm. 
2.8 (a) 817 mm. (b) 15.28 mm. 
2.9 10.70 nun. 
2.10 160.0 kN. 
2.12 0.603 mm. 
2.14· 29mm. 
2.15 (a) 0.794 mm. (b) 0.484 mm. 
2.16 16.52 mm. 
2.19 (a) 0.308 mm l (b) 0.!42 mm t. 
2.20 (a) 0.1415 mm. (b) 0.214 mm l 

(c) 113.2 MPa. 
2.21 -1.78 nun in AB; 1.78 nun in AD. 
2.22 164.4 kN. 
2.23 (a) 1.222 mm. (b) 1.910 mm. 



2.24 0.1095 mm l 
2.25 (a) -0.0302 mm. (b) 0.01783 mm. 
2.26 x < 92.6 rom. · 
2.29 pgh214E 
2.30 (a) pgi}I2E. 
2.33 (a) a-,= -116.3 MPa; ua = -40.7 MPa. 

(b) -0.145 mm. 
2.34 (a) 10!.6 kN. (b) 100 MPa. 
2.35 (a) 140.6 MPa. (b) 93.75 MPa. 
2.36 (a) 15.00 mm. (b) 288 kN. 
2.39 (a) 62.8 kN ~ at point A; .37.2 kN <- at point E. 

(b) 46.3 J.Lffi -7. 

2.40 (a) 45.5 kN ~at point A; 54.5 kN .(--- at point E. 
(b) 48.8 ,u.m -+. 

2.41 (a) 0.0762 mm. 

(b) O"Ao = O"co = 30.5 MPa; creF = 38.1 MPa. 
2.42 (a) tube, 67.9 MPa; rod, -55.6 MPa. 

(b) tube, 0.2425 mm; rod, -0.1325 mrn. 
2.45 (a) 2l.l4 kN. (b) 0.947 mm. 

2.46 (a) 838 N in BE; 931 N in CF. (b) 1.78 mm. 
2.47 77.7<>C. 
2.48 -47.0 MPa. 
2.49 -6.72 MPa. 
2.50 steel, -8.04 MPa; concrete, 0.21 MPa. 
2.53 (a) -44.4 MPa in AB; -100.0 MPa in BC. 

(b) 0.500 mm t. 
2.54 tube, 63.0 MPa; rod, -51.6 MPa. 
2.55 (a) -ll6.2 MPa. (b) 0.363 mm. 
2.56 '(a) 94.1"C. (b) 0.45027 m. 
2.57 (a) 172.8 kN. (b) 0.236 mm. 
2.60 (a) -122.8 MPa. (b) 108.5 MPa. 
2.61 (a) 0.205 mm. (b) -0.00905 mm. 
2.62 (a) 0.0358 m.m. (b) -0.00258 m.m. 

(c) 0.0003437 m.m. (d) -0.00825 mm2• 

2.63 180.9 MPa; 0.433; 62.7 MPa. 
2.65 0.3995. 
2.67 ··0.0518%. 
2.68 (a) 0.0754 m.m. (b) 0.1028 mm. (c) 0.1220 mm. 
2.69 (a) 0.13 mm. (b) -0.0146 mm. 
2.70 (a) 34.3 kN compression. (b) 102.9 kN compression. 
2.75 !.091 mm l 
2.76 302 kN. 
2.77 16 MPa. 
2.78 19 N/m. 
2.79 (a) 262 m.m. (b) 2!.4 m.m. 
2.80 G = 1.080 MPa; r = 431 kPa. 
2.84 (a) 184.35 X 10-6; ~8.1 X 10-9m3, 

(b) 376.7 X l0-6; 36.98 X 10-9m3. 
2.86 (a) 15 X 10-6 m. (b) 530 X 10-9m3, 

(c) 0.03%. 
2.87 3.00. 
2.88 16.46 kN. 
2.91 (a) 0.0303 mm. 

(b) cr" = 40.6 MPa; uy = cr,. = 5.48 MPa. 
2.92 (a) u" = ~.6 MPa; uY = 0; cr~ = 3.45 MPa. 

(b) -0.0[29 m.m. 

2.93 4!.7 kN. 
2.94 (a) 70.7 MPa. (b) 92.2 MPa. 
2.95 (a) 69.5 MPa. (b) 66.7 MPa. 
2.96 (a) 58.7 kN. (b) 69.75 kN. 
2.99 (a) 12 mm. (b) 62.1 kN. 
2.100 (a) 134.7 MPa. (b) 135.3 MPa. 
2.101 (a) 4.69 mm. (b) 6.88 mm. 
2.102 (a) 176.7 kN; 0.75 mm. (b) 176.7 kN; 3.75 m.m. 
2.105 13.97 kN; 3.39 m.m. 
2.106 10.12kN; 2.46mm. 
2.109 (a) 495.9 kN. (b) 572.4 MPa. (c) 0.23 mm. 
2.110 (a) 0.8 mm. (b) 0.7 mm. (c) 0.104 mm. 
2.111 (a) 3!0 MPa. (b) 6.20 m.m t. (c) 0. 
2.112 (a) 310 MPa. (b) 6.20 mm l (c) 2.20 m.m t. 
2.113 (a) -250 MPa. (b) !08 MPa. 
2.114 (a) -250 MPa. (b) 0.0930 m.m +--. 
2.115 (a) 30.8 MPa. (b) 0.0462 m.m +--. 
2.116 (a) AD, 250 MPa; BE, 124.3 MPa. (b) 0.622 m.m t. 
2.117 (a) AD, 233 MPa; BE, 250 MPa. 

(b) 1.322 mm t. 
2.119 (a) 493"C. (b) 9WC. 
2.120 (a) 0.!042 m.m. (b) -65.2 MPa. 
2.121 (a) 0.00788 mm. (b) -6.06 MPa. 
2.124 4.67"C. 
2.125 15.79 kN. 
2.129 (a) -49 MPa. (b) -3.15 X w-6 m2. 

(c) 110.25 X I0-9 m3. 

2.130 (a) 64" (b) 0.644 mm. 
2.131 PA = Ps = 397 N; Pc = 105.3 N. 
2.133 (a) -57.7"C. (b) 0.0329 m.m -+ at A; 

0.0263 mm -7 at B. 
2.135 (a) Mylp.g. (b) EAIL. 
2.C1 Pmb. 2.19.- (a) 0.3II2 m.m (b) 0.4534 mm. 
2.C3 Prob. 2.52: (a) crAB= -76.844 MPa; 

usc= -23.719 MPa; (b) 0.0529 mm. 
Prob. 2.57.- (a) 172.835 kN; (b) 0.236 mm. 

2.C5 r = 6 mm; 16.023 kN. 
r = 18 mm; 11.721 k.N. 

2.C6 (a) -0.40083. (b) -0.10100. (c) -0.00405. 

CHAPTER 3 

3.1 (a) 70.52 MPa. (b) 55.8 m.m. 
3.3 !33.8 kN · m. 
3.4 89.7 MPa. 
3.5 (a) ll7.9 MPa. (b) 69.8 mm. 
3,6 (a) 125.7 N · m. (b) 18!.4 N · m. 
3.7 2.08 kN · m. 
3.9 58.7 MPa. 
3.10 (a) AB. (b) 6!.6 MPa. 
3.11 (a) 75.5 MPa. (b) 63.7 MPa. 
3.13 (a) 81.2 MPa. (b) 64.5 MPa. (c) 23.0 MPa. 
3.15 dAB= 42.0 mm; dsc = 33.3 mm. 
3.17 (a) 1.473 kN · m. (b) 43.7 m.m. 
3.19 754 N · m. 
3.20 (a) 35.8 mm. (b) 42.4 m.m. 
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. 21 (a) 45.1 mm. (6) 65.0 mm. 

. 22 1.129 kN • m. 

. 23 (a) 53.05 MPa. (6) 50.3 MPa. 

. 25 (a) 30.1 mm. (6) 21.7 mm. 

. 26 118.5 N · m . 

. 27 (a} 37 mffi. (b) 31.2 rnm. 

. 29 (a) Tm (cj + cj)12pg c,. (6) (T!w0)1[1 + (c,Jc2)']. 

. 30 1.000; 1.025; 1.120; 1.200; 1.000. 

. 31 (a) 199.5 N • m. (b) 10.40'. 

. 32 (a) 3.7'. (6) 4.62'. 

. 33 12.5 mm. 

. 36 (a) 1.384'. (b) 3.22'. 

. 37 6.02'. 
38 5.85'. 
39 12.22'. 
40' 13.23'. 
42 22.4'. 
43 3.82° 
45 117.6 mm. 
46 36.1 mm. 
47 52.8 mm. 
48 3.35°, 
49 GdMUa. 
52 (a) 65.26 MPa. (6) 30.65 MPa. (c) 4.16'. 
53 3.83°. 
54 (a) 17.45 MPa. (6) 27.6 MPa. (c) 2.05', 
55 (a) 688 N · m. (6) 2.35'. 
56 (a) TA = 1105 N • m; Tc = 295 N • m. 

(6) 45.0 MPa. (c) 27.4 MPa. 
57 (a) TA = 1090 N · m; Tc = 310 N • m. 

(b) 47.4 MPa. (c) 28.8 MPa. 
62 (a) '~'rnM = T/Zmd at P = r1. 
63 (a) 82.5 MPa. (6) 0.273'. 
64 (a) 23 mm. (6) 18.25 mm. 
65 (a) 20.1 mm. (6) 15.94 mm. 
66 (a) 46.9 MPa. (6) 23.5 MPa. 
67 (a) 65 MPa. (6) 32.5 MPa. 
69 (a) 11.84 MW. (6) 8.91'. 
71 2.64mm. 
72 (a) 47.5 MPa. (b) 30.4 mm. 
73 t = Srnm. 
76 (a) 29.66 MPa. (6) 49.44 MPa. 
77 (a) 20.3 mm. (b) 24 mm. 
78 d ~ 74.0 mm. 

80 15.6 Hz. 
81 34.3 Hz. 
83 47.2 Hz. 
84 669 kW. 
85 584 kW. 
86 5.1 rom. 
87 42.6 Hz. 
90 (a) 203 N • m. (6) 165.8 N • m. 
91 (a) 122.2 MPa; 25 mm; (b) 140 MPa; 20 nun. 
92 (a) 111.4 MP,; 19 mm. (6) 145 MPa; 15.50 mm. 
93 314 MPa. 
94 211.7 Nm. 
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3.97 (a) 8.17 mm. (6) 42.1' . 
3.98 140 MPa; 22° . 
3.99 (a) 1.126 ¢". (6) 1.587 ¢,.(c) 2.15 ¢, . 
3.100 125 MPa; 27.9' . 
3.101 (a) 5.96 kN · m; 17.94'. (b) 7.31 kN · m; 26.9' . 
3.102 (a) 43.0'. (6) 7.61 kN • m . 
3.106 (a) 574.7 Nm. (6) 6.88' . 
3.107 (a) 95.5 Nm. (6) 88 MPa . 
3.108 (a) approx. 1.876 kN • m. (b) 17.19"'. 
3.109 (a) 1.900 kN · m. (6) 17.19' . 
3.110 81.2 MPa . 
3.111 59MPa . 
3.112 31.1' . 
3.113 (a) 34.9 MPa. (6) 1.73'. 
3.114 (a) 33.5 MPa at p ~ 16 mm. (6) 1.032'. 
3.116 (b) 0.2209 Tyc3. 

3.117 T1 = 3.68 kN ~ m; Tv= 46.13 kN • m. 
3.119 (a) 30.77 MPa; 0.535'. (6) 37.9 MPa; 0.684'. 
3.120 (a) 1.3 kN · m; 0.87'. (6) 1.055 kN · m; 0.902'. 
3.121 (a) 74.0 MPa; 9.56'. (6) 61.5 MPa; 6.95'. 
3.122 (a) 189.2 N ·m; 9.05'. (6) 228 N • m; 7.91'. 
3.125 (a) 36.36 mm. (6) 37.06 mm. (c) 33.64 mm. 
3.126 (a) 0.303 mm. (6) 0.224 m. (c) 0.34 m. 

3.127 TA!T8 = 1.356. 
3.128 <Pal¢,~ 1.198. 
3.129 b = 2.20 mm. 
3.131 (a) 59.9 MPa. (6) 8.45'. 
3.132 (a) 31.44 MPa. (6) 20.57 MPa. (c) 5.1'. 
3.134 (a) 30.78 MPa. (6) 15.4 MPa. 
3.135 (a) 52.5 MPa. (6) 31.5 MPa. 
3.136 46.3 MPa; 30.9 MPa. 
3.137 (a) 8.47 MPa. (b) 8.47 MPa. 
3.138 8.45 N · m. 
3.140 15.8 mm. 
3.141 (a) T0(1 -eft). (6) 10%; 50%; 90%. 
3.142 (a) 12.76 MPa. (b) 5.40 kN · m. 
3.145 (b) 0.25%; 1%; 4%. 
3.147 12.1 N · m. 
3.148 (a) 283 N • m. (6) 12.91 mm. 
3.149 (a) 15.45 Hz. (6) 21:95 Hz. 
3.150 (a) 50.3 mm. (b) 63.4 mm. 
3.152 12.24 MPa. 
3.153 87.6 MPa. 
3.155 0.944. 
3.C1 Prob. 3.157: 56.9 MPa; 3.41°. 
3.C2 Prob. 3.44: 2.151'). 
3.C5 (a) -3.282%. (6) -0.853%. (c) -0.138%. 

(tfJ -0.0055%. 
3.C6 (a) -1.883%. (b) -0.484%. (c) -0.078%. 

. (tlJ -0.0031%. 

CHAPTER 4 

4.1 (a) -61.6 MPa. (6) 91.7 MPa. 
4.2 (a) -130.4 MPa. (6) -97.8 MPa. 
4.3 80.2 kN • m. 



4.4 
4,5 
4,6 
4.9 
4.10 
4.13 
4.14 
4.15 
4.16 
4.17 
4.20 
4.21 
4.22 
4.23 
4.26 
4.27 
4.28 
4.29 
4.30 
4.31 
4.32 
4.33 
4.34. 
4.37 
4.38 
4.39 
4.40 
4.41 
4.42 
4.43 
4.44 
4.47 
4.48 
4.49 
4.50 
4.54 
4.55 

4.56 

4.57 
4.58 
4.59 
4.61 
4.62 
4.65 
4.66 
4.67 
4.69 
4.70 
4.71 
4.73 
4,74 
4,75 
4.76 
4.77 

24.8 kN · m. 
5.28 kN · m. 
4.51 kN • m. 
73.2 MPa; -102.4 MPa. 
(a) 79.8 MPa. (b) -136.5 MPa. (c) 14.87 MPa .. 
9.51 kN. 
12.2 kN. 
3.79 kN · m. 
2.12 kN. 
724.6 N · m. 
210.9 N · m. 
(a:) 24.75 N · m. (b) 4 m. 
(a) 965 MPa. (b) 20.5 N • m. 
(a) 1250 MPa. (b) 0.00488 N • m. 
(a) 53.6 MPa; 379 m. (b) 158.9 MPa; 127.5 m. 
0.950. 
0.949. 
(a) 24m. (b) 82.75 m. (c) 0.0138°. 
(a) 95.9 m. (b) 0.0478°, 
(a) 139.6 m. (b) 481 m. 
(a) (<T,)m~(/- c2)12pc. 
1.092 kN · m. 
887N·m. 
35.2 kN · m. 
20.74 kN · m. 
(a) 45.! MPa. (b) -8!.! MPa. 
(a) 51.9 MPa. (b) -121.0 MPa. 
(a) 20.1 MPa. (b) -135.3 MPa. 
(a) -18.88 MPa. (b) 186.69 MPa. 
15.53 m. 
12.15 m. 
(a) 330 MPa. (b) -26.0 MPa. 
(a) 292 MPa. (b) -2!.3 MPa. 
17.1 kN · m. 
(a) 205.5 MPa. (b) -8.2 MPa 
(a) 1674 mm2. (b) 90.8 kN " m. 
(a) aluminum 54.9 MPa; brass 49.4 MPa; 
steel 3L4 MPa. (b) 383m. 
(a) steel 71.3 MPa; aluminum 15 MPa; brass 7.5 MPa. 
(b) 84.1 m. 
(a) 52.3 MPa. (b) 132.1 MPa. 
(a) 40.8 MPa. (b) 145.2 MPa. 
(a) 6.15 MPa. (b) -8.69 MPa. 
(a) 618.8 N • m. (b) 557.7 N • m. 
(a) 40.2 MPa. (b) 44.4 MPa. 
(a) 1.25 kN • m. (b) 1.53 kN · m. 
(a) 147 MPa. (b) 119 MPa. 
(a) 28.16 N · m. (b) 38.72 N · m. 
(a) 38.4 N · m. (b) 52.8 N · m. 
(a) 57.6 N · m. (b) 83.2 N · m. 
263.9 N · m. 
(a) 19.44 kN, • m. (b) 28.! kN · m. 
(a) 19.08 kN · m. (b) 27.0 kN · m. 
(a) 34.4 kN • m. (b) 45.3 kN • m. 
(a) 35.9 kN • m. (b) 48.5 kN • m. 
(a) 29.2 kN'· m. (b) 1.500. 

4.79 (a) 46.9 kN • m. (b) !.363. 
4.80 (a) 51.6 kN (b) !.437. 
4.82 19.01 kN · m. 
4.83 2!.9 kN • m. 
4.84 11.7 kN · m. 
4.86 48.6 kN · m. 
4.87 120 MPa. 
4.88 !06.4 MPa. 
4,89 (a) -95.5 MPa. (b) 109 MPa. 
4.90 (a) -84.65 MPa. (b) 730.7 MPa. 
4.91 (a) !06.7 MPa. (b) ±31.15 mm; 0. (c) 24.1 m. 
4.95 (a) 292 MPa. (b) 7.01 mm. 
4,97 (a) 300 MPa. (b) !.!75 kN · m. 
4.99 (a) -2Pfrrr2. (b) -5P!'TT'r2. 

4,100 (a) 30 MPa. (b) 32 MPa. 
4,101 (a) 30 MPa. (b) lO MPa. 
4.103 (a) 112.8 MPa. (b) -96.0 MPa. 
4,105 (a) -5MPa.(b) -13.3MPa.(c) -10MPa. 
4,106 14.40 kN. 
4.107 16.04 mm. 
4.108 (a) -79.6 MPa. (b) -139.3 MPa. (c) -152.3 MPa. 
4.109 2.62 kN. 
4.113 96.0 kN. 
4.114 (a) 52.7 MPa. (b) -67.2 MPa. 

(c) 11.20 mm above D. 
4.116 (a) 61.6 MPa. (b) 19.6 MPa. 
4.117 (a} 40.3 kN. (b) 56.3 rnm from left face. 
4.118 (a) 69.6 kN. (b) 41.9 mm from left face. 
4.119 817.5 kN. 
4.120 9 kN. 
4.121 (a) 30.0 mm. (b) 94.5 kN. 
4.123 p = 195.4 kN; Q = 256.2 kN. 
4,124 (a) 75.0 mm. (b) 40.0 MPa. 
4.126 (a) 71 MPa. (b) -19 MPa. (c) -71 MPa. 
4.127 (a) -2.80 MPa. (b) 0.452 MPa. (c) 2.80 MPa. 
4.129 (a) 2.05 MPa. (b) -0.684 MPa. (c) 2.73 MPa. 
4.131 (a) 57.8 MPa. (b) -56.8 MPa. (c) 25.9 MPa. 
4.133 (a) 18.2°. (b) 91.6 MPa. 
4.134 (a) 19.W. (b) 77.7 MPa. 
4.135 (a) !0.03°. (b) 54.2 MPa. 
4.136 (a) 27.5°. (b) 57.8 MPa. 
4.137 (a) 36.9°. (b) 26.6 MPa. 
4,139 !13.0 MPa. 
4.140 (a) 633 kPa. (b) -233 kPa. (c) 146.2 mm from A. 
4.142 (a) 266.7 kPa; -!.87 MPa. 

(b) AB: 12.5 rrun from A; BD: 18.75 mm from D. 
4.143 (a) -400kPa; -L73MPa. 

(b) Does not intersect AB; 3 mrn from B. 
4.144 17.11 mm. 
4.146 733 N · m. 
4.147 !.323 kN · m. 
4.148 3.42 kN · m. 
4,150 4.7°. 
4.151 900 N · m. 
4.156 (a) -77.3 MPa. (b) -55.7 MPa. 
4.158 -39.2 MPa; 29.9 MPa. 
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159 -4.07 MPa. (b) -38.2 MPa. 
160 -148.6 MPa. 
162 l.OkN. 
164 (a) -82.4 MPa. (b) 36.6 MPa. 
165 (a) -64.1 MPa. (b) 65.2 MPa. 
166 (a) -106.1 MPa. (b) 38.9MPa. 
167 6.5 mm. 
169 (a) 43.1 MPa. (b) -21.7 MPa. 
170 44 mm. 
171 (a) -45.2 MPa. (b) 17.40 MPa. 
172 (a) -43.3 MPa. (b) 14.43 MPa. 
173 (a) -42.2 MPa. (b) 25.8 MPa. 
175 84.7 MPa. 
176 (a) 63.9 MPa. (b) -52.6 MPa. 
17S (a) -62.1 MPa. (b) 15.3 MPa. 
184 (a) 3.69 MPa. (b) -12.24 MPa. 

(c) 34.7 mm from A. 
186 (a) -8.33 MPa; -8.33 MPa. 

(b) -15.97 MPa; 4.86 MPa. 
189 (a) -56.0 MPa. (b) 66.4 MPa. 
190 (a) 56.7 kN · m. (b) 20.0 m. 
191 28.9 kN · m. 
192 21.2 kN · m. 
195 5.22 MPa; -12.49 MPa. 
C1 a = 4 mm: tr,. = 50.6 MPa, as= 107.9 MPa; 

a= 14 mm: O'a = 89.7 MPa, CTs = 71.8 MPa. 
(a) 111.6 MPa. (b) 6.61 mm. 

C3 /3 = 40"; O'A = 51.34 MPa; u8 = -28.57 MPa, 
IYD = 45.65 MPa; Ue = 34.27 MPa; 

/3 = 130"; O'A = 19.96 MPa; u8 = 47.09 MPa, 
aD= -26.75 MPa; ae = -40.31 MPa. 

:;4 rJh = 0.529 for 50% increase in O'max· 
~5 hob. 4.7c -94.03 MPa, 56.46 MPa; 

Prob. 4.8: -79.82 MPa; 118.24 MPa. 
::6 Yr = 20 mm: 82.94 kN • m; 13.79 m 

Yr = 5 mm: 103 kN · m; 3.45 m. 
';7 a = 5 mm: -50.127 MPa, a= 20 mm: -45.575 MPa, 

For a = 15.625 mm, u = -44.9 MPa. 

!APTER 5 

'2 

(b) 0 < x :5 a: V = Pb!L; M = Pbx/L; 
a < x .s L: V = -PaiL; M = Pa(L - x)IL. 

(b) V = w(U2 ~ x); M = Wx(L - x)/2. 
(b) V = -w;?-!2L; M = -w;?-!6L. 
(b) V = w(L - x); M = -w(L - x)'/2. 
(b) 0 :::5 x :5 a: V = w(L- 2a}l2; 

M = w(L - 2a)x; a ::5 x ::5 L - a: 
V = w(L/2 - x); M = w[(L - 2a)x - (x - a)2]/2; 
L - a :S x :S L: V = w(L - 2a)/2; 
M = w(L - 2a)(L - x)/2. 

(b) 0 ,;; x " ac V = w(a - x); M = w(ax - x?/2); 
a:$ x :S L-a: V = 0; M = wa212; 
L - a :S x :S L: V = w(L -:- x - a); 
M = w[a(L- x)- (L- x)'!2]. 

5.7 (a) 68.0 kN. (b) 60.0 kN · m. 
5.8 (a) 42.0 kN. (b) 27.0 kN · m. 
5.9 (a) 120 kN. (b) 108 kN · m. 
5.10 (a) 96 kN. (b) 180 kN · m. 
5.11 (a) 85.0 N. (b) 21.25 N · m. 
5.13 (a) 18.00 kN. (b) 12.15 kN · m. 
5.15 6.91 MPa. 
5.17 65.5 MPa. 
5.18 139.0 MPa. 
5.20 51.6 MPa. 
5.21 86.4 MPa. 
5.22 136.0 MPa. 
5.25 63.3 MPa. 
5.26 14.29 MPa. 
5.27 (a) 12.00 kN. (b) 10.71 MPa. 
5.28 (a) 1.33 m. (b) 56.3 MPa. 
5.29 (a) 866 mm. (b) 5.74 MPa. 
5.30 17.19 MPa. 
5.32 (a) 33.3 mm. (b) 6.66 mm. 
5.45 (a) 140.0 N. (b) 33.6 N · m. 
5.46 6.91 MPa. 
5.47 10.89 MPa. 
5.48 65.5 MPa. 
5.50 (a) V = (woLf'ff)cos {'ffx!L); 

M = (wof,2/7T2)sin(7Tx/L). 
(b) w0I}I'TI"2. 

5.52 (a) V ~ -w,x + w;?-!2L + woLf3; 
M = -w;?-12 + w;?-16L + wof.x/3. 

(b) 0.06415 w,L'. 
5.54 156.6 MPa. 
5.55 73.5 MPa. 
5.56 64.9 MPa. 
5.59 150 MPa. 
5.60 136.4 MPa. 
5.61 38.7 MPa. 
5.62 (b) 62.5 MPa. 
5.63 (b) 106.2 MPa. 
5.65 h = 173.2 mm. 
5.68 146 mm. 
5.69 b = 48.0 mm. 
5.70 h = 203 mm. 
5.71 W610 X 101 
5.72 W610 X 101 
5.73 W530 X 66. 
5.74 W250 X 28.4. 
5.75 S310 X 47.3. 
5.76 S510 X 98.3. 
5.79 C230 X 19.9. 
5.80 C180 X 14.6. 
5.81 6.4 mm. 
5.82 9 mm. 
5.83 W530 X 92 
5.84 W610 X 101. 
5.87 7.48 kN. 
5.88 7.32 kN. 
5.89 W410 X 38.8 



5.90 (a) 1.485 kN/m. (b) 1.935 m. 
5.91 (a) 4.01 kN. (b) 3.27 m. 
5.94 W690 X 125 
5.95 33.8%. 
5,96 383 mm. 
5.97 336 mm. 
5.98 (a) V ~ 2P/3 - P(x - a)0; 

M ~ -2Px/3 - P(x- a). (b) Pa/3. 
5.99 (a) V = -woX + w0(x - 2a) + 3w0a/2; 

M = -w(}212 + wo{x - 2a)212 + 3w0ax/2. 
(b) w0a2!2. 

5.100 (a) V ~ -w0(x- a)- 3woaf4 + 15w,a(x- 2a)0/4; 
M = -w0{x - a)212 - 3w0ax/4 + 
15w,a(x - 2a)!4. 

(b) -w0a212. 
5.101 (a) V ~ -w,x + w0(x- a); 

M ~ -w,?-12 + w0(x - a)212. 
(b) -3w0a212. 

5.104 (a) V ~ -P(x- a)0: M ~ -P(;c- a)- Pa(x- a)0• 

(b) -Pa. 
5.105 (a) V;, -P- P(x- 2U3)0; 

M ~ - Px + PU3 - P(x - 2U3)' -
PL(x - 2U3)013. 

(b) -4PU3. 
5.106 (a) V ~ 56.5- 45x + 45(;c- 0.9)-

32(x- 2.1)' - 45(x- 3.3) kN: 
M ~ 56.5x - 22.5x' + 22.5(;c - 0.9)2 -

32(x- 2.1)- 22.5(x- 3.3)' kN · rn; 

(b) 51.825 kN · m. 

5.107 (a) V = -1.5x + 3(x - 0.8)0 + 3(x - 3.2)0 kN; 
M ~ -0.75x' + 3(x - 0.8) + 3(x - 3.2) kN · m. 

(b) 600 N • m. 
5.108 (a) V ~ 160- 80(x- 0.6)- 80(x- 1.2)' 

- 8o(x - 1.8)' kN; 
M ~ 160x - 80(x - 0.6) - 8o(x - 1.2) 

- 8o(x - 1.8) kN • m. 

(b) 144 kN • m. 
5.109 (a) V ~ 40- 48(x- 1.5)0 - 6o(x- 3.0)0 + 

6o(x - 3.6)0 kN; 
M ~ 40x - 48(x - 1.5) - 6o(x - 3.0) + 
60(x - 3.6) kN · m. 

(b) 60.0 kN · m. 
5.113 (a) 184.0 kN • m atx = 1.950 m. (b) 137.3 MPa. 
5.114 (a) 84 kN ·mat E. 

(b) W360 X 39 orW410 X 38.8 orW3lO X 38.7. 
5.115 (a) 158 kN · m. at x ~ 1.85 m. (b) W410 X 60. 
5.116 (a) 0.872kN·m.atx=2.09m. 

(b) h ~ 130 mm. 
5.118 \VImo~ = 35.6 kN at X= L2 m; 

IMimrv< = 24.96 kN • mat x = 3.6 m. 
5.119 VA= 89.0 kN;'V0 = -85.0 leN; 

IM!m>~X = 178.0 kN • mat point B. 
5.121 IVImM ~ 43 kN; IMim"' = 71.19 kN · m. 
5.122 V, ~ 10.20 kN; Va ~ -13.80 kN; 

IMimax = 16.1'6 kN • mat x = 2.84 m; 
CT mox = 83.3 MPa. 

5.123 lVI.,. ~ 40.0 kN; IMI.,. = 30.0 kN · m; 
CT m"" = 40.0 MPa. 

5.124 !VIm"'= 7.44 kN; IMirn"' ~ 5.15 kN · m; 
(1" mox = 6.66 MPa. 

5.126 (a) h = h0(x!L)'"; (b) 82.5 kN. 

5.127 caJ h = holz (1-l;JJ'". CbJ 733.3 kN/m. 

5.128 (a) h = h0(x/L)'": (b) 167.7 mm. 
5.131 (a) h = h0(2x!Lf2 over 0:::::; x:::::; V2. 

(b) 60.0 kN. 
5.132 ·1.800 m. 
5.133 1.900 m. 
5.134l1 = L92m;l2 = L28m. 
5.136 d = d0 (4x(L- x)IL'j"'· 

5.139 (a) b = b0 (1-z;J'· (b) 27.5 kN/m. 

5.140 (a) 155.2 MPa. (b) 142.4 MPa. 
5.141 114.0 kN. 
5.142 (a) 179.2 MPa. (b) 204.1 MPa. 
5.144 (a) 152.6 MPa. (b) 133.6 MPa. 
5.145 (a) 4.49 m. (b) 211 mm. 
5.147 (a) 2.68 m. (b) 365.3 mm. 
5.148 (a) 0.240 m from each end. (b) 149.3 kN/m. 
5.150 (a) 375 mm. (b) 52.8 kN/m. 
5.151 (a) 750 mm. (b) 52.8 kN. 
5.152 (a) 600 N. (b) 180.0 N · m. 
5.153 150 kN/m. 
5.156 !VIm"~ 40.6 kN; IMI'"" 3.087 kN · m; 86.9 MPa. 
5.158 !Vlmax = 150 kN; IMim~ = 40 kN • m; 50.9 MPa. 
5.160 a= 169.4 mm. 
5.161 (a) 3.45 kN. (b) 1125 N · m. 
5.163 (a) 10.67 kN/m. (b) 9.52 MPa. 
5.C1 Prob. 5.21: 86.4 MPa. 

Frob. 5.25: 63.29 MPa. 
5.C3 Prob. 5.143: a= 3.64 m; b = 426.9 mm. 
5.C4 For x = 4.5 m, M1 = 135.6 kN · m; 

M2 = 203.4 kN · m; Me = 203.4 kN · m. 
5.C5 Prob. 5.72: RA = 206.5 k<"'T; M8 = 411.75 10.1\.l' • m. 
5.C6 p,ob. 5./12, R, ~ 29.5 kN: IMI'""' = 28.28 kN · m 

at 1.9375 m from A. 

CHAPTER 6 

6.1 351 N. 
6.2 1.3 kN. 
6.3 (a) 1.387 kN. (b) 380 kPa. 
6.4 (a) 155.8 N. (b) 329 kPa. 
6.5 193.5 kN. 
6.6 217 kN. 
6.9 (a) 89 MPa. (b) 80.1 MPa. 
6.12 (a) 21.05 MPa. (b) 15.85 MPa. 
6.13 210kN. 
6.14 (a) 206 kN. (b) 195.3 kN. 
6.15 360.8 mm. 
6.17 645 kN. 
6.19 (b) h ~ 225 mm; b = 61.7 mm. 
6.20 (b) h ~ 320 mm; b = 97.7 mm. 
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5.21 (a) 31.0 MPa. (b) 23.2 MPa. 6.98 (a) 30.6 mm. (b) -r A = 0; 
3.22 (a) 8.75 MPa. (b) 15 MPa. -r8 = 34 MPa and 68.1 MPa; -rc = 90.8 MPa. 
).23 32.7 MPa. 6.100 (a) 50.6 mm. (b) 2.61 MPa (maximum). 
).24 20 MPa. '6.C1 (a) h ~ 17).2 mm. (b) h ~ 379 mm. 
).26 (a) neutral axis. (b) 2.00. 6.C2 (a) L = 952 mm; b = 31.75 nun. 
).28 (a) mid-height. (b) 1.500. (b) L = 1786 mm; b = 29.77 mm. 
).29 728N. (c) L = 1518 mm; b = 35.46 nun. 
1.30 40.1 mm. 6.C3 Prab. 6.12: (a) 21.05 MPa (b) 15.85 MPa. 
1.32 (a) 0.403 MPa. (b) 0.53 MPa. Pmb. 6.21: (a) 23.22 MPa (b) 30.96 MPa. 
i.34 (a) 12.27 MPo. (b) 58.9 MPa. 6.C4 (a) -r m!1,X = 14.06 MPa; -r8 = 12.5 MPa. (b) 1.293 MPa. 
l.35 (a) 101.6 MPa. (b) 79.9 MPa. 6.C5 Prob. 6.66: (a) 66.67 mm. (b) -r8 = 6.66 MPa; 
i.36 (a) 41.4 MPa. (b) 41.4 MPa. 'To= 24.44 MPa; 'Tmax = 3Ul MPa. 
i.37 a: 26.5 MPa; b: 19.4 MPa; c: 43.8 MPa; 

d: 7.1 MPa; e: 0. 
),38 a: 0; b: 8.8 MPa; c: 22.9 MPa; d: 47.5 MPa; 

CHAPTER 7 
e: 54.6 MPa. 

).39 (a) 4.55 MPa. (b) 3.93 MPa. 7.1 14.19 MPa; 15.19 MPa. 
i.40 (a) 41.3 mm. (b) 3.98 MPa. 7.2 76.5 MPa·, 3.75 MPa. 
i.43 113.4 MPa. 7.3 -546 kPa; 59.2 MPa. 
i.44 9mm. 7.4 32.9 MPa; 71.0 MPa. 
i.45 255 kN. 7.7 (a) -37.0°; 53.0°. (b) -13.60 MPa; -86.4 MPa. 
i.46 83.3 MPa. 7.8 (a) -31.0°; 59.0°. (b) 52.0 MPa; -84.0 MPa. 
:.48 (a) 50.9 MPa. (b) 62.4 MPa. 7.9 (a) -30.96°; 59.W. (b) 59.5 MPa; 10.5 MPa. 
•.49 (a) 23.2 MPa. (b) 35.2 MPa. 7.10 (a) -26.57°; 63.43°. (b) 70 MPa; 84 MPa. 
•.51 19.4 mm. 7.11 (a) 8.0°; 98.0°. (b) 36.4 MPa. (c) -50.0 MPa. 
-.53 (a) 2.25. (b) 2.12. 7.13 (a) -56.2 MPa; 86.2 MPa; -38.2 MPa. 
. 54 (a) 2.08. (b) 2.10 . (b) -45.2 MPa; 75.2 MPa; 53.8 MPa. 
. 55 proof. 7.15 (a) 63.1 MPa; 26.6 MPa; -9l.l MPa . 
. 57 (a) 16.1 MPa. (b) 6.4 MPa. (b) 37.4 MPa; -63.4 MPa; -65.4 MPa . 
. 59 (a) 5.6 MPa. (b) 9.2 MPa. 7.16 (a) -16.8 MPa; 1.05 MPa; 72.8 MPa . 
. 61 0.345 a . (b) 13.7 MPa; 42.5 MPa; 42.4 MPa. 
. 62 0.714 a . 7.17 (a) -0.300 MPa. (b) -2.92 MPa. 
. 63 1.250 a . 7.18 (a) 3.64 MPa. (b) -2.1 MPa. 
. 64 3(b2 - a2)!(6a + 6b +h) . 7.19 (a) 19.3°. (b) 112.3 MPa. 
. 67 (a) 10.22 nun. (b) 8l.l MPa (maximum) . 7.22 (a) 399 kPa. (b) 186.0 kPa. 
. 68 (a) 9.12 mm. (b) 88.6 MPa (maximum) . 7.23 (a) -28.6"; 61.4"; 18.1 MPa; -153.9 MPA. 
. 69 27.9 mm . (b) 86 MPa. 
. 70 20.2mm . 7.24 (a) -l3S; 76-Y; !.2 MPa; -21:2 MPa. 
. 71 6.14 mm . (b) 11.2 MPa. 
. 72 12.25 mm . 7.25 35.4 MPa; -35.4 MPa; 35.4 MPa. 
. 75 59.3 mm . 7.26 12.18 MPa; -48.7 MPa; 30.5 MPa. 
. 76 57.1 mm . 7.28 205 MPa. 
. 77 40.0 mm. 7.30 (a) -2.89 MPa. (b) 12.77 MPa; 1.226 MPa . 
. 78 0 or40.0 rom. 7.53 (a) -8.66 MPa. (b) 17.00 MPa; -3.00 MPa . 
. 81 (a) 144.6 N • m. (b) 65.9 MPa . 7.54 24.6"; ll4.6"; 145.8 MPa; 54.2 MPa. 
. 82 (a) 144.6 N · m. (b) 106.6 MPa, 7.55 33.69°; 123.69°; 168 MPa; -14 MPa . 
. 83 (a) 2 kN; 38.2 N · m. (b) 17.3 MPa . 7.58 -5.15" .:S 8 .:S 132.02". 
. 84 (a) 2 kN; 382 N · m. (b) 42.3 MPa . 7.59 16.5" :s:: 8 .:S 110.1" and 196.5" .:S (} s 290.1". 
. 87 P(2a - y)(0.750y- 0.500a)la3r . 7.60 -45" s e:::;;; 8.1"; 45" s e::;; 98.1"; 
. 88 P(a - x)(3.00x + l.000a)!a3r . 135" s e .:s 188.1"; 225" .:s e::; 278.1". 
. 89 738 N . 7.62 -141.4 MPa to 141.4 MPa. 
. 90 (a) 373.8 kN. (b) 267.2 kN . 7.63 (a) 33.W; 123.69°. (b) 126 MPa. (c) 45.5 MPa. 
. 92 (a) 10.8 MPa. (b) 17.3 MPa . 7.66 (a) 100.0 MPa. (b) 110.0 MPa. 
. 94 (a) 239 N. (b) 549 N . 7.67 (a) 94.3 MPa. (b) 105.3 MPa. 
. 95 (a) 239 kPa. (b) 359 kPa . 7.68 (a) 55.0 MPa. (b) 50.0 MPa. 
. 96 (a) 146 kN/m. (b) 19.8 MPa . 7.69 (a) 50.0 MPa. (b) 62.5 MPa. 
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7.71 (a) 136.5 MPa. (b) 119 MPa. (c) 168 MPa. 
7.72 (a) 45.5 MPa. (b) 52.5 MPa. (c) 45.5 MPa. 
7.74 56.9 MPa; -130.0 MPa. 
7.75 . 7 MPa; ~4.6 MPa. 
7.77 (a) :±:42 MPa; :!:.78.7 MPa. 
7.79 -60.0 MPa to 60.0 MPa. 
7.80 (a) 45.7 MPa. (b) 92.9 MPa. 
7.81 (a) 1.286. (b) 1.018. (c) yielding. 
7.82 (a) 1.119. (b) yielding. (c) yielding. 
7.83 (a) 1.228. (b) 1.098. (c) yielding. 
7.85 l.l kN · m. 
7.86 1.27 kN · m. 
7.87 717 N · m. 
7.89 rupture. 
7.90 no rupture. 
7.91 no rupture. 
7.93 49.1 MPa. 
7.95 196.9 N · m. 
7.96 50.0 MPa. 
7.97 (a) 56 MPa. (b) 46.7 MPa. (c) 62.2 MPa. 
7.98 83.1 MPa; 41.8 MPa. 
7.100 1.23 MPa. 
7.101 (a) 86.1 MPa. (b) 1.38 mm. 
7.102 (a) 1.290 MPa. (b) 0.0852 mm. 
7.104 33.4 MPa; 16.8 MPa. 
7.105 1.676 MPa. 
7.107 103. 8 MPa; 52.5 MPa. 
7.109 7.65 mm. 
7.110 3.29 MPa. 
7.111 3.80 MPa. 
7.112 (a) 26.7 MPa. (b) 7.7 MPa. 
7.115 (a) 41.2 MPa. (b) 14.4 MPa. 
7.116 56.8°. 
7.117 (a) 419 kPa. (b) 558 kPa. 
7~ 118 45.1 MPa; 9.40 MPa. 
7.120 (a) 24.1 MPa. (b) 12.3 MPa. 
7.121 (a) 11 MPa. (b) 21.5 MPa. 
7.123 17.06 kN · m. 
7.124 (a) 35.1 MPa. (b) 1.67 MPo. 
7.125 (a) 14 MPa. (b) 1.33 MPa. 
7.126 115.0 "; 285 "; -5.72 I'· 
7.127 36.7 "; 283 "; 227 I'· 
7.129 357 "; -157.1 "; -613 I'· 
7.130 115.0 "; 285 "; -5.7 I'· 
7.131 36.7 "; 283 "; 227 I'· 
7.133 357 "; -157.1 "; -613 I'· 
7.134 (a) -21.6°; 68.4°; 279 1': 160 I'· 

(b) 877 I'· (c) 877 I'· 
7.136 (a) -26.6°; 64.4°; 750 I'; -150 I'; -300 I'· 

(b) 900 I'; (c) 1050 I'· 
7.137 (a) -30.1°; 59.9°; -298 I'; -702 I'; 500 I'· 

(b) 403 I'· (c) 1202 I'· 
7.140 (a) 31.0°; 121.0°; 512.5 p.; 87.5 J.L; 0. 

(b) 425 I'; (c) 512.5 I'· 
7.141 (a) 7.8°; 97)0

: 243.4 I'; 56.6 I'; 0. 
(b) 186.8 I'· (c) 243.4 I'· 

7.143 253 X 10-6 mm/mm. 

7.144 (a) -300 I'· (b) 435 I'; -315 "' 750 I'· 
7.145 415 X 10-6 mrn!mm. 
7.148 (a) -22.5°; 67.5°; 426 I'; -952 1': -224 I'· 
7.149 (a) -32.1"; 57.9°; -31.73 MPa; -72.8 MPa; 0. 

(b) -32.1°; 57.9°; -31.73 MPa; -72.8 MPa; 0. 
7.150 12.2 kN · m. 
7.152 1.421 MPa. 
7.154 375 kN; 163.5 kN. 
7.156 173.7 MPa; 8.8 MPa; 82.5 MPa. 
7.158 (a) -0.250 MPa. (b) -2.43 MPa. 
7.159 14.3 m. 
7.160 49.5 MPa; -1.44 MPa; 25.5 MPa. 
7.162 59.5 MPa; 0; 29.8 MPa. 
7.164 (a) 47.9 MPa. (b) 102.7 MPa. 
7.166 (a) 97.5 MPa. (b) 85.0 MPa. (c) 120.0 MPa. 
7.167 (a) 30°; 120°; 560 X 10-6 mm/mm; 

-140 X 10-6 mm/mm. 
7.C1 Prob. 7.15: (a) 63.1 MPa; -91.1 MPa; 26.6 MPa. 

(b) 37.4 MPa; -65.4 MPa; -63.4 MPa. 
Prob. 7.16: (a) -16.8 MPa; 72.8 MPa; 1.05 MPa. 
(b) 13.7 MPa; 42.4 MPa; 42.5 MPa. 

7.C4 Prob. 7.91: No (0'" = 28.4 MPa; O'v = -84.4 MPa). 
Prob. 7.92: Yes (0'" = 41.2 MPa; O'v = -132.2 MPa). 
Prob. 7.94: Yes (0', = 66.1 MPa; O'v = -10.1 MPa). 

7.C5 Prob. 7.128: E,, = -653 JL, Ev = 303 JL, E~· = -829 JL. 
7.C6 Prob. 7.135: O'p = -33.7"; Eu = 100 }.L, €J> = -420 }.L, 

Ec = 160.0 J.L. 
I' max = 520 micro radians (in plane); Ym~' = 580 micro 
radians. 

7.C7 Prob. 7.138: O'P = 37.9"; e, = -57.5 J.L, 

Eb= -382}.1., Ec= 0. 
Ymax = 325 micro radians (in plane); Yma" = 383 micro 
radians. 
Prob. 7.139: O'P = ll.3"; e, = 310 J.L, Ev =50 p.,, 

Ec = 0. 
Ymax = 260 micro radians (in plane); 'Yma" = 310 micro 
radians. 

CHAPTER 8 

8.1 (a) 195.1 MPa. (b) 193.5 MPa. (c) acceptable. 
8.2 (a) 195.1 MPa. (b) 201.6 MPa. (c) not acceptable. 
8.3 (a) 144.3 MPa. (b) 262.4 MPa. (c) not acceptable. 
8.4 (a} 144.3 MPa. (b) 178 MPa. (c) acceptable. 
8.7 (a) W360 X 32.9. 

(b) 146.1 MPa; 27.6 MPa; 118.4 MPa. 
8.8 (a) W690 X 125. 

(b) 128.2 MPa; 47.3 MPa; 124.0 MPa. 
8.9 (a) 131.3 MPa. (b) 135.5 MPa. 
8.10 (a) 123.3 MPa. (b) 119.0 MPa. 
8.11 (a) 106.8 MPa. (b) 107.3 MPa. 
8.12 (a) 123.6 MPa. (b) 132.5 MPa. 
8.15 37.3mm. 
8.16 39.5 mm. 
8.19 38.8mm. 
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3.20 41.8 nun. CHAPTER 9 
3.22 (a) 64.1 MPa; 62.4 MPa. (b) 69.1 MPa; 65.0 MPa. (a) y ~ - Px'(3L - x)/6 El. 
3.23 (a) 58.8 mm .. (b) 47.8 mm. 

9.1 

3.24 (a) 51.4 mm. (b) 41.8 mm. 
(b) PL'/3 Ed. (c) PL3!2 El "'"<;. 

9.2 (a) y ~ M0x'!2 EI. 
3.27 37.0mrn. (b) Mof}/2 Eft. (c) M,UEI d. 
3.28 43.9mm. 
3.29 41.3 mm. 

9.3 (a) y = -w0 (x
5 - sdx + 4L5)!120 El. 

3.30 44.8 mm. (b) wo£'!30 Ell (c) wo£'124 El d. 

3.31 (a) 116.3 MPa; 0. (b) -4.47 MPa; 13.42 MPa. 
9.4 (a) y = -w (x4

- 4L3x + 3£4)/24 El. 

(c) -125.2 MPa; 0. 
(b) wL'/8 Ed. (c) wL3!6 El d. 

3.32 (a) -129.7 MPa; 0. (b) -8.94 MPa; 6.71 MPa. 
9.6 {a) y = w (3L2x2 

- x4)/24 El. 

(c) 111.8 MPa; 0. 
(b) 11 wL3/384EJt. (c) 5wL3!48Eld. 

3.33 (a) -74.9 MPa. (b) -2.8 MPa. (c) 7.2 MPa. 
9.8 (a) y ~ w (12Lx'- 5x'- 6L3x'- L'x)/120 El. 

8.36 a: 2.6 MPa; 0. b: -2.9 MPa; 0. 
(b) 13wL'Il920Eil (c) wL31!20 £/"'"<;. 

c: -0.308 MPa; -0.508 MPa. 
9.9 (a) 2.77 X 10-3 rad "'"<;. (b) 1.156 mm t. 

3.37 (a) 0; 26.7 MPa. (b) -56.4 MPa; 21.4 MPa. 
9.10 (a) 0.00643 rad "'"<;.(b) 5.6 mm t. 

8.38 -25.6 MPa; 6.1 MPa. 
9.11 (a) y, ~ 0.01604 MoL'!El tar x,, ~ 0.211 L. 

8.39 (a) 20.4 MPa; 14.34 MPa. 
(b) 6.09 m. 

(b) -21.5 MPa; 19.98 MPa. 
9.12 (a) 0.00652 ';~L -!- at x = 0.5193 L. 

8.40 -20.2 MPa; 2.82 MPa. (b) 5.8 rom t. 

8.41 65.5 MPa; -21.8 MPa; 43.7 MPa. 9.13 9.2 mm t. 
8.42 55.0 MPa; -55.0 MPa; -45°; 45°; 55.0 MPa. 9.15 (a) y ~ Mo(x' - l.x + a')12 El. 

8.45 (a) 18.39 MPa; 0.391 MPa. (b) 3.05 rom l 
(b) 21.3 MPa; 0.293 MPa. (c) 24.1 MPa; 0. 9.17 (a) y ~ wo(x' - 3Lx' + 5L3x' - 3L'x)/90 ElL'. 

8.46 (a) -7.98 MPa; 0.391 MPa. (b) wo£3130 El'<;. (c) 6Iw0L'!5760 El t. 
(b) -5.11 MPa; 0.293 MPa. (c) -2.25 MPa; 0. 9.18 (a) y = -w0 (5L2x4 

- 4U + x6 - 5L4:2)!l20 EIL2. 

8.49 (a) 30.1 MPa; -0.62 MPa; -8.2°; 81.8°. (b) wo£'140 Ell 

(b) 15.37 MPa. 9.21 11wo£140t. 

8.50 (a) 0.12 MPa; -51.4 MPa; 2.8"; 92.8". 9.22 11wo£!40t. 

(b) 25.8 MPa. 9.23 13 kN t. 
8.51 9.3 MPa; -24.2 MPa; 16.7 MPa; 31.8°; 121.8°. 9,24 14.44 kN t. 
8.52 0.89 MPa; -15.8 MPa; 13.4°; 103.4°; 8.3 MPa. 9.25 9M0!8L t; Mb/8 at A; -7M0/l6 just to the left 

8.53 86.5 MPa; 0; 57.0 MPa; 9.47 MPa. of C; 9MJ16 just to the right of C; 0 at B. 

8.54 42.2 MPa; 2.83 MPa; 12.74 MPa; 0. 9.26 5P!l6 t; MA = -3PU16; Me= 5PU32; MB = 0. 

8.55 -108.5 MPa; -103.6 MPa; -46.9 MPa; 0.32 MPa; 9.27 4lwU128 t; MA = 0, M, = 0.0513 wL2; 

8.4 MPa. M8 = -0.0547 wL2. 

8.58 21.5 MPa; -0.099 MPa; 10.8 MPa. 9.28 9w,U640 t; M, ~ 0.00814 wo£'; 

8.60 (a) 6PI (cosWh- sinWb)!bh. (b) tan-'(b/h). M, ~ -0.0276 wo£1. 

8.62 2.72 MPa; -249 MPa; 126 MPa. 9.29 7wU128 t; 13wL'I6144 El t. 

8.63 12.20 MPa; -12.20 MPa; 12.20 MPa. 9.30 17wU64 t; wL'/1024 El t. 
8.64 (a) 87.1 MPa; -2.1 MPa; 44.6 MPa; -8.9"; 81.1". 9.33 wU2 t; wL11121; M ~ wL (6xL- 6x'- L3)1!2. 

(b) 43.1 MPa; -43.1 MPa; 43.1 MPa; 45"; -45". 9.34 Pb2(3a + b)/L3t; Pab2/L2 ~; MA = -Pab2!L2; 

8.66 41.2 mm. M0 = 2Pa2b2/L3; M8 = -Pa2b!L3. 

8.69 (a) 3.5 MPa; -63.5 MPa; 13.3"; 103.3". (b) 33.5 MPa. 9.35 (a) y ~ M0 [x
3 - 3L(x- a)' 

8.70 -14.98 MPa; 17.29 MPa. + (3b1 - L1)x ]16 ElL. 

8.71 -131 MPa; 43.7 MPa. (b) M0 (3b3 - 1.3)/6 ElL"'"<;. 

8.73 P (2R + 4d3)/'m'. (c) MrPb(b- a)/3 ElL t. 
8.74 (a) 103.2 MPa; 0. (b) -10.6 MPa; 38.3 MPa. 9.36 (a) y ~ P[bx'- L(x- a)3 - b(L'- b1)]!6ElL. 

(c) 124.3 MPa; 0. (b) Pb(L' - b3)/6 ElL"'"<;. (c) Pa2b2!3 ElL t. 
8.76 (a) 7.50 MPa. (b) 11.25 MPa. (c) 56.3"; 13.52 Mi'a. 9.37 (a) y ~ P[ -x'/6 - (f - a)216 + 5a2x/2 - 7a3!2]!El. 

8.C4 Prob. 8.25: 46.4 mm. (b) 5Pa3/2 El d. (c) 7Pa'12 El t. 

Prob. 8.68: 46.5 mm. 9.38 (a) y ~ P[x'/3 - (x- a)'16 - 3ax'!2]!El. 

8.C5 Prob. 8.47b: a = 40.7 MPa; T = -5.3 MPa. (b) 5Pa2!2 El d.. 

8.C6 Prob. 8.34: (a) -37.9 MPa; 14.06 MPa. (c) 7Pa3!2 E1 t. 

(b) -131.6 MPa; 0. 9.41 (a) y ~ w[Lx'/27 - (x- U3)'124 - 7L3x/243]1Ei. 
(b) 7wL3!243 EI "'"<;. 
(c) 2wL'I243 EJ t. 
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9.42 (a) y ~ w[ -3L'x'!16 + Lx'll2- (x- U2)'124]1El. 
(b) 7wL'I192 Eli. 
(c) 41wL'/384 Ell 

9.45 (a) 0.873 X 10-3 rad "'<;. (b) 1.641 mm !-. 
9.46 (a) O.OOS8 rad ">. (b) 3.87 mm l 
9.47 (a) 0.0105 rad ">. (b) 4.4 mm i. 
9.48 (a) 9.51 x w-' rad ">. (b) 5.80 mm i. 
9.49 (a) 9M,j8L t. (b) M,L01!28 Eli. 
9.50 (a) 5PI16t. (b) 7PL3!168 Eli. 
9.51 (a) 3M,j4L t. (b) l!M,L2/512Elt. 
9.52 (a) 2P/3 t. (b) 5PL3/486 El t. 
9.53 (a) 1!.54 kN ;. (b) 4.18 mm l 
9.56 (a) 33.3 kN t. (b) 3.19 mm i. 
9.57 (a) 3M,j2L t; M<f41. (b) Mof./16 El d. 
9.58 (a) 3wW2 t; 5wL21192 j. (b) wL'/768 Ell 
9.59 1.648 mm i at x = 2.86 m. 
9.60 l.l205 m; 3.9 mm i. 
9.61 0.66 m; 4.45 mm i. 
9.62 5.80 rrim-!- at x = 0.991 m. 
9.65 3PL2/4 El d; 13PL3/24 Ell 
9.66 wL3/48 Ef d; wL 4/384 Eit. 
9.67 wL3/48 EI "'<;; wL4/384 Eli. 
9.68 13wa3!6 EI ~; 29wa4!24 El-l.. 
9.71 (a) Pa3(L- a)/6 ElL t. (b) Pa3(3L - a)/6 Ell. d.. 
9.72 (a) wl}/128Eli. (b) wL3172El"i. 
9.73 6.30 X 10-3 rad ~; 5.53 mm t. 
9.74 5.56 X 10-3 rad ~; 2.50 mm i. 
9.75 O.D1176rad""<;;8.57mml 
9.76 O.Oll34rad'«;;;5.66mm.L 
9.79 (a) 7wU128 t. (b) 57wU128 t; 9wL2/128J. 
9.80 (a) 4P/3 t; PUJ \ . (b) 2P/3 1'. 
9.81 R, ~ 2M,jL t; R8 ~ 3M,j£i; Rc ~ M,jL t. 
9.82 R, ~ 3?/8 t; Rc ~ 7?181'; Ra ~ P/4 t. 
9.85 121.5 N/m. 
9.86 3.81 mm l 
9.87 (a) 6.27 nm l (b) !0.45 mm i. 
9.88 (a) 5.94 mm l (b) 6.75 mm l 
9.89 43.9 kN. 

9.92 (a) !0.86 kN t; !.942 kN • m 1· 
(b) !.!44 kN t; 0.286 kN • m J. 

9.93 (a) 3!.2 mm l (b) !7.89 mm t. 
9.94 8.28 mm l 
9.95 (a) PL2/2 El d. (b) PL3/3 Ell 
9.96 (a) Mof.!El"i. (b) M,L212El1'. 
9.97 (a) 5Pa212 El ">. (b) 7Pa312 EJi. 
9.98 (a) wL'/6 El d. (b) wL'/8 Ell 
9.101 (a) 5.22 X !0-3 radd. (b) 10.88 mm i. 
9.102 (a) 0.0044 rad d; 3.38 mm l 

(b) 0.00408 rad d; !.86 mm L 
9.103 (a) 0.00589 rad ">.(b) 9.14 mm i. 
9.104 (a) 2.55 X W'radd.(b) 6.25mml 
9.106 25Moa2112EJt; 11M0a/6£l"i. 
9.108 (a) 6.10 X !0-3 rad d.. (b) 6.03 mm i. 
9.109 (a) PL'I16El"i. (b) PL3!48Eli. 
9.110 (a) Pa(L -.a)12El"i. (b) Pa(3L2 - 4a2)!24Eft. 
9.111 (a) M,(L~ 2a)12El"i. (b) M0(L2 - 4a2Y8Ell 

9.112 (a) 5w0L3/192El"i. (b) w,L'Il20Eli. 
9.113 (a) wa2(3L- 2a)/l2E/~. 

(b) wa'(3L2 - 2a2)/48 Eli. 
9.114 (a) PL2132 El"i. (b) PL3/128 Eli. 
9.117 (a) 5.17 X 10-; rad ~-(b) 21.0 mm t, 
9.118 (a) 4.72 x w-3 rad ~-(b) 5.85 mm!. 
9.119 (a) 4.50 X 10-3 rad "'l:,i. (b) 8.26 mm t_ 
9.120 3.84 kN/m. 
9.123 0.2!! L. 
9.124 0.223 L. 
9.125 (a) 4PL3/243 Ell (b) 4PL2!81 El ">. 
9.126 (a) 3M0L2164 EI t. (b) 5M0U32 El"i. 
9.127 (a) 5PL3!768 Ell (b) 3PL21!28 El"i. 
9.129 (a) 8.70 X !0-3 rad "i. (b) 15.03 mm i_ 
9.130 (a) 0.01203 rad ">;(b) 6.02 mm i. 
9.131 (a) 7.48 X !0-J rad ">.(b) 5.35 mm i. 
9:133 (a) Pa(2L + Ja)/6 El ">. (b) Pa'(L + a)/3 Ell 
9.134 (a) wL'/48 El"i. (b) wL'/128 Eli. 
9.136 (a) 0.000366 rad ">;(b) 2.94 mm l 
9.138 (a) 0.00583 rad d; (b) 0.39 mm l 
9.139 (a) 3M,,U16£/-q;. (b) Mof./8 El d. (c) M0L

2!24 ElL 
9.140 (a) 9wL31256 El"i. (b) 7wL3/256 El d. 

(c) 5wL'/512 Eli. 
9.142 0.00677 PL3/El at x = 0.433 L. 
9.143 1.511 mm at x = 2.81 m. 
9.144 !.545 m; 5.2 mm i. 
9.146 2.9 mm t. 
9.147 5?116 t. 
9.148 9M,j8L l 
9.149 7wU128 t. 
9.150 l!wU40t. 
9.153 653 kN t; 58.7 kN ·mat D; -82.8 kN ·mat B. 
9.154 40.7 KN 1'; M, ~ -!05.5 kN · m; M0 ~ 55.6 kN · m; 

Me= 55 kN • m; M8 = 0. 
9.155 48 El/7 L'. 
9.156 144 El!L3• 

9.157 12.75 mm i. 
9.159 (a) y = (2w0L

4/-rr4EJ)( -8cos(-rrx/2L) + 
-rr2i2JL2 + 2-rr(-rr- 2)x/L + -rr{4- -rr)J. 

(b) 0.1473 w0L
3/EI d. (c) 0.1089 w0L4/EI-l-. 

9.160 0.0642 MoL'!El t at X = 0.577 L. 
9.162 (a) 0.0!1 rad ">;(b) 6.35 mm l 
9.163 (a) 0.714 X !0-3 rad d. (b) !.071 mm. t. 
9.164 (a) 3.125 x w-' rad d. (b) !.016 mm t. 
9.165 (a) 0.00605 rad ">.(b) !.43 mm l 
9.167 (a) 6.95 mm. (b) 46.3 kN t. 
9.C2 a = 3 m: (a) 0.000764 rad ~; 5.35 mm 

(b) 3.523 m; 5.52 mm i. 
9.C3 x = 1.6 m: (a) 7.90 X 10-3 rad ~. 8.16 mm .!-; 

(b) 6.05 X 10-3 rad ~. 5.79 mm -!-; 
(c) 1.021 X 10-3 rad~,0.314mmJ... 

9.C4 Frob. 9.13.· 0.00307 rad ">; 9.22 mm t. 
9.C5 (a) a= L2 m: 0.001216 rad ""<;; 2.3825 mm!. 

(b) a= 1.0 m: 0.293 X 10-3 rad ~; 0.479 nun.!-. 
9.C6 Prob. 9.77: (a) 0.601 X 10-; rad "'l:.i. (b) 3.67 mm t_ 
9.C7 x = 2.5m:5.31 nun-!-; x = 5.0m: l2.28mm-l-. 
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0.1 kL. 
0.2 KIL 
0.3 KIL 
0.4 .2kU9. 
0.5 ka2!2l. 
0.6 d > 392 mm. 
0.9 487 N. 
0.10 (a) 24.3 N. (b) 76.8 N. 
0.11 1.421. 
0.12 (a) 7.48 mm. (b) 58.8 kN; 84.8 kN. 
0.15 2.325. 
0.16 318kN. 
0.19 4.00 kN. 
0.20 2.2"/. 
0.21 12.01 m. 
0.22 143.7 kN. 
0.23 (a) 0.500. (b) 28.3 mm; 14.15 mm. 
0.24 657 mm. 
0.27 (a) l.95. (b) 42.4 mm; 30 mm; 25.1 mm. 
0.28 2.64 kN; 0.661 kN; 10.57 kN; 5.39 kN; 2.64 kN. 
0.29 (a) 3.4 mm. (b) 114.2 MPa. 
0.32 (a) 1.552 mm. (b) 47.8 MPa. 
0.33 (a) 1.42 mm. (b) 132 MPa. 
0.34 (a) 6.37 mm. (b) 68.7 MPa. 
0.35 (a) 56.6 kN. (b) 95 MPa. 
0.36 (a) 463.8 kN. (b) 130.2 MPa. 
0.37 (a) 368 kN. (b) 103.8 MPa. 
0.38 (a) 223 kN. (b) 62.8 MPa. 
0.41 37.2 "C. 
0.42 5.81 mm. 
0.45 (a) 189 kN. (b) 229 kN. 
0.46 (a) 147 kN. (b) 174 kN. 
0.47 (a) 4.74 m. (b) 3.4 m. 
0.48 (a) 8.6 m. (b) 4.2 m. 

0.49 2.17 m. 
0.50 1.337 m. 
0.53 56 mm. 
0.54 64 mm. 
0.55 W200 X 26.6. 
0.56 W200 X 35.9. 
0.57 (a) 431.3 kN. (b) 437.9 kN. 
0.58 (a) 218 kN. (b) 859 kN. 
0.60 (a) 1568 kN. (b) 633 kN. 
0.62 (a) 26.4 kN. (b) 32.2 kN. 
0.63 44.4 kN. 
0.64 45.4 kN. 
0.65 (a) 66.3 kN. (b) 243 kN. 
0.66 164.3 kN. 
0.67 898 kN. 
0.69 815 kN. 
0.71 44.1 nun. 
0.74 (a) 4. (b) 3. 
0.75 143 mm. 
0.76 d ~ 1.21 mm. 
0.77 W250 X 67. 
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10.79 W250 X 80. 
10.80 (a) 30.1 mm. (b) 33.5 mm. 
10.81 9 mm. 

·10.83 L89 X 64 X 12.7. 
10.84 L89 X 64 X 12.7. 
10.85 (a) 409 kN; 303 kN. (b) 846 kN; 627 kN. 
10.86 262.3 kN. 
10.87 W310 X 74. 
10.88 8 mm. 
10.89 35.1 kN. 
1 0.90 28.2 kN. 
10.93 (a) 82.6 kN. (b) 64.8 kN. 
10.94 (a) 94.7 kN. (b) 8Ll kN. 
10.95 1.016 m. 
10.96 Ll59 m. 
10.97 5.48 m. 
10.98 4.81 m. 
10.99 (a) 27.1 mm. (b) 65.1 rum. 
10.100 (a) 21.7 mm. (b) 41.1 mm. 
10.103 140 mm. 
10.104 140 mm. 
10.105 87.6 rum. 
10.106 83.9 mm. 
10.107 47.5 mm. 
10.108 44.1 mm. 
10.113 W360 X 216. 
10.114 W360 X 101. 
10.115 12 mm. 
10.116 15 mm. 
10.117 -rr2b2!12L2a. 
10.118 8 KIL 
10.120 402.5 kN. 
10.121 2.77 kN. 
10.122 (a) 54.6". (b) 6.7 kN. 
10.124 1.46 m. 
10.126 W200 X 46.1. 
10.128 W200 X 52. 
1d.Ci r = 8 mm: 9.07 kN. 

r = 16 mm: 70.4 kN. 
1 O.C2 b ~ 20 mm; 8.643 kN 

b ~ 38 mm; 30.246 kN 
10.C3 h ~ 5.0 m." 9819 kg. 

h = 7.0 m: 13,255 kg. 
10.C4 P ~ 100 kN; (a) 1.205 rum; (b) 19.9 MPa. 

P ~ 300 kN; (a) 4.473 nun; (b) 65.7 MPa. 
10.C6 Pcob.l0.113." 1567.7 kN. 

hob. 10.114." 1212.8 kN. 

CHAPTER 11 

11.1 (a) 306.3 kJ/m3 (b) 506.3 kJim' 
(c) 1.225 MJ/m3 

11.2 (a) 21.6 kJ/m3. (b) 323 kJ!m'- (c) 1611.7 kJim'. 
11.3 (a) 177.9 kJ!m'. (b) 712 kJim'. (c) 160.3 kJ!m'. 
11.5 (a) 1296 kJ/m3. (b) 90 MJ/m3. 



11.7 
11.8 
11.9 
11.10 
11.13 
11.14 
11.f6 
11.18 
11.20 
11.21 
11.22 
11.23 
11.24 
11.25 
11.29 
11.30 
11.32 
11.33 
11.34 
11.36 
11.37 
11.38 
11.41 
11.42 
11.44 
11.45 
11.46 
11.48 
11.49 
11.50 
11.52 
11.53 
11.55 
11.57 
11.58 
11.59 
11.62 
11.63 
11.64 
11.65 
11.68 
11.69 
11.71 
11.72 
11.74 
11.75 
11.76 
11.77 
11.79 
11.80 
11.81 
11.82 
11.83 

(a) 1.75 J/m3 (b) 78.2 MJ/m~ · 
(a) 150 kJ!m'. (b) 63 MJ/m'. 
(a) 23.7 J (b) AB.· 75.8 kJ!m';BC 31 kllm' 
(a) 12.18 J. (b) 15.83 kJ/m'; 38.6 kllm'. 
13.73 nim. 
4.74. 
0.24856 P2UEAmtn; -0.575%. 
1.500 P'l!EA. 
1.398 P2l/EA. 
613.6 l. 
542.6 l. 
P2a2(a + L)/6 El. 
M5(a 3 + b3)/6 EIL2

. 

w2L5!40 El. 
1048 J. 
662 J. 
28.3 J. 
12.70 l. 
(a) 3l.2 mm. (b) 63.9 MPa. 
-70.4 MPa ~ ly::::; 125.4 MPa. 
(a) 2.28. (b) 1.99. 
(a) no yielding. (b) yielding. 
2 MJL (1 + 3 Ed2/l0 GL2)!Ebd3• 

24.7 mm. 
4!.6 N. 
7.8 m/s. 
4.76 kg. 
(a) ll.5 kN. (b) 94 MPa. (c) l.6 mm. 
2.55 mls. 
3.68 rnls. 
(a) 15.63 mm. (b) 83.8 N · m. (c) 208 MPa. 
(a) 23.6 mm. (b) 64.4 N • m. (c) 157.6 MPa. 
(b) 7.12. 
Pa2b213 ElL l 
Pa'(a + L)/3 Ell 
M0(a3 + b3)/3 EIL2 ~-
3 Pa3!4El -\-. 
5 M0Ul6 E/"<;.i, 
3M0Ul6El~. 
59.8 mrn. 
1!.57 mm .f. 
3.96°. 
3.375 PIIEA ->. 
2.375 Pl!EA --7. 

l.l4 mm l 
1.46 mm t. 
3.19 mm i. 
(a) and (b) P2L3/6 EI + PMrJ}/2 EI + N/l;U2 El. 
(a) and (b) ?1

{ 3/96 EI - PM0!}!16 El + M'f/-16 El. 
(a) 5P2L3/162 El. 
(a) ?P2L3/24El. 
(a) M';u2El. 
PL3!96 Eti. 

11.84 PL2/48 El d.. 
11.85 5PL3/48 El t. 
11.87 Pab (3La - 2a2 + 2b2)/6 E!L2 "'1,;, 
11.88 M0U6El~. 
11.89 PaL2116 El t. 
11.90 w£4/128 E! t. 
11.92 wU/192 El d!.. 
11.93 8.75mm.f. 
11.95 7.25mm.f. 
11.96. 2.! mm t. 
11.98 6.98 X 10-3 rad "'<;. 

11.99 4 mm .f. 
11.100 0.23 mm. 
11.101 3.19 mm .f. 
11.104 3.5 mm. 
11.105 orrPR3!2Eit. 
11.106 (a) PR'I2El->. (b) orrPR3!4EI.f. 
11.107 5PL'!6EI -+. 
11.111 R8 = 3Moi2L t; MA = !M0. 
11.112 R, ~ 5Pil6 f; M, ~ -3 PL/16; Me~ 5 PL/32. 
11.114 R, ~ 3M0b(L + a)I2L't; M, ~ 0; 

MD = 3Moab(L + a)!2L3
; Mb = MD - Mo; 

M8 = RAL -Mo. 
11.116 R, ~ 14P/27t; M0 ~ O.l728PL; 

M8 = -0.1481 PL. 
11.117 P/(1 + 2cos'<f>). 
11.118 3 P/4. 
11.119 7 P/8. 
11.121 0.583 P. 
11.122 2 P/3. 
11.123 5.08 mm .f. 
11.124 254.9 kl. 
11.125 287 mm. 
11.127 136.6 J. 
11.129 0.92 mm.f. 
11.130 0.86 mm .f. 
11.132 (a) 25.77 l. 

(b) CD: 0.0077 Jfm>; EF: 0.062 J/m3. 

11.134 14.70 J. 
11.C2 (a) a= 0.5 m: u 0 = 156.1 MPa; uc = 143.15 MPa 

a= l.O m: uD = 244.56 MPa; Uc = 112.14 MPa 
(b) a = 0.4585 m, 0' = 144.6 MPa. 

11.C3 (a) L = 200 mm: h = 2.27 rnm; 
L = 800 mm: h = 1.076 rnm. 

(b) L = 440 mm: h = 3.23 rnm. 
11.C4 a = 300 mm: 1.795 mm, 179.46 MPa; 

a = 600 mm: 2.87 mm, 179.59 MPa. 
11.C5 a~ 2m; (a) 30.0 J; (b) 7.57 mm, 60.8 J. 

a = 4 m: (a) 21.9 J; (b) 8.87 mm, 83.4 J. 
11.C6 a = 0.5 m: (a) 331.5 mm; (b) 11.246 kN · m 

(c) 3.57 kN. 
a = 1.0 m: (a) 267.08 mm; (b) 10.801 kN · m 
(c) 4.088 kN. 
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RES' .. ··• 2007• 
Centroids of Common Shapes of Areas and Lines 

Shape X y Area 

{l 
Triangular area 

h h h bh 
)!i /T;',;f,i~_j 3 

-
2 

H+N 
Quarter-circular area J ~-fij ~.-,. 4r 4r "'' -

31T 31T 4 

Semicircular area 
.C:j ' f-

or 0 
4r ,,., 
-
31T 2 

Semiparabolic area r'--J 3a 3h 2ah 

~ ~.tw 
- -

t 8 5 3 
h 

0 
-F-- ~c--d~r•03 

l 
Parabolic area - o[_, __ 0 

3h 4ah 
5 3 

~'~ 
Parabolic spandrel 

kx')¢l 3a 3h ah - - -
/<:j ·• 'Ty 'i 4 10 3 

ol--,--1 

.--------1 
Circular sector ~ 2r sin a 

I ps:· 0 ar' 
3a 

-<--· 

Quarter-circular arc 
I / I 2r 2r 

ORFr~c~ 
1TT - - -

1T 1T 2 

Semicircular arc 0 
2r - 1TT 
1T 

---~j Arc of circle 
\ ------~:- c rsina 

~~~-::~~:~- -
-- 0 2ar 

a 
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