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Preface to volume 1

Volume 1 of the Handbook of category theory is concerned with those
notions and techniques which turn out to appear quite naturally in most
developments of category theory, independently of additional structures
or properties one requires from the categories involved in the study.

Any book on category theory must say a word on the non-obvious
problems concerned with the logical foundations of the theory. We men-
tion both the axiom system of classes and that of universes, and later
we freely use the presentation which fits best the problem we study. We
chose not to dwell on foundational questions as long as the development
of the theory does not really depend on them.

Another general principle in this volume is to develop the general
notions from more accessible special cases, for which we have given a
large supply of examples. This is by no means the most economical
way of developing the theory, but we hope inexperienced readers will
appreciate our pedagogical choice.

Of course we start with the basic vocabulary of categories, functors,
natural transformations, monomorphisms, epimorphisms, isomorphisms.
The analogies between monomorphisms and epimorphisms, covariant
and contravariant functors, lead to the famous duality principle which
is, with the Yoneda lemma, one of the key results of the first chapter.

Starting with the notions of products, coproducts, equalizers, coequal-
izers, pullbacks, and so on, we reach the general notion of limit of a func-
tor and prove the corresponding existence theorem. We devote special
attention to some classes of colimits, like absolute ones, filtered ones and
universal ones. We also study limits in categories of functors and dwell
on the case of colimits of set-valued functors.

Adjoint functors are the next fundamental notion of categorical al-
gebra. We prove the classical general and special existence theorems in
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terms of limits and particularize our study to the case of reflective sub-
categories. We treat separately the case of Kan extensions, which is a
fruitful example of an adjunction which cannot be deduced in its general
form from the previous existence theorems.

The special adjoint functor theorems refer explicitly to notions like
subobject (equivalence class of monomorphisms), generator and cogen-
erator. We decided to group in a separate chapter a specific study of
the various kinds of monomorphisms, epimorphisms (plain, extremal,
strong, regular) and correspondingly for generators, cogenerators (plain,
strong, regular, dense). This is also the opportunity for studying epi-
mono factorizations as well as notions related to monomorphisms or
epimorphisms, like injective and projective objects. We pay special at-
tention to the case of injective cogenerators, whose existence is very often
related to rather deep specific theorems.

Chapter 5 is probably the most difficult one in this first volume. It is
essentially concerned with rather sophisticated methods for constructing
reflective subcategories. We start with the problem of "formally inverting
an arrow g: A >C of a category" (categories of fractions) and relate
this with the problem of "uniquely extending a morphism / : A >B
along the arrow g: A >C" (the orthogonal subcategory problem). Un-
der good assumptions, we prove by transfinite induction the reflectivity
of the subcategory of those objects "orthogonal to a set of mappings".
We relate this to the general notion of (£, .M)-systems of factorization.
We discuss the special case where the reflection is left exact (the "local-
izations" ) and relate it to the notions of universal closure operation and
bidense morphism.

The rest of the book is essentially devoted to some generalizations or
special cases of the basic notions of chapters 1, 2 and 3.

When ^ is a category with finite limits, set-valued functors on # which
preserve finite limits (the "left exact functors") admit interesting prop-
erties and characterizations: in particular, they are exactly the filtered
colimits of representable functors. When ^ is an arbitrary small cate-
gory, this characterization serves as a definition for the notion of "flat
functor". Flat functors share most properties of left exact functors and
will turn out to play a key role in a categorical approach of model theory
(see chapter 5, volume 2, accessible categories).

Another elementary notion which turns out to have unexpectedly rich
applications is that of "splitting idempotents"; this happens to be equiv-
alent to a rather weak completeness property: having just those limits
or colimits which are preserved by all functors. This is called the Cauchy
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completeness of the category, for reasons which will become apparent in
chapter 6 of volume 2. Replacing "completeness" by "Cauchy complete-
ness" and "preserving limits" by "being a-flat, for every regular cardinal
a" yields amazingly enough a generalization of the adjoint functor theo-
rem; this generalization now contains as a special case the Kan extension
theorem of chapter 3.

While a category has just objects and arrows, the category of cat-
egories and functors can be provided with additional devices, namely
natural transformations between functors. This leads to the richer no-
tion of a 2-category, where besides objects and arrows one gives also
"2-cells" between the arrows. There are corresponding enrichments of
the notions of functor, natural transformation, limit, adjoint functors,
and so on.

Now in category theory, many constructions are defined uniquely...
up to isomorphism! This results in very often obtaining isomorphisms
where one would have expected equalities. So it is not unusual to reach
a situation where a composite / o (g o h) (whatever / , #, h and the com-
position are) is just isomorphic to (/ o g) o h, not necessarily equal.
Taking this seriously, one gets the notion of a bicategory: one has ob-
jects, arrows and 2-cells, but in various axioms "equalities" are replaced
by "isomorphic 2-cells". A basic example of a bicategory is that of small
categories, distributors and natural transformations between them: in
category theory, a distributor is to a functor what, in set theory, a rela-
tion is to a function. Every functor turns out to be a distributor with a
right adjoint, and the converse holds when working with Cauchy com-
plete categories. In the same spirit as bicategories, one can "relax" the
notions of functor, natural transformation, limit, colimit, working now
"up to an isomorphic 2-cell" or even "up to an arbitrary 2-cell".

We conclude this first volume with an elementary study of internal
categories. While a small category has a set of objects and a set of arrows,
together with some operations "source", "target", "unit", "composition"
given by mappings, one is now interested in replacing set by object of a
category <& and mapping by arrow of the category (€. This is the notion of
"category internal to <#". We study the corresponding notions of internal
functors and internal limits or colimits.



Introduction to this handbook

My concern in writing the three volumes of this Handbook of categorical
algebra has been to propose a directly accessible account of what - in my
opinion - a Ph.D. student should ideally know of category theory before
starting research on one precise topic in this domain. Of course, there are
already many good books on category theory: general accounts of the
state of the art as it was in the late sixties, or specialized books on more
specific recent topics. If you add to this several famous original papers
not covered by any book and some important but never published works,
you get a mass of material which gives probably a deeper insight in the
field than this Handbook can do. But the great number and the diversity
of those excellent sources just act to convince me that an integrated
presentation of the most relevant aspects of them remains a useful service
to the mathematical community. This is the objective of these three
volumes.

The first volume presents those basic aspects of category theory which
are present as such in almost every topic of categorical algebra. This
includes the general theory of limits, adjoint functors and Kan exten-
sions, but also quite sophisticated methods (like categories of fractions
or orthogonal subcategories) for constructing adjoint functors. Special
attention is also devoted to some refinements of the standard notions,
like Cauchy completeness, flat functors, distributors, 2-categories, bicat-
egories, lax-functors, and so on.

The second volume presents a selection of the most famous classes
of "structured categories", with the exception of toposes which appear
in volume 3. The first historical example is that of abelian categories,
which we follow by its natural non-additive generalizations: the regular
and exact categories. Next we study various approaches to "categories
of models of a theory": algebraic categories, monadic categories, locally

xin
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presentable and accessible categories. We introduce also enriched cat-
egory theory and devote some attention to topological categories. The
volume ends with the theory of fibred categories "a la Benabou".

The third volume is entirely devoted to the study of categories of
sheaves: sheaves on a space, a locale, a site. This is the opportunity for
developing the essential aspects of the theory of locales and introducing
Grothendieck toposes. We relate this with the algebraic aspects of vol-
ume 2 by proving in this context the existence of a classifying topos for
coherent theories. All these considerations lead naturally to the notion
of an elementary topos. We study quite extensively the internal logic of
toposes, including the law of excluded middle and the axiom of infinity.
We conclude by showing how toposes are a natural context for defining
sheaves.

Besides a technical development of the theory, many people appreciate
historical notes explaining how the ideas appeared and grew. Let me tell
you a story about that.

It was in July, I don't remember the year. I was participating in a
summer meeting on category theory at the Isles of Thorns, in Sussex.
Somebody was actually giving a talk on the history of Eilenberg and
Mac Lane's collaboration in the forties, making clear what the exact
contribution of the two authors was. At some point, somebody in the au-
dience started to complain about the speaker giving credit to Eilenberg
and Mac Lane for some basic aspect of their work which - he claimed -
they borrowed from somebody else. A very sophisticated and animated
discussion followed, which I was too ignorant to follow properly. The only
things I can remember are the names of the two opponents: the speaker
was Saunders Mac Lane and his opponent was Samuel Eilenberg. I was
not born when they invented category theory. With my little story in
mind, maybe you will forgive me for not having tried to give credit to
anybody for the notions and results presented in this Handbook.

Let me conclude this introduction by thanking the various typists for
their excellent job and my colleagues of the Louvain-la-Neuve category
seminar for the fruitful discussions we had on various points of this
Handbook. I want especially to acknowledge the numerous suggestions
Enrico Vitale has made for improving the quality of my work.
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The language of categories

1.1 Logical foundations of the theory

It is a common practice, when developing mathematics, to consider a
statement involving "all groups" or "all topological spaces" For
example we say that an abelian group A is projective when, for every
surjective homomorphism of abelian groups / : B >C and every group
homomorphism g: A >C, g factors through / (see diagram 1.1). This
definition of "A being projective" starts thus with a list of universal
quantifiers

VB VC V/ Vp . . .

This formula, from the point of view of set theory, creates a problem:
the variables B and C are "running through something (= the collec-
tion of all abelian groups) which is not a set". This last fact is an easy
consequence of the following well-known paradox.

Proposition 1.1.1 There exists no set S such that

x € S <& x is a set.

Proof In other (bad) words: "the set of sets does not exist"! To prove
this, let us assume such an S exists. Since x £ x is a formula of set
theory

T = {x \x € S and x £ x}

defines a subset T of 5, thus in particular a set T. The law of excluded
middle tells us that

TeT or T£T.

But from the definition of T itself we conclude that

T eT^T £ T,



The language of categories

A

9

B 7—> C

Diagram 1.1

thus in both cases a contradiction. •
Category theory will in fact be handling all the time "the collection of

all groups", "the collection of all sets", "the collection of all topological
spaces", and so on Therefore it is useful to pay some attention to
these questions of "size" at the very beginning of this book.

A first way to handle, in category theory, problems of this type is to
assume the axiom on the existence of "universes".

Definition 1.1.2 A universe is a set U with the following properties
(1) x G y and y eU => x G U,
(2) IeUandVieIXieU=> \JieIXi£U9

(3) xeU=> v{x) e u,
(4) x G U and f:x >y surjective function => y €U,
(5) NeU,
where N denotes the set of finite ordinals and V(x) denotes the set of
subsets of x.

Notice some easy consequences of the definition.

Proposition 1.1.3
(1) x eU and y Q x => y eU,
(2) x € U and y eU => {x,y} eU,
(3) x E U and y eU => xxy eU,
(4) x e U and y eU ^ xy eU.

Proof We prove (1) and leave the rest as an easy exercise. First of all
0 G N and N G M , thus 0 G U. Now if x G U and y C x with y ^ 0,
choose z G y. Define / : x >y to be

f(t) = zi£
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Obviously / is surjective and therefore y GW. •

It should be noticed that - assuming the axiom of choice in our set the-
ory - condition (4) in definition 1.1.2 could have been replaced precisely
by

x eU and y Cx => y £U.

Now the axiom on the existence of universes is just

Axiom 1.1.4 Every set belongs to some universe.
Not much is known about this axiom from the point of view of set

theory. Because of the property

xGW and y C x =>• y E ZY,

it sounds reasonable to think of the elements of a universe as being
"sufficiently small sets". If you choose to use the theory of universes as
a foundation for category theory, the following convention has to remain
valid throughout this book.

Convention 1.1.5 We fix a universe U and call "small sets" the ele-
ments ofli.

Obviously we now have the following

Proposition 1.1.6 There exists a set S with the property x G S O x
is a small set.

Proof Just choose S — U. •

An analogous statement is valid for small abelian groups, small topo-
logical spaces, and so on For example a small group is a pair (G, +)
where G is a small set (and there is just a set of them) and + is a suitable
mapping G x G >G (and there is just a set of them); so we can draw
the conclusion by proposition 1.1.3.

An alternative way to handle these problems of size is to use the
Godel-Bernays theory of sets and classes. In the Zermelo-Prankel theory,
the primitive notions are "set" and "membership relation". In the Godel-
Bernays theory, there is one more primitive notion called "class" (think
of it as "a big set"); that primitive notion is related to the other two by
the property that every set is a class and, more precisely:

Axiom 1.1.7 A class is a set if and only if it belongs to some (other)
class.

The axioms concerning classes imply in particular the following "com-
prehension scheme" for constructing classes.
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Comprehension scheme 1.1.8 If <p(xi,... ,xn) is a formula where
quantification just occurs on set variables, there exists a class A such
that

(x i , . . . , x n ) € A if and only if (p{x\,... ,xn).

For example, there exists a class A with the property

(G, +) € A if and only if (G, +) "is a group"

(where "is a group" is an abbreviation for the group axioms); in other
words, this defines the "class of all groups". In the same way we deduce
the existence of the class of sets, the class of topological spaces, the class
of projective abelian groups, and so on.

When the axiom of universes is assumed and a universe U is fixed,
one gets a model of the Godel-Bernays theory by choosing as "sets" the
elements of U and as "classes" the subsets of U. It makes no relevant
difference whether we base category theory on the axiom of universes
or on the Godel-Bernays theory of classes. We shall use the terminology
of the latter, thus using the words "set" and "class"; the reader who
prefers the terminology of the former should thus read "small set" when
we write "set" and should read "set" when we write "class".

1.2 Categories and functors
With every mathematical structure on a set is generally associated a
notion of "mapping compatible with that structure": a group homo-
morphism between groups, a linear mapping between vector spaces, a
continuous mapping between topological spaces, and so on The ba-
sic examples of a category are designed in precisely that way: those sets
provided with a prescribed structure and, between them, those mappings
which are compatible with the given strucure.

Definition 1.2.1 A category^ consists of the following:

(1) a class \(&\, whose elements will be called "objects of the category";
(2) for every pair A, B of objects, a set ^(A^B), whose elements will

be called "morphisms" or "arrows" from A to B;
(3) for every triple A, B, C of objects, a composition law

the composite of the pair (/, g) will be written go f or just gf;
(4) for every object A, a morphism 1A € # ( A ^4), called the identity on

A.
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A ^—> B

h

D
k

Diagram 1.2

These data are subject to the following axioms.

(1) Associativity axiom: given morphisms f G ^(A^B), g G
h G ^(C, D) the following equality holds:

ho(gof) = (hog)of.

(2) Identity axiom: given morphisms f G ^(A, B), g G ^(B,C) the
following equalities hold:

1B O / = / , 9 o 1B = g.

A morphism / G ̂ {A, B) will often be represented by the notation
/ : A >B; A is called the "domain" or the "source" of / and B is called
the "codomain" or the "target" of / . In the situation of diagram 1.2, we
say that the given square is "commutative" when the equality gof = koh
holds between the two possible composites; an analogous terminology
holds for diagrams of arbitrary shape.

As usual 1A is the only morphism from A to A which plays the role
of an identity for the composition law. Indeed if %A G #(J4, A) is another
such morphism

1A = 1A

Let us now define a "homomorphism of categories".

Definition 1.2.2 A functor F from a category si to a category
consists of the following:
(1) a mapping

between the classes of objects of si and &; the image of A G s/ is
written F(A) or just FA;

(2) for every pair of objects A, A' of si, a mapping

si {A, A1) ><%(FA, FA')-,

the image of f G si {A, A!) is written F(f) or just Ff.

These data are subject to the following axioms:
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(1) for every pair of morphisms f e si {A, A'), g G s/(A\ A")

F(gof) = F(g)oF(f);

(2) for every object A € si

F(1A) = IFA.

Given two functors F: si >& and G: £6 >^, a pointwise compo-
sition immediately produces a new functor GoF: si ><&. This compo-
sition law is obviously associative. The identity functor on the category
si (i.e. choose every mapping in definition 1.2.2 to be the identity) is
clearly an identity for that composition law. A careless argument could
thus lead to the conclusion that categories and functors constitute a
new category . . . but this can easily be reduced to a contradiction us-
ing proposition 1.1.1! The point is that, in the axioms for a category, it
is required to have a set of morphisms between any two objects. And
when the categories si and 0$ merely have a class of objects, there is no
way to force the functors from si to Si to constitute a set All along in
this book we shall realize how crucial it is, in category theory, to distin-
guish all the time between sets and classes. To facilitate the language,
we particularize definition 1.2.1.

Definition 1.2.3 A category <& is called a small category when its class
|^ | of objects is a set.

The next result is then obvious (see 1.1.8).

Proposition 1.2.4 Small categories and functors between them consti-
tute a category. •

Examples 1.2.5

Let us first list some obvious examples of categories and the correspond-
ing notation, when it is classical.

1.2.5.a Sets and mappings: Set.

1.2.5.b Topological spaces and continuous mappings: Top.

1.2.5.C Groups and group homomorphisms: Gr.

1.2.5.d Commutative rings with unit and ring homomorphisms: Rng.

1.2.5.e Real vector spaces and linear mappings: VectR.

1.2.5.f Real Banach spaces and bounded linear mappings:

1.2.5.g Sets and injective mappings.

1.2.5.h Real Banach spaces and linear contractions:

And so on.
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Examples 1.2.6

Here is a list of some mathematical devices which can also be seen as
categories.

1.2.6.a Choose as objects the natural numbers and as arrows from n
to m the matrices with n rows and m columns; the composition is the
usual product of matrices.

1.2.6.b A poset (X, <) can be viewed as a category 3C whose objects
are the elements of X; the set #T(x, y) of morphisms is a singleton when
x < y and is empty otherwise. The possibility of defining a (unique)
composition law is just the transitivity axiom of the partial order; the
existence of identities is just the reflexivity axiom.

1.2.6.C Every set X can be viewed as a category 9£ whose objects are
the elements of X and the only morphisms are identities. (3C(x, y) is a
singleton when x — y and is empty otherwise). A category whose only
morphisms are the identities is called a discrete category.
1.2.6.d A monoid (M, •) can be seen as a category Jl with a single
object * and M = Jt(*, *) as a set of morphisms; the composition law
is just the multiplication of the monoid. As a special case, we can view
any group as a category. When a ring with unit is considered as a special
case of a category, the composition law of that category is generally that
induced by the multiplication of the ring.

Examples 1.2.7
Prom a given category ^ , one very often constructs new categories of
"diagrams in W. Here are some basic contructions.
1.2.7.a Let us fix an object / E ^ . The category # / / of "arrows over
/" is defined by the following.

• Objects: the arrows of ^ with codomain / .
• Morphisms from the object (/: A >/) to the object (g: B »/):

the morphisms h: A >B in ^ such that g o h = f (the "commu-
tative triangles over / " ) ; see diagram 1.3.

The composition law is that induced by the composition of #. Notice
that when ^ is the category of sets and mappings, a mapping / : A >I
can be identified with the /-indexed family of sets {f~1(i))iGl

 s o that the
previous category is just that of /-indexed families of sets and /-indexed
families of mappings.

1.2.7.b Again fixing an object / G #, we define the category I/W of
"arrows under /" .
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• Objects: the arrows of # with domain /.
• Morphisms from the object / : / > A to the object g: I > B: the

morphisms h: A >B in # such that ho f = g (the "commutative
triangles under /"); see diagram 1.4.

The composition law is induced by that of (€.
1.2.7.C The category Ar(#) of arrows of # has for objects all the
arrows of #; a morphism from the object (/: A >J5) to the object
(g: C >D) is a pair (h: A »C, k: B >D) of morphisms of #, with
the property k o f = g o h ("& commutative square"); see diagram 1.5.
Again, the composition law is that induced pointwise by the composition
in#.

In examples 1.2.7.a,b,c, it is easy to check that when # is small, so
are the three categories # / / , / / # , Ar(^).

Examples 1.2.8
Let us finally mention some first examples of functors.
1.2.8.a The "forgetful functor" U: Ab—->Set from the category Ab
of abelian groups to the category Set of sets maps a group (G, +) to the
underlying set G and a group homomorphism / to the corresponding
mapping / .
1.2.8.b If R is a commutative ring, let us write Mod# for the cate-
gory of i?-modules and i2-linear mappings. Tensoring with R produces
a functor from the category Ab of abelian groups to
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D

Diagram 1.5

An abelian group A is mapped to the group A ®% R provided with the
scalar multiplication induced by the formula

(a 0 r)rf = a ® (rrr).

A group homomorphism / : A >B is mapped to the iMinear mapping

1.2.8.C We obtain a functor V: Set >Set from the category of sets
to itself by mapping a set A to its power set V(A) and a mapping
/: A >B to the "direct image mapping" from V(A) to V(B).

1.2.8.d Given a category # and a fixed object C 6 #, we define a
functor

>Set

from # to the category of sets by first putting

Now if / : A > B is a morphism of #, the corresponding mapping

is defined by the formula

for an arrow g G %l(C,A). Such a functor is called a "representable
functor" (the functor is "represented" by the object C).

1.2.8.e Given two categories J / , 0& and a fixed object B € ^ , we define
the "constant functor to i?"

by
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FA aA ) GA

Ff Gf

FA'

Diagram 1.6

for every object A E si and every morphism / of si.

1.3 Natural transformations

General topology studies, in particular, topological spaces and continu-
ous functions between them. But given two continuous functions from a
space to another one, there exists also the notion of a "homotopy" be-
tween those two continuous functions, which allows you to "pass" from
one function to the other one. A similar situation exists for categories
and functors.

Definition 1.3.1 Consider two functors F, G: -Q/ \@t from a category
si to a category 0$. A natural transformation a: F => G from F to G is
a class of morphisms (a^: FA >GA)A^^ of@t indexed by the objects
of si and such that for every morphism f: A > A! in si, OLA1 ° F(f) =
G(f) o a A- (see diagram 1.6)

It is an obvious matter to notice that, when F , G, H are functors
from si to 88 and a:F => G, /3:G => H are natural tranformations, the
formula

(/? o a) A = PA O a A

defines a new natural transformation /3 o a: F =4> H. That composition
law is clearly associative and possesses a unit at each functor F: this is
just the natural transformation \p whose A-component is IF A- Again
a careless argument would deduce the existence of a category whose
objects are the functors from si to & and whose morphisms are the
natural transformations between them. But since si and 3$ have merely
classes of objects, there is in general no way to prove the existence of
a set of natural transformations between two functors! But when si is
small, that problem disappears and we get the following result.
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Proposition 1.3.2 Let si be a small category and Si an arbitrary
category The functors from si to $ and the natural transformations
between them constitute a category; that category is small as long as 0&
is small. •

We prove now the first important theorem of this book. We refer to
example 1.2.8.d for the description of the representable functors.

Theorem 1.3.3 (The Yoneda lemma)
Consider a functor F: si >Set from an arbitrary category si to the
category of sets and mappings, an object A E si and the correspond-
ing representable functor si (A, —)\si >Set. There exists a bijective
correspondence

0F,A:Uat(s/(A,-),F) ^-^FA

between the natural transformations from s/(A, —) to F and the ele-
ments of the set FA; in particular those natural transformations con-
stitute a set. The bijections 0p,A constitute a natural transformation
in the variable A; when si is a small category the bijections 0p,A sdso
constitute a natural transformation in the variable F.

Proof For a given natural transformation a: si(A, - ) =>- F , we define
OF,A{OL) = «A(1A)- With a given element a € FA we associate, for every
object B e si, a mapping

r(a)B: s/(A, B) >FB

defined by r(a)B(f) = F(/)(o). This class of mappings defines a natural
transformation

since, for every morphism g: B >C in si, the relation

Fg o r{a)B = r(a)c ° st{A, g)

(see diagram 1.7) reduces to the equality

f){a) = Fg((Ff)(a)),

which follows from the functoriality of F.
0F,A and r are inverse to each other. Indeed, starting from a € FA

we have

^)) = <°)A(U) = F(lA)(a) = lFA(a) = a.
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Fg

Diagram 1.7

On the other hand, starting from a:
phism / : A >B in s&\

, —) =>• F and choosing a mor-

= F(f)(aA(lA))
= aB(sf(AJ
= aB(folA)

where the third equality follows from the naturality of a. This proves
the first part of the theorem.

To prove the naturality of the bijections, let us consider the functor
N: si >Set defined by

and for every morphism / : A >B in s/

N(f): tiat(sf(A, - ) , F) • Nat(j/(J5, - ) , F)

(see example 1.3.6.C for the definition of jrf(f, —)). We axe claiming the
existence of a natural transformation r]:N=$-F defined by TJA = 0F,A-
Indeed, with the previous notation,

(OF,B O N(f))(a) = 9F,B(a o

= {aBoJ/(A,f))(lA)



1.3 Natural transformations 13

Moreover, when si is a small category, it makes sense to consider the
category Fun(jaf, Set) of functors from si to Set and natural transforma-
tions between them. For a fixed object A £ si we consider this time the
functor M: Fun(si, Set) >Set defined by

= ti*t(s/(A,-),F);

for a functor G: si >Set and a natural transformation 7: F => G,

M(7): Nat(^(A, - ) , F) >Nat(j/(A, - ) , G)

is defined by M(pf){a) = 70a. On the other hand we consider the functor
"evaluation in A" evA: Fun(j/, Set) >Set defined by

= FA, evA(7)=7 A.

We claim to have a natural transformation fi:M => evA defined by
fiF — OF,A- Indeed, with the previous notation,

(evA(7) o 0F,A)(a) = -yA(<*A(lA)). •

In proposition 1.3.2 we have used a first composition law for natural
transformations. In fact, there exists another possible type of composi-
tion for natural transformations.

Proposition 1.3.4 Consider the following situation:
_F , H .

si~G &a \» K l& \<€
where si, 39, <& are categories, F, G, H, K are functors and a, (3 axe
natural transformations. The formula, for every A £ si,

(/? * a)A = PGA O H(aA) = K(aA) o (3FA

defines a natural transformation

{3*a:HoF^KoG.

called the i(Godement product" of the two natural transformations a
and (3.

Proof (/? * a)A is thus defined considering diagram 1.8 which is in-
deed commutative by naturality of /?. The proposition asserts, for every
morphism f:A >A' in si, the commutativity of the outer rectangle
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PFA PGA

KFA
K(aA)

Diagram 1.8

HFf HGf KGf

HFA' -+KGA'

Diagram 1.9

in diagram 1.9. It holds since the first square commutes by naturality of
a and functoriality of H and the second square commutes by naturality
of/?. •

The proof of the next proposition is a straightforward exercise left to
the reader.

Proposition 1.3.5 Consider the situation
_F . G

si H \
L i

K i
Mi

where sf, 88, <& are categories, F, G, H, K, L, M are functors and a,
(3, 7, 6 are natural transformations. The following equality holds:

(6 * 7) o (13 * a) = (6 o p) * (7 o a). •

For the sake of brevity and with the notations of the previous propo-
sitions, we shall often write (3 * F instead of /? * 1^ or G * a instead of

Examples 1.3.6

1.3.6.a Consider the power set functor V: Set >Set defined in 1.2.8.C
and the identity functor id: Set >Set. The mappings "singleton"
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which map an element x G E to the singleton {x} constitute a natural
transformation a: id => V.

1.3.6.b Consider the category VectR of real vector spaces and the
bidual functor

()**:VectR >VectR.

The canonical morphisms

av:V >V***

for every vector space V, define a natural transformation from the iden-
tity functor to the bidual functor.

1.3.6.C Consider a category si and a morphism / : A >B of si. We
obtain a natural transformation

between the functors represented by A and B (see 1.2.8.d) by putting,
for every object C G si and every morphism g G si(B, C),

Generally we shall write si(f, C) for the mapping J / ( / , — )c>

1.3.6.d Given two categories si, & and a fixed morphism b: B > J3',
we define the "constant natural transformation on 6" A&: A^ => A#> by
(AI,)A = b for every object At si (see 1.2.8.e for the definition of A#,

1.4 Contravariant functors

If si is a small category, we know it makes sense to consider the category
of functors from si to Set and natural transformations between them
(see 1.3.2). In examples 1.2.8.d and 1.3.6.C we have defined a mapping

y* : j / >Fun(j/,Set),

where A G \si\ is an object of si and / is a morphism of si. It is rather
obvious that, given morphisms

A f-—>B 9- >C

in si, we obtain the following equalities:

Y*(g o f) = Y*(f) o Y*(g), Y*(lB) - 1Y.B.
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So Y* is a mapping which "reverses the direction of every morphism",

f:A >B, Y*(f):Y*(B) >Y*(A),

and - up to this reversing process - preserves the composition law and
identities. This is what we shall call a "contravariant functor".

Definition 1.4.1 A contravariant functor F from a category si to a
category 0& consists of the following:

(1) a mapping

between the classes of objects; the image of A G si is written F(A)
or just FA;

(2) for every pair of objects A, A' G si, a mapping

s/{A, Ar) >£{FA\ FA);

the image of f G si {A, A!) is written F(f) or just Ff.

These data are subject to the following axioms:

(1) for every pair of morphisms f G si (A, A'), g € s/(A\ A"),

F(gof) = F(f)oF(g);

(2) for every object A G si,

F(1A) = IFA-

When confusion could be possible, we shall emphasize the fact that
we are definitely working with a functor in the sense of definition 1.2.2
by calling it a covariant functor.

The notion of a natural transformation can easily be carried over to
the contravariant case.

Definition 1.4.2 Consider two contravariant functors F,G:jtf^Z$3#
from a category si to a category Si. A natural transformation a:F => G
from F toG is a class of morphisms (a A- FA >GA)A€S/ of Si indexed
by the objects of s/ and such that for every morphism f:A >A' in
s/, G(f) o C*A' =OLA° F(f) (see diagram 1.10).

All the results of sections 1.2 and 1.3 can be transposed to the con-
travariant case; this is a straightforward exercise left to the reader. More-
over, we should mention at this point that the validity of this transpo-
sition can also be obtained as an application of the duality principle of
section 1.10.
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FA —2A^> GA

Ff Gf

FA' aA, > GA'

Diagram 1.10

Examples 1.4.3

1.4.3.a We started this section with the example of the "contravariant
Yoneda embedding"

Y*: si > Fun(j^, Set)

for a small category si.

1.4.3.b Example 1.2.8.d can be "dualized"; given a category si and
an object A £ si we define a contravariant functor

si(-, A): si >Set

by the formulas

for every object B G «s/, and

s t ( - , A ) ( f ) ( g ) = g o f

for all morphisms / : B >C and g: C > A in si.

1.4.3.C Example 1.3.6.C can be "dualized" as well. With the previous
notation we obtain a natural transformation

for / : B >C, by putting

for every object D and every morphism h: D >B. Generally, we shall
write s/(D, f) for the mapping sf(—, f)r>.

1.4.3.d Again using the previous notation, example 1.4.3.a itself can
be "dualized". Let us write Fun*(j/, Set) for the category of contravari-
ant functors from a small category si to Set. The "covariant Yoneda
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embedding" is the covariant functor

Y+.st >Fun*(j/,Set)

defined by the formulas

for every object A G ^ and every morphism / of si,

1.4.3.e Consider the category Rng of commutative rings with unit and
the category Top of topological spaces and continuous mappings. The
construction of the Zariski spectrum of a ring gives rise to a contravariant
functor

Sp: Rng >Top.

For a given ring A, Sp(A) is the Zariski spectrum of A, that is the
set of prime ideals of A provided with the topology generated by the
fundamental open subsets

(9a = {P e Sp(A) \a £ P)

for every element a € A. For a given ring homomorphism / : A >i?,
the inverse image process maps a prime ideal of B to a prime ideal of
A; therefore we get a mapping

Sp(/):Sp(B) >Sp(A),

which is easily proved to be continuous.

1.4.3.f The last example in this section is that of a contravariant
functor V*: Set >Set which coincides on the objects with the covariant
functor P:Set ->Set defined in 1.2.8.C Thus V*{X) is the power set
of X and for a given mapping / : X » Y",

V*(f):V*(Y) >V*(X), V*(f)(U) = r

is the inverse image mapping.

1.5 Full and faithful functors

An abelian group is a set provided with some additional structure; a
group homomorphism is a mapping which satisfies some additional prop-
erty. So, in some vague sense, the category of abelian groups is "included"
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in the category of sets... the expected "inclusion" being the functor de-
scribed in example 1.2.8.a. But this functor is by no means injective
since on the same set G, there exist in general many different abelian
group structures. In fact this functor is what we shall call a "faithful
functor".

Definition 1.5.1 Consider a functor F: si >@t and for every pair of
objects A, A! G si, the mapping

(1) The functor F is faithful when the abovementioned mappings are
injective for all A, A!.

(2) The functor F is full when the abovementioned mappings are sur-
jective for all A, A!.

(3) The functor F is full and faithful when the abovementioned map-
pings are bijective for all A, A!'.

(4) The functor F is an isomorphism of categories when it is full and
faithful and induces a bijection \s/\ > \&\ on the classes of ob-
jects.

The reader will easily adapt definition 1.5.1 to the case of contravari-
ant functors. Definiton 1.5.1.4 is a special instance, in the category of
small categories and functors, of the general notion of isomorphism in a
category.

Proposition 1.5.2 The Yoneda embedding functors described in ex-
amples 1.4.3.a,d are full and faithful functors.

Proof In the case of the contravariant Yoneda embedding, we have to
prove that given two objects A, B in a small category A, the canonical
mapping

, B)

is bijective. This is a special case of the Yoneda lemma (see 1.3.3) applied
to the functor s/(A, —) and the object B.

The case of the covariant embedding is proved in a "dual" way. •

Let us conclude with some terminology concerning subcategories.

Definition 1.5.3 A subcategory 3$ of a category si consists of:

(1) a subclass \8\ C \si\ of the class of objects,
(2) for every pair of objects A, A! e si, a subset &(A, A') C si {A, A1),

in such a way that

(1) f G <8(A, Af) and g G #(A', A") => g o f e @{A, A"),
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FA ^—> GB

Fa Gb

FA' j,—> GBf

Diagram 1.11

(2) VAe<%, lA

A subcategory Sb of si thus gives rise to an injective (and therefore
faithful) inclusion functor 0£ >s/.

Definition 1.5.4 A subcategory & of a category si is called a full
subcategory when the inclusion functor ^ > si is also a full functor.

& is thus full in si when

A, A' e <% =» *(A, A1) = j*(A, A').

The category of sets and injections between them is a (non-full) subcat-
egory of the category of sets and mappings. The category of finite sets
and mappings between them is a full subcategory of the category of sets
and mappings. A full subcategory can clearly be defined by just giving
its class of objects.

1.6 Comma categories
We indicate now a quite general process for constructing new categories
from given ones. This type of construction will be used very often in this
book.

Definition 1.6.1 Consider two functors F.si ><£ and G\@ ><g.
The "comma category" (F, G) is defined in the following way.

(1) The objects of (F, G) are the triples (A, / , B) where Aes/,B e@
are objects and f: FA >GB is a morphism of^.

(2) A morphism of (F, G) from (A, / , B) to (A', / ' , B') is a pair (a, b),
where a: A >Af is a morphism of sd', b: B >B is a morphism
of &, and f o F(d) = G{b) o / (see diagram 1.11).

(3) The composition law in (F, G) is that induced by the composition
laws of si and 3b, thus
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u G

U'

F ' E

Diagram 1.12

a G

Diagram 1.13

Proposition 1.6.2 Consider functors F.si >%>, G:3$ >^ and
their corresponding comma-category (F,G). There are two functors
U: (F,G) > J / , V: (F,G) >@ (see diagram 1.12); moreover there
exists a canonical natural transformation

Proof With the notation of 1.6.1 it suffices to define

The equality F o U = G o V has no reason at all to hold in general. The
natural transformation a is easily defined by OL^AJ.B) = / ; the fact that
it is a natural transformation is just condition 1.6.1.(2). •

Proposition 1.6.3 In the situation and with the notations of 1.6.2,
consider a category 3>, two functors U': Q) >s/, V: Q) >3$ (see

diagram 1.13) and a natural transformation

a'.FoU' ^GoV1.

In that case there exists a unique functor W: <3) >(F, G) such that
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Proof The conditions imposed on W indicate immediately what it
should be:

for an object D G @> and

W{d) = (U'd,V'd)

for a morphism dof&>, which already proves the uniqueness of such a W.
To prove the existence, it suffices to observe that the previous formulas
indeed define a functor W: Q) > (F, G). U

We shall refer to proposition 1.6.3 as the "universal property" of the
comma category.

A special but very important case of a comma category is the "cate-
gory of elements" of a functor F: si >Set.

Definition 1.6.4 Consider a functor F: si >Set from a category si
to the category of sets. The category Elts(F) of "elements ofF" is defined
in the following way
(1) The objects of Elts(F) are the pairs (A, a) where A G \s/\ is an

object and a G FA.
(2) A morphism f: (A, a) >(£,&) of Elts(F) is an arrow f:A >B

of A such that Ff(a) = b.
(3) The composition of Elts(F) is that induced by the composition of

si.

Let us write 1 for the discrete category with a single object •;

1:1 >Set, ••-•{*}

is the functor which maps the unique object • of 1 to the singleton {*}.
In other words, we view 1 as the full subcategory of Set generated by a
singleton set. Since an element a G FA can be seen as a morphism from
a singleton to FA, thus as a morphism of the type l(A) >F(A) in
Set, the category Elts(F) is exactly the comma category (1,F). Notice
that the forgetful functor (/>p: Elts(F) >si is defined by </>F(^> a) — A
on the objects and by 0 F ( / ) = / on the morphisms.

Another interesting example of a comma category is the "product" of
two categories.

Definition 1.6.5 The product of two categories si and 0£ is the category
si x $ defined in the following way

(1) The objects of si x @ are the pairs (A, B) with A G \si\, B G |^ |
objects of si, 36.
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(2) The morphisms (A,B) >(A', Bf) of si x 0b are the pairs (a, b)
where a: A >Af is a morphism of si and b:B >Bf is a mor-
phism of 0b.

(3) The composition in si x 0b is that induced by the compositions of
si and 0b, namely

(af ,bf) o (a,b) = (a' o a,br ob).

With the product si X0b are associated the two "projection" functors

defined by the formulas

3) = A,

(a, b) = a,

These data satisfy the following "universal property".

Proposition 1.6.6 Consider two categories si and 0b. For every cate-
gory 3) and every pair of functors F: Q) >si, G: Q) >0b, there exists
a unique functor H:S> >si x 0b such that p^ oH = F,p@oH = G.

Proof H is the functor defined by

H(D) = (FD, GD) for an object D of 0 ,

H(d) = (Fd, Gd) for a morphism d of 2. •

Let us now observe the existence of a unique functor A^isi——>1:
this is the "constant functor" to the unique object of 1 (see 1.2.8.e).
Since 1 has just one single mapping, the comma category (A^, A<#) is
isomorphic to the product category si x 0b. Proposition 1.6.6 is then a
particularization of proposition 1.6.3.

A point of terminology: a functor F'.six 0b >(& defined on the
product of two categories is generally called a "bifunctor" (a functor of
two "variables").

1.7 Monomorphisms

When a composition law appears in some mathematical structure, spe-
cial attention is always paid to those elements which are "cancellable"
or "invertible" for that composition. This section is devoted to the study
of left cancellable morphisms in a category.
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Definition 1.7.1 A morphism f:A >B in a category <& is called a
monomorphism when, for every object C £ <& and every pair of mor-
phisms #, h: C > A, the following property holds:

We shall generally use the symbol / : A> >B to emphasize the fact
that / is a monomorphism.

Proposition 1.7.2 In a category <&,

(1) every identity morphism is a monomorphism,
(2) the composite of two monomorphisms is a monomorphism,
(3) if the composite k o f of two morphisms is a monomorphism, then

f is a monomorphism.

Proof We use the notation of 1.7.1 and consider another morphism
k:B >D.

(1) is obvious.
(2) If / and k are monomorphisms,

(3) If k o f is a monomorphism,

fog = foh=>kofog = kofoh=>g = h. •

The following terminology is rather classical.

Definition 1.7.3 Consider two morphisms f: A >B and g: B > A
in a category. When g o f = lAj f is called a section of g, g is called a
retraction of f and A is called a retract of B.

P r o p o s i t i o n 1.7.4 In a category, every section is a monomorphism.

Proof By 1.7.2.(1,3). •

Let us now say a word about the effect of a functor on a monomor-
phism.

Definition 1.7.5 Consider a functor F: si >0&.

(1) F preserves monomorphisms when, for every morphism f of s/,

f monomorphism => Ff monomorphism.

(2) F reflects monomorphisms when, for every morphism f of s&',

Ff monomorphism => / monomorphism.
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Proposition 1.7.6 A faithful functor reflects monomorphisms.

Proof Consider a faithful functor F: si >3$, a morphism / : A > A!
in s4\ and suppose Ff is a monomorphism in &. Choose another object
A" G si and two morphisms g, h: A!1 > A in si.

where the second implication holds since Ff is a monomorphism and
the last one follows from the faithfulness of F. •

Examples 1.7.7

1.7.7.a In the category Set of sets and mappings, the monomorphisms
are exactly the injections. Indeed, an element a G A can be viewed
as a mapping a: {*} >A from the singleton to A; therefore, given a
monomorphism / : A >B and elements a, o! G A,

a — a1'.

Conversely, if f:A >B is injective and gyh:CZZ^A are mappings
such tha t / o g = f o h, then for every element c G C

fog = foh=*'f{g(c))=f(h{c))
=> g(c) = h(c)

and therefore g = h.

1.7.7.b In the category Top of topological spaces and continuous map-
pings or its full subcategory Comp of compact Hausdorff spaces, the
monomorphisms are exactly the continuous injections. Indeed, an el-
ement of a space A corresponds to a continuous mapping {*} >A
from the singleton to A; therefore the argument of 1.7.7.a can be carried
over.

1.7.7.C In the categories Gr of groups and Ab of abelian groups, the
monomorphisms are exactly the injective group homomorphisms. The
argument is again analogous, using now the bijective correspondence
between the elements a G G of a group and the group homomorphisms
a: Z >G from the group of integers to G; we recall the correspondence:

a(z) = z • a, a = a(l).
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1.7.7.d In the category Rng of commutative rings with a unit, the
monomorphisms are exactly the injective ring homomorphisms. Repeat
the argument using now the ring homomorphisms with domain the ring
Z[X] of polynomials with integral coefficients: an element r G R of a
ring R corresponds to the ring homomorphism f: Z[X] >R mapping
the polynomial p(X) to p{r)\ conversely r = f(X).

1.7.7.e In the category Mod/* of right modules on a ring R with unit,
the monomorphisms are exactly the injective i?-linear mappings. Use
again the same argument using the i?-linear mapping with domain the
ring R itself: an element m G M of a i2-module M corresponds to the
linear mapping fn: R >M mapping r to mr; conversely m = ra(l).

1.7.7.f In the category Bani of real Banach spaces and linear contrac-
tions, the monomorphisms are exactly the injective linear contractions.
The elements of the unit ball of a Banach space B are in bijective cor-
respondence with the linear contractions a:M >B\ just put

a(r) = ra , a = a(l).

Therefore a monomorphism / : B >Bf is such that the implication

f(a) = f(a')^a = a'

holds for elements a, a1 in the unit ball of B\ by linearity of / , this
fact extends to arbitrary elements a, o! G B. The converse is once more
obvious.

1.7.7.g The previous examples could give the wrong impression that,
in "concrete" examples, a monomorphism is always exactly an injective
morphism. This is false as shown by the following counterexamples. We
give first an "algebraic" counterexample.

Consider the category Div of divisible abelian groups and group homo-
morphisms between them. The quotient morphism q: Q >Q/Z of the
additive group of rational numbers by the group of integers is definitely
not an injection, but it is a monomorphism in Div. Indeed, choose G a
divisible group and f,g:G >Q two group homomorphisms such that
qof = qog. Putting h = f — g we have qoh = 0 and the thesis becomes
h = 0. Given an element x G G, h(x) is an integer since q o h = 0. If
h(x) ^ 0 note that

/ x V _ 1
\2h(x)J ~ 2
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and therefore

which is a contradiction.

1.7.7.h Let us give now a "topological" counterexample. We consider
the category whose objects are the pairs (X, x) where X is a connected
topological space and x € X is a base point; in this category, a morphism
/ : (X, x) > (y, y) is a continuous mapping / : X >Y which preserves
the base points, i.e. such that f(x) = y. Let us consider the projection
7T of the circular helix H on the circle S1,

n:(H,h) >(S\s),

with h EH and s = TT(/I). If / : (X, x) >(S1, s) is a morphism in our
category which admits a "lifting"

g:(X,x) >(H,h)

through the projection TT, that lifting is necessarily unique (see Spanier,
page 67). But this expresses exactly the fact that TT is a monomorphism.

1.8 Epimorphisms

We now turn our attention to right cancellable morphisms in a category.

Definition 1.8.1 A morphism f:B >A in a category <£ is called an
epimorphism when, for every object C £ # and every pair of morphisms
#, h: A >C, the following property holds:

(9°f = hof)=>{g = h).

We shall generally use the notation / : B »A to emphasize the fact
that / is an epimorphism.

Proposition 1.8.2 In a category <&,

(1) every identity morphism is an epimorphism,
(2) the composite of two epimorphisms is an epimorphism,
(3) if the composite f ok of two morphisms is an epimorphism, then f

is an epimorphism.

Proof We use the notation of 1.8.1 and consider another morphism
k:D >B.

(1) is obvious.
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(2) If / and k are epimorphisms,

hofok = gofok=>hof = gof=>h = g.

(3) If / o k is an epimorphism,

gof = hof=>gofok = hofok=>g = h. •

Proposition 1.8.3 In a category, every retraction is an epimorphism.

Proof By 1.8.2.(1,3). •

Transposing definition 1.7.5 to the case of epimorphisms, we obtain

Proposition 1.8.4 A faithful functor reflects epimorphisms.

Proof Consider a faithful functor F: stf >^, a morphism / : A! > A
and suppose Ff is an epimorphism in @t. Choose another object A!' G si
and two morphisms g,h: A \ A" in stf. Then

gof = hog=>FgoFf = FhoFf

where the second implication holds since Ff is an epimorphism and the
last one follows from the faithfulness of F. •

The similarity of the previous proofs with those of section 1.7 is strik-
ing: this is a special instance of the "duality principle" described in
section 1.10.

Examples 1.8.5
1.8.5.a In the category Set of sets and mappings, the epimorphisms are
exactly the surjective mappings. Choose f:A >B a surjective map-
ping and #, h: B >C two mappings such that g o f = h o / . For every
element b G J3, we can find an element a G A such that f(d) = 6;
therefore

9{b)=g{f{a))=h{f{a)) = h{b),

which proves the equality g = h.
Conversely, if / : A > B is an epimorphism, consider the two-element

set {0,1} and the following mappings g, h: B >{071}:

g(b) = 1 if bef(A),

g(b) = 0i£btf(A),

h(b) = 1 for every b G B.
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Clearly gof = hofis the constant mapping on 1; therefore g = h and
f(A) = B.

1.8.5.b In the category Top of topological spaces and continuous map-
pings, the epimorphisms are exactly the surjective continuous mappings.
The previous proof applies when {0,1} is provided with the indiscrete
topology.

1.8.5.C In the category Haus of Hausdorff topological spaces and con-
tinuous mappings between them, the epimorphisms are exactly the con-
tinuous mappings with a dense image. We recall that a continuous map-
ping / : A >B has a dense image precisely when every element b € B

is the limit of a net of elements of /(A), i.e. a set of elements indexed
by a filtered poset (see 2.13.1); when B is a Hausdorff space, the limit
of a converging net is unique. Suppose / : A >B has a dense image
and choose g,h: B \c such that g o / = h o f. Given an element
b G B, choose a net (a^)^/ of elements in A such that b = lim/(ai). By
continuity of g, h we have

g(b) = ]\m(g o / ) (* ) , h(b) = \im(h o /)(<*;).

Since g o f = h o f and the limit is unique, we conclude that g(b) = h(b)
and thus g = h.

Conversely if / : A >B is an epimorphism, and B is not empty, A
cannot be empty. Indeed if 511B is the space constituted by two disjoint
copies of B, BIIB is a Hausdorff space and the two canonical inclusions
ii^2' R > fl H B are continuous and distinct. A empty would yield
ii o / = Z2o/ and thus i\ =12-, since / is an epimorphism. Now consider
the quotient of B which identifies with a single point the closure f(A)
of the image of A] this is a Hausdorff space as a quotient of a Hausdorff
space by a closed subspace; write p: B >B/f(A) for the corresponding
continuous projection. Since f(A) is not empty, we can consider as well
the constant mapping q:B >B/f(A) on the equivalence class of the
elements of f(A). Clearly p o f = q o f and therefore p = q, which proves
the equality f(A) = B.

1.8.5.d In the category Gr of groups and their homomorphisms, the
epimorphisms are exactly the surjective homomorphisms. Indeed, a sur-
jective homomorphism is clearly an epimorphism. Conversely suppose
/ : A >B is an epimorphism. We can factor / through its image

A >f(A) >B,

thus through a surjection followed by an injection. By 1.8.2.(3), the
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injective part is an epimorphism and so the problem reduces to proving
that an epimorphic inclusion is an identity.

Given two groups G, H with a common subgroup K, it is possible
to construct the amalgamation of G and H over K: this is the group
G *K H of words constructed with the "letters" of G and H, the two
copies of a "letter" of K being identified in G*K H. The amalgamation
property for groups tells us that the two canonical morphisms

G >G*KH, H >G*KH,

are injective and that two "letters" of G and H are identified in G * K #
just when they are the two copies of a "letter" in K (see Kuros). If
we apply that amalgamation property choosing the inclusion f(A) -̂> B
twice, we first deduce the equality of the two canonical inclusions

ii: B— >B *f(A) B, i>2'' B >Bf(A)

since they coincide on f(A) and f(A) >B is an epimorphism. But
then each element of B is already in f(A) by the amalgamation property.

1.8.5.e Consider a ring R with unit. In the category Mod/? of right R-
modules, the epimorphisms are exactly the surjective linear mappings. In
particular, choosing R = Z, the epimorphisms of the category of abelian
groups are exactly the surjective homomorphisms. Again a surjective
linear mapping is clearly an epimorphism. Conversely if / : A >B is an
epimorphism, consider both the quotient mapping and the zero mapping

p:B >B/f(A), 0:B >B/f(A).

From the equality

we deduce p = 0 and thus B = f(A).

1.8.5.f The form of epimorphisms in the category of commutative
rings with unit is known (see exercise 1.11.13); let us just emphasize the
fact that epimorphisms of rings are not necessarily surjective. Consider
the inclusion of the ring Z of integers in the ring Q of rational numbers,
z:Z >Q. This is clearly not a surjection but it is an epimorphism
of rings. Indeed given another ring A and two ring homomorphisms
/ , g: Q > A which agree on the integers, we deduce first that for every
integer 0 ^ z G Z, z is invertible in Q and therefore f(z) and g(z) are
invertible in A] clearly
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Since / and g agree on the integers, / Q) = 9 {^) a nd finally,

1.8.5.g In the category Bani of Banach spaces and linear contractions,
the epimorphisms are the linear contractions with dense image. Choose
/ : A >B with a dense image and #, h-.B \d such that gof = hof.
Since g and h agree on /(A), by continuity g, h agree on on f(A) = B as
well; therefore g = h. Conversely if / : A >B is an epimorphism, the
quotient of B by the closed subspace f(A) is a Banach space and both
the quotient mapping p and the zero mapping are linear contractions:

p:B >B/f{A), 0:B >B/f(A).

From the equalities pof = 0 = Oo/, we deduce p = 0 and thus B = f(A).

1.9 Isomorphisms
We consider finally the case of those morphisms of a category which are
invertible.

D e f i n i t i o n 1 . 9 . 1 A m o r p h i s m f : A >B in a category <$ is called
an isomorphism when there exists a morphism g:B >A of^ which
satisfies the relations

f °9 = 1 B , 9° f = 1A-

Clearly such a morphism g is necessarily unique; indeed if h: B > A
is another morphism with the same properties

we conclude that

g = golB=gofoh = lAoh = h.

Therefore we shall call such a morphism g "the" inverse of / and we
shall denote it by f~x.

Proposition 1.9.2 In a category,
(1) every identity is an isomorphism,
(2) the composite of two isomorphisms is an isomorphism,
(3) an isomorphism is both a monomorphism and an epimorphism.
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Proof

(1) is obvious.
(2) If f:A >B and g:B >C are isomorphisms, so is g o f and

(s°/)-1 = r1°<r1-
(3) is just the conjunction of 1.7.4 and 1.8.3 •

Proposition 1.9.3 In a category, if a section is an epimorphism, it is
an isomorphism.

Proof If go / — 1A and / : A >B is an epimorphism, from fogof = f
we deduce / o g = 1B. •

Proposition 1.9.4 Every functor preserves isomorphisms.

Proof Obvious. •

Transposing definition 1.7.5 to the case of isomorphisms, we obtain

Proposition 1.9.5 A full and faithful functor reflects isomorphisms.

Proof Obvious. •

Examples 1.9.6

1.9.6.a In the category Set of sets, the isomorphisms are exactly the
bijections.

1.9.6.b In the category Top of topological spaces, the isomorphisms are
exactly the homeomorphisms. Since a continuous bijection is in general
not a homeomorphism, this provides an example where the converse of
statement 1.9.2.(3) does not hold (see 1.7.7.b and 1.8.5.b).

1.9.6.c In the categories Gr of groups, Ab of abelian groups and Rng
of commutative rings with unit, the isomorphisms are the bijective ho-
momorphisms.

1.9.6.d In the category Mod# of right modules over a ring R, the
isomorphisms are the bijective U-linear mappings.

1.9.6.e In the category Ban^ of real Banach spaces and bounded linear
mappings, the isomorphisms are the bounded linear bijections. An iso-
morphism is obviously bijective. Conversely if / : A >B is a bounded
linear bijection, the inverse mapping f~lm.B >A is certainly linear.
By the open mapping theorem, / is open because it is surjective; but " /
open" means precisely " / - 1 continuous" and thus / - 1 is bounded.
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1.9.6.f In the category Bani of real Banach spaces and linear contrac-
tions, the isomorphisms are exactly the isometric bijections. An isometric
bijection is obviously an isomorphism. Conversely if the linear contrac-
tion f:A >B has an inverse mapping f~l:B >A which is also a
linear contraction, then for every element a € A

IMI = Iir7(a)|| < ||/(a)||
and thus ||a|| = | |/(a)|| since / is contracting.

1.9.6.g In the category Cat of small categories and functors, the iso-
morphisms are those defined in 1.5.1.

1.9.6.h Going back to example 1.2.6.d, a group can be seen as a cat-
egory with a single object all of whose morphisms are isomorphisms.

1.10 The duality principle

At this point the reader will have noticed that every result proved for co-
variant functors has its counterpart for contravariant functors and every
result proved for monomorphisms has its counterpart for epimorphisms.
These facts are just special instances of a very general principle.

Definition 1.10.1 Given a category si, the dual category si* is defined
in the following way:

(both categories have the same objects);
(2) for all objects A, B of si*, sit* {A, B) = si{B, A)

(the morphisms of si* are those of si "written in the reverse direc-
tion"; to avoid confusion, we shall write f*:A >B for the mor-
phism of si* corresponding to the morphism f:B > A of si);

(3) the composition law of si* is given by

r ° <?* = (<? ° / r -
Metatheorem 1.10.2 (Duality principle) Suppose the validity, in ev-
ery category, of a statement expressing the existence of some objects or
morphisms or the equality of some composites. Then the "dual state-
ment" is also valid in every category; this dual statement is obtained
by reversing the direction of every arrow and replacing every composite
f ° 9 by the composite g o f.

Proof If S denotes the given statement and S* denotes its dual state-
ment, proving the statement 5* in a category si is equivalent to proving
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the statement S in the category si*, and this is supposed to be valid.

•
For example, the notion of / : A >B being a monomorphism in si

means

The dual notion is thus that of a morphism / : B > A which satisfies

V C G J / V j , / l € si (A, C) gof = hof^g = h

. . . which is exactly the notion of an epimorphism. With that remark in
mind, it is obvious that all the results of section 1.8 are just the dual
statements of the results of section 1.7: so, formally, the validity of the
latter follows at once from the validity of the former via the duality
principle.

The case of contravariant functors can also be reduced to the case
of covariant functors via the consideration of the dual category: a con-
travariant functor from si to & is just a covariant functor from si* to
$ (or, equivalently, a covariant functor from si to 0}*).

It is interesting to notice that, in category theory, some notions are
their own dual. For example / : A >B is an isomorphism when

3 g : B >A g o f = lA, f o g = lB.

The dual notion is that of a morphism / : B > A with the property

3g:A >B f o g = 1A, g o f = 1B

. . . but this is again the definition of / being an isomorphism.

Examples 1.10.3

1.10.3.a With every category si we can associate a bifunctor, still
written si,

si: si* x si >Set,

defined by the following formulas:

• si (A, B) is the set of morphisms from A to B;
• if / : A' > A and g: B >B' are morphisms of si,

&), s*(f,g)(h) = goho f.

Fixing the first variable A we obtain the covariant functor defined in
1.2.8.d and fixing the second variable B we obtain the contravariant
functor defined in 1.4.3.b. The bifunctor si is called the "Horn-functor"
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of the category si (from "homomorphism"); it is "contravariant in the
first variable and covariant in the second variable".

1.10.3.b The dual of the category of sets and mappings is equiva-
lent to the category of complete atomic boolean algebras and (V — A)-
preserving homomorphisms. Indeed, writing CBA for the second cate-
gory, the contravariant power set functor can be seen as a contravariant
functor P*:Set >CBA. It is well-known that every complete atomic
boolean algebra B is isomorphic to the power-set VX of its set X of
atoms. Let us prove now that P* is a full and faithful functor. Given
two sets X and Y, the mapping

Set(X,Y)

is obviously injective. To prove it is surjective, let us consider a morphism
g: V*Y >V*X in CBA and an element x G X = g(Y) {g preserves the
top element). Now Y is the union of its singletons and g preserves unions,
so there exists some y E Y such that x G g({y})- Such an element y is
necessarily unique since x € g({y'}) with yf ^ y would imply

=0,

because g preserves intersections and the bottom element. Writing f(x)
for that element y, it follows easily that g is just f~l.

1.10.3.C The dual of the category of abelian groups and their homo-
morphisms is equivalent to the category of compact abelian groups and
continuous homomorphisms. This is just the Pontryagin duality theo-
rem: with every abelian group A is associated its group of characters
A = Horn (A, U) where U is the circle group and the topology of A is
that induced by the product topology UA; with every homomorphism
/ : A >B is associated the morphism / : B > A of composition with

1.10.3.d The category of finite abelian groups and their homomor-
phisms is equivalent to its own dual category. Indeed, it suffices to par-
ticularize the Pontryagin duality to the case of finite groups: when A is
finite, A is isomorphic to A as a group and therefore is finite. But the
finite compact groups are just the finite discrete groups, thus finally just
the finite groups.
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1.11 Exercises

1.11.1 If two ordered sets A, B are viewed as categories (see 1.2.6.b),
prove that a functor from A to B is just an order preserving mapping.
If / , g: A I B are two such functors, prove that there exists a (single)
natural transformation from / to g if and only if for every element a € A,
f(a) < g(a).

1.11.2 If two monoids M and N are viewed as categories (see 1.2.6.d),
prove that a functor from M to N is just an homomorphism of monoids.
What is a natural transformation between two such functors?

1.11.3 In exercise 1.11.2, if M and N are groups, show the existence
of a natural transformation between two functors / , g: M >N if and
only if / and g are conjugate:

3n G N Vra G M f(m) = n" 1 • g(rn) o n.

1.11.4 If G is a group considered as a category (see 1.9.6.h), prove that
a natural transformation on the identity functor of G is just an element
of the centre of G.

1.11.5 Prove that a covariant represent able functor preserves monomor-
phisms.

1.11.6 Prove that a contravariant representable functor maps an epi-
morphism to a monomorphism.

1.11.7 Prove that the forgetful functor Rng >Set which maps a ring
to its underlying set is faithful and representable by the ring Z[X], but
does not preserve epimorphisms. [Hint: see 1.8.5.f.]

1.11.8 If $4, $, *€ are small categories, prove the isomorphism of cate-
gories

where Fun denotes the category of functors and natural transformations.

1.11.9 Prove that a retraction which is a monomorphism is necessarily
an isomorphism.

1.11.10 Determine the nature of the monomorphisms, epimorphisms
and isomorphisms in examples 1.2.7.

1.11.11 Consider a small category s/ and the corresponding functor
category Fun(j/, Set). Prove that a morphism a of Fun(j/, Set) (a natural
transformation) is a monomorphism if and only if each component a A ,
A G .a/, is a monomorphism in Set. [Hint: use the Yoneda lemma].
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: X > Y

Diagram 1.14

1.11.12 The statement in 1.11.11 is no longer valid when Set is replaced
by an arbitrary category Si. Consider the categories of diagram 1.14 (as a
convention, identity arrows are not shown) where, in ^ , the two compos-
ites fog and foh are equal to k. The category Fun(«s/, Si) is the category
of arrows of Si (see 1.2.7.c). The pair ( 1 B , / ) : (B,1B,B) >(£ , / , C)
is a monomorphism in Fun(j/, $) while / is not a monomorphism in Si.

1.11.13 Consider the category Rng of commutative rings with unit.
A morphism f:A >B is an epimorphism precisely when given any
element 6 G B , the equality 1 ® b = b ® 1 holds in B <8U B. This is also
equivalent to saying that the morphism B >B <S)A B is surjective, or
again equivalently is an epimorphism.
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Limits

We have seen in chapter 1 that the models of a mathematical theory and
the corresponding homomorphisms very often constitute an interesting
example of category: the category of sets and mappings, the category
of vector spaces and linear mappings, the category of topological spaces
and continuous mappings, and so on.

With a given mathematical structure are very often associated "op-
erations on models or homomorphisms": cartesian product, quotient,
kernel, union, intersection, and so on... It is the aim of this chapter
to develop a general theory containing most of those constructions as
particular cases.

2.1 Products
Everybody knows how to construct the cartesian product of two sets A
and B\ this is just

AxB = {(a,b)\aeA; b G B} .

This "cartesian product" is provided with two "canonical" projections

pA: A x B >A, pA(a, b) = a,

pB: A x B >B, pB(a, b) = b.

Moreover, if C is a set and / : C > A, g: C >B are arbitrary map-
pings, there exists a unique mapping h: C > A x B which makes dia-
gram 2.1 commutative. Indeed, h(c) = (/(c),^(c)).

Replacing "set" by "category" and "mapping" by "functor", the sit-
uation of diagram 2.1 recaptures precisely the fundamental property of
the "product of two categories" as studied in 1.6.5 and 1.6.6. This fact
is much more general and makes sense in every category.

38
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Diagram 2.1

Definition 2.1.1 Let ^ be a category and A^BEW two objects
A (cartesian) product of A and B is, by definition, a triple (P,PA,PB)

where

(1) P eW is an object,
(2) PA: P > A and PB'- P >B are morphisms,

and this triple is such that for every other triple (Q, QA^QB) where

(1) Q € # is an object,
(2) qA'- Q >A and qs'- Q >B are morphisms,

there exists a unique morphism r: Q >P such that qA = PA° r and
QB =PB° r.

It is a fundamental observation that:

Proposition 2.1.2 In a category, the cartesian product of two objects
(when it exists) is unique up to isomorphism.

, consider two products

and (Q,«

Proof In the category

of the same objects A, B. Since (P,PA,PB) is a product, there exists a
morphism r:Q >P such that qA = PA ° T and qs = PB ° r> Since
{QIQAIQB) is a product, there exists a morphism s:P >Q such that
PA = qA-os and PB = QB ° s.

Applying definition 2.1.1 to the triple (P,PA,PB) seen both as a prod-
uct and as "another triple", we deduce the existence of a unique mor-
phism t: P >P such that PA = PA ° t and PB = PB° t. Clearly t = lp
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is such a morphism. But the relations

PA = QA ° s = pA O r o s,

PB = QB ° s = PB ° r o s

indicate that t = r o s is another morphism of this kind. The uniqueness
of t therefore implies r o s = lp.

In an analogous way sor = 1Q and r, 5 are inverse isomorphisms. •

In view of the previous theorem, it makes sense to write "the" product
of A and B as (A x B,PA,PB) or just Ax B.

It is a common mistake to think that the projections PA, PB of a
product are epimorphisms. This is not true, not even in the category of
sets and mappings! The projection PA'AX B >A in the category of
sets is not surjective when B is empty and A is non-emtpy; thus it is
not an epimorphism (see example 1.8.5.a).

Another common mistake is to think that once the object A x B
in a product has been fixed, the corresponding projections PA,PB are
necessarily unique. This is not true at all (see example 2.1.7.i): in the
definition of a product both the object Ax B and the projections PA,PB

are defined up to isomorphism.

Proposition 2.1.3 In a category, when the corresponding products
exist, the following isomorphisms hold:

AxB^B xA;

Ax(BxC)^(AxB)xC.

Proof If (Ax B,PA,PB) is a product of A and B, it suffices to notice
that (A x B,PB,PA) is a product of B and A and apply proposition
2.1.2. An analogous argument holds in the second case. •

Writing (A x B,PA,PB) and (B x A,p'A,p'B) for the products of A, B
and JB, A, the unique morphism r: AxB >BxA such that PA = P'AOT

and PB = P'B ° T is generally called the "twisting isomorphism". It is
indeed an isomorphism as proved in 2.1.3. In the case of the category
Set of sets and mappings, it is the usual twisting bijection r(a, b) = (6, a).

Proposition 2.1.3 indicates in particular that the existence of all binary
products allows the definition (up to isomorphism) of the product of n
objects of the category (n G N, n > 2). In fact, it makes sense to define
the product of an arbitrary family of objects in a given category.

Definition 2.1.4 Let I be a set and (Ci)i^i a family of objects in a
given category c€. A product of that family is a pair (P, (pi)iei) where
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(1) P is an object of%,

(2) for every i G / , pf. P >C% is a morphism of^,

and this pair is such that for every other pair (Q, (qi)i£i) where

(1) Q is an object ofW,
(2) for every i e I, qf. Q >C% is a morphism of^,

there exists a unique morphism r: Q >P such that for every index i,
Qi=PiO r.

The arguments of proposition 2.1.2 generalize immediately to show
that:

Proposition 2.1.5 When the product of a family of objects exists in a
category, it is unique up to an isomorphism. •

We shall generally write \[ieI Ci for "the" product of a family
of objects. The definition of a product is by nature independent of any
ordering on the set of indices; it obviously generalizes the situation of
definition 2.1.1. The following generalized associative law holds for prod-
ucts:

Proposition 2.1.6 Consider a set I and a partition I = [jkeK Jk of this
set into disjoint subsets (Jk)keK- Consider a family (Ci)iej of objects
in a category (€. When all the products involved exist, the following
isomorphism holds:

Proof Just show that the right-hand side satisfies the definition of
Y[i£lCi and apply 2.1.5. •

It should be noticed that the existence of the product of a family
of objects does not imply the existence of the product of a subfamily of
those objects. For example, choose a natural number n G N and consider
the full subcategory # n of Set whose objects are the sets with fewer than
n elements. It is easy to prove that products in # n , when they exist, are
just cartesian products of sets. Therefore the product of two sets with k
and / elements exists in # n precisely when kl < n. But the product of
an arbitrary family containing the empty set always exists: it is just the
empty set.

Examples 2.1.7

2.1.7.a In the category Set of sets and mappings, the cartesian product
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of a family (Ci)i^i is just the cartesian product

Y[Ci = {(xi)ieI\xieCi}
i€l

with projections Pio((xi)ieI) = xio.

2.1.7.b In the category Cat of small categories and functors, the prod-
uct of two categories is that described in 1.6.5, 1.6.6. This construction
admits an obvious generalization to the case of an arbitrary family of
small categories.

2.1.7.C In the categories of groups, abelian groups, rings, modules,
algebras, boolean algebras, and so on... the product of a family of objects
is just their cartesian product provided with the pointwise operations.
For example in the case of groups

2.1.7.d In the category Bani of real Banach spaces and linear contrac-
tions, the product of a family (Ciji^i is given by

T\Ci = \ (xi)i€l XiECi ; sup ||xi|| < oo I

\\(xi)i€i\\ =sup||a?i||.

Indeed each projection pf. Yliei Q ^^i ^s continuous and has norm 1.
Moreover if (/$: B >Ci)i£i is a family of linear contractions and 6 E B ,
H&ll < 1, then for every % G / , \\fi(b)\\ < 1 and thus | |sup i € J / i(6)| | < 1.
Therefore the obvious factorization f:B > Y\ieI Ci, f(b) = (fi(b))ieI,
is a linear contraction.

2.1.7.e In the category Ban^ of real Banach spaces and bounded linear
mappings, the product of a finite family of objects exists and is computed
as in Bani; but the product of an infinite family of objects does not exist
in general. For example the "power" R x R x R x . . . o f the constant
family (R)n€^ does not exist. Indeed, assume this product does exist and
is given by (P, (pn: P »R)n€N). The constant family (id: R >M)n<EN
factors th rough this product via a morphism A : R >P\ from id =
p n o A w e deduce that no pn can be the zero mapping. Next consider
the family

/ n :R >R, fn(r) = n • ||pn|| • r,
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which factors through the product via a morphism / : R >P. Prom
fn=pnofwe deduce n • ||pn|| = ||/n | | < ||pn|| • ||/|| and thus n < \\f\\
for every n, which is impossible.

2.1.7.f In the category Top of topological spaces and continuous map-
pings, the product of a family (Xi,Ti)i£i of topological spaces is given
by (X, T) where the set X is just

iei

We choose as basic open subsets those of the form

l[ui = {(xi)i€l\xieui}
iei

where Ui £% and

{iel\Ui ^Xi} is finite.

This family of basic open subsets is closed under finite intersections; the
topology T consists of all the unions of basic open subsets. The obvious
projections

pio:X >Xio, Pio((xi)iei) = xio

are continuous since, for U £%Q,

where Ui0 = U and Ui = Xi for i ^ IQ. Next, given a family

of continuous mappings, the unique factorization

f-Y >X,

is continuous since, for a fundamental open subset YlieI Ui £ T,

r 1 (n^J = {y£Ylv*G\
V

i e /

Each f~l(Ui) is open since fi is continuous and Ui is open. Moreover,
when Ui = X^, we get f~x(Ui) = Y and this term does not play any role
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in the intersection. Therefore we can write

1 \IlU*\ =
\iei )

which is now a finite intersection of open subsets, thus an open subset.

2.1.7.g In the category Comp of compact Hausdorff spaces and con-
tinuous mappings, the product of a family of objects can be computed
just as in Top (Tychonoff theorem).

2.1.7.h Consider a poset (X, <) viewed as a category (see example
1.2.6.b). Given a family of elements X{ G X, one checks immediately
that defining the product of this family is just defining its infimum.

2.1.7.i Consider, in the category of sets and mappings, the two sets Z
of integers and R of real numbers. Consider the usual cartesian product

ZxR= {(z,r) \z eZ , r GR}

and the two mappings

Pzo:ZxR >Z , pxo(zir) = z + z0,

Pro:ZxR >R , p ro(z,r) = r + r0,

where z$ G Z, r$ G R are fixed numbers.

For any choice of zo, ro, (Z x R,pZo,pro) is a product of Z and R in the
category of sets. This product is indeed just the usual cartesian product
(Z x R,PZ>PR) defined in 2.1.7.a composed with the isomorphism

Z x R >Z x R , (z, r) i-> (z + z0, r + r0).

2.2 Coproducts
The dual notion of "product" is that of "coproduct". Thus:

Definition 2.2.1 Let I be a set and (Ci)iei a family of objects in a
given category c€. A coproduct of that family is a pair (P, (si)iei) where
(1) P is an object of<£,
(2) for every i e I, sf. Ci >P is a morphism of^,
and this pair is such that for every other pair (Q, (U)iGl) where
(1) Q is an object ofW,
(2) for every i G / , U: Ci >Q is a morphism of^,
there exists a unique morphism r = P >Q such that for every index
i, U — r o Si.

Applying the results of sections 1.10 and 2.1, we get
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Proposition 2.2.2 When the coproduct of a family of objects exists in
a category, it is unique up to an isomorphism. •

We shall often write JJieI Ci for the coproduct of the family
The following generalized associativity law is obtained from 2.1.6 by
duality.

Proposition 2.2.3 Consider a set I and a partition I = [jkeK Jk of this
set into disjoint subsets (Jk)h€K> Consider a family (Ci)iei of objects
in a category (€. When all the coproducts involved exist, the following
isomorphism holds:

Il^Ilfllcl n
iei keK \jeJk )

Examples 2.2.4

2.2.4.a In the category Set of sets and mappings, the coproduct of a
family (Ci)iei is just its "disjoint union", i.e. the union of the sets d
considered as disjoint sets. When the various CVs are not disjoint, we
replace them first by isomorphic disjoint sets

= Ci x {i}

and we perform the usual union of these sets C[. Thus in short

i = {0M)|tG J; xed) .

The canonical mappings Sf. Ci > \JieI Ci are just the obvious inclu-
sions: Si(x) = (x,i).

2.2.4.b In the category Top of topological spaces and continuous map-
pings, the coproduct of a family (X^, 7^)^/ is just (X, T) where X is the
disjoint union of the Xi and T is the topology generated by the disjoint
union of the %.

2.2.4.C In the category Comp of compact Hausdorff spaces and contin-
uous mappings, the coproduct of a finite family of objects is computed
as in Top. The existence of arbitrary coproducts holds but proving this
requires more sophisticated arguments (see chapter 3).

2.2.4.d In the category Cat of small categories and functors, the co-
product of a family of categories is just their disjoint union.



46 Limits

2.2.4.e In the category Gr of groups and group homomorphisms, the
coproduct of a family (Gi)iei of groups is obtained as follows. Consider
first the disjoint union V of the sets d and then the set W of "words"
of V; thus W is the set of all finite sequences of elements in V. On W,
introduce the equivalence relation generated by the following data:

• the unit element of each group Gi is equivalent to the empty se-
quence

• if a sequence contains two consecutive elements belonging to the
same component G*, the original sequence is equivalent to the se-
quence obtained by replacing the two elements by their composite
in d.

Write \JieIGi for the quotient of W by this equivalence relation. Con-
catenation on W induces an associative composition law on LL^/G^,
with the empty sequence as a unit. This is a group structure: the inverse
of a sequence is the sequence of inverses of its elements, in reversed order.
Each group Gi is mapped into YlieI Gi, the element x e Gi going to the
equivalence class [x] of the sequence consisting of that single element.
Uie/ Gi is easily seen to be the coproduct of the G^s. In group theory,
lliei Gi is generally called the "free product" of the GVs.

2.2.4.f In the category Ab of abelian groups and group homomor-
phisms, the coproduct of a family (Gi)iei is just their direct sum

]J.€/<2i = {(xi)ieI \xi G Gu {i | Xi ^ 0} is finite } .

The composition law is defined componentwise and the canonical mor-
phisms sio:Gio > ]JieI Gi are defined by sio(x) = (xi)ieI where xio =
x and the other components are just 0. If if is an abelian group and
fi- Gi >H is a family of group homomorphisms, the unique factoriza-
tion / : I l i€/G* >H i s given by f((xi)ieI) = E i € / /»(xi) ; t h i s s u m

makes sense since it contains just finitely many non-zero terms.

2.2.4.g In the category Rng of commutative rings with unit and corre-
sponding homomorphisms, the coproduct of a family (Ri)iei is just their
generalized tensor product. We describe the construction in the case of
the coproduct RUS of two rings and leave the infinite case to the reader.
So we define R II S to be the tensor product R®zS of the underlying
abelian groups. We provide it with the multiplication generated by

(r <g> s) - (rf ® s') = [rr1) ® (ss').
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This is easily seen to be a ring multiplication and we define

sR:R >RUS, sR(r) = r®l,

ss:S >RUS, ss(s) = l®s ,

to complete the definition of the coproduct. If f:R >T, g: S

are ring homomorphisms, we get the unique factorization h: RUS

as h (£?=iT-i ® *) = Z?=J(ri)9(si).
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2.2.4.h In the category Bani of real Banach spaces and linear contrac-
tions, the coproduct of a family (C^)^/ is given by

Ci ;

The canonical inclusions sf.Ci > U i e / ^ are defined as in the case
of abelian groups and are continuous with norm 1. If /;: d >B is a
family of linear contractions, we define

Prom J2i£i\\fi(xi)\\ ^ Si€/HXiil < °° w e conclude that the expression
^2iei fi(xi) defining / makes sense and from

£•

we deduce that / is in fact a linear contraction.

2.2.4.i If (X, <) is a poset viewed as a category (see example 1.2.6.b),
defining the coproduct of a family is just defining its supremum.

2.3 Initial and terminal objects

Consider an empty family of objects in a category ((S. What does it mean
for the product of this family to exist? Well, it must be a pair ( l , ( )i^)
such that for each other pair (C, ( ){£$) there is a unique morphism
C >1 . . . satisfying an empty condition! In short, the product of
an empty family is an object 1 with the property that every object C
is provided with exactly one morphism C >1. Dually for an empty
coproduct.
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m

Diagram 2.2

Definition 2.3.1 An object 1 of a category is terminal (or final) when
every object C is provided with exactly one arrow from C to 1.
An object 0 of a category is initial when every object C is provided with
exactly one arrow from 0 to C.

Examples 2.3.2
2.3.2.a In the category Set of sets and mappings, the empty set is the
initial object and a singleton is a terminal object. The same holds in the
category Top of topological spaces and continuous mappings.

2.3.2.b In the categories of groups, abelian groups, vector spaces, Ba-
nach spaces, and so on, (0) is both the initial and the terminal object.

2.3.2.C In the category Rng of commutative rings with a unit, (0) is
the terminal object and Z is the initial object.

2.4 Equalizers, coequalizers
The notion of "product" defines a "limit object" (the product), starting
with a given family of objects. We want now to define "limit objects"
starting with data containing both objects and arrows.

Definition 2.4.1 Consider two arrows f^g.AZZI^B in a category (€.
An equalizer of / , g is a pair (if, k) where

(1) K is an object ofW,

(2) k: K > A is an arrow of^ such that f o k = g o k,

and such that for every pair (M, m) where

(1) M is an object of^,
(2) m: M >A is an arrow of^ such that f o m = g o m,

there exists a unique morphism n: M >K such that m = k o n (see
diagram 2.2).



2.4 Equalizers, coequalizers 49

Proposition 2.4.2 When it exists, the equalizer of two morphisms is
unique up to isomorphism.

Proof With the notation of 2.4.1, suppose (K,k) and (M, ra) are
both equalizers of the pair / , g. Since (M, ra) is an equalizer, there is a
morphism I: K >M such that k = mo I. Therefore we have k = kolK

and k = k o (n o Z); since k is an equalizer, nol = 1K. In the same way
i on = 1M- n

We shall write Ker(/, g) for "the" equalizer of f,g.

Proposition 2.4.3 In a category <&, when two arrows f,g:A >B
have an equalizer (K, k), the morphism k: K > A is a monomorphism.

Proof Consider u, v: C ^K such that k o u = k o v. The morphism
k o u is such that f okou = g okou and factors in two ways (u and v)
through k; therefore u = v. •

By duality, one defines the "coequalizer" of two morphisms; when it
exists, it is unique up to isomorphism and is an epimorphism. We write
Coker (/, g) for "the" coequalizer of / , g.

Proposition 2.4.4 Let f:A >B be an arrow in a category c€. The
equalizer of the pair (/, / ) always exists and is just the identity on A.

•
Proposition 2.4.5 In a category <€, suppose the arrow f:A >B is
both an epimorphism and an equalizer. Then f is an isomorphism.

Proof Assume / is the equalizer of u, v. Then u o / = v o / and since
/ is an epimorphism, u = v. But the equalizer of u = v: B ±C is ljs
(see 2.4.4). Therefore / is isomorphic to the identity on B and so is an
isomorphism. •

Examples 2.4.6
2.4.6.a In most "concrete" categories (Set, Top, Gr, Ab, Bani, Ban^,
Rng, . . . ) the equalizer of two morphisms / , g: A > B is just given by

Ker ( f ,g) = {a e A \ f (a) = g(a)}

provided with the structure induced by that of A.

2.4.6.b In the category Set of sets and mappings, the coequalizer of

f,g:A \B

is the quotient of B by the equivalence relation generated by the pairs
,^(a)) for every element a £ A.
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2.4.6.C In the category of abelian groups, consider first a group ho-
momorphism / : A >B. The coequalizer of / and the zero homomor-
phism is just the quotient of B by the subgroup f(A). More generally,
the coequalizer of two morphisms f,g:AZZ%B is the coequalizer of
f — g: A >B and the zero morphism. An analogous description of the
coequalizer holds for categories of vector spaces or modules.

2.4.6.d In many "algebraic-like" structures, the situation is less simple
(groups, rings, . . . ) . The general procedure in those cases for comput-
ing the coequalizer of f,g:A ^B, is to construct the quotient of B
by the congruence generated by all the pairs (/(a),#(a)) for a G A.
This congurence is thus the smallest equivalence relation containing all
those pairs and closed under all the algebraic operations (see chapter 3,
volume 2).

2.4.6.e In the category Top of topological spaces and continuous map-
pings, the coequalizer is constructed as in Set and provided with the
quotient topology.

2.4.6.f In the category Haus of Hausdorff spaces or the category Comp
of compact Hausdorff spaces, the coequalizer of two continuous mappings
f^giAZmX^ ls the quotient of B by the closure R C B x B of the
equivalence relation R generated by the pairs (/(a),#(a)) for a G A.
The quotient of a Hausdorff space B by a closed equivalence relation R is
indeed another Hausdorff space and the quotient is compact as long as B
is compact (continuous image of a compact set). Now choose C Hausdorff
and h: B >C such that h o f = h o g. The diagonal Ac C C x C is
closed and therefore (h x h)~1(Ac) is a closed equivalence relation on
B containing all the pairs (/(a),#(a)) for a £ A; thus it contains R and
h factors through the quotient.

2.4.6.g In the category Bani of Banach spaces and linear contractions,
the coequalizer of a linear contraction / : A >B and the zero mapping
is just the quotient of B by the closure of f(A). The quotient by a closed
subspace indeed produces a Banach space. Moreover, if h: B >C is a
linear contraction such that h o f = 0, then h~1(0) is a closed subspace
containing /(A), thus also f(A); so h factors through the quotient. More
generally, the coequalizer of two linear contractions / , g: A \ B is the
same as the coequalizer of the linear contraction \{f — g) and the zero
mapping.
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-> C

Diagram 2.3

2.5 Pullbacks, pushouts

This is another example of a "limit object" constructed from objects
and arrows.

Definition 2.5.1 Consider two morphisms f:A >C, g:B >C in
a category (€. A pullback of (/, g) is a triple (P, / ' , gf) where

(1) P is an object ofW,
(2) / ' : P >B, g1: P >A are morphisms of<£ such that fog' = gof,

and for every other triple (Q, / " , g") where

(1) Q is an object of^,
(2) $"\Q >B, g"\Q >A are morphisms of<£ such that f o g" =

9 of,

there exists a unique morphism q: Q >P such that f" = f o q and
g" = gf o q (see diagram 2.3).

Proposition 2.5.2 When it exists, the pullback of two arrows is unique
up to isomorphism.

Proof Analoguous to that of 2.1.2. •
Proposition 2.5.3 With the conditions of 2.5.1, let us consider the
pullback (P,f,g') of (f,g).

(1) If g is a monomorphism, gf is a monomorphism as well;
(2) If g is an isomorphism, g' is an isomorphism as well.
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Proof If g is a monomorphism, consider two morphisms iz, v: Q ±P
such that g' o u = g1 o v. Put g" = g' o u and / " = f ou. One has

f °g" = f °g' °u = go f ou = go f"

and w: Q >P is therefore the unique possible factorization of (#", / " )
through (#',/ ')• But

g' ov = g' ou = g",

gof'ov = fog'ov = fog'ou = fog"=go /",

and since g is a monomorphism, f ov = f". Thus ?; is another factor-
ization and u = v.

Now if g is an isomorphism, again with the notation of 2.5.1 let us
put Q = A, f" = g~l o / , g" = 1A. We get a unique morphism q such
that g' o q = lA and f o q — g~x o f. Now one computes immediately
from this that

g' o q o g' = 1A o gr = g' = g' o 1P,

f'oqog' = g-lofog' =g-1ogof = f = f'olP,

from which g o g' = 1P by the uniqueness condition in the definition of
a pullback. So g1 o q = lA and qo g' = lp , thus g = (g')~l. •

Statement 2.5.3.(1) is very often referred to as the fact that "the
pullback of a monomorphism is a monomorphism". The dual notion of
a "pullback" is that of a "pushout". In particular, "the pushout of an
epimorphism is an epimorphism".

Observe that the pullback of an epimorphism is in general not an
epimorphism. For example in the category Ha us of Hausdorff spaces
and continuous mappings, / : X >Y is an epimorphism when f{X) is
dense in Y (see 1.8.5.c). In particular / need not be surjective; assume it
is not. Choose y €Y\f(X); the pullback of y and / is just the empty set
(see diagram 2.4). The empty set is by no means dense in the singleton
so that the left vertical arrow is no longer an epimorphism.

Definition 2.5.4 In a category si, the kernel pair of an arrow

f:A >B
is (when it exists) the pullback (P,a,/3) of f with itself

Proposition 2.5.5 In a category #/, if the kernel pair (P, a,/3) of an
arrow f exists, a and (3 are epimorphisms.
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f

{*} y •* Y

Diagram 2.4

-> B

Diagram 2.5

Proof Prom f olA = f o 1A one gets a unique factorization 6 such
that a o 6 = 1^, (3 o 8 = 1A- Thus 8 is a monomorphism and a, /? are
epimorphisms (see 1.7.2, 1.8.2 and diagram 2.5). •

The following result is obvious, but will prove to have interesting con-
sequences.

Proposition 2.5.6 Consider a morphism f:A >B in a category (€.
The following conditions are equivalent:

(1) f is a monomorphism;
(2) the kernel pair of f exists and is given by (A, 1^, 1^);
(3) the kernel pair (P, a, /3) of f exists and is such that a = /3. •

Let us now indicate two interesting properties relating kernel pairs
and coequalizers.

Proposition 2.5.7 In a category <&, if a coequalizer has a kernel pair,
it is the coequalizer of its kernel pair.
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Proof Consider diagram 2.6 where / = Coker (#,?/) and a, (3 is the
kernel pair of / . Prom fox = foy one deduces the existence of a unique
factorization z such that ao z — x, (3 o z = y.

I f g o a = g o / ? , t h e n g o x = g o a o z = g o / 3 o z = g o y a n d w e g e t a
unique factorization /i through / = Coker (#, y). •

Proposition 2.5.8 In a category <%, if a kernel pair has a coequalizer,
it is the kernel pair of its coequalizer.

Proof We again consider diagram 2.6, supposing now that (a, /?) is the
kernel pair of g and / = Coker (a,/3). Since g o a = g o /3, one gets a
unique factorization h through / = Coker (a, /?).

Now take x,y such that f ox = f oy. This implies gox = ho f ox =
ho f oy = g oy, from which there is a unique factorization z such that
a o z = x, /3oz = y. •

Let us conclude the body of this section with the so-called "associa-
tivity property" of pullbacks.

Proposition 2.5.9 In a category <& consider diagram 2.7, which is com-
mutative.

(1) If the squares (I) and (II) are pullbacks, the outer rectangle is a
pullback

(2) If <$ has pullbacks, if the square (II) is a pullback and the outer
rectangle is a pullback, then the square (I) is also a pullback.

Proof If (I) and (II) are pullbacks and gofox = eoy, there is a unique
z such t h a t bo z = y , do z = f ox. F r o m doz = foxwe find a u n i q u e
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D

(I)

-> E

b ,
> C

(II)

f 9

Diagram 2.7

-> F

w s u c h t h a t a o w — z , c o w = x . I n p a r t i c u l a r b o a o w = b o z = y . I f
w' is another morphism such that bo aow' = y and c o w' = x, we have
bo(aow') = bo(aow) and do(aowf) = focow' = fox = focow = do(ao^).
Since (II) is a pullback, aow' = aow. On the other hand cow' = x = cow,
thus w = w' since (I) is a pullback.

Under the assumptions of (2), compute the pullback (A',c',a') of /
and d. Since doa = foe, one gets a unique factorization h: A >A' such
that a' o h = a, d o h = c. The triple (A, c, b o a) is, by assumption, the
pullback of (gof, e). Applying (1), we know that (A', d\ boa') is another
such pullback. h is a factorization beween those puUbacks because c'oh =
c and boa' oh = boa. By uniqueness of the pullback (see 1.5.2), h is an
isomorphism and thus (I) is a pullback. •

Examples 2.5.10
2.5.10.a With the notation of 2.5.1, the pullback of the pair (/,#) in
the category Set of sets and mappings is given by

P={(a,b)\aeA,beB, f(a) = g(b)},

g'(a,b) = a, f(a,b) = b.

2.5.10.b Under the conditions of 2.5.10.a, when B is a subset of C
and g is the canonical inclusion, P is isomorphic to / -1(J5), the inverse
image of B along / .

2.5.10.c Under the conditions of 2.5.10.a, if both A and B are subsets
of C with / , g the canonical inclusions, P is isomorphic to the intersec-
tion AnB.

2.5.10.d In the category Set of sets and mappings, the kernel pair
(P, a, (3) of a morphism /: A >B is given by

P= {(ai,a2)|ai G A, a2 G A, f(a1) =

a2) = a2.



56 Limits

-> C Q -> Y

B X

Diagram 2.8

It is the equivalence relation on A determined by / . In other words, the
image f(A) of / is the quotient of A by that equivalence relation.

Due to 2.5.3 and 2.5.10.b,c, when the squares of diagram 2.8 are pull-
backs with g, p, q monomorphisms, we shall write P as /~1(C) and call
it "the inverse image of C along / " (to be precise, we should refer to g
instead of C); in the same way we shall write Q as X fl Y and call it the
intersection of X and Y (in fact, of p and q).

2.6 Limits and colimits
In this section, we introduce the general definition of "limit of a functor"
which will turn out to contain as special cases the various constructions
of the previous sections of this chapter.

Definition 2.6.1 Given a functor F: S>

(1) an object C G <€,
(2) for every object D G Q), a morphism p

in such a way that for every morphism d: D

, a cone on F consists of

C >FD in ^,
>D' in @>, pof = FdopD.

Definition 2.6.2 Given a functor F\Q) ><#, a limit of F is a cone
(L, (PD)D£^) on F such that, for every cone (M, (^D)DG^)

 on F? there
exists a unique morphism m: M >L such that for every object D G 3>,
QD — PD ° Tn.

Again, a proof analoguous to that of 2.1.2 yields:

Proposition 2.6.3 When a functor F:@ ><& admits a limit, that

limit is unique up to isomorphism. •

In the same way one has:

Proposition 2.6.4 If (L, (PD)DE®)
 iS a Omit of the functor F: 3) ><&,

two morphisms / , g: M \ L in <& are equal as long as for every object
D eS),PD° f = PD°g-
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Jf : A £
P

Diagram 2.9

Proof f and g are two factorizations of the cone (M, (p£> o f)De2)
through the limit. D

Due to the importance of the notion of limit, it is probably worth
while to write out explicitly the dual notion of "colimit".

Definition 2.6.5 Given a functor F:S> ><&, a cocone on F consists
in

(1) an object C G ^ ,
(2) for every object D G S>, a morphism sp: FD >C in <$,

in such a way that for every morphism d: D' > D in Q), SD1 = SD° Fd.

Definition 2.6.6 Given a functor F : Q) >#, a colimit ofF is a cocone
(L, (sDJD^gi) on F such that, for every cocone (M, {to)D^^) on F, there
exists a unique morphism m: L >M such that for every object D G S>,

Let us now observe that the constructions of the previous sections are
special cases of the notion of limit.

Examples 2.6.7

2.6.7.a Given a set / , let us view it as a discrete category J (see
1.2.6.c). Giving a functor F:J> »# to a category # is just giving a
family Fi € #, i 6 / , of objects and defining the limit of F is just
defining the product Yli€lFi.

2.6.7.b Consider the category Jf defined by

and sketched in diagram 2.9. Giving a functor F from JT to a category
# is just giving two arrows Fa , F/3: FAIH^FB in # and defining the
limit of F is just defining the equalizer of Fa , F/3.

2.6.7.C Consider the category ^ defined by
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B

a
-> C

Diagram 2.10

D2n-i

, A) = 2P(C, B) = »{A, B) = ^(J3, A) = 0,

and sketched in diagram 2.10. Giving a functor F from 3P to a category
^ is just giving a pair

FOL.FA- F(3:FB-

of arrows in ^ and defining the limit of F is just defining the puUback
of Fa , F(3.

2.6.7.d The previous examples can be dualized to present the notions
of coproduct, coequalizer and pushout as special cases of the general
notion of colimit.

2.6.7.e A category Q) is connected when it is non-empty and, given two
objects Z), Df G ^ , there exists a finite "zigzag" in 3) as in diagram 2.11.
Consider an object A of a category si and the corresponding constant
functor AA'-@ ><#? on stf (see 1.2.8.e). If (fD:AA(D) ">M)D^
is a cocone on F and JD, D1 are connected by the above zigzag, one
immediately gets

thus the cocone is a constant one. Therefore (A, ( IA)DG^) is the colimit
ofAA .

2.6.7.f Observe that the colimit of a constant functor A^:£^ ><stf
is generally not given by the object A. Indeed, in general AIIA ^ A.
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2.7 Complete categories

It could sound reasonable to define a complete category as one such that
every functor into it admits a limit. Unfortunately this doesn't produce
any relevant notion, due to set theoretical reasons. For example if 2f
is a discrete category and F\Q) »Set is a functor to the category of
sets, the limit of F should be the cartesian product of all sets FD...
which does not exist (in general) if the indices (the objects of &) do not
themselves constitute a set. More precisely:

Proposition 2.7.1 Consider a category <% such that, for every category
2f and every functor F\<2) >c€, the limit of F exists. In that case, %
is just a preordered class. The same conclusion holds when "category"
is replaced everywhere by "small category" or "finite category".

Proof Let us use the axiom system of universes (see section 1.1) so that
the objects of # constitute a set in some universe. We must prove that
for any two objects Ci, C2 of ^ , ^(Ci , C2) has at most one element. If
this were not the case, consider two distinct morphisms / , g: d\ \C2

in # between some fixed objects Ci, Cs- By assumption, the "power
object" (C2) , product of # ^ copies of C2, exists, where # # denotes
the cardinal of the set of arrows of (€. Using just the arrows / and #, we
can already construct 2#^ distinct cones {C\ >C2)## and therefore
2#^ distinct factorizations C\ > (C2) . But this set of factorizations
is a subset of the set of all arrows, thus 2#^ < # # . This contradicts the
Cantor Theorem. The same proof applies to the cases of small or finite
categories. •

The pertinent definition is in fact

Definition 2.7.2 A category <£ is complete when every functor

F.Q) >«,

with 3> a small category, has a limit.
The category <& is finitely complete when every functor

with 2) a finite category, has a limit.

By duality, we get the notion of a cocomplete category. See 1.2.3 for
the notion of a small category.

When the limit of a functor F:S> »# exists with 3f a "large" (=
non-small) category, we shall sometimes call it a "large limit". For ex-
ample the product of all sets exists . . . and is just the empty set!
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2.8 Existence theorem for limits

Consider a functor F\Q) > Set where Q) is a small category and Set
is the category of sets. It is rather straightforward to verify that the set

L = {{xD)D€® \xD e FD ; V/:D >Df in 9 Ff(xD) = xD>)

provided with the obvious projections PD'L >FD is the limit of F.
It should be observed that L is in fact a subobject of the product

and, more precisely, L is the equalizer of the two mappings

L> > J J FD I J J F(target of / ) ,

where a((xD)D£&) = (^target of

(3((xD)De&) =

We shall now prove that this construction generalizes to an arbitrary
category, from which the existence of limits will follow from that of
products and equalizers. For brevity, we abbreviate "target of / " and
"source of / " just as £(/) , s(f).

Theorem 2.8.1 A category <$ is complete precisely when each family
of objects has a product and each pair of parallel arrows has an
equalizer.

Proof Let us first make clear that by "family", we always mean a set
indexed family. We know already that completeness implies the existence
of products and equalizers (see examples 2.6.7).

Conversely, consider a small category 3} and a functor F.3) >c€.
We construct the products

and (]J F(t(f)),

a is the unique factorization such that p"* o a = pr
t<f\ for every / £ Q}\

(3 is the unique factorization such that p'j o /3 = Ff ° p's(f\ for every
/ G 3f and (I/,/) is the equalizer of the pair (a,/3) (see diagram 2.12).
We define pr> = p'D o I and we shall prove that (L, (PD)D£@) is the limit
of the functor F.

First of all, for a morphism / : D >D' in Of we have

Ff °PD = Ff ° P'D ° ' ~ P'} ° 13 ° I = v"f ° a ° I = v'w ° ' = PD* »
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FD

Diagram 2.12

so that (L, (PD)D€@) is indeed a cone on F. Moreover, if (M, (qD)
is another cone on F , there exists a unique factorization qf such that
p'D o qr = qD for every D G ® . But for every / : D >D' in S> one has

p'} o a o qr = p'D, o qf

= QDf

= FfoqD

= Ffop'Doq'

= p"fo(3oqf,

from which a o qr = (3 o q'. This implies the existence of a unique factor-
ization q:M >L such that loq = qf. Putting these relations together
yields

PD o q = p'D o I o q = p'D o q' = qD,

so that q is indeed the required factorization. To prove its uniqueness,
consider another morphism q such that PD °Q = QD for every D € Q).
Since / is a monomorphism (see 2.4.3), it remains to prove that loq = Zog;
this is equivalent to proving p'D o I o q = p'D o I o q for each D G Q) (see
2.6.4). This last equality holds since

p'D o / o q = p'D o q1 = qD = pD o q = p'D o I o q. D

It should be noticed that while the existence of all limits implies that
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PB ,

PA

Diagram 2.13

I » A

(V)

->AxB

Diagram 2.14

of all products, the existence of the single limit (L, (pD)De®) in dia-
gram 2.12 does not imply the existence of the two corresponding prod-
ucts used in the proof (see exercise 2.17.4). But when those two products
and the limit exist, the limit is again the equalizer of a, /3 (see exercise
2.17.10).

Proposition 2.8.2 For a category <$, the following conditions are equiv-
alent:

(1) <$ is finitely complete;

(2) <& has a terminal object, binary products and equalizers;

(3) % has a terminal object and pullbacks.

Proof (1) => (2) and (1) => (3) are obvious. Let us now assume (2).
By associativity of products (see 2.1.3) the product of a finite (and non-
empty) family of objects exists as long as binary products do. Observing
the proof of 2.8.1, it suffices now to notice that when 2 is finite, so are
the products involved in the proof.

Assuming (3), observe that in the puUback of diagram 2.13 (P,PA,PB)

is the product of A, B, since 1 is terminal. It remains to prove the exis-
tence of equalizers to establish conditions (2). Given f,g: A >B, com-
pute the puUback of diagram 2.14. Composing with the two projections
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of the product A x B, we get

k = pAoCf
A)ok=pAo(Y)ol = l,

fok=pBo (Y) ok=pBo (Y) ol = gol = gok.

Moreover, if x: X >A is such that / o x = g o x, one has (*/) o x —
(\A )°# from which there is a unique y: X >P such that x = koy = loy.
Thus fc = Ker (/,#). D

We have introduced the notion of limit for a functor F\3) >s/
defined on a category 2. An apparently more general approach would
have been to replace the category Q) by "a graph with commutativity
conditions" (see section 5.1); in fact the notion of limit on such a graph is
equivalent to that of limit on the category generated by the graph. Our
choice generally makes life easier and is good enough for the applications,
if one observes the following property whose proof is obvious.

Proposition 2.8.3 Consider a functor F: 3f >s/ and a family (fi)i^i
of morphisms ofQ) such that each morphism of the category Q) is a com-
posite fix o • • • ofin. A cone on F is just a pair (A, (pp: A >FD)r>£®)
where, for each fo: D > D' of the given family Ffc o pD = pD,. •

Definition 2.8.4 A category 2f is finitely generated when

(1) Q} has finitely many objects,
(2) there are finitely many arrows / i , . . . , fn such that each arrow ofQ)

is the composite of finitely many of these fa.

Proposition 2.8.5 Let F: 2 >st be a functor, with si finitely com-
plete and 2 finitely generated. Then the limit of F exists.

Proof Because of 2.8.3 and with the notation of 2.8.4, it suffices in the
proof of 2.8.1 to take as second product \l™=iF(t(fi)). •

Example 2.8.6

It follows immediately from 2.1.7, 2.2.4, 2.4.6 and 2.8.1 that the following
categories are complete and cocomplete: Set, Ab, Rng, Bani, A poset
is complete as a category precisely when it is complete as a poset (see
2.1.7.h, 2.4.4 and 2.8.1).

2.9 Limit preserving functors

This section is devoted to some observations on functors which commute
with the construction of limits.
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Definition 2.9.1 A functor F.si >08 preserves limits when, for
every small category 3) and every functor G.Q) >si, if the limit
(L, (PD)D£$) of G exists, then (FL, (Fp£>)z)eg) is the limit of FoG.

As an immediate consequence of 2.8.1, we get

Proposition 2.9.2 Let si be a (finitely) complete category and &
an arbitrary category. A functor F.si >& preserves (finite) limits
precisely when it preserves (finite) products and equalizers. •

In fact this result can be improved, requiring just the existence of
products in si (see exercise 2.17.6).

Proposition 2.9.3 A functor which preserves pullbacks also preserves
monomorphisms.

Proof By 2.5.6. •

There are interesting situations in which a functor preserves limits,
even when not all limits exist. Here is a first basic example.

Proposition 2.9.4 Consider a category <£ and an object C e %>. The
representable functor #(C, — ) : ^ > Set preserves all existing limits,
including large ones. In particular, it preserves monomorphisms.

Proof Consider a functor F:S) >^ with limit (L, (pD)De®) and a
cone (qD: M ><tf(C, FD))D^Q over #(C, F-) in the category of sets.
For each element m G M, the family (#r>(rn): C >FD)D ^ is a cone
on F and therefore there exists a unique morphism q(m): C >L in #
such that for each D G &>, po ° #(m) =

 QD(™>)- This defines a mapping
q: M >#(C, L) with the property #(C,p£>) o q = qD for each D G 2.
The uniqueness of q results immediately from that of the g(ra)'s. The
last assertion follows from 2.9.3. •

It is worth dualizing the previous result. Applying it to the dual cat-
egory #* yields

The functors #*(C, - ) : #* >Set preserve limits.

Therefore, in terms of #, we obtain

Proposition 2.9.5 Consider a category <& and an object C G # . The
representable functor *€{—,C):%! > Set transforms existing colimits
into limits and in particular epimorphisms into monomorphisms. •

Let us recall that #(—, C) is a contravariant functor, thus reverses the
direction of morphisms!
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Definition 2.9.6 Let F: si >38 be a functor. F reflects limits when,
for every functor G.Q) >sf with Qf a small category and every cone
(L, (PD)DE@) on G, if (FL, ( F P D ) D 6 ^ ) I S the limit of F oG in &, then
(L, (PD)DGS>) is the limit of G in si.

Proposition 2.9.7 Let F: si >0$ be a limit preserving functor. If si
is complete and F reflects isomorphisms, F also reflects limits.

Proof Consider a functor G\$) >si with Q) a small category.
Consider the limit (L, (PD)D£®) of G\ (FL, (FPD)D€@) is thus the
limit of F o G. Consider now another cone (M, (<7D)DG0) such that
(FM, (FqD)E>e3>) is also the limit of F o G. In sf we have a unique
factorization f:M >L of the second cone through the limit. In $,
Ff is just a factorization between two limits of F o G, thus Ff is an
isomorphism. Therefore / itself is an isomorphism and (M, (qn)De^) 1S

a limit of G. •

Let us also consider the case of finitely generated limits (see 2.8.4).

Proposition 2.9.8 Let si, 36 be finitely complete categories and

F:si >@

a functor which preserves (or reflects) finite limits. Then F preserves (or
refiects) finitely generated limits.

Proof A finitely generated limit can be expressed via equalizers and
finite products (see 2.8.5), from which the result follows. • •

Finally let us observe that without any further assumption:

Proposition 2.9.9 A full and faithful functor F: si >@ refiects lim-
its.

Proof Let G.Q) >si be a functor and {PD'-L >GD)De@ a cone
on G such that (Fpc>: FL >FGD)r>eg is a limit cone. Given another
cone (#£>: M >GD)D£9-, we get a unique factorization 1: FM >FL
such that Fpo ° I = Fqp- Since F is full and faithful, there exists a
unique m: M >L such that F(m) = I and thereforePD°™> = QD- I—I

Applying proposition 2.9.2 and examples 2.1.7, 2.2.4 and 2.4.6, we get
the following examples.

Examples 2.9.10

2.9.10.a The forgetful functor U.Top >Set mapping a topological
space to its underlying set preserves limits and colimits.

2.9.10.b The forgetful functor U: Ab > Set mapping an abelian group
to its underlying set preserves limits.
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2.9.10.C Consider Bani, the category of Banach spaces and linear
contractions, and the obvious forgetful functor U: Bani > Set which
maps a Banach space to its underlying set and a linear contraction to the
corresponding mapping. Example 2.1.7.d shows that U does not preserve
arbitrary products, but just finite products. Now consider the functor
B: Bani >Set mapping a Banach space to its closed unit ball and a
linear contraction to its restriction at the level of unit balls. Example
2.1.7.d shows immediately that for a family (C^)^/ of Banach spaces,
the unit ball of the Banach space YlieI Ci is just the usual cartesian
product of the unit balls of the various C^'s; indeed

sup ||aji|| < 1 O Vi € / ||xi|| < 1.
i€l

Therefore the functor B preserves arbitrary products. It also preserves
equalizers (example 2.4.6.a), so it preserves limits (see 2.9.2). Another
proof consists in observing that the "unit ball functor" is just the functor
represented by K. (see 2.9.4).

2.9.10.d The category Ab of abelian groups is complete and the for-
getful functor £/:Ab >Set reflects isomorphisms, so it reflects limits
(see 2.9.7).

2.9.10.e The category Bani is complete and the "unit ball functor"
B: Bani »Set reflects isomorphisms (a linear mapping between Ba-
nach spaces is an isometry precisely when it induces a bijection between
the unit balls). Therefore B reflects limits (see 2.9.7).

2.10 Absolute colimits

In the previous section we were concerned with a functor preserving all
limits. Now we shall have a look at those limits preserved by all functors.
In fact we shall develop the theory in the case of colimits since this is
the case most commonly referred to in the examples.

Definition 2.10.1 Consider a functor G: Q) ><srf with colimit

That colimit is absolute when for every functor F: si >0

(FL, (FpD)D€9)

is the colimit of F oG.

Here is the most famous example of an absolute colimit.
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Diagram 2.15

Proposition 2.10.2 In a category <&, consider arrows f,g, q, r, s as in
diagram 2.15. When the relations

qof = qog, gor = lB, s o q = f o r, g o s = l c ,
hold, (C, q) is the coequalizer of the pair (/, g) and this coequalizer is
absolute.

Proof By assumption, qof = qog. If p: B >D is such that pof = pog,
define t = p o s. One has

toq = posoq

= P ° f ° T

— P ° 9 ° r

= P,

and if t is such that toq=p,

t = to qo s

= po s

= t

So (C, q) = Coker (/, g) and since the equalities of the statement are
preserved by any functor, the same conclusion applies to the image of
diagram 2.15 under any functor. •

The conditions in proposition 2.10.2 are not necessary for having an
absolute coequalizer (see exercise 2.17.7).

Examples 2.10.3
2.10.3.a In the category Set of sets, consider an equivalence relation
R C B x B on the set B (see diagram 2.16). Write p\,P2 for the two
projections and (Q, q) for their coequalizer, thus for the quotient of B by
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r s

V2

Diagram 2.16

r s

^ B

Diagram 2.17

R (see example 2.4.4.b). Using the axiom of choice, for every equivalence
class [b] G Q choose an element s(b) € [&]; this defines s such that
q o s = 1Q. NOW define r(b) = ((s o g) (&),&); since (qo s o q)(b) = q(b),
r takes values in R. Since moreover pi or = s o q and P2 o r = 1B, the
coequalizer is absolute.

2.10.3.b In the category Vecx of vector spaces over a field K, an argu-
ment analogous to that in (a) can be developed, using for R a subspace
of B x B which is an equivalence relation on B (what is called a "con-
gruence" on B). The existence of s is again a consequence of the axiom
of choice: given a basis (e^)^/ of Q, choose s(ei) a representative of the
class ei.

2.10.3.C More generally suppose that in a category you have dia-
gram 2.17, where q is the coequalizer of (/,^), (/,#) is the kernel pair
of q and q o s = 1Q. In this case the pair (s o g, 1B): B I B factors
through the pullback via a morphism r:B >R and we get an absolute
coequalizer.

2.10.3.d Let M be a left module on the ring R with unit. In the cate-
gory of abelian groups, the scalar multiplication on M yields a morphism
\x\ R®M——>M, while the unit and the multiplication of R yield mor-
phisms e: Z »i?, m: R<g> R >R (all tensor products are over Z).
In the category of abelian groups, diagram 2.18 satisfies the conditions
of proposition 2.10.2 and thus (M, /i) is the absolute coequalizer of the
pair (1 (g)/i,ra(g) 1).



2.11 Final functors

e® la® 1M e ® l

\R®M
1M

Diagram 2.18

69

> M

Diagram 2.19

2.11 Final functors

The main result of this section should be compared with the classical
fact, in real or complex analysis, that when a sequence converges, any
sub-sequence of it converges to the same limit.

Definition 2.11.1 A functor G: <$ >2f is final when the following con-
ditions are satisfied for every category stf and every functor F: Q) > stf:

(1) if the limit (L, (pD)De@) °fF exists, then (L, (pGc)ce^) JS the limit
ofFoG;

(2) if the limit (L, (qc)ce<#) of F o G exists, then the limit of F exists
as well.

Observe that in condition (2), applying condition (1) implies imme-
diately that the limit of F has the form (L, (PD)DGS>) with pec = Qc-
Very often, one abbreviates this definition by just saying that the limit
of F exists if and only if the limit of F o G exists and those limits are
equal

The next proposition gives a sufficient condition for being a final func-
tor; this condition is not necessary (see exercise 2.17.8).

Proposition 2.11.2 A functor G: <$ >3) is final as long as it satisfies
the following two conditions (see diagram 2.19):

@ 3Ce% 3d:GC >D;
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FGC

FGc\Fd

M Tc" >FGC" FD

rc>
FGd

FGCf

Diagram 2.20

'Fd'

(2) vc,C
3C"e

VDe
3c: C"-

Vd: GC
>C 3c': C"-

D W: GC1 >D
• C" such that doGc = d'oGc'.

Proof Let F: 3> >s/ be a functor. Every cone (M, (qD)De&) o n

F immediately induces a cone (M, (qGc)ce<$) on F o G. Conversely,
consider a cone (M, (rc)ce^) o n F o G ; we shall prove that it induces
a unique cone (M, (qD)D£s) o n F s u c h that qcc = re- Given D € ®,
choose C G ^ and d: GC >D. Define qr> = Fd o re- First of all, this
definition is independent of the choices of C and d. Indeed, choosing
C G ^ and df: GC1 >D, assumption (2) ensures the existence of c, d
in ^ such that doGc = df oGc'. The three pieces of diagram 2.20 are thus
commutative, from which Fd ore = Fdr o re • Notice that in particular
qGC = ^ (choose d = IGC)- On the other hand this requirement qcc =
re ensures that, in the previous situation, q& — Fd o g^c = Fdorc
from which the required uniqueness of the cone (?D)DG^ follows.

The rest of the proof is straightforward computation. If (L, (PD)DG^)

is the limit of F , (L, (PGC)C€^) is a cone o n F o G ; it is a limit cone
because every other cone (M, {rc)ce<#) on F oG can be "extended" to
a cone (M, (#£>)£>€#) which factors uniquely through the limit of F. An
analogous argument proves the converse implication. •

Here is a special case of interest.

Proposition 2.11.3 Consider a category @> with pullbacks and a full
subcategory <& C Sf which satisfies the condition

VDG® 3C e <€ 3d: C >D.

Then the inclusion <& c-^ 3f is a final functor.
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Proof Consider objects C, C G ^ and morphisms d,d! as in dia-
gram 2.21. Construct (P,p, q), the pullback of d and d7 in ^ , and choose
a morphism r: C" >P with C" e <#. Since # is full in 0 , p o r and
g o r are in ^ and dopor = d' oqor. Deduce the conclusion by 2.11.2.

•
Another useful case is

Proposition 2.11.4 Consider a category 3) with an initial object 0.
The inclusion of the subcategory {0} in 3 is a final functor.

Proof Obvious by 2.11.2 and the definition of an initial object (see
2.3.1). •

Corollary 2.11.5 Consider a category 3 with an initial object 0 and an
arbitrary functor F: 2f >s/. Let us write 0r>: 0 >D for the unique
arrow from 0 to D in S>. In these conditions, the limit of F exists and
is given by (F0, (F0D)D€®). •

Corollary 2.11.6 Consider a category 3} with an initial object 0. With
the notation of the previous corollary, (0, (OD)D € ^ ) is the limit of the
identity functor Of = 3). •

Let us comment on this last result. Roughly speaking, it says that
the colimit of the empty functor is also the limit of the identity functor.
This fact admits an interesting generalization (see exercise 2.17.2) show-
ing that the colimit of a functor F:3 >sf can always be described
canonically via the limit of another functor G:^ >s/. The price to
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F(lc,d) \ F(lC',d)

Diagram 2.22

pay is that when 2 is a small category, ^ has no longer any reason to
be small. In the example of the initial object, 2 is empty but ^ is equal
to s/.

2.12 Interchange of limits
Given a functor F: 2 >s# and its limit (L, (PD)DG^) ? o n e often writes
limFD for the object L. This notation is somewhat ambiguous since it
does not mention the arrows of 2, but used with care, it will turn out
to be useful when computing limits and colimits.

We are now interested in the study of the limit of a functor

and we would like to prove the interchange property

, D)) ^ limD€^(limCe^F(C, D)),

as long as all the involved limits exist. We had better give a precise
meaning to this statement.

For every fixed object C E #, there is a functor

defined by

F(C, -)(£>) = F{C,D\ F(C, -)(d) =

for an object D and an arrow d of 2. By limJc>e^F(C, D) we mean the
limit of that functor F(C, —). Now every morphism c:C >Cf in 9S
induces an arrow F(c, ID) of si for every object D € 3>\ moreover dia-
gram 2.22 commutes for every arrow d: D >Df in 2. In other words,
the arrow c: C >C induces a natural transformation
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Now suppose lini£)e^F(C, D) and limJDG^F(C/,D) exist. The com-
posites

limD€*F(C, D) PD >F(C, D ) ^ I F ( C , D)

obviously constitute a cone on the functor F(Cf, —), from which it fol-
lows that there is a unique factorization written

\imD£®F(c, 1D): limD£®F(C, D) >limD€®F(C, D)

and such that p'D o lim£)€^F(c, I D ) = F(c, I D ) op/). (We have written
PD and p'D for the projections of the limits of F(C, —) and F(C', —).)
When all the functors F(C, —) have a limit, we can define a new functor

L: <€ >.$*,

L(C) = \\mDz®F{C, D), L(c) = li

where C G |^| and c is an arrow of (€. We must prove that L is indeed
a functor. For example given two arrows C—^—>C' c >C" in ^ , we
deduce immediately that

pD o Lcf oLc — F(c', I D ) op'Do LC

= F(c',lD)oF(c,lD)oPD

= F(cfoc,lD)opD,

so that Lc1 oLc = L(cf oc). An analogous argument holds for the identity
axiom.

The limit of the previous functor L, when it exists, is exactly what we
denote by \imce<#(limDe@F(C,D)). An analogous description holds for

,(limee<#F(C,D)). The interchange property

means that the "canonical morphisms" connecting these two limits are in
fact isomorphisms (this is indeed stronger than the existence of "some
isomorphism"). Let us just describe these "canonical morphisms" be-
tween the two limits.

Starting with the limit of L described above, we have the correspond-
ing projections

lim L — 2 ^ _ ^ \imDe9F(C, D) — ^ — ^ F(C, D).
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For a fixed object D G ^ and a morphism c:C >C" in ^ we have,
using the previous notation

o pc

= P'D°PC

This shows that the composites pp o p^ constitute a cone on the func-
tor F(—, D) from which it follows that there is a unique factorization
\D'. limL >\imce<#F(C,D) such that pc ° ^D = PD °PC, where the
p c denote the canonical projections of the limit \\mc£<gF(C,D). Given
an arrow d: D >Df in 3) we have also (writing p'c for the projections
of the limit \imCe<gF(C, D'))

pf
c o limc<E<^(lc, d)o\D = F ( lc , d) o pc o \D

= F(lc,d)opDopc

= pD> o pc

from which limc6^F(lc,d) OAD = \D> and we get the fact that those
arrows {\D)DZ® constitute a cone. This implies the existence of a unique
factorization A: lim L >lim£>€^ (limce<$F(C, D)). Analogously we can
define a canonical morphism in the other direction

, D)).

The precise meaning of the interchange property for limits is the fact
that A, fi are inverse isomorphisms.

Proposition 2.12.1 Consider a complete category si and two small
categories ^ , S>. Given a functor F:^x S> >s/ and using the previous
notations, the following interchange property holds:

Proof We want to prove that the two composites A, /x in the previous
discussion are inverse isomorphisms. By 2.6.4, fi o A = 1 reduces to the
equalities

PD ° Pc ° M ° A = PD ° Pc

which are straightforward from the definitions of A and //; an analogous
argument holds for A o \x. •

Examples 2.12.2

2.12.2.a Consider two sets / and J viewed as discrete categories J
and J>\ a functor F:Jx / >s/ is just a family F^ of objects of si
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(see example 2.6.7.a). When si has products, the interchange property
reduces to the formula

which can be seen as an instance of the general associativity law for
products (see 2.1.6); that law asserts in fact that both expressions are
isomorphic to Ylij^ij-
2.12.2.b Consider a set J, viewed as a discrete category </, and the
category J f = {• >•} of example 2.6.7.b. A functor F:*fx Jt >$4
is a family (fi^gi'.Ai >Bi)iei of pairs of arrows in J / . When s/ is
complete, the interchange property reduces to

2.13 Filtered colimits
Let us consider again a functor F:^ x S> >s/ as in the previous
section, and let us look this time at the mixed interchange property

when all the limits and colimits involved in this formula exist. The pre-
cise meaning of each side of the formula is obvious from the considera-
tions of the previous section. Let us also note the existence of a canonical
morphism

A: co\imce<#(limDe®F(C, D)) ^lim^^colimcG^CC'* D)).

The existence of A is equivalent to the existence of a cone

XD: colim ce<$fomDe®F(C, D) —>colim ce<$F(C, D)

and the existence of each \p reduces to the existence of a cocone

(\D)C- limD€^F(C, D) >colimC€<^(C, D).

This last arrow is just the composite

, D) —£e_>ir(c , D) ^ ^ c o l i m ceeF{C, D)

where po is the canonical projection of the limit and SQ is the canonical
injection of the colimit. Straightforward computations, perfectly analo-
gous to that of section 2.12, prove that the (XD)C constitute a cocone
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in C and the XD constitute a cone in Q). Thus A is well-defined and the
mixed interchange property refers to the fact of A being an isomorphism.

But the bad point about the mixed interchange property is that it
does not hold in general! For example if I and J are sets viewed as
discrete categories and si is the category of sets, the mixed interchange
property reduces to

for a family (Fij)^j)eixj of sets. A special instance of this formula
would be

(An x A12) II (A21 x A22) s* (An IIA21) x (A12 II A22),

which is easily seen to be false just by a cardinality argument.
Now there is a very important case in which the mixed interchange

property holds in the category of sets (and in many "algebraic-like"
categories as we shall see later): this is the case where ^ is "filtered"
and Q) is "finite". By "2 finite" we mean clearly that 2 has just a finite
number of objects and arrows.

Definition 2.13.1 A category %> is filtered when

(1) 3C <E% ("% is not empty"),
(2) VCi,C2 e V 3C3 e <$ 3f: d >C3 3g: C2 >CS,
(3) VCi,C2 € t f V/ ,0 :CiZZ^C 2 3C3e

(# 3h: C2 >C3 hof =
hog.

By a "filtered colimit" we mean the colimit of a functor defined on a
filtered category. We say that a category si "has filtered colimits" when
for every small filtered category ^ and every functor F:^ >s$', the
colimit of F exists.

First of all, let us prove a useful lemma.

Lemma 2.13.2 Let ^ be a filtered category. For every finite category
Q) and every functor F: Q) >^? there exists a cocone on F.

Proof First observation: given a finite family (Q)i € / of objects of #,
it is possible to find C G ^ and morphisms C% >C. We prove this by
induction on the cardinal of / . When / is empty, this is just condition
(1) in definition 2.13.1. If the result is valid in the case of n — 1 indices,
while / = { i i , . . . , zn}, choose an object C and morphisms Cik >C
for k = 1 , . . . , n — 1. Applying condition 2.13.1.(2) we choose C G ^ pro-
vided with morphisms C >C, C{n >C; this answers the question.
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Next, let us consider a finite family (/$: C >C')i€i of parallel arrows
in c€. It is possible to find C" G # and f:C >C" such that for
every pair (i,j) of indices, / o fa = f o fj. Again we prove this by
induction on the number of elements of / . When / is empty, we again
find condition (1) in definition 2.13.1. If the result holds for n— 1 indices
and / = { i i , . . . , i n } , choose C" and / such that / o fa = f o fj for
all indices i, j < n — 1. We get in this way a pair of parallel arrows
(/° / i> f°fn)' CZZ^,C" and using condition (3) in definition.2.13.1, we
choose C " G <€ and / ' : C" >C" such that f'ofofl = flofofn.
The composite / ' o / is then the required morphism.

Now apply the first part of the proof to the family (FD)Deg,, getting
an object C G ^ and for every D G 3f, a morphism / # : FD >C. For
every arrow d: D > D1 in ^ , we obtain a pair (/#, /^/ oFd): FD ^ C
and using condition (3) in definition 2.13.1, we choose Cd € ^ and
#<*: C >Cd such that g&° fu = 9d ° fDf ° i^d. Using again the first
part of the proof we choose an object C € # and arrows /i^: C^ >C".
We have now finitely many arrows (hd o ^ ' C >Cf)de® and using the
second part of the proof, we choose an object C" G ̂  and a morphism
k: C >C" such that k o hd o gd = k o hd' o gd' for every pair d, d' of
arrows of 3t. Let us write I for this single composite from C to C". The
family (/ o fr>)D^9 is the required cocone on F. •

Most often, we shall apply this lemma to the inclusion of an arbitrary
finite subcategory 3) C c€.

The construction of a colimit reduces to that of two coproducts and
a coequalizer (see 2.8.1), but in the category Set of sets the explicit de-
scription of a coequalizer is generally very technical since it involves the
description of the equivalence relation generated by a family of pairs (see
example 2.4.6.b). But in the case of filtered colimits, the corresponding
equivalence relation admits a very easy description.

Proposition 2.13.3 Consider a small filtered category <& and a func-
tor F-.m > Set to the category of sets and mappings. The colimit
(L, (sc)c€<#) of F is given by

L = I I FCI ~' sc: FC >L>
where [x] denotes the equivalence class of x and w is the equivalence
relation defined as follows:

(x G FC) « {x1 G FCf) precisely when

3C" G * 3 / : C >C" 3g: C >C" Ff(x) = Fg{x').
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Diagram 2.23

Proof First of all let us observe that « is indeed an equivalence rela-
tion. It is obviously reflexive and symmetric. To prove the transitivity,
choose (x G FCi) « (x' G FC2) and (x' G FC2) « (x" G FC3) (see di-
agram 2.23). This means the existence of morphisms frg, h, k such that
Ff(x) = Fg(x') and Fh(x') = Fk(x"). Applying lemma 2.13.2 we find
a cocone (a»:Ci >CQ) on the diagram constituted of the objects C\
to C$ and the morphisms / , g, h, k. In particular

Fa4 o Ff(x) = o Fg(xf) = Fa2(x')

o Fh(x') = Fa5 o Fk(x")

which proves that x « x".

The mappings sc' FC
morphism / : C >Cf in

>L do constitute a cone since for every
and every element x G FC, the equal-

ity F/ (x) = F(lc>)(Ff(x)) indicates that [x] = [F/(x)]. Now given
another cone (tc'.FC >M)ce<g on F , we define t:L >M by
t([x]) = tc(x) for an element x G FC. This definition is unambiguous
since given another element xf G FC',[x'] = [x], we can find
morphisms
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such that Ff(x) = Fg(x'). In particular since t is a cone on F

tci?) = tc» o Ff(x) = tc» o Fg(x') = tc>{x').

By definition, tosc = tc and this relation forces the previous definition
oft. •

Here is the key property of filtered colimits.

Theorem 2.13.4 Consider a small filtered category <£ and a finite cat-
egory Ql. Given a functor F: *€ x 2f > Set to the category of sets and
mappings, the following mixed interchange property holds:

colim cev (limD€^F(C, D)) = KmneQ (colim Ce<$F(C, D)).

Proof By a finite category, we clearly mean a category with finitely
many objects and finitely many arrows. In section 2.8, we gave a de-
scription of limits in Set and in 2.13.3, a description of filtered colimits.
Using them, the morphism A defined at the beginning of this section is
given by

where XD £ F(C, D). We must prove that A is bijective.
Let us prove first that A is injective. Consider {XD)D^9 €.F(C,D)

and (?/D)D€^ € F(C',D) with the property [XD] = [VD] f°r every
index D. This means the existence of morphisms /D'-C >C& and
gD\C >CD such that F(fD,lD)(xD) = F(gD,lD)(yD). Applying
lemma 2.13.2 to the diagram constituted of all the morphisms fD,9D, we
get in particular two composite morphisms / : C >C", g: C >Crf

such that for each index D, F ( / , 1D)(XD) = F{9,]-D)(yD)- But this
means precisely that

thus the equality [(XD)DG^]
 =

 [(J/D)D€^] holds.
Let us now prove that A is surjective. Given a family ([XD])D£S in

the right-hand side, we choose a representative element xr> € F(CD, -D),
for each index D. Applying lemma 2.13.2, we choose also a morphism
ID'-CD >C, for each D 6 ^ , and we know already that [XD] =
[FUD, 1D)(XD)] . Thus the elements F ( / D , lD)(xD) € F(C, D) are also
representatives of the original family ([XD])DGSI- NOW given an arrow
d:D »£>', the elements F(lcD,d)(xr>) and x^f are identified in the
colimit, thus the equivalent elements

F(fD,d)(xD), F(fD,,lD)(xD>)
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are identified as well. The existence of morphisms gd,hd'> CZUXCd such
that

F(gd o / D , d){xD) = F(hd o fD,, ID){XD')

follows at once. Applying lemma 2.13.2 to the diagram constituted of
all the morphisms gd,hd, we finally find a single morphism k: C >C
such that

F(k o fD, d)(xD) = F(k o

for all arrows d. Therefore the family (F(rfo fD, 1D)(ZD))DGSI is an
element of lim£)6^F(C, D) and its equivalence class is still mapped by
Xto{[xD))D^. •

To give a flavour of why the previous result generalizes to algebraic
contexts, let us handle the case of abelian groups.

Proposition 2.13.5 The forgetful functor U: Ab >Set from the cat-
egory of abelian groups to the category of sets preserves and reflects
filtered colimits.

Proof Consider a small filtered category ^ and a functor F: <& > Ab.
Define (L, (sc)c€%) to be the colimit of the composite U o F in the
category of sets. Given two elements [a; G FC] and [y G FC'} in L,
we choose morphisms / : C >C",g: C >C" and get [x] = [Ff(x)],
[y] = [F</(2/)]. In order for sc to become a group homomorphism, we
must define

[x} + [y}=[Ff(x) + Fg(y)].

Applying 2.13.2, it is now a straightforward computation to verify that
this definition is independent of the various choices we have made and
that L has eventually been provided with a group structure making all
the sc's group homomorphisms. The 5c 's constitute a cone since the
underlying mappings do.

Now given another cocone (M, (tc)ce<#) on F, the unique factoriza-
tion t:L >M which exists at the level of underlying mappings is a
group homomorphism since, with the previous notation

t{[x) + [y})=t([Ff(x)

= t([Ff(x)])+t{[Fg(y)})
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Thus we have indeed obtained the colimit of F in Ab.
By construction of the filtered colimit in Ab, it is preserved by U. On

the other hand the uniqueness of the group structure on L implies that
filtered colimits are also reflected by U (equivalently, use the fact that
U reflects isomorphisms; see 2.9.7). •

Corollary 2.13.6 In the category Ab of abelian groups, finite limits
commute with filtered colimits. •

The expression "finite limits commute with filtered colimits" is just
another expression for stating the mixed interchange property between
finite limits and filtered colimits.

Let us observe now a result valid in every category. Roughly speaking,
an arbitrary colimit is the filtered colimit of its finitely generated partial
colimits.

Proposition 2.13.7 Consider a functor F:@ ><$, with <£ finitely
complete. Write 3F for the poset of finitely generated subcategories of
3); & is filtered. Given 9£ e &, consider the colimit \3C of F: 3T >%;
this extends to a functor \\3F ><€. This functor A has a colimit if and
only if F has a colimit and the two colimit objects coincide.

Proof Each colimit (A#\ (erf ) X e r ) e x i s t s bY 2-8-5- I f % Q ® a r e finitely
generated subcategories of ®, (<Jx)x€9C is a cocone on F9C, from which
there is a factorization \3C >A^, making \\3F >%> a functor. The
subcategory generated by the union of two finitely generated categories
is obviously finitely generated, thus 3F is filtered.

If the colimit (L, (£#-)#-Gjr) of A exists, for each D G S consider the
one-point category (£>); the colimit of F: (D) >^ is just (FZ), 1FD)-
The morphisms Y,(Dy.FD >L constitute a cocone on F. Indeed every
arrow d:D >Df can be identified with a finite subcategory (d) C 3)
and the colimit of F: (d) >% is just (FDf, (Fd, 1FD')) (see 2.11.4).
Since {D) and (Df) are contained in (d), with corresponding factoriza-
tions Fd: A (D) >A (d), lFDr. A (D') > A (d), one has

E(D/) oFd = E<d) o lFDi oFd = S(d) o Fd = S<D).

Thus the £(£>) constitute a cocone on F. If 7^: FD >M is another
cocone on F , for every X G & the {^D)D^3C constitute a cocone on F9C,
from which a factorization Y%\ \9C >M. If 9£ C ^ , the relations

IV o \{X C <&) o 0% = Toy oa$ = 7x = T% o 0%
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for each X e SC imply Y#o\(X C 9) = Tx. So the various IV constitute
a cocone on A and we get the required factorization L >M.

Conversely suppose (L, (OD)D€^I) is the colimit of F. Given 9C G #",
is a cocone on F^* from which we get a unique factorization

>L such that Y>x o a£ = QX- Given SC C ^ , the relations

o erf = S^ o a^ = 0* =

imply E^ o A(5T C <&) = S r̂, from which it follows that the (£
constitute a cocone on A. If 7r&:\3£ >M is another cocone on A,
{ft(D))Dc& ^s a cocone on F. Indeed given a morphism d:D >D' in
^ , one has

Therefore we get the expected factorization L >M. •

Examples 2.13.8

2.13.8.a In the category Set of sets, consider a set X and the diagram
3f constituted of the finite subsets of X and the canonical inclusions
between them. This diagram is filtered since 0 is a finite subset of X
and the union of two finite subsets is finite. Notice the diagram never
contains two different parallel arrows. The filtered colimit of this diagram
is obviously X.

2.13.8.b In the category Ab of abelian groups, the finitely generated
subgroups of a group A and the canonical inclusions between them again
constitute a filtered diagram, whose colimit is obviously the group A
itself.

2.13.8.C Consider the poset (N, <) viewed as a category (see example
1.2.6.b); it is obviously a filtered category. On the other hand consider a
finite set / viewed as a discrete category (see example 1.2.6.c). A functor

F : N x J >Set

is just a family of sequences

A M — ^ M — > A 2 , * — > "I

/ i£l

The mixed interchange property applies, showing that

colim n€N^n,i = colim n € N Yl Anti.
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Diagram 2.24

2.13.8.d A category # with a terminal object is obviously filtered, but
computing the colimit of a functor defined on ^ is not very relevant (see
corollary 2.11.5).

Counterexample 2.13.9

The mixed interchange property between finite limits and filtered co-
limits is not a general fact. In many categories, in particular when topolo-
gies are involved, it does not hold. Consider for example diagram 2.24
in the category Top of topological spaces and continuous mappings. The
objects Anm are defined by

Aln = [o, -
n

A2n =

where the equivalence relation identifies the two copies of 0 as well as
the two copies of £. The morphisms an, /3n are

an(x) =

The morphisms / n , gn are the two canonical injections of A\n in A2n-
Let us consider the poset (N*,<) as a category Jf* as well as the

category JT defined in example 2.6.7.b. We have just defined a functor
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GDf SD' >FD'

N
f

Diagram 2.25

FD

-> M

Prom this we can compute \m\K£jtrF(n, K) for each n and the corre-
sponding factorizations between those objects. This produces the family
of equalizers Kn = Ker(/n, <7n) to which the morphisms an restrict. It
is immediate that each Kn is just the discrete two-point space, so that

K =

is just the discrete two-point space. On the other hand, an easy calcula-
tion shows that A\ = colimn €^*Ain and A<i = colimnG^*A2n are both
the two point space {0, s} provided with the topology for which e is an
open point. The families (/n)n€N and (pn)n€N both induce the identity as
factorizations between those colimits, so that the corresponding equal-
izer of those factorizations is again the space {0, e} where e is open (the
"Sierpinski space"). But this is precisely \miKetf (colimnG^*F(n,K)),
which proves that the interchange property does not hold.

2.14 Universality of colimits

This section points out another important compatibility condition be-
tween pullbacks and arbitrary colimits in the category Set of sets and
mappings.

Let us consider a category ^ with pullbacks and an arbitrary functor
F: 3>——>c€. Given a cocone (#£>: FD >M)D^QI on F and a morphism
/ : N >M in ^ , we can compute the various pullbacks (GD, ro, s&) of
to along / (see diagram 2.25). Moreover, given a morphism d: Df >D
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Pi ^—> Ei

X

Diagram 2.26

in 3>, the equalities

tp o Fd o sr)f = try o spf = f o rj^i

imply the existence of a unique factorization Gd making diagram 2.25
commutative. In particular, we have defined a functor G:3) »^, a
cocone (rr>:GD >N)De@ on this functor G and a natural transfor-
mation s:G => F.

Definition 2.14.1 We use the previous notation and consider a cat-
egory <& with pullbacks and an arbitrary category Si. Given a functor
F: Q) >^ with colimit (M, (tD)De@) ? this colimit is universal when for
every morphism f: N >M in <$, the cocone (iV, (ro)De^) constructed
above is a colimit of the corresponding functor G.

Theorem 2.14.2 In the category Set of sets, small colimits are univer-
sal.

Proof It is an immediate consequence of the dual of theorem 2.8.1 that
it suffices to prove the result separately for coproducts and coequalizers.

Let us thus consider a coproduct Ui£lEi of sets and a mapping

f'.X

We have to compute the pullbacks of diagram 2.26. Since Si is injective
(see 2.2.4.a), so is U (see 2.5.3) and in fact

Pi = {xeX\f(x)eEi}.

The subsets Pi of X are disjoint since the subsets Ei of ]JieIEi are;
moreover they cover X since the E^s cover ]Ji€lEi.

For the case of a coequalizer, we refer to diagram 2.27 where (Q, q) =
Coker(/,<7) and a is an arbitrary morphism. (D,p,(3) is the pullback of
(a,q) and (C, /,7) is the pullback of (a, qof = qog). From go/07 =
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7

h f

D B

— * — • Q

Diagram 2.27

we get the factorization h such that (3o/i = / o 7 andpoh = I and from
qo go^y = aol the factorization fc such that /? o A: = g o 7 and pok = I.
By 2.5.9, (/i, 7) is the pullback of /?, / and (&, 7) is the pullback of /?, p.
We must prove that (P,p) = Coker (/i, A;).

First of all if x G P, a(x) = [b] for some 6 G B and thus (x, b) € D
with p(x, 6) = x. Therefore p is surjective and P is the quotient of D by
the equivalence relation

uRv iff (u, v G D).

Since po h = po k, R contains the equivalence relation S defining the
coequalizer of the pair (/i, k) (see 2.4.6.b). It remains to prove that con-
versely, R is contained in S. So let us consider two elements u = (x, 6),
i; = (x;, 6') of £> such that p(w) = p(v); this means x = xf. One has

so that q(b) = q(br) and thus the pair (6, &') is in the equivalence relation
T on B generated by the pairs (/(a),^(a)), a € A. Notice that given
an element a £ A and an element x G P such that a(x) = (go /)(a) =
(<7°#)(a)> o n e has (x, a) G C so that (x,/(a)) = /i(x, a) and (x,p(a)) =
fc(x,a) are 5-equivalent. But since the pairs ( (x , / (a) ) , (x,^(a))) are in
S, so is the equivalence relation generated by those pairs and in particu-
lar the pairs ((x, 6), (x, b')) with (6, b') G T. And we have just seen that
this contains R. •
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Diagram 2.28

The universality of colimits is a very peculiar property which is much
less common than the mixed interchange property of section 2.13. For
example, colimits are not universal in the category Ab of abelian groups.
Consider indeed the pullbacks of diagram 2.28 where R stands for the
additive group of real numbers, si(r) = (r, 0), 52 (r) = (0, r) and A(r) =
(r, r). Both pullbacks are just the zero group. Now the coproduct RI IR
is just (R2, $i, s2) (see 2.2.4.f) but R is not the coproduct (0) II (0).

2.15 Limits in categories of functors
We investigate the existence of limits in categories of functors and nat-
ural transformations.

Proposition 2.15.1 Consider categories si, ^ , Sf, with <€ and 3> small.
Let F: S> >Fun(^, stf) be a functor, where Fun(^, jtf) is the category
of functors and natural transformations from <& to s/. If for every object
C e^ the functor F ( - ) (C) : 2 >jtf has a limit, then F has a limit
as well and this limit is computed pointwise.

Proof The precise meaning of "being computed pointwise" will be
explained in the proof.

Consider the small category 2f and the functor F.Q) >Fun(^, si).
For each fixed object C € ^ we get a functor

F(-)(C):9 ><*/,

and for each morphism / : C >C, a natural transformation

For each C € V let us consider the limit (L(C), (p%)Deai) of the functor
F(—)(C). For each morphism / : C »C" in #, the natural transforma-
tion F(—)(/) induces a factorization L(f): L(C) >L(C') between the
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limits, with the property that

Straightforward computations analogous to those of section 2.12 show
that

is a functor and (p^:L(C) >F(D)(C))C ^ is a natural transforma-
tion PD'- L =$> F(D). The theorem asserts that (L, (pD)De@) is the limit
of F. The pointwise character of this construction is precisely expressed
by the formula

(]xmD€9F(D)){C) = ]imDeS(F(D)(C)).

In other words, the value of the limit lim.D£S>F(D) at an object C is the
limit of the values of F(D) at C.

First of all let us observe that the ]?D'S constitute a cone on F. If
d: D >D' is a mapping of ®, we have for every C G #

F(d)(C)opZ=p%,

by definition of the morphism p£, thus indeed F(d) opD = pD,. Now if
(M, (qD)D€@) is another cone on F , each (M(C), (^D,C)DG§) is a cone
on F(—)(C), which yields a unique factorization rc:M(C) >L(C)
such that p%orc — QD,C- These r^'s constitute a natural transformation
r:M => L since, given a morphism / : C »C",

p% o L{f) orc = F(D)(f) op%orc

= F(D)(f)oqDtC

= qD,c> ° M(f)

= PD orc> oM(f),

and therefore L(f) o re = re o M(f) (see 2.6.4). By definition, the
natural transformation r:M => L satisfies the relation pp o r = qp] it is
the only one with this property, due to the uniqueness condition satisfied
by the arrows re- •

As an immediate corollary we get

Theorem 2.15.2 Consider a complete category si and a small category
c€. Under these conditions, the category Fun(^, srf) of functors from <&
to si and natural transformations between them is complete and limits
in it are computed pointwise. •
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Corollary 2.15.3 Consider a category si with pullbacks and a small
category <&. Given two functors F^G.^ZHX^ and & natural transfor-
mation a: F => G, a is a monomorphism in Fun(^, stf) if and only if for
each object C €<&, ac- FC >GC is a monomorphism in stf'.

Proof In 2.15.1, choose for 2 the category 0> = {• > • < •}
defining pullbacks (see 2.6.7.c). Pullbacks are thus computed pointwise
in Fun(#, s/) and the result follows immediately from 2.5.6. •

Corollary 2.15.4 Consider a small category <$ and the corresponding
category Fun(#, Set) of Set-valued functors.
(1) Fun(^, Set) is complete and cocomplete.
(2) In Fun(^, Set), finite limits commute with filtered colimits.
(3) In Fun(#, Set), colimits are universal.

Proof By 2.15.1, 2.8.2, 2.13.4 and 2.14.2. •

Proposition 2.15.5 Consider a small category <& and the covariant
Yoneda embedding (see 1.4.3.d)

Y:<€ >Fun(<T,Set),

This functor Y preserves limits.

Proof Consider a functor F.Q) ^ with limit (L, {PD)D£^)- We

must prove that (#(—, L), (^{~->PD))DeoA ls the limit of YoF. Apply-

ing proposition 2.15.1, we must prove that y€{C, L), {^(C,PD))DGSI) is
( )the limit of the functor #(C, F—): ̂  >Set. This holds by proposition

2.9.4. •

Theorem 2.15.6 Consider a small category <£ and a functor F from
% to the category Set of sets. In the category Fun(#, Set) of functors
and natural transformations, F can be presented as the colimit of a dia-
gram just constituted of representable functors and representable natural
transformations.

Proof Let us consider the composite functor

E l t s ( F ) — ^ - ^ # — ^ ^

where Elts(F) is the category of elements of F defined in 1.6.4, <j)p is the
corresponding forgetful functor and Y* is the Yoneda embedding referred
to in example 1.4.3.a. We shall prove that F is exactly the (object part
of the) colimit of Y* o (j>p. This composite is contravariant, so that the
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reader could prefer replacing ^ and Elts(F) by the dual categories; but
this just makes notations heavier.

An object in Elts(F) is a pair (A, a) where A G # and a G FA] by the
Yoneda lemma (see 1.3.3) this corresponds to a natural transformation
8(A,a)- V{A, - ) => F. If / : (A, a) >(JB, 6) is a morphism of Elts(F), we
have F(f)(a) = b and by the naturality in A of the Yoneda isomorphisms
(see 1.3.3), this is equivalent to the relation S(A,a) ° ^(/> ~) = s(B,b)-
Therefore the family (s^a))(A a)GEhTS(F) ls a c o c o n e o n ^n e functor
Y*o(j)F.

Choose another cocone (^^(A,a))(Aa)6ELTS(F) o n t n e s a m e functor
Y* o (frF. We want to produce first a natural transformation a: F => G.
For each object C G ¥ we must define a mapping OLQ\FC >GC.
Given an element x G FG, we consider the corresponding object (G, x)
in Elts(F); the natural transformation £(c>x): #(C, —) => G corresponds
by the Yoneda lemma to a unique element of GC, which we define to be
OLC(X). To prove the naturality of a, we choose a morphism g: C >D
in #, which yields a morphism g: (C, x) > (J9, Fg(x)) in Elts(F). Since
the arrows t(^a) constitute a cocone on Y*o(/>Fi we have t{c,x)oC&{9-> ~) =
t(D,Fg(x)) which, again by naturality of the Yoneda isomorphisms, im-
plies G(g)(ac(x)) = aD(Fg(x)). This expresses precisely the naturality
of a.

Given (C, x) in Elts(F), we must prove that OLOS^CX) = t(c,x)- Via the
Yoneda isomorphisms, both sides indeed correspond to ac(x). Moreover,
if /?: F => G is another natural transformation satisfying /? o S(c,x) —
t(c,x)> applying the Yoneda isomorphisms to both sides yields fie (x) =
ac(x), from which follows the uniqueness of a. •

Examples 2.15.7

2.15.7.a Consider a group G (written multiplicatively) and the corre-
sponding category of G-sets. A G-set is a pair (£?, •) where E is a set
and • is an action

•:ExG >E , (e,flf)«->eff,

satisfying the axioms

el = e, (eg)g' = e(gg'), for all e G £ , #,#' G G.

A morphism / : (i?, •) > (F, •) of G-sets is a mapping / : E >F sat-
isfying the axiom

f(eg) = f(e)g, for all e G £ , g G G.
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We can view G as a category ^ with a single object * and arrows
^(*> *) = G, the composition being given by the multiplication of G.
The category of G-sets and corresponding homomorphisms is exactly
the category Fun (G*, Set) of contravariant functors and natural trans-
formations from G to Set. Indeed giving an action E x G >E is just
the same as giving the various multiplications

E

for each individual element g G G.
Prom 2.15.3 we deduce that the category of G-sets and their homo-

morphisms is complete and cocomplete; finite limits of G-sets commute
with filtered colimits and colimits of G-sets are universal.

Let us observe that the unique representable functor G >Set cor-
responds exactly to the G-set (G, •) where the scalar multiplication is
just the multiplication of the group. Each G-set can thus be presented
as the colimit of a diagram involving simply the basic G-set (G, •) (see
2.15.4).
2.15.7.b A category Fun(^, si) of functors can be complete even when
si is not. An obvious example is obtained by taking si and ^ to be
empty: si is not complete or cocomplete, since it does not have a ter-
minal or an initial object. But Fun(#, si) is the category with just one
single object (the empty functor) and the identity on it; that category is
obviously both complete and cocomplete. And since # doesn't have any
object .. .limits in Fun(^,si) are still pointwise! See exercise 2.17.10 for
a non-pointwise limit.

2.16 Limits in comma categories

Comma categories were introduced in section 1.6.

Proposition 2.16.1 Consider two complete categories si,3# and two
limit preserving functors F: si ><£, G: 0& >c€. The comma category
(F, G) is then complete and the projection functors U: (F, G) > si and
V: (F, G) >$ are limit preserving.

Proof Given a small category 3> and a functor H\Q) >(F, G), con-
sider the limit (L, (PD)D€^) oi U O H and the limit (M, (qD)Desi) of
V o H. Our assumptions imply that

lim FUH = (FL, (FpD)D€<>),

limGVH = (GM, (GqD)D£9).
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On the other hand each object HD has the form

HD = (UHD,aD,VHD)

where a: FU =>• GV was defined in 1.6.2. Considering the natural trans-
formation a * H.FUH =>> GVH (see 1.3.4), we deduce the existence
of a corresponding factorization h:FL >GM between the two lim-
its. It is now straightforward to check that (L, /i, M) together with the
projections

(pD,qD):(L,h,M) >(UHD,aD,VHD)

is the limit of H. •

Corollary 2.16.2 If^ is a complete category and F: <& >Set is a limit
preserving functor, the category Elts(F) is complete and the forgetful
functor <J>F' Elts(F) »# is limit preserving.

Proof With 1.6.4 in mind and using its notation, apply the previous
result to 1:1 > Set and F: % > Set. •

Another interesting example of a comma category is the category # / / ,
for some fixed object I G (€. Indeed considering the one-point category
1 (see 1.6.4) and the functor A / : l ># ; A/(*) = / , <#/I is just
the comma category (l#,Aj) where 1^ is the identity functor on ^ .
It should be noticed that A/ does not, in general, preserve limits or
colimits. Indeed in 1 one has * x * = * and * II * = *, but generally
I x I ^ I and / II / ^ / . Nevertheless we have the following result.

Proposition 2.16.3 Consider a category ^ and a fixed object I G c€.

(1) IfW is complete, %> /I is complete.
(2) Ifttf is cocomplete, # / / is cocomplete.

Proof Let us first assume ^ is complete. Consider a non-empty family
of objects (fk'-Ck >I)keK in the category # / J . In ^ , the diagram
constituted by all those morphisms /& has a limit given by an object
L and morphisms p&: L >Ck , p: L >/. It is an obvious matter to
check that

is the product of the original family in V/I. On the other hand the empty
product in # / / , i.e. the terminal object, is just the identity on / .

Now consider two objects f:C >I and g:D >I of W/I. The
equalizer of two morphisms (a,/3): (C, f)^lX(D,g) in <&/! is just the
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Diagram 2.29

pair ((#, / o fc), k) where (K, k) is the equalizer of (a, /?) in <g. By 2.8.1,
we conclude that # / / is complete.

If ^ is cocomplete, Q) is a small category and F: ^ » # / / is a func-
tor, each F£> can be written as a pair (GD, j&) where JD'-D >I. This
immediately induces a functor G: Of >%> whose colimit will be written
(L,(SD)D£®)- Since F takes values in <#/! , (/, ( 7 D ) D € ^ )

 ls another
cocone on G, from which we get a unique factorization A: L >I with
the property A o SD = 7D- It is immediate that

is the colimit of F in •

2.17 Exercises

2.17.1 Consider a category V with binary products and equalizers.
Given two morphisms / , g as in diagram 2.29, prove that the pullback
of (/, g) is the equalizer of the pair (/ o p^, g o pB).

2.17.2 Consider a functor F.Q) >^ and the category of cones on
F: its objects are the cones (M, {T^D^B) on F; an arrow between the
cones (M, (rn)De^) a n d (iV, (s/))^)^^) is a morphism / : M >N such
that spo f = rp for each Z). Prove that F has a limit if and only if the
functor U from the category of cones on F to the category ^ , mapping
a cone to its vertex, has a colimit.

2.17.3 Consider a functor F\Q) ># and an object C £ <€. Write

for the constant functor on C (see 1.2.8.e). Prove that a cone on F is
just a natural transformation Ac => F .
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2.17 .4 In the category of finite sets, prove that the colimit of the identity
functor exists (it is the singleton) but the coproducts which would be
needed to construct it via theorem 2.8.1 do not exist.

2.17.5 Consider a category # with products and a functor F: 3f >#
where 3f is small. Construct a and ̂  as in 2.8.1. Prove that Ker(a,/3)
exists if and only if lim F exists.

2.17.6 Consider a category si with products and a functor F: si >38
which preserves products and equalizers. Show that F preserves limits.
[Hint: have a look at 2.17.5].

2.17.7 In diagram 2.30, show that (C,q) is the absolute coequalizer of
(/i> $2) when there exist morphisms s and r* (i = 1 , . . . , n) such that

qo f = qog

q o s = \c

s°Q = fi!°ri

fi2 o n = fi3 o r2

where %k = 0,1. [Hint: if the coequalizer is absolute, apply #(C, - ) to
get the existence of s such that qo s — l c ; then apply #(i?, —) to get
the sequence of n's connecting soq and 1#.]

2.17.8 Prove that a functor G: *& >&> is final as long as for each object
D G ®, the comma category (Ap, G) is connected, where AD' 1 >@ is
the (constant) functor on D (see 2.6.7.e for the definition of a connected
category). Show that the assumptions of 2.11.2 are stronger than those
of the present exercise.

2.17.9 Consider the category s/ with two objects 0,1 and one
single non-identity arrow 0 >1. Choose as category 3$ the poset of
diagram 2.31. In Fun(j2/,^), consider the two functors F, G defined by
F(0) = c,F(l) = / , G(0) = d, G(l) = y. Show that their product is
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Diagram 2.31

the functor H described by H(0) = 6, H(l) = e. This product is not
pointwise since / x g does not exist in 0$.

2.17.10 In the situation of 2.8.1, suppose the two products involved in
the proof exist as well as the limit (L, (PD)D€@) of F. This immediately
implies the existence of a morphism / such that pf

D o I = pD for each
D G S>. Prove that / is the equalizer of a, /?.
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Adjoint functors

3.1 Reflection along a functor

All of us know that considering the monoid (N, +) of natural numbers,
the "best" abelian group associated with it is that of integers, (Z, +). In
fact there exists an obvious forgetful functor

U:Ab >Mon ; (A,+) »-• (A,+)

from the category of abelian groups to that of abelian monoids. Given
an abelian monoid M, we are looking for a "best" abelian group A such
that M can be embedded in UA as a submonoid.

The previous example is in fact somehow misleading, in the sense that
it insists too much on "embedding" a monoid in a group. Let us consider
a completely different example. There is an obvious embedding functor

U: Haus >Top, (X, T ) •-> (X, T)

from the category of Hausdorff topological spaces and continuous map-
pings to that of all topological spaces and continuous mappings. A space
(X, T) is Hausdorff when the diagonal Ax C l x l i s closed. Therefore
there is a "best" Hausdorff space (Y", S) associated with a topological
space (X, T): it is just the quotient of (X, T) by the closure of the diag-
onal Ax C X x X, which is indeed an equivalence relation on X. This
time (y,«S) appears as the "best" Hausdorff quotient of X.

More generally, given an arbitrary functor

U:J* • # , A^U(A)

between two categories, we can look at the "best" object of si associated
with a given object B G 3$. This "best" object RB € si should thus be
provided with a "canonical" morphism rjB'- B >U(RB), which in some

96
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cases can be a monomorphism or an epimorphism, but in general is just
an arbitrary morphism. But what do "best" and "canonical" mean?
Well, just like a limit is the "best" cone associated with a functor, we
shall require that any other possibility B >U(A) factors uniquely
through the "canonical" choice (RB,VB)-

Definition 3.1.1 Let F: si >@ be a functor and B an object
A reflection of B along F is a pair (RB, T)B) where

(1) RB is an object of si and TJB' B >F(RB) is a morphism ofM,
(2) if A G \si\ is an object of si and b:B >F(A) is a morphism

of 3$, there exists a unique morphism CL.RB >A in si such that
F(a) o T]B = b.

Proposition 3.1.2 Let F: si >0& be a functor and B an object of@t.
When the reflection ofB along F exists, it is unique up to isomorphism.

Proof Consider two reflections (RBIVB) and (R'BIVB) °f B- By defi-
nition, we find morphisms CL:RB >R'B

 a n d af:Rf
B >RB such that

F(a) o TJB = r)f
B and F(a!) orj'B — rjs- From this we deduce immediately

that

F(a o af) oV'B = F(a) OTJB=VB = F(XR'B) ° VB

and, by uniqueness of the factorization, a o a' = 1#/ . In an analogous
way, we get o! o a — \RB . •

Proposition 3.1.3 Consider a functor F:si >£$ and assume that,
for every object B G 3$, "the" reflection of B along F exists and such a
reflection (RB,VB) has been chosen. In that case, there exists a unique
functor R: & >si satisfying the two properties

(1) VBG& R(B) = RB,
(2) (T)B-B >FRB)se& is a natural transformation.

Proof Considering b: B >S/, a morphism of ^ , the reflection
(RB^TJB) of B along F and the pair {RBf^B')-, we deduce the exis-
tence of a unique morphism a:RB >RBf such that the right-hand
square of diagram 3.1 commutes. We put R(b) = a and it remains to
prove that R is a functor.

Consider another morphism b'.B1 >B" in 38. The equalities

F(Rbf o Rb) OTJB = FRb1 oFRbor)B = FRb' 0 ^ / 0 6 = r)B» O b1 o 6,

FR(b' o b) o T)B = f)B" o b' o 6,
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RB B —TlM-

F(a)

RBf B' VB, ^FRB'

Diagram 3.1

RB FRB > B

Fa

A FA

Diagram 3.2

indicate that Rb' o Rb = R(b' ob), by uniqueness of the factorization. In
the same way one proves that F preserves identities. •

Definition 3.1.4 A functor R\3b >si is left adjoint to the functor
F: si >3# when there exists a natural transformation 77: L# => F o R
such that for every B e &, (RB, T)B) is a reflection of B along F.

It is an immediate consequence of 3.1.2 that in the situation of 3.1.4,
both R and 77 are defined uniquely up to isomorphism. On the other
hand if you allow in your underlying set theory a sufficiently powerful
axiom of choice, you can even conclude that a functor F: si >^ has
a left adjoint if and only if each object of 0& admits a reflection along F
(for each B G I choose such a reflection and apply 3.1.3).

The dual notion of "reflection along a functor" is that of "coreflection
along a functor F:si »^?"; let us write it explicitly. A coreflection
of B G ^ is a pair (RB,£B) where SB-FRB >B and for every pair
(A,b) with A E si and b: FA >B, there exists a unique morphism
a: A >RB such that SB oF(a) = b (see diagram 3.2). In an analogous
way a functor R\3$ >si is right adjoint to F when there exists a
natural transformation e: FoR => l@ such that for each B G 36, (RB, EB)
is a coreflection of B along F.

We know that an adjoint functor is only defined up to isomorphism.
So, in theorem 3.1.5, let us fix a particular functor G left adjoint to F.
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GFA FA VFA >FGFA
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Diagram 3.4

e*G

This does not yet fix the natural transformations £, rj of condition (2):
these are only determined up to isomorphism (see 3.1.2) even when G
has been fixed. See exercise 3.9.1 for an example.

Theorem 3.1.5 Consider two functors F:s/ >£$ and G:£# >s/.
The following conditions are equivalent:

(1) G is left adjoint to F;
(2) there exist natural transformations 77: L# ==> FoG and e: GoF =̂  1^

such that
(F*e)o(r/*JF) = 1F, (e * G) o (G * rj) = 1G

(see diagram 3.3);
(3) there exist bijections

OAB:

for every object A € J
both in A and in B;

(4) F is right adjoint to G.

, A) ^ @(B, FA)
B G 3$ and those bijections are natural

Proof (1) => (2). The existence of the natural transformation 77 is
just part of the definition of left adjointness. Now consider the reflection
(GFA,T)A) of FA € & as in diagram 3.4; the identity on FA gives
rise to a unique factorization EA and we have already FSA ° VFA =
IF A- We must prove that e: GF => 1^ is natural. Choosing a morphism
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a: A >Ar we have, by naturality of 77: l@ => FG,

F(EA' ° GFa) o TJFA = FEA1 ° FGFa o TJFA

— FSA' ° VFA' ° Fa

= Fa,

F(a o eA) o rjFA = Fao FeA ° r)FA

= Fa,

from which EA1 ° GFa = a o eA, by uniqueness of the factorization.
It remains to check the commutativity of the second triangle. Given

B 6 ^ and the reflection (RB, T)B) of 5 , we have

F(eGB ° Gr)B) °VB = FSGB ° FGrjB o r\B

VFGB ° VB

= F(lGB)orjB,

from which EQB ° GTJB = IGB by uniqueness of the factorization.
(2) => (3). Given a morphism a: GB >A, we define 9A,B(O) as the

composite

Fa o rjB: B >FGB >FA.

Conversely, given a morphism b:B >FA, we define TA,#(&) as the
composite

EA o Gb: GB >GFA >A.

It is an immediate consequence of the triangular equalities in (2) and the
naturality of 77, e that 6A,B and TA,B are mutual inverses. For example

(TA,B ° 0A,B)(a>) = TA,B(Fa O T]B)

= EA° G(Fa o TJB)

= EA° GFa o GTJB

= a o EQB ° GTJB

= a.

To prove the naturality in A, choose a morphism / : A >Af in sd'. One
has

, Ff) o 9AyB) (a) = (Ff o 0AB) (a) = FfoFaof]B,

(0A>,B O S/{GB, f))(a) = 0A>Af oa) = FU oa)
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Diagram 3.5

from which follows the equality of those terms. In an analogous way, one
proves the naturality in B.

(3) =*> (1). We prove that given B e l , (GB,0GBtB(lGB)) is a re-
flection of B along F. Given A 6 srf and b: B >FA, b has the form
^A,B(C) for a unique morphism a:GB >A. The naturality of the bi-
jections OA,B (see diagram 3.5) implies

(Fa o 9GB,B)0-GB) = (#{B,Fa) o 9GB,B)Q-GB)

= (eA,Bo^(GB,a))(lGB)

= OA,B(Q)

= b.

On the other hand if a': GB >A is another morphism of $0 such that
Fa' o 6GB,B(1GB) = b, we have

= (Fa'odGB,B)(lGB)

= 0AB{a),

from which a = a', since 6A,B is a bijection.
(4) •£*• (3). Working with the dual categories, we have to prove that

F* is left adjoint to G* if and only if the following natural bijections
hold:

s/*(A, G*B) S , B)

which is true via the equivalence (1) «=>• (3). •

The equivalence (1) -^ (4) in theorem 3.1.5 shows in particular the
autoduality of the notion of adjoint functors. We shall write G -\ F to
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indicate the fact that G is left adjoint to F and thus F is right adjoint
toG.

Examples 3.1.6

3.1.6.a Consider the category Mon of monoids and monoid homomor-
phisms; the "underlying set" functor U: Mon >Set has a left adjoint
functor

F:Set >Mon.

For a given set X, FX is just the free monoid on X (the monoid of finite
sequences of elements of X, where composition is just concatenation);
given a mapping / : X >Y between sets, Ff: FX >FY is obtained
by applying / to each element of a finite sequence in X. There is an
obvious mapping fjx'-X >UFX applying x on the sequence (x) with
a single element. Given a monoid (M, *) and a mapping g:X >M,
we get the required unique factorization h:FX »(M, *) by defining
/i(xi, . . . , xn) = g(x\) * . . . * g(xn); the empty sequence is just mapped
to the unit element of M.

3.1.6.b Consider the category Gr of groups and group homomorphisms;
the "underlying set" functor U: Gr »Set has a left adjoint functor

F:Set >Gr.

For a given set X, we consider first the free monoid M constructed on
X II X] for clarity, we write x+ and x~ for the two copies in X II X
of an element x 6 X. The free group FX on X is the quotient of
M by the equivalence relation generated by (x+,x~) « ( ), where ( )
denotes the empty sequence; the composition is induced by that of M.
We define a mapping from X to FX by sending the element x G X onto
[(x+)] G FX, the equivalence class of the sequence consisting only of
x+. It is straightforward to verify that we have got a reflection of X
along U.

3.1.6.C Consider the category Ab of abelian groups and group ho-
momorphisms; the "underlying set" functor U: Ab > Set has a left
adjoint functor

F:Set >Ab.

For a given set X, just put

FX = {(zx)x€X \zxeZ; {x\zx^ 0} is finite } .

In other words FX is just the coproduct of X copies of the abelian
group (Z, +) (see 2.2.4.f). The canonical morphism X >FX maps
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the element XQ to the sequence (zx)x£x where zXo = 1 and the other
components are just 0. Given an abelian group (A, +) and a mapping
/ : X >A, the required unique factorization g: FX >(A, +) is given
by g((zx)xex) = lLx€Xzxf(x)i which makes sense since only finitely
many zx's are non-zero.

3.1.6.d Consider the category Rng of commutative rings with a unit;
the "underlying set" functor U: Rng >Set has a left adjoint functor

F:Set

For a given set X, FX is just the ring of polynomials Z[a:i,..., xn,...]
where the x^s are the various elements of X. The canonical mapping
X >FX maps an element x to the polynomial x. Given another
ring (A,+,X) and a mapping f:X >A, the required factorization
FX >(A,+,X) is given by g(p) = p(f(x1),... , / (x n ) , . . . ) for every
polynomial p.

3.1.6.e Consider two commutative rings with unit i?, S and a ring
homomorphism f:R >S. Each 5-module M can be seen as an R-
module, via the multiplication r -m = f(r) • ra, where the left-hand side
is thus an i?-scalar multiplication and the right-hand side is an 5-scalar
multiplication. This induces immediately a functor U: Mods >MO<1R,

called the "extension of scalars". The functor U has both a left and a
right adjoint functor. The left adjoint functor is given by

Modi* >Mods, N •-• S<S>RN,

and the right adjoint functor is given by

N y-

with obvious definitions on the morphisms. Now S<S>RN is an S-module
via the multiplication s(s' <8> n) = (ss') <g> n; on the other hand the
multiplication on Lin^S, N) is given by (sf)(sf) = f(ss'). The following
isomorphisms are well-known to hold:

L\ns(S®RN,M) * L\nR(N,UM),
L\ns{M,L\nR(S,N)) * LmR(UM,N),

for fixed modules N G Mod# and M G Mod^; they easily imply the
existence of the two adjunctions.

3.1.6.f Consider a fixed set / and the functor - x J:Set >Set on
the category of sets. This functor has a right adjoint functor given by

(-) J :Set >Set.
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Indeed for two sets X, Y", the isomorphism

Set(Xx/ ,y)^Set(X,Y' / )

holds, since it just means that YXxI = (YT)X. Together with the nat-
urality of those bijections, this implies the required result.

3.1.6.g Consider the category Cat of small categories and functors.
For a given small category J', the functor - x &: Cat >Cat admits

Fun(^, - ) : Cat >Cat

as a right adjoint functor (see exercise 1.11.8).

3.1.6.h Consider the category Top of topological spaces and continu-
ous mappings and the full subcategory Haus of Hausdorff spaces. The
inclusion functor i: Haus >Top has a left adjoint functor

i f : Top >Haus.

H(X, T) is just the quotient of (X, T) by the equivalence relation ob-
tained as the closure of the diagonal Ax C X x X, and the canonical
morphism (X, T) >H(X,T) is just the quotient morphism. (Remem-
ber a space is Hausdorff precisely when its diagonal is closed.)

3.1.6.i Consider the category Top* of pointed topological spaces. An
object is a pair ((X, T),xo) where (X, T) is a topological space and
xo G X is the choice of a "base point in X"; an arrow is just a continuous
function mapping the base point to the base point. To avoid too heavy a
notation, we shall omit writing the topology explicitly. Given a pointed
space (X, xo), we define fi(X, #o) to be the space of its loops provided
with the compact open topology, i.e.

n(X,x0) = {f:(S\p) >(X,x0) \f € Top,}

where p is an arbitrary fixed point on the circle S1; the basic open subsets
of fi(X, xo) are given by

[K1u] = {fen(x,x0)\f(K)cu}
where K runs through the compact subsets of S1 and U runs through
the open subsets of X. This construction extends easily to a functor

f i : Top* > Top*

acting on the arrows simply by composition. Now let us define a second
functor

E: Top*



3.1 Reflection along a functor 105

called the "suspension functor". Given a pointed space (X, xo
is obtained as a quotient X x S1/ « of the topological product I x S 1 ,
where the quotient identifies to a single base point all the pairs (x,p) and
(#0, s). Again E extends obviously to a functor. It is a classical result in
topology that S is left adjoint to fi.

3.1.6.J Consider the category Top of topological spaces and the "un-
derlying set" functor U.Top >Set. This functor U has both a left
adjoint functor M and a right adjoint functor R. Given a set X, LX is
just the set X provided with the indiscrete topology, while RX is the
same set X provided with the indiscrete topology.

3.1.6.k Consider the category Cat of small categories and the forgetful
functor Ob: Cat >Set which maps a small category ^ to its set of
objects. Ob has both a left adjoint functor L and a right adjoint functor
i?; for a given set X, LX is the discrete category with X as a set of
objects and RX is the category with X as a set of objects and one
single arrow from each object to each object.

3.1.6.1 Consider an arbitrary category ^ and a fixed object C G c€.
The singleton set {*} admits a reflection along the represent able functor

# ( C , - ) : # >Set;

this is just the pair (C,ic) where ic'-{*} »#(C, C) is the mapping
"picking up" the identity on C. Indeed giving a mapping

f-{*} >«(C,D)

is just picking up an arrow / G ̂ (C, D) and clearly ^(C, / ) o ic = (p,
where ic'- {*} >#(C, C) picks up the identity on <S.

3.1.6.m In the spirit of 1.2.6.b, consider two partially ordered sets A, B
viewed as categories and two preorder preserving mappings

f:A >B, g:B

Viewed as functors, g is left adjoint to / when one has (g o f)(a) < a for
every a G A and b < (/ o g)(b) for every b G B. Indeed, the naturality
and the commutativity conditions of 3.1.5.(2) are automatically satisfied
since in a poset, every diagram is commutative. These conditions yield
immediately / o g o f = f and g o f o g = g. Indeed applying / to
(9 ° / )( a) ^ a yields (/ o g o /)(a) < /(a) while putting b = /(a) yields
f(a) ^ (/ ° g ° /)(a); the other relation is analogous. A situation of
adjunction between posets is also called a "Galois connection".



106 Adjoint functors

, HD) 9H°'B)<%(B, FHD)

, HD1) n ~ >a(B, FHDf)
VHD',B

Diagram 3.6

3.2 Properties of adjoint functors

Proposition 3.2.1 Consider the following situation:
G K

F H
where F,G,H,K are functors, with G left adjoint to F and K left adjoint

to H. In this case G o K is left adjoint to H o F.

Proof Just consider the canonical bijections

si{GKC, A) ^ @(KC, FA) 2* #(C, HFA)

for objects A £ si and C G ^ (see 3.1.5). •
Proposition 3.2.2 If the functor F:si >3t has a left adjoint, F
preserves all limits which turn out to exist in si.

Proof Write G:@) >s/ for a left adjoint to F. Consider a category
S> and a functor H: 3> >si\ suppose (L, (PD)D€@) is a limit of H. We
must prove that (FL, (Fp^Desi) is a limit of Fo H. Clearly {Fpr^D^o,
is a cone as image of a cone, so it suffices to prove the universal property.

Consider a cone (£, (#D)D€^) on FoH. By adjointness (see 3.1.5), the
morphism qp: B >FHD corresponds to a morphism r£>: GB >HD
in si. Given an arrow d: D >Dr in ^ , the naturality of the bijections
OA,B (see diagram 3.6, notation of 3.1.5) implies that

= 0]I
1

D,yB(FHdoqD)

= Hdorj).
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So (GB, (rD)D€Q)) is a cone on H and we get in si a unique factorization
r:GB >L such that for each D G ®, pn o r = r£>. This arrow r
corresponds via OLB to a morphism 5 = # L , B ( 0 : ^ >FL in & and
using again the naturality of the bijections 9A,B have Fp& o s = qn>
Since the 0A,B are bijective, s is unique with that property. •

Given a category ^ and a small category ^ , let us consider the functor

where given a morphism / : C >Cf in ^ , AC is the constant functor
on C (see 1.2.8.e) and A / is the constant natural transformation on /
(see 1.3.6.d).

Proposition 3.2.3 A category <& is cocomplete if and only if, for every
small category Q), the corresponding functor

has a left adjoint.

Proof Consider a functor F:9 ><#. A pair (C,a), where C G |#|
and a: F => AC is a natural transformation, is just a cocone on F.
Thus a reflection of F is just a universal such cocone, i.e. a colimit
of F. U

Finally let us observe how a given adjunction generates many other
adjunctions. Given three categories J / , ^ , ^ and a functor F: stf >^,
we write

for the functor acting by composition with F . To avoid size problems,
we had better suppose that ^ is small.

Proposition 3.2.4 Consider a functor F: jtf >& with a left adjoint
G: & >sf. U<€ is any small category, G*: Fun(#, &) > Fun(^, sf) is
itself left adjoint to F*: Fun(^,j/)

Proof Let us write 77:1# =*> FoG and e:GoF => 1^ for the two natu-
ral transformations describing the adjunction (see 3.1.5). Given functors
K:^ >s/ and if:^7 >^, we have corresponding natural transfor-
mations

e *
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This yields two natural transformations

V: lpun(^,^) =>> -F+G*, e: G*F*

Indeed, given a natural transformation a:H =>• JET, the naturality of rj
reduces to the relation FGaor]H = rjHf °a , which holds by naturality of
77. An analogous argument holds for e. Finally the triangular identities
satisfied by 77, e immediately imply the corresponding identities for 77, e.

•

3.3 The adjoint functor theorem
This section is devoted to the proof of one of the most important results
in this book: the adjoint functor theorem (see 3.3.3).

Given a functor F: si >£# and an object B G J , we shall consider
the functor

»{B, F-): si > Set

and its category of elements (see 1.6.4), which we shall write as $B-> for
the sake of brevity. We also write (/>#: $B >^ for the corresponding
forgetful functor.

Proposition 3.3.1 Consider a functor F:si >38 between arbitrary
categories. The following conditions are equivalent:

(1) the object B G @t has a reflection along F;
(2) the functor <J>B'- $B >^ has a limit which is preserved by F.

It should be noticed that no assumption is made of the completeness
of $4. Moreover, completeness of si would not imply the existence of a
limit for </>#, since $B is in general not a small category.

Proof (1) => (2). Given the object B G ^ , consider its reflection (L, a)
along F. By 2.11.5, (2) will be proved if we show that (L, a) is initial
in &B- For each object (A, b) G $B-> & is a morphism b: B >FA in &
and by 3.1.1, we get a unique morphism P(A,6) : L ^ in si such that
Fp(A,b) ° OL = 6, i.e. a unique morphism P(A,b): (£> OL) >(A, b) in $B-

(2) => (1). Let us now consider the limit {L,p(Aj>))iA h\^ °f <t>B and
the corresponding limit (FL, Fp^b)) of F o 4>B. For every (A, b) G $B,
define ^(A,6) = b. This produces a cone on F o ^ , just by definition of
$B-> and therefore a unique factorization a: B >FL such that for each
(A, b) G &B, Fp(A,b) ° OL = r(A,b) = b. We shall prove that (L,a) is the
reflection of B along F.
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Given an object A G si and a morphism b:B >FA, we already
have a factorization P(A,b)'-L >A such that Fp^b) ° a = b. We must
prove its uniqueness.

First of all observe that (L, a) G $B> The relation Fp^b) o a = b
indicates that P(A,b): {L,ot) >(A, 6) is a morphism of $B, from which
the relation P(A,b) ° P{L,a) = P(A,b) follows. By definition of the limit of
<pBi this implies P(L,«) = 1L- NOW if p: L > A is such that Fp o a =
6, then p: (L, a) >(A,b) is a morphism of $B- Therefore we deduce

P{A,b) =P° P{L,a) =P- 0
We introduce now the famous "solution set condition", which is a

key ingredient for proving the adjoint functor theorem. This is really
the first time in this book that "smallness conditions" play a definitely
fundamental role.

Definition 3.3.2 (Solution set condition)
A functor F.si >^ satisfies the solution set condition with respect
to an object B G @t when there exists a set SB Q \S/\ of objects such
that

MA^si W.B-^FA 3A' eSB3a:A'-*A 3b':B^FA' F(a)ob' = b.

The fact that B admits a reflection (RB^B) along F implies that
SB = {RB} can be chosen as solution set, with bf = OLB and moreover
a unique. So the solution set condition is a much weaker requirement
than the existence of a reflection. In particular observe that when sd
is small, the solution set condition is automatically satisfied for every
object B G ^ : just choose SB =

Theorem 3.3.3 (Adjoint functor theorem)
Consider a complete category si and a functor F: si >3ft. The follow-
ing conditions are equivalent.

(1) F has a left adjoint functor.
(2) The following conditions hold:

(a) F preserves small limits;
(b) F satisfies the solution set condition for every object B € &.

Proof (1) implies (2) by 3.2.2 and the observation following 3.3.1.
Conversely consider the full subcategory Sf B of SB whose objects are
the pairs (A, b) with A € SB', this category £?B is small. To conclude the
proof, it suffices to show that the inclusion 9*B Q SB is a final functor
(see 2.11.1). To do this we use proposition 2.11.3. The functors F and

, —) preserve small limits, by assumption and 2.9.4. So ^?(B, F-)
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is limit preserving and $B is complete (see 2.16.2). The solution set
condition can be reformulated as the fact that, given (A, b) G $B, there
exist (Af, bf) G £?B and a morphism a: (A', br) > (A, 6); this is precisely
the requirement of 2.11.3. •

The subsequent results of this section indicate several sufficient con-
ditions implying the assumptions of the adjoint functor theorem. To
achieve this, we use freely some notions which will only be introduced
in chapter 4.

Theorem 3.3.4 (Special adjoint functor theorem)
Consider a functor F.si >0$ and suppose the following conditions
are satisfied:

(1) si is complete;
(2) F preserves small limits;
(3) si is well-powered;
(4) si has a cogenerating family.

Under these conditions, F has a left adjoint functor.

Proof By 3.3.3, it suffices to prove the solution set condition for every
fixed object B G Si. To do this, consider a cogenerating family (Gi)i^i
of si and an object B G J . Define

SB = I S S is a subobject of J J c f (B 'FGi)

By G± ' we mean the product of as many copies of Gi as there are
elements in @t(B, FG»); on the other hand the definition of SB must be
understood as the choice of one specific monomorphism

for each isomorphism class. We shall prove SB satisfies the requirements
of 3.3.2.

Let us consider A G si and b:B >FA. We must find S G SB
and a: S >A, b':B >FS such that Fa o V = b. We refer to dia-
gram 3.7 for the notation. By 4.5.2 we have a monomorphism a such
that pf oa = f for every i G / and / G si (A, Gi). Just by definition of a
product, there is also a morphism (3 such that pf o /? = p/?/o6 for every
i G / and / G s/(A, Gi). Pulling back a along /?, we obtain a subobject
S G SB and a morphism a: Q >A. Applying F which preserves pull-
backs and products, we get an analogous diagram 3.8 in @. There is a
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FA

Diagram 3.8
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morphism 6 such that Fpg o 6 = g for each i G / and g G 0&{B, FGi). A
straightforward diagram chase shows that

o Fa ob = Ff ob = Fppfob ° 8 = Fpf ° F/3 ° 8

from which Fa ob = F/3 o 8 by uniqueness of the factorization through
a product. The existence of the required factorization b1 follows at once
from this and the definition of a pullback. •

Corollary 3.3.5 Consider a functor F\$# >^ and suppose the fol-
lowing conditions are satisfied:
(1) stf is complete;
(2) F preserves small limits;
(3) si is well-powered;
(4) s/ has a cogenerator.

Under these conditions, F has a left adjoint functor. •

Corollary 3.3.6 Consider a functor F\sd >^ and suppose the fol-
lowing conditions are satisfied:

(1) <srf is complete;
(2) F preserves small limits;
(3) si has a strong generating family;
(4) s/ has a cogenerating family.

Under these conditions, F has a left adjoint functor.

Proof By 4.5.15, si is indeed well-powered. •

Corollary 3.3.7 Consider a functor F: si >^ and suppose the fol-
lowing conditions are satisfied:

(1) si is complete;
(2) F preserves small limits;
(3) si has a strong generator;
(4) si has a cogenerator.

Under these conditions, F has a left adjoint functor. •

As a first application of these existence theorems, let us observe that:

Proposition 3.3.8 Suppose the category si satisfies the following con-
ditions:

(1) si is complete;
(2) si is well-powered;
(3) si has a cogenerating family.
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Under these conditions, si is cocomplete as well.

Proof Applying proposition 3.2.3 and using its notation, it suffices
to prove that the functor A preserves limits. But this is obvious from
2.15.2. •

Examples 3.3.9

3.3.9.a The inclusion Ab ̂ -> Gr of the category of abelian groups in
the category of groups has a left adjoint functor. Indeed the conditions
of 3.3.7 are satisfied, with Z a strong generator and Q/Z a cogenerator
(see chapter 4).

3.3.9.b The "unit ball" functor B: Barn >Set from the category of
Banach spaces and linear contractions to the category of sets has a left
adjoint functor. Indeed the conditions of 3.3.7 are satisfied (see 2.9.10.c)
with M both a strong generator and a cogenerator (see chapter 4).

3.3.9.C The inclusion Comp °-> Top of the category of compact Haus-
dorff spaces in the category of all topological spaces has a left adjoint
(called the "Stone-Cech compactification"). Indeed the conditions of
3.3.7 are satisfied (see 2.1.7.g and 2.4.6.f) with the singleton as a strong
generator and the unit interval [0,1] as a cogenerator (see chapter 4).

3.3.9.d Consider a functor F:s/ » ?̂ between small categories si
and 011. Consider the corresponding functor

F*: Fun(^, Set) -^Fun(j/, Set)

obtained by composition with F. By the dual of 2.15.2, the categories
Fun(^, Set) and Fun(j/, Set) are cocomplete and the functor F* pre-
serves colimits. The category Fun(^, Set) is certainly co-well-powered:
indeed, by corollary 2.15.3, an epimorphism p: F => G is such that each
PB'.FB >GB is surjective; since each set FB has just a set of quo-
tients and \0&\ itself is a set, there is just a set of epimorphisms p: F => •
of domain F. On the other hand the representable functors constitute
a generating family for Fun(^, Set) (see 4.5.17.b). By the dual of 3.3.4,
F* has a right adjoint functor. This example is an instance of what is
called a "Kan extension" (see 3.7.2).

3.3.9.e If f\A >B is a functor between two posets, / has a left
adjoint as long as A is complete and / preserves infima. Indeed, the
solution set condition is now obvious: it suffices to take as solution set
the set of all elements of A (see 2.8.6).
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3.4 Fully faithful adjoint functors

Two categories s/, & are isomorphic when there exists a pair of functors
F, G: ^( > <% with the properties F o G = l^, G o F = 1^. Imposing
a condition like FG(B) = B on the objects seems in opposition with
the global spirit of category theory, where things are defined up to iso-
morphism. It would therefore sound more reasonable to get interested
in situations where identities are replaced by isomorphisms F o G = l^,
G o F = l j / . This is the essence of the notion of an "equivalence of
categories", which will be presented at the end of this section.

Proposition 3.4.1 Consider two functors G H F: .c/< > .<ffi; with G left
adjoint to F and rj: l@ => FG, e: GF => 1^ the two corresponding natu-
ral transformations (see 3.1.5). The following conditions are equivalent:

(1) F is full and faithful;
(2) e is an isomorphism.

Under these conditions, rj * F and G * 77 are isomorphisms as well.

Proof (1) => (2). The morphism r)FA'.FA >FGFA has the form
Fa A for some morphism a A'. A >GFA, because F is full. Prom the
relation FSA ° F a A = FSA ° VFA = I F A and the faithfulness of F , we
deduce CA ° OLA = 1A- TO prove the equality OLA° £A = IGFA? it suffices
to notice that

F(aA o eA) o 7]FA = VFA O FeA ° VFA = VFA = F(1GFA) o rjFA,

since (GFA, TJFA) is the reflection of FA along F.
(2) =*• (1). Consider the composite

,A') °A'>FA ><9(FA,FAf).

We know that each individual mapping is a bijection. The composite
bijection maps an arrow a: A >Af to

OA',FA(CI O eA) = F(a o eA) o rjFA = Fao FeA o rjFA = Fa

(see 3.1.5), so it is just the action of F.
Now if conditions (1), (2) are satisfied, for all objects A G s/, B G 3$

one has FSA ° VFA = IFA and SQB ° GT)B = 1GB> Since SA and SQB are
isomorphisms, so are TJFA and GTJB- D

Proposition 3.4.2 Consider a functor F:s/ >3& with both a left
adjoint functor G and a right adjoint functor H. If one of those adjoint
functors is full and faithful, so is the other adjoint functor.
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Proof Let us write e:GF => 1^, rj: I® => FG, a:FH => 1<# and
/?:1^ =>> jffF for the canonical natural transformations of the adjunc-
tions (see 3.1.5). Let us assume H is full and faithful and let us prove
the same holds for G (the converse implication holds by duality). Using
3.4.1, we must prove that rj is an isomorphism whenever a is. Assuming
a is an isomorphism, we consider the composite

FG F G a 1 )FGFH FSH >FH

and prove it is inverse to rj. Indeed

a o FCH ° FGa~l o rj = a o Fen ° VFG ° &~1 = OLO a~l = 1.

On the other hand, the relation ap o F/3 = 1^ implies F(3 = a^1 and
therefore, by naturality of a, e and by 3.1.5,

rj o a o FsH O FGa'1 = FGa o FHrj o FeHo FGoT1

= FGa o FsHGF o FGFHr) o FGa'1

= FGa o FeHFG o FGa~lFG o FGrj

= FGa o FeHFG o FGF(5G o FGrj

= F1G o F1G

•
Proposition 3.4.3 Given a functor F\$£ >&, the following condi-
tions are equivalent:

(1) F is full and faithful and has a full and faithful left adjoint G;
(2) F has a left adjoint G and the two canonical natural transformations

of the adjunction r\\ 1& => FG, e: GF => 1^ axe isomorphisms;
(3) there exists a functor G:& >si and two arbitrary natural iso-

morphisms 1# ^ FG, GF 9* 1^;
(4) F is full and faithful and each object B G @b is isomorphic to an

object of the form FA, A G sf;
(5) the dual condition of (1);
(6) the dual condition of (2).

Proof Since conditions (3) and (4) are autodual, it suffices to prove
the equivalence of (1) to (4). (1) =» (2) follows from 3.4.2 and (2) => (3)
is obvious.

Let us prove (3) => (4). First of all, B G $ is isomorphic to FGB,
with GB G J / , which proves the second assertion. Now since FG is
isomorphic to the identity, FG is full and faithful; therefore G is faithful
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F

GB

\
b o r)B

l = Fa

A FA

Diagram 3.9

and F is full. In the same way the isomorphism GF = 1^ shows that F
is faithful and G is full.

To prove (4) =$> (1), we first show the existence of a left adjoint G to
F (see diagram 3.9). Given B G ̂ , choose an object GB G si and an
isomorphism

rjB: B —>FGB.

Given A e si and b:B >FA, the morphism b o rj^.FGB >FA
has the form Fa for some unique a:GB >A, which implies immedi-
ately that (GB,T)B) is the reflection of B along F . Since each 7]B is an
isomorphism, the left adjoint functor G is full and faithful (see 3.4.1).

•
We recall that an axiom of choice is needed to deduce the existence of

a left adjoint functor from the existence of a reflection for each object
(implication (4) => (1)).

But more importantly one should observe that when two isomorphisms
77: \m =>. FG and e: GF => 1^ are given as in (3), the constructions per-
formed in proving (3) => (4) and (4) => (1) show that G is left adjoint to
F, with 77 as one of the canonical natural transformations of the adjunc-
tion; but there is no reason for e to be the second natural transforma-
tion of the adjunction: in other words, the triangles involved in 3.1.5.(2)
have no reason to commute (of course, there is some other isomorphism
e'\ GF => 1^ constructed from 77 which makes them commute). See ex-
ercise 3.9.4 for a counterexample. By duality, one could clearly choose
e as one of the canonical natural transformations of the adjunction and
construct some 77' as second natural transformation.

Definition 3.4.4 A functor F.si >@t which satisfies the conditions
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M

G

F'

Gf

Diagram 3.10

N

of proposition 3.4.3 is called an equivalence of categories.

It is a matter of fact that two equivalent categories share most cate-
gorical properties with each other. For example:

Proposition 3.4.5 Consider an equivalence F: si -
If si is (finitely) complete, so is 3$.

of categories.

Proof Consider G:& >si, left adjoint to F (see 3.4.3). Given a
(finite) small category Sf and a functor H:3f >^, the functor GH
has a limit since si is (finitely) complete. Since F preserves limits (see
3.2.2), FGH has a limit. But the limit of FGH is isomorphic to the
limit of if, just because FG is isomorphic to 1<#. •

The proof of the previous proposition emphasizes the fact that equiv-
alent categories have the same properties as far as limits are concerned.
One should nevertheless be careful when using equivalences. It is not
true that in a construction, replacing categories by equivalent ones pro-
duces equivalent results. For example write 1 for the discrete category
with a single object * and 2 for the category with two objects A,B and
just one single isomorphism between them. Consider diagram 3.10 in
Cat, where 0 stands for the empty category, F(*) = A and G(*) = B.
The horizontal lines are equalizers and the diagram commutes, meaning
that F' o M = N o F , G' o M = N o G and M o i = ir o L. Now M
and N are equivalences of categories, but L is not. The trouble comes
from the fact that, although M, N are equivalences making the diagram
commutative, no choice of the corresponding adjoint equivalences can
be made which still makes the diagram commutative. In other words,
writing X for the category • >• defining equalizers (see 2.6.7.b), the
two functors .If \ Cat given respectively by F , G and F\ G' are not
equivalent in the 2-category Cat, in the sense of 7.1.2. So replacing cat-
egories by equivalent ones when computing a limit in Cat does not in
general yield equivalent results.
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LrL

QD

HD iHD

Diagram 3.11

3.5 Reflective subcategories

When F: si >3$ is a full and faithful functor, the corestriction of F to
its image F: si >F(si) is obviously an equivalence of categories (see
3.4.3.(4)). Replacing F(s/) by the full subcategory si' C & generated
by all the objects B G ^ isomorphic to an object of the form FA, one
still has an equivalence F: si >si' (see 3.4.3.(4)). Working with si'
instead of si enables us to consider a canonical inclusion si' Q^S instead
of a full and faithful functor F: si >@).

Definition 3.5.1 A full subcategory si of a category £8 is replete when,
with every object A G si, si also contains every object B G & isomor-
phic to A.

Definition 3.5.2 A reflective subcategory of a category & is a full
replete subcategory si of £8 whose inclusion i: si >&$ in 38 admits a
left adjoint r: Si ^si, called the reflection.

The fact of choosing si to be replete in Si is unessential; it is just an
easy way to choose a canonical element in the class of all subcategories
equivalent to si. This specific choice also makes life easier since most
constructions of category theory are only defined up to an isomorphism.

Proposition 3.5.3 Consider a (finitely) complete category & and a re-
flective subcategory si of 3$. Under these conditions si itself is (finitely)
complete.

Proof Take a (finite) small category Q), a functor H: 2) >si and the
limit (L, (PD)D€@) oiioH, where i:si >@t is the canonical inclusion
and r:£$ >si is its left adjoint (see diagram 3.11). Each morphism
PD gives rise to a unique factorization qu'-fL >HD in si, with the
property iqD°VL = PD (see 3.1.1). Given d: D >D' in Q), the relations

i(Hd o qD) OTJL = iHd o pD = pD> = iqD, o
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imply Hd o qD = qD,, by definition of a reflection (see 3.1.1). So the
morphisms (^D)DG^ constitute a cone on if, and thus the morphisms
(iqD)De® constitute a cone on iH. This yields a unique factorization

//£,: irL >L such that PD° I^L = ^ D for each D. Prom PD° ^L°VL —
i>QD ° VL = PD we deduce /J^L ° VL = 1L by definition of a limit. On
the other hand 7]L ° fjiL-irL >irL has the form i{yh) for a unique
Z^L' ?*£ >rL, just because i is full and faithful. From the relations

we deduce VL = l r£, by definition of a reflection. In particular % o/iL =
i(yi) = lirL and T]L is an isomorphism. Since si is replete in ^ , this
proves that L belongs already to si. The conclusion is then obvious. •

By duality, a coreflective subcategory of a cocomplete category is itself
cocomplete. This obvious remark stands here just to emphasize the fact
that our next result is by no means dual to 3.5.3.

Proposition 3.5.4 Consider a (finitely) cocomplete category & and a
reflective subcategory si. Under these conditions, si itself is (finitely)
cocomplete.

Proof Take a (finite) small category Q) and a functor H: Q) >si; write
(L, ( S D ) D ^ ) f°r th e colimit of iH, where i: si >0$ is the canonical
inclusion. Writing r:& >si for the reflection, we know already that
(rL, (rs£>)£>€^) is the colimit of riH (see 3.2.2). But ri is isomorphic
to the identity on si (see 3.4.1), therefore (rL, (rsD)De^) ls a l s o the
colimit of H. •

Definition 3.5.5 A localization of a category 0$ with finite limits is a
reflective subcategory siof& whose reflection preserves finite limits.

Definition 3.5.6 An essential localization of a category & is a reflective
subcategory si of 3$ whose reflection itself admits a left adjoint.

A functor with a left adjoint preserves all limits (see 3.2.2). So when 3
has finite limits, every essential localization of 0$ is certainly a localiza-
tion. Moreover if i: si >& is the canonical inclusion and I -\r -\i are
the reflection and its left adjoint, the functor I is again full and faithful
(see 3.4.2). Therefore the full subcategory l{si) C 3) is, up to an equiv-
alence, a coreflective subcategory of 36. It should be noticed that /has
in general no reason at all to coincide with the canonical inclusion i of
si inJf.



120 Adjoint functors

Proposition 3.5.7 Consider a category & with finite limits and filtered
colimits, and a localization si of 3$. If in $ finite limits commute with
filtered colimits, the same property holds in s$'.

Proof We use the notation of section 2.13 and consider a functor

with ^ filtered and 2f finite. We write Lim and Colim for limits and
colimits in $ and correspondingly, lim and colim for limits and colimits
in sd'. Using the construction of limits and colimits in si as described in
3.5.3, 3.5.4, the result is proved by the following isomorphisms, where
i: si >38 is the canonical inclusion and r: 0$ >si is the reflection.
We recall that i, r preserve finite limits while r preserves colimits (see
3.2.2).

(Coli

r (Colim ce

= rirLim D<zgCo\im c£<#iF(C, D)

= rirColim ce^Lim £>e^iF(C, D)

= ricolim cG#rLim D€@iF(C, D)

= ricolim ce^mD£^>riF(C, D)

^ colim ce^limZ)€^F(C, D). U

3.6 Epireflective subcategories

In this section, we pay special attention to the reflective subcategories
i: si <—>• 3& with the property that, given an object B of 3$ and its
reflection (rB^s)^ the canonical morphism TJB- B >irB is an epi-
morphism. While studying this particular topic, we shall freely use some
notions which will only be introduced in chapter 4.

Definition 3.6.1 Consider a category 0i and a reflective subcategory
si of 3$, with corresponding adjunction r Hi: si^ZZ^^S. The reflection r
is an epireflection when, for every object B G $, the universal morphism
TJB' B >irB is an epimorphism.

Proposition 3.6.2 Consider a category $ in which every morphism can
be factored as an epimorhism followed by a strong monomorphism. For
a reflective subcategory r H ?,:.G/< >'<# of 811, the following conditions
are equivalent:
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B iA

ViA

irB

>irB

VirB

>irirB

(1) the reflection is an epireflection;
(2) given a strong monomorphism u:B> >iA in 3$, with B G 3$ and

A € si, the object B belongs to si.

Proof (1) => (2). The consideration of the commutative square in
diagram 3.12, where 77^ is an isomorphism and u is a strong monomor-
phism, indicates that 77̂  is a strong monomorphism as well (see 4.3.6).
Since 77̂  is by assumption an epimorphism, it is an isomorphism (see
4.3.6 again). Since ir(B) G si, and B = ir(B), B G si because si is
replete in $ (see 3.5.2).

(2) => (1). Given an object B G ^?, let us consider the canonical
morphism 77 :̂ B >ir(B) and its strong-mono-epi factorization

B 2—»J>-^ >ir(B).

Let us consider diagram 3.13. By 3.4.1,77^(5) and rrjB are isomorphisms.
r(B) G s4', thus / G si by assumption; so again by 3.4.1, 77/ is an iso-
morphism. Since ir(rjB) is an isomorphism, ir(p) is a strong monomor-
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phism. Since p is an epimorphism and rji is an isomorphism, ir(p) is an
epimorphism; thus it is an isomorphism. So ir(p) and ir(rjB) are both
isomorphisms, from which ir(j) is an isomorphism as well. Finally 777,
Vir(B) a n d ir(j) are isomorphisms, thus j is an isomorphism and TJB is
isomorphic to the epimorphism p. •

Definition 3.6.3 Consider a category 0$ and a reflective subcategory
si of &, with corresponding adjunction r H ?.:.Q/<

 >'.^. The reflection
r is a strong epireflection when, for every object B G 38, the universal
morphism TJB'- B >irB is a strong epimorphism.

Proposition 3.6.4 Consider a category & in which every morphism fac-
tors as a strong epimorphism followed by a monomorphism. For a reflec-
tive subcategory si of 38, with corresponding adjunction r -\i: s/ ^08,
the following conditions are equivalent:

(1) the reflection is a strong epireflection;
(2) given a monomorphism u:B> >iA in &, with B G & and A G si,

the object B belongs to si.

Proof This perfectly analogous to that of 3.6.2, replacing "strong
monomorphism" by monomorphism and "epimorphism" by "strong epi-
morphism" . •

By analogy, one could define the notions of "monoreflection" (each
T\B is a monomorphism) or "strong monoreflection" (each T\B is a strong
monomorphism). It should be clear that these notions are by no means
dual to those of epireflection or strong epireflection. With the notation of
3.6.1, the dual notion of "being an epireflection" is "being a coreflection
with each rjs'-irB >B a monomorphism".

3.7 Kan extensions

In example 3.3.9.d, we considered a functor F:si >3S between two
small categories si, 3$ and the corresponding functor

>Fun(j*r,Set)

obtained by composition with F. Prom the cocompleteness of Set and
various properties of the category Fun(^, Set), strongly depending on
the fact of working with the category Set, we proved the existence of a
right adjoint to F*. In this section, we shall replace Set by an arbitrary
cocomplete category... and prove that F* always has a left adjoint!
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si F

Diagram 3.14

Definition 3.7.1 Consider two functors F: si >@ and G: si ><€.
The left Kan extension ofG along F, if it exists, is a pair (K, a) where

• K: <% ># is a functor,

• a:G => K o F is a natural transformation,

satisfying the following universal property: if (H, /3) is another pair with

• H: Si ># a functor,
• /?: G => H o F a natural transformation,

there exists a unique natural transformation y.K => H satisfying the
equality (7 * F) o a = (3 (see diagram 3.14).

We shall use the notation Lan^G to denote the left Kan extension
of G along F. The notation Ran pG is used for the dual notion of right
Kan extension.

When si and 3$ are small, we can consider the functor

acting by composition with F. The existence of the left Kan extension
of G along F means exactly the existence of a reflection (K, a) for G
along F*.

Theorem 3.7.2 Consider two functors F:si >£$ and G:si ><€,
with si small and % cocomplete. Under these conditions, the left Kan
extension of G along F exists.

Proof We use the same notation as in 3.7.1. To define K, consider first a
fixed object B € £#. We write $# for the category of elements of the con-
travariant functor 3#(F—yB):si > Set (see 1.6.4) and ^B'-^B >s/
for the corresponding forgetful functor. Now $B is small since si is. We
write (KB, (s?A M)(A,6)G^B) f°r ^ e colimit oiGocj)B. This defines K on
the objects.

Given a morphism f:B >B' in Si and an object (A>b) G $B<> the

pair (A,f o b) is an object of $B'- The family (SM/06))
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cocone on G o <\>B because a morphism a: (A,b) >(A',b') in $B im-
mediately gives rise to the morphism a: (A, fob) > (A', / o b1) in $B* •
Therefore we get a unique factorization Kf.KB >KBf through the
colimit KB with Kf o s?A b^ = s^A joby This defines K on the arrows.
The uniqueness condition in the definition of Kf easily implies that K
is indeed a functor.

To define a, we must construct a morphism OLA'.GA >KFA for
each object A G s/. It suffices to define a A = STA\FAY Let us prove the
naturality of a. Given a morphism a: A >Af in jk, we have indeed

= s(A,Fa) = 5(AMPA/) ° G a '

where the first equality holds by definition of KFa and the second equal-
ity holds because a: (A, Fa) >(A\ IF A') is a morphism of $FA'-

Now consider a functor H:3fi >^ together with a natural trans-
formation /3: G =>• H o F. To construct 7: K => H, let us fix an object
B G l For each (A, 6) G <?B consider the composite

(G o </>B)(A, 6) = G A — £ ± - S ^

Those morphisms constitute a cone on G o </>#, just by definition of ^ B
and naturality of /?. So we get a unique factorization ^B'-KB >HB
through the colimit KB yielding 7 B O S?A b^ = Hb o /3A> TO prove the
naturality of 7, consider a morphism / : i ? >B' in ^ and an object
(A, b) € <^B. The relations

HfolBosfAjb)=HfoHbopA

= H(fob)o(3A

= IB' o «5|/O6)

= 7B' oKfo sfAb)

imply the required identity Hfo^B = IB' °Kf, by definition of a colimit.
The condition (7 * F) o a = (3 reduces to the equality 7FA O&A = PA,

which is just the relation

appearing in the definition of 'JFA- The uniqueness of 7 with such a
property reduces easily to the uniqueness condition in the definition of
IF A- •

A left Kan extension is called "pointwise" when each LanFG(B) can
be computed by the colimit formula of theorem 3.7.2. See exercise 3.9.7
for an example of a non-pointwise Kan extension.
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Diagram 3.15

It should be noticed that, given a Kan extension, the triangle of di-
agram 3.15 does not in general commute (see exercise 3.8.7). But it
"commutes up to isomorphism" in a special case of interest, as attested
by the next result. Exercise 3.9.5 shows that the assumption in 3.7.3 is
by no means necessary.

Proposition 3.7.3 Consider a full and faithful functor F:si >3&
with si a small category. Let ^ be a cocomplete category. Given a functor
G: si ><€, the canonical natural transformation G => (Lan^G) o F is
an isomorphism.

Proof We use the notation of 3.7.2. Given an object A € si, let
us prove that the pair (A, IF A) is a terminal object for $FA- Given
(A', b) e $FA, we have a morphism b: FA' >FA which, by fullness
of F , has the form Fa for some a: A' >A. In particular we obtain a
morphism a:(A',b) >(A, IF A) in $FA> Given another morphism of
this kind a!:(A\b) >(A, IFA), the relation Faf o \FA = b implies
Fa' = Fa, thus a' = a by faithfulness of F. Applying 2.11.5 we conclude
that

KFA ^ colimG o <t>FA ^ G o (J)FA(A, lFA) ^ GA. •

Proposi t ion 3.7.4 Consider categories si, 0$, <€, Q) with si, 0S small.
Consider functors F.si >@, G.si ><€, K:@ ><g, L:<# >@,
R:S> >^ with L left adjoint to R and K = Lan F G. Under these
conditions L o Lan pG = Lan pLG (see diagram 3.16).

Proof Applying 3.7.1 and 3.2.4, we get the following bijections, for
every functor H:3§ >Qf.

Nat(L o Lan F G, H)^Nat(Lan F G, RH)
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Diagram 3.16

So L o Lan^G = Lan FLG, by putting successively H = L o Lan^G,

•
We have already seen that the existence of an adjoint functor or a Kan

extension can be reduced to the existence of a limit or a colimit (see 3.3.1
and 3.7.2). On the other hand the existence of a limit or a Kan extension
can be reduced to that of an adjoint functor (see 3.2.3 and 3.7.1). We
shall complete the picture by proving that the existence of a limit or an
adjoint functor can be reduced to that of a Kan extension.

Proposition 3.7.5 Consider a functor G\srf ><$, with s/ a small
category. Write 1 for the category with a single object and a single
arrow, and F:s/ > 1 for the corresponding functor. The functor G
has a colimit if and only if the left Kan extension Lan FGofG along F
exists.

Proof Going back to the proof of 3.7.2 and writing * for the unique
object of 1, we observe that $* is just the category J / , so that when
colimG exists, so does colimG o </>* and Lan/rG can be constructed
pointwise as in 3.7.2.

Conversely if Lan pG exists, it is just the choice of an object L e <£
and a natural transformation G => Ax,, i.e. a cocone on G with vertex
L. The universality of this cocone is just the universality of Lan pG. •

Proposition 3.7.6 Consider a functor F: si
egories. The following conditions are equivalent:

(1) F has a right adjoint G;

between small cat-
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Diagram 3.17

(2) Lan^ l^ exists and, for every functor L: stf >(€, the isomorphism
L o Lanp\^ = LanpL holds;

(3) Lan^ l^ exists and the isomorphism F o Lan^l,^ = Lani?F holds.

(see diagram 3.17.)

Proof (1) =» (2). Let us write rj: lj => GF and e:FG => l<% for
the natural transformations describing the adjunction (see 3.1.5). We
immediately get a natural transformation a = L * rj: L => LGF. Given
a functor H: & ><$ and a natural transformation (3:L => HF, let us
consider the composite

7 = (if * e) o ((3 * G): LG =* # F G =» if.

The relation (7 * F) o a = (3 follows from the naturality of (3 and the
triangular equalities of the adjunction (see 3.1.5):

(7 * F) o a = (if * e * F) o (/? * G * F) o (L * 77)

• = (if * e * F) o (if * F * rj) o f3

= if((£*F)o(F*77))o/?

= H(lp)o/3

Moreover, if 7': LG
ately that

if satisfies (7' * F) o a = /?, we compute immedi-

= (if * e) o (V * F * G) o (L * 77 * G)
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= i o (L * G * e) o (L * r) * G)

= -y'oL((G*e)o(71*G))

= 7'oL(lG)

=y-
This proves that (L o G, L * 77) = Lan pL for every functor L.

(2) => (3) is obvious.
(3) => (1) Let us write Lan^ l^ = {G,rj). By assumption LanjrF =

(FoG,F*? | ) . Considering the functor 1 ^ : ^ >$ and the identity
natural transformation F 1& o F, the definition of Lan^F yields a
natural transformation e.FoG => 1& with the property (e*F)o(F*r/) =
1^. It remains to prove that (G * e) o (ry * G) = 1Q (see 3.1.5) which, by
the uniqueness condition in the definition of Lan^l^ , is equivalent to
proving

[{{G * e) o (r/ * G)) * F ) O v = (1G * F) o[{{

Indeed, using the naturality of rj and the triangular equality which is
already proved, we get

(((G * e) o (77 * G)) * F ) O 77 = (G * e * F) o (77 * G * F) o r?

= (G * e * F) o (G * F * 7/) o 77

= G ( ( £ * F ) O ( F * 7 7 ) ) O T 7

= 77. •

3.8 Tensor product of set-valued functors

Proposition 3.8.1 Consider a small category <$/ and two functors

Fist* >Set, G\st >Set.

Write

Y.si

for the covariant Yoneda embeddings

Y(A) = s/(-,A), Y'(A)=s/{A,-).

Under these considions, there is a bijection

(Lany*F)(G) ^ (LanyG)(F).

Proof We can apply the constructions of 3.7.2 to produce these two
objects. More precisely we consider the category ^ defined as follows.
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• Objects: pairs (A, a) where a:s/(A, —) => G is a natural transfor-
mation.

• Arrows: an arrow / : (A, a) >(A',af). is a morphism / : A! >A
in si such that a o sf(f, —) = a '

We also take the obvious forgetful functor </>: ^ > si* and consider the
category 3} defined as follows.

• Objects: pairs (B,/3) where f3:sf(—,B) => F is a natural transfor-
mation.

• Arrows: an arrow g:(B,/3) >(B',(3') is a morphism g:B >B'
in si such that /?' o.«/(-, g) = /?.

Likewise we take the obvious forgetful functor ip:3>—>sf. We must
prove that, as objects of Set,

colim {AjCt)(F o (j>)(A, a) ^ colim (Bf /3)(G ot/>)(B,l3).

Let us recall (see 2.15.6) that we have the following isomorphisms:

G = colim(A,*)(Y* o 4)(A,a),

F = colim (£,/?) (F o %I)){B, (3).

Applying 2.15.2 and 2.12.1, we get

^ colim (A,

= colim (i4ja) colim (B,p)<^( A B)

= colim (B>/3) colim (A,a)^(A B)

^ colim (B^) ((colim ( A , a ) j / ( i l ,

^ colim (B,(3)G(B)

•
Under the conditions of 3.8.1, one often writes F ® G for the set

This interchange formula will play a key role in the theories of left exact
and flat functors (see chapter 6).
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3.9 Exercises

3.9.1 Consider the category ^ with a single object * and just two ar-
rows: the identity 1 on * and a morphism / such that / o / = 1. Prove
that / determines a natural transformation <p: 1# => 1#. The identity
functor 1# on ^ is left adjoint to itself and the corresponding natural
transformations 77:1# =>> l#ol#, e\ l#ol# =>• 1# can both be chosen to be
the identity; but they can also both be chosen to be the transformation
if.

3.9.2 Prove that a functor F: sd >£$ has a left adjoint functor if and
only if for every object B £ 3$, the functor

1,F-):s/ > Set

is representable.

3.9.3 Consider the category Idem whose objects are the pairs (X, v)
of a set X provided with an idempotent endomorphism v:X »X,
v o v = v, A morphism of Idem (X, v) >(Y,w) is just a mapping
/ : X >Y satisfying wo f = f ov. There is a canonical full embedding
of the category Set of sets and mappings in Idem:

z:Set >ldem, X ~ (

Consider now the functor determined by

j:ldem >Set, (X,v) i-> {x G X \v(x) = x} .

Prove that j is both left and right adjoint to i.

3.9.4 In exercise 3.9.1, observe the existence of a pair of functors
1#:W< yW and a pair of natural isomorphisms

i d : 1<# => 1<# o 1 # , (p: 1<# o 1%- >1<^,

expressing the fact that 1# is an equivalence of categories (see 3.4.3.(3)).
Prove that id, ip do not exhibit the adjunction between 1# and 1% (see
3.4.3.(2)).

3.9.5 Consider two functors F\$# > ^ and G:<stf >%>, with the
property

VA,A'ej* VfJ':A H$A Gf = Gf => Ff = Ff.

Suppose si, 0& are small, ^ is cocomplete and F is full. Under these
conditions Lan QF exists and the isomorphism G = Lan QF ° F holds.
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3.9.6 Consider a functor F: stf >& between small categories. For each
object A G s/ the Kan extension LaiiF^(A, —) exists and is given by
(9{FA, —). [Hint: apply the Yoneda lemma.] The equality

Lan Fs/(A, - ) o F =

holds precisely when F is full and faithful.

3.9.7 Consider the category 1 with a single object A and a single arrow
\ A , the category 2 with two distinct objects A, B and just the identity
arrows 1A ,1B , and the category 2 with two distinct objects A, £?, the
identity arrrows 1A? 1 B and an additional arrow f:B >A. Define the
functors F: 1 >2 and G: 1 >2 by FA = A,GA = A. Observe that
the only two functors from 2 to 2 are the constant functors A A and A#.
Check that A^ is the left Kan extension LanjrG. With the notation of
3.7.2, prove that $B is an empty category and AA(B) is not isomorphic
to the colimit of G o <\>B. So the Kan extension Lan pG is not pointwise.
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Generators and projectives

4.1 Well-powered categories

Given a set X, each of us knows the notion of "subset of X". Our best
approximation to this is, up to now, the notion of "monomorphism with
codomain X". But for example / : {TT}-—»N, f(n) = 0 is a monomor-
phism in Set... but is not formally a "subset" of N. In fact a monomor-
phism / : A >B in Set defines a subset of i?, namely the subset f(A),
which as a set is isomorphic to A via / .

Definition 4.1.1 Consider a category si and an object A G si. Two
monomorphisms /:/?> >A and g:S> >A are equivalent when there
exists an isomorphism r:R ~ >S such that g o r = / . An equivalence
class of monomorphisms with codomain A is called a subobject of A.
The dual notion is that of a "quotient of A".

When the category si is not small, there can be a proper class of
subobjects of a given object A G si.

Definition 4.1.2 A category si is well-powered when the subobjects
of every object constitute a set.

It is most often obvious to observe that a category is well-powered:

(1) in the category Set of sets, the subobjects of a set X are in bijection
with the subsets of X;

(2) in the category Gr of groups, the subobjects of a group G are in
bijection with the subgroups of G;

(3) in the category Top of topological spaces, the subobjects of a topo-
logical space (X, T) are in bijection with the pairs (Y^S), where Y
is a subset of X and S is a topology finer than the topology on Y
induced by T.

132
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And so on It is thus obvious, in all those cases, that the category is
well-powered. Examples of non-well-powered categories are often quite
unnatural. For instance observe that in a partially ordered set (or class),
each arrow is of course a monomorphism, since you can never find two
distinct arrows between two specified objects. Therefore in a partially
ordered class with top element 1, the subobjects of 1 are in bijection
with the elements of the class.

4.2 Intersection and union
Given an object A of a category ^ , let us consider the class Mono(A) of
all monomorphisms with codomain A. A monomorphism r:R> >A is
smaller than a monomorphism s:S> >A when there exists a (mono)
morphism t:R> >S such that s o t = r. Observe that t can be chosen
an isomorphism precisely when, in addition, s is smaller than r. Indeed
if there exists t'\ S> >R such that rot' = s, we have r o tf o t =
r and s o t o t' = s, from which t1 o t = 1R and tot' = Is since r
and s are monomorphisms. Performing the quotient on Mono(A) which
identifies isomorphic monomorphisms, we obtain a partial order on the
class Sub(A) of subobjects of A. We recall that ^ is well-powered when,
for each A € ^ , Sub(A) is a set (see 4.1.2).

Since Sub(A) is a partially ordered class, it makes sense to consider
the existence of the infimum or the supremum of a family of subob-
jects. Let us make clear that by "family", we always mean a set-indexed
family. Except when some confusion could arise, we speak freely of the
monomorphism r: R> >A or the corresponding subobject, without em-
phasizing the difference.

Definition 4.2.1 Consider an object A of a category (€. By the inter-
section of a family of subobjects of A, we mean their infimum in Sub(A).
By the union of a family of subobjects of A, we mean their supremum
inSub(A).

Proposition 4.2.2 Consider an object A of a category <$ and suppose
Sub(A) is a set. The following conditions are equivalent:
(1) the intersection of every family of subobjects of A exists;
(2) the union of every family of subobjects of A exists.

Proof In a poset, it is well-known that

supieISi = inf {s |Vi G / Si < s} ,

= sup{s \Vi e I s < Si} . •
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Proposi t ion 4.2.3 In a category <£ with pullbacks, the intersection of
two subobjects of the same object i G ^ always exists and is given by
their pullback.

Proof If r, s are monomorphisms, so are r', s' obtained by pullback (see
2.5.3) as in diagram 4.1. Thus ros' — sor'\ P> > A is another subobject
of A and, by definition of a pullback, it is obviously the infimum of r, s
in Sub(A). •

The previous result generalizes easily to the case of arbitrary intersec-
tions:

Proposition 4.2.4 In a complete category, the intersection of every
family of subobjects of a fixed object always exists.

Proof Given first a non-empty family (si'.Si> >A)i€j of subob-
jects, we compute the limit (L, (pi)i€i) of the diagram constituted of
the various morphisms S*. All the composites Siopf. L >A are equal
by definition of a limit and, since the set / of indices is not empty,
this effectively gives us a morphism s:L >A. This morphism s is a
monomorphism because, given x, y. X \fj with sox = soy,we have
Siopiox = sox = soy = Siopioy for every i G / , and thus Pi ox = Pioy
since S{ is a monomorphism. But then x = y (see 2.6.4). Just by def-
inition of a limit, the subobject s:L> >A is the intersection of the
subobjects (si)iej.

It remains to consider the case of an empty set of indices, i.e. to prove
the existence of a biggest subobject of A, This is just the identity on A.

•
Corollary 4.2.5 In a complete and well-powered category, the intersec-
tion and the union of every family of subobjects of a fixed object always
exist.

Proof By 4.2.4 and 4.2.2. •
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At this stage one should avoid a classical mistake. Computing the
union of two subobjects is by no means a problem dual to that of com-
puting their intersection. Dualizing 4.2.3 tells us something about the
poset of quotients of A (epimorphisms with domain A), not about unions
in Sub(A). In the same way let us observe that in 4.2.5 the existence of
unions is by no means related to any assumption on colimits: it relies on
the formal formulas used in 4.2.2. In particular a finite version of 4.2.5
does not hold: a finitely complete and well-powered category certainly
admits finite intersections of subobjects (see 4.2.3), but not in general
finite unions of subobjects. Finite unions have been constructed in 4.2.5
using possibly infinite intersections. For a counterexample, just consider
a A-semi-lattice with a top element which is not a lattice.

Anticipating the results of section 4.4, let us give a construction of the
union of subobjects which applies very widely.

Proposition 4.2.6 In a category with (finite) coproducts and strong-
epi-mono factorizations, the union of a (finite) family of subobjects al-
ways exists.

Proof Consider subobjects Si'.Si> >A, the corresponding factor-
ization s: \JieISi >A through the coproduct and the canonical mor-
phisms (TiiSi >\li£iSi of the coproduct. Let us write s = uop for
the strong-epi-mono factorization of s. This yields the commutative di-
agram 4.2. In particular each Si factors through u, proving Si C U.

Next consider t:T> >A, another subobject through which each Si
factors as Si = toti (see diagram 4.3). There is a unique factorization r
through the coproduct, such that T o cr* = U. Since

t O T O Gi — t O ti = Si = S O (Ji,

we deduce that t o r = 5, by definition of a coproduct. Since t is a
monomorphism, by 4.4.5.(3) u factors through t. •
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4.3 Strong epimorphisms

Among epimorphisms, let us point out some particularly interesting
classes.

Definition 4.3.1 In a category, an epimorphism is called regular when
it is the coequalizer of a pair of arrows.

Definition 4.3.2 An epimorphism f:A >B in a category is called
extremal when it does not factor through any proper subobject ofB; i.e.
given f = iop with i a monomorphism, i is necessarily an isomorphism.

Let us first observe some obvious properties.

Proposition 4.3.3 In a category <&

(1) every regular epimorphism is extremal,
(2) if a composite fog is an extremal epimorphism, f itself is an extremal

epimorphism,
(3) a morphism which is both a monomorphism and an extremal epi-

morphism is an isomorphism.

Proof Let / = Coker (w, v) and / = i o p, with i a monomorphism.
P r o m i o p o u = f o u = f o v = i o p o v o n e d e d u c e s p o u = p o v ,
since i is a monomorphism. Thus there exists a unique factorization j
through / = Coker (w, t>), such that j o f = p (see diagram 4.4). Prom
i° j°f = i°P = f, we deduce ioj = 1# since / is an epimorphism. Prom
i o j o i = 1B o i = i, one deduces j o % = 1/ since i is a monomorphism.

Now if / o g is an extremal epimorphism, / is an epimorphism by
1.8.2. If / = i o p with i a monomorphism, / o g = i o po g and i is an
isomorphism because / o g is an extremal epimorphism.

Finally if / : A—-»2? is both a monomorphism and an extremal epi-
morphism, from / = / o 1A we deduce that / is an isomorphism. •
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Proposition 4.3.4 In a category sf, suppose that every morphism
which is both a monomorphism and an epimorphism is necessarily an
isomorphism. In those conditions, every epimorphism is extremal.

Proof If / = i o p with / an epimorphism and i a monomorphism, i
is both a monomorphism and an epimorphism (see 1.8.2), thus it is an
isomorphism. •

The notion of regular epimorphism will prove to be crucial (see for
example chapter 2 of volume 2). On the other hand, the notion of ex-
tremal epimorphism coincides most often with the more sophisticated
notion of "strong epimorphism" and this notion plays a key role in cat-
egory theory.

Definition 4.3.5 In a category sf, an epimorphism f: A >B is called
a strong epimorphism when, for every commutative square z o u = v o f
as in diagram 4.5, with z:X >Y a monomorphism, there exists a
(unique) arrow w: B >X such that w o f = u, z ow = v.

The uniqueness condition in 4.3.5 is of course redundant since by
assumption, / is an epimorphism and z is a monomorphism. Here are
the key properties of strong epimorphisms:

Proposition 4.3.6 In a category si,
(1) the composite of two strong epimorphisms is a strong epimorphism,



138 Generators and projectives

f .
*• C

X >

Diagram 4.6

B > -» C

•• r

B -» C
f

Diagram 4.7

-> Y

(2) if a composite f o g is a strong epimorphism, f is a strong epimor-
phism,

(3) a morphism which is both a monomorphism and a strong epimor-
phism is an isomorphism,

(4) every regular epimorphism is strong,
(5) every strong epimorphism is extremal.

Proof If / , g are strong epimorphisms, in diagram 4.6 choose z o u =
v o / o g with z a monomorphism. Since g is a strong epimorphism, we
find w such that w o g = u and z o w = vf. Further since / is a strong
epimorphism, we find t such that tof = w and z o t = v. It is obvious
that t is the required factorization.

Now suppose that / o g is a strong epimorphism in diagram 4.6 and
choose zow = vof, with z a monomorphism. Putting u = wog, one gets
a factorization t such that tofog = u, z ot = v since / o # is a strong
epimorphism. Prom zoto f = vo f = zow one deduces t o f = w since
z is a monomorphism. It is obvious that t is the required factorization.

If / is both a monomorphism and a strong epimorphism, considering
diagram 4.7 we find r such that r o f = 1#, / o r = \Q> Thus / is an
isomorphism.

If f = Coker(a,b) and zow = vo f with 2 a monomorphism, consider
diagram 4.8. Prom z o w o a = v o f o a = v o f o b = z o w o b, we
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deduce w o a = w o b since z is a monomorphism. Therefore we get some
factorization t of w through / = Coker (a, 6). Prom w = t o f we deduce
zotof = zow = vof and thus z o t = v since / is an epimorphism
(see 2.4.3).

Finally if / is a strong epimorphism and / = i o p with i a monomor-
phism, consider diagram 4.9. There exists a unique t yielding £ o / = p,
i o t = lc- By the dual of 1.9.3, i is an isomorphism. •

Strong epimorphisms play a particularly nice role in finitely complete
categories. This is due to the following results:

Proposition 4.3.7 Consider a finitely complete category si.

(1) Let a morphism f:A >B satisfy the diagonal property of 4.3.5,
i.e. given zou = vof with z a monomorphism, there exists a unique
w such that zow = v,wof = u. Under these conditions, f is an
epimorphism and thus a strong epimorphism.

(2) Let a morphism f: A >B be such that given any factorization f =
iop with i a monomorphism, i must be an isomorphism. Under these
conditions f is an epimorphism, thus an extremal epimorphism.

(3) An epimorphism is extremal if and only if it is strong.

Proof Take a morphism f:A >B satisfying the "diagonal condi-
tion". Ifuof = vof, consider diagram 4.10 where k = Ker(n, v) and
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g is the unique factorization of / through k — Ker(iz, v). Since k is a
monomorphism (see 2.4.3), there exists by assumption a unique w such
that g = w o f and k o w = 1#. Thus k is an epimorphism (see 1.8.3)
and from uo k = v o k, we deduce u = v. So / is an epimorphism.

Now if / does not factor through any proper subobject of B, choose
again u o f = v o f and k = Ker (u, v). The morphism / factors through
k = Ker (u, v) as / = kop, thus the monomorphism k is an isomorphism
by assumption. Prom uok = vokwe conclude that u = v. So / is an
epimorphism.

Finally suppose / : A >B is an extremal epimorphism. If zou = vof
with z a monomorphism, let us consider diagram 4.11 where the square is
a pullback. There is a unique factorization r such that qor = / , por = u.
Since z is a monomorphism, q is a monomorphism as well (see 2.5.3).
Since / is an extremal epimorphism, q is an isomorphism. Therefore
p o q~l.B > A is the expected factorization. It is unique since / is an
epimorphism and z is a monomorphism. The converse implication has
been proved in 4.3.6.(5). •
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Another major property of strong or regular epimorphisms is attested
by the following result (compare with the dual of 2.5.3).

Proposition 4.3.8 In a category <g,

(1) strong epimorphisms are stable under pushout,
(2) regular epimorphisms are stable under pushout,

as long as the required pushouts exist. In other words, in a pushout
square as in diagram 4.12, if g is a strong epimorphism, h is a strong
epimorphism as well; if g is a regular epimorphism, h is a regular epi-
morphism as well.

Proof If g is a strong epimorphism, consider the commutative di-
agram 4.13 where z is a monomorphism. We first find u such that
u o g = x o / and z o u = y o k. Since u o g = x o / and the origi-
nal square is a pushout, we get a unique v such that v o h = x and
v o k = u. Notice that h is an epimorphism, since g is (see 2.5.3). Thus
from zovoh = zox = yohwe deduce z o v = y. The uniqueness of v
follows from the fact that z is a monomorphism (or h an epimorphism).

Now if g is a regular epimorphism, consider diagram 4.14 where g =
Coker (ra, n). Let us prove that h = Coker (/ o m, / o n). First of all

hofom = kogom = kogon = hofon.
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Next consider p such that pofom — pofon. Since g = Coker (ra, n),
there exists a unique q such that q o g = p o f and since the square is
a pushout, this yields a unique r such that r o h = p, r o k = q. This
morphism r is also unique for just the property r o h = p since h is an
epimorphism (see 2.5.3). •

Like epimorphisms, the notions of strong or regular epimorphism are
preserved by right adjoint functors (see 3.2.2 and 2.9.3).

Proposition 4.3.9 Let F.si >@t be a functor admitting a left ad-
joint functor G:£fi >si. The functor F preserves strong monomor-
phisms and regular monomorphisms, and the functor G preserves strong
epimorphisms and regular epimorphisms.

Proof By 3.1.5, 3.2.2 and 2.9.3, it suffices to prove the statement
concerning strong epimorphisms. Let us write

for the canonical natural transformations of the adjunction.
Given a strong epimorphism / in 38 and a diagram v o Gf = z o u in

si with z a monomorphism, consider the situation of diagram 4.15. F
preserves limits (see 3.2.2), thus Fz is still a monomorphism (see 2.9.3).
By naturality of 77,

FVOTJB o f = Fvo FGf OTJA = Fzo Fuo TJA-

So the second square is commutative, from which there is a unique w
such that w o / = Fu o 77,4, Fz o w = Fv o TJB- Therefore we get (see
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3.1.5)

ex ° Gw o Gf = ex ° GFuo GTJA = u

Z O Ex ° Gw = Ey O GFz O Gw = Ey O GFv O

= vo EGB ° GrjB = v. •
Examples 4.3.10
4.3.10.a In the categories Set of sets, Gr of groups, Ab of abelian
groups, MOCIH of /2-modules, the epimorphisms / : A >B are exactly
the surjective homomorphisms (see 1.8.5). So B is the quotient of A
by the equivalence relation identifying a, a1 when /(a) = f(af). In other
words, / is in each case the coequalizer of its kernel pair (see section 2.5)
and so every epimorphism is regular. In particular every epimorphism is
also strong and extremal (see 4.3.3).

In the same categories, every monomorphism is regular, thus strong.
In the category Set, a monomorphism / : A> >B is the equalizer of its
characteristic mapping

<p{b)
_ r 1
" \ 0

if be f{A)
if i

and the constant mapping Ai: B >{0,1} on 1. In the category Gr and
with the notation of 1.8.5.d, the amalgamation property applied in the
case G — H indicates precisely that K C G is the equalizer of the two
canonical inclusions O \n*KO. In the category Ab, a monomorphism
/ : A> >B is the equalizer of the quotient map p: B »B/f(A) and
the zero map 0: B >B/f(A).

4.3.10.b In the category Top of topological spaces and continuous
mappings, a morphism f:A >B can be factored through its image
f(A) C B, provided with the induced topology. But if R is the kernel
pair of / ,

R= {(a,a') e Ax A\f(a) = f(a')} ,
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f(A) is a bijection with the quotient A >A/R, the bijection being
just

>f(A), [ a ] - / ( a ) .

Providing A/R with the quotient topology, (p is thus continuous. This
gives us a factorization / = iocpop as in diagram 4.16, with (p a bijection,
thus both a monomorphism and an epimorphism. Since Top is (finitely)
complete and cocomplete, p is an extremal, thus strong, epimorphism
because A/R is provided with the quotient topology. In the same way i
is a strong monomorphism because f(A) is provided with the induced
topology. Observe that in general (pop is not a strong epimorphism and
i o (p is not a strong monomorphism.

4.3.10.C In the category Rng of commutative rings with unit, every
epimorphism f:A »B factors through its image f(A). Therefore the
epimorphism is extremal (or strong) precisely when B = f(A), thus
when / is surjective. Recall that in Rng, there are non-surjective epi-
morphisms, thus there exist in Rng epimorphisms which are not strong
(see 1.8.5.f).

4.3.10.d In the category Haus of Hausdorff spaces and continuous
mappings, a monomorphism (i.e. an injection) / : A> >B is extremal
precisely when A is provided with the topology induced by that of B. But
the kernel k: K> >A of a pair g,h:A^H^B can be presented as the
pullback of diagram 4.17, where A is the diagonal. Since B is Hausdorff,
the diagonal is closed in B x B and therefore K is closed in A. Thus a
non-closed subspace A> >B with the induced topology is an example
of an extremal (or strong) but non-regular monomorphism.

4.3.10.e In the category Bani of Banach spaces and linear contrac-
tions, monomorphisms coincide with injections (see 1.7.7.f). The equal-
izer of two morphisms / , g: A >B is just

Ker (/,«/) = {a € A |/(o) = g(a)} = ( / - ^ ( O )
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provided with the induced norm; this is indeed a Banach space since
the subspace Ker (/, g) is closed in A as inverse image of {0} under the
continuous mapping / — g. Conversely, given a closed linear subspace
K C A, this space K is a Banach space and moreover AjK provided
with the quotient norm is again a Banach space. Therefore K C A is the
equalizer of the two morphisms 0,p: A >A/K where p is the canonical
projection. Since in Bani isomorphisms are just isometries (see 1.9.6.f),
the regular monomorphisms are the isometric injections.

Observe that in Bani, strong monomorphisms coincide with regular
monomorphisms. Indeed choose a strong monomorphism f:K> >A
and consider the Banach space f(K) C A. The factorization

>f(K)
is a strong monomorphism since / is (see 4.3.6), but it is also an epimor-
phism (see 1.8.5.g): therefore it is an isomorphism. Since isomorphisms
are isometric (see 2-1.9.6.f), f:K> >A is an isometric injection, thus
a regular monomorphism.

Notice also that every strong epimorphism in Bani is surjective on the
unit balls, from which in particular, every strong epimorphism is surjec-
tive. Indeed if / : A »B is a strong epimorphism and b £ B, \\b\\ < 1,
consider diagram 4.18 where

g: R >£, g(r) = rb.

The existence of the factorization h implies b = g(\) = /(/i(l)) with
||/i(l)|| < 1. Thus / is surjective on the unit balls. Conversely, if a linear
contraction / : A >B is surjective on the unit balls, it is a strong
epimorphism. Indeed / is surjective and we get a linear isomorphism

tp: A/Kerf =—>B

between Banach spaces. Via this isomorphism, the unit ball of A/Ker/
is mapped into the unit ball of B because / is a linear contraction. This
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yields a bisection between the unit balls, since / is surjective on the
unit balls. Thus via the linear isomorphism <p, both Banach spaces have
the same unit ball, hence are isomorphic. So / is a quotient map, thus
a regular and strong epimorphism. This proves that in Bani, strong
epimorphisms are regular and coincide with those linear contractions
which are surjective on the unit balls.

4.3.10.f In the category Comp of compact Hausdorff spaces, every
epimorphism f:X »Y is regular. To prove this, consider the set the-
oretical image f(X) C Y provided with the (Hausdorff) topology in-
duced by that of Y. Since / is continuous and X is compact, f(X)
is compact Hausdorff as well. In the category Set of sets, the surjec-
tion f:X »f(X) is the coequalizer of its kernel pair (see 2.5.7) and
this kernel pair R can be obtained via the puUback of diagram 4.19,
where A is the diagonal. Since f(X) is Hausdorff, A is closed, thus
R = (/ x /)~1(A) is closed in X x X. Since X is compact Hausdorff,
X x X is compact Hausdorff and thus R, closed in it, is compact Haus-
dorff. So writing pi,p2 for the two projections, pi.pz- ft" > X is the
kernel pair of / in Comp. Writing p: X »X/i? for the topological quo-
tient of X by i?, X/R is still compact as a continuous image of the
compact space X and it is Hausdorff because R is a closed equivalence
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relation. We get the commutative diagram 4.20 in Top where the factor-
ization X/R >f(X) is bijective since in Set, f(X) is the coequalizer
of pi,P2- But the continuous bijection X/R >f(X) is defined between
compact Hausdorff spaces; it is thus a homeomorphism. Finally since /
is an epimorphism, f{X) must be dense in Y (the argument of 1.8.5.C
applies since a disjoint union of two compact Hausdorff spaces is com-
pact Hausdorff and a Hausdorff quotient of a compact Hausdorff space is
compact Hausdorff). But f(X) is closed in F , since it is compact. Thus
f(X) = Y and the epimorphism / is homeomorphic to the coequalizer

4.3.10.g If ^ is a small category, every epimorphism in the category
Fun(^, Set) of set-valued functors is regular. Indeed, an epimorphism
a: F => G is such that each ac'- FC >GC is an epimorphism in
Set (see 2.15.3), i.e. the coequalizer of its kernel pair (see 2.5.7). Since
kernel pairs and coequalizers in Fun(#, Set) are computed pointwise (see
2.15.2), a is itself the coequalizer of its kernel pair and therefore is
regular, strong and extremal (see 4.3.6,3).

4.4 Epi—mono factorizations

The following notion, even if a little bit strange from a categorical point
of view, turns out to be quite useful in the applications.

Definition 4.4.1 A category <£ is finitely well-complete when

(1) <€ is finitely complete,
(2) given an object C € <&, the intersection of an arbitrary class of

subobjects of C always exists.

To understand the unifying role of definition 4.4.1, it suffices to observe
that
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Proposition 4.4.2

(1) A complete and well-powered category is finitely well-complete.
(2) A finitely complete category where every object has just finitely

many subobjects is finitely well-complete.

Proof See 4.2.3 and 4.2.4. •

Proposition 4.4.3 In a finitely well-complete category, every morphism
f factors as f = i o p, where i is a monomorphism and p is a strong
epimorphism.

Proof Given / : A >B, consider all the possible factorizations / =
ikoPk-> with ifc a monomorphism. Compute the intersection i = I> >B
of all the monomorphisms z .̂ The compatible family pk'A >Ik of
morphisms factors through the limit I of the various /&, from which
p: A >I such that i op = f.

If p admits a factorization p = j o q with j a monomorphism, then
f = top = iojoq with io j a monomorphism. As subobjects of B, one
has of course io j < i... since ioj factors through i via j ! But / factors
through i o j , so i o j is one of the i^'s and thus i < i o j . Finally i and
ioj are isomorphic subobjects, i.e. j is an isomorphism. Therefore p is
a strong epimorphism (see 4.3.7.(2)). •

Definition 4.4.4 A category^ has strong-epi-mono factorizations when
every morphism fofW factors as f = i op, with p a strong epimorphism
and i a monomorphism. The monomorphism i is also called the "image"
off.

Proposition 4.4.5 Let %> be a category with strong-epi-mono factor-
izations.

(1) The strong-epi-mono factorization of an arrow is unique up to an
isomorphism.

(2) The strong-epi-mono factorizations are natural in the sense that
given the commutative outer rectangle of diagram 4.21, with (i,p)
and (j, q) strong-epi-mono factorizations, there exists a unique mor-
phism h making the whole diagram commute.

(3) Ifh = iop is a strong-epi-mono factorization and h = k o r, where
k is a monomorphism, there exists a unique t such that r = t o p,
i = k o t (see diagram 4.22).

Proof Given i op = %' op' with p,p' strong epimorphisms and i,i'
monomorphisms, consider diagram 4.23. There exists u such that uop =
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p',i'ou = i because p is a strong epimorphism and %' is a monomorphism.
There exists v such that v o p' = p and i o y = i' because p1 is a strong
epimorphism and i is a monomorphism. Therefore ioyouop = i'op' = iop,
thus v o u = 1/ since p is an epimorphism and i is a monomorphism. In
the same way uo v = 1//.

Let us now consider the situation of point (2). The uniqueness of
h is obvious since p is an epimorphism and j is a monomorphism. To
prove the existence of ft, consider diagram 4.24 where you and / o k
are strong-epi-mono factorizations of q o f and g o i. Then (j o y) o u
and I o (kop) are both the strong-epi-mono factorization of the global
composite joqo f = goiop. Therefore we get an isomorphism s making
diagram 4.24 commutative and ft is just y o s-1 o k.

For point (3), factor r as r = I o s with / a monomorphism and s a
strong epimorphism. Putting / = 1^, g = l£>, q = s, j = kol in point (2)
yields a unique ft such that hop = s, kol oh = i, as in diagram 4.25.
P u t t i n g t = I o ft y i e l d s t o p = l o h o p = l o s = r , k o t = k o l o h = i .
Such a morphism t is unique since A: is a monomorphism. •

Proposition 4.4.6 Let ^ be a category with pullbacks and epi-strong-
mono factorizations. Given a morphism f: A >B and writing Str(A),
Str(B) for the posets of strong subobjects, the inverse image functor

/-i:Str(£) >Str(A)
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P ^

Diagram 4.23

Diagram 4.24

is right adjoint to the direct strong image functor
>Str(B).

The same conclusion holds replacing "strong" by "regular".

Proof By 4.3.8, pulling back along / maps the elements of Str(B) to
those of Str(A). On the other hand, given a subobject a: Af> >A in
Str(A) we consider in diagram 4.26 the epi-strong-mono factorization of
/oa, existing by assumption, and this defines / + 1 . By definition of a pull-
back, if B1 C B is in Str(S) and f+1(A') C B;, one gets A! C f-x{B').
Conversely if A! C /~ 1 (B / ) , consider the epi-strong-mono factorization
of diagram 4.27. Now / is a strong subobject of Bf and by 4.3.6, a strong
subobject of 2? as well. By uniqueness of the factorization (see 4.4.5),
/ = Z+^A'); in particular f+\A') C S ; . D

4.5 Generators
Let us make clear again that, when mentioning a family indexed by / ,
we assume / to be a set.

Definition 4.5.1 Let ^ be a category. A family (Gi)i£i of objects
is called a family of generators when, given any two parallel morphisms
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-> D

%Bin<S,

Vie/ V uo g = v o g => u = v.
When the family is reduced to a single element {G}, we say that G is a
generator ofW.

Some people prefer the term "separator" instead of generator, which
is very sensible. Nevertheless generators are important because of the
following property which indicates that, in good cases, every object can
be recaptured as "a quotient of a coproduct of generators"; this result
justifies the terminology "generator".

Proposition 4.5.2 Let <& be a category with coproducts and (Gi)iei a
family of objects ofW. The following conditions are equivalent:

(1) (Gi)i€j is a family of generators;
(2) for every object C E #, the unique morphism

7c: J J (domain of / ) > C

such that 7c ° «/ = / is an epimorphism.

Proof For the sake of brevity, we shall often write J j Gi to indicate the
coproduct of the statement; we write Sf for the canonical morphism of
the coproduct corresponding to / G ^ ( G i , C) , i € / .
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A!

V

I > : > B'
I

Diagram 4.27

Suppose (Gi)iei is a family of generators and choose u,v:C >D
such that uojc = v o j c . Then uof = uo^ycosf = vojc o Sf = vo f
for every i G / and every / G ^(Gi, C). Thus u = v.

Conversely, suppose that u o / = v o / for every i £ I and every
/ G ^ ( G i , C ) . T h e n u o j c o Sf = u o f = v o f = v o ^ c o s f a n d t h u s
?z o 7C = i> o 7^, by the property of a coproduct. Finally u = v since 7c
is an epimorphism. •

Definition 4.5.3 Let %> be a category with coproducts and (Gi)iei a
family of objects of^. The family {Giji^i is a strong family of generators
when, for every object C G #, the morphism 7c of 4.5.2 is a strong
epimorphism. (Giji^i is a regular family of generators when, for every
object C G #, the morphism 7c of 4.5.2 is a regular epimorphism. When
the family is reduced to a single element {G}, we say that G is a strong
or a regular generator, according to the case.

Let us observe that when (Gi)iei is a regular family of generators,
for every object C, 7c = Coker (u, v) for some pair (w, v) of morphisms.
Since jp is an epimorphism, one clearly has 7c = Coker (u o 7 P , v

3*9 * , /

Thus C has been presented as the coequalizer of two morphisms defined
between two coproducts of the generators Gi. But if the objects of the
diagram presenting C are coproducts of the generators, nothing can
be said about the two morphisms u o 7p, v o j P between them. There
is no reason why they should be determined by morphisms Gi > Gj
between the generators. This indicates the interest of the next notion.

Definition 4.5.4 Let ^ be a category and (Gi)iei a family of objects
of^. Let us write & for the full subcategory of%l generated by the Gi Js
and &/C for the full subcategory of <€jC generated by the objects of
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9f >
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ic » C

Diagram 4.28

the form f: Gi >C. The family (Giji^j is a dense family of generators
when for every object C € #, the colimit of the functor

c ><€, (f:Gi >C) ^ Gu

is precisely (C, (f)fe&/c) • When the family is reduced to a single element
{G}, G is called a dense generator.

Let us study the relations between dense and regular generators.

Proposition 4.5.5 In a category with coproducts, every dense family
of generators is regular and every regular family of generators is strong.

Proof The first statement is an immediate consequence of the con-
struction of the colimit from coproducts and coequalizers, as described
in 2.8.1 (see exercise 2.17.10). The rest follows from 3.3.6. •

Proposition 4.5.6 Let ^ be a category with pullbacks and universal
coproducts (see section 2.14). Given a family {Gi)iei of objects of^, the
following conditions are equivalent:

(1) (Gi)iei is a regular family of generators;
(2) (Gi)i£i is a dense family of generators.

Proof (2) => (1) has been proved in 4.5.5. Conversely let us consider
diagram 4.28 where 7c has been defined in 4.5.2. Writing Sf for the
canonical morphisms of the coproduct, we thus have 7c o Sf = f. With
the notation of 4.5.4, this is of course a cocone on Tc and we must
prove it is a colimit cocone. So we choose another cocone (#/)/ on Tc.
By definition of a coproduct, we get immediately a unique g such that
gosf = gf for each / G |#/C| . By assumption, 7c is regular; let us write
7c = Coker (u, v). (Hfou, r/,tf) is the pullback of u, Sf; (Hfov, x/, 2//) is
the pullback of v, 5/; (HfOUov, zf>wf) is the pullback of x/, tf.

Let us observe first that for every morphism /: Gk >HfOuov> what-
ever the indices, one has
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f o r f o Wf o I = 7 c o Sf o r f o Wf o I = 7 c O U O t f o Wf o I

= 7 c ouoxfOZfol = 7 c o v o Xf o Zf o I

= JC°Sf oyf ozf ol = f oyf ozf ol.

Let us write m for this composite. We have obtained two morphisms

rfowfol,yfozfol:

in ^ /C and, since the (gf)fei constitute a cocone on F c ,

gf o (rf o wf o I) = g o m = gf o (yf o zf o / ) ,

which implies

= g o Sf oyf o Zf ol = g ov o Xf o Zf ol.

Since this is valid for every &, / and the G&'s are a family of generators,
g o u o Xf o Zf = g o v o Xf o Zf. But by universality of coproducts,
(X, (£/)/), (X, ( s / ) / ) , (Hfou,(wf)f) and (Hfov,(zf)f) are coproducts
as well. Therefore gou = #o?; and we get a unique h such that ho^c = g,
since 7c = Qoker(u,v).

Observe that ho f = ho^cosf = gosf = ^ / , thus h is indeed a good
factorization. On the other hand it is unique since 7c is an epimorphism
and (JJ^ f Gi, («/)/) is a coproduct. •

Now comes a "functorial" approach to generators. For this we need
some terminology.

Definition 4.5.7

(1) A family of functors (i^: si >&i)iei JS collectively faithful when
given morphisms / , g: A \ A' in si

(Vie/ Fi(f) = Fi{g))=>(f = g).
(2) A family of functors {Fi'.si >3Si)iei collectively reflects isomor-

phisms when, given a morphism f: A >Af in si,

(Vi G / Fi(f) is an isomorphism) =^ ( / is an isomorphism).

Proposition 4.5.8 Let % be a category and (Gi)i€i a family of objects
in ^. The following conditions are equivalent:

(1) (Gi)i£i is a family of generators;
(2) the functors W(Gi, -):W > Set are collectively faithful.
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> B

Proof Collective faithfulness of the functors #(Gi, —) means that given
f,g:A~ZZ^Af in si,

(Vi € / V/i*: Gi > A foh = goh)=>(f = g).

This is precisely the definition of being a family of generators.

•
Corollary 4.5,9 Let ^ be a category and G G c€. The following condi-
tions are equivalent:

(1) G is a generator;

(2) the functor <g(G, - ) : # > Set is faithful D

Proposition 4.5.10 Let ^ be a finitely complete category with coprod-
ucts. Given a family (Gi)i£i of objects of^, the following conditions are
equivalent:

(1) (Gi)i£i is a strong family of generators;

(2) the functors ^(Gi, —): # > Set collectively reflect isomorphisms.

Proof Let (Gi)iei be a strong family of generators. Take / : A >B
such that ^(Gi, / ) is an isomorphism for each i. We use the notation of
4.5.3 and consider diagram 4.29. For every i € / and g:Gi >B, one
has g = 7B o sg G V(Gi,B). Since V(Guf)\V(Gu A) >V(GUB) is
a bisection, there is a unique g1 such that 7 B O sg = g = / o g'. Doing
this for all i G / , g G ̂ (Gi,B), one gets a factorization / ' through the
coproduct, with /'̂  o sg — gf'. Prom

f o f o sg = f o g' = -yB o sg

we deduce / o / ' = j B by definition of a coproduct. Since 7 B is a strong
epimorphism, / is a strong epimorphism as well (see 4.3.6).
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K > - - v

Diagram 4.30

To prove that / is a monomorphism, choose u, v such that fou = fov.
For all j € / and h: Gj >X, one has fouoh = fovoh, i.e.

Since #(</j,/) is bijective, u o h = v o h and since (GJ)J^I is a fam-
ily of generators, u = v. So / is both a monomorphism and a strong
epimorphism: it is an isomorphism (see 4.3.6).

Conversely suppose the functors #((?i, —) collectively reflect isomor-
phisms. If 7c = j ° P with j a monomorphism, ^(G^j) is injective for
every i by 2.9.4. Moreover, given g: Gi >C, one has

o sg),

proving that ^(Gi,j) is surjective as well. Therefore ^{G^j) is bijective
for each index i and j is an isomorphism by assumption. By 4.3.7, 7c is
an extremal and thus strong epimorphism. •

Corollary 4.5.11 Let ^ be a finitely complete category with coproducts
and G G ^ . The following conditions are equivalent:
(1) G is a strong generator;
(2) the functor #(G, —): # > Set reflects isomorphisms. •

Let us now observe that

Proposition 4.5.12 Let W be a category with equalizers and (Giji^i
a family of objects of c€. If the functors ^{G^ —) collectively reflect
isomorphisms, {Giji^i is a family of generators.

Proof Consider u, v such that for every i G / and g: Gi >A, u o g =
vog (see diagram 4.30). Putting k = Ker (it, v), with each g is associated
a unique I such that k o I = g. This means precisely that each V(G», fc)
is bijective, thus k is an isomorphism. From uo k = v o k one deduces
it = v. •
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Proposition 4.5.12 shows, together with 4.5.10, that the following def-
inition is compatible with the terminology of 4.5.3. Some authors just
take 4.5.13 as the definition of a strong family of generators, dropping
the assumption on the existence of finite limits which stands here just
to ensure compatibility with 4.5.3.

Definition 4.5.13 Let ^ be a category (with finite limits). A family
(Gi)i£i of objects of%> is a strong family of generators when the fam-
ily of functors ^(G^ — ):c& > Set collectively reflects isomorphisms.
When the family is reduced to a single object {G}, G is called a strong
generator.

Proposition 4.5.14 Consider a category <$, a family (Gi)i^i of objects

of%> and the corresponding full subcategory (S. The following conditions

are equivalent:

(1) (Gi)i£i is a dense family of generators;

(2) the functor T: % >Fun(^*, Set); C H-» # ( - , C) is full and faithful.

Proof Let us observe that the functor F : ^ >Fun(^*,Set) takes as
value at C € # the functor

* >Set, Gi

which is just the restriction to ^* of the representable functor

#( - ,C) :<r >Set, D*-><g(D,C).

But let us make clear that #(—, C), when restricted to 3?*, is by no
means a representable functor (a functor represented by an object of <S).
Moreover we should avoid considering the "category" Fun(^*, Set) since
# is not small in general.

Let us suppose first that {Giji^i is a dense family of generators. Given
/ : C >D in #, we have a natural transformation

between the corresponding representable functors; it restricts to a nat-
ural transformation

TfiTC^TD.

Conversely given a natural transformation a: TC => YD, for every i E /
and every g: Gi > C we get a morphism a^ (g)' G{ >D. Those mor-
phisms give rise to a cocone on #/C, just by naturality of a. Therefore
we get a unique factorization 0(a):C >D through the corresponding
colimit C, such that 0(a) o g = ac^g) for every i G / and g: Gi >C.
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Let us prove that 0T(f) = / . Indeed for every g: G

9T(f) o g = (Tf)Gi (g) = V(GU f)(g) =

from which 0T(f) = f since the (Gi)iei are a family of generators (see
4.5.5 and 4.5.2). On the other hand, given a: T c =» TD, T6(a) = a
since, given g: d >C,

{T0(a))Gi(g) = V(Gi,9(a))(g) = 0{a)og = aGi(g)-

Conversely let us suppose that T is full and faithful. The category
Elts(r(C)) (see 1.64) is just the category #/G, by definition of T(C).
Therefore writing Y.^S >Fun(^*,Set) for the covariant Yoneda em-
bedding Y{G) = ^ ( - , G ) , and 0 : ^ / C ><$ for the forgetful functor
4>{Gi >C) = Gi, we know that the colimit of the functor

9/C ^—><$ ^—>Fun(^*,Set)

is precisely (FC, (Tg)ge^/c) ( see 2.15.6). Observe that this composite is
precisely equal to

9/C ^—><€ £—>Fun(3T,Set).

Since T is full and faithful, it reflects colimits (see 2.9.9). Therefore

is indeed the colimit of </>: <9/C ><#. D

Here is an interesting consequence of the existence of generators.

Proposition 4.5.15 If a category <& with finite limits possesses a strong
family (Gi)i€i of generators, <$ is well-powered.

Proof Given an object C G ^ and the class Mono(C) of monomor-
phisms with codomain C, consider the mapping in Set

a:Mono(C) > \\V{GUC) = {(g,i) \i G / ; »

{(g,i)\ieI] g: G{ >C; 3h: G{ >S soh = g} .

Let us prove that when a(s: S> >C) = a(r: R> »C), r and s define
the same subobject of C. This will prove that a factors as an injection

Sub(C)>
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R y

Diagram 4.31

-> C

through the class Sub(C) of subobjects of C. Since the coproduct is a
set, Sub(C) will be a set as well.

Thus we suppose a(s) = a(r) and we consider diagram 4.31, where
the square is a pullback. Given a morphism x: Gi >i?, the morphism
r ox: Gi >C factors through r, thus r ox e a(r). Then r ox € a(s)
and we find y such that r ox = soy. By definition of a pullback, we get z
such that uoz = x, voz = y. Thus ^(Gi,u) is surjective and, since u is
a monomorphism, it is injective as well (see 2.9.4). By assumption, u is
then an isomorphism (see 4.5.13). In the same way v is an isomorphism
and r, s are isomorphic monomorphisms. •

In a special case of interest, the existence of a generator can be reduced
to that of a family of generators. The reader should refer to section 1.1
of volume 2 for what concerns zero objects (a zero object is one which
is both initial and final).

Proposition 4.5.16 Let si be a category with coproducts and a zero
object. The following conditions are equivalent:

(1) si has a family of generators;
(2) si has a generator.

Proof (2) =^ (1) is obvious. Conversely choose a family (Gi)iej of
generators and consider the coproduct (LLei Gi, (si)i€j) of this family.
Let us prove that ]Ji£l Gi is a generator.

First of all if / is the empty set, any two morphisms f,g:A >B
of si must be equal and thus \Ji£l Gi is just the zero object and is a
generator.
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If I is not empty, consider two distinct morphisms f,g:A^Z^,B.
There exists i G / and h:Gi >A such that / o h ^ g o h. Let us
define ky. Gj > A by k{ = h and kj = 0 when j ^ i. We get a unique
factorization k: JJ GZ Ĝ  > A such that k o s3; = fcj. In particular

from which f ok ^ g ok. •

Examples 4.5.17

These examples show in particular that the various notions of generators
which have been introduced are not equivalent.

4.5.17.a In the category Set of sets, the singleton is a dense generator.
Indeed writing 1 for the (full) subcategory generated by the singleton,
1/X for a set X is just the discrete category 3C with \3E\ = X. The
colimit of the corresponding functor 9C > Set is thus the coproduct of
X copies of the singleton, i.e. the set X itself.

4.5.17.b More generally if ̂  is a small category, the representable func-
tors on # constitute a dense family of generators for the corresponding
category Fun(#, Set) of all set-valued functors on <#. This is precisely
the content of theorem 2.15.6. By 4.5.5 and 2.15.4, the representable
functors also constitute a regular and a strong family of generators.

4.5.17.C In the category Gr of groups or Ab of abelian groups, the group
(Z, +) of integers is a strong generator. Indeed a group homomorphism
/ : Z >G is such that f(z) = 2/(1), thus is entirely determined by
/( I ) . Conversely given a; G G, a; = / ( I ) for the group homomorphism
/ : Z >G defined by f(z) = zx. Therefore the functors Gr(Z, —) or
Ab(Z, —) are isomorphic to the "underlying set functor". Since a bijective
group homomorphism is an isomorphism, this forgetful functor reflects
isomorphisms. So Z is a strong generator both in Ab and in Gr.

4.5.17.d Let R be a ring with unit; it is a strong generator in the cate-
gory Mod# of right i?-modules. Indeed a i?-linear morphism / : R >M
to a module M has the form f(r) = / ( l )r ; conversely given m G M, m
has the form m = / ( I) for the i?-linear mapping defined by f(r) = mr.
So the functor Mod#(i2, —) can be identified with the underlying set
functor. Since a bijective i?-linear mapping is an isomorphism, this for-
getful functor reflects isomorphisms. Thus R is a strong generator in

4.5.17.e In the category Bani of real Banach spaces and linear con-
tractions, a morphism / : E >B has the form f(r) = r / ( l ) with
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||/(1)|| < 1. Conversely given b e B with ||6|| < 1, b = / ( I ) if f:R >B
is defined by / ( r ) = rb. So the functor Bani(IR, - ) can be identified with
the unit ball functor. A linear contraction which is bijective on the unit
balls is automatically an isomorphism, thus R is a strong generator in

4.5.17.f In the category Top of topological spaces and continuous
mappings, the singleton is a generator. The continuous mappings from
the singleton to a space A correspond precisely with the points of A.
And two continuous mappings f,g:A >B are equal precisely when
they coincide on each point of A. The singleton is not a strong generator
in Top. Indeed given a continuous mapping f:A >B, Top(l,/) is a
bijection precisely when / is a bijection. But a continuous bijection is in
general not a homeomorphism.

4.5.17.g In the category Comp of compact Hausdorff spaces, the same
argument as in 4.5.17.f shows that a continuous mapping / : A >B
is such that Comp(l,/) is bijective, precisely when / is a continuous
bijection. But a continuous bijection between compact Hausdorff spaces
is a homeomorphism. Thus applying 4.5.7, we conclude that the singleton
is a strong generator in Comp. The singleton is not a dense generator
in Comp. Indeed given a compact Hausdorff space X, write 1 for the
(full) subcategory of Comp generated by the singleton. The category
1/X is just the discrete category 3E with \3£\ = X. The colimit of the
corresponding functor 9C > Comp is thus the coproduct in Comp of
X copies of the singleton, i.e. the Stone-Cech compactification X of the
set X provided with the discrete topology (see 3.5.4 and 3.3.9.c). But
such a space X is disconnected as soon as X has at least two points (see
Kelley), so it cannot be X itself when X is connected. Thus 1 is not a
dense generator in Comp.

In fact the singleton is a regular generator in Comp since, in that
category, every epimorphism is regular (see 4.3.10.f). So we have an
example of a regular generator which is not dense.

4.5.17.h In the category Cat of small categories and functors, the
category 2 = {X—^Y} is a strong generator. Indeed given a small
category #, Cat(2,^) is just the set of morphisms of c€. For a functor
F:^ >^, Cat(2,F) is a bijection precisely when given a morphism
d:Di >D2 of ^ , there exists a unique morphism c\C\ >C2 of ^
such that F(c) = d. Choosing d to be an identity, one concludes that
F is bijective on the objects. Then fixing the two objects Z)i,Z?2, one
concludes that F is full and faithful, thus an isomorphism. So 2 is indeed
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(Xo,Xo)
{lx°'Zo\(Xo,Yo) (Xo.Xi) (X0,Yi)

(X1,X0)
{lx^Z°\(X1,Y0)

{YltYi)

Diagram 4.32

a strong generator.
Let us prove that 2 is not a regular generator. Consider the small

category $ with a single object * and two arrows l*,e with e o e = e.
There are just two functors from 2 to &, respectively mapping u to 1*
or e. Using indices 1,2 to denote the elements in the two components of
the coproduct 2 II 2, we have to show that the functor

Q:2U2- Q(z2) =

is not a regular epimorphism. If Q is regular, it is the coequalizer of its
kernel pair (see 2.5.7). This kernel pair (^, P\,P2) is easy to compute;
0* is described by diagram 4.32 and Pi, P2 are the first and second pro-
jections. So a functor G: 2II2 >3£ satisfies Go P1 = Go P2 precisely
when G(X0) = G(Y0) = G{X{) = G(Yi) and G(z0) = G(lXo). Therefore
Coker(Pi,P2) is the functor

where Jf is the category with a single object * and infinitely many
arrows l*,n,n2 ,n3 , . . . ,n fc,... from * to *. Indeed given G such that
GoPj = GoP2, the unique required factorization K such that KoH = G
is given by
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So Q is not the coequalizer of its kernel pair, thus it is not a regular
epimorphism.

4.5.17.i If ^ is an arbitrary category (not necessarily small), observe
that for every object C G ^ , the colimit of the functor

Tc:<$/C ><€, (/:£> >C) »-> D,

is precisely (C, (/)/e#/c)> Just because lc' C C is the terminal ob-
ject of # / C (see 2.11.5). In this sense, one could say that the class of all
objects of ̂  is a dense class of generators.

Moreover, the class of all representable functors #(C, —): # . >Set
collectively reflects isomorphisms. Indeed if / : X >Y is such that each
mapping

, X) >V{C, Y)

is bijective, putting C = Y yields a unique morphism g: Y >X such
that fog = l y . Thus / is a retraction. It is also a monomorphism
since given u, v: Z \ X such that / o u = / o v, one gets ^ ( ^ , /)(tx) =
^(Z, /)(v) and thus w = v. So / is an isomorphism (see 1.9.3). Thus one
could say that the class of all objects of ^ is a strong class of generators.

Finally the class of all representable functors is collectively faithful.
If u,v: XZZ^Y are such that «(C,ti) = # ( C » for all C G #, in
particular

u = V(X, « ) ( l x ) - *(X, t;)(lx) - v.

Therefore one could say that the class of all objects of ^ is a class of
generators.

4.6 Projectives

Definition 4.6.1 An object Pofa category <& is projective when, given
a strong epimorphism p:X >Y and a morphism f:P >Y, there
exists a factorization g: P >X such that pog = / (see diagram 4.33).

One should insist here on the fact that the uniqueness of g is by no
means required. Let us also indicate that some authors omit the word
"strong" in the definition of projective object.

Here is a functorial description of projectivity.

Proposition 4.6.2 For an object P of a category <$, the following
conditions are equivalent:
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P

9/ f

X ^> Y

Diagram 4.33

Pi

» Y

Diagram 4.34

(1) P is projective;
(2) the functor <g(P,-):<g- Set preserves epimorphisms.

Proof With the notation of 4.6.1, the projectivity of P means that
is surjective for every strong epimorphism p. •

Proposition 4.6.3 A coproduct of projective objects, when it exists,
is again a projective object.

Proof If the P^'s are projective, consider diagram 4.34 where p is a
strong epimorphism, / is an arbitrary morphism and the s^s are the
canonical morphisms of the coproduct. Since each Pi is projective, we
find gi such that / o Si = p o gim By definition of a coproduct, we get g
such that g o Si = gi for every i. Thus p o g o Si = p o gi = f o Si, from
which p o g = f. •

Proposition 4.6.4 A retract of a projective object is again projective.

Proof Consider diagram 4.35 where P is projective, roi = lR and p is
a strong epimorphism. Given f:R >Y, by projectivity of P we find
g such that p o g = f o r. Then po g oi = f or oi = f. •

Definition 4.6.5 A category <& has enough projectives when every ob-
ject is a strong quotient of a projective object.
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Proposition 4.6.6 Let ^ be a category with coproducts. Suppose <&
has a family (Gi)i£i of strong generators with each Gi protective. Then
^ has enough projectives.

Proof By proposition 4.5.2, for every C G ^ there exists a strong
epimorphism Jc'UjGj »C; by 4.6.3 the coproduct is a projective
object. •

Here finally is a useful property, in a special case of interest. The
reader should refer to section 9.1 for what concerns zero objects (a zero
object is one which is both initial and final).

Proposition 4.6.7 Let si be a category with coproducts and a zero
object. If (Pi)i€i is a family of objects of <$/, the following conditions
are equivalent:

(1) the coproduct \JieIPi is projective;
(2) for every i E I, Pi is projective.

Proof For a fixed index j G / , we can define ff Pi >Pj by fj = lpi

if i = j and fj=Oiii^ j . This yields a factorization pji U i e / ^ ^^3
such that pj OSJ = lpj and PjOSi = 0, for i ^ j (the s^s are the canonical
injections of the coproduct). In particular each Pj is a retract of Iliei^**

If U i e / ^ is projective, so is each individual Pj by 4.6.4. If every Pj
is projective, so is U i e / ^ by 4.6.3. •

Examples 4.6.8

4.6.8.a In the category Set of sets, every object is projective. With
the notation of 4.6.1, for each y G Y", p~1{y) is non-empty since p is
surjective. It suffices then to choose g(x) G p" 1 (/(#))• Observe that this
is exactly the axiom of choice. In particular the singleton is a projective
generator (see 4.5.17.a).

4.6.8.b If ^ is a small category, let us prove that the representable
functors constitute a family of projective generators (see 4.5.17.b). Given
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diagram 4.36 in Fun(#, Set) with a a strong epimorphism, we know that
each c*£>,

aD:FD >GD (D G 9>\

is surjective (see 2.15.3). By the Yoneda lemma, the statement to be
proved is equivalent to saying that given /3 G C?(C), there exists an
element 7 G F(C) such that occ{l) = /?, which is obvious since OLQ is
surjective.

4.6.8.c In the category Gr of groups or Ab of abelian groups, (Z, +)
is a projective generator (see 4.5.17.c). Indeed a strong epimorphism
p: X »Y is a surjection (see 1.8.5.d,e). Given a group homomorphism
/ : Z >F, choose x G ^ ( / ( l ) ) and define g:Z >X by g(z) = zx.
One has

(P ° 9)(z) = Pi**) = zp{x) = zf(l) = f(z).

4.6.8.d In the category Mod/* of right i?-modules on a ring R with
unit, R is a projective generator (see 4.5.17.d). Indeed a strong epimor-
phism p: X »Y is a surjection (see 1.8.5.e). Given a i?-linear mapping
/ : R >F, choose x G p~~l (/(I)) and define g: R >X by g{r) = rx.
One has

(p o g)(r) = p(rx) = rp{x) = r /( l) = /(r).

4.6.8.e In the category Bani of Banach spaces and linear contractions,
R is a projective generator (see 4.5.17.e). Indeed a strong epimorphism
p:X »Y is surjective on the unit balls (see 4.3.10.c). A linear con-
traction / : R >Y has the form /(r) = r / ( l ) , r G R, with ||/(1)|| < 1.
Choosing x G X such that ||x|| < 1 and p(x) = / ( I ) , it suffices to define
g: R >X by g(r) = rx. Notice that R does not have the extension
property of 4.6.1 with respect to those epimorphisms of Bani which are
not surjective.
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4.6.8.f In the category Top of topological spaces, the singleton is a
projective generator (see 4.5.17.f). Indeed a strong epimorphism

p:X >Y

is in particular a continuous surjection and given / : {*} >Y, it suffices
to choose #(*) G p~1 (/(*))•

4.6.8.g In the category Comp of compact Hausdorff spaces, the single-
ton is a projective generator (see 4.5.17.g). The argument is the same as
in the previous example.

4.7 Injective cogenerators
The notion of cogenerator is dual to that of generator; the notion of
injective object is dual to that of projective object. So as far as a the-
oretical treatment of injective cogenerators is concerned, it suffices to
dualize the results of sections 4.5 and 4.6. In particular a category with
products and an injective cogenerator always has enough injectives (see
4.6.6).

But the existence of injective cogenerators in concrete examples is
generally hard to prove and very often related to the axiom of choice.
For that reason we give some emphasis to various of these examples.
We focus our attention on the more categorical aspects of the problem,
referring freely to some big theorem of algebra, topology, analysis,...
when necessary.

Proposition 4.7.1 In the category Set of sets and mappings, the two-
point set {0,1} is an injective cogenerator.

Proof Given two distinct mappings / , #: XZZI^Y, there is x € X such
that f(x) ^ g(x). It suffices to choose any mapping h: Y >{0,1} such
that h(f(x)) = 0, h(g(x)) = 1 and one gets h o f ^ h o g. So {0,1} is a
cogenerator.

Given now an injection f:X> >Y and a morphism g:X »{0,1},
it suffices to define h:Y »{0,1} by h(y) = g(x) if y = f(x) and
h(y) = 0 otherwise, to get h o f = g. •

For the next result, we freely use various notions and results which will
be studied in chapters 3 and 5 of volume 3. Let us nevertheless mention
right now that the Grothendieck toposes can be exactly characterized
as the localizations of the categories Fun(^*, Set) of (contravariant) set-
valued functors on a small category # (see 3.5.5, volume 3). In particular
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Diagram 4.37

Fun(#*, Set) itself is always a Grothendieck topos. In a topos, every
monomorphism is regular and every epimorphism is regular as well.

Proposition 4.7.2 Every Grothendieck topos has an injective cogen-
erator.

Proof A Grothendieck topos $ is in particular a topos (see 3.2.9, vol-
ume 3). In <?, every epimorphism / : A >B is regular and is therefore
the coequalizer of its kernel pair a, /?: P > A (see 3.6.1, volume 3, and
2.5.7). Since P is a subobject of A x A and S is well-powered (see 5.3.5,
volume 3), there is just a set of equivalence relations on A and thus just
a set of quotients of A. Choose now a family (Gi)iei of generators of $
(see 3.6.1, volume 3) and, for each index i G / , consider the set (qf
of quotients of the object GiJIGi

(well, we choose an epimorphism in each equivalence class). We consider

the coproduct Q = Yiiei ktK Q\- By 5.5.2 and 5.6.1, volume 3, there

exist an injective object Q and a monomorphism T)Q: Q> >Q with the
property that given a subobject s: S> >A and an arbitrary morphism
/ : S >Q, there exists a unique morphism h: A >Q such that hos —
T]Q o f (see diagram 4.37). We shall prove that this injective object Q is
also a cogenerator in S\

Consider two distinct morphisms a, /?: A >B in $. Since the (Gi)i^i
constitute a family of generators, there exist %Q G / and g: Gi0 >A
such that a o g ^ f3 o g. Consider diagram 4.38 where j o ql£ is the
epi-mono factorization of (a o g, (3 o g) (see 5.9.4, volume 3) and si, 52,
5̂ °o are the canonical inclusions of the coproducts. By the property of Q
we have already mentioned (see 5.5.2, volume 3), there exists a unique
morphism h: A >Q such that ho j = TJQ O sl£Q. Since TJQ and sl£o are
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Diagram 4.38
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monomorphisms (see 3.4.8, 3.4.10 and 5.5.2, volume 3)

a o 9 ¥" P ° 9 =^ (ao 9,P ° 9) ° $l = oto g ^ (3 o g = (a o g, (3 o g) o s2

^3° Qlk0 °Si^jo ql
k°o o s2

4°0
Sl

h o (a o g, /3 o g) o Sl

° ^^ o qi°o o s2

h o (a o g, (3 o g) o s2

ho a ^ ho (3.

This concludes the proof. •
Proposition 4.7.3 The category Gr of groups and group homomor-
phisms does not have any cogenerator.

Proof Suppose G is a cogenerator in Gr. Recall that a group A is
simple when its only normal subgroups are A and (0). If A is a non-zero
simple group, the two morphisms 0,1^* ^ > A are distinct so that we
can find a: A >G such that aoO ^ aolA, i.e. Q / 0 . The kernel of
a is a normal subgroup of A which is not A itself, since a / 0 . Since
A is simple, this implies Kera — (0) and thus a is injective. Therefore
the cogenerator G contains as subgroups all the simple groups: this is
impossible since there are simple groups of arbitrarily large cardinality
(see Kuros). •

Proposition 4.7.4 In the category Ab of abelian groups and group
homomorphisms, (Q/Z, +) is an injective cogenerator.

Proof In Ab, all monomorphisms are strong (see 4.3.10.a). We recall
that an abelian group A is divisible when given q £ A and n G N, n ^ 0,
there exists b € A such that nb = a. Another way to state this property is
saying that given n G N , n ^ 0 and a group homomorphism / : riL >A,
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A

Diagram 4.39

there exists a unique extension g: Z > A (see diagram 4.39). Indeed /
is completely determined by the element a = f(n) and finding g is just
finding 6 = #(1) such that nb = ng(l) = g(n) = f(ri) = a. It is a classical
result that, under the axiom of choice, an abelian group is injective iff
it is divisible (the so-called Baer criterion for injectivity, depending on
the axiom of choice; see Kuros).

Now Q/Z is obviously divisible, as given [f ] G Q/Z and 0 ^ n G N,
n [^] = [f ] . Thus Q/Z is injective. It is also a cogenerator. Indeed given
two distinct group homomorphisms f,g:A >i?, there exists a G A
such that /(a) ^ #(a). We put b = /(a) —g{a) and consider the subgroup
< b > of B generated by b. If b is of order n G N, n ^ 0, i.e.

n = inf {m G N | m ^ 0 , mb = 0},

we define

/i: < 6 > >Q/Z, /i(z6) = f-1 , z G Z.
LnJ

Now /i is clearly a group homomorphism and h(b) = [^] ^ 0. In the
case where nb ^0 for every 0 ^ n G N, we define

and again /i is a group homomorphism such that h(b) = [|] ^ 0. In both
cases, since Q/Z is injective, we extend ft to a group homomorphism
k: B >O/Z and we have

(k o f)(a) - (k o g)(a) = k(b) = h(b) ± 0;

thus k o f{a) ^ ko g(a) and ko f ^ ko g. •

Proposition 4.7.5 Let R be a ring with a unit. One gets an injective
cogenerator in the category Mod# of right R-modules by considering
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Ab(J2,Q/Z)
FT

\h

I > > R

Diagram 4.40

the abelian group Ab(i?, Q/Z) of group homomorphisms and providing
it with the scalar multiplication defined by

fr: R >Q/Z, s H+ f(rs)

for f G Ab(R, Q/Z) and r e R.

Proof In Mod#, all monomorphisms are strong (see 4.3.10.a). It is
obvious that we have defined a right i?-module structure on Ab(i2, Q/Z).
Consider now the situation of diagram 4.40, where / is a right ideal of
R and g is i?-linear. Since g is a group homomorphism, it gives rise to
another group homomorphism

Given s G R one observes that, by definition of the i?-module structure
on Ab(i?,Q/Z),

t(is ® r) = g(is)(r) = g(i)(sr) = t(i ® sr).

Therefore £ factors through I<8)RR = I and we get a group homomor-
phism:

Since Q/Z is injective in Ab, there exists some extension v of u (see
4.7.4):

v:R >Q/Z, v(i) = u(i), i G / .

We can now define the required morphism h:

h: R >Ab(i?, Q/Z), h(r) = vr.

But h is obviously ii-linear and given i G /

h(i) = vi: R
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with

h(i)(r) = (vi)(r) — v(ir) = u(ir) = t(ir <g> 1) = t(i <8> r) = g(i)(r),

since / is a right ideal and thus ir G / . This proves that h(i) = g(i), thus
h is an extension of g. So Ab(i?, Q/Z) has the extension property with
respect to the ideals of R. Under the axiom of choice, the Baer criterion
(see Faith) tells us that this is precisely the condition for being an
injective right jR-module.

So Ab(i?,Q/Z) is an injective i?-module and it remains to prove it
is a cogenerator. Given two R-linear mappings f,g:A ĴB, there is
a £ A such that f(a) ^ g{o). We put b = /(a) — g(a) and consider
the submodule < b > of B generated by b. Since 6 ^ 0 , there exists a
group homomorphism h: <b > >Q/Z such that h(b) ^ 0 (see 4.7.4).
Composing with the i?-linear mapping

k:R > < b >, r^br,

we get a group homomorphism ho k:R >Q/Z. Let us define an R-
linear mapping by

p: < b > > Ab(i?, Q/Z) , p(br) = (ho fc)r, reR

Since Ab(i?, Q/Z) is an injective i?-module, p can be extended to a R-
linear mapping

q:B >Ab(fl,Q/Z), q(b)=p(b).

It suffices now to observe that q(b): R >Q/Z satisfies

0.

Therefore #(6) ^ 0 or, in other words, q(f(a)) ^ g(^(a)) and thus

°9' •

Proposition 4.7.6 In the category Bani of real Banach spaces and
linear contractions, E is an injective cogenerator; this cogenerator is
regular.

Proof Let A be a Banach space and a G A, a 7̂  0. Let us consider the
subspace Ra C A. Since R is finite dimensional (in fact, one dimensional)
it is closed and thus a Banach subspace of A. There is an obvious linear
mapping

/ a :Ra >R, fa(ra) = r||a||,
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and || fa|| = 1 since

|/o(ro)| = |r| • ||a|| = \\ra\\.

By the Hahn-Banach theorem (see Naimark), there exists a linear ex-
tension

ga:A >R, ga(ra) = fa(ra)

such that Hsoll = ||/a||.
Let us now consider the morphism

7 A(a) = (/(a

obtained by duality from 4.5.2 applied to the single object E. When
a E A, a T̂  0, one has ga{p) = fa{a) = IMI 7̂  0, thus 7^ is an injection.
Moreover ||7A(O)|| < \\a\\ since 7,4 is a linear contraction and, on the
other hand (see 2.1.7.d),

so that finally | |7A(G)|| = INI- Thus JA is an isometric injection, i.e. a
regular monomorphism (see 4.3.10.e). This proves that 1 is a regular
cogenerator (see 4.5.3).

Now if f:A> >B is a strong monomorphism, it is an isometric in-
jection (see 4.3.10.a) and g: A >M is a linear contraction, the Hahn-
Banach theorem implies the existence of h: B >]R with \\h\\ = \\g\\ and
g = hof. a

Proposition 4.7.7 In the categoryTop of topological spaces and contin-
uous mappings, the two-point space {0,1} provided with the indiscrete
topology is an injective cogenerator.

Proof If X is a topological space, every mapping f:X »{0,1} is
continuous when {0,1} is provided with the indiscrete topology. There-
fore the result follows immediately from 4.7.1 and the fact that in Top,
(strong) monomorphisms are injective (see 1.7.7.b). •

Proposition 4.7.8 In the category Comp of compact Hausdorff spaces
and continuous mappings, the unit interval [0,1] is an injective cogener-
ator.

Proof Let us recall that a compact Hausdorff space A is always nor-
mal, i.e. two disjoint closed subsets of A can be included in two disjoint
open subsets of A. For a normal space A, the famous Urysohn exten-
sion theorem (see Kelley) says that given a closed subset B C. A and a
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continuous mapping / : B »[0,1], / can be extended to a continuous
mapping g: A >[0,1] on the whole space. A well-known consequence
of Urysohn's extension theorem is the so-called Urysohn lemma which
says that given two disjoint closed subsets C, D of a normal space A,
there exists a continuous mapping f:A >[0,1] such that f(B) = {0}
and f(C) = {1} (put B = C U D in the extension theorem).

Let us recall also that a (strong) monomorphism / : X >Y in Comp
is a continuous injection (see 1.7.7.b). Since a continuous image of a
compact subset is compact, f(X) C Y is compact and f:X >f(X)
is a continuous bijection between two compact Hausdorff spaces; it is
thus a homeomorphism. So up to a homeomorphism, we can identify
the monomorphism f:X >Y with a subspace X C y , where X is
compact, thus closed. The injectivity of [0,1] in Comp is thus exactly
attested by Urysohn's extension theorem.

Now choose two distinct morphisms / , g- X yY in Comp. There ex-
ists x G X such that f(x) ^ g(x). Since {/(#)} a n d {Q(X)}

 a r e closed in
y , Urysohn's lemma implies the existence of a morphism h: Y >[0,1]
such that h(f(x)) = 0 and) h(g(xj) = 1. In particular ho f ^ hog and
[0,1] is a cogenerator. •

4.8 Exercises

4.8.1 Consider a category #, a family (G^)^/ of objects of # and the
corresponding full subcategory ^ C <€. Prove that (G{)iei is a dense
family of generators if and only if the left Kan extension of ^ C ^ along
^ C # is the identity on c€.

4.8.2 If R is a ring without a unit, prove that the free i?-module on one
generator is a generator for the category MOC\R of i?-modules.

4.8.3 In the category Set of sets, an object is injective if and only if it
is not empty.

4.8.4 In the category Comp of compact Hausdorff spaces, every mono-
morphism is regular.

4.8.5 In a category # with finite limits, a family (ff.Ai >B)iei of
morphisms is (collectively) strongly epimorphic when, given a monomor-
phism z:X> >Y and morphisms uf.Ai >X, v:B >Y such that
z o m = v o f{ for every i, there exists a unique t: B >X such that
z o t = v and z o /^ = m for every i (see diagram 4.41). When # has
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fi ,
> B

X >

Diagram 4.41

coproducts, prove this is equivalent to the factorization

f:\lAi >B
tei

being a strong epimorphism. Deduce an alternative definition of a strong
family of generators.

4.8.6 Prove that in the category Ab of abelian groups, Z is a regular
generator, but not a dense generator. [Hint: consider Z x Z.]



5
Categories of fractions

5.1 Graphs and path categories

A graph is, roughly speaking, a "category without a composition law".
Their interest in this book is limited to their use in constructing some
new categories.

Definition 5.1.1 A graph & consists of

(1) a class \<S\ whose elements are called the objects (or vertices) of the
graph,

(2) for each pair (A,B) £ |#| x |#|, a set &(A,B) whose elements are
called the morphisms (or arrows) from A to B.

The graph <§ is small when \&\ itself is a set.

Definition 5.1.2 A morphism of graphs F: 3F »0 between two
graphs 3F, 3? consists of

(1) a mapping F: \&\ > \<Z\,
(2) for each pair (A, B) G 3F x 3F of objects, a mapping

&(A, B) >&(FA, FB).

Obviously every category is a graph (just forget the composition law)
and every functor between categories is a morphism of graphs. So the
category Cat of small categories is provided with a faithful (but not full)
functor to the category Graph of small graphs. We intend to construct
the left adjoint to this forgetful functor.

Definition 5.1.3 Let <8 be a graph. A path in <3 is a non-empty finite
sequence (Ai, / i , A2i f<i-> • • •, An) alternating objects Ai^^S and arrows
fi E 9; the first and the last term are required to be objects and each
arrow fi has domain Ai and codomain Ai+i.

176
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Proposition 5.1.4 Given a small graph &, one gets a small category
0* called the "path category of&" by putting

(1) \0>\ = \<3\ as class of objects,
(2) 0*(A, B) as the set of paths in & starting at A and ending at B,
(3) (AnJn,...1Am)o(A1Ju...,An)

Together with the morphism of graphs

T:<$ •<*, T(A) = A, T(A f—>B) = (AJ,B),

this produces the reflection (0, T) of the graph & along the forgetful
functor Cat >Graph.

Proof Obviously 0> is a small category, with the pa th (A) as identity on
A . F is by construction a morphism of graphs. Now given a category 3f
and a morphism of graphs F: *3 >@, the unique functor G: 0 >Q)
such tha t G o T = F is given by

G(A) = F(A) , G(A1J1,...,An) = F(lAn)o...oF(f1)oF(lAl).n

It should be observed that proposition 5.1.4 no longer holds if one
removes the smallness assumptions. Of course we know already that
between two large categories there is in general a proper class (not a set)
of functors (see section 1.1) and an analogous observation can be made
for large graphs. But moreover if ^ is a large graph, the construction
of & as in 5.1.4 does not yield a category! Indeed & has now a class of
objects, but there is no reason at all for each ^(AyB) to be a set: when
*8 has a proper class of objects, there is in general a proper class of paths
connecting an object A with an object B.

Very often in the applications, the graphs we shall consider will be
built up from categories and some additional data. In particular some
composites of arrows will already exist in the original categories and
certainly one wants to preserve them. Or some diagrams of arrows will
appear in the graph which one wants to become commutative in the end.
To treat these questions, we introduce the following definition.

Definition 5.1.5 Let & be a graph. A commutativity condition on <&
is a pair of paths both deflned from some given object A to some given
object B.

In the situation of 5.1.5, the problem is now to perform a quotient
of the category 0 of paths of ^ , in such a way that the two arrows
A >B of 0* induced by the commutativity condition are identified
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in the quotient. In other words, if the two paths in the commutativity
condition are

(A, fuA2i..., /n-i , B), (A,gu B2,...,sm-i, B),

fi and Qj can be identified with individual arrows of 9 (paths reduced
to one single arrow, together with its domain and its codomain) and one
forces the commutativity condition to give rise to an actual commutative
diagram

fn-io . . . of1=grn_1o . . . ogi

in the quotient.
Let us write CondGraph for the category whose objects are small

graphs together with a set of commutativity conditions (= conditional
graphs) and whose arrows are morphisms of graphs which map a com-
mutativity condition to a commutativity condition. Viewing a small cat-
egory ^ as a graph together with all the commutativity conditions given
by the commutative diagrams in #, we again get a faithful functor from
the category Cat of small categories to the category CondGraph of small
conditional graphs. As a matter of convention, if C € # is an object of
some category #, we consider the pair ((C, l c , C), (C)) as a commuta-
tivity condition in #.

Proposition 5.1.6 The forgetful functor Cat > CondGraph has a left
adjoint.

Proof Consider a graph ^ and write & for the path category of ^ .
Given a set E C ^ x ^ of commutativity conditions on ^ , consider the
intersection 0t of all the subcategories \Sf\ C & x & which satisfy the
conditions

(1) <?
(2) Ar(^) is an equivalence relation on Ar(^) (where Ar(#*) denotes the

set of arrows of #"),
(3) E C Ar(^).

Clearly 0t still satisfies conditions (1), (2), (3).
Observe that given £f C ^ x ^ as above, the special form of the objects

of Sf imposes the requirement that when a pair (</?, ip) of morphims of 0>
is in y7, then y?, I/J have the same domain and also the same codomain:
</?, \j): A ) R. This property is thus inherited by 3t.

Since a pair (<£, ip) in Ar(^) is such that </?, t\) have the same domain
and the same codomain, we can define without any ambiguity a new
category J :
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|J2| \9\ \%
• 13\ (A, B) is the set of equivalence classes of paths from A to B.

The category structure of & induces a category structure on J, just
because 0t is a category. Indeed given morphisms

M:A >£?, [ # 5 >C

in J , we have corresponding morphisms <p: A >B, t/>: B ><# in &
and one can define ]$[ o [<p] = [^o^]. Observe that when [<p] = [if1] and
[<0] = [<0'], then (</?, <//) e 31 and (^, ^0 € ^ , thus also (V70^, ̂ '<V) G ^
since ̂  is a category. Prom these observations it follows immediately that
J is a category and

is a functor.
With the notation of 5.1.4, let us then consider the composite

fa r ^ 6 . §

which is a morphism of graphs. But J is a category and moreover if
(</?, rj)) E S is one of the given commutativity conditions, 0((p) = 0(̂ >)
since E C f . Thus OF is a morphism in CondGraph, when ^ is provided
with the set of commutativity conditions E.

Given another category 3f and a morphism of graphs F: 9 >3i pre-
serving the commutativity conditions in E, we get a unique factorization
functor G: 0> >9 such that GoT = F (see 5.1.4). But if (<p,ip) e E,
the assumption on F implies Gcp = Gip. Therefore we can define a func-
tor H: 2, >9 by

• H(A) = G(A) = F(A),

By construction, HoOoT = F and clearly H is the unique functor with
this property. •

As an interesting corollary, we obtain

Proposition 5.1.7 The category Cat of small categories is cocomplete.

Proof We know already that Cat has coproducts, which are just dis-
joint unions (see 2.2.4.d). So it suffices to prove the existence of the
coequalizer of two functors F, G: -c/ \&t (see 2.8.1). Let us consider
the intersection 0t of all the subcategories Sf C $ x Si which satisfy the
following conditions:
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(1) \S?\ is an equivalence relation on |#|;
(2) V A E ^ , {FA,GA)ey;
(3) Ar(e9

?) is an equivalence relation on Ar(^) (where Ar(iF) denotes the
set of arrows of 2£)\

(4) V/

Clearly, ^ still satisfies properties (1) to (4).
Let us observe that given a pair (#, h) G Ar(^2), with #: A >B

and /i: C >D, (A,C) G & and (£,£>) G ^ . Therefore there is no
ambiguity in defining a graph 3? by

• |#| is the quotient of \0t\ by |#| ,
• Ar(^) is the quotient of Ar(#) by Ar(dt),
• given an arrow #: I? >Bf in ^?, its equivalence class [g] in ^ has

domain [B] and codomain [B'].

It should be observed that 3? is not, in general, a category. Indeed, given
two non-composable arrows g: A >B and h: C >D in # , the trou-
ble occurs when [5] = [C] in ^ .

Let us now provide the graph *§ with the following set S of commu-
tativity conditions

(1) V B e * ( ( [ B ] , [ 1 B ] , [ B ] ) I ( [ B ] ) ) € E ;

(2) Vp: A >B V/i: B >C in ^

(([A], W, [B], [h], [C]), ([A], [hog], [C])) € E;

(3) V/ :X >y in j /

(([FX\, [Ff\, [FY\), ([GX], [Gf\, [GY])) € S.

Observe that the last condition makes sense, since [FX] = [GX], [FY] =
[GY] by definition of ^ . It is the one which will force the coequalizing
of F, G. The first two conditions are just there to recapture in 3? the
identities and the composition law of Si.

Finally consider the category 21 universally associated with the pair
(# , E) (see 5.1.6) and the corresponding morphism of graphs 0: <& >&.
The composite 3& p ><&—^-»J2, where P is the canonical projection,
is a functor because of the first two conditions in the definition of S.
This functor satisfies 6PF = 0PG because of the third condition in the
definition of S.
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Now let us consider a category Q) and a functor H: Si >3) such that
HF = HG. Consider the kernel pair X C Si x Si of H, i.e.

\HBl =

Bi) x

The subcategory JT satisfies in an obvious way the conditions (1) to
(4) defining 0t\ thus 01 C JT. Therefore if factors through the quotient
graph ^ via a morphism of graphs K: & >Q), with K o P = H. Since
H is a functor, if respects the commutativity conditions (1), (2) in
the definition of S; since HF = HG, K also respects the commutativity
condition (3) in the definition of S. Therefore H factors uniquely through
0 via a functor L: 1 >®, with L0 = K. Finally LOP = KP = H and
the uniqueness of L follows from that of K and L. •

5.2 Calculus of fractions
This section introduces the main problem of this chapter: formally add-
ing an inverse to some arrows of a given category. By analogy with
the case of rings of fractions where one formally inverts (for the mul-
tiplication) a given (multiplicative) set of elements, we shall call our
construction a "category of fractions".

Definition 5.2.1 Consider a category <$ and a class E of arrows of
<&. The category of fractions ^[S"1] is said to exist when a category
^[S"1] and a functor ip: <£ ^ [ S " 1 ] can be found, with the following
properties:

(1) V / G S <£(/) is an isomorphism;
(2) if 2 is a category and F: *& >@> is a functor such that for all

morphisms f € E, F(f) is an isomorphism, there exists a unique
functor G: ^[S"1] >9 such that Go<p = F.

The uniqueness condition on G implies immediately that when it ex-
ists, a category of fractions is defined uniquely up to isomorphism.

Proposition 5.2.2 Consider a category <& and a set S of arrows of
c€. The category of fractions ^[S"1] exists. Moreover when <& is small,

1] is small as well.

Proof Let us first construct a graph CS\

• M = \n
,B) = <$(A,B)U{fe V(B,A) \f e £} .
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Thus for each morphism / : B >A in S ("to be inverted") we formally
introduce a new arrow, which we shall write / - 1 : A >B and which
will eventually produce the inverse of / .

On this graph ^ , we introduce a class O of commutativity conditions
given exactly by the following requirements:

(1) VC€«((C,lc,C),(C))€e;

(2) V/: C >D and V5: D >E in <$
{(C,f,D,g,E),(C,gof,E))ee;

(3) V/: C >D in E ((<?,/,D,f~\C), (C,1C,C)) € 6
and ((£>,/-\C,/,£>),(£>, I D , £>)) G 0 .

If we think of "class" as "element of a universe y*" and "set" as "element
of a universe °U G 'f" (see section 1.1), the graph ^ is ^-small so
that proposition 5.1.6 applies and we can consider the ^-small category
^[S"1] associated with the pair (^, ©) and the corresponding morphism
r: ^ ><^[S"1]. We define (p: % ^ [ S " 1 ] to be the composite r o / ,
where I: <$ >& is the canonical inclusion (see 5.1.6).

When # is ^-small, 9 and ^[E"1] are small as well. But when |*| € ^
and ^(A,B) G °U for all A,B G |#|, it remains to prove that each
^ [ E " 1 ] ^ , J3) is still I smai l . By conditions (1), (2) in the definition of
the class O, an arrow in ^[E"1] can always be presented as the equiv-
alence class of a "reduced path" alternating arrows gi of # and arrows
of the type f~x, for fi G S; we can even assume that the first and last
arrows are some ^ ' s (replace two consecutive arrows of # by their com-
posite and add identity arrows when necessary). Writing just the arrows
and omitting the objects, a reduced path thus has the form

9lfl192f21 • • • 9nfnl9n+l-

Since the class S is ^-small, the set of all possible finite sequences
fi1, f^1 •>' — •> fn1 is ^-small. Once such a sequence of f~ljs is fixed,
the domain and the codomain of each gi are fixed so that for each ( ,̂
there is just a ^-small set of possibilities; #(X, Y) is ^f-small for all X,
Y. So between two objects A, B of ^ , there is just a ^-small set of
"reduced paths" as indicated, from which ^[S"1] is ^-small.

For each / G S, <p(f) is an isomorphism in ^[S"1] by condition (3) in
the definition of ©. Moreover given a functor F: ^ >S> such that F(f)
is an isomorphism for each / G S, let us define a morphism H: & >3>
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D S > C

t

» B
f

Diagram 5.1

by
H(A) = F(A) for A e
H(f) = F(f) for

Htf-1) = (Ff)-1 for fe<${B,A), f e S.
Now J? is a morphism of graphs. It preserves the commutativity condi-
tions (1), (2) defining © because F is a functor; it preserves condition (3)
just by definition. Therefore we find a unique functor G: ^[S"1] >2f
such that G o r = H and thus G o r o I = F. The uniqueness of G is
obvious. •

In a special case of interest, an easy description of the category of
fractions ^[S"1] can be given.

Definition 5.2.3 Consider a category <€ and a class S of morphisms of
c€. The class E admits a right calculus of fractions when the following
conditions hold:

(1) VC e # ice S;
(2) given s: A >B and t: B >C, (s € S and t e S) => (t o s G S);
(3) iff: A > B is in <£ and s: C >B is in E, there exist g: D >C

in <6 and t: D > A in S such that f o t = s o g (see diagram 5.1);
(4) if f,g: A >B are in <& and s: B >C is in E with the property

sof = sog, there exists t: D > A in E with the property fot = got.

Proposition 5.2.4 Consider a category <$ and a class S of morphisms
of <£ which admits a right calculus of fractions. When the category of
fractions ^[S"1] exists, it can be described in the following way:

(1) the objects of ^[S"1] are those ofV;
(2) an arrow f: A >B of ^[S"1] is an equivalence class of triples

(5,/,/) where

• / is an object ofW,
• 5: / >A is a morphism ofY,,
• / : I >B is an arbitrary morphism
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X

y

Diagram 5.2

r Tjr h

• the triple (s, J , / ) is equivalent to the triple (£, J,g) when there
exist x, y in <£ such that sox = toy eY, and f o x = g o y (see
diagram 5.2);

(3) the composite of the equivalence classes

[(s,IJj\:A— >B, [(t,J,ff)]:B >C

in ^[S"1] is just [(s or,K,go h)]: A >C where r € E and he<£
are any morphisms such that f o r = t o h (see diagram 5.3).

Proof In a first approach, let us assume that ^ is a small category.
This implies that E itself is a set, so that 5.2.2 applies.

The relation of the statement used for defining the arrows is obviously
reflexive and symmetric. To prove the transitivity, consider also an arrow
(u,K,h): A >B with v,w such that toy = uow G S and gov = how
(see diagram 5.4). Since tov G S, there exist m G S and n G ^ such that
toyom = tovon; see 5.2.3.(3). But since t G £ and toyom = tovon,
we get r eT> such that yomor = vonor; see 5.2.3.(4). Finally one has

foxomor=:goyomor = = ho w o no r
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Diagram 5.4

and

moreover s ox o m o r G £ since s o x G S, m G £, r € S; see 5.2.3.(2).
This proves the equivalence of (5, J, / ) and (u, K,h).

The definition of the composite [(t, J, g)] o [(5, / , / )] given in the state-
ment makes sense. Indeed by 5.2.3.(3) there always exist r G S and / i E ^
such that f or = to h and s o r G S since 5, r G S. Moreover this defi-
nition is independent of the choices of / , 5, g, £, /i, r. This is lengthy but
straightforward: the arguments are analogous to those for proving the
transitivity of the equivalence relation defined on the arrows. We leave
those details to the reader as well as the checking of the category axioms
(the identity on A is just [1^, A, 1^], which makes sense by 5.2.3.(1)).
Let us for a while denote by 3F the category defined in the statement.

A functor tp: <£ >& is easily defined:

• <p(A) = A for A G «,
• <p(f) = [(1A, A J)] for / : A >B in «;

observe that we again use 5.2.3.(1). By definition, <P(1A) = [1A>A1A] 5

thus cp preserves identities. On the other hand, considering diagram 5.5,
one concludes that <p(gof) = <p(g)°<p(f)> Thus (p is a functor. Moreover,
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if s € £, consideration of diagram 5.6 indicates that

[S,A,IA]O[1A,A,S] = [1A,A,1A},

[1A, A, s] o [s, A, 1A] = [s, A, s] = [lB, B, 1B],

or in other words [s, A, 1A] is the inverse of <p(s) — [1A, A, s] in
So indeed ip(s) is invertible as long as s 6 S.

Now choose a functor F: <# >Si such that Ff is invertible for every
/ € S. A functor G: & >Q> such that Gotp = F satisfies

(1) G(A) = Gtp(A) = FA for each A G <€,
(2) G[(1A, A, / )] = Gcp(f) = Ff for each / : A >B in <$,
(3) G[(s, A, 1A)] = G^ips)-1) = (Fs)-1 for each s: A >B in S.

But an arbitrary morphism [s, I, / ] : A >B in !F can be written as

(see diagram 5.7) so that necessarily

(4) G[s, /, /] = G[h, I, f) o G[s,I, h] = (Ff) o (Fs)~K

This last formula characterizes G on the arrows and, together with con-
dition (1), proves the uniqueness of G.

To prove the existence of G, it suffices to take the relations (1) and (4)
as a definition. Observe that the definition of G[s, I, f] is independent of
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the choices of s and / . Indeed going back to diagram 5.2, one observes
that

Ff o (Fs)-1 = Ff o (Fs)'1 o F(s oj)o (F(s o z))"1

= F / o (Fs)-1 o Fs o Fx o (F(a o x))"1

= F/oFzo(F(soz))~1

= Fg o (Fi)"1 oFtoFyo (F(t o y))"1

= F# o (Ft)"1 o F(t o y) o (F(t o y))"1

In an analogous way one checks that G is a functor. Moreover, given
/ : A >B in #,

= G[1A,AJ] = (Ff) o = Ff,

which concludes the proof that IF is the category of fractions
To conclude the proof of the proposition, consider an arbitrary cate-

gory ^ and a class S C # of morphisms of ^ such that the category of
fractions ^[E"1] exists. Using the axiom system of universes, # and S
are ^-small with respect to some universe if and #(A, B) is ^-small
for all 4 ,BG |^|, for some universe °U G i^. The proof we have just
developed applies to ^ and E considered as ^-small; thus the category
fF described in this proof has the universal property of the category of
fractions ^[S"1], with respect to all functors F: %1 >S> inverting the
morphisms in S, with @> a ^-small category. In particular this property
holds for all categories 2 with \@\ G V and each 2(X, Y) G ^ . Observe
that the assumption on the existence of ^[E"1] is just there to ensure
that each ^[E""1]^, B) is still Ismail. D
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C < / ^—> I

l c

K

Diagram 5.8

u > J

Diagram 5.9

Proposition 5.2.5 Consider a category%! and a class S of morphisms of
<$ which admits a right calculus of fractions and such that the category
of fractions ^[S"1] exists. When W is finitely complete, so is ^[S"1] and
the canonical functor ip: <& ^ [ S " 1 ] preserves finite limits.

Proof We use the notation of 5.2.4. If 1 is a terminal object in ^
and / : C >1 is the unique arrow from a given object C 6 ^ , dia-
gram 5.8 indicates that every morphism [(s,/,#)]: C >1 in ^[S"1]
is just (p(f) = [(lc , C, / ) ] . Thus 1 is terminal in ̂ [S"1] as well.

Given two objects A, B in ̂ , consider their product (A x B,PA,PB)

in c€. We shall prove that A x B together with the projections

[(1AXB,AXB,PA)], [(1AXB,AXB,PB)]

is still the product of A, B in ̂ [S"1]. Indeed consider an object C G ^
and morphisms [s,J,/]: C >A, [(t, J,g)]: C >B in ^ [ S " 1 ] . Ap-
plying 5.2.3.(3) we choose tx, r such tha t s o r = t o u and r G S, as in
diagram 5.9. From r G S, s E S we deduce t o w = s o r € E . But by
definition of ^ [ S " 1 ]

[(«, I, /)] = [(«r, if, /r)], [(t, J, ^)] = [(to, if, 0u)].

But now, in ̂ , we have for: K >Ay g ou: K >B from which we
get a unique h: K > A x B such that PA ° h = f o r, PB ° h = g o u.
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This yields a morphism

[(sr,K9h)]: C >A x B

in ^[S" 1 ] , with the properties

[(1AXB,AXB,PA)] O [(sr,K,h)] = [(*,/,/)],
[(1AXB,AX B,pB)} O [(sr,K,h)] = [(t,J,g)].

If [(it, L, m)] is another factorization, one first uses axioms 5.2.3.(3,4) to
replace L, M by a single object AT (like in the proof of the transitivity, in
5.2.4) and then one can deduce the equality [(it, L, m)] = [(s o r, if, h)]
just using straightforward arguments.

Now consider two morphisms in

\B;

we shall construct their equalizer. Applying 5.2.3.(3) we can find mor-
phisms x, y such that s o x = toy, with x G S since £ G E (see dia-
gram 5.2). Clearly one has

[(a, /, /)] = [(« o x, X, f o X)], [(t, J, g)] = [(t oy,X,go y)],

with indeed toy = sox€Y, since s G S and a: G S. It suffices now to
compute the equalizer

k = Ker(fox,goy):K >X

in (€. This yields a morphism

<p(s o x o k) — <p(t oy o k): K > A

in ^[S"1] which is easily seen to be the equalizer of the original pair of
morphisms.

Observe that when the two original morphisms have the form

<p{f)=[(U,A,f)], <p(g)=[{lA,A,g)]

we can choose x = 1A = y and conclude that the equalizer in ^[S"1] is
just [(l/f,lf,fc)] = (p(k) where k = Ker(/,#) in <€. This proves that (p
preserves equalizers. D

It should be observed that in the construction of a category of fractions
(p: # >^7[S~1], the morphisms / G S are inverted by ip, but in general
there exist other morphisms / ^ S which are inverted by (p. For example
in the category Set of sets consider for S the class of all injections. So S
admits a right calculus of fractions since
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(1) every identity is an injection,
(2) the composite of two injections is an injection,
(3) injections are stable under pullback,
(4) ifsof = sog with s injective and f,g: A \ R3 then f = g and

thus f olA= golA.

Observe that if a functor F : Set >S> to an arbitrary category Q) in-
verts all injections, it inverts all morphisms of Set. Indeed given an arbi-
trary morphism / : A >B in Set, consider diagram 5.10 in Set where
0 is the empty set and a, (3 are the obvious injections. Prom the equality
F/3 = Ff o Fa, we deduce that Ff is an isomorphism since Fa, F/3 are.
Moreover given another morphism g: A >B in Set, g o a = (3, thus
Fg o Fa = F/3 = Ff o Fa ; since Fa is an isomorphism, Ff = Fg. So F
maps all morphisms of Set(A, B) to a single isomorphism FA ~ > FB.
The category of fractions SetfS"1] is thus obtained by taking one object
for each set and one single isomorphism between any two objects.

Therefore the following definition is pertinent:

Definition 5.2.6 Let ^ be a category and S C ^ a class of morphisms
such that the category of fractions y>: *& >^[E-1] exists. The class E
is saturated when for every morphism f € #

</?(/) is an isomorphism iff f G S.

5.3 Reflective subcategories as categories of fractions
Up to equivalence of categories, every reflection can be seen as a category
of fractions.

Proposition 5.3.1 Consider a category 3# and a reflective subcategory
i: s/ ^ 3$, with reflection r -\i. Write S for the class of all morphisms
f of $ such that r(f) is an isomorphism. In this case the category
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of fractions <p: Si >^[E~X] exists and is equivalent to r: Si >stf.
Moreover the class E admits a left calculus of fractions.

Proof Let us first recall that the canonical morphisms 6A' riA >A
of the adjunction are isomorphisms (see 3.4.1). Given B e $, the iden-
tity srB ° rrjB = lrB implies that given the second canonical morphism
TJB: B >irB, r(rjB) is an isomorphism as well, with inverse the iso-
morphism ErB- Thus t]B £ E.

Let us write 3C for the following category:

• the composition is that of s4'.

There is an obvious functor F: jrf >3C:

• T(A) = i(A) for A e st\

This functor is full and faithful since ri is isomorphic to the identity
on si via the isomorphism e. Moreover, given B 6 f, we also have
an isomorphism rr)s € 3C(B,irB) = 9C{B, T(rB)). Therefore F is an
equivalence of categories (see 3.4.3).

There is an obvious functor cp: 3& >3C\

• (p(B) = B for B G 0t\
. <plf) = r(f) for /: B >B' in <#.

We shall prove that (5T, <p: Si >3£) is the category of fractions ^ [E" 1 ] .
Given a functor F: 3i »# such that F(f) is an isomorphism for each
/ € S, a functor G: 9C ><& such that Gotp — F must have the following
characteristics, since each TJB is in S:

(1) GB = Gcp(B) = FB;
(2) Gr(VB) = G<p(r,B) = F(T,B);

(3) G(erB) = ^((rfe))"1) = (G(r(VB))) * = (F^))"1;
(4) G(f) = G(foerBor(VB))

= G{erB> o r{if) o r(rjB))
= G(srB')oGr{if)oGr(rjB)
= F(rjB>)-loGtpi(f)oF(r)B)
= F(r}B<)-1oFi(f)oF(r]B)

for B,B' e 3£ and / G X{B, B1). This proves the uniqueness of G. On
the other hand the naturalities of e, rj show that G, defined by
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B

irB

-> A

irs irf

Diagram 5.11

-> ir A

• GB = FB for BGf,
. Gf = F{r)B,)-1 o Fif o F(r]B) for / G X{B, Bf),

is indeed a functor. It is such that G o <p = F since

1 o Fir(f) o F{T)B)

= F(rjB,)-1 o F(r)B> o / )

= F{r)B')-1oF(rlB,)oFf

= Ff

for B e @ and / G ^ ( £ , S ;).
It remains to prove that S satisfies the conditions dual to those of

5.2.3. Clearly r(lB) is an isomorphism for every B G 3$ and if g o /
exists in & with r(g),r(f) isomorphisms, r{g o / ) = r(#) o r ( / ) is an
isomorphism as well.

Let us check the dual of condition 5.2.3.(3). Diagram 5.11 commutes
in 38 just by naturality of 77. So if s G E, ir(s) is an isomorphism and

VA° f = \ir(f) o 77c) o 5

with rjA G S by 3.4.1.
For the dual of condition 5.2.3.(4), consider the commutative dia-

gram 5.12 in @&. If / o s = g o s with s G E, ir(f) o ir(s) = ir(g) o ir(s)
with ir(s) an isomorphism, thus ir(f) = ir(g). Therefore

VA° f = ir(f) °rjB = ir(g) °r]B =rjA° g

with rjA G E by 3.4.1. •
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A ^ > B

u •• w

-> D

Diagram 5.13

5.4 The orthogonal subcategory problem
Considering a reflective subcategory as a category of fractions "up to
equivalence" can lead finally to a clumsy presentation, as suggested by
the proof of 5.3.1. There is an equivalent, but more elegant approach.

Definition 5.4.1 Consider two arrows f: A >B, g: C >D in a
category (€. We say that "/ is orthogonal to g" and we write f _L g
when, given arbitrary morphisms u, v such that vo f = gou there exists
a unique morphism w such that wo f = u, gow — v (see diagram 5.13).

Let us make clear that this orthogonality relation is by no means
symmetric.

Let us also observe that the definition of a strong epimorphism (see
4.3.5) can be rephrased in the following way:

An epimorphism f is strong when, for every monomorphism g,

Definition 5.4.2 Given an arrow f: A >B and objects X,Y of a
category <& (see diagram 5.14):

(1) we say that f is orthogonal to X and write f _L X when for every
morphism a: A >X, there exists a unique morphism b: B >X
such that bo f = a;
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Diagram 5.14

X » 1

Diagram 5.15
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f
-* B

(2) we say that Y is orthogonal to f and write Y _L / when for every
morphism c: Y >B there exists a unique morphism d: Y >A
such that f od = c.

Clearly the two notions of 5.4.2 are dual to each other, while 5.4.1
is an autodual definition. There is generally no ambiguity between the
notions of orthogonality in 5.4.1 and 5.4.2 since

Proposition 5.4.3 Consider a category <& with a terminal object 1.
Given an arrow f: A >B ofW and an object X,

fix iff f±£x,
where £x- X >1 is the unique existing morphism.

Proof It suffices to consider diagram 5.15 where the outer square and
the lower triangle are automatically commutative. •

Here now is the way to use these orthogonality conditions to describe
reflective subcategories.

Proposition 5.4.4 Consider a reflective subcategory i: s/ -̂> Si with
reflection r: 3& > J / . Write E for the class of all morphisms f G Si
inverted by r. Given B € @, write T]B'- B >irB for the canonical
morphism of the adjunction.

(1) For an object X € $, the following conditions are equivalent:
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(a) X e <tf;
(b)VfeX f±X;
(c) VBe® TIB±X.

(2) For an arrow / G f , the following conditions are equivalent:

(a) f G E;
(b) \fX e si f± X;
(c)Vgerf f± g.

Proof Choose X e si and / : A >B in E, so that r)x is an isomor-
phism (see 3.4.1) and consider diagram 5.16. Given a: A >X = i(X),
>qxoa = ir(a)orjA so that a = i(r]x1 or(a)) OTJA] we put 6: r(A) >X,
b = rjx1 o r(a), thus a = i(b) o r\A. Since r(f) is an isomorphism, we
obtain

i(b) o i(r(f))~ f = i(b)orjA = a,

~so that i(b) o i(r(f))~ o r\B is a factorization of a through / . Such a
factorization is unique because given /i,k: B >iX such that ho f =
a = k o / , one has r(h) o r ( / ) = r(k) o r(f) and thus r(h) = r(k) since
r(f) is an isomorphism. Then

°h = ir(h) o r\B = ir(k) orjB =

and finally h = k because rjix is an isomorphism (ex is an isomorphism
by 3.4.1 and rjix is the inverse of iex by 3.1.5).

That (b) implies (c) is obvious, since T)B £ S; notice that £r(#) is an
isomorphism by 3.4.1 and r(r}B) is its inverse by 3.1.5.

Let us suppose now that TJB JL X for each B e i Putting B = X,
we find a unique morphism x: ir(X) >X such that x o rjx = lx?
as in diagram 5.17. But rjx o x o r)x = Vx = ^ir(X) ° Vx, so that by
uniqueness of the factorization, rjx ox = lir(x)- So r/x and x are inverse
isomorphisms and X € si because r(X) € J / and si is replete in ̂ ; see
3.5.1.
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Diagram 5.17

u W/

X 9
-> Y

Diagram 5.18

Let us now prove the second set of equivalences. Given / : A >B in
S and l G ^ , w e must prove that / _L X. But this is precisely (a) => (b)
in the first part of the proof.

Choose now / : A >B with / _L X for every X € si. Choose also
an arbitrary morphism g: X >Y in «s/, as in diagram 5.18. Given
16, v with g o u = v o / , the condition f -L X implies the existence of a
unique w such that w o f = u. It remains to prove that g ow = v. But
gowof = gou = vofso that g o w and v are two factorizations of
g o u through / ; since / _L Y, this implies g o w = v.

Finally choose / : A >B in & orthogonal to every g: X >Y in
s/. Considering diagram 5.19, we have ir(f) o TJA = f)B ° / ; therefore
we obtain g such that g o / = TJA, ir(f) ° g = TJB- Let us prove that
£r(A) ° r(p) is the inverse of r ( / ) . Applying 3.1.5,

£r(A) ° ^(P) ° r ( / ) = ^r(A) ° (̂7?A) = lr(A)»

^(/) ° er(A) ° y(ff) = er(B) o r i r ( / ) o r(g)

= £r(B) or(77B) = lr(B)- •

The equivalence (a)^(b) in the first part of 5.4.4 suggests the follow-
ing definition:

Definition 5.4.5 Let ^ be a category and S a class of morphisms
By the orthogonal subcategory of^ determined by E, we mean the full
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VA

irf
irA < irB

i irg
Diagram 5.19

subcategory <€?> of <€ whose objects are those X € <& such that f J_ X
for every / £ S.

5.4.4 shows that given a reflective subcategory i: si <—• 0£ with reflec-
tion r: 0b >si, si is precisely the orthogonal subcategory #£ deter-
mined by the class S of those morphisms inverted by r. The orthogonal
subcategory problem consists in finding conditions such that, given a
category ^ and a class S of morphisms of ^ , the orthogonal subcate-
gory #£ is reflective in ^ .

Observe first an obvious fact (see 3.5.1).

Proposition 5.4.6 Let ^ be a category and S a class of morphisms of
(€. The full subcategory ^ ^ oftf is replete. •

The solution of the orthogonal subcategory problem uses in an essen-
tial way a notion which will be studied more systematically in chapter 5
of volume 2. More precisely,

an object C of a category <£ is a-presentable, for some regular
cardinal a, when the representable functor ^(C, —): ^ >Set
preserves a-filtered colimits.

More generally

An object C of a category <& is presentable when it is a-present-
able for some regular cardinal a.

(See section 6.4 for the notion of regular cardinal.) In chapter 5 of vol-
ume 2, we shall study a wide class of categories which satisfy the assump-
tions of the following theorem, namely the locally presentable categories
(see 5.2.10, volume 2).
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Diagram 5.20

9sf

sf

• • /

7c

Diagram 5.21

J

Theorem 5.4.7 Let ̂  be a cocomplete category in which every object
is presentable. Given a set S of morphisms of <$, the corresponding
orthogonal subcategory #£ is reflective in c€.

Proof Let us first indicate a general construction, starting from an ar-
bitrary object C £ <€. For every pair (s, / ) where s: S—-»T is in S and
/ : S >C is arbitrary, consider the pushout in diagram 5.20. Consider
now the diagram constituted of all the arrows ts/, for all possible pairs
(s, / ) , and compute its colimit (FC, {usf)sf) (a sort of "infinite pushout"
of arrows with a common codomain C). The diagram is small since E is
a set, thus the colimit exists by assumption. We write jc = usf°tsf for
the unique composite obtained in this way (see diagram 5.21).

So given (5, / ) as above, we do not have in general a (unique) factor-
ization T >C, but we certainly have a factorization T >TC (see
diagram 5.22), namely usf o gsf; indeed

Uaf °9sf°S = Uaf o t s /o / = 7Co/.

The factorization T >TC has no reason to be unique. Therefore we
consider all the morphisms h: T >TC such that ft o s = 7c o / , for
a fixed pair (5, / ) . We consider the colimit qsf. TC >Qsf of all those
factorizations h (a sort of "infinite coequalizer"); this makes sense since
#(T, TC) is a set and # is cocomplete. Then we consider the diagram
constituted of all the arrows qsf, for all possible pairs (5,/), and we
compute its colimit (AC, (««/)«/) (a s o r t °f "infinite pushout"); again
this colimit does exist because S is small and # is cocomplete. We write
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TC

h

1c

Diagram 5.22

TC

6c

Diagram 5.23

9s f

-> AC

8c = vsf o qsf for the unique composite obtained in this way (see dia-
gram 5.23).

To construct the reflection of C € # in #£ , it will now suffice to
iterate the previous construction. By transfinite induction, let us define
a functor

F: Ord-

where Ord is the preordered class of ordinals. Defining F is just giving
a transfinite sequence

Co- Jh 02 .

in the category #; we put

(1) Co = C,
(2) if C/3 is defined, C/3+1 = AC/3 with connecting morphism Op =

8c0 ° lop

(3) if ^ is a limit ordinal, Cp = colime</3Ce, with the canonical mor-
phisms of the colimit as connecting morphisms.

Such a construction can be performed in every cocomplete category,
but has no reason to become stationary at some stage. But using the
assumption that every object is presentable, we shall be able to reach
our conclusion.
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» T

Diagram 5.24

» T

Diagram 5.25

Each object of # is presentable. Since E is a set, we can choose a
sufficiently big regular cardinal a such that for each s: S >T in S,
both 5 and T are a-presentable. We shall prove that Ca, together with
the connecting morphism C >Con is the reflection of C in #£ .

First of all let us consider s: S >T in S and / : S >Ca as in
diagram 5.24. Since S is a-presentable and the colimit defining Ca is
a-filtered, / factors through some C/3, with (3 < a. (see 5.1.3 of volume
2). Writing S&: C$ >Ca for the canonical morphisms of the colimit,
we have thus some fp with s@ o fp = f. By definition of TCp we get

.= S(3 ° f/3 = 5/3+1 o 00 o /^ =

8c0 ° usf ° 9sf ° 5,

which shows that g = S/3+1 o 6c0 ° u$f o gsf is a factorization satisfying

Now let us suppose we have two factorizations g, h: T ^Ca with the
property g o s = f = ho s. We must prove the equality g = h. Since T
is a-presentable and the colimit defining Ca is a-filtered, g and h factor
through some terms Cpx, Cp2 of the colimit. Since the colimit is filtered,
there is no restriction in supposing /?i = /?25 this yields diagram 5.25.
Writing gp1, hp1 for the factorizations and again sp1 for the canonical
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Diagram 5.26

morphism of the colimit, we have

= 9 ° 5 = / = = ^ o

This shows that the two morphisms (gp1 o s, hpx o s) are identified in
the colimit Ca; since this colimit is filtered, there exists f3\ < (3 < a
such that those two morphisms are already coequalized at the level Cp
(see 2.13.3). Finally we have got the situation of diagram 5.26 with
gp o s = hp o s and g = s@ o gp, h = sp o hp. Putting / = gp o s in the
first part of proof, we get

(nc0 o gp) o s = iC(3 o f = (jC/3 ohp)os

thus 7C0 o gp and jc0 ° ^^ are two factorizations of 7 ^ o / through s.
This implies gs/ o 7C/3 o ^ = qrs/ o 7C/3 o /i^ by definition of qsf. Finally

g = spogp

= sp+i oOpo gp

= sp+1 o <5C/3 o 7C/3 o gp

= S/9+i o v a / o g s / o 7 ^ o gp

= sp+1 o v8f o qsf o 7C/3 o hp

= sp+1 o 6C(3 o iCp o hp

oOpohp = spohp

This ends the proof that Ca is an object
Now let us consider the canonical morphism s$: C = Co >Ca of

the colimit. Given D G ^ E and ra: Co >D, we must find a unique
n: Ca >Z> such that n o s 0 = ra. By transfinite induction, we shall
construct a cocone of morphisms np: Cp >D on the diagram consti-
tuted of the Cp,0p and we shall prove that n a is the expected factor-
ization. Clearly we put no = m and when /3 is a limit ordinal, we define



202 Categories of fractions

-> T

Cp tsf > P,

np

Diagram 5.27

> D

Diagram 5.28

np as the unique factorization of the cocone (ne)e<p through the colimit
Cp = colim e<pCe. There remains the case of a successor ordinal.

So we suppose that a cone n£: C£ >D has already been defined for
all e < /?; we must define np+\: Cp+i >D such that np+i o Op = np.
Consider s: S >T in S and / : S >Cp. In diagram 5.27, we get a
unique factorization rsf such that rsf o s = np o / , just because D G ^ E
and s 6 S. Since the square is by definition a pushout, this yields a
new factorization wsf making the whole diagram 5.27 commutative. The
relations wsf otsf = np indicate that the morphisms wsf constitute a
cocone on the generalized pushout diagram constituted of the morphisms
tsf. Since (FC/9, (u3f)sf) is the colimit of this last diagram, we find a
unique morphism crp as in diagram 5.28 such that ap o usf = wsf.
Composing with tsf we obtain

<*p ° ICp =<rp° usf o tsf = wsf o tsf = np.

We must now extend the factorization at the level ATCp. Consider
diagram 5.29. If p, h are such that h o s — jc0 ° f — 9 ° s, then crp o g
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D

Diagram 5.30

and ap o h are two factorizations of ap o <yCf3 o f through 5; since 5 G S
and D G #s> this implies o$ o g = ap o h. This implies that op factors
through the coequalizer qsf of all those possible factorizations g, / i , . . . ,
yielding a morphism psf such that psf o qsf = a p. This last equality
indicates precisely that the morphisms psf constitute a cocone on the
generalized pushout diagram constituted of the morphisms qsf. Since
(AC^, (vsf)sf) is the colimit of this last diagram, we find in diagram 5.30
a unique morphism np+\: Cp+\ — ACp >D such that np+i o vsf =
psf. Composing with qsf we obtain

= Psf ° Qsf =

and finally

This constructs the cocone (^/3)^e0rd an(^ ^n Particular we have n a os 0 =
no = m, which yields the expected factorization n = na.
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It remains to prove the uniqueness of that factorization n a , but it is
now a straightforward matter. Indeed if I: Ca > D is such that loso =
ra, for every /3 < a we define lp = losp where sp: Cp >Ca is once more
the canonical morphism of the colimit. It suffices to prove by induction
the equality lp — np^ for every (3 < a. For a = 0 this is just the relation
I o so = m = TIQ. And when (3 is a limit ordinal, lp and np are two
factorizations of the cone (l£ = n£)£<p through the colimit Cp, thus
lp = np. There remains the case of a successor ordinal.

If lp = np observe first that

1(3+1 ° 8cp ° Usf o gsf o s = lp+i o 6c0 o Usf o tsf o f

= h+1 o 8Cp ojC0o f

= lp+1 °0po f

= hof
= npof

= wsf ogsfos

= op o usf o gsf o s.

Since D G #£ and s € E, this implies

f>c0 ° ^sf ° 9s f = °p ° usf ° 9s f •

On the other hand one has directly

1(3+1 ° Sop ° Usf o tsf = lp+i o 6Cf3 o

= Wsf O t8f

= op ousf otsf.

Thus the morphisms lp+\ o 8C(3 o usf and op o usf are equal when com-
posed with the two canonical morphisms tsf,gsf of the pushout of / , s.
Therefore

1(3+1 ° 6Cp ° Usf = OpO Usf

and since the usf are the canonical morphisms of a colimit,
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This last relation can be rewritten

vsf ° qsf = Psf ° Qsf

and since qsf is an epimorphism (coequalizer of a family of morphisms),

h+i ov*f =Psf-

But n/3_j_i is by definition the unique arrow with that property, thus

Corollary 5.4.8 Let <€ be a locally presentable category and S a set
of morphisms of (€. The corresponding orthogonal subcategory %>?, is
reflective in c€.

Proof By 5.4.7, this volume, and 5.2.10, volume 2. •

Since a reflection is completely characterized by the class S of inverted
morphisms (see 5.3.1), the properties of the reflection will depend heavily
on the structure of the class S. Therefore it is very important to know
when a class E is the class of inverted morphisms for a reflection.

Definition 5.4.9 Let %> be a cocomplete category and £ a class of
morphisms of^. The class £ is closed under colimits when given a small
category S>, two functors F,G: @ \^ and a natural transformation
a: F => G, if all the morphisms OLD- FD >GD are in £, then the
corresponding factorization colima£>: colimFD >colmi GD is in £
as well.

Proposition 5.4.10 Let <& be a cocomplete category in which every
object is presentable. Consider a set S of morphisms oftyl and the corre-
sponding reflective subcategory r Hi: ^ s < >^ of those objects orthog-
onal to the morphisms of S. The class £ of those morphisms inverted by
r is the smallest class £ with the following properties:

(1) S C £;
(2) every isomorphism is in £;
(3) if two sides of a commutative triangle are in £, so is the third side;
(4) £ is closed under colimits.

Proof If s: S >T is in S, consider diagram 5.31. Since s JL ir(S), we
get a unique morphism / : T >ir(S) such that / o s = rjs] see 5.4.4.
Since (r(T),7/r) is the reflection of T and r(S) £ ^s? we get a unique
morphism g such that g OT]T = / . Prom

g o ir(s) orjs=gor]Tos = fos = ris
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irs

VT

Diagram 5.31

and the universality of vs, we get g o ir(s) = lir(s)- From

ir(s) o g OT]T o s = ir(s) o f o s = ir(s) o r)s = VT ° s

we get ir(s)ogorjT = TJT since s J_ ir(T); consequently ir(s)og = lir(T)
by universality of VT- Thus ir(s) is an isomorphism and E C f ,

Clearly if / is an isomorphism, so is r(f) and thus / G £. In the same
way if / = g o /i, then r ( / ) = r(#) o r{h) and if two of the morphisms
r{f)i r(#)> r(h) a r e isomorphisms, so is the third one.

Finally, with the notation of 5.4.9, r(colima£>) = colimr(a£>) since r
preserves colimits (see 3.2.2). Thus when each r(an) is an isomorphism,
r(colima£>) is an isomorphism as well as a colimit of isomorphisms.

Thus the class £ of inverted morphisms certainly satisfies conditions
(1), (2), (3), (4). From now on, let us write £ for an arbitrary class
which satisfies conditions (1), (2), (3), (4). Let us prove first that given
C G # the canonical morphism vc: C >ir(C) is in 5. We refer without
further notice to the construction of vc given in the proof of 5.4.7.

For every s: S >T in E and / : S >C, consider diagram 5.32
where the front face is a pushout by definition; the back face is obviously
a pushout as well. Since s,15 and \c are in £, tsf G £. Now consider
diagram 5.33, where (s, / ) runs through all the possible pairs described
before. We compute the generalized pushout of the morphisms tsf on the
bottom line and the corresponding generalized pushout of the morphisms
\c on the top line. The vertical morphisms l c , tsf connecting the two
diagrams are in £, thus 7c G £.

The pair (5, / ) being fixed again, consider diagram 5.34 where hi runs
through all the morphisms h such that hi o s = 7c o / ; we take as many
copies fi of / as there are such morphisms hi. Since all the fi$ are equal
to / , the top line is a colimit. The bottom line is a colimit by definition.
Since s and 7c are in £, qsf o^c e £. But since 7c G £, qsf G £ as well.
Now considering diagram 5.35 where (s, / ) runs through all the possible
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Is -> S

f -> T

9sf

t.f

Diagram 5.32

•*P.f

^ c * c

•*Ps ->• r et,f

Diagram 5.33

S ^—> C ^-^ C

Qsf o lc

-> TC

Diagram 5.34

rc —lrc ) rc —lrc ) rc

I r e

r c <

Diagram 5.35
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Diagram 5.37

pairs (s, / ) , the bottom part is a colimit by definition and the top part
is a colimit since the indexing diagram is connected (see 2.6.7.e). Since
I r e and qsf are in £, <$c G £.

Let us finally consider the various objects Cp and the corresponding
connecting morphisms Co >Cp. We prove by induction on a that all
those morphisms are in £:

(1) if (3 = 0, the morphism is the identity on Co, which is in £;

(2) if T£: Co > Cp is in £, then r^+i: Co > C^+i is just 6c0

which is in £ as composite of morphisms in £\

(3) if (3 is a limit ordinal, it suffices to consider diagram 5.36; the top line
is a colimit diagram, just because the indexing diagram is connected
(see 2.6.7.e); the bottom line is a colimit diagram by definition. Since
Te € £ for e < (3, rp e £.

In particular ra = rjc 6 £.

Finally let us consider a morphism / : B >C in ^ such that r(f)
is an isomorphism. Considering the commutative diagram 5.37, we have
VB,VC and ir(f) in £, thus / is in £ as well. •
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A

m- ^ D

Diagram 5.38

5.5 Factorization systems

5.3.1 shows that a reflection r H i: s/ >3$ of a category & is com-
pletely characterized by the class E of those morphisms of 0$ inverted
by r. Here we shall prove that in most cases, S is part of a factorization
system for the arrows of Si.

Definition 5.5.1 By a factorization system on a category 3$ we mean
a pair (£, A4) where both £ and M are classes of morphisms of $ and

(1) every isomorphism belongs to both £ and M,
(2) both £ and M. are closed under composition,
(3) Ve G £ VmeM e±m,
(4) every morphism f e & can be factored a s / = moe, with e G £ and

me M.

Let us make clear that in 5.5.1, nothing is required about some mor-
phisms being monomorphisms or epimorphisms.

Proposition 5.5.2 Under the conditions of 5.5.1, the factorization f =
mo e referred to in 5.5.1.(4) is unique up to an isomorphism.

Proof Suppose / = mf o er with e1 G £ and m! G Ai. Consider
diagram 5.38. It suffices to apply 5.5.1.(3) to get morphisms u,v such
that u o e = e', m! o u = ra, v o er — e, m o v = m!. In particular
considering the situations of diagram 5.39, one has vouoe = voe' = e,
movou = m'ou = m, uovoe' = uoe = e',m'ouov = mov = m!.
By the uniqueness condition in the definition of orthogonality (see 5.4.1)
one deduces v ou = 1B and uov = \c- •

Proposition 5.5.3 Under the conditions of 5.5.1 and given a morphism

f e£<&Vm€M / l m ,

f eM^Mee£ e±f.
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» C

l c
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Diagram 5.40

Proof By duality, it suffices to prove one of the equivalences. If / G £,
then / _L m for every m € .M, just by 5.5.1.(3). Conversely suppose
/ ± m for all m € M and write f = mo e with e € £, m € Al (see
5.5.1.(4)). Considering the situations of diagram 5.40, we first get g such
that g o / = e, m o g = lc, by assumption on / . Considering the second
square, gomoe — go f = e and mogom — m^ thus by the uniqueness
condition in 5.4.1 we have g o m = 1B- So m is an isomorphism and
me£ (5.5.1.(1)). Finally f = moe e£ (5.5.1.(2)). •

Proposition 5.5.3 tells us in some sense that definition 5.5.1 is redun-
dant, since each one of the classes £, M can be completely described
in terms of the other one. Nevertheless the fact of using both classes
allows in general more elegance and simplicity in the treatment of the
problems.

The classes £, M involved in a factorization system have quite a lot of
stability properties, for example under some types of limits or colimits
(see 5.9.1). Let us just emphasize the following facts.

Proposition 5.5.4 Under the conditions of 5.5.1, consider a composite
f o g of two morphisms of$:

(1) (foge£andge£)=>(fe£);
(2) (fogeMandfeM)^(geM);
(3) fe£nM=>fisan isomorphism.
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Diagram 5.42

-» E

Proof Let us prove the first assertion. Consider diagram 5.41 where
mou — vof and m G M. Since / o g e Z, we get a unique w such that
wo fog = uog and mow = v. But since # € £, the uniqueness condition
in 5.4.1 implies w o f = u. Thus w is the expected factorization. Now
w is unique with that property since mow' = v and wf o f = u imply
w'ofog — uog and thus wf = w.

The second assertion follows by duality. Finally if / G £C\M it suffices
to consider the square of diagram 5.42 to get a unique g such that
9°f = 1A, fog = 1B- •

We shall now indicate the relations between reflective subcategories
and factorization systems.

Proposition 5.5.5 Let $ be a category with a terminal object. Ev-
ery factorization system (5, M) on the category $ induces a reflective
subcategory r Hi: .c/( > .<%; with the following properties:

(1) given B e $ and the (£,M)-factorization

B eB )r(B) mB )1

of the unique morphisms ts- B >1, (r(i?),e#) is the reflection
of B in stf;

(2) every morphism f € £ is inverted by r.
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B ^—>

B

B'

f 9/ mB

mA

Diagram 5.43

1

Diagram 5.44

Proof Given B G # , consider the unique morphism £#: B >1 and
its {£, A4)-factorization £# = TUB ° e#, WIB G .M, e# G £; write r(B)
for the corresponding object

B eB >

We define j / to be the full subcategory of & whose objects are those
JB'S for which es is an isomorphism.

By uniqueness of the (£, jM)-factorization (see 5.5.2), the (£, A/l)-fac-
torization of m^ is just m^ o l r# . In other words, r(B) € **/. Considering
diagram 5.43, let us prove that (rB, es) is the reflection of B in J / . Given
A G J / , the unique arrow ra^: A > 1 is in M. by definition. Then given
/ : B >A, the square shown is commutative since 1 is terminal. From
es G £ and UIA G JM, we get a unique # such that g o es = f and, of
course, TUA ° g = rn,B>

Choose now g: B >Bf in £. In diagram 5.44, the outer rectangle
is commutative since 1 is terminal. Prom e^ G £ and TUB* € M, we
get a unique r(#) making the whole diagram 5.44 commutative. This is
precisely the definition of the functor r on the morphisms (see 3.1.3).
But from g e £ and e^' G £, we get eB'og £ £; since ea G £, this implies
r(#) G £; see 5.5.4. In the same way from TUB G M. and ra£' G M, we
deduce r(#) G M. Then r(#) is both in £ and in Â f: it is an isomorphism
(see 5.5.4). •
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It should be observed that in 5.5.5, £ is not in general the class of
morphisms of Si inverted by the reflection r. For example in the cate-
gory Set of sets and mappings every monomorphism is strong and every
epimorphism is strong (see 4.3.10.a). Therefore we immediately get a
system of factorization by defining

/ G £ iff / is a surjection,

f e M iff / is an injection.

Given a set B, the corresponding reflection r(B) of Si is the image of
the unique mapping B >1. Thus r(B) = 1 if B ^ 0 and r(0) = 0.
The corresponding reflective subcategory is just {0 *-• 1}. Observe that
every morphism / : A > B between non-empty sets A, B is mapped to
the identity on the singleton, thus is inverted by the reflection.

The reader should compare the previous example with the statement
of our next proposition. We refer to 4.4.1 for the notion of a "finitely
well-complete" category.

Proposition 5.5.6 Let Si be a finitely well-complete category. There
exists a bijection between

(1) the reflective subcategories r Hi: -<*/ (
 ) .41 of Si,

(2) the {£,M) factorization systems on Si which satisfy the additional
condition

foge£ and f e£ => g e£.

Moreover, under this bijection, £ is the class of those morphisms of Si
inverted by the reflection r and M, contains all the arrows of si.

Proof Let us start with a reflective subcategory r H i: si ^Si and
define the two classes £, M of morphisms by

/ G £ iff r(f) is an isomorphism,

feM iff V e E ^ e l / .

We shall prove that {£, M) is a factorization system with M containing
all the arrows of si.

Clearly every isomorphism is in £ and £ is stable under composition.
Moreover an isomorphism is always orthogonal (on the left or on the
right) to any morphism, thus certainly all isomorphisms are in M..

Now consider a composite m^ o mi, with mi,ra2 € M. Considering
diagram 5.45 where e 6 £ and 7712 o m\ o u = v o e one gets a unique
x such that m^ o x = v, x o e = mi o u (e € £, m^ € M) and then a
unique y such that mi o y — x, y o e = u (e € £, mi G .M). This implies
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> B

u

Diagram 5.46

7712 o m\ o y = 7712 o x = v, so that y is a factorization. If y' is another
factorization such that y' o e = w, 7722 o mi oy' = v, one has

7712 o (mi oy') = v = rri2 o x, (mi oy') o e = (mi o w ) = x o e ,

so that rai o 2/' = x by definition of x. Since moreover y' o e = ix, y = 2/7

by definition of y. This proves that Ai is stable under composition.
By definition of M, e € E and m e M imply e ± m. Moreover if

a: A >A' is an arrow of si and e: B >B' is in 5, let us prove the
relation e _L a. Consider diagram 5.46 where a o u = v o e. If 7)3-,'HB'
are the canonical morphisms of the reflection, we get factorizations t, s
making the whole diagram 5.46 commute. This yields a morphism w =
t o (ir(e)) o TJB' from B1 to A, with the properties

woe = to (ir(e)) oTJB' Oe = to (ir(e)) L oir(e) o\

aow = aoto (ir(e)) or\B' = SOir(e) o (ir(e)) orjBf = s{

If wf: B' >A is another morphism with the properties w' o e = u,
a o w' = v, the universal property of (ir(Bf),r]Bf) implies the existence
of w": ir(Br) >A such that w11 o rjBf = w'- Therefore

w oir(e) oT\B == ^ °VB' oe — w oe = w = toTjBi
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U ^ Tfc

Diagram 5.48

irB

irf

>irC

> irB

irf

> irC

from which w" o ir(e) = tby uniqueness of t. Finally,

w' = w" o r\B' — w" o ir(e) o (ir(e))~ o rjB' =to (ir(e))~ o TJB* = w,

which proves e l o . Thus every morphism of si is in A4.
Let us now consider a composite / o g in Si with / o g £ £ and

/ € £. Since r ( / o #) = r(f) o r{g) and r(f o g), r(f) are isomorphisms,
r(g) = (r(/)) o r(f o p) is an isomorphism as well. Thus g € £.

It remains to prove that every morphism / : B >C in $ can be
factored as / = raoe, with e € £ and ra G A4. We consider diagram 5.47
where the square is a puUback and c is the unique factorization making
the whole diagram 5.47 commute.

Let us observe first that a G M.. Indeed consider diagram 5.48 with
u o w = a o v and w G £. Since w G £ and ir(f) G « J / C A4, we get
a unique x such that x ow = bov and i r ( / ) o x = rjc ° u>. Since (a, 6)
is a puUback and ir(f) o x = rjc ° u, we obtain a unique y such that
a o y = u, b o y = x. Observe that b o y o w = x o w = b o v and
aoyow = uow = aov, from which yow = v since (a,6) is a pullback.
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> Y

Diagram 5.49

Thus a o y = u and y o w = v, which yields a factorization y. If y1 is
another such factorization, the relations

= rjcou = ir(f) oxboy'ow = bov = xow, ir(f) obo

imply b o y' = x. Next, the relations

imply y' = y. This ends the proof that a € Ad.
There is no reason in general to have c G £. Let us consider all the

subobjects sf. Si> >P with Si G M and through which c factors, let
us say as c = Si o fy. We can compute the intersection 5: S) >P of
all these subobjects (3$ is finitely well-complete) and get a factorization
c = sot through that intersection. Observe that \p is one of the s^s. Let
us prove that 5 6 M ; see diagram 5.49. Given x € £ and s o u = v o #,
we get a unique Wi such that ŝ  o W{ = v, Wi o x = Oi o u since Si G M..
Since all composites ŝ  o wi are just v, we get a unique factorization w
through the intersection 5, with aiow = W{. Therefore

SOW = OW = = V.

Moreover from sowox = vox = souwe deduce wox — u since s is a
monomorphism. So w is the expected factorization and it is necessarily
unique because s is a monomorphism. This proves s € Ai.

We already have / = aoc = aosot with a and s in M, thus 005 G A1.
It remains to prove that t G £. Let us consider diagram 5.50 where the
square is a pullback. From

r(b o s) o r(£) = r(6 o c ) = r(rjB)

and the fact that r(r)B) is an isomorphism (with inverse £r(#); see 3.1.5
and 3.4.1), we deduce that r(t) = ir(t) is a monomorphism and thus
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-> irB

irt

-> irS

k is a monomorphism as well (see 2.5.3). But since ir(t) G i C M,
the same argument developed for diagram 5.47 shows that k G M..
We have then c = sot = sokod with s o f c a monomorphism in
M., since s and A: are. By definition of s, k must be an isomorphism.
Finally, recalling once more that r(rjx) is always invertible, with inverse
£r{x) ( s e e 3.1.5 and 3.4.1) we observe that r(l) o r(d) = r(rjB) is an
isomorphism, thus r(d) is a strong monomorphism (see 4.3.6). Since k is
an isomorphism, r(t) is thus a strong monomorphism as well. But from
r(r]s) ° r(k) = rir(t) o r(l) = r(t) o r(l) we deduce that r(t) is a strong
epimorphism, since both r(r)s) and r(k) are isomorphisms. Thus r(t) is
an isomorphism (see 4.3.6) and / = (aos) o£, with oos G M. and t G f ,
is the required factorization.

Considering the construction we have just developed and that de-
scribed in 5.5.5, it remains to prove that they induce the bijection an-
nounced in the statement.

Let us start with a reflective subcategory r H i: -^^ > & and the
corresponding factorization system (5, M) described in this proof. For
every B G 36 let us consider the composite

^ir(B)- 1.

Since r{r\B) is an isomorphism, T]B G £. Since ir(B) G si and 1 G J / ,
rriB G J / and thus ms G At, as proved previously. Thus r(B) coincides
with the reflection of B constructed in 5.5.5.

Conversely consider a factorization system (£,M) satisfying the ad-
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ditional property

fogeS and / G £ => g G 8.

We consider the corresponding reflection as constructed in 5.5.5. Let
us write E for the class of those morphisms of 38 inverted by r. The
factorization system associated with the reflection has, by construction,
the form (Z,Mf). To prove the equality (£,M) = (E,.M'), it suffices
to prove £ = S (see 5.5.3) since the class M (or M1) is completely
characterized by the class £ (or S). We know already that £ C £ (see
5.5.5), so it remains to choose g G S and prove it is in £. Going back to
the defininition of r(g) in the proof of 5.5.5, we observe that e#> o g —
r(g)oeB> The morphisms es and esf are in £ by definition and r(g) G £
since it is an isomorphism. Finally e#> and r(g) o e# are in £, which
implies # G £ by the additional assumption on the factorization system

•

5.6 The case of localizations
We recall that a reflective subcategory r -\i: •^< > & of a finitely com-
plete category 38 is called a localization when the reflection r preserves
finite limits (see 3.5.5).

We shall now particularize the results of sections 5.3, 5.5 to the case
of localizations.

Proposition 5.6.1 Consider a finitely complete category 38 and a re-
flective subcategory i: s/ c-^ &, with reflection r H i. Write S for the
class of all morphisms f G & such that r(f) is an isomorphism. The
following conditions axe equivalent:

(1) E admits a right calculus of fractions;
(2) the reflective subcategory r Hi: si ±38 is a localization;
(3) S is stable under pullbacks, i.e. given a pullback square in 0b as in

diagram 5.51, if s G E, then t G S.

Proof (1) => (2). The reflection r: &$ >s/ is equivalent to the cate-
gory of fractions <p: 3$ ^ [ S " 1 ] ; see 5.3.1. If S admits a right calculus
of fractions, ^[S" 1 ] is finitely complete and (p preserves finite limits. Ap-
plying 3.4.5 (finite case), we conclude that si is finitely complete and r
preserves finite limits. This is precisely the definition of being a local-
ization (see 3.5.5).

(2) =^ (1). Given B G ^ , r ( l s ) = \TB is an isomorphism, thus 1 B G S.
Moreover given a composite fog in ^ , if r(f) and r(g) are isomorphisms,
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P —2-^ C

t

A f
Diagram 5.51

r(f ° 9) ~ r(f) ° r(#) ls a n isomorphism and / o g G S. Given (/, s) as
in 5.2.3.(3), define (t,g) as the pullback of (/, s). Applying r to this
pullback we get another pullback with r(s) an isomorphism, thus r(t) is
an isomorphism as well (see 2.5.3) and t G S. Finally given / , g: A I B
and s G S such that s o f = s o g, one has r(s) o r(f) = r(s) o r(g) and
thus r(f) = r(g) since r(s) is an isomorphism. Putting k = Ker (/,#),
one clearly has / o k = jofc . But r(A:) = Ker (r(/),r(^)) and since
r ( / ) = r(#)> r(^) — lr(A)- Thus r(k) is an isomorphism and k € S.

(2) => (3). Considering the pullback in diagram 5.51, with s G S,
the image of this pullback under r is again a pullback with r(s) an
isomorphism; therefore r(t) is an isomorphism as well (see 2.5.3) and
te S.

(3) => (2). Since 0$ is finitely complete, si is finitely complete and
finite limits in si are computed as in ^ ; see 3.5.3. That implies in par-
ticular that the terminal object 1 € ^ belongs to s&'. But since 1 G J / ,
one has r ( l ) = 1 (see 3.4.1) and r preserves the terminal object. By 2.8.2,
it remains to prove that r preserves pullbacks. Consider diagram 5.52
where (&, h) is the pullback of (/, g) in Si and (tz, v) is the pullback of
(ir(f),ir(g)) in si. The morphism w is the unique factorization mak-
ing diagram 5.52 commutative. It suffices to prove that u i G S , which
will imply P = ir(P) = ir(A) since P e si and w G S, and thus the
preservation by r of the original pullback of (/,<?).

To prove that w G E, let us first consider diagram 5.53 where all
the squares are pullbacks. We know at once that TJB^VC € 2 since
^(VB) °£r(B) = lr(B) a n d £r(£) is a n isomorphism (see 3.1.5 and 3.4.1).
Therefore x, y, ra, n are in S as well. Since w is the unique arrow such
t h a t u o w = r)c ° k, v o w = T)B ° h, o n e h a s w = xomol = yonol.
Since E is obviously closed under composition, it remains to show that
ZGE.

Now let us consider diagram 5.54 where the square is a pullback. Since
TJD G S, we get p, q G S. Considering the unique factorization d such that
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irC-
irg

Diagram 5.52

-HrD

Vc

Diagram 5.53

irg

> irB

irf

p o d = ID = Q ° d, we get r(p) o r(d) — lr(D) with r(p) an isomorphism.
Thus r(d) is an isomorphism and d G S. Now the relations

rjD °g°com = ir(g) or)c ° com

= ir(f) o T)B o b o n
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D

D

VD

-> irD

Diagram 5.54

D

d

-> K

Diagram 5.55

imply the existence of a unique z: Z >K such tha t g o com = po z,
f obon = qo z.

Now consider diagram 5.55; we shall prove it is a pullback. Composing
with p and q we find

Since (p,q) is a puUback, this implies zol = dofoh, thus the commuta-
tivity of the square. Moreover, given a, (3 such that zoa = do/3, one has

This implies the existence of a unique 7 such that b o n o a = /107,
como a = koj. This 7 is the expected factorization. Indeed

imply / o 7 = a since (c o m, 6 o n) is a puUback; on the other hand
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-> B

f

X

-> D

Diagram 5.56

irf

-+irY

Such a factorization 7 is unique since given 6 with 106 = a, fohoS = 0
one gets

and thus <5 = 7 since (k, h) is a pullback.
Finally the last square we considered is a pullback and since d G S,

one gets I G E, which concludes the proof. •

The factorization system associated with a localization can be de-
scribed completely and without any "size condition" (like finitely well-
complete, in 5.5.6) on the original category.

Proposition 5.6.2 Consider a finitely complete category &. There ex-
ists a bijection between

(1) the localizations r Hi: .0/( ) & of38,
(2) the factorization systems (£,Ai) on 3$ which satisfy the two follow-

ing additional conditions:

(a) foge£ and f e£ => geE;
(b) £ is stable under pullbacks, i.e. given a pullback square in 0$ as

in the left part of diagram 5.56, if s £ £, then t G S.

Moreover, under this correspondence,

(1) f € £ iffr(f) is an isomorphism,
(2) f G M iff the right-hand square of diagram 5.56 is a pullback, where

VX,VY are the canonical morphisms of the adjunction.

Proof For a finitely well-complete category ^ , the result is an immedi-
ate consequence of 5.5.6 and 5.6.1, with the exception of the description
of the class M. In the more general case where @ is just finitely complete,
the proof is an easy modification of that of 5.5.6.

Let us start with a localization r -\i: stf >@t and let us consider the
two classes £, M. of morphisms as defined in the statement. Obviously
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irZ irm

Diagram 5.57

irv

every isomorphism is in £ and £ is stable under composition. In the
same way every isomorphism is in Ai (see 2.5.3) and M. is closed under
composition (see 2.5.9).

Now choose e £ £, m € M. and consider diagram 5.57 where v o e =
mou. Since ir(e) is an isomorphism we have

ir(m) o ir(u) o (ir(e)) o rjy = ir(v) o rjy = VT ° v.

Since the bottom face is a puUback we get a unique factorization w such
that

rjz ow — ir(u) o (ir(e)) orjy^

Prom the relations

we deduce

rjz ° w o e = ir(u) o (ir(e)) o r/y o e

= ir(u) o (ir(e)) o ir(e) o rjx = ir(tx) o r/x = r/z ° w,

and from the fact that the bottom square is a puUback, we deduce that
w o e — u. Thus w is an acceptable factorization. If w' is another mor-
phism such that w' o e = i/, m o w' — v one has

r)z o w1 — i(rw') o r/y = ir(u) o (ir(e)) o r/y = rjz o w,

mow' = v = mow,
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rB

irC
irr\c

Diagram 5.59

from which w = w' since the bottom square is a puUback. Thus we have
proved that e _L m.

Let us now consider a morphism / : B >C and let us factor it as
/ = m o e, with e e £ and m e M. We consider diagram 5.58 where
(a, b) is the puUback of (vc^^if))- The second diagram is the image
of the first one under the reflection r. Since r preserves finite limits,
the square is a puUback. But since rrjB and rrjc are isomorphisms with
inverse £r(c) (see 3.4.1 and 3.1.5), the outer diagram is a puUback as
well (see 2.5.3). By uniqueness of a pullback, re is an isomorphism and
thus c G £. On the other hand, considering diagram 5.59,

• VirB and r/ir(c) are isomorphisms with inverse isr(B) (see 3.4.1 and



5.6 The case of localizations 225

k U ) f
ft v D r D J v y^V

Diagram 5.60

3.1.5),
• the back face is a pullback by definition,
• the right lateral face is a pullback since rjir(c) and r}ir(B) are isomor-

phisms (see 2.5.3),
• the front face is a pullback as image of the back face under the

functor ir, which preserves pullbacks;

therefore the left lateral face is a pullback as well by 2.5.3 and thus
aeM.

So (£, At) is a factorization system and, by 5.6.1, it satisfies the second
additional condition. Since a factorization system is completely charac-
terized by its class £, this factorization system is the same as that con-
structed in 5.5.6. In particular all the arrows of si are in Ai and the
factorization system satisfies the first additional condition.

By 5.6.1, the bijection described in 5.5.6 restricts to the bijection
announced in 5.6.2. •

Finally localizations have the particular property of admitting a de-
scription in terms of "inverted monomorphisms". Given a finitely com-
plete category 3b with strong-epi-mono factorizations (e.g. a finitely well-
complete 36, see 4.4.1) consider a morphism / factored as / = iop, with
i a monomorphism and p a strong epimorphism; see 4.4.3. Often i is
called the "image of / " . Let us consider the kernel pair (u, v) of p (see
2.5.4) and its equalizer k = Ker(w, v), as in diagram 5.60.

Lemma 5.6.3 Let f: B >C be a morphism in a finitely complete
category and (P, u, v) its kernel pair. The equalizer k = Ker (ix, v) of this
kernel pair is the unique morphism k: B >P such that u o k = 1B =
v ok.

Proof Prom / o lB = f o lB we get this unique morphism k: B >P
such that u o k = 1B = v o k. In particular, k is a monomorphism. Now
given x: X >P such t h a t uo x = v o x , one h a s uokouo x = uo x
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P v ) A .. ,irA

Diagram 5.61

and vokouox = uox = vox. Therefore kouox = x, since (u,v) is a
pullback, and u o x is a factorization of x through fc. This factorization
is unique since k is a monomorphism. •

Proposition 5.6.4 Consider a localization r Hi: J / ^ of a finitely
complete category $ in which every arrow has a strong-epi-mono fac-
torization. Write S for the class of those morphisms f E $ inverted by
the reflection r.

(1) A morphism f € $ is in S iff its image is in £ and the equalizer of
its kernel pair is in E.

(2) An object A € Si is in si iff for every monomorphism u 6 S, u ± A.

Proof Let us use the notation of diagram 5.60. Since r preserves finite
limits, r(i) is a monomorphism (see 2.9.3), (r(u),r(v)) is the kernel pair
of r(p) and r(k) is the equalizer of (r(u), r(v)). On the other hand since
r -\i, the morphism r(p) is a strong epimorphism (see 4.3.9).

By 4.3.6, r ( / ) is a strong epimorphism iff r(i) is a strong epimorphism,
i.e. iff r{%) is an isomorphism. On the other hand r(f) is a monomorphism
iff r(u) = r(v) (see 2.5.6), i.e. iff r(k) is an isomorphism (see 2.4.5). Thus
r (/) is an isomorphism if and only if both r(i) and r(k) are isomorphisms.

We know that every object A e <$/ obeys / - L A , for every / E S; see
5.4.4. Conversely choose A € & such that / J_ A, for every monomor-
phism / of E. Now si is replete by definition (see 3.5.2) and rA € J / ;
thus it suffices to prove that TJA' A >ir(A) is an isomorphism. Let us
consider diagram 5.61, where (j,p) is the strong-epi-mono factorization
of r]A (see 4.4.3), (u, v) is the kernel pair of p and k is the equalizer of
(ix, v). Since r(rjA) is an isomorphism with inverse £r(A) (see 3.4.1 and
3.1.5), j G S and k G S by the first part of the proof. On the other hand
uok = lAz=vok (see 5.6.3); since k ± A, the uniqueness condition
in the definition of orthogonality implies u = v. But then p is a mono-
morphism (see 2.5.6) and thus also an isomorphism (see 4.3.6). Then TJA
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Diagram 5.62

-> B

is isomorphic to the monomorphism j G E , and TJA is a monomorphism
belonging to S. This implies TJA -L L̂ and thus the existence of a unique
w: ir(A) >A such that w OTJA = 1A- From TJA0^ °VA — l»r(A) ° ^A*

we deduce 77,4 o it; = I ^ A ) by the universal property of J]A\ see 3.1.1.
Thus TJA is an isomorphism with inverse w (see 1.9.3). •

5.7 Universal closure operations

Definition 5.7.1 Consider a finitely complete category 8&. A universal
closure operation on 3$ consists in giving, for every subobject S> >B
in 3$, another subobject S>—>B called "the closure of S in B"; these
assignments have to satisfy the following properties, where 5, T axe sub-
objects of B and f: A >B is a morphism of Si:

(1) SCS;
(2) 5 C T =• S C T;

Proposition 5.7.2 Consider a finitely complete category Si provided
with a universal closure operation. Given subobjects 5, T of B E 38, one
has

(1) B = B,
(2) s n T = s n T.

Proof Since B C B and, of course, B C B as subobjects of 2?, one has
B = B.

Now let us first observe that given S C T C B diagram 5.62 where
both squares are puUbacks indicates that S D T is the closure of S in T;
see 5.7.1.(4). Thus the closure of S in T is smaller than the closure S of
5 in B.
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sr\T>

s >- -> s >- -> B

Diagram 5.63

SnT> >SnT>- -> s

T y T > -> B

Diagram 5.64

Given now arbitrary subobjects T,S C B, the relations T (1 S C T,
T~ TT £ thus T?TTHS C S imply T~nS C T and TTT5 C £, thus T?T5 C Tfl5. On the

other hand diagram 5.63, where both squares are pullbacks, indicates
that 5 D T is the closure of S D T in T; see 5.7.1.(4). Since the closure
in T is smaller than the closure in B (previous step of the proof) one
gets Sf lTCSTlT. Analogously diagram 5.64, where both squares are
pullbacks, indicates that S H T is the closure of S 0 T in S. Since the
closure in 5 is smaller than the closure in B,~S flT C S flT C SnT =
5TTT. •

Definition 5.7.3 Consider a finitely complete category 3$ provided with
a universal closure operation.

(1) A subobject S> >B is dense when S — B;
(2) a subobject S> >B is closed when S = S.

Proposition 5.7.4 Consider a finitely complete category & provided
with a universal closure operation, a morphism f: A >B and a sub-
object S of B; see diagram 5.65.

(1) If S is dense in B, f~1(S) is dense in A;
(2) if S is closed in B, f~1(S) is closed in A.

Proof If S = B, then f-*(S) = f^iS) = ^{B) = A, which proves
the first assertion.
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-> B

Diagram 5.65

If S = S, then f-
assertion.

s > -> B-> s y

Diagram 5.66

= f~1(S) = /~1(Sf), which proves the second

•
Corollary 5.7.5 Consider a finitely complete category & provided with
a universal closure operation. If S C B is any subobject, S is dense in
S.

Proof Just consider diagram 5.66 where both squares are pullbacks,
showing that S is the closure of S in S. •

Corollary 5.7.6 Consider a finitely complete category 0$ provided with
a universal closure operation. If S C B is both closed and dense, then
S = B.

Proof One has S = S and S = B. •
Proposition 5.7.7 Consider a finitely complete category 3$ provided
with a universal closure operation. Given subobjects S C T C B, the
following conditions are equivalent:

(1) S is dense in T and T is dense in B;
(2) S is dense in B.

Proof Assume (1). We have observed in the proof of 5.7.2 that the
closure of S in T (which is T) is smaller than the closure of S in B\ thus
T C S . Therefore B = T C S = S, thus B = 5.
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S ^ — > 5

T y -> B

Diagram 5.67

A y u -> B

f

c y -> D

Diagram 5.68

Assume (2). Since S C T, we get B = S C T, thus B = T and T is
dense in B. On the other hand diagram 5.67 is a pullback and since S
is dense in i?, S is dense in T; see 5.7.4. •

Corollary 5.7.8 Consider a finitely complete category Si provided with
a universal closure operation. In a commutative square gou = vo f (see
diagram 5.68), ifu is a dense monomorphism, g is a strong epimorphism
and v is a monomorphism, then v is a dense monomorphism.

Proof We consider the closure C of C and diagram 5.69, where the
squares are puUbacks and the monomorphism i is the unique factoriza-
tion of / and u through the pullback of v and g. The subobject d is
closed by definition, thus b is closed (see 5.7.4). By definition u is dense,
thus b is dense (see 5.7.7). Therefore b is an isomorphism (see 5.7.6) and
do hob"1 = g. Since g is a strong epimorphism, the monomorphism d
is also a strong epimorphism and thus an isomorphism (see 4.3.6). So v
is isomorphic to c, which is dense (see 5.7.5). •

Proposition 5.7.9 Consider a finitely complete category $ provided
with a universal closure operation. Given subobjects S C T C B, the
following implications hold.

(1) If S is closed in T and T is closed in B, then S is closed in B.
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c >

-» A' >

h

-> c >

B

-> D

Diagram 5.69

s > >snr> > s

Is

s y -> T y

Diagram 5.70

-> B

(2) If S is closed in B, then S is closed in T.

Proof Assume S is closed in T and T is closed in B. Consider dia-
gram 5.70, where the squares are pullbacks and 5 is the closure of S
in B. The subobject S is dense in S (see 5.7.5), thus S n T is dense in
S (see 5.7.7); but since T is closed in B, S H T is also closed in S (see
5.7.4); therefore SnT = S. In the same way, S is dense in STlT because
S is so in S, and S is also closed in S D T because S is so in T; thus
S = ~S D T. Finally 5 = 5 and 5 is closed in B.

Now assume 5 is closed in B. Diagram 5.71 is a pullback and since S
is closed in I?, S is closed in T; see 5.7.4. •

It is probably useful to dwell on the fact that, when S C T C B
and 5 is closed in 1?, T is in general not closed in B; see 5.9.6 for a
counterexample.

Corollary 5.7.10 Consider a finitely complete category $ provided
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a 1S , a

T y

Diagram 5.71

T y
t

Diagram 5.72

-> B

with a universal closure operation. Ifs: S> >A is a dense subobject of
A and t: T> >B is a closed subobject of B, then s Lt.

Proof Consider diagram 5.72 where tou = vos. Computing the pullback
(#, y) of (£, v), y is a closed monomorphism since t is (see 5.7.4). On the
other hand y is dense since s is (see 5.7.7). Thus y is an isomorphism
(see 5.7.6) and x o y"1 is a factorization satisfying

X o y os = xoz = u, t o x o y = t ;oyo y = v.

Since t is a monomorphism xoy"1 is unique with these properties . •

Let us now indicate an interesting relation between localizations and
universal closure operations.

Proposition 5.7.11 Consider a localization r -\i: .^< yffl of a finitely
complete category &. The localization induces a universal closure op-
eration on &, associating with a subobject s: S> >B the subobject
5> >B defined as ^ 1 ( ^ ( S ' ) ) , where T]B is the canonical morphism of
the adjunction (see diagram 5.73).
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irs

" VB

Diagram 5.73

•* irB

S >~

irS y -> irT >•

Diagram 5.74

Proof Considering diagram 5.73, one observes that irs is a monomor-
phism since r preserves finite limits (by assumption) and i preserves all
limits (it has a left adjoint r; see 3.2.2). Thus s is a monomorphism (see
2.5.3). By naturality of r) (see 3.1.5), the outer diagram is commutative
from which u is such that ~s o u = s, t o u = r/5; t/is a monomorphism
since s is. This defines the closure S of S and proves that S Q S.

I f S C T C B , the pullbacks in diagram 5.74 indicate that S C T .

In 5.6.2 we have observed that s = s o u is the (£, M) factorization of
5, thus r(u) is an isomorphism. This proves that ir(S) is isomorphic to
ir(S) and thus S is isomorphic to S.

Finally given a morphism / : A >i?, consider diagram 5.75 where
the right face is the construction of S and the left face is the construction
of f~1(S). The bottom face is commutative by naturality of 77; see 3.1.5.
The whole back face is the pullback of / and s = s o u, producing
f~x(s) = s' o v and y. Since v is a dense monomorphism (see 5.7.5) and
s is a closed monomorphism, the relation 5 o (uy) = (fsf) o v implies
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-> S

v\ Wf-tcs) u\

irA . £

irf
Diagram 5.75

trs

the existence of a unique x such that x ov = uoy, s o x = f o sf; see
5.7.10. Since the whole back face is a puUback by definition, the front
face, which is its image by ir, is a puUback as well. The left lateral
"square" is the puUback defining f~1(S) and in the same way the right
lateral "square" is the puUback defining S. Since the whole diagram is
commutative, the associativity properties of pullbacks (see 2.5.9) imply
that (s',x) is indeed the puUback of (/,s), proving f~1(S) = f~1(S).

•
Examples 5.7.12

5.7.12.a In the category Top of topological spaces and continuous
mappings, a monomorphism is just a continuous injection s: S> >A\
see 1.7.7.b. Define the closure of s as the subspace s(S) <—• A, where s(S)
is provided with the induced topology. It is straightforward to observe
that this is a universal closure operation.

5.7.12.b In the category Ab of abelian groups, define the closure of a
subgroup 5 C 4 b y

n a£S}

where n ^ 0 is some fixed natural number. This defines a universal
closure operation.
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Diagram 5.76

5.7.12.C In the category Cat of small categories and functors, define
the closure of a subcategory Sf C # as the full subcategory $f generated
by $f. This is a universal closure operation.

5.8 The calculus of bidense morphisms
To emphasize the relations between universal closure operations and
calculus of fractions, let us consider a finitely complete category in which
every arrow / factors as / = iop, with i a monomorphism and p a strong
epimorphism (see 4.4). As in section 5.6 we are interested in the image i
of / and in the equalizer k of the kernel pair (w, v) of / (see 5.6.3), as in
diagram 5.76. Since i is a monormophism, (w, v) is also the kernel pair
of p.

Definition 5.8.1 Consider a finitely complete category 36 with strong-
epi-mono factorizations. Given a universal closure operation on 38, a
morphism f: A >B is bidense when its image is dense and the equal-
izer of its kernel pair is dense.

Proposition 5.8.2 Consider a finitely complete category 38 admitting
strong-epi-mono factorizations. Given a universal closure operation on
38, a monomorphism is dense if and only if it is bidense.

Proof With the previous notation, if / is a monomorphism, p is both
a monomorphism and a strong epimorphism, thus it is an isomorphism
(see 4.3.6). On the other hand, u = v = 1A (see 2.5.6) and thus k = 1A,
which is in any case dense. On the other hand since p is an isomorphism,
/ is dense if and only if i is dense. •

Proposition 5.8.3 Consider a finitely complete category Si admitting
strong-epi-mono factorizations. Given a localization r H i: .s/< > .<#,
consider the corresponding universal closure operation as in 5.7.11. A
morphism f € d& is inverted by the reflection r if and only if it is bidense.
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-/T. £ ' JLJ

Diagram 5.77

Proof By 5.6.4, it suffices to prove that a monomorphism s: S> >B is
inverted by r if and only if it is dense. Considering diagram 5.73, if ir(s)
is an isomorphism, s is an isomorphism and S = 2?, thus S is dense in B.
Conversely, suppose S = B. In 5.6.2 we have proved that s = ~sou is the
(£,.M)-factorization of s associated with the localization. Thus u e £
and r(u) is an isomorphism. Since ~s is an isomorphism by assumption,
ir(s) = ir(~s) o ir(u) is an isomorphism. •

In general, a universal closure operation has no reason to be induced by
a localization as in proposition 5.7.11. We shall nevertheless investigate
this question a little bit more in some particular cases of interest. In the
rest of this section, we shall freely use the notions of regular and locally
presentable category which will be studied systematically in chapters 2
and 5 of volume 2.

First of all, when strong-epi-mono factorizations exist and are stable
under pullbacks (this is the essence of the definition of a regular category;
see 2.2.2, volume 2), the class of bidense morphisms has good properties.

Proposition 5.8.4 Consider a finitely complete regular category 3&
provided with a universal closure operation. The class £ of bidense mor-
phisms has a right calculus of fractions. Moreover, this class £ satisfies
the following additional properties:

(1) every isomorphism is bidense;

(2) if two sides of a commutative triangle are bidense, the third side is
bidense as well;

(3) bidense morphisms are stable under pullbacks, i.e. given a pullback
in $ as in diagram 5.77, if f is bidense, g is bidense as well.

Proof By 10.2.2, every morphism has a strong-epi-mono factorization
and the pullback of a strong epimorphism is still a strong epimorphism.

With the notation of diagram 5.76, if / is an isomorphism we can
choose i = 1^, u = v = 1^, k = 1A- Thus i and k are dense (see 5.7.3)
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Diagram 5.78

and the isomorphism / is bidense. In particular this implies condition
5.2.3.(1).

Next let us consider / , i,p, n, v,k as above and in addition diagram
diagram 5.78, where the last two squares on the right are pullbacks,
(s,t) is the kernel pair of q and n = Ker(s,t). Observe that po ho s =
loqos = loqot = pohot, which yields a unique r such that hos = uor
a n d h o t = v o r . M o r e o v e r , u o r o n = h o s o n = h o t o n — v o r o n ^
from which there is a unique m such that k o m = r o n. Let us prove
that (ra, n) is the pullback of (&, r). Given rr, y such that r o x = k o y,
the relations

qosox = qotox, hosox = uorox = uokoy = vokoy = = hotox

imply 5ox = tox, because (#, ft) is a pullback. Since n = Ker (s, t), there
exists a unique z such that no2; = x; moreover komoz = ronoz =
rox = koyso that mo z = y because A: is a monomorphism. Finally z
is the expected factorization and it is necessarily unique because n is a
monomorphism.

Suppose / is bidense. Then j and n are dense monomorphisms since
i and k are (see 5.7.4). Moreover q is a strong epimorphism since p is
(see 10.2.2). All these observations prove that pulling back the bidense
morphism / along an arbitrary morphism c, one gets another bidense
morphism g. In particular, this implies condition 5.2.3.(3).

Next let us check condition 5.2.3.(4). Let us consider g, h: C >A
in @t and a bidense morphism / : A >B such that / o g = f o h. In
diagram 5.79, (u,v) is the kernel pair of / and k = Ker(n, v). Prom
fog = fohwe find a unique r such that uor = g, vor = h. Computing
the pullback (£, s) of (fc, r) we obtain a monomorphism 5, which is dense
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D

A >

Diagram 5.79

since k is such that

By 5.8.2 the dense monomorphism s is bidense, which concludes the
proof of condition 5.2.3.(4).

Now consider a composite go f. We refer to diagram 5.80 where / =
iop, g = joq,qoi = noraie image factorizations. The kernel pair of /
is (u, v), (s, t) is that of g and (a, b) that ofgof. Moreover, I = Ker (s, £),
k = Ker (w, v) and m = Ker (a, 6).

Observe that go f oa = go f ob implies the existence of a unique w
such that s o w = f o a, tow = fob. We construct the pullback (d, 2)
of (w,Z). On the other hand go f ou = go f ov implies the existence of
a unique h such that so h = f ou, toh = f ov. Observe also that

from which I o f = ho k since (5,t) is a pullback. Observe next that

from which there is a unique c such that uoc = aod, voc = bod. Finally

from which w o m = Z o / since (5, t) is a pullback. This implies the
existence of a unique 6 such that do0 = m and z 06 = f.

Let us now suppose that / and # are bidense. Since i is dense and q
is a strong epimorphism, n is dense (see 5.7.8). Since j and n are dense,
j o n is dense (see 5.7.7), and this is the image of g o f.

Observe now that

uocoO = aodoO = aom = 1A = uok, voco0 = bodoO — bom = 1A = vok,
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from which c o 0 = k because (tz, v) is a pullback. Moreover c is a mono-
morphism because c o a = c o /3 implies

aodoa = uocoa = uoco/3 = aodo/3, bodoa = voca = voco/3 = bodo/3,

from which d o a = d o /?, since (a, b) is a pullback. But d is a monomor-
phism since I is, thus a = (3. The monomorphism d is dense since Z is (see
5.7.4). But 0 is dense since k is and co0 = fc; see 5.7.7. Thus m = do0 is
dense (see 5.7.7) and gofis bidense. This implies in particular condition
5.2.3.(2).

Now suppose that go f and / are bidense. Since go f is bidense, jon
is dense and thus j is dense (see 5.7.7). On the other hand m is dense,
thus 0 and d are dense (see 5.7.7). If we can prove that w is bidense,
then wod will be bidense and thus loz = wod will be as well. But since
/ o z factors through /, the subobject / contains the dense image of lo z
and thus I is dense (see 5.7.7). Thus g will be bidense as long as w is.

To prove that w is bidense, consider diagram 5.81 where (e, e) is the
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Diagram 5.81

> B

» C

puUback of (#, g o / ) and x, y are the obvious factorizations making the
diagram commutative. Consider the square / o e = t o y. It is a puUback
because given / o a = £ o r , one has gofa — gotor = gosor from
which there is a unique p such that e o p = a and e o p = s o r. This
i m p l i e s s o y o p = e o p = s o r a n d t o y o p = f o e o p = f o a = t o r ,
thus y o p = r since (5, t) is a puUback. This factorization p is unique
because, given // such that e o pr = a and y o p' = r, one deduces
e o p ' = s o y o pf = S O T , from which p = p' by uniqueness of p.
Since / is bidense, y is bidense (previous part of the proof). A perfectly
analogous proof on the left-hand cube yields the bidenseness of x. Since
soyox = f oa and toyox = f ob, one has w = yox. Thus w is bidense
as composite of two bidense morphisms (previous part of the proof).

Finally let us suppose that go f and g are bidense. We again refer to
diagram 5.80. From gofou = gofov we conclude that u, v are coequalized
by the bidense morphism g o / ; as we have seen previously in the proof,
this implies the existence of a dense monomorphism £: Z >A such
that uo£ = i?o£. But then £ factors through the equalizer k = Ker (ix, v)
and since £ is dense, k is dense as well (see 5.7.7).

To prove that the image i of / is dense, consider diagram 5.82 obtained
from the two previous diagrams and where all three squares are pull-
b a c k s . O b s e r v e t h a t f o e o X = s o y o X = s o l o f i = t o l o f j t = t o y o \ .
Since I is dense, A is (see 5.7.4). Applying previous parts of the proof
several times, toy is bidense because g o f is, and e is bidense because
g is. Therefore e o A and t o y o A are bidense. Since fo(eo\) = toyo\
and e o A are bidense, / is also. •
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f

y .> Q

-> B

-> B

-> C

Diagram 5.82

Given a universal closure operation on a category ^ , the corresponding
bidense morphisms constitute in general a proper class E, so that the
corresponding category of fractions ^[S" 1 ] has no reason to exist (see
section 5.2). But when 36 has a "sufficiently good family of generators",
the size problem disappears. The precise notion we need is that of a
locally presentable category as studied in sections 5.1, 5.2 of volume 2.
Such a category is in particular complete and cocomplete (see 5.2.8,
volume 2) and admits a dense family of presentable generators (see 5.2.5,
volume 2).

Proposition 5.8.5 Consider a locally a-presentable category 8$ pro-
vided with a universal closure operation. A monomorphism s: S> >B
is dense for the closure operation iff, for every a-presentable object P
and every morphism f: P >B,

r\sy. r\s)> >p
is a dense monomorphism.

Proof By 5.7.4, if s is dense, so is f~1(s). Conversely B can be written
as an a-filtered colimit B = colim^ P^, where each Pi is a-presentable (see
5.2.5 of volume 2). Consider the pullbacks given by diagram 5.83, where
the <Ti's are the canonical morphisms of the colimit. Given p: Pj >Pi
such that Oi o p = &j, we have SOTJ = Gj O SJ = &i o p o Sj, from which
there is a unique q: Sj >Si such that r̂  o q = Tj, S{ O q = p o Sj. This
defines a new a-filtered diagram with vertices Si and, since a-filtered
colimits are universal in Si (see 5.2.8 of volume 2), S = colim^ Si.
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Si 2—> S

Diagram 5.83

-> S

-> B

Diagram 5.84

An analogous argument can be developed replacing S by 5, consid-
ering now the pullbacks of diagram 5.84. By 5.7.1.(4), S'i = G^1(S) =
err1 (5) = Si = Pi, since by assumption Si is dense. But then each s[ is
an isomorphism and the morphisms

induce a factorization s: colim^ Pi -
The relations

>S such that s o = r[ o

S O S O Gi = S O 7"̂  O [Si

so~sorl = soGiO, = ii°(si) l o s i =

imply s o 5 = 1B and s o s = 1̂ -. Thus S = B and S is dense in B. •

Proposition 5.8.6 Consider a locally a-presentable regular category
3b provided with a universal closure operation. For an object A € &, the
following conditions are equivalent:

(1) for every bidense morphism f,f-L A;

(2) for every dense monomorphism s, s _L A;

(3) for every a-presentable object P and every dense subobject S > > P

ofP, a LA.
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Si

Diagram 5.85

> A

Proof (1) =» (2) and (2) =4- (3) are obvious. Let us prove (3) => (2).
We consider an object A satisfying (3) and a dense monomorphism
s: S) >B. We construct ai, Si, T{ as in the proof of 5.8.5, yielding
diagram 5.85. Consider now an arbitrary morphism g: S >A. Each Si
is dense and thus we find a unique hi'. Pi >A such that gon = hiOSi.
Given p: Pj »P* such that &i op = aj, there exists q: Sj >Si such
that TiO q = Tj, SiO q = po Sj (see proof of 5.8.5). Therefore

hi opo Sj = = hj o

from which hi o p = hj by uniqueness of hj. So the morphisms hi con-
stitute a cocone, from which there is a unique factorization h through
B = colim*Pi, with the property hoai = hi.

Since S = colim^ Si, the relations

h o s o n = h o ai o Si = hi o Si = g o n

imply h o s = g. If h! is another morphism such that h' o s = g, one gets

h' o ai o Si = h' o s o n = g o n = hi o Si,

from which hf o ai = /i^, by the uniqueness condition in the definition
of Si J_ A. But then h' o en = /î  = h o ai, from which h = h' since
5 = colinii P^. This concludes the proof of (3) =^ (2).

Now let us prove (2) => (1). We consider a bidense morphism / ,
its strong-epi-mono factorization / = i o p, its kernel pair (iz, v) and
fc = Ker(^, v). We choose A G & such that 5 ± A, for every dense
monomorphism A. Finally we consider g: B >A and diagram 5.86.
Since u o k = v o k, one has g o u o k = g o v o k. Since fc _L A, this
implies g ou = g o v. But since i is a monomorphism, (it, v) is also the
kernel pair of the strong, thus regular epimorphism p (see 10.1.5). Since
p = Coker (u, v) (see 2.5.7) and g o u = g o v, we get a unique q such that
g = qop. Since i _L A, this provides a unique h such that hoi = q. This
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B > - > P > B f

Diagram 5.86

implies hof = hoiop = qop = g. If h' is another morphism such that
hf ° / = 9i then h! oiop = h' o f = g = qop, from which h!' o% = q since
p is an epimorphism. By uniqueness of h, h = h'. D

Corollary 5.8.7 Consider a locally presentable regular category Si pro-
vided with a universal closure operation. Write £ for the corresponding
class of bidense morphisms and ^ E for the full subcategory of those
objects A £ & such that f J_ A, for every bidense morphism f. Under
these conditions, &Y, is reflective in 3& and each bidense morphism is
inverted by the reflection.

Proof By 5.8.6, it suffices to require orthogonality with respect to the
dense monomorphisms s: S) >P, with P a-presentable. Since there is
just a set of such dense monomorphisms (see 4.5.15, this volume and
5.2.1, volume 2), the existence of a reflection r H i: &% ^Sft follows
from 5.4.7.

By 5.4.4, each bidense morphism is inverted by the reflection r. •

It should be clear that the previous corollary does not at all state that
E is precisely the class of all morphisms inverted by the reflection. As
a consequence, ^ s has a priori no reason to be a localization of 3$. An
additional condition on E is required for that, as attested by the next
proposition.

Proposition 5.8.8 Consider a locally presentable regular category &
provided with a universal closure operation. The following conditions
are equivalent:

(1) the universal closure operation on 0b is that induced by a localization
r-\i: .tf* ).<» of@, as in 5.7.11;

(2) the class S of bidense morphisms is closed under colimits (see 5.4.9).
Under these conditions, the bidense morphisms are exactly those in-
verted by the reflection r.
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S > >TH~S> > T

S > > S >"

Diagram 5.87

Proof If (1) holds, S is the class of those morphisms inverted by the
reflection (see 5.8.3) and thus is closed under colimits (see 5.4.10).

Assume now condition (2) of the statement. Corollary 5.8.7 implies the
existence of a reflection r Hi: ^ s ^ , where A G ^ E precisely when
/ _L A for every bidense morphism / . Moreover, the class S of bidense
morphisms is contained in the class £ of all those morphisms inverted by
the reflection r. But condition (2) of our statement, together with 5.8.4,
allows us to apply 5.4.10 and conclude that £ C E. Thus finally £ = S.
Since S has a right calculus of fractions (see 5.8.4), the reflection is a
localization (see 5.6.1). The universal closure operation associated with
that localization has the same bidense morphisms as the original closure
operation (the morphisms inverted by r), thus both closure operations
have the same dense monomorphisms (see 5.8.2). But given a subobject
S> >A, S> >A is the biggest subobject of A in which S is dense.
Indeed, 5) >S is dense (see 5.7.5) and if S < T < A with S dense
in T, diagram 5.87, where both squares are pullbacks, indicates that
T n S> >T is closed, since S> > A is (see 5.7.4). On the other hand,
Tfi5> >T is dense, since S> >T is (see 5.7.7). Therefore TD 5 = T
(see 5.7.6) and T C S. Thus S is indeed the biggest subobject of A in
which S is dense, so that two universal closure operations with the same
dense monomorphisms must coincide. •

A useful lemma, when trying to apply 5.8.8, is given by the following
result.

Lemma 5.8.9 Consider a locally a-presentable regular category Si pro-
vided with a universal closure operation. The class of bidense morphisms
is closed under a-filtered colimits.

Proof Consider an a-filtered category ^ , two functors F,G: 2 ^3&
and a natural transformation a: F => G such tha t , for every D € ^ ,
OLD is bidense. In the category of functors F u n ( ^ , ^ ) let us consider
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Diagram 5.88

,. , colimix v
v T^K colim A; , ,. o > ,. ^ colim a ^ ,. ^cohm K> > colim P . > colim F > colim G

colim v

colimp

colim /

Diagram 5.89

colim i

the situation of diagram 5.88, where (u, v) is the kernel pair of a, k =
Ker(ix, v) and p = Coker(n, v); all these constructions are performed
pointwise in ^ ; see 2.15.1. Prom aou = aov we get a unique factorization
i such that top = a and we know i is a monomorphism, since Fun(®,@t)
is regular; see 2.1.4 of volume 2. Now a-filtered colimits commute in
0$ with a-limits (see 3.2.8 of volume 2), thus in particular with finite
limits; but they commute also with coequalizers (see 2.12.11). Therefore
we get an analogous diagram 5.89, with (colima,colimv) the kernel pair
of colima, colimk its equalizer and colimp its coequalizer, colimi a
monomorphism. To conclude that colima is bidense, it suffices to prove
that colim i and colim k are dense monomorphisms, i.e. that an a-filtered
colimit of dense monomorphisms is again a dense monomorphism. We
write out the proof in the case of the monomorphisms %r>\ ID >GD.

Consider diagram 5.90 where op, TB are the canonical morphisms of
the colimits, colim/ is the closure of colim/ in colimG and the square
is a pullback. We get a factorization ID through the pullback and since
iD is dense, jp is dense as well (see 5.7.7). But since v is closed by
construction, jr> is closed (see 5.7.4). Therefore JD is an isomorphism
(see 5.7.6). Now since a-filtered colimits are universal in & (see 5.2.8,
volume 2), colim/ = colim Po and finally v = colim jo- Since each jr>
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colim i

GD

Diagram 5.90

is an isomorphism, v is an isomorphism and finally colim/ = colim G,
proving that colim i is dense. •

Corollary 5.8.10 Consider a locally a-presentable regular category &
provided with a universal closure operation. The following conditions
are equivalent:

(1) the universal closure operation on 0$ is that induced by a localization
r-\i: •<^< >.<a of@, as in 5.7.11;

(2) the class S of bidense morphisms is closed under a-colimits (see
5.4.9).

Under these conditions, the bidense morphisms are exactly those in-
verted by the reflection r.

Proof By 5.8.8 it remains to show that condition (2) implies in fact
that bidense morphisms are stable under all (small) colimits. Every co-
limit is an a-filtered colimit of a-generated colimits (this is the a-version
of proposition 2.13.7). Since an a-generated colimit can be constructed
from a-coproducts and coequalizers (this is the a-version of proposition
2.8.5), our assumption implies that bidense morphisms are stable un-
der a-generated colimits. Combining this with 5.8.9, we conclude that
bidense morphisms are stable under all small colimits. •

When condition 5.8.10.(2) is satisfied by every universal closure op-
eration on ^ , we get at once a bijection between the localizations of 3&
and the universal closure operations on ^ . Rather strong conditions are
needed in general on a category 0b as in 5.8.10 to get such a bijection; we
shall prove it is the case for locally finitely presentable abelian categories
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(see 1.13.5, volume 2) and for Grothendieck toposes (see 3.5.7, volume 3).
More generally, it is the case for the exact locally presentable categories
in which a coproduct of monomorphisms is still a monomorphism (see
5.9.5). In 9.3.9, volume 3, we shall also prove the indicated bijection in
the case of an (elementary) topos ^ , but following completely different
arguments: a topos is in general not locally presentable.

5.9 Exercises

5.9.1 Consider a finitely complete category ^ provided with a system
(£, M) of factorization. Prove that

(1) if / o g G M and / is a monomorphism, then g G JW,
(2) the. class M. is stable under pullbacks, i.e. in the pullback of dia-

gram 5.91, if / G M, then g G M.

5.9.2 Consider a small category #, a set E of morphisms of ^ and the
corresponding category of fractions ip: <& ^ [ E " 1 ] . Prove the follow-
ing:

(1) if (p is faithful, every morphism of S must be both a monomorphism
and an epimorphism;

(2) if S admits a left calculus of fractions and all the morphisms of S
are monomorphisms, then y> is faithful.

5.9.3 Consider a category ^ and a class S of morphisms of ^ , which
admits a left calculus of fractions and is such that the corresponding
category ip: <& >(^7[S~1] of fractions exists. Write F for the class of all
morphisms inverted by the functor (f. Prove the following:

(1) / G F iff there are morphisms v,w G # such that v o f G S and
w o v G S;

(2) F admits a left calculus of fractions.
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5.9.4 Let ^ be a finitely complete category provided with a universal
closure operation. Prove that the closure of an equivalence relation is
still an equivalence relation (see 2.5.2, volume 2, for the definition of an
equivalence relation).

5.9.5 Consider a locally presentable category <€ which is exact in the
sense of 2.6.1, volume 2. Suppose that in ^ , a coproduct of monomor-
phisms is again a monomorphism. Given a universal closure operation
on ^ , prove that the class of bidense morphisms is stable under colimits
[Hint: consider separately the cases of (bi)dense monomorphisms and of
bidense strong epimorphisms, of coproducts and of coequalizers; apply
5.9.4]. Deduce the existence of a bijection between the universal closure
operations on ^ and the localizations of ^; see Borceux and Veit.

5.9.6 For the universal closure operation defined in 5.7.12.b, prove that
(0) is closed in Z, but not every subgroup of Z is closed.
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Flat functors and Cauchy completeness

6.1 Exact functors

Extending a classical terminology for abelian categories (see 1.11.2, vol-
ume 2), we define

Definition 6.1.1 Consider two finitely complete categories si ,08. A
functor F: si >38 is left exact when it preserves finite limits.

Proposition 6.1.2 Let F: si >Set be a functor defined on a finitely
complete category si. The following conditions are equivalent:

(1) F is left exact,
(2) the category Elts(F) of elements of F is coGltered (see 1.6.4);
(3) F is a filtered colimit of representable functors.

Proof Let us recall that Elts(F) is defined in the following way.

• Objects: pairs (A, a) where A G \si\ and a G FA.
• Arrows: / : (A, a) >(A',a') is an arrow / : A >Af in si such

that Ff(d) = a'.

First we prove (1) =>• (2). If 1 G si is the terminal object, F(l) is the
singleton {*} so that (1, *) is an object of Elts(F).

Given (A,a) and (A',af) in Elts(F), one has {a,a') G FA x FA' ^
F(A x A1), yielding an object (A x A1', (a, a')) of Elts(F). The two pro-
jections of the product give the required arrows

(Ao)( PA (Ax A', (a, a')) PA> )(A',a')-

If / ,# : (A, a) *(A',a!) are two morphisms of Elts(F), consider the
equalizer k: K> >A of the pair f,g in si. Since Fk = Ker(Ff,Fg) in
Set, the relation Ff(a) = a1 = Fg(a) implies a G FK, yielding an object

250
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(If, a) G Elts(F) and a morphism k: (if, a) > (A, a) which equalizes /
and g.

To prove (2) =>> (3), let us recall that F is the colimit object of the
following composite:

Elts(F) ^—> si ^—> Fun(j*, Set),

where </>(A, a) = A is the obvious forgetful functor and Y(A) = si (A, —)
is the contravariant Yoneda embedding. Since the functor Y is con-
travariant, (2) =4> (3) follows at once.

Finally we prove (3) =$> (1). Suppose we are given a cofiltered category
^ and a functor 0 such that F is the colimit object of the composite

V > J * —>Fun(j/,Set)

which we write F = colim c^(0C, —) for short. Consider a finite cate-
gory Ql and a functor tj): Q) >sf. This yields a bifunctor

r: <e x ® >Set, r (c , z?) =

Since representable functors commute with limits (see 2.9.4) and finite
limits commute with filtered colimits in the category of sets (see 2.13.4),
one deduces

= colim

•
Assuming now that si is small, we can consider the covariant Yoneda

embedding

Y:s/ >Fun(j/*,Set), Y(A) = s/(-,A).

Anticipating the results of section 6.2, proposition 6.1.2 can be com-
pleted as follows.

Proposition 6.1.3 Let F: si >Set be a functor defined on a small
finitely complete category si. The following conditions are equivalent:

(1) F is left exact;
(2) the left Kan extension LanyF of F along the covariant Yoneda

embedding is left exact.
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Proof By 2.15.5, Y preserves limits. By 3.7.3, (LanyF) oY = F.
Therefore (2) certainly implies (1).

Conversely suppose F: si >Set left exact and choose a contravari-
ant functor G € Fun(j/*,Set). By 3.8.1 we have

(LanYF)(G) ^ (Lan y*G)(F).

To avoid heavy notation, let us make the convention that (A, a) runs
through the category of elements of F. Using the axiom system of uni-
verses, let us assume that "set" means "belonging to some universe ^ "
and "class" implies "belonging to some universe 'V 3 °U". The cate-
gories Set, Fun (<*/*, Set), and Fun(Fun(j/*,Set),Set) are then ^-small
categories. Writing

evA: Fun (<*/*, Set) >Set

for the evaluation functor at A € \si\, the pointwise nature of colimits
in Fun(Fun(j/*,Set),Set) implies (see 2.15.12)

(LanyF)(G) ^ (Lany*G)(F)

But the evaluation functor evA is left exact since, by the Yoneda lemma
(see 1.3.3), it is represented by si {A, —); see 2.9.4. On the other hand the
category of elements of F is cofiltered, since F is left exact (see 6.1.2).
Thus LanyF = co l im^^ev^ is a filtered colimit of left exact functors
and therefore is left exact (see 6.2.2). •

Proposition 6.1.4 Consider a functor F: s/ >3# with si',£$ finitely
complete. The following conditions are equivalent:

(1) F is left exact;

(2) \/B e @ the functor @(B, F-): si >Set is left exact.

Proof (1) =4> (2) since @(B, F~) = ®{B, - ) o F and both functors F ,
@{B, - ) are left exact (see 2.9.4).

Conversely suppose that each ^ ( S , F-) is left exact and consider a
functor G: Q) >si, with 2 finite. Write (L, {PD)D€®) for the limit of
G. We must prove that (FL, {FprSJD^®) is the limit of F o G. Given a
cone (#£>: B >FGD)D€& on FG, we have in fact a compatible family
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(qD € &(B,FGD))D g. By construction of limits in Set (see section
2.8), this compatible family corresponds to a unique element

q e \imD@(B, FG-) ^ @{B, FL),

where the isomorphism holds since 0&{B, F-) preserves finite limits by
assumption. In this way we have obtained a unique q: B >FL such
that FpD ° q — qn for each D E S>. •

6.2 Left exact reflection of a functor
Now let us study more intensively the category Lex(j/, Set) of left exact
functors on a small finitely complete category si. The morphisms of
Lex(^, Set) are just the natural transformations, so that Lex(si, Set) is
a full subcategory of Fun(j/, Set). We intend to prove it is a reflective
subcategory.

Proposition 6.2.1 Let si be a, small finitely complete category si. The
category Lex(si, Set) is complete and limits are computed pointwise.

Proof Given a functor H: 3£ > Lex(j/, Set), with 9C a small category,
compute its pointwise limit L: si >Set. We must prove that L is left
exact. Consider a functor K: Of >si with <& finite; applying 2.12.1
and 2.15.2 we get

L(\imYKY) ^ (HmxHX)(limYKY)

since each HX is by assumption left exact. (We have written limx and
limy for short to denote the limits of functors defined respectively on 3C
or 9.) D

Proposition 6.2.2 Let si be a small finitely complete category. The
category Lex(j/, Set) has filtered colimits: they are computed pointwise,
are universal and commute with finite limits.

Proof Given a functor H: SC > Lex(j/, Set) with 2£ a filtered cate-
gory, compute its pointwise colimit L: si >Set. We must prove that
L is left exact. Consider a functor K: ®J >si with ty finite; applying
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2.13.4 and 2.15.2 and using abbreviations analogous to that of 6.2.1, we
get

HY\mYKY) ^ (colimxHX)(limYKY)

£* colimx(HX)(limYKY)

^ colim xKmY(HX)(KY)

^ limYcolimX(HX)(KY)

^\imY L(KY).

Finite limits and filtered colimits are computed pointwise in the cat-
egory Lex(j/, Set); their commutativity and the universality of filtered
colimits are thus a consequence of the corresponding results in Set (see
2.13.4 and 2.14.2). •

Proposition 6.2.3 Let s/ be a small finitely complete category. The
contravariant Yoneda embedding

Y:sJ

transforms finite limits into finite colimits. When s/ is finitely cocom-
plete, Y transforms also finite colimits into finite limits.

Proof Let H: 9C >s/ be a functor defined on a finite category 3C\
write (L, (px)xe&) for its limit in s/. We know (FL, (Ypx)xe^) is a
cocone on Y o H, because Y is contravariant. Consider another cocone

where F is left exact. Applying the Yoneda lemma (see 1.3.3), this cor-
responds to a compatible family of elements (ax £ F(HX))X g[. Since
F is left exact, (FL, (Fpx)xe^) is a finite limit in Set. By construction
of a limit in Set (see section 2.8), this yields a unique element a G F(L)
such that (Fpx)(a) = ax for each X € 9C. By the Yoneda lemma again,
a corresponds to a natural transformation a: s/(L, —) => F which by
the naturality of the Yoneda isomorphisms satisfies a o s/(px, - ) = &X-
The uniqueness of such a factorization a is an immediate consequence
of the uniqueness of the corresponding element a. The last statement is
a direct consequence of 2.9.5, 2.15.2 and 6.2.1. •

Proposition 6.2.4 Let si be a small finitely complete category. The
category Lex(j/, Set) is cocomplete.

Proof The first proof one can think of is showing that Lex(s/, Set) is
a reflective subcategory of the category Fun(j/, Set) of all functors from
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si to Set, from which Lex(j^,Set) is cocomplete (see 3.5.4 and 2.15.2).
Considering 6.2.1 and the adjoint functor theorem (see 3.3.3), it remains
to prove the solution set condition. Given two functors F, G: .Q/ I Set
with F left exact and a natural transformation a: G => F , one considers
first the set So of all elements of the form OLA{X) for all A G si and
x G GA. It is quite straightforward to construct the smallest left exact
subfunctor H C F containing all the elements of So:

• given a compatible family (xi)i€i of elements in So along a finite
diagram (D^)^/ in si, one adds to So the corresponding element
x G Hwii(FDi) = F(lim.iDi); this yields a bigger set S'o of elements
in F;

• given an element y G FA in S;
o and an arrow / : A >B in s£,

one adds to S'o the element (F/)(y); this yields a bigger set Si of
elements in F .

One repeats the same operations on Si to get a bigger set S2 and so
on by induction on the integers. Finally one considers S = Un€N^
and since this union is filtered, it follows easily that S is exactly the
set of all elements y G H(A), A G s£, for some left exact subfunctor
H C F containing all the original elements a^(x); in particular a factors
through H. Some routine arithmetic on infinite cardinals shows that the
cardinality of ]JA£^H(A) is smaller than some cardinal (3 depending
only on the cardinality of the set of arrows of s/ and that of the set
J J A G J ^ G ( A ) ; the crucial point is that the cardinal (3 does not depend
at all on F . Straightforward cardinality arguments show that (up to
isomorphisms) there is just a set of left exact functors H such that
\JAe^H(A) has cardinality less than /?. The previous development lets
us then conclude that those ETs constitute a solution set for G.

Instead of developing the details of the proof we have just sketched,
we prefer an alternative "constructive proof" avoiding cardinal arith-
metic. The advantages of such a "constructive proof" are its possible
generalizations, for example in the context of toposes (see chapter 6,
volume 3).

An arbitrary colimit can be written as a filtered colimit of finitely
generated colimits (see 2.13.7). Since filtered colimits exist (see 6.2.2), it
suffices to prove the existence of finitely generated colimits. But finitely
generated colimits can be computed from finite coproducts and coequal-
izers (see 2.8.5).

If 1 is the terminal object of s£, the representable functor J / ( 1 , —) is
the initial object of Lex(j/, Set); see 6.2.3.
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If F, G: .<?/ I Set are left exact, consider the categories of elements
of F and G and the corresponding forgetful functors </>: Elts(F) > J / ,
ip: Elts(G) >s/. Since the categories Elts(F) and Elts(G) are both
cofiltered (see 6.1.2), the product category Elts(F) x Elts(G) is obviously
cofiltered. Let us consider the composite

Elts(F) x Elts(G) ^ X ^ >s/ ^ —

where (0 x ^)((A,a), (B,6)) = <f>(A,a) x ^(^ ,6) and Y(A) = tf{A, - ) .
Since the domain category is cofiltered,

lim (Y O ((/) X V)) = ( # , (5(A,a)(B,6)

where H is left exact (see 6.1.2). But the morphisms

constitute a cocone on Y"o0, just because the morphisms S(A,a)(B,6) con~
stitute a cocone on Yo (0 x -0); this induces a factorization si: F >H
through F = colim (Yo</>). In the same way we get s2: G >H. Let us
prove that (if, si, 52) is the coproduct of F, G in Lex(j/, Set).

Choose a left exact functor if and natural transformations a: F => if,
(3: G => K. The composites

yield a factorization

x S, - ) = >^(A, - ) U

see 6.2.3. Since 5(^?a) and S(s,b) constitute cocones, 7(^,a)(B,6) is a c ° -
cone on y o (0 x -0), from which we may obtain a unique factorization
7: if >K such that

7 ° 5(A,o)(J3,6) =7(A,a)(B,6).

The relations

7 O 5i O 5 ( A > a ) = 7 0 S(A,a)(

= 7(A,a)(B,6)

= a ° s(A,a)

yield 7051 = a. In the same way, 70 $2 = /3. The uniqueness of 7 results
immediately from that of 7(A,a)(£,6)-
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To prove the existence of coequalizers in L e x ^ , Set), let us first con-
sider two natural transformations a,/3: J ^ ( C , —) >F with F left ex-
act. Let us write F as the filtered colimit

F =

By the Yoneda lemma (see 1.3.3), a,/? correspond to elements

a,be FC = colim(Aja)s/(A,C).

a is thus the equivalence class of some element / : A\ >C for an index
(Ai,ai), while b is the equivalence class of some element g: A2 >C
for an index (A2,a2). Since the colimit is filtered, there is no restriction
in choosing (Ai,ai) = (^2,02). In this way we have obtained

with s{Auai) o sf(f,-) = a and s{Auai) o sf{g,-) = /3. By 6.2.3, the
following diagram is a coequalizer in Lex(<s/, Set),

where k = Ker (/, g).
Now given any morphism a: (A3,03) >(Ai,ai), we can consider in

the same way the coequalizer

o a, - )
where ka — Ker (/ o a, g o 0). Given an additional morphism 6,

(A,,a4) h- >(A3,a3)

the relation foaobokaob = goaobokaoi) implies the existence of a unique
factorization b': KaOb >b o Ka such that ka o br = b o fcaO6- In this way
we have defined three functors from Elts(F)/(Ai,ai) to Lex(j/, Set):

• the constant functor on s/(C, —);
• the functor mapping ((A3,a3),a) to s/(As, - ) ;
• the functor mapping ((A3,a3),a) to srf{Ka, - ) .

The obvious functor

TT: Elts(F)/(A1; 01) >Elts(F), {(A3, a3), a) 1- (A3,03)
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is cofinal, just because Elts(F) is cofiltered (see 2.11.2). The colimit of
the composite Y o cf> o ir is thus again F (see 2.11.1). Observe moreover
that Elts(F)/(Ai, a\) is still cofiltered, which implies that the three func-
tors we have just described have a colimit (see 6.2.2). Computing those
colimits thus yields a diagram in Lex(j/, Set),

^ 2) ^ Q

Finally 7 = Coker(a,/3), by the interchange property of colimits (see
2.12.1), thus (a,/3) indeed have a coequalizer.

Now consider two arbitrary morphisms a, (3: G \ F in Lex(j/,Set)
and write G as a filtered colimit

G = colim(Bb)eBts{G)s/(B, - ) .

For each index (i?, b) we have a diagram

s(B,b) r - >p Q(B,b) n

>^ >t >Q(B,b),

where q(B,b) = Coker(as(B,b)i/3s(B,b))' Observe that given a morphism
/ : (B,b)—+{Br,bf) in Elts(G), the relations

Q(B,b) o a o s(B',b') =

= Q(B,b) °P°

° P ° s(B',b')

imply the existence of a unique morphism Qf. Q(B',b') >Q(B,b) s u c h
that Qf o q(B\b') — Q(B,b)- This defines a contravariant functor

Q: Elts(G) >Lex(j/,Set),

which has a colimit (H, (cr(B,b))) in Lex(j/, Set) since Elts(G) is cofiltered
(see 6.2.2). With the previous notations, observe that

a(BJ>) ° Q{B,b) — a(B,b) °Qf ° Q(B',b') = &(B',b') ° Q{B',b')'

Thus if two objects (S,6), (B',b') of Elts(G) are connected by a mor-
phism, the composites (T(B,b)oQ{B,b) a n d cr{B',v) o^f(B/,6/) are equal. Since
Elts(G) is cofiltered, it is connected (see example 2.6.7.e) and finally the
composites G^B,6) ° Q(B,b) a n d &{Bf,bf) ° Q(B',b') a r e equal for every two
objects of Elts(G). This defines a morphism

h: F >H, h = (J(B,b) ° Q(B,b),

and we shall prove that h = Coker (a, /3) in Lex(j/, Set).
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First of all one has

h o a o 8(B,b) = a(B,b) ° Q(B,b) °a° s(B,b)

= a(B,b) ° Q(B,b) ° P

from which h o a = h o /?, since the S(B,&) constitute a colimit cocone.
Next given K E Lex(j/, Set) and k: F >K such that k o a = k o /?,
the relation b a o S ( B , 6 ) = ko/3o5(^,6) implies the existence of a unique
'(£,6): Q(B,b) ^ ^ such that l(B,b) ° 9(B,6) = ^- Observe that given
/ : (B,6) >(B/,6/)5

 t h e relations

'(£,&) °Qf ° Q(B',b') = J(B,6) ° (̂B,6) = fc = (̂B',60 ° Q(B',b')

imply /(B,6) ° Qf = l{B',bt)'> since q(B',b') is an epimorphism. Thus the
morphisms Z(B,&) constitute a cocone on Q, from which there is a unique
/: # >K such that / o (T(B,b) = '(B,6) f°r e a c h (-S) ^)- I11 particular

loh = lo (7(3^) ° Q(B,b) = (̂B,6) ° 9(B,b) = «̂

The uniqueness of I follows immediately from that of l(B,b)- O

Theorem 6.2.5 Let si be a small category The category Lex(j/, Set) of
left exact functors is reflective in the category Fun(j/, Set) of all functors.

Proof A first try, reducing the problem to the adjoint functor theorem
(see 3.3.3), has been sketched at the beginning of the previous proof. Let
us instead give a constructive proof.

Consider an arbitrary functor F: si >Set. Define (F , (s(A,a))) to
be the colimit of the composite

Elts(F) ^—>sJ ^—> L e x « Set)

where Elts(F) is the category of elements of F and <f> is the corresponding
forgetful functor (see 6.2.4). We know by 2.15.6 that F itself can be
obtained via the colimit (F, (&(A,a))) °f the composite

Elts(F) ^—>j* —> Lex(j/, Set) l- > Fun(j/, Set)

where Y(A) = s/(A, —) and i is the canonical inclusion. The morphisms
s(A,a) constitute a cocone on iYcj) in Fun(j/, Set), from which a unique
factorization cp: F >F such that <p o (J(A,a) = s(A,a) f°r every object
(A, a) G Elts(F). We shall prove that (F,(p) is the left exact reflection
of F.
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If G is left exact and i\)\ F => G is a natural transformation, the
composites if; o (J(A,a) constitute a cocone on Y" o 0 in Lex(j/, Set), from
which there is a unique 9: F => G such that 9 o s^a) = ^ ° a(A,a) f°r

every index (A, a). In particular

from which 9 o <p — ip since the morphisms (cr(A,a)){A,a) constitute a
colimit cocone in the category Fun(j/, Set). Now if 9'\ F ==» G is another
natural transformation such that 9' o ip = i/j, the relations

9 O S( A n\ = 9 O (0 O (J( A n\ ~ ifc ° &( A n\ = = 0 O S( A n\

imply 9 — 9l\ since the morphisms S(A,a) constitute a colimit cocone in
Lex(j/,Set). ' D

6.3 Flat functors

Some functors are bound to preserve limits, like represent able functors
(see 2.9.4), functors having a left adjoint (see 3.2.2) or covariant Yoneda
embeddings (see 2.15.5). Most people think of the notion of flat functor
as that of a functor which would preserve finite limits if they existed;
this intuition can in some way be justified by 6.3.7. But even if no
one considers the previous sentence as a definition (of course!), it is
nevertheless misleading and can give a truncated intuition of what a flat
functor actually is. For example the covariant Yoneda embeddings we
have just mentioned are not flat in general (see 6.7.10). It is true that a
flat functor preserves all finite limits which turn out to exist (see 6.7.5)
and it is also true that being flat reduces to preserving finite limits when
the categories considered do have finite limits. But when not all finite
limits exist, being flat is more subtle than the rough idea of preserving
finite limits if they existed. With a look on 6.1.2 and 6.1.4 we define

Definition 6.3.1 For an arbitrary category s/, a functor F: jtf >Set
is Hat when the category Elts(F) of elements of F is cofiltered. Given an
arbitrary functor F: stf >@t, F is Hat when for each object B € &,
the functor @(B, F-): si >Set is Hat.

It follows immediately from 6.1.2 and 6.1.4 that

Proposition 6.3.2 Let F: si >$$ be a functor, with si, M Hnitely

complete. The following conditions are equivalent:

(1) F is left exact;
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(FAJ) (FA',f)

Diagram 6.1

(A,u) (A',v)

Diagram 6.2

(2) F is Hat. D

Proposition 6.3.3 Let F: si >0$ and G: 3$ >^ be Eat functors.
The composite G o F is a Eat functor as well.

Proof Fix an object C G # and consider the functor #(C, GF-). The
category of elements of ^(C, G—) is non-empty, which means the exis-
tence of B e @ and / : C >GB. The category of elements of 3S(B, F-)
is non-empty, which means the existence of A G si and g: B >FA.
This yields the composite (Gg)of: C >GFA, thus a pair (A, {Gg)of}
in the category of elements of ^(C, GF-).

Next consider two pairs (A, / ) , (A', / ' ) in the category of elements of
#(C,GF-) ; thus

/ : C >GFA, / ' : C >GFAf

are arrows of ^ . This yields the pairs (FA, f) and (FAf, f) in the cat-
egory of elements of ^(C, G—). By cofilteredness, we find (B,g) in this
same category and morphisms u, v as in diagram 6.1, i.e. in the category
^ , morphisms u: B >FA, v: B >FA! such that (Gu) o g = / and
(Gv) o g — / ' . The two pairs (A, u), (A7, v) are now objects in the cate-
gory of elements of &(B,F—). By cofilteredness we find (A",w) in this
same category and morphisms x, y as in diagram 6.2, thus in the category
j / , morphisms x: A" >A and y: A!1 >A! such that (Fa;) ow = u,
(Fy)ow = v. Finally the pair (An', (Gw)og) is in the category of elements
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of <ff(G, GF-) and the relations

(GFx) o Gw o g = Gu o g = / ,

(GFy) oGwog = Gvog = f',

show that we have produced morphisms

(A, / ) ^ ^ (A", (Gw) o g) 2—• (A', / ' )

as required.
Finally consider x,y: (A, /)ZH|(A', / ') in the category of elements

of <g(C,GF-)] thus x,y: AZZ^A' are such that (GFx) o / = / ' =
(GFy)of. This yields the morphisms Fx, F?/ in the category of elements

Fx
, <?) **—• (FA, / ) > (FA ; , / ) •

F
By cofilteredness, we get an arrow ix in this same category, such that
(Fx) o u = (Fy) o u; observe that (Gu) o g = f. Writing (Fx) ou =
v = (Fy) o u, we now have two arrows x,y: (A,u)HI±(A',v) in the
category of elements of &(B,F—). By cofilteredness we get an arrow
z: (A", w) > (A, u) in this same category, such that xoz = yoz; notice
that (Fz) o w = u. The relation GFz o Gw o g = Gu o g = / indicates
that we have produced a morphism z: (A", {Gw) o #) >(A, / ) in the
category of elements of #(G, G F - ) , with x o ^ = 2/oz. D

Proposition 6.3.4 Given a category s/, every representable functor

stf(A,-): si >Set

is fiat.

Proof The object (A, 1A) is initial in the category of elements of
jtf(A, —). Indeed given any other object (A', f) of this category, a mor-
phism g: (A, 1A) > (A', f) is an arrow g: A >A' such that golA =
/ ; / is of course the unique such arrow. A category with an initial object
is obviously cofiltered. •

Proposition 6.3.5 Let F: s/ >& be a functor with a left adjoint.
Then F is flat.

Proof We must prove that ^ ( £ , F - ) is flat for each B G J ; see 6.3.1.
Since £(B,F-) = s/(GB, -) by 3.1.5, the result follows at once from
6.3.4. •
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Proposition 6.3.6 Given a small category sf, the category Flat(j/, Set)
of flat functors from stf to Set has pointwise filtered colimits.

Proof Consider a filtered small category 3} and a functor

H: 2 >Flat(^,Set).

Write (F, (SD)D€@) for the (pointwise) colimit of the composite

9 £—>Flat(jtf,Set) 1 >Fun(j/,Set);

thus SD'- HD >F. We must prove that F is flat.
As Q) is non-empty, choose D G ® . Since HD is flat, E\ts(HD) is non-

empty and we find (A,a) G Elts(fTD), i.e. a G HD{A). So sD(a) G FA
and (JMD(O)) GEIts(F).

Next consider (A, a) and (B,6) in Elts(F). One has

thus a = SDA{O>') for some a' 6 (/TD)(A); in the same way b = SD'

for some V G (HD')(B). Since ^ is filtered, there is no restriction in
choosing D = D'. So (A, a') and (B,b') are objects of Elts(HD), which
is cofiltered since HD is flat. We can thus choose (C,c) in Elts(JTi)),
together with

«:(C,c) >(A,a'), v: (C,c) >(B,b'),

yielding (HD){u)(c) = a' and (HD)(v)(c) = b'. One has c € (HD)(C),
thus soc(c) € FC and by the naturality of SD,

F(u)(sDC(c)) = {sDA o HD{u)){c) = sDA{a') = a.

So u is a morphism in Elts(F):

u: {C,sDC(c)) >(A,a), v: {C,sDC(c)) >(B,b),

and similarly for v.
Finally choose u,v: (A,a)ZZ%(B,b) in Elts(F), i.e. a e FA, b G FB

and (Fu)(a) = b = (Fv)(a). As before write a = SDA^ ' ) , b =
for some D e 9 , a ' e (#£>)(A), 1/ G (HD)(B). One has

HD(u))(a') = (Fu o sDA)(a') = (Fu)(a) = b

and analogously for v. Thus

(sDB o HD(u)){af) = b= (sDB o HD{v)){a')
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and the filteredness of Q) implies the existence of d: D >Df such that

((Hd)B o HD{u)){a!) = ((Hd)B o HD(v))(a');

see 2.13.3. Write bf for that element of HD'{B). Since the morphisms
sr> constitute a cocone,

SD>B(bf) = (sD>B o (Hd)B o (HD)(u))(a') = (sDB o (HD)(u))(af) = b.

By the naturality of Hd we also have

bf = {{Hd)B o HD(u))(a') = (HD'(u) o (Hd)A)(a')

and similarly for v. This implies

HD'(u)({Hd)A{a')) = «/ = HD'(v)({Hd)A(a')),

so that u,v: (A, (Hd)A(a!)) \(Fl^hf) are morphisms in Elts(HD').
But E\ts(HD') is cofiltered since HD' is flat, thus we can choose

w: (C,c) >(A,(Hd)A(a'))

in E\ts(HD') such that u o w = vow. Since c G (HD')(C), one has
SD'C{C) € F(C) and w: (C, c) >(A,a) is a morphism in Elts(F) be-
cause

F(w)(c) = (F(w) o sD,c){c) = {8D.A o HD\w)){c)

= (SD'A O (Hd)A)(a/) = sDA(ar) = a.

On the other hand we know already that uow = vow. •

As a consequence, we can generalize 6.1.2 to the case of flat functors.

Proposition 6.3.7 Let F: srf >Set be a functor defined on an arbi-
trary category s$'. The following conditions are equivalent:

(1) F is flat;
(2) F is a filtered colimit of representable functors.

Proof (1) => (2) is immediate by 6.2.1 and 2.15.6. Conversely, suppose
we are given a cofiltered category Q) and a functor tp such that F is the
colimit object of the composite

We shall prove that Elts(F) is cofiltered.
First of all Q) is not empty; thus choose Do £ 2f- Since

colim T)stf{$D, ̂ A)), it suffices to choose D = Do in order to get an
element [1^D0] € F(ipD0), thus an object (ipD0, [1^D0]) OI> Elts(F).
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Next choose (A, a) and (A',a') in Elts(F). Since a G colim £>(?/>£), A)
and o! G colim £>(T/>D, A'), a is represented by g: i)D\ >A and a7 by
g'\ ij)D2 >Af. Since 2 is cofiltered, choose D3 G S> with d: D3 >D1

and d': Ds >D2. Observe that F(xl>D$) = c o l i m D ^ D ^ D S ) , so that
choosing D = Ds we find an element as = [1^D3] £ F{\j)D^)\ this gives
an object (i^Ds^s) of Elts(F). Moreover

F(# o ̂ d)(a3) = [# o ij)d o 1^D3] = \g]=a

and in the same way F(g' o ipd')(as) = o!- This yields two morphisms of
Elts(F)

as required.
Now consider / , g: (A, a)ZZI^(A /,a /) in Elts(F). Again a is repre-

sented by some h: tyD\ >A and a1 by some h!\ ^£>2 >-A;- The
equality (Ff)(a) = o! means the existence of d\\ D2 >D\ in Q) such
that f o ho i\)d\ = h! o i/;di. In the same way (Fg)(a) = a' implies the
existence of d2: Ds >D\ in Q) such that g o ho ipd2 = h! o ̂ ;d2- Since
® is cofiltered, we can find D4 G 3f and ^3: D4 >D2j d±\ D4 >Ds

such that d\ o ds = d2 o d±. Putting d = d\ o c?3 we obtain

g o ho i/j(d) = g oho ij;{d2 o ^4) = h' o

= h' o ip(di o ds) = f o h o i/>(di o ^3) = / o h o

Prom the relation F(il)D±) = colim D(IPD, il)D±), we deduce the existence
of an element 04 = [1^D4] € F{tf)D±). The relation

= [/i o V>d o 1 4̂] = [/i] = a

shows that we have denned a morphism

hoi/;d:

which equalizes / and g. This concludes the proof of (2) =» (1). •

When the category si is small, we can complete the statement of the
previous proposition in a way which explains the precise relation between
flatness and left exactness.

Proposition 6.3.8 Let F: s/ >Set be a functor defined on a small
category si. The following conditions are equivalent:

(1) F is Rat;
(2) the left Kan extension LanyF of F along the covariant Yoneda

embedding Y: si >Fun(e5/*,Set) is left exact.
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Proof The proof of (1) => (2) given in 6.1.3 applies here, just replacing
"left exact" by "flat" (see 6.3.4 and 6.3.8 instead of 2.9.4 and 6.2.2).

Conversely, assume condition 2. Since the Yoneda embedding is full
and faithful, (LanyF) oY = F] see 3.7.3. We must prove the cofiltered-
ness of the category of elements of F.

The category of elements of the constant functor A: si* »Set on
the singleton is just stf. Since A is the terminal object of Fun(j/*,Set)
and LanyF is exact,

{*} = (LanyF)(A) = colim (F o 1^) = colim F.

Since colim F is not empty, there exists at least an object A E s/ with
FA non-empty (see 2.8.1); choosing a G FA we get an object (A, a) in
the category Elts(F) of elements of F.

Choose now two objects (A, a), (5,6) in Elts(F). Since LanyF pre-
serves finite products, applying 3.8.1 we get

^ (L&nY*(YAxYB))(F)

^ colim (XfX) {st{X, A) x

where (X,x) runs through Elts(F). The pair (a, b) is in FA x FB, thus
is represented by a pair

(f,g)es/(X,A)xsf{X,B)

for some index (X;x) G Elts(F). To prove that

(A, O) ̂ J. (X, x) 2 _ ^ (B> b)

are morphisms in Elts(F), it suffices to observe that since (/,#) is rep-
resentative of (a, 6), then (Ff)(x) = a, (Fg)(x) = b. Indeed the previ-
ous colimit construction is obviously natural in A, B and, writing s£x xx
for the canonical morphisms of the colimit, one has the commutative
diagram 6.3. By construction of the Yoneda isomorphisms (see 1.3.3),
x = s^x xJlx)- Therefore

Now given two arrows / , g: (A, a) > (5, b) in Elts(F), let us consider
the equalizer diagram

k Yf :
Yg
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ox

FX

Ff

Diagram 6.3

in Fun(j/*,Set). Again applying 3.8.1 and the fact that equalizers are
computed pointwise in Fun(j/*,Set) (see 2.15.2), we get

Ker(Ff,Fg) °* Ker((L&nYF)(Yf),(L&nYF)(Yg))

*£ (La,nYF)(K)

Si (LanyK)(F)

(j*(X,f),s/(X,g)),

where (X, x) runs through the category of elements of F. Since / , g are
arrows of Elts(F), one has (Ff)(a) = b= (Fg)(a); thus a e Ker (Ff, Fg).
Via the previous isomorphism, a can be represented by some element
a G KX. But via the injection kx' KX> >s#(X,A), this element a
can be seen as an arrow h = kx(ot): X >A. As previously the fact
that h represents a means exactly that (Fh)(x) = a. This yields a mor-
phism h: (X, x) > (A, a) in Elts(F) with the property / o h = g o ft,,
since h is in the kernel KX of s/(X, / ) , si(X, g). D

6.4 The relevance of regular cardinals

At this stage it is time to introduce an easy generalization of various
previous results. Many of our results deal with "finiteness". For example
"finite limits in Set commute with filtered colimits". Why does such a
property hold just for finite limits and not for arbitrary limits? Analysing
the proof of 2.13.4, one realizes immediately that it is due to the finite-
ness requirements in the definition of filtered category: sending two (thus
finitely many) objects to the same one; coequalizing two (thus finitely
many) parallel arrows.
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Being finite means being strictly less than No = #N, where # means
"cardinality of" and N is just the usual "aleph" notation of set theory (see
Bell and Machover). One could imagine replacing No by an arbitrary
cardinal a, then replacing "finite" by "strictly less than a". A problem
which will arise immediately is that no generalization can be found of
the very useful fact that

a finite union of finite sets is again finite.

In fact, the correct attitude is to replace No by a cardinal a which
ensures the generalization of the previous property.

Definition 6.4.1 An infinite cardinal a is regular when it satisfies

(#/ < a and Vi € / #X< < a) =* # ( (J X{ J < a

where I, X{ are arbitrary sets.

It is useful to recall the following result of set theory, attesting that
there are "enough" regular cardinals:

given a set (a^)^/ of cardinals, there exists a regular cardinal a
such that for every i 6 / , on < a.

Let us first generalize the considerations of section 2.13.

Definition 6.4.2 Let a be a regular cardinal. A category <$ is a-filtered
when

(1) there exists at least one object in <$,
(2) given a set I with # / < a and a family (C{ € ^)iei of objects ofW,

there exist an object C G ^ and morphisms ff. C{ >C in %>,
(3) given a set I with # / < a and a family (/^: C >C')iei in <&,

there exist an object C" G ^ and a morphism f: C >Cff such
that f o fi = f o fj, for all indices i,j.

Definition 6.4.3 Let a be a regular cardinal.

(1) By an a-filtered colimit in a category <$, we mean the colimit of a
functor F: Of >(& where the category 3) is a-filtered.

(2) By an a-limit in a category <&, we mean the limit of a functor
F: 3) ><& where 3) is a small category and #Ar(^) < a, where
Ar(S>) indicates the set of arrows of 2.

In general, we shall just write # ^ < a to indicate that the small
category Of has a set Ar(^) of arrows of cardinality strictly less than a.
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As a consequence, the cardinal of the set \S>\ of objects of &> is a fortiori
strictly less than a.

Observe now that choosing a = No = # N , to be strictly less than a
means just being finite. Thus definitions 6.4.2, 6.4.3 describe in this case
filtered categories, filtered colimits and finite limits in the usual sense
(see 2.13.2).

Just replacing "finite" everywhere in the proof by "strictly less than
a", our lemma 2.13.2 yields immediately

L e m m a 6.4.4 Let a be a regular cardinal and % an a-filtered category.
For every category Q) such that #&> < a and every functor F: Q) >%!,
there exists a cocone on F. •

Since an a-filtered category is a fortiori filtered, our proposition 2.13.3
applies in particular to a-filtered colimits of sets. Finally, again replacing
"finite" by "strictly less than a" in the proof of theorem 2.13.4, we obtain

T h e o r e m 6.4.5 Let a be a regular cardinal. In the category of sets and
mappings, a-limits commute with a-filtered colimits. •

Next we generalize the results of sections 6.1-6.3. Again the proofs
are obtained by replacing "finite" by "strictly less than a".

Definit ion 6.4.6 Let a be a regular cardinal. Consider two a-complete
categories si, 38. A functor F: si >@t is ot-left-exact when it preserves
a-limits.

Propos i t ion 6.4.7 Let a be a regular cardinal and F: si >Set be a
functor defined on an a-complete category si. The following conditions
are equivalent:

(1) F is a-left-exact;
(2) the category Elts(F) of elements of F is a-cofiltered;

(3) F is an a-filtered colimit of representable functors.

Moreover when si is small, those conditions are also equivalent to

(4) the left Kan extension LanyF of F along the covariant Yoneda
embedding Y: si >Fun(j/*, Set) is a-left-exact. •

Proposition 6.4.8 Consider a functor F: si >& between a-complete
categories si, Si. The following conditions are equivalent:

(1) F is a-left-exact;
(2) V£ € ^ the functor @(B, F-): @ >Set is a-left-exact. •
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Proposition 6.4.9 Let si be a small a-complete category. The notation
Lexa(si, Set) indicates the category of a-left-exact functors from si to
Set.

(1) Lexa(j/, Set) is complete and limits are computed pointwise;
(2) Lexa (si, Set) has pointwise and universal a-filtered colimits and they

commute with a-limits;
(3) the contravariant Yoneda embedding

si

transforms a-limits into a-colimits;
(4) Lexa(j/, Set) is cocomplete;
(5) Lexa(j/, Set) is reflective in Fun(j/, Set). •

Now comes the case of flat functors.

Definition 6.4.10 Let a be a regular cardinal.

(1) A functor F: si >Set is a-flat when its category of elements is
a-cofiltered.

(2) A functor F: si >0& is a-flat when, for every B E ^ , the functor
- ) : si >Set is a-flat

Proposition 6.4.11 Given a functor F: si >3S between a-complete
categories, for some regular cardinal a, the following two conditions are
equivalent:

(1) F is a-left-exact;
(2) F is a-flat. •

Proposition 6.4.12 Let a be a regular cardinal:

(1) the composite of two a-flat functors is a-flat;
(2) representable functors are a-flat;
(3) functors with a left adjoint are a-flat. •

Proposition 6.4.13 Let a be a regular cardinal and F: si >Set a
functor. The following conditions are equivalent:

(1) F is a-flat;

(2) F is an a-filtered colimit of representable functors.

Moreover when si is small, those conditions are also equivalent to

(3) the left Kan extension LanyF of F along the covariant Yoneda
embedding Y: si >Fun(j/*, Set) is a-left-exact. •
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Corollary 6.4.14 Let a be a regular cardinal and s/ a small cate-
gory. The category F\ata(s/,Sei) of a-Sat functors from si to Set has
pointwise a-61tered colimits. •

Finally let us generalize the definition of a functor which preserves
"all small limits".

Definition 6.4.15 A functor F: si >&) is absolutely Hat when it is
a-flat for every regular cardinal a.

By 6.4.12 we conclude that representable functors are absolutely flat
and so are those admitting a left adjoint.

6.5 The splitting of idempotents

Definition 6.5.1 In a category (€, a morphism e: C >C is idempo-
tent when e o e = e.

Proposi t ion 6.5.2 In a category c€, consider a retract r,i: R >C,
i.e. r o i = 1R. Under these conditions, e = ior is idempotent.

Proof We have eo e = ior oior = io\Ror = ior — e. •

Definition 6.5.3 In a category <€, an idempotent e: C >C splits
when there exists a retract r , i: /?/ >C ofC such that ior = e.

Often we shall use the expression "an idempotent" or "a split idem-
potent" just to abbreviate the language.

Proposition 6.5.4 The following conditions are equivalent for an idem-
potent e: C >C of a category %1:

(1) e splits as e = ior, with r, i: R[< yC7 r o i = 1#;
(2) the equalizer Ker (e, lc) exists;
(3) the coequalizer Coker (e, l c ) exists.

Moreover, under these conditions, i = Ker(e, l c ) , r = Coker (e, l c ) and
this equalizer and this coequalizer are absolute.

Proof Assuming (1) and considering diagram 6.4, we conclude by
2.10.2 that r is the absolute coequalizer of the pair (e, l c ) . Conversely
if r = Coker (e, l c ) , the relation eoe = e = eo\c implies the existence
of a unique i such that i o r = e. Since roir = roe = r and r is an
epimorphism, r o i = 1R.

The equivalence (1) <& (2) follows by duality. •
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Diagram 6.4

Proposition 6.5.4 shows that splitting of idempotents is some weak
form of completeness or cocompleteness. In fact, this result can be made
much more precise. We recall from 2.10.1 that a colimit is absolute when
it is preserved by all functors. We would like to make precise when a
small category has "all small absolute colimits". For this consider the
covariant Yoneda embedding

Y:% >Fun(«",Set), C i ->«(- ,C) .

Like every functor, Y preserves all absolute colimits. Therefore it is
sensible to define:

Definition 6.5.5 A small category <& has all small absolute colimits
when, given a small category <2> and a functor F: S> ><&, if the colimit
of the composite

2) ^—># ^—>Fun(<T,Set)
is absolute, then the colimit of F exists and is absolute.

Lemma 6.5.6 Let ^ be a small category in which every idempotent
splits. Then each retract of a representable functor # ( - , C) is itself rep-
resentable.

Proof Consider p, t: F >^(—, C), with pot = 1F. The natural trans-
formation top: #(—,C) => V(—,C) is representable as t o p = #(—,e)
for some morphism e: C >C, just because the Yoneda embedding is
full. But from (t o p) o (t o p) = t o p we deduce <S{—, e o e) = <&(—, e),
which implies e o e = e since the Yoneda embedding is faithful (see
1.5.2). The idempotent e splits in ^ as e = r o i, with r, i: RtZZ^C and
ior = 1R. This implies that #(—, r), ^(—, i) constitute a splitting of the
idempotent #(—,e). But such a splitting is unique up to isomorphism
(see 6.5.4), thus F is isomorphic to #(—, R). •
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9 > <£

G

>Fun(<<r,Set)

GA

Diagram 6.5

Proposition 6.5.7 Let ^ be a small category. The following conditions
are equivalent:

(1) In %!, all idempotents split;
(2) <$ has all small absolute colimits.

Proof Suppose idempotents split. With the notation of 6.5.5, write
(L, (s£>)r>€^) for the colimit of Y o F and suppose this colimit is abso-
lute. This colimit is in particular preserved by the represent able functor
Nat(L,-), thus

Nat(L,L) £* colimDNat((L,*(-,FI>)).

A colimit in Set can be constructed as a quotient of a coproduct (see
2.8.1); thus the natural transformation 1^: L => L corresponds to the
equivalence class of some natural transformation (3: L => <€{—, F£)), for
some D 6 ® , with the property s& °/3 = 1L- By lemma 6.5.6, L is repre-
sentable as (€{—, R) and since the Yoneda embedding is full and faithful
(see 1.5.2), the cone (sD)De^ *s induced by a cone (&&: FD >R)D€®

in (€. The universal property of (L, (SD)D€0) restricted to cocones with
representable vertex implies that (i?, ((TD)D£S>) is the colimit of F.

By construction, Y preserves the colimit of F. On the other hand
given an arbitrary functor G: *& > si, we must prove that G preserves
the colimit of F. For every A € stf let us consider the Kan extension GA
of $4{G—, A) along the Yoneda embedding (see 3.7.1), as in diagram 6.5.
By 3.7.3, GA°Y = stf{G-,A) because Y is full and faithful. And since
the colimit of Y o F is absolute,

, A) ^ GA°Y(colimDFD)

^GA{co\imDY(F

* WmDGAY{FD)
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(we have written the equalities in Set, not in Set*; notice that s/(—,A)
and GA are contravariant). Now choose a cocone (UD- GFD >A)r>egi
in s/. This is just a compatible family in the limit in Set and so this
corresponds to a unique morphism u: G(R) > A such that UOG(CFD) =
UD for every D G Q).

Conversely if ^ has all small absolute colimits and e: C >C is idem-
potent, the corresponding natural transformation

« ( - , c ) : * ( - , C ) = • « ( - , C)

is idempotent and thus splits, since Fun(#*, Set) is cocomplete (see 2.15.2
and 6.5.4). By 6.5.4 again, <€{—, e) and <S(—,1c) have an absolute co-
equalizer, so that by assuption, e, \Q have an absolute coequalizer in c€.
Proposition 6.5.4 again implies that e splits. •

Proposition 6.5.7 suggests considering the splitting of idempotents as
some (weak) intrinsic notion of cocompleteness. The following terminol-
ogy will be justified in 6.8.9, volume 2.

Definition 6.5.8 A category <& is Cauchy complete when all idempo-
tents of W split.

We shall now prove the existence of a "Cauchy completion" for every
small category.

Proposition 6.5.9 Every small category <€ can be embedded as a full
subcategory in a Cauchy complete small category c€. Moreover,

(1) given a functor F: <& >2 where Q) is Cauchy complete, F extends
uniquely (up to isomorphism) as a functor F: <£ >S>,

(2) given another functor G: ^ >3>, its extension G: *& >&> and a
natural transformation a: F => G, a extends uniquely to a natural

transformation a: F =^ G,

(3) the inclusion <& ^> <£ is an equivalence of categories iff, on %>, every

retract of a representable functor is itself representable.

Proof Given a small category <tf, the category Fun(^*,Set) of con-
travariant functors # >Set is complete (see 2.15.2), thus Cauchy com-
plete (see 6.5.4). For each object C E ^ and each idempotent e: C >C

in ^ , choose a splitting r e , i e : R-c
 <

 ><^(~J^> )? with the condition that
r\c = !<$(-,c) = he Observe that all splittings of this kind for the same
e are isomorphic (see 6.5.4), but making a choice allows us to speak of
the small category # as generated by all the chosen objects Re (there is
just a set of them since there is just a set of idempotents in the small
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category * ) . The category # is thus contained as a full subcategory in
#, via the Yoneda embedding.

Let us prove that # is Cauchy complete. Indeed for every idempotent
e: C >C in # and every idempotent e: Re >Re in Fun(**,Set),
e factors as i o p for some retract p, i: R< > Rc of e in Fun(#*,Set).
Therefore p o r e , i e o t: R >*(—, C) is a retract of #(—, C), thus is
isomorphic to some re', V

: Re'< >< (̂~"? C) iR ^- So up to isomorphism,
p, t are in ^ and finally e splits in (€.

Now consider a functor F: *& >Q) with 2 Cauchy complete. For
every idempotent e: C >C in #, Fe: F C >FC is idempotent in
^ and thus splits as Fe = j e o se with se,je: Sc

 < > F(7 a retract of
FC. We put ~F(Re) = 5C. If a: Re >i?e/ is a morphism in ^ with
e: C >C, e;: C >C idempotents of*,

a = l#c, o a o l^e = re/ o i e / o a o r e o ie,

and the composite

has the form *(—, / ) for a unique / : C >C, just because the Yoneda
embedding is full and faithful (see 1.5.2). We define

F(a) = se> o F{f) o j e .

It is a straightforward matter to check the functoriality of F defined in
this way. Moreover, "F extends F. Indeed F ( # ( - , C ) ) = F{C) just be-
cause Ric — C by convention. Moreover given / : C >C and putting
a = *(—, / ) in the previous argument, one gets e = re = ie = \c and
e' = ret = v = l c by convention, so that F(*(—, / ) ) = F ( / ) .

Let us now consider another functor G: <$ >S> and "its" extension
G: *$ >Q}. Given a natural transformation /3: F => G, every extension
(3: F => G of /? satisfies, just by naturality,

= G(r e )o /3 c oF( i e ) .

This proves the uniqueness of a natural transformation (3: F => G ex-
tending /?. It is straightforward to check that the previous formula indeed
defines a natural transformation (J extending /?.

The last assertion is obvious by construction of * . •
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With a view to establishing the major property of the Cauchy com-
pletion (theorem 6.5.11), we need the following lemma.

Lemma 6.5.10 Consider a small category <£ and the corresponding cat-
egory Fun(#*,Set) of contravariant functors to Set. For a contra variant
functor F: <€* >Set, the following conditions are equivalent:
(1) F is a retract of a representable functor;
(2) the functor Nat(F, - ) : Fun(#*,Set) >Set preserves colimits.

Proof Using the axiom system of universes (see section 1.1), we assume
that all categories considered are small with respect to some sufficiently
big universe T̂ *, including Set. This allows us to consider categories like

Fun(Fun(<T\Set),Set).

Suppose p,L: F ( >^(—, C), p o t = 1F is a retract. By the Yoneda
lemma (see 1.3.3), the functor

Nat(#(- ,C) , - ) : Fun(<T,Set) >Set

is just the functor "evaluation at C", which preserves colimits since
colimits in Fun(#*,Set) are computed pointwise (see 2.15.2). Since F is
a retract of #(—, C), we get another retract in Fun((^*, Set), Set)

Nat(t,-)
Nat(F, - ) (

 x>Nat(y(-, C), - )
Nat(p, - )

Therefore Nat(t, —) is the (absolute) coequalizer of Nat(^(—, e), —) and
Nat(^(—, lc ) , —). By the interchange property for colimits (see 2.12.1),
the coequalizer Nat(F, —) preserves colimits since Nat(^(—, C), —) does.

Conversely suppose Nat(F, —) preserves colimits. We can write F itself
as the colimit of the composite

Elts(F) ^—><# £—>Fun(<T,Set),

where Elts(F) is the category of elements of F (see 2.15.6). By assump-
tion we thus have:

Nat(F,F) ^ Nat(F,colim(CfC)«(-,C))

Since a colimit of sets is a quotient of a coproduct (see 2.8.2), the identity
on F corresponds to the equivalence class of some cr: F => #(—, C), for
some index (C, c), with the property S(c,c) °

 a = ^F, where S(c,c) is the
canonical morphism of the colimit. This proves that F is a retract of
#(-,C). •
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The reader should now observe that since F is just defined up to
isomorphism in 6.5.9, "the" Cauchy completion ^ of a small category #
is just defined up to equivalence, not up to isomorphism. This is good
enough for most purposes and we shall speak freely of "the" Cauchy
completion. Here is its main property.

Theorem 6.5.11 Given two small categories si ,88, the following con-
ditions are equivalent:

(1) the categories Fun(j/*,Set) and Fun(^*,Set) are equivalent;
(2) si and M have the same Cauchy completion.

In particular, given a small category <& and its Cauchy completion (€,
the categories Fun(#*,Set) and Fun(#*,Set) are equivalent.

Proof If Fun(j/*,Set) is equivalent to Fun(^*,Set), the corresponding
full subcategories of functors F such that Nat(F, —) preserves colim-
its are themselves equivalent. But those two categories are respectively
equivalent to the Cauchy completions of si and Si (see 6.5.10 and the
construction of the Cauchy completion in 6.5.9).

For the converse, it suffices to prove that si and its Cauchy comple-
tion si give rise to equivalent categories Fun^*, Set) and Fun(j/ , Set).
Indeed we have an obvious functor

<p: Fun(j/*,Set) > Fun (<*/*, Set)

which is the composition with the inclusion si* C si*. Since each functor
si >Set* extends to a functor si >Set* (see 6.5.9), each functor
si* >Set is the restriction of a functor si* >Set; thus ip is surjec-
tive on the objects. It remains to prove that ip is full and faithful (see
3.4.3), but this is precisely the content of the last assertion in 6.5.9. •

6.6 The more general adjoint functor theorem
This section presents an amazing generalization of the adjoint functor
theorem (see 3.3.3).

Theorem 6.6.1 Consider a functor F: si >3$, with si a Cauchy
complete category. The following conditions are equivalent:

(1) F has a left adjoint;
(2) F is absolutely flat and satisfies the solution set condition for every

object B e <£ (see 3.3.2).
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Proof The considerations following 6.4.15 and 3.3.2 prove (1) => (2).
Conversely fix an object B G & and a corresponding solution set S#.
Write $B for the category of elements of 0&{B, F-) and 6^B for its
small full subcategory generated by the objects (A, 6), with A E SB
(and 6: B >FA).

Choose a regular cardinal a > #^B- By a-flatness of F , we get an
object (Z,z) G SB provided with morphisms ot(x,x)'' (Z^Z) >(X,x)
for every (X, x) G 5^#.

Choose a regular cardinal /3 > #$B ((Z, Z), (Z, Z)) . By /^-flatness of F ,
we get an object (Y, y) G $B and a morphism u: (Y, y) > (Z, z) such
that / o u = g o u for every two endomorphisms / , g: (Z, 2:) ) (Z, z).
Applying the solution set condition, we choose now (X, x) G S^B and a
morphism v: (X, x) > (Y", 2/).

Observe that we have obtained an endomorphism

uovoa{x,x)'

By definition of u, one has uovoa^x,x) °u = l(z,z) ° v"> thus also

u o v o a(x,x) ouovo a^x,x) =uovo

proving that uovo ot^x.x) ls idempotent. By Cauchy completeness of
j / , we find a retract r, i: (W,w) >(Z, z), with i o r = uo v o a(x,x)»
r o i = l(w,™) and ti; = F(r) o z, z = Fiow. We shall prove that (W, it;)
is the reflection of B along F .

One already has w: B >FW by definition of $B- Given V G si
and v;: B >FV in J^, the pair (V,i/) is an object of ^ B - By the
solution set condition, choose an object (E7, v!) G 5^B and a morphism
/: (U,u') >(V,vf). This yields a composite

i.e. a morphism loa(jj^u^oi: W >V such that F(loa.(jj^u>)oi)ow = v1.

We still have to show the uniqueness of such a factorization.
To do this let us prove first that every endomorphism

g:(W,w)

is necessarily the identity. Indeed since iogor and ior are endomorphisms
of (Z, 2), one gets, by definition of u,

i o g o r = i o g o r o i o r = i o g o r o u o v o ot(x,x)

= ior o u o v o a(x,x) = ior oior = io 1 ^ ^ ) o r.
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Since i is a monomorphism and r is an epimorphism, g = l(w,w)-
Proving the uniqueness of the factorization l o a p y ) oz means proving

the uniqueness of a morphism (W,w) »(V,i/). Choose a regular car-
dinal 7 > #<1>B((W,W), (V,v')). By 7-flatness of F , there are an object
(T, t) G (^B and a morphism ra: (T, i) > (W, it;) such that / o m = pom
for every two morphisms / , g: (W, it;) .̂ (V, v7). By the solution set con-
dition choose (5,5) £ 5^B and a morphism n: (S,s) >(T, £). We get
a composite

; W) !__> (Z, 2) a ( g ' s ) ) (5,«) 2 - ^ . (T, t) m ) (W, w),

which is necessarily the identity, as we have proved. Given two mor-
phisms / , g: (W,w)^^$(V,vf), we thus have

f = f omono

= g omono

= 9. •

Observe that theorem 6.6.1 contains as a special case the general ad-
joint functor theorem proved in 3.3.3. Indeed when si is complete, it
is Cauchy complete (see 6.5.4) and the absolute flatness of F means
the preservation of a-limits for every cardinal a (see 6.4.11), thus the
preservation of all small limits.

6.7 Exercises

6.7.1 Develop the details of the first proof suggested for 6.2.4 and indi-
cate a lower bound for the cardinal /?.

6.7.2 Given a small category J / , prove that the category Flat(j/, Set)
of flat functors is (up to equivalence) the smallest full subcategory of
Fun {si, Set) containing all the representable functors and stable under
filtered colimits.

6.7.3 Given a small category si, prove that Flat(j/*, Set) is the free co-
completion of si for filtered colimits. This means that given a category
0b with filtered colimits and a functor F: si >dl, there exists a func-
tor F: Flat(J/*, Set) >^, unique up to isomorphism, which preserves
filtered colimits and restricts to F via the covariant Yoneda embedding.

6.7.4 Given a small category si, prove that Fun(j/*,Set) is the free
cocompletion of si for small colimits. This means that given a complete
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category 3 and a functor F: si >3& there exists a functor

F:

unique up to isomorphism, which preserves small colimits and restricts
to F via the covariant Yoneda embedding.

6.7.5 Given a flat functor F: si >$$ between arbitrary categories,
prove that F preserves all finite limits which turn out to exist in si.

6.7.6 Let F: si >Set be a flat functor. Prove that the representable
functor

Nat(F,-): Flat(^,Set)- >Set

preserves filtered colimits if and only if F is a retract of some repre-
sentable functor.

6.7.7 Prove that every retract of a representable functor is absolutely
flat.

6.7.8 Prove that the covariant Yoneda embedding

Y^-.si >Flat(eoT,Set), Av->si{-,A)

corestricted to the category of flat functors is itself a flat functor.
6.7.9 If si is a small category, prove that Flat(«s/, Set) has a terminal
object iff si is cofiltered. In particular, Flat(j/, Set) is in general not
finitely complete. [Hint: apply the Yoneda lemma.]

6.7.10 If si is a small discrete category with at least two objects, prove
that the covariant Yoneda embedding

Y.si >Fun(j/*,Set), A^sf(-,A)

is not flat.

6.7.11 Prove that the Kan extension theorem (see 3.7.2) is a corollary
of the more general adjoint functor theorem (see 6.7.1), but not of the
adjoint functor theorem (see 3.3.3).



7
Bicategories and distributors

Even if containing some interesting results (like 7.9.3, 7.9.4), this chapter
is not mainly concerned with proving theorems. Its aim is essentially to
discuss some basic structures which turn out to appear quite naturally
in categorical constructions.

7.1 2-categories
A category consists of a class of objects connected with morphisms. But
in some cases the morphisms themselves can be connected with some
additional devices: in the category of small categories and functors, we
can define natural transformations between functors; in the category of
topological spaces and continuous mappings, we can define homotopies
between continuous mappings; and so on. This observation is at the
origin of the notion of a 2-category.

A category has been presented in 1.2.1 as a class \<stf\ of objects to-
gether, for each pair A, B of objects, with a set s/(A, B) of morphisms.
The composition law was just a mapping

cABC: s/(A,B) x s/(B,C) >st{A,C)

for each triple A, B, C of objects, while the identity on an object A could
be seen as a mapping

' 1

where 1 is the singleton, i.e. the terminal object of the category of sets.
The associativity axiom just expresses the equality

CACD o (CABC X 1) = CABD O (1 X CBCD)

(see diagram 7.1) for all objects A, B, C, D. The identity axiom expresses

281
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s/(A,B) x si(B,C) x s/(C,D) 1 x CBCD >s/(A,B) x

CABC

si (A, C) x J/(C, D)
CACD

Diagram 7.1

x j/(A,fl)<—=—si(A,B) —

uAxl

si{A,A) x

Diagram 7.2

CABD

-> sJ(A,D)

>sJ(A,B) x 1

lxuB

x si{B,B)

the equalities

CAAB = l = CABB

(see diagram 7.2) for all objects A, B.
In the case of the category si = Cat of small categories, the set

s/(A,B) of functors from the category A to the category B can be
given the structure of a category s/(A, 2?), with natural transformations
as arrows. With that example in mind, we make the following definition.

Definition 7.1.1 A 2-category si consists of

(1) a class \s/\,
(2) for each pair A, B of elements of \s/\, a small category si(A, B),
(3) for each triple A,B,C of elements of\sf\, a bifunctor

CABC: sf(A,B) x si(B,C

(4) for each element A G \s/\, a functor

uA: 1 >
where 1 is the terminal object of the category of small categories.

These data are required to satisfy the following axioms.

(1) Associativity axiom: given four elements A, B,C,D E si, the fol-
lowing equality holds:

CACD ° (CABC x 1) = CABD O (1 X CBCD)
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(see diagram 7.1).
(2) Unit axiom: given two elements A,Be \s/\, the following equalities

hold:

CAAB o(uA*l) = l = CABB O (1 X UB)

(see diagram 7.2).

Let us first fix the terminology. Given a 2-category srf\

• the elements of the set \st\ are called "0-cells" or "objects"; we use
capital letters A, B, C , . . . to denote them;

• the objects of the category sf(A, B) are called "1-cells" or "arrows";
we use small letters a, 6, c , . . . to denote them and we designate them
in the usual form / : A >B\

• the arrows of the category si {A, B) are called "2-cells"; we use greek
letters a, /?, 7 . . . to denote them; we designate them as a: / =>> g or
just a: / >g when no confusion can occur;

• (3 © a denotes the composite in the category s/(A, B),

when no confusion can occur, we write simply (3OL\
• I o f denotes the image of the pair (/, I) of arrows under the compo-

sition functor CABC.

>B

when no confusion can occur, we write simply / / ;
(f * a denotes the image of the pair (a, <p) of 2-cells under the com-
position functor CABC,

JL > J >
A q i\,a yB m by yC;

• I A'- A >A denotes the image of the unique object of 1 under the
unit functor UA', we write just %A instead of i\A to denote the unit
on the arrow \A in the category s/(A, A).

It follows immediately from the axioms that the objects and the mor-
phisms constitute a category, with the morphisms 1A as identity arrows.

Observe also that given the situation
_1 , _J ,

A-
h 0 , n
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ig*rj

If * £

Diagram 7.3

g o f o g

by functoriality of CABC,

(V> * 0) © (</? * a) = cABC(f3i </>) 0

= (/? © a ) * (^ o </?).

This formula is called the "interchange law" (see 1.3.5).
In a 2-category, it makes sense to speak of "adjoint arrows" or the

"Kan extension of an arrow", when this exists. It suffices to transpose
the classical definitions valid for ordinary categories (see 3.1.4, 3.4.4 and
3.7.1).

9

Definition 7.1.2 In a 2-category s/, consider arrows /,g: AlZZ^B.
They constitute an adjoint pair of arrows when there exist 2-cells

rr-iB=> f°9, e\ go f =>iA

such that the following equalities between 2-cells hold:

(if * e) © (r) * if) = if, (e * i9) © (i9 *TJ) = i9;
see diagram 7.3. When 77 and e are isomorphic 2-cells, the adjunction is
called an equivalence.

Definition 7.1.3 In a 2-category si, consider two arrows f: A >C,
g: A >B. The Kan extension of f along g, when it exists, is a pair
(/i, a) where
(1) h: B >C is an arrow and a: / =*• h o g is a 2-cell,
(2) given any pair (fc, (3) with k: B >C an arrow and /?:/=> k o g a

2-cell, there exists a unique 2-cell 7: h => k such that

(7 * ig) ° OL = f3.

While in an ordinary category most diagrams in which we are inter-
ested are commutative, very often in a 2-category one considers non-
commutative diagrams of arrows "filled in" with 2-cells. Consider for
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D

h

G
k

-> H

Diagram 7.4

-> C

- ^ E —2-^ F

-> I

example the situation of diagram 7.4 with no commutativity conditions
at all. The squares are filled in with 2-cells

a: / o c => d o a, (3: g o d ^> e o b, 7: fc o /i => i o / , 6: I oi => j o g.

This allows us to "fill in" the outer square with a composite 2-cell

(ij * (3 * ia) 0 (<5 * a) 0 (ii * 7 * i c ) : lokohoc=>joeoboa.

In fact one could combine the four 2-cells in many different ways, but the
associativity rules and the interchange law imply immediately that all
those composites are equal. There exists a general theorem (the pasting
theorem) attesting this fact for a rather arbitrary diagram (see Kelly,
1980).

Examples 7.1.4

7.1.4.a A basic example of a 2-category is indeed obtained by choosing
small categories as the objects, functors as the arrows and natural trans-
formations as the 2-cells. The various compositions are those described
in sections 1.2 and 1.3.

7.1.4.b Let us now choose as objects the topological spaces and as
arrows the continuous mappings between them. Given two continuous
mappings / , g: A I7?7 a homotopy a: / =$> g is a continuous mapping

a: I x A >B

where / = [0,1] is the unit interval, a(0, a) = /(a) and a( l ,a) = g(a).
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If we consider now three continuous mappings f,g,h: A >B and
two homotopies a: f => #, /?: g ==> h, it is easy to construct a "composite
homotopy" /? © a: f =^ /i. It suffices to define

) if t< 1/2,

M) if tl{fr
and one indeed gets a continuous mapping

/3©a: / x i >B

such that (/? o a)(0,a) = /(a), (/? © a) (±,a) = fl(a), (/? © a)(l ,a) =
/i(a). Unfortunately this composition is not associative. Indeed con-
sider four continuous mappings f,g,h,k: A >B and three homotopies
a: / => g, 13: g => h, 7: h => k\ the composite

7 0 (/? 0 a): / => k

satisfies (7 © (/? © a)) (^,a) = h(a), while the composite

(7 0 0) 0 a: / => k

is such that ((7 0 /?) 0 a) (^,a) = g{o)- Nevertheless the two homo-
topies 7 © (/? © a) and (7 0 /?) o a are easily checked to be themselves
homotopic as continuous mappings:

7 © (/? © a), (7 © /?) © a: I x

Now consider the following situation:

A q

with A, i?, C topological spaces, / , #,p, q continuous mappings and a, (
homotopies. The composite

I x A

defines a homotopy p o f =^ p o g while the composite

IxA 1 X g >IxB ^ ^ C

defines a homotopy p o g => q o g. Using the composition of homotopies
defined previously, we get a composite homotopy

ip * a = [<p o (1 x g)) © (p o a): p o / =̂> q o g.

It is now a lengthy but straightforward calculation to check that both
composition laws © and * of homotopies are compatible with the
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equivalence relation identifying two homotopic homotopies. Therefore
we obtain corresponding composition laws on the homotopy classes of
homotopies. Choosing the spaces as objects, the continuous mappings
as arrows and the homotopy classes of homotopies as 2-cells, we now get
a 2-category.
7.1.4.C The category Gr of groups has the groups as objects and the
group homomorphisms as arrows. But given two groups G, H and two
group homomorphisms / , g: G \ H, we can define a 2-cell a: f =>• g
as an element a G H such that for every element x G G

f(x) - a = a • g(x)

where • denotes the composition law of the group H. In other words, a
2-cell a: f => g is an internal automorphism of H

H >H, y\~* a-y - a" 1 ,

transforming / into g.

It is obvious that given 2-cells a: f => g and /3: g => /i, the element
(3 - a is a 2-cell f3 ® a: f => h. This provides Gr(G, H) with the structure
of a category or, more precisely, the structure of a groupoid (a cate-
gory in which every arrow is an isomorphism). Observe that for every
/ : G > if, if is the unit element of H.

It remains to define the horizontal composition law on 2-cells. Thus
we consider group homomorphisms / , g: G \ H and h,k: H > K,
together with 2-cells a: f ^> g, (3: h => k. We get a composite 2-cell
(3 * a: hf => kg by choosing the element h(a) • /3 = f3 • k(a).

We leave to the reader the verification that we have indeed defined a
2-category.
7.1.4.d Every ordinary category s/ can be viewed as a 2-category with
just the obvious 2-cells, i.e. each category stf(A, B) is discrete.

7.2 2-functors and 2-natural transformations

When working with 2-categories, the functors and natural transforma-
tions which one considers had better be compatible with the given struc-
tures on 2-cells.

Definition 7.2.1 Given two 2-categories $4, @t, a 2-functor F: si >ffl
consists in giving

(1) for each object A G stf, an object FA G ^ ,
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si (A, A1) x si{A', A")

x FA'A"

®{FA,FA!) x <%(FA\FA")
CFA,FA',FA

Diagram 7.5

— >@(FA,FA")

uFA

FAA

<%{FA,FA)

Diagram 7.6

(2) for each pair of objects A, A! G si, a functor

FA,A>: st(A,A') >i»(F
(For the sake of brevity, we often write F instead of FA,A')- These data
are required to satisfy the following axioms.
(1) Compatibility with composition; given three objects A, A!, A!1 e si,

the following equality holds:

FAA" ° CAA'A" = CFA,FA',FA" ° {FAA1 X FA'A")

(see diagram 7.5).
(2) Unit: for every object Ae si, the following equality holds:

FAA OUA = up A

(see diagram 7.6).

Observe in particular that a 2-functor induces an ordinary functor
between the underlying categories of objects and arrows.

In order to define the 2-natural transformations easily, observe that
given a morphism / : A' >A" in a 2-category si, we get a functor

st(AJ): si {A, A')

for every object A € si, just by defining

In the same way one could define a functor

,A): s/(A",A) >sf{A',A).
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, Af) ^ > @{FA, FA1)

, GA') ^a(FA, GA')

Diagram 7.7

Definition 7.2.2 Consider two 2-categories s/9 Si and two 2-functors
between them F, G: .c/ > <ffi. A 2-natural transformation 9: F => G
consists in giving, for each object A G sf, an arrow 9A- FA >GA
such that the equality

@(IFA, 0A>) O FAA> = 9(0A, IGA') O GAA>

holds for each pair of objects A, A' E sd\ see diagram 7.7.

In particular, every 2-natural transformation is also a natural trans-
formation between the corresponding underlying functors.

We leave to the reader the straightforward proof that

Proposition 7.2.3 Small 2-categories, 2-functors and 2-natural trans-
formations themselves constitute a 2-category. •

In particular the notions of 2-adjunction, 2-equivalence or 2-Kan ex-
tension can immediately be obtained from definitions 7.1.2 and 7.1.3.
The reader should observe that transposing those definitions will not
cause any trouble when the 2-categories considered have proper classes
of objects.

Examples 7.2.4

7.2.4.a Consider a small 2-category s/ and the 2-category Cat of small
categories (see 7.1.4). Fixing an object A £ stf, we get at once a "repre-
sentable" 2-functor

):st >Cat

mapping B G stf to the category <stf(A,B), a morphism / : B >C to
the functor

J): s*(A,B)
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and a 2-cell /? : /=>/ ' to the natural transformation

si (A, /?): si {A, f) =* si {A, / ' ) , si (A, 0)g = 0*ig.

7.2.4.b In the situation of example 7.2.4.a, consider another object
A! G si and an arrow a: A > A!. We obtain a 2-natural transformation

by defining, for every object B € si,

si(a,-)B:si(A',B)=>si(A,B),

si (a, —)B(u) = u o a, si (a, —)B(OL) = a * ia.

7.3 Modifications and n-categories

The basic example of a 2-category is that of ordinary categories, functors
and natural transformations. Notice that the possibility of defining nat-
ural transformations between functors is directly related to the existence
of arrows in the categories.

Consider now the 2-category of 2-categories, 2-functors and 2-natural
transformations. The fact of having 2-cells in 2-categories now allows
the definition of modifications between 2-natural transformations.

Definition 7.3.1 Consider 2-categories si, $, 2-functors F, G: si >&

and 2-natural-transformations a, (3: F => G. A modification

H: ot /^> (3

consists in giving, for every object A G si, a 2-cell

^A- OLA => PA,

in such a way that the following axiom is satisfied: for every pair of

morphisms f,g: A > A! and every 2-cell a: f => g in si, the equality

'EA' * Fa = Ga * EA

holds in &.

We consider 2-categories J / , ^ ? , 2-functors F, G: -<rf \ ffi^ 2-natural
transformations a,/?,7: F => G and two modifications S: a ~> /?,
T: (3 ^ 7. One obviously gets a composite modification T o S: a ~^ 7
by putting (T o E)A = TA o 5 A .

Now given 2-functors F, G, H,

F,G,H:si ^ ,
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2-natural transformations a, /?, <5, £,

a, /?: F^G, 6,e:G^ H,

and modifications H, fi,

S: a ^ /?, ft: <5̂ » e,

one obviously gets a composite modification

ft*S: 6 ® a~~> e o (3

by putting (fi • S )A = MA * S^.
Just because the composition laws on modifications are defined point-

wise, it is straightforward to verify that the 2-functors from si to ^ , the
2-natural transformations and the modifications have been given the
structure of a 2-category 2-Fun(j/,^).

Given 2-categories J / , ^ ? , # it is also easy to define a 2-functor of
composition

x

Given a pair (F, Ff) of 2-functors, we map it to the composite Ff o F .
Given another pair of this kind (G, G') and 2-natural transformations
a: F => G, a1: F1 => G', we map the pair (a, a7) to a! * a. Finally, given
two other 2-natural transformations /3: F => G, (3': F' => G' and two
modifications S: a ^> /3, S ;: a ' ^» /?', the following relation holds, as S'
is a modification by definition:

These composites define a 2-cell (af * a) A => {P' * (3)A and finally a
modification a1 * a ^ (31 * /?, which we choose as the composite of the
pair (3,S7).

Now if s£, $, *$, 3f are 2-categories, it is straightforward to verify the
associativity axiom between the 2-functors of composition, i.e. the equal-
ity

o (1 x cgscgg) = Crfcgo} o (cv<## x 1);

see diagram 7.8. And it is just obvious that the identity modification
on the identity 2-cell %A%- I A => 1A is an identity for the composition law
on modifications.

Well, we have just sketched the construction of what is called a 3-
category.
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Diagram 7.8

Definition 7.3.2 A 3-category consists of the following data:

(1) a class \s/\;
(2) for each pair A, B of elements of \s/\, a small 2-category s/(A, B);
(3) for each triple A, B, C of elements of \s/\, a 2-functor

cABC: sf(A,B) x

(4) for each element A of \jrf\, a 2-functor

UA: 1 >s/(A,A)

where 1 is the terminal 2-category (one object, one arrow, one 2-
cell).

These data must satisfy the following axioms.

(1) Associativity axiom: given four elements A, B, C, D of s/, the fol-
lowing equality holds:

CABD O (1 X CBCD) = CACD ° (cACD X 1)

(see diagram 7.1).
(2) Unit axiom: given two elements A, B of s/, the following equalities

hold:
CAAB O(WAX1) = 1 = CABB O (1 X UB)

(see diagram 7.2).

Extending the terminology of section 7.1, we call the 2-cells of s/(A, B)
3-cells of si. The considerations preceding definition 7.3.2 have precisely
proved

Proposition 7.3.3 There exists a 3-category structure on the following
data.

• Objects: the 2-categories.
• Arrows: the 2-functors.
• 2-cells: the 2-natural transformations.
• 3-cells: the modifications. •
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Clearly one could now define 3-functors, 3-natural transformations and
3-modifications. And the fact of having 3-cells in the 3-categories will
allow the definition of "morphisms of 3-modifications". The 3-categories,
3-functors, 3-natural transformations, 3-modifications and morphisms
of 3-modifications will now organize themselves in what is called a 4-
category, whose definition can be easily adapted from the considerations
of 7.3.1 and 7.3.2. The process can be iterated, yielding the notion of
an n-category, for n G N, n > 0; those n-categories organize themselves
in an (n + l)-category. One could even define a 0-category as being a
set and a 0-functor as being a mapping; applying the previous process
yields the notions of 1-category and 1-functor, which are just the usual
notions of category and functor.

7.4 2-limits and bilimits
C o n s i d e r 2 -ca t egor i e s si, & w i t h s / s m a l l . F o r e v e r y o b j e c t B e l t h e
c o n s t a n t f u n c t o r

= B, AB(f) = 1B , AB(a) = i

is obviously a 2-functor.
Given a 2-functor F: si >0& and an object B G f, we shall write

2-Cone(B,F) to denote the category whose objects are the 2-natural
transformations AB => F (the "2-cones on F with vertex B") and whose
morphisms are the modifications between them (see 7.3.1).

Definition 7.4.1 We keep the notation we have just described. The
2-limit of F, if it exists, is a pair (L, TT) where L € & is an object of &
and TT: A L =>• F is a 2-natural transformation such that the functor

) > 2-Cone(£, F)

of composition with ir is an isomorphism of categories, for each object
Be®.

In more explicit terms, we have an arrow TTA'> L >FA for every
Ae $$. Those arrows satisfy Ff o TTA = KAf for every / : A >Af in
s/, but also Fa * i-KA = inA, for every a: f => g in s/. Now if the family
a A' B >FA has analogous properties, there exists a unique morphism
b: B >L such that TTA ° b = a A for each A G si. Given another
family <r'A: B >FA with the same properties and the corresponding
factorization br: B >L, and given a family EA'- crA => o'A of 2-cells
such that Fa o EA = EA1 for every a as mentioned above, there exists a
unique 2-cell (3:b^br such that EA = i^A * /?.
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As usual, the uniqueness of the factorization b in the previous discus-
sion implies immediately:

Proposition 7.4.2 If (L,n) and (V\TT') are 2-limits of the same 2-
functor F: stf >&, there exists an isomorphism b: L >Lf such that
ft A ° b = TT'A for each A € si. •

Examples 7.4.3

7.4.3.a In the 2-category of small categories, the product of two cate-
gories si, S8 is also their 2-product. Indeed write si x Si for this product
and Ps/,p& for the two projection functors. Consider now a small cat-
egory <ff and functors F,F'\ <* ^.c/? G,G': <% \&, with the corre-
sponding factorizations

The 2-dimensional property indicates that given natural transformations
a: F => F7, (3: G => G;, there exists a unique natural transformation
7: f ̂  j => (Qf j such that ip^ * 7 = a, ip# * 7 = /?. Indeed, it suffices to

It should be noticed that in some 2-categories, the product of two
objects can exist without being their 2-product (see exercise 7.10.4).
7.4.3.b In the 2-category of small categories, consider the following
diagram:

F ,

stf G 4a fa
Its 2-limit does exist. It is a subcategory of stf whose objects A are
characterized by the following two properties

(1) FA =
(2) a A'- FA >GA is the identity morphism.

The morphisms to be considered between such objects are those equal-
ized by F and G.

To conclude the present section, we introduce the notion of bilimit
of a 2-functor, on which we shall not dwell very much. The idea is to
have a notion of limit defined "up to equivalence" instead of "up to
isomorphism".
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Definition 7.4.4 We keep the notation of the beginning of this section.
The bilimit of a 2-functor F: sd >@t, if it exists, is a pair (L, TT) where
L e 3$ is an object of 0$ and n: AL => F is a 2-natural transformation
such that the functor

, L) >2-Cone(B, F)

of composition with n is an equivalence of categories, for each object
B e l

In more explicit terms, we have an arrow TTA'- L >FA for every
A G r f . Those arrows satisfy Ff o nA = TTA' for every / : A >Af in
s/, but also Fa * inA = i^A, for every a: f => g in sf. Now if some
family a A' B >FA has analogous properties, there exist a morphism
b: B >L and isomorphic 2-cells 6A' &A => ^A°b for each AEs/, such
that Fa*0A = @Af for each 2-cell a: f =» g in sf. An additional property
must hold. Choose another family a'A\ B >FA, a corresponding fam-
ily of isomorphic 2-cells 0^: a'A >7TA°b'. Given a family EA> &A =^ &'A
of 2-cells such that Fa * EA = £A' for every a as mentioned above, there
exists a unique 2-cell (3: b =$> bf such that 9f

A
 0 ^A = {i-KA * P) 0 &A-

Proposition 7.4.5 Under the conditions of definition 7.4.4, two bilimits
(L, TT) and (B, o) of the 2-functor F are necessarily weakly equivalent;
this means the existence of factorizations b: B >L and bf: L > B as
just described, together with isomorphic 2-cells 1L = b o b', 1B — b' o b.

Proof With the notation we have just used, we already have an arrow
b: B >L and an isomorphic modification (9A' &A =̂  ^A °^ )A€^- Per"
muting the roles of (L, TT) and (B,cr), we obtain an arrow b'\ L >B
and an isomorphic modification (6'A: TTA => &A° b')Aes/-

Considering the equivalence of categories

#(L, L) > 2-Cone(L, F)

one observes that 1L is mapped to TT while bob' is mapped to the 2-natural
transformation (TTA °bo b')Aes/- Those two "cones" are isomorphic via

Coming back along the equivalence, we find finally an isomorphic 2-cell
jjn iL z^bob' such that



296 Bicategories and distributors

An analogous argument yields an isomorphic 2-cell v. %B => V o b such
that

^A *v = {0fA*ib)°0A' •

To prove that b and &', in the previous proof, actually constitute an
equivalence in the sense of definition 7.1.2, it is necessary to check the
two triangular conditions. For example, the first condition means

This is a compatibility condition between v and /i, which have been
constructed from two different equivalences given by definition 7.4.4.
The best one can do is prove the existence of an isomorphic modification
connecting the two sides of the equality. To get the equality, it would
be necessary to strengthen definition 7.4.4 by requiring the existence of
a coherent choice of the adjoints in the various equivalences; but this is
most often impossible to verify in examples.

7.5 Lax functors and pseudo-functors

Just because many categorical constructions are defined "up to isomor-
phism" , some constructions are functorial... up to isomorphism! This is
precisely the idea of what a pseudo-functor is. The notion of a lax func-
tor is even weaker: it requires just functoriality up to arbitrary 2-cells
instead of isomorphic ones.

Definition 7.5.1 A lax functor F: s/ >3& between 2-categories sf, 0&
consists of the following data:

(1) for every object Aes/,an object FA G ^ ;
(2) for every pair of objects A,BEstf,a functor

FAB:

(3) for every triple of objects A, B, C € s/, a natural transformation
(see diagram 7.9)

IABC' CFA,FB,FC ° (FAB X FBC) => FAC ° CABC',

(4) for every object A G stf, a natural transformation (see diagram 7.10)

6A: uFA => FAAOUA-

The natural transformations 7 and 6 are required to satisfy the following
coherence axioms.
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FAB x FBc

0(FA,FB) x a(FB,FC)-

lABC/?

CFA,FB,FC

Diagram 7.9

UA

FAC

-> @(FA,FC)

V FAA

L uFA '
Diagram 7.10

(1) Composition axiom: for every triple of arrows

A f >B 9 )C h_ >D

in si, the following equality between 2-cells holds (see diagram 7.11):

l9of,h © (iFh * 7f,g) = If,hog 0 (i/g,h * *F/),
where, for simplicity, we have written jfi9 instead of {r)ABc){f,g)-

(2) Unit axiom: for every arrow f: A >B in si, the following equali-
ties between 2-cells hold (see diagram 7.12):

71A, / 0 i^Ff * SA) = lFf> 7/, 1B ° (6A * iFf) = iFf,
where, for simplicity, we have written 6A instead of (6A)*-

When the natural transformations ^ABC and 6A are natural isomor-
phisms, F is called a pseudo-functor.

Definition 7.5.2 Consider two lax functors F,G: •<*? > M between
2-categories s/,3#. A lax-natural transformation a: F => G consists in
the following data:
(1) for every object A E si, a morphism a A'- FA >GA;
(2) for every pair of objects A, B G si, a natural transformation

TAB: @{OCA, 1) o GAB => * ( 1 , <*B) O FAB

(see diagram 7.13), where ^ (04,1) and ^(I,aj5) are the functors
obtained by fixing a A or as in the bifunctors of composition.

These data are required to satisfy the following coherence axioms, where
6F ,^F, 6G, 7 G are the natural transformations of 7.5.1, respectively for
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FhoFgo Ff lFh*^f>9 ) Fh o F(g o

lg,h

Ff

iFf

F(hog)oFf-
If,hog

Diagram 7.11

> F(hogof)

F1A 1FB o

lFf

lFf
Ff

Diagram 7.12

Ff

F and G. We keep the same abbreviated notation as in 7.5.1 and also
write Tf instead of (TAB) f-

(1) For each object A G s/, the following equality between 2-cells holds
(see diagram 7.14):

T1A © (6% * iaA) 0 iaA = (iaA * 6%) © iaA.

(2) For each pair of arrows

A — ^ B 9—+ C

in s$', the following equality between 2-cells holds (see diagram 7.15):

( W * 7/,<?) ° (r9 * if) 0 (icg * rf) = Tgof 0 (7/^ * iaA).
When F, G are pseudo-functors and each TAB is a natural isomorphism,
a is called a pseudo-natural transformation.

Definition 7.5.3 Consider two lax functors F,G: ^ \@ between
2-categories si, & and two lax-natural transformations a, /?: F => G. A
modification E: a ^* (3 is a family

EA' &A => PA

of 2-cells of&, for every object A G si. Such a family is required to satisfy
the following property: for every pair of morphisms / , g: A ±A' of si
and every 2-cell a: f => g, the equality

EA* * Fa = Ga * EA

holds in $.
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, B) FAB >a(FA, FB)

GAB TAB,y 0(1, aB)

OLA

Diagram 7.13

> iGA o a A
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OLA

A A

Diagram 7.14

In particular, this definition applies when F, G are just pseudo-func-
tors or even 2-functors (see 7.3.1).

The reader will observe that when all coherent isomorphisms in defini-
tions 7.5.1, 7.5.2 are just identities, we recapture the notions of 2-functor
and 2-natural transformations. We leave to the reader the straightfor-
ward proof of the following proposition:

Proposition 7.5.4 There exists a 3-category structure constructed on
the following data.

• Objects: the 2-categories.

• Arrows: the lax functors.

• 2-cells: the lax-natural transformations.

• 3-cells: the modifications.

An analogous statement holds with "lax" replaced by "pseudo". •

We refer to section 7.6 and chapter 8, volume 2, for examples of prob-
lems using pseudo-functors and pseudo-natural transformations.

Finally let us mention that in the case of lax functors and lax nat-
ural transformations, the notions can be in some manner dualized by
reversing the direction of the 2-cells 7,5, r .
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GgoGfo aA
 lQg * T/> GgoaBoFf T g * V ) acoFgoFf

If,9

o /) o aA jr^-f > OLC o F(g o / )

Diagram 7.15

7.6 Lax limits and pseudo-limits

Pseudo-functors and lax functors emphasize the idea of replacing com-
mutative diagrams by diagrams which commute up to isomorphism or
even up to 2-cell. The classical notion of limit is precisely based on
the idea of making commutative a family of triangles. The notions in-
troduced in section 7.5 will allow us to introduce new corresponding
notions of limits.

First of all, let us consider 2-categories si, 0i, with si small. For every
object B G J1, we consider as in section 7.4 the constant 2-functor on B
written A#: si >0$] in particular, this is a pseudo-functor and a lax
functor where the coherent isomorphisms are just identities. Given a lax
functor F: si >3S, a lax-cone on F with vertex B G 3& is a lax-natural
transformation A# => F; we write Lax-Cone(£?, F) for the category of
these lax-cones and modifications between them. In the same way a
pseudo-cone on F with vertex B G 38 is a pseudo-natural transformation
AB => F and we write Ps-Cone(i?, F) for the corresponding category of
pseudo-cones and modifications between them.

Definition 7.6.1 We use the notation we have just described. The
lax limit of a lax functor F: si >£$ between 2-categories si, 3$, if it
exists, is a pair (L, n) where L G @t is an object of 3$ and IT: AL ==£• F is
a lax-natural transformation such that the functor

&(B, L) > Lax-Cone(£, F)

of composition with IT is an isomorphism of categories, for each object
B G 36. Replacing "lax" by "pseudo" in the previous definition, we get
the notion of pseudo-limit of a pseudo-functor.

Even when F is an actual 2-functor, the notions of lax limit, pseudo-
limit and 2-limit of F produce results which are, in general, completely
different. To emphasize this, let us write in more explicit terms the
definition of the lax limit of F , in the case where F is a 2-functor.
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The lax limit is given by a family TTA: L >FA of arrows, for every
object A G J / , and a family r/: Ff o TTA => nA, of 2-cells, for each arrow
/ : A >Ar in si. These data are such that T\A = inA for each A and

Tg © (lFg * Tf) = T^o/

for each pair of composable arrows A * >A' 9 > A" in «a/. Given other
families aA: B >FA, Of. Ff o aA => aA, with analogous properties,
there exists a unique arrow b: B >L such that irAob = aA for each
A E si and T/ * 1& = 0f for every / : A >Af. Now choose on the same
object B two additional families aA: B >FA, O'f. FfoaA => <J'A, with
analogous properties and the corresponding factorization b1: B >L;
choose also a family of 2-cells EA: aA => a'A such that for every pair
/ , g: A }Af of morphisms and every 2-cell a: f => g1 the relation

6'g o (Fa * EA) = 3A / © 0f

holds; under these conditions, there must exist a unique 2-cell /3: b => b'
such that for every AGrf, inA * /? = H^.

As usual, the uniqueness of the factorization b in the previous discus-
sion (or more precisely the corresponding discussion for a lax functor)
implies immediately:

Proposition 7.6.2 If(L, TT) and (L, TT;) are two iax limits of the same lax
functor F: si >$, they are isomorphic. A corresponding statement
holds for the pseudo-limit of a pseudo-functor. •

Example 7.6.3
Let us choose for 9 the 2-category with three objects 0,1,2, two non-
trivial arrows 1 »0 and 2 »0, and no non-trivial 2-cells. A 2-functor
P: 0> >Cat to the 2-category of small categories is just the choice of
two functors F: si »#, G: 0b >c€. Even in this trivial case where
no 2-cells are involved a priori, let us observe the striking differences
between the notions of 2-limit, pseudo-limit and lax limit.

The 2-limit of P is just the usual puUback of F, G. The objects of the
limit if are the pairs (A, B) with A e si, B e @ and FA = GB; an
arrow (/,#): (A,B) >{A',Bf) is a pair / : A >A', g: B >B' of
arrows in si and 3b respectively, such that Ff = Gg. The projections
are the obvious ones. Thus the puUback of F, G coincides with their
2-pullback.

The lax limit object of the functor P is the category JSf whose ob-
jects are the quintuples (A,/,C,p,-B), with A G i , B G I , C G ^ ,
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f: FA >C and g: GB >C. An arrow

(A,f,C,g,B) >(A'J',C'ig',B')

is a triple (a, c, b) with a: A > A', b: B >B', c: C >C and cof =
/ ' o f a , cog = g'oGb. The projections are the obvious ones. The required
natural transformations

F O TTrf => 7T<& <= G O 7T@

take values / , g on the object (A, / , C, #, B).
The pseudo-limit of the functor P is constructed in an analogous way,

restricting one's attention to those quintuples (A, / , C, #, B) where / and
g are isomorphisms.

In particular, it should be observed that none of the previous construc-
tions gives the comma category (F, (?), as defined in 1.6.1. The comma
construction is in fact an example of a weighted 2-limit (see chapter 6,
volume 2).

7.7 Bicategories
In sections 7.5, 7.6 we have indicated that since many constructions
in category theory are just defined "up to isomorphism", it is sensible
to consider constructions which are functorial "up to isomorphism" (or
even up to 2-cell). But in some cases this leads to the consideration
of category-like objects . . . where the axioms for a category are just
satisfied "up to isomorphism" (or even up to 2-cell).

This is the object of the notion of a bicategory. To be coherent with the
terminology of the previous sections, it would be better to say "pseudo-
category" , but the term "bicategory" is now universal for the structure
described in 7.7.1.

Definition 7.7.1 A bicategory si is specified by the following data:

(1) a class \s/\ of "objects" (also called "0-cells");
(2) for each pair A, B of objects, a small category <stf(A, B) whose ob-

jects are called "arrows77 (or "morphisms" or "1-cells") and whose
morphisms are called "2-cells"; we write a © /3 for the composite of
the 2-cells a, 0;

(3) for each triple A, B, C of objects, a composition law given by a
functor

CABC' s*(A,B) x s/(B,C)
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OiABCD,y
CACD

Diagram 7.16

Diagram 7.17
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CABD

x 1

I xiB

x

given arrows f: A >B, g: B >C of the bicategory si', we write
gof for their composite CABcif, 9)I given other arrows / ' : A >B,
g'\ B >C and 2-cells 7: / => / ; , 6: g => g', we write 5*7 for their
composite CABC{I-> $)i

(4) for each object A G si, an "identity arrow77 1A' A >A; we write
%A for the identity 2-cell on 1A>

The associativity and identity axioms are now replaced by the existence
of some isomorphisms, which are thus part of the data for a bicategory.

(1) Associativity isomorphisms: for each quadruple of objects A, i?, C, D
of si, a natural isomorphism

OLABCD'- CACD ° (CABC X 1) => CABD O (1 X CBCD)

(see diagram 7.16).
(2) Unit isomorphisms: for each pair of objects A,B G si, two natural

isomorphisms

XAB' 1 => CAAB ° {i>A X 1), PAB'- 1 => C-ABB ° (1 X ^B)
(see diagram 7.17).

Those various data are required to satisfy coherence conditions expressed
by the following axioms.

(1) Associativity coherence: given arrows

A f p 9 ,ri h n k_
J± 7 D 7 O — 7 U •+E,

the following equality holds (see diagram 7.18):
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k * % (ko(ho g)) o f k o ((h o g) o / )

(koh)o(gof)

Diagram 7.18

(9°is) °f Q / ' l B ' 3 ) g o ( i B o / )

Diagram 7.19

(ifc * QLf,g,h) ° OCf,hog,k ° (^p,h,fc * */) = OLgof,h,k

where we have written otf,g,h instead of(aABCD)(f,g,h)jJus^ f°r SJin-
plicity.

(2) Identity coherence: given arrows

the foiiowing equality holds (see diagram 7.19):

(ig*\f) ©a/,iB,* = Pg*if,
where, for simplicity again, we have written Xf, p9 instead of (A

Clearly, one could have considered an even more general notion where
the associativity and identity isomorphisms a, A, p are replaced by or-
dinary natural transformations, something one could have called a "lax
category".

We leave to the reader the work of defining pseudo-functors and lax
functors between bicategories and the corresponding notions of pseudo-
limit, lax limit and even pseudo-bilimit or lax bilimit.

It is lengthy but straightforward to check that bicategories, lax func-
tors and lax-natural transformations constitute a new bicategory and
even, taking into account the modifications, something which could be
called a tricategory. An analogous statement holds with "lax" replaced
by "pseudo".

If all generalizations we have just mentioned are quite straightforward
to define, the axioms nevertheless take a quite heavy form because of all



7.7 Bicategories

1B o f-H±*U(f o g) of-&**+fo{g of)
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the coherent isomorphisms it is necessary to introduce. As an example,
let us make explicit the notion of an adjoint pair in a bicategory.

Definition 7.7.2 Let si be a, bicategory. Two arrows f: A >B and
g: B >A are part of an adjoint pair when there exist 2-cells

V- 1B => f°9, e:gof=>lA

which satisfy the following equalities (see diagram 7.20):
(if * e) © otf,g,h © (77 * if) = pf 0 A/,

(e * ig) 0 a~)g 0 (ig *v) = \ge p9.

The reader will observe that, in this definition, we have used explicitly
the fact that a is an isomorphism, not just a natural transformation.

Example 7.7.3
Let ^ be a small category with pullbacks. We shall construct the bicat-
egory of spans of #, closely related with the constructions of section 5.2
concerning the calculus of fractions. We use freely the axiom of choice.

The objects are those of # and a morphism A >B is now a span
on A, B, i.e. a pair of arrows / : X >A, g: X >B of # (see dia-
gram 7.21) with an arbitrary domain X. A 2-cell a: (f,g) => {f,gf)
between two spans on A,B is just a morphism a: X >Xf such that
/ ' o a = / , g' o a = g\ see diagram 7.21. The composition of # immedi-
ately induces the structure of a category on the spans from A to B.
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Given two spans (f,g): A >B and (ft, k): B >C, we define their
composite as

(h,k)o(f,g) = (/oz,fcoy),

see diagram 7.22, where (x,y) is one arbitrarily specified puUback of
(g, ft). Given other spans (/', </): A >B, (ftx, fc'): B >C, we specify
in the same way a puUback (x',yf) of ((/, ft7) and the corresponding
composite

f,g') = (fox',k'oy>).

Now given 2-cells

the equality

gfoaox = gox = hoy~ hfo/3oy

in ^ implies the existence of a unique factorization 7: Z >Z' through
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A

the pullback (x',2/'), with x' 07 = a ox, 2/07 = (3oy. From the relations

we deduce that 7: (/ o x, k o y) => (/ ' o a:', fc' o ?/) is a 2-cell, which we
choose as /? * a.

Since pullbacks are defined up to isomorphism and we made an ar-
bitrary choice of them, we conclude that the associativity in the com-
position of spans holds up to isomorphism. This allows the definition
of a natural isomorphism a as in 7.7.1. If one chooses to specify the
identity always as the pullback of an identity arrow, one can choose the
identity span (1^, 1A) (see diagram 7.23) as identity on A and the iden-
tity natural transformations as isomorphisms \,p in 7.7.1. We leave the
verifications to the reader.

Example 7.7.4

Another canonical example of a bicategory can be found in the theory of
bimodules. We choose as objects the rings with identity. An arrow from
the ring R to the ring S is an (i?, 5)-bimodule M: this is an abelian
group M provided with the structure of a left i?-module and a right
S-module, the axiom

r(ms) = (rm)s

being satisfied for all elements r G i?, m G M, s G S.
Given two (i?, S')-bimodules M,N, we choose as 2-cells from M to

N the (JfJ, 5)-linear mappings / : M >N, thus the group homomor-
phisms which are both i2-linear on the left and S-linear on the right.
This yields immediately a category Bim(i?, 5) of (R, 5)-bimodules and
their homomorphisms.

For a third ring T, the composition

Bim(i?, S) x Bim(5, T) > Bim(ii, T)

is just the "tensor product" functor. Indeed given an (i?, 5)-bimodule M
and an (5, T)-bimodule JV, the tensor product M®sN over S produces
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an (R, T)-bimodule. This construction is well-known to be functorial.
Now "the" tensor product of bimodules is associative in the sense that
given rings R, S, T, V', an (i?, 5)-bimodule L, a (S, T)-bimodule M and
a (T, F)-bimodule AT, there exists a canonical isomorphism

L®S(M®TN) ^ (L®SM)®TN.

Moreover, given a ring i?, this ring R itself can be seen as an (i?, R)-
bimodule and, up to an isomorphism, is an identity for tensoring over
R.

From these considerations, the reader can check that we have effec-
tively defined a bicategory of rings, bimodules and homomorphisms of
bimodules.

7.8 Distributors
Roughly speaking, a distributor is to a functor what a relation is to a
mapping.

More precisely, a set can be seen as a discrete category; the hom-sets
are just the empty set (when the objects are different) and the singleton
(when the objects are equal); in the definition of a category, the empty
set and the singleton are replaced by arbitrary sets of morphisms.

The way one represents graphically a relation from a set A to a set
B is to draw an arrow from a G A to b G B when those elements are
in relation and no arrow when they are not. Once more with each pair
(a, b) G A x B we have associated a set of arrows which is just the
singleton (when a, b are in relation) or the empty set (when a, b are not
in relation). The correct generalization to the case of categories si ,0b
will be to define a "categorical relation" from si to 3b by associating
an arbitrary set of "formal arrows" with each pair ( o , i ) ) G i x l of
objects. Clearly, such a "categorical relation" must be functorial with
respect to the arrows of si and $. Now intuitively, giving a relation
from si to $ must be equivalent to giving the opposite relation from
$ to si obtained by "reversing the direction of all formal arrows". To
avoid inelegant contravariant behaviour in subsequent results, we in fact
define a distributor from si to 3b as being a "categorical relation" from
3b to si.

Definition 7.8.1 By a distributor (also called profunctor or bimodule)
from a category si to a category &, we mean a bifunctor

<f>: @* x si >Set.
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We shall write 0: si o >3b to indicate that 0 is a distributor from si
to &. Given two distributors 0, if>: si o ><%, a morphism of distributors
a: 0 => ij) is just a natural transformation a: 0 => ip.

In particular, when si , 8& are small, the distributors from si to 0&
and their morphisms organize themselves in a category Dist(j/, ^ ) , for
the usual composition of natural transformations.

We are now going to introduce a composition law which will allow us
to present the distributors as arrows of a bicategory. Let us recall that
given two relations R: A >B, S: B >C between sets, the relation
S o R: A >C is given by

(a, c) G S o R iff 36 G B (a, 6) G R and (6, c) G S

Going back to the graphic representation of a relation, we view (a, b) G R
as a formal arrow from a to 6 and in the same way for (6, c); (a, c) can
thus be thought of as the formal composite of those formal arrows. In
an analogous way, given two distributors <f>: si o >3fi and -0: 3$ o >#,
thought of as "categorical relations" from 0b to si and from # to ^ , two
elements

), yeil>(C,B)

could be thought of as formal arrows

A< ?• B< V- C

yielding a formal composite arrow xy G (ip o </>)(C, A). Now since 0& is a
category, not just a set, we can have the situation

A< £ B< $ J?'< « C,

and clearly we want a relation of the type x(by) = (xb)y between the
corresponding formal composites. It remains to define all those "formal
composites". Observe that the formal composite xb G </>(B'7A) can be
defined as the element 0(6, l)(x); in the same way by = -0(1, b)(y).

Proposition 7.8.2 Small categories, distributors and morphisms of
distributors organize themselves in a bicategory.

Proof We have already observed that given two small categories si, 3&,
the distributors from si to 3$ and their morphisms organize themselves
in a category.
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Now choose two distributors (j>: si o >3$ and ip: 08 o >#. We shall
define their composite -0 o </>: s/ o ><$. Given objects A € sf, C € ^ we
put

where the equivalence relation is that generated by all pairs

for all x € <t>{B, A), b € @(B',B), y 6 ip(C,B'). We must still define
ip o (j> on the arrows. Choosing a: A >Af in ««/ and c: Cx >C in #,
(-0 o 0)(a, c) maps the equivalence class of the pair

to the equivalence class of the pair

This definition is compatible with the equivalence relations defining ^
indeed, with the previous notation,

This defines the mapping

It is straightforward to check that ip o cp is actually a bifunctor, thus a
distributor st—o-^^.

Now choose other distributors a: s/ o ><%, r: $ o ><& and two mor-
phisms of distributors a: <j) => a, /?: ip =4> r. We must define a morphism
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of distributors (3 * a: i\) o (j> => r o a. To define (/? * OL)CA we map the
equivalence class of the pair

(v,u)eil>(C,B)x<t>(B,A)

to the equivalence class of the pair

) e T(C,B) x a(B,A).

This definition is compatible with the equivalence relations defining ^
and r o cr; indeed, with the previous notation,

((3*a)cA[{y,<t>(bA)(x))] = [{PcB>(v),aB*A<Kb,l){x))\

= [{f3cB'(y),v(b,l)aBA(x))]

= [{r(l,b)f3CB'(y),aBA(x))\

= [(PcBrl>(l,b)(v),<*BA(x))\

This defines a mapping

(0*<*)CA: (tl>o(p)(C,A) >(TO*)(C,A).

It is straightforward to check that /3 * a is a natural transformation and,
finally, that we have defined a bifunctor of composition

The composite ip o <p of two distributors has been obtained via colimit
processes in the category of sets. For these colimits to exist, observe it
was necessary to assume @t small. But those colimits are just defined up
to an isomorphism. For this reason one can only prove the associativity
law up to an isomorphism.

As far as identities are concerned, we have to specify a distinguished
distributor i^\ si o >$4. This is just the horn-functor

>Set,

Indeed choose a distributor ip: si o >#. When computing the colimit

we observe that the equivalence relation is generated by the pairs
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where x G si{B, A), b G $i{B', B) and y G </>(C, I?7). In particular, given

so that we can write

where the equivalence relation is generated by the pairs

s £ o b)(y)

for all x G ^ ( £ , A), be si{B', B) and ye ^(C, B')- B u t t h o s e P a i r s a r e

pairs of equal elements, so that finally (\j) o s/)(C, A) = ^(C^A). Once
more we have found an isomorphism, not an identity. An analogous
argument holds when composing with a distributor (/>: 3f o >s/.

It is now a lengthy but easy job to verify that all the axioms for a
bicategory are satisfied. •

Example 7.8.3

Consider a functor F: s# >3$. This yields two bifunctors

F*: .** x m >Set, (A,B) *-+ ®{FA,B\

F*:@* x si >Set, (B,A) >-> ®{B,FA),

thus two distributors

F*: ^ e >st, F*: si e >&.

Example 7.8.4

Consider now two functors F, G: siZH%8 and a natural transformation
a: F => G. This yields two natural transformations defined by

(a*)BA: @{B,FA) >*(B,GA), (a*)BA =

thus two morphisms of distributors

a*:G*=^F*, a*: F* => G\

Let us write Cat for the 2-category of small categories, functors and
natural transformations and Dist for the bicategory of small categories,
distributors and natural transformations.
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3t(FA, FA) f3FA'A><%(FA, GA)

Diagram 7.24

Proposit ion 7.8.5 There exists an injective pseudo-functor

<\>\ Cat >Dist

with the property that for each pair of categories si, &

is full and faithful.

Proof Just define <f)(si) = si, <j>(F) = F* and </>(ct) = a*. This clearly
defines a pseudo-functor.

To prove the last assertion, choose two functors F, G: .^ \ &\ we
must prove that the mapping

Nat(F,G) >Nat(F*,G*), a^a*

is a bijection. First of all observe that given A E si

, FA) ><%(FA, GA)

maps lp A to a A] this proves the injectivity. Now starting from a natural
transformation /?: F* => G*, it suffices to consider for every A e si

>*(FA,GA)

and put a A = /?FA,A(1FA)- The naturality of /? immediately implies
that of a. Moreover, considering the commutative diagram 7.24 where
/ 6 @{B, FA), we conclude that

(3BAf) = PB,A

= PFA,AO-FA) °f = aA°f = ®*B,AU)I

proving the relation (3 = a*.
The pseudo-functor <\> is certainly injective on the objects (it is the

identity!); it remains to prove it is injective on the arrows. If two functors
F, G: .c/ \& are such that F* = G*, then given Aesi, &(FA, FA) =
3&{FA,GA) and we deduce that \FA is also a morphism FA >GA\
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this yields FA = GA (to be precise, we have to assume the disjointness
of the various sets of morphisms in ̂ , which is no restriction at all).
Finally choosing in si a morphism a: A >Ar,

F(a) = F*(lFAja)(lFA) = G*(lGA,a)(lGA) = G(a). D

Proposition 7.8.5 justifies our choice of defining a distributor si o >£#
as something which appears intuitively as a categorical relation from 3S
to si. Making the opposite choice would have inverted the direction of
the arrows in Dist, but not that of the 2-cells. Therefore <f> would have
been contravariant on the arrows and covariant on the 2-cells (or the
converse if defining </>(F) = F*, (f>(a) = a*): a situation which is not
very elegant to handle, especially when one intends to view Cat as a
2-sub-category of Dist.

7.9 Cauchy completeness versus distributors

One of the reasons why distributors have been introduced is actually to
produce a formal adjoint to every functor. Indeed, with the notation of
7.8.3

Proposition 7.9.1 Consider a functor F: si >8$ between small cat-
egories. The distributor F*: & o >si is right adjoint to the distributor
F*: si o >$ which, in view of 7.8.5, is the "functor F embedded in
Dist".

Proof Let us first compute F*oF* and JF*OF*. Given objects A, Af G si,

We must produce natural transformations

satisfying the conditions of 7.7.2.
First of all, in the definition of (F* o F*)(A, A') observe that given

FA'<—^ B<—^— FA=FA,

x1 G 0b(B, FA!) and x G 0&{FA, £ ) , we get an equivalent pair

(x,xf) « (lFA,x' ox).
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This implies the isomorphism

where the equivalence is now induced by

yo(box) &(yob)ox, ye@(B',FA'), bea(B,B'), xe<%(FA,B).

Thus the equivalence on 91{FA, FA1) is generated by pairs of equal mor-
phisms so that finally

(F* o F*)(A, A1) ^ a(FA, FA1).

This lets us define TJAA' as the mapping

TIAA>: si {A, A1) >8{FA,FA% a .-> Fa.

Consider now the definition of (F* o F*)(B,B'). Given a pair of ele-
ments (&,&') € @(B,FA) x £(FA,Bf), we get b' ob e &(B,B'). This
construction is compatible with the equivalence relation involved in the
definition-of (F* o F*)(B,B')\ indeed, given b: B >FA, a: A >A'
and b': FA' >B*', we have an equivalent pair

(b,b'oF(a)) w (F(a)ob,b')

and clearly (bf o F(a))b = 6'(F(a) o 6). This yields a mapping

'), [(b,b')] ^ b'ob.

We leave to the reader the straightforward verifications that rj, e are
natural and satisfy the conditions of 7.7.2. •

Having in mind proposition 7.9.1, one might wonder if actual functors
F: si >3fi can be exactly characterized as those distributors si o >^
which have a right adjoint. The answer is "yes> if and only if $ is Cauchy
complete."

Let us write 1 for the final category. A distributor l—e->s/ is just a
contravariant functor s/* >Set. Therefore we can view the covariant
Yoneda embedding as a functor

Y: si >Fun(jar,Set) ^ Dist(l,j*).

Proposition 7.9.2 Consider a distributor </>: 1 o >s/ where si is a
small category. The following conditions are equivalent:

(1) the distributor (/> has a right adjoint I/J;
(2) via the isomorphism Fun(j/*,Set) = Dist(l,j/), (j) is isomorphic to

a retract of a representable functor.
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Proof Suppose ij) is right adjoint to (j). We thus have two functors

</>: s/* »Set, i/r. si >Set.

Since 1 has a single object and a single arrow (the identity), the two
composites are given by

cj)oip: si* x si >Set,

where « is the equivalence relation generated by

for every / : A >A\ x G if)A, y G 0-A' (see 7.8.1).
The two canonical morphisms of the adjunction, e: <j> o t/; => 1^ and

77: l j => ̂  o </>, are thus

• a family of mappings £A,B* <M X ^ B >s/(A, JB), natural in A and

• an element 77* G (-0 o </>)(*, *).

Since (^ o 0)(*, *) is defined as a quotient, choose an object C G si and
an element (it, v) G ^ C x (f>C such that r/* = [(iz, v)].

In order to express the triangular identities for adjointness, let us
compute

0C0O0: si* >Set, i/; o $ o t/;: si >Set,

o if) o <j)){A) ^{cj>o(^o <j>))(A) ^ (j>A x (^ o 0)(*, *)

where « i is the equivalence relation generated by

for a G 0-A, 6 G ipB, c G 0B;, / : B >B\ while ^2 is the equivalence
relation generated by



7.9 Cauchy completeness versus distributors 317

for r € if)A, s G <j)A\ t € ^ B , / : A >A'.
Consider now the first relation for adjunction in 7.7.2; up to canonical

natural isomorphisms, we can write it (t/> * e) © (77 * ip) = 1 ,̂. Via the
previous computations, this means just, for x E

Next we consider the second relation for the adjunction, which reduces
to (e * <j>) o {(j) * 77) = 1^ up to canonical natural isomorphisms. Given
y E <j)A, this relation means

Let us prove now that 0 is a retract of the representable functor
(—,C), seen as a distributor F: 1 o > J / . One easily defines two nat-

ural transformations

7: (j) => jaf(-, C), 7A(y) = £Ac(y, u),

where A,B 6 ^ , y G </>A, ^: B >C. Clearly, 7 is natural since e
is and 6 is natural just because 0 is a functor. The second triangular
equality for adjointness can be rewritten 6A ° 7A (2/) = y, which proves
that 6 o 7 = i^. Thus 0 is indeed a retract of J / (—, C).

Conversely suppose we are given

such that <$ 0 7 = i<£. The composite

is an idempotent on J / ( - , C ) . Since the Yoneda embedding is full and
faithful (see 1.5.2), 7 0 6 — srf{—, e) for some idempotent e: C >C in
j / . Now consider the idempotent natural transformation

Since Fun(j/,Set) is complete (see 2.15.2), idempotents split (see 6.5.4)
and we find a retract a, /?: ^ 1 Z Z ^ J / ( C , —) with the properties a 0 /3 =
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1^ and (3 © a = ^/(e, —). Let us prove that ip is right adjoint to 0,
and tp being considered as distributors.

Let us define e: (p © xp => 1^ by

) = <pA x V>£ > J / ( A , 5 ) ,

£AB (y,x)= PB (X) O <yA (y).

The naturality of £AJJB follows immediately from the naturalities of j3
and 7. Let us also define

u = ac{lc) ^^C, v = Sc(lc)

Putting 77* = [(u, v)], we have defined 77: 1^ => ifi o </>.
In order to check the two triangular equalities for adjunction, recall

that

7 = Ker ( j / ( - , l c ) , ^ ( - , e)), (3 = Ker ( ^ ( l c , - ) , j / (c f - ) )

(see 6.5.4). Therefore given z € </>(C) one has

7C o 0(e)(z) = J / ( C , e) o 7 c ( z ) = j / ( C , lc ) o *yc(z) = lc{z).

As an equalizer, 7c is injective (see 2.2.4.(3) and 2.15.3); this yields
4>(e)(z) = z for every z G <t>(C). In an analogous way, one proves that
xp(e)(z) = z for every z G ip(C). In particular <t>{e){v) = v and tl>(e)(u) =
u.

Now let us check the triangular identities for the adjunction (see 7.7.2).
Both proofs are analogous; we develop the second one. Viewing </>, tp as
distributors, the second triangular identity reduces to

for every A G s/ and y G 0(A, *). Going back to the description of
(j> o ip o (j> at the beginning of the proof, y is mapped by ((/> o r/)(A,a) to
the equivalence class

and this class is itself mapped to the equivalence class

By definition of the equivalence relation defining ( 1 ^ o </>)(A, *), this is
just the element

4>{Pc(u) oyA(y))(v) € 4>(A) = <t>{A,*).
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Since <j> is contravariant as a functor and <j)(e)(v) = v, one computes
immediately that

<t>{Pc(u) o-yA{y))(v) = </>(pc(ac(lc)) o-yA(y))(v)

= <f>(^(e,C)(lc)ol

= (t>(eolA(y)){v)

= y- •

The relation between Cauchy completeness and the theory of distrib-
utors is expressed by the following theorem.

Theorem 7.9.3 Given a small category si, the following conditions are
equivalent:
(1) si is Cauchy complete;
(2) a distributor </>: 1 o >si has a right adjoint if and only if it is iso

morphic to a functor;
(3) for every small category &, a distributor 9: 0b o >s/ has a right

adjoint if and only if it is isomorphic to a functor.

Proof A functor F: 1 >s/ is just the choice of an object F* G si'.
Seen as a distributor it is

>Set, (A,*)

thus it is the represent able functor stf(—,F*).
Suppose si is Cauchy complete. By 7.9.2 a distributor (/>: 1 o >si

has a right adjoint iff it is a retract of a representable functor, i.e. by
6.5.6 iff it is representable. This proves (1) => (2).

(3) => (2) is obvious. Let us prove (2) => (3). If 9 is a functor, we
know it has a right adjoint distributor (see 7.9.1). Now suppose 9 is just
a distributor, with right adjoint r. For every object B G I consider the
situation
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where @t{B, - ) , seen as a distributor, is right adjoint to ̂ ( - , B), seen
as another distributor (see 7.8.3). Composing the adjunctions we obtain
that ^ ( J B , —)or is right adjoint to 0o<%(—, B). Applying our assumption,
the composite 6 o 3$(—,B) is a functor. Therefore we find an object
FB es/ such that

£/(-, FB) S 9 o a(-, B): si* >Set.

Let us explicitly compute (6 o £${—, B)){A).

where « is the equivalence relation generated by

for g: C >O, x G 0(A,C) and / e @{Cf,B). In particular, given
elements y e 0(A, C) and h € #(C, J3), one has

(x,lBoh) xt (0(lA,h)(x),lB),

so that every pair (y, /i) is equivalent to a pair (z, 1B) with z £ 0(A, B).
These considerations already yield a surjective mapping

a:0{A,B) >(0o0(- ,

In order for them to yield another mapping

we must prove that (x,/i) « {xf,h!) implies 0(1A,/I)(X) = 0(l^,/i/)(a:/),
for x' G ^(A, C") and /i; G ^(C 7 , B). It suffices to prove this for a couple
of pairs generating the equivalence relation. Thus let us consider

as above. We obviously have

0(lAjog)(x)=0(lA,f)(0(lA,g){x)),

which implies the existence of J3. The relation /3 © a = 1 is obvious and
the relation a 0 j 8 = l holds by definition of the equivalence relation.

So we are at the point of having found an object FB G J / together
with bijections

, FB) ^(0o £(-, B))(A) & 0(A, B).
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It remains to extend F to a functor, in such a way that these bijections
become a natural isomorphism. A morphism b: B >Br yields a natural
transformation

0 * * ( - , b): 6 o <%(-, B)^6o (-, S'),

thus a natural transformation si{—, FB) =£> «s/(—, FBf). Since the Yon-
eda embedding is full and faithful, this transformation has the form
si(-,Fb) for some unique morphism Fb: FB >FB' (see 1.5.2). This
defines F on the arrows. The rest is now straightforward observations
left to the reader.

It remains to prove (2) => (1). Given a retract R >^(—, A) of a
representable functor, we consider the functor R: si* >Set which can
be seen as a distributor <j>: 1 o >jt/. By 7.9.2, the distributor <\> has a
right adjoint distributor I/J. By assumption, this implies (j) = F* for some
functor F: 1 >si. In other words, R(A) = 0(A,*) = J ^ ( A , F * ) for
some object F* € si\ from which it follows immediately that R is the
contravariant functor represented by F*. •

Let us conclude this section with an interesting characterization of
those categories with equivalent Cauchy completions.

Theorem 7.9.4 Given two small categories <stf and &, the following
conditions are equivalent:

(1) the categories of set-valued functors Fun(j/*,Set) and Fun(^*,Set)
are equivalent;

(2) the Cauchy completions of si and 0b are equivalent;
(3) there exist distributors (j>: s/ o >& and if): Si o >s/ such that i\) o

(j) ^ 1^ and 4> o ip ^ la;

(4) si and 38 are equivalent in the bicategory Dist of small categories
and distributors.

When these conditions are satisfied, si and 0& are called "Morita equiv-
alent categories".

Proof The equivalence (1) <=> (2) has already been proved in 6.5.11
and (3) is just a reformulation of (4).

Since the composite of two equivalences is obviously an equivalence,
(2) => (4) will be proved if we show that the inclusion i: si c-^ si of
si in its Cauchy completion (see 6.5.9) is an equivalence in Dist. This
inclusion yields the two adjoint distributors (see 7.9.1)

»*: ̂ * x si >Set, (F, A) *-+ Nat(F,si{~, A)),

i*: si* x ^ >Set, (A,F) *-* Nat(j/(-, A),F).
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As observed in the proof of 7.9.1, (i* o i*)(A,B) = ~si(iA,iB), i.e. by
definition of si (see 6.5.9) and the Yoneda lemma (see 1.3.3),

(U o i*)(A, B) e* *(*/{-, A), j / ( - , £) ) £* j / ^ , £?)•

Going back again to the proof of 7.9.1, we deduce that the canonical
natural transformation 77: si => i* oi* is an isomorphism. Next we know,
again by the proof of 7.9.1, that

where the equivalence relation is generated by the pairs

(a, /? © <*/(-, a)) » ( ^ ( - , a) © a, /?)

for a: ^ >B in si, a: F ^ si(-,A), (3: si(-,B) => G. The second
natural transformation of the adjunction is given by

- (i*°U)(F,G)

£(F,G) is surjective since, by construction of the Cauchy completion as
described in 6.5.9, G is a retract of a representable functor, i.e. we have
C € si and natural transformations r: G => si(—, C), a: si{—, C) => G
with cr © r = 1G- Therefore every natural transformation 7: F => G can
indeed be written a © (r © 7), proving that 7 is the image of [(r © 7, cr)].
£(F,G) is a l s o injective since given a: F => si(—,A), (3: si{—,A) =^ G,
with /3 © a = 7, we get a natural transformation

and thus a morphism / : A >C in si such that si(—, f) = r®/3 (see
1.5.2). We have then the equivalent pairs

(a,/?) = (a,(7 © r © /?) = (a, © J / ( - ,

proving the injectivity of
It remains to prove (4) => (2). By (2) => (4), «G/ is equivalent in

Dist to its Cauchy completion si and in the same way for 3& and Si.
Thus if J2/, 3& are equivalent in Dist, si and ̂  are equivalent in Dist.
By 7.9.3 an equivalence (f>: si o >$$, ip: 3& o >si is induced by functors
F: si >^, G: ^ >¥; the fullness and faithfulness condition in 7.8.5
implies that F, G constitute an equivalence in Cat. •
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And now that the whole story about Cauchy completeness has been
told, it remains to justify the terminology. This is done in exercises 6.8.5
to 6.8.9 of volume 2, where it is shown that in a metric space (x,d),
every Cauchy sequence has a limit if and only if a condition extending
7.9.3.(2) holds.

7.10 Exercises

7.10.1 In a 2-category, prove that when an arrow has an adjoint arrow,
this adjoint arrow is defined uniquely up to isomorphism. Show that this
result extends to the case of bicategories.

7.10.2 In the 2-category of groups, prove that the triangular conditions
in definition 7.1.2 are redundant.

7.10.3 Prove the 2-Yoneda-lemma: given a 2-category $4, an object
A E jtf and a 2-functor F: s/ >Cat, there exists an isomorphism of
categories

where s/(A, —) is the 2-functor defined in 7.2.4 and the right-hand side
is the category having the 2-natural transformations s/(A, —) => F as
objects and the modifications as arrows.

7.10.4 Consider a commutative monoid M. Prove that M can be seen
as the category of 2-cells of a 2-category with just one object and one
arrow, both composition laws on 2-cells being the multiplication on M.
Prove that this 2-category admits products but not 2-products.

7.10.5 In the 2-category Cat, consider the diagram constituted of two
functors F, G: -Q/ I ffl. Compute its limit, its 2-limit, its pseudo-limit
and its lax limit. Same question if a natural transformation a: F => G
is added to this diagram.

7.10.6 Consider the 2-category 1 with a single object, a single arrow and
a single 2-cell. Describe in explicit terms what a lax functor 1 > Cat
is. Compare with definition 4.1.1, volume 2.

7.10.7 Consider a bicategory s/ with a single object *. Thinking of the
composition of arrows as a tensor product on the objects of the category
j / ( * , * ) , compare with definition 6.1.1, volume 2.

7.10.8 Prove that in the bicategory of bimodules, both left and right
Kan extensions always exist.



324 Bicategories and distributors

7.10.9 Consider two distributors (/>: si o > ?̂ and ip: 3$ o ><$ between
small categories. The two bifunctors

<t>: @* x si >Set, ip: <€* x a >Set

correspond to functors

Considering the covariant Yoneda embedding

the left Kan extension ^ of ̂  along Y exists (see 3.7.2). This yields the
composite

>Set<r,

which corresponds to a bifunctor

ip (8> 0: ^* x j / >Set.

Prove that if) ® (f) is precisely the composite ij) o <\> of the two distributors

7.10.10 Prove that in the bicategory Dist, both left and right Kan
extensions always exist.

7.10.11 Let 4>: <stf o >& be a distributor between small categories.
Prove the existence of a category # and functors F: si >^,
G: 0& ># such that </> = G*oF*. [Hint: to get ^ , construct the disjoint
union siYL3# and add the elements of </>(J9, A) as arrows from B to A]

7.10.12 Let <j>: si—o-^31 be a distributor between small categories.
Prove the existence of a category Of and functors F: Q) >si\
G: Q) >^ such that </> = G* o F*. [Hint: consider the comma cate-
gory constructed on the functors F, G of the previous exercise.]
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Internal category theory

Up to now, the surrounding mathematical context in which we developed
category theory was the category of sets: a small category has a set of
objects and a set of arrows, together with some structure on those data.
To conclude this first part, we would like to indicate that, for many
purposes, the category of sets can be replaced by a rather arbitrary
category with good properties (at least pullbacks).

8.1 Internal categories and functors
What we intend to generalize is the notion of a small category s/: such
a category has a set \s/\ of objects and sets s/(A, B) of arrows, for every
pair A, B of objects. This last fact is equivalent to giving the disjoint
union set \JA Bstf(A, B) of all arrows, together with the two mappings

A,B

which map an arrow, respectively, to its source and its target.

Definition 8.1.1 Let ^ be a category with pullbacks. By an internal
category s4 in <& we mean

(1) an object AQ £ |#|, called the "object of objects",
(2) an object Ai G \<#\, called the "object of arrows",
(3) two morphisms do,di: A1 > AQ in V, called respectively "source"

and "target",
(4) an arrow i: AQ >A\ in <6, called "identity",
(5) an arrowc: A\XA0AI >A\ in <$, called "composition", where the

pullback (AiXA0Ai,iri,7To) is that ofdo,di (see diagram 8.1).

These data must satisfy the following axioms:

325
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1

di

» Ao
do

Diagram 8.1

(1) do o i = lAo = dx o i;
(2) dx o TTI = dx o c, do o TTQ = do ° c?

(4) co(lAlxAoc) = co(cxAolAl)
(consult the following comment as far as notation is concerned).

When # is the category of sets: Ao is the set of objects; A\ is the
set of morphisms; do maps an arrow to its source; dx maps an arrow to
its target; i maps an object to the identity on this object; AxXAoAx is
the set of composable pairs (</, / ) of arrows, i.e. the source of g equals
the target of / ; c is the composition mapping the pair (g, / ) to g o / .
Again for # = Set, the first axiom asserts that given an object a G Ao,
the identity on a is indeed a morphism from a to a. The second axiom
indicates that a composite g o f has for target the target of g and for
source the source of / . The third axiom is that of identities; it makes
good sense since the relations

dx o i o do = do, do o i o dx = dx

imply the existence of factorizations

o d J : Ax >A1xAoAu r ^ M : Ax >AxXAoAx,

through the pullback AxXAoAx. The fourth axiom expresses the asso-
ciativity of the composition: the domain of the two composites is the
"object of composable triples" AxXAoAxXAoAx, i.e. the pullback of do
and dx o TTI or, equivalently, the pullback of do o TTO and dx; it is again
routine to check the existence of the required factorizations

lxA oc: AxXAo(AxXAoAx) >A1xAoAu

cxAol: (AxXAoAx)xAoAx >Ax

through the pullbacks.
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Definition 8.1.2 Let %> be a category with pullbacks. Given two internal
categories si, Si, an internal functor F: si > Si is a pair ofmorphisms

Fo: Ao >B0, Fi:Ai >BX

which satisfies the following conditions:
(1) d0oF1 = F0o d0, d1oF1=F0o di;

(2) F1oi = ioF0;
(3) F1oc = co(F1xFoF1).

Again when # is the category of sets, Fo maps an object a to the
object F(a) and F\ maps an arrow / : a >a! to the arrow F(f). The
first axiom indicates that F(f) is an arrow from F(a) to F(a'), while
the second and the third axiom express respectively that F commutes
with identities, and the composition law. For the sake of precision, let
us make explicit the definition of FiXFoFi: it is the unique morphism

i >B1xBoB1

such that TTO o (FiXp0Fi) = F\ oTTO, TTI O ( F I X F 0 F \ ) = Fi oTTI.

Definition 8.1.3 Let <£ be a category with pullbacks. Given two internal
categories s/, Si and two internal functors F, G: si >St, an internal
natural transformation ct: F => G is a morphism a: Ao >B\ which
satisfies the following conditions:
(1) d0 o a = Fo, d\ o a = Go;
(2) co(aodi ,F) = co(G,aodo).

Again when ^ = Set, a maps an object a G Ao to the component
a a of the natural transformation; the first axiom indicates that a o is
a morphism from F(a) to G(a), while the second axiom is the usual
naturality rule.

Proposition 8.1.4 Let <# be a category with pullbacks. Internal cat-
egories, internal functors and internal natural transformations organize
themselves in a 2-category.

Proof All the proofs are just diagram chasing arguments. Therefore we
give the constructions and leave the verifications to the reader.

We consider internal functors F: s/ >0i, and G: Si >*, the
composite G o F: si >(6 is given by the pair of morphisms Go o Fo,
GioFi.

Next, given internal functors F,G,H: si >Si and natural trans-
formations a: F => G and (3: G => H, the composite (3 o a: F => H is
c o (/?, a), where c is the composition of Si.
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Finally, given internal functors F , G: sf~%&, Ff,G'\ M fo and
internal natural transformations a: F =>> G, a': Fr => G'\ the internal
natural transformation a! * a: F1 o F =>• G' o G is defined by the com-
posite

co (G[ oa,a' oF0) = co (a' o Go,F[ o a)

where c is the composition of <€. •

Proposition 8.1.5 Let ^ be a category with pullbacks. For every object
C eW, the representable functor

):V >Set

maps internal categories, internal functors and internal natural trans-
formations to small categories, functors and natural transformations re-
spectively.

Proof Prom 2.9.4, #(C, —) preserves pullbacks. •

Examples 8.1.6

8.1.6.a Consider a category ^ with pullbacks and an object A ^c€.
One gets an internal "discrete" category by putting A$ = A = A\,
do = d\ = i = c = 1A-

8.1.6.b Consider a category ^ with finite limits, an internal category
0& and a morphism b: 1 >Bo (where 1 is the terminal object). Now b
can be thought of as an "external object" of 38; see 8.1.5. Given another
internal category «s/, the data

A) >1 h- >B0, A1 >1 ^—+B0
 l- >BX

define an internal functor "constant on 6".

8.1.6.C Consider a category ^ with pullbacks. Given an internal cate-
gory *s/, one gets a "dual" internal category s/* by permuting the roles
of do^di and twisting the composition morphism accordingly.

8.2 Internal base-valued functors
The category of sets is not small, thus cannot be seen as a category
internal to Set. Nevertheless, given a small category J / , the functors
si >Set play a key role in category theory. Therefore, given a cat-
egory si internal to ^ , we want to internalize the notion of a functor
P: si >c€. To do this, we must define first the "family of objects
(P(a) G #) A "; from 1.2.7.a, this should be an arrow p: P >AQ in
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p

Diagram 8.2

#, where P is thought of as the disjoint union P — ]laeAoP(a) and p
is thought of as the mapping sending x G P{a) to the index a. Clearly,
one must also define the action of the "arrows" of si on the "elements
ofP".

Definition 8.2.1 Let ^ be a category with pullbacks and let si be
an internal category. By an internal ^-valued functor P: si >^ we
mean

(1) an object P G |#| together with a morphism p$: P >A$ of^,
(2) an arrow pi: A\XAQP >P of^, where (A\XAoP,TT^TTP) is the

pullback of do, po (see diagram 8.2).

These data are required to satisfy the following axioms:

(1) p0op1=dio TTAI ;
/fy\ ( • -I \ -I

(3) p\ o (lAl xAopi) = p1 o (cxAolP).

When <€ = Set and P : si >Set is a functor: P = \laeAQP(a);
po(x) = a if x G P(a); pi(f,x) = P(f)(x) if / : a >b and x G P(a).
The first axiom indicates that P(f)(x) G P(6), while the second and the
third axioms are the usual compatibility rules with the identities and
the composition. (Observe that the third axiom expresses the equality
between two arrows defined on A\XAoA\XAoP'.)

In the situation of 8.2.1, an internal ^-valued functor P : si* >^ on
the dual internal category (see 8.1.6.c) is also called an internal presheaf,
extending the terminology of 3.2.2, volume 3.

Definition 8.2.2 Let ^ be a category with pullbacks, si an internal
category and P,Q: -Q/ \^ two internal %'-valued functors, written
explicitly as P = (P,POJPI)> Q — (Q,QoiQi)- By an internal natural
transformation a : P => Q we mean an arrow a: P >Q such that

(1) q0oa= po,
(2) aoPl =q1o(l/
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In the case # = Set, a maps x G P(a) (a G Ao) on some element
a(x) which, by axiom (1), lies in Q(a). Axiom (2) is the usual naturality
condition.

Proposition 8.2.3 Let <$ be a category with pullbacks and si an in-
ternal category. The internal %-valued functors si ># and internal
natural transformations between them organize themselves in a category

Proof Composition of internal natural transformations is just compo-
sition of arrows in (€. •

Example 8.2.4

Let ^ be a category with finite limits and si an internal category. Given
an object X G ̂ , one defines a "constant" ^-valued internal functor
P: si ><£ by putting

• P = X x Ao,
• po' P >Ao is the second projection,
• pi*. AIXA0P >P is the second projection.

Now given an arrow / : X >Y of ^ and the corresponding ^-valued
internal constant functor on y , written Q: si >^,

/ x 1: X x Ao >Y x Ao

defines an internal "constant" natural transformation P => Q. When
^ = Set, we obviously recapture the notions of constant functor and
constant natural transformation (see 1.2.8.e and 1.3.6.d).

Proposition 8.2.5 Let ^ be a finitely complete category We consider
a fixed object A G ̂  and the corresponding discrete internal category
s& (see 8.1.6.a). The category of internal %-valued functors on si is
equivalent to the category ̂ /A of arrows over A.

Proof Given an arrow p: P >A, the pullback AIXA0P is just P
again, since do: A\ >AQ is the identity arrow. Therefore putting po =
p, p\ = lp yields an internal ^-valued functor.

Choose now P = (P,Po?Pi) &n internal ^-valued functor as in 8.2.1.
Since do: A\ >AQ is the identity arrow, A\XA0P can be identified
with P and thus p\ can be seen as a morphism p\: P >P. The first
axiom in 8.1.1 becomes po°Pi == Po- Since the projection A\ XA0P >P
is now the identity, the arrow (i o p0, lp) in the second axiom is in
particular such that

(i o po, lp) = TT2 o (i o po, lp) = lp,
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so that p\ — lp. The last axiom is now redundant. Thus P is just the
triple (P,po,lp)-

Now given two ^-valued internal functors

P = (P,po,lp), Q = ( Q , » , 1 Q )

on si, the second axiom in 8.2.2 becomes a tautology so that an internal
natural transformation a: P =>> Q is just a morphism a: P >Q such
that go ° OL = po- n

Let us conclude this section with a straightforward but very important
observation:

Proposition 8.2.6 Let ^ be a category with pullbacks, si an internal
category and P: si ><£ an internal ^-valued functor. One gets a new
internal category 0* by defining

• Po = P,
• P\= AIXA0P, the pullback ofdo.Po,
• do: Pi >Po, the second projection of AIXA0P,

• d\\ P\ >Po, the arrow pi,
• i: Po >Pi, the arrow (i op0 ,1P) ,
• c: P\Xp0Pi >P\, the arrow (co ( T T I , ^ ) , ^ ) ,

where TTI, TT2, TT3, TT4 are the four projections of

(A1xAoP)xP(A1xAoP)^P1xP6P1.
This new internal category &> is called the "internal category of ele-
ments" of P. •

When ^ = Set, the elements of Po are indeed those of LJa€A0^(a)'
thus the pairs (x, a) where x G P(a) . Now if / : (#,a) >(y,b) is an
arrow in the category of elements of P (see 1.6.4), / € Ai, 6 is deter-
mined as di(/) and y is determined as P(f)(x). Therefore giving an
arrow in Elts(P) is equivalent to giving an object (ar, a) and an arrow in
si with domain a; this proves that A\ x A0P is indeed the set of arrows
of Elts(P). The rest is obvious.

Going back to the definition of a flat functor P : si >Set (see 6.3.1),
it is thus sensible to say that the internal ^-valued functor P : si ><£
of 8.2.6 is flat when the corresponding internal category & is cofiltered,
i.e. when the dual internal category ^ * (see 8.1.6.c) is filtered. This last
notion can be easily defined.

Definition 8.2.7 Let ^ be a finitely complete category and si an in-
ternal category. Using the notation of 8.1.1 we say that si is filtered
when
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S -—> Ax

(£)

-> Ao

Diagram 8.3

(do\

xA0 A1xAoA1-

Diagram 8.4
\c

>A1

(2) the morphism

> 1 is a strong epimorphism,

S >Ao x Ao is a strong epimorphism,

(1) the unique morphism Ao

I :
\do osij

where (S,so,si) is the kernel pair ofd\ (see 2.5.4 and diagram 8.3),
(3) the morphism t: T >R is a strong epimorphism, where (i?, ro, r\),

(T, to, t\) are the kernel pairs of, respectively, (̂ °) and (*<}) (see 2.5.4
and diagram 8.4) while t is the unique morphism such that root =
TTO O t 0 ? Ti Ot = 7T0 O t l .

First of all observe that this definition makes sense since, in condi-
tion (3), writing po,Pi for the two projections of the product Ao x Ao,
and po,pi for those of the product Ai xA1? the first projections satisfy
the following relations

P0 O (*°) O 7T0 O t 0 = d0 O 7T0 O t 0

= d0 o c o t0

= do opi> (
= do o c o ti

and analgously for the second projections
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P\ ° (d°) ° TTo O to = d\ O 7To

= ( IQ O 7Tl O

Thus (^°) o TTO o to = (^°) o TTO o ti and t is correctly defined.
In the case of the category # = Set of sets, where strong epimor-

phisms are just surjections (see 1.8.5.a), the three axioms become, with
shorthand notation:

(1) 3A G Ao,
(2) S={{f,g)\f:A >C,g: B >C},

(3) R = {(f,g)\f:A >B,g: A >B},
T={(f,g,h)\f:A >B,g: A >B,h: B >C,hof = hog),
Vf,g:AZ^B 3h: B >C hof = hog.

This is precisely definition 2.13.1.

Definition 8.2.8 Let ^ be a finitely complete category and si an in-
ternal category. Consider an internal ^-valued functor P: si ># and
its internal category @> of elements. P is flat when the internal dual
category &>* is filtered.

8.3 Internal limits and colimits

Consider a finitely complete category # and an internal category si. Let
us write ^ for the category of #-valued internal functors on si and
internal natural transformations between them (see 8.2.3). We also write
(see 3.2.3)

to denote the functor which maps an object X E # to the ^-valued
internal constant functor on X and an arrow / : X >Y on the constant
internal natural transformation on / ; see 8.2.4. With the considerations
of 3.2.3 in mind, we define:
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7T2

x Ao)

Definition 8.3.1 Let %? be a finitely complete category, stf an internal
category in <& and P: s/ ><$ a ^-valued internal functor. With the
previous notation,

• by an internal limit of P, we mean a coreflection of P along the
functor A^,

• by an internal colimit of P, we mean a reflection of P along the
functor A^.

<& is said to be internally (co)complete when the internal (co)limit exists
for every si and every P.

A condition for internal cocompleteness is fairly easy to obtain.

Proposition 8.3.2 A category with finite limits and coequalizers is
internally cocomplete.

Proof With the notation of 8.3.1, 8.1.1 and 8.2.1, we consider the
coequalizer I of TT2, pi,

where the pullback A\ XA0P is that of do,Po and TT2 is the second projec-
tion. This yields an object L € ^ and an obvious internal natural trans-
formation A: P =*• A^(L) determined by the arrow (p0): P >L x Ao.
We shall prove that (L, A) is the coreflection of P along A^.

Choose another object M €<£ together with an internal natural trans-
formation /JL: P => Ajg(M). This yields an arrow

i: P >M x Ao

which, by the naturality of /x, makes diagram 8.5 commute. This at once
implies

= 7 T 2 O ( 1 X /JL) = / iO7T2,
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.P >/̂  x

mx 1

from which we get the existence of a unique factorization m: L >M
such that mol = fi. But by the naturality of /u, TT2 O /i = p0. Therefore
the relation m o I is equivalent to the commutativity of diagram 8.6, i.e.
to the relation A^(m) o A = /x. D

Let us now consider the more difficult case of internal limits. We shall
study cartesian closed categories in chapter 6 of volume 2. A finitely
complete category ^ is cartesian closed when, for every object A E ^ ,
the functor "product with A",

- x A : <$ •«, I n lx i ,

has a right adjoint, written

y — ) . i& r i 3 , -A I—• A.

In 3.1.6.b we have already observed that the category Set of sets is
cartesian closed; in that case, the functor (—)A is just Set(A, —) or, in
other words, the functor "raising to the power A". This last fact admits
an obvious generalization. First of all we need a definition.

Definition 8.3.3 Let ^ be a finitely complete category.

• By an internal product in <$ we mean the internal limit of a (€-
valued internal functor P: s/ >*&, where si is a discrete internal
category in the sense of 8.1.6. a.

• Let X, A be objects of%>. By the internal power XA e # we mean,
if it exists, the internal limit of the constant ^-valued functor on
X (see 8.2.4) defined on the discrete internal category on A (see
8.1.6.*).

In the case # = Set, these definitions exactly describe the usual
notions of product and power. Observe that given a ^-valued functor
(P,Po?Pi) on the discrete internal category .a/, the corresponding prod-
uct in the case ^ = Set is IlaGAo Pol(a)i s i n c e P *s *^e functor mapping
a e Ao to PQ1(O).
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It is now interesting to observe that in the definition of a cartesian
closed category, the object XA is indeed an internal power.

Proposition 8.3.4 Let %> be a finitely complete category. The following
conditions are equivalent:
(1) % is cartesian closed;
(2) for every pair X^AE^of objects, the internal power XA exists.

Proof The constant ^-valued internal functor on X defined on the
discrete internal category on A is given by

P = X x A , po = TTA: X x A >A, p1 = lXxA-

The internal limit of such a functor, if it exists, is a pair (L, A) universal
for the properties L G ^ and A: L x A >X x A , with ITA ° A =
TTA (see 8.2.5). This is equivalent to a pair (L, Ax) universal for the
properties L G # and Ax ' L x A >X. This is exactly the definition
of the coreflection of X along the functor - x A : <£ >c€. •

Let us now consider a finitely complete category ^ and the discrete
internal category si on some object A G ^ (see 8.1.6.a). By 8.2.5, we
know tha t the category of ^-valued internal functors on si is just %> /A.
The corresponding functor

considered at the beginning of this section is thus (see 8.2.4)

The existence theorem for internal limits is then contained in the fol-
lowing equivalences:

Proposition 8.3.5 Let % be a finitely complete category. The following
conditions are equivalent:
(1) <& is cartesian closed;
(2) <& admits all internal powers;
(3) each functor A A- # >(&/A has a right adjoint YIA>

(4) <& admits all internal products;
(5) <% is internally complete.

Proof We have proved the equivalence (1) 4=> (2) in 8.3.4. The equiv-
alence (3) «=> (4) is attested by 8.2.5 and the previous considerations
about A A- Obviously (5) => (4) and (4) => (2). So it remains to prove
(1) => (5). As a lemma, we first prove (1) => (3).
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m

pA
pA

NxA

P

-> AA

Diagram 8.7

) A N

n

A PA

Diagram 8.8

P

pA -> AA

We suppose ^ cartesian closed and consider an object p: P >A of
. We compute the left-hand side pullback in diagram 8.7, where

%A'- 1 >AA is the morphism corresponding to 1^: A >A by carte-
sian adjointness. Observe that when # = Set,

M = {(Xa)a€A Xa

Applying the cartesian adjunction to the previous pullback, we get the
commutative right-hand square in diagram 8.7 and therefore a morphism
//: (M x A,TTA) >(P,p) in W/A. We shall prove that (M,n) is the
coreflection of (P,p) along A^-

Given N G # and v\ (N x A,TTA) >(P,p), the commutativity of
the first square in diagram 8.8 implies, by cartesian adjunction, the
commutativity of the second square. This implies the existence of a
unique factorization /: N >M through the pullback defining M. The
relation m o I = n is equivalent to v o (/ x 1^) = /i, concluding the proof
that (M, fi) is the coreflection of (P,p) along A^-

Now we prove (1) =^ (5). We consider an internal category si and a
#-valued internal functor P: si >(€. Rephrasing the construction of
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2.8.1, it suffices to define the internal limit of P via the equalizer

Ao

where the puUback PXA0A\ is that of po> d\ and YlA , YIAX are the right
adjoints to A^o, A ^ . It remains to define a and /?. The composite

where f/(p,Po) is the counit of the adjunction A^o ^ FIAO' Siyes r i s e to a
morphism

which corresponds to a via the adjunction A ^ H f|A . On the other
hand the composite

gives rise to a morphism

Ao

where the pullback AIXA0P is that of do,Po- The composite

u;:

now gives rise to a morphism

which corresponds to /? via the adjunction A ^ H I IAI • Finally / corre-
sponds via the adjunction A^o H Y1A0 *° a morphism

A: (L x A0,7TAo) >(P,Po)

in W/AQ. We leave to the reader the diagram chasing argument verifying
that (L, A: L x Ao »P) defines the internal limit of P. •



8.4 Exercises 339

8.4 Exercises

8.4.1 Let ̂  be a finitely complete category. Prove that the category of
internal categories and internal functors in # is itself finitely complete.

8.4.2 Let ̂  be a finitely complete category. An internal monoid in ^
is an internal category si whose "object of objects" A$ is the terminal
object. Prove that the category of internal monoids in the category Gr
of groups is equivalent to the category of abelian groups.

8.4.3 Let ^ be a category with finite limits and coequalizers. Given
two internal categories si,0&, an internal distributor si o >Si is a c€-
valued internal functor ^ * x si >^ (see 8.4.1). A morphism of inter-
nal distributors is just an internal natural transformation between them.
Considering 8.2.6 and the construction in the proof of 7.8.2, define the
composite of two internal distributors.

8.4.4 Let ̂  be a category with pullbacks. Given an internal category
si, construct the internal category of arrows of si (see 1.2.7.c).

8.4.5 Let <6 be a finitely complete cartesian closed category. Prove that
internal categories and internal functors in # again constitute a cartesian
closed category.

8.4.6 Let ^ be a finitely complete category. ^ is said to be locally
cartesian closed when for each object A G ^ , the category W/A is car-
tesian closed. Prove that ^ is locally cartesian closed iff for every arrow
/ : A >B in ̂ , the functor

obtained by pulling back along / has a right adjoint J\f
8.4.7 In the non-abelian cohomology of groups, one chooses as a sys-
tem of coefficients a device called a crossed module. This is a quadruple
(if, II, p, $) where H and II are groups and

p: H >n, $: n >Aut(iJ)

are group homomorphisms, with Aut(H) the group of automorphisms of
H] the following axioms are required from these data:

(1) Vh,keH $(p(h))(k) = hkh'1;
(2)VheH v/en { )

A morphism (if, II, p, $) > (Hf, II', //, $') of crossed modules is a pair

(77: H >#', 0: n >IT)

of group homomorphisms such that
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(1) p'077 = 0 op,
(2) vheH v / e n !/(*(/)(*)) = &(0(f))(v(h)).

Prove that the category of crossed modules is equivalent to the category
of internal categories and internal functors in the category of groups.
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epimorphism, 27
extremal -, 136

343



344 Index

regular -, 136
strong -, 137, 193

equalizer, 48
equivalence, 284
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free group, 102
free monoid, 102
free ring, 103
functor, 5

a-flat -, 270
a-left-exact -, 269
- preserving monomorphisms, 24
- reflecting monomorphisms, 24
2-functor, 287
absolutely flat -, 271
collectively faithful family of -s, 154
contravariant -,16
covariant -,16
faithful -, 19
family of -s collectively reflecting

isomorphisms, 154
final -, 69
flat -, 260
full -, 19
full and faithful -, 19
hom-functor, 34
identity -, 6
lax functor, 296
left adjoint -, 98
left exact -, 250
limit preserving -, 64
limit reflecting -, 65
pseudo-functor, 297
representable -, 9
right adjoint -, 98
forgetful -, 8

Galois connection, 105
generator, 151

dense -, 153
dense family of -s, 153
family of -s, 151
strong -, 152, 157
strong family of -s, 152, 157

graph, 176
conditional -, 178
morphism of -s, 176

groupoid, 287

idempotent, 271
split -, 271

initial object, 48
injective object, 167
internal automorphism, 287
internal, 325

- base-valued functor, 329
- category, 325
- category of elements, 331
- colimit, 333
- constant functor, 328, 330
- distributor, 339
- dual category, 328
- filtered category, 331
- flat functor, 333
- functor, 327
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limit, 56
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Morita equivalent categories, 321
morphism, 4

bidense -, 235

natural transformation, 10, 16
2-natural transformation, 289
constant - ,15
Godement product of -s, 13
lax-natural transformation, 297
pseudo-natural transformation, 298

object, 4
orthogonality, 193, 194

homotopy, 285 path, 176



Index 345

- category, 177
presentable object, 297
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pullback, 51

associativity of - , 54
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reflection along a functor, 97
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set, 3

small - , 3
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special adjoint functor theorem, 110
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