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Foreword

We are so divided. By the formal structure of university instruction—
organic chemistry, inorganic chemistry, physical chemistry. By the
incredible and unnecessary specialization of our journals. The molecu-
lar bounty we have ourselves created seems simply overwhelming—no
wonder we seek compartmentalization in self-protection: It is easy to
say, ‘I’m an expert in Field x. And while I will listen to a seminar in y or z
(when I have time), please . . . let me be happy just in keeping up with
my own field.’

The dangers of specialization are obvious—inbreeding, lack of scope,
a kind of rococo elaboration of chemical complexity within a field.
And we know that new ideas often come from an almost metaphorical
importation of a way of thinking or a technique from another area.

Meanwhile, all along, nature persists in subverting the compart-
mentalizing simplicity of our minds. Through enzymes whose seeming
magic is done by metal atoms and clusters at the active site, inorganic
chemistry and biochemistry are rejoined. Transition metal carbides
put organic carbon into some most unusual, patently inorganic envir-
onments. And, beginning in 1950, the explosion in organometallic
chemistry has given us an incredible riches of structures and reactions—
from ferrocene to olefin metathesis, metal–metal multiple bonds, to
C−−H activation, and remarkable olefin polymerization catalysts. All
from a combination of inorganic and organic chemistry.

Organometallic chemistry from its beginning also depended on,
and also built, another bridge. This is to theoretical chemistry. The
first, rationalizing accounts of the electronic structure of ferrocene
and the Dewar–Chatt–Duncanson picture of metal–olefin bonding
were followed by milestones such as the prediction of cyclobutadiene–
iron tricarbonyl and Cotton’s beautiful elaboration of the idea of a
metal–metal quadruple bond. The work of Leslie Orgel played a very
important role in those early days. There were fecund interactions all
along—compounds leading to calculations, and calculations pushing
experimentalists to make new molecules. Often the theory was done
by the experimentalists themselves, for the best kind of theory (the one
that keeps the fertile dance of experiment moving) is a portable one. As
easy to use molecular orbital theory, the theory of choice of the times,
most certainly was and is.



Foreword

It is hard to imagine a contemporary course in organometallic
chemistry which does not contain a hefty, albeit qualitative compon-
ent of molecular orbital theory. Yves Jean (with François Volatron)
earlier wrote a classic teaching text on the orbitals of organic molecules.
Here he has applied his great pedagogical skills to the construction of
a beautifully thought through exposition of bonding in organometal-
lic chemistry. Our undergraduate and graduate students will enjoy this
book. And they, the chemists of the future, will use the knowledge gained
here to enlarge our experience with new organometallic molecules,
subverting once again the arbitrary division of organic and inorganic
chemistry. Molecules whose beauty and utility we still cannot imagine.

Roald Hoffmann
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Introduction

This book starts from the most elementary ideas of molecular orbital
theory, and it leads the reader progressively towards an understanding
of the electronic structure, of the molecular geometry and, in some
cases, the reactivity of transition metal complexes.

The use of simple notions, such as symmetry, overlap, and elec-
tronegativity, allows a qualitative method of analysis of the electronic
structure of complexes, and of the properties which follow from it such
as geometry or reactivity, to be developed. Qualitative in the sense that,
for example, it enables us to understand why the structure of a particular
complex is tetrahedral rather than planar, without being able to provide
a reliable numerical value of the energy difference between these two
structures. The quantitative level can be attained elsewhere—as is now
standard practice in our laboratories—by more accurate methods such
as ab initio or density functional theories. But to interpret the results
provided by more complex calculations, it is often necessary to return
to the fundamental notions of symmetry, overlap, and electronegativity.

The qualitative approach used here is mainly based on the analysis
of orbital interactions (atomic or molecular). Its application to transition
metal complexes developed rapidly from about 1975, the leading expon-
ent being Roald Hoffmann, winner of the Nobel prize for chemistry in
1981 with Kenichi Fukui. As a result, many experimental results can be
rationalized, that is to say understood, on the basis of analyses and using a
language that are accessible to every chemist. A colleague, Marc Bénard,
spoke in the introduction to one of his lectures of the prodigious decade
1975–85 . . . Moreover, it has been possible to apply this approach to all of

chemistry (organic, inorganic, organometallic, and the solid state), which
is one of its strongest points. These are no doubt the main reasons for
its success which has spread far beyond the realm of specialists: as Roald
Hoffmann writes in the preface, it is a transferable theory which has
marked our time.

It is certainly transferable to students, and the aim of this book is
to encourage that process. By learning this method for the theoret-
ical analysis of molecular electronic structure, a method which has
so profoundly changed our approach to chemistry, the reader may be
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encouraged to continue his exploration of the methods of quantum
chemistry which nowadays are part of all chemical research.

In the first chapter, we present the rules for electron counting in
transition metal complexes, the different coordination modes adopted
by ligands and the essential properties of the orbitals that are involved
on the metal and on the ligands. The main ligand fields are studied in the
second chapter, where we limit ourselves to σ -type interactions between
the metal and the ligands. The structure of the d block is established;
knowledge of this structure, which is essential for transiton metal com-
plexes, enables us to explore the relationships between the electronic
configuration of complexes and their geometry. In the third chapter, we
study the ways in which the analysis is changed when the ligands have
π -type interactions with the metal (both π -donor and π -acceptor lig-
ands). All these ideas are then used in the fourth chapter, which is a series
of examples that illustrate how, starting from a knowledge of the orbital
structure of complexes, we can understand their geometrical structure
and, sometimes, their reactivity. The fifth chapter discusses the ‘iso-
lobal analogy’ which shows how the electronic structures of transition
metal complexes and of organic molecules can be related. A bridge is
thus constructed between these two areas of chemistry that allows us to
understand several resemblances (in particular, concerning structures)
between species that appear to be very different. The last chapter con-
tains a presentation of basic Group Theory, with applications to some of
the complexes studied in the earlier chapters. This chapter is placed at
the end of the book so as not to disrupt the flow of the more chemical
aspects of the presentation, but the reader may consult it, if necessary,
as and when reference is made to it in the book.





 

Setting the scene

Transition metal complexes are molecules containing one or more
metallic centres (Ti, Fe, Ni, etc.) bound to a certain number of ‘ligands’.
These latter may be atoms (H, O, Cl, etc.), molecular fragments (CR3,
NR2, SH, etc.), or molecules that are themselves stable in the absence
of any interaction with a metal (NR3, PR3, R2C==CR2), benzene, etc.).
In this book, we shall study the electronic structure of these complexes
by molecular orbital (MO) theory. We shall seek to establish the shape,
the energetic ordering, and the electronic occupation of the MO; start-
ing from this detailed description of the electronic structure, we shall
consider problems of geometry and reactivity.

Certain important aspects of electronic structure can nevertheless be
obtained from a far simpler description, which aims merely at providing
a formal analysis of the electron distribution in the complex. Although
much simpler and more limited in its applications, this approach to
electronic structure turns out to be extremely useful, for at least two
reasons:

1. It uses classical ideas and ‘language’ that are common to all chem-
ists, such as electronegativity or Lewis structures for the ligands. It
provides important information, such as the oxidation state (or num-
ber) of the metal in the complex, the number of electrons in the
immediate environment of the metal, and what one normally calls
the ‘electronic configuration’ of the complex.

2. In a way which can be a little surprising at first sight, it is very
useful in the orbital approach when one wishes, for example, to
know the number of electrons that must be placed in the complex’s
nonbonding MO.

There are two ways to obtain this formal distribution of the electrons
(or electron count) in a complex. The first, based on a ‘covalent’ model
of the metal–ligand bond, is mostly used in organometallic chemistry,
that is, in complexes which possess one or more metal–carbon bonds.
The second, based on an ‘ionic’ model of the metal–ligand bond in
which the two electrons are automatically attributed to the ligand, is
more frequently employed for inorganic complexes. In fact, the choice
between the two methods is largely a matter of taste, as they lead, as we
shall see, to identical conclusions.





Setting the scene

1.1. Electron count in a complex: the covalent model

Consider a monometallic complex in which the transition metal M is
bound to a certain number of ligands (Lig)i, that may be either atoms
or molecules. It is important to note that, in the covalent model, one always

considers the ligands in their neutral form (H, Cl, O, CO, CN, PR3, CH3,
etc.). Before making the formal electronic assignment for the complex,
one must first categorize the ligands according to the nature of their
electronic structure.

1.1.1. Ligand classification (L or X)

The main distinction is linked to the number of electrons that the ligand
supplies to the metal’s coordination sphere: if it supplies a pair of elec-
trons, it is a ligand of type L, whereas a ligand that supplies just one
electron is of type X. However, some ligands can supply more than two
electrons to the metal. This notation, introduced by M. L. H. Green, is
generalized to yield ligands of type LℓXx .

1.1.1.1. L-type ligands

The simplest case concerns molecules which are coordinated to the
metal through a lone pair located on one of their atoms (1-1). These
molecules are L-type ligands, the metal–ligand bond being formed by
the two electrons supplied by the ligand. Examples include amines
NR3 and phosphines PR3 which contain a lone pair on the nitrogen
or phosphorus atom, the water molecule or any ether (OR2) which can
bind to the metal through one of the lone pairs on the oxygen atom.
Carbon monoxide is also an L-type ligand, due to the lone pair on the
carbon atom.1

1 There is also a lone pair on the oxygen
atom. We shall see later why CO binds
preferentially through the carbon atom
(§ 1.5.2.4 and Chapter 3, § 3.2.2).

R

N

R
R

R

P
C

H

O

H
O

R
R

1-1

There are other cases in which the two electrons supplied by the
ligand L form a bond between two atoms of that ligand, rather than a
lone pair. This can be a π -bond, as in the ethylene molecule, or, more
surprisingly, a σ -bond, as in the dihydrogen molecule (1-2).2

2 Complexes in which a dihydrogen
molecule is bound to a transition metal
were first characterized in the mid-1980s,
and have since been extensively studied by
both experimental and theoretical
methods (Chapter 4, § 4.1.4).

C

C
M

H

H
M

1-2

In these examples, two atoms of the ligand are bound in an
equivalent way to the metal centre. The hapticity of the ligand is said to be
2. This type of bond is indicated by the Greek letter η, the nomenclature
used being η2-C2H4 or η2-H2, respectively (1-2).
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1.1.1.2. X-type ligands

These ligands supply only one electron to the metal’s coordination
sphere. As neutral entities, X-type ligands are radicals and the metal–
ligand bond is formed by the unpaired electron of the ligand and a metal
electron. Hydrogen (H) is an X-type ligand, as are the halogens (F, Cl,
Br, I), alkyl radicals (CR3), the amido (NR2), alkoxy (OR), and cyano
(CN) groups (1-3), etc.

H Cl
C

R

R
R

N

R

O R NC

R

1-3

It should be noted that in some of the examples given above, the
radical centre also possesses one or more lone pairs, so that one might
have considered it to be an L-type ligand. However, the use of a lone pair
for bond formation would lead to a complex with an unpaired electron
on the metal (.L:—M). This electronic structure is less stable than that
in which the unpaired electron and a metal electron are paired to form
the metal–ligand bond ( :X–:–M). It can be seen that in this case, all the
electrons are paired, either as bonding pairs or as lone pairs.

1.1.1.3. Ligands of LℓXx type

In a more general notation, ligands can be represented as LℓXx when
they use ℓ electron pairs and x unpaired electrons to bind to the metal.

In the ground state, the oxygen atom possesses two unpaired elec-
trons (1-4a).3 It is therefore a ligand of X2 type, which can bind to a3 The ground-state electronic

configuration for oxygen is 1s22s22p4. In the
electronic ground state, two electrons are
paired in one p orbital, while the two other p

orbitals are singly occupied by electrons with
parallel spin (a triplet, following Hund’s rules).
For nitrogen (1s22s22p3), there are three
unpaired electrons, one in each p orbital.

transition metal to form an ‘oxo’ complex. The sulfido (S) and imido
(N-R) (1-4a) ligands behave similarly. Atomic nitrogen, with three
unpaired electrons, is an X3 ligand (1-4b), giving ‘nitrido’ complexes.
In each case, one therefore considers all the unpaired electrons on the
atom bound to the metal.

NO S R

1-4a (X2)

N

1-4b (X3)

Conjugated polyenes constitute an important family of molecules
which are ligands of LℓXx type; they form π -complexes with the metal,
that is, complexes in which the π system of the ligand interacts with
the metal centre. Consider, for example, the cyclopentadienyl ligand
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C5H5 (also represented Cp), whose Lewis structure (1-5) shows that
the π system contains five electrons (two π bonds and one unpaired
electron).

1-5

If this ligand is bound so that all five atoms are essentially at the same
distance from the metal centre (η5-C5H5 coordination), the five π elec-
trons are involved in the metal–ligand bonds, so that cyclopentadienyl
is classified as an L2X ligand. Two graphical representations are there-
fore possible, depending on whether one gives a localized or delocalized
description of the ligand’s π system (1-6).

M M

1-6 (η5, L2X)

Ferrocene is a particularly interesting π complex [Fe(η5-C5H5)2]
(a ‘sandwich’ complex, in which an iron atom is placed between the
planes of two cyclopentadienyl ligands, 1-7). At first sight, one could
consider it either as a complex with two ligands, [Fe(Lig)2] where
Lig = C5H5, or as one with 10 ligands, [Fe(Lig)10], since the iron is
bonded equivalently to all 10 carbon atoms. However, the L/X ligand
classification shows us that each cyclopentadienyl ligand is of the L2X
type, so ferrocene is therefore an [FeL4X2] complex in which the iron
must be considered as surrounded by six ligands, rather than two or ten.
In fact, it is a pseudo-octahedral complex of [Fe(Lig)6] type!

Fe

1-7

Two other coordination modes can be imagined for the cyclo-
pentadienyl ligand, and they are indeed observed in some complexes.
If only three π electrons (a double bond and the unpaired electron) are
supplied to the metal’s coordination sphere, C5H5 acts as a ligand of LX
type. In this case, only three carbon atoms are bound to the metal, and
the coordination mode is η3-C5H5 (1-8). Finally, the metal can bind just
to the radical centre (X-type ligand), giving an η1-C5H5 coordination
(1-9). In this latter case, one can no longer describe it as a π complex,
since the metal centre interacts with only one of the ring carbon atoms,
with which it forms a σ bond.

M

1-8 (η3, LX)

M

1-9 (η1, X)

This diversity of coordination behaviour is also found for other
conjugated polyenes. Thus, butadiene can act as an L2 ligand if the
electrons of the two π bonds are involved (η4-butadiene, 1-10) or as an
L ligand involving a single π bond (η2-butadiene, 1-11).

M

1-10 (η4, L2)

M

1-11 (η2, L)

In the same way, benzene can bind in the η6 (L3 ligand, 1-12), η4 (L2

ligand, 1-13), or η2 modes (L ligand, 1-14) (see Exercise 1.5). In the η4 and
η2 coordination modes, the six carbon atoms become non-equivalent

M

1-12 (η6, L3)

M

1-13 (η4, L2)

M

1-14 (η2, L)
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(four or two, respectively, are bound to the metal), perturbing the
π -electron conjugation. As a result, the ring becomes non-planar.

A slightly different case arises for ligands which can bind to a metal
centre through several different sites without any conjugation of the
electrons involved. These ligands are said to be polydentate (bidentate,
tridentate, . . . ), in contrast to monodentate ligands such as PR3, CR3,
etc. For example, 1,2-bis(dimethylephosphino)ethane is a bidentate lig-
and, since it can bind through its phosphino sites (1-15). As each of
these has a lone pair, it behaves as an L2 ligand towards the metal. 1,2-
dioxyethane (O-CH2-CH2-O) is also a bidentate ligand (1-16), but each
oxygen atom supplies only one electron to the metal (an X2 ligand).

PMe2

CH2H2C

Me2P

M

1-15 (L2)

O

CH2H2C

O

M

1-16 (X2)

We end this section by discussing several ligands whose classification
as L- or X-type can create difficulties.

The usual Lewis structure for the dioxygen molecule, O2, shows
a double bond and two lone pairs on each oxygen atom. One might
therefore conclude that it is an L-type ligand, and that the coordination
would be either η1 (through a lone pair) or η2 (involving the π bond).
However, this Lewis structure, in which all the elctrons are paired, is
not satisfactory since the magnetic moment measured experimentally
shows that there are two unpaired electrons with parallel spin (the ground
state is a triplet).4 This is why O2 behaves as an X2 ligand rather than an4 This property is readily explained by

molecular orbital theory: two electrons must
be placed in two degenerate π∗

oo orbitals. The
most favourable arrangement contains one
electron in each orbital, with their spins
parallel (a triplet state).

L ligand.
Carbene ligands, CR1R2, provide another example. These species

contain two electrons on the carbon atom that do not participate in the
formation of the C-R1 and C-R2 bonds. Depending on the nature of the
R1 and R2 atoms or groups, the ground state is either diamagnetic, in
which case the two nonbonding electrons are paired, forming a lone
pair on the carbon atom (1-17a), or paramagnetic, in which case the two
electrons are unpaired, giving a triplet state 1-17b). In the first case, it is
logical to consider the carbene as an L-type ligand, whereas it is an X2

ligand in the second case.

R1

C

R2

1-17a (L)

R1

C

R2

1-17b (X2)

These two ways of describing a CR1R2 ligand are indeed used, and
this distinction is at the origin of the two families of carbene complexes
in organometallic chemistry: the Fischer-type (L) and the Schrock-type
(X2) carbenes. We shall return to this difference and offer an orbital
interpretation (Chapter 4, § 4.3).
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1.1.1.4. Bridging ligands

In bimetallic complexes, some ligands can be ‘bridging’, that is, bound
simultaneously to the two metal centres. These cases are indicated by the
nomenclature µ. If one considers a bridging chlorine atom (M2(µ-Cl),
1-18), it behaves as an X ligand towards the first metal centre, thanks to its
unpaired electron, but as an L ligand towards the second, thanks to one
of its lone pairs (the roles of the two metal centres can, of course, be
interchanged). Overall, the chlorine atom is therefore an LX ligand; it
supplies three electrons to the pair of metal centres. Other ligands in
which an atom has an unpaired electron and at least one lone pair, such
as OR, SR, NR2, PR2, etc. are analogous. A bridging oxygen atom is an
X-type ligand towards each of the two metal centres, since it has two
unpaired electrons (1-19), so it therefore acts as an X2 ligand overall.

Cl

ligandX ligandL

M

Cl

M

1-18

O

M

O

M
ligandX ligandX

1-19

1.1.2. Electron count and the 18-electron rule

Once the nature of the ligands has been established, the second stage
of our analysis of the electronic structure of transition metal complexes
will require us to count the number of electrons around the metal and
then to assign them, in a formal way, either to the metal or to the ligands.
In what follows, we shall consider complexes written as [MLℓXx]q, in
which the metal M is bound to ℓ ligands of L type and to x ligands of
X type, the overall charge being q.

1.1.2.1. Total number of electrons, the 18-electron rule

Each ligand L supplies two electrons to the metal’s environment, while
each ligand X supplies a single electron. The total number of electrons
supplied by the ligands is therefore equal to 2ℓ + x. Only the valence
electrons are considered for the transition metal, as, following the spirit
of Lewis theory, we assume that core electrons play a negligible role.
In what follows, we shall limit our analysis to transition elements cor-
responding to the progressive filling of the 3d, 4d, and 5d sub-shells
(the transition metals of the d block, see Table 1.1). The valence-
electron configuration of these elements is of the type nda(n + 1)sb,
where n equals 3, 4, or 5, for the first, second, or third transition series,
respectively.5 The metal therefore supplies (a + b) electrons. We note5 There are two other transition series that

correspond to the filling of the 4f

(lanthanides) and 5f (actinides) sub-shells.
that some authors do not consider zinc to be a transition element, as its
d sub-shell is full (valence-electron configuration 3d104s2). This remark
also applies to cadmium (Cd, 4d105s2) and to mercury (Hg, 5d106s2).

When we take account of the overall charge q of the complex, the
total number of valence electrons, Nt, is:

Nt = m + 2ℓ + x − q (1.1)
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Table 1.1. Electron configuration and number of valence electrons, m, for the d-block transition metals

1st series Sc Ti V Cr Mn Fe Co Ni Cu Zn

3d14s2 3d24s2 3d34s2 3d54s1 3d54s2 3d64s2 3d74s2 3d84s2 3d104s1 3d104s2

2nd series Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

4d15s2 4d25s2 4d45s1 4d55s1 4d55s2 4d75s1 4d85s1 4d105s0 4d105s1 4d105s2

3rd series Lu Hf Ta W Re Os Ir Pt Au Hg

5d16s2 5d26s2 5d36s2 5d46s2 5d56s2 5d66s2 5d76s2 5d96s1 5d106s1 5d106s2

m 3 4 5 6 7 8 9 10 11 12

Several examples of the application of this rule are given below:

Complex m 2ℓ x q Nt

[Fe(CO)5] 8 10 0 0 18

[Ir(CO)(Cl)(PPh3)2] 9 6 1 0 16

[Mn(CO)6]+ 7 12 0 +1 18

[Ni(CN)5]3− 10 0 5 −3 18

[Zn(Cl)4]2− 12 0 4 −2 18

[V(Cl)4] 5 0 4 0 9

[Cr(CO)3(η
6-C6H6)] 6 12 0 0 18

[Fe(η5-C5H5)2] 8 8 2 0 18

[Cu(η5-C5H5)(PMe3)] 11 6 1 0 18

[Zr(η5-C5H5)2(CH3)]+ 4 8 3 +1 14

[Ti(PR3)2(Cl)3(CH3)] 4 4 4 0 12

[W(PR3)2(CO)3(η
2-H2)] 6 12 0 0 18

[Ir(PR3)2(Cl)(H)2] 9 4 3 0 16

[Ni(H2O)6]2+ 10 12 0 +2 20

By analogy with the octet rule, it has been proposed that a transition
metal tends to be surrounded by the number of valence electrons equal
to that of the following rare gas (electron configuration nd10(n + 1)s2

(n + 1)p6). One thereby obtains the 18-electron rule, for which we shall
provide a first theoretical justification in this chapter (§ 1.6.3). However,
in light of the examples given above, one must note that there are many
exceptions to this rule; we shall analyse them in greater detail in the
following chapters.

1.1.2.2. Oxidation state

In order to determine the oxidation state of the metal in the complex,
one performs a fictitious dissociation of all the ligands, supposing that
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Table 1.2. The Allred–Rochow electronegativity scale: (a) for the

transition metals and (b) for the light elements

(a)

Sc Ti V Cr Mn Fe Co Ni Cu Zn

1.20 1.32 1.45 1.56 1.60 1.64 1.70 1.75 1.75 1.66

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

1.11 1.22 1.23 1.30 1.36 1.42 1.45 1.35 1.42 1.46

Lu Hf Ta W Re Os Ir Pt Au Hg

1.14 1.23 1.33 1.40 1.46 1.52 1.55 1.44 1.41 1.44

(b)

H

2.2

Li Be B C N O F

1.0 1.5 2.0 2.5 3.1 3.5 4.1

Na Mg Al Si P S Cl

1.0 1.2 1.5 1.7 2.1 2.4 2.8

each of them, either L or X, takes with it the electron pair that created
the metal–ligand bond. The remaining charge on the metal after this
decomposition is the oxidation state of the metal in the complex. This
distribution of the electrons, which ‘assigns’ the bond pair to the ligand,
can be partially justified when one notes that this latter is usually a
more electronegative entity than is the transition metal (see Table 1.2,
the Allred–Rochow electronegativity scale). The metal–ligand bonds
are therefore polarized, and the electron pair is more strongly localized
on the ligand than on the metal. To assign the two electrons of the bond
just to the ligand is, however, a formal distribution, which exaggerates
the tendency linked to the difference in electronegativity.

In the fictitious dissociation that we are considering, a ligand L leaves
with the two electrons that it had supplied, so the number of electrons
on the metal is not changed in any way. However, an X-type ligand,
which had supplied only a single electron to make the bond, leaves in its
anionic form X−, carrying the two electrons from the bond with it. It
therefore ‘removes’ an electron from the metal, that is, it oxidizes it by
one unit. The result of this dissociation is therefore written:

[MLℓXx]q → ℓL + xX− + M(x+q) (1.2)

The oxidation state (no) of the metal in the complex is therefore equal
to the algebraic sum of the number of X-type ligands and the charge on
the complex:

no = x + q (1.3)
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In a widely used notation to specify the oxidation state of the metal in
a complex, the chemical symbol of the metal is followed by the oxidation
state written in Roman letters (Mn(I), Fe(II), Cr(III), etc.).

Examples

Complex x q no Oxidation state

[Fe(CO)5] 0 0 0 Fe(0)

[Ir(CO)(Cl)(PPh3)2] 1 0 1 Ir(I)

[Mn(CO)6]+ 0 +1 1 Mn(I)

[Ni(CN)5]3− 5 −3 2 Ni(II)

[Zn(Cl)4]2− 4 −2 2 Zn(II)

[V(Cl)4] 4 0 4 V(IV)

[Cr(CO)3(η6-C6H6)] 0 0 0 Cr(0)

[Fe(η5-C5H5)2] 2 0 2 Fe(II)

[Cu(η5-C5H5)(PMe3)] 1 0 1 Cu(I)

[Zr(η5-C5H5)2(CH3)]+ 3 +1 4 Zr(IV)

[Ti(PR3)2(Cl)3(CH3)] 4 0 4 Ti(IV)

[W(PR3)2(CO)3(η2-H2)] 0 0 0 W(0)

[Ir(PR3)2(Cl)(H)2] 3 0 3 Ir(III)

[Ni(H2O)6]2+ 0 +2 2 Ni(II)

In bimetallic complexes, the oxidation state is calculated by
supposing that the metal–metal bond(s), if any, is/are broken homolytic-
ally. This procedure is justified by the fact that the electronegativities of
the two metal centres are equal if they are identical, or similar in hetero-
nuclear complexes (see Table 1.2(a)). The presence of one or more bonds
between the metals therefore has no effect on their oxidation state. For
example, the complex [Mo(Cl)2(PR3)2]2 can initially be considered to be
decomposed into two monometallic neutral fragments [Mo(Cl)2(PR3)2]
in which the oxidation state of molybdenum is +2.

In conclusion, we note that the oxidation state must not be equated
to the real charge on the metal in the complex, as it is obtained from a
formal distribution of the electrons between the metal and the ligands.

1.1.2.3. dn Configuration of a metal

The oxidation state of the metal, which supplies m valence electrons, is
equal to no after complex formation. The formal number of electrons
remaining on the metal, n, is therefore given by the relationship:

n = m − no (1.4)
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We are considering here n electrons which are not involved in
the formation of metal–ligand bonds, in other words ‘nonbonding’
electrons. The electron configuration of the metal in the complex is
represented as dn.

Examples

Complex no m Configuration

[Fe(CO)5] 0 8 d8

[Ir(CO)(Cl)(PPh3)2] 1 9 d8

[Mn(CO)6]+ 1 7 d6

[Ni(CN)5]3− 2 10 d8

[Zn(Cl)4]2− 2 12 d10

[V(Cl)4] 4 5 d1

[Cr(CO)3(η6-C6H6)] 0 6 d6

[Fe(η5-C5H5)2] 2 8 d6

[Cu(η5-C5H5)(PMe3)] 1 11 d10

[Zr(η5-C5H5)2(CH3)]+ 4 4 d0

[Ti(PR3)2(Cl)3(CH3)] 4 4 d0

[W(PR3)2(CO)3(η2-H2)] 0 6 d6

[Ir(PR3)2(Cl)(H)2] 3 9 d6

[Ni(H2O)6]2+ +2 10 d8

This notation might seem surprising at first sight, as it implies that
all the nonbonding electrons on the metal occupy d-type atomic orbitals
(AO). Yet, for every metal except palladium, the s orbital is at least
partially occupied in the ground state of the isolated atom (see Table 1.1).
A detailed study of the electronic structure of complexes, presented in
Chapter 2, will show us that the nonbonding electrons on the metal do
indeed occupy pure d-type orbitals, or molecular orbitals whose main
component is a d-type atomic orbital.

1.2. An alternative model: the ionic model

There is a second method for counting the electrons in a complex and
deducing the metal’s oxidation state and electronic configuration. This
is the ionic model, in which one supposes that a complex is formed by
a metal centre and by ligands which always act as Lewis bases, supplying
one (or several) pairs of electrons.

1.2.1. Lewis bases as ligands

In the covalent model, neutral ligands L (or Ln) supply one (or n)
electron pair(s) to the metal: for example, one for amines (NR3),
phosphines (PR3), the carbonyl group (CO), and derivatives of ethyl-
ene (R2C==CR2), and three for benzene (C6H6) in the η6 coordination
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mode. As these ligands already behave as Lewis bases in the covalent
model, we shall continue to consider them in their neutral form L (or
Ln) in the ionic model.

However, an X-type ligand in the covalent model is a radical species
which supplies only a single electron to the metal. To ‘transform’ it
into a Lewis base, one must add an electron and therefore consider it
in its anionic form X−. In this way, the radical ligands H (hydrogen),
Cl (chlorine), and CH3 (methyl radical) of the covalent model become
the H− (hydride), Cl− (chloride), and CH−

3 (methyl anion) ligands in
the ionic model. Analogously, Xx ligands in the covalent model, which
have x unpaired electrons, become Xx− ligands in the ionic model. For
example, O (X2) and N (X3) are now described as O2− and N3−. In
general, one completes the ligand’s valence-electron shell so that the octet rule

is satisfied.
This is generalized for ligands of LℓXx type in the covalent model,

which quite naturally become LℓXx−
x ligands in the ionic model. The

cyclopentadienyl radical (Cp), a neutral species with five π electrons
(an L2X ligand, 1-5), is therefore considered in its monoanionic form
(Cp− with six π electrons). Table 1.3 presents the numbers of electrons
attributed to the principal ligands that have been considered so far in the
covalent and ionic models.

The additional electron supplied to an X-type ligand to transform
it into a Lewis base comes, of course, from the metal. The metal–
ligand ensemble is therefore described as an X− ligand interacting with
a metallic cation M+, thereby giving a purely ionic description of the
metal–ligand bond. As a consequence, a complex which was written
MLℓXx in the covalent model is represented, in the ionic model, as a
metallic cation of charge x bound to (ℓ + x) Lewis bases (1.5).

[MLℓXx] (covalent model) → [M(x)+(L)ℓ(X−)x] (ionic model).
(1.5)

If the complex has an overall charge q, the charge on the metallic
centre in the ionic model becomes (x + q) (1.6).

[MLℓXx]q (covalent model) → [M(x+q)+(L)ℓ(X−)x] (ionic model).
(1.6)

This ‘redistribution’ of the electrons within the complex can be
justified by the higher electronegativity of the ligands than of the metals
(see Table 1.2): an X-type ligand ‘attracts’ the two electrons of the metal–
ligand bond to itself, and becomes X−. In conclusion, we note that the
name given to several complexes is directly linked to the ionic model.
Thus, complexes with several H ligands ([ReH9]2−, for example) are
called ‘polyhydrides’.
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Table 1.3. Number of electrons supplied by several common ligands according to the covalent and

ionic models

Covalent model Ionic model

Ligand (type) Number of electrons Ligand Number of electrons

H, Cl, OR, NR2, CR3, CN

(X ligands)

1e H−, Cl−, OR−, NR−
2 ,

CR−
3 , CN−

2e

CO, NR3, PR3, H2,

R2C==CR2 (L ligands)

2e CO, NR3, PR3, H2,

R2C==CR2

2e

O, S, NR (X2 ligands) 2e O2−, S2−, NR2− 4e

η4-diene (L2 ligand)

4e

η4-diene

4e

η5-Cp (L2X ligand)

5e

η5-Cp−

6e

η6-arene (L3 ligand)

6e

η6-arene

6e

µ-Cl (LX ligand) 3e µ-Cl− 4e

µ-O (X2 ligand) 2e µ-O2− 4e

1.2.2. Equivalence of the covalent and
ionic models: examples

1.2.2.1. Oxidation state and dn electronic configuration

In the covalent model, the oxidation state of the metal, no, is equal to the
charge left on the metal after having carried out a fictitious dissociation
of the complex in which all the ligands take the two bonding electrons
with them (§ 1.1.2.2). For a complex whose general formula is [MLℓXx]q,
one therefore obtains no = x + q (see equations (1.2) and (1.3)). In the
ionic formulation of this same complex, (see equation (1.6)), the charge
on the metal is just equal to x + q, so the ionic and covalent models
lead to the same oxidation state no for the metal. It follows that the
same electronic configuration dn is obtained by the two models, since n

is equal to the number of valence electrons on the metal (m), minus its
oxidation state no (equation (1.4)).
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Examples

Covalent model Ionic model

[Ir(CO)(Cl)(PPh3)2]
[Ir(L)3(X)] type (Ir+)(CO)(Cl−)(PPh3)2]

x = 1; q = 0 ⇒ no = +1 no = +1

m = 9 ⇒ n = 9 − 1 ⇒ d8 m = 9 ⇒ Ir+: d8

[Fe(η5-Cp)2]
[Fe(L2X)2] type [(Fe2+)(Cp−)2]

x = 2; q = 0 ⇒ no = +2 no = +2

m = 8 ⇒ n = 8 − 2 ⇒ d6 m = 8 ⇒ Fe2+: d6

[Mn(CO)6]+

[Mn(L)6]+ type [(Mn+)(CO)6]

x = 0; q = +1 ⇒ no = +1 no = +1

m = 7 ⇒ n = 7 − 1 ⇒ d6 m = 7 ⇒ Mn+: d6

[Ni(CN)5]3−

[Ni(X)5]3− type [(Ni2+)(CN−)5]

x = 5; q = −3 ⇒ no = +2 no = +2

m = 10 ⇒ n = 10 − 2 ⇒ d8 m = 10 ⇒ Ni2+: d8

1.2.2.2. Total number of electrons

The equivalence of the two models for the calculation of the total
number of electrons in a complex (Nt) is shown by a further look at
the four examples above.

Covalent model Ionic model

[Ir(CO)(Cl)(PPh3)2]
[Ir(L)3(X)] type [(Ir+)(CO)(Cl−)(PPh3)2]

Ir 9e Ir+ 8e

1 CO 2e 1 CO 2e

2PPh3 4e 2 PPh3 4e

1 Cl 1e 1 Cl− 2e

Nt 16e Nt 16e

[Fe(η5-Cp)2]
[Fe(L2X)2] type [(Fe2+)(Cp−)2]

Fe 8e Fe2+ 6e

2 Cp 10e 2 Cp− 12e

Nt 18e Nt 18e

[Mn(CO)6]+

[Mn(L)6]+ type [(Mn+)(CO)6]

Mn 7e Mn+ 6e

6 CO 12e 6 CO 12e

Charge −1e Nt 18e

Nt 18e

[Ni(CN)5]3−

[Ni(X)5]3− type [(Ni2+)(CN−)5]

Ni 10e Ni2+ 8e

5 CN 5e 5 CN− 10e

Charge 3e Nt 18e

Nt 18e
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1.3. Principles of orbital interactions

When we use molecular orbital (MO) theory, the term ‘orbital structure’
of a complex, or of any molecule, means the shape and the energetic
order of the MO. Usually, these orbitals are expressed as Linear Com-
binations of Atomic Orbitals (LCAO) of the different atoms that make
up the system being studied. The shape of an MO is determined by the
relative magnitudes and the signs of the different coefficients. The elec-
tronic structure is then obtained by placing electrons in these orbitals,
filling first those which are lowest in energy.

To construct the MO, it is often advantageous to decompose the
molecular system being studied into two simpler sub-systems whose
orbitals, either atomic or molecular, are already known. The MO of the
complete system are then obtained by allowing the orbitals of the two
fragments to interact. In this paragraph, we shall remind the reader of
the principal rules which control the interaction between two orbitals
on two fragments. For simplicity, we shall treat atomic orbitals, but
this limitation will not affect the general nature of our conclusions in
any way.

1.3.1. Interaction between two orbitals with
the same energy

Consider, for example, the interaction between two identical orbitals of
s type, χ1 and χ2 (Figure 1.1).

The interaction produces a bonding (φ+) and an antibonding MO
(φ−). The first is the in-phase combination of the two orbitals χ1 and
χ2 (coefficients with the same sign), while the second is the out-of-phase
combination (coefficients with opposite signs) of these same orbitals. In
each MO, the coefficients of χ1 and χ2 have the same magnitude, since
the interacting orbitals are identical.

In energy terms, the bonding MO is lower in energy than the initial
AO, but the antibonding MO is higher. It is important to notice that
the destabilization of the antibonding level (�E−) is larger than the
stabilization of the bonding level (�E+). It can be shown that these

Figure 1.1. Interaction diagram for
two orbitals with the same energy.

∆E –

∆E +

�–

�+
�2�1
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two quantities are proportional to the overlap S between the interact-
ing orbitals.6 Therefore, as this overlap increases, the stabilization of6 The overlap Sij between two orbitals φi

and φj is equal to the integral evaluated over
all space of the product of the functions φ∗

i
(the complex conjugate function of φi) and
φj : Sij = 〈φ∗

i |φi〉. For real functions, the
integral of the product of the two functions
is evaluated over all space.

the bonding MO and the destabilization of the antibonding MO both
become larger.

We shall often be interested later in this book by interactions
involving either two or four electrons. In the first case (1-20), after the
interaction the two electrons both occupy the bonding MO, producing
a stabilization of the electronic energy equal to 2�E+.7 We deduce that7 We assume here that the total electronic

energy is equal to the sum of the individual
electronic energies. This relationship, which
has the advantage of being simple, is obtained
when the electronic Hamiltonian is written as
a sum of monoelectronic Hamiltonians, as in
the Hückel and extended Hückel methods.
This approximate formula has, of course,
limited application, but it is acceptable for a
qualitative analysis of orbital interactions.
Further details may be found in Structure

électronique des molécules, by Y. Jean and F.
Volatron, Volume 2, Chapter 13, Dunod,
Paris (2003).

the stabilization associated with a two-electron interaction between orbitals of

the same energy is proportional to the overlap S.

1-20 1-21

In the case of a four-electron interaction (1-21), both the bonding
and antibonding orbitals are doubly occupied. Since �E− is larger than
�E+, the four-electron interaction is destabilizing, and it can be shown

that the destabilization is proportional to the square of the overlap, S2.

1.3.2. Interaction between two orbitals with
different energies

We now consider the more general case, where the two orbitals χ1 and
χ2, have different energies (ε1 < ε2, Figure 1.2). Their interaction leads
to the formation of a bonding orbital (φ+), lower in energy than the
lowest orbital (χ1), and an antibonding orbital (φ−), higher in energy
than the highest orbital (χ2). As in the preceding case, the stabiliza-
tion (�E+) of the bonding orbital, compared to the energy of χ1, is
smaller than the destabilization (�E−) of the antibonding orbital com-
pared to the energy of χ2 (Figure 1.2). It can be shown that these two
quantities are both proportional to the square of the overlap between
the orbitals and inversely proportional to their energy difference (�ε),
that is, proportional to S2/�ε. A strong interaction therefore requires
both a good overlap between the orbitals and a small energy difference
between them.

Comment

This formula is approximate and cannot be used when the two orbitals are

too close in energy. It is clear that the expression tends to infinity as �ε tends
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towards zero (orbitals of the same energy). For orbitals whose energies are

only slightly different, it is safer to use the result from the preceding paragraph

(proportional to S). An example will be discussed in Chapter 4, § 4.1.3.

∆E –

∆E +

�–

�+
�1

�2

Figure 1.2. Interaction diagram for two
orbitals with different energies.

As far as the coefficients are concerned, the bonding orbital (φ+)

is concentrated on the centre (or the fragment) that has the lowest-
energy orbital (χ1 here), whereas the opposite polarization is found
for the antibonding orbital (φ−), where the coefficient is larger for χ2

(Figure 1.2). From a chemical viewpoint, this means that the bonding
MO is mainly based on the more electronegative centre (or fragment),
but the antibonding MO on the less electronegative centre (or fragment).

If we consider a two-electron interaction between doubly occupied
χ1 and empty χ2 (1-22), the two electrons are stabilized by 2�E+. The

stabilization associated with a two-electron interaction between two orbitals

of different energy is therefore proportional to the square of the overlap and

inversely proportional to the energy difference between the two orbitals, that is,

proportional to S2/�ε. However, a four-electron interaction is destabil-
izing, since �E− is larger than �E+ (1-23). It can be shown that this

four-electron destabilization is proportional to the square of the overlap, S2.

1-22

1-23

The two-orbital interaction diagrams (1-20 to 1-23) enable us to
establish a link between the idea of a bonding pair in the Lewis sense and
the MO description. The bonding pair corresponds to double occupation
of the bonding MO with the antibonding MO empty. There is thus
a single bond in H2 (identical orbitals, 1-20) and in HeH+ (different
orbitals, 1-22). However, if four electrons are involved, the antibonding
orbital is doubly occupied and no chemical bond exists between the two
atoms. This is the situation in He2, for example (identical orbitals, 1-21),
and HeH− (different orbitals, 1-23), species where the two atoms remain
separate.

1.3.3. The role of symmetry

The interaction between two orbitals χ1 and χ2 leads to a stabilization
(destabilization) of the bonding (antibonding) MO, proportional to the
overlap if the orbitals have the same energy but to S2/�ε if their energies
are different. In both cases, there is clearly no interaction if the overlap
is zero. Now S is equal to the integral over all space of the product of
the functions χ∗

1 and χ2. In order for this integral to be non-zero, these
two functions must be bases for the same irreducible representation of
the molecular symmetry group, or, in simpler terms, they must have the
same symmetry (Chapter 6, § 6.5.1). If they have different symmetries,
the integral is exactly equal to zero, and one says that the overlap is zero
by symmetry.
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In the general case, where two fragments each with several orbitals
interact, this comment allows us to simplify the interaction diagrams
very considerably: only orbitals of the same symmetry interact.

1.3.4. σ and π interactions

Two types of interactions are often distinguished: σ interactions,
which concern an axial orbital overlap, and π interactions, where
the orbital overlap occurs laterally, or ‘sideways’. These two types of
overlap are illustrated in 1-24 and 1-25, respectively, for two p orbitals
whose axes of revolution are either co-linear (axial overlap) or parallel
(sideways overlap). Notice that another way to characterize π inter-
actions is to observe that the orbitals involved share a common nodal
plane (P, 1-25).

1-24 (σ )

P

1-25 (π) In general, σ interactions are stronger than π interactions, since axial
overlap is more efficient than sideways overlap. The energy separation
between the resulting orbitals is therefore larger for σ (bonding) and σ ∗

(antibonding) MO than for the π and π∗ MO.
The ethylene molecule provides a typical example. The construction

of the σCC and πCC MO from nonbonding orbitals (represented by nσ

and np) of the CH2 fragments is presented in Figure 1.3: the order of
the four resulting MO, in terms of increasing energy, is σCC < πCC <

π∗
CC < σ ∗

CC.

�CC

�CC
*

�CC
*

�CC

n�n�

np np

Figure 1.3. Construction of the σCC and πCC
MO in ethylene from nσ and np orbitals on
each CH2 fragment.

1.4. Metal orbitals

In the case of monometallic transition metal complexes, it seems quite
natural to construct the MO by allowing the orbitals on the metal centre
to interact with those on the ligands. We are now going to examine just
which orbitals one must consider on the metal (§ 1.4) and on the ligands
(§ 1.5) so as to obtain, after interaction, a satisfactory description of the
orbital structure of the complex.

For the metal centre, the atomic orbitals (AO) describing the core
electrons will not be considered for the construction of the complex’s
MO. This approximation can be justified by noting that the amplitude
of these orbitals is significant only close to the nucleus, so they can
therefore play only a negligible role in bond formation. One must,
however, consider the valence AO that are occupied in the ground
state of the isolated atom (nd and (n + 1)s), see Table 1.1), together
with the (n + 1)p orbitals, which, even though they are empty in the
isolated atom, do contribute to bond formation in the complexes of
transition metals. There are, therefore, nine atomic orbitals in all which
participate on the metal, five d-type orbitals, one s-type, and three p-type
orbitals.
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1.4.1. Description of the valence orbitals

For the s and p orbitals, we shall use the usual conventional
representation8 (1-26) which takes their essential features into account:8 Y. Jean and F. Volatron in An Introduction

to Molecular Orbitals, Oxford University Press,
NY. (1993). Chapter 2. 1. The spherical symmetry of the s orbital.

2. The existence of an axis of revolution for the px , py, and pz orbitals
(the Ox, Oy, or Oz directions, respectively) and of a nodal plane
perpendicular to this axis (the yOz, xOz, or xOy planes, respectively),
that is, a plane in which the orbital amplitude is zero. The p orbitals
change sign on crossing the nodal plane, which is why they are
represented by two ‘lobes’, one grey (positive amplitude), the other
white (negative amplitude).

s px py pz

x
y

z

yy
xxx

z

y

z z

1-26

It should be noted that the representation of the orbital whose
axis of revolution is perpendicular to the plane of the page (px , 1-26)
poses a special problem. This function is exactly zero in this plane
(the nodal plane yOz), the positive lobe being directed towards the
reader and the negative lobe away from him or her. When one takes
account of the symmetry of revolution around the Ox axis, the inter-
sections of these lobes with planes parallel to the nodal plane, either
‘above’ or ‘below’ it, are circles. The conventional representation of
this orbital shows two offset circles, which represent each lobe seen in
perspective.

The presence of five valence d-type orbitals is, of course, the chief
characteristic of the metals of the first three transition series. For
hydrogenoïd atoms (those with only one electron but a nuclear charge
equal to +Z), exact analytical solutions to the Schrödinger equation
can be obtained (which is not the case for polyelectronic atoms in
general). The expressions for the 3d orbitals are given below (formu-
lae (1.7)–(1.12)), where both the radial (R3,2(r)) and angular parts are
normalized.9Analogous expressions are obtained for the 4d and 5d orbit-

9 In these expressions, the angular part is
expressed using the ratios x/r, y/r, and z/r

rather than the spherical coordinates (r, θ , and
φ). This transformation enables us to make
the link between the analytical expression of
the orbital and the name which is attributed
to it.

als of the hydrogenoïd atoms, only the radial part of the functions (R4,2
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and R5,2) being modified.

3dxy = R3,2(r)

√

60

16π

xy

r2
(1.7)

3dxz = R3,2(r)

√

60

16π

xz

r2
(1.8)

3dyz = R3,2(r)

√

60

16π
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r2
(1.9)

3dx2−y2 = R3,2(r)

√

15

16π

x2 − y2

r2
(1.10)

3dz2 = R3,2(r)
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r2
, (1.11)

where

R3,2(r) =
4

81
√

30

√

Z3

a3
0

(

Zr

a0

)

exp

(

−
Zr

3a0

)2

. (1.12)

In this last expression (1.12), a0 is the Bohr radius, equal to 0.529 Å,
and Z is the nuclear charge. To what extent are these hydrogenoïd
orbitals suitable to describe the d orbitals of transition metals? In
polyelectronic atoms, it is only the radial part of the orbitals that is
different from hydrogenoïd orbitals; it is modified to take account of the
charge on the nucleus and the screening effect created by the other elec-
trons. Since the angular part of the orbitals is conserved, the expressions
that are obtained for the 3d orbitals of hydrogenoïd atoms enable us to
analyse the symmetry properties of the d orbitals of all the transition
metals.

We note first that the names given to these orbitals
(dxy, dxz, dyz, dx2−y2 , dz2) are directly related to the formulae of their
angular parts. At a given distance r from the nucleus, the amplitude
of the dxz orbital is directly proportional to the product of the x and
z coordinates for that point (formula (1.8)). The same applies for the
dyz, dxy, and dx2−y2 orbitals. But the dz2 orbital is a special case. Its
name suggests that it is concentrated wholly along the z-axis. But in
fact, this orbital also has a small amplitude, of opposite sign, in the xy

plane, so according to formula (1.11), it would be more logical to call
it d2z2−(x2+y2).

It is important to define carefully the graphical representations that
we shall use for these orbitals throughout this book. They show the
orbitals’ symmetry properties, the regions of space where their ampli-
tudes are largest and where they are zero (nodal surfaces), all important
aspects for our subsequent analysis of interactions between the d orbitals
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and orbitals on the ligands. Consider the dyz orbital as an example. Its
analytical expression (formula (1.9) shows that its amplitude is zero if
y = 0 (i.e. at all points in the xz plane) and if z = 0 (xy plane): xz and
xy are therefore two nodal planes for the dyz orbital. In contrast, the
amplitude is greatest along the bisectors of the y- and z-axes. Finally, it is
positive where y and z have the same sign, but negative otherwise. All of
these properties are clearly shown by the graphical representation 1-27.

y

z
dyz

x

1-27

The dxy and dxz orbitals (formulae (1.7) and (1.8)) may be obtained
from the dyz orbital by a rotation of 90◦ around the y- and z-axes, respect-
ively. They have analogous symmetry properties, with two nodal planes
(xz and yz for dxy, xy and yz for dxz), a maximum amplitude along the
bisectors of the (x, y) or (x, z) axes and alternating signs for the lobes.
Their graphical representation poses the same problem as that already
met for the px orbital (1-26), since the plane of the page is one of the
nodal planes. In the same way as before, we represent the intersection of
the lobes with planes parallel to the plane of the page (yz), placed either
in front or behind, with the back part of the orbital being partly hidden
by the front part (1-28 and 1-29).

y

z
dxy

x

1-28

y

z
dxz

x

1-29

The dx2−y2 orbital (formula ((1.10)) has its maximum amplitude
along the x- and y-axes, and it also possesses two nodal planes which are
the planes bisecting the x- and y-axes (1-30a). An alternative represent-
ation of this orbital is given in 1-30b, where the x-axis is perpendicular
to the plane of the page. The lobes directed along this axis are now
represented by two offset circles.

x

yd
nodal plane

or

x2–y2 dx2–y2

y

z

x

1-30a 1-30b

The shape of the dz2 orbital is very different from those we have
already seen. Its analytical expression (formula (1.11)) shows that its
maximal amplitude lies along the z-axis, and that it is positive for both
positive and negative z. But it is negative in the xy plane (z = 0), and this
change in sign implies the existence of a nodal surface. The equation
of this surface, z2 = (x2 + y2)/2 from formula (1.11), defines a cone

whose apex angle, θ , is equal to 109.5◦ (the tetrahedral angle). All
of these properties are reproduced by the conventional representation
given in 1-31.

x

z

dz2

 nodal cone

� = 109.5°

1-31
We close this section by noting that the sign in the analytical

expressions of the orbitals is arbitrary. The same remark applies for
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Table 1.4. Energies (in eV) of the s and d orbitals for d-block transition elements obtained from

spectroscopic data.

1st series Sc Ti V Cr Mn Fe Co Ni Cu Zn

ε3d −7.92 −9.22 −10.11 −10.74 −11.14 −11.65 −12.12 −12.92 −13.46 −17.29

ε4s −6.60 −7.11 −7.32 −7.45 −7.83 −7.90 −8.09 −8.22 −8.42 −9.39

2nd series Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

ε4d −6.48 −8.30 −8.85 −9.14 −9.25 −9.31 −9.45 −9.58 −12.77 −17.85

ε5s −6.70 −7.31 −7.22 −7.24 −7.21 −7.12 −7.28 −7.43 −7.57 −8.99

3rd series Lu Hf Ta W Re Os Ir Pt Au Hg

ε5d −5.28 −6.13 −7.58 −8.76 −9.70 −10.00 −10.21 −10.37 −11.85 −15.58

ε6s −7.04 −7.52 −8.45 −8.51 −8.76 −8.81 −8.83 −8.75 −9.22 −10.43

their graphical representations. This means that one can change all

the signs in the representation of an orbital, for example, represent-
ing the dx2−y2 orbital by negative (white) lobes along the x-axis and
positive (grey) lobes along the y-axis. All the orbital’s properties, such
as the regions of maximum amplitude, the changes in sign between
neighbouring lobes or the nodal surfaces, are retained in this new
representation.

Notation

In the interest of simplification, the five d orbitals are often written xy, xz,

yz, x2 − y2, and z2. This is the notation that we shall use henceforth.

1.4.2. Orbital energies

It is possible to determine the energy of the nd and (n + 1)s orbitals
for transition metals in their ground-state electronic configuration nda

(n + 1)sb from spectroscopic data.1010 J. B. Mann, T. L. Meek, E. T. Knight,
J. F. Capitani, L. C. Allen J. Amer. Chem. Soc.

122, 5132 (2000). The calculations use the
ionization potential of the atom and the
energy of the atom in its ground state,
as well as the energy of the cation formed by
removal of an electron from the s orbital or
from a d orbital.

The values that are obtained are presented in Table 1.4. They invite
several comments which will be helpful when we come to the con-
struction of diagrams for the interaction between metal and ligand
orbitals. On moving from left to right in a given series, the energy
of both the s and d orbitals decreases (becoming more negative). This
decrease in orbital energy arises from the increase in nuclear charge
which strengthens the interaction between the nucleus and the elec-
trons. The variation is nonetheless less pronounced for the s orbitals
than for the d orbitals, because the (n + 1)s electrons are strongly shiel-
ded by the nd electrons. As a consequence, the effective charge Z∗

(n+1)s





Setting the scene

(the nuclear charge Z reduced by the screening σ(n+1)s) experienced by
the s electrons varies little from one element to the next: the increase of
the nuclear charge by one unit is largely cancelled by the presence of an
additional d electron with its screening effect. However, the d electrons
are only weakly screened by the s electrons, so the effective charge Z∗

nd

increases by close to one unit from one element to the next, leading to
a substantial stabilization of the energy of the d orbitals. When we con-
sider the variation within a group, the energetic ordering of the d orbitals
in the first four columns is ε3d < ε4d < ε5d, but there is an inversion of
the 4d and 5d levels for the four following groups (ε3d < ε4d > ε5d). For
all the elements except four (Y, Lu, Hf, and Ta), the nd orbital is lower in

energy than the (n + 1)s orbital. The (n + 1)p orbital is always higher in
energy than the (n + 1)s, as it is everywhere in the periodic table. For
the great majority of the d-block transition metals, the orbital energy
ordering is therefore, εnd < ε(n+1)s < ε(n+1)p.

1.5. Ligand orbitals

It is not possible to define a single set of orbitals that can be used to
describe the interactions with the metal for any type of ligand. Two
conditions must be met: the ligand orbitals must be close in energy to
those on the metal, and their overlap must also be substantial (§ 1.3.2).
Depending on the nature of the ligand, one or several orbitals may satisfy
these criteria.

1.5.1. A single ligand orbital: σ interactions

The case where it is clearest that only one orbital need be considered
involves the ligand H, since it possesses only one valence orbital, 1sH .
This orbital, which contains one electron (an X-type ligand), can be used
to form a σM−−H bond by combination with a metal orbital such as the
z2 orbital (1-32).11

11 A σ bond means, in this context, a bond
described by an MO that possesses cylindrical
symmetry about the M-ligand axis. This
notation is widely used by chemists for single
bonds (see § 1.3.4). However, in group theory,
the σ notation is reserved for linear molecules.

�M–H1sH

1-32

For certain more complicated ligands, it is also possible, as a first

approximation, to consider only a single orbital to describe the metal–
ligand interaction. This is the case for ligands of the type AH3 (or more
generally AR3) whose orbital structure is summarized in Figure 1.4.
Therefore, for an amine or phosphine (L-type ligands), it is in general
sufficient to consider the nonbonding orbital 2a1 (Figure 1.4) that char-
acterizes the lone pair on the nitrogen or phosphorus atom (1-33a).
Analogous remarks may be made for the methyl ligand, CH3, or more
generally for an alkyl radical CR3, the nonbonding orbital being only
singly occupied in this case (an X-type ligand) (1-33b). This is the highest
occupied orbital on the ligand, and its energy is not very different from
that of the d orbitals for most of the transition metals. Moreover, its
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overlap with a metal orbital (e.g. z2, 1-34) is substantial since it is a
hybrid orbital polarized towards the metal centre. The resulting interac-
tion produces a bonding and an antibonding MO. If the former is doubly
occupied and the latter is empty, there is a σ bond between the metal
and the ligand (σM−PR3, or σM−CR3, 1-34).

NR
3
, PR

3
CR

3

1-33a 1-33b

�M–L

S

1-34

If we consider only the nonbonding orbital on ligands such as NR3,
PR3, or CR3, we are effectively supposing that the interactions of the
other MO with the metal orbitals are much weaker than the σ inter-
action already described. This hypothesis can be justified by analysing
the orbital structure of pyramidal AH3 molecules (Figure 1.4), where
we see three bonding molecular orbitals (σA−−H) that account for the
A-H bonds, the nonbonding orbital that is concentrated on the central
atom, and three antibonding orbitals

(

σ ∗
A−H

)

. The bonding orbitals of
the ligand can interact with the metal orbitals. But they are far too low
in energy, since they are orbitals describing the σA−H bonds. Moreover,
they are partially distributed over the hydrogen atoms, that is, in the
direction away from the metal.

For both these reasons (substantial energy gap and poor over-
lap), the interactions involving the bonding orbitals are weaker than
those concerning the nonbonding orbital. In a similar way, interac-
tions between the antibonding σ ∗

A−H orbitals and the metal centre
are usually negligible for the description of the metal–ligand bond;
these MO are at high energy and partially oriented away from the
metal.

Figure 1.4. Molecular orbitals for AH3
pyramidal molecules (with the electronic
occupation appropriate for molecules with
eight valence electrons, such as NH3 or PH3).

1a1

1e

2a1
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3a1

antibonding �*
A–H MO
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Comment

It must, however, be noted that the antibonding orbitals can be strongly

stabilized by very electronegative substituents, as, for example, in trifluoro-

phosphine, PF3. In such a case, these orbitals can interact to a non-negligible

extent with the d orbitals of the metal centre. This is particularly important

for the 2e orbitals (Figure 1.4) which can be involved in π -type interactions

(see Chapter 3).

1.5.2. Several orbitals: σ and π interactions

For other ligands the situation is more complicated, since it is necessary
to take several orbitals into account to obtain a satisfactory description
of the bond with the metal. As a first example, we shall consider bent
AH2 molecules.

1.5.2.1. Ligands of the AH2 type

The orbital structure of bent AH2 molecules (or more generally AR2),
see Figure 1.5, shows that there are two bonding orbitals, which
describe the σA−H bonds, the two corresponding antibonding orbitals
σ ∗

A−H, and at an intermediate energy level, two nonbonding molecular
orbitals: the 2a1 orbital, which is a hybrid pointing in the direction
away from the hydrogen atoms, and the 1b1 orbital, which is a pure
p atomic orbital perpendicular to the molecular plane, (see Chapter 6,
§ 6.5.2). Depending on the nature of the atom A, these two orbitals can
contain one electron (BH2, AlH2), two (CH2, SiH2), three (NH2, PH2),
or four (OH2, SH2).

As in the previous example, the bonding and antibonding orbitals
can, in a first approximation, be neglected for the description of
the metal–ligand interactions. However, it is necessary to take both

nonbonding orbitals into account, as they are close in energy and both
can lead to interactions with the metal centre. The 2a1 orbital plays the

Figure 1.5. Molecular orbitals for AH2
molecules (with the electronic occupation
appropriate for molecules with six valence
electrons, such as CH2 or SiH2 in their
lowest singlet state).
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1b2

2a1

3a1

1b1

2b2
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bonding �A–H MO

antibonding �*
A–H MO
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same role as the 2a1 orbital in AH3 molecules, and its interaction with
a metal orbital (z2, for example) leads to the formation of an MO that
characterizes a σ bond (1-35).

�M–L

1-35

�M–L

yz

xz px

1-36

The 1b1 orbital (px) has the correct symmetry to interact with the xz

orbital: the overlaps above and below the yz plane have the same sign, so
that the total overlap (the sum of the partial overlaps) is non-zero (1-36).
This new metal–ligand interaction is said to be a π interaction, since the
orbitals concerned share a common nodal plane (yz). It leads to the forma-
tion of two MO, one bonding, πM−L, represented schematically in 1-36,
and one antibonding, π∗

M−L. This interaction is particularly important
for the description of the metal–ligand bond when two electrons are con-
cerned: the bonding molecular orbital (1-36) is then doubly occupied but
the antibonding orbital is empty. A π -type interaction therefore adds to
and reinforces the σ interaction (1-35), giving a double-bond character
to the metal–ligand bond. It should be noted that there is an important
difference between the σ (1-35) and π (1-36) interactions concerning
the change in the overlap when there is a rotation about the M-L bond:
the σ overlap does not change, as it possesses cylindrical symmetry
with respect to the bond direction, but the π overlap is eliminated by a
rotation of 90◦.

Comment

This is exactly analogous to what happens in an organic molecule such

as ethylene (Figure 1.3), in which there is a σCC bond for any relative

orientation of the two methylene groups, whereas the existence of a πCC

bond depends on the two groups being coplanar.

1.5.2.2. AH ligands

Following the reasoning developed in the previous paragraph, three

molecular orbitals need to be considered for an A-H (or A-R) ligand
(see Figure 1.6): the nonbonding orbital 2σ , analogous to the 2a1 orbital
in AH3 and AH2 ligands, which allows a metal–ligand σ bond to be
formed, and the two degenerate π orbitals (px and py) which may be
involved in π interactions with the metal centre. Depending on the
nature of A, these three orbitals may contain two electrons (BH, AlH),
three (CH, SiH), four (NH, SH), five (OH, SH), or six (FH, ClH).

1.5.2.3. Monoatomic ligands A

With the exception of the ligand H, for which there is only a single
valence orbital 1sH to consider (a σ interaction), one must treat all the
valence s and p orbitals on a monoatomic ligand A. Now the s orbital is
usually much lower in energy than the d orbitals on the metal, especially
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Figure 1.6. Molecular orbitals for AH
molecules (with the electronic occupation
appropriate for molecules with four valence
electrons, such as BH or AIH in their lowest
singlet state).

1�

3�

2�

1�

nonbonding MO

antibonding          MO�A–H
*

bonding        MO�A–H

if A is a fairly electronegative element. In this case, one can therefore
neglect the interaction of the s orbital (which, if it is doubly occupied,
therefore describes a lone pair localized on A), and only consider the
three p orbitals on the ligand, which are higher in energy and therefore
closer to the metal d orbitals. The one which points towards the metal
centre (pz, 1-37) is used for the σ interaction, and the two orbitals whose
axis of revolution is perpendicular to the bond (px and py) can lead to π

interactions (1-38).

z2 pz

1-37

xz px yz py

1-38

Comment

In a more sophisticated model of the σ orbitals, one can suppose that pz

and s are mixed, to form two s–p hybrid orbitals, one pointing towards

the metal to form the σ bond, and the other in the opposite direction,

so as to describe a lone pair of σ type on A. This new approach does not

fundamentally change anything in the simplified description given above.

The preceding examples show that one must always consider the
atomic or molecular orbital on the ligand that allows a σ bond to be
formed with the metal. This orbital may be a nonbonding s orbital (H),
a hybrid s–p orbital (AH3, AH2, and AH molecules), or a p orbital which
points towards the metal centre (A atoms). When the atom bound to
the metal also possesses nonbonding p orbitals perpendicular to the
metal–ligand bond (AH2, AH, A), it is also necessary to consider them,
since they lead to π -type interactions with the metal orbitals.

Even though it is an approximation to neglect the other MO on the
ligand, this usually leads to an acceptable description of the bond with
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the metal centre. It is particularly appropriate when the neglected ligand
orbitals are very low in energy and the antibonding orbitals very high.
These conditions are usually satisfied when the orbitals are involved in
the σ bonds of the ligand. However, when the ligand possesses one or
more π bonds, its π bonding and π∗ antibonding molecular orbitals
must usually be taken into account.

1.5.2.4. Ligands with a π system: the example of CO

When the ligand possesses a π bond involving the atom bound to the
metal (η1 coordination), this leads to the presence of a π bonding and
π∗ antibonding orbital on the ligand. In general, the π orbital is higher
in energy than the MO that describe the σ bonds, while the π∗ orbital is
lower than the σ ∗ MO (§1.3.4). Although none of these π or π∗ orbitals
is nonbonding, in contrast to the p orbitals of AH2, AH, and A ligands,
their energy level is neither sufficiently low (π ) nor sufficiently high
(π∗) for one to be able, a priori, to neglect their role in the metal–ligand
interaction.

�C

�CO

�CO
*

C O

Figure 1.7. Electronic stucture of CO (three
highest occupied and two lowest empty
orbitals).

Carbon monoxide, CO, also called the carbonyl ligand, is an example
which illustrates these points nicely. The essential features of its elec-
tronic structure are shown in Figure 1.7. The highest occupied orbital
is a nonbonding σ orbital, mainly concentrated on the carbon atom
and polarized in the direction away from the oxygen atom. This orbital,
which describes the lone pair on the carbon atom, is the one which
allows a σM−−CO bond to be formed (L-type ligand). The two πCO bond-
ing orbitals associated with the π bonds in C≡≡O are lower in energy.
They are mainly concentrated on oxygen, as that atom is more elec-
tronegative than carbon. The lowest empty orbitals are the antibonding
π∗

CO orbitals, which have a larger contribution from carbon than oxygen.
These four orbitals can lead to π -type interactions with orbitals of suit-
able symmetry on the metal, similar to those we have already seen with
the nonbonding p orbitals of the AH2 and AH molecules.

We shall therefore have to study a set of five orbitals (one σ , two π ,
and two π∗) when we wish to analyse the metal–carbonyl bond.1212 A more detailed analysis will enable us

to show that one can, in a first approximation,
reduce this number of orbitals to three: the
σ orbital and the two π∗ orbitals (Chapter 3, §
3.2.2).

1.5.2.5. π complexes

In the examples studied so far, the ligand is bound to the metal centre
by only one of its atoms. The situation is different when several atoms
of the ligand are bound in an equivalent manner to the metal centre (ηx

coordination). This is the case for π complexes, in which the π system
of the ligand is oriented towards the metal. All the π orbitals of the
ligand, both occupied and empty, must now be considered to describe
the metal–ligand bonds. As an example, we shall treat an η2-ethylene
complex in detail in Chapter 3 (§ 3.4).
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1.6. Initial orbital approach to MLℓ complexes

The shape and the energy of the molecular orbitals of a complex
depend on the number of ligands and their geometrical arrangement
around the metal. It is possible to obtain some important information
on the MO without defining the particular complex studied. The pur-
pose of this paragraph is thus to derive the general characteristics of the
orbital structure which do not depend (or depend only slightly) on the
complex.

1.6.1. Simplified interaction diagram

We shall consider, for simplicity, a complex in which the metal is
surrounded by ℓ identical ligands, each with just a single orbital that
can take part in the metal–ligand interaction (a σ interaction, § 1.5.1).

A simplified diagram for the interaction between the ℓ ligand orbitals
and the nine atomic orbitals on the metal (five d orbitals, one s orbital,
and three p orbitals, without distinction) is given in Figure 1.8. In this
diagram, the metal orbitals are placed higher in energy than those on the
ligands, since the latter are more electronegative. The ℓ ligand orbitals
interact with ℓ metal orbitals, to form ℓ bonding MO and the associated
ℓ antibonding MO. There are therefore (9 − ℓ) nonbonding orbitals that
remain on the metal.

Figure 1.8. Simplified diagram for the
interaction of the atomic orbitals on a metal
centre and the ℓ ligands which surround it (σ
interactions only).
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Initial orbital approach to MLℓ complexes

Given the relative energies for the participating orbitals (§ 1.3.2), we
can make the following points:

1. The bonding MO, which describe the σM−Lig bonds, are mainly
concentrated on the ligand orbitals. An example is given for an
M-H bond involving the metal z2 orbital (1-39).

2. The corresponding antibonding MO are mainly concentrated on
the metal orbitals (1-40).

3. The nonbonding MO are orbitals that are localized on the metal
centre. A more detailed analysis of the orbital structure of com-
plexes (Chapter 2) will show that usually, but not always, these
nonbonding MO are pure d orbitals, or orbitals in which the
principal component is of d type.

�M–H

1-39

�M–H
*

1-40

1.6.2. Strong-field and weak-field complexes

The separation between the energy levels (�E−, Figure 1.8) of the
nonbonding and antibonding MO (σ ∗

M−Lig) is directly linked to the
strength of the interaction between the ligand orbitals and those on
the metal. The stronger this interaction, the more the antibonding
orbitals are destabilized, so the larger the energy gap �E−. When the
metal–ligand interaction is strong, �E− is large and one refers to strong-

field complexes; in contrast, when �E− is small, one refers to weak-field

complexes.

1.6.3. Electronic configuration and the 18-electron rule

In so far as the electronic occupation of the molecular orbitals is
concerned, the stability of an MLℓ complex is generally maximized when
the bonding MO, of which there are ℓ, together with the nonbonding
MO, of which there are (9 − ℓ), are doubly occupied, but when the
ℓ antibonding MO remain empty (Figure 1.8). The bonding MO describe
the M-Lig bonds and the nonbonding MO represent lone pairs on the
metal. In this situation, the total number of electrons is:

Nt = (2 × ℓ) + 2 × (9 − ℓ) = 18 (1.13)

In this way, we rationalize the 18-electron rule that was previously
discussed with reference to the valence electronic structure of the nearest
noble gas (§ 1.1.2.1).

The electrons that occupy the nonbonding MO are not used to form
metal–ligand bonds. They therefore correspond to the n electrons that
‘remain’ on the metal in the classical counting scheme (§ 1.1.2.3). The dn

notation for the electronic configuration of the metal assumes, however,
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that all the occupied nonbonding orbitals on the metal are of d type (see
Chapter 2).

Even if the 18-electron rule is often obeyed, we must not forget
that there are many exceptions. There are some complexes that have
fewer than 18 electrons. For example, the [M(Lig)4] complexes that
adopt a ‘square-planar’ geometry (four ligands at the vertices of a
square whose centre is occupied by the metal) with a d8 electronic
configuration (e.g.: [Ir(CO)(Cl)(PPh3)2], § 1.1.2.1) are 16-electron com-
plexes. Since the bonding MO that describe the bonds are doubly
occupied, this analysis shows that one of the nonbonding orbitals
in Figure 1.8 is empty, and a more detailed study of the electronic
structure is necessary to understand this result (Chapter 2, §2.2).
These 16-electron complexes are stable, but often reactive towards
other molecules since they have a tendency to form 18-electron com-
plexes, by binding other ligands. For example, Wilkinson’s catalyst
[Rh(PPh3)3Cl] is used industrially for the catalytic hydrogenation of
olefins (see Exercise 1.3).

There are also some complexes with more than 18 electrons, such as
[Ni(H2O)6]2+ which possesses 20 electrons (§ 1.1.2.1). Some antibond-
ing MO must therefore be occupied, which can happen only if they
are sufficiently low in energy, as is the case in weak-field complexes.
Organometallic complexes, characterized by the presence of one or sev-
eral metal–carbon bonds, are strong-field complexes. It is therefore rare
for them to possess more than 18 electrons.

1.6.4. Analogy with the octet rule

In the same way, one can construct a simplified interaction diagram for
AHn (or ARn) molecules in which A is an element from the second or
third row of the periodic table (C, Si, N, P, O, S, etc.). There are thus
four valence orbitals on the central atom: one s AO, and three p AO. The
σ interactions with the orbitals on the atoms bound to A lead to the
formation of n bonding MO, n antibonding MO and (4 − n) nonbonding
MO. If the bonding and nonbonding MO are doubly occupied, the
number of electrons Nt is equal to

Nt = (2 × n) + 2 × (4 − n) = 8 (1.14)

We have therefore derived the octet rule. As examples, we can
quote:

CH4 n = 4 4 bonding MO, 4 antibonding MO, 0 nonbonding MO
NH3 n = 3 3 bonding MO, 3 antibonding MO, 1 nonbonding MO
OH2 n = 2 2 bonding MO, 2 antibonding MO, 2 nonbonding MO
FH n = 1 1 bonding MO, 1 antibonding MO, 3 nonbonding MO





Exercises

It is straightforward to verify that the number of bonding,
nonbonding, and antibonding MO predicted by this simple model agree
consistently with the detailed orbital structures of the NH3, OH2, and
HF molecules (§ 1.1.4–1.1.6).

Exercises

1.1

What are the two coordination modes of the allyl ligand,
H2C-CH-CH2, for which a Lewis structure is given below? In each
case, categorize the ligand as LℓXx .

C

C

H

C

H

H

H

H
1.2

Write each of the following complexes as [MLℓXx]q, give the
oxidation state of the metal no, the electronic configuration
dn, and the total number of electrons Nt. (1) [Cr(CO)6];
(2) [W(CO)5]; (3) [Mn(CO)5Cl]; (4) [TiCl4]; (5) [Co(CO)3(Et)];
(6) [Re(PR3)(CO)4Cl]; (7) [Fe(CO)4(H)2]; (8) [Fe(CO)4(η

2-H2)];
(9) [ReH9]2−; (10) [ReH5(PR3)2(SiR3)2]; (11) [Ni(CO)4];
(12) [Cu(SR)3]2−; (13) [Ni(CN)5]3−; (14) [RhI3(CO)2(Me)]−;
(15) [RhI3(CO)(COMe)]−; (16) [MoF4(O)2]2−; (17) [Re(NR3)4(O)2]+;
(18) [Mn(η6-C6H6)(CO)3]+; (19) [Zr(η5-C5H5)2(H)(Cl)];
(20) [Nb(η5-C5H5)2(Me)3]; (21) [Os(η5-C5H5)(CO)2Cl]; (22) [WCl6];
(23) [Fe(CO)4(η

2-C2H4)]; (24) [Zn(η5-C5H5)(Me)].

1.3

Wilkinson’s catalyst [RhL3Cl], where L = PPh3, is used for the
hydrogenation of alkenes. The reaction proceeds as follows:

[RhL3Cl]
H2−→[RhL3Cl(H)2] −→ [RhL2Cl(H2)] + L

C2H4−→ [RhL2Cl(H)2(η2-C2H4)] + L
↓

[RhL3Cl] + CH3-CH3 ←− [RhL3Cl(H)(CH2CH3)] ←− [RhL2Cl(H)(CH2CH3)] + L

For each step, give the oxidation state of the metal (no), the elec-
tronic configuration of the complex (dn), and the total number of
electrons (Nt).

1.4

1. Give the charge on the ligands CO, Cl, Et, PR3, H, H2, SiR3, SR,
CN, I, Me, COMe, F, O, NR3, C2H4, C6H6, C5H5 if the ionic
model is adopted (§ 1.2).
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2. Formulate the complexes given in § 1.1.2.2 if this model is adopted,
and hence deduce the oxidation state of the metal.

1.5

1. Give the oxidation state of the metal no, the electronic
configuration dn, and the total number of electrons Nt for the
complexes [Cr(η6-C6H6)2] and [Ru(η6-C6H6)(η4-C6H6)].

2. How can one explain the change in the coordination mode η6 →
η4 of one of the ligands when chromium in the complex is replaced
by ruthenium?

3. Using the same argument, predict the hapticity x for
a cyclopentadienyl ligand in the following complexes:
(i) [Mn(CO)3(ηx -C5H5)]; (ii) [W(CO)2(η5-C5H5)(ηx -C5H5)];
(iii) [Fe(CO)2(η5-C5H5)(ηx -C5H5)].

1.6

The borohydride ligand (BH−
4 in the ionic model) can bind in the

η1, η2, or η3 modes, depending on whether one, two, or three B-H
bonds interact with the metal centre.

H
H

B

H H

M

H

H

B
H

H
M H

H

B

H

M

H

h1 h2 h3

Rationalize the coordination mode in the following complexes:
[Cu(PR3)3(η1-BH4)], [Cu(PR3)2 (η2-BH4)], and [Ti(CO)4(η3-BH4)]−.

1.7

What is the oxidation state of the metal centres in
the following binuclear complexes: (1) [Re(CO)5]2; (2)
[ReCl4(H2O)]2−

2 ; (3) [MoCl2(PR3)2]2; (4) [Pd(η3-C3H5)(µ-Cl)]2; (5)
[Mo(η5-C5H5)(CO)2 (µ-SR)]2.

1.8

Consider the interaction between a metal atom and a ligand with an
s orbital.





Exercises

1. Show that there can always be an interaction between the ligand
orbital and the s orbital of the metal. Sketch the shapes of the
resulting bonding and antibonding MO.

2. What position must the ligand adopt to give (i) maximal and
(ii) minimal overlap with the px orbital of the metal? What is its
value in the latter case?

3. Repeat question 2 for the xy and z2 metal orbitals.
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Principal ligand fields: σ
interactions

In this chapter, we shall construct the molecular orbitals (MO) of mono-
metallic complexes MLℓ and thereby deduce their electronic structure
by distributing the electrons in these orbitals. We shall study different
types of ‘ligand field’, each one being characterized by the number of
ligands and by their geometrical arrangement around the metal centre
(octahedral complexes ML6, tetrahedral, or square-planar ML4, etc.).

We shall always begin the analysis by establishing the molecular
orbitals of the associated model complex, in which all the ligands (i) are
identical and (ii) only have σ -type interactions with the metal (Chapter 1,
§ 1.5.1). The resulting orbital scheme is characteristic of the ligand field
being studied (octahedral, tetrahedral, square-planar, etc.). In a first
approximation, it is applicable to all complexes of this type, even if the
two conditions specified above are not met exactly. The main reason for
this is that σ interactions exist in all complexes, and they are stronger
than π interactions when the latter are present. Therefore, if π -type
interactions are added in a ‘real’ complex to σ interactions, while the
results are different from those obtained for the model complex, they
are not completely transformed. The π effects will therefore be treated
subsequently as perturbations to be added to the orbital scheme estab-
lished for the model complex.1 In the same way, different σ interactions1 Those ligands for which it is necessary to

consider π -type interactions with the metal
are studied in Chapter 3.

associated with non-equivalent ligands produce changes compared to
the model complex that can initially be neglected.

There are several ways of representing the ligand orbital that is
involved in the σ interaction with the metal: as an s orbital (2-1a), as a p

orbital (2-1b), or as a hybrid (s–p) orbital directed towards the metallic
centre (2-1c). We shall use this last representation, since, except for
hydride ligands which possess only a single valence orbital 1s and very
electronegative monoatomic ligands such as F in which the contribution
of the p orbital dominates, it is the most appropriate for all other ligands.
The orbital on ligand Li will be written σi, due to the nature of the bond
which it can form with the metal.

M M M

2-1a 2-1b 2-1c
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To construct the molecular orbitals of a complex, we have to
determine their shape, by which we mean the contributions of the
metal and ligand orbitals to each one, as well as their relative energies.
The ‘fragment method’ is widely used for the construction of the MO of
a complex MLℓ; we allow the atomic orbitals (AO) of the central metal
to interact with those on the ligands. Knowledge of the symmetry prop-
erties of these orbitals allows us to simplify the construction of these
diagrams very considerably. If the two orbitals have the same symmetry
properties, their overlap is non-zero and an interaction can occur. On
the other hand, two orbitals of different symmetry have zero overlap
(‘by symmetry’) and do not interact at all (Chapter 1, § 1.3.3). In this
context, we shall sometimes use basic ideas from group theory, as well
as several results established in Chapter 6 which the reader may consult
when necessary.

2.1. Octahedral ML6 complexes

Consider a complex in which the metal centre is surrounded by six
identical ligands (L1–L6) placed at the vertices of an octahedron (2-2).
The metal is placed at the origin, and the ligands on the axes x (L2, L4),
y (L1, L3), and z (L5, L6). Each ligand Li possesses an orbital σi directed
towards the metal (2-3).

M

L6

L3

L5

L1

L2

L4
z

x
y

2-2

�6

�4

�3

�5

�2

�1 M

2-3

2.1.1. Initial analysis of the metal–ligand orbital
interactions

Our first task is to examine how each of the orbitals on the ligands can
interact with the s, p, and d orbitals on the metal centre.

As the s orbital has spherical symmetry, its overlap with any one of
the σi orbitals is non-zero (σ1 in 2-4). And as the six ligands are equival-
ent, this overlap is the same no matter which orbital σi is considered,
so the interactions between s orbital and each of the ligand orbitals are
identical.

s

�1

2-4 (S �= 0) We therefore find a bonding MO between the metal and the lig-
ands (2-5) and a corresponding antibonding MO (2-6), where each
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σi contribution is equal in both orbitals. Since the ligands are more
electronegative than the metal, the bonding orbital is mainly concen-
trated on the ligands but the antibonding orbital on the metal (Chapter 1,
§ 1.6.1).

2-5

(bonding)
2-6

(antibonding)

We now turn to the p-type orbitals on the central atom. The py

orbital overlaps with the orbitals on the ligands L1 and L3 located on
the y-axis (σ3 in 2-7). But the four other ligands L2, L4–L6, are placed
in the nodal plane of py (xz), which is a symmetry element of the com-
plex. The σi orbitals associated with these ligands are symmetric with
respect to this plane, whereas the py orbital is antisymmetric: the over-
laps between py and each of σ2, σ4–σ6 are therefore zero ‘by symmetry’.
In the example shown in 2-8, it is clear that the σ6 orbital has a positive
overlap with the grey lobe of the py orbital but an equivalent negative
overlap with the white lobe, so the total overlap is equal to zero. There-
fore, there cannot be any interaction between the py orbital and any of
these four ligand orbitals.

�3

py

2-7 (S �= 0)

�6

py

2-8 (S = 0)

The py orbital on the metal therefore combines with the σ1 and σ3

orbitals to form a bonding MO, mainly based on the ligands (2-9), and
an antibonding MO mainly based on the metal (2-10).

2-9

(bonding)
2-10

(antibonding)

This analysis is readily extended to the px and pz orbitals, which can
combine only with σ2 and σ4 for px (2-11 and 2-12) or σ5 and σ6 for pz

(2-13 and 2-14). The interactions involving the p orbitals of the metal
therefore lead to the formation of three bonding and three antibonding
MO. The three bonding orbitals differ from each other only by their
orientations: they have the same energy, and are therefore degenerate.
The same is clearly true for the antibonding orbitals.

2-11

(bonding)
2-12

(antibonding)

2-13

(bonding)
2-14

(antibonding)

We now turn to the interactions that involve the d orbitals of the
metal centre. We consider first the three orbitals xy, xz, and yz that each
contain two nodal planes, (xz, yz), (xy, yz), and (xy, xz), respectively.
The six ligands, placed on the x-, y-, or z-axes (2-2), are all located in
one of the two nodal planes of the d orbitals, and sometimes even at the
intersection of these two planes. The overlap between any one of the
σi orbitals and the yz (2-15), xy (2-16) or xz orbitals (2-17) is therefore
equal to zero.

yz

�1

�6

xy

�1

�6

xz

�1

�6

2-15 (S = 0) 2-16 (S = 0) 2-17 (S = 0)

Therefore, there cannot be any interaction between the three xy,
xz, and yz orbitals and the σi orbitals on the ligands. In an octahedral
complex, these three d orbitals therefore form a degenerate nonbonding

set, located only on the metal (2-18 to 2-20).
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yz xy xz

2-18 (nonbonding) 2-19 (nonbonding) 2-20 (nonbonding)

The situation is different for the two remaining d orbitals. The x2−y2

orbital points towards the ligands located on the x- and y-axes (L1–L4).
The overlaps with the orbitals on these four ligands (σ1 in 2-21) are
therefore non-zero and all equal (in absolute value), since the x2−y2

orbital has the same amplitude (in absolute value), at a given distance
from the metal, in the direction of each of the ligands. But the ligands L5

and L6 are located on the z-axis, that is, the intersection of the two nodal
planes of the x2−y2 orbital (the planes which bisect the x- and y-axes).
No overlap is therefore possible between x2−y2 and the orbitals on these
last two ligands (σ6 in 2-22).

x2–y2

�1

2-21 (S �= 0)

�6

x2–y2

2-22 (S = 0)

The interaction of the x2−y2 orbital with the ligand orbitals therefore
leads to a bonding MO, mainly concentrated on the ligands (2-23), and
an antibonding MO, essentially the metal orbital (2-24). In each of these
MO, the coefficients on the ligands L1–L4 are equal in absolute value,
since the overlaps concerned are identical, but the coefficients on L5 and
L6 are zero.2-23

(bonding)
2-24

(antibonding) The last orbital to be considered is the z2 orbital. It is mainly oriented
along the z axis, but also, to a lesser degree, in the xy plane; none of
the ligands is located in its nodal cone (Chapter 1, Scheme 1-31). It can
therefore interact with the orbitals of all six ligands, though the overlap
with a ligand placed on the z-axis (σ6 in 2-25) is larger than that with a
ligand in the xy plane (σ1 in 2-26).

z2

�6

2-25 (S �= 0)

z2

�1

2-26 (S �= 0)

The bonding (2-27) and antibonding (2-28) MO formed from the
z2 orbital therefore contain contributions from the six ligands, with the
coefficients for L5 and L6, placed on the z-axis, being larger than those
for L1–L4, in the xy plane (Chapter 6, § 6.6.5).

2-27

(bonding)
2-28

(antibonding)

This initial analysis of the orbital structure of octahedral complexes
has relied simply on the existence, or the absence, of an overlap between
the orbitals of the metal and those on the ligands, and on the differ-
ence in electronegativity between the metal and the ligands. It enables
us to obtain several important results: (i) there are six bonding MO,
mainly concentrated on the ligands, and six antibonding MO, mostly
on the metal; (ii) there are three remaining orbitals located on the
metal which take no part in the metal–ligand bonds (nonbonding orbit-
als). This description is consistent with the simplified scheme given
in Chapter 1 (§ 1.6.1, Figure 1.8) which predicted the formation of ℓ

bonding MO, ℓ antibonding MO, and (9−ℓ) nonbonding MO in MLℓ

complexes. It also provides a qualitative description of the shape of
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these MO, and shows that the three nonbonding orbitals are, in the
particular case of an octahedral complex, pure d orbitals on the metallic
centre.

2.1.2. Complete interaction diagram

The analysis presented above allows us to establish the main features of
the orbital structure of octahedral complexes. It also shows that certain
molecular orbitals are degenerate. This is the case, for example, for the
three bonding MO constructed from the metal p orbitals (2-9, 2-11, and
2-13), or for the three nonbonding orbitals (2-18 to 2-20). However,
other degeneracies exist which cannot readily be shown by the analysis
above. To obtain a more complete description of the orbital structure,
it is necessary to exploit all the symmetry properties of the octahedron
and not simply this or that symmetry element as we have done so far.

There are four stages in the general procedure for constructing the
MO of an MLℓ complex:

1. Find the appropriate point-group symmetry. In this case, it is the
octahedral group, Oh.

2. Determine the symmetry properties of the orbitals on the central
metal atom. They are given directly by the character table for the
point group.

3. Do not consider the ligand orbitals individually, but use linear com-
binations of these orbitals which are ‘adapted’ to the symmetry of
the complex.22 In other words, the linear combinations

of orbitals which are bases for an irreducible
representation of the symmetry point group
(see Chapter 6, § 6.4).

4. Allow the metal and ligand orbitals to interact (fragment method).
Only orbitals of the same symmetry can interact, since their overlap
is non-zero.

2.1.2.1. The symmetry of metal orbitals

Examination of the character table of the octahedral point group (Oh)
gives us the symmetry of the metal orbitals directly, as this atom is
located at the origin of the x, y, z frame (Table 2.1). The last two columns
indicate the symmetry of several functions of x, y, and z which have a
direct link with the analytical expressions, in Cartesian coordinates, of
these orbitals (Chapter 1, § 1.4.1).

The s orbital, which has spherical symmetry, has the same symmetry
properties as the function x2+y2+z2. It is therefore a basis of the irredu-
cible representation A1g (the totally symmetric representation of the Oh

group), or more simply ‘it has A1g symmetry’. The px , py, and pz orbitals
transform as x, y, and z, respectively. Their symmetry is therefore T1u

(a three-dimensional, or triply degenerate, representation).3Finally, the

3 The dimension of the representation is
given by the value of the character associated
with the identity operation E (3 in the case of
T1u).





Principal ligand fields: σ interactions

Table 2.1. Character table of the point group Oh

Oh E 8C3 6C′
2 6C4 3C2 i 8S6 6σd 6S4 3σh

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 −1 −1 1 1 1 −1 −1 −1

Eg 2 −1 0 0 2 2 −1 0 0 2 (z2, x2 − y2)

T1g 3 0 −1 1 −1 3 0 −1 1 −1

T2g 3 0 1 −1 −1 3 0 1 −1 −1 (xy, xz, yz)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 −1 −1 1 −1 −1 1 1 −1

Eu 2 −1 0 0 2 −2 1 0 0 −2

T1u 3 0 −1 1 −1 −3 0 1 −1 1 (x, y, z)

T2u 3 0 1 −1 −1 −3 0 −1 1 1

d orbitals have Eg symmetry for the z2 and x2−y2 pair, but T2g for the
xy, xz, and yz set. It is thus important to realize that the five d orbitals,
which clearly have the same energy for an isolated atom, are separ-
ated into two groups according to their symmetry properties: a doubly
degenerate representation Eg and a triply degenerate set T2g .

2.1.2.2. Symmetry-adapted orbitals on the ligands

None of the ligand orbitals σi, considered individually, is a basis for
the irreducible representations of the Oh group. For the construction of
the orbital interaction diagram, it is therefore necessary to use linear
combinations of these orbitals which are adapted to the symmetry of the
octahedron. These are presented in Figure 2.1, next to the metal orbitals
with the same symmetry.

In the orbital of A1g symmetry, all the coefficients have the same
value and sign. It is clearly a totally symmetric orbital, just like the s

orbital on the central atom. Out-of-phase combinations on two ligands
in trans positions appear in the three T1u orbitals, along the x, y, or z axes.
It is clear by inspection of the shape of these orbitals that they differ only
in their orientations and that they have the same symmetry properties
as the px , py, and pz orbitals of the metal centre (Figure 2.1). These
combinations of ligand orbitals are therefore degenerate by symmetry,
just like the metal p orbitals (T1u representation).

s

px

py

pz

x2–y2

z2

A1g

Eg

T1u

Figure 2.1. Symmetry-adapted σ orbitals for
an octahedral complex ML6, and orbitals of
the same symmetry on the metal centre
(consult Chapter 6, § 6.6.5 for the analytical
expressions of these symmetry-adapted
orbitals and the method for finding them). In the case of the first orbital of Eg symmetry, the coefficients for

the four ligands in the xy plane are all of equal value, but of opposite
sign, depending whether they are on the x- or the y-axis. The symmetry
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properties of this orbital are therefore just the same as those of the
metal x2 − y2 orbital, which also has Eg symmetry. The second Eg

orbital contains contributions from all six ligands. The coefficients for
the ligands located on the z-axis are twice as large as those for the
ligands in the xy plane, and of opposite sign. The z2 orbital, which also
has Eg symmetry, shares these properties; its amplitude is proportional
to (2z2 − x2 − y2) (Chapter 1, formula (1.11)). It is important to realize

that the two Eg orbitals that are degenerate by symmetry necessarily have the

same energy (Chapter 6). In contrast to the case of the three orbitals of
T1u symmetry, this result is not at all obvious just from the coefficients
for the ligands in the two orbitals. This additional information, obtained
after proper consideration of the octahedral symmetry of the complex,
enables us to produce a complete description of their orbital structure.

Comment

In what follows, the symmetry of atomic or molecular orbitals will be

represented with lower-case letters (a1g , t1u, eg , t2g , etc.), while upper-

case letters will be reserved for the different irreducible representations in

character tables, for the symmetry of electronic states and for spectroscopic

terms.

t2g

eg

a1g

t1u

a1g

eg

t1u

1a1g

2a1g

1t1u

2t1u

2eg

1eg

t2g
d

s

p

M M

L

L

L

L
L

L
L

L

L

L
L

L

Figure 2.2. Interaction diagram (σ only) for
an octahedral complex ML6: the metal
orbitals are on the left and the
symmetry-adapted ligand orbitals on the right.

2.1.2.3. Interaction diagram

We can now construct all the MO of an octahedral complex, by allow-
ing the metal orbitals (Figure 2.2, left-hand side) to interact with
the symmetry-adapted combinations of orbitals on the six ligands
(Figure 2.2, right-hand side).

The energetic ordering adopted for the metal orbitals follows the
usual rule for the d-block transition metals: ε(d) < ε(s) < ε(p)

(Chapter 1, § 1.4.2). The six ligand-orbital combinations are not all
at the same energy. To understand the energetic ordering in Figure 2.2,
one must analyse the bonding or antibonding character of each for
the ligand–ligand interactions (Figure 2.1). The a1g orbital is the most
stable, since all the interactions are bonding. In the t1u orbitals, there
is an antibonding interaction between two ligands that are trans to
each other. Due to the large distance between these ligands, the orbit-
als may be considered to be practically nonbonding. For the two eg

orbitals (which necessarily have the same energy), it is easier to con-
sider the first: the four interactions between the closer ligands (cis)
are antibonding, but two weakly bonding interactions occur between
the trans ligands. Overall, the eg orbitals are therefore antibonding,
leading to the energetic ordering: ε(a1g) (bonding) < ε(t1u) (nonbond-
ing) < ε(eg) (antibonding). One must remember that the bonding or
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antibonding interactions just described never involve atoms that are
directly bonded to each other. The overlaps involved are therefore
weak, due to the distance between the centres concerned (e.g. if the
metal–ligand bond distances are 2.2 Å, the corresponding cis-ligand
separation is 3.11 Å, and as much as 4.40 Å for the trans ligands).
This explains why the energy separations between the different ligand
orbitals are small (Figure 2.2, right-hand side). We conclude by noting
that the ligand orbitals are placed lower in energy than those on the
metal, since the ligands are in general more electronegative than the
metal.

The molecular orbitals are obtained by allowing the orbitals of the
M and L6 fragments to interact (Figure 2.2). We note features that were
established in § 2.1.1: the formation of six bonding MO (1a1g , 1t1u, and
1eg ), by bonding interactions involving the fragment orbitals whose
symmetries are a1g , t1u, and eg , and the formation of six corresponding
antibonding MO (2eg , 2a1g , and 2t1u). The new feature concerns the degen-

eracy of the eg orbitals (bonding or antibonding): it was not possible to establish

this just from the shapes of the orbitals that were already determined (2-23 and
2-27 for the bonding MO, 2-24 and 2-28 for the antibonding MO). Three
nonbonding MO of t2g symmetry are found at an intermediate energy
level. They are pure metal d orbitals (xy, xz, and yz), which remain
nonbonding as there are no orbitals of the same symmetry on the L6

fragment.
This general scheme, with six bonding MO, three nonbonding

MO, and six antibonding MO is appropriate for all octahedral com-
plexes, since it is based on the symmetry properties of the fragment
orbitals. Moreover, the lowest antibonding MO (situated above the
nonbonding t2g orbitals) are always the two degenerate 2eg orbitals,
since they involve the metal d orbitals, which are lower in energy
than the s and p orbitals which contribute to the antibonding MO
2a1g and 2t1u, respectively. However, the energetic ordering given in
Figure 2.2 for both the bonding and antibonding MO can depend on
the nature of the metal and the ligands. For example, the bonding
level 1eg can be found between the bonding 1a1g and 1t1u levels, or
the antibonding 2a1g may be placed lower than the antibonding 2t1u

level.

Comment

There are six valence atomic orbitals on the metal which contribute to the

formation of the six metal–ligand bonds: the s orbital, the three p orbitals,

and two of the d orbitals. This result may be compared with that given

by hybridization theory, where one forms six equivalent hybrids, directed

towards the six vertices of an octahedron. One does indeed talk of d2sp3

hybridisation, each hybrid orbital being a suitable linear combination of

two d orbitals, the s orbital, and the three p orbitals.
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2.1.2.4. Molecular orbitals and the definition of the d block

The shapes of the molecular orbitals may be obtained without difficulty
from the shapes of the fragment orbitals (Figure 2.3). Given the greater
electronegativity of the ligands, the bonding MO are more concentrated
on them, whereas the antibonding MO are more concentrated on the
metal. Among these MO, seven involve contributions from the metal d

orbitals: the two bonding MO 1eg , the three nonbonding t2g MO and the
two antibonding MO 2eg . The term ‘d block’ of an octahedral complex
(and also for other types of complex) is used to refer to the five molecular

orbitals that are mainly concentrated on the d orbitals of the metal. The three
nonbonding MO of t2g symmetry clearly belong to the d block, since
they are formed from pure d orbitals (xy, xz, and yz). For the MO of eg

symmetry, the bonding combinations (1eg ) are mainly concentrated on
the ligands while the largest coefficient for the antibonding combinations
(2eg ) is on the metal. It is these last two orbitals which are considered to
belong to the d block. The d block of an octahedral complex is therefore made

up of three nonbonding degenerate (t2g ) MO and two antibonding MO which

are also degenerate (2eg ). These latter orbitals are often represented as
x2−y2 and z2, with the antibonding contributions on the ligands being
implicitly taken into account in this simplified notation.

2a1g

2t1u

2eg

t2g

1eg

1t1u

1a1g

d-block

xy yzxz

x2–y2 z 2

Figure 2.3. Molecular orbitals for an
octahedral ML6 complex in the orientation
given in Scheme 2-2.

2.1.2.5. Two other representations of the d block

The orbitals of the d block, presented in the way we have just established,
correspond to the arrangement of the ligands that is indicated in 2-2: two
ligands placed on each of the x-, y-, and z-axes. The three nonbonding
orbitals are then xy, xz, and yz, and the two antibonding orbitals are
x2−y2 and z2. But other arrangements of the ligands with respect to
the axes are of course possible. Two in particular will be useful to us
in what follows: (i) where four metal–ligand bonds bisect the x- and
y-axes (2-29); (ii) where the z-axis is a threefold symmetry axis (C3) of
the octahedron (2-30). It is clear that a change in the axis system cannot
have any consequence for the structure of the d block, which consists of
three degenerate nonbonding orbitals and two antibonding orbitals that
are also degenerate. However, the expressions of some of these orbitals
in the new axes systems do change.

L1

M
L4 L3

L2

L6

L5

x

y
z

2-29

L1

M

L4

L3
L2L6

L5

2-30
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Figure 2.4. Representation of the orbitals of
the d block for an octahedral complex ML6 in
the orientation shown in Scheme 2-29.
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yz xz x2–y2

z 2

We examine first the situation represented in 2-29. The six ligands
are still placed in one or other of the two nodal planes of the xz and yz

orbitals. These two orbitals are therefore still nonbonding (Figure 2.4),
as they were in the preceding case (Figure 2.3). Nor is there any change
for the antibonding orbital z2, since there are still two ligands on the
z-axis and four in the xy plane. However, the xy orbital which was
nonbonding now points towards all four ligands placed on the bisectors
of the x- and y-axes: this orbital becomes one of the antibonding orbitals
of the d block. On the other hand, these four ligands are now situated
in the nodal planes of the x2−y2 orbital, which becomes, with xz and
yz, the third nonbonding orbital of the d block. This new representation
of the d block (Figure 2.4) may be distinguished from the preceding one
(Figure 2.3) by ‘exchange’ of the xy and x2−y2 orbitals.

Analysis of the situation is more complex for the geometrical
arrangement shown in 2-30. The only orbital for which the result is
obtained easily is z2. The angle between the M–L bonds and the z-axis
as it is now defined is exactly equal to 109.5◦, which is the value of the
angle of the nodal plane of the z2 orbital (Chapter 1, Scheme 1-31).
As the six ligands are located on the nodal surface of this orbital, no
interaction of σ type is possible, so z2 is one of the three nonbonding
orbitals. The difficulty in finding the two other nonbonding orbitals
arises because none of the four ligands L1–L4 is now placed in one of the
nodal planes of the xy, xz, yz, or x2−y2 orbitals. None of these orbitals
is therefore nonbonding. Nor is any as antibonding as the 2eg orbitals
were in the preceding representations, since they do not point directly
towards the ligands. An example is given in 2-31 for the xz orbital. The
ligands L5 and L6 are in the nodal plane yz (coefficients zero). The orbit-
als on the ligands L1–L4 interact with xz, though they are not placed on
the bisectors of the x- and z-axes where the amplitude of this orbital is
greatest.

L6

L5

x

y
z

2-31
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Figure 2.5. Representation of the orbitals of
the d block of the octahedron when the z-axis
coincides with a C3 axis (Scheme 2-30).
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In fact, rather than considering the metal d orbitals individually, we
must form new combinations that either ‘avoid’ the six ligands (non-
bonding orbitals) or point towards them (antibonding orbitals). These
linear combinations, which allow the original orbitals to be reoriented,
are indicated below and shown graphically in Figure 2.5.
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3
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√

2

3
yz (2.3)

φ4 =
√

1

3
xy +

√

2

3
xz (2.4)

The first two combinations (φ1 and φ2) correspond to two orbitals
which, with z2, form the t2g block. The last two (φ3 and φ4), on the
other hand, have maximum overlap with the ligands and are the two
antibonding eg orbitals (Figure 2.5).

2.1.2.6. Weak fields and strong fields

In the absence of any ligand (isolated metal atom), the five d orbitals of
course all have the same energy. One can therefore represent the effect
of complexation on the d orbitals by Scheme 2-32, where the d block of
the complex is considered as defined earlier. The fivefold degeneracy of
the d orbitals is lifted, to give three nonbonding orbitals (t2g ) and two
antibonding orbitals (eg ).
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∆0

t2g

eg

isolated metal octahedral complex (d-block)

d

2-32

The energy separation (�0) between the t2g orbitals (nonbonding)
and the eg orbitals (antibonding) depends on the strength of the σ inter-
actions between the metal and the ligands. The value of this energy gap
allows us to distinguish, in the family of octahedral complexes, strong-
field (large �0) from weak-field complexes (small �0) (see Chapter 1,
§ 1.6.2). Measurement of the energies of d–d transitions allows us to
estimate the value of �0 in a large number of complexes, and to estab-
lish a spectrochemical series, in which the ligands are ranked according to
the strength of the field (value of �0) that they create:

I− < Br− < Cl− < F− < OH− < O2− < H2O < NH3

< NO−
2 < CH−

3 < C6H−
5 < CN− < CO

Organometallic complexes, which contain one or several metal–carbon
bonds, are thus strong-field complexes.

Comment

The value of �0, and therefore the order of the ligands in the spectrochem-

ical series, does not depend only on σ interactions. We shall see in Chapter 3

(§ 3.3.4.2) that the presence of π interactions can either decrease the value

of �0 (‘π -donor’ ligands such as I− or Br−) or increase it (‘π -acceptor’

ligands such as CN− or CO).

2.1.3. Electronic structure

2.1.3.1. d6 diamagnetic complexes

The notion that a complex is stable if all its bonding and nonbonding
MO are doubly occupied is verified for many octahedral complexes.
The six bonding MO, which form the six metal–ligand bonds, and the
three nonbonding MO (t2g ) of the d block are thus doubly occupied,
giving diamagnetic complexes (all the electrons are paired) with 18 elec-
trons. As six electrons occupy the d block, the electronic configuration
of these complexes is written as d6 or (t2g)

6 (2-33).t2g

eg

2-33
If we limit ourselves to octahedral complexes with six identical

ligands that only have σ interactions with the metal (the model
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studied in this chapter), examples include the complexes [Fe(H6)]4−,
[Ru(NH3)6]2+, [Co(NH3)6]3+, [Rh(NH3)6]3+, and [Ir(NH3)6]3+ which
are all 18-electron complexes, whose electronic configuration is d6 (com-
plexes of Fe(II), Ru(II), Co(III), Rh(III), and Ir(III), respectively). The
presence of ligands that can have π -type interactions with the metal
will of course modify the interaction scheme shown in Figure 2.2, but
will not change it drastically. Thus, the complexes [M(CO)6] (M=Cr,
Mo, W), [Re(CO)6]+, [M(CN)6]5− (M=Mn, Re), [M(CN)6]4− (M=Fe,
Os), [Co(CN)6]3−, [Mn(CNR)6]+, [Fe(CNR)6]2+, [M(H2O)6]3+ (M=Co,
Rh, Ir), [MCl6]3− (M=Rh, Ir) are also diamagnetic d6 complexes. In
other complexes, the presence of different ligands can, from the rigor-
ous perspective of group theory, lower the symmetry of the complex
considerably: the bond lengths are no longer all equal and the bond
angles can deviate from the ideal value of 90◦. However, the orbital
scheme of the octahedron is essentially preserved (one may speak of
‘pseudo-octahedral’ symmetry), in particular as far as the main fea-
tures of the d block are concerned: there are three energy levels
below two, even if, within each of these groups, the strict degener-
acy due to symmetry has disappeared. Complexes such as [M(CO)5I]−

(M=Cr, Mo), [M(CO)5Cl] (M=Mn, Re), [Ru(CO)4(Cl)(CH3)],
[Ir(CO)2(PR3)(I)(Cl)(Me)], [Mo(PR3)4(η

2-C2H4)2], the molecular
hydrogen complex [W(PR3)2(CO)3(η

2-H2)] and even ferrocene
[Fe(η5-C5H5)2] (Chapter 1, Scheme 1-7) are all pseudo-octahedral
diamagnetic complexes, whose electronic configuration is d6.

2.1.3.2. Other cases

There are octahedral complexes that have fewer than 18 electrons.
d0 complexes in which the d block is completely empty are an
extreme case: examples include [MF6] complexes (M=Cr, Mo),
[WCl6], [MF6]− (M=V, Ta), [MCl6]− (M=Ta, Nb), [MF6]2− (M=Ti,
Zr), [ZrCl6]2−, [Mo(OMe)6], and the organometallic Ti(IV) com-
plex [Ti(PR3)2(Cl)3(CH3)]. These are very electron-deficient complexes,
since formally there are only the 12 electrons that form the 6 metal–ligand
bonds. However, we note that the ligands usually have one or two lone
pairs that are not involved in the metal–ligand bond (halide ligands, for
example). These lone pairs play an important role in stabilizing com-
plexes that apparently have too few electrons (Chapter 3, § 3.5). Another
interesting case concerns complexes in which only three electrons
occupy the d block (15-electron complexes whose electronic configura-
tion is d3). In the ground state, one electron occupies each of the orbitals
in the t2g group,4and the three electrons have parallel spin (Hund’s

4 Or orbitals ‘derived’ from the t2g block
when octahedral symmetry is broken by the
presence of different ligands.

rule). As typical examples, we mention [Cr(NH3)6]3+, [Mo(H2O)6]3+,
[V(H2O)6]2+, [MF6] (M=Rh, Ir), [RuF6]−, [ReF6]2−, [MCl6]2−





Principal ligand fields: σ interactions

(M=Mn, Re), [MoCl6]3− and the organometallic complexes [V(CN)6]4−,
[TaCl2(dmpe)2], [MnMe4(dmpe)] (dmpe=dimethylphosphino-ethane).

Two other striking aspects of the electronic structure of octahed-
ral complexes may be noted for weak-field complexes (§ 2.1.2.6). In this
case, the energy gap between the nonbonding (t2g ) and the antibond-
ing (eg ) orbitals of the d block is small. When there are four, five, or
six electrons to place in these orbitals we do not find them paired in
the three orbitals of lowest energy. The ground state corresponds to
the configuration in which as many orbitals of the d block as possible
are occupied by a single electron, all with parallel spin. The exchange
energy arising from this arrangement, together with the reduction of
the interelectron repulsion, more than compensates the energy that is
necessary to promote one or two electrons from the t2g level to the
eg (�0 is small). We thus obtain a ‘high-spin’ complex, which may
be contrasted with a ‘low-spin’ complex in which as many electrons
as possible are paired. Thus, the ground-state electronic configuration
of high-spin d5 complexes is that shown in 2-34, with one electron
in each of the five orbitals of the d block (t3

2ge2
g ), rather than that for

the low-spin configuration shown in 2–35 (t5
2g ). This latter arrange-

ment is found for strong-field d5 complexes such as [Mn(CN)6]4−,
[Fe(CN)6]3−, [Mo(η6-C6H6)]+, or [Ir(Cl)4(PR3)2]. Many d6 com-
plexes are diamagnetic (electronic configuration (t2g)

6, § 2.1.3.1). But
high-spin d6 complexes also exist, such as [Fe(H2O)6]2+ and [CoF6]3−,
whose electronic configuration is (t4

2ge2
g ), with four unpaired electrons,

two in the t2g block and two in the eg block. The fact that the destabil-
ization of the antibonding levels in weak-field complexes is so small
allows us to understand the existence of complexes with more than 6
electrons in the d block, that is, complexes with more than 18 electrons.
As examples, we may mention the octahedral complexes [Ni(NH3)6]2+

and [Ni(H2O)6]2+, d8 complexes that have 20 electrons. It is very rare
to find more than 18 electrons in organometallic complexes, as these
are strong-field complexes in which the antibonding orbitals are at high
energy.

t2g

eg

2-34 (d5-high spin)

t2g

eg

2-35 (d5-low spin)

We shall now study other geometrical arrangements (ligand fields)
that are frequently met in transition metal complexes. We shall gen-
erally limit ourselves to the characterization of the ‘structure’ of the
d block, that is, the shape and the relative energy of the five orbitals
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that make it up. Knowledge of this structure will enable us to anticip-
ate the (or those) electronic configuration(s) that will be particularly
favoured for a given family of complexes (e.g. d6 for octahedral diamag-
netic complexes). Moreover, the occupied d orbitals are in general the
highest-energy occupied orbitals of the complex (nonbonding or weakly
antibonding orbitals), and they therefore play an important role in prob-
lems linked to the geometrical structure and the reactivity of complexes
(see Chapter 4).

2.2. Square-planar ML4 complexes

In a square-planar ML4 complex, the metal is placed in the centre of a
square whose corners are occupied by the four ligands. One can there-
fore consider, at least formally, that a square-planar complex is formed by
removing two ligands from an octahedral complex, for example, those
situated on the z-axis (2-36). To establish the structure of the d block,
it is convenient to start from the results already obtained for octahedral
complexes.

M L3L1

L6

L5

L2

L4

M L3L1

L2

L4

x
y

z

2-36

2.2.1. Characterization of the d block

We consider first the three nonbonding orbitals of the octahedron (xy,
xz, and yz), where the representation chosen is given in Figure 2.3. These
orbitals are nonbonding in the octahedron, as the coefficients for the six
ligands are zero by symmetry. Removal of two of these ligands therefore
has no effect on either the shape or the energy of these three orbitals,
which stay pure nonbonding d orbitals in the square-planar complex
(2-37a–c). The x2−y2 orbital is antibonding in the octahedron, because
of its interactions with the four ligands in the xy plane. In contrast, the
coefficients on the ligands located on the z-axis are zero by symmetry.
Removal of these two ligands therefore has no influence on the shape and
energy of this orbital, which remains antibonding in the square-planar
complex (2-37d). The only d orbital which is modified on passing from
the octahedron to the square plane is the antibonding z2 orbital. Now
the two main antibonding interactions in the octahedron concern the
ligands placed on the z-axis. Removal of these ligands therefore leads
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to a substantial stabilization of this orbital, though it remains weakly
antibonding due to the small interactions with the four ligands placed
in the xy plane (2-37e).

z2

x2–y2

xy

yz

xz

x2–y2

xy

xz

yz

ML6 ML4

z2

(a)

(b)

(c)

(d)

(e)

2-37

These changes in energy for the orbitals of the d block are illustrated
in Figure 2.6, where the symmetry of the orbitals in the square-planar
complex is also indicated (point-group symmetry D4h). Notice that while
the three nonbonding orbitals xy, xz, and yz are degenerate from the
energetic point of view, only two of them (xz and yz) are degenerate by
symmetry (eg representation whose dimension is 2).

The main difference between the d blocks of octahedral and square-
planar complexes concerns the number of nonbonding or weakly
antibonding orbitals: there are three in the former but four in the
latter.

Figure 2.6. Derivation of the orbitals of the d
block for a square-planar ML4 complex from
those of an octahedral ML6 complex.

xz
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x2–y2 (b1g)

xy (b2g) yz
(eg)
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2.2.2. Electronic structure for 16-electron d8 complexes

The favoured electronic configuration for a square-planar diamagnetic
complex ML4 involves the double occupation of the four low-energy
orbitals of the d block (2-38). There are indeed many diamagnetic
complexes with a d8 electronic configuration, such as [Pd(NH3)4]2+,
[M(CN)4]2− (M=Ni, Pd), [PtCl4]2−, [PtHBr(PR3)2], [AuBr4]−, Vaska’s
complex [Ir(CO)(Cl)(PPh3)2], and Wilkinson’s hydrogenation catalyst
[Rh(Cl)(PPh3)3].

xy xz yz

z2

2-38

If we include the four doubly occupied MO that form the four metal–
ligand bonds (these are not represented in Figure 2.6), we find that the
total number of electrons in a d8 complex is 16. But if we consult the
qualitative analysis given in Chapter 1 (§ 1.6.1), it is at first sight surprising
that the 18-electron rule is not respected in this family of complexes,
since the bonding orbitals, the nonbonding, and the weakly antibonding
orbital z2 are all doubly occupied. This ‘lack’ of two electrons arises
because, despite appearances, there is a nonbonding orbital on the metal
that is empty. It is not an orbital from the d block, but the metal’s pz

orbital whose nodal plane contains the four ligands (2-39). Although
nonbonding, this orbital is never occupied: it is an (n+1)p orbital whose
energy is substantially higher (several eV) than that of an nd orbital.

pz

2-39
This aspect of their electronic structure means that these complexes

are likely to undergo addition reactions, in which their 18-electron shell
is completed by the arrival of new ligands. For example, the addition of
a molecule of dihydrogen H2 to Vaska’s complex leads to the formation
of an octahedral complex (2-40). In this addition product, the oxidation
state of the metal is +3 (a d6 complex), which, when the 12 electrons
associated with the bonds are included, does indeed correspond to an
18-electron complex. We also note that this addition reaction is accom-
panied by a change in the metal’s oxidation state, from +1 in the reactant
(d8) to +3 in the product (d6). This is therefore called an oxidative addi-

tion reaction, since the oxidation state of the metal has increased. The
reverse reaction is called reductive elimination (Ir(III) → Ir(I)).

Ir + H2 R3P

PR3
oxid. addit. 

red. elim. 

ClOC

PR3

R3P

HH

COCl

Ir (I) Ir (III)

Ir

2-40

2.3. Square-based pyramidal ML5 complexes

In an ML5 complex which adopts a square-based pyramidal (SBP) geo-
metry, four ligands (L1–L4) are located at the corners of a square which
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is the base of the pyramid, while the fifth, or apical, ligand (L5), is placed
on the summit (or apex) of the pyramid (2-41). The metal centre may,
depending on the complex, be either in the basal plane (θ = 90◦) (2-41a,
§ 2.3.1) or above this plane (θ > 90◦) (2-41b, § 2.3.2).

M L3L1

L5

L2

L4

θ = 90°

2-41a

M

L5

L1 L3

L2
L4

θ > 90°

2-41b

2.3.1. Characterization of the d block (metal in the
basal plane)

In the complex shown in 2-41a, all the angles between the apical bond
M–L5 and the basal bonds M–L1–4 are equal to 90◦. This structure
may formally be obtained by removing one of the ligands from an
octahedral complex (L6, 2-42). We may therefore establish the MO of
the d block for the SBP by starting from those that we already know for
an octahedron, following the method previously used for square-planar
complexes (§ 2.2.1).
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2.3.1.1. Derivation of the d orbitals from those of the
octahedron

In the octahedral complex, the coefficients of the xy, xz, yz, and x2−y2

orbitals are zero for the ligands located on the z-axis (left-hand side of
2-37). The removal of one of these ligands therefore makes no change
to the shape or energy of these four orbitals: in the d block of the SBP
ML5 complex, we therefore find that the three orbitals xy, xz, and yz are
nonbonding, while x2−y2 is a strongly antibonding orbital. This result is
just the same as that found when studying the square-planar geometry
as a derivative of the octahedron (Figure 2.6). The z2 orbital is stabilized
by the elimination of one of the two antibonding interactions with the
ligands placed on the z-axis (2-43). But this stabilization is not as large
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as that observed when passing from an octahedral to a square-planar
complex, since in this latter case, both the antibonding interactions along
the z-axis are removed (Figure 2.6).

2-43

These results are shown in Figure 2.7, with the orbitals’ symmetry
(C4v point group).

Figure 2.7. Derivation of the d-block orbitals
for an ML5 complex with an SBP geometry
(the metal is in the basal plane) from those of
an octahedral complex ML6.

xzxy (b2) yz
(e)

z2 (a1)

x2–y2 (b1)

t2g

eg

2.3.1.2. Exact form of the z2 orbital

It appears that the shape of the z2 orbital, as shown in Figure 2.7, is
somewhat different from that indicated in 2-43: the two lobes along
the z-axis have different sizes, and the orbital is polarized towards the
empty site of the original octahedron. The shape shown in 2-43 supposes
that the only change from the original z2 orbital of the octahedron is
the removal of an antibonding interaction. But this is not the whole
truth, as the symmetry is lowered from Oh to C4v . The major change
in fact involves the z2 and pz orbitals on the metal. In the octahedral
complex, these two orbitals have different symmetries: for example, z2

is symmetric with respect to the xy plane but pz is antisymmetric (see
2-42 for the orientation of the axes). In the ML5 complex, as there is only
a single ligand on the z-axis, the xy plane is not a symmetry element for
the complex. The z2 and pz orbitals therefore have the same symmetry
(a1, the totally symmetric representation of the C4v group), with the
result that they mix, giving a hybrid orbital belonging to the d block and
called ‘z2’.
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z
S >0

+

z2 –pz polarized z2

2-44

The orbital shown in 2-43 is in fact stabilized by a bonding interaction
with the pz orbital (see Appendix A). In Scheme 2-44 (left-hand side),
the two orbitals are shown separated for greater clarity, but one must
of course imagine that they are superposed. The way in which they
must be combined to obtain a bonding mixture (S > 0) is not obvious,
since one of the orbitals is delocalized over all the centres. We shall
examine their overlap if the pz orbital is oriented along negative z (2-44).
It can be decomposed into three terms: (i) the overlap between the
atomic orbitals z2 and pz: this term is zero since the two atomic orbitals
involved are located on the same atom; (ii) the overlap between pz and
the orbitals on the ligands that define the base of the SBP complex: this
term is also zero, since these ligands are placed in the nodal plane (xy)
of pz; (iii) the overlap between pz and the orbital of the axial ligand
(placed on the z-axis), which is the only non-zero term. It is clear that
the choice adopted in 2-44 for the orientation of pz leads to the overlap
being positive. But how should this orbital be represented graphically?
Where z is negative, the amplitudes of z2 and pz have the same sign,
so they add. But where z is positive, they have the opposite sign, so
they tend to cancel each other. The two lobes along the z-axis are
therefore not equivalent, as the one along negative z is ‘larger’ (2-44,
right-hand side). The participation of the pz orbital therefore leads to a
polarization of the z2 orbital towards the vacant site of the octahedron.
From the energetic point of view, this mixing stabilizes the orbital,
since the polarization reduces the antibonding interaction with the axial
ligand, by reducing the size of the lobe of the z2 orbital that points
towards that ligand.

2.3.2. Characterization of the d block (metal out of the
basal plane)

In most SBP complexes, the metal is located above the base of the pyr-
amid (θ > 90◦, 2-41b). This geometrical deformation of the preceding
structure leads to a displacement, of the same amplitude, of the ligands
L1 and L3 in the yz plane, and of the ligands L2 and L4 in the xz plane
(2-45). These movements change the shape and energy of some of the
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orbitals of the d block represented in Figure 2.7. We shall consider each
of these orbitals in turn.

M L3L1

L5

L2

L4 M

L5

L1 L3
L2

L4

xz
yz

z

x
y θ

2-45

The xy orbital has its nodes in the xz and yz planes, the two planes
in which the movements of the ligands occur. As the ligands remain
located in the nodal planes, no interaction is possible with the xy orbital
(S = 0), whose shape and energy are unchanged (a pure d orbital that is
strictly nonbonding, 2-46).

xy

2-46

No interaction can take place between the yz orbital and the ligands
L2 and L4 that stay in the nodal plane xz for all values of the angle
θ . However, the ligands L1 and L3 leave the nodal plane xy and move
into the yz plane in which that d orbital is mainly concentrated. As a
result, the orbitals on the ligands L1 and L3 can interact with the yz

orbital when θ is greater than 90◦. The bonding combination is a low-
energy orbital (an MO that represents a bond), but the antibonding
combination is the new d-block orbital (2-47). The yz orbital, which is
nonbonding if θ = 90◦, is therefore destabilized if θ is larger than 90◦,
its energy rising as the overlap with the ligand orbitals increases. The
greatest destabilization occurs when θ = 135◦, the value for which the
ligands L1 and L3 are in the region where the amplitude of the yz orbital
is largest.

yz

2-47
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But this destabilization of the yz orbital is reduced by a bonding
mixture with the py metal orbital, in a way that is exactly analogous to
that described in § 2.3.1.2 for the z2 orbital (see Appendix A). As the
overlap between the yz and py orbitals on the metal is zero, a bonding
interaction is obtained if the overlap between py and the orbitals on
ligands L1 and L3 is positive. The appropriate combination is shown in
2-48. If we imagine the superposition of the two orbitals represented
in the left-hand part of this sketch, the grey lobe of py points towards
the orbital on L3 (grey lobe directed towards the metal) and the white
lobe towards the orbital on L1 (white lobe pointing towards the metal).
This mixture with py leads to a change in the amplitude of the lobes
of the d orbital (2-48). If we consider first the right-hand part of the
yz orbital (grey lobe towards the top, white lobe towards the bottom),
we must add the grey lobe py to it (2-48). As a result, the grey lobe of
yz is enlarged (the amplitudes add) but the white lobe decreases in size
(the amplitudes tend to cancel). On the left-hand side of the orbital, the
opposite effect is observed: the amplitude of the white lobe increases in
size, as it is added to that of the py orbital (white lobe pointing towards
the left), while the amplitude of the grey lobe is diminished.

+

yz polarized yzpy

z

x
y

2-48

The polarization of the yz orbital by py therefore leads to a reduction
in the size of the lobes pointing towards ligands L1 and L3, but an
increase in the opposite direction (2-48). The antibonding character of
the yz orbital is thereby reduced, so that in fact it becomes a weakly

antibonding orbital which can be occupied in stable complexes.
The xz orbital behaves in just the same way as yz, but the roles of

the ligands (L1, L3) and (L2, L4) are interchanged (2-49). It is now the
mixture with the px orbital which polarizes xz in the direction opposed
to the ligands L2 and L4. For any value of the angle θ , the xz and yz

orbitals are related to each other by a rotation of 90◦ around the z-axis:
they are degenerate by symmetry (e symmetry in the C4v point group).

The z2 orbital, which had antibonding interactions with all the lig-
ands, is affected by the movement of the four basal ligands towards its
nodal cone. If the angle θ is close to 125◦, these ligands are even in
this cone,5leading to zero overlap between the ligand orbitals and the z2

5 Since the angle of the nodal cone for z2 is
109.5◦, the corresponding value of θ is
125.25◦. However, this is only an approximate
value in the present situation, as the z2 orbital
is polarized by the pz orbital.

orbital of the d block. For this latter orbital, the deformation that we are
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xz xzpolarized

2-49

studying therefore produces a decrease, even perhaps an elimination, of
the antibonding contributions on the basal ligands (2-50). The energy
of this orbital is therefore lowered, though it remains higher than that of
the nonbonding orbital xy, since there is still an antibonding interaction
with the apical ligand L5.

z2

2-50

We turn last to the case of the antibonding orbital x2−y2 (2-51). An
increase in the angle θ decreases the antibonding interactions with the
orbitals on the four basal ligands, since these are no longer located in
the regions where the amplitude of this orbital is greatest. As a result,
the x2−y2 orbital is stabilized, by an amount which increases with the
angle θ . However, this orbital remains the least stable of all the five in
the d block.

x2–y2

2-51

In Figure 2.8 we present a schematic correlation diagram, which
shows the changes to the shape and the energy of the d-block orbitals
during this geometrical deformation, as the angle θ varies from 90◦ to
about 110◦.

Comment

It must be noted that a crossing between the energy levels of the orbitals that

are destabilized (xz and yz), and the z2 orbital that is stabilized, can occur

if θ becomes sufficiently large. Since these sets of orbitals have different

symmetries (e and a1, respectively), they cannot interact even if their ener-

gies are very similar or even equal (an ‘allowed’ energy-level crossing). The
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Figure 2.8. Correlation diagram for the
d-block orbitals of an ML5 complex with an
SBP geometry where the angle between the
apical and the basal bonds varies from 90◦ to
about 110◦.

x2–y2

z2

yz, xz

xy

e

b1

b2
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�

� = 90° � = 110°

value of the angle θ for which this crossing occurs depends on the exact

nature of the metal and the ligands.

2.3.3. Electronic structure and geometry

2.3.3.1. d8 or d6 diamagnetic complexes

In the d block of ML5 complexes which adopt an SBP geometry, there is
only one strongly antibonding orbital, x2−y2 (Figure 2.8). The four non-
bonding or weakly antibonding orbitals (xy, xz, yz, and z2) are therefore
likely to be doubly occupied, leading to diamagnetic complexes with a d8

electronic configuration (e.g. [Co(H)5]4−, [Ni(CN)5]3−, [Mn(CO)5]−,
[Co(NCPh)5]+, or [PtI(PMe3)4]+). Including the ten electrons associ-
ated with the five bonds, these are 18-electron complexes. There are also
diamagnetic complexes whose electronic configuration is d6 (16-electron
complexes), such as [M(CO)5] (M=Cr, Mo, W) or [W(CO)4(CS)]. The
presence of an empty low-energy orbital in the d block (the z2 orbital,
Figure 2.8) confers special properties on these complexes. They have
only been isolated in rare-gas matrices, at very low temperatures, and
they can easily bind a sixth ligand of the L type to give an octahedral
18-electron complex.

2.3.3.2. Other cases

Complexes with an intermediate electronic configuration, d7, are
also known, such as [Mn(CO)5], [Re(CO)5], [Cr(CO)5]−, and
[Co(CN)5]3−. These are radical complexes with 17 electrons; the
unpaired electron occupies the z2 orbital. They can therefore dimer-
ize, just like organic radicals, to form bimetallic complexes such as
[Mn2(CO)10], [Re2(CO)10], or [Re2(CN)10]6−, etc. For some electronic
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counts, the presence of four orbitals with similar energies can favour
the existence of high-spin complexes. For example, the ground-state
electronic configuration of the complex [MnCl5]2−(d4) corresponds
to the occupation of each of the orbitals (xy), (xz), (yz), and (z2) by
a single electron, with their spins parallel. High-spin complexes with
a d6 or d8 electronic configuration are also known, which implies
that the antibonding x2−y2 orbital is singly occupied. This can only
happen for weak-field complexes. Deoxyhaemoglobin is a well-known
example: it is a d6 iron complex, whose electronic configuration is
(xy)2(xz)1(yz)1(z2)1(x2−y2)1. We remark in closing this section that
there are a few complexes, such as [VOF4]− or [Nb(NMe2)5], in which
the d block is empty (d0 configuration). As for the octahedral complexes,
these very electron-deficient systems are only observed when the ligands
possess lone pairs.

2.3.3.3. Electronic count and geometry

Correlation diagrams for the d-block orbitals, of the type shown in
Figure 2.8, are often used to interpret the changes in the structures of
complexes as a function of their electronic configuration dn. In order
to use them, one adopts the hypothesis, which in most cases is verified
a posteriori, that the geometry of the complex is controlled by the energy

changes of the highest-occupied molecular orbital (the HOMO rule). ML5

complexes with an SBP geometry provide an interesting illustration of
this rule.

Comment

The structures observed for complexes whose electronic configuration is

d0 (d-block empty) are characterized by values of the angle θ greater than

90◦ (metal above the basal plane). This preference, which is caused by

bonding orbitals in the complex, can, as we shall see, be either modified or

maintained when there are electrons in the d block.

We consider first a diamagnetic d6 complex. In the structure with
θ = 90◦, three nonbonding orbitals (xy, xz, and yz) are doubly occu-
pied (Figure 2.8). An increase in the value of θ above 90◦ leads to a
destabilization of two of these orbitals (xz and yz), which is energetically
unfavourable (Figure 2.8). We may therefore predict that these com-
plexes will adopt a structure in which the metal stays in the basal plane
(θ = 90◦). Experimental values for these complexes are indeed close to
90◦ (91–94◦ for the [M(CO)5] complexes if M=Cr, W). But in a d8 dia-
magnetic complex, the two additional electrons occupy the z2 orbital,
which is stabilized when θ increases above 90◦ (Figure 2.8). Application
of the HOMO rule leads to the prediction that in these complexes, the
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metal will be located above the basal plane. This change in geometry
due to the number of d electrons is indeed observed: the angle θ is 101.0◦

in [Ni(CN)5]3− and 102.6◦ in [Mn(CO)5]−.
In the light of this analysis, we present the energy levels and orbital

occupations for the d block of d6 and d8 diamagnetic complexes in
Scheme 2-52.

xy xz yz

z2

z2

xy

xz yz

d6 d8

2-52

We can extend this analysis to other electron counts. In d7 com-
plexes, the z2 orbital is singly occupied. We may therefore expect to find
that θ is larger than 90◦, but not as large as in the low-spin d8 complexes
in which this orbital is doubly occupied. The values of θ for d7 complexes
are indeed often intermediate between those found for low-spin d6 and
d8 complexes: about 95◦ for [Mn(CO)5], [Re(CO)5], or [Cr(CO)5]−,
97.6◦ for [Co(CN)5]3−.

For a given number of electrons, the change from a low-spin to
a high-spin complex can also lead to a change in geometry, since the
HOMO is different. In a diamagnetic d6 complex, whose electronic con-
figuration is (xy)2(xz)2(yz)2, we have seen that the angle θ is close to
90◦. However, in a high-spin d6 complex, whose electronic configuration
is (xy)2(xz)1(yz)1(z2)1(x2−y2)1, the HOMO, x2−y2, is strongly stabil-
ized by an increase in θ (Figure 2.8), thereby favouring a displacement
of the metal out of the basal plane. This is exactly what is observed in
deoxyhaemoglobin (a high-spin complex of Fe(II)), where the iron atom
is placed well above the plane (θ = 110◦) defined by the porphyrin ring
(a ligand of L2X2 type).

2.4. Tetrahedral ML4 complexes

In a complex of this type, the metal is placed at the centre of a tetrahedron
whose vertices are occupied by the four ligands. There are at least two
ways to derive the d-block orbitals for a tetrahedral complex. In the
‘direct’ method, we allow the d orbitals of the metal to interact with the
symmetry-adapted combination of ligand orbitals (Chapter 6, § 6.6.2.2





Tetrahedral ML4 complexes

and Exercise 2.11), taking account of their symmetry properties in the Td

group. We may also start from the d orbitals of a square-planar complex
and study their changes as the ligands are moved towards the tetrahedral
geometry. We shall use the second approach here, as it not only gives
us the d-block structure for a tetrahedral complex, but it also yields the
orbital correlation diagram linking the two geometries most frequently
found for ML4 complexes.

ML1

L2

L4

L2
L4

x

y
z

L3

L3L1

2-53

The change from one structure to the other is studied following the
mechanism described in Scheme 2-53, where the ligands L1 and L3 move
upwards in the yz plane, and the ligands L2 and L4 downwards in the
xz plane. In this way, we change from a square-planar (D4h symmetry)
to a tetrahedral complex (Td symmetry), maintaining D2d symmetry at
intermediate points.

Comment

This is not the only way to move from one structure to the other. One

can, for example, rotate one ML2 unit by 90◦ with respect to the other,

progressively adjusting the values of the bond angles (D2 symmetry is

conserved).

2.4.1. Characterization of the d block

We shall consider each of the five d orbitals of a square-planar complex
as they are presented in Figure 2.6 (right-hand side). On moving to the
tetrahedral structure, the xy orbital stays unchanged in both shape and
energy (2-54a), as the four ligands move in one or other of the two
nodal planes of this orbital (L2 and L4 in xz, L1 and L3 in yz). The
yz and xz orbitals behave in just the same way as they do when the
metal moves out of the basal plane in SBP ML5 complexes (§ 2.3.2). On
passing from the square plane to the tetrahedron, two ligands move in
the plane where the amplitude of the orbital is greatest, but the other
two ligands stay in one of the nodal planes. As a result, the yz orbital is
destabilized by antibonding interactions with the ligands L1 and L3, but
it has no interaction with L2 and L4 which are still located in the nodal
plane xz (2-54b). In the same way, the xz orbital is destabilized by an
interaction with the ligands L2 and L4 (2-54c). These two orbitals, yz
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and xz, which were nonbonding in a square-planar complex, therefore
become antibonding in a tetrahedral complex, while staying degenerate.
However, just as in ML5 complexes (§ 2.3.2), the antibonding interac-
tions are reduced by mixing with a p orbital on the metal (py in the case
of yz, px for xz) which polarizes the d orbital in the direction opposite
to that of the two ligands with which it is interacting (2-54b) and see
also Appendix A). The z2 orbital becomes rigorously nonbonding (zero
coefficients on the ligands, 2-54d), and thus at the same energy as the xy

orbital, since the four ligands in the tetrahedral structure are moved pre-
cisely on to its nodal cone (whose angle is exactly equal to 109.5◦). The
last orbital, x2−y2, is strongly stabilized since the four ligands leave the
x- and y-axes on which they were located. The antibonding interactions
are decreased but not eliminated, since in the tetrahedral structure, the
ligands are not in the nodal planes of the x2−y2 orbital (2-54e).

x2–y2

xy

yz

z2

xz

(a)

(b)

(c)

(d)

(e)

2-54

This analysis enables us to describe fully the structure of the d block
of a tetrahedral complex: there are two degenerate nonbonding orbitals
(xy and z2), two degenerate antibonding orbitals (xz and yz), and a third
antibonding orbital, x2−y2. The only remaining uncertainty concerns
the relative energies of the (xz, yz) and x2−y2 antibonding orbitals. The
answer to this question is found in the character table for the tetrahedral
point group, Td (Table 2.2).
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Table 2.2. Character table for the Td group (tetrahedral ML4 complex)

Td E 8C3 3C2 6S4 6σd

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 −1 −1

E 2 −1 2 0 0 (2z2 − x2 − y2, x2 − y2)

T1 3 0 −1 1 −1

T2 3 0 −1 −1 1 (x, y, z) (xy, xz, yz)

Inspection of the last column shows that the five d orbitals are found
in two groups of degenerate orbitals, of e (doubly degenerate) and t2

(triply degenerate) symmetry, respectively. As we have already shown
that there are just two nonbonding orbitals, it is clear that they must have
e symmetry. The antibonding orbitals therefore have t2 symmetry, and
all three are degenerate by symmetry. The d block of the tetrahedron
therefore contains two nonbonding degenerate orbitals (e) and three
antibonding orbitals that constitute another degenerate set (t2).

Comment

We note that the roles of xy and x2−y2 orbitals are interchanged in a tet-

rahedral complex, depending on whether we adopt the analysis developed

above (xy nonbonding (2-54a), x2−y2 antibonding (2-54e)), or the character

table (x2−y2 degenerate with z2, therefore nonbonding, xy degenerate with

xz and yz, therefore antibonding). This arises simply from a different defin-

ition of the axes (a rotation of 45◦ around the z-axis) which interchanges

the role of the xy and x2−y2 orbitals, as we have already seen in the case of

the octahedron (Figures 2.3 and 2.4) or the square-planar complex plan (see

Exercise 2.4).

We can now sketch the correlation diagram linking the d-block
orbitals of a square-planar complex to those of a tetrahedron (Figure 2.9),
following the deformation shown in 2-53.

Figure 2.9. Correlation diagram linking the
d-block orbitals of a square-planar ML4
complex and those of a tetrahedral ML4
complex, following the deformation shown in
2-53.
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2.4.2. Electronic structure

2.4.2.1. d10 diamagnetic complexes

The separation between the e and t2 levels of the d block is sufficiently
small (the t2 orbitals are only weakly antibonding) that all five orbitals
can be occupied. Diamagnetic complexes with a d10 electronic con-
figuration are thus obtained (2-55), such as [Ni(H)4]4−, [Ni(CO)4],
[M(PF3)4] (M=Ni, Pd), [Pt(dppe)2] (dppe=diphenylphosphino-
ethane), [Ni(CN)4]4−, [Co(CO)4]−, [Fe(CO)4]2−, [Cu(CN)4]3−,
[Cu(PMe3)4]+, [Ag(PPh3)4]+, or [Zn(Cl)4]2−. These are 18-electron
complexes, since eight additional electrons are associated with the four
metal–ligand bonds.

e

t2

d10

2-55

2.4.2.2. Other cases

ML4 complexes whose d block is empty (d0 electronic configuration),
such as [TiCl4] and [MnO4]−, also adopt a tetrahedral geometry. As in
the examples of d0 complexes already mentioned (§ 2.1.3.2 and 2.3.3.2),
the ligands have lone pairs which play an important role in the stabil-
ization of these species that apparently are strongly electron-deficient
(formally, only eight electrons around the metal!). We may also men-
tion tetrahedral d8 complexes, such as [NiCl4]2−, [Ni(PPh2Et)2Br2], or
[CoBr(PR3)3]. The structure of the d block, with the three t2 degenerate
orbitals, leads to a paramagnetic ground state (e4t4

2), with two unpaired
electrons in the t2 orbitals (a high-spin tetrahedral complex, right-hand
side of 2-57).

2.4.3. ML4 complexes: square-planar or tetrahedral?

Not all ML4 complexes have a square-planar or tetrahedral struc-
ture. ‘Intermediate’ geometries, of lower symmetry, can be observed
(e.g. [Fe(CO)4] is a high-spin d8 complex with C2v symmetry, see § 2.8.3).
However, a large number of ML4 complexes adopt, either exactly or with
only small deviations, one or other of these high-symmetry geometries.
In this paragraph, we shall show how a knowledge of the d block for each
type of structure (§ 2.2.1 and 2.4.1) enables us to establish a link between
the dn electronic configuration of the complex and the geometry that is
observed experimentally. We shall concentrate our attention on the d10

and d8 electronic configurations, which are the most common for ML4

complexes.
It is straightforward to understand the structural preference for

d10 complexes: in the tetrahedral geometry, all five d orbitals are
low in energy and can thus receive ten electrons, whereas there
are only four low-energy d orbitals in the square-planar geometry
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(Figure 2.9). Complexes with a d10 electronic configuration therefore
adopt a tetrahedral structure (§ 2.4.2.1).66 The tetrahedral geometry is also

favoured by the bonding MO, lower in energy
than the d block, as shown by the
experimental structures of d0 complexes
(§ 2.4.2.2) which have tetrahedral geometries.

In diamagnetic d8 complexes (low-spin), four d orbitals must be
doubly occupied. This count is ideal for the square-planar geometry,
characterized by four low-energy d orbitals (three strictly nonbond-
ing, one very weakly antibonding (2-56, left-hand side)), well separated
from the fifth which is strongly antibonding. The situation is less
favourable for the tetrahedral geometry: first, there are only four non-
bonding electrons instead of six, and second, the distribution of four
electrons in three orbitals (2-56, right-hand side) is energetically unfa-
vourable since it does not obey Hund’s rule (two electrons should
occupy two different orbitals, with parallel spins). In summary, the
d-block of a tetrahedral complex is not well suited to accomodate
four pairs of electrons, and in fact diamagnetic d8 complexes adopt a
square-planar geometry ([Ni(CN)4]2−, [Pd(NH3)4]2+, [RhCl(PPh3)3],
or [Ir(CO)(Cl)(PPh3)2], for example).

Square-planar (d8 low-spin) Tetrahedral (d8 low-spin)

2-56

This leads us naturally to consider the case of paramagnetic d8 com-
plexes (high-spin), that have two unpaired electrons with parallel spin.
The situation is now favourable for the tetrahedral geometry: Hund’s
rule is obeyed, and the occupied d orbitals are either nonbonding or
only weakly antibonding (2-57, right-hand side). In contrast, in the
square-planar geometry, an electron must be placed in the strongly
antibonding orbital of the d block (2-57, left-hand side). The tetrahedral
structure is therefore favoured for high-spin d8 complexes (§ 2.4.2.2).
As a consequence, the low-spin → high-spin change in d8 ML4 com-
plexes is accompanied with a change in geometry, from square-planar
to tetrahedral.

It is more difficult to predict whether a given complex with a d8

electronic configuration will be low-spin, with a square-planar struc-
ture, or high-spin, with a tetrahedral structure. From a purely electronic
point of view, the square-planar geometry seems to be favoured, with
six nonbonding and two weakly antibonding electrons, instead of four
nonbonding and four more strongly antibonding electrons in the tetra-
hedron (2-58). However, in this latter structure, the exchange energy
due to the two unpaired electrons is a favourable factor. Steric factors
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Square-planar (d8 high-spin) Tetrahedral (d8 high-spin)

2-57 Square planar (d8 high-spin) Tetrahedral (d8 high-spin)

also play an important role, since they favour the tetrahedral structure,
with bond angles of 109.5◦ rather than the square-planar arrangement
with 90◦ bond angles. So complexes with very bulky ligands (triphen-
ylphosphine, PPh3, for example), are usually high-spin and tetrahedral.
But the balance between all these factors seems to be quite subtle, since
the complex [Ni(PPh2Et)2Br2] has been isolated in both forms, square-
planar and tetrahedral; they are found to be in equilibrium in solution
and are thus very close in energy.

Square-planar (d8 low-spin) Tetrahedral (d8 high-spin)

2-58 Square planar (d8 low-spin) Tetrahedral (d8 low-spin)

As we have already remarked at the beginning of this section, not
all ML4 complexes adopt such high-symmetry structures. In this con-
text, d9 complexes, whose electronic configuration is ‘intermediate’
between one which favours a square-planar geometry (diamagnetic d8

complexes) and others which favour a tetrahedral geometry (paramag-
netic d8 or diamagnetic complexes d10), are particularly interesting. The
two structural types are indeed found in the family of d9 ML4 complexes:
for example, square-planar for [M(py)4]2+ (M=Cu, Ag) (py=pyridine)
but quasi-tetrahedral for [Co(CN)4]4−, [Co(PMe3)4], and [Ni(PR3)3X]
(X=Cl, Br, I). A given complex can even adopt very different geomet-
ries depending on its environment. For example, 131 structures of the
[CuCl4]2− anion have been published,7 which differ in the nature of7 S. Keinan and D. Avnir Inorg. Chem. 40,

318 (2001). the associated cation. The whole range of geometries has in fact been
observed, from the square plane to an almost ideal tetrahedron!
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2.5. Trigonal-bipyramidal ML5 complexes

In an ML5 complex which adopts a trigonal-bipyramidal (TBP) geo-
metry, we distinguish the equatorial ligands (L1, L2, and L3) from those
in axial positions (L4 and L5, 2-59). The former are located at the vertices
of the triangular base of the bipyramid, and they define the equatorial
plane of the complex (the xy plane in 2-59), while the axial ligands are
located at the vertices of the bipyramid. The angles between equatorial
bonds are 120◦ (trigonal base), but those between an equatorial and an
axial bond are 90◦.

M 1

L2

L3

L4

L5

z

x
y

90°

120°

L

2-59

Comment

The equatorial and axial ligands are not equivalent by symmetry, since no

symmetry operation of the complex’s point group (D3h) interchanges an

equatorial ligand with an axial. Nor are they equivalent from a chemical

point of view, and as a consequence, the M–Leq and M–Lax bond lengths

can differ, even when all the ligands L are identical.88 For this geometrical parameter, the
difference appears to be so small that it can
depend on the environment! For example, in
the solid-state structure of [Fe(CO)5]
determined by X-ray diffraction, the axial
bonds are slightly longer than the equatiorial,
by about 0.008 Å (D. Braga, F. Grepioni, and
G. Orpen Organometallics 12, 1481 (1993)). But
a study of the structure in the gas phase, by
electron diffraction, gives the opposite result,
with the equatorial bonds being longer by
0.01–0.03 Å (B. W. McClelland, A. G. Robiette,
L. Hedberg, and K. Hedberg Inorg. Chem. 40,
1358 (2001)).

2.5.1. Characterization of the d block

With the orientation of the axes chosen in 2-59, the equatorial ligands
are located in the xy plane and the axial ligands on the z-axis, that is, at
the intersection of the xz and yz planes.

The five ligands are thus placed in one or other of the nodal planes of
the xz (nodal planes xy and yz) and yz (nodal planes xy and xz) orbitals. As
a result, there cannot be any σ interaction between the ligands and these
two orbitals which stay nonbonding in the d-block of a TBP complex
(2-60). By consulting the character table for the D3h point group, we find
that these two degenerate orbitals have e′′ symmetry.

yzxz

2-60

z2

2-61

A third orbital in the d block may readily be characterized. The z2

orbital is destabilized by antibonding interactions with all five ligands.
This is the highest-energy orbital in the d block, with the strongest
antibonding interactions involving the axial ligands along the z-axis
(2-61).
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The xy and x2−y2 orbitals have not yet been considered. The first
is destabilized by antibonding interactions with the ligands L2 and L3

(2-62). No interaction is possible with the three other ligands which
are located in the nodal plane yz. For the x2−y2 orbital, its two nodal
planes bisect the x- and y-axes and they contain the z-axis. It therefore
cannot interact with the axial ligands placed on this axis, but antibonding
interactions will develop with the three equatorial ligands, as none of
them is located in either of the nodal planes. Two representations can
be given for this orbital (2-63). In the first (2-63a), the orientation of
the axes is the same as that used previously, whereas in the second
(2-63b), the plane of the page is chosen as the equatorial plane (xy). This
second representation allows us to understand more easily the sign of
the coefficients for the orbitals on the ligands L2 and L3 if the interaction
with x2−y2 is to be antibonding (the sign for the orbital σ1, on the ligand
L1, is obvious since it points along the y-axis). It is clear from 2-63b that
the overlap between the orbitals σ2 and σ3 and the part of the x2−y2

orbital concentrated along the horizontal axis (y) is positive, whereas
with the part of the orbital concentrated along the vertical axis (x) it is
negative. Now since the angle L2–M–L3 is 120◦, the M–L2 and M–L3

bonds are closer to the x-axis than to the y-axis. The representation given
in 2-63 therefore does indeed correspond to a negative value of the total

overlap between the orbitals on the ligands L2 and L3 and the x2 − y2

orbital on the metal centre, and thus to an antibonding interaction.

L1

L4

L5

xy

2-62

L4

L5

2-63a

or

x2–y2

�3

�2

�1

x

y

2-63b

It should be noted that the antibonding M–Li character in this orbital
is not equivalent for the three ligands. L1 is situated on the y-axis and
therefore has a larger axial overlap than do the ligands L2 and L3, which
are placed between the x- and y-axes. Moreover, the coefficient for σ1

is twice as large as those for σ2 or σ3 (Chapter 6, § 6.6.4.2). These
two factors lead to the x2−y2 orbital being antibonding mainly with
the ligand L1, but xy is antibonding only with the ligands L2 and L3

(2-62). While this analysis enables us to deduce that the xy and x2−y2

orbitals are both antibonding in the d block, an important additional
piece of information is provided by examination of the character table
for the D3h group (Table 2.3). From the last column, we learn that
the xy and x2−y2 orbitals are degenerate by symmetry (e′ symmetry).9

9 The linear combinations of the ligand
orbitals with which they interact also have e′

symmetry, of course (see Chapter 6, § 6.6.4).
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Table 2.3. Character table for the D3h group

D3h E 2C3 3C2 σh 2S3 3σv

A′
1 1 1 1 1 1 1 x2 + y2, z2

A′
2 1 1 −1 1 1 −1

E′ 2 −1 0 2 −1 0 (x, y) (x2 − y2, xy)

A′′
1 1 1 1 −1 −1 −1

A′′
2 1 1 −1 −1 −1 1 z

E′′ 2 −1 0 −2 1 0 (xz, yz)

The orbitals shown in 2-62 and 2-63 therefore make up a set of two
degenerate orbitals, of e′ symmetry. Their energy is of course higher
than that of the e′′ orbitals (xz and yz), since these latter are strictly
nonbonding.

The character table also shows that the px and py orbitals on the cent-
ral atom, like xy and x2−y2, have e′ symmetry (penultimate column).
They can therefore lead to the formation of polarized degenerate e′ orbit-
als in the d block, as their contribution polarizes the xy and x2−y2 orbitals.
A more accurate shape of these orbitals can be obtained by adding a px

contribution to xy (2-64) and py to x2−y2 (2-65), so that the overlap of
the p orbital with the ligand orbitals is positive (see Appendix A, § 2.2).
The addition of px to the xy orbital polarizes this orbital in the direction
away from the ligands L2 and L3, thereby decreasing the antibonding
interactions with these ligands (2-64). For x2−y2, the polarization by py

decreases the amplitude of the orbital in the direction away from the lig-
and L1 (2-65) with which the antibonding interaction was the strongest.
As in the examples that we have already studied (see § 2.3.1.2 and 2.3.2
for SBP ML5 complexes), the participation of the p orbitals leads to a
reduction of the antibonding character of the d-block orbitals.

+ =

xy px polarized xy

2-64

+ =

x2–y2 –py polarized x2–y2

2-65
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The d block of an ML5 complex with a TBP geometry is therefore
made up of two degenerate nonbonding orbitals (xz and yz, with e′′

symmetry), two degenerate orbitals that are fairly weakly antibonding
(xy and x2−y2, with e′ symmetry) and one very strongly antibonding
orbital (z2, with a′

1 symmetry).
These results are illustrated in Figure 2.10 for two different ori-

entations of the bipyramid, the equatorial plane (xy) being either
perpendicular to the plane of the page (left-hand side) or in this plane
(right-hand side).

Figure 2.10. Representation of the d-block
orbitals for an ML5 complex with a TBP
geometry, the equatorial plane (xy) being
either perpendicular to the plane of the page
(left-hand side), or in this plane (right-hand
side). In this latter case, for greater clarity, the
axial ligands are not shown.
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2.5.2. Electronic structure

2.5.2.1. Diamagnetic d8 complexes

The most common electron count for ML5 complexes with a TBP
geometry is d8, which corresponds to the double occupation of the
degenerate e′′ and e′ orbitals (2-66). These are therefore 18-electron
complexes, since there are 10 additional electrons associated with the
five M–L bonds.

e�

e�

2-66 The species [M(CO)5] (M=Fe, Ru, and Os) are ‘archetypal’ TBP
ML5 complexes. We may also cite the complexes [Mn(CO)5]−,
[Fe(CO)4(η

2-C2H4)], [Fe(CO)4(CN)]−, [Co(C=N − CH3)5]+,
[Ir(PR3)3(CH3)(η

2-C2H4)], and [Ni(P(OEt)3)5]2+. It should be noted
that the d8 electron count has already been found to be favourable for
ML5 complexes that adopt an SBP geometry, with the metal above
the basal plane (§ 2.3.3.1.). The two structural types have indeed been
characterized in the d8 − ML5 family of complexes.10In the case of the

10 For a review of the structures of ML5
complexes, consult: S. Alvarez and M. Llunell
J. Chem. Soc. Dalton Trans. 3288 (2000).
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anion [Ni(CN)5]3−, the SBP structure can even coexist with a slightly
distorted TBP structure when the associated cation is [Cr(en)3]3+

(en=ethylenediamine).11

11 The transformation TBP(1) → SBP →
TBP(2) is nothing more than the Berry
pseudorotation which allows the exchange of
axial and equatorial ligands to take place in a
TBP complex.

2.5.2.2. Other cases

The complex [Co(dpe)2Cl]2+ (dpe=1,2-bis(diphenylphosphino)
ethane) with a d7 electronic configuration (a 17-electron low-spin com-
plex) is also known in two structural forms: a red isomer with an SBP
geometry (the chloride ligand is in the apical position), and a green
isomer with a TBP geometry (the chloride ligand is in an equatorial
position). TBP complexes with more than 18 electrons are also known.
They are weak-field complexes (the z2 orbital is occupied) with a d9

electronic configuration (19 electrons), such as [CuCl5]3−, [CuBr5]3−,
or [Cu(imidazole)3Cl2], or d10 (20 electrons), such as [CdCl5]3− or
[HgCl5]3−.

2.6. Trigonal-planar ML3 complexes

A trigonal-planar ML3 complex can be formed by removing the two
axial ligands from a TBP ML5 complex (2-67). The d-block orbitals may
therefore be readily deduced from those established in the preceding
section.

M L1

L2

L3

L4

L5

1

L2

L3

z

x
y

M L

2-67

2.6.1. Characterization of the d block

The variations in energy for the five d orbitals are shown in Figure 2.11.
The xz and yz orbitals (e′′) of a TBP ML5 complex have zero coefficients
on the axial ligands, as do xy and x2−y2 (e′). The removal of these two
ligands does therefore not change either the shapes or the energies of
these four orbitals (Figure 2.11). But the z2 orbital, which was strongly
antibonding due to interactions with the axial ligands, is substantially
stabilized by their removal, becoming almost nonbonding. Only three
weak antibonding interactions with the ligands in the xy plane are left,
and the amplitude of the z2 orbital in this plane is small. Note that the
orbital symmetries are the same in ML5 (TBP) and ML3 trigonal-planar
complexes, as both have D3h symmetry.
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Figure 2.11. Derivation of the d-block orbitals
for a trigonal-planar ML3 complex from those
of an ML5 complex with a TBP geometry.
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2.6.2. 16-electron d10 complexes

The d-block for ML3 complexes with a trigonal-planar geometry thus
contains two nonbonding degenerate orbitals (xz and yz), a very weakly
antibonding orbital (z2), and two weakly antibonding degenerate orbit-
als (xy and x2−y2). These five orbitals are sufficiently low in energy
to be doubly occupied. As a result, the large majority of these com-
plexes have a d10 electronic configuration (2-68), the simplest no doubt
being [PdH3]3−. We may also cite the tricarbonyl complexes [M(CO)3]
(M–Ni, Pd, or Pt), as well as [Pt(Ph3P)3], [Pt(η2-ethylene)(PR3)2], or
[Ni(η2-ethylene)3], complexes in which the oxidation state of the metal
is zero. There are also complexes of the metals from groups 11 (oxida-
tion state I), such as [Cu(CN)3]2−, [Cu(SR)3]2−, or [Au(PPh3)2Cl], and
12 (oxidation state II), such as [HgI3]− and [Hg(SR)3]−.

a1�

e�

e�

2-68
These are all 16-electron complexes (six for the bonds and ten in the

d block). The ‘lack’ of two electrons compared to the 18-electron rule
arises because a nonbonding orbital on the metal remains empty. As in
the case of square-planar ML4 complexes, this is the p orbital perpendic-
ular to the molecular plane (2-69), which, although nonbonding, is too
high in energy to be occupied.

2-69

2.7. Linear ML2 complexes

There are many ways in which a linear ML2 complex may be obtained
from the complexes already studied. For example, four coplanar ligands
can be removed in an octahedral complex (2-70).

x
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M L5L3
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L1
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2-70
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Figure 2.12. Derivation of the d-block orbitals
for a linear ML2 complex from the d orbitals
of an octahedral ML6 complex.
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2.7.1. Characterization of the d block

Consider the orbitals in the d block of an octahedron (Figure 2.12, left-
hand side). Removal of the four ligands L3–L6 has no effect on the
three nonbonding t2g orbitals which have zero coefficients on all the
ligands. The antibonding x2−y2 orbital in the eg block has antibonding
interactions with the four ligands L3–L6, but zero coefficients on L1

and L2. After the removal of the ligands L3–L6, this orbital becomes
strictly nonbonding (Figure 2.12). There are, therefore, four nonbonding
orbitals in the d block of linear ML2 complexes, whose symmetries are
πg (xz, yz) and δg (x2−y2, xy) in the D∞h point group. These orbitals
are therefore degenerate in pairs by symmetry, but in fact all four have
the same energy (accidental degeneracy).

Comment

Notice that the π -type orbitals have just a single nodal plane that contains

the internuclear axis, whereas the δ orbitals have two.

We have not yet considered the second orbital in the eg block of
the octahedron, z2. It is stabilized by the elimination of the four weak
antibonding interactions in the xy plane, but this stabilization should be
rather small, as the two principal antibonding interactions, along the
z-axis, are still present.

In fact, this fifth orbital is not very high in energy since it is polarized
by mixing with the s orbital of the metal (s and z2 have the same sym-
metry, σg , in the D∞h point group). As in the previous examples which
involved polarization by a p orbital (see also Appendix A, § 2.A3), the
sign of the s orbital is such that its interaction with the ligand orbitals is
bonding (2-71). The effect of this mixing is to increase the amplitude of
the z2 orbital in the xy plane, perpendicular to the internuclear axis, and
to decrease it along this axis. The antibonding character of the polarized
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z2 orbital is therefore substantially reduced by the participation of the s

orbital, so that its energy is not very high (Figure 2.12).

+ =

S > 0

S > 0

z2 s z2polarized

2-71

2.7.2. Electronic structure

In the very large majority of linear (or quasi-linear) ML2 complexes,
the five orbitals of the d block are doubly occupied (d10 electronic
configuration, 2-72). The most common examples involve the elements
of group 11 (Cu, Ag, Au), where the metal is in the oxidation state
I. Anions such as [Cu(Me)2]−, [Cu(Ph)2]−, [Cu(Mes)2]− (Mes =
2, 4, 6−Me3C6H2), [Ag(CN)2]−, [Ag(C(SiMe3)3)2]−, [Au(C6F5)2]−,
or [AuCl2]−, cations such as [Cu(NH3)2]+, [Ag(NH3)2]+, or
[Ag(CO)2]+, and neutral complexes such as [AuMe(PMe3)] or
[AuCl(Mes)] are all known. There are also examples from group 12,
such as [Hg(CN)2].

�g

�g, �g

2-72

Although the d block is full, these complexes have only 14 electrons.
This electronic deficiency is linked to the presence of two p orbitals on
the metal (2-73) which remain empty, even though they are nonbonding,
since they are too high in energy to be occupied. The small number of
ligands, combined with this electron deficiency, makes these complexes
very reactive. They can either bind other ligands, or exist as chains, in
which the coordination number of the metal is higher than two, rather
than as ML2 monomers.

pypx

2-73

We should mention a few complexes in which the d block is not
completely filled. For example, complexes with two borylamide ligands
[N(Mes)(BR2)] are known for M=Mn (d5), Fe(d6), Co (d7), and Ni (d8),
and they adopt an almost linear geometry. These are all high-spin com-
plexes, which is understandable given the small separation of the energy
levels in the d block.

2.8. Other complexes or MLn fragments

Other structures exist for MLn complexes besides those considered so
far, though they are less common for stable species. We shall study five





Other complexes or MLn fragments

of them in this section: pyramidal ML3 complexes (2-74a), ‘T-shaped’
ML3 (2-74b), ‘butterfly’ ML4 (2-74c), bent ML2 (2-74d), and ML (2-74e).
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L ML
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L L
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2-74a 2-74b 2-74c 2-74d 2-74e

These entities are interesting since they may be considered as
‘fragments’ of more important complexes, such as octahedral or
square-planar. In this context, knowledge of their orbital structure is
useful for two reasons:

1. They can be used as fragment orbitals in some com-
plexes. For example, the main MO of the complex [(η5-
cyclopentadienyl)Mn(CO)3] (2-76) can be constructed by interaction
of the π MO of cyclopentadienyl with the d orbitals of the metallic
fragment [Mn(CO)3] in a pyramidal geometry.

2. The d orbitals of these species ‘resemble’ the orbitals of certain
organic molecules or fragments, both in their shape and their elec-
tronic occupation. It is therefore important to be familiar with them
if one wishes to establish a link between the electronic structures
of transition metal complexes and of organic molecules (the isolobal

analogy, see Chapter 5).

2.8.1. Pyramidal ML3 complexes

The pyramidal ML3 structure (2-74a), with C3v symmetry, is not
common for complexes with three ligands. But a few examples
are known, such as the d0 complexes [M(HC(SiMe3)2)3] (M=Y or
La), or the low-spin d6 complexes [M(Mes)3] (M=Rh or Ir) (2-75).
Moreover, the pyramidal ML3 entity can be considered as a fragment

in 18-electron complexes of the type [(polyene)-ML3], such as [(η4-
cyclobutadiene)Fe(CO)3], [(η5-Cp)Mn(CO)3] (Cp=cyclopentadienyl)
(2-76) or [(η6-benzene)Cr(CO)3].

Mes   =

Me

Me

Me

Mes

Rh

Mes
Mes

2-75

Mn

OC
OC CO

2-76





Principal ligand fields: σ interactions

In one approach to the derivation of the d-block orbitals of this com-
plex, we start from an octahedral complex with the geometry indicated
in 2-77 and remove the three ligands L4, L5, and L6. A pyramidal ML3

fragment is thereby obtained, in which the angles between the M–L
bonds are 90◦. In the orientation that is chosen, the z-axis coincides with
the C3 axis of the resulting ML3 complex.
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L1 L2

M

L3 L1

z
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2-77

The t2g (nonbonding) and eg (antibonding) orbitals of an octahedral
complex with this orientation of the axes have already been estab-
lished (§ 2.1.2.5, Figure 2.5) and are presented on the left-hand side
of Figure 2.13. The removal of three ligands does not change the three
nonbonding orbitals, since the coefficients on these ligands were zero:
they remain nonbonding and degenerate in the ML3 fragment.

The z2 orbital has a1 symmetry (the totally symmetric representation
of the C3v point group), while the two other orbitals are degenerate by
symmetry (1e). The eg orbitals are stabilized by the elimination of half
of the antibonding interactions that were present in the octahedron.
However, they are still antibonding in the ML3 fragment (Figure 2.13)
and make up the degenerate orbital set 2e. As in several of the examples
already treated, the antibonding character of these orbitals is reduced by
mixing with the px (2-78) or py (2-79) orbitals, which polarizes them in
the direction opposite to the ligands.

Figure 2.13. Derivation of the d-block orbitals
for a pyramidal ML3 complex from the d

orbitals of an octahedral ML6 complex. The
hybrid s–p orbital lying above the d block is
also shown.
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+

px

2-78

+

py

2-79

If the d block were completely filled, we would have a 16-electron
complex. There would therefore be an empty nonbonding orbital on the
metal centre. For a trigonal-planar ML3 complex, that would be the pz

orbital perpendicular to the molecular plane (2-69). But in the present
case, it is a hybrid orbital of a1 symmetry, a linear combination of the
s and p orbitals on the metal, which points in the direction opposite to
the ligands (2-80). Due to the relative energies of the nd, (n + 1)s, and
(n + 1)p AO on the metal, it stays higher in energy than the 2e orbitals
which are essentially of d character on the metal and weakly antibonding.
This orbital lies lower than the pure p orbital of a trigonal-planar ML3

complex, thanks to the contribution from the s orbital (εs < εp).2-80

Notice that the structure of the d block, with three strictly nonbond-
ing orbitals, enables us to understand why this geometry is observed for
low-spin d6 complexes, such as that represented in 2-75.

2.8.2. ‘T-shaped’ ML3 complexes

There are a few rare ML3 complexes that adopt a non-trigonal planar
geometry, in which one L–M–L angle is substantially larger than 120◦

(C2v symmetry).12 This type of structure is sketched in 2-81, where the12 There are also a few planar complexes in
which two of the three L–M–L angles are
larger than 120◦ (Y-shaped structures). The
preference for T- or Y-shaped structures will
be analysed in greater detail in Chapter 4. For
further information on the structures of ML3
complexes, the reader may consult: S. Alvarez
Coord. Chem. Rev. 193–195, 13 (1999).

angle L1–M–L3 has the limiting value of 180◦, justifying the name of
a T-shaped structure. The diamagnetic d8 complexes [Rh(PPh3)3]+ (2-

82) and [Ni(Mes)3]− are typical examples. The T-shaped entity ML3 is
also interesting as it can be used as a fragment in monometallic com-
plexes such as Zeise’s salt, [Pt(Cl)3(η2-ethylene)]− (2-83), or bimetallic
complexes of the type [Pd2L6]2+ (2-84).
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The orbitals of the d block may be derived from those of a square-
planar complex (§ 2.2.1), by removing one of the ligands (2-85).
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2-85

Changes to the shapes and energies of the orbitals are shown in
Figure 2.14.

The three strictly nonbonding orbitals in the square-planar complex
(with b2g and eg symmetries in the D4h point group) are not affected by
the removal of a ligand. They become the a2, b1, and b2 nonbonding
orbitals of the ML3 fragment. The z2 orbital (a1g ) is very weakly stabil-
ized (1a1), due to the disappearance of a small antibonding interaction,
while the x2−y2 orbital, which is antibonding towards the four ligands
in the square-planar complex (b1g ), is stabilized and becomes the 2a1

orbital in the ML3 complex. This stabilization is enhanced by mixing
with the py orbital which polarizes the orbital in the opposite direction
to the ligand L2 (2-86). But overall, this orbital stays fairly high in energy,
due to the three antibonding interactions that are still present in the xy

plane, along the directions of the lobes of x2−y2.

Figure 2.14. Derivation of the d-block orbitals
of a T-shaped ML3 complex from the d

orbitals of a square-planar ML4 complex.
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+ =

2-86

The T-shaped ML3 fragment is thus characterized by the presence
of four low-energy d orbitals, instead of the five present in the trigonal-
planar geometry (§ 2.6.1). As a result, the stable complexes mentioned at
the beginning of this section, such as [Rh(PPh3)3]+ (2-82), are diamag-
netic and have a d8 electronic configuration, whereas the d10 complexes,
which are far more numerous, adopt a trigonal-planar geometry (§ 2.6.2).

2.8.3. ‘Butterfly’ ML4 complexes

In the ‘butterfly’ ML4 complex sketched in 2-74c, one of the L–M–L
angles is 180◦, where the two bonds form the body of the butter-
fly. The angle between the other two bonds, which form the (folded)
wings of the butterfly, is much smaller. More generally, ML4 fragments
are described as ‘butterfly’ when they have C2v symmetry, which only
implies the existence of two planes of symmetry and a C2-axis (2-87). It
is therefore possible for the two angles mentioned to have very variable
values, so long as they are not equal (the symmetry would then be D2d,
as for the intermediate points along the deformation shown in 2-53).
This ML4 structure, adopted by some complexes such as [Fe(CO)4] or
[Ir(H)2(P(tBu)2Ph)]+ (2-88), can also be regarded as a fragment in the
analysis of the electronic structure of other species, such as the carbene
complex [Fe(CO)4(CR2)] (2-89) or the bimetallic complex [Fe2(CO)8]
(2-90).
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A butterfly ML4 fragment can be obtained by the removal of two
cis ligands in an octahedral complex (L5 and L6 in 2-91). The L1–M–L2

and L3–M–L4 angles are then 90◦ and 180◦, respectively. The d orbitals
that we shall establish are adapted to this particular geometry, so some
changes may be anticipated if these angles have different values (see, for
example, Exercise 2.9).
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2-91

We have already established the d orbitals of an octahedral complex
in the orientation chosen above, with four ligands placed along the
bisectors of the x- and y-axes (§ 2.1.2.5, Figure 2.4); they are shown in
the left-hand side of Figure 2.15.

Removal of the ligands L5 and L6 has no effect on either the shape
or the energy of the three nonbonding t2g orbitals of the octahedron
(zero coefficients on these ligands). These orbitals (a2(xz), b1(yz), and
1a1(x2−y2)) therefore remain degenerate, not, as in the octahedron, by
symmetry, but ‘accidentally’ in the lower-symmetry point group C2v . In
the eg block, the z2 orbital is only very slightly stabilized by the removal
of the two weak antibonding interactions in the xy plane. It therefore
stays as a strongly antibonding orbital (3a1). In contrast, the xy orbital
is strongly stabilized by the removal of two of the four antibonding
interactions with the ligands located in the xy plane (b2).13This stabiliz-

13 In the character table for the C2v group
(Chapter 6, § 6.2.5.1), one does indeed find
that the symmetries of the xy, xz, and yz

orbitals are a2, b1, and b2. However, the name
of the orbital in a given symmetry is not the
same as that we have just indicated. For
example, xy is placed in the a2 representation
whereas we indicated that it has b2 symmetry.
These differences arise because the axis
system previously used for the octahedron is
not the one conventionally adopted for the
C2v group. For example, the C2 axis should be
the z-axis, rather than the y-axis. In other
words, the orbitals sketched on the right-hand
side of Figure 2.15 do indeed correspond to
the symmetries indicated, and only their
names would be changed if one adopted the
axis system appropriate for the C2v group.

ation is enhanced by mixing with the px orbital, which polarizes it in

Figure 2.15. Derivation of the d-block orbitals
for a ‘butterfly’ ML4 complex from the d

orbitals of an octahedral ML6 complex. The
hybrid s–p orbital (2a1) placed between the b2
and 3a1 orbitals of the d block is also indicated.

M M

t
2g

e
g

b
2

a
2

3a
1

b
1

1a
1

2a
1





Other complexes or MLn fragments

the direction opposite to the ligands L1 and L2, in a way which we have
already seen several times (2-92).

+ =

2-92

There are therefore four nonbonding or weakly antibonding d orbit-
als. If these orbitals are doubly occupied, the result, taking the four bonds
into account, will be a 16-electron complex. As in the examples that we
have already met, this result is linked to the existence of a nonbonding
orbital on the metal which is not of d type. In the ML4 butterfly complex,
this is an s–p hybrid orbital of a1 symmetry (2-93) which points along the
C2 symmetry axis of the complex, that is, between the two ligands which
were removed in the original octahedral complex. Its energy, which is
not very high due to the participation of the s orbital, is lower than that
of the most antibonding orbital in the d block, as shown in Figure 2.15.

2-93

2.8.4. Bent ML2 complexes

ML2 complexes usually adopt a linear (or essentially linear) geo-
metry (see § 2.7). Knowledge of the orbital structure for strongly
bent ML2 species is therefore useful mainly when one wishes to
consider them as fragments in larger complexes. For example, the [(η2-
ethylene)Ni(PR3)2] complex (2-94) can be described in terms of a bent
ML2 entity interacting with a molecule of ethylene.

Ni

R3P

R3P

2-94
Starting from the butterfly ML4 fragment previously studied, a bent

ML2 fragment may be obtained by removing the ligands L3 and L4 (2-95).

MM

L3

L4

L1

L2

L1

L2

z

x
y

2-95

The d orbitals of this fragment are readily obtained from those of
the ML4 fragment (Figure 2.16). The shape and energy of the three
nonbonding orbitals (a2, b1, and 1a1), and of the antibonding b2 orbital,
are all unchanged (zero coefficients on L3 and L4). However, the two
main antibonding interactions in the z2 orbital are eliminated, so that
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Figure 2.16. Derivation of the d-block orbitals
for a bent ML2 complex from the d orbitals of
a ‘butterfly’ ML4 complex. The hybrid s–p

orbital (2a1) and the metal p orbital (lying
above the d block) are also indicated.
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this orbital becomes nearly nonbonding (2a1). The five orbitals in the d
block are therefore nonbonding or weakly antibonding. Once the four
electrons associated with the two M–L bonds are taken into account, a
d10 electronic configuration leads to a 14-electron complex.

This lack of four electrons compared to the 18-electron rule arises
because there are two nonbonding orbitals on the metal, which are not
of d-type (2-96). The first is an s–p hybrid orbital (3a1), identical to that
found for the ‘butterfly’ ML4 fragment (Figure 2.16, 2a1 → 3a1). The
second is the p orbital perpendicular to the plane of the fragment (2b1),
which is strictly nonbonding. It is higher in energy than the 3a1 orbital,
mainly because the s contribution in this latter hybrid orbital lowers its
energy (εs < εp). Notice that these two orbitals have the same shape
as the two nonbonding MO in bent AH2 molecules, where A is a main-
group element (Chapter 1, Figure 1.5), and that their energetic order is
the same (ε(a1) < ε(b1)).

a1 b1

2-96 2.8.5. ML complexes

A coordination number of 1 is rare for stable complexes. The examples
that are known involve a very bulky ligand such as the aryl radical,
2, 4, 6−Ph3C6H2, which forms d10 ML complexes with copper and silver
(2-97). The M–L unit can also be considered as a fragment in a complex
with a higher coordination number, such as W–CO in the complex
[(η2-acetylene)3W(CO)] (2-98).

Cu

2-97

W

CO

2-98

The orbitals of this fragment can be obtained in different ways, for
example, by removing a ligand from a linear ML2 complex (2-99) whose
orbitals have already been derived (§ 2.7.1).

The four strictly nonbonding d orbitals of the ML2 complex (πg and
δg ) remain unchanged. The z2 orbital is stabilized by the elimination of
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L1

L2

L1
x

y
z

M M

2-99

Figure 2.17. Derivation of the d-block orbitals
for an ML complex from the d orbitals of a
linear ML2 complex. The nonbonding orbitals
(s–p hybrid and pure p), located above the d
block, are also shown (2σ and 2π ).
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an antibonding interaction (Figure 2.17). This stabilization is increased
by mixing with the pz orbital which polarizes z2 in the direction opposite
to the ligand (as happens for the z2 orbital in an ML5 complex (SBP),
2-44). Notice that the removal of the inversion centre (D∞h → C∞v)
leads to the disappearance of the g and u subscripts in the symmetry
labels (Chapter 6, § 6.2.5.2).

The d block of the M–L fragment therefore contains five low-energy
orbitals that are all likely to be occupied. The rare stable complexes do
indeed have a d10 electronic configuration (2-97). They are therefore
12-electron complexes with three empty nonbonding orbitals on the
metal, an s–p hybrid orbital (σ symmetry) and two pure p orbitals of π

symmetry that are higher in energy (2-100).

LLL

� �

2-100

Exercises

2.1

1. Give the dn electronic configuration of [M(H2O)6]2+ octahedral
complexes from the first transition series (M=Sc, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn).
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2. If these are high-spin complexes, give their ground-state electronic
configuration (just for the d block).

3. How many unpaired electrons are there in each case?

2.2

1. Give the dn electronic configuration of the complex [Cr(CO)6].
2. Is this a high-spin or a low-spin complex? Deduce its ground-state

electronic configuration (just for the d block).
3. Reduction of this complex leads to dissociation into [Cr(CO)5]−

and CO, rather than to the formation of [Cr(CO)6]− . Suggest an
explanation.

2.3

Making use of the results given in Figure 2.3, give the approximate
shapes and relative energies of the bonding MO for an octahedral
complex whose ligands are located as shown in 2-29.

2.4

Give the shapes and relative energies of the d-block MO for a square-
planar ML4 complex whose ligands are located on the bisectors of
the x- and y-axes.

2.5

1. How many electrons are there around the metal in the
[Rh(PPh3)3]+ complex whose geometry is given in 2-82?

2. Link this result to the existence of nonbonding MO, lying above the
d block, in a ‘T-shaped’ ML3 complex (see Figure 2.14, right-hand
side, for this d block).

3. Give the shapes of these MO.

2.6

1. Construct the d-orbital correlation diagram linking a square-
planar (θ = 90◦) to a pyramidal ML4 complex (θ = 125.5◦,
nodal cone angle for the z2 orbital).

x
y

z

θ = 90° θ = 125°

z z

2. What happens to the shape and the energy of the nonbonding
metal orbital that is not a d orbital?





Exercises

Apical and basal bonds in ML5 complexes (SBP)

2.7

1. Give the shapes and relative energies of the five d-block orbitals
for an ML5 complex with an SBP geometry, if the metal is in the
basal plane.

z

x
y

M LbLb

La

Lb

Lb

In what follows, we shall only consider this geometry, even if
the metal in some cases is above the basal plane.

2. In these complexes, we distinguish the basal ligands (Lb) from the
apical one (La). Starting from the knowledge that the M–La bond
is either a little shorter than or roughly equal in length to the
M–Lb bonds for low-spin d6 complexes, rationalize the following
experimental results for the different electronic configurations:

(a) In the low-spin complex [Co(CN)5]3−, on the other hand, we
find Co–(CN)a = 2.01 Å but Co–(CN)b = 1.90 Å.

(b) This trend is reinforced in the low-spin complex [Ni(CN)5]3−,
where Ni–(CN)a = 2.17 Å but Ni−(CN)b = 1.85 Å.

3. Which is the longer bond (Mn–Cla or Mn–Clb) in the high-spin

complex [MnCl5]2−?
4. What differences may be anticipated between a low-spin and a

high-spin d8 complex?

Bond lengths in d8–ML4 complexes

2.8

1. Indicate the splitting of the d block in an ML4 complex whose
geometry is

(i) square-planar;
(ii) tetrahedral.

2. What is the most stable electronic configuration for a d8 complex
in each geometry?

3. It is observed experimentally that typical metal–ligand bond
lengths for d8 complexes are larger in tetrahedral complexes (see
table below: units are Å).

Square-planar Tetrahedral

Ni–P 2.14 2.28

Ni–S 2.15 2.28

Ni–Br 2.30 2.36

Suggest a rationalization.
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2.9

1. Derive the d-block orbitals for a butterfly ML4 complex from those
of a TBP ML5 complex.

M120°
x

y
z

L3

L4

L5

L1

L2
M

L3

L4

L1

L2

2. Are these different from the orbitals derived in § 2.8.3 starting from
an octahedral complex (consider only the four lowest-energy d

orbitals)?

2.10

Derive the d orbitals for the bent ML2 fragment from those of a
square-planar ML4 complex. Compare them with those obtained in
§ 2.8.4.

Use of group theory

2.11

1. Construct all the MO of a tetrahedral complex, making use of
symmetry-adapted combinations of ligand orbitals and the data in
the character table for the Td group (Chapter 6, § 6.6.2), following
the procedure adopted in Figure 2.2 for an octahedral complex.

2. Indicate the orbitals associated with the σ bonds, the d-block
orbitals, and the σ ∗ antibonding orbitals.

2.12

Repeat the questions in 2.11 for a trigonal-planar ML3 complex (use
the data in Chapter 6, § 6.6.3).

Orbital polarization (Appendix A)

2.13

1. In a square-planar ML4 complex, which metal orbital of s or p type
can polarize the z2 orbital in the d block?

2. What are the consequences of this polarization for the shape of
the orbital and for the metal–ligand interactions?
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Appendix A: polarization of the d orbitals

In many complexes, some of the antibonding orbitals in the d
block are polarized by mixing, either with a p orbital or with the
s orbital of the metal (e.g. see 2-64 and 2-65 for d–p mixing and
2-71 for d–s mixing). The purpose of this appendix is to study the
orbital interaction scheme that produces these polarizations in greater
detail.

When an orbital in the d block results simply from the antibonding
interaction between a metal d orbital and an orbital of the same sym-
metry located on the ligands (ℓ) (two-orbital interaction scheme, 2.A1), the
d orbital is not polarized. However, polarization does occur if there is a
p (or s) orbital on the metal that has the same symmetry as the d and
l orbitals, which leads to a three-orbital interaction scheme (2.A2). In this
case, while the d and p (or s) orbitals are of course orthogonal (S = 0),
since they are located on the same atom, the overlaps between the l

orbital on the ligands and each of the metal orbitals are non-zero (Sl−d

and Sl−p, 2.A2).S
l–d l

d

2.A1

Sl–p

Sl–d l

d

p

S = 0

2.A2

2.A1. Three-orbital interaction diagram

We consider the case where two orbitals on the metal, for example,
d and p, have the same symmetry as an orbital l on the ligands. In
the interaction diagram (Figure 2.A1), the latter is placed at lower
energy than the metal orbitals, due to the greater electronegativity
of the ligands. The interaction between these three atomic orbit-
als leads to the formation of three MO (φ1, φ2, and φ3). When
we consider their energies, φ1 is lower than l and φ3 higher than
p. The orbital φ2 ends up at an intermediate energy level, a little
higher than the d orbital with this combination of initial orbital
energies.14

14 Y. Jean and F. Volatron ‘An Introduction to

Molecular Orbitals’, Oxford University Press,
NY (1993), chapter 6.

l

d

p

�3

�2

�1

Figure 2.A1. Three-orbital interaction
diagram, with two on the metal (d and p) and
one on the ligands (l).

Each MO is a linear combination of the three orbitals l, d, and p.
When we examine their shapes, we find that the interactions between l

and d, and between l and p, are both bonding in the lowest-energy MO
φ1 and both antibonding in the highest-energy MO φ3. In the orbital φ2,
there is an antibonding overlap (l − d) but also a bonding overlap (l − p)
(2.A3).

S > 0 S > 0

S < 0

S < 0

S < 0S > 0

�1 �2 �3

d

p

l

d

p

l

d

p

l

2.A3
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2.A2. Polarization by a p orbital: TBP ML5 complexes

The d block of an ML5 complex with a TBP geometry contains two
strictly nonbonding orbitals with e′′ symmetry (xz, yz), one strongly
antibonding orbital with a1 symmetry (z2), and two weakly antibonding
orbitals with e′ symmetry (xy, x2−y2) (see § 2.5.1, Figure 2.10). We shall
examine these last two in greater detail.

In the D3h point group appropriate for this complex, the px and py

orbitals have the same symmetry (e′) as xy and x2−y2 (see Table 2.3,
§ 2.5.1). Two combinations of orbitals on the equatorial ligands, lx and
ly, also have this symmetry (Chapter 6, § 6.6.4.2). These six orbitals are
shown in Figure 2.A2, where the plane of the page is the equatorial
plane (xy).15 Notice that it is possible to separate each pair of degenerate

15 The analysis that follows is also
applicable to ML3 complexes with a
trigonal-planar geometry. orbitals into an e′

x component, which is antisymmetric with respect to
the yz plane, and an e′

y component which is symmetric with respect
to this plane. The first group includes the xy, px , and lx orbitals, while
the x2−y2, py, and ly orbitals belong to the second. No interaction is
possible between orbitals that belong to different groups, since they
have different symmetry properties with respect to the yz plane.

Figure 2.A2. Fragment orbitals (metal or
ligands) with e’ symmetry in a TBP ML5
complex. The equatorial ligands are in the
plane of the page (xy), and the axial ligands are
omitted for greater clarity.

x
xy (e�x) px (e�x)

py (e�y) ly (e�y)

lx (e�x)

x2–y2 (e�y)

y

The interactions between orbitals with e′ symmetry therefore give
two equivalent blocks, one involving the three e′

x orbitals, the other the
three e′

y orbitals (Figure 2.A3). The MO 1e′
x , 2e′

x , and 3e′
x , are in the first,

and 1e′
y, 2e′

y, and 3e′
y are in the second.

Application of the rules presented in § 2.A1 leads to the following
orbital combinations in the 1e′

x (2.A4), 2e′
x (2.A5), and 3e′

x (2.A6) MO.
The 1e′

x orbital (2.A4) belongs to the group of bonding MO in the
ML5 complex, characterized by (i) bonding metal–ligand interactions,
reinforced here by the polarization of the d orbital; (ii) a lower energy
than that of the ligand orbitals; and (iii) larger coefficients on the lig-
ands than on the metal. This orbital does not belong to the d block of
the complex. The 3e′

x orbital (2.A6) is one of the antibonding MO in
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Figure 2.A3. Interaction diagram for orbitals
with e′ symmetry in a TBP ML5 complex.

(lx, ly)

(xy, x2–y2)

(px, py)

3e�x, 3e�y

2e�x, 2e�y

le�x, le�y

the complex, and the d–p mixing in the metal reinforces its antibond-
ing character. This is the highest-energy MO (Figure 2.A3); it is more
concentrated on the px metal orbital than on xy and is also not part of
the d block. Among the three MO that we are considering, the one that
belongs to the d block is therefore the one with intermediate energy, 2e′

x

(2.A5), since it is mainly concentrated on the initial orbital with inter-
mediate energy, xy. The contribution of the px orbital to this MO leads
to its overlap with the ligand lx orbital being bonding (a result that we
had always assumed in Chapter 2). As a result, the xy orbital is polarized
in the direction opposite to the ligands, and its antibonding character is
reduced. A similar analysis of the interactions of the e′

y orbitals shows
that the second d-block orbital with e′ symmetry is the 2e′

y orbital, which
is degenerate with 2e′

x , and in which the ly ligand orbital mixes in an
antibonding way with x2−y2, but in a bonding way with py (2.A7).

S > 0

S > 0

+ =+

1e�x

2.A4

+ =+

2e�x

S > 0

S < 0

2.A5
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+ =+

3e�x

S < 0

S < 0

2.A6

2e�y
S < 0

S > 0

+ =+

2.A7

2.A3. Polarization by the s orbital: linear ML2 complexes

It is possible for a d orbital to have the same symmetry as the metal s

orbital. In particular, this happens for linear ML2 complexes, in which
both the z2 and the (higher-energy) s orbitals have σg symmetry. A three-
orbital interaction scheme is therefore appropriate for these two orbitals
and the ligand orbital l with the same symmetry (Figure 2.A4), giving
three MO, 1σg , 2σg , and 3σg .

As in the preceding example, mixing between z2 and s reinforces
the bonding character of the 1σg MO and the antibonding character
of the 3σg MO. The orbital with intermediate energy, 2σg , is the only
one of these three that belongs to the d block. In this orbital, there
is antibonding mixing between z2 and l, but mixing of bonding type
between s and l (2.A8). The s contribution decreases the amplitude of z2

along the z-axis but increases it in the xy plane. The polarization of the
z2 orbital therefore reduces the antibonding metal–ligand interactions.

Figure 2.A4. Fragment orbitals (metal and
ligands) with σg symmetry in a linear ML2
complex. z2 s l

z
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S < 0

S > 0

+ =+

polarized z2 (2�g)

2.A8

Without this polarization, the energy of a z2 orbital that is antibond-
ing with the ligands located on the z-axis is very high. Polarization of the
orbital in the xy plane, which does not contain any ligands, lowers its
energy sufficiently for it to be occupied in stable linear ML2 complexes
(d10 complexes, § 2.7.2).

2.A4. Polarization by the s orbital and by a p orbital: SBP
ML5 complexes

In some cases, it is possible for a d orbital to be polarized by the s orbital
and simultaneously by a p orbital. This happens, for example, to the
z2 orbital in ML5 complexes with an SBP geometry (§ 2.3.1.2). This
orbital does indeed have the same symmetry as the s and pz orbitals
(a1 in the C4v point group). The z2 orbital of the d block has antibonding
interactions with the ligands (z2 − l, 2.A9); the s and p contributions mix
in so that:

(1) the contribution from pz is bonding with the apical ligand (located
on the z-axis);.

(2) the contribution from s is bonding with the basal ligands (located in
a plane perpendicular to the z-axis) (2.A9).

++ =

z2– lpz s polarized z2

2.A9

Notice that we had simplified the problem in § 2.3.1.2, by only
considering mixing with the pz orbital. It is indeed this latter which is
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responsible for the polarization towards the vacant site of the octahed-
ron that is the most important feature of the z2 orbital in SBP ML5

complexes.

Appendix B: orbital energies

When deriving the d block associated with different ligand fields, we
obtained nonbonding, ‘weakly’ antibonding, or ‘strongly’ antibonding
orbitals. These ideas can be made more precise by undertaking calcu-
lations which yield numerical values for orbital energies. We have used
the extended Hückel method for model complexes of the MHn type,
the MHn distance being fixed at 1.7 Å. The values obtained are given in
eV; while they should only be considered as indications, they can help to
give an idea of the energy-level splittings with respect to the initial non-
bonding level (εd) in the main ligand fields. Information on the shapes
of the orbitals may be obtained from the figures indicated in Chapter 2.

Cr

–6.02

–11.22t2g

eg

Cr

–11.22(b2, e)

–6.02b1

–9.41a1

Octahedral complex CrH6 SBP complex CrH5

εd(Cr) = −11.22 eV (metal in the basal plane)
(see Figure 2.3) εd(Cr) = −11.22 eV

(see Figure 2.7)

Ni

–12.99(b2g, eg)

–8.60b1g

–12.62a1g

Ni

–12.99e

–11.48t2

Square-planar complex NiH4 Tetrahedral complex NiH4

εd(Ni) = −12.99 eV εd(Ni) = −12.99 eV
(see Figure 2.6) (see Figure 2.9)
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Fe

� = 105°
e

a1

b2 –12.70
–12.14

–10.77

Fe
–12.70e�

–11.26e�

a1 –7.06

SBP complex FeH5 TBP complex FeH5

(metal out of the basal plane) εd(Fe) = −12.70 eV
εd(Fe) = −12.70 eV (see Figure 2.10)
(see Figure 2.8)

Fe

–12.70(a2, b1, 1a1)

–10.57b2

2a1 –9.32

90° Cu
–14.00e�

–12.71e�

a1 –13.83

‘Butterfly’ complex FeH4 Trigonal-planar complex CuH3

εd(Fe) = −12.70 eV εd(Cu) = −14.00 eV
(see Figure 2.15) (see Figure 2.11)

Fe

–12.70

–9.73

(a2, b1, b2)

2a1

Cu
–14.00

–13.44�g

(�g, �g)

1a1 –12.34

‘T-shaped’ complex FeH3 Linear complex CuH2

εd(Fe) = −12.70 eV εd(Cu) = −14.00 eV
(see Figure 2.14) (see Figure 2.12)
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π -type interactions

In the preceding chapter, we derived the structure of the d block for
several different MLn complexes in which the ligands were assumed to
use only a single orbital to form the metal–ligand bond. This orbital
was either nonbonding or essentially so, and oriented towards the metal
centre. Since the overlap between this ligand orbital and a d orbital on
the metal is of the axial type, their interaction leads to the formation
of a molecular orbital (MO) which characterizes a σ bond. As we have
already seen in Chapter 1 (§ 1.5.2), some ligands have another orbital
(or even two) that can in principle contribute to the bonding with the
metal. The orientation of this orbital is usually perpendicular to the axis
defined by the σ bond, so the resulting overlap with a d orbital on the
metal is lateral, and the interaction of π type. Two examples are shown
below (3-1), in which the ligand orbitals are pure p atomic orbitals.

3-1

Among the ligands that can in principle have a π interaction with a
metal centre, it is important to distinguish two types, depending on the
electronic occupation of the orbital that is concerned on the ligand:

• if it is doubly occupied, the ligand is said to be a π -donor
• if it is empty, then the ligand is a π -acceptor.

This nomenclature is of course linked to the capacity of the ligand to
give or receive electrons through the π interaction with the metal.

Comment

The notation ‘π ’ that is used here is almost never strictly correct according

to group theory, where it reserved for doubly degenerate orbitals in linear

molecules (Chapter 6). It is, however, widely used to refer to local symmetry;

the expression ‘π interaction’ is used when the two orbitals share a common

nodal plane and have lateral overlap (3-1).

The examples treated in this chapter involve octahedral complexes.
However, the procedure we have used is general and can be applied to
all ligand fields. Several illustrations may be found in the exercises at the
end of the chapter.





π -type interactions

3.1. π -donor ligands: general properties

3.1.1. The nature of the π orbital on the ligand

A π -type orbital on a ligand can be doubly occupied only if it is
sufficiently low in energy. We may therefore be concerned with:

1. A nonbonding p orbital on a very electronegative atom. Although
nonbonding, this orbital is very low in energy and characterizes a
lone pair on the atom linked to the metal. For example, consider the
p lone pair on the nitrogen atom of an amido group that can interact
with one of the metal d orbitals (Scheme 3-2 where the geometry
around nitrogen is assumed to be planar).

lone pair

M N
H

H

H

H

3-2

2. A bonding orbital that characterizes a π bond between two atoms of
the ligand, as in the case of the imino ligand (3-3) with the doubly
occupied πNC orbital. Notice that a π -bonding orbital on the ligand
is automatically accompanied by the corresponding π∗-antibonding
orbital. A ligand of this type can therefore act simultaneously as a
π -donor, with its bonding orbital, and as a π -acceptor, thanks to
its empty π∗ orbital. It is categorized as a π -donor if the former
interaction is dominant. A heteronuclear bond provides a favourable
case, if, as in the imino ligand (3-3), the more electronegative atom
is bonded to the metal. The π orbital in such cases is mainly concen-
trated on the atom bonded to the metal (large overlap), whereas the
π∗ orbital is mainly concentrated on the more distant centre (small
overlap, see Chapter 1, § 1.3.2).

� bond

M N

C

H

H

H

H

H

H

3-3





π -donor ligands: general properties

3.1.2. ‘Single-face’ and ‘double-face’ π -donors

Some ligands possess a single nonbonding doubly occupied p orbital,
such as the amino ligand (3-2), or a single π -bonding orbital near to
the metal centre, such as the imino ligand (3-3). These are said to be
‘single-face’ π -donors.

� lone pair

p lone pairs

M M

M

M X

3-4

Other ligands, however, possess two orbitals of this type, in perpen-
dicular planes: these are ‘double-face’ π -donors. The halogens are the
most common example (F, Cl, Br, I). These are X-type ligands, with
seven valence electrons. Formation of the σ bond involves the unpaired
electron on the halogen and a metal electron; as a result, the oxidation
state of the metal is increased by one (Chapter 1, § 1.1.1.2). There are
therefore three lone pairs which remain on the halogen bonded to the
metal (Chapter 1, § 1.5.2.3): a σ -type lone pair for which the M–X inter-
nuclear axis is a symmetry axis, and two lone pairs characterized by
nonbonding p orbitals which ‘point’ perpendicular to the internuclear
axis (more strictly, their axes of revolution are perpendicular to this axis,
3-4). Due to its symmetry, the σ lone pair cannot participate in a π -type
interaction.1 However, the p lone pairs interact with the metal d orbit-

1 The polarization of this orbital, in the
direction opposite to the metal, significantly
weakens its σ -type overlap with the orbitals of
the same symmetry on the metal. This orbital
therefore has a negligible influence on the
shapes and energies of the MO of the
complex, as it remains localized on the ligand.

als through two π -type interactions which take place in perpendicular
planes (3-5). Thus, a halogen linked to a metal centre is a ‘double-face’
π -donor.

M X

M X

3-5

Analogous interactions occur when the p orbitals are replaced by two
π -bonding orbitals. This is the case when a ligand with a triple bond (one
σ and two π ) binds to the metal in the η1 mode, as shown in 3-6 for
the nitrile ligand. As we have already noted for ‘single-face’ π donors,
the π -donor character of the ligand increases as the orbital coeffi-
cient becomes larger on the atom bound to the metal. This therefore
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requires the more electronegative atom to be bound to the metal in the
η1 mode.

H

H

M

M

H

H

N

N

C

C
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3.1.3. Perturbation of the d orbitals: the general
interaction diagram

We now wish to discover how the orbitals of the d block that we have
previously obtained, by analysing only the σ interactions (Chapter 2), are
modified by the presence of a π donor. These MO, either nonbonding or
antibonding, are mainly concentrated on the d orbitals of the metal, as
this is a rather electropositive element. The orbital involved on a π -donor
ligand characterizes either a lone pair located on a very electronegative
centre, or a π bond. In all cases, the p or π orbitals of a π -donor ligand are

lower in energy than the d-block orbitals obtained by considering only the
σ interactions.

This relative position of the orbital energies has important con-
sequences for the way in which the d block is perturbed by interaction
with a π donor. We shall consider the simplest case, where a non-
bonding doubly occupied ligand p orbital interacts with a nonbonding
metal d orbital that is assumed to be empty (Figure 3.1). Due to the
relative energies of the interacting orbitals, their bonding combination
is mainly concentrated on the ligand, whereas the largest coefficient
in the antibonding combination is on the metal. Which of these two
orbitals is the one that we shall consider a member of the d block?
To make our choice, we use the same criterion as that previously adop-
ted when examining σ -type interactions (see, for example, Chapter 2,

Figure 3.1. Sketch of the interaction between
the doubly occupied orbital on a π -donor
ligand (X) and an empty d orbital on the metal
centre.
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M
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§ 2.1.2.4): it is the molecular orbital that is mainly concentrated on the
metal d orbital, that is, the antibonding combination of the interacting
orbitals. The bonding molecular orbital, as we have seen, is mainly
concentrated on the ligand.

Rule: the π interaction between a d-block orbital and the orbital of a π

donor leads to a destabilization of the d-block orbital, by mixing with the
ligand orbital in an antibonding sense.

Figure 3.1 also enables us to obtain further insight into the concept
of a π -donor ligand. Before the interaction, the d orbital on the metal is
empty but the p orbital localized on the π donor contains two electrons.
After the interaction, these electrons occupy the bonding molecular
orbital which is partially delocalized onto the metal. This delocalization
of the occupied MO on to the two centres results in a partial electron
transfer from the ligand to the metal centre, a result which is quite con-
sistent with the label of π donor attached to the ligand. The interaction
is stabilizing, since it involves two electrons (Chapter 1 § 1.3.2).

However, the d orbital on the metal centre is not necessarily always
empty. In fact, the occupation of this orbital depends on the dn electronic
configuration of the complex, and it is quite possible for it to be doubly
occupied. In that case, the π interaction is destabilizing on balance,
since it involves four electrons, and moreover the electron transfer from
the ligand to the metal in the bonding MO is now compensated by
electron transfer from the metal to the ligand in the antibonding MO
(3-7): overall, there is no longer any electron transfer between the two
centres.

e– e–

3-7

In this case, therefore, the ligand can no longer play the role of a
π donor, since there is now no empty d orbital on the metal into which
some of its electron density can be transferred. However, this ligand
is still described as a π donor, to indicate that it possesses at least one
π -type orbital that is capable of electron transfer to a metal centre, so
long as the latter can act as an acceptor. Notice that the rule given above
about the consequences of the interaction with a π -donor ligand on the
d block is valid for any dn electronic configuration of the complex: since
the ligand orbital is at lower energy than the d orbital with which it
interacts, the new d orbital, whether it is empty or occupied, is always
destabilized by an antibonding interaction with the ligand π orbital.

3.1.4. A first example: the octahedral complex [ML5Cl]

Consider an octahedral complex with one Cl ligand (or any other
halogen) which is a double-face π -donor (§ 3.1.2) (3-8); the five other
ligands only have σ interactions with the metal.

M

Cl

LL

L

L

L

3-8
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In order to construct the d block of this complex, we start from the
orbitals that were obtained by only considering σ interactions, then we
perturb them by introducing the π interactions. The d block derived
from these σ interactions will be assumed identical to that already
established for a fully octahedral complex (ML6), that is, split into two
degenerate groups (t2g and eg , Chapter 2, § 2.1.2.4). This is of course a
simplification, since in an [ML5Cl] complex, the σ interaction created
by one of the L ligands is different from that involving the Cl.2

2 In particular, the orbitals derived from
the eg block of the regular octahedron, where
we find the antibonding σ -type interactions
with the ligands, are no longer degenerate in
the lower-symmetry complex [ML5Cl].

3.1.4.1. Perturbation of the d block

By examining the symmetry properties of the d orbitals of the regular
octahedron as well as those of the π donor, we can predict which ones
will be perturbed by the π interactions. In the case of the [ML5Cl]
complex (3-8), it is convenient to use the symmetry planes xz (P1) and
yz (P2) (3-9).

P1

P2

M
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L

L

L

z

x
y
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The xy orbital is antisymmetric with respect to the two planes (AA),
xz is symmetric with respect to P1 but antisymmetric with respect to
P2 (SA), while yz is antisymmetric with respect to P1 but symmetric
with respect to P2 (AS). The antibonding orbitals, x2−y2 and z2, are
symmetric with respect to both planes (SS). On the chlorine atom, the
lone pairs (px and py) have SA and AS symmetries, respectively (3-10).

xy yzxz x2–y2 z2

AA SA AS SS SS

px (Cl)

SA

py (Cl)

AS

3-10

We can now construct the interaction diagram between the orbitals
of the d block and those of the π -donor ligand (Figure 3.2), by combining
orbitals with the same symmetry, px with xz, and py with yz.
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Figure 3.2. Interaction diagram showing the
perturbation of the d block of an octahedral
complex (σ interactions only, left-hand side)
by the two orbitals of a double-face π -donor
ligand (Cl, for example, right-hand side). The
electronic occupation shown corresponds to a
d0 electronic configuration.

 new d block
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These two interactions are equivalent in the sense that they involve
orbitals that are related by a rotation of 90◦: xz and yz on the one
hand, px and py on the other. They therefore lead to the formation of
two degenerate bonding MO and two antibonding MO that are also
degenerate. As we showed in § 3.1.3, the antibonding MO (xz − λpx

and yz − λpy, mainly concentrated on the metal (λ < 1)),3 are the3 These expressions are not normalized.

ones which belong to the d block of the [ML5Cl] complex. The presence
of a chloride ligand therefore lifts the degeneracy of the three initial
orbitals in the t2g block of the octahedron, destabilizing two of them
while leaving the third unchanged.

The two remaining orbitals in the d block (x2−y2 and z2) are identical
to the initial MO derived by considering only the σ interactions, since,
by symmetry, they are not involved in the π interactions.4 The two4 Notice that in the point group of this

complex (C4v ), the degenerate MO have
e symmetry, while xy, x2−y2, and z2 have b2,
b1, and a1 symmetries, respectively.

lowest-energy MO (px + λxz and py + λyz) are mainly localized on
the chlorine and characterize the two p lone pairs that are stabilized
by a bonding interaction with the d orbitals of the same symmetry.
The occupation of the d block naturally depends on the exact nature of
the [ML5Cl] complex; Figure 3.2 corresponds to a complex with a d0

electronic configuration.

3.1.4.2. The influence of the electronic configuration on the
π -donor character of the Cl ligand

The interaction scheme given in Figure 3.2 does not depend on the
dn electronic configuration of the [ML5Cl] complex: starting from the
d block of the octahedron, two of the three nonbonding orbitals will
always be destabilized while the three other orbitals are unaffected.
However, the electron transfer resulting from the π interactions does
depend on the electronic occupation of the d block.
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In a d0 complex (Figure 3.2), the two lone pairs px and py are partially
delocalized on to the metal after the interaction (bonding MO px + λxz

and py + λyz), and each interaction results in some electron transfer
from the ligand to the metal. Since all the other orbitals are empty,
there is no transfer in the opposite sense: in an [ML5Cl] complex with
a d0 electronic configuration, the chloride does indeed play the role
of a double-face π -donor. A d2 complex behaves in the same way: the
two electrons in the d block occupy the nonbonding xy orbital after the
interaction, and therefore remain completely localized on the metal.

For the d3–d6 electronic configurations, the xz and yz orbitals, which
were nonbonding before the interaction, are progressively filled, leading
to some electron transfer in the opposite direction, from the metal to
the ligand. So these orbitals, which were localized on the metal, become
partially delocalized onto the chloride ligand after the π interaction
(antibonding MO xz − λpx and yz − λpy). In the limiting case of a
low-spin d6 complex, in which the three lowest d levels are all doubly
occupied, the π interactions no longer lead to any electron transfer from
the chloride ligand to the metal. The Cl → metal transfers in the bonding
MO px + λxz and py + λyz are balanced by the metal → Cl transfers in
the antibonding MO xz −λpx and yz −λpy. In other words, the metal in
the d6 electronic configuration has no empty orbital available to accept
the π electrons of the chloride ligand. Thus, the only consequence of
the presence of a double-face π -donor ligand is the destabilization of
two of the three nonbonding levels in the octahedron.

3.2. π -acceptor ligands: general properties

3.2.1. The nature of the π orbital on the ligand

π -acceptor ligands are characterized by the existence of at least one
empty orbital that can have a π interaction with a d orbital on the metal.
If this orbital is empty, it must be fairly high in energy. It may be:

1. A p orbital on a fairly electropositive atom, such as the boron p orbital
in boryl complexes or the carbon p orbital in carbene complexes55 In this description, the carbene is

considered as an L ligand, with two electrons
in the 2a1 orbital but where the p orbital of b1
symmetry is empty (see Figure 1.5, Chapter 1,
for the MO of a bent AH2 species). In some
cases, it can also be described as an X2 ligand,
with one electron in each of the a1 and b1
orbitals (see Chapter 4, § 4.3).

(3-11).
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2. A π∗ antibonding orbital associated with a π bond between two
atoms of the ligand. This orbital is therefore delocalized onto two
centres, but its overlap with the metal d orbital is large if it is mainly
concentrated on the atom that is bonded to the metal. This is what
happens when the metal is less electronegative than the second centre
involved in the double bond (Chapter 1, § 1.2.2), as is the case, for
example, for the formyl ligand HC=O (3-12).

�∗ orbital

C

H

O

H

M
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3.2.2. ‘Single-face’ and ‘double-face’ π -acceptors

As for π -donor ligands, we distinguish π -acceptor ligands which possess
a single empty p or π∗ orbital (single-face acceptors) from those which
have two, pointing in two perpendicular directions (double-face accept-
ors). The boryl, carbene (3-11), and formyl (3-12) ligands, for example,
are all in the first category.

Among double-face π -acceptors, we may cite the B−H ligand, with
its two nonbonding empty p orbitals (Chapter 1, § 1.5.2.2). There is
another which is particularly important in organometallic chemistry, the
carbonyl ligand, C≡O, which we shall study in this section. The principal
molecular orbitals of CO that are involved in the interaction with a
metal centre are shown in Figure 3.3 (see Chapter 1, § 1.5.2.4). They are
the three highest-energy occupied MO, the πCO bonding orbitals and
the nonbonding σC orbital that essentially characterizes the lone pair
on the carbon atom, and the two lowest-energy empty MO, the π∗

CO

antibonding orbitals. The πCO orbitals are mainly concentrated on the
oxygen, which is the more electronegative centre, and the π∗

CO orbitals

Figure 3.3. Electronic structure of the
carbonyl ligand (C≡O): the three highest
occupied and the two lowest unoccupied
orbitals.

�CO
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�CO
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C O
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on the carbon. The nonbonding σC orbital, which is the highest occupied
molecular orbital (HOMO) on the ligand, forms a σ bond with the
metal. As a result, the carbonyl ligand usually binds to a transition metal
in the η1 mode, with a linear M−C≡O arrangement that maximizes
the σ overlap. The π interactions, that involve both the πCO bonding
MO and the π∗

CO antibonding MO, are added to this σ interaction. This
example illustrates a problem posed by all the ligands with a double
or triple bond that are coordinated to the metal in the η1 mode (i.e.
through one of the atoms involved in the multiple bond): using their
occupied πorbital(s), they can act as a π donor, whereas their empty π∗

orbitals can allow them to act as a π acceptor. Depending on the relative
strength of these two interactions, the ligand can act overall either as a
π donor or as a π acceptor.

To analyse this probem in the case of the carbonyl ligand (see
Appendix C for more details), we consider a linear M−C≡O arrange-
ment and one of the d orbitals on M (yz, 3-13) that can interact with the
π system of the carbonyl ligand. It is easy to see that this d orbital has a
non-zero overlap with a pair of π and π∗ orbitals on CO, those that are
oriented parallel to the z-axis, leading to a three-orbital interaction. The
d ↔ π and d ↔ π∗ interactions (3-13), which involve orbitals with dif-
ferent energies, are proportional to S2/�ε (Chapter 1, § 1.3.2). They are

�CO
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∆��*
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therefore strengthened by a small orbital energy difference (�ε) and by
a large overlap (S). The overlap term clearly favours the interaction with
π∗

CO (S∗
π > Sπ , due to the relative sizes of the coefficients on carbon in

the π∗
CO and πCO MO). Moreover, it can be shown (see appendix) that the

d orbital is closer in energy to the antibonding orbital than to the bonding
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orbital (�ε∗
π < �επ , 3-13) for almost all the transition elements. In the

three-orbital interaction scheme shown in 3-13, both factors, overlap and
energy difference, therefore favour the d ↔ π∗ interaction. We may
therefore simplify the diagram, by neglecting the relatively weak interaction

(d ↔ π ) and retaining only the dominant interaction (d ↔ π∗). This latter
interaction, which involves an empty orbital on the carbonyl ligand,
therefore gives it π -acceptor character.

In this simplified model, we therefore consider that the π interac-
tions with the carbonyl ligand involve only the two π∗

CO orbitals; it is
thus a double-face π -acceptor (3-14).

3-14

3.2.3. Perturbation of the d orbitals: the general
interaction diagram

When the unoccupied orbital on the acceptor ligand is a π∗ antibonding
MO, its energy level is almost always higher than that of the nonbond-
ing or weakly antibonding orbitals in the d block.6 The same remark

6 This point is treated in detail in the
appendix for the carbonyl ligand.

may be made about a nonbonding p orbital on a very electropositive
centre, such as boron in boryl complexes (3-11). But the relative orbital
energies are less clear when the centre bearing the empty p orbital is
moderately electronegative, such as carbon in the carbene complexes
[LnM−CR2] (3-11). They then depend on the nature of the metal and
of the substituents on the carbene ligand (see Chapter 4, § 4.3). At this
stage of our analysis, we shall only consider the more common case
where the energy level of the p or π∗ orbitals on the π -acceptor ligand
is higher than that of the nonbonding or weakly antibonding orbitals in
the d block.

As an example, we consider a π -acceptor ligand whose nonbonding
p orbital interacts with a doubly occupied d orbital (Figure 3.4). Due
to the relative energies of the initial orbitals, the bonding combination
is mainly concentrated on the metal and the antibonding combination
on the ligand. As in the preceding examples, the new d-block orbital
is mainly concentrated on the metal, that is, in this case, the bonding

combination of the initial orbitals.

Rule: the π interaction between a d-block orbital and the orbital of a
π -acceptor ligand leads to a stabilization of the d-block orbital, by mixing
with the ligand orbital in a bonding sense.

Figure 3.4 shows the resulting π electron transfer involving the
ligand and the metal. Before the interaction, the two electrons were
localized in the metal d orbital. After the interaction, these electrons
occupy the bonding molecular orbital which is partially located on
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Figure 3.4. Sketch of the interaction between
a doubly occupied d orbital and the
unoccupied orbital of a π acceptor (X).
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the ligand. This delocalization is thus accompanied by some electron
transfer from the metal to the π -acceptor ligand.

3.2.4. A first example: the octahedral complex [ML5CO]

3.2.4.1. Interaction diagram

We consider an octahedral complex with one carbonyl ligand, a double-
face π -acceptor, and five other ligands that only have σ interactions with
the metal (3-15).
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To construct the d block of this complex, we shall follow the same
procedure as that used for a complex with a π donor (§ 3.1.4): we start
from the orbitals for an ideal octahedral ML6 complex in which there
are only σ interactions, then we perturb these orbitals by ‘switching on’
the π interactions with the carbonyl ligand.

� y  (CO)� x  (CO)

SA AS

* *

3-16

We have already established (see 3-10) the symmetries of the metal d

orbitals with respect to the planes of symmetry P1 and P2 (3-15): xy (AA),
xz (SA), yz (AS), x2−y2 and z2 (SS). Following the analysis developed in
§ 3.2.2, only the empty antibonding π∗

CO orbitals are treated. They are
oriented parallel to the x- and y-axes, and have SA and AS symmetries,
respectively (3-16).

We can now construct the diagram for the interaction between the
orbitals of the d block and the πCO orbitals on the carbonyl ligand
(Figure 3.5), by combining the π∗

x and xz orbitals, with SA symmetry,
and the π∗

y and yz orbitals, with AS symmetry. These are two equivalent
interactions, since they involve orbitals which are related by a rotation
of 90◦: (xz, yz) on the one hand and (π∗

x , π∗
y ) on the other. They

therefore lead to the formation of two degenerate bonding MO and
two antibonding MO that are also degenerate. As shown in § 3.2.3, the
bonding MO (xz+λπ∗

x and yz+λπ∗
y ), which are mainly concentrated on

the metal, are the orbitals which belong to the d block of the [ML5CO]
complex. The presence of a CO ligand therefore lifts the degeneracy of
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Figure 3.5. Interaction diagram showing the
perturbation of the d block of an octahedral
complex (left-hand side, σ interactions only)
by the two π∗

CO orbitals of a carbonyl ligand
(right-hand side). The electronic occupation
shown corresponds to a complex with a d6

electronic configuration.
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the three orbitals in the original t2g block of the octahedron, stabilizing
two of them but leaving the third (xy) unchanged. The two remaining
orbitals in the d block (x2−y2 and z2) are identical to the original MO
derived for σ interactions only, since they are not affected by the π

interactions. Finally, the two highest-energy MO (π∗
x −λxz and π∗

y −λyz)
are mainly concentrated on the carbonyl ligand. The occupation of the
d block clearly depends on the exact nature of the [ML5CO] complex;
Figure 3.5 corresponds to a complex with a d6 electronic configuration.
Before the interaction, the four electrons stabilized by the π interactions
occupied pure metal d orbitals (xz and yz). After the interaction, these
orbitals are partially delocalized onto the carbonyl ligand, showing the
π -acceptor character of this species.

Comment

The relative position of the σ -antibonding (x2−y2, z2) and the

π -antibonding (π∗
x − λxz and π∗

y − λyz) orbitals may be inverted with

respect to that shown in Figure 3.5. It depends among other things on the

energy gap between the nonbonding (xy, xz, and yz) and the antibonding

(x2−y2, z2) orbitals created by the σ interactions.

3.2.4.2. The metal–carbonyl bond: donation and
back-donation interactions

The σ bond between the carbonyl ligand and the metal centre is formed
by the σC orbital that characterizes the lone pair on the carbon atom
(Figure 3.3) and by a d orbital on the metal (z2 in the orientation shown





π -type interactions

in 3-15). This interaction, which leads to a transfer of electrons from the
ligand to the metal, is called the donation interaction (3-17a). The π inter-
actions described in Figure 3.5 produce a transfer of electrons in the
opposite direction, from the metal to the ligand. These are back-donation

interactions (3-17b). The carbonyl ligand is therefore simultaneously a
σ -donor and a π -acceptor.

C

e–

O

3-17a Donation

e–e–

3-17b Back donation

The π interactions reinforce the metal–carbon bond (bonding inter-
actions M−C) but weaken the CO bond (antibonding interactions C−O)
(3-17b). This electronic reorganization can be represented by the Lewis
structures shown in 3-18.

M C O M C O

3-18

Experimentally, the metal–carbon bond is observed to be substan-
tially shorter than the value that would be expected for a σ -only bond,
by some 0.2–0.3 Å. The result for the CO bond is less clear, as the dis-
tances measured for carbonyl complexes fall in the very narrow range
of 1.14–1.15 Å. These values are only slightly longer than that found
for the free ligand (1.13 Å). The equilibrium CO distance is therefore
almost insensitive to the transfer of electrons, an observation that can
at least partially be explained by the fact that the difference in length
between a triple and a double bond is also relatively small (1.13 and
1.23 Å, respectively). Infrared spectroscopy (IR) provides a far better
probe, from the value of the IR absorption frequency associated with
the stretching of the CO bond (νCO). This frequency is related to the
strength of the bond and is very sensitive to the electronic population in
the π∗

CO orbitals. For example, for the isolated ligand it decreases from
2143 to 1489 cm−1 on passing from the ground state to the excited elec-
tronic state in which an electron has been excited from the nonbonding
σC orbital to the antibonding π∗

CO orbital (Figure 3.3). This is therefore
a very sensitive indicator which enables the transfer of metal π elec-
trons to one or several carbonyl ligands to be demonstrated. Thus, νCO

decreases from 2143 cm−1 in isolated CO to 2000 cm−1 in [Cr(CO)6],
a complex with a d6 electronic configuration, and even to 1860 cm−1

in [V(CO)6]−, another d6 complex which, due to its anionic nature, is
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particularly effective for the transfer of electron density to π -acceptor
ligands.

3.3. Complexes with several π -donor or
π -acceptor ligands

In the first example that we considered, there was only a single ligand
able to perturb the d block of the complex through π interactions.
When several ligands of this type are present, their individual effects are
added, destabilizing the d orbitals in the case of π -donors (antibonding
mixing in the d block) or stabilizing them in the case of π -acceptors
(mixing of a bonding type in the d block). However, as we shall see in
the following examples, the effect produced by n ligands of a given type
is not necessarily n times larger than that produced by a single ligand.
The symmetry properties of the complex may prevent some orbitals,
either occupied for π donors or empty for π acceptors, from interacting
with the d-block orbitals.

3.3.1. The trans-[ML4Cl2] octahedral complex

Consider an octahedral complex of the type [ML4Cl2], with two double-
face π -donor ligands (Cl) in trans positions and four other ligands which
only have σ interactions with the metal. Three of the symmetry ele-
ments in the complex are shown in 3-19: the planes P1 (xz) and P2 (yz)
and the inversion centre i, located on the central atom.
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3.3.1.1. π -type orbitals on the ligands

Four lone pairs of π -type are available, described by the px and py

orbitals on each chlorine atom. It must be noticed that the two Cl ligands

are equivalent by symmetry, that is, they are interchanged by at least one
symmetry element (e.g. the horizontal plane xy or the inversion centre i).

� x � y � x
* � y

*

3-20

Rather than consider each of the px and py orbitals individually, it is there-
fore preferable to use linear combinations of these orbitals that properly
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reflect the symmetry of the complex (Chapter 6, § 6.4). In the case of
two equivalent atoms, these are simply ‘bonding’ and ‘antibonding’77 The bonding or antibonding character is

weak, due to the large separation between the
two chlorine atoms. It is perhaps better to
replace ‘bonding/antibonding’ by
‘in-phase/out-of-phase’, to emphasize only
the way in which the initial atomic orbitals are
combined.

combinations of the initial orbitals. These are usually indicated by (πx ,
πy) and (π∗

x , π∗
y ), respectively (3-20), making reference to the nature of

the overlap (π) and the orientation of the orbitals (x- or y-axes).
Electronically speaking, these four orbitals are doubly occupied,

since they are formed from atomic orbitals that describe π -type lone
pairs on each of the chloride ligands. They therefore provide a delocalized

description of these lone pairs, which is adapted to the symmetry of the
complex.

Before constructing the diagram for the interaction between the
π orbitals on the ligands and the d orbitals on the metal centre, we must
analyse the symmetry properties of these orbitals. We shall describe two
methods, in which we use either some selected symmetry elements, or
the full set of these elements and the machinery of group theory.

3.3.1.2. Taking symmetry into account: initial analysis

To characterize orbital symmetry, we may, as in the examples already
treated (§ 3.1.4 and 3.2.4), use the planes P1 and P2 (3-19). But we
must add a third element to enable us to distinguish the symmetry of
the bonding and antibonding combinations that we have constructed
above. This additional element might be the xy plane, or it might be the
inversion centre i. With respect to this latter element, the πx,y orbitals
are antisymmetric (A) but the π∗

x,y orbitals are symmetric (S) (see 3-21

for the πy and π∗
y orbitals).

� y
*

i

i

–�y�y

� y
*

A

S

3-21

When we take all three of these elements into account (P1, P2, and i),
the symmetry labels are SAA for πx , ASA for πy, SAS for π∗

x , and ASS
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for π∗
y ; on the metal, they are AAS for xy, SAS for xz, ASS for yz, and

SSS for both x2−y2 and z2 (3-22).
This initial analysis of the symmetry properties shows us that two of

the four lone pairs of the chloride ligands, those described by the bonding
combinations πx and πy, cannot interact with the d-block orbitals, due to
their different symmetry properties (S = 0). In the same way, the xy,
x2−y2, and z2 orbitals on the metal cannot, by symmetry, interact with
the ligand orbitals. The only interactions that are possible (S �= 0) occur
between π∗

x and xz on the one hand (symmetry SAS), and between π∗
y

and yz on the other (symmetry ASS).

�x (SAA) �y (ASA) �x
* (SAS) �y

* (ASS)

yz (ASS)xz (SAS)x2–y2 (SSS) z2 (SSS) xy (AAS)

3-22

3.3.1.3. Taking symmetry into account: the use of group theory

Rather than select only some symmetry elements present in the system
being studied, one can consider all of them by using group theory. This is
the most rigorous method—there is no danger of forgetting a symmetry
element that might be important for a particular interaction—and it
allows us, particularly in high-symmetry systems, to anticipate certain
special properties such as the existence of orbitals that are degenerate

by symmetry. The symmetry elements of the complex studied here are
characteristic of the D4h point group (Chapter 6, § 6.2.2 and 6.6.1).

If we consider the two π∗ antibonding combinations of the lone
pairs, we notice that they are related by a rotation of 90◦ about the
z-axis, which is a symmetry element of the system (a C4-axis). The same
applies for the two π -bonding combinations, and also for the xz and yz

orbitals on the metal. These are pairs of orbitals that are degenerate by
symmetry in the D4h point group. If we consult the character table for
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Table 3.1. Character table for the D4h point group

D4h E 2C4 C2 2C′
2 2C′′

2 i 2S4 σh 2σv 2σd

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 −1 −1 1 1 1 −1 −1

B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2 − y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy

Eg 2 0 −2 0 0 2 0 −2 0 0 (xz, yz)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z

B1u 1 −1 1 1 −1 −1 1 −1 −1 1

B2u 1 −1 1 −1 1 −1 1 −1 1 −1

Eu 2 0 −2 0 0 −2 0 2 0 0 (x, y)

this group (Table 3.1), we notice that it contains two two-dimensional
representations, referred to as Eu and Eg , which differ by their behaviour
with respect to the inversion centre of the complex (i, located on the
central metal): Eg is symmetric (its character in the i column is positive),
but Eu is antisymmetric (a negative character). The bonding combina-
tions (πx , πy), which are antisymmetric with respect to the inversion
centre (3-21), have eu symmetry, but the antibonding combinations (π∗

x ,
π∗

y ), which are symmetric with respect to the inversion centre, have
eg symmetry. The character table also gives us the symmetries of the
d orbitals on the metal centre, in the last column: a1g for z2, b1g for
x2−y2, b2g for xy, and eg for (xz, yz).

In the case being examined, we therefore come to the same conclu-
sion as that established in the preceding section from a limited number
of symmetry elements: the only interactions that occur concern the
(π∗

x , π∗
y ) orbitals on the ligands, and (xz, yz) on the metal centre, which

constitute two degenerate pairs of orbitals with eg symmetry in the D4h

point group.

3.3.1.4. The interaction diagram

We are now in a position to construct the diagram which describes the
π interactions in a trans-[ML4Cl2] complex (Figure 3.6). We shall adopt
the notations of group theory to represent the orbitals’ symmetries. As
in the preceding examples (§ 3.1.4 and 3.2.4), we suppose that the d block
of the complex, before the interaction, is similar to that of a regular octa-
hedral complex, with three nonbonding degenerate orbitals (xy, xz, and
yz with the axes defined in 3-19) and two degenerate antibonding orbit-
als, x2−y2 and z2 (left-hand side of Figure 3.6). The first three orbitals,
which formed the t2g block in the regular octahedron, have b2g (xy) and
eg (xz, yz) symmetries in the D4h point group. The symmetries of the
antibonding orbitals derived from the eg block in the octahedron become
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Figure 3.6. Interaction diagram showing the
perturbation of the d block of an octahedral
complex (σ interactions only, left-hand side)
by the lone pairs of two double-face π -donor
ligands (Cl, for example, right-hand side) in
trans positions. The electronic occupation
shown corresponds to a complex with a d0

electronic configuration.
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a1g for z2 and b1g for x2−y2. The occupation of these orbitals depends
on the dn electronic configuration of the complex, the example given in
Figure 3.6 corresponding to a d0 complex whose d block is empty. We
find the π -type orbitals of the chlorine atoms on the right-hand side of
the figure (3-20). The eu bonding combinations are placed slightly lower
in energy than the eg antibonding combinations, though the energy
difference is only slight, due to the large separation between the two
centres. The energies of these four orbitals are therefore close to that of
a pure p orbital on chlorine. As a result, they are placed at a lower energy
level than the nonbonding d orbitals on the metal. Notice that these π

and π∗ orbitals are all doubly occupied, and that they offer a delocalized
description of the four π -type lone pairs on the chloride ligands (two
per ligand).

For symmetry reasons, as we have already established, the two lone
pairs described by the orbitals with eu symmetry (3-20) cannot interact
with the d-block orbitals. The only interactions that are possible (S �= 0)
occur between the lone pairs with eg symmetry and the (xz, yz) orbitals
on the metal (Figure 3.6). This interaction stabilizes four electrons from
the lone pairs (the π∗

x + λxz and π∗
y + λyz orbitals, mainly concen-

trated on the Cl ligands) but destabilizes two of the three octahedral
nonbonding orbitals (xz − λπ∗

x and yz − λπ∗
y , mainly concentrated on

the metal). This destabilisation is larger than that produced by a single
chloride ligand ([ML5Cl] complex, Figure 3.2) since there are now two

π -type antibonding interactions for each of these orbitals. Two of the lone
pairs, and therefore four electrons, are not affected by these interactions.
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The new d block of the complex, as always, contains five orbitals that
are mainly composed of the d orbitals on the metal: xy, nonbonding,
xz−λπ∗

x and yz−λπ∗
y , π antibonding, and x2−y2 and z2, σ antibonding.

This example shows us that for symmetry reasons, the π interactions
are not simply additive when the number of ligands is increased. Two
lone pairs are involved in both the monochloro octahedral complex
(Figure 3.2) and the trans dichloro complex, although four lone pairs
are a priori available in the latter case. The difference between the two
complexes concerns the magnitudes of the destabilization of the xz and
yz orbitals of the d block and the stabilization of the lone pairs that
take part in the interactions, both of which are larger in the dichloro
compound. It must also be noted that for a given type of complex
(octahedral, for example) and a given number of π -donor (or -acceptor)
ligands, the symmetry properties of the complex, and therefore the
metal–ligand interactions which occur, also depend on the arrangement
of these ligands. This point is illustrated in Exercise 3.4, which concerns
an octahedral [ML4Cl2] complex in which the two chloride ligands are
now in cis positions.

3.3.2. The trans-[ML4(CO)2] octahedral complex

This complex has the same symmetry as the preceding one (the D4h

point group). Since the carbonyl groups are π -acceptors, we consider
the two empty π∗

x and π∗
y orbitals on each, and these are combined in

pairs to form the symmetry-adapted orbitals for the complex (3-23). The
bonding combinations, (π∗(+)

x and π
∗(+)
y ), which are antisymmetric

with respect to the inversion centre, have eu symmetry, whereas the
antibonding combinations, (π∗(−)

x and π
∗(−)
y ), which are symmetric

with respect to this operation, have eg symmetry.

�x
*(+) �y

*(+) �x
*(–) �y

*(–)

eu eg

3-23

Since the overlaps between the π∗
x (or π∗

y ) orbitals are very small, due
to the large distance between the ligands, the energies of the bonding
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Figure 3.7. Interaction diagram showing the
perturbation of the d block of an octahedral
complex (σ interactions only, left-hand side)
by the π∗ orbitals of two double-face
π -acceptor carbonyl ligands (right-hand side)
in trans positions. The electronic occupation
shown corresponds to a complex with a d6

electronic configuration.
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(eu) and antibonding (eg ) combinations are close to that of a π∗ orbital
in an isolated carbonyl ligand. As a result, they are higher in energy than
the nonbonding d orbitals on the metal, with the eu orbitals being very
slightly more stable than the eg (Figure 3.7, right-hand side). These four
orbitals are, of course, empty. On the left-hand side of the figure, we
find the d-block orbitals, assumed to be those of a regular octahedron
without any π interactions. The occupation of these orbitals depends
on the electronic configuration of the complex that is considered. In
Figure 3.7, we are concerned with a d6 complex. As in the preceding
complex, only two of the four π -type orbitals on the ligands—the eg

orbitals—and two nonbonding orbitals on the metal (xz and yz, which
also have eg symmetry) can interact. This interaction therefore stabil-

izes those two d-block orbitals (xz + λπ
∗(−)
x and yz + λπ

∗(−)
y , mainly

concentrated on the metal), whereas the antibonding combinations are
mainly concentrated on the ligands (π∗(−)

x −λxz and π
∗(−)
y −λyz). The

new d block therefore consists of the following orbitals: xz+λπ
∗(−)
x and

yz +λπ
∗(−)
y , which are π -bonding, xy (nonbonding), and x2−y2 and z2,

which are σ -antibonding.
In the case of a d6 complex, four electrons from the d block are

stabilized. The stabilization is larger than that produced in the complex
with just one carbonyl ligand (Figure 3.5), since there are two π -bonding
interactions in each orbital stabilized instead of only one.

3.3.3. Construction of the d-block orbitals ‘by hand’

The relative energies of the π -type ligand orbitals and the metal d orbitals
control the nature of the two interactions that occur in the d block: (i) an





π -type interactions

antibonding interaction with the occupied orbital of a π -donor, which
destabilizes the d orbital; (ii) a bonding interaction with the empty
orbital of a π -acceptor which stabilizes the d orbital. The shape of the
perturbed d orbitals can easily be obtained when there is a single ligand
with a π system: one only needs to combine the d orbital and the π -type
orbital with which it can overlap, in a bonding manner for an acceptor
but in an antibonding sense for a donor. When there are two ligands
of this type, we need first to construct the symmetry-adapted πMO for
the complex, and then decide which of these could interact with the
d orbitals. Once this is done, the same rules are applied for the perturb-
ation of the d orbitals by the symmetry-adapted orbitals on the ligands:
an antibonding mixing with destabilization for π -donors, but a bonding
mixture with stabilization for π -acceptors (Figures 3.6 and 3.7). In the
two complexes we have studied, the shapes of the symmetry-adapted
orbitals are obvious (§ 3.3.1 and 3.3.2), but it can be much more difficult
to obtain them in other cases (see, for example, Chapter 6, § 6.6.6 and
Exercise 6.13). We now consider whether it is always necessary, for each
type of complex (octahedral, TBP, square-planar, etc.) and for each type
of substitution, to determine the symmetry-adapted combinations of
ligand orbitals before being able to discover the shapes of the perturbed
d orbitals. In principle, it is indeed necessary to work in stages, along
those lines, but we are now going to show, starting from the two preced-
ing examples, how the main thrust of the information can be obtained
more quickly.

3.3.3.1. The trans-[ML4 Cl2] and trans-[ML4(CO)2]
complexes revisited

The d ↔ π interactions due to a single Cl ligand were studied in the
monochloro complex ([ML5Cl], Figure 3.2). If we now re-examine the
d-block orbitals of the dichloro complex trans-[ML4Cl2] (Figure 3.6), we
notice, but after the event, that we could have obtained them directly by
considering successively the contributions expected for each of the two
ligands, that is, by proceeding in two stages, as shown in 3-24.

M LL

Cl1

L

LL

L
ML L

L

L

L
M LL

Cl1

Cl2

L

LCl1 Cl2

3-24

The interactions of the lone pairs p
(1)
x and p

(1)
y of the first substituent

Cl1 leave the xy, x2−y2, and z2 orbitals unchanged (zero overlaps),
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whereas xz and yz are destabilized by antibonding interactions with p
(1)
x

and p
(1)
y , respectively (non-zero overlaps). Analogous observations can

be made for the second substitution by Cl2, since the same overlaps are
involved when we consider the p

(2)
x and p

(2)
y lone pairs. This two-stage

decomposition of the construction of the d-block orbitals for the trans-
[ML4Cl2] complex is illustrated in 3-25 for the three initially nonbonding
orbitals of the octahedron. The xy orbital which cannot interact with
any of the lone pairs is unchanged, whereas the xz and yz orbitals are
destabilized in the same way (two equivalent antibonding interactions).

Cl1

Cl1

Cl1

Cl2

Cl2

Cl2

xy

xz

yz

3-25

On can proceed in the same way for the trans-ML4(CO)2 complex,
the only difference being that the mixing with the π∗

CO orbitals occurs in
a bonding sense (π acceptor) (3-26).

(CO)1

(CO)1

(CO)1

(CO)2

(CO)2

(CO)2

xy

xz

yz

3-26
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3.3.3.2. mer-[ML3 (CO)3] complexes

We shall now apply this method ‘by stages’ to a new octahedral complex
with three carbonyl ligands and three other ligands that only have σ

interactions with the metal. The arrangement chosen for the ligands
is indicated in 3-27. Of the two possible isomers for an [ML3(CO)3]
complex, this one is the mer isomer, in contrast to the fac isomer in
which the carbonyl ligands are placed at the three vertices that make up
a face of the octahedron. On the C1O1 and C3O3, carbonyl ligands, the
π∗ orbitals point parallel to the x- and z-axes, whereas on the central
ligand C2O2 they are parallel to the x- and y-axes (3-27). We now examine
how each of the octahedral orbitals can overlap with the π∗ orbitals on
the carbonyl ligands.

C2

C3C1

L

L

L
z

x
y

O1

O2

O3

3-27

The x2−y2 and z2 orbitals have zero overlap with all the π∗ orbitals,
as in the preceding complexes. These orbitals (σ antibonding) are there-
fore not perturbed by the π interactions. It is only the nonbonding xy,
xz, and yz orbitals, derived from the t2g block of the regular octahedron,
that will be perturbed.

We consider first the xy orbital (3-28). Its overlap with π
∗(1)
x is non-

zero, but it is zero with π
∗(1)
z , located in a nodal plane of xy. As a result,

xy is stabilized by a bonding interaction with π
∗(1)
x . This analysis allows

us to anticipate an equivalent interaction with the π
∗(3)
x orbital on the

symmetry-related ligand C3O3. But the two orbitals π
∗(2)
x and π

∗(2)
y

on the central ligand C2O2 are both located in the nodal planes of xy

(xz and yz, respectively), and their overlap with xy is zero (3-28). We
conclude that xy is stabilized by two bonding interactions, with π

∗(1)
x and

π
∗(3)
x (3-31a).

xy

S ≠ 0 S = 0 S = 0 S = 0

xy xyxy

�x
*(2)

�x
*(1) �z

*(1)

�y
*(2)

3-28
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The yz orbital can interact with π
∗(1)
z on C1O1, but not with π

∗(1)
x

which is located in one of its nodal planes (xy) (3-29). The same remarks
may be made about the group C3O3. On the central carbonyl C2O2,
π

∗(2)
y is the only orbital whose overlap with yz is non-zero. The yz orbital

is therefore stabilized by three bonding interactions, with π
∗(1)
z , π∗(2)

y , and

π
∗(3)
z (3-31b). Notice that the contributions of π

∗(1)
z and π

∗(3)
z are equal

in magnitude, by symmetry, but the contribution of π∗(2)
y on the central

carbonyl C2O2 may be different, since it is not exchanged with the two
other groups by any symmetry element in the complex.

yz yz yzyz

S = 0 S ≠ 0 S = 0 S ≠ 0

�x
*(2)

�x
*(1) �z

*(1)

�y
*(2)

3-29

The xz orbital cannot interact with any of the orbitals on the C1O1

and C3O3 groups, and can combine only with the π
∗(2)
x orbital on the

central group C2O2 (3-30). Therefore, the xz orbital is stabilized by a

single bonding interaction, with π
∗(2)
x (3-31c).

xz xz xz xz

S = 0 S = 0 S ≠ 0 S = 0

�x
*(2)

�x
*(1) �z

*(1)

�y
*(2)

3-30

We see, therefore, that the three nonbonding orbitals derived from
the t2g block of the regular octahedron are perturbed in different ways
in the substitution pattern that we have studied (3-31). All the d ↔ π∗

interactions concern the same lateral overlap between a pure d orbital
and a π∗

CO orbital, but the number of interactions changes from one
orbital to another.

xy xzyz

3-31a 3-31b 3-31c





π -type interactions

As a consequence, the degeneracy of the three orbitals is lifted in
this substitution pattern. We can anticipate that yz, stabilized by three
bonding interactions with the π∗

CO orbitals, is lower in energy than
xy (two bonding interactions), which in turn is lower than xz (only a
single bonding interaction) (3-32). Part of the complete diagram for the
interaction of these three d orbitals and the π∗

CO orbitals has therefore
been obtained. Moreover, it is the most important part, since it gives
us the three new d orbitals that may be occupied in this strong-field
octahedral complex. It is straightforward to derive the missing parts of
this diagram. Three antibonding combinations, mainly concentrated
on the carbonyl groups, correspond to the three bonding combinations
described in 3-31. We note that three linear combinations of the π∗

CO

orbitals have been used in these interactions. Since initially there were
six π∗

CO orbitals, two per ligand, three other combinations have not
interacted; they remain entirely localized on the ligands, at an energy
level close to that of an isolated π∗

CO orbital.

xz (+ 1�*
CO)

xy (+ 2�*
CO)

yz (+ 3�*
CO)

xy, xz, yz
COOC

CO

3-32

3.3.3.3. A rigorous or an approximate method?

The method we have used has consisted in analysing successively the pos-
sible interactions for each of the ligands with a π system. This method,
which can be applied in the same way to any type of complex with any
substitution pattern (see Exercises 3.1–3.5), enables us to obtain rather
quickly the shapes of the d orbitals as perturbed by the π interactions, as
well as their relative energies. The use of group theory, which requires us
in each case to construct the symmetry-adapted orbitals on the ligands,
is more time-consuming. But is there really a fundamental difference
between the two methods? The application of group theory is based
on the symmetry elements of the complex as a whole; this is the rigor-
ous way to proceed. However, the construction ‘by hand’ that has been
proposed in the two preceding sections uses local symmetry elements
shared by a d orbital and a particular π∗ orbital, to deduce whether
interaction is possible between them (Schemes 3-28–3-30). The two
methods fuse when the symmetry elements of the complex and the local
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symmetry elements used are identical. This is the case, for example, for
the trans-[ML4Cl2] and trans-[ML4(CO)2] complexes (§ 3.3.3.1) and for
the xy and yz orbitals of the mer-[ML3(CO)3] complex. However, in this
latter case, we used a local symmetry element that is not a symmetry
element of the complex. Use of the horizontal plane xy allows us to show
that the overlap between π

∗(1)
x and xz is zero (3-30, left-hand side), and

we concluded that π
∗(1)
x makes no contribution to the xz orbital (3-31c).

This conclusion is not rigorous, since the xy plane is not a symmetry
element for the complex as a whole. Fortunately, calculations show that
the participation of π

∗(1)
x in this orbital is very small (as is that of π

∗(3)
x ,

by symmetry), precisely because the local overlap between π
∗(1)
x and xz

is zero. The approximate description of the d orbitals given in 3-31 is
thus essentially correct.

3.3.4. [MCl6] and [M(CO)6] octahedral complexes

When the six double-face π -donor or π -acceptor ligands are identical,
octahedral symmetry is preserved. We therefore find the usual splitting
pattern in the d block, into two groups of degenerate orbitals, whose
symmetries are t2g and eg . We shall now use the method set out in the
preceding section to determine the shapes of the MO and the energetic
consequences of the π interactions.

3.3.4.1. The d block in [MCl6] and [M(CO)6] complexes

In the [MCl6] complex, each orbital in the t2g group (xy, xz, and yz) can
interact with four of the p orbitals that characterize lone pairs on the
ligands (3-33). All the interactions are antibonding (π -donor ligands);
they destabilize the three orbitals in an equivalent way, so these remain
degenerate.

yzxzxy

3-33

It is easy to verify that the orbitals in the eg group (z2 and x2−y2)
have zero overlap with all the nonbonding p orbitals on the ligands, so
their energy and shape remain unchanged. The symmetry properties
of the octahedral complexes [MCl6] therefore allow only three linear
combinations of the nonbonding p orbitals on the chloride ligands, those
shown in 3-33, to interact with the d-block orbitals. In other words,
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only three lone pairs out of the twelve (two per ligand) can transfer
electron density to the metal centre; we shall return to this point in
§ 3.5, Figure 3.10.

By an exactly analogous analysis, it can be shown that in the case
of six carbonyl ligands, the three orbitals in the t2g block are stabilized
to the same extent by four bonding interactions with the π∗

CO orbitals
(3-34), though the two eg orbitals are not affected.

xy yzxz

3-34

3.3.4.2. Strong-field and weak-field complexes

The energetic consequences of the π interactions for the d-block orbit-
als in the [MCl6] and [M(CO)6] complexes are shown in Figure 3.8. If
everything else is equal, the σ interactions in particular, the presence
of π -donor ligands decreases the energy separation (�E) between the
t2g and eg orbitals (weak field), whereas π -acceptor ligands increase
this separation (strong field). This trend is consistent with the spectro-
chemical series presented below, which, from measurements of the d–d

transition energies (t2g → eg ), ranks ligands according to the strength of
the field that they create (Chapter 2, § 2.1.2.6). It is clear that π -donor
ligands, such as the halogens, are found at the beginning of the series
(weak field), whereas π -acceptor ligands, such as carbonyl or cyanide,
are at the end (strong field). For example, �E decreases from 26,600
to 15,060 cm−1 passing from [Cr(CN)6]3− (six π -acceptor ligands) to
[CrF6]3− (six π -donor ligands), even though these two complexes have
the same d3 electronic configuration.

I− < Br− < Cl− < F− < OH− < O2−
< H2O < NH3

< NO−
2 < CH−

3 < C6H−
5 < CN− < PR3 < CO (3.1)

∆E�

∆E� + �

∆E� + �

�-donors

�-acceptors

eg

t2g

eg

t2 g

Figure 3.8. Perturbation of the d block (in the
centre, σ interactions only) of an octahedral
complex ML6 by the π interactions with
double-face π -donor ligands (L = Cl, for
example) on the left, and double-face
π -acceptor ligands (L = CO, for example) on
the right.

Notice, however, that the π interactions are not the only factor
which influences the t2g −eg energy separation. We must remember that
the σ interactions create the primary d-orbital splittings, and that as these
interactions become stronger (phosphine ligands PR3, metal–carbon
bonds in organometallic complexes, for example), the antibonding eg

levels are pushed to ever higher energy.
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3.4. π complexes: the example of ethylene

In all of the preceding examples, the ligands that possess a π system
are bound to the metal centre by a single atom (coordination mode η1).
The situation is different when several ligand atoms are bound in an
equivalent way to the metal centre. In particular, this is the case for π

complexes (Chapter 1, § 1.1.1.3), in which the π system of the ligand
‘points’ in the direction of the metal, rather than being perpendicular to
the metal–ligand bond. The description of the metal–ligand bonds now
requires us to take all the π orbitals of the ligand into account, both
occupied and empty, as well as the orbitals of appropriate symmetry on
the metal. As an example, we shall first consider the simplest complex
from this family, that in which a molecule of ethylene is bound to the
metal in the η2 mode.

3.4.1. Orbital interactions: the Dewar–Chatt–Duncanson
model88 J. Chatt, L. A. Duncanson J. Chem. Soc.

2939 (1953); M.J.S. Dewar Bull. Soc. Chim. Fr.

18, C79 (1951). 3.4.1.1. σ or π interactions?

We consider first the π -bonding orbital on ethylene. It can interact with
a metal orbital, for example, z2 (3-35). The resulting overlap is interme-
diate between an axial overlap, normally associated with a σ interaction,
and a lateral overlap which corresponds to a π interaction. Notice that
there is no nodal surface that is common to the two orbitals, and that
their overlap is not changed by a rotation of the ligand around the z-
axis. As a consequence, even though the ligand orbital is of π type, the
metal–ligand interaction in which it is involved has the characteristics
of an ordinary σ interaction (see 3-17a, for example). The π∗ orbital
can also interact with a metal d orbital, for example, xz (3-36). As in
the ‘traditional’ π interactions described in preceding sections, the two
orbitals have a common nodal plane (yz), and a rotation of the ligand
around the z-axis decreases their overlap, to the extent that it is com-
pletely eliminated for a rotation of 90◦. The interaction that involves the
π∗ orbital can therefore be described as a π interaction.

x

z

3-35

yz

3-36

3.4.1.2. The Dewar–Chatt–Duncanson model

Ethylene behaves as an L-type ligand thanks to its doubly occupied
π orbital. It can transfer electron density to the metal (a donation inter-
action) by interaction with an empty orbital on the metal centre, whose
symmetry is suitable (z2, for example, 3-37a). This is a stabilizing two-
electron interaction, which stabilizes the π level of the ligand. Due to the
relative energies of the two initial orbitals, the occupied MO is mainly
concentrated on the ligand (a bonding orbital).
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There is a second interaction that involves the empty antibonding
π∗ orbital and the metal d orbital with the same symmetry (xz), which
is lower in energy than the π∗ orbital (3-37b). If this latter orbital is
doubly occupied, this interaction is stabilizing, and it leads to a transfer
of electron density from the metal to the ligand. This is therefore a back-

donation interaction, where ethylene plays the role of a π acceptor, using
its empty π∗ orbital. The doubly occupied orbital, mainly concentrated
on the metal, is part of the d block of the complex; it can be described as
a metal d orbital that is stabilized by a bonding interaction with the π∗

orbital on ethylene.

electrons

3-37a

electrons

3-37b

These two stabilizing interactions taken together constitute the
Dewar–Chatt–Duncanson model of the bond between an olefin and
a metal centre.

3.4.2. Electronic structure of a d6 complex
[ML5(η

2-C2H4)]

3.4.2.1. The complete interaction diagram

Consider a pseudo-octahedral d6 complex of the type [ML5(η
2-C2H4)]

(3-38), where the five L ligands are supposed to have only σ interactions
with the metal centre. If this complex is decomposed into a d6 fragment
ML5, with a square-base pyramidal (SBP) geometry, and an ethylene
fragment, the interaction between the orbitals on the two fragments
enables us to analyse the electronic factors that are at the origin of the
ethylene–metal bond.

M

z

x
y

P 1
P 2

LL
L

L
L

3-38

On the metallic fragment ML5, we consider the four low-energy
d orbitals in this type of structure (Chapter 2, § 2.3.1), together with the π

and π∗ orbitals on the ethylene ligand. The π orbital is doubly occupied,
as are the three strictly nonbonding d orbitals of the d6 fragment ML5.
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Figure 3.9. Diagram for the interaction
between the d orbitals of a d6ML5 fragment
and the π and π∗ orbitals on an ethylene
ligand (the Dewar–Chatt–Duncanson model).

xz (AS)

z2(SS)

xy (AA)

yz (SA)

�* (SA)

� (SA)

SA

SS

AS, AA

SS

SA

Given the orbitals’ symmetry properties with respect to the planes P1

and P2 that are defined in 3-38, we obtain the interaction diagram shown
in Figure 3.9. The π orbital (SS) is stabilized by a bonding interaction
with the polarized z2 orbital (SS) on the metallic fragment. The doubly
occupied yz orbital (SA) is stabilized by a bonding interaction with the
π∗ orbital (SA). The two other d orbitals (xy (AA) and xz (AS)) are not
affected by the interaction.9 The two stabilizing interactions, donation9 In the C2v point group of the complex,

the symmetry labels are a1 (SS), a2 (AA), b1
(AS), and b2 (SA).

(π → z2) and back-donation (yz → π∗), are thus indeed those that
were described in a general way in the preceding section.

The MO of the complex that are shown in Figure 3.9 can therefore
be described in the following ways: (i) the SS bonding MO is a bond
orbital; (ii) the SA weakly bonding MO and the AS and AA nonbonding
MO are the three orbitals that are derived from the t2g block of a regular
octahedron. If they are doubly occupied, the electronic configuration
is d6; (iii) the SA antibonding MO is essentially antibonding on the
ethylene ligand; (iv) lastly, the SS antibonding MO, largely composed
of the z2 orbital, is mainly antibonding for the ethylene ligand and the
trans ligand L. In fact, it is one of the orbitals that are derived from the
antibonding eg block of a regular octahedron. The other orbital, x2−y2,
does not appear on this diagram since we did not consider it on the
initial ML5 fragment, as its energy is too high.

3.4.2.2. A molecular ethylene complex or
a metallacyclopropane?

The donation interaction (π → z2) reduces the electron density
in the π -bonding orbital of the ethylene ligand. The carbon–carbon
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bond is therefore weakened (3-39). Now the back-donation interaction
(yz → π∗) transfers electron density into the π∗ antibonding orbital,
which also weakens this bond (3-40). However, these two interactions
are both bonding between the carbon atoms and the metal centre, so
they contribute to the formation of metal-carbon bonds.

e–

3-39

e–

3-40

The question is thus open: is it appropriate to speak of an ethylene
complex, in which the ligand is clearly identified as molecular ethylene
(3-41a), or is it better to describe it as a metallacyclopropane, with a
C−C single bond and two M−C bonds (3-41b)? These are in fact two
mesomeric forms of the same complex; the metal oxidation state, in
particular, is different in these two forms, being higher by two in the
metallacycle. The change from one limiting form to the other represents
the oxidative addition reaction of ethylene, which leads to the metalla-
cyclopropane. The real complex is usually intermediate between these
two limiting forms. Typically, the carbon–carbon bond length is around
1.43 Å (instead of 1.32 or 1.54 Å for a standard double or single bond,
respectively), and the ethylene ligand becomes non-planar: the CH2

groups become pyramidal, in the direction opposite to the metal centre,
though not as extensively as in a real three-membered ring.

3-41a 3-41b

From the electronic structure point of view, there are similarities
between the two SS and SA bonding molecular orbitals of the π complex
(3-42 and 3-43, left-hand side) and the corresponding orbitals of the
metallacyclopropane. The latter can be represented schematically by
considering the in-phase and out-of-phase combinations of two localized
orbitals, each of which characterizes a σMC bond (3-42 and 3-43, right-
hand side).10 The first combination corresponds to the orbital π + z2 of

10 There is, however, a difference in the
relative magnitudes of the coefficients on the
metal and on the ligand in the orbital whose
symmetry is written SA. In the molecular
ethylene complex, this orbital is concentrated
mostly on the metal, whereas in the
metallacyclopropane, it is mainly on the
ligand. We shall return to this point in § 4.5 of
Chapter 4, which is devoted to the mechanism
of oxidative addition.

the molecular ethylene complex, the second to the orbital yz + π∗.

SS

3-42

SA

3-43
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Similarly, there is a resemblance between these orbitals and two of
the three orbitals that characterize the C−C bonds in cyclopropane itself
(3-44, symmetry SS and 3-45, symmetry SA).

3-44 (SS) 3-45 (SA)

In fact, depending on the nature of the metallic fragment MLn which
interacts with the ethylene ligand and on the substituents on this ligand,
a whole range of interactions can be observed, ranging from weak inter-
actions, which correspond to a complex of molecular ethylene, to strong
interactions which lead to a structure close to a metallacyclopropane.
So the best answer to the general question posed at the beginning of this
section ‘a π complex of molecular ethylene or a metallacyclopropane?’
seems in fact to be . . . both!

3.4.3. Metallocenes Cp2M

3.4.3.1. The π system of the cyclopentadienyl ligand

The shapes and the relative energies of the five π orbitals in cyclo-
pentadiene (Cp) are presented in Figure 3.10, where the electronic
occupation corresponds to the anion Cp− (the ionic model). A symbolic
representation of the orbitals, which shows only the nodal positions
between the carbon atoms, is given on the right of the figure. As a con-
sequence of the three occupied π MO, Cp− can be characterized as an
L3 ligand.

The donation and back-donation interactions of the Dewar–Chatt–
Duncanson model can occur, thanks to the three occupied and the two
empty MO, respectively.

3.4.3.2. Cp2M complexes: the ferrocene example

The three occupied MO on each Cp− ligand combine in-phase (π (+))

and out-of-phase (π (−)), leading to the formation of six occupied MO
that are delocalized onto the two ligands. It is easy to verify that π

(+)
1

Figure 3.10. The π system of the
cyclopentadienyl ligand (Cp−).

�1

�2 �3

�5�4
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has the proper symmetry to interact with the s orbital on the metallic
centre (3-46a). Similarly, π

(−)
1 can interact with pz (3-46b), π

(+)
2 with

py (3-46c), π
(+)
3 with px (3-46d), π

(−)
2 with yz (3-46e) and π

(−)
3 with

xz (3-46(f )). In this way, six occupied bonding MO are formed that
characterize six bonds, as in an octahedral complex.

s z pyp

3-46a 3-46b 3-46c

px yz xz

3-46d 3-46(e) 3-46(f )

The participation of two d orbitals in the MO that describe the bonds
leads to the presence of two antibonding orbitals in the d block (yz and
xz), while the other d orbitals (z2, x2−y2, and xy) make up a block of
three nonbonding or nearly nonbonding orbitals. In fact, x2−y2 and xy

are stabilized by bonding interactions with the π∗ orbitals of appropriate
symmetry on the Cp rings (Figure 3.11).

yz xz

z2

xy x2–y2

Figure 3.11. The d block of a Cp2M complex,
where the electronic occupation (d6)
corresponds, for example, to ferrocene
[Cp2Fe].

The d block of a Cp2M complex therefore has the same character-
istics as that of an octahedral complex. In ferrocene, [Cp2Fe], whose
electronic configuration is (d6), the three nonbonding d orbitals are
occupied and this complex can be described as pseudo-octahedral, with
18 electrons.

3.4.4. Cp2MLn complexes

There are many complexes of the type [Cp2MLn] (n = 1, 3), where
M is a transition metal towards the left of the periodic classification
(M = Ti, V, Zr, Hf, Mo, for example). In these complexes, the Cp2M
fragment is bent, rather than linear as in the metallocenes. The other
ligands are all located in the plane that is perpendicular to that defined
by the M atom and the centres of the two Cp rings (3-47 and 3-48).
If n = 3, this arrangement imposes very small L−M−L angles (about
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60◦ in Cp2Nb(H)3, 3-47). Since each Cp ligand forms three bonds with
the metal, the coordination number of these complexes is seen to be
between 7(n = 1) and 9(n = 3), which is quite rare for the metals of
the first three transition series.

Nb

H

H

H

3-47

Mo
Cl

Cl

3-48

3.4.4.1. The bent Cp2M fragment

Consider the three low-energy d orbitals previously established for a
linear Cp2M complex (Figure 3.11, the z2, x2−y2, and xy orbitals). In the
C2v point group, these orbitals have a1 (z2 and x2−y2) and b2 (xy) sym-
metries. When the Cp2M fragment is bent (Figure 3.12), the b2 orbital
is destabilized, since the stabilizing interactions with the π∗ orbitals
on the Cp rings decrease and the repulsive interactions between the
M−Cp bonds increase. The same behaviour could be expected for the
1a1 orbital (x2−y2), but it mixes with the 2a1 orbital (z2), with the
result that its energy stays roughly constant, whereas the 2a1 orbital
is strongly destabilized (an interaction between two orbitals of the
same symmetry). This mixing between z2 and x2−y2 which accom-
panies the bending of the fragment leads to a polarization of x2−y2

along the x-axis, and of z2 in the xy plane, as shown to the right of
Figure 3.12.

1a1

2a1

b2

1a1

b2

2a1

x
y

z

Figure 3.12. Energy changes for the three
lowest-energy orbitals of the d block for a
Cp2M complex passing from a linear to a
bent arrangement of the Cp ligands.

It will be useful to consider another representation of these orbitals,
which shows their amplitudes and nodal properties in the symmetry
plane xy which interchanges the two Cp ligands (3-49). The other ligands
(L) in [Cp2MLn] complexes lie in this plane.

y

x

1a 1 2a1b2

3-49

3.4.4.2. Cp2MLn complexes (n = 2, 3)

We consider first the complex [Cp2MoCl2] (3-48). It can be decomposed
into a metallic fragment, [Cp2Mo]2+, and two chloride ligands, Cl− (the
ionic model). The metallic fragment has a d2 electronic configuration:
the 1a1 orbital described above is occupied and the two other d orbitals
(b2 and 2a1) are empty (Figure 3.13, left-hand side). The two Cl− ligands
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supply four electrons that occupy two MO, which are in-phase (a1) and
out-of-phase (b2) combinations of two p orbitals (Figure 3.13, right-
hand side). The formation of the MO of the complex from those on
the fragments therefore involves an interaction between b2 and a1 pairs
of orbitals. For the latter, the dominant interaction involves the 2a1

orbital on the metallic fragment. In fact, the a1 orbital on the chlorides
is concentrated in the nodal planes of the 1a1 orbital on the metallic
fragment, so the overlap between these two orbitals is very weak.

2 Cl
–

1a1

2a1

b2

a1

b2

[Cp2Mo]2+

[Cp2MoCl2]

Figure 3.13. Construction of the MO of the
complex [Cp2MoCl2] from those on the
[Cp2Mo]2+ and 2 Cl− fragments.

There is thus only one approximately nonbonding orbital in the
d block, and it is doubly occupied. With a d2 electronic configuration,
and taking account of the eight metal–ligand bonds, [Cp2MoCl2] is
therefore an 18-electron complex. 16-electron d0 complexes are also
known in this family (n = 2), such as [Cp2ZrCl2]; the nonbonding d

orbital is empty in them.
We now turn to a complex from the Cp2ML3 family, such as

Cp2NbH3 (3-47). This can be decomposed into a metallic fragment,
Cp2Nb3+, whose electronic configuration is d0, and a fragment that
groups together the three hydrides, H3−

3 (the ionic model), with six
electrons in three orbitals. The symmetries of these three orbitals are
well adapted to interact with the three d orbitals of the metallic fragment
(3-50). In particular, there is a large overlap between the 1a1 orbital on
the metallic fragment and the 2a1 orbital of H3−

3 .

1a1

2a1

b2 Nb

Nb

Nb

1a 1

b2

2a1

3-50
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After the interaction, three doubly occupied bonding MO are formed
that are mainly concentrated on the hydrides (3-51a). They characterize
the three Nb−H bonds. The three antibonding combinations, (3–51b)
which belong to the d block, are empty.

Cp
Cp

Cp
Cp

Cp

Cp

3-51a

Cp Cp Cp

Cp Cp Cp

3-51b

There are therefore no nonbonding d orbitals in this complex.
With its d0 electronic configuration and nine bonds around the metal,
[Cp2NbH3] is an 18-electron complex.

3.5. π interactions and electron counting

The formal electron count, as it is usually performed for transition metal
complexes, (Chapter 1, § 1.1), takes account of the electrons involved in
the σ interactions and the n nonbonding electrons on the metal which
do not participate in these interactions (dn electronic configuration). But
it ignores the consequences of the π interactions, even though these are
accompanied by transfers of electron density involving some d-block
orbitals.

As a first illustration of this point, consider [W(PR3)6] and
[W(CO)6]; both are described as octahedral complexes whose elec-
tronic configuration is d6, with six electrons in the three t2g orbitals of
the d block of the octahedron. A phosphine ligand, PR3, may, in a first
approximation, be considered as a simple σ -donor.11 From this view-11 Notice, however, that when the

substituents R are very electronegative, the
σ∗ orbitals associated with the P−R bonds are
substantially lowered in energy, and the
phosphine PR3 can behave as a double-face
π -acceptor. In extreme cases, such as PF3, its
π -acceptor strength is even close to that of a
carbonyl ligand.

point, the occupied t2g orbitals of the [W(PR3)6] complex are therefore
pure atomic d orbitals, entirely localized on the metal. However, since
the carbonyl ligand is a π acceptor, the t2g orbitals of the [W(CO)6]
complex are partially delocalized on to the ligands (3-34), leading to a
substantial transfer of electron density from the metal to the ligands.
Although both formally have a d6 electronic configuration, the shape of
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the orbitals reflects the fact that the electron density at the metal centre
is higher in the [W(PR3)6] complex than in [W(CO)6].

Complexes with π -donor ligands that can transfer electron density
to the metal centre are even more interesting. Consider the octahedral
complex [W(Cl)6], for example: according to the standard counting
procedure, its electronic configuration is d0 [W(VI)], and therefore it is a
12-electron complex. But this description is substantially modified if we
take account of the π interactions. We have already seen that the three
orbitals of the t2g block are destabilized by antibonding interactions with
the p lone pairs on the chloride ligands (3-33). In this complex, therefore,
all the orbitals of the d block are antibonding, those destabilized by the σ

interactions (the eg block) being higher in energy than those destabilized
by the π interactions (Figure 3.14). This antibonding character of all the
d-block orbitals enables us to understand the stability of this d0 complex
rather more easily.12 Moreover, though the π interactions destabilize12 We noted, in Chapter 2, that complexes

with a d0 electronic configuration can exist if
the ligands possess lone pairs (see § 2.1.3.2,
2.3.3.2, and 2.4.2.2)

three orbitals in the d block, they also stabilize the three orbitals mainly
concentrated on the lone pairs of the chloride ligands (Figure 3.14). The
t2g orbitals of the metal therefore contribute partially to the occupied
MO. As a consequence, though it is accurate, following the normal
definition of the d block, to describe [W(Cl)6] as a d0 complex, the t2g

orbitals of the metal are in fact partially occupied, and the metal is much
less poor in electrons than it appears at first sight.

In view of this analysis, it might seem legitimate for the π electrons
that are transferred, at least partially, to the d orbitals of the metal centre
to be included in the electron count. The complex [W(Cl)6], previously
described as a 12-electron complex (σ electrons only), thus becomes
an . . . 18-electron complex if one takes account of the six π electrons

Figure 3.14. Interaction diagram showing the
perturbation of the d block for an octahedral
[M(Cl)6] complex (σ interactions only,
left-hand side) by the symmetry-adapted π

orbitals (t2g) on the six double-face π -donor
ligands. The electronic occupation shown
corresponds to a complex with a d0 electronic
configuration ([W(Cl)6], for example).
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‘transferred’ to the metal (Figure 3.14). It is not a coincidence if the
‘18-electron rule’ is now verified with this new counting procedure:
once the π interactions are considered, there are no empty nonbonding
MO on the metal. To attain the normal count of 18 electrons around the
metal, it is therefore sufficient for all the bonding MO (σ and π ) to be
doubly occupied; this electron count allows us to understand the stability
of a complex which at first sight is very electron-deficient.13 The stability13 To understand this stability another way,

notice that as a result of the π interactions,
there is a fairly large energy gap between the
highest occupied (π bonding) and the lowest
unoccupied MO (π∗ antibonding).

of the complex [W(Cl)6] in an octahedral geometry contrasts strikingly
with the instability of [W(Me)6] in this same geometry. The latter is
also a d0 complex, but one for which the π interactions are negligible.
It therefore possesses three MO based on d orbitals that are nonbonding
and unoccupied, and it can be described as a ‘true’ 12-electron complex.
In fact, it adopts a different geometry, which is trigonal-biprismatic; we
may conclude that the octahedral geometry of [W(Cl)6] is controlled
by π interactions.

This analysis can be extended to other ligand fields, and is not limited
to complexes whose d block is completely empty. In the presence of
π -donor ligands, the apparent electron deficiency is compensated by
interactions with the lone pairs on the ligands. Consider tetrahedral
complexes such as [Ti(Cl)4] or [Zr(Cl)4], which are d0 complexes of
Ti(IV) or Zr(IV), and therefore complexes with only eight electrons!
However, it can readily be shown that five of the eight orbitals that
characterize the lone pairs on the four chloride ligands are able, by
symmetry, to interact with the d-block orbitals (Chapter 2, § 2.4.1): two
have e symmetry and three have t2 symmetry. In this way, 10 π electrons
are ‘transferred’ to the metal, so the complexes may be considered to
have 18 electrons.

Exercises

π interactions in an ML4 complex

3.1

1. Indicate the shapes and the relative energies of the four
lowest-energy d-block orbitals for a square-planar ML4 complex
(σ interactions only).

2. How are these shapes and energies modified in the complexes?

(a) [PtCl4]2−

(b) [Ni(CN)4]2−

3. Repeat the question for Wilkinson’s catalyst, [Rh(PPh3)3Cl]; for
simplicity, the triphenylphosphine ligands may be considered to
be pure σ donors.
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π interactions in an ML5 complex (TBP)

3.2

1. Indicate the shapes and the relative energies of the four lowest-
energy d-block orbitals for an ML5 complex in a TBP geometry
(σ interactions only).

2. How are the shapes and energies of these orbitals modified if
a carbonyl group is in an axial position (1a), or an equatorial
position (1b)? (for the first structure, show that certain overlaps
that are non-zero by symmetry are in fact very small, so they may
be neglected).

M

1b 2a 2b1a

C

O

M

Cl

OM C M Cl

3. Deduce the more favourable substitution site for π interactions
in diamagnetic d4 and d8 complexes.

4. Repeat question 2 for complexes substituted by a chloride ligand
in an axial (2a) or equatorial position (2b).

5. Deduce the more favourable substitution site for π interactions
in diamagnetic d4 and d8 complexes 2a and 2b.

π interactions in an octahedral ML6 complex

3.3

1. By writing a Lewis structure, show that C≡N is an X-type ligand.
2. Assuming that the order of increasing energy for the MO is the

same in CN as in C≡O,

(a) indicate the nature of the MO that has a σ interaction with a
metal centre;

(b) give the shape and the occupation of the π -type MO;
(c) indicate whether this ligand is a π acceptor or a π donor;
(d) indicate whether the CN ligand binds to the metal through

carbon or nitrogen in the η1 coordination mode.

3. Give the shapes and relative energies of the three lowest-energy
d orbitals in an octahedral complex of the type [M(CN)6].

4. In which of the two complexes [Fe(CN)6]4− and [Fe(CN)6]3− are
the Fe−CN bonds shorter?

5. Is this result predictable just from the oxidation state of the metal
in the two complexes?
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3.4

Consider an octahedral complex [ML4Cl2] in which the Cl ligands
are in cis positions: the x-axis bisects the Cl−M−Cl angle, as shown
below.

y
x

L

L
Cl Cl

LL

z

M

1. Identify the two planes of symmetry in the complex (P1 and P2).
2. Give the shapes of the three nonbonding orbitals for a regular

octahedral complex in which the ligands only have σ interactions
with the metal. Indicate their symmetry properties with respect
to P1 and P2.

3. Construct the four symmetry-adapted orbitals that characterize
the π -type lone pairs on the Cl ligands, and give their symmetries
with respect to P1 and P2.

4. How many lone pairs on the ligands are involved in π interactions?
5. Place these seven orbitals (three d orbitals on the metal and four

lone-pair orbitals) on an energy-level diagram, and justify the
relative positions:

(a) of the ligand and metal orbitals;
(b) of the four different ligand orbitals.

6. Construct the interaction diagram, and indicate which of the
resulting MO belong to the d block.

7. How many electrons are there around the metal according to the
traditional count in the case of a d0 complex?

8. How many electrons are there once the π transfers are taken into
account?

Pentagonal bipyramidal ML7 complex

3.5

Among the different geometries that can be adopted by an ML7

complex, the pentagonal-bipyramid (PBP), with two axial ligands
(L1 and L7, on the z-axis) and five equatorial ligands (L2–L6, in the
xy plane), is one of the most common.

L6

y
z

x

L7

L2

L 1

L 5

L 4

L3

M
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1. How many of the d orbitals are strictly nonbonding? Give the
shapes of these orbitals.

2. Consider PBP complexes with a d4 electronic configuration in
which there is one carbonyl ligand, in either an axial (L1) or an
equatorial position (choose the position L2).

(a) analyse the π -type interactions in each isomer;
(b) deduce the favoured site for a carbonyl ligand.

The use of group theory
3.6

Solve Exercise 3.1 (question 2) by making use of the results of Exer-
cise 6.13 (Chapter 6) on the symmetry-adapted orbitals for ML4

complexes with a π system on the ligands, and the character table
for the D4h point group (Table 6.18).

3.7

1. Give the shapes and relative energies of the five d-block orbitals
for a trigonal-planar ML3 complex (σ interactions only).

2. Consider the complex [Ni(CO)3] in this geometry. By making
use of the results established in Chapter 6 (§ 6.6.6.2), give the
symmetry-adapted linear combinations of the π∗

CO orbitals (the
point group is D3h, whose character table is given in Table 6.21).

3. Construct the diagram for the interaction of these orbitals with
those in the d block of question 1. Deduce the shapes and relative
energies of the d-block MO in [Ni(CO)3].

4. Try to find these orbitals without using group theory (construc-
tion ‘by hand’, § 3.3). Show that some of the information provided
by group theory cannot be readily obtained without its use.

Appendix C: the carbonyl ligand, a double-face
π -acceptor

In an octahedral complex with a carbonyl ligand (see § 3.2.2), two metal
d orbitals (xz and yz, 3C.1) can interact with the π -bonding and π∗-
antibonding MO on the CO ligand: πx and π∗

x with xy, πz and π∗
z

with yz, following two equivalent three-orbital interaction diagrams
(see Appendix A, Chapter 2). By comparing the strength of the d ↔ π

and d ↔ π∗ interactions, we may deduce whether the carbonyl ligand
is a π donor or a π acceptor. These interactions, which involve orbitals
of different energy, are proportional to S2/�ε (Chapter 1, § 1.3.2);
they therefore increase in strength with a decrease in the orbital energy
difference, but with an increase in the overlap.





Appendix C: the carbonyl ligand, a double-face π -acceptor

Table 3C.1. d-orbital energies for the metals of the first transition series, and

the energy differences d − πCO(�επ ) and π∗
CO − d(�επ∗) calculated by

the extended Hückel method (eV)

Sc Ti V Cr Mn Fe Co Ni Cu

εd −8.5 −10.8 −11.0 −11.2 −11.7 −12.6 −13.2 −13.5 −14.0

�επ 7.2 4.9 4.7 4.5 4.0 3.1 2.5 2.2 1.7

�επ∗ −0.6 1.7 1.9 2.1 2.6 3.5 4.1 4.4 4.9

�CO
*

�CO

∆ε�

∆��*

S�*

S�

� x
*

� x

� z
*

� z
M

xy yz

CO

z

x
y

3.C1

The comparison of �επ with �επ∗ is not straightforward, since
the d-orbital energy depends on the nature of the metal: these metal
orbitals become considerably more stable as one moves from left to
right in the periodic classification (Chapter 1, Table 1.3). One can obtain
at least a qualitative indication of the relative values of �επ and �επ∗

by using the extended Hückel method,14 for example, for the metals of14 R. Hoffmann J. Chem, Phys. 1963, 39,
1397. One may also consult Y. Jean and F.
Volatron Structure électronique des molécules,
volume 2, 3rd edn., chapter 14, Dunod (2003).

the first transition series (Table 3C.1). The energy of the d orbitals lies
between −8.5 eV (Sc) and −14.0 eV (Cu),15 and the energies calculated

15 These values differ only slightly from
those in Table 1.4 (Chapter 1) that were
obtained from spectroscopic data:
ε3d(Sc) = −7.92 eV and ε3d(Cu) =
−13.46 eV.

for the πCO and π∗
CO MO are −15.7 and −9.1 eV, respectively, for a C−O

distance of 1.14 Å(the average value in metal carbonyl complexes).
If we consider only the energetic criterion, the interaction with the

π∗
CO orbitals is stronger than with πCO for all the metals on the left of the

table, up to and including manganese (�επ∗ < �επ ), suggesting that
the carbonyl ligand should behave as a π acceptor. On the other hand,
for the metals furthest to the right, and particularly for Co, Ni, and Cu,
the energy separation involving the πCO orbitals is smaller.

The second criterion that needs to be examined involves the overlap.
The analysis here is simpler, since the Sπ and Sπ∗ overlaps, for a given
metal, are proportional to the magnitudes of the coefficients on carbon





π -type interactions

in the πCO and π∗
CO MO, respectively (we are neglecting here the overlap

with that part of the MO located on the oxygen atom, since this is so
much further from the metal centre). As a result of the polarization of
the π orbitals, the coefficient on carbon is far larger in the antibonding
orbital (0.66) than in the bonding (0.37). The ratio of the overlaps Sπ∗/Sπ

is therefore 1.78. Since the interaction depends on the square of the
overlap, we may conclude that the overlap term favours the π -acceptor
character of the carbonyl ligand by a factor of about 3.2. For the metals
located towards the left of the periodic table, the combination of a
smaller energy difference and a much larger overlap ensures that the
d ↔ π∗

CO interactions are far stronger than the d ↔ πCO interactions, so
the carbonyl ligand behaves as a double-face π -acceptor. For the metals
located towards the right, the energy difference favours the π -donor
character of the carbonyl ligand, but the overlap favours a π -acceptor
behaviour. If we examine the extreme case of copper, (Table 3.C1), the
overlap factor (about 3.2 in favour of the d ↔ π∗

CO interaction) is only
slightly different from the energetic factor (about 2.9 in favour of the
d ↔ πCO interaction). This is the only case where the π -donor and
π -acceptor characters are roughly balanced, and this arises because the
d orbitals on copper are very low in energy, compared to those on the
other transition metals.

To conclude, an accurate treatment of the π interactions that involve
the carbonyl ligand requires both the occupied πCO and empty π∗

CO MO
to be taken into account (a three-orbital interaction scheme, 3.C1). If one
notes that the interactions involving the antibonding MO are dominant,
one can simplify the description, by considering only the π∗

CO orbitals on the

carbonyl ligand. In this simplified model, three MO are considered for
this ligand: the occupied orbital σC, that characterizes the lone pair on
carbon (Chapter 3, Figure 3.3), giving the ligand a σ -donor character,
and the two empty π∗

CO orbitals, which confer a double-face π -acceptor
character.





 

Applications

A detailed knowledge of the electronic structure of transition metal
complexes, and in particular of the shape and electronic occupation of
the d-block orbitals, enables several problems related to their structure
and reactivity to be studied. The examples discussed in this chapter
illustrate a method for analysing these problems that usually relies on
a study of orbital interactions between the ligand and the metal centre,
and/or on a correlation diagram that links the orbitals of two different
structures. The answers that one may hope to obtain from this type of
analysis are qualitative rather than quantitative. For example, one can
often determine which of two possible conformations of a complex is
the more stable, and why, without being able to deduce the energy differ-
ence between them. Once the electronic factors that favour a particular
structure are established, it may well also be possible to predict the type
of changes that will follow from, for example, a change in the nature of
the ligands. A qualitative interpretation of the structure and reactivity
of complexes is exceedingly interesting for chemists, even if studies of
a different type, that depend on accurate calculations, are necessary to
provide theoretical data that may usefully be compared, quantitatively,
with experimental results.

4.1. Conformational problems

Several conformations may sometimes be envisaged for a particular
complex, depending on the orientation of a ligand with respect to the rest
of the molecule. In such circumstances, the analysis for each conform-
ation of the interactions between the ligand orbitals and those on the
remaining fragment containing the metal often enables us to understand
why one particular conformation is energetically favoured. We shall con-
sider four examples in this section, using this ‘fragment method’, which
involve mono- and bis-ethylene complexes and a molecular hydrogen
complex; several other examples are presented at the end of the chapter
in the form of exercises.

4.1.1. d8-[ML4(η
2-C2H4)] complexes

Consider a trigonal-bipyramidal (TBP) complex in which an ethylene lig-
and occupies an equatorial site. The d8 electronic configuration, which
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leads to an 18-electron complex, is the most common for this class of
compounds (Chapter 2, § 2.5.2) and the complex [Fe(CO)4(η

2-C2H4)]
is a well-known example.

Two limiting orientations may be envisaged for the ethylene ligand,
depending on whether the carbon–carbon bond is perpendicular to the
equatorial plane (4-1a) or in that plane (4-1b). Both structures have C2v

symmetry and we shall use the planes of symmetry P1 and P2 (4-1) to
analyse the symmetry of the most important orbitals.

M

P1

P2 M

P1

P2

4-1a (perpendicular) 4-1b (coplanar)

M

AA

AS

SA

SS

SS

4-2

The orbital structure of each conformation may be analysed as the
result of the interaction between the occupied π orbitals and the empty
π∗ orbitals on ethylene on one hand, and the orbitals of a d8 ML4 frag-
ment with a ‘butterfly’ geometry (Chapter 2, § 2.8.3) on the other. For
this latter, we shall consider the four occupied orbitals of the d block
(three nonbonding, one weakly antibonding) and the lowest-energy
empty orbital, which is an s–p hybrid orbital pointing towards the empty
site of the TBP. The shapes of these orbitals are presented below (4-2)
in the simplest case, where the four ligands are identical and only have
σ interactions with the metal. To simplify matters, the small contribu-
tions from the ligands to the two highest orbitals are not shown. The
symmetries of the orbitals with respect to the planes P1 and P2 are also
indicated in 4-2.

On passing from the perpendicular structure to the coplanar
one (4-1), the orientation of the ML4 fragment does not
change. However, there is a rotation of the ethylene ligand
by 90◦, and therefore also of the associated π and π∗ orbit-
als. These are shown in 4-3a and b, and their symmet-
ries with respect to the planes P1 and P2 are given for each

SS

SA AS

SS

4-3a (perpendicular) 4-3b (coplanar)
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conformation.1 We note already that the symmetry of the π∗ orbital1 If the symmetry labels of the C2v group
are used, the symmetries SS, SA, AS, and AA

correspond to a1, b1, b2, and a2, respectively.
changes from one conformation to the other, and this will prove to be
crucial for the conformational preference for the complex.

The π orbital on the ethylene ligand, whose symmetry is SS in
both conformations, can interact with (i) the empty orbital and (ii)
the occupied nonbonding orbital of the same symmetry on the ML4

fragment (4-2). The first of these interactions involves two electrons;
it constitutes the donation interaction of the Dewar–Chatt–Duncanson
model (Chapter 3, § 3.4.1.2) for the metal–olefin bond in this complex.
It is easy to see that the overlap between these orbitals does not depend
on the orientation of the olefin, due to the cylindrical symmetry of the
empty orbital on the metal centre (4-4a and b). Things are essentially
the same for the second interaction: the overlap occurs mainly with the
lobe of the d orbital that points towards the π orbital, and this lobe also
has cylindrical symmetry with respect to the metal–olefin axis (4-5a and
b). We may conclude that since the interactions which involve the π

orbital of the ethylene ligand are identical in the two conformations,
they cannot contribute to a pronounced energetic preference for one
of them.

4-4a 4-4b

4-5a 4-5b

We now consider the interaction of the empty π∗ orbital with the
orbital of the same symmetry on the metal fragment. In the perpen-
dicular conformation, the nonbonding orbital with SA symmetry is
involved, but the antibonding AS orbital is concerned in the coplanar
conformation (4-2). In both cases, this is a two-electron stabilizing inter-
action that leads to a transfer of electron density from the metal to the
ligand. This is therefore the back-donation interaction in the Dewar–
Chatt–Duncanson model (Chapter 3, § 3.4.1.2). As the orbital involved
on the metallic fragment is not the same in the two conformations,
the strength of this interaction depends on the conformation considered. Now
the energetic stabilization created by an interaction is proportional to
the square of the overlap and inversely proportional to the energy dif-
ference between the orbitals (Chapter 1, § 1.3.2). The antibonding π∗
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Figure 4.1. Comparison of the back-donation
interactions (d → π∗) in the perpendicular
(on the left) and coplanar (on the right)
conformations of a d8-[ML4(η2-ethylene)]
complex (4-1). The energy levels and
symmetries of the d orbitals involved in the
two cases are given in the centre of the
diagram.

AS

SA

ASSA

∆Ep

∆Ec

MM M

orbital is higher in energy than the d-block orbitals, which are non-
bonding or, in one case, weakly antibonding (4-2 and Figure 4.1). The
energy separation between the interacting orbitals is therefore smaller
in the coplanar conformation, since, in this case, it is the highest-energy
occupied orbital on the metallic fragment that is involved. Moreover,
the overlap involves a d orbital that is polarized towards the π∗ orbital
in the coplanar conformation (Sc), but a pure d orbital in the perpendic-
ular case (Sp). Therefore, Sc > Sp, (4-6). In summary, a smaller energy
separation and a larger overlap favour the back-donation interaction in
the planar structure.

4-6a (Sp) 4-6b (Sc)

The greater electronic stabilization which follows (�Ec > �Ep,
Figure 4.1) leads to a preference for this conformation, which is indeed
adopted in all known complexes of the type d8-[ML4(η2-olefin)]. The bar-
rier to olefin rotation measured by nuclear magnetic resonance (NMR)
is of the order of 10–15 kcal mol−1.

4.1.2. d6-[ML5(η
2-C2H4)] complexes: staggered or eclipsed

conformation?

An octahedral complex with an ethylene ligand may adopt either the
conformation in which the carbon–carbon bond eclipses the neighbour-
ing M−−L bonds (4-7a), or the staggered conformation shown in 4-7b.
This latter should be more stable on steric grounds. But experimentally,
the eclipsed conformation is observed for complexes with a d6 electronic
configuration, such as [Mo(PR3)5(η

2-C2H4)]—hence the interest in this
conformational problem.
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M

P1

P2

x

z
y

M

P1

P2

4-7a (eclipsed) 4-7b (staggered)

The two conformations have C2v symmetry, and as in the preceding
example, we shall use the two planes of symmetry P1(yz) and P2(xz) to
analyse the symmetries of the orbitals on the ethylene fragment (π and
π∗) and of those on the d6 metallic fragment ML5. For the latter, we
shall consider the four lowest-energy d orbitals (three doubly occupied
nonbonding and the empty polarized z2 orbital, see Chapter 2, § 2.3.1).

SS

SA

4-8

To pass from the eclipsed conformation (4-7a) to the staggered
(4-7b), the orientation of the ethylene molecule has been fixed and a
rotation of 45◦ applied to the ML5 fragment. The orbitals of the ethyl-
ene fragment are therefore as shown in 4-8 for both conformations,
whereas the reorientation of the metallic fragment leads to a change in
the name and the symmetry of one of the its nonbonding orbitals (4-9a

and b): xy (AA) becomes x2−y2 (SS) (Chapter 2, § 2.1.2.4 and 2.1.2.5).

xz

z2

xy yz

SS

AA SAAS

xz

z2

x2–y2 yz

SS

SS

SAAS

4-9a (eclipsed) 4-9b (staggered)

In this system, the donation interaction of the Dewar–Chatt–
Duncanson model involves the occupied π orbital and the empty z2

orbital, both with SS symmetry, in the two conformations. As the
z2 orbital has cylindrical symmetry, the overlap between π and z2 does
not depend on the orientation of the ethylene ligand, so this interac-
tion cannot lead to any conformational preference. The back-donation
interaction involves the empty π∗ orbital and the occupied yz orbital,
both with symmetry SA, in the two conformations. This second
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interaction is therefore also identical in the two conformations. So in
this system, the conformational preference does not arise from either

of the stabilizing interactions that have been invoked to describe the
metal–ligand bond. If we consider the symmetries of the various orbit-
als in the eclipsed conformation, no additional interaction is possible,
other than those we have already described. However, in the staggered
structure, there is an interaction between the occupied π orbitals and
x2 −y2, as both have SS symmetry. This destabilizing four-electron inter-
action, between the π orbital on the olefin and one of the nonbonding d

orbitals on the metal (Figure 4.2), exists only in the staggered conforma-
tion; it is therefore the origin of the observed preference for the eclipsed
conformation. The experimental barrier to olefin rotation is of the order
of 10 kcal mol−1.

SS SS

SS
SASA

2 e–

2e– 2 e–

2 e–

4 e–

M M

SS

SA

Figure 4.2. Interactions between the π and
π∗ orbitals on ethylene (in the centre) and the
orbitals of the same symmetry on the d6-ML5
fragment in eclipsed (left) and staggered
(right) conformations.

The electronic structure of the two conformations can be described
more completely by constructing the MO that result from the inter-
action of the fragment orbitals. Those on ethylene are placed in the
middle of Figure 4.3, while those of the metallic fragment are on the left
(eclipsed) or on the right (staggered conformation). In the interests of
clarity, only the doubly occupied MO of the full complex are shown. The
back-donation interaction between the SA orbitals produces the same
stabilization in both conformations. There is a stabilizing interaction
(donation) that involves the SS orbitals in the eclipsed conformation (left-
hand side). For the staggered conformation, the two-electron stabilizing
interaction and the four-electron destabilizing interaction described
above (Figure 4.2) are represented by a three-orbital interaction scheme
(SS symmetry) that involves four electrons.

The lowest-energy orbital in each conformation of the complex
is mainly concentrated on the π orbital of ethylene. This is a bonding
metal–ligand orbital that does not belong to the d block. The three other
occupied MO are mainly or entirely concentrated on the metal d orbitals.
They are the MO derived from the t2g block of a regular octahedral

Figure 4.3. Construction of the MO for the
eclipsed and staggered conformations of the
d6-[ML5(η2-ethylene)] complex, by
interaction between the π and π∗ orbitals on
ethylene (centre) and the orbitals of the
d6-ML5 fragment (on the left for the eclipsed
conformation, on the right for the staggered).

SS

SA

SS SS

AS
SA

SS
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SA

AA

M MM M
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complex, the degeneracy being partially or completely lifted by the
presence of the ethylene ligand. These three MO are all doubly occupied,
since we are considering a complex with a d6 electronic configuration.
For each conformation, there is a d-block orbital that is stabilized by a
bonding interaction with the π∗ orbital on ethylene and a nonbonding
orbital. The preference for the eclipsed conformation arises from the
third occupied orbital, which is nonbonding in the eclipsed structure
but destabilized in the staggered case (SS). This destabilization should
be linked to the analysis illustrated in Figure 4.2, which shows a repulsive
interaction between SS orbitals in the staggered conformation.

In conclusion, we note that the highest-occupied molecular orbital
(HOMO) ‘rule’, according to which the more stable of two structures of
a given species is the one whose HOMO is at lower energy, is perfectly
applicable to this conformational problem, and to the one treated in the
preceding section (see Figure 4.1).

4.1.3. d6-[ML4(η
2-C2H4)2] complexes: coupling of two

π -acceptor ligands

A new conformational problem arises when there are two ligands for
which several orientations are possible, instead of just one: does the ori-
entation of one of them have an influence on the other? Steric repulsions
may, of course, be significant, but here we shall be interested in purely
electronic factors that may induce a coupling between the orientations
of the two ligands.

Octahedral complexes of the type d6-[ML4(η
2-C2H4)2], in which

there are two ethylene ligands in trans positions, provide a characteristic
example to illustrate this point. The problem of the orientation of each
C==C bond with respect to the rest of the complex has been treated
in the preceding section, where it was shown that in the most stable
conformation, these bonds eclipse the neighbouring M−−L bonds. If this
result is accepted, there is still the question of the relative orientation
of the two ethylene ligands. Two limiting structures can be imagined:
the coplanar conformation (4-10a), which has D2h symmetry, in which
the two C==C bonds are located in the same plane (yz); and the per-
pendicular conformation (4-10b), with D2d symmetry, in which one of
the ethylene molecules has turned by 90◦ to be in the xz plane. Experi-
mentally, this second orientation is observed in this class of compounds,
for example, in the complexes trans-[Mo(PMe3)4(C2H4)2] and trans-
[Mo(diphos)2(C2H4)2] (diphos == Ph2PCH2CH2PPh2). The barrier to
rotation about the metal–olefin bond has been estimated to be about
15 kcal/mol in this latter compound. Since the two ethylene molecules
are well separated, by about 4 Å, it seems unlikely that steric factors are
the origin of this conformational preference. It is therefore natural to
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look for an electronic factor, by analysing the interactions between the
ligands and the residual metallic fragment.

M x

z
y M

4-10a (coplanar) 4-10b (perpendicular)

We shall consider the π and π∗ orbitals on the ethylene ligands
in each conformation, as they interact with the orbitals of the square-
planar d6-ML4 fragment in which the three nonbonding d orbitals, xy,
xz, and yz (Chapter 2, § 2.2.1) are doubly occupied. Two other orbit-
als will also be considered in the following analysis, since they point
towards the two ethylene molecules (4-11): the empty z2 orbital which
is weakly antibonding, and pz which is nonbonding but higher in energy
(Chapter 2, § 2.2.2).

xz

z2

xy yz

pz

4-11

We consider first the interactions of the occupied π orbitals. The
situation is identical to that described in the preceding section for the
eclipsed confirmation of a d6 [ML5(η

2-C2H4)] complex: the overlap
between a π orbital and any of the occupied nonbonding orbitals on the
metallic fragment is zero. However, there are two interactions with the
empty z2 and pz orbitals, as shown in 4-12 for the coplanar conformation.
The in-phase combination of the π1 and π2 orbitals (π (+)) interacts with
z2 (4-12a), and the out-of-phase combination (π (−)) with pz (4-12b).
These are two-electron interactions (ligand → metal donation), and
after the interaction, only the bonding MO, mainly concentrated on the
ligands, are doubly occupied. Due to the cylindrical symmetry of the
z2 and pz orbitals, there is no change to the overlaps involved if one of
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the two ethylene molecules is rotated by 90◦ to give the perpendicular
conformation. The interaction between the two π orbitals is changed,
but the distance between the ligands is too large for this change to
give any energetically significant consequences. The donation interac-
tions do not, therefore, give rise to any pronounced conformational
preference.

�1

�2

�(+)z2

�1

�2

�(–)pz

4-12a 4-12b

We now turn our attention to the interactions that involve the empty
π∗ orbitals. As in the monoethylene complex (§ 4.1.2), the overlap for
each of the π∗ orbitals with z2 is zero by symmetry. The same is true
for the pz orbital, which, like z2, has cylindrical symmetry with respect
to the z-axis. We must still consider the interactions with the nonbond-
ing and doubly occupied d orbitals (4-11), that is, the metal → ligands
back-donation interactions. Following the method developed in § 3.3 of
the preceding chapter, we shall examine the overlap of the π∗ orbitals
with each of the three nonbonding d orbitals, remembering that a non-
zero overlap leads to a bonding interaction d ↔ π∗ that stabilizes the
d orbital (π -acceptor character of the ligand). In the planar conform-
ation, the two π∗ orbitals, concentrated in the yz plane, overlap with
the yz orbital which is therefore stabilized by two bonding interactions
(4-13a). In other words, yz is stabilized by the out-of-phase combination
(π∗(−)) of the orbitals π∗

1 and π∗
2 . But the xz and xy orbitals, which

are antisymmetric with respect to the yz plane, have zero overlap with
the π∗ orbitals, which are symmetric with respect to this plane. Their
shapes and energies therefore stay unchanged (4-13b and c).

�1
*

�2
*

�*(–)yz xz
xy

4-13a (yz + 2π∗) 4-13b (xz) 4-13c (xy)
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In the perpendicular conformation, the π∗
1 orbital still interacts

with the orbital yz (4-14a), but π∗
2 now overlaps with the orbital xz

(4-14b), and xy remains as a pure d orbital (4-14c). In this conformation,
two d orbitals are therefore stabilized to an equivalent extent (bonding
interactions), but the third is unchanged.

�1
*

yz

� 2
*

xz xy

4-14a (yz + π∗) 4-14b (xz + π∗) 4-14c (xy)

These results are given as an interaction diagram in Figure 4.4;
symmetry labels from the D2h point group are used for the coplanar
conformation (on the left), and from the D2d point group for the perpen-
dicular conformation (on the right). The π∗(+) and π∗(−) combinations
in the coplanar structure have b2u and b3g symmetry, respectively,
whereas the π∗ orbitals in the perpendicular structure form a degen-
erate pair of orbitals of e symmetry. Due to the large spatial separation
between the ethylene ligands, the energies of the π∗(+) and π∗(−) com-
binations are very similar, and only slightly different from the energy
of the degenerate π∗ orbitals in the perpendicular conformation. The
three nonbonding d orbitals on the metal, whose symmetries are b3g

(yz), b2g (xz), and b1g (xy) in the D2h point group, and e (yz, xz) and
b2 (xy) in the D2d point group, respectively, are placed in the centre of
the figure. Interaction between orbitals of the same symmetry leads,
as we have shown above, to the stabilization of one d orbital in the
coplanar conformation (4-13a), whereas two of them are stabilized in
the perpendicular conformation (4-14a and b).

Figure 4.4. Diagram for the interaction
between the nonbonding d orbitals (in the
centre) and the π∗ orbitals on the ethylene
ligands in the coplanar (D2h, on the left) and
perpendicular (D2d , on the right)
conformations of an octahedral trans

[ML4(η
2-C2H4)2] complex with a d6

electronic configuration.

b2u

b3g e

b3g

b2g

b1g

e
b2

∆Ec
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Comment

In each conformation, the three doubly occupied MO are the orbitals

derived from the t2g block of a regular octahedral complex with a d6

electronic configuration.

From the energetic point of view, four electrons are stabilized in
the perpendicular conformation, but only two in the coplanar case.
However, the stabilization of the orbital is larger for the coplanar con-
formation (�Ec > �Ep), since there are two bonding interactions
(4-13a), as compared to only one for the degenerate orbitals (4-14a

and b). In order to deduce the conformational preference, it is therefore
necessary to know whether �Ec is smaller than, equal to, or more than
twice as large as �Ep.

Since these are interactions between orbitals with different ener-
gies, the stabilizations �E are proportional to S2/�ε, where S is the
overlap between the orbitals and �ε the energy difference between
them (Chapter 1, § 1.3.2). The term �ε is essentially the same for the
conformations, since the energies of the π∗(−) (coplanar conforma-
tion) and π∗ (perpendicular conformation) orbitals are almost identical.
What can be said about the S2 term? If Sdπ∗ is the bonding overlap
between a d orbital and a π∗ orbital, the overlap between the frag-
ment orbitals in the perpendicular conformation is Sp = Sdπ∗ , and
the total stabilization due to the four electrons (Figure 4.4, right-hand
side) is proportional to 4S2

dπ∗ . In the coplanar conformation, the overlap
takes place between a d orbital and the π∗(−) orbital, which is writ-
ten as (1/

√
2)(π∗

1 − π∗
2 ) in normalised form. The overlap involved,

Sc , is therefore (1/
√

2)(Sdπ∗ + Sdπ∗) =
√

2Sdπ∗ , and the stabiliza-
tion of the two electrons (Figure 4.4, left-hand side) is proportional to
2(

√
2Sdπ∗)2 = 4S2

dπ∗ . We therefore come to exactly the same result
for the two conformations, so we can apparently deduce that there will
be essentially free rotation for an ethylene ligand, but this conclusion
is contradicted by the experimental results that were presented briefly
at the beginning of this section, which indicate a barrier to rotation of
about 15 kcal mol−1.

However, we must remember that the expression showing that the
energetic stabilization is proportional to S2/�ε holds only when there
is a large energy difference �ε between the two interacting orbitals. If
the energy gap is not large, then the stabilization is proportional to S

(Chapter 1, § 1.3.2, Note 8). In the case under discussion, the energy
separation d − π∗ may be as little as about 2 eV for a molybdenum
complex (an estimate obtained from calculations that use the exten-
ded Hückel method). It is therefore worthwhile to examine the other
limiting case (small �ε, stabilization proportional to S) to compare
the two conformations. If we reuse the overlaps calculated above, we
find that the stabilization is proportional to 2

√
2Sdπ∗ in the coplanar
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conformation, but to 4Sdπ∗ in the perpendicular conformation. The lat-
ter is now clearly favoured. This analysis shows us that we can anticipate
a marked conformational preference for the perpendicular structure if
the d − π∗ energy separation is not too large. As this gap increases, the
energy difference between the two conformations should progressively
decrease.

This preference for the perpendicular structure, which is more or
less pronounced depending on the orbital energies, is an important
result that can be generalized as follows: when two π -acceptor ligands
are present, it is preferable for each to interact with a different occupied
d orbital, as happens in the perpendicular conformation, rather than
for both to interact with the same d orbital, as happens in the planar
conformation.

4.1.4. Orientation of H2 in the ‘Kubas complex’
[W(CO)3(PR3)2(η

2-H2)]

The preferential orientation of a ligand may also be caused by the pres-
ence of non-equivalent ligands on the metallic fragment. In this section,
we shall treat what is known as a ‘molecular hydrogen complex’, that is,
a complex in which a molecule of dihydrogen is bound to a metal centre in
the η2 mode. This molecule behaves as an L-type ligand, thanks to the
two electrons in its σH−−H bond. The first example of this type of com-
plex was characterized in 1984, by Kubas and co-workers.2 It is the d62 G. J. Kubas, R. R. Ryan, B. I. Swanson, P.

J. Vergamini, H. J. Wassermann J. Am. Chem.

Soc. 106, 451 (1984). In the following 17 years,
about 800 research articles appeared that are
devoted to studies of the structures and
reactivities of molecular hydrogen complexes.

octahedral complex [W(CO)3(PR3)2(η
2-H2)] (4-15a), where R = iPr,

in which the length of the H−−H bond as measured by neutron diffrac-
tion (0.82 Å) is only slightly greater than that in an isolated H2 molecule
(0.74 Å).

WCO

R3P
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H

H

CO

4-15a (exp)

WCO

R3P

PR3

CO

CO

H H

4-15b

One of the remarkable aspects of the structure of this complex is
linked to the non-equivalence of the ligands other than H2 (PR3 or CO).
The dihydrogen molecule is oriented parallel to the W−−PR3 bonds,
even though at least one other conformation, that with H−−H parallel
to the W−−CO bonds (4-15b), could be imagined. Is there an electronic
factor that causes this conformation preference? Before we can answer
this question, we have to analyse the orbital interactions that lead to the
metal-H2 bond.

4.1.4.1. Orbital interactions in a d6-[ML5(η
2-H2)] complex

We consider first a model d6 complex [ML5(η
2-H2)] in which the five

non-H2 ligands are identical and only have σ interactions with the metal
centre. We shall limit ourselves to the conformation in which the H−−H
bond eclipses two neighbouring M−−L bonds (4-16).
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Figure 4.5. Diagram of the interaction
between the four lowest-energy d orbitals for
a d6 ML5 fragment (SBP) and the σH2 and
σ∗

H2
orbitals of H2, that enables the MO of the

d6 model complex [ML5(η
2-H2)] (4-16) to be

constructed.

SS

SA

SS

AS
SA

AA

M

yz

z2

�H
2

�H
2

*

H H

H HM

The complex can be described as the result of interaction of an H2

molecule with a d6 square-based pyramidal (SBP) ML5 metallic frag-
ment. For the latter, we consider, as in § 4.1.2, the four lowest-energy
d orbitals (three of which are doubly occupied and nonbonding, the
fourth being the polarized, empty z2 orbital), and the σH2 and σ ∗

H2

orbitals on H2 associated with the H−−H bond. Given the orbital sym-
metries with respect to the planes P1 and P2 (4-16), the interaction
diagram shows two two-electron stabilizing interactions (Figure 4.5),
between occupied σH2 and empty z2 on the one hand (SS symmetry),
and between occupied yz and empty σ ∗

H2
on the other (SA symmetry).
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4-17a (H2 → M) 4-17b (M → H2)

The first interaction, which leads to a transfer of electron density
from dihydrogen to the metal, is of the donation type (4-17a), whereas
the second, which involves the empty orbital on H2, is a metal →
dihydrogen back-donation interaction (4-17b).

Comment

This bonding scheme is completely analogous to the Dewar–Chatt–

Duncanson model for the interaction of an ethylene molecule with a

metallic centre (Chapter 3, § 3.4), the πCC and π∗
CC MO being replaced

here by the σH2 and σ∗
H2

MO.

Notice that both interactions weaken the H−−H bond: donation
reduces the population of the bonding orbital σH2 , and back-donation
increases the population of the antibonding orbital σ ∗

H2
. An increase of
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the H−−H distance is indeed observed, to a greater or lesser extent, in
all molecular hydrogen complexes. At the same time, both the occupied
SS and SA MO are bonding between the metal and the hydrogen atoms
(4-17), so M−−H bonds are being formed. This complex may there-
fore be viewed as a ‘frozen structure’ along the reaction pathway that
leads to the rupture of the H−−H bond and the formation of two M−−H
bonds (an oxidative addition reaction with the formation of a dihydride
complex).33 In solution, an equilibrium is established

for the Kubas complex between the dihydro-
gen and dihydride forms, confirming that the
molecular hydrogen complex is an interme-
diate in the oxidative addition reaction of H2.

4.1.4.2. Orientation of H2 in the Kubas complex

We shall consider two orientations for the H2molecule. The H−−H bond
is either parallel to the W−−CO bonds (4-18a), or parallel to the W−−PR3

bonds (4-18b), the latter conformation being found experimentally.

WCO

R3P

PR3

CO

CO

H H

x

z
y WCO

R3P

PR3

CO

H

H

CO

4-18a 4-18b

As in the preceding examples (§ 4.1.2 and 4.1.3), the donation interac-
tion does not depend on the orientation of the dihydrogen molecule, due
to the cylindrical symmetry of the z2 orbital (4-19a). The back-donation
interaction involves either the yz or the xz orbital on the metallic frag-
ment, in the first or second confirmations, respectively (4-19b and c),
and the σ ∗

H2
MO on dihydrogen. If all the ligands other than H2 are

identical, the xz and yz orbitals are degenerate and there is therefore no
difference between the two back-bonding interactions represented in 4-

19b and c. Both sketches therefore represent the eclipsed conformation
of a d6[ML5(η

2-H2)] complex.

z2

�H2

yz

�H2

*

xz

�H2

*

4-19a 4-19b 4-19c

In the Kubas complex, the presence of carbonyl ligands (π acceptors)
and phosphines (which may, in a first approximation, be considered as
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pure σ -donors), lifts the degeneracy of the nonbonding d orbitals. As
we have shown in Chapter 3 (§ 3.3.3.2), yz is stabilized by three bonding
interactions with π∗

CO, xy by two but xz by only one (4-20); as a result,
the energies of these orbitals follow the order εyz < εxy < εxz.

xy xzyz

4-20

There is an important consequence of this energetic non-
equivalence: in this complex, the back-donation interaction depends
on the conformation that is adopted. In structure 4-18a, σ ∗

H2
interacts

with the lowest of the three d orbitals (yz), but with the highest (xz)
in 4-18b. Since the σ ∗

H2
orbital is strongly antibonding, the energy gap

(�ε) between it and any of the three d orbitals is large. We may therefore
assume that the stabilization created by the interaction is proportional
to S2/�ε. The energetic factor (�ε) favours conformation 4-18b, since
the energy gap between the interacting orbitals is smaller (Figure 4.6).
When we consider the overlap, it is important to realize that yz is delo-
calized into three carbonyl groups, but xz into only one (4-20). Since
MO are always normalized, the coefficient of the d orbital is larger
for xz(+1π∗

CO) than for yz(+3π∗
CO), thereby favouring structure 4-18b

(Sσ ∗−xz > Sσ ∗−yz, Figure 4.6). So both factors, energy gap and over-
lap, favour the conformation in which H−−H is parallel to the W−−PR3

bonds.
We note, in conclusion, that the conformation adopted by H2 in the

Kubas complex is controlled by the back-donation interaction (4-15).

Figure 4.6. The back-donation interaction in
conformations 4-18a (on the left, H−−H
parallel to the W−−CO bonds) and 4-18b (on
the right, H−−H parallel to the W−−PR3 bonds)
of the complex [W(CO)3(PR3)2(η

2-H2)].
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But since there is a large energy gap between the orbitals involved in
this interaction, the conformational preference is rather weak, and the
barrier to rotation of the H2 molecule is only about 2–3 kcal mol−1.

4.2. ‘Abnormal’ bond angles

The geometry of some complexes may be very different from one’s initial
thoughts, particularly for bond angles. We shall study two examples,
to see which electronic factors may cause what appears to be a large
distortion from an ‘ideal’ structure.

4.2.1. Agostic interactions

4.2.1.1. Introduction

In carbene complexes [LnM==CHR], the most common geometry is
trigonal-planar about the carbon, with M−−C−−Hα and M−−C−−R angles
close to 120◦ (4-21a). But a large structural change occurs in some
complexes: the M−−C−−Hα angle decreases to about 80◦, whereas the
M−−C−−R angle increases very considerably, to 160–170◦ (4-21b). The
deformation that is observed can therefore be described as a pivoting of
the alkylidene ligand, which brings the C−−Hα bond closer to the metal
centre.

C

H	

R

LnM

4-21a

C

H	

R
LnM

4-21b

The same phenomenon can be observed with an alkyl ligand. For
example, the methyl group can pivot, decreasing the M−−C−−H1 angle
from the expected value of 109◦ (4-22a) to about 90◦ (4-22b).

C

H1

LnM
H

H

C

H1

LnM
H

H

4-22a 4-22b

All these complexes are electron-deficient (Nt < 18). The deform-
ation that is observed has therefore often been interpreted as the
consequence of the pressure to complete the valence shell of the metal,
even if a substantial geometrical distortion is necessary, by introducing
an additional interaction with a C−−H bond.

The group which brings the C−−H bond with its two electrons into
the vicinity of the metal centre has been called ‘agostic’ by Brookhart
and Green.4 These complexes can be considered as ‘frozen’ structures on4 M. Brookhart, M. L. H. Green J.

Organomet. Chem. 250, 395 (1983). the pathway for the insertion of a metal into a C−−H bond, in the same
way that molecular hydrogen complexes were treated on the oxidative
addition pathway that leads to a dihydride (§ 4.1.4).
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4.2.1.2. An agostic methyl group: the complex
[Ti(Cl)3(Me2P−−(CH2)2−−PMe2)(CH3)]

The structure of the complex [Ti(Cl)3(Me2P−−(CH2)2−−PMe2)(CH3)]
obtained by neutron diffraction reveals an agostic methyl group, as the
Ti−−C−−H1 angle is only 93.7◦ (4-23). It is an essentially octahedral com-
plex, in which the oxidation state of titanium is +4. The electronic
configuration is thus d0, so the d block is completely empty! This com-
plex is therefore severely electron-deficient, as Nt = 12 (the electrons
associated with the six metal–ligand bonds).

Me2P Ti

PMe2

Cl

C

Cl

Cl

H1

� = 93.7°

�

4-23

To simplify the problem, we shall analyse the model octahedral com-
plex [Ti(H)5(CH3)]2−, in which all the ligands except CH3 have been
replaced by hydrogen atoms. The two negative charges are necessary to
obtain a d0 electronic configuration. Although this simplified complex
has no experimental reality, it does possess the essential characteristics of
the real complex 4-23: the same number of ligands, the same electronic
configuration, and the presence of a methyl ligand that may be subject
to an agostic distortion.55 This is an acceptable model for a

qualitative analysis based on changes in
overlaps, on the occupation of different
orbitals, etc. But if more accurate calculations
were to be undertaken for a quantitative study,
then it would be necessary to study either the
real complex, or a much less simplified model,
such as [Ti(Cl)3(PH3)2(CH3)].

We shall consider two structures in turn: the non-agostic case (4-24a)
in which the Ti−−C−−H1 angle is 109◦, and an agostic version (4-24b)
where the Ti−−C−−H1 angle is close to 90◦. To pass from one structure
to the other, the methyl group is pivoted about the carbon atom, as in
the experimental structure 4-23.

Ti
H

H

C
H1

HH

H 2–

CH1

Ti
H

H

HH

H
2–

4-24a (non-agostic) 4-24b (agostic)

We shall analyse the interactions between the methyl group and the
metallic centre by decomposing the complex [Ti(H)5(CH3)]2− into two
fragments, CH−

3 and [TiH5]−. In the first, which is a pyramidal AH3

system, the lone pair on carbon is described by a hybrid orbital that
is essentially nonbonding (see Chapter 1, Figure 1.4). This MO is the
highest-energy occupied orbital; we shall refer to it as nCH3 , and at least
initially, it is the only orbital that we shall consider on this fragment (Fig-
ure 4.7, right-hand side). The metallic fragment is of the ML5 type (SBP),
where the metal is located in the base of the pyramid. As in the examples
treated in § 4.1.2 and 4.1.4, we shall consider only the four lowest-energy
d orbitals on this fragment, three of which are nonbonding (xy, xz,
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Figure 4.7. Orbital interaction diagram for
the CH−

3 and [TiH5]− fragments in the
non-agostic structure 4-24a.
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and yz) and one antibonding (z2). Since the electronic configuration of
[TiH5]− is d0, these four orbitals are empty (Figure 4.7, left-hand side).

We consider first the non-agostic structure 4-24a, in which the local
C3 axis of the methyl group coincides with the Ti−−C bond. The orbital
interaction diagram is presented in Figure 4.7. The orbital nCH3 cannot
interact with any of the nonbonding orbitals on the metallic fragment,
since it is of σ -type and located in one of the nodal planes of the xy,
xz, and yz orbitals. However, its overlap with z2 is very large, since
these two orbitals both point along the z-axis and they are polarized
towards each other. Their interaction produces a bonding MO, which is
doubly occupied and mainly concentrated on the ligand; it characterizes
the σTi−−C bond. The antibonding combination makes up one of the
antibonding MO of the d block in this octahedral complex (the z2 orbital).

The pivoting of the methyl group (4-24b) moves its local C3 axis, so
that the nCH3 orbital is no longer oriented along the z-axis (4-25). The
overlap between nCH3 and z2 therefore decreases, as does the electronic
stabilization associated with this interaction. If this were the only factor
to consider, this motion would therefore be energetically unfavourable,
and no agostic distortion would be expected.

S

z2

nCH3

4-25
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However, there is another significant change in the orbital inter-
actions: the overlap between nCH3 and yz, which was zero in the
non-distorted structure, becomes substantial in the agostic structure
(4-26). Since the yz orbital is empty (a d0 fragment), a new stabilizing
interaction is created which now favours the agostic structure. Note
that no interaction can take place between nCH3 and xy or xz (S = 0),
whatever the geometry.

S

S = 0 S ≠ 0

yz

nCH3

4-26

Two factors have therefore been revealed; one is unfavourable for
the distortion, but the other favours it. How, then, can we explain why
the second factor dominates the first? We need to consider the relative
energies of the orbitals concerned. The energy gap �ε between nCH3

and yz (nonbonding) is much smaller than that between nCH3 and z2

(antibonding; see Figure 4.7). Now the electronic stabilization increases
if the difference in energy between the interacting orbitals decreases.
The agostic distortion therefore progressively replaces the (nCH3 ↔ z2)
interaction by a stronger one (nCH3 ↔ yz). Despite what might have
been expected, this distortion reinforces the Ti−−C bond.

At this point in our analysis, we must note that the interpretation of
the agostic distortion we have suggested does not really match the notion
that it is due to an additional interaction between a hydrogen atom, or a
C−−H bond, and the metal centre. Notice, however, that a weak M. . . H
bonding interaction does appear in the MOs represented in 4-26 for the
agostic structure (right-hand side). Moreover, one of the bonding MO
of CH3 (often referred to as πCH3 ), that mainly characterizes the C−−H1

bond, does have an increased interaction with the empty yz orbital, due
to the substantial overlap between 1sH1 and yz (4-27). This interaction

S

yz

�CH3

4-27
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leads to a transfer of electron density from the ligand to the metal,
weakening the C−−H1 bond (loss of bonding electrons) but creating an
incipient Ti−−H bond (gain of bonding electrons). This factor adds to
the one previously discussed, further stabilizing the agostic structure.

To conclude, the important point is that the agostic distortion occurs
because there is a low-energy, empty orbital (yz in our example) in the non-
distorted complex that can be used to make the distortion favourable.
Both characteristics are important: (i) empty, because if it were occupied,
the two-electron stabilizing interactions shown in 4-26 and 4-27 (right-
hand sides) would become repulsive four-electron interactions, which
would therefore oppose the distortion. We are reminded of the need
for an electron-deficient metal, that was noted at the beginning of this
section; (ii) low in energy, so that the favourable factor described in
4-26 dominates the unfavourable factor described in 4-25. This aspect
is also very important, since no agostic distortion of the methyl group is
observed, for example, in the complex [Ti(Cl)3(CH3)], even though it is
extremely electron-deficient (formally, only eight electrons!). It can be
shown that the empty orbital that could be used in an agostic distortion
is in fact too high in energy in this complex to be useful; the three
Ti−−C−−H angles remain equal.

4.2.2. d6 ML5 complexes: a ‘T-shaped’ or ‘Y-shaped’
geometry?

d6 ML5 complexes are electron-deficient species (16e) that often appear
as reaction intermediates. They are indeed obtained from octahedral
d6 ML6 complexes (18e) by the loss of a ligand, which is the first stage
in many organometallic reactions. Despite this high reactivity, many of
them have been isolated and geometrically characterized.

For a long time, the only coordination mode known for these com-
plexes was the SBP. The group VI (Cr, Mo, W) pentacarbonyl complexes
were the first to be observed, and many others with this geometry were
later characterized with different metals (Ru(II), Rh(III), Ir(III), etc) and
very varied ligands (alkyl, silyl, phosphine, halide, etc.). In all these com-
plexes, the angle between two basal transoid ligands lies between 160◦

and 180◦; three examples are shown in 4-28.
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There is nothing surprising about this coordination mode for dia-

magnetic d6 ML5 systems. The d block of an SBP complex, with the
metal either in the basal plane of the pyramid or close to it, contains
three nonbonding orbitals that are derived from the t2g block of the
octahedron (see Chapter 2, § 2.3.1). This environment is therefore ideal
to accommodate three pairs of electrons. Subsequently, however, far
more surprising structures were observed.6 These complexes adopt the6 The first two structures of this type were

discovered in 1986: H. Werner, A. Hohn, M.
Dziallas Angew. Chem. Int. Ed. Engl. 25, 1090
(1986); M. D. Fryzuk, P. A. McNeil, R. G. Ball
J. Am. Chem. Soc. 108, 6414 (1986).

geometry of a distorted trigonal bipyramid, where one of the equatorial
angles is only some 75-80◦. Three examples are shown in 4-29.
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Notice that the movement from an SBP structure to a distorted
TBP geometry can be described by the change of one bond angle (α)
from ∼180◦ to ∼75◦, the intermediate value of 120◦ corresponding to
a regular TBP geometry (4-30). Referring to the relative positions of the
ligands L1, L2, and L3, the SBP structure is said to be ‘T-shaped’, and the
distorted TBP to be ‘Y-shaped’.
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4-30

Three questions arise:

1. Why do the diamagnetic d6 ML5 complexes not adopt a regular TBP
geometry (α = 120◦)?

2. Why are two different structures observed, ‘T-shaped’ and ‘Y-
shaped’?

3. What are the electronic factors that favour one or other of these
structures?
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Figure 4.8. d-block of a TBP complex (the
strongly antibonding orbital z2 is not shown).
In the interests of clarity, the axial ligands
located on the z-axis are omitted. The
electronic occupation is given for a d6

paramagnetic ML5 complex (a triplet state).
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The answer to the first question is straightforward, if we analyse
the structure of the d block of a TBP complex (Figure 4.8, where the
equatorial plane xy is the plane of the page); two orbitals are nonbonding
(xz and yz) and two are weakly antibonding (xy and x2−y2).

Six electrons must be placed in these orbitals. It is clear that the
splitting pattern of the d block favours a paramagnetic ground state,
with one electron in each of the antibonding orbitals (a triplet state,
Figure 4.8). However, this orbital arrangement is not favourable for
diamagnetic complexes (all electrons paired), and all those we have
mentioned are of this type. That is why none of them adopts the regular
TBP structure.

4.2.2.1. Correlation diagram Y ← TBP → T (σ interactions
only)

The geometries that are observed experimentally suggest that we should
study the correlation diagram for the d-block orbitals as the TBP struc-
ture (α = 120◦) is changed either to the T-shaped (α = 180◦) or to the
Y-shaped geometry (α close to 80◦). We shall suppose initially that the
ligands only have σ -type interactions with the metal.

During this deformation, the ligands L2 and L3 move in the equat-
orial plane of the initial TBP (4-30). They therefore remain in one of
the nodal planes (xy) of the nonbonding xz and yz orbitals (Figure 4.7),
so the shapes and energies of these two stay constant. But substantial
changes do occur for the two other orbitals on leaving the regular TBP
structure. In the T-shaped structure, the ligands L2 and L3 are situated

Y TTBP

��
x

y

xy

4-31





‘Abnormal’ bond angles

in a nodal plane of the xy orbital, which therefore becomes nonbonding
(4-31, right-hand side). On the other hand, the antibonding interac-
tion with L2 and L3 increases in the Y-shaped structure, leading to a
destabilization of the xy orbital (4-31, left-hand side).

x

y
x 2–y 2

ε ε

Y TTBP

4-32

Turning to the x2−y2 orbital, movement to the T-shaped structure
increases its antibonding interactions with L2 and L3 located on the
x-axis, producing a destabilization (4-32, right-hand side). In contrast,
these interactions are decreased, if not eliminated, in the Y-shaped struc-
ture, as these ligands are placed approximately on the nodal surfaces of
the x2−y2 orbital (4-32, left-hand side). This orbital is therefore stabil-
ized, but not to the point of becoming nonbonding, as there is still an
antibonding interaction with ligand L1.

The correlation diagram shown in Figure 4.9 groups all these results.
It is striking that the deformation of the TBP to the T- or Y-shaped
structures stabilizes one of the two antibonding orbitals (xy for T, x2−y2

for Y) but destabilizes the other. As a consequence of this lifting of the
orbital degeneracy, associated with a deformation of the complex which
lowers its symmetry (D3h → C2v), the diamagnetic state in which the
two electrons are paired is stabilized. This is an example of what is
known as a Jahn–Teller distortion.

We are now able to understand why diamagnetic d6 ML5 com-
plexes can adopt either the T- or Y-shaped structure, as there are three

Figure 4.9. Schematic correlation diagram for
the four lowest-energy d orbitals, linking the
central TBP structure to the Y- or T-shaped
geometries (left- and right-hand sides,
respectively).
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low-energy d orbitals in each of them. In the first, the ground-state
electronic configuration is ((xz)2, (yz)2, (xy)2), whereas in the second it
is ((xz)2, (yz)2, (x2−y2)2). The T-shaped structure does appear a little
more favourable from the diagram, since the three occupied orbitals are
nonbonding.

4.2.2.2. The role of π -type interactions

The crucial electronic factor turns out to be the π -donor or π -acceptor
properties of the ligand L1 that is trans to the angle α. We consider
first a π -acceptor ligand such as CO. It is easy to show that the xz

and yz orbitals, both of which are occupied, are influenced by the π∗
CO

orbitals to the same extent in the T- and Y-shaped structures: xz stays
unchanged (the overlap is zero by symmetry), whereas yz is stabilized by
a bonding interaction with the π∗

CO orbital that is parallel to the z-axis.
It is the third occupied orbital that makes the difference: xy (T-shaped
structure) is stabilized by a bonding interaction, but x2−y2 (Y-shaped
structure) stays unchanged, since its overlap with the π∗

CO orbitals is
zero by symmetry (4-33). The preference for the T-shaped structure
due to the σ interactions is therefore reinforced by the presence of a
π -acceptor ligand in the position L1.

A

xy

x2–y2

Y T

4-33 (L1 = π acceptor (A))

We now consider a π donor such as Cl. The same analysis is
applied, but we now find that the xy orbital of the T-shaped structure is
destabilized by an antibonding interaction with a lone pair on chlorine
(4-34).

Y T
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4-34 (L1 = π donor (D))
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The presence of a π -donor therefore destabilizes the T-shaped struc-
ture with respect to the Y-shaped one. Looking at the structures shown
in 4-29, we do indeed notice that they all have a π -donor ligand (chlor-
ide, alkoxy, amino) trans to the acute angle α. In the case of a single-face
π -donor ligand (amino, for example), the destabilizing effect for the
T-shaped structure shown in 4-34, which therefore favours the Y-shaped
structure, can only occur if the lone pair on the donor lies in the equat-
orial plane, so that it can interact with the xy orbital. That is just what
happens in the complex shown in 4-29c.

4.3. Carbene complexes

4.3.1. Ambiguity in the electron count for carbene
complexes

Carbene complexes, whose general formula is [LnM==CR2] and which
formally contain an M==C double bond, create a real problem for the
calculation of the metal’s oxidation state. This problem arises because
the bent CR2 ligand possesses two nonbonding orbitals, close in energy,
in which two electrons must be placed (see Chapter 1, Figure 1.5). The
lower of these is a hybrid orbital nσ (4-35a), whereas the higher is a
pure p orbital (if we consider the simplest example, methylene, CH2),
np (4-35b).

4-35a (nσ ) 4-35b (np)

In the covalent model, the two electrons are placed in the lower-
energy orbital (configuration (nσ )2), so that the carbene is considered
as an L-type ligand which does not oxidize the metal (4-36a). However,
due to the small difference in energy between the nσ and np nonbonding
MO, the ground electronic state of several carbenes (CH2, for example)
is in fact the triplet 3[(nσ )1(np)

1]. In this situation, with two unpaired
electrons, it seems more logical to consider the carbene as an X2 ligand
(4-36b) which oxidizes the metal by two units.

4-36a (L) 4-36b (X2) 4-36c (dianion)

If we now consider the ionic model, the electronic octet of the carbon
must be completed, which means that we must consider the dianionic
form (CR2)

2− (4-36c). Since the two extra electrons were supplied by
the metal, we obtain the same oxidation state as that yielded by the
covalent model with an X2 ligand. In the ionic description, the dianion
(CR2)

2− is a strong π -donor, due to its doubly occupied p orbital.
It is important to be aware of these different possible points of

departure, since the ambiguity in the calculation of the oxidation
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state appears very frequently in experimental articles about these com-
plexes. An example is given in 4-37, where we see that the complex
[Cp2Ta(CH3)(CH2)] can be described as a d2 Ta(III) complex, if CH2 is
considered as an L-type ligand in the covalent model, or as a d0 Ta(V)
complex if we use either the X2 description of the covalent model or
the ionic description. It may well seem disconcerting not to know if the
electronic configuration of this complex is d2 or d0, since that appears
to imply that one does not know how many electrons must be placed in
the d block! Note, however, that the total number of electrons does not
depend on the model chosen (Nt = 18).

Ta

CH3

CH2

CH2  = L  => [Ta(L2X)2 (L)(X)] => Ta(III): d2

CH2  = X2  => [Ta(L2 X)2 (X2)(X)] => Ta(V): d 0

(CH2)
2– ; 2Cp– ; (CH3 )–  => Ta5+ :  d 0

covalent

ionic

4-37

This apparently complicated situation (which is at least fairly
complicated in reality) arises from the different possible choices for
the electron distribution within the CR2 ligand (L or X2?) or between
the ligand and the metallic fragment (a neutral or a dianionic ligand?).
The initial distribution is in fact somewhat arbitrary no matter which
choice is made, and the situation becomes clearer if one considers the
electronic structure of the complex as a whole, rather than that of the
separate fragments.

4.3.2. Two limiting cases: Fischer carbenes and Schrock
carbenes

To clarify these points, we shall consider the carbene as an L-type ligand
(4-36a). It therefore acts as a σ donor, using its lone pair described by
the nσ orbital, which interacts with an empty orbital on the metal (e.g.
z2, 4-38a). In this model, the np orbital is empty, so the carbene acquires
a π -acceptor character (single face) (4-38b). The interaction scheme
is similar to that in the Dewar–Chatt–Duncanson model (Chapter 3,
§ 3.4.1) used, for example, to describe ethylene complexes or molecular
hydrogen complexes (§ 4.1.4).
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e

4-38a 4-38b

However, an important difference arises, since the empty p orbital
on the carbene can be strictly nonbonding (as in CH2), and therefore
at low energy, rather than antibonding (π∗

CC, σ ∗
H2

) as in the preceding
examples. Depending on the nature of the metal, the ligands and the
substituents on the carbene, this orbital can therefore be either higher or

lower in energy than the d orbitals on the metal. To prove this point, one
need only consider the energy of the d orbitals for the first transition
series, which ranges from −8.5 (Sc) to −14 eV (Cu), whereas the energy
of a p orbital on carbon is −11.4 eV (parameters of the extended Hückel
method).

4.3.2.1. Two interaction schemes for back-donation

When the p orbital is higher in energy than the d orbital, we obtain
a typical back-donation scheme, with the formation of a bonding MO
mainly located on the metal (4-39): formally, we may consider that
the π interaction does not oxidize the metal, since the two electrons
stay mainly localized on this centre. In this case, the description of the
carbene as an L-type ligand is therefore quite appropriate. However, if
the p orbital is lower in energy than the d orbital, the occupied bonding
MO is mainly concentrated on the carbene (4-40), so that in a formal

4-39 4-40

sense, two electrons have been transferred from the metal to this ligand.
In other words, the d orbital that was occupied before the interaction is
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transformed to an MO of the complex that is mainly concentrated on
the ligand: the d block therefore ‘loses’ two electrons. In this case, the
description of the carbene as an X2-type ligand or as a dianionic ligand
(CR2)

2−, which leads to an increase of the metal’s oxidation state by
two units, corresponds more closely to reality.

The ambiguity that we noticed previously for the electron count in
carbene complexes in fact corresponds to chemical reality: the L and X2

(or dianion) formulations are appropriate for the situations described in
4-39 and 4-40, respectively.

We shall now examine how the nature of the metal, the ligands, and
the substituents on the carbene can favour one or other of these two
possibilities.

4.3.2.2. Fischer carbenes and Schrock carbenes

How can the situation described in 4-39 be favoured, with an acceptor
orbital on the carbene that is clearly higher in energy than the metal
d orbital? We require that the d orbital is low in energy and at the
same time that the p orbital is high. The d orbital factor therefore leads
us to consider metals towards the right-hand side of the periodic classi-
fication, or at the limit in the centre, since the energy of the metal
orbitals is lowered on passing from left to right in a transition series
(see Chapter 1, Table 1.4). In addition, the presence of π -acceptor lig-

ands also leads to a lowering of the level of the d orbitals. As far as
the carbene is concerned, the energy of the empty p orbital is raised if

the substituents are π donors, that is, if they have lone pairs (halogens,
O−−R, NR2, etc.). An example is shown in 4-41 for the carbene CCl2.
The in-phase combination of the p lone pairs on the chlorine atoms

C

ClCl

C

Destabilization of the 

empty orbitalp

4-41





Carbene complexes

destabilizes the empty orbital on carbon and therefore favours the
situation depicted in 4-39. Carbene complexes that possess these charac-
teristics are called Fischer carbenes. As examples, we may consider com-
plexes such as [(CO)5W==C(Ph)(OMe)], [(CO)4Fe==C(Ph)(OMe)],
[(CO)5Cr==C(NiPr2)(OEt)], or [Cp(CO)(PPh3)Fe==CF2]+. Since
the carbene is usually considered to be an L-type ligand for the calcula-
tion of the oxidation state of the metal, these are described as complexes
of W(0), Fe(0), Cr(0), and Fe(II), respectively.

In this group of compounds, the carbene acts as a σ donor and
a rather weak π acceptor, due to the relative energies of the d and p

orbitals. Overall, the electron density around the carbon of the carbene
is decreased, leading to a metal–carbon bond that is polarized M(δ−) =
C(δ+), with an electrophilic character for the carbon centre: it is therefore
likely to be attacked by nucleophiles, and it is possible, for example, to
interconvert two carbene complexes (4-42).
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In order to obtain the situation shown in 4-40, where the p orbital
on carbon is at lower energy than the d orbital, the conditions previ-
ously suggested for the Fischer carbenes must be reversed: the metal
must come from the left of the periodic table, and must have π -donor
ligands to destabilize the d orbital, instead of π -acceptors. Moreover, to
ensure that the p orbital on the carbene is as low in energy as possible,
its substituents cannot be π donors: CH2 itself is a good candidate, and,
more generally, alkyl substituents are suitable (the term ‘alkylidene’
is often used for a carbene substituted by alkyl groups). The com-
plexes [Cp2(CH3)Ta==CH2] and [CpCl2Ta==C(H)(CMe3)] are typical
examples. As we have already noted, the metal in this group of com-
plexes is usually considered to be oxidized by two units by the alkylidene
ligand, so the two examples mentioned above contain Ta(V).

Carbene complexes that possess these properties are called Schrock

carbenes. The π interaction shown in 4-40 is accompanied by a substantial
transfer of electron density from the metal to the carbon atom. This
transfer more than outweighs the σ donation (ligand → metal), so
that the metal–carbon bond is polarized in the sense M(δ+)==C(δ−).
Schrock carbenes therefore possess a nucleophilic carbon, and give, for
example, addition products with Lewis acids such as AlMe3 (4-43).
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H

Cp 2MeTa

AlMe3
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In summary, Fischer carbenes (electrophiles) and Schrock carbenes
(nucleophiles) correspond to two different possibilities for the orbitals
that participate in the π interaction (4-39 and 4-40). We often distin-
guish between them for the calculation of the metal’s oxidation state:
the carbene ligand is considered to be of L-type for the first category,
but as an X2 ligand (or CR2−

2 ) for the second. The characteristics that
we have suggested for each category are, of course, only general indic-
ations. Some complexes may be found on the border between the two
groups. For example, the complex [Cp2(CH3)Ta==CH2] is, as expec-
ted, a nucleophilic carbene (Schrock-type), but the tungsten complex
[Cp2(CH3)W==CH2]+, which has exactly the same ligands, is electro-
philic (Fischer-type). The presence of a positive charge on the metallic
fragment, which stabilizes the metal’s d orbitals and thereby favours the
situation shown in 4-39, provides a plausible explanation of this differ-
ence in behaviour, despite the low energy of the nonbonding p orbital
on the carbon atom.

4.4. Bimetallic complexes: from a single
to a quadruple bond

In organic chemistry, we know that two carbon atoms can be linked
by a single bond (σ ), a double (σ + π ), or a triple bond (σ + 2π ).
The increase in bond order is accompanied by a decrease in interatomic
distance, from 1.54 Å (C−−C), through 1.34 (C==C) to 1.20 Å (C≡≡C).
From the orbital point of view, these different bond orders correspond
to the occupation of one, two, or three bonding MO between the two
carbon atoms (4-44), it being clear that the corresponding antibonding
MO are empty. The orbital that characterizes the σ bond has cylindrical
symmetry about the internuclear axis in each case, whereas the orbitals
that characterize the π bond(s) have a nodal plane (4-44).

It is natural to wonder how many bonds, of what type, can exist
between the two metal centres in bimetallic complexes. The character-
istics presented above will reappear in the description of metal–metal
bonds, but the presence of d-type orbitals introduces a significant new
feature.
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4.4.1. σ , π , and δ interactions

We shall consider the interactions between the d orbitals on two metallic
centres, initially ignoring any influence of the ligands on these orbitals. Each
interaction leads to the formation of a bonding and an antibonding MO,
but only the first of these, written (+), is shown in 4-45. The interaction
between the z2 orbitals (4-45a) is of σ type; the axial overlap between
the two orbitals has cylindrical symmetry around the internuclear axis
(z). The MO xz(+) and yz(+) (4-45b) have the same characteristics as
the π orbitals of acetylene (4-44); they are bonding, and they possess a
nodal plane that passes through the nuclei.

�
z

x

y

z 2 (+)

�

xz (+)

yz (+)

xy (+)

(x2–y2)(+)

δ

4-45a 4-45b 4-45c

The novel feature compared to organic systems arises in the inter-
actions between the pairs of orbitals xy and x2−y2. In each case, the
bonding MO that are formed have two nodal planes, instead of just one
for the π MO: these are the xz and yz planes for the xy(+) orbital, and
the planes that bisect the x-and y-axes for the (x2−y2)(+) orbital (4-45c).
These are described as δ interactions.
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The overlaps involved depend on the type of interaction. The axial
overlap Sσ is larger than or comparable to the lateral overlaps Sπ . How-
ever, the Sδ overlap is much smaller than these, only about a third or a
quarter of Sπ .

4.4.2. M2L10 complexes

Consider a bimetallic complex of the type M2L10 (4-46), whose MO may
be constructed by the interaction of two monometallic fragments ML5

with an SBP geometry.
L

L

L

L

LL
L L

LL
M M

4-46

On each fragment, we shall consider the four lowest-energy
d orbitals, as in the preceding examples that concerned this fragment
(§ 4.1.2, 4.1.4, and 4.2.1.2): three are nonbonding (xy, xz, and yz) and
one is weakly antibonding (z2). These orbitals are not involved in the
description of the M−−L bonds in each fragment, and are therefore avail-
able to form bonding and antibonding MO between the two metallic
centres.

There is a very strong σ interaction between the z2 orbitals, since
the two fragment orbitals are polarized towards each other, two π -type
interactions between the xz and yz orbitals, and a weaker δ-type
interaction between the xy orbitals (4-47).

xz

z2

yz

xy

� interaction

� interactions

� interaction

4-47

The interaction diagram for these fragment orbitals is shown in
Figure 4.10, where it is clear that the σ interaction is stronger than the
π interactions, which in turn are larger than the δ interaction.

xy, xz, yzxy, xz, yz

z2z2

�

�
∗

�
∗

�

�

M M

M M

Figure 4.10. Interaction scheme for the d

orbitals on two ML5 fragments (SBP) to form
the MO of a bimetallic complex M2L10.
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Since the xy, xz, and yz orbitals are initially at the same energy,
there is no ambiguity in the energetic order of the π and δ MO: επ <

εδ < εδ∗ < επ∗ . Moreover, the highest-energy MO (not shown) is σ ∗.
However, it is less easy to be sure of the position of the σ bonding
MO. Although the interaction is the strongest of those concerned, the
orbitals involved are the highest in energy (z2). The energy separation
between the nonbonding and antibonding levels in each fragment, which
is variable from one complex to another, is thus an important parameter.
The ordering shown in Figure 4.10, where the σ orbital is placed between
the π and δ levels, corresponds to a fairly small energy separation in the
fragments. The number and the nature of the metal–metal bonds clearly
depend on the electronic occupation of these orbitals.

We shall examine first the complex [Re2(CO)10]. It may be con-
sidered to be formed from two [Re(CO)5] fragments, whose electronic
configuration is d7 (Re(0)). There are therefore 14 electrons in all to
be placed in these MO, which leads to the electronic configuration
(π)4(σ )2(δ)2(δ∗)2(π∗)4 (4-48a). The interactions of π and δ type there-
fore do not contribute to bonding between the metallic centres, since
both the bonding and antibonding MO are occupied. However, the σ

orbital is occupied, whereas its antibonding σ ∗ counterpart is empty.
We can therefore conclude that there is a single bond between the two
metallic centres, of σ type, in the complex [Re2(CO)10].
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It is clear that to increase the bond order, the number of electrons must

be reduced, so that fewer antibonding MO are occupied. In the complex
[Re2(Cl)8(H2O)2]2−, each monometallic fragment [Re(Cl)4(H2O)]−
has a d4 electronic configuration (Re(III)). There are therefore eight
electrons to be placed in the MO of this complex, which leads to the elec-
tronic configuration (π)4(σ )2(δ)2 (4-48b). As only the bonding orbitals
are occupied, there is a quadruple bond between the two metal centres.
There are two π bonds, one σ bond, and a new entity that does not
exist organic chemistry: a δ bond.

The change from a single to a quadruple bond is accompanied by a
very substantial shortening of the Re–Re bond, whose length decreases
from 3.04 Å in [Re2(CO)10] to 2.22 Å in [Re2(Cl)8(H2O)2]2− .

4.4.3. The [Re2(Cl)8]2− complex: a staggered or an
eclipsed conformation?

The most famous example of a quadruply bound bimetallic complex
is [Re2(Cl)8]2−, whose structure inspired Cotton to propose, for the
first time, the existence of a δ bond, in addition to σ and π bonds,
between two metallic centres.7 The Re–Re distance is very short (2.24 Å),7 F. A Cotton Inorg. Chem. 4, 334 (1965)

a value close to that found in the complex [Re2(Cl)8(H2O)2]2− already
studied above; most strikingly, the complex is observed to have an eclipsed

structure (4-49a) rather than the staggered conformation (4-49b) that
would have been expected. It is also important to note that this complex
is diamagnetic.
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4-49a (exp) 4-49b

As a first approximation, we can construct the MO for this complex
by considering the interaction of two monometallic [ReCl4]− frag-
ments with a square-planar geometry (in fact, the Re−−Re−−Cl angles
are 103.7◦).

We consider first the eclipsed conformation (4-49a). The interaction
scheme for the fragment orbitals is similar to that shown in Figure 4.10
for two SBP ML5 fragments which also have an eclipsed conformation.
The only change in the d orbitals of the fragments is the lowering in
energy of the z2 orbital, which is almost nonbonding in a square-planar
ML4 complex (see Scheme 4-11), whereas it is antibonding in an SBP
ML5 complex (Figure 4.10). As a consequence, the strong interaction
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between the z2 orbitals leads to a σ MO that is now lower in energy
than the π orbitals. The energetic ordering of the MO is therefore:
εσ < επ < εδ < εδ∗ < επ∗ < εσ ∗ . Since each fragment has a d4

electronic configuration (Re(III)), there are eight electrons to be placed
in these MO. In this diamagnetic complex, the ground-state electronic
configuration (σ )2(π)4(δ)2 is thus characteristic of a quadruple bond
between the two metallic centres (4-50a).

�
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d

�

�

(a) (b)

4-50a (eclipsed) 4-50b (staggered)

We now turn to the staggered conformation. One monometallic
unit has thus been rotated by 45◦ around the z-axis with respect to the
other (4-49b). This has no consequence for the σ interaction, due to the
cylindrical symmetry of the orbitals concerned (z2). The π interactions
involve two degenerate orbitals on each centre that are concentrated in
two perpendicular planes, (as in the ML5 fragments, 4-47). The sum of
the two π interactions is not changed by the rotation of one fragment,
as the reduction of the overlap with one of the degenerate orbitals is
compensated by the increase in overlap with the other. But an important
change does occur for the δ interaction: the overlap between the xy

orbitals in the eclipsed conformation disappears in the staggered form,
since the two orbitals that are now concerned (xy(1) and (x2−y2)(2)) have
different symmetries (with respect to the plane of the paper, for example)
(4-51). There are therefore two nonbonding d levels in this conformation
(4-50b).

S = 0S ≠ 0

xy (1) xy (2) (x2–y2)(2)xy (1)

4-51





Applications

In the diamagnetic ground state, movement from the eclipsed to
the staggered confirmation therefore leads to the rupture of the δ bond,
which explains why the first structure (quadruply bound) is more stable
than the second (‘only’ a triple bond). However, if we consider the triplet
state 3δδ∗, the staggered conformation with two nonbonding d electrons
is more stable than the eclipsed (one electron in a δ bonding orbital, one
in an antibonding δ∗). As a result, the movement from the diamagnetic
ground state to the first excited triplet state is accompanied by a change
in conformation for the complex (eclipsed → staggered).

4.5. The reductive elimination reaction

In this last example, we shall study a chemical reaction. In general, prob-
lems concerning reactivity are more difficult to treat than structural
problems. A reaction is accompanied by a complete electronic reorgan-
ization, involving the breaking and making of bonds, and several vital
factors, such as the relative stabilities of the reactants and products,
are not easy to obtain from qualitative analyses of electronic structure.
However, some worthwhile information can be obtained, usually from
a correlation diagram that relates the MO in the reactants to those in the
products. We thus obtain a description of the electronic reorganization
that is associated with the reaction under study, in terms of molecular
orbitals.

4.5.1. Definition

The elimination of the molecule R−−R′ (R and R′ are X-type ligands such
as H, alkyl, halogen, etc.) is a decomposition mode that is frequently
found for organometallic complexes [LnMRR′] (4-52).

[Ln MRR�] [Ln M] + R–R�
reductive

elimination

4-52

The removal of two X-type ligands leads to a decrease of two units
in the metal’s oxidation state; the electronic configuration changes
from dn to dn+2. The metal is therefore reduced, which explains the
name ‘reductive elimination’. The opposite reaction is called ‘oxidative
addition’.

4.5.2. Simplified model for the reaction
[LnMR2] → [LnM] + R−−R

Four electrons are intimately involved in the reorganization of the bonds.
In the reactant, these are the electrons associated with the two M−−R
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bonds that will be broken. In the products, they are the two elec-
trons in the new R−−R bond and the two electrons that remain on the
reduced metal. In the simplest description of this reaction by MO the-
ory, we shall consider only the orbitals associated with these electrons,
that is:

1. In the reactant, two (occupied) bonding MO that describe the
bonds that are to be broken, and the two corresponding (empty)
antibonding MO.

2. In the products, the (occupied) bonding and (empty) antibonding
MO associated with the new bond that is formed (R−−R), and the
two nonbonding MO that remain on the metal (with two electrons
in total) after the departure of the two ligands.

A typical correlation diagram for these MO is shown in Figure 4.11.
The MO of the reactant are placed on the left. The bonding orbitals, σ (+)

and σ (−), are mainly concentrated on the ligands, whereas the antibond-
ing orbitals, σ ∗(+) and σ ∗(−), are mainly on the metal (Chapter 1, § 6.1).
We shall not try to discover the exact shape of these MO, in particular
the contribution from the different atomic orbitals (AO) on the metal (s,
p, d, or mixture?). The representation shown here is schematic, since in
reality the MO spread over the whole complex, rather than being lim-
ited to the two bonds. The important point is that there is a symmetric
bonding MO (σ (+)) and an antisymmetric bonding MO (σ (−)), just as
there is a ‘symmetric’ (a1) and an ‘antisymmetric’ (b2) MO that describe
the two A−−H bonds in a bent AH2 molecule (Chapter 1, Figure 1.5).
The same remark may be made about the antibonding σ ∗(+) and σ ∗(−).
In the products, the MO that are R−−R bonding (σR−−R) and antibond-
ing (σ ∗

R−−R) are the lowest and highest in energy of the four orbitals,

respectively. The relative energies of σR−−R and σ (+) indicate that the

Figure 4.11. Schematic correlation diagram
for the reductive elimination reaction
[LnMR2] → [LnM] + R−−R. Only the four
most strongly perturbed orbitals are shown.
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R−−R bond is assumed to be stronger than the M−−R bond. Among the
two nonbonding orbitals (nA and nS), the antisymmetric orbital nA has
been placed lower in energy than the symmetric nS. This is the case
when the first is a polarized d orbital and the second a hybrid orbital of
s–p type.88 If the opposite holds, the ground-state

electronic configuration of the reactant
correlates with a doubly excited configuration
of the product. This would be a
symmetry-forbidden reaction, according to
Woodward and Hoffmann.

The diagram in Figure 4.11 shows us that the antisymmetric orbital
σ (−) is strongly destabilized, as the two metal–ligand bonding interac-
tions are removed. The activation energy for the reaction is linked to the
change in energy for this orbital. In contrast, the symmetrical orbital
σ ∗(+) is strongly stabilized, as the two antibonding interactions disap-
pear. The final point to note is the reduction of the metal centre. The
σ (−) orbital, which is mainly concentrated on the ligands, correlates
with the nA orbital that is localized on the metal: in a formal sense, the
metal has gained two electrons.

4.5.3. An example: d8-[L2MR2] → d10-[L2M] + R−−R.

We shall consider a square-planar ML4 complex with a d8 electronic
configuration which possesses two alkyl ligands (R) in cis positions.
The reductive elimination of R2 leads to the formation of a d10 [ML2]
complex. An example is shown in 4-53, that involves the elimina-
tion of ethane from a complex that contains a chelating diphosphine
ligand.
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4.5.3.1. Correlation diagram for the highest-symmetry
mechanism (C2v)

Several different mechanisms can be considered for this reaction,
depending on the way in which R2 is eliminated. We shall study here the
pathway with the highest symmetry possible; the orientation of the R2

unit with respect to the rest of the complex stays unchanged (4-54). C2v

symmetry is maintained along this reaction pathway, and the symmetry
labels used for the orbitals will be appropriate.

In the correlation diagram, we shall represent not only the four MO
described in the preceding section, but also the nonbonding or weakly
antibonding orbitals in the d block and the other nonbonding orbitals
on the metal. In this way, we shall obtain a more complete description
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Figure 4.12. Correlation diagram for the MO
involved in the reductive elimination reaction
d8-[L2MR2] → d10-[L2M] (bent) + R2 in the
mechanism where C2v symmetry is conserved.
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of the electronic reorganization that is associated with this elimination
reaction.

For the reactant (left-hand side of Figure 4.12), there are therefore the
σM−−R bonding (1a1 and 1b2) and σ ∗

M−−R antibonding (4a1 and 2b2) MO
and, at an intermediate energy, the three nonbonding d orbitals (x2−y2,
xz, and yz), together with the slightly antibonding z2 orbital and the
nonbonding pz orbital (Chapter 2, § 2.2). The bonding MO are doubly
occupied, as are the four d orbitals (d8). For the products (right-hand side
of Figure 4.12), we consider the σR−−R and σ ∗

R−−R MO (1a1 and 2b2), the
five nonbonding (x2−y2, xz, and yz), or weakly antibonding (z2 and,
at slightly higher energy, xy) d orbitals as well as the two nonbonding
orbitals pz and s−py (2b1 and 4a1) (Chapter 2, § 2.8.4). In the ground-state
electronic configuration, the σR−−R MO and the five d orbitals are doubly
occupied (d10). C2v labels are used for the symmetries of these orbitals.





Applications

The first conclusion that we may draw from this correlation diagram
is that the elimination reaction is symmetry-allowed according to this
mechanism: the ground-state electronic configuration of the reactant
correlates with the ground state of the products. Moreover, the energy
changes of the four ‘principal’ MO (solid lines) are the same as those
given in the simplified diagram of the previous section (Figure 4.11). In
particular, notice the destabilization of the 1b2 orbital and its transform-
ation from a ligand orbital in the initial complex into a d-block orbital of
the ML2 complex.

4.5.3.2. Use of the correlation diagram: influence of the nature
of the metal

Experimentally, it has been shown that the reductive elimination of
R2 is easier for a nickel complex than for the isoelectronic palladium-
containing species. This result may be readily understood from the
correlation diagram in Figure 4.12.

[ML2R2] [ML2]

Pd

Ni

1b2

1b2

4-55

As we have already noted, the activation energy of this reaction is
mainly caused by the destabilization of the 1b2 orbital. In the reactant,
this MO is mainly concentrated on the ligands, but in the products it is
a metal-based orbital, since it is part of the d block of the [ML2] com-
plex. On moving from palladium to nickel, the energy of the d orbitals is
lowered appreciably, from −9.58 to −12.92 eV (see Table 1.4, Chapter 1).
This lowering in energy stabilizes the 1b2 orbital, only weakly in the
reactant (small coefficient on the metal) but strongly in the product (a d

orbital). This analysis shows us that the destabilization of the 1b2 orbital
is smaller for a nickel complex than for one containing palladium (4-55).
The activation energies follow the same trend, and the greater tend-
ency for a nickel complex to undergo reductive elimination is thereby
explained.
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Exercises

Conformation of d10-[(η2-C2H4)ML2] complexes

4.1

1. Which is the more stable conformation for an [(η2-C2H4)ML2]
complex with a d10 electronic configuration, 1 or 2?





Applications

L
M

L

L
M

L

1 2

2. How does the barrier to olefin rotation change when the substitu-
ents R are varied: R==CN (tetracyanoethylene), R==H (ethylene),
R==Cl (tetrachloroethylene)?

3. Repeat question 2, replacing the two non-ethylene ligands on the
metal by a bidentate ligand that constrains the L−−M−−L angle to
be much larger than 120◦.

ML3 complexes

4.2

1. Starting from the d orbitals of an octahedron, construct the
d orbitals (shapes and relative energies) for a ‘T-shaped’ ML3

fragment (L2−−M−−L3 = 180◦, L1−−M−−L2 = L1−−M−−L3 = 90◦).

L1 M

L 2

L3

x
y

z

2. How do the orbital energies of this fragment change on moving
from the T-shape to a trigonal geometry (120◦ bond angles)?

L1 M

L 2

L3

L1 M

L3

L2

3. From the results you obtain in 2 above, predict the geometries
adopted by the complexes [Rh(PPh3)3]+ and [Pt(PPh3)3].

Octahedral dioxo complexes

4.3

We wish to compare the relative stabilities of the cis and trans isomers
of d0 and d2 octahedral dioxo complexes; remember that the oxo
group is an X2-type ligand.
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M

O

O

M x
y

z

Trans Cis

O O

1. Give the shapes and relative energies of the d orbitals for an octa-
hedral complex in the absence of any π -type interactions, in the
two orientations shown above. In what follows, we shall only consider

the nonbonding d orbitals.
2. We now turn to dioxo complexes. If the four non-oxo ligands are

pure σ donors, give the interaction schemes d (metal) ↔ p (oxo)
for each isomer.

3. Which isomer is the more stable for a d0 complex? For a d2

complex?
4. Deduce the structures of the complexes [OsO2F4]2− and

[MoO2Cl4]2−.

Carbene–dihydrogen coupling in an octahedral complex

4.4

In the molecular hydrogen complex [Os(NH3)4(CR2)(H2)]2+, a
Fischer carbene and a dihydrogen molecule are in cis positions. We
shall consider four limiting structures (0, 0), (0, 90), (90, 0), and (90,
90) that are characterized by the orientations of the carbene (first
angle) and of the dihydrogen molecule (second angle).

Os

C

H

H

Os

C

Os

C

H

H
Os

C

H

H

H

H

(0, 0) (0, 90) (90, 0) (90, 90)

1. What is the electronic configuration dn for this complex?
2. For each of the four conformations above, analyse the back-

donation interactions towards the carbene and towards the
dihydrogen.

3. From the results of this analysis, suggest the favoured structure(s)
for this complex.

4. Which limiting conformations are possible for the trans isomer?
Which should be the most stable a priori?
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Coupling of two trans carbenes in an octahedral complex

4.5

Consider the conformations 1 and 2 of octahedral complexes in
which two Fischer carbenes are in trans positions. The non-carbene
ligands are pure σ donors.

1. Give the shapes and relative energies of the three lowest-energy
d-block MOs for the two conformations.

M

C

C

M

C

C

1 2

2. Deduce the conformations for a d2, d4, or d6 diamagnetic complex.
3. How is the barrier to rotation modified if the non-carbene ligands

are π acceptors?

The reductive elimination reaction

4.6

We wish to study the reductive elimination of H2 from an octa-
hedral complex with a d6 electronic configuration, following the
mechanism shown in 4-56, which leads to a square-planar d8 ML4

complex.

M

L1

L2

L3 H

L4 H
M

L1

L2

L3

L4 H

H

4-56

1. Sketch the correlation diagram for the MO associated with this
reaction. For the reactant, consider the nonbonding d MO and the
MO that characterize the two M−−H bonds which will be broken;
for the products, the MO of H2, the occupied d orbitals, and the
nonbonding p orbital of the ML4 complex. Two planes should be
used to characterize the symmetries of the MO.

2. Is this reaction allowed by symmetry?
3. How does the correlation diagram show the reduction of the

metal?





 

The isolobal analogy

In Chapter 2, the d orbitals (and, in some cases, the s, p, or s–p hybrid
orbitals on the metal) were constructed for many types of MLn com-
plexes in which the ligands have σ -type interactions with the metal. The
shapes and relative energies of these orbitals depend on the number of
ligands and their geometrical arrangement around the metal. Naturally,
any π -type interactions that are present also play a role. Thus, the d

orbitals in the octahedral complex [WCl6] (six π -donor ligands) are dif-
ferent from those in the octahedral complex [W(CO)6] (six π -acceptor
ligands). But ‘there is a time for detail and there is a time for generality’1: in1 R. Hoffmann ‘Building bridges between

inorganic and organic chemistry (Nobel
lecture)’, Angew. Chem. Int. Ed. 21, 711 (1982).

both cases, the d orbitals are split 3 + 2, with three degenerate orbit-
als (the t2g block) lower in energy than the two degenerate orbitals
of the eg block, and this result is characteristic of all octahedral ML6

complexes. In the same way, the orbital structure of AHn molecules or
fragments (or more generally ARn), in which A is a main-group ele-
ment, depends essentially on the number and geometrical arrangement
of the substituents on the central atom. But beyond the obvious differ-
ence created by the presence of d orbitals in organometallic complexes,
there are resemblances between the molecular orbitals (MO) of MLn

complexes and those of AHn molecules. These similarities can lead to
related properties: thus J. Halpern had noted in 1968 the similarity in
behaviour of organic radicals and of d7 ML5 complexes.2 But it is chiefly2 J. Halpern in Advances in Chemistry;

Homogeneous Catalysis, No 70, American
Chemical Society, Washington, DC (1968)
pp. 1–24.

R. Hoffmann who developed this concept and showed its remarkable
fruitfulness.1

5.1. The analogy between fragments of octahedral
ML6 and of tetrahedral CH4

In many cases, we established the orbitals of MLn fragments earlier in
this book by starting from a complex in which one or several ligands were
removed. For example, the orbitals of ML5 complexes (SBP, C4v), ML4

(‘butterfly’, C2v), and ML3 (pyramidal, C3v) were obtained from those
of an octahedral ML6 complex, by removing one, two, or three ligands,
respectively (Chapter 2, § 2.3.1, 2.8.1, and 2.8.3). In certain respects,
each of these complexes was therefore considered as a fragment of an
octahedron (5-1).
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ML5 (SBP)

ML4 (‘butterfly’)

ML3 (pyramidal)

ML6

5-1

The same procedure can be applied to molecules of the type AHn,
where A is an element from the second or third row of the periodic table.
In particular, starting from tetrahedral methane, CH4, the archetype of
organic molecules, one can obtain the organic fragments pyramidal
CH3(C3v), bent CH2(C2v), and CH(C∞v), by removing one, two, or
three atoms of hydrogen (5-2).

C CH3 (pyramidal)

CH2 (bent)

CH

CH4

H

H

H
H

C

H

H
H

C
H
H

H

H

C

H

H

H

H

H

H

H CC

5-2

Even though these comments are purely geometrical in nature, it
turns out that they have profound chemical consequences. Thus, an
ML5 complex (SBP) possesses a vacant site, and it is likely to bind an
additional ligand to form an octahedral complex. In the same way, the
ML4(C2v) and ML3(C3v) fragments have two and three available sites,
respectively, with respect to the initial octahedron. In the organic series,
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the CH3, CH2, and CH fragments possess the same characteristics, with
the potential to form one, two, or three new bonds.

This similarity in the capacities of inorganic and organic fragments
to form new bonds can be expressed in orbital terms, particularly if we
consider the number, the shape, and the electronic occupation of the orbitals
that are available to form these new bonds. The resemblances between
these orbitals are at the heart of the theory of the isolobal analogy,
developed by R. Hoffmann, which enables us to build bridges between
the electronic structures of inorganic and organic molecules.

5.1.1. Fragment orbitals by the valence-bond method

The orbitals of methane, CH4, and those of the related fragments CH3,
CH2, and CH can be described using the molecular orbital method, as
we have done for all the systems studied so far in this book. But the
valence-bond approach, introduced by L. Pauling,3 can also be used; this is3 L. Pauling The Nature of Chemical Bond,

3rd edn., Cornell University Press, Ithaca, NY
(1960).

perhaps the simplest way to establish an initial relationship between the
electronic structures of organic and inorganic fragments.

In CH4, the carbon atom is at the centre of a tetrahedron defined
by the four hydrogen atoms. The carbon atom’s four valence orbitals
(the 2s orbital and the three 2p orbitals) can be combined to give four
equivalent hybrid orbitals (written sp3) that point towards the vertices of
the tetrahedron. Since carbon has four valence electrons, one electron
can be placed in each hybrid orbital. A 1sH orbital, which is also singly
occupied, can interact with the sp3 hybrid that points towards it, and
in this way we can describe the four equivalent bonds in a tetrahedral
arrangement.

Using this model, how can we describe the orbital structure of the
CH3, CH2, and CH fragments that are obtained by homolytic rupture of
one, two, or three C−−H bonds? In the case of CH3, three of the hybrid
orbitals point towards three hydrogen atoms and interact strongly with
the 1sH orbitals. But the fourth orbital points in the direction where
there is no hydrogen atom (5-3a). It is therefore a nonbonding hybrid

orbital, which contains a single electron (from the homolytic rupture
of the C−−H bond). In the same way, there are two nonbonding singly
occupied sp3 hybrid orbitals in CH2 (5-3b), and three in CH (5-3c).

C

H

H

H

5-3a

C

H

H

5-3b

H C

5-3c
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We now turn to an octahedral ML6 complex with a d6 electronic
configuration, which we shall consider as the starting point for inorganic
fragments. This complex obeys the 18-electron rule, just as methane
obeys the octet rule. To be a little more concrete, though this choice is
in no way unique, we shall consider a chromium complex [CrL6], with
six neutral L-type ligands (PR3, CO, etc.), each of which supplies a pair
of electrons to the metal. In this complex, chromium is in the oxidation
state zero, and the electronic configuration is indeed d6.

In the spirit of valence-bond theory, we must construct six hybrid
orbitals that point towards the vertices of the octahedron. We must
therefore combine just six of the nine valence orbitals of the metal: it
turns out that these are the s orbital, the three p orbitals, and two of the
d orbitals (this hybridisation pattern will be written d2sp3, see Chapter 2,
§ 2.1.2.3). Three d orbitals are therefore not involved in the hybridisation,
and they stay unchanged (5-4). The link with MO theory is plain: these
are the three nonbonding orbitals of the octahedral t2g block. In a d6

complex, these three non-hybridized orbitals are doubly occupied.

d

s

p

six d2sp3 hybrids

three pure d orbitals

5-4

With the six metal electrons placed in this way, the hybrid orbitals
are empty. Each of these interacts with the doubly occupied orbital of
the ligand L towards which it points, thereby forming six bonds in an
octahedral arrangement (5-5).

L

L

L

L

L

L

5-5

We now break one Cr−−L bond homolytically, as we did above for
methane. If the ligand is neutral, and of L type (CO, PR3, . . .), this
homolytic rupture leaves one of the bonding electrons on the metal,
forming the radicals ·L+ and [·CrL5]−. In the latter (5-6a, right-hand
side), there are still five d2sp3 hybrid orbitals that interact strongly with
the orbitals on the five ligands. The sixth orbital points towards the
vacant site of the octahedron: it is therefore nonbonding, and it contains
the electron that came from the homolytic rupture of the Cr−−L bond.
From this viewpoint, the resemblance with CH3 is striking (5-6a): the
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CH3 and [CrL5]− fragments are both characterized by the presence of a
singly occupied nonbonding orbital which points towards a vacant site,
of a tetrahedron for the former, of an octahedron for the latter.

Cr

Cr

–

2–

3–

C

H

H
H

C

H

H

H C

L

L

L

L
L

5-6a

5-6b

5-6c

Cr

L

L
L

L

L

L
L

In the same way, the homolytic rupture of a second Cr−−L bond
that leads to the complex [CrL4]2− with a ‘butterfly’ geometry leaves
two singly occupied nonbonding hybrid orbitals on the metal, as in the
organic fragment CH2 (5-6b). And the rupture of a third bond leads to
the fragment [CrL3]3− (5-6c), whose electronic structure is similar to
that of the fragment CH with three nonbonding hybrid orbitals each
containing one electron.

These organic and inorganic fragments, which have the same num-
ber of nonbonding hybrid orbitals occupied by the same number of
electrons, are said to be isolobal analogues.4 The isolobal analogy is rep-

4 This analogy establishes a link between
fragments which are neither isostructural nor
isoelectronic.

resented by a double-headed arrow, underneath which is a symbol that
can be described either as a small hybrid orbital or as a tear.5

5 T. A. Albright, J. K. Burdett, M.-H.
Whangbo Orbital Interactions in Chemistry,
John Wiley & Sons, NY (1985), chapter 21.

CH3 [CrL5]–

CH2 [CrL4]2–

CH [CrL3]3–
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Our choice of a chromium complex was quite arbitrary. In each of
the inorganic fragments above, we may obviously replace chromium
by molybdenum or tungsten, as they have the same number of valence
electrons. More generally, we may also consider a metal from another
group in the periodic table, so long as the number of electrons is not
changed. Thus, all d7 ML5 complexes with a square-based pyramidal
(SBP) geometry possess a singly occupied nonbonding hybrid orbital;
they are therefore isolobal analogues of the pyramidal fragment CH3.
As examples, we may consider the neutral complexes [Mn(CO)5],
[Tc(CO)5], and [Re(CO)5], or the cationic complex [Fe(CO)5]+.
In the same way, the complexes [Mn(CO)4]− or [Fe(CO)4], with a
‘butterfly’ geometry, are, like [CrL4]2−, complexes with a d8 electronic
configuration and therefore isolobal analogues of the organic fragment
CH2. And pyramidal d9 ML3 complexes ([Cr(CO)3]3−, [Mn(CO)3]2−,
[Fe(CO)3]−, and [Co(CO)3], for example) are all isolobal analogues
of CH.

CH3
d7-ML5

d8-ML4

d9-ML3

CH2

CH

(SBP)

(butterfly)

(pyramidal)

The same type of change may also be made on the organic frag-
ment, by replacing CH3 with BH−

3 or NH+
3 (still with a pyramidal

geometry). All these fragments are isolobal to d7 ML5 complexes such
as [Mn(CO)5]. One can also modify the charge on the organic or inor-
ganic fragment. Since CH3 is isolobal to [Mn(CO)5], CH+

3 (pyramidal)
is isolobal to [Cr(CO)5], and CH−

3 to [Fe(CO)5], if all these complexes
are considered with a SBP geometry.6 In these three pairs of analogous6 In the isolobal analogy, fragments

(organic or inorganic) are considered with
geometries which are not necessarily the most
stable. For example, the most stable structure
for [Fe(CO)5] is trigonal-bipyramidal (TBP)
rather than square-pyramidal. Similarly, the
CH+

3 cation is planar.

compounds, the single nonbonding hybrid orbital contains zero (CH+
3

and [Cr(CO)5]), one (CH3 and [Mn(CO)5]) or two electrons (CH−
3

and [Fe(CO)5]).

5.1.2. Fragment molecular orbitals

The analogy between the electronic structures of two isolobal fragments
is, of course, still present if we consider their molecular orbitals.

We start with the organic series CH3, CH2, and CH. Just as
there were one, two, or three nonbonding hybrid orbitals, respect-
ively, in the valence-bond model, the electronic structure in terms of





The analogy between fragments of octahedral ML6 and of tetrahedral CH4

molecular orbitals shows the presence of one, two or three nonbonding
or essentially nonbonding MO, respectively (Chapter 1, Figures 1.4–1.6).
Moreover, the number of electrons to be placed in these orbitals is the
same as in the nonbonding hybrid orbitals: one for CH3 (5-7a), two for
CH2 (5-7b), and three for CH (5-7c). Notice that the electronic occupa-
tion of these MO can sometimes be problematical, as the orbital energies
are quite close. For CH2 and CH, we have chosen to place the electrons
in the MO so as to create as many pairs as possible. This electronic
occupation is indeed the ground state of CH, but it is not for methyl-
ene, CH2, for which the ground state is a triplet, with one electron in
each of the two nonbonding orbitals (parallel spins). In fact, this is not
important when one is using the isolobal analogy. The capacity of a
fragment to form new bonds depends more on the number of available
nonbonding orbitals and the total number of electrons they contain, than
on the more-or-less arbitrary initial distribution of the electrons in the
fragment.

CH3
a1

H

5-7a

H
H

CH2

a 1

b2

H

H

H

H

5-7b

CH

�

�

H

H H

5-7c

In contrast to hybrid orbitals, MO are adapted to molecular sym-
metry. Several features therefore arise that are new, compared to the
previous description. First, even though the MO that are considered are
always concentrated in the same region of space as the vacant site(s) of
the tetrahedron, they do not always point directly towards these sites,
except, of course, in the case of CH3 where there is only a single vacant
site. For example, the shapes of the a1 and b2 MO in the CH2 fragment
mean that the two sites of the initial tetrahedron are equivalent for these
two MO (5-7b), but neither orbital points along the direction of the
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broken C−−H bonds. Moreover, in contrast to hybrid orbitals, the MO
do not have the same shape or energy. Still using CH2 as an example, the
a1 (a hybrid orbital) and b2 (a pure p orbital) MO have different shapes,
and the a1 orbital is lower in energy than the b2 orbital (5-7b). In CH,
there is one hybrid orbital with σ symmetry and two pure p orbitals
with π symmetry, the pair of degenerate orbitals (π ) being higher in
energy than the σ orbital (5-7c).

We shall now consider the inorganic fragments that are the isolobal
analogues of CH3, CH2, and CH, that is, the SBP d7 ML5, ‘butterfly’
d8 ML4 and pyramidal d9 ML3 fragments (§ 5.1.1), and compare the MO
that are concentrated around the vacant site(s) following the homolytic
rupture of one, two, or three bonds in the initial structure (tetrahedral
CH4 or octahedral ML6).

In the CH3 and d7 ML5 fragments, there is only one orbital of
this type. It is totally symmetric (a1 symmetry) in both cases (C3v for
CH3 and C4v for ML5) (5-8), it points towards the vacant site (of the
tetrahedron or of the octahedron) and of course it has axial symmetry
with respect to the main symmetry axis (C3 and C4, respectively). These
two orbitals are not identical—the first is an sp3 hybrid orbital, the second
a polarized z2 orbital—but they are very similar. Counting electrons,
the nonbonding orbital of the methyl radical is singly occupied (5-7a).
In a d7 ML5 fragment, such as [Mn(CO)5], six electrons occupy the
nonbonding orbitals derived from the t2g block of the octahedron, and
the seventh occupies the polarized z2 orbital (Chapter 2, Figure 2.7). In
both fragments, the orbital pointing towards the vacant site is therefore
singly occupied.

a1

a1

CH 3 d 7-ML5 (SBP)

H

H
H

L

L

L

L

L

5-8

The set of all these characteristics—the same number of orbitals to
be considered, similar symmetry properties, and the same number of
electrons—allows us to establish that two fragments are isolobal in the
framework of MO theory.
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Comment

The hydrogen atom, with its atomic orbital 1sH singly occupied, is also an

isolobal analogue of the d7 ML5 fragment.

The CH2 and d8 ML4 (‘butterfly’) fragments, both with C2v sym-
metry, provide a second illustration. Now there are two orbitals to
consider for each fragment. For CH2, these are the two orbitals shown in
5-7b: the first, totally symmetric (a1), has of course axial symmetry with
respect to the C2 axis; the second (a pure p orbital with b2 symmetry)77 This orbital (py) has b2 symmetry (see

the character table for the C2v point group,
Chapter 6, Table 6.5). If the x- and y-axes are
interchanged (the z-axis stays as the C2 axis),
this orbital becomes px , which has b1
symmetry (as was noted in Chapter 1,
Figure 1.5). The choice is arbitrary. The
important point is that this orbital is
antisymmetric with respect to the molecular
plane. This comment also applies to the
polarized d orbital on the metallic fragment,
whose symmetry is either b1 or b2, depending
on the orientation chosen for the x- and y-axes.

is antisymmetric with respect to the molecular plane. For the metallic
fragment, whose orbital structure was established in Chapter 2 (Fig-
ure 2.15), there is a polarized d orbital, with b2 symmetry, and the s–p

hybrid orbital on the metal, with a1 symmetry. The orbitals involved
in the two fragments have the same symmetries (5-9). Moreover, the
same number of electrons must be placed in these orbitals: two in CH2

(5-7b) and also in a d8 ML4 fragment, since there are six electrons in the
three nonbonding d orbitals derived from the t2g block of the octahedron
(Chapter 2, Figure 2.15). Notice, however, that the energetic order of the
orbitals is inverted (5-9), so that with the chosen electronic occupation
(the lowest-energy MO doubly occupied) the electronic configuration is
not the same for the two fragments (a2

1 in CH2, b2
2 in d8 ML4). As long as

one is mainly concerned by the fragments’ capacity to form new bonds,
this difference is of no real consequence (see § 5.3.1).

L

L

L

L

L

L
L

L

a 1

b2
b2

a 1

z
x

CH2 d 8-ML4 (‘butterfly’)

H

H

H

H

y
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For the CH and pyramidal d9 ML3 fragments, three orbitals must
be considered. For CH, these are the orbitals shown in 5-7c: one orbital
with σ symmetry and two degenerate orbitals with π symmetry, with
three electrons in total. In a d9 ML3 complex, such as Co(CO)3, six elec-
trons occupy the three nonbonding orbitals derived from the t2g block
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of the octahedron (Chapter 2, Figure 2.13). At slightly higher energy, we
find the three orbitals that are concentrated in the region of the vacant
sites of the octahedron — a pair of degenerate orbitals (e symmetry in
the C3v point group) and one totally symmetric orbital (a1)—in which
we must place the three remaining electrons. If we compare the degen-
erate MO in the two fragments, we notice that in each case one orbital is
antisymmetric with respect to the plane of the paper (py and ey) but the
other is symmetric with respect to this plane (px and ex). Even though
the symmetry labels in the C∞v and C3v point groups are different, the
similarity between the orbitals in the two fragments is plain: the σ

orbital in CH corresponds to the a1 orbital in the metallic fragment, and
the degenerate π pair to the degenerate e pair (5-10). It is true that the
energetic ordering of the degenerate and the totally symmetric orbitals
is inverted, but this detail has no more importance here than in the
preceding example concerning the CH2 and d8 ML4 fragments.
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� e
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py px
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L
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L
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5.2. Other analogous fragments

An octahedral d6 ML6 complex, such as [Cr(CO)6], is not the only initial
structure that can be used to construct inorganic fragments which are
analogous to the organic fragments CH3, CH2, and CH (5-11a and b).
Two other structures are often used as starting points.

The cyclopentadienyl ligand (Cp) is very widespread in organometal-
lic chemistry. When it is coordinated in the η

5 mode, the most common
situation, it behaves as an L2X ligand (Chapter 1, § 1.1.1.3). [CpML3]
complexes (L = CO, PR3, . . .) are therefore pseudo-octahedral com-
plexes of the ML5X type, which have 18 electrons when their electronic
configuration is d6. A d6 [CpML3] complex may therefore be used as
a new initial structure, very similar to that used previously. Since the
presence of the cyclopentadienyl ligand oxidizes the metal by one unit,
a metal with seven valence electrons (M = Mn, Tc, Re) must be used
to obtain a neutral complex. The complex [CpMn(CO)3] is therefore a
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possible starting point. Subsequently, the fragments d7 [CpMn(CO)2]−,
d8 [CpMn(CO)]2−, and d9 [CpMn]3− are obtained by homolytic rupture
of one, two, or three Mn−−CO bonds. Neutral metallic fragments can be
obtained, if the metal is taken from one group further to the right in the
periodic table each time. Starting from the complex d6 [CpMn(CO)3],
we can thus deduce that the fragments d7 [CpFe(CO)2], d8 [CpCo(CO)],
and d9 [CpNi] are isolobal to CH3, CH2, and CH, respectively (5-11a

and c).
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5-11a 5-11b 5-11c 5-11d

Another starting point is sometimes used, taking a complex whose
‘normal’ number of electrons is 16 instead of 18. The most common
example involves a square-planar complex with a d8 electronic configura-
tion (Chapter 2, § 2.2). Starting, for example, from [Fe(CO)4], and using
the same method as above, one can show that the fragments [Co(CO)3],
with a ‘T-shaped’ geometry, bent [Ni(CO)2] and [Cu(CO)] are isolobal
analogues of CH3, CH2, and CH, respectively (5-11a and d).

5.3. Applications

5.3.1. Metal–metal bonds

Since the CH3 and d7 ML5 fragments have analogous electronic struct-
ures, their chemical behaviour is similar in some respects. For example,





The isolobal analogy

dimerization to form ethane (C2H6) is an important property of the
methyl radical, as is its initiation of radical-type chain reactions. Sim-
ilarly, species such as [Mn(CO)5] or [Co(CN)5]3−, both of which are
d7 ML5 systems, have a very rich radical-type chemistry; in particular,
they dimerize to form [Mn2(CO)10] and [Co2(CN)10]6−, respect-
ively, (despite the presence, in the latter, of three negative charges
on each monomer!). These bimetallic complexes are therefore isolobal
analogues of the ethane molecule.

C2H6 [Mn2(CO)10] [Mn(CO)5CH3]

The main orbital interaction that occurs during the dimerization of
the fragments (CH3, [Mn(CO)5] or [Co(CN)5]3−) involves in all cases
the singly occupied nonbonding orbital on each monomer. The interac-
tion schemes for the orbitals on the [Mn(CO)5] (or [Co(CN)5]3−) and
CH3 fragments produce a doubly occupied bonding MO in the dimer,
with axial symmetry around the internuclear axis, and the correspond-
ing antibonding orbital which is empty (5-12a and b). There is therefore
a single σ bond between the two metallic centres in the [Mn2(CO)10] or
[Co2(CN)10]6− dimers, which implies nearly free rotation around the
metal–metal bond, as there is around the C−−C single bond in ethane.
The analogy can be extended to mixed inorganic–organic dimers such as
[Mn(CO)5CH3], formed by the combination of the metallic fragment
[Mn(CO)5] and its organic analogue CH3. In this last example, there is
once again a single σ bond between the metal and the carbon, result-
ing from the combination of the singly occupied orbitals on the two
fragments.

CH3 CH3

C2 H6

[Mn(CO)5] [Mn(CO) 5]

[Mn2(CO)10]

5-12a 5-12b

Another example involves the dimerization of the CH2 and ‘but-
terfly’ d8-ML4 fragments. The dimer of CH2 is just simply ethylene,
a planar molecule characterized by a double bond between the two
carbon atoms (a σ bond and a π bond). The isolobal analogy linking
the CH2 and ‘butterfly’ [Fe(CO)4] fragments (5-9) shows us that the
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bimetallic complex [Fe2(CO)8], in the conformation shown in 5-13, is
an isolobal analogue of ethylene, which implies the existence of a double
bond between the two metallic centres.

C2H4 [Fe2(CO)8]

H H

Fe

CO

CO

OC

OC
Fe

CO

CO

CO

CO
C C

HH

5-13

The similarity in the electronic structures of the two molecules is
confirmed by the interaction diagrams shown in 5-14a for C2H4 and
5-14b for [Fe2(CO)8].
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In ethylene, the interaction between the fragment orbitals leads to
the formation of two bonding (σCC and πCC) and two antibonding
MO (σ ∗

CC and π∗
CC). In the ground electronic state, the former are

doubly occupied and characterize the σ and π bonds (5-14a). In the
[Fe2(CO)8] dimer, there are also two bonding MO, one of σ type with
axial symmetry around the internuclear axis, the other of π type with
a nodal plane in the plane of the paper, and the two corresponding
antibonding MO (5-14b). There are still, in total, four electrons to be
placed in these MO, so in the ground electronic state the two bonding
MO (σMM and πMM) are doubly occupied, just as in ethylene.

We noted above that the different orbital occupations in the two
isolated fragments (a2

1 for CH2, b2
2 for [Fe(CO)4], 5-9) has no influence

on their capacity to form new bonds and is therefore of little importance
for the isolobal analogy. The example above illustrates this point nicely:
independently of the energetic order of the fragment orbitals and the
initial electronic occupation, the occupied and empty MO in the two
dimers have analogous symmetry properties (5-15).

C2H4 [Fe2(CO)8]
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�CC
*

�CC
*

�MM
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*

5-15

The analogy is not limited to molecules that are formed by the com-
bination of two fragments. For example, the complex [Os3(CO)12] can
be considered as the combination of three [Os(CO)4] fragments with
C2v geometry. Each of these is of course isoelectronic to [Fe(CO)4],
and therefore isolobal to the organic fragment CH2. The [Os3(CO)12]
complex is therefore an isolobal analogue of cyclopropane (5-16). Each
metallic centre is bound to two neighbours by a single bond, as in
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the organic analogue. Other complexes, which appear to be very dif-
ferent, also have this property. The fragment [CpRhL] is isoelectronic
to [CpCoL], and therefore isolobal to the [Fe(CO)4] and CH2 frag-
ments (5-11). As a result, the complex [Cp2Rh2(CO)2(µ-CH2)] can be
described as a ‘two-thirds inorganic’ cyclopropane (5-16).

C
C

C
Os

Os

Os
C

Rh

Rh

C3H6 [Os3(CO)12] [Rh2(Cp)2(CO)2(µ-CH2)]

Cp

Cp

5-16

5.3.2. Conformational problems

Several conformational properties that are well known in organic
molecules reappear in inorganic complexes or in mixed organic/
inorganic systems. The ethylene molecule provides a good example;
it adopts a planar geometry that allows the formation of two bonds
between the carbon atoms (a σ bond and a π bond). In the ‘ortho-
gonal’ structure, where the two methylene groups lie in perpendicular
planes, only the σ bond would be preserved. We now turn to the
carbene complex [Fe(CO)4(CH2)] in a TBP geometry, with the carbene
in an equatorial position. Since the CH2 and [Fe(CO)4] fragments are
isolobal, this complex is an isolobal analogue of ethylene, C2H4. Two
limiting conformations can be imagined, with the CH2 ligand either per-
pendicular to the equatorial plane of the complex, or in this plane. The
analogue of the first of these conformations is indeed a planar molecule
of ethylene (5-17a), but the second corresponds to a strongly destabilized
state of ethylene in the orthogonal geometry (5-17b). However,
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H H
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the similarity in electronic structures does not necessarily imply that
the barriers to rotation (5-17a → b) will be comparable in the organic
molecule and in the organometallic complex. About 64 kcal/mol are
needed to twist ethylene from its planar to its orthogonal structure, but
the rotation of the carbene ligand in a complex of d8 [ML4(CR2)] type
needs only about 15–20 kcal/mol (see Exercise 5.8).

In the same way, we can predict (or rediscover) the conformational
preferences of several ethylene complexes. If we replace the carbene in
the preceding example by ethylene, still in an equatorial position, we
obtain the complex [Fe(CO)4(C2H4)] which is isolobal to cyclopropane.
The conformation shown in 5-18a is isolobal to cyclopropane in its most
stable geometry, with three carbon atoms on a tetrahedral environment,
whereas that shown in 5-18b is isolobal to a ‘deformed’ cyclopropane,
in which the coordination around one of the carbon atoms is square-
planar. The first of these conformations is therefore more stable: in
contrast to the carbene, ethylene ‘prefers’ to lie in the equatorial plane
of the complex. In a simple way, we come to the same conclusion
concerning the conformational preference as we did in the preceding
chapter (§ 4.1.1), when we examined the problem starting from the
interaction diagrams between fragment orbitals.
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5.4. Limitations

The isolobal analogy draws out similarities in the electronic structures
of organic and inorganic molecules that can easily escape our attention.
As a result of these similarities, we can discover resemblances in the
number and nature of bonds, molecular geometries, and sometimes
even reactivities. But analogies must not be pushed too far, and there
can be significant differences between analogous molecules.

One of the limitations concerns the kinetic stabilities of analogous
species. For example, in the analogous series of compounds ethylene,
carbene complexes of iron tetracarbonyl and its dimer, [Fe2(CO)8]
(5-19), the first two are known, but the last is unstable and to date it
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has only been observed in an inert matrix at very low temperatures. In
other words, the analogy with a very stable organic molecule is not a
guarantee that the inorganic species will be stable.

Fe

CO

CO

OC

OC
C

H

H

Fe

CO

CO

OC

OC
Fe

CO

CO

CO

CO
C C

H H

H H

5-19

Another limitation concerns the capacity of some ligands, such as the
carbonyl group, to coordinate in either terminal or bridging positions
(µ-type coordination) in polynuclear complexes. Consider the bimet-
allic complex [CpFe(CO)2]2, for example, (5-20b). Each [CpFe(CO)2]
fragment is analogous to the methyl radical (5-11), so the complex is
isolobal to ethane (5-20a). However, it is known in two different forms:
[CpFe(CO)2]2, where all the carbonyl ligands are in terminal positions,
and [CpFe(CO)(µ-CO)]2, in which two carbonyl ligands are bridging
(5-20c), and this latter form is the more stable. A structure of this type,
with bridging hydrogen atoms, is of course unknown for ethane, the
organic analogue of this complex.
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In metallic complexes, the bridged and non-bridged structures are
often very close in energy, and small changes can favour one geo-
metry or the other. Thus, in the trimetallic complex [Os3(CO)12],
which is analogous to cyclopropane (5-21a), all the carbonyl ligands
are terminal. However, in the isoelectronic iron complex, two carbonyl
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ligands bridge the two metallic centres, giving the isomer
[Fe(CO)4(Fe(CO)3(µ-CO))2] (5-21b). As in the previous example, a
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bridged structure of this type cannot be seriously imagined for the
organic analogue, but that does not prevent the complex 5-21b, like
the complex 5-21a, from being an isolobal analogue of cyclopropane.

Exercises

5.1

1. Give an organic and a bimetallic isolobal analogue of the complex
[Mn(CO)5CH3].

2. Suggest an orbital interaction diagram that is suitable for the
description of the bond between the metallic centre and the
methyl group in this mixed complex.

5.2

1. By using the isolobal analogy with an organic molecule, predict
the number and nature (σ or π ) of the metal–metal bond(s) in the
bimetallic complex [CpRh(CO)]2.

2. Suggest a structure for this compound.

5.3

1. How many carbonyl ligands (n) are necessary on each metal
centre for the bimetallic complex of osmium (2) to be an isolobal
analogue of cyclobutane (1)?

H2 H2
H2 H2

CH2H2C Os(CO)n(CO)nOs

C C C C

1 2

2. Indicate the geometrical arrangement of the ligands around the
metal centres.

5.4

1. Show that the trimetallic complex [(CO)4Fe(Pt(CO)L)2]
(L = PR3) is an isolobal analogue of cyclopropane.

Fe(CO)4

Pt(CO)L

Pt(CO)L
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2. Deduce the positions of the ligands around each metallic
centre.

5.5

In the complex below, [Cr(CO)4(BH4)]−, the borohydride ligand is
bound to the metal centre in the η

2 mode, that is, with two bridging
hydrogen atoms.

Cr
H

H
B

H

H

CO

CO

OC

OC

1. Give an organic isolobal analogue of the fragment [Cr(CO)4]−.
2. Give a boron-based analogue of this fragment.
3. Which boron-based compound is the isolobal analogue of the full

complex?

Deduce (or rediscover) its geometrical structure.

5.6

Use the isolobal analogy to predict the more stable conformations
for the following ethylene complexes (Cp = η

5-cyclopentadienyl).

Pt or

(a) (b)

CO

CO
Pt

CO

CO

Rh or

(a) (b)

CO

Cp
Rh

CO

Cp

5.7

1. Show that the complex [Ir4(CO)12] (1) is an isolobal analogue of
tetrahedrane (2).

R
C

RC CR

C
R

(CO)3
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(OC)
3
Ir Ir(CO)

3

Ir
(CO)

3

1 2
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2. What can be said about the complex [(η3 -cyclopropenyl)Co(CO)3]
3 and the bimetallic complex [µ-(η2-alcyne)(Co(CO)3)2]
4, in which the acetylenic bond is perpendicular to the metal–
metal bond?

RC CR

C
R

3

Co(CO)3

4

(OC)3Co Co(CO)3

CR

CR

3. Give another limiting representation for the structures of
complexes 3 and 4.

5.8

Examine the analogies described in Scheme 5-17. Does the double-
bond really disappear on passing from structure a to structure b for
(i) the organic molecule and (ii) the organometallic complex?





 

Elements of group theory and
applications

Examination of the geometries of isolated molecules shows that there
are four types of symmetry elements: reflection planes, axes of rotation,
inversion centres, and improper axes of rotation. A symmetry operation

moves a molecule from an initial configuration to another, equivalent
configuration, either by leaving the position of the atoms unchanged, or
by exchanging equivalent atoms. The ideas of symmetry element and
symmetry operation are of course very closely linked, since a symmetry
operation is defined with respect to a given element of symmetry, and,
conversely, the presence of a symmetry element is established by the
presence of one or more symmetry operations that are associated with
that element.

6.1. Symmetry elements and symmetry operations

6.1.1. Reflection planes

O

C1 C2

H4H1

H2
H5H3 H6

z

y

6-1

Consider the dimethylether molecule (O(CH3)2) in the conformation
shown in 6-1: the hydrogen atoms H1 and H4 lie in the plane C1−−O−−C2

(the plane of the paper), but the atoms H2, H5 and H3, H6 are ‘above’
and ‘below’ this plane.

The xz plane, which is perpendicular to the plane of the paper
and which bisects the angle C1−−O−−C2, is a symmetry element of the
molecule, written σv . Reflection in this plane leads to a configuration
that is equivalent to the initial one: the position of the oxygen atom
(located in the σv plane) stays unchanged, and the positions of the
pairs of equivalent atoms (C1, C2), (H1, H4), (H2, H5), and (H3, H6)
are interchanged (6-2).

�v (xz)

O
C1 C2

H4H1

H2
H5

H3 H6

O
C2 C1

H1H4

H5
H2H6 H3

6-2
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The yz plane (written σv
′), which contains the three heavy atoms,

is also a symmetry elements of the molecule, since reflection in this
plane maintains the positions of the atoms O, C1, C2, H1, and H4, and
exchanges the pairs of hydrogen atoms (H2, H3) and (H5, H6) (6-3).

O
C1

C2

H4H1

H2
H5

H3
H6

O
C1

C2

H4H1

H3
H6

H2 H5

�v (yz)

6-3

If the operation of reflection in either of these planes is performed
twice (an operation which is written σ 2), a configuration is obtained that
is identical to the initial one. This idea can be expressed as follows: σ 2 =
E, where E represents the identity operation. A reflection plane is therefore
associated with a single symmetry operation that leads to a configuration
that is equivalent to but not identical with the initial configuration.

6.1.2. Inversion centre

If the change of the coordinates (x, y, z) for every atom to (−x, −y, −z)
leads to a molecular configuration that is equivalent to the initial one,
the point at the origin of the frame of reference is an inversion centre (or
centre of symmetry) for the molecule. The symbol i is used both for this
symmetry element and for the associated operation. Two examples
will illustrate the fact that the inversion centre may be located on
one of the atoms of the molecule, but this is not necessary. In the
octahedral complex [FeCl6]4−, the iron atom is situated at the inversion
centre: the inversion operation leaves its position unchanged, whereas
the chlorine atoms are exchanged in pairs: Cl1,2, Cl3,4, and Cl5,6 (6-4).
But in the ethylene molecule, the inversion centre is situated in the
middle of the carbon–carbon bond, and all the atoms are exchanged by
the inversion operation (6-5).
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C1 C2

H3H4

H2H1

i
C2 C1

H1H2

H4H3

6-5

Notice that a molecule may not contain more than one inversion
centre, and that there is only one symmetry operation associated with
this element. If the inversion operation is performed twice (i2), the
resulting molecular configuration is identical to the initial one (i2 = E).

6.1.3. Rotation axes

We return to the example of dimethylether (6-1). A rotation of 180◦(π)

around the z-axis leads to a molecular configuration that is equivalent to
the initial one (6-6), with the following pairs of atoms being exchanged:
(C1, C2), (H1, H4), (H2, H6), and (H3, H5). The z-axis is therefore a
symmetry element of the molecule. The ratio between 360◦ and the
rotation angle associated with the symmetry operation (180◦ in this
example) defines the order of the axis. In this case it is therefore a two-
fold axis (or of order two), written C2. A single symmetry operation is
associated with this axis, shown in 6-6 and written C1

2 or simply C2. If
this operation is applied twice (a rotation of 2 × 180◦ = 360◦, written
C2

2 ), we return to the initial molecular configuration (C2
2 = E). Note that

by convention, the rotation is performed in a clockwise sense.

C2

(180°)

O
C1

C2

H4H1

H2
H5

H3 H6

O
C2 C1

H1H4

H6
H3

H5 H2

6-6

z

x
N

H1 H2

H3

6-7

Ammonia (NH3) is an example of a molecule that possesses a three-
fold axis (C3). This is the z-axis that passes through the N atom and is
perpendicular to the equilateral triangle defined by the three hydrogen
atoms (6-7).

A rotation of 120◦ (or 1×2π/3) around this axis leads to an equivalent
configuration in which H1, H2, and H3 have been replaced by H2, H3,
and H1, respectively (6-8). This operation is written C1

3 or C3. A rotation
of 240◦ (or 2 × 2π/3) also leads to a configuration that is equivalent to
the initial one ((H1, H2, H3), replaced by (H3, H1, and H2)), (6-9). This
new operation is written C2

3 . A rotation of 360◦ (or 3 × 2π/3) brings us
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back to the initial configuration, that is, C3
3 = E. There are therefore

two symmetry operations, different from the identity operation, that are
associated with a C3-axis.

C3
1

(120°)

N

H1 H2

H3
N

H2 H3

H1

6-8

N

H1 H2

H3
N

H 3 H1

H2

C3
2

(240°)

6-9

More generally, an axis of order n (Cn) is present if a rotation of
360◦/n (or 2π/n) leads to an equivalent configuration for the molecule.
This axis generates (n − 1) symmetry operations, C1

n, C2
n, . . . , Cn−1

n ,
the operation Cn

n being equivalent to the identity operation
(Cn

n = E).

C�2

C�2

C4 and C2z

x
Pt

Cl1Cl4

Cl2Cl3

6-10

Some molecules have several rotation axes. The axis of highest order
is called the principal axis. The complex [PtCl4]2−, in which the plat-
inum atom is located in the centre of the square defined by the four
chlorine atoms (6-10), possesses a C4-axis, perpendicular to the plane
of the square, and four C2-axes in the plane of the square: two of these
are co-linear with the bonds Cl1−−Pt−−Cl3 and Cl2−−Pt−−Cl4 (C′

2), and
the two others bisect the angles Cl−−Pt−−Cl (C′′

2 ). The principal axis is
therefore four-fold (of order four). The existence of a four-fold rotation
axis implies the presence of a co-linear two-fold axis, as the operation C2

4

(a rotation of 2 × 2π/4) is identical to the operation C1
2 (a rotation of

1 × 2π/2).
The set of operations associated with a rotation around the axis

that is perpendicular to the molecular plane can thus be written: C1
4 ,

C2
4(=C1

2), C3
4 and C4

4(=E). Usually, the notation used for these is C1
4 ,

C2, C3
4 , and E, or sometimes 2C4, C2, and E, where the two opera-

tions C1
4 and C3

4 are grouped together. This type of situation occurs
every time that there is an axis whose order is even and greater
than 2 (in practice, 4, 6, or 8). For example, if a molecule pos-
sesses a C6-axis, a C3-axis and a C2-axis are necessarily co-linear with
this axis. The symmetry operations are thus: C1

6 , C2
6(=C1

3), C3
6(=C1

2),
C4

6(=C2
3), C5

6 and C6
6(=E), which can also be written 2C6, 2C3, C2,

and E.
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Comment

The [PtCl4]2− example (6-10) allows us to make several ideas more precise

about planes of symmetry. The z-axis defines the ‘vertical’ direction. The

molecular plane (xy), which is perpendicular to the principal (z) axis, is

written σh (‘h’ for ‘horizontal’). The two planes which contain the principal

axis and two Pt−−Cl bonds are written σv (‘v’ for ‘vertical’). And the two

planes xz and yz, which contain the principal axis and which bisect the

angles Cl−−Pt−−Cl, are written σd (‘d’ for ‘dihedral’).

6.1.4. Improper rotation axes

The symmetry operation associated with an improper axis of order n

(written Sn) is performed in two steps: a rotation of 2π/n around this
axis, followed by a reflection in a plane that is perpendicular to this axis.
It is important to realize that the axis used is not necessarily a Cn-axis,
nor is the plane that is involved necessarily a symmetry element of the
molecule.

rot. 90° refl.
C

H1

H2

H3

H 4
C

H4

H3

H2

H1
C

H3

H4

H2

H1

6-11

z (C3 and S3)

P

F4

F1

F5

F3

F2

xy  (�h)

6-12

As a first example, we consider the methane molecule (CH4), whose
geometry is tetrahedral. If we perform a rotation of 90◦(2π/4) around
the axis bisecting the angles H1−−C−−H2 and H3−−C−−H4, followed by a
reflection in the plane perpendicular to this axis passing through the car-
bon atom, we obtain a configuration that is equivalent (but not identical)
to the initial one (6-11). The axis which we used is therefore an improper
four-fold axis (S4), and the symmetry operation described in 6-11 is writ-
ten S1

4, or simply S4. Notice that this axis is not a C4-axis in the molecule
(but a C2-axis), and that the plane used is not a symmetry element in the
molecule. As in the cases of Cn axes, the S4 operation can be performed
m times in succession, and these are written Sm

n . In the example above,
it is easy to verify that S2

4 = C1
2 (a two-fold axis, co-linear with S4) and

that S4
4 = E (see Exercise 6.4). The only two operations that are unique

to the S4-axis are therefore S1
4 and S3

4.
The hypervalent molecule PF5 adopts a trigonal-bipyramidal (TBP)

geometry (6-12). The fluorine atoms F1, F2, and F3 define the base of the
bipyramid (the xy plane, written σh) and are situated at the vertices of
an equilateral triangle (the angles between bonds are 120◦). The atoms
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F4 and F5 define the vertices of the bipyramid, the F4−−P−−F5 axis (the
z-axis) being perpendicular to the plane σh.

A rotation of 120◦(2π/3) around the z-axis, followed by a reflection
in the xy plane, leads to an equivalent configuration for the molecule
(6-13). The z-axis is therefore an improper three-fold axis (S3). Notice
that in this example both the axis and the plane that were used to
perform the S3 operation are themselves symmetry elements in the
molecule: the z-axis is also a C3-axis, and the σh plane is a reflection
plane. A characteristic property of the S3-axis (and, more generally, of
improper axes whose order is odd) is that the S3

3 operation does not
lead to a configuration that is identical to the initial one (S3

3 is different
from E). Although a rotation of 3×2π/3 (=360◦) around the z-axis does
leave the positions of the five fluorine atoms unchanged, an odd number
of reflections (three) in the xy plane interchanges the positions of the
atoms F4 and F5(σ

3
h = σh). We therefore obtain S3

3 = σh. To obtain the
identity operation, the operation S6

3 must be performed (a rotation of
twice 360◦ and an even number (six) of reflections in the plane). Of the
six Sm

3 (m = 1–6) that seem possible, only the S1
3 and S5

3 operation need
to be considered, as the others are equivalent to symmetry operations
associated with the C3-axis the σh plane or the identity operation in the
case of S6

3.

120° refl.
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F3
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6.2. Symmetry groups

6.2.1. Definitions

The set of symmetry operations associated with a molecule makes up a
group, in the mathematical sense of the term. One can indeed verify (i) If
A, B, and C are three symmetry operations, the relation A(BC) = (AB)C

holds, that is, the combination of symmetry operations is associative,
(ii) there is a null element (the identity operation E): AE = EA = A,
(iii) for each symmetry operation A, there is an inverse operation A−1

such that A−1A = AA−1 = E (see Exercise 6.5).
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Moreover, all the symmetry elements intersect at a single point
(e.g. the oxygen atom in dimethylether (6-1), the nitrogen atom in
ammonia (6-7), the middle of the carbon–carbon bond in ethylene
(6-5)). The expression point-group symmetry is therefore used. For
each molecule, there is a corresponding point group that completely
characterizes its symmetry properties.

The different symmetry operations can be grouped into classes. From
a mathematical point of view, two symmetry operations A and B belong
to the same class if there is a symmetry operation X in the group, such
that B = X−1AX. Verification of this relationship can be tedious, and it
will be sufficient for us to note that a class gathers together symmetry
operations of the same ‘nature’, even if this term is rather vague: as
examples, we may give the rotations C1

3 and C2
3 associated with a C3-axis,

the rotations C1
4 and C3

4 associated with a C4-axis, and the reflections in
two σv planes or in two σd planes in [PtCl4]2− (see the comment in §
6.1.3). As far as notation is concerned, one often groups together the
operations in a given class, for example, replacing C1

3 and C2
3 by 2C3, C1

4

and C3
4 by 2C4, etc.

6.2.2. Determination of the symmetry point group

A set of symmetry elements (or of symmetry operations) enables us
to define a symmetry point group which is represented by a symbol.
There is a simple method to determine the point group, and it is not
necessary to establish a complete list of all the symmetry operations in
the molecule under consideration.

1. Initially, check whether the molecule adopts one of the four most
easily identifiable geometries: octahedral (e.g. [FeCl6]4− (6-4)), tet-
rahedral (e.g. CH4), linear with an inversion centre (e.g. CO2), or
linear without an inversion centre (e.g. HCN). If this is the case,
the problem is solved; the symbols associated with these four point
groups are Oh, Td, D∞h, and C∞v respectively.

2. If none of these groups is appropriate, and if there is no rotation

axis, there are three possibilities: the molecule (i) does not possess
and symmetry element (the point group C1, in which the identity
operation is the only symmetry operation); (ii) possesses a plane of
symmetry (the point group Cs); (iii) possesses an inversion centre
(the point group Ci).

3. If the molecule possesses a single rotation axis (of order n), there are
four possibilities: (i) there is no other symmetry element besides this
axis, with the possible exception of a co-linear axis of lower order.
The point-group symbol is then Cn; (ii) the existence of a reflection
plan σh (perpendicular to the Cn-axis) indicates that the point group
is of the type Cnh; (iii) if there are nσv planes (that contain the Cn
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axis), the point-group symbol is Cnv ; (iv) the presence of an improper
axis S2n, co-linear with the Cn-axis, indicates that the point group is
of the type S2n.

4. If the molecule possesses several rotation axes (the principal axis
being of order n), there are three possibilities: (i) there are no other
symmetry elements besides these axes (Dn point-groups); (ii) there
are nσd planes that bisect the C2 axes (Dnd point groups); (iii) there is
also a σh plane, perpendicular to the principal axis (Dnh point groups).

6.2.3. Basis of an irreducible representation

The application of group theory to the construction of molecular
orbitals leads us to study the way in which atomic orbitals (or linear
combinations of these orbitals) transform when the operations of the
point group are applied. Several definitions, which are also appropri-
ate for other types of function besides orbitals, will be presented and
illustrated by some simple examples.

6.2.3.1. Basis for a representation

If a set of functions f = {f1, f2, . . . , fi, . . . , fn} is such that any symmetry
operation, Rk, of the group G transform one of the functions, fi, into
a linear combination of the various functions of the set f , the set is
said to be globally stable and to constitute a basis for the representation of
the group G. As the symmetry operations maintain the positions of the
atoms or interchange the positions of equivalent atoms, it can be shown

that the set of atomic orbitals (AO) of a molecule constitute a basis for the

representation of the point-group symmetry of the molecule. In what follows,
we shall adopt the usual notation in group theory, and indicate a basis
for a representation by Ŵ.

6.2.3.2. Basis for an irreducible representation

Suppose that a basis Ŵ, of dimension n, can be decomposed into several
bases Ŵi, whose dimensions are smaller (ni), each of which is globally
stable with respect to all the symmetry operations of the group. Suppose
also that it is not possible to decompose any of the representations Ŵi

into representations whose dimensions are smaller than ni. The reducible

representation Ŵ is said to have been decomposed into a sum of irreducible

representations Ŵi, which is written:

Ŵ = a1Ŵ1 ⊕ a2Ŵ2 ⊕ · · · ⊕ amŴm (6.1)
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6.2.3.3. H2O as an example

O

H2 H1

y

z

6-14

To illustrate this point, we shall consider the set of valence AO of the
atoms in the water molecule: 1sH1 and 1sH2 on the hydrogen atoms and
2s, 2px , 2py, and 2pz on the oxygen atom. The water molecule possesses
a two-fold rotation axis (z), and two planes of symmetry, xz and yz (6-14);
its point group is therefore C2v . The set of atomic orbitals constitutes a
basis (Ŵ) for the representation of this point group.

We apply one of the symmetry operations of the group (E, C2
z, σxz,

and σyz) to these orbitals. A rotation by 180◦ around the z-axis (C2
z)

interchanges the orbitals 1sH1 and 1sH2 (6-15 and 6-16). On the oxygen
atom, the 2s and 2pz are transformed into themselves (the axis of revolu-
tion for 2pz is identical to the rotation axis) (6-17 and 6-18), whereas 2px

and 2py are transformed into their opposites (6-19 and 6-20).

O

z 1sH1
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z
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H H
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If the same exercise is undertaken for the three other symmetry
operations, we obtain the results that are presented in Table 6.1.
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C2
z

H H
z

2 px

H H

–2px
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C2
z

H Hz

2py

H H

–2py
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Table 6.1. Transformation of the atomic orbitals

of the hydrogen and oxygen atoms of the H2O

molecule by the action of the symmetry

operations of the C2v point group

C2v E Cz
2 σxz σyz

1sH1 1sH1 1sH2 1sH2 1sH1

1sH2 1sH2 1sH1 1sH1 1sH2

2s 2s 2s 2s 2s

2px 2px −2px 2px −2px

2py 2py −2py −2py 2py

2pz 2pz 2pz 2pz 2pz

No matter which symmetry operation is applied, it is clear that the
2s orbital on the oxygen atom is transformed into itself. It therefore
constitutes by itself a set that is globally stable, and so it is a basis for
the representation of the point group. As the dimension of this basis
is 1, it is impossible to reduce it further: the 2s orbital is a basis of a
one-dimensional irreducible representation in the C2v point group. The
same applies for the other AO of the oxygen atom (2px , 2py, and 2pz):
the action of the symmetry operations transforms each of them either
into itself, or into its opposite (Table 6.1), so each of them constitutes a
globally stable set.

We now examine the action of the symmetry operations on the 1sH1

and 1sH2 orbitals on the hydrogen atoms (the representation ŴH). It is
immediately clear that neither 1sH1 nor 1sH2 constitutes by itself a set that
is globally stable, since some symmetry operations transform 1sH1 into
1sH2 , and vice-versa (Table 6.1). However, the set {1sH1 , 1sH2} is stable,
and so it is a basis for a representation of the group. Moreover, if the
symmetry operations are applied to the two linear combinations (1sH1 +
1sH2 ) and (1sH1 − 1sH2 ), we see that they are globally stable towards the
action of the symmetry operations, since each is transformed either into
itself or into its opposite (Table 6.2). Both these linear combinations are
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Table 6.2. Transformation of the linear combinations (1sH1 + 1sH2 ) and

(1sH1 − 1sH2 ) of the atomic orbitals of the hydrogen atoms in the H2O

molecule by the action of the symmetry operations of the C2v point group

C2v E Cz
2 σxz σyz

1sH1 + 1sH2 1sH1 + 1sH2 1sH2 + 1sH1 1sH2 + 1sH1 1sH1 + 1sH2

1sH1 − 1sH2 1sH1 − 1sH2 −(1sH1 − 1sH2) −(1sH1 − 1sH2) 1sH1 − 1sH2

therefore bases for an irreducible representation whose dimension is 1
in the C2v point group.11 These two functions are also called the

symmetry-adapted linear combinations of the

atomic orbitals 1sH1 and 1sH2 (we shall return
to this point in greater detail in § 6.4).

6.2.4. Characters

6.2.4.1. Representation of the group

As we have already remarked, the action of a symmetry operation Rk

on a basis for a representation f = {f1, f2, . . . , fi, . . . , fn} of the group
transforms each of the functions fi into a linear combination f ′

i of the
different functions of the set f . This action can be represented by a matrix

Mk such that:

Mkfi = f ′
i (6.2)

This is an (n × n) matrix, where n is the dimension of the basis. The
collection of matrices associated with the different symmetry operations
constitutes a representation of the point group.

6.2.4.2. Characters: the C3v point group

N

H2
z

�v (1)
�v (3)

�v (2)

H3

H1

6-21

The following symmetry elements are present in the NH3 molecule:
a C3 (z) axis and three planes σv(i) that contain the N−−Hi bonds and
bisect the opposite H−−N−−H angle (6-21). These symmetry elements
are characteristic of the C3v point group.

Consider the orbitals 1sH1 , 1sH2 , and 1sH3 which constitute a basis
written ŴH. The action of the symmetry operations (E, C1

3 , C2
3 , σv(1),

σv(2), σv(3)) on these orbitals gives the results presented in Table 6.3.
Each (3 × 3) matrix associated with a symmetry operation

(Figure 6.1) can easily be constructed from this table. Notice in particular
that the matrix associated with the identity operation (E) is diagonal; all
its non-zero terms lie on the diagonal and moreover, they are all equal
to 1.

Each of these matrices can be characterized by its trace, that is the
sum of its diagonal elements. In group theory, this trace is called the
character of a matrix, written χ . Notice that the character in Figure 6.1
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Table 6.3. Transformation of the atomic orbitals

1sH1 , 1sH2 , and 1sH3 of the hydrogen atoms of the

NH3 molecule by the action of the symmetry

operations of the C3v point group

C3v E C1
3 C2

3 σv(1) σv(2) σv(3)

1sH1 1sH1 1sH3 1sH2 1sH1 1sH3 1sH2

1sH2 1sH2 1sH1 1sH3 1sH3 1sH2 1sH1

1sH3 1sH3 1sH2 1sH1 1sH2 1sH1 1sH3

E





1 0 0
0 1 0
0 0 1









1sH1

1sH2

1sH3



 =





1sH1

1sH2

1sH3



 χ(E) = 3

C1
3





0 0 1
1 0 0
0 1 0









1sH1

1sH2

1sH3



 =





1sH3

1sH1

1sH2



 χ(C1
3) = 0

C2
3





0 1 0
0 0 1
1 0 0









1sH1

1sH2

1sH3



 =





1sH2

1sH3

1sH1



 χ(C2
3) = 0

σv(1)





1 0 0
0 0 1
0 1 0









1sH1

1sH2

1sH3



 =





1sH1

1sH3

1sH2



 χ(σv(1)) = 1

σv(2)





0 0 1
0 1 0
1 0 0









1sH1

1sH2

1sH3



 =





1sH3

1sH2

1sH1



 χ(σv(2)) = 1

σv(3)





0 1 0
1 0 0
0 0 1









1sH1

1sH2

1sH3



 =





1sH2

1sH1

1sH3



 χ(σv(3)) = 1

Figure 6.1. Matrix representation of the action of the symmetry operations of the C3v

point group on the 1sH1 , 1sH2 , and 1sH3 orbitals of the hydrogen atoms of the NH3
molecule.

associated with the identity operation (three in this example) is equal
to the dimension of the basis; this result is general. Notice also that the
characters associated with the symmetry operations that belong to a
given class (see § 6.2.1) are equal (to 0 for the operations C1

3 and C2
3 , and

to 1 for the operations σv(1), σv(2), and σv(3)).
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From now on, the action of the symmetry operations on a basis will
be represented by the set of characters associated with each symmetry
operation; the operations may be grouped into classes where appropri-
ate. The symmetry properties of the basis (ŴH) formed by the 1sH1 ,
1sH2 , and 1sH3 orbitals of the hydrogen atoms of the NH3 molecule can
be summarized as follows (Table 6.4):

Table 6.4. Characters associated with the

basis ŴH formed by the orbitals 1sH1 , 1sH2 ,

and 1sH3 of the hydrogen atoms in the NH3

molecule (C3v point group)

C3v E C1
3 C2

3 σv(1) σv(2) σv(3)

ŴH 3 0 0 1 1 1

Or alternatively

C3v E 2C3 3σv

ŴH 3 0 1

6.2.5. Character tables

A character table provides a complete list of the irreducible represent-
ations associated with a given point group, as well as other useful
information. The appearance of these tables, which is identical for
all point groups, is illustrated below for the C2v (e.g. H2O) and C3v

(e.g. NH3) point groups.

6.2.5.1. Character table for the C2v point group

This table can be described in the following ways (Table 6.5):

1. The symbol of the point group appears in the top left-hand corner.
2. The symmetry operations, grouped in classes, appear on the first

line. However, in this point group, there is only one operation per
class.

3. The symbols given to the different irreducible representations of the
point group appear underneath the point-group symbol, in the first
column. These are known as Mulliken symbols.

4. The characters associated with each irreducible representation are
found in the central part of the table. For example, the characters
for the A1 representation are (1, 1, 1, 1), for the B2 representation
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Table 6.5. Character table for the C2v

point group

C2v E Cz
2 σxz σyz

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 xy

B1 1 −1 1 −1 x xz

B2 1 −1 −1 1 y yz

(1, −1, −1, 1), etc. Every irreducible representation of this group is
one-dimensional, since χ(E) = 1 for each of them.

5. The last two columns on the right contain algebraic functions which
are bases for the irreducible representations on the same line. For
example, z is a basis for the A1 irreducible representation, and xz a
basis for the B1 irreducible representation.

These last two points need further comment. The A1 representation,
for which every character is 1, is also known as the totally symmetric
representation, since any of the possible symmetry operations of the
group transforms a basis function into itself. There is a totally sym-
metric representation in each point group. The characters for the other
representations are either 1 or −1, depending on whether the function
is transformed into itself or into its opposite. The algebraic functions
given in the last two columns on the right allow us to find immediately
the symmetry of the AO on the ‘central’ atom, that is, the one whose
position is unchanged by any of the symmetry operations, or the one
located at the intersection of all the symmetry elements (the oxygen
atom in the case of the water molecule). So the px , py, and pz orbitals
transform in the same way as x, y, and z, respectively, and the s orbital
(with spherical symmetry) like (x2 + y2 + z2). The symmetries of these
orbitals are therefore A1 (s, pz), B1(px), and B2(py). The character table
for the C2v point group therefore allows us to reduce the basis ŴO formed
by the valence orbitals of oxygen:

ŴO = 2A1 ⊕ B1 ⊕ B2 (6.3)

Notice that the last column of the character table contains functions
that are squares or second-order products of x, y, and z. The symmetries
of these functions indicate the symmetries of the d orbitals on the central
atom, which is clearly very useful for the study of transition metal
complexes. Thus, in a complex with C2v symmetry, the dx2−y2 and dz2

orbitals have A1 symmetry, whereas the dxy, dxz, and dyz orbitals have A2,
B1, and B2 symmetries, respectively (Table 6.5). The basis of dimension
5 formed by the d orbitals of the central atom (Ŵd) can therefore be
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reduced as follows:

Ŵd = 2A1 ⊕ A2 ⊕ B1 ⊕ B2 (6.4)

6.2.5.2. Character table for the C3v point group

We shall now examine a second character table, that associated with the
C3v point group (Table 6.6), the point group for the NH3 molecule. It
is presented in the same format as the previous one, but it illustrates
several characteristics of the point groups in which a rotation axis is
present whose order is higher than 2 (here, a C3-axis).

Notice first that on the first line, the symmetry operations are
grouped in classes. Thus, the two rotation operations around the C3-axis
(C1

3 and C2
3 , 6-8 and 6-9) are written 2C3, and the reflections in the three

planes of symmetry, σv(1), σv(2), and σv(3) (6-21) are written 3σv . In
general, the notation that is used indicates the number of symmetry
operations in the class, followed by the symmetry element that is con-
cerned. One of the irreducible representations in this point group has a
character of two associated with the identity operation. This is therefore
a two-dimensional irreducible representation, written E (be careful not
to confuse this with the identity operation, E).

If we consult the last two columns of the character table, we can
establish the symmetry properties of the orbitals on the central atom.
The s orbital is a basis for the A1 representation (or, more simply, it has
A1 symmetry), like the pz orbital. The px and py orbitals form a basis
for the two-dimensional representation (E). This indicates that from the
symmetry point of view, these orbitals cannot be separated. Neither of
them taken separately, nor any linear combination of them, forms a set
that is stable to the action of the symmetry operations C1

3 and C2
3 . If

we consider the d orbitals on the central atom, the final column in the
character table shows us that dz2 has A1 symmetry, whereas the orbital
pairs (dx2−y2 , dxy) and (dxy, dyz) have E symmetry.

To finish this section, we provide a few comments about the
Mulliken symbols that are used for irreducible representations, though
without full details. One-dimensional representations are indicated by
the letters A or B, whereas the letters E and T are used for two- and

Table 6.6. Character table for the C3v point group

C3v E 2C3 3σv

A1 1 1 1 z x2 + y2, z2

A2 1 1 −1

E 2 −1 0 (x, y) (x2 − y2, xy), (xz, yz)
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three-dimensional representations, respectively. In the groups which
contain an inversion centre, the subscript g (from the German gerade,
which means even) is added to the representations that are symmetric
with respect to inversion (a positive character in the column headed by
i), and the subscript u (from the German ungerade, for odd) to the rep-
resentations that are antisymmetric with respect to inversion (a negative
character). Thus in the Ci point group, in which the inversion centre
is the only symmetry element, the two (one-dimensional) irreducible
representations are written Ag and Au, and the functions that are bases
of these representations transform into themselves or their opposites,
respectively.

6.3. The reduction formula

As we have already seen (§ 6.2.5), the character table gives us information
on orbital symmetry properties. If the molecule contains a central atom,
the symmetries of the orbitals of this atom are indicated in the last two
columns of the table. However, the orbitals on non-central atoms, for
example the 1sH orbitals in H2O or NH3, are not individually bases for an
irreducible representation (Tables 6.1 and 6.3). These AO form a basis
for a reducible representation that can be decomposed into a sum of
irreducible representations of the point group. Although the character
table does not give the result immediately, it does enable us to find it by
using the reduction formula.

6.3.1. The reduction formula

If the characters χŴ associated with a reducible representation Ŵ are
known, it can be decomposed into a sum of irreducible representations
(Ŵ =

∑

i aiŴi) of the point group by using the reduction formula:

ai =
1

h

∑

k

χŴ(Rk) × χi(Rk) × n(Rk) (6.5)

where the summation (k) is carried out over the classes, h is the number
of symmetry operations in the point group, also known as its order,
χŴ(Rk) is the character of the reducible representation for a given class,
χi(Rk) is the character of the irreducible representation for that class, and
n(Rk) is the number of symmetry operations in that class.

Before being able to apply the reduction formula, it is therefore
necessary to determine the characters of the reducible representation
being studied.
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6.3.2. Characters of a reducible representation

We need intially to establish the characters of a reducible representation
Ŵ. For a given symmetry operation R, only the diagonal terms of the
matrix associated with this operation contribute to the character χR (§
6.2.4.2). If the symmetry operation transforms the orbital under consid-
eration into itself, the contribution to the character is +1. If, however,
it transforms the orbital into its opposite, the contribution is −1. If the
orbital is transformed into another one, the contribution is zero. We
have already given an example of the calculation of these characters for
the 1sH orbitals on the hydrogen atoms in NH3 (Table 6.4). We shall
now consider tow other examples, for the molecules H2O and C2H4.

Consider the basis ŴH constituted by the two orbitals 1sH1 and 1sH2

on the hydrogen atoms in the water molecule. From Table 6.1, we notice
that the two orbitals are transformed into themselves by the operations E

and σyz (characters equal to 1+1 = 2), whereas they are interchanged by
the operations Cz

2 and σxz (characters equal to 0+0 = 0). The characters
associated with the basis ŴH, listed in Table 6.7, do not correspond to
any of the irreducible representations of the C2v point group, which are
all one-dimensional (Table 6.5). This is therefore a basis for a reducible

representation.
The examples of H2O and NH3 (Table 6.4) illustrate a characteristic

property of the ŴH representations constituted by the set of 1sH1 orbitals
on the hydrogen atoms of a molecule. An orbital of this type can only be
transformed either into itself (contribution to the character equal to +1)
or into an orbital located on another hydrogen atom (contribution to the
character of 0). To determine the character associated with a particular
symmetry operation, it is therefore sufficient to count the number of

hydrogen atoms that are left unchanged by this operation. This comment
is also applicable to other orbitals that possess this property (e.g. the
s orbitals on heavy atoms that are equivalent by symmetry).

pz1
pz2

z
y

x

6-22

In other cases, it is necessary to examine carefully the ways in which
the orbitals are transformed by the symmetry operations. Consider, for
example, the ethylene molecule (6-22). It belongs to the D2h point group
and contains the following symmetry elements: the Cx

2 , C
y
2 , and Cz

2 axes,

Table 6.7. Characters associated with

the representation ŴH constituted by

the 1sH1 and 1sH2 orbitals of the

hydrogen atoms in the H2O molecule

(C2v point group)

C2v E Cz
2 σxz σyz

ŴH 2 0 0 2
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an inversion center i located in the middle of the carbon–carbon bond
and the three planes σxy, σxz, and σyz (§ 6.2.2).

The results of applying the symmetry operations to the pz1 and pz2

orbitals are given in Table 6.8. It is clear that an orbital can be transformed

into its opposite even if the symmetry operations does not move the atom on

which it is found (e.g. the action of Cx
2 transform pz1 into −pz1, even

though the position of the C1 atom is unaltered). The characters associ-
ated with the basis Ŵpz cannot therefore be obtained simply by counting
the number of carbon atoms whose position is left unchanged by each
symmetry operation, in contrast to those of the ŴH representation
(Table 6.8).

Table 6.8. Transformation of the atomic orbitals pz1 and pz2 on the carbon

atoms of the ethylene molecule (6-22) by the action of the symmetry

operations of the D2h point group, and the characters of the Ŵpz and ŴH

representations

D2h E Cz
2 C

y
2 Cx

2 i σxy σxz σyz

pz1 pz1 pz2 −pz2 −pz1 −pz2 −pz1 pz1 pz2

pz2 pz2 pz1 −pz1 −pz2 −pz1 −pz2 pz2 pz1

Ŵpz 2 0 0 −2 0 −2 2 0

ŴH 4 0 0 0 0 4 0 0

6.3.3. Applications

6.3.3.1. H2O as an example

We shall now apply the reduction formula (6.5) to some of the reducible
representations that we have already studied. Table 6.9 contains the
character table for the C2v point group and the characters that we have
obtained for the ŴH basis that is formed by the two 1sH1 and 1sH2 orbitals
in the H2O molecule (Table 6.7).

Table 6.9. Characters of the irreducible

representations of the C2v point group and

of the representation ŴH in the H2O

molecule

C2v E Cz
2 σxz σyz

A1 1 1 1 1

A2 1 1 −1 −1

B1 1 −1 1 −1

B2 1 −1 −1 1

ŴH 2 0 0 2





The reduction formula

As the order of the group (h, the number of symmetry operations)
is 4, we obtain:

aA1 =
1

4
[(2 × 1 × 1) + (0 × 1 × 1) + (0 × 1 × 1) + (2 × 1 × 1)] = 1

aA2 =
1

4
[(2 × 1 × 1) + (0 × 1 × 1) − (0 × 1 × 1) − (2 × 1 × 1)] = 0

aB1 =
1

4
[(2 × 1 × 1) + (0 × 1 × 1) + (0 × 1 × 1) − (2 × 1 × 1)] = 0

aB2 =
1

4
[(2 × 1 × 1) − (0 × 1 × 1) + (0 × 1 × 1) + (2 × 1 × 1)] = 1

which leads to the expression

ŴH = A1 ⊕ B2 (6.6)

6.3.3.2. NH3 as an example

In the same way, we can decompose the ŴH basis in the NH3 molecule
(Table 6.10): its characters have already been obtained (Table 6.4):

Table 6.10. Characters of the irreducible

representations of the C3v point group

and of the ŴH representation in the

NH3 molecule

C3v E 2C3 3σv

A1 1 1 1

A2 1 1 −1

E 2 −1 0

ŴH 3 0 1

We obtain

aA1 =
1

6
[(3 × 1 × 1) + (0 × 1 × 2) + (1 × 1 × 3)] = 1

aA2 =
1

6
[(3 × 1 × 1) + (0 × 1 × 2) + (1 × (−1) × 3)] = 0

aE =
1

6
[(3 × 2 × 1) + (0 × (−1) × 2) + (1 × 0 × 3)] = 1

so
ŴH = A1 ⊕ E (6.7)

The three-dimensional representation ŴH is therefore decomposed
into a one-dimensional (A1) and a two-dimensional (E) irreducible
representation.
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6.3.4. Direct products

It is often useful to be able to determine the symmetry of a function
that is a product of two (or more) functions whose symmetry is already
known. This need arises, for example, when we consider a polyelectronic
wave function that is written as a product of monoelectronic functions
(atomic or molecular orbitals), or when we are interested in the overlap
between two orbitals (see § 6.5.1).

Consider two functions φ1 and φ2, whose symmetries are B1 and B2,
respectively, in the C2v point group. The characters associated with the
product function (φ1 × φ2) are obtained, for each symmetry operation
R, from the product of the characters χR(B1) and χR(B2) of the B1

and B2 representations. Inspection of the character table for the C2v

point group (Table 6.5) shows that the characters that are obtained
for the product function are identical to those of the A2 irreducible
representation (Table 6.11).

Table 6.11. Direct product of the B1 and B2

irreducible representations in the C2v

point group

C2v E Cz
2 σxz σyz

χR(B1) 1 −1 1 −1

χR(B2) 1 −1 −1 1

χR(B1) × χR(B2) 1 1 −1 −1

χR(A2) 1 1 −1 −1

This result can be written as follows:

B1 × B2 = A2 (6.8)

Note that if the two functions φ1 and φ2 have the same symmetry
in a group whose irreducible representations are one-dimensional, the
product of the characters is necessarily equal to 1 for all the symmetry
operations. The product function is therefore a basis for the totally
symmetric representation (A1 in the case of the C2v point group). But
the situation is more complicated when the point group contains a
two- or three-dimensional (degenerate) representation. Consider, for
example, the product E × E in the C3v point group (Table 6.12). The
characters that are obtained do not correspond to any of the irreducible
representations of this group (see Table 6.6). The representation E × E
in fact forms a basis for a reducible four-dimensional representation;
when this is reduced, the totally symmetric representation (A1) of the
C3v group appears as one component.

E × E = A1 ⊕ A2 ⊕ E (6.9)
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Table 6.12. The E × E direct

product in the C3v point group

C3v E 2C3 3σv

χR(E) 2 −1 0

χR(E) × χR(E) 4 1 0

In general, the product of two functions of the same symmetry is either

a basis for the totally symmetric representation of the group, or is a basis

for a reducible representation that contains it. In contrast, the product of
two functions whose symmetries are different never contains the totally
symmetric representation.

6.4. Symmetry-adapted orbitals

Once the decomposition of a reducible representation into a sum of
irreducible representations has been achieved, the following step consists
of finding the linear combination of orbitals that are bases for these
irreducible representations. These are often referred to as symmetry-
adapted linear combinations of orbitals (SALCO).

6.4.1. Projection operator

To find these combinations, we use a ‘projection operator’ P, whose
action on a function φ is defined as follows (without considering
normalization):

Pφ =

[

∑

k

χi(Rk)Rk

]

φ (6.10)

where χi(Rk) is the character associated with the operation Rk for the
irreducible representation being considered, Ŵi,2 Rk is the symmetry2 If the character is complex, the complex

conjugate is taken. operation whose character is χi(Rk) and φ is one of the orbitals of the
reducible representation or a linear combination of these orbitals. It is
called a generating function.

Note that the summation (k) in this formula is carried out over all
the symmetry operations. If there are several operations in a given class of
the group, we must take account of each of them.

6.4.2. Application

6.4.2.1. The ŴH basis in H2O

A simple example will show how this formula is used. Consider the ŴH

basis that is constituted by the two 1sH1 and 1sH2 orbitals in the H2O
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molecule. We have already show that ŴH can be reduced to the sum of
two irreducible representations, A1 and B2 (formula (6.6)). We shall now
continue by finding the combination of these orbitals that forms a basis
for the A1 representation. We choose one of these orbitals, 1sH1 , for
example, which will act as the generating function φ in equation (6.10).
We then construct a table which contains (i) the result of the action
of symmetry operation Rk on the generating function (the term Rkφ

in equation (6.10)); (ii) the characters of the irreducible representation
under consideration (the term χi(Rk)) and last, the product of these two
terms (Table 6.13). The sum of these products over all the symmetry
operations (equation (6.10)) gives function φA1 that we seek, that is, the
linear combination of the 1sH1 , and 1sH2 , orbitals that is a basis for the
A1 representation.

Table 6.13. Quantities necessary for the determination

of the linear combination of the 1sH1 and 1sH2 orbitals

that has A1 symmetry in the H2O molecule

C2v E Cz
2 σxz σyz

Rk(1sH1) 1sH1 1sH2 1sH2 1sH1

A1 1 1 1 1

Product 1 × 1sH1 1 × 1sH2 1 × 1sH2 1 × 1sH1

We therefore obtain: φA1 = (1 × 1sH1)+ (1 × 1sH2)+ (1 × 1sH2)+
(1×1sH1) = 2×(1sH1 +1sH2). It is clear that we would have obtained the
same result if we had taken the 1sH2 orbital as the generating function,
as this would merely have led to an interchange of the subscripts 1 and
2 in the second line of Table 6.13.

The linear combination that has B2 symmetry is obtained in the
same way, from the data in Table 6.14. It is: φB2 = (1 × 1sH1) − (1 ×
1sH2) − (1 × 1sH2) + (1 × 1sH1) = 2 × (1sH1 − 1sH2).

In summary, the linear combinations of the 1sH1 and 1sH2 orbitals
that are adapted to the molecular symmetry of H2O are the sum and
difference of these two. If we include the normalization factor that is

Table 6.14. Quantities necessary for the determination of the

linear combination of the 1sH1 and 1sH2 orbitals that has

B2 symmetry in the H2O molecule

C2v E Cz
2 σxz σyz

Rk(1sH1) 1sH1 1sH2 1sH2 1sH1

B2 1 −1 −1 1

Product 1 × 1sH1 (−1) × 1sH2 (−1) × 1sH2 1 × 1sH1
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given by Hückel theory, the expressions are:

φA1 =
1

√
2

(1sH1 + 1sH2) (6.11a)

φB2 =
1

√
2

(1sH1 − 1sH2) (6.11b)

This result could have been anticipated, since we have only two equival-
ent functions to combine.3 These symmetry-adapted orbital are shown

3 We have already shown (see Table 6.2)
that these linear combinations are stable with
respect to all the symmetry operations of the
C2v point group. in Figure 6.2.

O O

�A
1

�B
2

Figure 6.2. Symmetry-adapted orbitals for
H2O (C2v point group).

Comment

In the standard (non-extended) Hückel method, the overlap between orbit-

als (S) is neglected in the calculation of the normalization factor. As a result,

the sum of the squares of the coefficients is 1. In what follows, when we

describe symmetry-adapted orbitals as normalized, we shall always adopt

that approximation.

6.4.2.2. The ŴH basis in NH3

We now consider a second example, one where the result is more difficult
to predict: the three 1sH orbitals in the NH3 molecule. These orbitals
form a basis ŴH = A1 ⊕ E (formula (6.7)). We shall proceed in the same
way, taking the 1sH1 orbital as the generating function. The second line
of Table 6.3 shows how this orbital is transformed by the symmetry
operation of the C3v point group. We may use this result to construct
Table 6.15, and hence find the linear combination that has A1 symmetry.

By adding the terms in the last line, we obtain: φA1 = 2 × (1sH1 +
1sH2 +1sH3). The (non-normalized) totally symmetric function is there-
fore simply the sum of the initial functions, the same result as that
obtained for H2O.

For the representation with E symmetry, we must find two inde-
pendent linear combinations of the 1sH orbitals (a two-dimensional

Table 6.15. Quantities necessary for the determination of the linear

combination of the 1sH1 , 1sH2 , and 1sH3 orbitals that has A1 symmetry

in the NH3 molecule

C3v E C1
3 C2

3 σv(1) σv(2) σv(3)

Rk(1sH1) 1sH1 1sH3 1sH2 1sH1 1sH3 1sH2

A1 1 1 1 1 1 1

Product 1 × 1sH1 1 × 1sH3 1 × 1sH2 1 × 1sH1 1 × 1sH3 1 × 1sH2
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Table 6.16. Quantities necessary for the determination of the first linear

combination of the 1sH1 , 1sH2 , and 1sH3 orbitals with E symmetry

in the NH3 molecule

C3v E C1
3 C2

3 σv(1) σv(2) σv(3)

Rk(1sH1) 1sH1 1sH3 1sH2 1sH1 1sH3 1sH2

E 2 −1 −1 0 0 0

Product 2 × 1sH1 (−1) × 1sH3 (−1) × 1sH2 0 × 1sH1 0 × 1sH3 0 × 1sH2

Table 6.17. Quantities necessary for the determination of the second linear combination of the 1sH1 , 1sH2 , and 1sH3 orbitals

with E symmetry in the NH3 molecule

C3v E C1
3 C2

3 σv(1) σv(2) σv(3)

Rk(1sH2 − 1sH3 ) 1sH2 − 1sH3 1sH1 − 1sH2 1sH3 − 1sH1 1sH3 − 1sH2 1sH2 − 1sH1 1sH1 − 1sH3
E 2 −1 −1 0 0 0
Product 2 × (1sH2 − 1sH3 ) (−1) × (1sH1 − 1sH2 ) (−1) × (1sH3 − 1sH1 ) 0 × (1sH3 − 1sH2 ) 0 × (1sH2 − 1sH1 ) 0 × (1sH1 − 1sH3 )

representation). If we use the 1sH1 orbital once again as the generat-
ing function, and the characters of the E representation (Table 6.16), we
obtain φE(1) = 2 × (1sH1) − 1sH2 − 1sH3 .

In this way, we have found one of the two linear combinations
that we need. If we now change the generating function to 1sH2 or
1sH3 , we shall clearly obtain the same type of function, but where the
subscripts 1, 2, and 3 have been permuted. This function is acceptable,
but it is not orthogonal to the previous one, and in general we prefer
to use linear combinations of the orbitals that are mutually orthogonal.4

4 The second function can also be found
by another method, from the requirement
that it be orthogonal to the
symmetry-adapted orbitals already found
(φA1 and φE(1)) (see Exercise 6.7).

In this example, the second linear combination can be obtained if the
combination (1sH2 − 1sH3 ) is used as the generating function. Action of
the symmetry operations on this function gives the results in Table 6.17.

Taking the characters of the E representation into account, we
obtain the function: φE(2) = 2 × (1sH2 − 1sH3) + (−1) × (1sH1 −
1sH2)+(−1)×(1sH3 −1sH1) = 3×(1sH2 −1sH3), that is, the generating
function itself (without considering normalization).

In conclusion, the normalized linear combinations of the 1sH1 , 1sH2 ,
and 1sH3 orbitals that are adapted to the molecular symmetry of NH3

are:

φA1 =
1

√
3

(1sH1 + 1sH2 + 1sH3) (6.12a)

φE(1) =
1

√
6

(2 × (1sH1) − 1sH2 − 1sH3) (6.12b)

φE(2) =
1

√
2

(1sH2 − 1sH3) (6.12c)





Construction of MO: H2O as an example

Figure 6.3. Symmetry-adapted orbitals for
NH3 (C3v point group) and orbitals of the
same symmetry on the central atom.
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These orbitals are shown in Figure 6.3, together with the orbitals on
the central atom whose symmetry is given in the character table for the
C3v point group (Table 6.6).

The set of orbitals that we have found for the E representations,
φE(1) and φE(2), is not unique. Any pair of independent linear combin-
ations of these two orbitals also constitutes a basis for this representation,
and the same is true for the 2px and 2py orbitals on the central atom.
The φE(1) and φE(2) orbitals shown here are, however, the set that is
used most frequently. The first is transformed in the same way as 2px by
all the symmetry operations of the C3v point group and the second like
2py. They are therefore often written ex and ey, respectively.

6.5. Construction of MO: H2O as an example

The problem of allowing AO, or SALCO of these orbitals, to interact to
form molecular orbitals (MO), is simplified considerably if the symmetry
properties of the system are taken into account. The use of symmetry
allows us to identify rapidly those interactions which are exactly zero,
and therefore to consider only those which really do contribute to the
formation of the MO.

6.5.1. Symmetry and overlap

Two orbitals φ1 and φ2 interact if their overlap is non-zero (Chapter 1, §
1.3). This overlap is equal to the integral over all space of the product of
the functions φ1 and φ2:

S12 =
∫

space
φ∗

1 φ2dτ (6.13)

It can be shown that this integral is non-zero if the product function
is a basis for the totally symmetric representation of the group (or of a
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reducible representation that contains the totally symmetric represent-
ation). It is therefore necessary for the two orbitals to have the same symmetry

(see § 6.3.4) for the integral to be non-zero. If their symmetries are dif-
ferent, the integral is rigorously equal to zero, and their overlap is said
to be zero by symmetry.

Comment

These rules (that are not proved here) can be illustrated by two simple

examples. Consider the function with a single variable y = x2. The integ-

ral of this symmetric (or even) function between −a and +a is non-zero

([x3/3]+a
−a = (a3/3) − (−a3/3) = 2a3/3). However, the integral of the

antisymmetric (or odd) function y = x3, which changes sign when x is

replaced by −x, is equal to zero ([x4/4]+a
−a = (a4/4) − (a4/4) = 0).

6.5.2. Molecular orbitals for H2O

To construct the MO of the H2O molecule, we shall allow the atomic
orbitals of the central oxygen atom to interact with the symmetry-
adapted orbitals on the hydrogen atoms (the fragment method). We
have already established the symmetry properties of the various orbitals
(C2v point group), and they are repeated in Figure 6.4. It is easy to check
visually that the orbitals with the same symmetry on two different frag-
ments have a non-zero overlap, whereas those with different symmetries
have zero overlap (‘by symmetry’).

The interaction diagram is shown in Figure 6.5, where the orbitals
on the fragments and in the full molecule are labelled by symmetry
(a1, b2, . . .).

There is an interaction between the two orbitals with B2 sym-
metry that leads to the formation of a bonding MO, written 1b2, and
an antibonding MO, written 2b2. As there are three orbitals with A1

Figure 6.4. Symmetry-adapted orbitals for
H2O (C2v point group) and orbitals with the
same symmetry on the central atom.
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Symmetry-adapted orbitals in several MLn complexes

Figure 6.5. Construction of the MOs for
H2O from AO on oxygen and the
symmetry-adapted orbitals on the
hydrogen atoms.
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symmetry, three molecular orbitals are formed: 1a1 (bonding), 2a1 (non-
bonding), and 3a1 (antibonding). The atomic orbital with B1 symmetry
(2px) cannot, by symmetry, interact with any other, and so it stays
unchanged in shape and in energy (1b1, nonbonding).

6.6. Symmetry-adapted orbitals in several
MLn complexes

The aim of this section is to construct the symmetry-adapted orbitals
for the principal ligand fields, making use of the reduction (6.5) and
projection (6.10) formulae. In what follows, with the exception of §
6.6.6, we shall only consider a single orbital on each ligand, the one
that is used to create the σ bond with the metal (Chapter 1, § 1.5.1).
The orbital on ligand Li will be written σi. We shall suppose that all the
ligands, and thus all the orbitals σi, are identical.
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6.6.1. Square-planar ML4 complexes

Consider a complex in which the metallic atom is surrounded by four
ligands that are placed at the corners of a square (6-23). The sym-
metry elements of this system are characteristic of the D4h point group.
The axes are shown in 6-24. The planes of symmetry are xy (σh), xz

(σda), and yz (σdb), respectively, together with the planes that bisect xz

and yz and each contain two M−−L bonds (σva and σvb, respectively).
The inversion centre is of course at the origin, coincident with the
central atom.
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6.6.1.1. Reduction of the Ŵσ representation

The action of a symmetry operation on one of the orbitals σi can trans-
form it only into itself or into an orbital σj on another ligand. Following
the procedure that we have already established for bases ŴH constituted
by 1sH orbitals located on hydrogen atoms (§ 6.3.2), the character of the
representation Ŵσ is obtained simply by counting the number of ligands

whose position stays unchanged. It is easy to see that the identity opera-
tion (E) and reflection in the molecular plane (σh) leave the positions of
the four ligands unchanged (χ = 4). Rotations around the C′

2 axes and
reflections in the σv planes maintain the positions of the two ligands situ-
ated on the symmetry element concerned (χ = 2). The other symmetry
operations move all the ligands (χ = 0). The characters obtained for
the representation are listed in Table 6.18, together with the characters
of the irreducible representations of the D4h point group.

The order of the group (h, the number of symmetry operations)
is 16 (first line of Table 6.18). The reduction formula (6.5) enables us
to decompose the four-dimensional representation Ŵσ into a sum of
irreducible representations,

∑

i aiŴi. The only non-zero values of ai are:

aA1g =
1

16
[(4 × 1 × 1) + (2 × 1 × 2) + (4 × 1 × 1) + (2 × 1 × 2)] = 1

aB1g =
1

16
[(4 × 1 × 1) + (2 × 1 × 2) + (4 × 1 × 1) + (2 × 1 × 2)] = 1

aEu =
1

16
[(4 × 2 × 1) + (2 × 0 × 2) + (4 × 2 × 1) + (2 × 0 × 2)] = 1

hence

Ŵσ = A1g ⊕ B1g ⊕ Eu (6.14)

Table 6.18. Character table for the D4h point group and characters of the reducible representation Ŵσ of a

square-planar complex ML4

D4h E 2C4 C2 2C′
2 2C′′

2 i 2S4 σh 2σv 2σd

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 −1 −1 1 1 1 −1 −1

B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2 − y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy

Eg 2 0 −2 0 0 2 0 −2 0 0 (xz, yz)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z

B1u 1 −1 1 1 −1 −1 1 −1 −1 1

B2u 1 −1 1 −1 1 −1 1 −1 1 −1

Eu 2 0 −2 0 0 −2 0 2 0 0 (x, y)

Ŵσ 4 0 0 2 0 0 0 4 2 0
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The representation Ŵσ is thus decomposed into two one-dimensional
representations (A1g and B1g ) and one degenerate two-dimensional
representation (Eu).

6.6.1.2. Symmetry-adapted orbitals

Application of the projection formula (6.10) requires that we know how
one of the ligand orbitals (the generating function) is transformed by
all the symmetry operations. We shall consider two generating functions
in turn, σ1 and σ2, where the numbering of the orbitals is shown in
6-23. The results of the action of the symmetry operations on these two
orbitals, Rk(σ1) and Rk(σ2), are given in Table 6.19, together with the
characters of the irreducible representations A1g , B1g , and Eu.

The symmetry-adapted functions are obtained by multiplying the
function Rk(σ1) (or Rk(σ2)) for each symmetry operation by the char-
acter of the irreducible representation considered, and adding the sum
of these products for all the symmetry operations (formula (6.10)).

By using σ1 as a generating function for the symmetries A1g and B1g ,
then σ1 and σ2 successively for the symmetry Eu (a two-dimensional,
degenerate representation), we obtain:

φA1g = 4 × (σ1 + σ2 + σ3 + σ4)

φB1g = 4 × (σ1 − σ2 + σ3 − σ4)

φEu(1) = 4 × (σ1 − σ3)

φEu(2) = 4 × (σ2 − σ4)

Table 6.19. Action of the symmetry operations of the D4h point

group on the orbitals σ1 and σ2 (see 6-23 and 6-24 for the

numbering of the orbitals and the symmetry elements) and the

characters of the irreducible representations A1g , B1g , and Eu

D4h E C1
4 C3

4 C2 C′
2a C′

2b C′′
2a C′′

2b

Rk(σ1) σ1 σ4 σ2 σ3 σ1 σ3 σ4 σ2

Rk(σ2) σ2 σ1 σ3 σ4 σ4 σ2 σ3 σ1

A1g 1 1 1 1 1 1 1 1

B1g 1 −1 −1 1 1 1 −1 −1

Eu 2 0 0 −2 0 0 0 0

D4h i S1
4 S3

4 σh σva σvb σda σdb

Rk(σ1) σ3 σ4 σ2 σ1 σ1 σ3 σ4 σ2
Rk(σ2) σ4 σ1 σ3 σ2 σ4 σ2 σ3 σ1
A1g 1 1 1 1 1 1 1 1
B1g 1 −1 −1 1 1 1 −1 −1
Eu −2 0 0 2 0 0 0 0
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which gives the following normalized expressions for the orbitals:

or

�A
1g

�Eu(1)

�Eu(2)

�B
1g

M

M

M

M

M

M

Figure 6.6. Symmetry-adapted σ orbitals for a
square-planar ML4 complex. Two different
representations are shown for the degenerate
Eu orbitals.

φA1g =
1

2
(σ1 + σ2 + σ3 + σ4) (6.15a)

φB1g =
1

2
(σ1 − σ2 + σ3 − σ4) (6.15b)

φEu(1) =
1

√
2
(σ1 − σ3) (6.15c)

φEu(2) =
1

√
2
(σ2 − σ4) (6.15d)

These symmetry-adapted orbitals are shown in Figure 6.6. The solution
found for the degenerate Eu orbitals is not unique, since any pair of
independent linear combinations of these orbitals is also a basis for this
representation. Another choice is often made, the (normalized) sum
and difference of the two functions φEu(1) and φEu(2) (right-hand side
of Figure 6.6).

6.6.2. Tetrahedral ML4 complexes

�1

�2 �3

�4

M

6-25

L2

L1

M
L3

L4 z

C3

C2 and S4

�d

6-26

Consider a complex ML4 in which the four ligands are situated at
the apices of a tetrahedron. Each ligand has a σ orbital which points
towards the metallic centre (6-25). The symmetry elements, which are
characteristic of the Td point group, are:

• four C3 axes, each of which is co-linear with one of the M−−L bonds;
• three C2 axes that bisect the L−−M−−L angles;
• three S4 axes that are co-linear with the C2 axes;
• six σd planes, each of which contains two M−−L bonds.

An example of each of these elements is shown in 6-26.

6.6.2.1. Reduction of the Ŵσ representation

To obtain the characters that are associated with the reducible repres-
entation Ŵσ , we just need to count the number of ligands that are left
unmoved by the various symmetry operations. For the identity opera-
tion, we clearly have χ = 4. Rotation around a C3-axis leaves one ligand
in its original position (χ = 1), the one located on that axis. Rotation
around the C2 and S4 axes moves all the ligands (χ = 0). Reflection in a
σd plane leaves the two ligands that are in this plane in their original pos-
itions (χ = 2). The characters that are obtained are given in Table 6.20,
together with those for the irreducible representations of the Td point
group.

The order of the group (the number of symmetry operations, h) is
24 (first line of Table 6.20). Application of the reduction formula (6.5)
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Table 6.20. Character table for the Td point group and the characters

of the reducible representation Ŵσ in a tetrahedral ML4 complex

Td E 8C3 3C2 6S4 6σd

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 −1 −1

E 2 −1 2 0 0 (2z2 − x2 − y2, x2 − y2)

T1 3 0 −1 1 −1

T2 3 0 −1 −1 1 (x, y, z) (xy, xz, yz)

Ŵσ 4 1 0 0 2

gives:

aA1 =
1

24
[(4 × 1 × 1) + (1 × 1 × 8) + (0 × 1 × 3) + (0 × 1 × 6)

+ (2 × 1 × 6)] = 1

aA2 =
1

24
[(4 × 1 × 1) + (1 × 1 × 8) + (0 × 1 × 3) − (0 × 1 × 6)

− (2 × 1 × 6)] = 0

aE =
1

24
[(4 × 2 × 1) − (1 × 1 × 8) + (0 × 2 × 3) − (0 × 0 × 6)

+ (2 × 0 × 6)] = 0

aT1 =
1

24
[(4 × 3 × 1) + (1 × 0 × 8) − (0 × 1 × 3) + (0 × 1 × 6)

− (2 × 1 × 6)] = 0

aT2 =
1

24
[(4 × 3 × 1) + (1 × 0 × 8) − (0 × 1 × 3) − (0 × 1 × 6)

+ (2 × 1 × 6)] = 1

hence

Ŵσ = A1 ⊕ T2 (6.16)

The representation Ŵσ is thus decomposed into a one-dimensional rep-
resentation (A1, the totally symmetric representation) and a degenerate
three-dimensional representation (T2).

6.6.2.2. Symmetry-adapted orbitals

The linear combinations of the σi orbitals that are bases for the A1 and
T2 irreducible representations can be determined from the projection
formula (6.10). Since there are many symmetry operations in this point
group (24), the exercise is rather tedious, and we shall be content here
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just to give the result. The symmetry-adapted orbitals are:

φA1 =
1

2
(σ1 + σ2 + σ3 + σ4) (6.17a)

φT2(1) =
1

√
2
(σ1 − σ2) (6.17b)

φT2(2) =
1

√
2
(σ3 − σ4) (6.17c)

φT2(3) =
1

2
(σ1 + σ2 − σ3 − σ4) (6.17d)

These orbitals are shown in Figure 6.7.

φT 2(3)

�A
1

�T2(1)

�T2(2) or

M

M

M

M M

M

M

Figure 6.7. Symmetry-adapted σ orbitals in a
tetrahedral ML4 complex. Two different
representations are given for the degenerate
T2 orbitals.

The expression of the T2 orbitals given in (6.17b–d) is not unique;
as we have already seen for square-planar complexes in § 6.6.1.2, any
independent linear combination of these functions is acceptable. One
such, which ‘favours’ a vertical C3-axis, is shown on the right-hand side
of Figure 6.7 (see Exercise 6.10).

6.6.3. Trigonal-planar ML3 complexes

A trigonal-planar ML3 complex (6-27) belongs to the D3h point group
and contains the following symmetry elements: the molecular plane
(σh), three perpendicular planes (σv), each of which contains one M−−L
bond, a C3-axis and an S3-axis which are co-linear and perpendicular to
the σh plane, and three C2 axes, each of which is co-linear with one of
the bonds. Each type of symmetry element is illustrated in 6-28.

�1

�3

�2

M

6-27

�h

�v

M

C3 and S3

C2

z

y
L1

L2

L3

6-28

6.6.3.1. Reduction of the representation Ŵσ

Rotations around the C3 and S3 axes change the positions of all the
ligands (χ = 0), but a rotation around a C2-axis leaves the ligand on
that axis unmoved (χ = 1). Reflections in the σh and σv planes leave
all three ligands in their original positions (χ = 3). The characters
obtained from these considerations are given in Table 6.21 (Ŵσ ), together

Table 6.21. Character table for the D3h point group and the characters

of the reducible representation Ŵσ for a trigonal-planar ML3 complex

D3h E 2C3 3C2 σh 2S3 3σv

A′
1 1 1 1 1 1 1 x2 + y2, z2

A′
2 1 1 −1 1 1 −1

E′ 2 −1 0 2 −1 0 (x, y) (x2 − y2, xy)

A′′
1 1 1 1 −1 −1 −1

A′′
2 1 1 −1 −1 −1 1 z

E′′ 2 −1 0 −2 1 0 (xz, yz)

Ŵσ 3 0 1 3 0 1
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with those of the different irreducible representations of the D3h point
group.

As the order of the group (h) is 12, application of the reduction
formula (6.5) leads to (products where at least one factor is zero have
been omitted):

aA′
1
=

1

12
[(3 × 1 × 1) + (1 × 1 × 3) + (3 × 1 × 1)

+ (1 × 1 × 3)] = 1

aA′
2
=

1

12
[(3 × 1 × 1) − (1 × 1 × 3) + (3 × 1 × 1)

− (1 × 1 × 3)] = 0

aE′ =
1

12
[(3 × 2 × 1) + (3 × 2 × 1)] = 1

aA′′
1

=
1

12
[(3 × 1 × 1) + (1 × 1 × 3) − (3 × 1 × 1)

− (1 × 1 × 3)] = 0

aA′′
2

=
1

12
[(3 × 1 × 1) − (1 × 1 × 3) − (3 × 1 × 1)

+ (3 × 1 × 3)] = 0

aE′′ =
1

12
[(3 × 2 × 1) − (3 × 2 × 1)] = 0

hence

Ŵσ = A′
1 ⊕ E′ (6.18)

The representation Ŵσ is thus decomposed into a one-dimensional rep-
resentation (A′

1, the totally symmetric representation) and a degenerate
two-dimensional representation (E′).

6.6.3.2. Symmetry-adapted orbitals

As in the previous examples, the orbital with A′
1 symmetry (the totally

symmetric representation) is a linear combination of all the σi orbitals
with coefficients that are equal in sign and magnitude. The orbitals
with E′ symmetry are obtained by applying the projection formula to
the functions σ1 and (σ2 − σ3), in turn (see Exercise 6.11), as for NH3

(§ 6.4.2.2.). The results are:

φA′
1
=

1
√

3
(σ1 + σ2 + σ3) (6.19a)

φE′(1) =
1

√
6

(2σ1 − σ2 − σ3) (6.19b)

φE′(2) =
1

√
2

(σ2 − σ3) (6.19c)
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Figure 6.8. Symmetry-adapted σ orbitals for a
trigonal-planar ML3 complex.
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M

M

�A
1
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�E
1
�(1)

�E
1
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These three orbitals are shown in Figure 6.8.

6.6.4. Trigonal-bipyramidal ML5 complexes

In a trigonal-bipyramidal ML5 complex, three of the ligands are found
in equatorial positions (L1, L2, and L3), whereas the other two (L4 and
L5) are in axial sites (6-29). The apices of the bipyramid are defined by
the axial ligands, its triangular base by the positions of the equatorial
ligands. The angles between the equatorial bonds are 120◦ and the axial
bonds are perpendicular to the equatorial plane. Like the trigonal-planar
complex ML3, a trigonal-bipyramidal molecule belongs to the D3h point
group (see 6-28 for the symmetry elements).

�4
�3

�2�5

�1

M

6-29

6.6.4.1. Reduction of the representation Ŵσ

The C3-axis maintains the positions of the two axial ligands (χ = 2),
whereas the S3-axis, which interchanges them, changes the positions of
all the ligands (χ = 0). A C2-axis moves every ligand except the one
placed on that axis (χ = 1). The σh and σv planes do not move the
three ligands found in these planes (χ = 3). The characters of the Ŵσ

representation are given in Table 6.22 (second line).
The reduction formula (6.5), in combination with the characters

of the irreducible representations of the D3h point group found in
Table 6.21, leads to:

aA′
1
=

1

12
[(5 × 1 × 1) + (2 × 1 × 2) + (1 × 1 × 3) + (3 × 1 × 1)

+ (3 × 1 × 3)] = 2

aA′
2
=

1

12
[(5 × 1 × 1) + (2 × 1 × 2) − (1 × 1 × 3) + (3 × 1 × 1)

− (3 × 1 × 3)] = 0

aE′ =
1

12
[(5 × 2 × 1) − (2 × 1 × 2) + (3 × 2 × 1)] = 1

aA′′
1

=
1

12
[(5 × 1 × 1) + (2 × 1 × 2) + (1 × 1 × 3) − (3 × 1 × 1)

− (3 × 1 × 3)] = 0

aA′′
2

=
1

12
[(5 × 1 × 1) + (2 × 1 × 2) − (1 × 1 × 3) − (3 × 1 × 1)

+ (3 × 1 × 3)] = 1

aE′′ =
1

12
[(5 × 2 × 1) − (2 × 1 × 2) − (3 × 2 × 1)] = 0
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Table 6.22. Characters of the reducible

representations Ŵσ , Ŵσ (eq) and Ŵσ (ax) of

an ML5 complex with a TBP geometry

D3h E 2C3 3C2 σh 2S3 3σv

Ŵσ 5 2 1 3 0 3

Ŵσ (eq) 3 0 1 3 0 1

Ŵσ (ax) 2 2 0 0 0 2

hence

Ŵσ = 2A′
1 ⊕ A′′

2 ⊕ E′ (6.20)

The Ŵσ representation is thus decomposed into three one-dimensional
representations (2A′

1 and A′′
2 ) and one doubly degenerate representation

(E′).
It is important to note that no symmetry operation exchanges an

axial ligands with an equatorial one. As these two types of ligands
are therefore non-equivalent, both ‘chemically’ and according to group
theory, they can be considered separately. The characters of the repres-
entations Ŵσ (eq) and Ŵσ (ax) are given in Table 6.22. From the reduction
formula (6.5), we find:

Ŵσ (eq) = A1
′ ⊕ E′ (6.21)

Ŵσ (ax) = A1
′ ⊕ A2

′′ (6.22)

It is easy to check that Ŵσ = Ŵσ (eq) ⊕ Ŵσ (ax).

6.6.4.2. Symmetry-adapted orbitals

The separation of Ŵσ into Ŵσ (eq) and Ŵσ (ax) leads to a considerable
simplification of the determination of the symmetry-adapted orbitals.
For the orbitals on the equatorial ligands, they are identical to those we
have already determined for a trigonal-planar ML3 complex (§ 6.6.3.2,
6.23a,b and c and Figure 6.9).

(φA′
1
)eq =

1
√

3
(σ1 + σ2 + σ3) (6.23a)

(φE′)eq(1) =
1

√
2
(σ2 − σ3) (6.23b)

(φE′)eq(2) =
1

√
6
(2σ1 − σ2 − σ3) (6.23c)

(φA′
1
)ax =

1
√

2
(σ4 + σ5) (6.23d)

(φA′′
2
)ax =

1
√

2
(σ4 − σ5) (6.23e)





Elements of group theory and applications

Figure 6.9. Symmetry-adapted σ orbitals for a
TBP ML5 complex.
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For the axial ligands, we only need to make normalized sums (A′
1

symmetry) and differences (A′′
2 symmetry) (6.23d, 6.23e and Figure 6.9).

6.6.5. Octahedral ML6 complexesM

L5

L6

L3L1

L4

L2

6-30

M

C4 and C2

�h

�d

6-31

Of the numerous symmetry elements in an octahedral complex ML6

(6-30), the only ones that leave the positions of certain ligands unchanged
are shown in 6-31. The three C4 axes and their co-linear C2 axes both
conserve the positions of the two ligands situated on them (χ = 2).
Reflection in the three σh planes, which are perpendicular to the C4

axes, does not move the four ligands in these planes (χ = 4). Each of
the six σd planes contains only two ligands, so reflection therein gives a
character of 2.

6.6.5.1. Reduction of the Ŵσ representation

The characters of the resulting Ŵσ representation are given in Table 6.23
(Ŵσ ), together with those of the irreducible representations of the Oh

point group.
The order of this group (h) is 48. Use of the reduction formula (6.5)

shows that the only non-zero contributions are:

aA1g =
1

48
[(6 × 1 × 1) + (2 × 1 × 6) + (2 × 1 × 3) + (2 × 1 × 6)

+ (4 × 1 × 3)] = 1

aEg =
1

48
[(6 × 2 × 1) + (2 × 2 × 3) + (4 × 2 × 3)] = 1

aT1u =
1

48
[(6 × 3 × 1) + (2 × 1 × 6) − (2 × 1 × 3) + (2 × 1 × 6)

+ (4 × 1 × 3)] = 1
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Table 6.23. Character table for the Oh point group and the characters of the reducible representation

Ŵσ for an octahedral ML6 complex

Oh E 8C3 6C′
2 6C4 3C2 i 8S6 6σd 6S4 3σh

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 −1 −1 1 1 1 −1 −1 −1

Eg 2 −1 0 0 2 2 −1 0 0 2 (z2, x2 − y2)

T1g 3 0 −1 1 −1 3 0 −1 1 −1

T2g 3 0 1 −1 −1 3 0 1 −1 −1 (xy, xz, yz)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 −1 −1 1 −1 −1 1 1 −1

Eu 2 −1 0 0 2 −2 1 0 0 −2

T1u 3 0 −1 1 −1 −3 0 1 −1 1 (x, y, z)

T2u 3 0 1 −1 −1 −3 0 −1 1 1

Ŵσ 6 0 0 2 2 0 0 2 0 4

hence

Ŵσ = A1g ⊕ Eg ⊕ T1u (6.24)

The Ŵσ representation is therefore decomposed into a one-dimensional
representation (A1g ), a doubly degenerate representation (Eg ), and a
triply degenerate representation (T1u).

6.6.5.2. Symmetry-adapted orbitals

In view of the large number of symmetry operations, we shall limit
ourselves here to giving the result of the application of the projection
formula (6.10). The following orbitals are obtained; they are shown in
Figure 6.10:

φA1g =
1

√
6
(σ1 + σ2 + σ3 + σ4 + σ5 + σ6) (6.25a)

φEg (1) =
1

2
(σ1 − σ2 + σ3 − σ4) (6.25b)

φEg (2) =
1

√
12

(−σ1 − σ2 − σ3 − σ4 + 2σ5 + 2σ6) (6.25c)

φT1u(1) =
1

√
2

(σ1 − σ3) (6.25d)

φT1u(2) =
1

√
2

(σ2 − σ4) (6.25e)

φT1u(3) =
1

√
2

(σ5 − σ6) (6.25f )
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Figure 6.10. Symmetry-adapted σ orbitals in
an octahedral ML6 complex.
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The degeneracy of the T1u orbitals is obvious from the coefficients
of the σi orbitals (6.25d–f ), but the same is not true of the Eg orbitals,
whose coefficients are very different (6.25b, c).

6.6.6. Trigonal-planar ML3 complexes with a ‘π system’
on the ligandsp//1

p//3 p//2

M

6-32

p   1

p   2p   3

M

6-33

In this last example, we shall analyse a trigonal-planar ML3 complex in
which the ligands are considered to have two p orbitals perpendicular
to the M−−L bond as well as the σ orbital that points towards the metal
(§ 6.6.3.). These p orbitals are written p‖ (6-32) and p⊥ (6-33), depending
on whether they are in the plane of the complex or perpendicular to it.
By convention, each orbital p‖i is oriented in a clockwise sense (−p‖i

corresponds to the opposite orientation). This system can act as a model
for a complex in which the three ligands are double-face π donors or π

acceptors (Chapter 3).

6.6.6.1. Reduction of the representations Ŵp‖ and Ŵp⊥

To obtain the characters of the representations Ŵp‖ and Ŵp⊥, it is now
not sufficient just to count the number of ligands whose position is
unchanged by the action of the symmetry operations of the (D3h)
point group. Although that procedure was acceptable in the previous
examples, the situation is more complicated now, since an orbital can be
transformed into itself (χ = 1) or into its opposite (χ = −1).

We consider first the Ŵp‖ representation. Action of the C3 and S3

axes changes all three orbitals (χ = 0), a C2-axis transforms the orbital
of the atom on that axis into its opposite and also interchanges the two
others while changing their sign (6-34 for the axis that passes through
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the ligand L1). The associated character is therefore −1. The molecular
plane σh maintains the three orbitals (χ = 3) in their original positions,
whereas reflection in a σv plane has the same consequences as rotation
around a C2-axis (6-35, χ = −1).

p//1

p//3 p//2

–p//1

–p//2–p//3

C2

6-34

�v

�v

–p//1

p//1

p//2p//3 –p//2–p//3

6-35

We now turn to the Ŵp⊥ representation. The character is still zero
for the C3 and S3 axes, and still −1 for a C2-axis (6-36). Reflection in the
σh plane changes each orbital into its opposite (6-37, χ = −3), whereas
a σv plane maintains one orbital and interchanges the two others (6-38,
χ = 1).

C2

–p⊥1p⊥1

p⊥ 2p⊥ 3 –p⊥ 3 –p⊥ 2

6-36

The characters associated with the Ŵp‖ and Ŵp⊥ representations
are listed in Table 6.24, together with the characters of the irreducible
representations of the D3h point group.
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p⊥1

p⊥ 2p⊥ 3

–p⊥1

–p⊥ 3 –p⊥ 2

�h

�h

6-37

p⊥1

p⊥ 2p⊥ 3

p⊥1

p⊥ 3 p⊥ 2

�v

�v

6-38

Table 6.24. Character table for the D3h point group and the

characters of the reducible representations Ŵp‖ and Ŵp⊥ for a

trigonal-planar ML3 complex

D3h E 2C3 3C2 σh 2S3 3σv

A′
1 1 1 1 1 1 1 x2 + y2, z2

A′
2 1 1 −1 1 1 −1

E′ 2 −1 0 2 −1 0 (x, y) (x2 − y2, xy)

A′′
1 1 1 1 −1 −1 −1

A′′
2 1 1 −1 −1 −1 1 z

E′′ 2 −1 0 −2 1 0 (xz, yz)

Ŵp‖ 3 0 −1 3 0 −1

Ŵp⊥ 3 0 −1 −3 0 1

For the Ŵp‖ representation, application of the reduction formula
(6.5) gives:

aA′
1
=

1

12
[(3 × 1 × 1) − (1 × 1 × 3) + (3 × 1 × 1) − (1 × 1 × 3)] = 0

aA′
2
=

1

12
[(3 × 1 × 1) + (1 × 1 × 3) + (3 × 1 × 1) + (1 × 1 × 3)] = 1

aE′ =
1

12
[(3 × 2 × 1) + (3 × 2 × 1)] = 1

aA′′
1

=
1

12
[(3 × 1 × 1) − (1 × 1 × 3) − (3 × 1 × 1) + (1 × 1 × 3)] = 0

aA′′
2

=
1

12
[(3 × 1 × 1) + (1 × 1 × 3) − (3 × 1 × 1) − (1 × 1 × 3)] = 0

aE′′ =
1

12
[(3 × 2 × 1) − (3 × 2 × 1)] = 0
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hence

Ŵp‖ = A′
2 ⊕ E′ (6.26)

For the Ŵp⊥ representation, we obtain:

aA′
1
=

1

12
[(3 × 1 × 1) − (1 × 1 × 3) − (3 × 1 × 1) + (1 × 1 × 3)] = 0

aA′
2
=

1

12
[(3 × 1 × 1) + (1 × 1 × 3) − (3 × 1 × 1) − (1 × 1 × 3)] = 0

aE′ =
1

12
[(3 × 2 × 1) − (3 × 2 × 1)] = 0

aA′′
1

=
1

12
[(3 × 1 × 1) − (1 × 1 × 3) + (3 × 1 × 1) − (1 × 1 × 3)] = 0

aA′′
2

=
1

12
[(3 × 1 × 1) + (1 × 1 × 3) + (3 × 1 × 1) + (1 × 1 × 3)] = 1

aE′′ =
1

12
[(3 × 2 × 1) + (3 × 2 × 1)] = 1

hence

Ŵp⊥ = A′′
2 ⊕ E′′ (6.27)

6.6.6.2. Symmetry-adapted orbitals

We shall limit ourselves here to the determination of the symmetry-
adapted A′′

2 and E′′ orbitals in the Ŵp⊥ representation. Table 6.25 shows
the action of all the symmetry operations of the D3h point group on the
generating functions p⊥1 and (p⊥2 − p⊥3), as well as the characters of
the A′′

2 and E′′ irreducible representations.
The symmetry-adapted orbitals are obtained from formula (6.10),

by using the p⊥1 generating function for the φA′′
2

orbital and for the first
degenerate orbital φE′′(1), and the function (p⊥2 − p⊥3) for the second
degenerate orbital φE′′(2). We obtain:

φA′′
2

= 4 × (p⊥1 + p⊥2 + p⊥3)

φE′′(1) = 2 × (2p⊥1 − p⊥2 − p⊥3)

φE′′(2) = 6 × (p⊥2 − p⊥3)

so the normalized orbitals are

φA′′
2

=
1

√
3

(p⊥1 + p⊥2 + p⊥3) (6.28a)

φE′′(1) =
1

√
6

(2p⊥1 − p⊥2 − p⊥3) (6.28b)

φE′′(2) =
1

√
2

(p⊥2 − p⊥3) (6.28c)





Table 6.25. Action of the symmetry operations of the D3h point group on the p⊥ orbitals (see 6-33) and the characters of the A′′
2 and E′′ irreducible representations.

[See Scheme 6-28 for the definition of the symmetry elements. A C2(i)-axis is co-linear with the M−−Li bond, and a σv(i) plane contains the M−−Li bond.]

D3h E C1
3 C2

3 C2(1) C2(2) C2(3) σh S1
3 S2

3 σv(1) σv(2) σv(3)

Rk(p⊥1) p⊥1 p⊥2 p⊥3 −p⊥1 −p⊥3 −p⊥2 −p⊥1 −p⊥2 −p⊥3 p⊥1 p⊥3 p⊥2

Rk(p⊥2 − p⊥3) p⊥2 − p⊥3 p⊥1 − p⊥2 p⊥3 − p⊥1 p⊥2 − p⊥3 p⊥1 − p⊥2 p⊥3 − p⊥1 p⊥3 − p⊥2 p⊥2 − p⊥1 p⊥1 − p⊥3 p⊥3 − p⊥2 p⊥2 − p⊥1 p⊥1 − p⊥3

A′′
2 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1

E′′ 2 −1 −1 0 0 0 −2 1 1 0 0 0
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Figure 6.11. π‖ and π⊥ symmetry-adapted
orbitals in a trigonal-planar ML3 complex.

�// (A2�)

�⊥(A2�)

�// (E�)

�⊥(E�)

M

M M

M M

M

For the A′
2 and E′′ symmetry-adapted orbitals (Ŵp‖), we obtain (see

Exercise 6.12):

φA′
2
=

1
√

3
(p‖1 + p‖2 + p‖3) (6.29a)

φE′(1) =
1

√
6

(2p‖1 − p‖2 − p‖3) (6.29b)

φE′(2) =
1

√
2

(p‖2 − p‖3) (6.29c)

The different symmetry-adapted orbitals are shown in Figure 6.11.
Although the σ -type orbitals point along the M−−L bonds, the orbit-

als above are constructed from ligand orbitals that are perpendicular to
these bonds. This is why they are often written π‖ and π⊥, even though
this notation is not strictly correct according to group theory.

Exercises

Symmetry elements and symmetry operations

6.1

How many reflection planes are there in the following molecules?
(1) water (H2O); (2) ammonia (NH3); (3) ethylene (C2H4); (4) (Z)-
1,2-difluoroethylene; (5) (E)-1,2-difluoroethylene; (6) aluminium
trichloride (AlCl3, a trigonal-planar molecule).

6.2

Which of the following molecules contain an inversion centre?
(1) carbon dioxide (CO2, linear); (2) hydrogen cyanide (HCN, linear);
(3) dimethylether (shown in 6-1); (4) benzene (C6H6, hexagonal);
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(5) (Z)-1,2-difluoroethylene; (6) (E)-1,2-difluoroethylene; (7) alu-
minium trichloride (AlCl3, a trigonal-planar molecule); (8) methane
(CH4, tetrahedral); (9) [PtCl4]2− (a square-planar complex, Scheme
6-10); (10) ethane (C2H6) in the staggered conformation; (11) ethane
in the eclipsed conformation.

6.3

1. Are there any rotation axes in the ammonia molecule (6-7) in
addition to the C3-axis?

2. Locate the three C3 axes and the four C2 axes in the methane
molecule.

3. How many C2 axes are there in (i) ethylene; (ii) (Z)-1,2-
difluoroethylene; (iii) (E)-1,2-difluoroethylene ?

4. Which rotation axes are present in AlCl3?

6.4

1. Consider a C2-axis and the co-linear S4-axis in methane (see
Scheme 6-11). Show that S2

4 = C2 and that S4
4 = E.

2. Carry out the S2
3 and S4

3 operations in the PF5 molecule (see
Scheme 6-12). Show that these operations are equivalent to
operations associated with the C3-axis or the σh plane.

3. (i) Show that ethane (C2H6) in the eclipsed conformation possesses
an improper axis that is co-linear with the C–C bond. What is the
order of this axis? (ii) Repeat the question for ethane in the staggered

conformation.

6.5

The symmetry elements present in the ammonia molecule (NH3)
are a C3-axis (6-7) and three planes of symmetry (σv(1), σv(2), and
σv(3)) (Exercise 6.1, question 2).

1. Perform the C3 operation followed by σv(1) (written σv(1)C3);
carry out σv(1) followed by C3 (written C3σv(1)). What conclu-
sion(s) can you draw?

2. Perform (C3σv(1))σv(2) then C3(σv(1)σv(2)). What conclusion(s)
can you draw?

3. Which operations are the inverses of E, C3, C2
3 , σv(1)?

6.6

Determine the point-group symmetries of the following molecules:
(1) O2; (2) HCl; (3) ethylene (C2H4); (4) (Z)-1,2-difluoroethylene;
(5) (E)-1,2-difluoroethylene; (6) AlCl3, a trigonal-planar molecule;
(7) tetrachloromethane (CCl4); (8) dichloromethane (CH2Cl2); (9)
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NH3 (6-7); (10) [PtCl4]2− (6-10); (11) PF5 (6-12); 12) trifluoroethyl-
ene (F2C==CHF, planar).

Symmetry-adapted orbitals

6.7

Show that in the NH3 molecule, the functions (1/
√

3)(1sH1 +1sH2 +
1sH3), a basis for the A1 representation, and (1/

√
6)(2 × (1sH1) −

1sH2 −1sH3), one of the basis functions for the E representation, are
orthogonal. The 1sH orbitals are assumed to be normalized, and the
overlap between two 1sH orbitals on different atoms is written S.

6.8

1sH1

1sH2
1sH3

1sH4

CC

z
y 1. Reduce the ŴH basis that is constituted by the 1sH orbitals on the

hydrogen atoms in the ethylene molecule (the characters of this
representation are given in Table 6.8, and the character table for
the D2h point group is given below).

2. Find the linear combinations of these orbitals that are bases for
irreducible representations.

D2h E C2(z) C2(y) C2(x) i σ(xy) σ (xz) σ (yz)

Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 −1 −1 1 1 −1 −1 xy

B2g 1 −1 1 −1 1 −1 1 −1 xz

B3g 1 −1 −1 1 1 −1 −1 1 yz

Au 1 1 1 1 −1 −1 −1 −1
B1u 1 1 −1 −1 −1 −1 1 1 z

B2u 1 −1 1 −1 −1 1 −1 1 y

B3u 1 −1 −1 1 −1 1 1 −1 x

6.9

Construct the molecular orbitals of NH3 from the symmetry-
adapted orbitals that are given in Figure 6.3. To help you construct
the interaction diagram, note that the energies of the orbitals on
H3 fragment and of the nitrogen 2pN orbitals are close to −13.5 eV,
and that the energy of the 2sN orbital is −26.0 eV.

6.10

Calculate the coefficients of σ1, σ2, σ3, and σ4 (see below for the
numbering of the atoms) in the symmetry-adapted T2 orbitals given
on the right-hand side of Figure 6.7. You should use the normal-
ization relationships and the fact that these orbitals are mutually
orthogonal and orthogonal to the symmetry-adapted A1 orbital.

�1

�4

�3

�2
M
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6.11

In a trigonal-planar ML3 complex, the Ŵσ representation is reduced
thus: Ŵσ = A′

1 ⊕ E′ (§ 6.6.3.1, formula (6.18)).
�1

�2�3
M

1. Characterize the A′
1 symmetry-adapted orbital, using σ1 as the

generating function.
2. Characterize the E′ symmetry-adapted orbitals, using σ1 followed

by (σ2 − σ3) as the generating functions. The projection formula
(6.10) and the character table for the D3h point group (Table 6.21)
should be helpful.

6.12

In a trigonal-planar ML3 complex, the Ŵp‖ representation is reduced
thus:
Ŵp‖ = A′

2 ⊕ E′ (§ 6.6.6.1, formula (6.26)).
p||1

p||3 p||2

M

1. Characterize the A′
2 symmetry-adapted orbital, using p‖1 as the

generating function.
2. Characterize the E′ symmetry-adapted orbitals, using p‖1 followed

by (p‖2–p‖3) as the generating functions.

The projection formula (6.10) and the character table for the D3h

point group (Table 6.24) should be helpful. The complete set of
symmetry operations is given in Table 6.25.

6.13

Consider a square-planar ML4 complex in which each ligand pos-
sesses a π system made up of two p orbitals that are perpendicular
to the M–L bonds. These orbitals are p⊥ and p‖, depending on
whether they are perpendicular to the plane of the complex or in
that plane. The orientation of these orbitals is shown below.

p  1

p
 2

p
 3

p
 4 p||1

p||2p||3

p||4

MM

T

T

T

T

Tables 6.18 and 6.19, which give the character table for the D4h point
group and the full set of the symmetry operations of this group,
should be helpful, as should Scheme 6-24 in which the different
symmetry elements are shown.

1. Determine the characters of the Ŵp⊥ representation.
2. Decompose this representation into a sum of irreducible repres-

entations of the D4h point group.
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3. Characterize the symmetry-adapted orbitals in each of these
representations. The generating function p⊥1 should be used for
the one-dimensional representations, and the generating func-
tions p⊥1 and p⊥2 in turn for the two-dimensional representation.

4. Sketch the resulting orbitals.
5. From an analysis of the interactions between the ligand orbitals,

establish the energetic ordering of the symmetry-adapted MO.
6. Repeat questions 1–5 for the Ŵp‖ representation.
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Answers to the exercises
(in skeletal form)

Chapter 1: Setting the scene

1.1. The coordination modes are η1 (X-type ligand) and η3 (LX-type
ligand).

M M

η1-allyl η3-allyl

1.2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

l 6 5 5 0 3 5 4 5 0 2 4 0 0 2 1 0 4 6 4 4 4 0 5 2

x 0 0 1 4 1 1 2 0 9 7 0 3 5 4 4 8 4 0 4 5 2 6 0 2

q 0 0 0 0 0 0 0 0 −2 0 0 −2 −3 −1 −1 −2 +1 +1 0 0 0 0 0 0

no 0 0 1 4 1 1 2 0 7 7 0 1 2 3 3 6 5 1 4 5 2 6 0 2

dn d6 d6 d6 d0 d8 d6 d6 d8 d0 d0 d10 d10 d8 d6 d6 d0 d2 d6 d0 d0 d6 d0 d8 d10

Nt 18 16 18 8 16 18 18 18 18 18 18 16 18 18 18 16 18 18 16 18 18 12 18 18

1.3. no = 1, d8, Nt = 16; no = 3, d6, Nt = 18; no = 3, d6, Nt = 16;
no = 3, d6, Nt = 18; no = 3, d6, Nt = 16; no = 3, d6, Nt = 18;
no = 1, d8, Nt = 16.

1.4. (1) CO, Cl−, Et−, PR3, H−, H2, SiR−
3 , SR−, CN−, I−, Me−,

COMe−, F−, O2−, NR3, C2H4, C6H6, C5H−
5 .
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(2)

Complex Ionic model no

[Fe(CO)5] [Fe(CO)5] 0
[Ir(CO)(Cl)(PPh3)2] [Ir+(CO)(Cl−)(PPh3)2] 1
[Mn(CO)6]+ [Mn+(CO)6] 1
[Ni(CN)5]3− [Ni2+(CN−)5] 2
[Zn(Cl)4]2− [Zn2+(Cl−)4] 2
[V(Cl)4] [V4+(Cl−)4] 4
[Cr(CO)3(η

6-C6H6)] [Cr(CO)3(η
6-C6H6)] 0

[Fe(η5-C5H5)2] [Fe2+(η5-C5H−
5 )2] 2

[Cu(η5-C5H5)(PR3)] [Cu+(η5-C5H−
5 )(PR3)] 1

[Zr(η5-C5H5)2(CH3)]+ [Zr4+(η5-C5H−
5 )2(CH−

3 )] 4
[Ti(PR3)2(Cl)3(CH3)] [Ti4+(PR3)2(Cl−)3(CH−

3 )] 4
[W(PR3)2(CO)3(η

2-H2)] [W(PR3)2(CO)3(η
2-H2)] 0

[Ir(PR3)2(Cl)(H)2] [Ir3+(PR3)2(Cl−)(H−)2] 3
[Ni(H2O)6]2+ [Ni2+(H2O)6] 2

1.5.

1. [CrL6], no = 0, d6, Nt = 18; [RuL]5, no = 0, d8, Nt = 18.
2. The two compounds are 18-electron complexes. An η6-

coordination of the two ligands in the ruthenium com-
plex would lead to a 20-electron organometallic (and thus
strong-field) complex.

3. (i) η5; (ii) η3 ; (iii) η1.

1.6. The borohydride ligand is of L-type in η1-coordination, L2-type in
η2-coordination, and L3-type in η3-coordination. In each case, the
coordination mode of this ligand allows an 18-electron complex
to be formed.

1.7. (1) no = 0; (2) no = 3; (3) no = 2; (4) no = 2 (each bridging
Cl acts as an X-type ligand towards one metallic centre and as an
L-type ligand towards the other); (5) no = 2 (SR = ligand of XL
type (or LX), like Cl).

1.8.

1. The s orbitals have spherical symmetry, so their overlap is non-
zero for any relative positions of the metal and the ligand. The
bonding orbital is mainly concentrated on the ligand and the
antibonding orbital on the metal.

M–L bonding MO M–L antibonding MO
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2. (i) On the x-axis; (ii) in the nodal plane yz: S = 0.
3. xy: the overlap is largest when the ligand is placed on the

bisectors of the x- and y-axes, and smallest if it is in the xz or yz

nodal planes (S = 0); z2: largest overlap along the z-axis and
smallest (S = 0) when the ligand is on the nodal cone.

S = 0

Smax
S = 0

Smax

Chapter 2: Principal ligand fields: σ interactions

2.1. 1–3

M Sc Ti V Cr Mn Fe Co Ni Cu Zn

dn d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Electronic configuration t1
2ge0

g t2
2ge0

g t3
2ge0

g t3
2ge1

g t3
2ge2

g t4
2ge2

g t5
2ge2

g t6
2ge2

g t6
2ge3

g t6
2ge4

g

Unpaired electrons 1 2 3 4 5 4 3 2 1 0

2.2.

(1) d6;
(2) Strong-field complex (organometallic): t6

2g ;
(3) The anion would be a 19-electron complex (d7) with a very

high-energy d MO (strong field) containing an electron.
Dissociation gives a 17-electron ML5 complex (d7).

2.3.

eg

t1u

a1g
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2.4. The xy and x2−y2 orbitals are interchanged compared to the
description given in § 2.2.1.

x
y

z

xy

yz xz x2–y2

z2

M

and
2.5. (1) A fourteen-electron d8 complex; (2) and (3) Two empty

nonbonding MOs:
2.6. (1) and (2) For the orbitals of the square-planar complex, see § 2.2.

The z2 orbital becomes strictly nonbonding (ligands on the nodal
cone).

xy, z2

yz, xz

z

s–pz

xy, xz, yz

z2

x2–y2

x2–y2

pz

90° 125°�

2.7.

1. See § 2.3.1.1, Figure 2.7.
2. (a) A low-spin d7 complex with electronic configuration

(xy)2(xz)2(yz)2(z2)1. Compared to d6 low-spin com-
plexes, there is an additional electron in the z2 orbital.
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This orbital is particularly antibonding towards the apical
ligand ⇒ substantial lengthening of this bond.

(b) Two electrons in z2 (low-spin d8): even greater lengthen-
ing of the apical bond.

3. A high-spin d4 complex with electronic configuration
(xy)1(xz)1(yz)1(z2)1. The M−−Cla bond will be longer than
M−−Clb, due to the electron in z2 (exp: M−−Cla = 2.58 Å,
M−−Clb = 2.30 Å).

4. (xy)2(xz)2(yz)2(z2)2 → (xy)2(xz)2(yz)2(z2)1(x2−y2)1. Loss
of an electron from z2 (M−−La antibonding) shortens the
M−−La bond. Addition of an electron to x2−y2 (M−−Lb

antibonding) lengthens the M−−Lb bonds. Compared to the
case of a low-spin complex (M−−La > M−−Lb), the bond
lengths tend to become equal in a high-spin complex.

2.8.

1. See § 2.2.1, Figure 2.6 and § 2.3.1, Figure 2.9.
2. Low-spin d8 (b2g)

2(eg)
4(a1g)

2 for square-planar; d8 high-spin
(e)4(t2)

4 for the tetrahedron, with two unpaired electrons in
the t2 block.

3. Square-planar: six electrons in nonbonding orbitals, and two
in very weakly antibonding orbitals, in the d block; tetra-
hedron: four electrons in nonbonding orbitals and four in
weakly antibonding orbitals. The bonds are weaker in the
tetrahedron.

2.9.

1.

xz yz

x2–y2

x2–y2
xy

xz yz

xy

z2

z2
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2. Compare with Figure 2.15 (right-hand side): the x2−y2 orbital
(1a1) is slightly antibonding, since the two ligands are not
exactly on the nodal planes, as they are when L1−−M−−L2 =
90◦. However, the xy orbital (b2) is less antibonding, as in this
case the three ligands are no longer pointing exactly towards
the regions of greatest amplitude for xy. The gap between
x2−y2 and xy therefore becomes smaller.

2.10. For the ML4 complex, use the orientation given in Exercise 2.4.
The result obtained is exactly the same as that established in
§ 2.8.4 (Figure 2.16), since the bond angles are 90◦ in both
cases.

2.11. (1) and (2) The symmetry-adapted orbitals on the ligands have a1

and t2 symmetries (Chapter 6, § 6.6.2). Due to the (weakly) bond-
ing overlaps, the a1 orbital is lower in energy than the t2 orbitals.
The character table for the Td point group (Chapter 6, § 6.6.2,
Table 6.20) shows the symmetries of the metal orbitals: a1 (s), t2

(p), e ⊕ t2(d). The following interaction diagram is obtained, char-
acterized by a two-orbital interaction (a1), interactions involving
two sets of three orbitals (t2), and nonbonding e orbitals (the
order of the antibonding MOs 2a1 and 3t2 is not obvious, and may
depend on the particular system considered):

d (e, t 2)

s (a1)

p(t 2)

t2

a11t2

2t2

3t2

1a1

2a1

e

d-block

� MO

�*MO
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2.12. Trigonal-planar ML3 complex

d (a1�, e�, e�)

3e�

2e�

e�

1e�

e�

3a1�

2a1�

a1�

1a1�

a2�

d block

MOσ*

� MO

pure nonbonding 

p orbitalp (e�, a�2)

s (a�1)

2.13.

1. The s orbital, which is totally symmetric like z2 (a1 symmetry).
2. The interaction between the s orbital on the metal and the

ligand orbitals is bonding. As a result, the amplitude of z2

decreases in the plane of the complex (xy) but increases along
the z-axis. The metal–ligand interactions are therefore less
antibonding after the polarization.

Chapter 3: π -type interactions

3.1.

1. See Figure 2.6 (right-hand side)
2. (a) z2 is unchanged (overlap zero by symmetry with the lone

pairs (pCl) on the chloride ligands); one orbital (xy) is
destabilized by four antibonding interactions with pCl;
two orbitals (xz and yz) are destabilized less strongly by
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two antibonding interactions with pCl. Without detailed
calculations, the position of z2 with respect to the three
other orbitals is not clear.

xz

z2 z2

xy yz

xy–4pCl

xz–2pCl yz–2pCl

(b) xy is now stabilized by four bonding interactions with the
π∗

CN orbitals (CN is a double-face π -acceptor, like CO), xz

and yz by two bonding interactions.

xz

z2 z2

xy

yz

xz + 2�*
CN

xy + 4�*
CN

yz + 2�*
CN

(c) z2 and one of the three nonbonding MO are unchanged,
but the two others are destabilized by an antibonding
interaction with one pCl.

xz

z2
z2

xy

yz

xy–pCl

xz–pCl

yz

Cl

x
y

z

M

3.2. 1. See Figure 2.10.
2. 1a: Large overlaps between yz (nonbonding) and π∗

y , and
between xz (nonbonding) and π∗

x ; very small overlaps
between x2−y2 and π∗

y (one bonding and one antibond-
ing interaction, which do not completely cancel due to the





Answers to the exercises (in skeletal form)

polarization of x2 −y2 (see question 1)); the same situation
for xy and π∗

x .
1b: By symmetry (the xy and yz planes), there are inter-

actions between yz (nonbonding) and π∗
z , and between

xy (antibonding) and π∗
x .

CO

CO�y
*

�x
*

�x
*

�z
*

xz

yz

x2–y2

xy

z
x

y

1a 1b

There are two stabilizing interactions in each case. The
strongest interaction involves xy (antibonding) and π∗

x (these
orbitals are closest in energy, and the overlap is larger due to
the polarization of xy).

3. The most favourable site for substitution so far as the π inter-
actions are concerned is axial for a d4 complex and equatorial
for a d8 complex.

4. The same type of interactions, but antibonding (a double-face
π -donor ligand).

5. d4: equatorial substitution (one destabilizing interaction
instead of two for axial substitution); d8: two destabilizing
interactions in both isomers, but axial substitution is favoured
since one of the overlaps is larger for equatorial substitution.

3.3.

1. See Chapter 1, § 1.1.1.2
2. (i) a nonbonding σ orbital, concentrated on C; (ii) see

Chapter 1, Figure 1.7; (iii) a π acceptor; (iv) through carbon.
3. The MO are similar to those in [M(CO)6] (see Scheme 3-35).
4. The bonds are shorter in [Fe(CN)6]4− (an Fe(II) complex,

with six electrons in π -bonding MO in the d block) than in
[Fe(CN)6]3− (an Fe(III) complex with only five electrons in
π -bonding MO).
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5. No, since the Fe3+ cation is smaller than the Fe2+ cation.
6. (i) d3 for each of them; (ii) CN is a π acceptor, F a π donor (see

Figure 3.8).

3.4.

1. xz(P1) and xy(P2).
2. x2−y2: SS; xz: SA; yz: AA

3.

M M M M

SA AA SS AS

4. Three.
5. and 6.

SS

AS

AA
SA

SS
SA
AA

7. (i) 12; (ii) 18.

3.5.

1. Two, xz and yz.
2. (a) Two bonding interactions with the π∗

CO orbitals for axial
substitution, only one for equatorial substitution;

(b) axial.

3.6. Use the orbitals established in Exercise 6.13 (questions 4 and 6), but
for [Pt(CN)4]2−, the p orbitals on the ligands should be replaced
by the π∗

CN orbitals. The interaction diagram may be obtained by
considering the symmetry properties of these orbitals and of the
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metal d orbitals (see Table 6.18). There are three interactions: two
involve eg orbitals, and one concerns b2g orbitals.

3.7.

1. See Chapter 2, Figure 2.11.
2. Use Figure 6.11.
3. Two interactions between e′ orbitals and two between e′′

orbitals.
4. It is not possible to establish easily the two-fold degeneracy of

the orbitals.

Chapter 4: Applications

4.1.

1. Structure 2 (the same analysis as in § 4.1.1).
2. and 3.: See T. A. Albright, R. Hoffmann, J. C. Thibeault, D.

Thorn J. Am. Chem. Soc. 101, 3801 (1979).

4.2.

1. See Chapter 2, § 2.8.2.
2. See Chapter 2, § 2.6.1 and Chapter 4, § 4.2.2.
3. A ‘T-shaped’ structure for [Rh(PPh3)3]+ (d8) and trigonal for

[Pt(PPh3)3] (d10).

4.3.

1. See Chapter 2, § 2.1.2.4 (trans) and 2.1.2.5 (cis).
2. The same types of diagram as in the dichloro octahedral

complexes (trans: see Chapter 3, § 3.3.1; cis: see Chapter 3,
Exercise 3.4).

3. d0: cis; d2: trans; see D. M. P. Mingos J. Organomet. Chem. 179,
C29 (1979).

4. [OsO2F4]2−: trans; [MoO2Cl4]2−: cis.

4.4.

1. d6

2. See the analysis in Chapter 4, § 4.1.3 and A. Jarid, A. Lledos,
D. Lauvergnat, Y. Jean New J. Chem. 21, 953 (1997).

3. (0, 0), (0, 90), and (90, 90).
4. Coplanar or perpendicular, the first being more stable.

4.5.

1. See the analysis for the bis-ethylene complexes (Chapter 4,
§ 4.1.3).

2. d2: 1; d4: 2; d6: 2.
3. The back-donation interactions towards the carbenes decrease,

so the rotation barrier also decreases.
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4.6

1. For the d orbitals in the octahedron, use the sketches given in
Figure 2.4. For those in the square-planar structure, use the
representation in Exercise 2.4 (rotated by 90◦). For the MO
that characterize the broken M−−H bonds, see Figure 4.12.

2. Yes.
3. An orbital in the reactant that characterizes a bond becomes a

d-block orbital in the product.

Chapter 5: The isolobal analogy

5.1.

1. CH3−−CH3; [(CO)5Mn−−Mn(CO)5]
2.

[Mn(CO)5]

CH3

[Mn(CO)5 CH3]

5.2.

1.

double bond (� and �)

OC

Rh

Cp

H

C

H

OC

CO

RhRh

Cp

Cp

H

H

CC

H

H

2. [CpRh(µ-CO)]2, with two bridging CO.
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5.3.

1. and 2.

Os Os

CO

CO CO

OC CO

OC OC

CH2 CH2

CO

5.4.

1.

[Fe(CO)
4
]: d

8
-ML

4
CH2

[Pt(CO)L]: d10-ML2 CH2

Fe
OC

OC

CO

CO

Pt
OC

L

H

H

C

H

H

C

2.

C
C

C
Fe

Pt

Pt

C3H6 [Fe(CO)4 (Pt(CO)L)2 ]

Planar coordination around the platinum atoms, octahedral
around the iron.

5.5.

H

H

B

H

H

B
H

H
1. CH+

2 .
2. BH2.
3. Diborane B2H6.

5.6.

1. (a).
2. (b) (analogues of cyclopropane).

5.7.

1.

[Ir(CO)3 ]: d 9–ML3 CH (scheme 5-11, last line)

2. These are also isolobal analogues of tetrahedrane.
3. Tetrahedral representations, like structures 1 and 2 in the

question.
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5.8. Yes for the organic molecule (‘orthogonal’ ethylene), but not for
the complex. There is a π interaction, weaker than that in con-
formation (a), which involves a nonbonding d orbital on the metal
(see Chapter 4, § 4.1.1.).

Chapter 6: Elements of group theory and applications

6.1. (1) Two; (2) three, each of which contains an N−−H bond and
bisects the opposite H−−N−−H angle (planes written σv(1), σv(2),
and σv(3)); (3) three: the molecular plane and two planes per-
pendicular to it, one perpendicular to the C−−C bond, the other
bisecting the H−−C−−H angles; (4) two, since the third plane
described above for ethylene is not a symmetry element here
(H−−C−−F angles); (5) one, the molecular plane; (6) four: the
molecular plane and the three planes perpendicular to it which
each contain an Al−−Cl bond.

6.2. (1) Yes; (2) no; (3) no; (4) yes; (5) no; (6) yes; (7) no; (8) no; (9) yes;
(10) yes; (11) no.

6.3.

1. No.
2. The C3 axes are co-linear with one of the C−−H bonds; the C2

axes bisect two opposite H−−C−−H angles.
3. (a) three, at the intersections of the three planes found in

Exercise 6.1 (question 3);
(b) one, the intersection of the two reflection planes (Exer-

cise 6.1, question 4);
(c) one, perpendicular to the molecular plane.

4. a C3 axis perpendicular to the molecular plane and three
C2 axes, each of which is co-linear with one of the Al−−Cl
bonds.

6.4.

1. S2
3 = C2

3 and S4
3 = C3.

2. (i) S3; (ii) S6.

6.5.

1. σv(1)C3 = σv(2); C3σv(1) = σv(3) (non-commutative).
2. (C3σv(1))σv(2) = C3(σv(1)σv(2)) = C2

3 (associative).
3. E, C2

3 , C3, σv(1), respectively.

6.6. Consult § 6.2.2. (1) point 1: D∞h; (2) point 1: C∞v ; (3) point 4:
D2h; (4) point 3: C2v ; (5) point 3: C2h; (6) point 4: D3h; (7) point 1:
Td; (8) point 3: C2v ; (9) point 3: C3v ; (10) point 4: D4h; (11) point 4:
D3h; (12) point 2: Cs.
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6.7.
∫

space
[2(1sH1) − (1sH2) − (1sH3)] × [1sH1 + 1sH2 + 1sH3 ]dτ

= (2 − 1 − 1) + S(2 + 2 − 1 − 1 − 1 − 1) = 0

6.8.
1. ŴH = Ag ⊕ B1g ⊕ B2u ⊕ B3u.
2.

Ag :
1

2
(1sH1 + 1sH2 + 1sH3 + 1sH4)

B1g :
1

2
(1sH1 − 1sH2 + 1sH3 − 1sH4)

B2u :
1

2
(1sH1 − 1sH2 − 1sH3 + 1sH4)

B3u :
1

2
(1sH1 + 1sH2 − 1sH3 − 1sH4)

6.9.

2s (a1)

pz (a1)

(px , py) (e)

a1

(ex , ey)

1a1

2a1

3a1

1e

2e

6.10.

φA1 =
1

2
(σ1 + σ2 + σ3 + σ4)

φT2(2) =
1

√
2
(σ3 − σ4)

φT2(1) = λσ1 − µ(σ2 + σ3 + σ4)





Answers to the exercises (in skeletal form)

where λ2 + 3µ2 = 1 (normalization)
φT2(1) and φA1 orthogonal ⇒ λ = 3µ

⇒ φT2(1) =
1

√
12

(3σ1 − σ2 − σ3 − σ4)

φT2(3) = λσ2 − µ(σ3 + σ4)

where λ2 + 2µ2 = 1 (normalization)
φT2(3) and φA1 orthogonal ⇒ λ = 2µ

⇒ φT2(3) =
1

√
6
(2σ2 − σ3 − σ4)

6.11. 1. and 2.

D3h E C1
3 C2

3 C2(1) C2(2) C2(3) σh S1
3 S2

3 σv(1) σv(2) σv(3)

Rk(σ1) σ1 σ2 σ3 σ1 σ3 σ2 σ1 σ2 σ3 σ1 σ3 σ2

Rk(σ2 − σ3) σ2 − σ3 σ3 − σ1 σ1 − σ2 σ3 − σ2 σ2 − σ1 σ1 − σ3 σ2 − σ3 σ3 − σ1 σ1 − σ2 σ3 − σ2 σ2 − σ1 σ1 − σ3

A′
1 1 1 1 1 1 1 1 1 1 1 1 1

E′ 2 −1 −1 0 0 0 2 −1 −1 0 0 0

φA1′ = 4 × (σ1 + σ2 + σ3), so the normalized function is
(1/

√
3)(σ1 + σ2 + σ3).

φE′(1) = 2σ1 − σ2 − σ3 + 2σ1 − σ2 − σ3 = 4σ1 − 2σ2 − 2σ3,
so the normalized function is (1/

√
6)(2σ1 − σ2 − σ3).

φE′(2) = 2 × (σ2 − σ3) − (σ3 − σ1) − (σ1 − σ2) + 2 × (σ2 −
σ3) − (σ3 − σ1) − (σ1 − σ2) = 6σ2 − 6σ3 so the normalized
function is (1/

√
2)(σ2 − σ3).

6.12. 1. and 2.

D3h E C1
3 C2

3 C2(1) C2(2) C2(3) σh S1
3 S2

3 σv(1) σv(2) σv(3)

Rk(p‖1) p‖1 p‖2 p‖3 −p‖1 −p‖3 −p‖2 p‖1 p‖2 p‖3 −p‖1 −p‖3 −p‖2

Rk(p‖2 − p‖3) p‖2 − p‖3 p‖3 − p‖1 p‖1 − p‖2 p‖2 − p‖3 p‖1 − p‖2 p‖3 − p‖1 p‖2 − p‖3 p‖3 − p‖1 p‖1 − p‖2 p‖2 − p‖3 p‖1 − p‖2 p‖3 − p‖1

A′
2 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1

E′ 2 −1 −1 0 0 0 2 −1 −1 0 0 0

φA′
2

= 4 × (p‖1 + p‖2 + p‖3), so the normalized function is
(1/

√
3)(p‖1 + p‖2 + p‖3).
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φE′(1) = 2p‖1 − p‖2 − p‖3 + 2p‖1 − p‖2 − p‖3 = 2 ×
(2p‖1 − p‖2 − p‖3), so the normalized function is (1/

√
6)(2p‖1

− p‖2 − p‖3).

φE′(2) = 2 × (p‖2 − p‖3) − (p‖3 − p‖1) − (p‖1 − p‖2) + 2 ×
(p‖2 − p‖3) − (p‖3 − p‖1) − (p‖1 − p‖2) = 6 × (p‖2 − p‖3), so the
normalized function is (1/

√
2)(p‖2 − p‖3).

6.13. 1. and 2.

D4h E 2C4 C2 2C
′
2 2C

′′
2 i 2S4 σh 2σv 2σd

Ŵp⊥ 4 0 0 −2 0 0 0 −4 2 0

=> Ŵp⊥ = A2u ⊕ B2u ⊕ Eg

3.

D4h E C1
4 C3

4 C2 C
′
2a C

′
2b C

′′
2a C

′′
2b

Rk(p⊥1) p⊥1 p⊥4 p⊥2 p⊥3 −p⊥1 −p⊥3 −p⊥4 −p⊥2

Rk(p⊥2) p⊥2 p⊥1 p⊥3 p⊥4 −p⊥4 −p⊥2 −p⊥3 −p⊥1

A2u 1 1 1 1 −1 −1 −1 −1
B2u 1 −1 −1 1 −1 −1 1 1
Eg 2 0 0 −2 0 0 0 0

D4h i S1
4 S3

4 σh σva σvb σda σdb

Rk(p⊥1) −p⊥3 −p⊥4 −p⊥2 −p⊥1 p⊥1 p⊥3 p⊥4 p⊥2

Rk(p⊥2) −p⊥4 −p⊥1 −p⊥3 −p⊥2 p⊥4 p⊥2 p⊥3 p⊥1

A2u −1 −1 −1 −1 1 1 1 1
B2u −1 1 1 −1 1 1 −1 −1
Eg 2 0 0 −2 0 0 0 0

φA2u = 4 × (p⊥1 + p⊥2 + p⊥3 + p⊥4), so the normalized
function is

φA2u =
1

2
× (p⊥1 + p⊥2 + p⊥3 + p⊥4)

φB2u =
1

2
× (p⊥1 − p⊥2 + p⊥3 − p⊥4) (normalized)

φEg (1) =
1

√
2
(p⊥1 − p⊥3) (normalized)

φEg (2) =
1

√
2
(p⊥2 − p⊥4) (normalized)
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4.

M

M M

M �B2u

�Eg
(1) �Eg

(2)

�A2u

5. εA2u < εEg < εB2u

6.

D4h E 2C4 C2 2C
′
2 2C

′′
2 i 2S4 σh 2σv 2σd

Ŵp‖ 4 0 0 −2 0 0 0 4 −2 0

⇒ Ŵp‖ = A2g ⊕ B2g ⊕ Eu

Normalized functions:

φA2g =
1

2
× (p‖1 + p‖2 + p‖3 + p‖4)

φB2g =
1

2
× (p‖1 − p‖2 + p‖3 − p‖4)

φEu(1) =
1

√
2
(p‖1 − p‖3)

φEu(2) =
1

√
2
(p‖2 − p‖4)

�Eu
(1) �Eu

(2)

�A2g

�B2g

M

M

M M

where εB2g < εEu < εA2g
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W(CO)6 44, 133, 185
W(CO)(η2-C2H2)3 84
W(CO)3(PR3)2 160
W(CO)3(PR3)2(η

2-H2) 9, 11, 12, 49, 152,
154

Weak field 47
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