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Preliminary Information

It is pertinent to give some advice regarding the use of some terms in this book:

• The word particle is used as a generic term. It can mean molecule, atom, or ion.

In this book, it does not signify an elementary particle with the meaning given to

them by the physicists, although such may be (and are) the subject of studies

through statistical thermodynamics. Likewise, the author indiscriminately uses

the words compounds and species to refer to the chemical species that constitute

a thermodynamic system or are a part of a thermodynamic system, without

trying to attribute a specific meaning to them.

• The author has tried to ensure that the logarithm is a dimensionless number.

When it was not the case in this book, it was for an economy of writing. From

a general standpoint, it is sufficient to introduce into the denominator of the

argument the quantity 1, unity, which is the same as in the numerator. The author

recalls that the argument of a logarithm being dimensionless or not has been the

matter of a considerable number of discussions.

• First of all, the author indicates that the pressure unity most often found in this

book is the atmosphere, although it is no longer recommended by IUPAC. The

reason for this discrepancy is practical. A great deal of data is expressed with it

in the thermodynamic literature.

• The term “concentration” written in quotes in this book is endowed with its

largest meaning as it may designate either a molality, a molarity, a molar

fraction, or a density number. In no case does it only designate a molarity.

However, written without any quotes, it exclusively means molarity.

• Concerning the part of the book which requires the use of statistical thermody-

namics, two points must be stressed.

– In order to introduce this part of thermodynamics, we follow the development

of T.L. Hill (see the general bibliography). It is rather brief. Several strategies

exist to delve into it. Hill’s treatment of the subject is one of the clearest.

xxvii



– The introduction and the reasoning based on molecular functions have been

done by writing and handling them with the symbolism used by A. Ben-Naim

in his books and publications.

• Finally, the word thermodynamics used alone signifies classical thermodynam-

ics exclusively.
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Glossary

A Absorbance

A Coefficient of Debye–H€uckel’s relations
A Helmholtz energy

A(N, V, T ) Characteristic function of the canonical ensemble

A Ion size parameter (extended Debye–H€uckel’s relation)
a, a0, ai or () General symbols of an activity

B Coefficient of the extended Debye–H€uckel’s relation
B Matrix of Bij (Kirkwood–Buff’s theory)
B or B(R0,. . .,RN) Sum of the interaction energies between the added

particle and the other particles of the solute

B(R0,R00) Coefficient of the series expansion of g (R0,R00) in the

density ρ
Bn(T ) or Bk Successive terms of the series expansion of the virial

in ρ
Bij (T ) Successive terms of the expansion of the virial in ρ

(binary mixture)

B�
j (T, λ1) Virial terms of the osmotic pressure (McMillan–

Mayer’s theory)
b02, b03, b20, b30, b11,
bij . . .

Expansion in series terms in z of p/kT (binary mixture)

Cp Heat capacity at constant pressure

(Cp)l, (Cp)s Molar heat capacities at constant pressure in the liquid

and solid states

C(R0, R00) Expansion in series terms of g (R0, R00) in ρ
C General symbol of a “concentration” whichever it is

(molar fractions, molalities, molarities, density

numbers)

ci or [ ] Molarity (molar concentration of i)
E Electromotive force of an electrochemical cell

E� Standard electromotive force of an electrochemical cell
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Ej Junction potential

E1, E2, . . ., Ej Stationary quanto-energetic states of a system belonging

to an ensemble

Ei(N, V) Allowed energy of a great ensemble system possessing

N particles

Ei Total energy of the particle i
Ek Kinetic energy of a particle

Et Total energy of an ensemble

E Internal energy of a system

E Total energy of a system

Ep (or U ) Potential energy of a particle

E Mean energy of a system in an ensemble

e0 Elementary electric charge

e Base of natural logarithms

F(RN) Every function depending on the configuration RN

hF(RN)i or hFi Mean value of a function F depending on the

configuration RN

F Faraday

f General symbol of the fugacity

fs, fl, fg Fugacities in the solid, liquid, and gaseous states

fi
� Fugacity of i in the standard state

f�i Fugacity of i in the pure state

f* Fugacity in the reference state (at very low pressure)

f (Xi, Xj) or f(R
0, R00) or

fAA, fAB . . . fαβ

Potential energy functions in pairs into which a more

complex energy function can be divided

f (r12) and so f. . . . . ..Mayer’s f-function
G(T, P, N ) or G Characteristic function of the isothermal–isobaric

ensemble

G, Gαβ, G11, G12, G22,

G12,

or GAA, GAB, GBB

Kirkwood–Buff’s integral

GAA
�, GAB

�, GBB
� First terms of the expansions in ρA of the Kirkwood–

Buff’s integrals
G12 or Gαβ Kirkwood–Buff’s integral between the species 1, 2 or α,

β (grand ensemble)

G General symbol of the Gibbs energy function

Gm i or Gi Molar Gibbs energy

G�
m Molar Gibbs energy in the reference state

Gi m Partial molar Gibbs energy of i

Gi
� Gibbs energy of i in the standard state

GE Excess Gibbs energy of a mixture

GE
m

Molar excess Gibbs energy of a mixture

G Conductance of a solution

g(R) or g(R, T, ρ) or g21 Radial distribution function (R scalar)
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gαβ (R
0, R00) or

g (R0, R00) or g(r)ik
Pair correlation function (between the particles α and β
or j and k or those located in R0 and R00)

gαβ R0,R00ð Þ or
g R0,R00ð Þ or g12 Rð Þ,
g(r)αβ

Pair correlation function between the particles α and β in
the grand ensemble

g(2) ++, g
(2)

+�,
g(2)� �, g(2) +solv,
g(2) solv–solv g

(3)(r12,
r13, r23), g

(4),

g(5), g(6),. . .,g(n)

Radial distribution functions between two or several

species

H Hamilton’s function
H General symbol of enthalpy

Hmi Partial molar enthalpy of i

Hmi Molar enthalpy of i
Hm

� Molar enthalpy in the standard state

H�
m Molar enthalpy in the reference state

h Planck’s constant
I Ionic strength of the solution

K General symbol of an equilibrium constant

K� or K�(T ) Thermodynamic equilibrium constant or standard

equilibrium constant

K(T ) or K0(T ) or K0, K00 Formal or conditional equilibrium constants

Kf Equilibrium constant related to fugacities

Kp Equilibrium constant related to partial pressures

Km Equilibrium constant related to molalities

Kc Equilibrium constant related to molarities

Ka
� Thermodynamic acid dissociation constant of an acid

Ka Acid dissociation constant (general symbol)

Kw
� Thermodynamic ionic product of water

Kw Ionic product of water

Ks Solubility product

hKi Mean kinetic energy of a system

k Boltzmann’s constant
kH Henry’s law constant

M Matrix of partial derivatives at constant volume

(Kirkwood–Buff’s theory)
M Molar mass

m General symbol of the molality

N Composition of a system

N1, N2,. . . Number of particles of a system

ni or n Number of moles in the solution

nj(N1, N2) Number of systems possessing N1 and N2 particles

(grand ensemble)

Ni Mean number of particles i in the canonical ensemble

Nt Number of moles of a species in the ensemble
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hNii or N
(V, T, μ)

Mean number of particles of the species i in one system

of the grand ensemble

ni( j) Number of systems of the grand ensemble possessing

j particles
n�j Howmany times appears the quanto-energetic state Ej in

the most probable distribution (canonical ensemble)

n�j (N ) Howmany times appears the quanto-energetic state Ej in

the most probable distribution for a number N of

particles (grand ensemble)

n Number of exchanged electrons during an

electrochemical reaction

p Pressure of a system

pi Partial pressure of i
pi

� Partial pressure of i in the standard state

P�
i Pressure of i in the pure state

p* Pressure in the reference state

p Average pressure of the systems in an ensemble

pj Pressure of the system j in the energetic state Ej

P(RN) Basic density function or probability density function of

the occurrence of the configuration RN

P(RN)dRN Probability of the occurrence of the configuration RN,

i.e., probability to find the particle 1 in dR1 at R1, 2 in

dR2 at R2,. . .,N in dRN at RN

P(n) (R1, R2,. . .,Rn) Specific function of order (n) or density probability for

the particle 1 to be in R1,. . . the particle n in Rn,

whichever the configuration of the (N–n) remaining

particles

P(2)(R0, R00) Specific pair distribution function (probability density)

P(n) (R1, R2,. . .,Rn)

dR1, dR2,. . .,dRn

Specific probability of order (n) for a well-specified

particle be in the volume element dR1, another well-

specified one in dR2,. . . a last well-specified one in dRn,

whichever are the configurations of the remaining N–n
particles

P(N ) Probability to find a system in the grand ensemble with

exactly N particles of a species

Pj or Pj(N, V, T ) Probability for the system to be in the energy state Ej

(canonical ensemble)

Pj(N ) Probability for a system of the grand ensemble to be in

the energetic state Ej(N, V )
Pj(N, V, T, μ) Probability for a system of the grand ensemble to be in

the energetic state Ej(N, V, μ)
pV Characteristic function of the grand ensemble

Pv Probability for a system to exhibit the volume

V (ensemble isothermal–isobaric)

p Momentum of a particle (vector)
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pN Symbol of the dependence of Hamilton’s function on the
momenta of the N particles of the system

Q, QN or QN (V, T )
or Q(N, V, T )

General symbol of the partition function of the

canonical ensemble

Q1 Canonical partition function corresponding to the

occurrence of only one molecule in the system

QN1N2
, Q10, Q01,

Q20, Q02, Qij

Canonical partition function for a mixture of two

particles

q Generalized coordinate

qcloud Total charge excess around the central ion (Debye–

H€uckel’s theory)
q Electrical charge

q, qi,. . ., or qi(V, T ) Molecular partition function

qint Internal molecular partition function

qrot Rotation molecular partition function

qtr Translation molecular partition function

qv Vibrational molecular partition function

qelect Electronic molecular partition function

q Heat exchanged with the surroundings

R Perfect gases constant

R, r, ro, r12 Scalar distance between two particles (R: scalar)
R Vector defining the location of a species

RN Configuration taking only into account the location of

the N particles

RNA þ NB Configuration of the NA and NB particles of A and B of

the system

S Entropy

Si m Partial molar entropy of i

T Absolute temperature of the system

U Internal energy (IUPAC)

U General symbol of the potential energy of a species

hUNi Mean energy of interaction between particles

UN(X
N) Total potential energy of interaction between the

particles in the configuration XN

UN(R
N), UN+1

(RN+1) or UN, UN+1

Total potential energies in the configurationsRN andRN+1

U(R) or U(R0, R00) or
Uij or U(Ro, Rj) or

UAB or U(r1, r2)

Interaction energy between two particles as a function

of the distance R (between them)

V Volume of the system

Vmi
or vi Molar volume of i

Vmi
Partial molar volume of i

W(A|A) Coupling work of A with its surroundings consisting

solely in particles A
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W(A|A +B) Coupling work of A with its surroundings consisting in a

mixture of A and B
W(A|B +B) Coupling work of A with its surroundings consisting

solely in particles B
W(B|B +A) Coupling work of B with its surroundings consisting in a

mixture of particles B and A
wik(r) or wik Potential of average force between the ions i and

k (Debye–H€uckel’s theory)
w Exchanged work between a system and its surroundings

X General symbol of a partial molal quantity

X Every thermodynamic quantity

Xm Molar quantity

Xi m Molar partial quantity

XN Configuration of an ensemble of N rigid and nonlinear

particles

Xi Configuration of a rigid and nonlinear particle

xi Molar fraction of i in solution

yi Molar fraction of i in gaseous phase

zi or z Statistical analogue of activity i
zi Electrical charge of ion i
ZN, Z

0
N, Z1, Z2,

etc.. . .. . .
Configurational partition function (configuration

integral)

Z01, Z02, Z10,
Z11,. . ., ZN1N2

Configuration integrals (mixture of two or several types

of particles)

α Lagrange multiplier

β ¼1/kT
β Lagrange multiplier

δij Kronecker’s function
δ2 Solute activity coefficient (McMillan–Mayer’s theory)
ε Absolute permittivity of the medium

εo Vacuum permittivity

εr Relative permittivity (dielectric constant)

εint, εtr, εv, εrot,
εelec

Internal, translational, vibrational, rotational, and

electronic energies of a molecule

μ General symbol of the chemical potential

μi Chemical potential of the species i
μi eq Chemical potential of species i at equilibrium
μi� Standard chemical potential of i μi�

α, μi�
β standard

chemical potentials of i in the phases α and β
μ�i or μ* Chemical potential in the reference state

μi�
g μi�

l μi�
s Standard chemical potentials of i in the gaseous, liquid,

and solid states

μ�i (T, p) Integration constant of the differential equation defining

an ideal solution (molar fractions scale, liquid phase)
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μi y*(T, p) Integration constant of the differential equation defining

an ideal solution (molar fractions scale in gaseous

phase)

μ Obsolete symbol of the ionic strength

ρr Charges density at the distance r of the central ion

i (Debye–H€uckel’s theory)
ρi Density number of i
ρ Total density number of a binary solution (ρ¼ ρA + ρB)
ρ Mass density of the solution

ρ(n) (RN) Generic molecular function of density of probability of

distribution of order (n) in the configuration RN

ρ(n) (RN) dRN Probability for a molecule (not necessary molecule 1) to

be in dR1,. . .. . . and a nnd molecule to be in dRn

ρ(2)(R0, R00) or
ρ(2)αβ(R0, R00)

Generic molecular function of distribution by pairs ρ(n)

RN
� �

mean molecular distribution function of the nnd

order in the grand ensemble

ρr Charges density at the point located at the distance r of
the central ion

ρAB(R0/R00), ρ(R0/R00) Conditional probability density of finding the particle

A in dR0 at the configuration R0 when another B is in R00

ρ(R0/R00) dR00 Conditional probability to find a particle in dR00 at R00

whereas another one is located in dR0 at R0

ρA
(1)(R0), ρB

(1)(R0)
or ρ(1)(R0), ρ(1)(R0)

Probability densities to find a particle A or B in R0 and
R00

γ General symbol of an activity coefficient

γr Rational activity coefficient

γx i Activity coefficient of i, molar fractions scale

(reference, dilute solution)

γm i Activity coefficient of i, molalities scale (reference,

dilute solution)

γc i Activity coefficient of i, molarities scale (reference,

dilute solution)

γSi Activity coefficient (reference state, pure compound)

γ2, γ20 Solute activity coefficient (McMillan–Mayer’s theory)
γ2� Limit value of γ2 (McMillan–Mayer’s theory)
γ Lagrange multiplier

θ Spherical coordinate

λ Solvent molar cryoscopic constant

λi Absolute activity of i
ξ Extent degree of a reaction

ξ Coupling parameter

ϕi Fugacity coefficient of a gas

ϕ Spherical coordinate

ϕ Thermodynamic potential
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ϕm Practical osmotic coefficient “scale of molalities”

ϕx Rational osmotic coefficient “scale of molar fractions”

ϕ Flux

ψ Spherical coordinate (nonrigid molecule)

ψ Wave function (Schr€odinger’s equation)
ψ Electrostatic potential

ψ r Mean electrostatic potential at the distance r of the

central ion (Debye–H€uckel’s theory)
ψcloud Electrostatic potential due to the ions distribution

around the central ion (Debye–H€uckel’s theory)
ψ ion Electrostatic potential due to the central ion itself

(Debye–H€uckel’s theory)
ψo Semi-grand partition function (McMillan–Mayer’s

theory)

ψ1 Semi-grand partition functions (McMillan–Mayer’s
theory)

ΨN2
Canonical partition function of a mixture of N1

molecules 1 and of N2 molecules 2. N1 is a changing

value, N2 is a constant

νi Stoichiometric coefficient of species i
ν Total number of a given ion given by an electrolyte

ν¼ ν+ + ν�
νt Total number of particles in the grand ensemble

ΔG Gibbs energy change

ΔG� Standard Gibbs energy change accompanying a process

ΔrG Gibbs energy change accompanying a chemical reaction

ΔrG
� Standard Gibbs energy change accompanying a

chemical reaction

Δμ(i�I) Chemical potential change due to the interactions

between the ion i and the other ions j
ΔH Enthalpy change

ΔH� Standard enthalpy change

ΔHfusion Enthalpy change accompanying the fusion of a solid

ΔHvap Molar latent heat of vaporization

ΔmixH Mixing enthalpy

Δ12 or ΔAB¼
GAA +GBB�2GAB

Parameter originating in the Kirkwood–Buff’s theory

permitting to introduce different concepts of the ideality

ΔSisol syst or ΔSU,V Entropy change in an isolated system

Δ or Δ (T, P, N ) Partition function of the isothermal–isobaric ensemble

Λ de Broglie’s thermal wavelength

Λ Equivalent conductance of an electrolyte

Λe Effective conductance of an ion

ΛO Limit equivalent conductance

Ξ or Ξ (T, V, μ) Grand canonical partition function
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κT or κ Isothermal compressibility coefficient

τ Volume

π, π0 Osmotic pressure

Γ Function semi-grand partition depending on the

variables N1, P, T, μ2 (Mc-Millan’s theory)
Ωi Vector specifying the orientation of a nonspherical

molecule i
Ω Number of possibilities to group a total of n1 + n2 + n3

. . .objects in groups of n1, n2, n3 ones
Ωt Number of possible quantic states of the grand ensemble

Ωt Degenerescence of a quanto-energetic state

χ Constant (Debye–H€uckel’s equation)
χ�1 Thickness of the ionic cloud (Debye–H€uckel’s theory)
ℵ Number of systems in an ensemble

ωi, ωj Degenerescence of the energetic levels εi, εi
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Introduction

This book is, before all, an attempt to demystify the notion of activity. Activity is

interesting and intriguing for chemists, physicists, and others and has been for more

than a century. Outside of the physical sciences, it remains often ignored, even

unknown.

The notion of activity originates from the application of the basic principles and

methods of thermodynamics to chemical processes. It proves to be particularly

useful when this application encounters some difficulties. Its introduction permitted

the study of the thermodynamic behavior of imperfect gases and nonideal solutions.

The particular behavior of systems in both cases is related to the occurrence ofmutual

non-negligible interactions between molecules of gases or of solutes. It is now well

established that handling the intimately linked concepts of activity and fugacity

permits one to neatly take into account these interactions. With their introduction,

the chemical potentials of imperfect gases and those of the components of nonideal

solutions can be expressed in a useful manner in order to study different processes,

despite the already mentioned difficulties. This is an important point. Change of the

chemical potential of a substance during a physical or a chemical process, indeed,

determines its result and its term, which is not a kinetic one. This is the reason why

chemical potentials must be expressed in the most realistic way possible.

The chemical potentials of perfect gases or of components of ideal solutions are

simply expressed with respect to their partial pressures or concentrations. This is no

longer possible with imperfect gases or with the components of nonideal solutions.

This is the origin of the introduction of the fugacity and activity concepts by G. N.

Lewis in 1907. Lewis’ thought process in order to overcome the problem may be

summarized by the following comment:

. . . partial pressures and concentrations do not permit the satisfactory thermodynamic

behavior of imperfect gases and of non-ideal solutions? No problem! Let us introduce

new physical quantities, even if they are virtual, in such a way that they allow the right

description of chemical potentials, with the same formalism as that used in cases of ideal

behaviors . . .
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Miraculously, this approach proved to be successful! It works well, at least under

well-defined experimental conditions.

But the purely arbitrary introduction of the fugacity and activity concepts

immediately calls for the following central recurrent question: what is the physical

meaning of these two quantities? It is the goal of this book to provide the reader

with an answer to this question.

A second question is also frequently asked: why introduce these quantities? Its

answer has already been given above by recalling the part played by the chemical

potential.

Finally, a somewhat neophyte practitioner of the activity quantity (e.g., one

engaged in their calculations) cannot fail to be troubled by the arbitrariness of the

definitions of the activities and by its repercussion upon the validity of the results

obtained by using them. This is also a very legitimate question.

Let us recall, at this point, that the concept of activity is also of utmost

importance from a practical standpoint. It is sufficient to take the two following

examples to be convinced. They are the study of equilibria between gases and the

definition of pH. It is an experimental fact that satisfactory conditions of synthesis

of some gaseous compounds are frequently extreme. Under such conditions, the

behaviors of the reactants and products are no longer ideal. As a result, if we

calculate the equilibrium constants by taking into account only the partial pressures,

the obtained values are inconsistent. In brief, equilibrium constants obtained in such

a way are no longer constant! Using fugacities and activities rectifies this failure.

Concerning the case of pH, let us recall that it is formally defined as being the

decadic cologarithm of the activity of the solvated proton in the medium. Thus, in

principle, pHmeters respond to the activity of the proton and not to its concentration.

Finally, the fact that the notion of activity is in common use in laboratories in

which the study of solutions is practiced must not be forgotten. The relative silence

which the concept of activity seems to be surrounded with is due certainly to its

mysterious character. But, it is also due to the constant success of its utilization.

This is the case of all great scientific theories.

It seems to us that all that we have recalled before may be classified as being

some good reasons to revisit the concept of activity.

This book is, before all, a book of chemical thermodynamics necessitated by the

concept to which it is devoted. Of course, it must be of interest for chemists and

physicists. However, the author thinks that it can also be of interest for all the

scientists engaged in the study of experimental sciences. They may be, for example,

biologists, who consider the evolution of biological systems, given the part played

by the changes in the Gibbs energy during these transformations. Let us recall, for

this purpose, that many biological systems evolve at constant temperature and

pressure. Hence, here stands the relevance of the notion of activity which permits

the obtaining of the changes in the chemical potentials in these conditions, which

are often far from being ideal.

Nevertheless, it is essentially centered on the chemistry of solutions. This must

not be a surprise because of the fact that it is in this area that the concept is the most
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used. However, the case of gases will be also considered for the sake of continuity

with that of liquids.

The book is divided into two main parts, each of them supplemented by some

appendices developing some particular points of physical or mathematical nature.

The first one is devoted to the concept of activity in classical thermodynamics.

At its beginning, there are some reviews of elementary thermodynamics directly

related to our purpose. They are followed by definitions of fugacity and activities

since there are several possible kinds of activities which may be adopted, which is

another troublesome point. The link between the fugacity and the activity of a

species is then established. It is at this point that the influence of the arbitrary

character of the definition is investigated. Some examples of determinations of

activities of electrolytes and nonelectrolytes are also given. The description of a

strategy of calculation of activities of electrolytes by a so-called simulation process

with the help of informatics concludes the first part.

The second one concerns activities from the point of view of statistical thermo-

dynamics. It begins by some review of generalities about statistical thermodynam-

ics. Developments from these fundamentals complete those given at the beginning

of the first volume, as could be expected, at the molecular level. It is in this part that

quantitative relations between activities and concentrations are set up. They are set

up with the help of the introduction of new functions such as molecular distribution

functions and, in particular, the radial distribution function. It is these quantitative

relations which give some physical meaning to the activity quantity. The two

theories leading to them are mentioned. They are that of Mc-Millan on one hand

and that of Kirkwood–Buff on the other hand.

The author has done his best to express the subject as concretely as possible.

This is not an easy task because statistical thermodynamics necessarily involves

elaborate and frequently cumbersome mathematical developments. This is the

reason he has deliberately mentioned some results without any demonstration, as

if they were postulates. This is not very satisfactory, but in the mind of the author,

the book is a first level approach to the subject.

Rennes, France Jean-Louis Burgot

November 2015
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Chapter 1

Thermodynamic Systems

Abstract Definitions and properties of some thermodynamic systems and of some

quantities in relation with the notion of activity are recalled in this chapter. The

properties of thermodynamic systems and of their states, and the notions of exten-

sive and intensive properties, of transformations, equilibria, state functions, and

reversible or irreversible processes are also mentioned. Especially, emphasis is

given on the different expressions of the composition of a solution and on the

pathways between them.

Keywords Composition (expressions) • Density number • Number of moles •

Molality • Molar fraction • System (state) • State (functions) • Properties

(extensive and intensive) • Process (reversible, quasi-static, irreversible) • System

(thermodynamic) • Transformation • Equilibrium (thermodynamic)

Here, we recall the definitions and the properties of some thermodynamic systems

and of some quantities in relation with our purpose.

1.1 Thermodynamic Systems

A system is a part of the space and its contents, delimited by a real or a fictitious

closed surface. Figure 1.1 shows an example of system composed by a solution and

its vapor and its container closed by a fictitious surface.

The surroundings of the system are all but the system. Said with some emphasis,

surroundings are the remaining of the universe. According to the choice of the

operator, the container may or may not be a part of the system. The essential point

for the following operations is not going against the initial arbitrary definition of the

system.

One distinguishes several kinds of systems:

– The closed system which can only exchange energy (heat and work) and not

matter with the surroundings.

– The open system which exchanges energy (heat and work) and matter with the

surroundings.

© Springer International Publishing Switzerland 2017
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– The isolated system which exchanges nothing with the surroundings, neither

energy nor matter. The definition of the isolated system inevitably rises the

metaphysical question: Is the universe an isolated system?

As already said, p in order to specify that is a “p in minuscules” to indicate that it

is a pressure in question and not a probability which must be written in majuscules.

1.2 State of a System

We are speaking here of thermodynamic state. The state of a thermodynamic

system is defined by the values of some parameters. Most often in chemistry, but

not obligatorily, the thermodynamic state of a system is defined by the values of

four measurable properties, called “state variables” which are:

– The composition

– The pressure p
– The volume V
– The temperature T

of the system. When the system is homogeneous, that is to say when it is

constituted by only one phase and when, moreover, the latter itself is composed

by only one species, its composition is fixed quite evidently. Then, its state only

depends on its volume, its pressure, and its temperature. Actually, the experience

shows that only two of these three variables V, p, and T are sufficient in order to fix

the state of the system since they are related to each other by a mathematical

equation called equation of state.
In unusual conditions of chemistry such as those resulting from the occurrence of

intense electric, magnetic, and gravitational fields to which the system is submitted

during a process, supplementary variables are necessary to define its state.

Fig. 1.1 An example of a thermodynamic system with its surroundings
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When the state variables are known, all the other physical properties of the

system such as its mass, density, viscosity, refraction index, and dielectric constant

are fixed.

1.3 Extensive and Intensive Properties

A property is said extensive when it is additive. This means that its value for the

whole system is equal to the sum of the values of the different parts constituting

it. In other words, the values of the extensive quantities are proportional to the

quantity of matter under consideration. As examples, let us mention the volume and

the mass.

An intensive property is not additive. It is not necessary to specify the quantity of

sample under study to which the property is referring. As examples, let us mention

the density, pressure, molar quantities, temperature, and “concentrations.”

1.4 Transformation

We call transformation any process which expresses itself by one or several

changes in, at least, one of the state variables of the system. This definition

encompasses the cycles at the end of which the system is returned to its initial state.

1.5 Thermodynamic Equilibrium

One considers that a system is at the thermodynamic equilibrium when the observ-

able values which characterize it do not change with time. The thermodynamic

equilibrium entails that mechanical, thermal, and chemical equilibria are simulta-

neously reached. That means that the temperature, pressure, and concentrations

must be identical in all the parts of the system.

1.6 State Functions

Let us consider a process taking place from an initial state up to a final state. It

entails changes in one or several thermodynamic quantities. The changes may

follow several pathways (Fig. 1.2).

When the change is independent of the pathway, the measured quantity is called

a thermodynamic state function. Several thermodynamic functions are state func-

tions. For example, let us mention the temperature, volume, etc. State functions
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exhibit very interesting mathematical properties, the consequences of which are

very important in thermodynamics (viz. total exact differential in Appendix A).

1.7 Reversible or Quasi-Static Processes and Irreversible
Processes

A process is said reversible or quasi-static when, at every moment of its course, the

system is at equilibrium. Said in other words, the process is reversible when it takes

place through a succession of equilibrium states. If it is not the case, the process is

said irreversible. A consequence of the reversibility is the fact that at every stage of

the process, the state equation of the system applies.

One may conceive that one transformation carried out very slowly is reversible.

Actually, the least infinitesimal departure from equilibrium, carried out reversibly,

gives sufficient time to the system to recover the (further) equilibrium state, before

the next departure occurs and so forth.

The concept of reversible process is extremely fruitful.

1.8 Different Expressions of the Composition of a Solution

The composition of a liquid solution expresses the relative proportions of the solute

and of the solvent in the solution. Here, we only mention the expressions which are

the most usual.

– The total number of particles of species i: Ni. It is a huge dimensionless number.

This is the reason why one rather uses the notion of number of moles or that of

quantity of molecules (viz. immediately under).

– The number of moles ni. The unity is the mole, symbol mol. It is the total number

of the species Ni related to the Avogadro number (NA or L ). The latter is

expressed in mol�1:

Fig. 1.2 Different

pathways of a change in a

thermodynamic quantity
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ni ¼ Ni=NA

– The density number Ci or ρi is the number of molecules per unit volume:

Ci ¼ Ni=V

It is expressed in m�3. Actually, this expression of the composition is mainly

used in statistical thermodynamics. ρi is the symbol most often used.

– Molarity, also called amount concentration (IUPAC), is expressed by symbol ci.
It is the number of moles of molecules related to the volume V of solution:

ci ¼ ni=V

In SI units, it is expressed in mol m�3. For practical reasons, one rather uses the

number of moles per dm3 or equivalently per liter. A solution 1 mol L�1 is often

called a molar solution and it is often written: solution 1 M. The symbol [i] is very

often encountered instead of ci. This unit is the most used in analytical chemistry.

– The molality is the number of moles of solute i per kilogram of pure solvent. Its

symbol is mi. In the SI system, it is expressed in mol kg�1. Let ni be the number

of moles of solute i dissolved in the mass mo of pure solvent. The molality mi is

mi ¼ ni=mo mass of pure solvent in kgð Þ

It is easy to show that, in a binary solution (where the index 1 points out the solvent

and index 2 the solute), the number of moles n2 of solute in the solution is given by
the expression

n2 ¼ n1M1=1000ð Þm2

whereM1 is the molar mass of the solvent and n1 its number of moles, m2 being the

molality of the solute.

The molality is overall used in physical chemistry. The great advantage it

exhibits with respect to the molarity lies in the fact that it is independent of the

temperature. For dilute aqueous solutions, the solute molality value differs very

little from that of its molarity, and the more diluted the solution is, the truer this

assertion is (viz. under).

– The molar fraction

The molar fraction is the ratio of the number of moles of the solute and of the

total number of moles in the solution. Its symbol is x. If, in a binary solution, the
number of moles of the solute is ni and that of solvent is no, the molar fractions of

the solute and of the solvent are, respectively,

1.8 Different Expressions of the Composition of a Solution 7



xi ¼ ni= no þ nið Þ and xo ¼ no = no þ nið Þ

Molar fractions are dimensionless quantities. They are very often used in

thermodynamics.

– Pathway from molar fractions to the molalities and molarities

The pathway from a scale of “concentration” to another one is not obvious. It

entails using the density of the solution.

Let us consider a solution composed of no moles of solvent, nA, nB, . . . moles of

solutes A, B, . . .. By definition the molar fraction of A is

xA ¼ nA=
X

ni with
X

ni ¼ no þ nA þ nB þ � � �

• The molar concentration of A is by definition

cA ¼ nA=V

where V is the total volume of the solution. Let us seek to express cA as a

function of xA. The mass of the solution
X

niMi (grams) is

X
niMi ¼ noMo þ nAMA þ nBMB þ � � �

where Mo, MA, MB, . . . are the molar masses (g mol�1) of the solvent and of the

solutes. The volume V of the solution is

V ¼
X

niMi=ρ1000

where ρ is the volumic mass (g cm�3) of the solution. The factor 1000 permits to

express the volume V in liters. Then, from the previous relations, one can

immediately deduce the following ones:

cA ¼ 1000ρnA=
X

niMi

and

cA ¼ 1000ρ
X

ni=
X

niMi

� �
xA

We notice that there is no proportionality between cA and xA since ∑n and ∑nM
do change with xA. However, proportionality appears when the solution is suffi-

ciently dilute. Under this condition, indeed
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X
ni � no

X
niMi � noMo

whence

cA ¼ 1000ρ=Moð ÞxA

where ρ1 is the volumic mass of the pure solvent since the solution is diluted. In

particular, for water at usual temperature,

ρ � 1

and

cA ¼ 1000=Moð ÞxA water—usual temperatureð Þ

• The molality of A is by definition

mA ¼ 1000nA=noMo

The factor 1000 is introduced since Mo is expressed in grams and since mA is

expressed in moles number per kilogram of solvent. By introducing the expres-

sion defining xA in the latter, we obtain

mA ¼
X

ni1000=noMo

� �
xA

Again, there is no proportionality between mA and xA. However, it appears in
diluted solution, since then

X
ni � no

whence

mA ¼ 1000=Moð ÞxA

The latest relation clearly shows that in diluted aqueous solutions

ρ ! 1 and
X

niMi ! noMo

mA � cA

1Do not confuse ρ (volumic mass here) with the density number.
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In brief, it is only in sufficiently dilute aqueous solutions that the numerical

values of the molality and of the molarity of a solute can be considered as being

equal and that they are proportional to the molar fraction.

Generally, for the same kind of solution in different conditions as those of

high dilution, just previously discussed above, the numerical values of the molar

fractions differ considerably from those of their molality or molarity. However,

numerical values of both latter ones remain close to each other.

In a gaseous mixture, the molar fraction is the most used unity. Its symbol is

then y. In a gas mixture in which ni and nj are the mole numbers of gases i and j,
the respective molar fractions are

yi ¼ ni = ni þ nj
� �

and yj ¼ nj= ni þ nj
� �
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Chapter 2

Gibbs and Helmholtz Energies

Abstract Some properties of the Gibbs and Helmholtz energies, two thermody-

namic functions of utmost importance in chemistry especially for the study of the

notion of activity, are recalled. The chemical potential of a species in a system,

which is the pivotal notion of the chemical reactivity (most of the time entailing the

notion of activity), is, indeed, a particular Gibbs energy. Hence, for example, the

changes in Gibbs and Helmholtz energies accompanying a process provide us with

an equilibrium criterion, at least in some experimental conditions.

In a first time, a brief recall of some properties of the entropy function is

mentioned in order to grasp the significance of these two functions. Later in the

chapter, for additional information, some notions concerning potential functions are

also given.

Keywords Chemical potential • Entropy enthalpy • Electrochemical cell •

Gibbs–Helmholtz relation • Gibbs energy • Helmholtz energy • Isolated system •

Potential functions • Surroundings

In this chapter, we recall some properties of two thermodynamic functions of

utmost importance in chemistry, especially for our purpose. They are the Gibbs
and Helmholtz energies. The chemical potential of a species in a system, which is

the pivotal notion of the chemical reactivity (most of the time entailing the notion of

activity), is, indeed, a particular Gibbs energy (viz. Chap. 5). Hence, for example,

the changes in Gibbs and Helmholtz energies accompanying a process provide us

with an equilibrium criterion, at least in some experimental conditions.

Grasping the significance of these two functions requires, in a first time, to

briefly recall some properties of the entropy function and, later, to summarize some

notions concerning the potential functions.
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2.1 Brief Recalls About the Second Principle and Entropy

2.1.1 General Points

It is a well-known fact that the knowledge of the changes in internal energy or

enthalpy accompanying a process does not permit to forecast their direction nor

their maximum possible extent (their “quantitativity”). The introduction of a new

function turned out to be necessary to answer these questions.

The study of cyclic processes (that is to say that kind of processes according to

which a system is brought back in its initial state after having been submitted to

varied transformations) shows that another thermodynamic function answers the

previous questions. It is the entropy function (symbol S, unity J K�1) (in Greek:

evolution). It is endowed with remarkable properties. It is a state function and it is

extensive.

The second principle of thermodynamics is based on the existence of this

function. It states that the entropy of an isolated system cannot do anything else

than to increase during a spontaneous transformation. This is quantified by the

expression

ΔSisolated syst > 0 spontaneous processð Þ

or equivalently

ΔSU,V > 0

(It is evident, indeed, that, according to the definition of an isolated system, the

internal energy remains constant since heat, mechanical work, and matter

exchanges with the surroundings cannot exist. The nonexistence of work exchange

requires that the volume V of the system is constant.)

For a reversible process, the second principle states that in an isolated state the

change in entropy is null, i.e.,

ΔSisolated syst ¼ 0 reversible processð Þ
or

ΔSU,V ¼ 0

The following relation

ΔS isolated syst � 0

is the mathematical counterpart of the most general statement of the second

principle of thermodynamics. The increase of the entropy of the studied system

plus the increase of entropy of its surroundings is called entropy creation.
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2.1.2 Studied System, Surroundings, and Isolated System

One of the difficulties of the understanding of the entropy concept comes from the

mix-up of the entropy of the studied system and of the entropy of the isolated

system containing the studied one.

In a general manner in thermodynamics, in order to study a process, one may

consider both the studied system and its surroundings with which it can, at first

sight, exchange work, heat, and matter. The studied system plus the surroundings

constitute an isolated system, but the studied system, solely, may not be isolated.
The important point is the following one: when a spontaneous process is

occurring in the studied system, the entropy of the isolated system (studied system

plus its surroundings) does obligatorily increase (except the case in which the

process is reversible) according to the second principle, whereas it is not at all

obligatory in case when it is not an isolated one. Hence, the studied system may

exhibit an increase or even a decrease of its entropy during this spontaneous

process.

Let us already mention that there exist other criteria of spontaneity than that of

entropy, in particular in the case of a process at constant temperature and pressure.

It is the point which will occupy us up to the end of this chapter.

2.2 Gibbs Energy

This function has been introduced by Gibbs.

The symbol of Gibbs energy is G. Its significance and use are related to an

isothermal and isobaric process. More precisely, the Gibbs energy is related to a

process in which the temperature and the pressure of the studied system remain

equal to the temperature and pressure of its surroundings (at least at the beginning

and at the end of the process provided, in this case, that during it, the surroundings

remain at the constant temperature Text and pressure pext):

p ¼ pext and T ¼ Text

The Gibbs energy is defined by the expression

G ¼ U þ pV � TS

where U, p, V, T, and S are, respectively, the internal energy, pressure, volume,

temperature, and entropy of the system. Its unity is the Joule J. Owing to its

definition, the Gibbs energy is a state function.

The interest of the introduction of this function is the following one: it turns out

that the Gibbs function may constitute a criterion of equilibrium and also of

evolution specially convenient for any process at constant pressure and temperature.

2.2 Gibbs Energy 13



Let us, for example, study the process with the aid of which we want to recover

useful work (every work other than that stemming from the change in the volume of

the system), starting from the system. (A good example is that of an electrochemical

cell producing electrical energy which is connected to an electrical motor. The cell

has the property to transform the chemical energy—coming from the two electro-

chemical reactions which simultaneously take place at each of both electrodes—to

electrical work.) It is demonstrated in an absolute general manner that the work

given to the surroundings is always weaker than the change in internal energy of the

system. In other words, the Gibbs energy of the system cannot do anything else than

to decrease when it supplies work to the surroundings, in any case when the process

is spontaneous. Hence, we can deduce that

ΔG � 0

or in differential writing

dG � 0

At equilibrium

dG ¼ 0

For a system at equilibrium at given pressure and temperature, the Gibbs energy is

at its minimum value.

Hence, with the introduction of the function of Gibbs energy, the criterion of

spontaneous evolution of a system, that is to say that of the change in the total

entropy (that of the system plus that of its surroundings—both forming an isolated

system), is transformed into another one which is the criterion of the decrease of the

Gibbs energy of the studied system alone. The latter criterion is evidently less heavy
than the former and is easier to handle because it does not require the knowledge of

the thermodynamic parameters defining the state of the surroundings. However, the

criterion of the Gibbs energy is by far less general than that of entropy because, for

its handling, it implies that the process evolves at constant temperature and

pressure.

In this sense, we shall see that the Gibbs energy plays the part of a potential

function (viz. paragraph 5).

The Gibbs energy function can be defined in another way. Of course, all its

definitions are equivalent. For example, taking into account the fact that the

enthalpy of a system is defined by the expression

H ¼ U þ pV

the Gibbs energy can also be written

G ¼ H � TS
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or

dG ¼ dH � TdS� SdT ð2:1Þ

2.3 Some Properties of the Gibbs Energy Function

2.3.1 Changes in the Gibbs Energy with the Pressure
and the Temperature

Let us consider the relation which expresses the enthalpy:

H ¼ qþ wþ pV

where q and w are the heat and the work exchanged with the surroundings during

the process. For an infinitesimal transformation,

dH ¼ dqþ dW þ pdV þ Vdp ð2:2Þ

If this one is reversible and isothermal

dq ¼ dqrev

and after the second principle

dq ¼ TdS

If, finally, the sole work done by the system is that of expansion as it is usually the

case in chemistry

dw ¼ �pdV

the infinitesimal change in the enthalpy of the system becomes

dH ¼ TdS� pdV þ pdV þ Vdp

or

dH ¼ TdSþ Vdp

By comparison with relation (2.1) which is a definition of the Gibbs energy
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dG ¼ dH � TdS� SdT

we find

dG ¼ Vdp� SdT ð2:3Þ

Now, let us write the total differential of G, which is a state function (viz. Appendix
A):

dG ¼ ∂G=∂Tð ÞPdT þ ∂G=∂pð ÞT dp

We immediately deduce that

∂G=∂Tð ÞP ¼ �S and ð2:4Þ

∂G=∂pð ÞT ¼ V ð2:5Þ

These two equations give the variations of the Gibbs energy with the temperature

and pressure.

In general, the Gibbs energy depends not only on the temperature and the

pressure but also on the quantities of substance (viz. Chap. 4).

2.3.2 Gibbs–Helmholtz Equation

The Gibbs–Helmholtz equation permits, as we shall see, to know the change in an

activity value with the temperature. It is obtained from the general definition of the

Gibbs energy function:

G ¼ H � TS

Substituting the entropy by its expression (2.4) into it, we obtain

G ¼ H þ T ∂G=∂Tð ÞP ð2:6Þ

It can bemodified into another one.We obtain an expression of the variation ofGwith

the temperature T by the division of (2.6) by the factor T2. The relation found is

G=T2 ¼ H=T2 þ 1=T ∂G=∂Tð ÞP
It is easy to check the following relation by a simple calculation of derivatives:
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∂ G=Tð Þ=∂T½ �P ¼ T ∂G=∂Tð Þ � G½ �=T2

Finally,

∂ G=Tð Þ=∂T½ �P ¼ � H=T2 ð2:7Þ

It is interesting to notice that relation (2.3) is valid, whatever the reversibility of the

process is, since all the quantities which are in it are state quantities. It is the same

for those which follow it. The sole existing constraint in order that all these

considerations are valid is that the system must be closed.

2.4 Helmholtz Energy

It has been introduced by Helmholtz.

It is slightly less interesting in the realm of chemistry than the Gibbs energy

is. The developments to which it leads are analogous to those stemming from the

Gibbs energy.

It applies to a process in which the temperature T of the system is equal to that of

the surroundings Text. and during which its volume is constant. The Helmholtz

energy A is defined by the relation

A ¼ U � TS

It is a state function. It is extensive. It is expressed in joules.

The Helmholtz energy A is related to the Gibbs energy G by the expression

G ¼ A þ pV

Following the same kind of reasoning as that developed in the case of Gibbs energy,

it is found that the physical significance of the Helmholtz energy is the following

one. The value of its change is the maximal work that can produce the system in

reversible and monothermal conditions. At equilibrium and at constant tempera-

ture, the Helmholtz energy function is minimal.

The difference between the Helmholtz and Gibbs energies lies in the fact that in

the first case, the maximal work is equal to the sum of the useful work and of that of

expansion whereas in the case of the Gibbs energy its decrease is only equal, in

reversible conditions, to the useful work.
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2.5 Gibbs and Helmholtz Energies, Potential Functions:
Thermodynamic Potentials

We have seen that the Gibbs and Helmholtz functions give important indications on

the possibilities of transformations of a system, respectively, at constant tempera-

ture and pressure and at constant temperature and volume. One knows that during a

spontaneous process, these functions evolve in such a manner that their values tend

toward a minimal value. By such a property, their behavior is that of potential

functions, called thermodynamic potentials.

2.5.1 Potential Energy and Evolution of a Mechanical
System

In order to make explicit this notion of potential function, let us recall the relation

linking the potential energy and the evolution of a mechanical system.

Let us consider a material point M which moves freely in a force field deriving

from a potential energy E(x). A representative example is that of the gravitational

field. One knows that if we initially abandon M at the point I (initial) of vertical

coordinate h(I) with a null speed, then it spontaneously tends to go to the F point

(F: final) of minimal potential (viz. Fig. 2.1).

During its evolution, the body is getting a kinetic energy 1/2mv2. The constancy
of the mechanical energy is written for each intermediate point of the path:

Mgh Ið Þ ¼ Mgh þ 1=2 mv2

where h is the coordinate of the intermediate point. The kinetic energy being

obligatorily positive, we immediately can deduce that during this spontaneous

evolution, the term potential energy can only decrease. Its minimum Mgh(F)
corresponds to the state of stable equilibrium. In I, the state of equilibrium was

unstable.

Fig. 2.1 Potential energy

E ¼ Mgh and the evolution

of a mechanical system
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2.5.2 Entropy and Thermodynamic Potential

Let us consider an isolated thermodynamic system evolving toward a final state

(F) starting from the initial one (I). According to the second principle of thermo-

dynamics, the system evolves in such a manner that its entropy is increasing:

S Fð Þ � S Ið Þ

When the entropy is already maximal in the initial state, it cannot increase and,

moreover, since it cannot, in any case, decrease, it remains constant. Then, the

system is at equilibrium. Let us, now, consider the function—S. One immediately

conceives that, during the same process, it cannot do anything else than to decrease

in order, finally, to get its minimal value at equilibrium. The function—S plays the

same part as that played by the potential energy in the mechanical system above. It

is a potential function called, since we are considering a thermodynamic system, a

thermodynamic potential. The function—S, called negentropy, is not easy to handle
for several reasons. The first one is probably due to the fact that there exist very few

true isolated systems; this is the reason why other thermodynamic potentials have

been conceived.

2.5.3 Generalization: Definition of a Thermodynamic
Potential

One calls thermodynamic potential of a system submitted to some constraints a

function Φ depending on the state parameters of the system and, possibly, on the

external constraints such as, during the evolution of the system, it tends to take an

extremal value (minimal or maximal) at equilibrium. The nature of the thermody-

namic potential functions depends on the constraints imposed to the system,

prevailing on the thermodynamic quantities extensive or intensive.

It is evident that, according to these considerations, the Gibbs and Helmholtz

energy functions are thermodynamic potentials, at least for the conditions for which

they have been established. The constraints imposed to the system are these

conditions. We will again briefly evoke this notion of potential function when we

shall mention the genesis of the notion of activity.
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Chapter 3

Escaping Tendency

Abstract The “escaping tendency,” notion due to the American scientist

G.N. Lewis, is the tendency of a substance to leave its thermodynamic state by

either a physical or a chemical process. Firstly, the content of the chapter shows the

analogy of the equilibrium distribution of the matter with the thermal one which

may exist between two bodies. Secondly, it also shows that the escaping tendency is

closely related to the decrease of the Gibbs energy of the studied system which

commands the spontaneous process at constant pressure and temperature.

Actually, in order to study the course of a chemical reaction from the thermo-

dynamic standpoint, it is convenient to relate the criterion of the decrease of the

Gibbs energy (and of its cancelling at equilibrium) to the chemical properties of the

reactants and products of the studied reaction. In the case of ideal gases, it is shown

that it is their molal Gibbs energy which is the essential property in the domain. The

part played by the molal Gibbs energy in the case of ideal gases induces the

introduction of the chemical potential in order to play this part in every kind of

system. In addition, the chemical potential is nothing but a particular molal Gibbs

energy. Actually, it will be further mentioned in the book that, in turn, the chemical

potential induces the introduction of the notions of the auxiliary functions that are

the fugacity and the activity for the study of nonideal systems.

Keywords Standard Gibbs energy • Escaping tendency • Fugacity • Ideal gas •

Molal Gibbs energy • Chemical potential

The expression “escaping tendency” is due to G.N. Lewis. It is the tendency of a

substance to leave its thermodynamic state by either a physical or a chemical

process. Quite evidently, it must be closely related to the decrease of the Gibbs

energy of the studied system which, as we have seen, commands the spontaneous

process at constant pressure and temperature.

Actually, in order to study the course of a chemical reaction from the thermo-

dynamic standpoint, it is convenient to relate the criterion of the decrease of the

Gibbs energy (and of its cancelling at equilibrium) to the chemical properties of the

reactants and products of the studied reaction. In the case of ideal gases, we shall

see that their molal Gibbs energy is the essential property in the domain. The part

played by the molal Gibbs energy in the case of ideal gases induces the introduction

of the chemical potential in order to play this part in every kind of system. In
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addition, it will be seen later that the chemical potential is nothing but a particular

molal Gibbs energy. Later on, we shall see that, in turn, the chemical potential

induces the introduction of the notions of the auxiliary functions that are the

fugacity and the activity for the study of nonideal systems.

3.1 Analogy of the Equilibrium Distribution of the Matter
with the Thermal One Between Two Bodies

We know that to make sure that a system is in thermal equilibrium, its temperature

must be the same in every point. We also know that every body with a temperature

higher than that of another tends to leave its heat. This is not the case of the second

body. The tendency to leave heat of the first body is higher than that of the

second one.

By analogy with this case, one may conceive that a substance of a system may

exhibit some tendency to modify its thermodynamic state by changing its moles

number. Lewis has introduced and also kept the name “escaping tendency” to this

tendency.

The material equilibrium condition for this substance, that is to say the equilib-

rium of the distribution of its number of moles, is such that its escaping tendency

might be the same at every point of the system.

Hence, as a first example, we must consider the system of water and ice. The

escaping tendency at the fusion point of both phases is the same. At lower

temperature, we may consider that the escaping tendency of water is larger than

that of ice, since it tends to disappear. It, actually, spontaneously transforms into

ice. The inverse is true for the temperatures which are higher than that of the fusion

point.

A second example is provided by the system made up by a solute in a solvent, as

for example a solution of sodium chloride in water. The escaping tendency of

sodium chloride may be either higher or lower than that of solid sodium chloride

(or equal) depending on whether the solution is saturated or not. In the first case, the

sodium chloride spontaneously crystallizes. Just at the saturation point, there exists

the equilibrium. In the last case, the solid sodium chloride is endowed with a larger

escaping tendency than that it possesses in solution. Hence, it disappears by

solubilization.

3.2 The Molal Gibbs Energy of a Substance as a Measure
of Its Escaping Tendency

Let us again consider the example consisting of water and ice at 0 �C and under

1 atm. Owing to the fact that the system is maintained at constant pressure and

temperature, it is judicious to reason by considering the Gibbs energies of both
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phases. The status of thermodynamic potential conferred to this function permits to

rationalize the evolution of the process.

Hence, let us consider the transformation

H2O solid, 1 atm:ð Þ ! H2O liq, 1 atm:ð Þ

or its inverse. Let ΔG be the change in Gibbs energy accompanying it:

ΔG ¼ Gliq � Gsolid

At equilibrium, at the melting point, under the pressure of 1 atm

Gliq ¼ Gsolid

At a temperature higher than the previous one, the transformation follows the

direction already indicated since Gice > Gliq. At a lower temperature, it is the

inverse Gliq > Gice

� �
.

Hence, the molal Gibbs energy may be used to quantify the escaping tendency of

a substance. We must remark that the molal Gibbs energy function is an intensive

quantity since it is related to one mole of substance. As a result, it is independent of

the number of moles of substance. Of course, this example is particularly simple

since the system only contains one substance. Only the temperature, pressure, and

number of moles of the substance play a part as variables permitting to reach the

equilibrium.

It remains to relate the molal Gibbs energy of a substance to the thermodynamic

parameters of the system. This is done through the introduction of auxiliary

functions such as the fugacity and the activity. Later, in turn, relating these last

functions to some molecular parameters will be considered. The link will be

obtained through application of statistical thermodynamics.

3.3 Change of Molal Gibbs Energy of a Perfect Gas
with Pressure

In this paragraph, we give a relation expressing the Gibbs energy of a perfect gas as

a function of the pressure. As we shall see later (viz. Chaps. 7 and 9) this relation is

particularly important since it can be considered as a limit of the expression relating

the chemical potential of a substance in a given thermodynamic state to its activity

or to its fugacity.

Let us recall that a perfect gas can be defined by the fact that it obeys an equation

called state equation which is

pV ¼ nRT
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where p and T are the pressure and the temperature of the gas, n its number of

moles, and V the volume of the container into which it is. R is the (molar) gas

constant. (Some complements concerning perfect gases are given in Chaps. 26 and

27.) By definition, the state equation of a system is the relation which occurs

between the different state variables thermodynamically defining the system at

equilibrium.

Let us study the infinitesimal isothermal expansion of a pure perfect gas. We

know that (viz. Chap. 2)

dG ¼ Vdp� SdT

At constant temperature

dG ¼ Vdp

whence from the state equation

dG ¼ nRT dp=p

From the change in pressure from pA to pB, the change in the Gibbs energy ΔG
accompanying the process is

ΔG ¼ GB � GA

ΔG ¼ nRT

Z PB

PA

dp=p

ΔG ¼ nRT ln pB=pAð Þ

We notice that the Gibbs energy of a perfect gas depends on the pressure.

(In passing, let us recall that this is not the case of its internal energy nor of its

enthalpy.)

Usually, the Gibbs energy of a gas is related to that G� it possesses in a state

called the “standard state” which is arbitrarily chosen and in which its pressure is p�

and also in which its temperature is arbitrarily chosen to be T. (The imposition of a

given temperature does not intervene in the definition of a standard state.) Its molal

Gibbs energy G is then given by the relation

G ¼ G� þ RT lnp=p� ð3:1Þ

When the pressure chosen for the standard state is p� ¼ 1 atm, its molal Gibbs

energy is then given by

G ¼ G� þ RT ln patm=1atmð Þ
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The index atm is used here to recall that p and 1 are physical quantities endowed

with a dimension. The writing often encountered in the literature when p� ¼ 1 atm,

i.e.,

G ¼ G� þ RT lnp

is fallacious. It appears, indeed at first sight, owing to the properties of the function

logarithm, that the pressure is a dimensionless quantity!

3.4 Gibbs Energy Change Accompanying a Reaction
Between Perfect Gases

Let us consider the following chemical reaction going to completion:

νMM þ νLL ! νNN þ νPP

where νL, νM, νN, and νP are the stoichiometric coefficients. Our goal is to calculate

the maximal work which can be done by this system at constant temperature and

pressure. This calculation may be carried out by taking into account the properties

of the Gibbs energy function (viz. Chap. 2). The important point, in the occurrence,

is that the maximal work available is equal (in absolute values) to the change in the

Gibbs energy. Let us define the system as being constituted by the four gases. The

change in the Gibbs energy ΔrGsyst accompanying the above total transformation is

ΔrGsyst ¼ νNGN þ νPGP � νLGL � νMGM ð3:2Þ

whereGL andGM are the molal Gibbs energies of L andM in the initial state andGN

and GP those of N and P in the final state. It is very important to notice at this point
of the reasoning that relation (3.2) taking into account the molal Gibbs energies
can be used, here, because the process concerns perfect gases which in mixtures
exhibit the same behavior as that they have when they are alone. It is this property
which authorizes the handling, in the present case, of the molar Gibbs energies and
expression of them by relation (3.1).

By replacing Gi by their expressions (3.1), one obtains

ΔrGsyst ¼ ΔG� � RT ln pN
�νNpP

�νP=pL
�νLpM

�νM� �þRT ln pN
νNpP

νP=pM
νMpL

νL
� �

ð3:3Þ

or

ΔrG
� ¼ νNGN

� þ νPGP
� � νLGL

� � νMGM
�

ΔrG
� is evidently a constant at a given temperature.
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Hence the change in Gibbs energy accompanying the reaction (3.2) where the

perfect gases L and M, initially at pressures pM and pL, are transformed at constant

temperature and pressure into the perfect gases N and P at pressures pN and pP, is
given by the expression (3.3). We shall see (viz. Chap. 7) that the pressures pM, pL
and pN, pP are, in the occurrence, called partial pressures. In these conditions,

ΔrGsyst is the maximal work available from the chemical energy supplied by the

gases L and M. This process may be actually realized with a convenient galvanic

cell working in the conditions of reversibility.

Unfortunately, in the case of reactions between non-perfect gases and also in the

case of reactions between components in solutions, the problem of the calculation

of the Gibbs energy changes accompanying the chemical reaction is not so simple

to solve, as we shall see in the following chapters.
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Chapter 4

Partial Molar Quantities

Abstract This chapter is concerned with the very essential notion of partial molar

quantities in chemical thermodynamics. During the determination of changes in

thermodynamic quantities accompanying a chemical reaction, especially the Gibbs

energy one, the question of the physical interpretation of the measured change is

frequently asked. Actually, it is not the case when the studied reaction is one

between perfect gases or when each of the reactants or products constitutes an

independent phase. But, it is set up as soon as intervene species in solutions as

reactants or products. The problem is overcome through the handling of partial

molar quantities among which the chemical potential stands. This is exemplified by

considering the reaction of dihydrogen gas with solid silver chloride to give

hydrochloric acid and solid silver. Definitions, properties, and handling of the

partial molar quantities are given. The chapter begins by the consideration of closed

and open systems.

Keywords Molal quantities • Partial molal quantities • Natural thermodynamic

variables • Systems (closed and open) • Electrochemical cell

During the determination of changes in thermodynamic quantities accompanying a

chemical reaction, especially the Gibbs energy one, the question of the physical

interpretation of the measured change is frequently asked. Actually, it is not the

case when the studied reaction is one between perfect gases or when each of the

reactants or products constitutes an independent phase. But, it is set up as soon as

intervene species in solutions as reactants or products. The problem is overcome

through the handling of partial molar quantities among which the chemical poten-

tial stands (viz. Chap. 5).

4.1 Closed and Open Systems

Closed systems are those the composition of which is fixed, i.e., those of which the

substance quantities are constant. There exists no increase or decrease of matter in

the system nor the system can exchange it with the surroundings. In these
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conditions, all the relations previously recalled can be applied without any excep-

tion. For example, it is the case of the relation

dG ¼ �SdT þ Vdp

which entails a mechanical work as the only one which is developed (viz. Chap. 2).

Open systems are systems into which matter can enter or go out. That is to say,

they are systems in which the matter quantity may vary during the course of the

transformation. Then, the previous formula is no longer convenient. For example, it

is the case of the relation above. That which must be used in the same occurrence is

dG ¼ �SdT þ Vdpþ
X

i

∂G=∂nið ÞT,P, nj dni ð4:1Þ

The new last terms on the right-hand side take into account the exchanges of matter

with the surroundings through the differentials dni which express the changes in the
number of moles of the components i. The partial derivatives which appear are

examples of partial molar quantities that are studied now.

Let us note in passing that when two phases are in contact, each one constitutes

an open system whereas, when both are maintained in the same container which

precludes any matter exchange with the surroundings, the whole system (consti-

tuted by both phases) is closed.

4.2 On the Necessity to Introduce the Partial Molar
Quantities When the Species Are in Solution

In order to set up the problem, let us consider the chemical reaction

Ag sð Þ þ 1=2Cl2 gð Þ ! AgCl sð Þ

where (s) and (g) mean solid and gaseous states. Let us focalize on the volume

change accompanying the reaction. Let us define the system as being constituted by

the chemical substances and the container. The whole volume is given by the

relation

V ¼ VAg þ VCl2 þ VAgCl þ Cte

where Cte is the volume of the container. Let us consider the volume change ∂V/∂n
of the system per mole of consumed silver, n being the number of moles of silver.

We can write

∂V=∂n ¼ ∂VAg=∂nþ ∂VCl2=∂nþ ∂VAgCl=∂n
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Among the partial derivatives of the right-hand member, none exhibits any diffi-

culty of interpretation. Each represents the molar volume of the substance, that is to

say its molal volume when it is pure. This is the case, here, because each component

constitutes a pure phase. For each phase, indeed, one can write

V ¼ nv •

where v• is the molal volume of the pure compound. It is evident that

∂V=∂n ¼ v •

As a result, for that system

∂V=∂n ¼ v •
AgCl � v •

Ag � 1=2v •
Cl2

∂V=∂n ¼ Δv

with

Δv ¼ v •
AgCl � v •

Ag � ½v •
Cl2

Hence, there is no problem of meaning for this example.

– Now, let us consider the following reaction:

1=2H2 gð Þ þ AgCl sð Þ ! HCl mð Þ þ Ag sð Þ

where m is the molality of the hydrochloric acid being in solution. Actually, this

reaction is the global relation of the following electrochemical cell:

H2

��HCl mð Þ��AgCl��Ag

– As a concrete example of such a study, it may be interesting to know the effect of

the pressure on the electromotive force of this cell, that is to say actually, on the

change in Gibbs energy accompanying the reaction cell. In order to determine it,

we use the general expression (viz. Chap. 2)

∂G=∂pð ÞT ¼ V

i.e., for the reaction cell

∂ΔG=∂pð ÞT ¼ ΔV

The solution of the problem imposes to know the volume V of the system and its

change. It is given by the relation
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V ¼ VH2
þ VAgCl þ VHCl soln þ VAg þ Cte

The volume change per mole of consumed silver ∂V/∂n is

∂V=∂n ¼ ∂VH2
=∂nþ ∂VAgCl=∂nþ ∂VHClsoln=∂nþ ∂VAg=∂n

The true meaning of the term ∂VHClsoln=∂n remains to be clarified. Here, is the

problem.

Let us symbolize it by vHCl :

vHCl � ∂VHClsoln=∂n

As we shall see it in the next paragraph, it is the partial molal volume vHCl of

hydrochloric acid at the molality m. The change Δv in the volume of the system

when one mole of silver has disappeared is given by the relation

Δv ¼ vAg þ vHCl � 1=2vH2
� vAgCl

(The symbol v, in this last relation, appears in place of V in order to notice the

reader of the fact that the volumes which are in question are the molar ones,

partial or not.)

4.3 Definition of Partial Molar Quantities

According to what is previously mentioned, it is evident that we must express the

relations between the thermodynamic functions X and the variables playing a part in

their values in a closed system (such as the temperature, pressure, volume) by using

a supplementary type of variable, i.e., the number of moles of every component.

Numerous thermodynamic experiments show that the “great” thermodynamic

functions U, G, H, and A do possess the variables given immediately under, as

natural ones. Formally, we can, hence, formulate the following relations:

U ¼ U S,V, n1, n2, . . . nkð Þ
G ¼ G T, p, n1, n2, . . . nkð Þ
H ¼ H S, p, n1, n2, . . . nkð Þ

A ¼ A T,V, n1, n2, . . . nkð Þ relations ð4:2Þ

in which n1, n2, . . . nk are the number of moles of the components 1, 2, . . . k. n1,
n2, . . . nk are the supplementary variables evoked.

From the mathematical standpoint, the partial molal quantity corresponding toX
is defined as being its partial derivative with respect to the number of moles ni of the
compound i, that is to say
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X ¼ ∂X=∂nið Þother variables ð4:3Þ

The partial molal quantities are symbolized by the same symbols as usually but they

are highlighted. Their unity, of course, is that of the considered quantity. The

introduction of the partial molar quantities permits to write thermodynamic quan-

tities as being function of the different variables which command their values, in

particular in the case of open systems.

Hence, for example, the total differential of the Gibbs energy of an open system

is written as

dG ¼ ∂G=∂Tð ÞP,n dT þ ∂G=∂pð ÞT,ndpþ ∂G=∂n1ð ÞP,T,n2, ...dn1
þ ∂G=∂n2ð ÞP,T,n1, ...dn2 þ � � � ð4:4Þ

An important point is that the variables—see relations (4.2)—S, V and others, . . .;
characterizing U, the variables T, p and so f., characterizing G a.s.f. . .are not

associated with them, randomly. They are said to be natural. Hence, T and V are

the natural variables of the Helmholtz energy A. From theoretical and practical

viewpoints, this means that when A is known either experimentally or even theo-

retically through the partition functions (viz. Chaps. 22 and 24) as a function of

T and V, all the other thermodynamic quantities are accessible (entropy, pressure,

chemical potentials—see the following chapter). It is the same with the other

functions U, G, and H mentioned in relations (4.2).

Some authors consider the relations (4.2) as being postulates.

4.4 Physical Meaning of the Partial Molal Quantities

The physical meaning of a partial molal quantity may be grasped by considering the

example of the volume of a solution.

Let us consider a binary solution in order to simplify the reasoning and let the

components 1 and 2 be the solvent and the solute. (However, it must be noticed that

for the following theory the fact that one of the components is the solvent and the

other the solute does not confer them any particular part to play.) Their initial

numbers of moles are, respectively, n1 and n2. The initial total volume of the

solution is Vo. Let us successively add some quantities of solute to the solution.

The total volume V changes. Let us draw the diagram V as a function of n2
(Fig. 4.1).

The partial molar volume v2 is defined by

v2 ¼ ∂V=∂n2ð Þn1,n02
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It is nothing different than the slope of the curve V/n2, for the values n1 and n
0
2

considered. The immediate conclusion which can be drawn from this fact is that the

partial molecular volume v2 (as all the other partial quantities intervening in the

system, in this case v1 ) does vary with the “instantaneous” composition of the

solution. The above diagram, indeed, clearly shows that the slope varies for each

composition. However, in rare cases, the slope does not change with the composi-

tion (viz. below: molar quantities).

The same considerations can be addressed to any other quantity. In brief, one can

conclude that a partial molal quantity is equal to its increase or its decrease for the

whole solutionwhen onemole of solute is added to a very large volume of solution in

order that the different concentrations do not noticeably change during the addition.

4.5 Molal Quantities and Partial Molal Quantities

It may happen that the measured thermodynamic quantity is in linear relation with

the number of moles of a component. Hence, for example, it may occur that it is the

case for the volume of a binary solution, that is to say, the total volume V of the

solution linearly varies with the number n2 of moles of solute (Fig. 4.1). The

definition of the partial molal volume v2 , of course, immediately shows that it is

the molal volume vm(2) of the pure solute 2:

v2 ¼ vm 2ð Þ

Remark: Concerning, now, the chemical potential (see the following chapter), this

term is generally used when a mixture is under consideration. When it is the case of

a pure substance to be under consideration, it is the term molal Gibbs energy which

is used.

Fig. 4.1 Total volume of

the solution V as a function

of the number n2 of moles of

solute added
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4.6 Fundamental Equation of the Molal Partial Quantities

Let X be an extensive property of a system constituted by a solution (for example, it

can be its volume, its calorific capacity, its internal energy). By definition of an

extensive property, it is a function of the number of moles of each component. Let

us suppose (for the sake of simplification) that the natural variables are maintained

constant (for example, in the case of the Gibbs energy, the temperature and pressure

are maintained constant). As a consequence, the relation (4.4) applied to X by

taking into account the properties of total differentials (viz. Appendix A) becomes

dX ¼ ∂X=∂n1ð Þdn1 þ ∂X=∂n2ð Þdn2 þ � � �

(the indexes being missed in order to lighten the writing). The total differential may

also be written as

dX ¼ X1dn1 þ X2dn2 þ � � �

The partial molal quantities X1, X2, . . . are intensive ones since they are related to a
well-defined quantity of matter (one mole). Because of this fact, they do not depend

on the total quantity of each component but only on the relative composition of each

one. As a result, if to a solution containing several components with a given relative

composition is added an identical solution of the same composition, the partial

molal quantitiesXi do not change whereas the numbers of moles n1, n2, . . . vary. The
consequence is that the total differential dX can be immediately integrated and we

can write

X ¼ n1X1 þ n2X2 þ � � � ð4:5Þ

(From the strict mathematical viewpoint, obtaining the equation (4.5) is possible

because the function X is homogeneous of order 1—see Appendix A.) This relation

is very important.

It is sufficient to consider the case in which an extensive property of a solution is

in linear relation with the number of moles of each of the components to be

convinced by its interest. In these conditions, we have seen above that the partial

molal quantities are constant and, moreover, are equal to the molal properties of

pure components, that is to say

X ¼ n1Xm 1ð Þ þ n2Xm 2ð Þ þ � � � ð4:6Þ

The comparison of relations (4.5) and (4.6) shows that partial molal quantities play

the part of the molal quantities of pure compounds and that they can be handled as

the latest. However, there exists a double difference between both kinds of

quantities:
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– On the one hand, the partial molal quantities are not constant whereas the molal

ones are.

– On the other, the partial molal quantities may be positive or negative. This

property is inconceivable with the molal ones.

4.7 Thermodynamic Relations Between Partial Molar
Quantities

The relations between the thermodynamic molal partial quantities are the same as

those which exist between molal quantities. For example, the validity of the

following relation can be demonstrated:

G ¼ H � TS

We limit ourselves to mention that the demonstration is carried out by application

of the Schwartz’s theorem (viz. Appendix A). A particularly interesting example is

the obtaining of the relation which expresses the influence of the temperature on the

chemical potential (viz. Chap. 5).

4.8 Experimental Determination of Partial Molal
Quantities

The partial molal quantities are experimentally accessible:

– Either through graphical methods based on the study of the curves’ extensive
quantity/number of moles of the component (or its logarithm)

– Or analytically by starting from apparent molal quantities

In some cases, it is the absolute value of the partial molal quantity which is

accessible. Let us mention that this is the case of partial molal volumes for example.

In other cases, it is not possible. Only their relative values are accessible. It is the

case, for examples, of the partial molal enthalpy and partial molal Gibbs energy.

The reason lies simply in the fact that the molal quantities of pure compounds

cannot, themselves, be known in absolute values.
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Chapter 5

Chemical Potential or Partial Molal Gibbs
Energy

Abstract The chapter concerns the definition of the chemical potential as being a

partial molar Gibbs energy. It also mentions its physical meaning, some of its

properties with, especially, its change accompanying a chemical transformation.

The chemical potential is, by far for our purpose, the most important partial molal

quantity. As we shall see it later, the value of the chemical potential of a species is,

indeed, very often expressed in terms of the auxiliary functions that are the fugacity

and the activity. The notion of chemical potential, notably, permits the study of the

change in the Gibbs energy accompanying a chemical process and is the thermo-

dynamic basis of the so-called mass action law.

Keywords Gibbs’ relation • Mass action law • Partial molal Gibbs energy •

Electromotive force

The chemical potential is by far, for our purpose, the most important partial molal

quantity. As we shall see it later, the value of the chemical potential of a species is,

indeed, very often expressed in terms of the auxiliary functions that are the fugacity

and the activity. Actually, the chemical potential appears to be of utmost impor-

tance as soon as one takes into account the fact that it has the significance of a Gibbs

energy and as soon as one remembers that a Gibbs energy change may be a very

interesting criterion of spontaneity of a process.

The notion of chemical potential, notably, permits the study of the change in the

Gibbs energy accompanying a chemical process and is the thermodynamic basis of

the so-called mass action law. From the general standpoint, let us anticipate what is

following by saying that the mass action law must be expressed in terms of

activities.

5.1 Definitions of the Chemical Potential

– The chemical potential μk of a compound k in a given state (temperature T,
pressure p, numbers of moles of the different species making up the system ni) is
expressed by the following mathematical relation:
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μk ¼ ∂G=∂nkð ÞT,P,ni6¼nk ð5:1Þ

Quite evidently, it is the partial molal Gibbs energyGk defined by (viz. Chap. 4)

Gk ¼ ∂G=∂nkð ÞT,P,ni 6¼nk ð5:2Þ

In this case, G is the Gibbs energy of the whole solution considered as being the

system (Fig. 5.1). According to what was mentioned before (viz. Chap. 4), one

can write

G ¼ n1G1 þ nkGk

Hence, both terms are synonymous and the unity of the chemical potential in use

is J mol�1.

– Let us also recall other definitions of the chemical potential based on the

following relations:

μk ¼ ∂U=∂nkð ÞS,V, ni6¼nk μk ¼ ∂H=∂nkð ÞS,P, ni6¼nk μk ¼ ∂A=∂nkð ÞT,V, ni 6¼nk

Hence, the chemical potential turns to be, also, either a molal partial internal

energy, a molal partial enthalpy, or a partial molal Helmholtz energy. But, it must

be noticed that the variables maintained constant in the partial derivatives are not

the same. However, it is demonstrated that all these definitions are equivalent such

as they are written above.

Fig. 5.1 Chemical potential μk or partial molal gibbs energy Gk in the case of a solute k in the

solvent 1
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5.2 Physical Meaning of the Chemical Potential:
Equilibrium Condition

The chemical potential of a substance can be considered as being a quantity which

represents its escaping tendency as does the molal Gibbs energy (viz. Chap. 3). It is

by no means surprising since as we have seen it, it is also a molal Gibbs energy, but

a partial one. With this point in mind, it appears that the chemical potential extends

the notion of molal Gibbs energy to complex media.

Actually, the notion of molal Gibbs energy can be only applied to pure com-

pounds. This is the reason why the chemical potential of a pure compound is also its

molal Gibbs energy:

μi ¼ Gm ið Þ pure i compoundð Þ

Hence, at this point of the reasoning, we can say that the chemical potential of a

compound is a quantity which is liable to quantify its tendency to leave its current

thermodynamic state by every sort of process, physical, chemical, or

biochemical one.

In the realm of physical processes, a simple example is given by the partition of a

solute i between two immiscible phases α and β. Let us suppose that at the

beginning of the process the whole solute is only present in the phase α. Its chemical

potential is then μiα whereas μiβ¼ 0, that is to say

μiα > μiβ initial stateð Þ

By stirring both phases (this has the only effect to increase the speed of matter

exchanges between the phases but does not change anything to the thermodynamic

aspect of the process) a part of the solute spontaneously goes into the phase β. There
exists a moment at which the transfer process ceases. Then, the concentrations in

both phases no longer vary. The partition equilibrium is reached. The equilibrium

condition (concerning, of course, the exchange of i) is the equality of its chemical

potential in both phases, that is to say

μiα ¼ μiβ equilibriumð Þ

The partition spontaneously occurred because, initially, there existed an inequality

of the chemical potentials. We also may notice that the matter exchange process

follows the direction of a decreasing chemical potential. A difference of chemical

potentials plays an analogous part as that played by an electrical potential differ-

ence. Electrons flow between two points of an electrical circuitry because there

exists a difference of electrical potentials between them. It is also analogous to the

differences in temperature and pressure which, respectively, command a heat

transfer and a mechanical motion. Some authors assimilate the chemical potential

to a kind of “chemical pressure.”
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Likewise, a spontaneous chemical reaction occurs when a well-defined linear

combination of the chemical potentials of reactants and products of the reaction

differs from 0 (viz. paragraph 4 below).

An equilibrium state related to a species is a state in which its escaping tendency

is null. It is clear that the constancy of the chemical potential of a component is an

equilibrium criterion. This result is general. Hence, the chemical potential values,

as a rule, constitute a general criterion of evolution and equilibrium. It remains to

quantify a chemical potential. It is at this point that the notions of fugacity and

activity take all their importance (viz. Chaps. 7, 9, and 10).

5.3 Some Properties of the Chemical Potential

– The chemical potential is an intensive property, since it is a molal quantity,

– Since the chemical potential of a compound i is its partial molal Gibbs energy, it

provides a way to quantify the infinitesimal change in the Gibbs energy of the

whole system when the number of moles of species i varies under the influence
of a physical or chemical process change of an infinitesimal quantity, other

variables defining the state of the system (temperature, pressure, numbers of

moles of other species) being maintained constant,

– The chemical potential is expressed in J mol�1,

– The chemical potential of a perfect gas tends toward�1when its pressure tends

toward zero. This property is endowed with important practical consequences.

– As all the other partial molal quantities, the chemical potentials very often vary

with the composition of the system. In some scarce cases, it may be independent

of it,

– The chemical potential of a pure compound is simply its molal Gibbs energyGm:

μi ¼ Gm ið Þ pure i compoundð Þ

– The absolute value of the chemical potential cannot be known since it is a Gibbs

energy and since the absolute values of the Gibbs energies are not accessible.

Only changes in chemical potentials can be measured. This property is an

essential one. As we shall see it, it is one of the reasons of the introduction of

the concept of activity (viz. Chap. 9),

– The influence of the temperature on the chemical potential is given by the

expression

∂μi=∂Tð ÞP,nj ¼ � Si

Si being the partial molal entropy of i. The demonstration of the obtaining of this

result is as follows.
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For an open system, the chemical potential of i is defined by relation (5.1). As a

result

∂μi=∂Tð ÞP,nj ¼ ∂=∂T ∂G=∂nið ÞT,P,nj6¼ni

h i
P,ni

¼ ∂=∂ni ∂G=∂Tð ÞP,ni
h i

T,P,nj 6¼ni

equality which results from the crossing of the derivatives (viz. Appendix A:

Schwartz’s theorem). Since the occurrence of the relation (viz. Chap. 2)

∂G=dTð ÞP ¼ �S

we find

¼ � ∂S=∂nið ÞT,P,nj6¼ni

¼ � Si

Another interesting expression relating the temperature and the chemical

potential is

∂ μi=Tð Þ=∂T½ �P,nj ¼ �Hi =T
2

It results from the following expression, set up by a general reasoning starting from

the Gibbs–Helmholtz relation (viz. Chap. 2):

∂ G=Tð Þ=∂T½ �P,x ¼ �H=T2

This last relation results itself from the Gibbs–Helmholtz equation (viz. Chap. 2).

– The influence of the pressure on the chemical potential is given by the expression

∂μi=∂pð ÞT,nj ¼ Vmi

The demonstration is analogous to the previous one. It results from the relation (viz.

Chap. 2)

∂G=∂pð ÞT ¼ Vm

– A very important relation for the thermodynamic study of solutions and, hence,

for our purpose is that of Gibbs–Duhem. It expresses the fact that the simulta-

neous changes in the temperature, pressure, and chemical potentials (all inten-

sive quantities) are not independent from each other. They are “interrelated” by

the Gibbs–Duhem’s relation, which is
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�SdT þ Vdp�
X
i

nidμi ¼ 0

S and V are the total entropy and the total volume of the phase. ni is the number of

moles of every component, and μi is its chemical potential. At constant temperature

and pressure, it becomes

X
i

ni dμi ¼ 0

In these conditions, when the phase contains n components, only (n – 1) chemical

potentials can vary independently. In the case of a binary solution, the Gibbs–

Duhem’s relation may be written in a different manner. It becomes

n1dμ1 þ n2dμ2 ¼ 0

Dividing this relation by the total number of moles, it becomes

n1= n1 þ n2ð Þ½ �dμ1 þ n2= n1 þ n2ð Þ½ �dμ2 ¼ 0

x1dμ1 þ x2dμ2 ¼ 0 ð5:3Þ

where x1 and x2 are the molar fractions of both components. The Gibbs–Duhem’s
relation may still be written in a different manner, at, as before, constant temper-

ature and pressure (for a binary solution). In these conditions, the chemical potential

of each component only depends on its molar fraction. Then, we can write

dμi ¼ ∂μi=∂xið ÞT,P dxi

Hence, (5.3) can be rewritten:

x1 ∂μ1=∂x1ð ÞT,Pdx1 þ x2 ∂μ2=∂x2ð ÞT,Pdx2 ¼ 0

or

∂μ1=∂lnx1ð ÞT,P dx1 þ ∂μ2=∂lnx2ð ÞT,P dx2 ¼ 0

Since, in this reasoning, we only consider binary solutions

x1 þ x2 ¼ 1

dx1 ¼ �dx2

and finally

∂μ1=∂lnx1ð ÞT,P ¼ ∂μ2=∂lnx2ð ÞT,P ð5:4Þ
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It is clear that the great interest of the Gibbs–Duhem’s relation lies in the fact that it
provides information concerning the changes in the chemical potentials of the

components of a solution.

– For a solution containing n components, the Gibbs energy of the whole chemical

system (defined as being constituted by the solvent and all the solutes) Gsyst is

given by the relation

Gsyst ¼ n1μ1 þ n2μ2 þ � � �nnμn

where ni are the numbers of moles of the components. This relation results from the

fact that the function of Gibbs energy is extensive and that its mathematical

counterpart is a homogeneous one (viz. Appendix A).

5.4 Change in the Gibbs Energy Accompanying a Chemical
Transformation

When a system is constituted by the compounds 1, 2. . . before the transformation

(initial state), the numbers of moles of which being n1, n2, . . ., and after transfor-

mation (final state) by n01, n02. . . the change in Gibbs energy of the system

accompanying the chemical transformation is given by the expression

ΔrGsyst ¼ n01μ
0
1 þ n02μ

0
2 þ � � �� � � n1μ1 þ n2μ2 þ � � �ð Þ ð5:5Þ

where μ1, μ2, . . .μ
0
1, μ

0
2 are the chemical potentials in the initial and final states.

This expression is absolutely general. As an example, let us consider the

following chemical reaction:

nAAþ nBB ! nMMþ nNN

and suppose that the reaction is total. The change in the Gibbs energy accompany-

ing the reaction is given by the expression

ΔrG ¼ νMμM þ νNμNð Þ � νAμA þ νBμBð Þ ð5:6Þ

This relation can be generalized to the case of a more complex reaction. When the

linear combination of the kind of the type (5.6) just above is null, there is equilib-

rium (viz. Chap. 3).
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5.5 Electromotive Force of a Reversible Electrochemical
Cell and Change in the Gibbs Energy Accompanying
the Reaction Cell

Let us recall that the electric potential difference E that occurs at the terminals of an

electrochemical cell is a function of the temperature, pressure of the system, and,

also, the activities of the species taking part in the electrochemical reactions which

are developing onto the electrodes (viz. Chaps. 13 and 14). There exists a mathe-

matical relationship between the decrease of the Gibbs energy (of the chemical

system) accompanying a reversible process occurring in the cell and the electric

potential difference until the obtaining of the equilibrium. This is true at constant

pressure and temperature and, also, at null current. This relation is

ΔG ¼ � nFE

E is called the electromotive force of the cell, n is the number of exchanged

electrons, and F is the faraday. This relation is of utmost important. It is the base

of the Nernst’s relation.
The use of electrochemical cells may permit, in some cases, to determine the

activities of nonelectrolytes and those of electrolytes (viz. Chaps. 13 and 14).
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Chapter 6

The Notion of Activity: An Overview

Abstract The chapter is a brief overview of the concept of activity. It can be

considered as a general scientific introduction of the book. It mentions:

– Some properties of the quantity activity in relation to the chemical equilibria

governed by the mass action law.

– Its relation with the corresponding concentration and the chemical potential of

the substance, with its standard state and the arbitrary character of the choice of

the latter.

– The link between a fugacity and an activity.

– The ideal character of a system and interactions between the particles constitut-

ing it and the intermolecular forces which may exist between them.

The possibility of their determination is also tackled. Finally, a recall of the

genesis of the notion of activity is given.

Keywords Constant conditional (or formal) • Determination of activities

(general) • Thermodynamic equilibrium constant • Intermolecular forces

It seems interesting for us, as a general scientific introduction of the book, to give a

brief overview of the concept of activity before, of course, delving later into its

more thorough study.

6.1 Some Properties of the Quantity Activity: Activities
and Chemical Equilibria

A patent example of the interest in chemistry of the use of activities is the

following.

Let us, for example, consider the following chemical reaction:

νAAþ νBB Ð νMMþ νNN
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We shall see (viz. Chap. 17) that, at equilibrium, the activities aA, aB, . . . of the
different species A, B, M, and N (participating in it through the relation above) are

related to each other by the expression

K� ¼ aM
νMaN

νN=aA
νAaB

νB ð6:1Þ

This result is quite general.

Let us stress the fact that the activities taken into account in relation (6.1) are

those and only those occurring once the equilibrium is reached. K� is a constant at a
given temperature. It is called the standard equilibrium constant (of the reaction) or
the thermodynamic equilibrium constant. Relation (6.1) is well known under the

name “mass action law.” Historically, it is interesting to recall in passing that it has

been introduced into the scientific realm by starting from a reasoning which was not

at all based on thermodynamic considerations!

The thermodynamic equilibrium constant K� only depends on the temperature

and pressure and not on the composition of the system. It is a true constant. This

obvious sentence will take all its importance during the reading of the end of this

chapter.

The thermodynamic constant must not be confused with the corresponding

constant K which is related to the concentrations at the equilibrium of the reactive

species, defined for the above reaction by the expression

K ¼ M½ �νM N½ �νN= A½ �νA B½ �νB ð6:2Þ

The terms in brackets in the expression (6.2) are the concentrations at equilib-

rium. They can be expressed in molalities, molarities, molar fractions . . . (viz.
Chap. 1). The constant K may also be expressed in partial pressures. Each of these

cases must be, in principle, distinguished from each other by an index located next

to the symbol K. For example, the constant K is symbolized by Kc and Km when the

concentrations are expressed, respectively, in molarities and molalities.

Whereas thermodynamic equilibrium constants are absolutely dimensionless

numbers since activities are themselves dimensionless, the equilibrium constants

related to the concentrations may be dimensioned according to the stoichiometry of

the reaction. The latter equilibrium constants are often called formal or conditional
constants. They do not only depend on the temperature and total pressure. They also

depend on the concentrations of the reactive species.

6.2 Activities and Concentrations

The activity a of a species in a given medium is related to its “concentration”

C through the general expression

a ¼ γC ð6:3Þ
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The factor γ is called the activity coefficient. The activity of a species and

its concentration obey this relation, whatever the concentration scale is.

Hence, this relation is general. Let us say that although the activities are dimen-

sionless, the activity coefficients are also dimensionless whatever the scale of

concentration C is.

The very big difficulty encountered in the handling of activities lies in the fact

that relation (6.3) is not, actually, a true linear relation because the activity

coefficient γ does vary with the “concentration” C. Here is the reason why the

analogy between relations (6.1) and (6.2) must not mask the fact that the mathe-

matical link between an activity and the corresponding concentration is complex

and badly known. It is the matter of this book to somewhat make it clearer.

From another viewpoint, it must not be forgotten that there exist several kinds of

activities which are of different numerical values for the same species in the same

thermodynamic state according to the chosen standard state (viz. under) and the

concentration scale to which they are related to and, eventually, according to the

conditions defining the state of the system.

6.3 Chemical Potential and Activity of a Compound

We know (viz. Chap. 5) that one of the most central quantities of chemical

thermodynamics is the chemical potential. Let us recall also that, essentially, its

change governs the tendency of a system to change its thermodynamic state through

a chemical or physical process.

One of the possible definitions of the activity of a species consists in using the

relation (6.4) linking it to its chemical potential:

μ ¼ μ� þ RT lna ð6:4Þ

where R is the perfect gas constant and T the absolute temperature of the system. μ�

is an arbitrary constant. We see that it is the chemical potential of the compound

when its activity equates to unity. μ� is called the standard chemical potential of the
species or more properly its chemical potential in the standard state.

6.4 Standard State and Activity

Relation (6.4) is only a formal definition. Hence, further, the standard state must be

defined in terms of experimental variables defining this particular thermodynamic

state.

Owing to the arbitrary character of a standard state, which is one of the

characteristics of this quantity, it is clear that there exists an infinity of choices
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for it. However, it turns out that some choices are easier to handle than others.

Precisely, these choices can change according to the state of the matter of the

compound (gaseous, liquid, solid), according to whether it is pure or in a solution

and also according to the concentration scale of the species to which it is related to

through relation (6.3).

The result of these considerations is that the notion of activity cannot be

dissociated from that of standard state.

6.5 On the Arbitrary Character of the Choice
of the Standard State

A puzzling point of the concept of the chemical activity lies in the arbitrary

character of the choice of the concentration scale to which the chemical activity

of the species is related to. One must realize that, for example, it is as correct to

choose the molar fraction as to choose its molality or its molarity to express its

concentration. Then, one can rise the legitimate question of the validity of the

equilibrium constant value, which evidently varies with the choice of the retained

scale of concentration, since the numerical values of the “concentrations” are then

different. With this question in mind, it is quite admissible that the conclusions

stemming from the study of a chemical equilibrium through the value of the

equilibrium constant may be doubtful.

6.6 Activity and Fugacity

Although this book is mainly devoted to the concept of activity, it also mentions

some aspects of the quantity called the fugacity.

Both notions are actually intimately linked. It is true that they can be separately

introduced in the realm of classical thermodynamics without any mention of the

other. This is not astonishing since the concept of fugacity was introduced to study

the behavior of imperfect gases whereas that of activity was introduced mainly for

the study of solutions. However, as we shall see it later, both can apply to every kind

of phase.

There exist some simple mathematical relations linking them. Besides, they

permit us to better grasp their significances. In particular, let us mention the

occurrence of a very important one which, purely and simply, is one of the defini-

tions of the chemical activity. According to it, the chemical activity is the ratio of the

fugacity of the species of concern and of its fugacity in the standard state.
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6.7 Ideal Character of a System and Interactions Between
the Particles Constituting It

In the general introduction of this book, we have already recalled that the notion of

chemical activity has been introduced by G.N. Lewis in order to treat the nonideal

systems (in particular solutions) by using a formalism very close to that expressing

the chemical potentials of species in ideal systems.

The ideal character of a system is related to the occurrence (or not) of interac-

tions between particles constituting it. It has a somewhat different meaning

according to the fact whether it is a gaseous phase or a solution which is considered.

Even in the latter case, the conditions of “ideality” differ whether electrolyte or

nonelectrolyte solutions are considered.

A pure gas is said ideal if no interaction does exist between its particles. It is the

case when its pressure is very weak. Its behavior remains ideal as long as these

interactions cannot be felt. It is the same thing for a gaseous mixture. Its behavior

remains ideal as long as there do not exist interactions between the particles of the

mixture whatever their component identity is.

It is different in the case of solutions. At least, there exist two components, the

solute and the solvent, the particles of which are in interactions. Let us recall,

indeed, that the gaseous state is a very “expansed” one in which the volume

occupied by the particles is negligible with respect to that of the container.

Hence, one can consider that it is only occasionally that two particles are suffi-

ciently close to give rise to intermolecular forces. One can consider that the gas

molecules move freely. This is not the case of liquids and solutions. Concerning the

latter, the total volume of molecules quasi-fully occupies the whole volume of the

system. The intermolecular forces are strong. However, they cannot preclude the

easy movement of the particles in the medium. This is not the case for the other

compact state of the matter which is the solid state. As a result, one can say that

evoking the “ideality” notion to liquids, as it applies to the case of gases, is absurd,

because of the occurrence of the remaining interactions between solvent and solute

particles, even in highly dilute solutions.

A particularly interesting case of solutions is that of those containing ions. For

the latter, the interactions between solute particles still exist at distances much

higher than those separating two uncharged species when, precisely, the interac-

tions in the latter case are vanishing. Hence, deviations from “ideality” appear for

concentrations in charged molecules much weaker than with the uncharged ones.

For example, in an aqueous solution of sodium chloride, deviations from thermo-

dynamic laws expressing the ideal behavior by more than 5% do appear once their

concentration attains 2� 10�3 mol L�1. In solutions only containing uncharged

particles, the concentration of at least 1 mol L�1 must be reached to obtain such

deviations.

At once, let us notice that the more dilute the solutions are, the weaker the

interactions between the solute molecules or between the ions are and the more the

activity values do approach those of the corresponding concentrations. It is the
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same for gases. The weaker their partial pressures, the closer their fugacity values

approach those of the latter. These properties are very interesting since they provide

us with a strategy for the determination of equilibrium thermodynamic constants. It

consists in determining them in very dilute solutions or at very weak partial

pressures. It is at this level of quantities of matter that the reliability of the values

of the obtained thermodynamic equilibrium constants may be expected to be good.

6.8 Intermolecular Forces

Intermolecular forces that operate between the molecules of a pure substance or

between the molecules of a mixture command the thermodynamic properties of the

system constituted by them. Since it is these intermolecular forces that are respon-

sible for the deviations from “ideality” exhibited by a system and since the chemical

activities have been introduced to overcome the problem, it is interesting to briefly

evoke these operating intermolecular forces. The intermolecular forces give rise to

potential energy functions. This term is often used to explicit the force.

Several intermolecular forces are operating and, hence, they can be classified in

several different manners. The different retained classifications are purely arbitrary.

For our own part, we distinguish:

– The electrostatic forces they exert between charged particles (ions) and between

permanent dipoles and quadrupoles.

– The induction forces they exert between a permanent dipole (or quadrupole) and

an induced dipole. The latter is induced in a molecule with polarizable electrons.

– The forces of attraction called dispersion forces and the forces of repulsion

between nonpolar molecules.

– The chemical forces (or specific forces) responsible for association and solvation

phenomena: Among them, we can mention the formation of hydrogen bonds and

association complexes called charge-transfer complexes.

Further considerations of these intermolecular forces are given in Chap. 46.

6.9 Determination of Activities

The determination of activities of all types of compounds is experimentally possible

except in the case of ions. This is a fact: the activity of an individual ion is not

measurable. However, fortunately, its value can be approached, at least in some

well-defined conditions, by using theoretical expressions which permit the calcu-

lation of activity coefficients.
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6.10 Genesis of the Chemical Activity Concept

G.N. Lewis has successively introduced the concepts of fugacity (1901) and activity

(1907). According to his own comments, two strategies were in this period followed

in order to study chemical equilibria.

The first one, followed in particular by Gibbs, Duhem, Planck, and other authors,

consisted in forecasting the evolution of systems by using the properties of their

entropy and also those of their thermodynamic potentials (viz. Chap. 2).

The second strategy, followed by Van’t Hoff, Ostwald, Nernst, Arrhenius, and

others, consisted in using equilibrium constants, calculated through the concentra-
tion values at the equilibrium because the notion of intangibility of the values of the

equilibrium constants was already sensed since some years.

Today, we know that handling the thermodynamic potentials is perfectly legit-

imate, but it is complicated in the realm of chemistry, by far more complicated than

in mechanics. This is the reason why the second method is more used than the

previous.

But using the second strategy, at that time, led to the following conclusion:

Equilibrium constants calculated by using concentrations at equilibrium are not truly

constant.

This conclusion was followed by a series of numerous discussions and works

essentially devoted to the case of electrolytes. The question was the following one:

Do the equilibrium constants vary because of an incomplete dissociation of the

electrolyte or because of another phenomenon? The hypothesis of an incomplete

dissociation of actually strength electrolytes has been ruled out, notably with the

help of conductometric experiences and thanks to the Debye–Hückel relations.
Today, we know that the changes in the equilibrium constant values, when they

are obtained only from concentrations at equilibrium, are the result of interactions

between the species and not to an incomplete dissociation. Because of their

occurrence, it is said that the system no longer exhibits an ideal behavior.
It is in order to mathematically take into account this phenomenon that Lewis

has empirically introduced the notion of chemical activity. Likewise, he had

introduced the fugacity concept some years before. It was, of course, in order to

take into account the interactions between molecules of gas.

It is important to notice that taking into account the interactions between the

particles by the introduction of both notions of fugacity and activity stems from a

purely phenomenological reasoning. A rigorous theoretical study which would take

perfectly into account these phenomena of “nonideality” would require that the

term of the potential energy of the Schr€odinger’s equation of the whole system

would contain all the terms describing the interactions between all the particles.

This is quite impossible to do, because on the one hand one cannot know how we

can perfectly modelize the interactions between these moving particles and

because, on the other hand, if we did know how to do, it would be an insuperable

work to carry out it, owing to the great number of particles.

Hence, it appears that the introduction of the notion of chemical activity is a

genial trick permitting to overcome this colossal problem.
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Chapter 7

The Fugacity Quantity

Abstract This chapter is devoted to the notion of fugacity. It is developed entirely

under the standpoint of classical thermodynamics. The fugacity quantity has been

introduced in order to describe the behavior of imperfect gases. It permits to express

the molar Gibbs energy of a pure imperfect gas and, also, to express the chemical

potential (the molar partial Gibbs energy) of a gas in a mixture of imperfect gases

with a formalism analogous to that used in the case of perfect gases. For this reason,

it can be said that the chemical potential which is an abstract notion can be, through

the use of the fugacity, expressed in terms of a new function which is more easily

identified with the physical reality than the chemical potential is. The chapter

mentions the definition of the fugacity of a pure gas, the chemical potential of a

perfect or real pure gas in terms of it, the fugacity of liquids and solids, the notion of

fugacity coefficient of a real gas, a coming back to the notion of reference state, and

the changes in fugacity with the temperature and the pressure. It also mentions the

expressions of the chemical potential of a component of a mixture of perfect gases,

the fugacities of real gases in mixtures, and their changes with pressure and

temperature together with their determination. From another viewpoint, the values

of the fugacity of a species present in different phases may assert or not the state of

partition equilibrium.

Fugacity and activity are two intimately linked quantities. This is the reason why

an introductory study of the notion of fugacity is necessary to understand well that

of activity.

Keywords Fugacity • Fugacity coefficient Lewis–Randall’s rule • Molal Gibbs

energy • Molar enthalpy • Molar volume • Partial molal quantities • Perfect gases •

Reference state

The fugacity quantity has been introduced by G.N. Lewis as soon as 1901 in order

to describe the behavior of imperfect gases. More precisely, fugacity permits (as we

shall see it) to express the molar Gibbs energy of an imperfect pure gas and, also, to

express the chemical potential (the molar partial Gibbs energy) of a gas in a mixture

of imperfect gases with a formalism analogous to that used in the case of perfect

gases. For this reason, it can be said that the chemical potential which is an abstract

notion can be, through the use of the fugacity notion, expressed in terms of a new

function which is more easily identified with the physical reality than the chemical
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potential is. We shall see that the chemical activity is also a quantity like the

fugacity function permitting to relate the chemical potential to the physical reality.

From another viewpoint, the values of the fugacity of a species present in

different phases may assert or not the state of partition equilibrium.

Fugacity and activity are two intimately linked quantities. This is the reason why

an introductory study of the notion of fugacity is necessary to understand well that

of activity.

7.1 Definition of the Fugacity of a Pure Gas

Although the fugacity notion has been overall used in the case of systems consti-

tuted by gas mixtures, it is firstly important to begin with by the definition of the

fugacity f of a pure gas. Lewis did that by setting up the expressions

dG ¼ RT d ln f ð7:1Þ

or

Gm ¼ RT ln f þ C Tð Þ ð7:2Þ

C(T ) is the integration constant. It is already important to notice that constant C(T)
depends only on the nature of the substance and temperature (vis Chap. 34). Gm is

the molar Gibbs energy of the gas.

Expression (7.2) is, according to some authors, incorrect from the mathematical

standpoint since the logarithm of a quantity which is dimensioned does not possess

any sense, since the fugacity is a quantity endowed with a dimension!1

On the other hand, relation (7.1) is correct since the ratio df/f is dimensionless.

It is interesting to notice the analogy between relations (7.1) and (7.3) under

dG ¼ RT d lnp ð7:3Þ

which links the molar Gibbs energy of a perfect gas and its pressure p. It results

from the application to the case of perfect gases of the general expression

dGm,T ¼ Vmdp ð7:4Þ

1By virtue of the famous aphorism

ln 3applesð Þ ¼ ln3þ lnapples !

3 and apples are mathematical objects from different nature.
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applicable to every reversible, isothermal transformation, only involving an expan-

sion work. Vm is the molar volume of the substance (vis Chap. 5).

Definitions (7.1) and (7.2) are not sufficient for the determination of absolute

values of the fugacity since they do not specify how the value of the constant C(T)
is fixed at a given temperature. Without any supplementary specification, they only

define the ratio between the fugacities ff and fi of the gas in the final and initial states
defining an isothermal transformation. Given the molar Gibbs energiesGmf andGmi

in both states, the expression of the change in the Gibbs energy ΔG accompanying

it is

ΔG ¼ Gmf � Gmi

ΔG ¼ RT ln f f= f ið Þ

A supplementary specification is necessary. That put forward by Lewis is

universally adopted. It is based on the following reasoning.

Let us again consider the previous transformation and suppose that the gas is

perfect. The notion of fugacity is, by definition, a general one. Hence, it also applies

to perfect gases. In these conditions, one can write

ΔG ¼ RT ln f f=f ið Þ ð7:5Þ

and since the gas is perfect by hypothesis, one can also write

ΔG ¼ RT ln pf=pið Þ ð7:6Þ

pf and pi being the pressures in the final and initial states of the process under study.

Since the Gibbs energy is a state function, it results from the comparison of

expressions (7.5) and (7.6), in which in the case of a perfect gas the fugacity

must be in linear relation with the pressure.

Since no gas is, from the standpoint of the absolute scientific accuracy, perfect

but since, also, the behavior of every gas tends to be ideal when its pressure tends

toward 0, a judicious choice (in order to fix the integration constant) is such that the

value of the fugacity of pure gas goes over that of its pressure when the latter tends

toward 0, that is to say

f=p ! 1 when p ! 0

This is the choice that Lewis has done. Figure 7.1 exemplifies this specification.

The state in which the fugacity is asserted to be equal to the pressure is called the

reference state. Thus, the fugacity of a gas equates its pressure in the reference

state. The fact that the fugacity of every gas is set up to be equal to the value of its

pressure in the reference state permits to evaluate its fugacity at every other

pressure. Hence, the proportionality constant between the fugacity and the pressure

of a gas in the reference state, evoked above, has been fixed to 1 by Lewis.
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An outcome of the previous choice is that the fugacity of a perfect gas equates its

pressure whichever the latter is, on the contrary of a real gas. We have seen, indeed,

that in the case of a perfect gas, the fugacity is proportional to the pressure. By

adopting the convention that the fugacity is equal to the pressure when the latter is

very weak (in the reference state), it is clear that it remains as such in the whole

range of pressures in the case of a perfect gas. In order to convince ourself, it is

sufficient to consider the transformation described by relations (7.5) and (7.6) in

which the initial pressure is very weak. As a result

pi ¼ f i

since

RT ln f f=f ið Þ ¼ RT ln pf=pið Þ

Hence

pf ¼ f f

As a result of what is previously described, it appears that the fugacity must be

endowed with the same unities as the pressure. (Most values of fugacities are still

expressed in atmospheres in the literature for historical reasons.)

Fig. 7.1 Differences between the fugacity and the pressure of a pure gas
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7.2 Chemical Potential of a Perfect or Real Pure Gas
in Terms of Fugacities

1. In the case of a perfect gas, we know (vis Chaps. 3 and 5) that its molar Gibbs

energy (or, equivalently in this case, its chemical potential) is partially defined

by the expression

dG ¼ RT dp=p

After integration, we obtain

Gm ¼ Cteþ RT lnp or

μ ¼ Cteþ RT lnp

where Cte is the integration constant. (These expressions are incorrect from the

mathematical standpoint for the reason given above.)

We know that the correct expression is (vis Chaps. 3 and 5)

μ ¼ μ� þ RTln p=p�ð Þ

in which μ� is the chemical potential in an arbitrarily chosen state of the gas

where it is at the pressure P�. We shall see (vis Chaps. 9 and 10) that this state is

called the standard state. It may be temporarily defined as the state of the gas in

which it exhibits a perfect behavior at pressure p�. Usually, p� ¼ 1 pressure unit

(historically 1 atm).

2. For a real gas, analogous considerations can be carried out:

We have seen just before that

dG ¼ RT d lnf

or for its molar Gibbs energy

μ ¼ μ� þ RT ln f=f �ð Þ ð7:7Þ

μ� is the integration constant. It is the chemical potential of the gas when its

fugacity f is equal to its fugacity f�. f� is its fugacity in the standard state. Hence,
μ� is the chemical potential of the gas in its standard state. It is arbitrarily chosen.

Let us, at this point, anticipate one definition of the chemical activity a (vis

Chap. 9) by already giving the following relation:

a ¼ f=f �

It expresses the chemical activity of a gas when its fugacity is f in the considered
state of chemical potential μ and f� its fugacity in the arbitrary standard state of

chemical potential μ�.
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7.3 Fugacity of Liquids and Solids

The definition of the fugacity applies to liquid and solid states as to the gaseous state

as well. Every substance in principle, indeed, exhibits a finite pressure vapor, even

if in some cases it is exceedingly weak.

When the pure solid (or the liquid) is at the equilibrium with its vapor (at a given

temperature), the molar Gibbs energy (chemical potential of the species) is the same

for both phases. As a result, we can set up by virtue of (7.7)

μ�s þ RT ln f s=f s
�ð Þ ¼ μ�g þ RT ln f g=f g

�
� �

case of a solidð Þ

or

μ�l þ RT ln f l=f l
�ð Þ ¼ μ�g þ RT ln f g=f g

�
� �

case of a liquidð Þ

μ�s, μ�l, and μ�g are the standard chemical potentials of the chemical species in

solid, liquid, and vapor phases. fs, fl, and fg are their fugacity in the same conditions.

Let us recall that the choice of a standard state is arbitrary. Nothing precludes to

choose the same standard state in order to quantify the fugacity of the species in

solid or in liquid phase as that being the standard state in phase vapor. Then, of

course, the fugacities in the standard states for the solid and liquid phases are no

longer fs
� or fl� but fg�. Under these conditions, the equilibrium is expressed by the

two following relations:

μ�g þ RT ln f s=f g
�

� �
¼ μ�g þ RT ln f g=f g

�
� �

μ�g þ RT ln f l=f g
�

� �
¼ μ�g þ RT ln f g=f g

�
� �

As a result, at equilibrium

f s ¼ f g
f l ¼ f g

The fugacity of the pure compound in the solid (or liquid) state is equal to its

fugacity in the vapor state provided that the standard state adopted to quantify the

fugacities is the same for both phases, i.e., that chosen for the vapor phase.

7.4 Fugacity Coefficient of a Real Gas

Figure 7.1 shows that the fugacity may be greater or weaker than the pressure of

the gas.
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One defines the fugacity coefficient ϕB of the gas B by the relation

ϕB ¼ f B=pB

It is sometimes called the activity coefficient of the gas. In the literature, there

exist several values of ϕ permitting to calculate the fugacities of gases in given

experimental conditions, notably of pressure. They are sometimes found with the

help of approximations.

The fugacity coefficient is a pure number. It is dimensionless.

7.5 Coming Back to the Reference State

In order to prepare the future discussion concerning the reference and standard

states (viz. the following chapters), it is important to recall the fact that the

reference state is a real state.
Moreover, we have already mentioned that the reference state is a (real) state in

which its fugacity equals its pressure. Hence, we can deduce that the reference state

may be defined as a real state in which its fugacity coefficient is equal to its unity.

This is the usually adopted definition for the reference state, in any case for gases.

Later, we shall see that the notion of reference state is also linked to the notion of

activity (viz. Chaps. 9, 10, and 11).

Henceforth, we shall annotate every quantity considered at a very weak pressure

(that is to say in the reference state2) by the symbol * located in exponent.

7.6 Changes in Fugacity with the Temperature
and the Pressure

• The fugacity changes with temperature. These changes are accessible. We give

here only the principle of their determination at constant pressure. Let us

consider two states of the gas, the molar Gibbs energy and the fugacities Gm,

f and Gm*, f*. The state to which the quantities Gm*, f* are related to is a state of
very weak pressure in which the behavior of the gas is ideal (it is the state of

reference). The change in the molar Gibbs energy accompanying the path from

one state to the other is

2In thermodynamics, for the definition of the reference state, one sometimes finds that it is the state

attained from the standard state through a change in pressure. We shall not use this definition.
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ΔGm ¼ Gm � Gm
*

ΔGm ¼ RT ln f=f *

or equivalently

R ln f=f *
� � ¼ Gm=T � Gm

*=T

whence after derivation with respect to the temperature at constant pressure

R ∂ln f =∂Tð ÞP � R ∂ln f *=∂T
� �

P
¼ ∂ Gm=Tð Þ=∂T½ �P � ∂ Gm

*=T
� �

=∂T
� �

P

We know that (viz. Chap. 2—Gibbs–Helmholtz relation)

∂ Gm=Tð Þ=∂Tð ÞP ¼ �Hm=T
2

where, in this equation, Hm is the molar enthalpy of the system at the pressure

P and Gm its molar Gibbs energy. In the relation before the latter, the second

term of the left member is null since, in the reference state, the fugacity f* is

equal to the pressure P* and since the derivation is carried out at constant

pressure. Both latter relations immediately lead, after derivation, to

∂ln f=∂Tð ÞP¼ Hm
* � Hm

� �
=RT2 ð7:8Þ

where Hm
* is the molar enthalpy of the gas at null pressure. The difference

(Hm
*�Hm) is the change in the enthalpy accompanying the “compression” of

the gas from the pressure P until the null one at constant temperature. For the

easiness of the calculations, it is a fact that the curves (Hm
*�Hm)/RT

2 as

functions of the temperature are experimentally accessible either by the study

of the diagrams p–V–T of the gases or by using the appropriate state equa-

tions. After this step, the obtention of f is carried out by integration.

• The influence of the pressure on the value of the fugacity of a gas at constant

temperature is expressed by the relation

∂ln f=∂pð ÞT¼Vm=RT

since, by definition of the fugacity, dG¼RTd ln f and since, in a general manner

(viz. Chap. 2),

∂G=∂pð ÞT¼Vm

Let us recall that Vm is the molar volume of the substance whatever the phase

under which it is and whatever its behavior is, perfect or not.
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7.7 Physical Significance of the Fugacity

According to what is previously mentioned, it is evident that the fugacity of a gas is

a kind of a fictitious pressure or of a corrected pressure. Statistical thermodynamics

(Chap. 34) permits to grasp a deeper knowledge of the relation existing between the

fugacity and the pressure.

7.8 Expressions of the Chemical Potential of a Component
of a Mixture of Perfect Gases

Before considering the fugacity notion applied to the case of a mixture of real gases,

case where it exhibits all its importance, it is convenient, at the beginning, to

mention different relations expressing the chemical potential of a component of a

mixture of ideal gases.

Generally speaking, we know that the change in the chemical potential μB of

every component B of a gaseous mixture with pressure, at constant temperature

T and molar fraction y, is given by the relation (vis Chap. 5)

∂μB=∂pð ÞT, y¼VmB ð7:9Þ

where VmB is the partial molar volume of the component B.

In the case of a mixture of perfect gases, the law of perfect gases applies to the

whole mixture. It is written as

V¼ n1þn2þ� � � þ nBþ� � �ð ÞRT=P ð7:10Þ

where n1, n2, . . . are the numbers of moles of species 1,2, . . . in the gaseous mixture,

P the total pressure, and V the total volume of the system. Since, by hypothesis,

each gas of the mixture exhibits a behavior different from that of any other (of the

mixture), the partial pressure of each one pB is given, by definition, by the relation

pBV ¼ nBRT ð7:11Þ

The partial molar volume of the component B being given by the expression

VmB ¼ ∂V=∂nBð ÞT,P,nj

we obtain through derivation of (7.10)

VmB ¼ RT =P

and hence, after using (7.9),
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dμB¼RT dP=Pð ÞT, nj or dμB¼RT d lnPð ÞT, nj

Then, according to (7.10) and (7.11),

pB¼nB RT=Vð Þ and P¼
X

nB RT=Vð Þ

Since nB and n (n total number of moles in the mixture: n¼∑nB) are constant,
the following equality is satisfied:

d lnpB ¼ d lnP

That is,

dμB ¼ RT d lnpB

After integration, we obtain

μB ¼ μB
* þ RT lnpB ð7:12Þ

μB
* is the integration constant. Its value depends only on the nature of the gas and

on the temperature as it is justified by statistical thermodynamics (viz. Chap. 34). It

is clear that μB
* is the chemical potential of the gas B, at the given temperature,

when its partial pressure is equal to unity. Let us also recall that in order to obtain

this result, the underlying hypothesis was that the mixture should behave ideally.

Hence, the chemical potential of every constituent of an ideal mixture of gases is

determined by its partial pressure.

There exist other expressions of the chemical potential μB equivalent to the

previous one.

Let us notice that relation (7.12) may be considered as being not satisfactory

since the logarithm of a dimensioned quantity is under consideration. However, it

can be written according to the following one which is perfectly correct:

μB ¼ μBRT þ ln pB=1ð Þ

where 1 is a quantity which is endowed with the same dimension as that adopted for

pB. Therefore, 1 is the unity of pressure.

Let us also notice the chemical potential μB of a constituent of an ideal mixture

of gases, as every other compound in every system may be expressed under

different manners according to the used concentration scales and also according

to the retained standard states. (We shall again consider this subject, but then at

greater length, when we shall discuss the expressions of the chemical potentials

with respect to the adopted standard states in order to define the different kinds of

activities in solutions—viz. Chap. 11.)

Let us confine ourselves to mention that by introducing the molar fraction

yB¼ (nB/n) of B in the gaseous mixture, the expression of its chemical potential is
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μB ¼ μyB
* þ RT lnyB ð7:13Þ

where

μyB
* ¼ μB

* þ RT lnP

We notice that, this time, the integration constant μyB
* depends not only on the

nature of B and on the temperature, but also on the total pressure P. The reasoning
leading to this expression is based on the fact that the chemical potential of a

component in a given thermodynamic state is an invariant quantity, whatever the

expression of its quantity of matter is.

7.9 Fugacities and Mixtures of Real Gases

7.9.1 Expressions of the Chemical Potential
of the Components

The above considerations taking into account the partial pressures are no longer

correct once we are facing mixtures of real gases. Again, in this case, introducing

the fugacity notion simplifies the problem. In an analogous manner as that followed

in the case of a pure real gas, one partially defines the fugacity of the constituent B

in the mixture, at a given constant temperature, by the relation

dμB ¼ RT d ln f B ð7:14Þ

that is to say, after integration, by

μB ¼ μB
* þ RT ln f B ð7:15Þ

μB
* depends on the nature of the gas and on the temperature of the system.

The chemical potential of the gas B is also given by the expression

μB ¼ μB
� þ RT ln f B=f B

� ð7:16Þ

where μB� is the standard potential of B and fB, fB
� the fugacities of B in the state of

the system and in the chosen standard state. The reference state to which is linked

the standard state μB� (which has been just evoked) is the same as that which is

retained for a gas alone or in the case of an ideal mixture since, as it has been

demonstrated above, the behavior of each gas tends to be perfect when the total

pressure tends to be null. Hence, μB� is the standard chemical potential of B, alone,

at the same temperature as that of the system. In these conditions, we shall see (viz.

Chap. 10) that the chemical potentials in the standard and reference states are equal.
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One of the advantages that presents the introduction of the fugacity lies in the

fact that the chemical potential of a component of a mixture of real gases may be

expressed by the relation (7.15) which is formally analogous to that expressing the

chemical potential of a component of a mixture of perfect gases. Such expressions

enlighten the significance of the chemical potential since the significance of a

corrected pressure is by far closer to a physical reality than is a chemical potential

which is essentially an abstract mathematical notion.

7.9.2 Change of the Fugacity of One Component of a
Gaseous Mixture with the Pressure

The change of the fugacity of the constituent of a gaseous mixture with the pressure

is obtained from the following relation:

∂ln f B=∂Pð ÞT, y¼VB =RT ð7:17Þ

whereVB is the partial molal volume of the constituent (viz. Chap. 4). This relation

immediately follows from (7.9) and (7.15) after derivation with respect to P at

constant temperature and pressure and by taking into account the fact that in these

conditions μB
* is a constant. Before proceeding to the integration, let us subtract the

term RT d ln pB from both members of the expression (7.17). We obtain

RT d ln f B=pBð Þ ¼ VB dP� RTd lnpB

But

pB ¼ yBP

The molar fraction yB being a constant, since we are searching for the fugacity

change with the pressure at constant temperature and composition, the preceding

relation becomes

RT d ln f B=pBð Þ ¼ VB � RT=P
� �

dP

The change of the fugacity fB with the total pressure is obtained by integration

from P¼ 0 to P¼P0, that is to say

ln f B=pBð Þ ¼
Z P0

0

VB =RT � 1=P
� �

dP

Let us recall that in the reference state, fB
*¼ pB

*. Of course, the integration

entails that we know the partial molal volume as a function of the pressure. As a
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special case, we shall see (viz. the following chapter) that for a mixture of ideal

gases, the molal partial volume of a constituent is equal to its molar volume when it

is pure.

7.9.3 Change in the Fugacity of a Component of a Mixture
of Real Gases with the Temperature

The change in the fugacity of the component with the temperature is given by the

relation

∂ln f B=∂Tð ÞP¼ HB
* � HB

� �
=RT2 ð7:18Þ

whereHB is the partial molal enthalpy of the component in the mixture at the given

pressure and temperature and HB
*is the molar enthalpy of the gas at the same

temperature in the reference state. The relation is obtained as follows. According to

(7.15)

R ln f B¼μB=T � μB
*=T

and according to the general properties of the chemical potential (viz. Chap. 5)

∂ μBTð Þ=∂T½ �P¼� HB =T
2

R ∂ln f B=∂Tð ÞP¼� HB =T
2þHB

*=T2

HB is the partial molar enthalpy of the gas at the pressure P. HB
* is that in the state

of reference, that is to say at a null total pressure. In these conditions the behavior of

the gas is the same as that of a gas which should be alone, at a very weak pressure.

Then its molar partial enthalpy in the reference state equates its molar enthalpy

when it is in pure state, at a very weak pressure HB
*:

HB
* ¼ HB

*

7.10 Determination of the Fugacity of a Gas in a Gaseous
Mixture

The determination of the fugacity of a gas in a gaseous mixture is possible. It is

carried out after obtention of the diagrams: total pressure/volume of the mixture and

subsequent determinations of partial molar volumes. The knowledge of the couples

of experimental data P–V for the mixture permits to determine the molar partial

volumes of the components of the mixture. Then, one carries out the integration by

graphical means. It can also be carried out by approached calculations.
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7.11 Fugacity and Heterogeneous Equilibria

Under some conditions, the values of the fugacities may be a criterion of equilib-

rium between different phases. We give two examples of this possibility here.

From a general standpoint, this criterion applies when one considers a closed

system constituted by two phases (or more). The whole system is closed but the

constituting phases are open systems. In principle, the general equilibrium concerns

three processes: the heat transfer, the changes in the limits of the phases (due to a

mechanical work), and the transfer of matter from one phase into the other. We are

only concerned here by the transfer of matter.

As a first example, let us consider the transfer of the species i from the phase α
(its solution) into the phase β (its vapor) at constant temperature and pressure. A

first criterion of equilibrium is the equality of the chemical potential of i in both

phases (viz. Chap. 5):

μi
α ¼ μi

β equilibriumð Þ

By replacing the chemical potentials by their expressions (7.16), we obtain

μB
�α þ RT ln f B

α=f B
�α ¼ μB

�β þ RT ln f B
β=f B

�β ð7:19Þ

The reasoning is the same as that followed in paragraph 3. Nothing precludes to

adopt the standard state of the vapor as the unique one for both phases. As a result,

we obtain

μB
�β þ RT ln f B

α=f B
�β ¼ μB

�β þ RT ln f B
β=f B

�β

that is to say

f B
α ¼ f B

β

The equality

f B solutionð Þ ¼ f B vapourð Þ

is the condition of this equilibrium (at constant temperature) provided that the

reference states of the species are the same in both phases.

Let us consider, now, the equilibrium, at constant temperature, of a species B

present in two immiscible solvents, as a second example. At the equilibrium, the

expression (7.19) is still verified. Let us suppose, now, that the standard potentials

in both phases μB�
α and μB�

β are equal. The condition of equilibrium is still

f B
α ¼ f B

β

64 7 The Fugacity Quantity

http://dx.doi.org/10.1007/978-3-319-46401-5_5


The common standard potential may be that of the vapor phase which would

simultaneously be in equilibrium with both solutions.

The criterion of equality of fugacities (in some conditions) is easier to handle

than that of the chemical potentials.

7.12 Other Use of the Fugacities

Outside what has been mentioned just previously about the theoretical interests

exhibited by the notion of fugacity, it also exhibits a strong practical one. We

confine ourselves to mention the fact that taking into account the fugacities in order

to study the equilibria between imperfect gases is essential.

A striking example is provided by us with the values of the equilibrium constant

of the reaction of synthesis of ammoniac by starting from dihydrogen and

dinitrogen. The equilibrium constant, determined at 450 �C from measurements

of partial pressures, does not cease to enhance with the total pressure. Its values are,

respectively, 6.59� 10�3 atm under 10 atm and 23.28� 10�3 under 1000 atm. At

600 atm, it is 12.94� 10�3. Taking into account the fugacities instead of partial

pressures, the equilibrium constant remains more and less constant (6.51–7.42� 10
�3 atm). At 1000 atm, it has the value 10.32� 10�3 atm. But, it must be noticed that

this latter is somewhat abnormal. This is probably not due to the failure of the

concept of fugacity but may be rather attributed to the simplifying rule of Lewis and

Randall used to calculate the fugacities. Hence, the last result does not question the

interest of the introduction of the fugacity in this field.

(The Lewis–Randall’s rule consists in setting up that the fugacity fi of the species
in the mixture is equal to the product of its molar fraction yi in the vapor phase by its
fugacity in the pure state at the temperature and total pressure of the system fi. It is
not reliable because it is based on a simplification which may or may not by far be

justified.)

7.13 Fugacity and the Gibbs–Duhem Relation

The Gibbs–Duhem equation can also be expressed in terms of fugacities. It can be

written (viz. Chap. 5) as

∂μ1=∂lnx1ð ÞT,P ¼ ∂μ2=∂lnx2ð ÞT,P ð7:20Þ
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Let us recall the fact that as such it is written above, it applies to a binary solution at

constant temperature and pressure. In order to express it in fugacity terms, it is

sufficient to use the relation (7.14) above. The relation being searched for is

∂f 1=∂lnx1ð ÞT, P¼ ∂f 2=∂lnx2ð ÞT, P ð7:21Þ
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Chapter 8

Ideal Solutions

Abstract In this chapter, some properties of solutions are recalled, especially those

of ideal solutions are mentioned. The notions of “ideality” and of “nonideality” of

solutions are central for the purpose. The considerations developed here, solely

from the viewpoint of classical thermodynamics, are important in order to provide

the reader with a good understanding of the chemical activity of every component

of a solution. Actually, here, the case of the solutions of nonelectrolytes is only

considered. That of the solutions of electrolytes is studied later. Also, the case of the

nonideal solutions is only tackled by opposition to that of the ideal solutions.

Definitions of perfect, ideal, and dilute solutions are given in relation to Raoult’s

and Henry’s laws by applying Gibbs–Duhem relation. Finally, the study of the

osmotic pressure as an example of a colligative property is carried out. The study of

colligative properties entails the knowledge of the properties of ideal solutions. The

properties of osmotic pressure are encountered several times in the book.

Keywords Ideal solutions • Perfect and sufficiently dilute solutions • Raoult’s

law • Gibbs–Duhem relation • Henry’s law • Colligative properties • Osmotic

pressure • Non-ideal solutions • Margules relations • Van Laar relations

In this chapter, we recall some properties of solutions. More specifically, we are

particularly interested in the ideal solutions. As we shall see it, the notions of

“ideality” and of “nonideality” of solutions are central for our purpose. The

considerations developed here are important in order to provide us with a good

understanding of the chemical activity of every component of a solution.

Ideal solutions have been the matter of a great attention, but their definition is

somewhat imprecise. Some authors, indeed, distinguish two kinds of ideal solu-

tions: the perfect solutions and the sufficiently diluted ones.

In this chapter, we only consider the case of the solutions of nonelectrolytes, and

that of the solutions of electrolytes will be studied later. In this chapter, that of the

nonideal solutions is only tackled by opposition to that of the ideal solutions.

Finally, we study the osmotic pressure as an example of a colligative property.

The study of colligative properties entails the knowledge of the properties of ideal

solutions. We focus ourselves on the study of osmotic pressure because it is

encountered several times in this book.
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8.1 Definition of Ideal Solutions

A solution is ideal when the chemical potential μi of all its components is a linear

function of the logarithm of its molar fraction xi, according to

μi ¼ μi* T; pð Þ þ RT lnxi ð8:1Þ

μi* is a constant, the value of which only depends on the temperature, pressure, and

identity of the component and is independent of the composition. Its physical

meaning is given below. However, at this point of the development, we can already

notice that μi*(T, p) is the chemical potential of the component i when it is pure

(xi¼ 1).

The formalism of this definition looks like the following ones, already men-

tioned (viz. Chap. 7):

μ ¼ μ� Tð Þ þ RT lnp pure perfect gasð Þ ð8:2Þ

μi ¼ μi
� Tð Þ þ RT lnpi component of a perfect gaseous mixtureð Þ ð8:3Þ

which express the chemical potential of a pure perfect gas or that of a component of

a perfect gaseous mixture. (Let us notice, once more, that in the denominators of the

arguments of the logarithms of relations (8.2) and (8.3), the pressures of 1 unity or

that of p� or pi� are omitted.)

A still greater analogy between relation (8.1) and another expression of the

chemical potential of gases—relation (8.4) just below and relation (8.13) of the

preceding chapter—does exist:

μi ¼ μyi
* T; pð Þ þ RT ln yi ð8:4Þ

It is interesting to notice that relation (8.1) is simply an integral solution of the

following differential relation:

dμi ¼ RT d lnxi ð8:5Þ

Expression (8.5), actually, constitutes the same definition of an ideal solution as that

expressed by (8.1). However (8.5) is interesting because it explains the distinction

between ideal, perfect, and sufficiently diluted solutions which can be considered as

differing, as we shall see it, by the values of their integration constants (viz.

paragraph 4 below).
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8.2 Ideal, Perfect, and Sufficiently Diluted Solutions

Some authors consider that the ideal solutions are constituted on the one hand by the

perfect solutions and, on the other, by the sufficiently diluted ones:

– The perfect solutions: They are ideal ones in the whole domain of concentra-

tions. In order that is the case, their different components must be chemically

similar. They obey Raoult’s law (viz. below). This kind of solution is rather

scarce. As an example, let us mention some mixtures of saturated hydrocarbons.

– The sufficiently diluted solutions: They are solutions in which their solute

(s) exhibit(s) an ideal behavior only in a limited domain of “concentrations.”

The solute obeys Henry’s law (viz. below). As soon as the solution is not

sufficiently diluted, its behavior is no longer ideal. The case of the sufficiently

diluted solutions occurs systematically, provided that the solutions are suffi-

ciently diluted.

In both kinds of solutions, the criterion of ideality is the subscription to the

relation (8.1), at least in some domain of concentrations.

8.3 Raoult’s Law

8.3.1 Raoult’s Law (Strictly Speaking)

In its original version, Raoult’s law stipulated that in a liquid solution so-called

ideal, the partial vapor pressure pi of each of its components i is proportional to its

molar fraction xi in the solution and to its vapor pressure pi
∘ when it is pure at the

pressure of the system, i.e.,

pi ¼ xi p
□ ð8:6Þ

This relation must be obeyed in the whole domain of “concentrations” of the

solution. As we shall see it, the subscription to Raoult’s law, actually, defines a

perfect solution (viz. paragraph 3.2). According to this law, also, the expression

(8.6) must be verified at every temperature and at constant total pressure. (However,

when the pressure remains moderated, the vapor pressures are quasi-independent of

the external pressure.)

It is more judicious, however, to use the generalized form of Raoult’s form in

which the vapor pressures are replaced by the corresponding fugacities in order to

take into account the fact that the vapors may no longer obey the perfect gas law.

Therefore, we obtain the following definition:
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f i ¼ xif
□ ð8:7Þ

where fi is the fugacity of every component i in the vapor state and in solution at

equilibrium of both phases as well (since they are identical for the same reference

state—see the preceding chapter) and f□ is its fugacity in the pure state at the same

temperature and pressure.1

Hence, the idealized Raoult’s law stipulates that in an ideal solution, actually

perfect, the fugacity of every component is proportional to its molar fraction for all

the concentrations.

The dependence of the partial vapor pressure and hence of the fugacities of both

components of a binary ideal solution on their molar fractions is given in Fig. 8.1.

8.3.2 Equivalence of the Definition of Perfect Solutions
and the Fact That the Solution Obeys Raoult’s Law

Actually, the subscription of a solution to the Raoult’s law is equivalent to the

definition (relation (8.1)) of the perfect solutions.

Fig. 8.1 Dependence of the

partial vapor pressures

(or fugacities) of the

components of an ideal

perfect solution on their

molar fractions: case of the

mixture of ethylene

bromide and propylene

bromide (according to
G.N. Lewis and M. Randall
in “Thermodynamics and
the free energy of chemical
substances,” Ed McGraw-
Hill Book Company, Inc,
New York and London,
1923)

1The fugacity in the standard state fi
�—viz. Chap. 9—must not be confused with the fugacity fi

□

introduced in Raoult’ law. The latter is the fugacity of the constituent in pure state at some

temperature and at the pressure of the system, whereas the former is that of the component in pure

state under a well-defined standard pressure, usually 1 atm. They become identical, of course,

under the pressure unity. fi
□ depends on the total pressure. It is not the case of fi

�. This remark also

applies to partial pressures.
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Let us suppose that the gaseous phase above the perfect solution exhibits an ideal

behavior. (This hypothesis has no incidence on the accuracy of the following result.

It is only adopted for the sake of simplification. If it were not verified, it should be

necessary to reason with fugacities.) The equilibrium condition for the component

i of both phases (viz. Chap. 5) is

μi solution ¼ μi vapor

Starting from the expressions (8.1) and (8.3), we obtain

μi* T; pð Þ þ RT lnxi ¼ μi
� Tð Þ þ RT lnpi ð8:8Þ

In the case of a perfect solution, the expression μi*(T, p) +RT ln xi applies to any

value of x (obligatorily, of course, located between 0 and 1). When the compound is

pure (xi¼ 1), its partial pressure pi is nothing different from its vapor pressure in the

pure state pi
o. According to (8.8), we obtain

μi* T; pð Þ ¼ μi
� Tð Þ þ RT lnpi

□ ð8:9Þ

Subtracting of expressions (8.9) from (8.8) leads to Raoult’s law (8.6).

From a more general viewpoint, equality (8.8) can be written as

μi* T; pð Þ þ RT lnxi ¼ μi
� Tð Þ þ RT ln pi=pi

�ð Þ

where pi
� is the partial pressure in the state of chemical potential μi�.

Hence, another definition of a perfect solution may be based on the agreement of

the behavior of the solution with Raoult’s law.

8.4 Behavior of the Second Component of a Binary Liquid
Mixture When the First One Obeys Relation (8.7)
in the Whole Range of Concentrations

We shall demonstrate that, in this case, the second component may also obey the

same kind of relation. The demonstration is founded in the Gibbs–Duhem relation.

• Relation of Gibbs–Duhem

We know (cf. Chap. 5) that for a system consisting in a solution composed of two

components in equilibrium with their vapor at constant temperature and pres-

sure, the Gibbs–Duhem relation provides us with information concerning the

changes in the chemical potentials of the components with their “concentra-

tions” in solution. This information is accessible through the following relation:

∂μ1=∂lnx1ð ÞT, P � ∂μ2=∂lnx2ð ÞT, P¼0 ð8:10Þ

• Demonstration
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The proposition is demonstrated as follows. According to the relation (7.14) of

Chap. 7

dμi ¼ RT d ln f i

and according to (8.10), we obtain

∂ln f 1=∂ln x1ð ÞT, P¼ ∂ln f 2=∂ln x2ð ÞT, P ð8:11Þ
When the vapor has the behavior of a perfect gas, we can replace the fugacity of

a component by its vapor pressure; thus we obtain

∂lnp1=∂lnx1ð ÞT, P¼ ∂lnp2=∂lnx2ð ÞT, P

where p1 and p2 are the vapor pressures of components 1 and 2 when there is

equilibrium between the solution of composition x1 and x2 and the vapor.

Since the Raoult’s law applies to compound 1 by hypothesis, we can write

f 1 ¼ x1f
□
1

Taking the logarithms and derivating with respect to x1, at constant temperature and

pressure, we obtain

d ln f 1 ¼ d lnx1

or

∂ln f 1=∂lnx1ð ÞT,P ¼ 1

since f1
□ is constant for a given pressure and temperature. According to (8.11), we

immediately find

∂ln f 2=∂lnx2ð ÞT, P¼1 ð8:12Þ

After integration, we obtain

f 2 ¼ k x2 ð8:13Þ
where k is the integration constant. From this result, we can distinguish two cases:

– When x2¼ 1 the component (8.2) is pure. The fugacity f2 becomes equal to f2
□.

As a result,

f 2 ¼ x2 f
□
2

This means that the Raoult’s law also applies to component 2. The solution is a

perfect one.

– When the relation (8.13) is not verified up to x2¼ 1, the constant k is no longer

equal to f □2 . Nevertheless, it is true that, according to (8.13), there remains a

linear relation between the fugacity of component 2 and its molar fraction

somewhere in the domain 0< x2< 1. The solution is no longer perfect, but it

is still ideal. We can remark that relation (8.12) may be obtained directly from
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the definition (8.5) of an ideal solution, owing to the existing general expression

of the chemical potential as a function of the fugacity (viz. Chap. 7). This result

is again considered during the study of Henry’s law.

8.5 Diluted Solutions: Henry’s Law

In the case of diluted solutions, the difference in the behaviors of the solute and of

the solvent must be stressed. Usually, one names solvent and solute the components

which are, respectively, in the larger and lesser quantities. Their molar fractions are

x1 and x2. in a binary solution.

8.5.1 Henry’s Law

Experimentally, it is found that in a diluted solution:

– The behavior of the solvent tends toward that described by Raoult’s law, even if

it is less marked when the solution under study becomes more and more

concentrated in solutes. More precisely, the more diluted the solution is, the

more the solvent tends to have a perfect behavior, that is to say

f 1 ! x1f
�
1 for x1 ! 1 diluted solutionð Þ ð8:14Þ

– Simultaneously, the behavior of the solute is not that of a solute in a perfect case.

It is experimentally found that in a diluted solution, at constant temperature, the

vapor pressure (fugacity) of a solute is proportional to its molar fraction, as it is

the case in a perfect solution, but the proportionality constant is not the same.

These points are expressed by Henry’s law.

The proportionality constant is called the Henry’s constant kH. The more diluted

the solution is, the more the law verified is (Fig. 8.2). It is symbolized by

f 2 ! kHx2 when x2 ! 0 ð8:15Þ

in which the index 2 designates the solute, with the index 1 designating the solvent.

The law expressed in terms of vapor pressure is

p2 ¼ kHx2 when x2 ! 0

In order to illustrate these points, we give some numerical values of Henry’s

constant for dinitrogen kH (19.4 �C)¼ 8.32� 104 atm, oxygen kH (23 �C)¼
4.59� 104 atm, and dihydrogen kH (23 �C)¼ 7.76� 104 atm. These values have

been obtained for a partial pressure of 2.6 atm for each gas.
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Henry’s law applies to all diluted solutions.

From a vivid and purely qualitative standpoint, one can consider that Henry’s

law is verified when the solution is sufficiently diluted such as each molecule of

solute only sees molecules of solvent all around it. In these conditions, the “escap-

ing tendency” of the solute becomes proportional to its molar fraction.

8.5.2 Henry’s Law and Other Expressions
of the Composition of the Solution

Henry’s law can be settled with other unities than the molar fraction x. For example,

the expression of Henry’s law in terms of molalities is found after the following

reasoning. For the solute in a binary solution

x2 ¼ n2= n1 þ n2ð Þ

where ni is the number of moles of each species. Since the law only applies to very

dilute solutions, n2 is negligible in the denominator, whence

x2 � n2=n1

Since also the molality m2 of the solute is its number of moles for 1000 g of pure

solvent (viz. Chap. 1), we find

m2 ¼ 1000n2= n1M1ð Þ

Fig. 8.2 Differences between Raoult and Henry laws
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where M1 is the molar mass of the solvent in g mol�1. The relation (8.15) may be

written as

f 2 ¼ k0H n2=n1

f 2 ¼ k
00
Hm2

k
0
H and k

00
H being composite constants grouping the previous ones.

(Remark: Other interpretation of Henry’s law: it is often presented in literature as
governing the equilibria involving the solubilities of gases in liquids.)

8.6 About the Differences Between Henry’s
and Raoult’s Laws

Let us recall that in terms of fugacity Raoult’s law is expressed by

f 2 ¼ f □2 x2 ð8:16Þ

whichever the component is (here it is the solute). The comparison of relations

(8.15) and (8.16) shows that the values of the proportionality constants between the

fugacity and the molar fraction differentiate both types of behaviors: kH 6¼ f 2
□. The

“slopes of the Raoult and Henry” are not the same. Figure 8.2 illustrates this point.

One may consider that a dilute solution is an ideal solution since there is linearity

between the fugacities of the components and their molar fractions. But it is only

ideal and not perfect because this linearity is verified in an only limited range of

composition, that of great dilution, in any case for the solute. It is an ideal solution

said sufficiently diluted.

Finally, other difference, in a perfect solution: the behaviors of the components

are perfectly analogous.

These definitions and properties are based on experimental results obtained

within the framework of classical thermodynamics. Later, we shall reconsider

these points under the light of statistical thermodynamics.

8.7 Fundamental Interest of Raoult and Henry’s Laws

The principal difficulty encountered in the study of solutions lies in the fact that

classical thermodynamics provides us with no information concerning the depen-

dence of the chemical potential of a solute on its “concentration” in the solution.

The only one very interesting relation in this field is that of Gibbs–Duhem which

applies to a homogeneous phase (viz. Chap. 5 and above). It is evident that Raoult

and Henry’s laws bring us supplementary precious information.
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However, we must notice that these laws are empirical. Besides, there exist some

mathematical expressions, not founded on theoretical basis, which satisfactorily

describe changes in vapor pressures of solutes as a function of the “composition” of

the solution. They are Margules and van Laar laws (viz. paragraph 9 under).

8.8 Consequences of the Ideal Character: Partial Molal
Enthalpies and Partial Molal Volumes
of the Components of an Ideal Solution

In this chapter, let us confine ourselves to notice that:

– The partial molal enthalpyHm i of every component i in an ideal solution is equal
to its molal enthalpy in the pure state Hm i

□. As a result, the relation

H ¼ n1Hm 1 þ n2Hm 2 þ � � �

which is always valid (viz. Chap. 4) becomes in the case of an ideal solution

H ¼ n1Hm1
□ þ n2Hm 2

□ þ � � �

The total enthalpy of the solution H is equal to the sum of the enthalpies of the

pure compounds. Hence, there is no thermal effect when a mixture of the

components of an ideal solution is realized.

– There is no volume change when the liquid components of an ideal solution are

mixed. This result comes from the fact that the partial molal volumes Vm i of

every component of the ideal solution are equal to their molal volumes Vm i
□ in

pure state, at the same temperature and pressure.

– The entropy change ΔS resulting from the mixture of two pure components by

forming one mole of ideal solution is given by the expression

ΔS ¼ � x1R lnx1 � x2R lnx2

where x1 and x2 are the molar fractions of both components in the mixture and

R the perfect gas constant. It is particularly noticeable that the entropy of mixing

is inevitably positive.

8.9 Colligative Properties

The above lines of arguments concerning Raoult and Henry’s laws are very close to

those rationalizing the colligative properties of solutions.
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The latter ones essentially depend on the quantities of matter rather than on their

nature. They are accompanied by some phenomena such as the boiling point

elevation of solutions, the lowering of freezing point of a solution, and the occur-

rence of the osmotic pressure. They can be used for the determination of the

activities.

In this chapter, we confine ourselves to the study of the osmotic pressure because

it has been the matter of several works which relate it to the activities. We shall

encounter the osmotic pressure several times in this book. (In Chaps. 13 and 14 we

shall give the principle of the method of determination of activities based on the

measure of the depression of the freezing point of the solvent in a solution.)

8.10 The Osmotic Pressure

Let us consider the apparatus with the form of a U shown in Fig. 8.3. It is made up of

two compartments separated by a membrane M. At the beginning of the experience,

both compartments are filled by the pure liquid 1 which will play the part of the

solvent. This liquid can permeate the membrane. One of the compartments (on the

left side for example) is equipped with an aperture allowing the addition of a solute.

The solute cannot pass through the membrane and when it is added it will be

confined in the compartment on the left.

At the beginning, the solute is not added. The level of the liquid is the same in

both compartments because they are under the same pressure P0. Hence, we can set

up the equality (which is a condition of equilibrium at the same temperature and

pressure—see Chap. 7):

f •1 leftð Þ ¼ f •1 rightð Þ
where f1

• is the fugacity of the pure solvent.

Fig. 8.3 Apparatus to display the occurrence of an osmotic pressure (end of the experience: same

level of solvent recovered)
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When the solute is added into the left compartment, we notice an enhancement

of its level. There has been a moving of the solvent from the right to the left, through

the membrane. The chemical potential of the liquid in the right compartment has

not changed because its thermodynamic state has not varied. As a result, its

chemical potential remains the same, with the value f1
• (right). The conclusion

which can be drawn is the following one: because of the addition of the solute, the

fugacity of the solvent in the left compartment f1 (left) has decreased (since there

has been a spontaneous transfer of the solvent from the right to the left):

f 1 leftð Þ < f •1 rightð Þ

f1 (left) is the fugacity of the solvent in the left compartment after addition of the

solute, before the subsequent equilibrium has been established. In order to bring

back an identical level of liquid in both compartments, a supplementary pressure π,
called osmotic pressure, must be applied on the compartment containing the solute.

One can draw an expression relating π to the concentration of the solute.

The reasoning leading to it is the following. For the equilibrium to be brought

back, the new, nonequilibrium fugacity f1 (left) must be modified so that the

following equality is satisfied again:

f 1 leftð Þ ¼ f •1 rightð Þ

At constant temperature, f1 depends on the pressure and concentration of the solute.
Hence, we can write (the index 2 corresponding to the solute)

d ln f 1 ¼ ∂ln f 1=∂pð ÞT, x2dpþ ∂ln f 1=∂x2ð ÞP,Tdx2

When the identical level of liquid in both compartments is brought back, there no

longer exists a change in f1 and

d ln f 1 ¼ 0

whence

∂ln f 1=∂pð ÞT, x2dp ¼ � ∂ln f 1=∂x2ð ÞP,T dx2 ð8:17Þ

Owing to the general relation (viz. Chap. 7)

∂ln f =∂pð ÞT ¼ Vm=RT ð8:18Þ

that is to say, in the occurrence

∂ln f 1=∂pð ÞT ¼ Vm 1=RT
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where Vm 1 is the partial molal volume of the solvent. Equation (8.17) may, hence,

be written as

Vm 1 =RT ¼ � ∂ln f 1=∂x2ð ÞP,T dx2 ð8:19Þ

The partial derivative of the right-hand side of (8.17) can be simplified provided

that the solution in the left compartment is sufficiently diluted. Since it is the case

for our reasoning, the solvent obeys the Raoult’s law:

f 1 ¼ f 1
• x1

and

f 1 ¼ f 1
• 1� x2ð Þ

ln f 1 ¼ ln f 1
• þ ln 1� x2ð Þ

dln f 1 ¼ d ln 1� x2ð Þ
d ln f 1 ¼ d 1� x2ð Þ= 1� x2ð Þ
d ln f 1 ¼ �dx2= 1� x2ð Þ

As the solution is diluted,

1� x2ð Þ � 1

∂lnf 1=∂x2ð ÞP,T ¼ �1

Reporting this relation into (8.19), it results in

Vm 1=RT
� �

dp¼dx2 ð8:20Þ

In very dilute solution, the partial molal volume Vm 1 does not differ appreciably

from its molar volume in the pure state Vm 1
•:

Vm 1 � Vm 1
•

Taking into account this approximation and integrating equation (8.20) from the

pressure P0 to the total pressure P acting on the left compartment, once the

equilibrium is brought back it leads to the expression

P� P0 ¼ RT=Vm 1
•½ �x2

or

π ¼ RT=Vm 1
•½ �x2 ð8:21Þ
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This is the expression searched for, called the Van’t Hoff’s relation. It is possible to

go further into the approximations by considering, again, that the solution is

sufficiently diluted so that the following approximation should be valid:

x2 � n2 =n1

and hence

π ¼ RT n2= n1vm 1
•½ � ð8:22Þ

By taking into account the total volume of solvent (in the left compartment)

V ¼ n1vm 1
•

we obtain

π ¼ n2 RT=Vð Þ ð8:23Þ

Relation (8.23) is formally identical to that of perfect gases. Relations (8.22) and

(8.23) are also named Van’t Hoff’s relations.

For indicative purpose, for molar concentrations in saccharose equal to 0.098

and 1.000 mol L�1 in water, osmotic pressures of 2.60 and 26.64 atm are observed.

Relation (8.23) shows that the measured properties are rather a functional of the

number of moles than of their nature.

The quantity osmotic pressure indirectly plays an important part in the domain of

the determination of activities and also in that of their physical meaning as we shall

see it later.

8.11 Nonideal Solutions

Aside from the Gibbs–Duhem’s relation which is based on theoretical foundations

and which also applies well to nonideal solutions, there also exist relations from

purely empirical origin relating the fugacities of liquid components of binary

nonideal solutions to their molar fractions. Two examples are those of Margules

and van Laar. They are capable of representing the positive and negative deviations

of their vapor pressures with respect to the ideal behavior. There exist several other

relations of this kind which, even, may reasonably describe the behavior of some

nonideal solutions which are more complex than the binary ones (viz. Chap. 16).

8.11.1 Margules’ Relations

Margules’ relations are, respectively, for the solvent and the solute:
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f 1 ¼ x1 f 1
□exp 1=2β1 x

2
2 þ 1=2γ1 x

3
2 þ � � �� � ð8:24Þ

f 2 ¼ x2 f 2
□exp 1=2β2 x

2
1 þ 1=2 γ2 x

3
1 þ � � �� � ð8:25Þ

f1
□ and f2

□ are, respectively, the fugacities of both liquids in their pure state.

Constants β1, β2, γ1, and γ2 are obtained experimentally from measurements of

values of partial vapor pressures at different molar fractions. These constants are

not independent from each other.

8.11.2 Van Laar Relations

Van Laar relations constitute an interesting alternative to those of Margules. They

are for both components of a binary solution:

f 1 ¼ x1 f 1
□exp α1x

2
2= β1x1 þ x2ð Þ2

h i
ð8:26Þ

f 2 ¼ x2 f 2
□exp α2x

2
1= x1 þ β2x2ð Þ2

h i
ð8:27Þ

The constants are not, of course, the same as those of the Margules’ relations.

Remark: There exist other Margules and van Laar relations which are more

complicated than those given above.
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Chapter 9

Definitions of an Activity

Abstract A way to express the chemical potential of a compound consists in using

the quantity named activity.

It will be seen that the handling of activities necessarily requires the choice of

thermodynamic standard states, choice which is fully arbitrary. But, actually, some

choices are quasi-systematically done rather than others, according to whether the

studied species is either in gaseous state or into a solution and, also, according to the

studied system. Hence, it is not surprising that a great part of the considerations

concerning the activities is devoted to the standard states and to their choice.

In this chapter, the examination of the definitions of an activity is carried out,

since an activity of a compound can be defined according to two ways, one through

its fugacity and the other directly without involving the notion of fugacity. The

consequences of the arbitrary character of the choice of the standard states are

considered later. Finally, some general properties of the activities are mentioned. It

is the case of their changes with the temperature and pressure.

Keywords Activity/definitions • Standard states • Standard chemical potential •

Arbitrary character of the chemical potential • Activity coefficient • Activity and

temperature • Activity and pressure

A way to express the chemical potential of a compound, distinct from that which

involves directly the notion of fugacity, consists in using the quantity named

activity. Generally speaking, it is easier to handle than the activity in the case of

solutions whereas it is the converse in the case of gases. However, both notions can

apply to each of the two phases. In addition, they are intimately linked.

We shall see that the handling of activities necessarily requires the choice of

thermodynamic standard states, choice which is fully arbitrary. But, actually, some

choices are quasi-systematically done rather than others, according to whether the

studied species is either in gaseous state or into a solution and, also, according to the

studied system. Hence, it is not surprising that a great part of the considerations

concerning the activities is devoted to the standard states and to their choice. In this

chapter, we also examine the consequences of the arbitrary character of their

choice. Finally, we mention some general properties of the activities, i.e., their

changes with the temperature and pressure.
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9.1 Definitions of the Activity

Before all, we must distinguish the activity aB or (B) of a species B from its absolute

activity λB. This last notion is only used in statistical thermodynamics. It will be

defined in Chap. 24. Now, we focus our attention on the notion of activity as it is

usually understood. It is also named relative fugacity and even relative activity as
opposed to the absolute activity.

We may consider that there exist two definitions of the activity of a compound.

In the first one, it is defined by starting from its fugacity. In the second, it is defined

from the chemical potential of the species that it must characterize.

9.1.1 Starting from the Notion of Fugacity

The activity ai of the species i in a given thermodynamic state is defined as being

equal to the ratio of its fugacity fi in this state and of its fugacity fi
� in another state

called the standard state, generally chosen at the same temperature than the

previous one, that is to say

ai ¼ f i=f i
� ð9:1Þ

At first glance, we see that an activity is a dimensionless number. (Let us notice that

IUPAC defines the notion of activity without any mention of that of fugacity.)

9.1.2 Starting from the Notion of the Chemical Potential

The handling of relation (9.15) of Chap. 7 permits to express the chemical poten-

tials μ and μ� of the studied compound in the state of the system and in the standard

state by the relations

μi ¼ μi*þ RT ln f i

μi
� ¼ μi*þ RT ln f i

�

This kind of expressions apply to only one species present in the system and to a

mixture as well since a chemical potential is a partial molal quantity. Subtracting

the latter expression from the former gives

μi � μi
� ¼ RT ln f i= f i

�ð Þ

μi � μi
� ¼ RT ln ai ð9:2Þ
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If we consider the previous definition, the activity gets naturally through the

operation. Nevertheless, this is not a definition but it suggests the following one.

There is nothing which can stop the setting up of a new quantity, the activity,

which characterizes the chemical potential of a compound, the change of which is

in linear relation with its logarithm, that is to say which obeys to the expression

dμi ¼ RT dln ai ð9:3Þ

After integration, relation (9.3) gives an expression of the following kind (where

Cte is the integration constant):

μi ¼ Cteþ RT ln ai ð9:4Þ

Hence, the second definition of an activity consists, without any consideration of

the notion of the fugacity, in setting up that the activity is related to the chemical

potential of the solute, which is measured by it, through relation (9.4). (Let us notice

that IUPAC, in agreement with what is just said, defines the notion of activity

without any mention of fugacity.)

The definition (9.4), of course, is incomplete because of the occurrence of the

integration constant which can take any value. Since, in a given thermodynamic

state, there is only one value of the chemical potential of a species and given the fact

it is given by the expression (Chap. 7)

μi ¼ μi
� þ RT ln

f i
f i
�

it results from its comparison with (9.4) that

Cte ¼ μi
�

whence the expression

μi ¼ μi
� þ RT ln ai ð9:5Þ

μi
� is called the standard chemical potential of i. It is a constant which only depends

on the nature of i and on the temperature. The relation (9.5) may also be written as

ai ¼ exp μi � μi
�=RT½ � ð9:6Þ

It is interesting to realize that the standard potential μi� is, in principle, different

from the integration constant μi * of the relation (9.15) in Chap. 7. Actually, it is the
introduction of the notion of activity which imposes the notion of standard potential

μi�. Moreover, according to the two ways through which an activity is defined, it

appears that both definitions of an activity are in full agreement.
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Remark: The different expressions expliciting the second definition of an activ-

ity also involve the fact that an activity must be a dimensionless number since it

arises in the argument of a logarithm.

9.1.3 Consequence of the Arbitrary Character
of the Standard State

The immediate consequence of the arbitrary character of the choice of the integra-

tion constant of relation (9.4), i.e., of the standard state, is that different choices

must lead to different values of the activity of a compound in the same thermody-

namic state! This is the reality.

This point is significantly unknown since, actually, some standard states are

more judicious in their using than others and, because of that, they are quasi-

universally chosen. In such conditions, the problem may not arise.

9.1.4 Definition of the Standard Chemical Potential
of a Species

By considering the relation (9.5), it appears that the standard chemical potential of a

species is its chemical potential when its activity is equal to unity. This definition of

the standard chemical potential is general, but it is purely formal (viz. paragraph 4).

9.2 The Activity Coefficient

Let us recall (vis Chap. 6) that the activity of a species is related to its “concentra-

tion” by a general relation of the kind

γi ¼ ai=Ci ð9:7Þ

γi is the activity coefficient of the species.

An activity coefficient is defined as being a dimensionless number whichever the

“concentration” unit is, if ever it does possess one. When this is the case, in order to

respect this definition, the activity coefficient must be defined by an expression of

the type

γi ¼ ai= Ci=Ci
�ð Þ

where Ci
� is the “concentration” of the species in a particular state (viz. under), with

Ci
� being expressed with the same units as Ci.
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(Let us notice in passing that in the case of a gas (viz. Chap. 7), since the partial

pressure of a gas is an expression of the number of moles of the species in the

mixture, one can consider that the fugacity coefficient has the significance of an

activity coefficient.)

We shall see in the following chapters that there exist several kinds of activities.

A particular symbolism takes this point into account.

9.3 A First Sight of the Physical Significance
of the Quantities Activity and Activity Coefficient

We have seen in Chap. 8 that, in the case of a perfect solution, the chemical

potential μi of every component obeys the expression

μi ¼ μ p
i þ RT lnxi

where μi
p is its chemical potential in its pure state and xi its molar fraction. Let us

also recall that for every mixture exhibiting an ideal behavior, the chemical

potential of every component depends on its “concentration” according to the

expression

μi ¼ Cteþ RT lnCi ð9:8Þ

where Cte is a constant.

When the mixture is not ideal, that is to say when the electrostatic interactions

between the species are not negligible—viz. Chap. 6—G.N. Lewis has introduced

the quantity activity in such a manner that the chemical potential of every compo-

nent may be written as

μi ¼ Cteþ RT lnai ð9:9Þ

where the constant Cte in both last relations is the same (viz. relation 6.4—Chap. 6).

• We see that the significance of the activity ai is that of a virtual concentration

(sometimes, we speak of a pseudo-concentration or of a corrected concentra-

tion). It confers the same chemical potential to the component i as that it would
have if it were at the concentration Ci in the mixture of the same composition,

should it be ideal.

• Another physical significance of the activity appears after consideration of

relation (9.2). It is absolutely compatible with the previous one. We can note

that, through its logarithm, it measures the Gibbs energy difference between the

considered and standard states. It is a measurable quantity by measuring the

work which must be developed in order to perform this change (viz. Chap. 2).

Hence, we can deduce that an activity is a measurable quantity (see, however,
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the case of ions—Chap. 12). The following reasoning confirms this point. Let us

write the chemical potentials of the compound expressed as functions of the

fugacities:

– In the standard state

μi ¼ μi
� þ RT ln f i

�

– In every state

μi ¼ μi
� þ RT ln f i

The crossing from the first to the second state is endowed with the change in

the molar Gibbs energy ΔG�:

ΔG ¼ RT ln f i=f i
�

ΔG ¼ RT ln a
i

Since the chemical potential is a molar quantity (viz. Chap. 5), it appears that

an activity is endowed with a meaning of a change in the molar Gibbs energy

accompanying a process evolving from the standard state till some other state.

• In order to grasp the meaning of the activity coefficient, it is sufficient to write

(9.9) again and to introduce the expression (9.7) of the activity into it and,

finally, to compare the obtained relation (9.10) with (9.8). We obtain

μi ¼ Cteþ RTlnγi þ RTlnCi ð9:10Þ

At once, we realize that the term RT ln γi, that is to say the activity coefficient,

represents the part of the chemical potential (belonging to the compound i) due to
its electrostatic interactions. In a way, this term quantifies the gap in “ideality.”

9.4 A First Return to the Standard State

We have seen that the standard chemical potential of a species is its chemical

potential when its activity is equal to unity. This definition is only a purely formal

one because it does not specify the thermodynamic state in which the species is

endowed with an activity unity, that is to say its standard state. It remains to

specify it.

Let us begin by stressing the fact that there exists no particular temperature

recommended to define a standard state. More precisely, standard states are defined

for a given temperature, arbitrarily chosen by the experimenter but, for practical

reasons, chosen as being that of the studied process.

The two following chapters devoted to the activities of gases and to the solutions

of nonelectrolytes will explicit this notion of standard state.
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9.5 Consequences of the Arbitrary Character
of the Standard State

The arbitrary character of the choice of the standard state induces the legitimate

question of the credibility of the numerical values of the thermodynamic quantities

obtained through the handling of the activities. Here, we give a first answer. A first

answer is that the arbitrary character of the choice of the standard state has no

impact on the value of the Gibbs energy change accompanying a process and, also,

has no impact on the changes of other thermodynamic state functions. We will go

deeper into the discussion with the help of the consideration of some equilibria

taking into account activities (viz. Chap. 19).

In order to conclude this point, we must first have in mind that the activity of a

species is a direct measure of the difference of the partial molal Gibbs energies

(chemical potentials) accompanying the crossing of the compound i from the

chosen standard state to that studied (viz. paragraph 1), that is to say

μi � μi
� ¼ RT lnai

The very fact that the change in the Gibbs energy is constant is demonstrated as

follows.

Let us consider the crossing of one mole of gas from a gaseous mixture 1 to a

gaseous mixture 2 at constant temperature and pressure. Let us study this transfer

in two cases. The first one consists in choosing the state α as standard state

(process 1), and the second consisting in choosing the state β as the standard state

(process 2). For the process 1, the Gibbs energy change ΔG12 is (using the function

fugacity—viz. Chap. 7)

ΔG12
α ¼ RT ln f 2 þ C Tð Þ½ � � RT ln f α

� þ C Tð Þ½ ��
RT ln f 1 þ C Tð Þ½ � � RT ln f α

� þ C Tð Þ½ �f g

and for the process 2

ΔG12
β ¼ RT ln f 2 þ C Tð Þ½ � � RT ln f β

� þ C Tð Þ
h i

� RT ln f 1 þ C Tð Þ½ � � RT ln f β
� þ C Tð Þ

h in o

These relations are justified by the fact that fugacities of the solute f2 and f1 remain

the same whatever the chosen standard state. Once the reference state is chosen and

maintained, indeed, the fugacities do possess a well definite value. However, they

are different in mixtures 1 and 2 since, owing to the process(es), the state(s) of the

system have changed. Both standard states, quite evidently, exhibit the different

fugacities fα
� and fβ

�. According to these relations
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ΔG12
α ¼ RT ln f 2 � RT ln f α

� � RT ln sf 1 � RT ln f α
�

ΔG12
α ¼ RT ln f 2=f α

� � RT ln f 1=f α
�

ΔG12
α ¼ RT lna

00
α � RT lna0α

and also a
00
α, a

0
α, a

00
β, and a

0
β are the activities in the mixtures 2 and 1 according to the

standard states α and β. The difference in the molar Gibbs energy accompanying the

crossing from the states 1 to 2 (same final and initial states) is obligatorily the same,

whatever the standard state; thus we obtain

ΔG12
α ¼ ΔG12

β

ΔG12
β ¼ RT lna

00
β � RT lna0β

It can be deduced from this thought experiment that the difference in the molar

Gibbs energy is independent from the standard states, whence the proposal.

One consequence of this fact is that the ratio of the activities in the same

experimental conditions a and a0 based on two different standard states is constant

whatever its concentration is. Since the standard states are different, the fugacities

in them are f� and f�0 and the activities based on them are

a ¼ f=f � and a0 ¼ f=f �0

The ratio of activities is

a=a0 ¼ f �0=f �

since the fugacity f is the same. The ratio of activities is evidently a constant at a

given temperature.

We shall see later, especially when we shall consider the case of the electrolytes

and also the equilibria in which they take part, that the last sentence must be

somewhat shaded. Let us anticipate this point by saying that if the arbitrary choice
of the standard states does not change the value of the Gibbs energy of an
equilibrated process, it does change the value of the equilibrium constant.

9.6 Some Properties of the Activity Function

9.6.1 Dependence of the Activity on the Pressure

The fugacity in the standard state is defined at a constant pressure. As a result

∂ln f �=∂p ¼ 0

and concerning the activities
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∂lna=∂pð ÞT,x ¼ ∂ln f=f �ð Þ=∂p½ �T,x
∂lna=∂pð ÞT,x ¼ ∂lnf=∂pð ÞT,x
∂lnf=∂pð ÞT,x ¼ Vm=RT

ð9:11Þ

because of the properties of the fugacity function (viz. Chap. 7, paragraph 5). Vm is

the partial molal volume of the solute in the solution and in the conditions of the

experience.

9.6.2 Dependence of the Activity on the Temperature

Let us again consider one of the definitions of an activity and divide the

corresponding relation (9.2) by T. We obtain

R ln a¼ μ=T � μ�=T

μ=T ¼ μ�=T þ R lnf � R lnf �
ð9:12Þ

Let us differentiate this relation with respect to T. Owing to the properties of the
fugacity function (viz. Chap. 7), we obtain

∂ μ=Tð Þ=∂T½ �P, x ¼ � Hm=T
2 ð9:13Þ

∂ μ�=Tð Þ=∂T½ �P,x ¼ � Hm
*=T

2 ð9:14Þ

Let us recall that Hm is the partial molal enthalpy of the component at the

pressure and temperature of the system.

Now, it is interesting to anticipate the considerations concerning the standard

states which are in the following chapter. They mention thatHm
* is the partial molal

enthalpy of the solute when its behavior is perfect at the pressure of one unity, that

is to say in the standard state and thatHm
* is also equal toHm

* in the reference state,

as it is indicated by the superscript. Since the behavior is ideal both in the reference

and ideal states, we obtain

Hm
* ¼ Hm

*

The molal enthalpy Hm
* in the reference state is equal to its molal standard

enthalpy, that is to say in the pure state Hm
�, under the pressure unity (viz. course in

thermodynamics)
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Hm
* ¼ Hm

�

As a result, according to (9.14)

∂ln a=∂Tð ÞP,x ¼ Hm
� � Hm

� �
=RT2 ð9:15Þ

The difference Hm
� � Hm

� �
is the change in enthalpy accompanying the transfer

of one mole of species from the solution to the pure state under the pressure unity.
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Chapter 10

Activities of Gases

Abstract Although equilibria in gaseous state are the most often studied by

handling fugacities, they can also be studied by handling activities. With the

study of solutions in mind, it is however interesting, in a first step, to introduce

the notions of activity and of standard states in the case of gases. This first approach

is easier to grasp than that followed directly for the study of solutions and may be

used for an introduction of the latter ones.

The considerations mentioned in the chapter show that several standard states

can be indifferently chosen for the definition of the activities of gases; some are

easier to handle than others. The fact that several standard states can be chosen

leads to the conclusion that, actually, there are several kinds of activities charac-

terizing the same compound. Moreover, the chapter contains a comparison between

reference states and standard states.

Keywords Standard state • Activity of a pure gas • Activity of a gas in a gaseous

mixture • Reference state • Chemical potential of a gas • Other standard states

Although equilibria in gaseous state are the most often studied by handling fugac-

ities, they can also be studied by handling activities.

With the study of solutions in mind, it is however interesting, in a first step, to

introduce the notions of activity and of standard states in the case of gases. This first

approach is easier to grasp than that followed directly for the study of solutions and

may be used for an introduction of the latter ones.

10.1 Usual Standard State and Activity of a Pure Gas

The standard state of a pure gas is that in which it would exhibit an ideal behavior

under a well-definite pressure, called the standard pressure, at the chosen temper-

ature. The standard pressure most often retained is the pressure unity (historically:

1 atm). It is a hypothetical state since gases are no longer ideal at this pressure (with

the exception of dihydrogen in some conditions).

• Perfect gas
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Since the fugacity of a perfect gas is equal to its pressure (viz. Chap. 7), its

standard state is usually that of fugacity unity ( f � ¼ 1 atm) at the chosen

temperature. But, we must pay attention. This is true only if the gas is perfect.

One gas, indeed, the behavior of which is nonideal, may exhibit one fugacity

equal to the unity by numerical accident. However, it is not its standard state.

According to the general definition of an activity (viz. Chap. 9)

a ¼ f=f �

If in this state, f � ¼ 1 unity,

whence

a ¼ f=1 perfectgasð Þ ð10:1Þ

In other words

a ¼ f perfect gas : numerical valuesð Þ ð10:2Þ

Hence, with the choice of the standard state such as f � ¼ 1 unity, the activity of a
perfect gas is equal to its fugacity. Moreover, since its fugacity is equal to its
pressure, its activity is also equal to its pressure:

a ¼ p

It is interesting to notice that, since the gas is perfect, its fugacity is always equal

to its pressure, including its pressure in the standard state, whence the above

expression of its activity. When the pressure in the standard state is different

from 1 unity

a ¼ p=p� perfect gasð Þ ð10:3Þ

It is also interesting to notice that with the standard state such as fi
� ¼ 1 unity, we

can write

μi ¼ μi
� þ RT lnf i=f i

�

μi ¼ μi
� þ RTln f i numerical valuesð Þ

and, also, since (viz. Chap. 7)

μi ¼ μi* þ RT lnf i numerical valuesð Þ

As a result

μi
� ¼ μi* perfect gas; f i

� ¼ 1unityð Þ
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Owing to this choice of standard state, the chemical potential of the perfect gas

i is equal to the integration constant of the equation permitting the introduction

of the fugacity of a gas (viz. Chap. 7).

It is demonstrated in Chap. 26, relation (26.11), that

μi
� ¼ �kTln 2πmkT=h2

� �3=2
kT

h i
perfect monoatomic gasð Þ

This relation, stemming from a reasoning of statistical thermodynamics (viz.

Chap. 26), is interesting since it provides us with an expression, in concrete

molecular parameters, of the standard chemical potential. When it is introduced

only in classical thermodynamics, as it has been done up to now, the latter,

indeed, appears to be a rather mysterious quantity.

• Real gas

The usual standard state is the same as previously. It is the hypothetical state in

which the gas would exhibit an ideal behavior at the standard pressure

P� ¼ 1 atm, at the chosen temperature.

In the standard state, because of the (hypothetical) ideal behavior of the gas,
f� ¼ p �. With p� ¼ 1 atm, we find

f � ¼ 1atm

The standard state remains that for which the numerical value of its activity a is

equal to the value of its fugacity f �, at a given temperature, that is to say to the

unity

a ¼ f �=1 standard stateð Þ ð10:4Þ

a ¼ 1 standard stateð Þ ð10:5Þ

However, in every state of the gas, its fugacity is different from its pressure (if it

were the contrary, it would be no longer real on the contrary of the hypothesis).

The fugacity coefficient is different from 1. But, owing to the general definition

of the activity

a ¼ f=f �

the latter remains equal to its fugacity (with f� ¼ 1 atm)

a ¼ f real gas with f � ¼ 1atmð Þ ð10:6Þ

as a perfect gas. But, since f 6¼ p

a 6¼ p
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or more generally

a 6¼ p=p� real gasð Þ

There exists one exception in what is just mentioned, that is to say: the fact that

the fugacity of a real gas is different from its pressure. It is a reality in the whole

domain of concentrations. The exception is when the pressure is very weak,

when no longer interactions between atoms or molecules of gas do exist.

(Besides, it is in this domain of interactions that the relation has been set up:

f=p ! 1 for p ! 0

in order to fix the values of the fugacities.)

In these conditions

a ¼ p=P� real gas : very weak pressureð Þ ð10:7Þ

Finally, the interest of the choice of such a standard state (f� ¼ 1 atm) lies in the
fact that the value of the activity of a gas is equal to the value of its fugacity.

10.2 Usual Standard State and Activity of a Gas
in a Gaseous Mixture

• Ideal mixture

Let us consider the component i. We have already seen that (viz. Chap. 7) its

chemical potential is related through its partial pressure pi through the following
relation:

dμi ¼ RT d lnpi

We shall see (viz. paragraph 4) that its chemical potential μimay be expressed as

μi ¼ μi
� þ RTlnpi= pi

� ideal gas or gaseous mixtureð Þ

where pi
� is the partial pressure of i in the standard state and μi� its chemical

potential in the same state. pi
� is an arbitrary pressure with respect to which μi is

based. It is expressed in the same units as pi. (We immediately check that when

pi¼ pi
�, μi¼ μi�.)

Usually, the standard state of the gas i is chosen in such a manner that its

partial pressure pi
� is equal to 1 atm at the temperature of the system. Since the

mixture also exhibiting a perfect behavior by hypothesis, all the components also
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exhibit this “ideality” (viz. Chap. 8). The notion of fugacity applying to the

perfect gases and to the real ones as well results in the following equalities:

f i ¼ pi

and especially

f i
� ¼ pi

�

As a result,

ai ¼ f i =f i
�

as it must be, and

ai ¼ pi perfect mixture—pi
� ¼ 1unityð Þ ð10:8Þ

and more generally

ai ¼ pi=pi
� perfect mixtureð Þ ð10:9Þ

• Nonideal mixture of gases

The activity of gas i in the gaseous mixture is, of course, defined by the general

relation

ai ¼ f i=f i
�

where fi is its fugacity in the considered state and fi
� its fugacity in the standard

state.

Usually and as previously, the chosen standard state is that in which, at the

given temperature, the gas would behave ideally at the partial pressure

pi
� ¼ 1 atm. It is a hypothetical state in which, the mixture behaves ideally,

f i
� ¼ pi

�

The same considerations as the previous ones lead to the following facts:

f i 6¼ pi

ai 6¼ pi=pi
�

As previously, it results that the numerical value of the activity is equal to its

fugacity:

ai ¼ f i=f i
�
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This comes from the choice of the adopted standard state, and one finds

ai ¼ f i numerical values f i
� ¼ 1unityð Þ

and that, at very weak total pressure P, the fugacity values tend toward those of

the partial pressures:

ai=pi ! 1 P ! 0ð Þ numerical valuesð Þ

Finally, with the chosen standard state (pi
� ¼ 1 atm, ideal behavior), the value of

the activity of the gas is equal to that of its fugacity, whether it be pure or real.

10.3 Reference State and Standard State

Through consideration of real gases, we saw that there exists a real state, hence

experimentally accessible, in which the properties of the gas, except one, are the

same in it as in the hypothetical standard state. The communal properties are due to

the ideal behavior exhibited by both the considered real state and the standard state.

This real state is that in which the total pressure of the mixture (or that of the sole

gas) is very weak. We saw that the interactions between the gas molecules are then

negligible. Its behavior becomes ideal. This state is the reference state.

The reference state is a real state of a very weak “concentration” in order that the
interactions between the particles constituting the system are negligible.

The property of a gas which is not the same in the reference state as in the

standard one is, evidently, the value of its fugacity or of its activity. Their values

are, by far, much weaker in the reference state than in the standard one, since its

fugacity and in the occurrence its activity (in numerical values) tend toward the

value of its pressure or toward that of its partial pressure (both being then very

weak) whereas, concerning now the activity in the standard state, it is equal to unity

by definition.

It is interesting to notice that in the communal properties of both states, there is

the fugacity coefficient which is equal to the unity. By definition of the

fugacity, indeed, it is equal to the unity in the reference state. In the standard

state, owing to the ideal character it exhibits its pressure is then equal to its

pressure.

The reference and standard states must not be confused. In brief, one can define
the reference state of a gas as a real state in which its fugacity coefficient is equal to
the unity. (We shall see that, in the case of solutions, the activity coefficient in the
reference state is also equal to unity.) Its standard state is a virtual state in which
not only its fugacity coefficient but also its activity are equal to the unity.

The fact that a reference state is real has the interesting and fruitful following

consequence: the properties of the standard state are obtainable by extrapolation
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until the value unity of the pressure, of the properties exhibited truly in the reference

state, which are experimentally accessible (see later).1

10.4 General Expression of the Chemical Potential of a Gas

The choice of the usual standard state permits to express the chemical potential of a

gas, perfect or real, pure or in mixture, under the following general relations:

μ ¼ μ� þ RT lna ð10:10Þ

or

μi ¼ μi
� þ RT lnai ð10:11Þ

We shall justify the generality of this expression in the case of a mixture of perfect

or real gases. That of a pure gas is nothing else than a particular case of the mixture

one.

• In the case of a mixture of perfect gases, we have already demonstrated (viz.

Chap. 7) that the chemical potential of the component i is related to its partial

pressure by the two relations:

dμi ¼ RT d lnpi

and after integration

μi ¼ μ*þ RT lnpi ð10:12Þ

μ* is the integration constant. It only depends on the nature of the gas and on the
temperature. (The fact that μ* is characteristic of the sole gas i and not of the

mixture is an evidence. When the total pressure of the mixture is very weak and

when, then, it subsists quasi-alone, the above relation must still be verified).

After adoption of the usual standard state, we have

μi ¼ μ*þ RT lnpi =1

This relation is satisfied at very weak pressure, that is to say in the reference

state. Hence μ* is also the chemical potential in the reference state. Given the

fact that we are considering a mixture of perfect gases, the last relation may also

be written (partial pressures are equal to the activities) as

1A possible confusion between the reference and the standard states comes from the fact that, in

literature, states called “reference standard states” are sometimes mentioned for which a particular

reference pressure is stipulated at a given temperature. We shall not use this term.
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μi ¼ μ*þ RT lnai ð10:13Þ

When pi¼ 1, ai¼ 1. By definition, we are in the standard state and

μi ¼ μi
�

and as a result

μo
i � μ*i mixture of perfect gases—f i

� ¼ 1unityð Þ

The standard chemical potential of the gas is identical to that it exhibits in its

reference state. Then, the relation (10.11) is, actually, satisfied.

• In the case of a real mixture, the reasoning is strictly analogous. It is based on the

following relations:

μi ¼ μ* þ RT ln f i ð10:14Þ

μi
� ¼ μ* þ RT ln f i

� ð10:15Þ

where fi
� is the fugacity in the standard state:

μi � μi
� ¼ RT ln f i=f i

�

μi ¼ μi
� þ RT lnai

The relation (10.11) is also satisfied. One must remark that this demonstration is

based on the fact that the fugacity of i in the mixture is equal to its partial

pressure in the reference state. This permits to set up both relations (10.14) and

(10.15) and to introduce the chemical potential μ* of the gas in the pure state.

10.5 Other Standard States

There are two manners to choose the standard states. The first consists in varying

the numerical values of the parameters defining the state. This is legitimate because

the choice of a standard state is arbitrary. For example, the value P� ¼ 2 atm and not

the value 1 atm as previously may be chosen. The second manner consists in

choosing another physical quantity to which one assigns an arbitrary numerical

value. For example, one chooses to relate an activity to its molar concentration

instead of its pressure. In this paragraph, we are only interested in the second

manner.

Let us notice that the following considerations are valid for all kinds of systems

(gaseous, liquid, and solid).
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As an example, we choose to express the activity of a gas with respect to its

molar concentration ci
�. In this case, the activity of a gas in an ideal mixture when it

is at the concentration ci is defined by the expression

aci ¼ ci=ci
� ð10:16Þ

where ci
� is its concentration in the standard state. Its chemical potential is

μi ¼ μc i
� þ RT ln ac i ð10:17Þ

(The index c indicates that the chemical potentials and activities are related to the

scale of molar concentrations.) The chosen standard state in this case is the state in

which the behavior of the gas is that of an ideal one at the molar concentration ci
�,

for example 1 mol L�1. Then, its chemical potential is expressed by

μi ¼ μc i
o þ RT ln ci=1ð Þ ð10:18Þ

The dimension of 1 is the mol L�1 and, hence, 1 represents 1 mol L�1. μci� is the
chemical potential that the gas would possess if its behavior was ideal at the 1 molar

concentration (or, possibly, at the concentration ci
�). When the concentration is

such that

ci ¼ 1molL�1 or Ci ¼ Ci
� molL�1

we find again

ac i ¼ 1

It is, as awaited, the standard state (corresponding to the scale of molar concentra-

tions) since it obeys to the general but formal definition according to which the

activity of a species in its standard state is equal to unity.

It is interesting, at least from the theoretical standpoint, to relate the activity ac i

to the fugacity of the gas fi. The followed reasoning permitting to find the corre-

spondence is based on the invariancy of the chemical potential of a species in a

given thermodynamic state. It is demonstrated that the expressions being searched

for are (see Appendix B)

ac i ¼ f i=RT and ac i ¼ ai=RT ð10:19Þ

They are only valid in numerical values. With this new standard state, the propor-

tionality factor relating the fugacity to the activity is now 1/RT.
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Chapter 11

Activities of Nonelectrolytes in Liquid
Solutions

Abstract This chapter shows that the notion of activity in solution is more

complicated than in the gaseous state, although its introduction obeys the same

general principles. Notably, it also involves the choice of standard states. Among

the causes of complexity, let us first notice the obligatory occurrence of the solvent

in the system, in addition to that of solutes. To be more precise, from the strict

standpoint of the activities, the chosen standard states for the solutes differ from

those chosen for the solvent for practical reasons. Moreover and secondly, the

standard states chosen for a solute differ not only from those of the solvent but also

according to the scale of “concentrations” adopted for it, even when the solute

remains in the same thermodynamic state. As a result, the introduction and the

handling of activity coefficients differ from each other according to the scale of

“concentrations” of the species.

In this chapter, the most often encountered standard states adopted by the

community of chemists are mentioned. Temporarily, the case of nonelectrolytes

as solutes is only studied. That of electrolytes is still more complicated and is

considered in later chapters.

Keywords Standard states/pure solids • Liquids • Liquids in mixtures • Solvent

and solutes • Rational and practical standard states • Activity coefficients •

Relations between different activity coefficients

The notion of activity in solution is more complicated than in gaseous state,

although its introduction obeys the same general principles. Notably, it also

involves the choice of standard states. Among the causes of complexity, let us

first notice the obligatory occurrence of the solvent in the system, in addition to that

of solutes. To be more precise, from the strict standpoint of the activities, the chosen

standard states for the solutes differ from those chosen for the solvent for practical

reasons. Moreover and secondly, the standard states chosen for a solute differ not

only from those of the solvent but also according to the scale of “concentrations”

adopted for it, even when the solute remains in the same thermodynamic state. As a

result, the introduction and the handling of activity coefficients differ from each

other according to the scale of “concentrations” of the species.
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In this chapter, we mention the most often encountered standard states adopted by

the community of chemists. Temporarily, we only study the case of nonelectrolytes

as solutes. That of electrolytes is still more complicated and will be considered later.

11.1 General Definition of an Activity

Let us recall that the activity a of a species in a given thermodynamic state is equal

to the ratio of its fugacity f in the latter and of its fugacity in its standard one f �:

a ¼ f=f � ð11:1Þ

It is at this point that the fact that every substance, whichever the physical state

under which it is (gaseous, liquid, or solid), does possess a fugacity (and also a

partial pressure even if the latter is very weak) takes all its importance. It permits an

identical definition of an activity in every circumstance.

11.2 Standard States of Pure Liquid or Solid Compounds

It turns out that, during the study of chemical reactions in which pure solids and

liquids are forming or disappearing, it is convenient to adopt these pure compounds

under the pressure of 1 atm and at the temperature of the system, as standard states.

According to this convention, the activity apure of a pure liquid or solid compound at

the pressure unity is taken to be the unity. Then, their molar fraction is, of course,

equal to 1 x ¼ 1ð Þ:
apur ¼ 1 pure liquid or solidð Þ

Evidently, they only form one phase.

11.3 Standard States of Liquids in Mixtures

In this paragraph, we consider the case of fully miscible liquids, such as the binary

mixture of water and methanol. Usually, the chosen standard state is that of the

component in its pure state, at the temperature of the system, under the unit

pressure. This choice presents the interest to maintain the symmetry of the theoret-

ical treatment of both components. Let us designate them by the indices 1 and 2:

a1 ¼ 1 standard state of compound 1 x1 ¼ 1ð Þ
a2 ¼ 1 standard state of compound 2 x2 ¼ 1ð Þ
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11.4 Standard States in Solutions

We successively consider the cases of the standard states of the solvent and of the

solute.

Let us begin to recall that the distinction between the solvent and the solute is not

evident. We confine ourselves to name the component of the solution which is in

excess, as being the solvent. In the following chapters, it will be marked by the

index 1 whereas the solute will be marked by the index 2. We essentially consider

binary solutions. From another side, the “concentrations” in solute are related to the

anhydrous matter. Except particular mention, we only consider binary solutions.

11.5 Standard State, Activity, and Activity Coefficient
of the Solvent

• The first point to mention is that the quasi-unanimously adopted scale of

“concentration” for the solvent is that of molar fractions. It is particularly

convenient from the practical standpoint since the values x1 are only located in

the domain 0 ‐ 1.
The standard state quasi-systematically retained for the solvent is the pure

solvent at the pressure of the solution and at the chosen temperature. Its fugacity

f1
� is given by the relation:

f 1
� ¼ f •1

where f1
• is its fugacity in the pure state x1 ¼ 1ð Þ in the same conditions. The

pressure is often, except hazard, very different from 1 atm. Figure 11.1 which

represents the fugacity of the solvent as a function of its molar fraction illustrates

this choice.

Fig. 11.1 Representation

of the fugacity of the

solvent and of its standard

state as a function of its

molar fraction
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• Given the general definition of an activity—relation (11.1)—the activity of the

solvent in the pure state is, as it must be, equal to unity since the fugacity in the

pure state is equal to that in the standard state:

a1
� ¼ 1

The activity of the solvent cannot be larger than unity, given the upper limit of its

fugacity which is that it possesses in the pure state. Figure 11.2 shows the

activity of the solvent, the fugacity of which is given, as a function of its

molar fraction, in Fig. 11.1.

Quite evidently, both curves exhibit the same appearance since values of

activities stem from that of fugacities by division of each point of the latter by

the constant f1
�. Notice that the activity of the solvent at its molar fraction x

0
1 is

given by the ratio NP/MP.

• It is interesting to consider the behavior of the solvent in a perfect solution.

According to Raoult’s law (viz. Chap. 8) and according to the definition of the

standard state, when the solution is perfect

f 1 ¼ x1 f
•
1

f 1 ¼ x1 f
�
1

and as a result
a1 ¼ x1 f

�
1=f

�
1

a1 ¼ x1

In a perfect solution, the activity of the solvent is in linear relation with its molar

fraction. Let us remark, before studying analogous but different cases, that there

is no problem of dimension in the last equality, both quantities being dimen-

sionless. The slope of the line is 1 since it goes through the points of coordinates

(0, 0) and (1, 1). The curve in dots of Fig. 11.2 is an illustration of this fact. That

in dots of Fig. 11.1 shows the fugacity of the solvent in the ideal case. Its slope is

no longer necessarily equal to 1 since its fugacity in the pure state is not equal to

unity apart by a numerical accident.

Fig. 11.2 Activity of the solvent as a function of its molar fraction
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From the practical viewpoint, the choice of this standard state is justified by the

fact that the more diluted the solution is, the closer to unity the solvent activity is

(factor, of course, easily handled).

• Two examples of the incidence of this choice of standard state on chemical
equilibria are found in analytical and physical chemistry. They are encountered
when the solvent simultaneously plays two parts in a process. The first is that of
solvent and the second that of a reactant. In this case, its activity is taken equal
to unity in the standard state and this explains why, generally, the activity of the
solvent most often does not appear in the expression of the mass law.

The first example is that of the definition of the constant Ka of acid dissoci-
ation of the acid HA in water. The equilibrium is

HAþ H2O Ð H3O
þ þ A�

At equilibrium, the thermodynamic constant K� is expressed by

K� ¼ aA � aH3O
þ= aHA � aH2O

or equivalently

K�aH2O ¼ aA � aH3O
þ=aHA

K�1 ¼ aAaH3O
þ=aHA sufficiently diluted solutionð Þ

or usually

K� ¼ aAaH3O
þ=aHA sufficiently diluted solutionð Þ

In sufficiently diluted solution, indeed, given the choice of this standard state,

x1 � 1

aH2O � 1

and by definition

Ka ¼ K�aH2O � 1

The second example is provided by some global electrochemical reactions,
such as

Zn sð Þ þ Cu2þ Ð Zn2þ þ Cu sð Þ

Zn(s) and Cu(s) mean in the solid state. They are the electrodes. Each of them
constitutes a pure solid phase. Their activity is, by convention, taken to be the
unity (viz. paragraph 2). Usually, they do not appear in the expression of the
mass action law.
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• The values of the activity coefficient of the solvent stem from the previous

considerations.

The activity coefficient γr, called the rational activity coefficient, is, by

definition, given by the expression1

γr ¼ a1=x1

Since the ordinate of each point of the line in dots of Fig. 11.2 is equal to its abscissa

(slope¼ 1), it appears that the activity coefficient is equal to the ratio of both

segments NP andMP. In the example shown in Fig. 11.2, the ratio is systematically

lesser than 1. It is not inevitably the case. In any way, for a real solution, the ratio is

different from the unity. When the solvent is pure, it is equal to the unity.

11.6 Standard States, Activities, and Activity Coefficients
of the Solutes

Among all the possible standard states, two are particularly used in the case of

solutes: the rational and the practical ones. There exists only one rational standard

state. It is that in which the “concentration” of the solute is expressed in molar

fractions. But there are two practical standard states whether the “concentration” of

the solute is expressed in molality or in molarity.

11.6.1 Rational Standard State

The concentration of the solute is expressed in molar fractions.

• It is wise that the standard state would be chosen in such a way that the value of

the solute activity tends toward that of its molar fraction in very dilute solution,

at the temperature of the solution. Hence, it is as follows:

a2=x2 ! 1 when x2 ! 0 ð11:2Þ

1The index r recalls the word rational resulting from an ancient name (see paragraph 6). Actually,

according to IUPAC, in the present case, the symbol of the activity coefficient should be

symbolized by f since the standard state is obtained according to the Raoult’s law and since the

different “concentrations” are expressed in molar fractions. We do not use this symbol since a

confusion with the fugacity would be possible:

γr ¼ NP=MP

γr ¼ NP=x01
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The interest of this choice lies in the fact that Henry’s law is obeyed in this case.

Let us take the example of a solute, the fugacity of which is known in the whole

domain of the molar fractions (Fig. 11.3).

We notice that for the very weak molar fractions, Henry’s law is obeyed. The

curve of the fugacity is tangent to the line of equation for the low values of x2:

f 2 ¼ kHx2 ð11:3Þ

Since, in the standard state, the solution is by definition ideal and since then its

activity coefficient and its activity tend toward 1 (viz. Chap. 10), we can write

f 2=f
�
2

� �
=x2

� ! 1 when x2 ! 0 ð11:4Þ

The value of the fugacity f2
� in the chosen standard state is obtained after

comparison of relations (11.3) and (11.4). We immediately find

f
�
2 ¼ kH

The fugacity in the standard state is equal to the value of the constant of

Henry’s law. It is marked on the Henry’ s line for the abscissa x2 ¼ 1. This

point (and then the standard fugacity) is experimentally accessible by extrap-

olation up to x2 ¼ 1of the measures of fugacities for very weak values of molar

fractions. Here is the interest of the choice of this standard state.

It is clear that the chosen standard state is a hypothetical one. We notice,

indeed, that the real fugacity f2
�0 of the solute in pure state (at the same

temperature) (viz. curve in full line) is different from f2
�. Actually, as a rule,

we can choose either the standard state of fugacity f2
� or that of fugacity

f 2
�0 ¼ f 2

• . From the practical viewpoint, the choice of the latter is awkward

and even impossible, since it involves the knowledge of the fugacity of the solute

in the whole domain of the molar fractions that is often impossible for a

solubility reason. On the contrary, it is not the case for the first possibility

since the Henry’s law is all the more obeyed as the molar fraction is weaker.

Quite evidently, it is the domain of concentrations where there is less risk of

solubility problems.

Fig. 11.3 Possible standard

states of a solute (scale of

molar fractions)
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• Figure 11.4 represents the activity of the solute as a function of its molar

fraction, its fugacity being the same as in Fig. 11.3 and the standard state

being obtained by extrapolation of Henry’s law.

We notice that the activity tends toward the molar fraction only for the weak

values of the latter. It is clear that the values of the activities obtained with the

pure compound of fugacity f2
�0 as standard state differ considerably from the

previous ones (a2
• < a2

�).
Hence, we can already see that the choice of the standard states governs the

values of the equilibrium constants (viz. Chap. 17).

• The activity coefficients γx are given by the ratios NP/MP. They are dimension-

less numbers, since the activities and the molar fractions are dimensionless

numbers. It is very interesting for our purpose to note that their values may

change according to the chosen standard states, as it is shown in Figs. 11.4 and

11.5. We see that in the first case (the hypothetical one based on Henry’s law),

the activity coefficient is less than unity, whereas it is the inverse in the second

case, where it is also given by the ratio NP/MP.

Fig. 11.4 Activity and

activity coefficient of the

solute when the standard

state is based on Henry’s

law (scale of molar

fractions)

Fig. 11.5 Activity and

activity coefficient of the

solute when the standard

state is the pure solute (scale

of molar fractions)
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11.6.2 Practical Standard States

This subtitle means that the “concentration” of the solute is expressed either in

molalities or in molarities (viz. Chap. 1).

The choice of these units must be preferred to that of molar fractions as soon as

we consider the behavior of the solute. This is the present case. This assertion is

explained by the fact that when we use the former unities, the numerical values x2
are very weak and, hence, difficult to handle since, usually, the “concentrations” of

the solutes are weak. Expressed in molalities and molarities, the obtained values for

the same quantities of matter in the solution are larger than with the molar fractions.

Furthermore, as already mentioned, the weak solubilities encountered in practice

may be sufficient, then, to determine the activities.

• “Concentrations” of solutes expressed in molalities:

Figure 11.6 shows the fugacity of the solute as a function of the “concentration”

of the solute expressed in molalities mi related to the molality mi
� in the standard

state, mi and mi
� being expressed in mol kg�1. Most often, mi

� ¼ 1 mol kg�1.

In diluted solutions, Henry’s law is satisfied. Although, in principle, it expresses a

linear relation between the fugacity and the molar fraction of the solute, for the

very diluted solutions, the linear relation of the fugacity with the molality remains

obeyed. This is not a surprise since, at very weak concentrations, the molalities are

proportional to the molar fractions (viz. Chap. 1). It is the same thing with the

molar concentrations. The proportionality constants, of course, change from a scale

of “concentration” to another. Hence, Henry’s law can be written in this case as

f 2 ¼ kH
0m2 when m2 ! 0

– Again, for the same reasons as previously, it is convenient to choose the

standard state in such a way that in diluted solution at the temperature of the

system and at the atmospheric pressure

am2� =m2 ! 1 when m2 ! 0

Fig. 11.6 Definition of the

standard state of a solute

(practical scale of

concentrations expressed in

molalities)
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Obeying simultaneously the last two relations directly leads to the fugacity f2
�

in the standard state:

f 2
� ¼ kH

0 standard stateð Þ

This relation is only valid in numerical values since the fugacity is expressed in

atmospheres whereas the constant kH
0 is expressed in atm/kgmol�1. It is evident

that the standard state is hypothetical. It is the state of a solution obeyingHenry’s

law, the concentration of solute being, most often, 1 mol kg�1.

– The activity of the solute a2 is defined as previously and, as it must be, by the

expression

am2 ¼ f 2=f 2
�

Figure 11.7 shows the activity as a function of the molality related to the

standard molality.

It is interesting to notice that a real state, exhibiting an activity unity, may

exist. In Fig. 11.7, it is the point marked on the activity curve for the molality

m
0
2. However, it is not the standard state because it is not located on the limit

line stemming from that of Henry.

– The activity coefficient γm2 is defined by the expression

am2 ¼ γm2 m2=m2
�ð Þ

It is clear that it is a dimensionless number. It is easily accessible by

considering the diagram in Fig. 11.7. Let us consider, indeed, the point of

molality m
00
2 and of activity a

00
m2. Let us draw the line which joins it to the

origin. Its slope is a
00
m2/m

00
2. It is by definition endowed by the slope γm2.

Fig. 11.7 Activity and activity coefficient of the solute (scale of molalities)
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• “Concentrations” of the solute in molarities:

The considerations are here strictly analogous to those concerning the molalities.

They are based on Henry’s law. The standard state is the hypothetical one in

which the fugacity of the solute is equal to the constant of Henry’s law for a

concentration of 1 mol L�1 at the temperature of the system and at the atmo-

spheric pressure. The concentration c� in the standard state may differ from

1 mol L�1. The activity coefficient of the solute γc2 is defined by the relation

ac2 ¼ γc2 c2=c2
�ð Þ

It is a dimensionless number. For the same solution, the activities of the solute

obtained according to the scales of molalities and molarities exhibit very close

numerical values, since the values of the “concentrations” themselves also are

very close to each other. As an example, let us consider 1 L of an aqueous

solution containing 192.6 g of potassium nitrate. Its molar fraction is 0.0348, its

molarity is 1.906 mol L�1, and its molality is 2.004 mol kg�1. However, we must

notice that this solution cannot, actually, be considered as being very diluted, at

least according to the analytical chemists.

11.7 Relations Between Activity Coefficients of the Same
Solute, the “Concentrations” of Which Are Expressed
According to the Different Scales of Concentrations

It is the matter of this paragraph to set up the relations between the activity

coefficients of a solute in the same thermodynamic state when its concentrations

are related to the scales of molar fractions, molalities, and molarities.

For one solution of molality m2, the number of moles of solute is m2 and the

number of moles of solvent is 1000/M1, M1 being the molar mass of the latter. The

factor 1000 comes from the fact that M1 is expressed in g mol�1, whereas the

molality is expressed in mol kg�1. As a result, a first expression of the molar

fraction of the solute x2 is

x2 ¼ m2= m2 þ 1000=M1ð Þ
x2 ¼ m2M1= m2M1 þ 1000ð Þ ð11:5Þ

For a solution of molarity c2, the number of moles of solute is c2. The number of

moles of the solvent is 1000ρ� c2M2ð Þ=M1.M2 is the molar mass of the solute and

ρ is the density of the solution. 1000ρ is the mass of 1 L of solution whereas c2M2 is

the mass of the solute it contains. The molar fraction as a function of the molarity is

given by the expression

x2 ¼ c2= c2 þ 1000ρ � c2M2ð Þ=M1½ �
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or equivalently by

x2 ¼ c2M1= c2 M1 � M2ð Þ þ 1000ρ½ � ð11:6Þ

From (11.5) and (11.6), we obtain

x2 ¼ m2M1= m2M1 þ 1000ð Þ ¼ C2M1= C2 M1 �M2ð Þ þ 1000ρ½ � ð11:7Þ

For a very dilute solution for which we symbolize the molality by m2*, the

molarity by c2*, and the molar fraction by x2*, the density becomes that of the pure

solvent, that is to say, ρ�. Equation (11.7) changes and becomes

x2* ¼ m2*M1=1000 ¼ c2*M1=1000ρ
� ð11:8Þ

The difference in the chemical potential of the solute in the solution where its

concentrations are x2, m2, and c2 and in that where they are x2*, m2*, and c2* is

given by the ratio of the activities in both states, that is to say, by a2/a2* (viz.

Chap. 10). The activities in the less dilute state are, respectively, x2γx, m2γm, and
c2γc. In the dilute state, we know that with the chosen standard states, the activities

are equal to the concentrations expressed according to their scale of concentrations.

As a result, given the physical meaning of the ratio of two activities which

corresponds to the change in the Gibbs energy accompanying the path from a

state to another (viz. Chap. 10) which is the same whatever the scale of “concen-

tration,” we can write

x2γx=x2* ¼ m2γm=m2* ¼ c2γc=c2* ð11:9Þ

By using relations (11.7) and (11.8), relation (11.9) leads to

γx ¼ γm 1þ 0:001m2M1ð Þ ¼ γc ρ þ 0:001c2 M1 � M2ð Þ½ �=ρ� ð11:10Þ

The relation (11.10) is those we search for. In sufficiently dilute, when the values

c2 and m2 are weaker than 0.1 and 0.1 mol kg–1, the values of the three activity

coefficients are quasi-identical. Handling in the same manner (as just previously)

the relation (11.10) by taking into account relations (11.7) and (11.8), we obtain

γm ¼ γc ρ � 0:001c2M2ð Þ=ρ� ð11:11Þ

This relation is useful from the practical standpoint since it permits the passing

from the activities based on the scale of molalities to that based on the scale of

molarities and inversely.

When all is said and done, we observe that if it is an indisputable fact that for the
same thermodynamic state the activity of a species does vary with the adopted scale
of “concentrations,” it appears that it is essentially due to changes in the values of
the “concentrations” themselves rather than changes in the values of activity
coefficients, as it is demonstrated just above.
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In relation with this point, let us recall that in physical chemistry it is the scale of

molalities which is generally used whereas in analytical chemistry, it is that of

molarities.

11.8 Dependence of the Activity Coefficients
on Temperature and Pressure

It is interesting to know the changes of the activity coefficients with temperature

and pressure, whatever the scale of the “concentration” to which the activity is

related to.

11.8.1 With the Temperature

• Concerning the scale of molar fractions:

ax ¼ γxx

whence, since x does not change with the temperature (x and T are independent

variables),

∂lnax=∂Tð ÞP,x ¼ ∂lnγx=∂Tð ÞP,x

According to relation (9.15) (viz. Chap. 9)

∂lna=∂Tð ÞP,x ¼ Hm
� � Hm

� �
=RT2

As a result

∂lnγx=∂Tð ÞP,x ¼ Hm
� � Hm

� �
=RT2 ð11:12Þ

• It is the same for the scale of molalities, since the molality does not change with

the temperature. We find

∂lnγm=∂Tð ÞP,x ¼ Hm
� � Hm

� �
=RT2

• Concerning now the scale of molarities, the demonstration is not the same since

the molarity of a species changes with the temperature since the volume of the

solution, that is to say, its density, changes with the temperature. In order to set

up the change in the coefficient γc with the temperature, let us consider relation

(11.11):
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γc ¼ γmρ
�= ρ� 0:001c2M2ð Þ

Neglecting the term 0.001c2M2 with respect to the density ρ of the solution (this
is a reasonable approximation), we obtain

γc ¼ γmρ
�=ρ

whence

∂lnγc=∂Tð ÞP,x ¼ Hm
� � Hm

� �
=RT2 þ ∂ln ρ�=ρð Þ=∂T½ �P,x

11.8.2 With the Pressure

In Chap. 9 (relation (9.11)), we have set up the relation which gives the change of

the activity of a species with the pressure at constant temperature and molar

fraction:

∂lna=∂pð ÞT,x ¼ Vm

� �
=RT

where Vm is the molar partial volume of the species. Since

am ¼ m γm

as a result

∂lnγm=∂pð ÞT,x ¼ Vm

� �
=RT

Remark:
It is an experimental fact that the activity coefficients of nonelectrolytes also

vary with the charge of the ions in solution and, particularly, with what is called the

ionic strength of the solution. This point will be studied in Chap. 16.
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Chapter 12

Activities of Electrolytes

Abstract The consideration of the solutions of electrolytes by using the notion of

activity is that which, very highly, has been the matter of the largest number of

studies, in any case in the realm of the study of activities. The handling of the

activities is quasi-imperative as soon as one is faced with solutions of electrolytes

since, among all the solutions, the latter are those which exhibit the most strong

nonideality effects. This is due to the charges brought by ions. For example, even

when the “concentrations” of electrolytes are weak, equilibria constants in which

ions intervene are not constant, on the contrary to the solutions of nonelectrolytes.

Then, it is imperative to work with very weak “concentrations” so that these

constants can be considered as being constant.

Therefore, as soon as a solution does contain ions, the chemical potentials of the

different solutes must be the matter of supplementary theoretical and practical

considerations with respect to the solutions of nonelectrolytes. One is induced,

indeed, not only to define the activity and the activity coefficient of the whole

electrolyte but also for the ions coming from its dissociation.

The chapter is focused on the setting up of relations linking all these kinds of

activities. However these relations are fundamentally the same in the cases of

strong and weak electrolytes. Actually, it is clearer to successively treat both

kinds rather than to do that simultaneously. The study shows that a parameter of

great importance is the electric charge of the different intervening ions.

Keywords Activity of strong electrolytes/univalent and multivalent • Activity of

an ion • Non-dissociated part of a weak electrolyte

The consideration of the solutions of electrolytes by using the notion of activity is

that which, very highly, has been the matter of the largest number of studies, in any

case in the realm of the study of activities. The handling of the activities is quasi-

imperative as soon as we are faced with solutions of electrolytes since, among all

the solutions, the latter are those which exhibit the most strong nonideality effects.

This is due to the charges brought by the ions. For example, even when their

“concentrations” are weak, equilibria constants in which ions intervene are not

constant, on the contrary to the solutions of nonelectrolytes. It is, therefore,

imperative to work with very weak “concentrations” so that these constants remain

constant.
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Actually, as soon as a solution does contain ions, the chemical potentials of the

different solutes must be the matter of supplementary theoretical and practical

considerations with respect to the solutions of nonelectrolytes. One is induced,

indeed, not only to define the activity and the activity coefficient of the whole

electrolyte but also for the ions coming from their dissociation.

To define these notions, we focus ourselves on setting up relations linking all

these kinds of activities. Although these relations are fundamentally the same in the

cases of strong and weak electrolytes, it appears that it is clearer to successively

treat the two kinds rather than to do that simultaneously.

12.1 General Considerations

– Given the electrolyte of general formula Mν+Aν�, it ionizes in solution according
to the equilibrium

MνþAν� Ð νþMzþ þ ν�Az� ð12:1Þ

z+ and z� are the charges of the ions (z+ and z� are not necessarily equal in

absolute values) and ν+ and ν� the stoichiometric coefficients. The ionization is

total in the case of strong electrolytes. We shall study the notion of activity in the

case of:

• The electrolyte taken as a whole. It is the species Mν+Aν�.
• Its ions Mz+ and Az�.

– As in the case of the nonelectrolytes, the activity of every species (whatever it is

the electrolyte or one of its ions) is defined as being equal to the ratio of its

fugacities f in the studied solution and f � in the standard state, that is to say,

a ¼ f=f � ð12:2Þ

In the literature, in a quasi-systematic manner, the activity a of the different species
of concern is chosen in such a way that its value tends toward the one of its concen-

tration m expressed in molality or in molarity at infinite dilution, whether the electro-

lyte is strong orweak. Let us recall that in the standard state, not only the fugacity of the

species is f �, but its activity is also equal to unity by definition. Let us also recall that in
the standard state the properties of the species are the same as in infinite dilution.

(These definitions do not differ from those applying to nonelectrolytes.) Hence, the

previous considerations can be summarized by the following symbolism:

a=m ! 1 when m ! 0
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The origin of this choice is from practical origin. The solubility of the electrolyte in

the solvent may be, indeed, limited, and, of course, it is only with a weak dilution

that it is possible to have experimental data on their fugacities (vapor pressures) in

solution. (It must be well understood, however, that their “concentrations” may also

be expressed in molar fractions, in molarities, or in molalities as well.) It is of a

quasi-general use in physical and analytical chemistry to, respectively, choose the

molalities and the molarities, the molalities presenting the advantage to be

nonsensitive to the temperature. Let us remark that for the same “composition” in

solute, the numerical values of the molar fractions are weaker, than those of the

molalities and molarities, whence there is the preferential use of the two latter since

they permit to gain a better precision on the drawing of the Henry’s line. Here, we
only consider the “concentrations” of the different species expressed in molalities

m. The reasonings, obtained then, can also be applied without any difficulty to the

other scales of “concentrations.”

Hence, given these considerations, it appears that the strategy which must be

followed in order to define the activity of a strong electrolyte and consequently in

order to choose its standard state seems to be, as a rule, quite similar to that

followed in the case of a solute nonelectrolyte. Hence, it would be sufficient to

draw the Henry’s line, that is to say, to draw the diagram fugacity (vapor pressure)

of the species as a function for example of its molality, to prolong until the value

unity of the molality and, hence, to determine its fugacity in the standard state and

to obtain the activity for each point. Unfortunately, there exists a major difficulty in

applying such a strategy as soon as there is dissociation. It is the following one: the

fugacity of the electrolyte tends toward 0 when the molality tends toward 0, and that

with a null slope (viz. Fig. 12.1 which shows the case of hydrochloric acid).
Hence, with the electrolytes, it is impossible to proceed as with the nonelectrolytes.

Fig. 12.1 Diagram of the relative fugacity (activity) of one electrolyte (hydrochloric acid) as a

function of its molality. Curve calculated by I.M. Klotz from data cited by G.N. Lewis andM. Randall

(According to I.M. Klotz, Chemical thermodynamics, basic theory and methods, Ed W.A. Benjamin,
Inc., New York, 1964 and G.N. Lewis and M. Randall in “Thermodynamics and the free energy of
chemical substances,” Ed McGraw-Hill Book Company, Inc, New York and London, 1923)
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12.2 Activity of a Strong Electrolyte

In this case, reaction (12.1) goes to completion when it occurs from the left to the

right.

12.2.1 Case of the Univalent Electrolytes

• Choice of the standard state

It is an experimental fact that in the case of a univalent strong electrolyte MA,

the diagram of its fugacity as a function of the square of its molality shows a line

of finite slope when its molality tends toward 0 (Fig. 12.2).

A good example is provided by a solution of hydrochloric gas in water.

Hence, according to experimental data, we can set up the following relation:

f 2 ¼ kHm
2 when m2 ! 0 ð12:3Þ

where f2 is the fugacity of the whole electrolyte and m its molality.

kH is the proportionality constant of Henry’s line. Since kH possesses a finite

value, it is convenient to choose the standard state in such a manner that the ratio

of the activity of the (whole) electrolyte a2 and of the square of molalitym2 tends

toward 1 when m tends toward 0, that is to say,

a2=m
2 ! 1 when m ! 0 ð12:4Þ

The activity a2 remaining is defined by the general expression

a2 ¼ f 2=f 2
� ð12:5Þ

Fig. 12.2 Fugacity of an

univalent electrolyte as a

function of the square of its

molality (same comments

as for Fig. 12.1)
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where f2
� is the fugacity of the whole electrolyte in the standard state. The

expressions (12.3), (12.4), and (12.5) must be simultaneously verified. A very

simple reasoning, starting from the last relations, shows that it is the case when

f 2
� ¼ kH ð12:6Þ

The fugacity in the chosen standard state is equal to the constant of Henry’s law
in numerical values. It is obtained experimentally by extrapolating Henry’s line
until the value m2¼ 1. Hence, the standard state of an electrolyte 1–1 is the

hypothetical one which would exhibit the value of the Henry’s law constant

(at the pressure of 1 atm and at the temperature of the system) for the value of its

fugacity. The chemical potential μ2 of the whole electrolyte is given by the

expression

μ2 ¼ μ2
� þ RTlna2 ð12:7Þ

• Activity coefficient:

We can define the activity coefficient γ2 of the whole electrolyte through the

relation

a2 ¼ γ2m2 ð12:8Þ

The comparison of this relation with the equalities (12.4) and (12.6) shows that,

in the standard state and also in very dilute solutions, γ2! 1.

12.2.2 Case of the Multivalent Electrolytes

• Choice of the standard states:

Whatever the kind of electrolyte is, the most convenient standard state is that the

choice of which has the consequence that the ratio of the activity a2 of the

electrolyte and its concentration tends toward 1 (in numerical value) when the

molality tends toward 0.

– In the case of a symmetrical electrolyte (in which the ions constituting it bring

the same charge in absolute value), the fugacity of the electrolyte in the

standard state is equal to the slope of Henry’s line:

f 2
� ¼ kH

Henry’s line is drawn by writing the fugacity of the electrolyte as a function

of the square of its molality m2 (viz. the case of MgSO4 in Table 12.1). The

reasoning behind this choice is strictly the same as that followed in the case of

the univalent electrolyte.
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– In the case of the dissymmetrical multivalent electrolytes, it turns out that,

according to their kind, the experimental Henry’s lines have the expressions
mentioned in Table 12.1 for mathematical equations.

In the same line of view as previously, it seems, at first sight, that one must

choose the standard states in which the fugacity f2
� does possess the value of

the Henry’s law constant kH, obtained by extrapolation of its line until the

value mn¼ 1 where n would be equal to 1, 2, 3,. . .(ν+ + ν�) according to the

stoichiometry of the electrolyte.

Actually, there is a choice which proves to be more interesting than the

preceding one. It takes into account the fact that the concentrations of the

ions coming from the dissociation of these electrolytes are no longer equal

(viz. paragraph 3).

• Activity coefficient:

As usual, the activity coefficient of the solute γ2 is defined by the expression

(12.9), formally identical to (12.8):

γ2 ¼ a2= m2 ð12:9Þ

It tends toward 1 when m2 tends toward 0. It is equal, of course, to 1 in the standard

state corresponding to the electrolyte.

12.3 Activity of Ions Resulting from the Dissociation
of Strong Electrolytes

We name strong electrolytes those which are fully dissociated. Others are named

weak electrolytes.

Until now, we did not take into account the dissociation of the electrolyte.

However, we were able to set up thermodynamic relations concerning the behavior

of the latter without having to take into account its dissociation. This lack of taking

into account is not at all surprising since the very structure of classical thermody-

namics is independent of the notions of atoms or molecules. However, the disso-

ciation is an experimental fact, the occurrence of which suffers no doubt. Hence, it

appeared interesting to give a thermodynamic framework to the ionic theory, given

its great importance.

Given the fact that classical thermodynamics do not take into account the

phenomenon of dissociation in its foundations, we can, already, forecast that a

thermodynamic theory of it must stem from some arbitrary choices.

Table 12.1 Equations of Henry’s lines according to the kind of electrolyte

NaCl MgSO4 Na2SO4 AlCl3 Mν+Aν�
f2¼ kHm

2 kHm
2 kHm

3 kHm
4 kHm

(ν+ + ν�)
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12.3.1 Monovalent Electrolyte MA

By hypothesis, the electrolyte is fully dissociated. As a result, naming m+ and m�
the molalities of the ions M+ and A�, the following equalities are satisfied:

mþ ¼ m and m� ¼ m

Since for the dilute solutions, the fugacity of the electrolyte MA is proportional to

the square of its molality (Henry’s line), that is to say,

f 2 ¼ kHm
2

According to what is preceding, we can set up the equivalent relation

f 2 ¼ kH mþð Þ m�ð Þ ð12:10Þ

In other words, it is logical to relate the fact that the fugacity of the electrolyte is

proportional to the square of its molality in dilute solution to its dissociation in two

ions, in the occurrence of same “concentrations.”

• Chemical potentials and activities of the ions:

Since the existence of the ions is an unquestionable reality, it appeared interest-

ing to assign a proper chemical potential and a proper activity to every one. Let

μ+, a+ and μ�, a� be the symbols of these individual quantities. In the same spirit

as what is preceding, the activities of the ions are defined in such a manner that

they approach their molality at infinite dilution, in absolute values, that is to say,

aþ=mþ ! 1 and aþ= m ! 1 when m ! 0 ð12:11Þ

Concerning the definition of the chemical potentials of the ions, one sets up

μþ ¼ μþ� þ RT ln aþ and μ� ¼ μ�� þ RT ln a� ð12:12Þ

A first choice, which is arbitrary but intuitive, consists in laying down the

chemical potential μ2 of the whole electrolyte as being equal to the sum of the

chemical potentials of both ions, that is to say,

μ2 ¼ μþ þ μ� ð12:13Þ

Let us compare the expression (12.7) and the expression (12.14) just under (the

latter resulting from (12.12) and (12.13))

μ2 ¼ μ2
� þ RT ln a2

μ2 ¼ μþ� þ μ�� þ RT ln aþð Þ a�ð Þ ð12:14Þ
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It is evident that a second arbitrary choice, consistent with the first one, consists

in setting up

μ2
� ¼ μþ

� þ μ�
� ð12:15Þ

The result is the equality

a2 ¼ aþð Þ a�ð Þ ð12:16Þ

One may remark that it is possible to recover the relation (12.16) according to
another reasoning starting from the definitions (12.11). At infinite dilution,
indeed, starting from the latter ones, we can write

aþ ¼ mþ and a� ¼ m� numerical valuesð Þ

and according to (12.10)

f 2 ¼ kH aþð Þ a�ð Þ

Moreover, by definition

a2 ¼ f 2= f 2
�

and with the standard state chosen for the electrolyte

a2 ¼ f 2=kH

whence relation (12.16) is derived. This reasoning demonstrates that choosing
the standard states such as the activity values that are equal to the concentra-
tions in dilute solutions permits to automatically set up relation (12.15).

Relation (12.16) is often used in order to calculate the activity of an electro-

lyte by starting from the activities of its ions. We shall see (viz. considerations

under) that these relations can be generalized to all types of electrolytes,

including the weak ones.

• Activity coefficients of ions stemming from the dissociation of strong

electrolytes:

The introduction of the activity of ions induces the notion of the activity

coefficient of an ion. By analogy with other systems and in consistency with the

definitions of the activities of ions usually adopted, the activity coefficients of

ions are defined so that they obey the following relation, such as for a binary

electrolyte, through

γmþ ¼ aþ=mþ and γm� ¼ a�=m� ð12:17Þ

Given the adopted definitions of the activities, it is evident that γ+ and γ� tend

toward unity at infinite dilution:

γmþ ! 1 when m ! 0

γm� ! 1 when m ! 0
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γmþ and γm� are the activity coefficients on the scale of molalities. If the activities

had been related to the molarities or to molar fractions, the symbols of the

coefficients would have been γcþ , γc� or γxþ , γx� and their values different. (The

coefficients γm, γc, and γx are sometimes named molal, molar, and rational

coefficients.1)

The activity coefficients of the ions as others are dimensionless numbers.

From a rigorous mathematical standpoint, relations (12.17) are incomplete. They

should be written as

γmþ ¼ aþ= mþ=m�þð Þ and γm� ¼ a�= m�=m��ð Þ

wherem�þandm��are themolalities in the standard states, for example 1mol L�1.

It is of utmost importance to already notice that the activities of the ions and

their coefficients cannot be determined experimentally. This is due to the fact

that an ion cannot be alone in a solution. It must be obligatorily accompanied by

a counterion in order that the electrical neutrality of the solution should be

satisfied. The result is, actually, that every experimental information coming

from the solution is only an emanation from the whole electrolyte and not from

the only ion under study. However, their values can be approached, at least in

some conditions, by calculations, for example through the use of Debye–

Hückel’s equations (viz. Chap. 15).
• Mean activity coefficient:

This is the reason why the notion of mean activity coefficient γ� of an

electrolyte has been introduced. It is experimentally accessible. This is not a

surprise since it takes into account the occurrence of both ions of opposed

charges. It is defined as being the geometrical mean of the coefficients of the

ions. In the case of an univalent electrolyte, it is given by the expression

γ� ¼ γþγ�
� �1=2

or

γ� ¼ aþ=mþð Þ a�=m�ð Þ½ �½

and according to (12.16)

γ� ¼ a2ð Þ1=2=m

1In the following pages of this chapter, we use the lightened symbols γ+ (and γ�) for the scale of
molalities.
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Defining meaning activity a� by the relation

a� ¼ aþð Þ a�ð Þ½ �1=2

we obtain the relation

γ� ¼ a�=m ð12:18Þ

It is clear that

a� ¼ a2ð Þ1=2

We notice, according to relation (12.18), that by introducing the mean activity

coefficients and the mean activities, one obtains a relation between them which

is of the same type as that which is obtained with a non-dissociated derivative.

• On the physical meaning of the chemical potential of an ion:

For some authors, the chemical potential of an ion is nothing else than a fiction.

The argument is the following one. Let us, again, consider the case of a strong

univalent electrolyte MA. By the general definition of a chemical potential

μþ ¼ ∂G=∂mMð ÞT,P, n1,mA
μ� ¼ ∂G=∂mAð ÞT,P,n1,mM

mM and mA are the molalities of the ions M+ and A�, and n1 the number of moles

of the solvent. G is the Gibbs energy of the whole system, and T and P are its

temperature and pressure. The fictitious aspect comes from the fact that the

chemical potential is a partial derivative. For example, the potential μ+ is the

change in the Gibbs energy of the system dGwhen the molality ofM+ is changed

by the differential dmM, all the other variables defining the state of the system

being constant. In particular, it is the case of the molality of the counterion. Now,

from an operational standpoint, it is impossible to add an ion into the system

without adding one counterion since the electroneutrality must be verified.

Moreover, even admitting that this addition is possible, the simple addition of

an electrical charge, alone, would confer a supplementary electrical energy to

the system, supplementary energy by far larger than that which is of interest for

our purpose concerning the activities. In brief, the notion of the chemical

potential of an ion is doubtful.

Some authors somewhat shade the previous reasoning but their conclusion is the

same. They consider that since the differential dmM is an infinitely (fixed) weak

quantity, as every differential, it is not necessary to add the counterion for the

respect of the electroneutrality. But, in this case, the change dG is immensely weak

and, hence, is imperceptible and the integration which permits to obtain the change

inGibbs energy is impractical. Inotherwords, the differentiationprocess permitting

the definition of the chemical potential of an ion, even if it is possible, cannot lead to

measurable results, but according to this standpoint, it remains conceivable.
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12.3.2 Multivalent Ions

• Definitions of the chemical potentials and of the activities of multivalent ions:

The chemical potentials and the activities of the ions constituting the

corresponding electrolytes are defined as previously.

• Standard states in the case of symmetrical bivalent electrolytes:

There exist more convenient standard states for dissymmetrical electrolytes than

those retained for the symmetric ones.

– Concerning the symmetrical bivalent electrolytes, for example MgSO4, the

reasoning is strictly identical to that followed in the case of monovalent ones.

Relations (12.15) and (12.16) apply without any difficulty. As it was men-

tioned in Table 12.1, the Henry’s law line is of the type

f 2 ¼ kHm
2 or f 2 ¼ kH mþð Þ m�ð Þ

The standard state quasi-unanimously retained is the hypothetical one, in which

the fugacity of the electrolyte is equal to the Henry’s constant at the unit pressure
and at the temperature of the system. One can verify that, as it is wanted by the

formal definition of an activity, its activity in this state is equal to 1 since m+ and

m� must be equal to the unity in order for f2¼ kH, while the ideal character is

satisfied.

• Standard state in the case of multivalent dissymmetric electrolytes:

Let us consider the case of an electrolyte 2-1 such as sodium sulfate which

dissociates in two cations and one anion. By a reasoning identical to that adopted

in the case of symmetrical electrolytes, that is to say, by setting up that the

chemical potential of the electrolyte is equal to the sum of the chemical poten-

tials of both ions, we obtain the equality

a2 ¼ aþð Þ aþð Þ a�ð Þ
a2 ¼ aþð Þ2 a�ð Þ ð12:19Þ

The demonstration is very simple. The chemical potential μ(Na2SO4) of the

electrolyte, taken as a whole, is given by the expression

μ Na2SO4ð Þ ¼ μ� Na2SO4ð Þ þ RT ln a Na2SO4ð Þ

The chemical potentials of the ions sodium and sulfate are given by the

expressions

μ Naþð Þ ¼ μþ� þ RT ln a Naþð Þ
μ SO4

2�� � ¼ μ�� þ RT ln a SO4
2�� �

The first possible choice which can be done is to admit the following relation:

μ Na2SO4ð Þ ¼ 2μ Naþð Þ þ 1μ SO4
2�� �
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We obtain relation (12.19), provided that we admit the following equality:

μ� Na2SO4ð Þ ¼ 2 μþ
� Naþð Þ þ 1 μ�

� SO4
2�� �� ð12:20Þ

It is very interesting to notice that if the standard potentials μ+� and μ�� are not
endowed with a physical significance, their linear combination above (12.20)

does have, as it is the case of the combination, 2 μ Naþð Þ þ 1μ SO4
2�� �

.

• Activities and mean activity coefficients:

The mean ionic activity a� is defined as previously as being the geometrical

mean of the individual activities, that is to say,

a� ¼ aþð Þ2 a�ð Þ
h i1=3

ð12:21Þ

or, in principle (viz. relation 12.19),

a� ¼ a2ð Þ1=3 ð12:22Þ

These two relations lead to an inconsistency.

When the solution is very diluted, it is once more interesting that the value of

the activity of each ion would be equal to that of its concentration, that is to say,

aþ ¼ mþ ¼ 2m ð12:23Þ
a� ¼ m� ¼ m ð12:24Þ

where m is the molality of the whole electrolyte. Let us replace a+ and a� by

their expressions (12.23) and (12.24) into (12.21). We obtain

a� ¼ 4ð Þ1= 3m ð12:25Þ

or, in an equivalent way,

a2 ¼ a�ð Þ3
a2 ¼ 4 m3

ð12:26Þ

We notice that for the dilute solutions, the mean activity tends no longer toward

m but rather toward the factor (4)1/ 3m. In other words

γ� ¼ a�=m ! 4ð Þ1=3 when m ! 0

There is no major drawback that it would be the case, but this is not consistent

with the case of symmetrical electrolytes. Here is the new fact.

In this context, it is interesting to notice that the fugacity in the standard state,

that is to say, the variable defining the value of the activity can still be obtained
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exactly as in the case of symmetrical electrolytes, but it leads to a result which is

not consistent with relations (12.25) and (12.26). The usual extrapolation pro-

cess of the Henry’s line (in the present case—viz. Table 1� f 2 ¼ kHm
3 of

equation so that the value m¼ 1 leads by setting up f 2
� ¼ kH, to the fact

a2 ! m3 when m ! 0 ð12:27Þ

The only manner to make relations (12.26) and (12.27) self-compatible is to

adopt the quantity

f 2
� ¼ kH=4

for the fugacity in the standard state.

Hence, the standard state is the hypothetical state in which the fugacity is

equal to the Henry’s constant divided by 4 in the present case, at the unit pressure
and at the temperature of the system. With this value, the coherence between the

mean activity of the ions and the activity of the electrolyte is reached. From the

graphical standpoint, it is sufficient to prolong the Henry’s straight line until the
molality unity and to divide the corresponding ordinate by 4 in order to obtain

the standard fugacity (viz. Fig. 12.3).

12.3.3 Generalization to Every Strong Electrolyte

Let us consider the electrolyte Mν+Aν� which ionizes by giving ν+ ions M
z+ and ν�

ions Az� according to reaction (12.1).

Fig. 12.3 Determination of the standard state for a ternary electrolyte (for example: Na2SO4)
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– Its fugacity f2 in very dilute solution is given by the expression

f 2 ¼ km νþþν�ð Þ

or

f 2 ¼ kmν

with

ν ¼ νþ þ ν�ð Þ

The individual activities of the ions are related to the activity a2 of the electrolyte
by the relation

aMð Þνþ aAð Þν� ¼ a2 ð12:28Þ

It is obtained through the chemical potentials as in the case of the sodium sulfate

(viz. above). The chemical potentials of the ions are defined by the expressions

μ Mzþð Þ ¼ μ� Mzþð Þ þ RT ln a Mzþð Þ ð12:29Þ
μ Az�ð Þ ¼ μ� Az�ð Þ þ RT ln a A�ð Þ ð12:30Þ

One arbitrary sets up the two following expressions:

μ� MνþAν�
� � ¼ νþμþ

� Mzþð Þ þ ν�μ�
� Az�ð Þ

and

μ MνþAν�ð Þ ¼ νþμþ Mzþð Þ þ ν�μ� Az�ð Þ

whence the following is derived:

a2 MνþAν�ð Þ ¼ aþð Þνþ a�ð Þν� ð12:31Þ

– The mean ionic activity a� is given by the expression

a� ¼ a2
1= νþ þν�ð Þ ð12:32Þ

or

a� ¼ aMð Þνþ aAð Þν�� �1=ν
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– The mean activity coefficient γ� is given by the expression

γ� ¼ γþ
� �νþ

γ�ð Þν�
h i1=ν

ð12:33Þ

Given relations (12.31) and (12.33) and since m+¼mν+ and m�¼mν�, we
obtain the following relation:

ln a� ¼ ln m� þ lnγ� ð12:34Þ

m� is named the mean molality, defined by the expression

m� ¼ mþνþm�ν�ð Þ1=ν

– The fugacity in the standard state is given by the expression

f 2
� ¼ kH= νþmð Þνþ ν�mð Þν�� �

12.4 Activities of Weak Electrolytes

In this case, it is necessary to consider the existence of a supplementary species, the

non-dissociated form.We shall see that, contrary to what may be perhaps intuitively

forecast, the fact that the electrolyte is not fully dissociated does not change the

preceding considerations.

– On the one hand the activity a2 of the electrolyte Mν+Aν�, taken as a whole, is

equal to the product of the activities of the ions taken at the power equal to their

stoichiometric coefficients. In other words, relation (12.28) is still legitimate:

aMð Þνþ aAð Þν� ¼ a2 ð12:28Þ

– On the other, the activity and (nd: non-dissociated) of the non-dissociated

fraction is equal to the activity a2 of the whole electrolyte:

and ¼ a2 ð12:35Þ

The demonstration of the result that weak electrolytes obey equation (12.28) is a

consequence of the equality (12.35) which, firstly, must be demonstrated.

Let us consider a solution containing the electrolyte Mν+Aν� as a solute, which

partially dissociates according to equilibrium (12.1). Let n1 be the number of moles

of the solvent, n the total number of moles of solute, nnd the number of moles of the

non-dissociated solute, n+ that of the ions Mz+, and n� that of the ions Az�.
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Starting from the stoichiometry of the dissociation reaction (12.1), we can draw the

following relations:

nþ ¼ νþ n� nndð Þ ð12:36Þ
n�¼ν� n� nndð Þ ð12:37Þ

An infinitesimal change dG of the Gibbs energy of the solution, at constant pressure

and temperature, is given by (viz. Chap. 5)

dG ¼ μnddnnd þ μþdnþ þ μ�dn� þ μ1dn1 ð12:38Þ

According to (12.36) and (12.37)

dnþ ¼ νþdn� νþdnnd
dn� ¼ ν�dn� ν�dnnd

By replacing dn+ and dn� by the last two relations into (12.38), we obtain

dG ¼ μnd � νþμþ � ν�μ�
� �

dnnd þ νþμþ þ ν�μ�
� �

dnþ μ1dn1 ð12:39Þ

The global equilibrium condition is such as

dG ¼ 0

We immediately notice that in order to be reached, we must simultaneously have

the factors of (12.39) involving the differentials dnd, dn, and dn1 equal to 0.

The numbers of moles n and n1 may be changed independently from each other.

The numbers nnd and n+ and n� also, since each position of the dissociation

equilibrium is possible. Hence, in order that the equilibrium should be reached in

these conditions, we must have:

dG=dnndð ÞT,P,n,n1 ¼ 0

The result of this condition is

μnd ¼ νþμþ þ ν�μ� ð12:40Þ

Equation (12.39) becomes

dG ¼ νþμþ þ ν�μ�
� �

dnþ μ1dn1 ð12:41Þ

Otherwise, at equilibrium

∂G=∂nð ÞT,P,n1 ¼ 0
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The partial derivative (∂G/∂n)T,P,n1 is, by definition, the chemical potential μ of the
electrolyte, taken as a whole:

∂G=∂nð ÞT,P,n1 ¼ μ ð12:42Þ

After comparison of (12.42) and (12.41), since n1 and n are independent from each

other, we obtain

μ ¼ νþμþ þ ν�μ� ð12:43Þ

Moreover, the comparison of (12.40) and (12.43) shows that

μnd ¼ μ

The chemical potential μnd of the undissociated electrolyte is equal to the chemical

potential of the whole electrolyte.

Let us remark that relation (12.40) is no more nor less than the classical
expression of equilibrium of reaction (12.1).

The setting up of relation (12.28) is realized as it follows. The chemical

potentials of the ions are defined exactly as in the case of the strong electrolytes

(viz. (12.29) and (12.30)). The chemical potential and the standard one of the

undissociated electrolyte are those of the electrolyte taken as a whole, as we have

just seen. Let us reason with one mole of Mν+Aν�.
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Chapter 13

Determination of the Activity
of the Nonelectrolytes

Abstract The most used methods of determination of the activities of the non-

electrolytes are mentioned in this chapter. In addition, they may also be applied to

solutions of electrolytes. This aspect will be studied in the next one. At its

beginning, the principle of the determination of an activity of one component

from that of the other component of a binary solution is recalled. It is founded on

the Gibbs–Duhem’s relation. The mentioned methods are those based on the

determination:

Of vapor pressures

Of the activity of the solvent from the determination of its freezing point

Of the osmotic pressure

Of electromotive forces of suitable electrochemical cells

From gas chromatography

From excess functions and empirical relations

Values of some activities of this kind of solutes are given in this chapter. The

very important fact to know is the following one: the determination of the activities

of nonelectrolytes is a possible task.

Keywords Henry’s law • Gibbs–Duhem relation • Activity of one compound from

that of the other • Freezing point depression • Electrochemical cell • Gas

chromatography • Excess function

In this chapter, we mention the most used methods of determination of the activities

of the nonelectrolytes. In addition, they may also be applied to solutions of

electrolytes. This aspect will be studied in the next chapter. After having recalled

the principles of these methods, we shall give some results and values of some

activities of this kind of solutes.
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13.1 Activity of One of the Components of a Binary
Solution from That of the Other Component

Once the activity of a component of a binary solution, solvent, or solute is

determined, it is possible to calculate the activity of the other component starting

from the value of the former. The calculation is founded on the Gibbs–Duhem’s
relation, one form of which is (viz. Chap. 5)

x1dμ1 þ x2dμ2 ¼ 0

Given the definition of an activity from the chemical potential

μi ¼ μi
� þ RT ln ai

the Gibbs–Duhem’s relation becomes

x1dlna1 þ a2d ln a2 ¼ 0 ð13:1Þ

This expression is applicable at constant pressure and temperature whatever the

adopted standard states since the chemical potential of a species in a given state is

constant for a given temperature. The rearranged relation (13.1) is

dlna1 ¼ � x2=x1ð Þd ln a2 ð13:2Þ
dlna2 ¼ � x1=x2ð Þd ln a1 ð13:3Þ

13.1.1 Activity of the Solvent from That of the Solute

The integration of relation (13.2) gives

ln a1=a
0
1

� � ¼ �
ðx2
x0
2

x2=x1ð Þd ln a2 ð13:4Þ

a1 and a
0
1 are the activities of the solvent in the two solutions where the molar

fractions of the solute are x2 and x
0
2. The ratio a1/a

0
1 is calculated by drawing the

curve (x2/x1) in ordinates as a function of the values ln a2 in abscissas and by

determining the area under the curve between the limits x
0
2 and x2.

Actually, this process is poorly convenient from the standpoint of the precision

of the results. since, when the solution is very dilute, ln a2 exhibits very large

negative values and, as a result, the evaluation of the area under the curve is not

precise. It is based on expression (13.5) below, similar to (13.4). An interesting

variant of this integration process has been proposed.
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It involves the activity coefficients rather than the activities themselves. Its

principle stems from the following reasoning. For a binary solution:

x1 þ x2 ¼ 1

dx1 þ dx2 ¼ 0

x1 dx1=x1ð Þ þ x2 dx2=x2
� � ¼ 0

x1d ln x1 þ x2d ln x2 ¼ 0

Subtracting this expression from (13.1), we obtain

d ln a1=x1ð Þ ¼ � x2=x1ð Þd ln a1=x2ð Þ

and after integration

ln a1=x1ð Þ � ln a01=x
0
1

� � ¼ �
ðx2
x1

x2=x1ð Þd ln a2=x2ð Þ ð13:5Þ

This relation can be simplified. At infinite dilution, x
0
1 ¼ 1 and x

0
2 ¼ 0; the activity

a
0
1 of the solvent is equal to unity because of the choice of the standard state usually

done (the unity of “concentration” is the molar fraction). The second term of the left

member vanishes and we obtain

ln a1=x1ð Þ ¼ �
ðx2
0

x2=x1ð Þd ln a2=x2ð Þ ð13:6Þ

The area under the curve limited by the values x2¼ 0 and x2 gives the value ln γ1
at the concentration x2.

As examples, Table 13.1 provides the necessary experimental data in order to

calculate the activity of mercury in the case of the amalgam of thallium at 20 �C.
They are stemming from the electromotive force of appropriate electrochemical

cells (viz. paragraph 5). In this table, x2 is the molar fraction of thallium, a2 its

activity, and a1 the activity of mercury being searched for.

Table 13.1 Activity

coefficients of mercury in

some amalgams by applying

relation (13.6) (According to

G.N. Lewis and M. Randall:

Thermodynamics and the free

energy of chemical

substances: McGraw-Hill

company, Inc, New York,

1923)

x2 x2/x1 a2/x2 a1/x1

0 0 1 1

0.005 0.00502 1.06 0.9998

0.01 0.0101 1.15 0.999

0.05 0.0526 1.80 0.986

0.1 0.111 2.84 0.950

0.2 0.250 4.98 0.866

0.3 0.428 6.60 0.790

0.4 0.667 7.57 0.734

0.5 1.000 7.98 0.704
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Figure 13.1 shows the corresponding curve (x2/x1)/log(a2/x2), the appropriate

area determination of which permitting the calculation of the activity coefficients

a1/x1.

13.1.2 Activity of the Solute as a Function of That
of the Solvent

The determination is based on relation (13.3) or on the following one:

d ln a2=x2ð Þ ¼ � x1=x2ð Þd ln a1=x1ð Þ

or

ln a2=x2ð Þ ¼ �
ðx2
0

x1=x2ð Þd ln a1=x1ð Þ ð13:7Þ

Table 13.2 mentions the experimental data necessary to calculate the activity of

thallium from the activity values a1 of mercury in a thallium amalgam, through

relation (13.7) (determination at 325 �C).
The curve (x1/x2)/log(a1/x1) built with the values of Table 13.2 is presented in

Fig. 13.2. (The indexes 1 and 2 remain affected, respectively, to mercury and

thallium.)

Actually, the graphical integration of (13.7) is difficult since for the solutions

very dilute (in solute), the ratio x1/x2 tends toward infinite. Hence, this process

entails to possess very precise data at high dilutions. (Among others, there exists a

means to overcome this problem by a process of graphical extrapolation. Another

consists in carrying out a fit of an algebraic function on some experimental points

which are not endowed with a great imprecision.)

Fig. 13.1 Example of

curve (x2/x1)/log(a2/x2)
permitting the obtention of

the activity of the solvent as

the function of that of the

solute (case of thallium

amalgams) (viz. Table 13.1

and paragraph 5)
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13.2 Determination by Measurements of Vapor Pressures

Given the fact that the activity of every component of a solution is equal to the ratio

of its fugacity in the studied state and of its fugacity in the standard state and given

the links existing between the fugacity and the vapor pressure, it is intuitive that

measurements of partial pressure vapors may permit to approach the values of the

activities. The first condition is that the partial pressure vapor must be sufficiently

large in order to be measurable. However, it must not be too large in order to be

assimilated to its fugacity. That is to say, its partial pressure must obey the perfect

gas law. In these conditions

a ¼ f=f �

a � p=p�

According to these considerations, we can determine the activity either of the

solvent or of the solute.

Table 13.2 Activity

coefficients of mercury in

some amalgams by applying

relation (13.7) (According to

G.N. Lewis and M. Randall:

Thermodynamics and the free

energy of chemical

substances: McGraw-Hill

Company, Inc, New York,

1923)

x2
a1
x1

a2
x2

0 1 1

0.10 0.98 1.53

0.20 0.95 1.86

0.30 0.92 2.05

0.40 0.80 2.17

0.50 0.87 2.23

0.60 0.85 2.28

0.70 0.83 2.30

0.80 0.82 2.31

(1.00) (0.80) (2.32)

Fig. 13.2 Example of curve x1/x2/log(a1/x1) permitting the calculation of the thallium activity in

some amalgams
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13.2.1 Activity of the Solvent a1

The method of determination is based on the relation

a1 � p1=p1
�

p1 is the vapor pressure of the solvent in equilibrium with the solution where its

activity is a1. p1
• is its vapor pressure in the standard state. The effect of the external

pressure may be considered as being negligible. Let us recall (viz. Chap. 11) that the

standard state of the solvent is unanimously chosen is the pure solvent at the

temperature and pressure of the system. Then, we can write

a1 � p1=p1
•

p1
• is the vapor pressure in the pure state at the same temperature and approximately

at the same pressure as the solution.

This method of determination of the activities of the solvents has been used for

aqueous and organic solutions.

13.2.2 Activity of the Solute a2

If the solute is sufficiently volatile in such a manner that the determination of its

vapor pressure above its solution is possible, its activity can be determined in the

same conditions as above through the measurement of its vapor pressure p2 in the

state of the system and in the standard state p2
� through the relation

a2 ¼ p2=p2
�

p2
� is not, usually, the vapor pressure of the pure solute. p2� is the vapor pressure

which would be exhibited by the solute in the hypothetical standard state consisting

in a molal solution where it would obey Henry’s law. We have seen (viz. Chap. 11)

that

p2
� ¼ kH

The fugacity and, hence, the vapor pressure of the solute in the standard state are

equal to the constant kH of Henry’s law in the conditions mentioned above.

We know that in order to determine the latter, we linearly extrapolate the

Henry’s law until the molality unity.

From a practical standpoint, it may happen that the value of the vapor pressure

appreciably deviates from a line as soon as the molalities are very weak. In this

case, we must use another process to determine the constant kH. It is also a graphical
one. It consists in drawing the diagram solute pressure p2 as a function of its
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molality m2. The obtained curve is extrapolated until down to the molality m2

null—Fig. 13.3.

At null molality, the ratio p2/m2 is equal to the Henry’s constant, that is to say, to
the fugacity in the standard state. At null molality, indeed

p2 ! f 2 and a2 ! m

As a result

p2
�=mð Þm¼0 ¼ f 2=a2

and since a2¼ f2/f2
�

p2
�=mð Þm¼0 ¼ f 2

�

p2
�=mð Þm¼0 ¼ kH

Graphical processes may also be used when the “concentration” scales to which are

related the activities are those of molarities and of molar fractions. Molalities are

simply replaced by the molar fractions and molarities in the drawing of diagrams.

Another approach is possible, but it is more rarely used than the previous one

because of the fact that it is only practised when the solvent and the solute are

essentially miscible in the whole range of concentrations. Then, for the standard

state of the solute, one can choose it in its pure state. Then, we are again in the case

in which it remains to determine the activity of the solvent. In this new standard

state, the vapor pressure of the solute is roughly equal to its vapor pressure in the

pure state. An interesting example of this double possibility of choice of a conve-

nient standard state is provided by the solutions of dibromine in carbon tetrachlo-

ride. The diagram of the vapor pressure p2 of dibromine as a function of its molar

fraction is shown in Fig. 13.4.

Fig. 13.3 Graphical

determination of the partial

pressure of the solute in its

standard state
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The line B is that of Henry. The pressure of bromine in this hypothetical standard

state is 0.539 atm. The line A shows the calculated values of the pressure if the

solution was perfect, the pure dibromine exhibiting a value of 0.280 atm. Hence, it

is the pressure in the real standard state defined as being the pure compound. The

curve C is the experimental one. The fugacity of the dibromine at each molar

fraction being equal to its vapor pressure p2 whatever the chosen standard state, it is
evident that both activities according to the two standard states ax2 (Henry) and ax2
(real) are in the ratio

ax2 Henryð Þ=ax2 realð Þ ¼ 0:280=0:539

This is an excellent illustration of the fact that in the same thermodynamic state, the

activity of a compound may exhibit different values according to the adopted

standard state.

13.3 Activity of the Solvent from the Determination
of Its Freezing Point

This process is very general. Although it is, in principle, a method of determination

of the activity of the solvent, it also permits to obtain that of the solute in the case of

the binary solution. Then, the activity of the solute is determined through the use of

the Gibbs–Duhem’s relation once the activity of the solvent is known (viz. para-

graph 1 above). In this chapter, essentially we set up a general relation between the

Fig. 13.4 Vapor pressure of dibromine as a function of its molar fraction in a solution of carbon

tetrachloride (According to G.N. Lewis and M. Randall: Thermodynamics and the free energy of

chemical substances: McGraw-Hill company, Inc, New York, 1923)
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solvent activity and the depression of the freezing point. Supplementary precisions

will be given in the next chapter devoted to the determination of the activities of

electrolytes.

13.3.1 General Considerations

The matter of the whole paragraph is the depression of the freezing point of the

solvent of a binary dilute solution. The phenomenon is a consequence of the

equilibrium solid–liquid.

When a solid is separating from a binary solution, three cases may exist

according to the nature of the solid phase. The latter can be constituted by:

– The pure solute: In this case, the composition of the solution is purely and simply

the solubility of the solute at the pressure and temperature of the system.

– The pure solvent: The temperature of the system is then named freezing point of

the solvent at the composition and pressure of the system.

– A solid solution of both constituents.

For our purpose, the most interesting point is the second one. This is the reason

why we limit our study to it.

From the qualitative standpoint, when a solute is dissolved in a liquid phase,

initially pure, the fugacity of the latter is lowered. It becomes weaker than that of

the pure solid solvent which was that of the initial pure liquid phase in equilibrium

with it. There is a break of the initial liquid–solid equilibrium. In order to recover it,

the temperature of the system must decrease. It is the reason why, in this case, the

freezing point of the solvent is always lower than the normal freezing point.

13.3.2 Mathematical Expression Linking the Solvent Activity
to the Depression of the Freezing Point

In this paragraph, we are seeking for a mathematical expression relating the activity

a1 of the solvent in every solution to the lowering of its freezing point due to the

presence of the solute into it. Having this relation in our hands, it is possible to

obtain the solvent activity once the freezing point is determined.

In order to set up the relation, one relates the chemical potential μs of the solvent
in the solid state, at the temperature T, to its activity as in the solid pure state

through the standard chemical potential μ�l of the solvent in the liquid state. The
relation is

μs ¼ μl
� þ RT lnas ð13:8Þ
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Reasoning in such a manner is unusual but is perfectly legitimate, given the

arbitrary character of the definition of an activity. As we shall see it immediately,

with this choice, the activity of the pure solvent in the solid state is equal to its

activity in solution, the latter varying with the temperature:

as ¼ a1

It is true that this result may appear to be surprising since with the usually chosen

standard states, the activity of a pure compound is constant at given temperature

and pressure. This is not the case here as we shall see it. This result apparently

paradoxical is due to the fact that the fugacity of the solvent is identical (at constant

pressure and for a given temperature in both phases (solid pure and solution)). We

have already said that this is a condition of equilibrium (viz. Chap. 7). As a result,

since the fugacity of the solvent varies with the temperature and with the compo-

sition of the solution, the fugacity of the solid also varies. This is the base of the

phenomenon.

Concerning, now, the equality of the activities in both phases, it results from the

same reasoning. The activity as is according to the general definition of an activity:

– For the solid phase (s: solid, l: liquid) as¼ f1(solid)/f1
�
(liq)

– For the liquid phase a1¼ f1(liq)/f1
�
(liq)

with f1(solid)¼ f1(liq) (equilibrium). The fugacity f1
�
(liq) is the same in both phases.

This is the result of the arbitrary choice of the same standard state. As a result

as¼ a1.

13.3.3 Relation Between the Activity of the Solvent
and the Temperature of the System

Let us divide the expression (13.8) by T. We obtain

R lnas ¼ μs=T � μl
�=T

Now, let us derivate this expression with respect to T at constant pressure. Given the

general expression of the partial derivate with respect to T of the ratio μ/T at

constant pressure and composition (viz. Chaps. 2, 5 and 9)

∂ μi; Tð Þ=∂T½ �p,x ¼ �Hi=T
2

we obtain

∂ln as=∂Tð Þp ¼ Hl
� � Hsð Þ=RT2

144 13 Determination of the Activity of the Nonelectrolytes

http://dx.doi.org/10.1007/978-3-319-46401-5_7
http://dx.doi.org/10.1007/978-3-319-46401-5_2
http://dx.doi.org/10.1007/978-3-319-46401-5_5
http://dx.doi.org/10.1007/978-3-319-46401-5_9


In this expression, the partial molal enthalpies have disappeared because μs and μl�

are related to the pure solvent in the solid and liquid states. Hence, they are replaced

by the molal quantities (viz. Chap. 8, paragraph 8). The enthalpy difference

(Hl
� �Hs) is nothing else than the molal fusion heat ΔHfusion of the solvent at the

temperature and the pressure of the system:

Hl
� � Hs ¼ ΔHfusion

in which

∂ln as=∂Tð Þp ¼ ΔHfusion=RT
2

We have seen that with the chosen standard state, the activity of the pure solvent in

the solid state and its activity in solution are equal. As a result

∂ln a1=∂Tð Þp ¼ ΔHfusion=RT
2 ð13:9Þ

This relation gives the change in the activity of the solvent with the temperature at

the freezing point at constant pressure. The change varies with the composition.

Hence, the expression relating the activity of the solvent at the freezing point can be

obtained by integration of this relation.

The integration of (13.9) is performed in the following way. It entails to know

the change inΔHfusion with the temperature. The Kirchhoff’s relation (which relates
the heat accompanying a chemical or a physical process at a given temperature to

that produced by the same process at another temperature) is written in the present

case, since the heat of fusion ΔHfusion is referred at constant pressure:

∂ ΔHfusionð Þ=∂T½ �P ¼ CPð Þl � CPð Þs
∂ ΔHfusionð Þ=∂T½ �P ¼ ΔCP

ð13:10Þ

(CP)l and (CP)s are the molar calorific capacities at constant pressure of the solvent

in the pure liquid state and in the pure solid state. One can admit that, for a break

change in temperature, the calorific capacities are constant. Then, the integration of

equation (13.10) gives

ΔHfusion þ L0 þ ΔCP T-T0ð Þ ð13:11Þ

Lo is the integration constant. It is the molar latent heat of fusion at temperature T0,
freezing temperature of the pure solvent.

It is simpler, for the sake of simplification of the calculations, to change the

variable in order to continue the mathematical development. We adopt the variable

θ such as

T0 � T ¼ θ
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θ is the depression of the freezing point. Equation (13.11) becomes

ΔHfusion ¼ L0 � θΔCP ð13:12Þ

The expression which must be integrated is

d ln a1 ¼ L0 � θΔCPð Þ=RT2
� �

dT

Since dT¼�dθ and T¼ T0� θ, it becomes

�d ln a1 ¼ L0 � θΔCPð Þ=R T0 � θð Þ2
h i

dθ ð13:13Þ

The integration can be performed by developing the term 1/(T0� θ)2 according to

Newton’s binomial. This term can also be written as 1/T0
2(1� θ/T0)

–2, in which

1= T0 � θð Þ2 ¼ 1=T2
0 1þ 2θ=T0 þ 3θ2=T2

0 þ � � �� �

Equation (13.13) becomes

�d ln a1 ¼ 1=RT2
0 L0 þ 2L0=T0 � ΔCpð Þθþ½ �dθ ð13:14Þ

The integration is performed in the domain of the values of θ going from 0 until the

value of θ, respectively, corresponding to the limits a1¼ 1 and a1. The integration is
immediate and gives, after having neglected the terms in θ3, θ4, . . . since the weak
value of θ:

�ln a1 ¼ L0θ=RT
2
0 þ θ2=RT2

0 L0=T0 � ΔCp=2ð Þ ð13:15Þ

The expression (13.15 permits to determine the activity of the solvent a1 knowing
the depression of the freezing point.

Let us recall that the relation (13.15 gives the activity of the solvent at temper-

atures which vary with the solute concentration of the solution. It is desirable to

transform the results obtained in this way into results at the same temperature. This

point is studied in Chap. 14.

Broadly speaking, the depression of the freezing point θ is of the order of the

1/10 �C for solutions, the concentrations in solutes of which are lower than 0.5 mol kg
�1. (Let us notice that it is relatively easy to measure differences of temperature of

the order of 10�4 �C between an aqueous solution in equilibrium with ice and

pure water.)
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13.4 Activity of the Solvent and Osmotic Pressure

In principle, the measurement of the osmotic pressure permits the determination of

the activity a1 of the solvent of a binary solution. It is based on the existence of a

relation between the solvent activity and the osmotic pressure.

One knows (viz. Chap. 8) that, in order to recover the initial equilibrium, after

the system has given rise to the phenomenon of osmosis, one must apply a

supplementary pressure π¼P –P0, called osmotic pressure, to the solution consti-

tuting the system. P is the pressure above the solution before the initial equilibrium

has been recovered. P0 is the pressure above the compartment containing the pure

solvent. (Let us recall that the osmotic pressure must be applied at constant

temperature and number n2 of moles of the solute.) Let μ01 and μ1 be the chemical

potentials of the pure solvent and of the solution before the initial equilibrium

(broken by the addition of the solute) is recovered. After it is the case, the following

equality is satisfied:

μ01 ¼ μ1 þ
ð P

p0

∂μ1=∂Pð ÞT,n2dp

The partial derivative (∂μ1/∂P)T,n2 is equal to the partial molal volume of the

solvent in the solution (viz. Chap. 5):

∂μ1=∂Pð ÞT,n2 ¼ V1

Thus

μ01 ¼ μ1 þ
ð p

p0

V1dp ð13:16Þ

The chemical potentials are related to the fugacities in the pure state f1
� and in

the solution f1 at the pressure P0 by the relations (viz. Chap. 9)

μ01 ¼ μ*1 þ RT ln f 1
� and μ1 ¼ μ*1 þ RT ln f 1

After substitution into (13.16), we obtain

RT ln f 1
□=f 1ð Þ ¼

ð p

p0

V1 dP ð13:17Þ

By definition, the inverse of the above ratio of the fugacities is the activity a1 of
the solvent:
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a1 ¼ f 1=f 1
□

in which

�RT ln a1 ¼
ð p

p0

V1 dP

In order to set up the relation between the activity of the solvent and the osmotic

pressure, it remains, evidently, to know the changes of V1 with the external

pressure. Assuming that they are linear, one can write at every pressure

V1 ¼ V0 1� α P� P0ð Þ½ �

where V0 is the partial molal volume at the pressure p0 (1 atm) and α is a constant.

Introducing this hypothesis, we obtain

�RT ln a1 ¼ V0

ð p

p0

1� α P� P0ð Þ½ �dP

�RT ln a1 ¼ V0 P� P0ð Þ 1� 1=2ð Þα P� P0ð Þ½ �dP

and finally

�RT ln a1 ¼ V0 π 1� 1=2ð Þαπ½ � ð13:18Þ

This is the relation being searched for. In several cases, the partial molal volume

V0 at pressure P0 is purely and simply replaced by the molal volume V0 of the pure

solvent in the preceding relation.

In practical use, the process consisting in determining the activity a1 through the
measurement of π is not satisfactory. One of the difficulties it encounters is that it is

difficult to have a true semipermeable membrane at our disposal. Another difficulty

lies in the knowledge of the change in the partial molal of the solvent with the

pressure and the concentration. This is the reason why using the process based on

the osmotic coefficients is preferred. Its study is deferred to Chap. 14 since it is

overall used to determine the mean ionic activity coefficients.

13.5 Determination of the Activities of Nonelectrolytes
by Measurements of the Electromotive Forces

13.5.1 General Considerations

Let us recall that the determination of the activities of nonelectrolytes (and of

electrolytes) is possible through the measurements of electromotive forces (emf)
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of judiciously designed electrochemical cells (viz. Chap. 5). The emf of a cell may

depend on the activities of the species participating in the reactions occurring onto

the electrodes or on the activities of the species chemically reacting with the

preceding ones (viz. Chap. 14). In some galvanic cells, the emf may also depend

on the composition of the electrolyte in the cell. Finally, there still exist cells in

which the emf only depends on the state of the electrode. It is the case of some

concentrations of galvanic cells without a liquid junction (viz. Chap. 14). It is the

case of the galvanic cells equipped with electrodes constituted by metallic solutions

of changing concentrations such as metallic alloys or amalgams of different com-

positions. This kind of cell is represented, for example, by

Me Hgð Þ, x02
��MeX

��Me Hgð Þ, x2

Both electrodes are amalgams of different concentrations x
0
2 and x2 in the metal

Me. In these caculations, they dip into the same solution of the electrolyte MeX.

The experience shows that an emf creates, the value of which does not depend on

the concentration of the electrolyte but depends on the activities of the metal in the

amalgams, whence the used process.

13.5.2 Example of the Determination of the Activity
of Thallium in an Amalgam

An example of the previous process is provided by the use of the cell, the electrodes

of which are constituted by two thallium amalgams of different concentrations. The

measurements of the emf in some conditions permit to obtain the activities of

thallium (and even of the mercury—viz. above and later in this chapter) in both

metallic solutions constituting the electrodes.

Let us consider a galvanic cell, the electrodes of which are thallium amalgams of

different molar fractions, x2 and x
0
2. The electrolyte is an aqueous solution of a

thallous salt. The cell is represented by the following scheme:

Tl amalgam x02
� ���thallous salt��Tl amalgam x2ð Þ

Both electrochemical reactions are as follows:

– For the electrode on the left (in the occurrence the electrode playing the part of

the anode since we are faced with a pile):

Tl Ð Tlþ þ 1e�
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– For the cathode:

Tlþ þ 1e� Ð Tl

There is no global reaction of cell. The sole net process occurring is the

transformation

Tl amalgame; x02
� � ! Tl amalgame, x2ð Þ

The difference in Gibbs energy ΔG accompanying the transfer of one mole of

thallium from the anode to the cathode is equal to the difference of the chemical

potentials μ2 and μ
0
2 of thallium in both amalgams, that is to say,

ΔG ¼ μ2 � μ02
ΔG ¼ RT ln a2=a

0
2

� � ð13:19Þ

The crossing of one mole of thallium from one electrode to the other involves the

crossing of one faraday of electricity. The “increase” of the Gibbs energy of the

system ΔG accompanying the transfer is given by the expression

ΔG ¼ �1FE ð13:20Þ

F is the faraday (1F¼ 96,485 C mol�1) and E the observed potential difference in

the conditions of the determination. 1 is the number of electrons exchanged

between the two redox couples intervening in the global (virtual) reaction

(of cell). The measurement of E (at null current—viz. Chap. 5) permits to obtain

the ratio of activities. The comparison of the expressions (13.19) and (13.20) shows

that

E ¼ � RT=Fð Þln a2=a
0
2

� � ð13:21Þ

13.5.3 Determination of the Activity of the Metal
in the Amalgam

Actually, the measurement of E also permits to reach the activity of the metal in the

amalgam and not only the ratio of both activities, but this is solely possible after the

standard state of the metal has been fixed.

For the sake of illustration of the whole previous considerations, the activity of

the metal is determined after having chosen two different standard states.
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• Let us choose the standard state in such a way that the activity coefficient a2/x2 is
equal to 1 at infinite dilution.

Equation (13.21) can be equivalently written as

ln a2 ¼ �EF=RT þ ln a02

Let us subtract ln x2 from the two members of the equality. We obtain

log a2=x2ð Þ ¼ �EF=2:303RT � logx2ð Þ þ loga02 ð13:22Þ

In order to apply this relation, one builds a series of cells in which the composition

x2 of the electrode on the right varies, whereas the concentration x
0
2 of the electrode

on the left is constant. The emf E of the different cells is measured and the different

values of the term in the brackets in relation (13.22) are brought on a diagram as a

function of the concentration x2. The curve is shown in Fig. 13.5.

When x2¼ 0 (infinite dilution), according to the choice of the standard state, a2/
x2¼ 1 log(a2/x2)¼ 0. (It is at this point that we can recognize that we adopt this

standard state.) The value of the term in brackets is then equal to�log a
0
2. It is at

the value (2.4689) that the previous curve cuts the ordinates axis. Its corresponds

to the value a
0
2 ¼ 0.003396. Then, one can determine the ratio a2/x2 and hence a2

in each of the amalgams by applying (13.21). The different obtained values are

mentioned in Table 13.2.

We notice that as soon as the amalgams are no longer sufficiently dilute, the

activities considerably move away from the concentrations x2 as it is indicated
by the values a2/x2¼ γ2. It is understood that the deflection with respect to unity
of the coefficient γ2 quantifies the deviation of the system with respect to Henry’
law, given the standard state.

Fig. 13.5 Determination of the activity of thallium in the amalgams at 20 �C and x
0
2 ¼ 0.00326

(According to G.N. Lewis and M. Randall: Thermodynamics and the free energy of chemical
substances: McGraw-Hill company, Inc, New York, 1923)
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• Let us now choose the pure liquid thallium at 20 �C. In that case, the electro-

chemical used is symbolized by

Tl pure liquid, x02 ¼ 1
� ���Thallous salt��Tl amalgam, x2ð Þ

Let us notice that the standard state is already chosen by setting up x
0
2 ¼ 1 in the

electrode on the left. Now, the relation (13.21) is

E ¼ � RT=Fð Þln a2=1ð Þ ð13:23Þ

The thallium activity in the amalgam can be directly calculated from measure-

ments of E. However, there is a difficulty; thallium melts at 302 �C and the cell

symbolized above cannot exist. The difficulty can be overcome as follows. The

process consists in extrapolating the values a2/x2 as a function of x2 (viz.

Table 13.3) until x2¼ 1 which defines a new standard state, differing from the

previous one. Given the fact that all the values used for the extrapolation are

obtained by working with liquid amalgams at 20 �C, the obtained value 8.3

corresponds to the pure thallium in supercooling. Since a2/x2¼ 8.3, in the

standard state and since x2¼ 1, the result is that the activity of thallium is

a2¼ 8.3. But, given the fact that the values a2/x2 used above to perform the

extrapolation have been established starting from the previous standard state

based on Henry’s law, the value a2¼ 8.3 is that of pure thallium in supercooling

based on the standard state defined in such a way that at infinite dilution the
activity is equal to its molar fraction.
However, adopting a standard state entails the fact that the activity of the species

must be equal to unity in it. To sum up, we can write:

a2 (pure supercooled thallium, 20 �C)¼ 8.3 (standard state: infinite dilution,

20 �C)
a2 (pure supercooled thallium, 20 �C)¼ 1 (standard state: pure supercooled

thallium 20 �C)

Let us recall that the ratio of the activities of the same species (in the same

thermodynamic state), based on two different standard states, is constant. Once

more, these results constitute an illustration of the fact that the activity of a

substance, in a given thermodynamic state, exhibits different numerical values

according to the choice of the standard state. As a result, the values of the constants

of equilibria involving these substances present different numerical values (viz.

Chap. 17). In continuation of the previous reasoning, the values of the activities a2
in the different amalgams of Table 13.3, based on the standard state at infinite

dilution, must be, of course, systematically divided by the factor 8.3 in order to

obtain their values in the new standard state.

The method, just described above, has been used in order to determine the

activity of a metal in another one, that is to say, in a liquid alloy or in other
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amalgams. Let us mention the determination of lead in an alloy of lead and bismuth,

of bismuth or cadmium or potassium in amalgams.

13.5.4 Activity of the Mercury

As it has been said above, the previous process also permits to determine the

activity of the other component of a binary mixture. In the case of amalgams

such as that of thallium, the values of the activities of thallium, obtained as

described, permit to reach those of mercury by using the Gibbs–Duhem’s relation
(viz. the beginning of this chapter).

13.6 Determination of the Activities of Nonelectrolytes
with Varied Instrumental Methods

Here, we confine ourselves to the description of a method based on the use of the

chromatography in vapor phase. It is named “inert gas stripping and gas chroma-

tography.” It consists in determining the decrease of the concentration of the solute

(the activity of which being asked for) in the gaseous phase as a function of time as

its elimination from the liquid phase is in progress because of the bubbling of the

inert gas into it. The concentration in the vapor phase is of course determined by gas

chromatography.

Table 13.3 Activity of thallium in some amalgams at 20 �C

x2 �E
�E

0:05816 � logx2
a2
N2

a2

0 �1 2.4689 1 0

0.003259 0 2.4869 1.042 0.003396

0.01675 0.04555 2.5592 1.231 0.02062

0.03723 0.07194 2.6660 1.574 0.05860

0.04850 0.08170 2.7184 1.776 0.08624

0.0986 0.11118 2.9177 2.811 0.2772

0.1680 0.13552 3.1045 4.321 0.7259

0.2074 0.14510 3.1780 5.118 1.061

0.2701 0.15667 3.2610 6.196 1.674

0.3361 0.16535 3.3159 7.031 2.363

0.4240 0.17352 3.3558 7.707 3.268

0.428 (sat.)1 0.17387 3.3580 7.75 3.316

Tl (liquid, supercooled) 8.3 8.3
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The activity coefficients determined in such a manner are those at infinite

dilution. The method exhibits the advantage to be a kinetic one. The values are

extracted from the decreasing curve. Hence, we can cast off the value of the initial

concentration which is at least quite uncertain, given the high dilutions used.

13.7 Determination of Activities Through Excess Functions
and Calculation of Activities Through Empirical
Relations

Thermodynamic properties of solutions, in particular those of mixtures of non-

electrolytes, are frequently studied through consideration of excess functions. They

are quantities by which the Gibbs energy, entropy, and other thermodynamic

functions differ from the corresponding ones of an ideal solution of same compo-

sition. In particular, the excess Gibbs energy is related quasi-directly to the activity

coefficients, where there is the existence of another process of determination of

activities. Otherwise, we know that there exist empirical relations of the type of

those of Margules and van Laar (viz. Chap. 8). They permit to fairly well calculate

the fugacities and hence the activities of the components of nonideal solutions.

Let us slightly anticipate what is described in Chap. 16. Of utmost importance is

the notion of excess Gibbs energy GE which is experimentally accessible. It permits

to determine the activity coefficients. One of the methodologies consists in finding

mathematical relations between this quantity and the molality m (or the molar

fraction x) of the solutes. This is done by starting from experimental data. Most

of the time, these relations are polynomial.

For example, in the case of only one nonelectrolyte solute, the following relation

is satisfactory:

GE=wsRT
� � ¼ λm2 þ μm3 þ � � �

ws is the mass of the solvent and λ and μ are fitting parameters. We shall see that,

after derivation, one can obtain the activity coefficient of the solute γ and the

practical osmotic coefficient ϕm (viz. Chap. 14) according to the relations

ln γ ¼ 2λmþ 3μm2 þ � � �
ϕm � 1 ¼ λmþ 2μm2 þ � � �

λ and μ must be, of course, known. This is realized by fitting the experimental data

of GE to the molalities or molar fractions.

We defer the study of these means of calculation of activities to Chap. 16.
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13.8 Some Results

At concentrations lower than 0.1 mol kg�1, the difference between the activity of a

non-charged species does not differ from its concentration by a deflection larger

than 1 p 100. This is the reason why in dilute solutions, the activity coefficients are

taken to be equal to unity during, for example, the calculations involving chemical

equilibria. In Table 13.4, we give the activities of water and saccharose as a

function of the molality of the latter. The activity coefficients of uncharged mole-

cules are generally higher than unity.

Table 13.4 Activities of

saccharose and water in

aqueous solutions as a

function of the molality of

saccharose (According to
R.A. Robinson, R.H. Stokes,
Electrolyte Solutions, 2nd Ed,
Dover Publications Inc, 2002,
New York)

M aw ϕ log γ

0.1 0.99819 1.0072 0.0062

0.3 0.99449 1.0226 0.0193

0.5 0.99068 1.0393 0.0333

0.7 0.98676 1.0569 0.0479

0.9 0.98272 1.0754 0.0631

1.2 0.97641 1.1044 0.0868

1.6 0.96755 1.1447 0.1197

2.0 0.95818 1.1857 0.1535

3.0 0.93284 1.2863 0.2382

4.0 0.90560 1.3761 0.3185

5.0 0.8776 1.4500 0.3906

6.0 0.8496 1.5084 0.4541
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Chapter 14

Determination of the Activities
of the Electrolytes

Abstract As a rule, the determination of the activity of electrolytes obeys the same

principles as the ones of nonelectrolytes. However, electrolytes exhibit a particular

behavior. This induces the using of some particular methods of determination.

It must be borne in mind that the matter, here, is the determination of the activity

of the whole electrolyte and not that of each of the ions constituting it, which is

theoretically impossible.

The book is primarily devoted to the determinations in aqueous solutions. In

addition, water is, given its physical properties, a solvent particularly interesting in

order to study the behavior of electrolytes and ions. The described methods are

those based on the determinations of the freezing-point depression of the solvent,

isopiestic principle, osmotic coefficients, excess Gibbs energies, electromotive

forces, and solubilities.

Keywords Freezing-point depression • Isopiestic method • Osmotic coefficient

(rational and practical) • Excess Gibbs energies • Electrochemical cell • Activities

and electromotive forces • Activities and solubility • Solubility product

As a rule, the determination of the activity of the electrolytes obeys the same

principles as the ones of nonelectrolytes. However, electrolytes exhibit a particular

behavior. This induces the using of some particular methods of determination of

their activities.

Let us recall that the matter is to determine the activity of the whole electrolyte

and not the determination of each of the ions constituting it, which is impossible.

In this book, we are primarily interested in the determinations in aqueous

solutions. In addition, water is, given its physical properties, a solvent particularly

interesting in order to study the behavior of electrolytes and ions.
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14.1 Activity of the Electrolytes by the Measurement
of the Freezing-Point Depression of the Solvent

The method is based on the use of relation (13.14) of Chap. 13 that we can write

under the form

�d lna1 ¼ 1=RT2
0 L0 þ bθ þ cθ2 þ . . . :
� �

dθ ð14:1Þ

where b and c are constants and L0 the molar latent heat of fusion of the pure solvent

at the freezing point of the solvent under 1 atm. It relates the freezing-point

depression θ of the solution to the activity of the solvent a1. The activity of the

whole electrolyte is obtained from that of the solvent by using the Gibbs-Duhem

relation

d lna2 ¼ � x1=x2ð Þd lna1 ð14:2Þ

as we have seen in Chap. 13. It is convenient to modify somewhat the relation (14.1)

in order for it to become easier to handle.

The basic reasoning of the method of determination is the following. Relation

(14.2) may, for solutions sufficiently diluted, be written as

d lna2 ¼ � n1=n2ð Þd lna1 ð14:3Þ

since in the denominator (ni+ n1), ni is negligible with respect to n1, given the high

dilution. Let us set up that n1 moles correspond to 1 kg of solvent. In this case

n1 ¼ 1000=M1

where M1 is the molar mass of the solvent. n2 is then the number of moles of

electrolyte in 1 kg of solvent. Hence, it is its molality m. Now, relation (14.3) is

written as

d ln a2 ¼� 1000=mM1ð Þ d ln a1

This last relation combined with (14.1) leads to

d lna2 ¼ 1000= RT2
0M1

� �
L0 þ bθ þ cθ2 þ . . .
� �

dθ=m ð14:4Þ

The expression (RT20M1/1000L0) is exactly the molal cryoscopic constant of the

solvent λ (viz. thermodynamics). Consequently, the relation (14.4) becomes

d lna2 ¼ dθ=λmþ αθdθ=m ð14:5Þ
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where the symbol λ is introduced in order to simplify the writing with

1 =λ ¼ 1000=RT2
0M1

� �
L0

and by setting up

α ¼ 1000= RT0
2M1

� �
bþ cθ þ . . . . . .ð Þ

Before integrating the relation (14.5), we must express the activity of the whole

electrolyte a2 as a function of the mean activity a� of its ions. One knows (viz.

Chap. 12) that

a2 ¼ av
�

where ν is the total number of ions given into the solution per mole electrolyte

(ν¼ ν+ + ν�). The result is

d lna� ¼ dθ=vλmþ αθdθ=vm ð14:6Þ

The integration of this expression is not immediate. We confine ourselves, here, to

only giving the result. Details concerning it are given in Appendix C. It involves the

intermediary function j defined by the relation

j ¼ 1� θ=vλm

It leads to the expression

ln γ� ¼ �
ð m

0

jd lnm � jþ α=vð Þ
ð m

0

θ=mð Þdθ ð14:7Þ

The first integral of relation (14.7) is graphically evaluated by drawing the function

j, which is known (it is obtained from the freezing point of the solvent) as a function

of lnm, and by determining the area under the curve. The second integral is also

evaluated graphically by drawing θ/m as a function of θ. For the solutions of

concentrations lower than 0.1 mol kg�1, the latter is negligible. For the solutions

of concentrations lower than 10�2 mol kg�1, the first integral can be calculated by

using an empirical relation between j and m.
It must be noticed that the values found in such a manner are those of the

activities at the freezing point of the solution. For solutions more concentrated

than 0.1 mol kg�1, one must consider that there is a change of the activity

coefficient with the temperature. This is done by taking into account the change

of the relative partial molar heat content of the solvent with the temperature through

the Kirchoff’s relation which relates its change to the difference of molal calorific

capacities (at constant pressure) of the liquid and of the solid (viz. Chap. 13).
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14.2 Isopiestic Method

This is one of the simplest methods of determination of the activity of electrolytes.

It has been especially used in the case of aqueous solutions. It can be applied to

nonelectrolytes as well, but it has been the matter of the most applications in the

first case.

Its principle is the following one. The method consists in comparing the prop-

erties of two solutions, each containing a nonvolatile solute. The activity of the

solvent of one of them has been, beforehand, determined with a great precision.

When both solutions in the same solvent, maintained isothermal, are placed in an

evacuated container, the solvent of the solution of higher vapor pressure (that is to

say the solution of higher fugacity (hence activity)) will evaporate and condensate

into the solution of lower vapor pressure, until the equilibrium is attained. Then, the

solutions will have the same vapor pressure. The solvent has the same fugacity and,

hence, the same activity in each (the reference state is the same in both solutions).

They are said isopiestic. Let us suppose that one of these solutions contains a

reference substance and that its mean ionic activity coefficients are known at

different molalities, after having used a suitable method of determination. Hence,

with such data, a calibration curve has been built. The molality of the solute in each

solution is measured. That of the solution of reference, once known, is reported on

the calibration curve. Hence, we obtain the activity of the solvent in the solution

under study which is identical to that of the reference solution.

Finally, the activity of the solute in the studied solution is determined by

applying the Gibbs-Duhem relation. The isopiestic method is an indirect one.

From the quantitative standpoint, the method is based (at its end of application)

on the relation (viz. (13.2) Chap. 13)

d lna1 ¼ � x2=x1ð Þd lna2

which in terms of the solvent molality becomes

mM1=1000ð Þ d lna2 ¼ � d lna1

since x2/x1� n2/n1 and since for 1000 g of solvent n1¼ 1000/M1 and then n2¼m.
In the case of an electrolyte, according to the relation (12.32) (viz. Chap. 12)

d lna2 ¼ vd lna�

Hence

vmM1=1000ð Þ d lna� ¼ � d lna1 ð14:8Þ

a� is the mean activity of the ions in the solution and m the molality of the

electrolyte. For the electrolyte of reference, one can write
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vrefmrefM1=1000ð Þd lnaref ¼ � d lna1 ð14:9Þ

At equilibrium, according to (14.8) and (14.9)

vref mrefd lnaref ¼ vmd lna� ð14:10Þ

According to relation (12.34) of Chap. 12,

d lna� ¼ d lnm� þ d ln γ�

Hence, we can write

vref mrefd lnmrefγref ¼ vmd lnm� γ� ð14:11Þ

γref being the mean activity coefficient of the reference electrolyte. Let us suppose

for sake of simplification that νref¼ ν (by no means does this simplification change

the generality of the reasoning) (14.11) becomes

md lnm� γ� ¼ mrefd lnmrefγref ð14:12Þ

Relation (14.12) can be equivalently written as

d lnγ� ¼ d lnγref þ d ln mref=m�ð Þ þ mref=m� � 1ð Þd lnmref γref

or by introducing the ratio r¼mref/m� of both solutions said isopiestic or isotonic:

d ln γ� ¼ d ln γref þ d ln r þ r � 1ð Þd lnmref γref ð14:13Þ

After integration, we obtain

ln γ� ¼ ln γref þ ln r þ
ðaref
0

r � 1ð Þ=aref½ �daref ð14:14Þ

since γ� and γref are equal to unity and, hence, their logarithms equal to zero when

m and mref are equal to zero, that is to say, at infinite dilution. The integral is

evaluated by a graphical means. The area under the curve (r�1)/aref as a function of
aref is determined. aref varies from 0 until the point corresponding to the solution of

molality mref isopiestic with that of molality m. Another graphical means is pro-

posed for the sake of precision of the results. It is founded on the determination of

the following integral equivalent to the previous one:

2

ða0
0

r � 1ð Þ=a0½ �da0
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with

a0 ¼ a
1=2
ref et da’ ¼ da

1=2
ref :

The power ½ which occurs above is a remnant of the Debye–Hückel relations (viz.
Chap. 15).

It is an evident fact that the comparative nature of the method is a drawback

because its use entails that the calibration curve (vapor pressure of the solvent/

electrolyte concentration of the reference solution) must be known with a great

accuracy. But, it is a fast method. The determinations are easier to do with solutions

rather concentrated, the only limit being the saturation of one of the solutions. The

lowest limit for which the method is no longer workable seems to be 0.1 mol kg�1.

In some cases, the method is jointly used with that involving the osmotic

coefficients (viz. the next paragraph).

14.3 Activities from Osmotic Coefficients

This is a method of determination of activity coefficients. From the purely exper-

imental viewpoint, it finally involves the determination of the vapor pressure of the

solvent of the solution of the electrolyte. It may be direct or involve the isopiestic

method. It involves the notion, of rational and practical osmotic coefficients.

14.3.1 Rational Osmotic Coefficient

One knows that the chemical potential of the solvent of the solution containing the

electrolyte is

μ1 ¼ μ1
� þ RT ln a1 ð14:15Þ

or

μ1 ¼ μ1
� þ RT ln x1 γ1 ð14:16Þ

μ1� is its standard chemical potential, a1 its activity, and γ1 its activity coefficient. It
is said rational since the concentration is expressed in this case in molar fraction x1.

The chemical potential of the solvent can also be expressed in terms of rational

osmotic coefficient ϕx. It is defined by the following relation:

μ1 ¼ μ1
� þ ϕxRT ln x1 ð14:17Þ
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It is a dimensionless number. The comparison of (14.17) and (14.16) leads to the

following relation between the activity coefficient of the solvent and its osmotic

coefficient ϕx:

lnγ1 ¼ ϕx � 1ð Þ ln x1 ð14:18Þ

The osmotic coefficient ϕx is a quantity which permits to evaluate the deflection

from the “ideality” of the solvent and to obtain the activity coefficients of the solute

by repercussion.

14.3.2 On the Physical Significance of the Rational Osmotic
Coefficient

The rational osmotic coefficient ϕx is roughly equal to the ratio of the osmotic

pressure of the solution and that of the corresponding ideal system. According to

relation (13.18) of Chap. 13, indeed

� RT ln a1 � V0π

or

� RT ln x1 � RT lnγ1 � V0π

For an ideal solution in the same conditions of temperature, pressure, and concen-

trations, for which the osmotic pressure is π0, we can write

� RT ln x1 � V0π
0

whence, taking into account (14.18),

π=π0 ¼ ϕx

It appears that ϕx approaches unity at infinite dilution since, then, the solvent

follows the Raoult’s law.

14.3.3 Practical or Molal Osmotic Coefficient ϕm

One also uses the practical or molal osmotic coefficient ϕm (m means related to the

molalities) defined by the expression
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μ1 ¼ μ1
� � ϕmRT Ms=1000ð ÞΣ mi

Σmi is the sum of the molalities of all the nonelectrolyte species and all the present

ions andM1 the molar mass of the solvent. When there is only one electrolyte and if

one mole of the latter provides ν ions, one has Σ mi¼ ν m and the previous equality

becomes

μ1 ¼ μ1
� � ϕmRT vmM1=1000ð Þ ð14:19Þ

The comparison of (14.15) and (14.19) leads to

ln a1 ¼ � ϕmvmM1=1000 ð14:20Þ

Relations (14.19) and (14.20) link the solvent activity a1 (and its chemical potential

μ1) and the practical osmotic coefficient ϕm.

14.3.4 Relation Between Rational and Practical Osmotic
Coefficients

We note that (by definition of ϕx)

ln a1 ¼ ϕx lnx1 ð14:21Þ

with

x1 ¼ n1= n1 þ n2ð Þ

(the index 1 is that of the solvent and index 2 that of the solute). In order to simplify

the reasoning, let us suppose that the solute is a strong electrolyte, the molality of

which is m. It gives νm ions in solution:

n2 ¼ vm

Now, we can write

n1 ¼ 1000=M1

whence (since n2¼ νm)

x1 ¼ 1= 1þ vmM1=1000ð Þ
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and according to the definition of ϕx

ln a1 ¼ ϕx ln 1= 1þ vmM1=1000ð Þ½ �

or

ln a1 ¼ ϕx � ln 1þ vmM1=1000ð Þ½ �

After having expanded in series the logarithm of the right-hand member and after

having only kept the first two terms, we obtain

ln a1 ¼ �ϕx vmM1=1000
�� �� vmM1=1000

�� �2
=2 þ . . . :

n o

with (relation (14.20) l)

ln a1 ¼ �ϕmvmM1=1000

it results in the equality:

1� ϕm=ϕx ¼ vmM1=2000

Hence, in very dilute solution, the rational and practical osmotic coefficients tend to

be equal:

ϕm ! ϕx very dilute solutionð Þ

14.3.5 Theoretical Interest of Handling the Practical
Osmotic Coefficient

The interest of handling the practical osmotic coefficient lies in its relation with the

mean ionic activity coefficient of an electrolyte. Let us differentiate the relation

(14.20), m and ϕm being the variables. We obtain

d lna1 ¼ � vM1=1000ð Þ ϕmdmþ mdϕmð Þ

Let us combine this relation with (14.8). We obtain

md lna� ¼ ϕmdmþ m dϕm

or

d lna� ¼ ϕmd lnm þ dϕm
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or (viz. paragraph 2 of this chapter)

d lna� ¼ d lnmþ d ln γ�

It follows the relation between the mean ionic activity coefficient γ� and the

molality m in terms of osmotic coefficients:

d ln γ� ¼ ϕm � 1ð Þ d lnmþ dϕm ð14:22Þ

14.3.6 Determination of the Activity Coefficient Starting
from the Practical Osmotic Coefficient

It results from the integration of relation (14.22). The utilization of (14.22) entails,

in a first step, to determine ϕm.

• Measurement of ϕm

– ϕm can be measured by starting from measurements of vapor pressures by

using the relation (14.20) knowing that by definition

as ¼ f s=f s
□

and approximately

as � ps= ps
□

ps is the vapor pressure of the solvent above the solution and ps
□ that of the pure

solvent at the same temperature. It is the same for the corresponding fugacities.

As a result, relation (14.20) becomes

ϕm � � 1000=vmM1ð Þ ln p1=p1
□ð Þ

The measurement of the vapor pressure can be performed directly by the

isopiestic method (viz. immediately under).

– Another way for the determination of the mean ionic activity coefficients, also

based on the determination of osmotic coefficients, is as follows. Its consists in

determining the osmotic coefficients of a reference substance in some domain of

concentrations. Then, the activity coefficients of another electrolyte may be

found through the isopiestic method.

– The practical osmotic coefficient can also be obtained from the measurement of

freezing point of the solvent. Here, we take advantage of the great accuracy of
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this measurement, especially when the solvent is water. The practical osmotic

coefficient is related to the depression of the freezing point of the solution

through the relation

ϕm ¼ ΩΔfusH
�=RT2

fus

� �
θ=mþ 1=Tfus � ΔCp=2ΔfusH

�� �
θ2=m þ . . .

� � ð14:23Þ

where Ω¼ 1000/M1 is the number of moles of solvent in 1 kg of pure solvent.

Relation (14.23) results from the juxtaposition of relations (13.20) and

(13.15)—Chap. 13.

• Integration of (14.22).

The integration is performed through the introduction of the following function h:

h ¼ 1� ϕm

Let us already recall that ϕm¼ 1 and h¼ 0 at infinite dilution. With the introduction

of the function h, (14.22) becomes

d ln γ� ¼ � h d ln m� d h

After integration between the limits 0 and m and because of the properties of h and

ϕm at infinite dilution

ln γ� ¼ �
ðm

0

h d ln m� h ð14:24Þ

The integral is evaluated graphically by drawing h as a function of ln m and by

determining the area under the curve. Another option which may in some cases be

more precise than the previous one consists in handling the equivalent equation

under (with m0 ¼m1/2)

ln γ� ¼ � 2

ðm0

0

h=m0ð Þdm0 � h

By comparing the relations (14.24) and (14.7), it appears that

h ¼ J

since in (14.7), in sufficiently dilute solution, the last integral is negligible. As a

result, since we have seen that, at infinite dilution, j tends toward 0, it is the same for

h. (This is a result that we have already used in the above integration.) Hence, at

infinite dilution

ϕm ¼ θ=vλm
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The practical osmotic coefficient is equal to the ratio of the depression of the

freezing point and the quantity νλm (viz. paragraph 1).

14.3.7 Practical Interest of the Introduction of Osmotic
Coefficients

It is an experimental fact that the activity coefficient of the solvent differs very

weakly from unity. In the case of dilute solutions, it may differ from unity by only

1/10,000th whereas that of the solute may differ from some 1/100th. The osmotic

coefficients are by far more sensitive. Hence, the measurements of the deflections

with respect to the ideal character are more significant with the latter. For example,

a solution 2 mol L�1 of potassium chloride in water exhibits for the latter an activity

of 0.9364 at 25 �C. Its molar fraction being 0.9328, its activity coefficient is 1004.

At first sight, this value does not permit to take into account the deflection with

respect to the ideal character whereas it is the case with the mean ionic activity

coefficient of the solute (γ2¼ 0,614).

As further examples, Table 14.1 mentions some values of the practical osmotic

coefficients obtained with some aqueous solutions of potassium chloride at differ-

ent molalities at 25 �C.

14.4 Determination of the Solute Activity Coefficients
from Excess Gibbs Energies

We have already recalled, in the case of the nonelectrolytes, that it is possible to

determine the activity coefficients from excess Gibbs energies (viz. Chap. 13). It is

the same with electrolytes (viz. Chap. 16).

Table 14.1 Practical osmotic coefficients of aqueous solutions of potassium chloride at 25 �C

m 0.1 0.2 0.3 0.5 0.7 1.0 1.5

ϕ 0.926 0.913 0.906 0.900 0.808 0.899 0.906

According to R.A. Robinson, R.H. Stokes, Electrolyte Solutions, 2nd Ed., Dover Publications,

Inc., 2002, New York
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14.5 Determination of the Activity Coefficients
of the Electrolytes by Measurements of emf

Let us recall that a “ concentration galvanic cell” is a cell, which provides electric

energy spontaneously due to the Gibbs energy change accompanying the transfer of

one substance from one electrode to the other (from that with the larger concentra-

tion to the other). There does not exist a global chemical reaction in such cells.

Finally, let us recall that there exist galvanic cells, the working of which involves

transference of ions from a compartment into another one. In this case, in order to

avoid a too fast mixture, one uses an appropriate device called a liquid junction.

Cells with a liquid junction are, hence, cells with transference. (It is understood, of

course, that the “concentration” in the compartment can be expressed with any scale

of “concentration.”)

The activity coefficients of electrolytes can be determined with cells without

liquid junction or with cells with transference (viz. Chaps. 5 and 13).

14.5.1 Determination with Cells Without Liquid Junction

Examples of this kind are given in Chap. 18 devoted to the determination of

thermodynamic constants of equilibria which involves, by definition, the use of

activities. The method permits the direct measurement of the mean activity coef-

ficient of an electrolyte. Let us anticipate the results given in Chap. 18 by mention-

ing the fact that the global reaction of these cells involves the formation of the

compound at the mean activity that is, actually, required. For example, with the cell

Pt
��H2 1 atmð Þ��HCl mð Þ��AgCl sð Þ��Ag

the cell reaction is

1 =2H2 1 atm:ð Þ þ AgCl sð Þ ! Hþ mð Þ þ Cl� mð Þ þ Ag sð Þ

The cell emf only depends on the activities of ions hydrogen and chloride since the

silver halide, silver, and dihydrogen are in their standard state in the conditions of

the experiment.

This method of determination may be, in principle, generalized to every electrolyte.

14.5.2 Determination with Cells with Transference

The determination of activities is also possible with cells with transference (viz.

Chap. 13 and Appendix D). An example is provided by the determination of the

mean ionic activity of a solution of hydrochloric acid with the following cell:

14.5 Determination of the Activity Coefficients of the Electrolytes. . . 169

http://dx.doi.org/10.1007/978-3-319-46401-5_5
http://dx.doi.org/10.1007/978-3-319-46401-5_13
http://dx.doi.org/10.1007/978-3-319-46401-5_18
http://dx.doi.org/10.1007/978-3-319-46401-5_18
http://dx.doi.org/10.1007/978-3-319-46401-5_13
http://dx.doi.org/10.1007/978-3-319-46401-5_BM1


Pt
��H2 1atm:ð Þ��HCl m’ð Þ����HCl mð Þ��H2 1atm:ð Þ��Pt

Two solutions of hydrochloric acid of different molalities are in contact through a

device, symbolized by || permitting the flow of current and avoiding the mixture of

the solutions.

The principle of the determination is based on the fact that, once the transference

number of an ion is known as a function or its “concentration,” its activity

coefficient can be obtained from the emf of a suitable cell with transference. (The

transference number of an ion is the fraction of the total current transported by this

ion—viz. electrochemistry).

Let us suppose that the galvanic cell has debited 1 faraday and evaluate the

processes occurring without forgetting the fact that ions cross over the junction,

thus ensuring the flow of current. The occurring electrochemical reactions are

at the anode
1

2
H2 Ð Hþ þ 1 e�

at the cathode Hþ þ 1e� Ð 1

2
H2

Finally for 1 faraday debited and for the electroneutrality to be respected, there is

a gain of t� moles of HCl by the left compartment and for the right one a loss of t�
moles of HCl in order to respect the electoneutrality of both.

One demonstrates (viz. Appendix D) that

dE=t� ¼ 2RT=Fð Þ d lnmþ d lnγ�ð Þ ð14:25Þ

m is the molality of the solution, E the emf of the cell, t� the transference number of

the anion, and γ� the mean activity coefficient.
For the integration, we introduce the function δ through the following equality:

1=t� ¼ 1=tR þ δ ð14:26Þ

tR is the transference number (here of the anion) at the molality reference mR. The

transference number, indeed, varies with the concentration. With this introduction,

(14.25) becomes

d ln γ� ¼ F=2tRRTð ÞdE� d lnmþ F=2RTð ÞδdE

After integration between the limits mR and m, the mean activity coefficients γR and
γ� play a part in the following expression:

ln γ�=γRð Þ ¼ FE=tR2RTð Þ þ ln mR=mð Þ þ F=2RTð Þ
ð E

0

δdE ð14:27Þ

The first two terms are immediately calculated from the experimental values, once

the reference concentration is chosen. The last term is obtained by graphical
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integration by drawing the δ values as a function of E. The δ values are calculated
by using relation (14.26), since, according to the principle of the method, the

transference number values t- are known as a function of molalities m.
The experimental measurements consist in performing a series of measurements

of the emf of a cell with transference, the molality of one compartment being fixed

to m0, that m of the other compartment being variable. The emf is related to the

activity coefficients, molalities, and transference numbers through the preceding

relation. One draws the curve ln (γ�/γR) as a function of m for the fixed mR. The

value of the molality of the studied solution reported on this curve provides the

value of the corresponding term ln (γ�/γR). In order to know γ� it remains to

determine γR. The value γR is obtained after extrapolation of the curve ln (γ�/γR) as
a function of m at m¼ 0. In these conditions, for m¼ 0, γ�¼ 1. This entails that we
choose as the standard solution that which has the same properties as the infinite

dilute solution. A better method from the viewpoint of the accuracy of the result is

to proceed to the extrapolation at m¼ 0 of the function stemming from Debye and

Hückel’s theory (viz. Chap. 15)

log γ�=γR þ 0:5107√m= 1þ 1:350√m
� �

in order to obtain the value of ln γR.
The activities of several metallic chlorides have been determined in this manner,

by using a cell sensitive to the ion chloride:

Ag
��AgCl��NaCl m0ð Þ����NaCl mð Þ��AgCl��Ag

For example, it is the case of alkali and alkaline earth metals chlorides and

lanthanide chlorides. In these cases, it is the transference number t+ and not t�
which must be now considered and moreover the sign of ΔG (related to E) must be

modified.

14.6 Determination of the Activities of the Electrolytes
from Measurements of Their Solubilities

The activity and the activity coefficient of a poorly soluble electrolyte may be

obtained from measurements of its solubility when it is in mixture with other

electrolytes, once its solubility product is known.

Let us consider the electrolyte Mν+Aν� which dissociates according to the

equilibrium (symbol (s) meaning in solid state):

MvþAv� sð Þ Ð vþMzþ þ v�Az�
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We shall see (viz. Chap. 18) that the equilibrium condition is

K ¼ avþM av�A =aMvþAv�

According to the usual conventions concerning the activities, that of a solid at

atmospheric pressure and forming only one phase is chosen to be equal to unity.

Here, it is the case of aMν+Aν�. Hence, we can write

Ks ¼ avþM av�A

The equilibrium constant is named solubility product and is symbolized by Ks. aM
and aA are the activities of both ions at saturation of the solution, at atmospheric

pressure, and at the chosen temperature. According to what is preceding

Ks ¼ mvþ
þ mv�

� γvþþ γv��

or

Ks ¼ m� γ�ð Þv

where m� and γ� are the ionic molalities and the mean activity coefficient in the

saturated solution and where ν¼ ν++ ν�. One deduces that

γ� ¼ K
1=v

S = m� ð14:28Þ

Hence, the mean activity coefficient of a poorly soluble electrolyte can be

determined provided that its solubility product is known together with its mean

ionic molality in the solution saturated with the electrolyte.

In order to perform the determination, one begins by obtaining the solubility

product Ks by measuring the mean ionic molalities at saturation of the electrolyte in

the presence of variable quantities of other electrolytes. (Other electrolytes may

have or not one ion in common with the electrolyte under study. Even if only two

ions are formed in solution by dissolution of a salt, their activities depend on the

presence of other salts. One must, of course, take into account the concentration of

the ions in common with those of the electrolyte in the calculations.)

Figure 14.1 mentions the solubility of silver chloride in the presence of sodium

perchlorate in variable concentrations.

We notice that the solubility slightly increases with the concentration of the

added salt. This effect takes its roots in the fact that activity coefficients decrease

while the concentration of the added salt is increasing (viz. Chap. 15). As a result,

the only way to make sure that the solubility remains constant is such as the

solubility product of both ions increases.

The determination consists in drawing the obtained mean ionic molalities

obtained as a function of variable amount of ions (actually and usually as a function

of the ionic strength—of the solution (viz. Chap. 15)). The value m� obtained after

172 14 Determination of the Activities of the Electrolytes

http://dx.doi.org/10.1007/978-3-319-46401-5_18
http://dx.doi.org/10.1007/978-3-319-46401-5_15
http://dx.doi.org/10.1007/978-3-319-46401-5_15


extrapolation until a null value in added ions into the solution permits to reach the

solubility product. The simple consideration of relation (14.28), indeed, shows that

Ks is accessible since, then at infinite dilution, the mean activity coefficient is equal

to 1, given the usual convention on the standard state.

The calculation of the mean activity coefficient entails, then, to know the mean

ionic molality of the electrolyte at saturation in the studied solution. Then, the

calculation becomes immediate. However, we must pay attention to the fact that in

the calculation of the mean molality of the concentration of the ions, there are some

of them which can eventually be in common with those of the added electrolyte.

(They are brought by the other salts added in the solution.) This fact must be taken

into account in the calculations.

Then, for example, the solubility product of thallous chloride isKs¼ 2.02� 10�4

and its solubility in a solution 0.025 mol kg�1 of potassium chloride is

0.00869 mol kg�1. The concentrations in thallous ions are

Cl�½ � ¼ 0:025þ 0:00869 ¼ 0:03369 mol kg�1

Tlþ½ � ¼ 0:00869mol kg�1

Thallous chloride giving two ions, ν¼ 2:

m� ¼ 0:00869þ 0:03369ð Þ½ mol kg�1

m� ¼ 0:01711mol kg�1

and

γ� ¼ √2:02� 10�4= 0:01711

Fig. 14.1 Solubility of

silver chloride as a function

of the concentration of

added sodium perchlorate
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γ� ¼ 0:831

In this chapter, we have not mentioned some methods of determination that can

be qualified as being more marginal as the previous ones given the limited number

of applications they have given.
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Chapter 15

Debye–H€uckel Relations and Neighboring
Relations: Calculation of the Activity
Coefficient of an Ion

Abstract The value of the activity of an ion cannot be determined experimentally,

contrary to that of an uncharged species. However, it is accessible through a

calculation, at least in some conditions of concentrations. Hence, this possibility

is of utmost importance from the theoretical standpoint and, also, from the practical

one as well. An example of such an importance is provided by the most commonly

and quasi-universally used scale of pH which is based on the estimation of the

activity of the solvated proton in the studied medium.

The calculation of the activity of ions is performed by applying Debye–Hückel
or a very neighboring relation.

The chapter is focused on the presentation of these relations and on the results

and conclusions to which they lead. (Their setting up is described in another

chapter.) Here are also mentioned the properties of the mean activity coefficients

of electrolytes which, contrary to those of their constitutive ions, can be measured.

They have the great virtue to permit to indirectly verify the Debye–Hückel rela-
tions. However, the using of these relations imposes to know the ionic strength of

the solution. This notion is introduced at the beginning of the chapter but, just

before, the impossibility of the measurement of the activity of an ion is explored.

Keywords Ion activity (determination?) • Ionic strength (influence on the

nonelectrolytes) • General behavior of the activity coefficient of the whole

electrolyte • Guntelberg’s relation • Guggenheim’s relation • Davies’ relation •

Broomley’s relation • Debye–Hückel’s relation • pH scale

The value of the activity of an ion cannot be determined experimentally, contrary to

that of an uncharged species. However, it is accessible through a calculation, at

least in some conditions of concentrations. Hence, this possibility is of utmost

importance from the theoretical standpoint and, also, from the practical one as well.

An example of such an importance is provided by the most commonly and quasi-

universally used scale of pH which is based on the estimation of the activity of the
solvated proton in the studied medium.

The calculation of the activity of ions is performed by applying Debye–Hückel
relations. In this chapter, we not only focus ourselves on their presentation but also

on the results and conclusions to which they lead. Here, we also mention the

properties of the mean activity coefficients of electrolytes which, contrary to
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those of ions, can be measured. They permit to indirectly verify the Debye–Hückel
relations.

Using these relations imposes to know the ionic strength of the solution. We

introduce this notion at the beginning of the chapter. But, just before, we come back

on the notion of impossibility of measurement of the activity of an ion.

15.1 Impossibility of an Experimental Measurement
of the Activity of an Ion

As we have already and briefly said it (viz. Chap. 6) and as we shall specify it

below, activity coefficients quantify the electrostatic interactions between the

chemical species constituting the studied system, notably the interaction ions/

ions. Let us also mention the interaction ions/dipoles, dipoles/dipoles, etc. They

result in a Gibbs energy change of the whole solution under study for a mole of ions

added to it. It is impossible to determine this Gibbs energy change because of the

following two reasons:

– We do not have a chemical species constituted by only one kind of ions at our

disposal. This is for a reason of electroneutrality. A salt is always neutral from

the electrical standpoint. It is also the case of a solution. In brief, an ion is always

accompanied by a counterion to ensure the electroneutrality of the medium.

Hence, it is quite impossible to add an ion into the studied solution and as a result

to determine the change in the chemical potential during this virtual process.

– The second reason is that, if even the previous process was possible, the

corresponding measured change in Gibbs energy would then comprise a supple-

mentary term from electrostatic origin which adds to the search for one

concerning the interactions of the ions, which is only of interest for our purpose.

It would correspond to the work necessary to perform (in the conditions of

reversibility) in order to add a charged particle to an already charged solution.

Hence, in order to measure the activity coefficient of an ion, it should be

necessary to think up a process which would be able not only to add only one

kind of charged ion but also to evolve at a constant electrical charge of the solution.

Hence, all that is possible from the experimental viewpoint consists in adding an

ion and its counterion together. Certainly, while doing that, the studied ion is added

at the constant charge (null) of the solution, but the measured Gibbs energy change

is vitiated by the proper Gibbs energy of addition of the counterion. Actually, here,

one finds the same impossibility as that encountered for the measurement of the

solvation heat of one ion. It is, indeed, impossible to add only one kind of ions

without adding its counterion.

However, the opinion of some authors is that the activity of an ion is potentially

measurable but only when an infinitely weak number of ions would be transferred

into the solution and, that, provided that the net electrical charge of the solution
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would be measured at every moment. For some others (Guggenheim), the very

notion of activity of an ion is devoid of any physical significance.

To sum up, only some mathematical combinations of activities of ions can be

measured (viz. Chap. 12, paragraph 3). Fortunately, if the activity of an ion cannot

be experimentally measured, its value can be approached through calculations, at

least in some conditions.

From the historical viewpoint, it is interesting to know that the physico-chemical literature
is endowed with writings asserting that this determination is possible.

15.2 Ionic Strength

A rapid mention concerning the notion of ionic strength has already been given (viz.

Chap. 12). It has been introduced in 1921 by Lewis and Randall on purely empirical

bases but its introduction into the realm of the study of solutions has been theoret-

ically justified some years later within the framework of Debye–Hückel theory (viz.
Chap. 46).

The ionic strength is a function, the value of which expresses the charge “in

ions” of a solution. It is defined as being the half sum of the terms obtained by

multiplying the molality mj of each ion present in solution by the square of its

relative charge zj that is to say

Im ¼ 1=2
X

j

mj z
2
j ð15:1Þ

where Im is the ionic strength of the solution on the scale of molalities. The index

j indicates that the sum is over all the ions of the solution. It is expressed in mol kg�1.

It can also be defined in terms of molarities:

Ic¼1=2
X

j

cj z
2
j ð15:2Þ

Then, it is expressed in mol L�1. Given the fact that the notion of ionic strength is

only handled in the cases of dilute and very dilute solutions and since, then, the

numerical values of molalities are very close to those of molarities, the numerical

values of the ionic strengths expressed in both unities are very close to each other:

Im � Ic dilute solutionsð Þ

(The symbol μ has also been used formerly in order to symbolize the ionic strength.

It is no longer recommended.)

It is very important to highlight the fact that the “concentration” mj or cj is the
true “concentration” of the ions and not their total “concentration.” As a result of

this point, the calculation of the ionic strength entails to take into account the
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incomplete dissociation of some electrolytes. This is not without setting up some

calculation problems (viz. Chap. 19).

Let us confine ourselves, at the present time, to deduce the following conclusions

relative to the fully dissociated electrolytes from relations (15.1) and (15.2):

– For those of the type 1/1, the ionic strength is equal to its molar concentration.

For example, for a solution c molar of sodium chloride

I ¼ 1=2 Naþ½ �12 þ Cl�½ �12� �

I ¼ cmolL�1

– For the multivalent ones, it is larger than the molar concentration. Its value is

larger all the more the charges of the ions are themselves larger, since there are

changes with the square of these ones. For example, for 1 M solution of

magnesium sulfate

I ¼ 1=2 SO2�
4

� �
22 þ Mg2þ

� �
22

� �

I ¼ 4cmolL�1

In direct relation with the use of all Debye–Hückel relations (viz. under), the
question coming in mind is this: What are the ions which must be into account in

order to calculate the ionic strength of the solution containing the ion under study.

The answer is simple: all.

15.3 Influence of the Ionic Strength on the Activity
of Nonelectrolytes

We know that, in dilute solutions, the activity coefficients of nonelectrolytes are

quasi-equal to 1 and hence their activities are quasi-equal to their concentrations in

numerical values (viz. Chap. 13). Although the principal subject of this chapter is

the solutions of electrolytes, it is interesting, in passing, to study the influence of the

ionic strength on the activity coefficients of the nonelectrolytes. We are concerned,

here, with aqueous solutions.

It is an experimental fact that one finds the following relation:

ln γ=γ0ð Þ ¼ k Im ð15:3Þ

where γ is the activity coefficient of the nonelectrolyte when its solubility ismwhen

it is in presence of some quantity of electrolyte and γ0 its activity coefficient in pure
water in which its solubility is m0. This relation is found by measurements of

solubilities of numerous nonelectrolytes in the presence of electrolytes. Im is the

ionic strength of the solution based on the scale of molalities. Hence, ln γ appears as
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being proportional to the ionic strength of the solution. The relation seems to be

obeyed up to large ionic strengths such as 5 mol kg�1. The value of the propor-

tionality coefficient k depends on the nature of the nonelectrolyte and also of that of
the electrolyte added in order to fix the ionic strength. For the major part of

electrolytes, the k value is located between 0 and 0.1. For an ionic strength such

as Im< 0.1 mol kg�1, the ratio γ/γ0 changes in the range of 1000–1023. This result

justifies the fact that, as a rule, one attributes the value 1 to the activity coefficient of

a nonelectrolyte or of the undissociated part of a weak electrolyte in calculations,

even when they must be refined (viz. Chap. 19).

An interesting point to underline is that the solubilitym of a nonelectrolyte in the

presence of an electrolyte is weaker as that m0 it exhibits in the presence of pure

water. This is a point easy to justify. Let us compare two solutions of the same

nonelectrolyte, one in pure water where its solubility is m0 and its activity coeffi-

cient γ0 and the other in water containing an electrolyte where its solubility is m and

its activity coefficient γ. At saturation, in both solutions, there is equilibrium

between the nonelectrolyte in the solid pure state and itself in solution. Moreover,

its fugacity is the same in the solid state, whatever the solution is and the standard

state in solution (necessary to quantify whether its activity is the same in both

solutions).

Hence, the fugacity in the standard state is the same for both solutions. As a

result, the activity of the nonelectrolyte is the same in both solutions. By introduc-

ing the activity coefficients, we obtain

m0 γ0 ¼ m γ

and

γ ¼ m0=mð Þγ0

Since the ratio γ/γ0 is larger than 1, it is also the case of the ratio m0/m.
The solubility of a nonelectrolyte in water is weakened by the addition of an

electrolyte in the solution. It is the base of the phenomenon called “salting out”

which is one of the processes used to resolve liquid phases into their constituents in

proximate analysis.

It is also interesting to notice that, according to relation (15.3), ln γ is propor-

tional to the ionic strength. This is not the case for the electrolytes as it is evidenced

by the Debye–Hückel relations (viz. under).

15.4 General Behavior of the Mean Ionic Activity
Coefficients of Electrolytes

In Table 15.1, we mention the experimental values of the mean ionic activity

coefficients of several electrolytes in water at 25 �C as a function of their molalities.

(Their methods of determination have been described in Chap. 13.)
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These values clearly show the following points:

– When the molalities are weak, the numerical values of the activity coefficients

decrease all the more quickly as the electrolyte is constituted by the most charged

ions. This result justifies the definition and introduction of the ionic strength. For

example, for a molality of 0.01 mol kg�1, the activity coefficient of lanthanum

chloride is 0.637, whereas for sodium chloride at the same molality, it is 0.904.

The lanthanum chloride activity is aLaCl3¼ 0.637� 0.01¼ 6.37� 10�3. Its value

falls very quickly with respect to its concentration. From the standpoint of its

thermodynamic behavior, the occurrence of interactions from several origins, in

particular due to the interaction ions/ions in the bulk solution (viz. Chap. 6),

decreases its effective presence.
– The mentioned values show that when the molality of the electrolyte is weak, the

activity coefficients of the same kind of electrolytes (from the standpoint of the

charges of the ions constituting them) are quasi-equal.

– When the molality of the electrolyte increases, the values of the mean ionic

activity coefficients begin decreasing, then reach a minimum, and after end up

increasing.

The general behavior of the mean ionic activity coefficient is shown in Fig. 15.1

where it is exemplified by three kinds of electrolytes.

Sometimes, when the concentration of the electrolyte is very large, the mean

ionic activity coefficient may take incredibly large numerical values. For example,

for a molality m¼ 20 mol kg�1 of lithium bromide in water, the value of its activity

coefficient γ� reaches 485!

It is interesting to notice that there exists one concentration (more rigorously:

ionic strength) at which the activity coefficient exhibits the value unity, as if the

solution would be ideal. This particular concentration varies with the nature of the

electrolyte. In aqueous solution at 25 �C, it is located in the range about 3–4mol kg�1.

This phenomenon has a practical application. Some authors take it into account in

order to quickly approach the values of the equilibrium thermodynamic constants.

Let us recall (viz. Chap. 6) that the latter are expressed in terms of activities. By fixing

Table 15.1 Mean ionic activity coefficients in aqueous solutions at 25 �C

Molality 0.001 0.005 0.01 0.05 0.1 0.2 0.5 1.0 2.0

HCl 0.966 0.928 0.905 0.830 0.796 0.767 0.757 0.809 1.009

NaCl 0.966 0.929 0.904 0.823 0.778 0.732 0.679 0.656 0.670

NaBr 0.966 0.934 0.914 0.844 0.800 0.740 0.695 0.686 0.734

KCl 0.965 0.927 0.901 0.815 0.769 0.717 0.650 0.605 0.575

CaCl2 0.888 0.789 0.732 0.584 0.531 0.482 0.457 0.509 0.807

Na2SO4 0.887 0.778 0.714 0.530 0.450 0.360 0.270 0.200 –

ZnSO4 0.734 0.477 0.387 0.202 0.148 0.104 0.063 0.044 0.035

LaCl3 0.853 0.716 0.637 0.417 0.356 0.298 0.303 0.387 0.954

According to S. Glasstone, Thermodynamics for chemists, 11th ed., D. Van-Nostrand, Inc., 1960,
Princeton

180 15 Debye–Hückel Relations and Neighboring Relations: Calculation. . .

http://dx.doi.org/10.1007/978-3-319-46401-5_6
http://dx.doi.org/10.1007/978-3-319-46401-5_6


the ionic strength of the solution under study in the above range of molalities, the

different activity coefficients are close to unity and hence the values of equilibrium

constants calculated by handling concentrations may not frankly differ from the

thermodynamic ones. Calculations taking into account the activities, as theymust do

in all scientific rigor, may be indeed tedious (viz. Chap. 19). With such a trick, they

can be, at least in part, avoided.

Let us also notice in passing that all these behaviors in water we have already

mentioned are also recognized in nonaqueous media (ethanol, methanol) and in

hydro-organic ones such as the mixtures ethanol-water and dioxan-water.

The Debye–Hückel theory and the equations resulting from it, at least in part,

account for these results.

15.5 Debye–H€uckel’s Relations

Usually, one distinguishes the limit Debye–Hückel relation (1923) and the extended
Debye–Hückel one and some others which are very close to the previous ones.

15.5.1 The Limit Equation Law

In this chapter, let us confine ourselves to mention that in order to obtain the limit

equation, Debye and Hückel have adopted the hypothesis that ions are electrically

charged points dispersed in a continuous medium, the permittivity of which is

constant and equal to that of the pure solvent. In these conditions, the equation

stemming from it, called the limit Debye–Hückel law, is for a binary electrolyte, the
charges of its ions being z+ and z�:

Fig. 15.1 General behavior

of the mean ionic activity

coefficients as a function of

their molalities and

according to the kind of

electrolyte (symbolism i, j:
imetallic ion charge, j anion
charge)
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�log γ� ¼ A
��zþz�

��√I ð15:4Þ

where I is the ionic strength of the solution expressed in molalities or molarities.

This distinction does not matter given the conditions in which the relation can

legitimately be used (viz. under). A is a constant, the value of which only depending

on the temperature and on the solvent permittivity ε, according to the relations1

A ¼ 1:825106 εTð Þ�3=2

A ¼ 0:509mol�1=2l1=2 water : 25 �Cð Þ

The comparison of the calculated values through the expression (15.4) with those

experimentally found for the mean ionic activity coefficients shows that the limit

law is only verified for ionic strengths lower than 10�3 mol L�1.

The Debye–Hückel theory also provides us with the relation (15.5) which

permits the calculation of the activity coefficient of one ion only of charge z in a

sufficiently dilute solution:

�logγ ¼ Az2√I ð15:5Þ

As it has been already said, the expression (15.5) cannot be directly compared with

an experimental measurement, but it can be indirectly compared (viz. Chap. 46).

However, indirectly, it confirms what has been experimentally found by studying

the behavior of the whole electrolyte (viz. the paragraph 4 above). The activity

coefficient of an ion, cation, or anion only depends on the ionic strength of the

solution. This assertion is exact for the sufficiently diluted solutions. It has been

proposed, once in 1923, by Lewis and Randall.

15.5.2 Extended Debye–H€uckel Relation

The previous Debye–Hückel’s relation (15.4) leads to markedly too weak values of

the activity coefficients for the intermediary concentrations of electrolytes. A

change in the limit equation enhancing the range of its applications is obtained by

adopting the hypothesis that ions are spheres of finite radius, the other hypothesis

prevailing in the setting up of the limit law remaining the same. For a binary

electrolyte, the new Debye–Hückel’s relation, called the extended Debye and

Hückel’s law, is

�log γ� ¼ A
��zþz�

��√I= 1þ Ba√I
� � ð15:6Þ

1Other numerical values (but close to the latter ones) may be found in the literature. The

discrepancy depends on the chosen value of the solvent permittivity (viz. Chap. 46).

182 15 Debye–Hückel Relations and Neighboring Relations: Calculation. . .

http://dx.doi.org/10.1007/978-3-319-46401-5_46
http://dx.doi.org/10.1007/978-3-319-46401-5_46


and for only one ion

�log γ ¼ Az2√I= 1þ Ba√I
� � ð15:7Þ

In both expressions, B is a function of the temperature and of the permittivity ε of
the solvent. B has for expression

B ¼ 50:3 εTð Þ�1=2

B ¼ 0:328108 cm�1 mol�1=2 l1=2 water : 25 �Cð Þ

In (15.6) and (15.7), a is an adjustable parameter approximately corresponding to

the effective radius of the hydrated (solvated) ion, measured in Å (10�10 m). The

a parameter is called “ion size parameter” or “minimal approach distance” by the

other ions of the solution of the ion, the activity coefficient of which is considered.

The parameter A of both limit and extended relations is the same. In the case of a

binary electrolyte constituted by monovalent ions, the extended Debye–Hückel’s
relation is

�log γ ¼ Az2√m = 1þ Ba√m
� �

given m¼ I.
As a first rule, we can conceive that the parameter a is related to the radius r of

the ions. By comparing the expressions (15.5) and (15.7), one can notice that it is

the presence of the denominator in (15.7) which differentiates them. This finding

may be correlated to the fact that, when the concentration of the ion (the ionic

strength of the solution) increases, the electronic cloud gets closer to the considered

ion, as it is shown by the Debye–Hückel’s theory itself (viz. Chap. 46). As a result,

the electrical interactions called “long-range interactions” are no longer the only

ones to be efficient. “Short-range interactions” are then added to the previous ones.

One author (Kielland) has compiled the values of the parameter a for 136 inorganic
and organic ions in water. They have not been, of course, directly measured. The

values result from the comparison of mean ionic activity coefficients already

known, adjusted according to an empirical manner in such a way that the activity

coefficient of an electrolyte can be forecasted in a mixture of other electrolytes. A

calculation of the activity of a given ion can, then, be possible (viz. Appendix E). It

is interesting to notice, through the values of the Kielland’s table, that the activity
coefficients do vary few little with the parameter a.

The extended Debye–Hückel is satisfactory for ionic strengths varying up to

0.1 mol L�1.

The calculations of the mean ionic activity coefficients of binary monovalent

electrolytes lead to accurate values at the level of 1 p 100 whereas the use of the

limit equation leads to errors of the order of 10 p 100 in the same conditions.

According to several authors, it seems that the meaning of hydrated radius of the

ion under study given to the parameter a is devoid of any thermodynamic base. In
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addition, inverse calculations of the parameter a as a function of √m by introducing

experimental values of �log γ� show that a is not a constant.

The worst is that for some concentrations, a is endowed with fully aberrant

values. For examples, for molalities of 1.8 mol kg�1 in HCl and 2.5 mol kg�1 in

lithium chloride, the respective values of a are �41.12 nm and �14.19 nm!!

This is the reason why, today, a is only considered as being an adjustable

parameter permitting to obtain the best fit between the experimental values of the

mean activity coefficients and the extended Debye–Hückel relation.
Finally, from another viewpoint, it must be noticed that, for some authors, it

seems that the activity coefficients calculated through the Debye–Hückel relations
are related to the scale of molar fractions, although the ionic strength values used

for their calculations are expressed in molalities or molarities.

15.5.3 Other Relations Permitting the Calculation
of the Mean Activity Coefficient of an Electrolyte

Numerous relations which are more and less related to those of Debye–Hückel have
been proposed. Either they stem from minor modifications of the extended Debye–

Hückel equation or they differ from the extended relation by the presence of

supplementary terms. In connection with this subject, it is interesting to notice

that from the mathematical standpoint, the Debye–Hückel relations (both limit and

extended) cannot, at all, explain the occurrence of minima in the curves �log γ�/I
or �log γ�/c or m, as it can be proved definitively by an elementary calculation of

derivatives.

Let us mention, like other equations, the

– Guntelberg’s relation

By adopting the unique numerical value a¼ 3.0 Å for all the ions, Guntelberg,

starting from the extended Debye–Hückel relation, leads to the expression

�logγ� ¼ A
��zþz�

�� √I= 1þ 1√I
� �� � ð15:8Þ

The factor unity of √I in the denominator is a real stroke of luck since at 25 �C,
B¼ 0.328 whence Ba� 1 with a¼ 3Å. The Guntelberg’s relation seems to give too

weak values γ�, even in the range of ionic strength values less than 0.1 mol L�1.

Another relation very close to that of Guntelberg plays a fundamental part in the

anchoring of the pH scale of the National Bureau of Standards (pH scale of Bates

and Guggenheim).

– Guggenheim’s relation (1935)
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�log γ� ¼ A
��zþ z� �� √I= 1þ √I

� �� �� bI ð15:9Þ

In this relation, there exists the empirical linear term—bI. For ionic strengths larger,

supplementary linear terms may be added to the Guggenheim’s equation, whence
the relations of the kind are derived:

�log γ� ¼ A
��zþ z� �� √I= 1þ √I

� �� �þ bIþ cI2 þ dI3 ð15:10Þ

Quite evidently, the greater the number of terms added, the better the fit between the

calculated and experimental values is. But, then, the latter added terms cI2, dI3, etc.

do possess a statistical weight which is less and less.

A more elaborate form of the Guggenheim’s relation is

log γ� ¼ �A
��zþ z� �� √I= 1þ √I

� �� �þ 2νþν�
�
= νþ þ ν�ð Þ� �

2βmð Þ

Its applies to only one electrolyte. m is the molality of the electrolyte and ν+ and ν�
the charges of the cation and of the anion. β is a parameter specific of each

electrolyte. This relation is exact for an ionic strength up to 0.1 mol l�1 with

univalent, bi-univalent, and uni-bivalent electrolytes. The coefficient β of the linear
term is adjustable according to the nature of the electrolyte. Guggenheim’s equa-
tions are semiempirical relations.

– Davies’ relation (1938)

Davies’ relations are

�log γ� ¼ A
��zþ z� �� √I= 1þ √I

� �� �� 0:2I ð15:11Þ

or

�log γþ ¼ A z2 √I= 1þ √I
� �� �� 0:2 I ð15:12Þ

It has been largely used in order to estimate the activity coefficients of ions “alone”

at ionic strengths relatively large. It seems that for ionic strength of 0.5 mol L�1, the

error made by using it on the estimation of the activity coefficient is lower than 8�/�.
Concerning all these relations comprising one or several linear terms, it is

interesting to notice that the presence of this term may, mathematically, justify

the existence of the minimum of the curves γ�/m.

– Broomley’s relation (1972)

According to this theory, the mean activity coefficient of an electrolyte in a

binary solution is given by the relation

�logγ� ¼ A
��zþz�

�� √I= 1þ √I
� �� �þ B12I

with
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B12 ¼ 0:06þ 0:6 Bð Þ z1z2ð Þ½ �= 1þ 1:5=z1z2ð ÞIð Þ2 þ B

B is the Broomley’s parameter. z1 and z2 are the charges of both ions of the

electrolyte. A is the Debye–Hückel’s constant A (A¼ 0.509). Broomley’s relation
is also a semiempirical relation since it is based, on the one hand, on those of Debye

and Hückel and on the other on arbitrary terms. Some extensions of Broomley’s
relation exist. They permit to study some mixtures of electrolytes.

Let us also mention the theory of Meissner and Kusik (1978), the mainspring of

which is the reduced activity coefficient ΓAC defined by

ΓAC ¼ γ� 1=zþz�ð Þ

The idea behind this relation is that the reduced activity coefficient is mainly

influenced by the interactions between the anions and cations.

Other relations of Debye–Hückel’s kind, but less used than the previous ones,

are also proposed (viz. Chap. 46). Others, which are not of Debye–Hückel’s kind,
are also proposed. The most interesting are those based on the radial distribution

functions (viz. Chap. 47). The theory leading to them stems from considerations of

statistical thermodynamics.
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Chapter 16

Excess Gibbs Energy and Activities

Abstract Besides the fact that the introduction of the activities permits, among

other processes, to quantify chemical equilibria when the behaviors of the fluids of

the studied system are not ideal, it must be noticed that it also constitutes a means to

study nonideal solutions. Another process to study them is to use excess Gibbs

functions which are experimentally accessible. For some authors, their handling

would be the best and the easiest means to study real (that is to say nonideal)

solutions and, even, to study equilibria between fluids. In particular, their measure-

ment would provide the best way to detect an ideal (or not) character. These few

lines are sufficient to induce the taking cognizance of the existence of interesting

mathematical expressions linking excess functions and activities. As this matter of

things stands, it is evident that it is a part of the purpose of this book to study the

links between activities and excess Gibbs energy functions. They concern solutions

of nonelectrolytes and those of electrolytes as well.

In this chapter, the determination of activities from excess Gibbs energies by

using empirical relations is studied. It concerns essentially the solutions of non-

electrolytes, in particular the binary ones. The activity values are found from the

excess Gibbs energies through least square regression processes, linear or not

linear.

Keywords Mixing Gibbs energy • Ideal mixing energy • Excess Gibbs energy •

Activity coefficients from Gibbs energy • Osmotic practical coefficient • Activity

determinations from empirical relations • Van Laar and Margules relations

Besides the fact that the introduction of the activities permits, among other pro-

cesses, to quantify chemical equilibria when the behavior of the fluids of the studied

system is not ideal, it must be noticed that it also constitutes a means to study

nonideal solutions.

Another process to study them is to use excess functions which are experimen-

tally accessible. For some authors, their handling would be the best and the easiest

means to study real (that is to say non ideal) solutions and, even, to study equilibria

between fluids. In particular, their measurement would provide the best way to

detect an ideal or not character. These few lines are sufficient to induce the taking

cognizance of the existence of interesting mathematical expressions linking excess

functions and activities.
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As this matter of things stands, it is evident that it is a part of our purpose to study

the links between activities and excess Gibbs energy functions. They concern

solutions of nonelectrolytes and those of electrolytes as well. In this chapter, we

study the determination of activities from excess Gibbs energies by using empirical

relations. We are essentially interested in the solutions of nonelectrolytes, in

particular by the binary ones.

16.1 Mixing and Excess Gibbs Energies

16.1.1 Mixing Gibbs Energy

Let us consider the process which consists in mixing n1 moles of species 1 and n2
moles of species 2 with, for example, formation of a liquid solution. In this case, 1 is

the solvent s and 2 the solute i nonelectrolyte or electrolyte. The solvent and the

solute are pure, before the formation of the solution (initial state). In the latter, their

chemical potentials (molar Gibbs energies, not yet partial ones because they are

pure) are given by the expressions

μ1 ¼ μ1
� þ RT lnx1

and since the solvent is pure

x1 ¼ 1

μ1 ¼ μ1
�

and likewise

μi ¼ μi
� þ RT lnxi

since i is pure

μi ¼ μi
�

The Gibbs energy Gi of the initial system constituted by both components (which

are not still in mixture), is given by the expression

Gi ¼ n1 μ1
� þ ni μi

� initial state

The formation of the mixture is accompanied by a Gibbs energy change for two

reasons: the first is due to the change of composition (entropic effect). The second is

due to energetic interactions between both kinds of particles, solute and solvent. It

is an enthalpic effect. Let μf1 and μfi be the chemical potentials of both types of
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particles, once the mixture is formed. Quite generally, they are given by the

expressions

μ f
l ¼ μ1

� þ RT lnx1γ1 and μ f
i ¼ μi

� þ RT lnxiγi

where x1 and xi are the molar fractions of both components in the mixture and γ1 and
γi their activity coefficients (on the scale of the molar fractions). Hence, the Gibbs

energy Gf of the system in the final system is

Gf ¼ n1μ
f
1 þ ni μ

f
i final stateð Þ

or

Gf ¼ n1μ1
� þ n1RT lnx1 þ n1RT lnγ1 þ niμi

� þ ni RT lnxi þ ni RT ln γi

The change in Gibbs energy ΔmixG accompanying the formation of the mixture

starting from the initial system is called the mixing Gibbs energy. It is given by the

expression

ΔmixG ¼ Gf � Gi

ΔmixG ¼ n1RT lnx1 þ n1RT ln γ1 þ niRT lnxi þ niRT ln γI ð16:1Þ

16.1.2 Ideal Mixing Gibbs Energy

When the solution is ideal, the activity coefficients are equal to unity. The mixing

Gibbs energy becomes the ideal mixing Gibbs energy ΔmixG
id. It is given by the

expression

ΔmixG
id ¼ n1RT lnx1 þ niRT lnxi

16.1.3 Excess Gibbs Energy

The excess Gibbs energy is defined by the relation

GE ¼ ΔmixG� ΔmixG
id

i.e.,

GE ¼ n1RT lnγ1 þ niRT ln γi ð16:2Þ
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The links between the Gibbs energies of mixing, of ideal mixing, and of excess are

shown in Fig. 16.1.

Clearly, the excess Gibbs energy has “something to see” with the activities and

with the activity coefficients of the components.

The excess Gibbs energy defined in Fig. 16.1 is for 1 mole of final solution. It is

the molar excess Gibbs energy GE
m. The excess Gibbs energy for a total number of

moles n1 + ni is symbolized by GE. In this case, of course, the molar excess Gibbs

energy GE
m is given by the expression

GE
m ¼ GE= n1 þ nið Þ

GE
m is also given by the expression

GE
m ¼ n1= n1 þ nið Þ½ �RT ln γs þ ni= n1 þ nið Þ½ �RT lnγi

or

GE
m ¼ x1RT ln γ1 þ xiRT lnγi

16.2 Determination of the Activity Coefficients
from the Excess Gibbs Energies

Let us calculate the differential dGE from relation (16.2) at constant temperature

and pressure, the variables being the numbers of moles n1 and ni and the activity

coefficients γ1 and γi. We obtain

Fig. 16.1 Gibbs energies of mixing: ideal mixing and of excess. [x molar fraction of the solute

(16.2) and (1�x) that of the solvent (16.1)]
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dGE ¼ RT n1d lnγ1 þ RT ni d lnγi þ RT lnγ1 d n1 þ RT lnγi d ni

Given the Gibbs-Duhem’s relation (viz. Chap. 5), it appears that the sum of the first

two terms of the right member is null at constant temperature and pressure:

dGE ¼ RT ln γ1 dn1 þ RT ln γi dni

As a result

∂GE=∂n1
� �

P,T,ni
¼ RT lnγ1 and ∂GE=∂ni

� �
P,T,n1

¼ RT ln γi ð16:3Þ

These relations constitute the theoretical basis on which is founded the determina-

tion of activity coefficients from the excess Gibbs energy. Let us mention, without

however insisting, that this result can be generalized to the case of solutions

constituted by more than two components. This is true because of the fact that the

Gibbs-Duhem’s relation is verified, in this case also, at constant temperature and

pressure. That is to sayX
j

nj d ln γj ¼ 0 dT ¼ 0 and dp ¼ 0ð Þ½ �

16.3 A Variant: Simultaneous Obtention of the Practical
Osmotic Coefficient and of the Activity Coefficients
of the Solutes from the Excess Gibbs Energy

In this paragraph, we somewhat extend the possibilities of applications of the

previous theory.

In the case where there are several solutes (nonelectrolytes and electrolytes), the

relation (16.1) applies

ΔmixG ¼ RT
X
i

niln mi γi þ n1RT lna1 ð16:4Þ

At this point, we must specify that the activity coefficients of the solutes, mentioned

just above, are related to the scale of molar fractions. [It is true, however, that

concerning the solutes, the values of their activity coefficients vary very little from

a scale to another one (viz. Chap. 11).] Given the relation (14.20) of Chap. 14 which

is also written (with Ω¼ 1000/M1) as

ϕm ¼ � Ω=
X

mi

� �
ln a1 ð16:5Þ
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we obtain:

ΔmixG ¼ RT
X
i

ni lnmi γi � ϕm n1=Ωð Þ
X

mi

" #

Given the definition of the molarity, the following relation is satisfied:

mi ¼ ni1000=n1M1

(the factor 1000 being present in order to pass from kilograms to grams). After

introduction of this relation into the preceding one, we obtain

ΔmixG ¼ RT
X
i

ni lnmi γi � ϕm½ �

We must link this expression to the excess Gibbs energy in order to be able to

calculate the values ln γi together with the value ϕm. With the theory just developed,

indeed, it is possible to calculate the activity coefficients of the solutes and of the

solvent, the latter through ϕm.

We note that if one adds the term RT Σi ni(1�ln mi) to ΔmixG, we obtain the

following expression for the excess Gibbs energy:

GE ¼ ΔmixGþ RT
X
i

ni 1� lnmið Þ ð16:6Þ

The demonstration of this equality is simple. It is sufficient to add all the terms of

relation (16.6) term to term, to take into account the expression (16.5) of ϕm and to

neglect Σi ni with respect to n1. Then, we obtain the following relation:

GE ¼ RT
X
i

niln γi þ n1ln γ1

 !

(Contrary to the case previously mentioned, the present excess Gibbs energy is

related to the scale of molalities.)

Expression (16.6) can be, equivalently, also written as

GE ¼ RT
X
i

ni 1� ϕm þ ln γið Þ

It is practical to use expressions relative to the handling of 1 kg of solvent. If w1 is

the mass of the solvent in kilograms, we have the relation

ni ¼ miw1

where ni is the number of moles of the solute i and mi its molality in the solution. As

a result, the excess Gibbs energy per kilogram of solvent is given by the expression
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GE=w1RT ¼
X
i

mi 1� ϕm þ ln γið Þ ð16:7Þ

which can also be written as

GE=RT ¼
X
i

mi w1 1� ϕmð Þ þ
X
i

mi w1ln γi ð16:8Þ

• Let us differentiate these relations, taking into account that w1 is a variable. We

obtain

dGE=RT ¼
X
i

mi 1� ϕmð Þdw1 þ
X
i

miln γi dw1

As a result,

∂ GE=RT
� �

=∂w1

� �
ni
¼
X
i

mi 1� ϕmð Þ þ
X
i

miln γi

The second term of the right member is null (according to the Gibbs-Duhem’s
relation—viz. above). We obtain

1=RT
X
i

mi

 !
∂GE=∂w1

� �
ni
¼ 1� ϕmð Þ ð16:9Þ

• Let us differentiate (16.7), mi being considered as a variable. We obtain

∂ GE=w1RT
� �

=∂mi

� �
w1, mj

¼ ln γi þ 1� ϕmð Þ
� ln γi

ð16:10Þ

As a result, if we have an algebraic expression of the excess Gibbs energy (on the

scale of molalities) under the form of a function of w1 andmi at our disposal, ϕm and

ln γ can be easily calculated by derivation. Let us notice that the Gibbs-Duhem’s is
automatically verified since it is involved in the reasoning leading to the above

result.

From the mathematical standpoint, these considerations are legitimate because
the expressions GE are homogeneous first-order function of the numbers of moles of
components since the function Gibbs energy is an extensive one of the system. This
means that if, for example, the numbers of moles of both components is increased
twofold, the function GE is also increased twofold (viz. Appendix A).
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Remark Let us, in passing, notice that one introduces and handles other excess

functions in thermodynamics such as the molar excess, excess entropy, enthalpy,

volumes . . .. We do not consider them in this book.

16.4 Determination of Activities from Empirical Relations

In Chap. 8, we have seen that, for nonideal solutions, there exist some relations

from purely empirical origin which link the fugacities of the liquid components of

binary solutions to their molar fractions in solution, such as those of Margules and

van Laar.

• Margules’s relation is

f 1 ¼ x1f
□
1 exp 1=2 β1 x

2
2 þ 1=2 γ1 x

3
2 þ . . . . . .

� �
f 2 ¼ x2f

□
2 exp 1=2β2 x

2
1 þ 1=2γ2 x

3
1 þ . . . . . .

� �

It pertains to both solvent and solute. Given the general definition of an activity,

we immediately obtain

a1 ¼ x1 exp 1=2β1 x
2
2

� �
a2 ¼ x2exp 1=2β2x

2
1

� �
after having only kept the first term of each exponential, whence the expressions of

the activity coefficients become

γ1 ¼ exp 1=2β1 x
2
2

� �
and γ2 ¼ exp 1=2β2 x

2
1

� �
Actually, the constants β1 and β2 are equal. Let us take, indeed, the logarithms of the

above expressions of the fugacities f1 and f2. By only retaining the first term of the

exponentials, given the fact that 0� x1, x2� 1, we obtain

ln f 1 ¼ ln x1 þ ln f□1 þ 1=2β1 x
2
2

ln f 2 ¼ ln x2 þ ln f□2 þ 1=2β2 x
2
1

Derivating the first expression with respect to ln x1 and the second with respect to ln
x2, we obtain

∂ ln f 1=∂ lnx1ð ÞT,P ¼ 1 � β1 x1 x2

∂ ln f 2=∂ ln x2ð ÞT,P ¼ 1 � β2 x2 x1
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As a result, since, in the occurrence, the Gibbs-Duhem’s is [viz. Chap. 7 relation

(7.20)]

∂f 1=∂ln x1ð ÞT,P ¼ ∂f 2=∂ln x2ð ÞT,P

we obtain

β1 ¼ β2

Setting up β1¼ β2¼ β, we can write

f 1 ¼ x1f
□
1 exp 1=2βx22

� �
and f 2 ¼ x2f

□
2 exp 1=2βx21

� �
When the vapor pressures are not too high, those measured at different molar

fractions in solution permit to determine the corresponding activities. General

methodologies, such as least square fitting of experimental values to theoretical

ones, give the parameter β [viz. Chap. 19]. We can notice that the knowledge

concerning the data of one of the components permits to obtain those concerning

the other.

• Van Laar’s relation is an interesting alternative to that of Margules. For two

components, it is written as

f 1 ¼ x1f
□
1 exp α1x22= β1 x1 þ x2ð Þ2

h i
f 2 ¼ x2f

□
2 exp α2x21= x1 þ β2x2ð Þ2

h i

Constants β1 and β2 are not the same as those of Margules’ equation. In order to
determine the activities and the values of the constants involved in van Laar’s
equations the same reasoning and methodologies as those applied to Margules’
relations are applied to partial pressures. They, together with molar fractions,

constitute the experimental values on which the methodologies apply provided

that their values are not too high. The different constants of van Laar’s equations
are not independent from each other. A mathematical reasoning shows that

α1 β2 ¼ α2 α2 β1 ¼ α1

Van Laar’s relations lead to the two following relations expressing the activity

coefficients of the components of a binary solution:

logγ1 ¼ A= 1þ Ax1=Bx2ð Þ2 log γ2 ¼ B= 1þ Bx2=Ax1ð Þ2

These van Laar’s relations, given at this point, come from other more complex van

Laar’s relations (see below).
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Let us notice that the merits of these relations are confirmed by the existence of

other relations, also empirical but more recent. They express excess Gibbs energies

of solutions (viz. below).

Kirkwood-Buff’s theory also confirms some of these relations (viz. Chap. 45).

16.5 Calculation of Activities from Excess Gibbs Energy
Relations

According to the previous reasoning, it would be convenient to find an analytical

expression of the excess molar Gibbs energy as a function of the composition of the

solution, the word composition being used in its largest acception. It may mean the

numbers of moles of its components, their molalities, the mass of the solvent, etc.

Actually, the expressions of the excess Gibbs energy can take the form of

empirical series, the number and values of the terms of which they comprise are

chosen in such a way that the series give the best fits with varied data. They may

also be founded on theoretical models.

From a general standpoint, there exist several expressions of excess Gibbs

energy functions in the literature and, probably, their number will continue to

increase.

16.5.1 Solutions Without Electrolytes

It is an experimental fact that for the solutions not containing ions or high-

molecular-weight polymers, several kinds of empirical series express satisfactorily

the excess Gibbs energies of more and less complex solutions as a function of the

molar fractions or of the molalities of the components. The polynomial form of

these expressions makes easier the calculations of the activity coefficients, by

derivation.

• A very simple excess Gibbs energy function for a binary mixture is

GE
m=RT ¼ wx1 x2 or GE

m=RT ¼ wx1 1� x1ð Þ ð16:11Þ

w is dimensionless. At this point, it is sufficient to know that it is a constant, the

value of which depends only on the temperature and on the pressure.

(In paragraph 7, we shall give an approach of the significance of this term.)

• As another example, let us mention the series (16.12) and (16.13) which give the

excess Gibbs energies of binary mixtures of nonelectrolytes as a function of

molar fractions. (The relation (16.13) is equivalent to the previous one.) We

briefly discuss its properties and also its using:
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GE
m ¼ RT x1x2 A0 þ A1 x2 � x1ð Þ þ A2 x2 � x1ð Þ2 þ . . . :

h i
ð16:12Þ

GE
m ¼ RT x 1� xð Þ A0 þ A1 2x� 1ð Þ þ A2 2x� 1ð Þ2 þ . . . :

h i
ð16:13Þ

In relation (16.13), x is the molar fraction of the second component. Using the

variable x presents the drawback, however, to mask the respective parts played by

both components.

The coefficients A0, A1, and A2 are, by definition, independent from x1 and x2 but
are dependent on T and, to a lesser extent, on P. Several points deserve further

comments:

– The first one is that those series obey the condition, which must be obligatorily

satisfied, i.e., they lead to a null value at the null value of GE
m for x1¼ 0 and

x2¼ 0.

– The second comment is that three terms in the series are often sufficient for the

binary solutions. Statistical tests permit, besides, to discuss about the pertinence

of the addition of supplementary terms.

Generally, the coefficient A1 is related to the dissymmetry of the behaviors of

both components. The terms bringing higher indices are related to more complex

phenomena.

The expressions (16.12) and (16.13) permit to accede to the activity coefficients

γ1 and γ2 through the relations (16.3). We obtain

ln γ1 ¼ x22 A0 þ A1 x2 � 3x1ð Þ þ A2 x2 � x1ð Þ x2 � 5x1ð Þ½ � ð16:14Þ

ln γ2 ¼ x21 A0 þ A1 x1 � 3x2ð Þ þ A2 x1 � x2ð Þ x1 � 5x2ð Þ½ � ð16:15Þ

It is evident that the terms of the series (16.14) and (16.15) are not, evidently,

independent from the others. Given the fact that x1 and x2 are linked by the relation

x1 + x2¼ 1, we also notice that ln γ1 and ln γ2 are, respectively, only functions of

molar fractions x2 and x1. In order to discover this property, Il is sufficient to replace
x1 by 1�x2 and inversely. Relations (16.14) and (16.15) are hence a generalization

of the Margules’ equations, the simplified expressions of which having already

been given (viz. above).

• Let us also briefly mention another empirical relation. It also permits to study the

nonideal solutions. It is

GE
m=RT ¼ � x1 lnx1 þ Λ12x2ð Þ � x2 lnx2 þ Λ21x1ð Þ ð16:16Þ

where Λ12 6¼Λ21. Its interest lies in the fact that it is working with only two

parameters Λ12 and Λ21. In this expression, the ideal character of the solution is

evidenced by the values of these parameterswhich are equal to 1. It is, without any

difficulty, generalized to the solutions which are more complex than the

binary ones.
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• Other Van Laar’s relations

In his works devoted to the obtention of expressions of the vapor pressures as a

function of the composition of the solutions at equilibrium, van Laar suggested to

use four arbitrary parameters a z1, z2, b1, and b2 linked by the following relations:

z1 ¼ n1b1= n1b1 þ n2b2ð Þ and z2 ¼ n2b2= n1b1 þ n2b2ð Þ

where n1 and n2 are the numbers of moles of components. (It is proved correct that,

when the latter are sufficiently similar from the standpoint of their physical prop-

erties, the b1 and b2 are roughly equal to their partial molar volumes.) Parameters

b1, b2, z1, and z2 can also be freely adjusted in order to obtain the best fit with the

experimental data. The excess Gibbs energy, as a function of these parameters, is

GE ¼ a12
�
b1 b2 n1 n2= n1b1 þ n2b2ð Þ ð16:17Þ

a12 is the parameter expressing the interaction between the two different kinds of

particles. Hence, it quantifies the nonideal character of the mixture.

• A proposed equation relates the excess Gibbs energy of the solution to the

molalities of more than two components. It is

GE=w1RT
� � ¼X

i

X
j

λijmimj þ
X
i

X
j

X
k

μijkmimjmk þ . . . : ð16:18Þ

w1 is the mass of solvent in kilogram. The coefficients λij take into account the

interactions between the two particles i and j which may be identical (i¼ j),
whereas the coefficients μijk take into account the interactions between three

particles which may be identical. This kind of development finds some theoretical

foundations in the McMillan-Mayer’s theory (viz. Chap. 30). In the case of only one
solute, the expression simplifies and gives the following one:

GE=w1RT
� � ¼ λm2 þ μm3 . . .þ . . . ::

There exist numerous other relations of the above kinds.

16.5.2 Case of Electrolyte Solutions

• Let us begin by recalling the fact that the relation

lna1 ¼ �ϕm νmM1=1000
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(permitting to define the practical osmotic coefficient) together with the above

relations (16.9) and (16.10) remains applicable in the case of electrolyte

solutions.

• Some semiempirical relations permit to express the activities and osmotic

coefficients of the pure electrolytes or those of the components of electrolyte

mixtures or, even, those of the components of mixtures of electrolytes and of

nonelectrolytes.

– The first proposed relations of this kind are due to Guggenheim. They are

founded, of course, on the taking into account of the interactions between the

ions but also on the Br€onsted’s hypothesis according to which all the ions of

the same sign cannot exhibit interactions between them at short distances,

given the fact that they repel each other, contrary to the behavior of ions of

opposite signs.

– More recently, Pitzer has proposed some relations relating the excess Gibbs

energies to the number of moles of different electrolytes. They are used a lot.

They present the following general form in the case where the solvent is

water:

GE=RT ¼ wwf Ið Þ þ 1=ww

X
ij

λij Ið Þninj þ 1=w2
w

X
ijk

μijkninjnk ð16:19Þ

ww is the weight of the solvent water in the solution; ni, nj, and nk are the

number of moles of the species i, j, and k; and f(I ) is a function of the ionic

strength of the solution (viz. Chap. 15) and also of the nature of the solvent

and of the temperature. It takes into account the long-range interactions. From

the mathematical standpoint, f(I) can take the form of the term of Debye–

Hückel’s relation (viz. Chap. 15) or that of a term stemming from the use of

the notion of the radial distribution function (viz. Chap. 47). λij(I) is also a

function of the ionic strength of the solution. This parameter takes into

account the short-distance interactions, property which is not achieved by

the Debye–Hückel’s relations (viz. Chap. 46), but let us notice that it only

takes into account the interactions between two ions. The parameter μijk takes
into account the interactions between three particles. Supplementary terms

are added when neutral species are also present in the solution. Concerning

these relations, it must be noticed that only some combinations of the

constants λij and μijk can be obtained by regression.

It appears that the arguments prevailing in the development of the expressions

(16.17) take their roots in the results of the theories of Debye–Hückel and of

McMillan-Mayer (viz. Chap. 38), even more in the notion of radial distribu-

tion function (viz. Chap. 42). This is the reason why these relations are named

semiempirical ones.

– Another kind of model has been presented. It exhibits the very interesting

characteristic to describe the excess Gibbs energy of a solution containing

both electrolytes and nonelectrolytes. The model is an extension of that of Pitzer.

It splits up the excess Gibbs energy into two groups: one which takes into
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account the long-distance interactions and the other the short-distance ones. The

latter may be due in majority, according to the studied mixtures, to the present

nonelectrolytes. The model is based on two hypotheses: on the one hand, there is

a total repulsion between ions of the same charge and on the other one, there is

electroneutrality all around a molecule of solvent.

Let us finish this paragraph by mentioning the fact there exist informatic pro-

grams which permit to study equilibria between phases. Some, such as UNIFAC

(universal functional activity coefficient), permit to estimate the activity coeffi-

cients in some mixtures. They are based on the allocation of values to some

parameters characterizing the groups constituting the studied molecule. The impor-

tant parameters are those of interactions of the two members of each pair of groups

existing in the solution. In principle, the molecule is divided into several functional

groups. The molecule-molecule interactions are calculated by doing the ponderated

sum of the group-to-group interactions.

16.6 Some Methodological Aspects

The representation as judicious as possible of the excess Gibbs energy by empirical

series involves to determine the judicious parameters A0, A1, A2, . . ., A, B, C, . . .,
Λ12, Λ21 . . . and so forth, together with their numbers. We have already mentioned

that there exist statistical tests which permit to assert the pertinence (or not) of the

number of parameters to retain. They are most often obtained by least square

regressions linear or nonlinear. These determinations are performed by comparing

the calculated values GE (or other functions) to those of the same functions

experimentally determined, in the same fixed conditions. To know the calculated

values entails to choose the number of parameters to determine at the beginning of

the process and also to attribute initial empirical values to them. These values adjust

themselves, often automatically according to the algorithms, during the regression

process.

The experimental data which are most often retained in the regression process

are the total pressure or the partial pressures above the solution.

16.7 On the Very Simple Expression (16.11) of an Excess
Gibbs Energy

Let us again consider the very simple excess Gibbs energy (16.21). It gives rise to

an interesting theoretical explanation (viz. paragraph 8).

200 16 Excess Gibbs Energy and Activities



The diagram (GE
m/RT)/x2 is a parabola (Fig. 16.2).

For an indefinite number n1 + n2 moles of mixture, the excess function is

GE=RT ¼ GE
m=RT

� �
n1 þ n2ð Þ

GE=RT ¼ wn1n2= n1 þ n2ð Þ

Given the relations (16.3), we find immediately by derivation that

lnγ1 ¼ wx22 ð16:20Þ
lnγ2 ¼ wx21

These expressions are the simplified relations of Margules. Actually, some mixtures

exhibit this behavior, by example of the mixture benzene/cyclohexane at different

temperatures. It is also the case of mixture of argon and dioxygen. We notice the

perfect symmetry of the curve.

It is interesting to express the activities within the framework of this hypothesis,

when one of the components (2 for example) is very dilute, that is to say, for x2! 0.

According to (16.20)

ln γ1 ¼ lnexp w x22
� �

γ1 ¼ exp w x22
� �

Fig. 16.2 Excess Gibbs

energy GE
m/RT of a binary

mixture such as GE
m/

RT¼wx1x2
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After the development in series of the exponential and after only retaining the

first two terms, since x2! 0

γ1 � 1þ wx22

and since

a1 ¼ γ1x1

we obtain, since x1 + x2¼ 1,

a1 ¼ x1 þ w x22 � x32 þ . . . ::
� �

The activity of the major component (the solvent) tends toward its molar fraction in

pure state (that is to say, toward x1¼ 1) when that of the solute tends toward 0. The

solvent obeys Raoult’s law. Now, concerning the activity of the solute, we can write

ln γ2 ¼ wx21
γ2 ¼ exp wx21

� �
γ2 ¼ exp w 1� x2ð Þ2

h i
γ2 ¼ exp w 1� 2x2 þ x22

� �� �
γ2 ¼ exp w� 2wx2 þ wx22

� �
γ2 ¼ exp wð Þexp �2wx2 þ wx22

� �
γ2 ¼ exp wð Þ 1� 2wx2 þ wx22

� �
We notice that when x2! 0, γ2! exp(w). The activity coefficient tends toward

the constant exp(w) and the activity a2 is expressed by

a2 ¼ exp wð Þx2

Then, there is a linear relation between the activity and the molar fraction of the

solute. It obeys Henry’s law.

Remark The solutions, the excess Gibbs energies of which are of the kind (16.21),

are called simple mixtures (Guggenheim).

16.8 Theoretical Foundation of the Expression
of the Excess Gibbs Energy of a Simple Mixture:
Meaning of w

We have noticed that when both components of a mixture do possess molecules
roughly of the same size, the excess Gibbs energy obeys the simple relation already
encountered:
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GE
m=RT ¼ wx1x2 ð16:11Þ

The semiqualitative explanation is the following one. It is an experimental fact that
liquids retain the structure in lattice of crystals, at least in part (viz. the chapter
concerning the measurement of the radial distribution functions g—viz. Chap. 29).
This means that the molecules of a component are more and less strongly fixed on
the sites of the lattice around a molecule of the same component or of one molecule
of the other component. The fact that the molecules of both components are roughly
of the same size permits, however, the exchange of both types of molecules on the
sites of the lattice. The theory leading to this result is a statistical one.

Let us suppose that the Na+Nb molecules are fixed on the sites of the lattice
which are also equal to the number Na+Nb and that both types of molecules
(similar) possess the same number of the sites of coordination Z (at the number of
12, the most of the time, it seems). If the molecules a were completely separated
from the molecules b on the lattice, There would exist on the one hand ½ ZNa pairs
a-a and ½ ZNb pairs b–b on the other. The factor 1/2 is introduced in order not to
take into account the same pair two times. We must remark that, in this theory, one
only takes into account the pairs formed between neighboring molecules, called
molecules in direct interaction. After the mixing, the probability that one site does
possess one molecule a is equal to its molar fraction xa¼Na/(Na+Nb) and that it
does possess one molecule b is xb¼Nb/(Na+Nb). The probabilities of existence of
pairs a–a, a–b, and b–b are then xa

2, 2xa xb, and xb
2. The factor 2 is present because

there are two manners to obtain the pair a–b (obtentions of a–b and of b–a). Let
waa, wab, and wbb be the increases of potential energies when two molecules a,a–a,
b–b–b form a pair while they were separated at infinity. They are negative values.
The potential energy U after mixing is given by the expression

U after mixingð Þ ¼ �½Z Na þ Nbð Þ waax
2
a þ 2wabxaxb þ wbb x

2
b

� �
or

U after mixingð Þ ¼ �½Z waaN
2
a þ 2wabNaNb þ wbbN

2
b

� �
= Na þ Nbð Þ

Before mixing, the potential energy was

U before mixingð Þ ¼ �½Z Nawaa þ Nbwbbð Þ

Hence, the change in potential energy due to the mixing ΔU is

ΔU ¼ ½ ZNaNb waa þ wbb � 2wabð Þ= Na þ Nbð Þ

which can also be written as

ΔU ¼ na þ nbð Þ xaxbw0 RT
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after having introduced the quantity w0:

w0 ¼ ZNA waa þ wbb � 2wabð Þ=2RT

where NA is the Avogadro’s number (which must be introduced since the previous
reasoning involves the molecular scale and does not involve the molar one as it
must be because of the presence of the constant R)1. If we consider an ideal
solution, ΔU is equal to the mixing Gibbs energy and hence

w0 ¼ w

Maybe, here lies the meaning of the constant w introduced in the case of simple
mixtures.

1Pay attention, do not confuse NA and Na!
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Chapter 17

Equilibrium Constant, Activities,
and Reaction Gibbs Energy

Abstract The concept of chemical equilibrium is intimately linked to that of Gibbs

energy change accompanying the studied reaction. According to the value of the

latter, one can forecast if, spontaneously, the reaction is possible (or not) in the

sense in which it is considered in the given experimental conditions. Likewise, it

permits to forecast the position of the equilibrium. Hence, applying the general

properties of the quantity Gibbs energy to a chemical reaction leads to the law of the

chemical equilibrium, also called “mass action law.” It stems from the notion of

standard reaction Gibbs energy which is quantified with the aid of the introduction

of a constant named the equilibrium constant.

In this chapter, it is demonstrated that the equilibrium constant is truly a constant

only when it is calculated in terms of the activities of the reactants and products.

This point is a very important one, because it is only at this price that the

interactions between the particles of the system are taken into account. The

introduction of the activities allows, indeed, to express the chemical potentials of

the reactants and products and as a result the mass action law with the same

formalism as that used to study the behavior of species in ideal solutions.

The theoretical developments of this chapter lead to the somewhat surprising

result that, according to the chosen standard states of the reacting species, the values

of the equilibrium constants of a given reaction vary! This is the reason why it is

interesting to mention the relations existing between the different equilibrium

constants. Finally, the changes of equilibrium constants with temperature and

pressure are examined.

Keywords Reaction Gibbs energy • Activities of the reactants and products •

Equilibrium constant (constancy) • Usual standard states • Kinds of equilibrium

constants • Equilibrium constants/changes with the temperature and pressure

The concept of chemical equilibrium is intimately linked to that of Gibbs energy

change accompanying the studied reaction. According to the value of the latter, one

can forecast if, spontaneously, the reaction is possible in the sense in which it is

envisaged and in the given experimental conditions, or not. Likewise, it permits to

forecast the position of the equilibrium. Hence, applying the general properties of

the quantity Gibbs energy to a chemical reaction leads to the law of the chemical

equilibrium, also called “mass action law.” It stems from the notion of standard
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reaction Gibbs energy which may also be quantified with the aid of the introduction

of a constant named the equilibrium constant.

It is the goal of this chapter to show that the equilibrium constant is truly a

constant only when it is calculated in terms of the activities of the reactants and

products. This point is a very important one, because it is only at this price that the

interactions between the particles of the system are taken into account. The

introduction of the activities allows to express the chemical potentials of the

reactants and products with the same formalism as that used to study the behavior

of species in ideal solutions.

It is also the goal of this chapter to show that, according to the chosen standard

states of the reacting species (participating to the equilibrium), the values of the

equilibrium constants of a given reaction vary. It is the reason why it is interesting

to mention the relations existing between the different equilibrium constants. We

also investigate the changes of equilibrium constants with temperature and

pressure.

17.1 Reaction Gibbs Energy

Let us consider a closed system (the system may be constituted of several phases,

which are themselves open systems, but the following considerations concern the

whole closed system) in which the following reaction takes place:

aAþ bBþ Ð pPþ qQþ ::::: )

Let us suppose that an infinitesimal change takes place in the system. The natural

variables of the Gibbs energy function T and p and the numbers of moles ni
(nA. . .nQ. . .) exhibit the infinitesimal changes dT, dp, and dni and the change in

the Gibbs energy is given by the expression of the total differential:

dG ¼ � SdT þ Vdp þ
Xn
i

μi dni ð17:1Þ

The μi are the chemical potentials of the species participating in the reaction; G, S,
and V the Gibbs energy, the entropy, and the volume of the system; and p and T its

pressure and temperature. Let us write the above chemical reaction under the most

concise form:

X
viMi ¼ 0

Mi symbolizes the reactants and products. For the reactants (A, B), the stoichio-
metric coefficients ν bring the negative sign since their number of moles decreases
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during the reaction. It is the contrary for the products. Because of the stoichiometry

of the reaction, the following equalities are obligatorily satisfied:

dnA=a ¼ dnB=b ¼ dnP=p ¼ dnQ=q ¼ dξ

ξ is the extent of the reaction. With these relations, the change in the Gibbs energy

accompanying the reaction is

dG ¼ � SdT þ Vdp þ aμA þ . . . : qμQ
� �

dξ

At constant temperature and pressure,

dG ¼ aμA þ . . . : qμQ
� �

dξ

Let us symbolize
X

νiμi the sum pμp þ qμQ þ ::::� aμA � bμB � :::: :

X
νiμi ¼ pμP þ qμQ þ . . . : � aμA � bμB � . . . :

The sum
X

νiμi is the reaction Gibbs energy ΔrG:

ΔrG ¼
X

νiμi ð17:2Þ

By examination of the expression ΔrG, it appears that the reaction Gibbs energy is

the change in the Gibbs energy accompanying the reaction at a given moment of its
evolution, that is to say, for a given extent ξ at which each species i exhibits an
instantaneous chemical potential μi. The chemical potentials of the species vary

with the extent of the reaction and as a result the reaction Gibbs energy does vary

with the extent of the reaction.

When the reaction spontaneously takes place, the change dG must be negative

because of the proper properties of the function G. As a result, at constant temper-

ature and pressure, the reaction Gibbs energy ΔrG must be negative:

ΔrG < 0 spontaneous reaction dT ¼ 0, dp ¼ 0ð Þ

17.2 Expression of the Reaction Gibbs Energy
as a Function of the Activities of the Reactants
and Products

Let us recall that, from the general standpoint, the chemical potential of a species

whatever its thermodynamic state is
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μi ¼ μi
� þ RT ln ai

μi� is its standard chemical potential and ai its activity in the state where it stands.

The relation between the reaction Gibbs energy and the activities is obtained by

expressing the chemical potentials μi present in the relation (17.2) by the above

expression. We obtain

ΔrG ¼ pμ�P þ qμ�Q þ . . . :: � aμ�A � bμ�B
� �

þRT ln ap
P a

q
Q=a

a
A a

b
B

� � ð17:3Þ

In this expression, each activity can take every value (except that corresponding to

the equilibrium—this point is the matter of the next paragraph). The ratio (apP a
q
Q/

aaA a
b
B) is called the reaction quotient and is symbolized by Q.

17.3 Equilibrium Law: Equilibrium Constant

From the general standpoint (viz. Chap. 5), at equilibrium

dG ¼ 0

At constant temperature and pressure, according to what is preceding

X
νiμi ¼ 0 dT ¼ 0 and dp ¼ 0ð Þ ð17:4Þ

For example, for the above reaction, the equilibrium condition (at constant temper-

ature and pressure) is

pμP þ qμQ þ . . . � aμA � bμB � . . . ¼ 0 ð17:5Þ

Let μieq be the chemical potentials of the different species at equilibrium. Consid-

ering the above example again, the equilibrium condition entails the equality:

pμPeq
þ qμQeq

þ . . . ¼ aμAeq
þ bμBeq

þ . . . ð17:6Þ

Let us replace the chemical potentials at equilibrium by their general expressions

where the activities are those at equilibrium:

μeq ¼ μ� þ RT ln aeq

Expression (17.6) becomes
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p μ�P þ RT ln aPeq

� � þ q μ�Q þ RT ln aQeq

� �
þ . . .

� a μ�A þ RT ln aAeq

� � � b μ�B þ RT ln aBeq

� � � . . . . . . ¼ 0

or after rearrangement

RT ln ap
paQq . . . := aAaaBb . . . ::

� �
eq

¼ aμoAþ bμoBþ :::::ð Þ � pμoPþ qμoQþ :::::ð Þ
ð17:7Þ

We have seen that the standard potentials μ
�
A, μ

�
B, etc. are constant at given

temperature and pressure. As a result

RT ln appaq
Q . . . := aa

A a
b
B . . . ::

� �
eq
¼ constant dT ¼ 0 dp ¼ 0ð Þ

and evidently

appaq
Q . . . := aa

A a
b
B . . . ::

� �
eq

¼ K� ð17:8Þ

K� is the constant of the chemical equilibrium. It is called standard equilibrium

constant (IUPAC) or also thermodynamic equilibrium constant. At equilibrium and

at constant temperature and pressure, the activities of the species participating in the

reaction obey relation (17.8). Conversely, the fact that this relation is verified means

that the chemical equilibrium is reached. Relation (17.8) is the expression of the

mass action law.

The relation (17.8) is general. It is satisfied, at constant temperature and pres-

sure, when the equilibrium of every reaction is reached and this assertion is true

when it involves only one phase or even several. However, in the latter case, it is

true only when the whole closed system is considered. It is not if one considers each

phase separately.

17.4 Reaction Standard Gibbs Energy and Reaction
Gibbs Energy

Let us consider the right member of relation (17.7), the sign of which has been

changed. According to relation (17.3) of Chap. 5, it is clear that it has the signif-

icance of the standard molar Gibbs energy change ΔrG
� accompanying the

reaction:

17.4 Reaction Standard Gibbs Energy and Reaction Gibbs Energy 209

http://dx.doi.org/10.1007/978-3-319-46401-5_5


aA þ bB þ . . . . . . : pP þ qQ þ . . . ::

that is to say, when the reactants and the products are in their standard states:

ΔrG
� ¼ pμ�P þ qμ�Q þ . . . ::

� � � aμ�A þ bμ�B þ . . . ::ð Þ ð17:9Þ

The reaction Gibbs energy ΔrG, according to (17.3), is

ΔrG ¼ ΔrG
� þ RT ln ap

Pa
q
Q=a

a
Aa

b
B

� �
ð17:10Þ

or

ΔrG ¼ ΔrG
� þ RT ln Q ð17:11Þ

At equilibrium,

ΔrG ¼ 0

and from (17.8), one can deduce that

� RT ln K� ¼ ΔrG
� ð17:12Þ

and

ΔrG ¼ � RT ln K� þ RT ln ap
Pa

q
Q=a

a
A a

b
B

� �
ð17:13Þ

Relation (17.13) is sometimes called the van’t Hoff’s reaction isotherm.

The notion of reaction standard Gibbs energy ΔrG
� is endowed with a true

practical interest since it permits to calculate the Gibbs energy change ΔrG accom-

panying a chemical reaction between reactants and products when they are in

ordinary thermodynamic states, provided that the activities of the different species

in the initial and final states are known and provided that the transformation is

performed at constant temperature and pressure. Let us, indeed, envisage the

following cycle (Cf., Fig. 17.1):

Let us consider the reaction

aA þ bB ! mM þ nN

and calculate the Gibbs energy change ΔrG accompanying it. The initial and final

states are some given states. It is clear (viz. Fig. 17.1) that

ΔrG ¼ ΔG1 reactantsð Þinitial ! standard þ ΔrG
� þ ΔG2 productsð Þstandard

! final
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Since the chemical potentials are molal Gibbs energies and since the activities in

the standard states are equal to unity

ΔG1 reactantsð Þinitial ! standard ¼ a μA
� � a μA

� þ RT ln aAið Þ½ �
þ bμB

� � b μB
� þ RT ln aBið Þ½ �

ΔG2 productsð Þstandard ! final ¼ m μM
� þ RT ln aMf

� � � m μM
�� �

þ n μN
� þ RT ln aNf

� �� nμN
�� �

that is to say,

ΔrG ¼ ΔG1 þ ΔrG
� þ ΔG2

We again find the fact that an activity has the meaning of the Gibbs energy change

accompanying the crossing of a substance from the standard state into some

non-ordinary state (viz. Chap. 9).

Hence, the tabulation of a limited number of standard Gibbs energies permits the

calculation of the Gibbs energies of chemical reactions arising whatever the

conditions are, but which must evolve at constant pressure and temperature.

Concerning this purpose, it seems interesting for us to briefly recall the main

methods of determination of standard Gibbs energies. Let us mention:

– The determination of the equilibrium constants

– That of electromotive forces of galvanic cells

– The measurement of energy intervals in molecules allowing the calculation of

molecular partition functions (viz. Chap. 26)

– The use of the third law of thermodynamics

Fig. 17.1 Principle of the calculation of the change in molar Gibbs energy ΔrG of a chemical

reaction through the standard Gibbs energy when the reactants and products are in an ordinary state

at constant temperature and pressure
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17.5 Usually Chosen Standard States

As a rule, the choice of standard states is arbitrary. It is the same thing for that of the

scale of “concentrations” to which the activities are related. Actually, the choice is

rather based on practical considerations. Let us recall those which are, by far, most

often, adopted. Usually, but in no case obligatorily:

– For ions and molecules in dilute solutions, activities are related to the scale of

molar concentrations or to that of molalities (viz. Chap. 1). The numerical values

on either of these scales little differ from each other, for dilute solutions.

– For the solvent of a dilute solution, its activity is related to its molar fraction. Its

numerical value differs very little from unity in dilute solutions.

– For a pure solid, its standard state is its pure state at atmospheric pressure.

Hence, its activity is equal to unity.

– For gases in equilibrium with their solutions, their activities are chosen to be

equal to their partial pressures expressed in pressure unity, still often in atmo-

spheres for historical reasons. This is true when the pressures are not too large.

– For liquid mixtures, the activity of each component is related to its molar

fraction and its numerical value differs few from the latter.

The qualifier “related to” used above means that the activity a of a species in a

given medium is related to its “concentration” C whatever the scale is, by the

following relation (viz. Chap. 6):

a ¼ γC

17.6 Come Back on the Constancy of the Equilibrium
Constants

It has been already said, at several steps, that the value of an equilibrium constant

may vary according to the chosen standard states. Relation (17.12) above is an

indisputable proof of this assertion. When, indeed, one chooses different standard

states for the reactants and products of a chemical reaction, quite evidently, the

standard Gibbs energy ΔrG
� changes and according to relation (17.12), the equi-

librium constant also. When there is no equilibrium (ΔrG 6¼ 0), when one operates

with different standard states, relation (17.10) shows that since Gibbs energy

changes accompanying the chemical transformation are constant (state function),

the reaction quotient differs according to the description mode of the phenomenon.

As a result, the activity values of the different species are not the same as those

handled with the first set of standard states. In other words, for the reaction Gibbs

energy to remain the same, whichever the retained standard states are, there must

exist a kind of spontaneous compensation between the values of the standard

reaction Gibbs energy and those of the activities. This compensation can be

qualified as being subtle.
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17.7 Equilibrium Constant in Homogenous Gaseous
Medium

By hypothesis, the reaction occurs only in one phase. By adopting the hypothetical

state in which it exhibits an ideal behavior at the pressure of 1 atm as standard state,

activity is equal to its fugacity in numerical values (viz. Chap. 10):

ai ¼ f i

As a result, the general expression of the equilibrium constant (17.8) is

f pp f
q
Q . . . :=f aAf

b
B . . . ::

� �
eq

¼ Kf ð17:14Þ

It is, then, specified that the equilibrium constant is related to the fugacities by the

use of the index f. Of course

Kf ¼ K�

when the behavior is ideal. By using the fugacity coefficients ϕi (viz. Chap. 7), Kf is

expressed by the following relation:

Kf ¼ pp
p p

q
Q . . . :=pa

Ap
b
B . . . ::

� �
eq

• ϕppϕq
Q . . . :=ϕa

Aϕ
b
B . . . ::

� �
eq

Actually, it is little used since there exist few data concerning the fugacity coeffi-

cients in literature. The first term of the product of the right member is the

equilibrium constant Kp expressed in terms of partial pressures:

Kp ¼ pp
p p

q
Q . . . :=pa

Ap
b
B . . . ::

� �
eq

It is clear that it does not take into account the interactions between the gas

molecules. Hence, it cannot be constant. At high pressures, its value may consid-

erably change.

Another constant Kf
0 is by far more used than the previous one. It comes from the

application of a rule (which actually is an approximation) due to Lewis and Randall.

According to it, the fugacity fi of a gas in a gaseous mixture is related to its fugacity

fi
0 in the pure state at the total pressure of the mixture studied by the relation

f i ¼ yif i
0

where yi is its molar fraction in the gaseous state. After replacement in the

expression of Kf above, we obtain
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Kf
0 ¼ f 0 pp f 0 qQ . . . := f 0 aAf

0 b
B . . . ::

� �
eq
• ypp y

q
Q . . . :=yaAy

b
B . . . ::

� �
eq

It is evident that this expression cannot be exact, given the fact that the rule is

nothing else than an approximation.

17.8 Equilibrium Constants of Reactions in Homogeneous
Solutions Resulting from Mixtures from Several Fully
Miscible Liquids

For the case of chemical reactions occurring in a mixture of several fully miscible

liquids, the most often chosen standard state of each species is the pure liquid at the

temperature of the solution under the pressure of 1 atmosphere. The activity of each

species is equal to the product of its molar fraction by its activity coefficient (viz.

Chap. 9):

ai ¼ γr ixi

The equilibrium thermodynamic constant is

K� ¼ xpp x
q
Q . . . :=xaAx

b
B . . . ::

� �
eq

• γrp
pγ qrQ . . . :=γ arAγ

b
rB . . . ::

� �
eq

ð17:15Þ

Evidently, the constant Kx
0 defined by the expression

Kx
0 ¼ xpp x

q
Q . . . :=xaAx

b
B . . . ::

� �
eq

is only approximate.

17.9 Reactions in Dilute Solutions

Equilibrium constants are often expressed in terms of molarities and molalities. Let

us recall (viz. Chap. 9) that for the dilute solutions, the usually chosen standard

states are such that, at the temperature of the solution and under the pressure of

1 atmosphere, in the cases where the “concentration” is expressed in:

– Molalities, the activity coefficient of each substance γm2¼ am2/(m2/m2
�) tends

toward unity when the molality m2 tends toward zero,

– Molarities, the activity coefficient γc2¼ ac2/(c2/c2
�) tends toward unity when the

concentration c2 tends toward zero.
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The equilibrium constants can be obtained by starting from relation (17.14) by

replacing the molar fractions by the molalities or the molarities in it and also by

replacing of course the activity coefficients relative to the molar fractions by those

relative to the molalities and molarities.

One knows (viz. Chap. 1) that the number n2 of moles of the solute is related to

its molality m2 by the relation

n2 ¼ n1M1=1000ð Þm2

where n1 and M1 are the numbers of moles and the molar mass of the solvent. One

can make the following approximation for the dilute solutions. Its molar fraction x2
is defined by the expression

x2 ¼ n2=
X

n

where Σn is the sum of the number of moles of all the other components of the

solution, including the solvent. When the solution is sufficiently diluted, one can set

up

X
n � n1

By performing this approximation, the two preceding relations lead to

x2 � M1=1000ð Þm2

By replacing the molar fractions of the solute by the expressions of this kind, we

obtain the relation

Km
0 ¼ mppmq

Q . . . := ma
Am

b
B . . . ::

� �
eq

ð17:16Þ

Actually, the numerical valueM1/1000 is already introduced into the value Km
0. The

relation (17.16) is approached for two reasons. The first one lies in the approxima-

tions governing the crossing from the molar fractions to the molalities. The second

approximation lies in the absence of the factor grouping the activity coefficients.

Actually, its presence is not justified given the preceding approximations entailing a

very weak number of moles.

By an analogous reasoning, one finds the expression (17.17) of the equilibrium

constant Kc
0 expressed in molarity terms:

Kc
0 ¼ cpp c

q
Q . . . :=caAc

b
B . . . ::

� �
eq

ð17:17Þ
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As Km
0, Kc

0 is approximate for the same reasons as above. The crossing from the

molar fractions to the molarities is realized thanks to the exact relation (viz.

Chap. 1)

x2 ¼ c2=1000ρð Þ
X

nM=
X

n
� �

where Σ nM is the mass of the solution and ρ its density. The approximations

performed here are due to the facts that in diluted solutions

X
nM � n1M1 and

X
n � n1

The equilibrium constants expressed in terms of “concentrations” are often called
formal or conditional constants. More generally, the adjective conditional seems to
qualify the case where not only the “concentrations” are taken into account but
also other experimental conditions are fixed.

17.10 Heterogeneous Cases

Now we consider the case in which the chemical reaction occurs in heterogeneous

systems. It is the case, for example, when the equilibrium involves gases and solids,

one solution and one solid, etc.

Whichever the case is, the general relation (17.8) can be applied. The important

point to notice is that, when the equilibrium involves a pure liquid or solid, its

activity is usually chosen, to be equal to unity. This simplifies the writing of the

equilibrium constant. As an example, let us again take the case of equilibrium

aA þ bB þ Ð pPþ qQ þ . . . :: )

where A, P, and Q are in solution and where B is a pure solid. Given the

corresponding convention for the activity, the chemical potential B is

μB ¼ μB
� þ RT ln 1

μB ¼ μB
�

The same reasoning as that which leads to the general relation (17.8) gives the

expression

ap
p a

q
Q . . . :=aa

A1
b . . . ::

� �
eq

¼ K�

systematically written in literature as
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ap
p a

q
Q . . . :=aa

A . . . ::
� �

eq
¼ K�

If the activity of the solid pure compound does not intervene in the writing of the

equilibrium constant (because of the value unity of its activity), its standard

potential, however, still intervenes in the standard Gibbs energy change which is

still written according to relation (17.9) as it is shown by the reasoning involved in

the occurrence. This explains why, for example in an electrochemical cell, when

one electrode is constituted by a pure metal (Zn, Cu, and so forth) the activity of

which is taken to be equal to unity, when the metal constituting it participates in the

chemical equilibrium.

Let us recall that the fact to write down the activity of a pure phase equal to unity

is legitimate only under the pressure of 1 atmosphere. When it is not the case, its

activity remains constant as previously but is no longer equal to unity. Hence,

corrections must be in principle done. However, since the influence of the pressure

on the activity of a solid or a liquid is weak, it is neglected in “everyday” practice.

17.11 Change in the Equilibrium Constant with Pressure

The change of the value of the equilibrium constant with the pressure can be

grasped through relation (17.12)

ln K� ¼ � ΔrG
� =RT

Let us differentiate with respect to the total pressure p at constant temperature. We

obtain

∂ln K�=∂pð ÞT ¼ 1=RT ∂ ΔrG
�ð Þ=∂p½ �T

Since the standard states are defined as being independent from the pressure of the

system, the reaction standard Gibbs energy does not change with the external

pressure:

∂ln K�=∂pð ÞT ¼ 0

As a result, the constant Kf is also independent from the external pressure (viz.

paragraph 6).

However, the fact that the value of the equilibrium constant does not vary with

the pressure does not necessary mean that the equilibrium concentrations of reac-

tants and products remain constant when the pressure increases. Constancy of the

equilibrium constant and equilibrium position must not be confused!
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– Let us consider the following reaction where the reactants and products are in the

gaseous state and are at equilibrium at a given temperature:

aA þ bB þ Ð pP þ qQ þ . . . :: )

The equilibrium constant Kf is given by relation (17.14). The fugacity coefficient

of each gas is given by the relation

ϕi ¼ f i=pi

The partial pressure of the gas i is given by the relation

pi ¼ yiP

where P is the total pressure and yi the molar fraction of the gas in the mixture.

From the last two relations, one deduces

f i ¼ ϕiyiP

Replacement of the fugacities fi by this expression into (17.14) leads to

K� ¼ ypP y
q
Q . . . := yaAy

b
B . . . ::

� �
eq
• ϕp

pϕ
q
Q . . . :=ϕa

Aϕ
b
B . . . ::

� �
eq
•P m þn � a � bð Þ

ð17:18Þ

After studying this expression, it is evident that the K� constancy entails that when

the total pressure P varies, the factor grouping the molar fractions also varies. When

the total pressure varies, the equilibrium concentrations adapt themselves in order

that the value K� does not change. However, we can notice that when the combi-

nation of exponents (m+ n�a�b) is null, there is no modification of the equilibrium

concentrations with P. The change in the equilibrium position with the pressure is

related to Le Chatelier’s principle which stipulates that increasing the pressure

favors the reaction which is accompanied by a decrease of the number of molecules.

Another point must be taken in mind. In the just above reasoning, the term taking

into account the fugacity coefficients has not been considered. But the latter varies

with the pressure, very moderately with weak pressures but, very markedly, when

they are endowed with large values.

17.12 Change in the Equilibrium Constant
with the Temperature

The effect of the temperature on the equilibrium constant can be studied through the

differentiation of relation (17.12) with respect to the temperature. Performed at

constant pressure, it leads to the expression
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∂ ln K�=∂Tð ÞP ¼ � 1=Rð Þ∂ ΔrG
�=Tð Þ=∂T

Thanks to the Gibbs-Helmholtz relation (viz. Chap. 2)

∂ ΔG=Tð Þ=∂T½ �P ¼ � ΔH=T2

one can write

d lnK� =dT ¼ ΔH�=RT2 ð17:19Þ

This relation is sometimes called van’t Hoff’s equation.

(In passing, let us remark that using partial derivatives is unnecessary, because

K� does not depend on the total pressure. A simple differentiation is sufficient.)

ΔH� is the standard enthalpy change accompanying the chemical reaction when

it occurs from the left toward the right:

ΔH� ¼ pH�
P þ qH�

Q þ . . . :
� � � aH�

A þ bH�
B þ . . . ::ð Þ

The H�
i are the molar enthalpies of species i in their standard states, at temperature

T. They depend only on the temperature. Of course, the standard states chosen in

order to define the chemical potentials and those chosen to define the enthalpies

must correspond to each other. Let us confine ourselves to only recall that for a

solute, the partial molar enthalpy is always equal to that it possesses at infinite

dilution. As a result, the solution of the solute at infinite dilution is the solution of

reference.

In short intervals of temperature changes, one can admit the approximation that

ΔH does not depend on the temperature. Then, the integration is immediate. We

obtain

ln K� ¼ � ΔH�=RT þ constant

This relation is very interesting. It shows, indeed, that it is possible to obtain the

heat of reaction when the equilibrium constant is known, at least, at two tempera-

tures. Another possibility of its use is the following one: it permits to know the

equilibrium constant at every temperature provided that it is known at one temper-

ature and that its enthalpy change is also known.

For larger temperature intervals, corrections through calorific capacities must

be done.
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Chapter 18

Obtention of Equilibrium Thermodynamic
Constant pH: Definitions and Measurement

Abstract The importance of the knowledge of the equilibrium constants of the

chemical reactions is considerable. They notably permit to know the position of the

equilibrium according to the experimental conditions with a good accuracy, thanks

to the use of the activities when the behaviors of reactants and products are not

ideal.

The chapter mentions some determinations of thermodynamic equilibrium con-

stants. They entail the use of activities. Here, very classical determinations by

potentiometric and conductometric measurements are considered. Some examples

are given. They are the potentiometric determinations of the mean activity coeffi-

cient of a strong acid, the thermodynamic acidity constant of a weak acid, the ionic

product of water, and the conductometric measurement of an acidity constant. It is

also devoted to the quantity named pH, the definition and measurement of which

being intimately linked to the concept of activity.

Keywords Equilibrium constants (potentiometric and conductometric

determinations) • Electrochemical cells • pH • Formal and operational

definitions • Thermodynamic acidity constants • Water, tonic product

By way of introduction of this chapter, let us recall the considerable importance of

the knowledge of the equilibrium constants of chemical reactions. They notably

permit to know the position of the equilibrium with a good accuracy, according to

the experimental conditions, thanks to the use of the activities.

In this chapter and in the following, we mention some determinations of

thermodynamic equilibrium constants. They entail the use of the activities. In this

chapter, we consider very classical determinations by potentiometric and conduc-

tometric measurements. We finish with some considerations on the quantity pH, the

definition and measurement of which are intimately linked to the concept of

activity.

In the following chapter, we shall describe some less conventional determina-

tions while taking into account the activities.
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18.1 Potentiometric Determination of the Mean Activity
Coefficient of a Strong Acid

The potentiometry permits to directly determine the mean ionic activity coefficient

of one electrolyte (Cf, Chap. 14). The cell reaction involves the formation of the

substance (the activity of which is wanted) in solution. Let us take the example of

the hydrochloric gas which is a strong acid in water. We want to determine its mean

activity when its molality in water is m.
Let us consider, for example, the cell

Pt
��H2 1 atm:ð Þ��HCl aq,mð Þ��AgCl sð Þ��Ag

constituted by a hydrogen electrode (under the pressure of 1 atm.) and by a silver–

silver chloride electrode dipped into the solution of hydrochloric acid at the

molality m. The hydrogen electrode is sensitive to hydrogen ions. It is the indicator
(or working) electrode. The spontaneous cell reaction is

1=2 H2 1 atm:ð Þ þ AgCl sð Þ ! Hþ mð Þ þ Cl� mð Þ þ Ag sð Þ ð18:1Þ

Ions H+ and Cl� are at the “concentration” m in the solution. The cell reaction

(18.1) does not evolve as it is written above. Actually, it evolves according to a

fragmented manner through the two simultaneous electrochemical reactions:

at the anode : 1=2 H2 1atm:ð Þ ! Hþ mð Þ þ 1 e�

at the cathode : AgCl sð Þ þ 1 e� ! Ag sð Þ þ Cl� mð Þ

There only exists one solution in the cell in which both electrochemical reactions

occur. Hence, the cell does not possess two compartments, the existence of which

would involve the existence of a liquid junction (viz. Chaps. 5, 12, and 14).

The cell electromotive force E is related to the activities of the different species

participating in the cell reaction through the equation

E ¼ E� � RT=nFð Þ ln aHCl aAg= aH2
ð Þ1=2aAgCl

h i
with n ¼ 1ð Þ

where E� is the standard electromotive force. According to the usual choices of the

standard states (viz. Chap. 17):

– aH2
¼1 since dihydrogen is at the standard pressure and since it exhibits a perfect

behavior at this pressure, at usual temperature,

– aAg¼ 1 and aAgCl¼ 1 since both are solid constituting pure phases.

As a result, the cell electromotive force is given by the expression

E ¼ E� � RT = Fð Þ ln aHCl ð18:2Þ

The measurement of E permits to obtain the activity aHCL.
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E is also given by the expression

E ¼ E� � RT = Fð Þ ln aHþ • aCl�ð Þ

or

E ¼ E� � RT=Fð Þ ln mþ •m�ð Þ � RT ln γþγ�

In the present case,

γþγ� ¼ γ2�

and

mþ •m� ¼ m2
�

whence

E þ 2RT=Fð Þ ln m� E� ¼ � 2RT=Fð Þ ln γ�

We see that the method permits, starting from the measurement of the

corresponding electromotive forces E, to evaluate the mean ionic activity coeffi-

cient γ�when the molality of hydrochloric acid ism. But, in order that it is possible,
the standard force electromotive E� must be known. The latter is obtained by

extrapolation. The extrapolation is based on a form of the Debye–Hückel’s relations
which is of the following type for a monovalent electrolyte in very dilute solution

(viz. Chap. 15):

ln γ� ¼ � A√m þ Cm

where C and A are constants. Putting this relation into the preceding one, we obtain

E þ 2RT=Fð Þ ln m þ A√m ¼ E� þ Cm

We notice that the left member of the last equation is a function of the molality,

which is known. After measurement of the emf E at each molality m, it is known.
The extrapolation of its value down to m¼ 0 gives the value of the standard

electromotive force E�.
This principle of determination can be generalized to every electrolyte. The only

condition which must be fulfilled in order that the determination would be possible

is that one of the electrodes of the used cell reversibly responds to one of the ions of

the electrolyte.

For example, for generalization, let us consider the electrolyteMν+ Aν�. The cell
which may be used is
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M
��Mvþ, Av�solution mð Þ��A

The electromotive force of the cell is given by the expression

E ¼ E� � RT=nFð Þ ln avþþ av��

E ¼ E� � v RT=nFð Þ ln m� � v RT=nFð Þ ln γ�

In this expression, m� is defined by the expression

mv
� ¼ mvþ

þ mv�
�

and since

mþ ¼ vþm and m� ¼ v� m

mv
� ¼ mv vvþþ vv��

� �

with

v ¼ vþ þ v�

and n is the number of exchanged electrons appearing in each of both electrochem-

ical reactions. This methodology of determination of the electrolyte activities has

been used in numerous times, in various experimental conditions.

(On the fringe of this method of determination, it is interesting to answer the
following question: Why the cell reaction (18.1) does not occur chemically rather
than through the electrochemical way, since all the reactants are present together
in the same solution as that of the cell. The reason is of kinetic order. With respect
to the electrochemical reactions, the chemical reaction is very slow and has no time
to evolve.)

18.2 Potentiometric Determination of the Thermodynamic
Acidity Constant of a Weak Acid

Let us take the example of a determination in water. Let HA be the acid. Let us

consider the following cell, called the Harned cell:

Pt
��H2 1 atm:ð Þ��HA,A�, Hþ, Cl�

��AgCl sð Þ��Ag

Once more, it is without a liquid junction. The goal is to determine the thermody-

namic acidity constant K
�
a of the weak acid HA in water. It is defined by the

expression
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K
�
a ¼ aHþ aA� = aHA ð18:3Þ

where A� is the conjugated base. A constant concentration of chloride ions is

introduced as sodium chloride. The “concentration” in chloride ions, introduced

as sodium chloride, is constant.

Generally, the acid HA and its conjugate base A� are not electroactive in these

conditions. The cell reaction is reaction (18.1).

As we have seen it above, the electromotive force of the cell E is given by

relation (18.2); that is, it depends on the activity aHCl. The activity of chloride ions

being constant, it is evident that the electromotive force depends on the activity aH+
which, in turn, depends on the ionization constant through relation (18.3). Hence,

one can conceive that Emeasurements in well-defined conditions allow to reach K
�
a.

For example, let us consider the cell without junction:

Pt
��H2 1 atm:ð Þ��CH3COOH m1ð Þ, CH3COO

� m2ð Þ, NaCl m3ð Þ��AgCl sð Þ��Ag

The goal is the determination of the thermodynamic acidity constant of acetic acid.

According to what is preceding, the electromotive force of the galvanic cell is given

by the expression

E ¼ E� � RT =Fð Þ ln mHþmCl� γHþ γCl�
� �

Given the definition of the dissociation constant:

K
�
a ¼ mHþmCH3COO�=mCH3COOHð Þ • γHþγCH3COO�=γCH3COOH

� �

The combination of both expressions is as follows:

E � E� þ RT=Fð Þ ln mCH3COOHmCl�=mCH3COO�ð Þ
¼ � RT=Fð Þ ln Ka � RT=Fð Þ ln γCH3COOHγCl�=γCH3COO�ð Þ

The left-hand member of this expression can be calculated. E�, indeed, is already
known (viz. the above paragraph) and E is the electromotive force measured with

the cell. When its values, obtained for different molalities m1, m2, m3, and so forth,

are drawn as a function of the ionic strength of the solution, and when, after, one

extrapoles down to a null ionic strength Im, the obtained value gives K
�
a, since the

term containing the activity coefficients is then equal to zero:

Im ! 0 Ka ! K
�
a

In order to perform this kind of extrapolation, the “concentrations” mCH3COO� and

mCH3COOH must be those which truly exist when the acid–base equilibrium is

reached. From the kinetic standpoint, this condition does not raise any problem

because the equilibria acid–base in aqueous solutions are obtained very quickly.
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From the standpoint of the equilibrium, an approached value of the constant is

chosen at the beginning of the process in order to calculate a first approached value

of the ionic strength and of the constant. This latter value is retained as a first value

for a second calculation and so on. For the first approximation, one sets up

mCH3COOH � m1,

mCH3COO� � m2,

mCl� � m3:

The ionic strength is calculated according to the relation

Im ¼ m2 þ m3 þ mHþ

since all the ions are monovalent. The molalities at equilibrium are approached

thanks to the approximative chosen ionization constant. Generally, a small number

of iterations are necessary. The process of iteration is ended when two successive

values Ka are considered as being equal according to the precision of the

measurements.

Finally, the value obtained at 25 �C for acetic acid is K
�
a ¼ 1754� 10�5.

18.3 Potentiometric Determination of the Ionic Product
of Water

This example is quite similar to the previous one. The used cell is the following:

Pt
��H2 1 atm:ð Þ��MOH m1ð Þ MCl m2ð Þ��AgCl sð Þ��Ag

where M+ is an alkali metal ion. By definition, the ionic product of water K
�
w is

given by the relation

aHþ aOH� ¼ K
�
w

The electromotive force of the cell is again given by the expression (18.2). A

reasoning absolutely analogous to the preceding, followed by considering that the

base MOH and the metallic chloride are fully dissociated, leads to the following

relation:

E � E� þ RT=Fð Þ ln mCl�= mOH�ð Þ
¼ � RT=Fð Þ ln Kw � RT=Fð Þ ln γCl�=γOH�ð Þ

At infinite dilution, the term on the right containing the activity coefficients

becomes null. Hence
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Kw ! K
�
w

Once more, one proceeds by extrapolation by writing the value of the left term of

the above equation as a function of the ionic strength, the value of E� being known

from another side. Finally, it has been found that at 25 �C

K
�
w ¼ 1;008 � 10�14

This kind of determination has been very often performed.

Let us notice that a junction cell must also be used. Then, the principal uncer-

tainty affecting the result comes from the occurrence of the junction potential (viz.

under the pH measurement).

18.4 Conductometric Determination
of the Thermodynamic Acidity
Constant of a Weak Acid

Let us consider the determination of the thermodynamic acid dissociation constant

K
�
a of a monoacid HA.

It is an experimental fact that the molar conductivity Λm of a weak acid depends

on its concentration. It decreases, firstly, very quickly and then more slowly when

its concentration increases (Fig. 18.1).

It is admitted that the lowering of the molar conductivity is, in great part, due to

the lesser dissociation of the acid with its concentration. This behavior is in

accordance with Ostwald’s dilution law which stipulates that the more dilute a

weak acid is, the more dissociated it is.

– In a simplified treatment of the phenomenon, it is admitted that the value of the

dissociation coefficient α of the acid is approached by the coefficient α0 given by
the expression

Fig. 18.1 Dependence of the molar conductivity of a monoacid on its concentration
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α0 ¼ Λ=Λo ð18:4Þ

whereΛo is the limit molar conductivity, that is to say, at infinite dilution. α0 permits

to obtain an approached value of the constant K0 being searched for. The reasoning

is as follows. Once the coefficient α0 is known, it is evident that given the

equilibrium

HA Ð Hþ þ A�

if the analytical concentration of the acid is C, K0 obeys the relations

K0 ¼ α0Cð Þ α0Cð Þ = 1� α0ð ÞC
K0 ¼ Λ=Λoð Þ2C = 1� Λ=Λoð Þ

ð18:5Þ

For the following operations, Λ being measured, Λo must be known.

According to Kohlrausch’s law of the independent migration of ions (law of

purely experimental origin) (that some authors qualify as being a postulate), the

limit molar conductivity of the acid can be calculated by applying the following

expression which relates the limit molar conductivities of HCl, NaA, and NaCl:

Λo HAð Þ ¼ Λo HCLð Þ þ Λo NaAð Þ � Λo NaClð Þ

since HCl, the sodium salt of the acid NaA and NaCl are strong electrolytes, that is

to say fully dissociated. This relation should be rather written as follows:

Λo Hþ þ A�ð Þ ¼ Λo Hþ þ Cl�ð Þ þ Λo Naþ þ A�ð Þ � Λo Naþ þ Cl�ð Þ

– This approach is approximate for two reasons which act in synergy. The first one

is that the conductances Λ of the ions, parameters that cannot be rid of since they

are inherent to the method, are not truly constant. The conductances vary with

the square root of the “concentrations” of the ions, according to an empirical law

due, also, to Kohlrausch. The second one is that there is also a ionic strength

effect. Hence, both factors are due to ionic interactions and corrections must be

done at two levels.

– In order to solve the whole problem, one operates in two steps.

• In the first step, one introduces the notion of effective conductivity Λe for each

ion (the index e means effective and not equivalent). Λe is obtained by a

mathematical relation in which intervenes the concentration Ci equal to that of

all the ions of the solution where the acid is dissolved. For example, for acetic

acid,

Λe ¼ 390:59 � 148:61√Ci þ 165:5Ci 1 � 0:2274√Ci

� �
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(Let us mention in passing that this kind of relation, which is from an experi-

mental origin, is justified in part by the Debye–Hückel’s relations—viz. Chap. 15.)

By generalizing the relation (18.5) to the effective conductivities, one obtains the

relation (18.6) permitting an estimation K00 of the constant Ka
� being searched for:

K
00 ¼ Λ=Λeð Þ2C = 1� Λ=Λeð Þ ð18:6Þ

or equivalently:

K
00 ¼ C

00
HþC

00
A�=C

00
HA

One can consider that once the approximate value K00 is obtained, one is cast from
the first problem which is that of the change of conductivities.

A better approach K000 of the constant being searched for is obtained, then, by

resorting the activity coefficients. K000 is given by the expression

K
000 ¼ C

00
HþC

00
A�=C

00
HA

� �
γHþ γA�=γHA
� �

Therefore, one can write

ln K
000 ¼ ln K

00 þ lnγ2�=γHA ð18:7Þ

with

γ2� ¼ γHþγA�

At this point of the reasoning, it seems that one has reached a dead end. In order to

know K000, indeed, one must know K00 which depends on Λe. Now, to know Λe

entails to know the concentrations Ci and this knowledge, in turn, entails to know

K000!
The problem is solved by successive iterations. For the first loop turn of the

iteration process, one begins by adopting the approximation Λe¼Λo which permits

to obtain a first value α by using the relation (18.8) and hence a value Ci
00 and then a

value Λe. The latter one permits to obtain a new value α through the relation

α ¼ Λ=Λe ð18:8Þ

The iterative process is continued until the last calculated α value does not differ

significantly from the preceding one. The convenient value K00 is then found.

• In the second step, one takes into account the activity problem. The methodology

is classical. It consists in drawing the curve ln K00 as a function of the ionic

strength of the solution. When the latter is null, the term taking into account the

activity coefficients in (18.7) becomes null. Hence, the extrapolation of the curve
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down to I¼ 0 gives the being searched for constant K
�
a. The methodology, of

course, entails to have, before, performed measurements of conductances at

several analytical concentrations and to have, for every one, done the previous

calculations.

18.5 The Quantity pH

The quantity pH involves the determination of the activity of an ion, in the

occurrence, the activity of the hydrogen ion. This paragraph gives an example of

what a lot of dispositions and precautions must be taken in order to have the best

estimation of the activity of an ion.

18.5.1 Generalities: Formal Definition of pH

(We confine ourselves to the study of the notion of pH in water.)

The quantity pH is considered today as being a parameter permitting to evaluate

the acidity or the basicity of a medium rather than one parameter exactly quanti-

fying the activity of the solvated proton (also called “hydrogen ion”) in the studied

medium.

Even so, from a theoretical standpoint, a pH value is conceived in order to

quantify the activity of the proton since it is defined as being the decadic antilog-

arithm of the activity of the solvated proton in the medium (aH+aq for water):

pH ¼ � log aHþaq

This is the formal definition of pH.

From the historical viewpoint, the authors who have proposed this definition, as
early as in 1924, are S€orensen and Linderstrom-Lang.

It results from the conjunction of some experimental results and scientific facts
which were, then, already known. Let us mention:

– The use of hydrogen electrode by S€orensen in order to measure the acidity (in the
occurrence, which was considered at this time, as being the proton concentra-
tion) of a medium Le Blanc having before demonstrated that its behavior toward
the hydrogen ions is reversible,

– The fact, however, that S€orensen had found that the hydrogen electrode does not
exactly respond to the concentration in ions H+.

– The introduction by G.N. Lewis as early as 1907 of the quantity activity.
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Arrhenius’s theory of the electrolytic dissociation and the hypothesis that it is
the true concentration of ions H+, rather than the total concentration of an acid,
which quantifies the acidity in the best way, indeed, were already known.

Concerning, now, the fact that the quantity pH should be today considered as a

parameter permitting to evaluate the acidity of a medium rather than exactly

reflecting its activity, as for it, is due to some difficulties inherent to the definition:

– The first one, but not the least, is the true nature of the species “hydrogen ion” in

water (and also in other solvents). It is doubtful and we do not insist on it.

– The second is not of less interest than the first one: it results from our impossi-

bility to measure the activity of an ion.

– A third point, which is not truly pejorative but which is very important, is the

generalized adoption of the potentiometric assembling in order to measure the

pH, in the proper definition of pH (viz. under). It is undoubtedly for measure-

ment facilities. The laterative assembling is constituted by a glass electrode

sensitive and selective to the aqueous proton, by a reference electrode, a part

such a liquid junction in order to permit the contact of the reference compart-

ment with the solution under study and by an electrometer for the measurement

of pH.

The question we now face is the following one: What is the link between the

measured electromotive force and the quantity pH?

18.5.2 The Electromotive Force and the Quantity pH

Let us consider the S€orensen’s cell schematized by

Pt
��H2 gð Þ��solution����KCl aqð Þ��AgCl sð Þ��Ag

It is a cell with a junction, the potential Ej of which is minimized (this fact is

symbolized by the presence of the two vertical straight lines in the scheme). We

know that the cell reaction is

AgCl sð Þ þ 1=2 H2 gð Þ ! Ag sð Þ þ Cl� aqð Þ þ Hþ aqð Þ

In the usual conditions, this reaction spontaneously evolves. Hence, the cell is a

galvanic one. Its electromotive force is given by the expression (viz.

electrochemistry)

E ¼ E� � RT=Fð Þ ln aCl�aHþ= aH2
ð Þ1=2

h i
þ Ej

E� is the standard electromotive force. aH+ and aH2
are the activities of the proton

and of dihydrogen in the left compartment, whereas aCl� is that of the chloride ion
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in that of the right. Ej is the junction potential between both compartments. This

expression takes into account the fact that the activities aAg and aAgCl are equal to
unity, by convention on the activities, because they are solid phases constituted by

only one component. At room temperature, for pressures of the order of 1 bar, the

dihydrogen behavior is that of a perfect gas. Hence, it is legitimate, according to the

unanimously adopted conventions for the activities, to write

aH2
¼ PH2

in numerical valuesð Þ

where PH2 is the pressure of dihydrogen. Thus, we obtain

E ¼ E� � RT = Fð Þ ln aCl�aHþ= PH2
ð Þ1=2

h i
þ Ej ð18:9Þ

Unfortunately, the activities aCl� and aH+ (activities of ions alone) and Ej are not

experimentally accessible. Actually, the electromotive force depends on the activity

of the solvated proton, but it also depends on the other two unknown quantities.

This is the difficulty which must be overcome.

18.5.3 Operational Definition of pH

The operational definition of pH is based on the use of the S€orensen cell. It involves
two operations. The first one consists in conventionally assigning values of pH to

some buffer solutions, called standard buffers. These must be, imperatively, com-

patible with the formal definition of pH. It is at this level that it is necessary to make

one hypothesis on the activity of an ion alone. Such a hypothesis is founded on the

Debye–Hückel’s relations. In the second operation, one uses a device which,

reasonably, allows the measurement of the pH difference between two solutions.

Let us consider the S€orensen’s cell above working for two different acid

solutions X (unknown solution) and S (standard reference solution). It is quite

possible, from the experimental standpoint, to choose experimental conditions

such as the dihydrogen pressure PH2 and the activity aCl� of the chloride ions are

constant during the whole measurements performed and that they are, each one, in

both solutions. aCl� depends only on the concentration of potassium chloride in the

right compartment and one can admit that it is not perturbed by the ions of the liquid

junction. The electromotive forces measured in identical conditions with both

solutions are, respectively, E(X) and E(S). Admitting the hypothesis that, during

the two experiences, the potential of liquid junction Ej remains the same, one

immediately finds the following two relations, starting from the relation (18.9)

applied to the solutions X and S:
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E Xð Þ � E Sð Þ ¼ � RT =Fð Þ ln aHþ Xð Þ = aHþ Sð Þ½ �

and by introducing the formal definition of pH:

pH Xð Þ � pH Sð Þ ¼ F E Xð Þ � E Sð Þ½ �= 2:303 RTð Þ

We notice that once one has assigned a pH value to the solution S, that of the
solution X is settled once the potential difference is measured.

The measurement of pH may be performed with other reference electrodes than

the silver–silver chloride one or with other working electrodes sensitive to the ion

hydrogen than the hydrogen electrode, both used in the S€orensen’s cell. In practice,
most often, one uses the glass electrode as working electrode and the calomel one as

the reference.

It remains, now, to assign a pH value, which must be compatible with the formal

definition, to the solutions standard S. Several methodologies have been proposed in

order to do that. Here, we only mention that proposed by the “National Bureau of

Standards (NBS)” in Washington, developed by Bates and Guggenheim.

The assignation of the pH values to the standard solutions is performed, once for

all, after studying the electromotive forces of the Harned galvanic cells (viz. the

beginning of the chapter) of the kind

Pt
��H2 gð Þ��buffer solution, Cl�

��AgCl sð Þ��Ag sð Þ

The standard solutions are those containing the buffer mixture. They also contain

known molalities of potassium chloride. Let us recall that these cells are without

junction. This characteristic, of course, eliminates the problem of the junction

potential. Moreover, let us also notice that the fact that the standard solution should

also be a buffer solution is imperative. Thus, in such a manner, the pH value of the

solution to which a definitive value must be assigned is stabilized.

The electromotive force of these cells is given by the expression (viz.

electrochemistry)

E ¼ E� AgCl=Agð Þ � RT=F ln aHþaCl�ð Þ= aH2
ð Þ1=2

h i

When one operates under a hydrogen pressure of 1 bar and when one introduces the

definition of the activity aCl�,

aCl� ¼ mCl� γCl�

the previous relation becomes

log aHþ γCl�ð Þ ¼ � E � E�ð Þ F= 2:303 RTð Þ þ log mCl�

18.5 The Quantity pH 233



(the “concentration” of the chloride ion being, here, expressed in molalities, γCl�
should be symbolized by γm Cl�—we do not do it for the sake of the simplicity of

the writing). It appears that the product aH+γCl� is experimentally accessible. All

these facts being taken into consideration, the different steps of the assignation of

the pH values to the buffer solutions are the following ones:

– The determination of the value of the term �log (aH+γCl�) for several solutions
containing the same buffer at the same “concentration” but with different

molalities in potassium chloride, by using the cell without junction above.

– The obtaining of the value �log (aH+γCl�)� by linear extrapolation, down to the

molality mCl� null, of the preceding values: �log (aH+γCl�). This series of

handlings is repeated for each buffer solution.

– The calculation of the pH value of the (buffer) solution according to the relation

pH ¼ � log aHþ γCl�þ
� �� þ log γCl�

It is in this kind of calculations and, more precisely, in that of γCl� that the

following relation (in all evidence of Debye–Hückel type and called the Bates-

Guggenheim’s relation) is used:

log γCl� ¼ A I1=2= 1þ 1:5 I1 =2
� �

where A is the coefficient A of the Debye–Hückel’s relations and I the ionic strength
of the solution expressed in molalities (I should be symbolized by Im). The factor

1, 5 comes from the choice of the admitted value of the “size parameter” of the

chloride ion, a¼ 5. It is interesting to notice that the linear extrapolation of �log

(aH+γCl�) down to mCl�¼ 0 is justified by the relation

�log aHþγCl�ð Þ ¼ � log mHþγHþγCl�
� �

The NBS (National Bureau of Standards—USA) has proposed some buffer stan-

dards called primary standards. Some secondary standards have been proposed

later.

It is important to recall that the assigning, to the standard solutions, of pH values

compatible with the formal definition cannot be directly verified. However, it can

be so indirectly. The argument is as follows: if the pH value of a solution is the same

whatever the choice of a standard solution, it is highly likely that the formal

definition is checked. It is actually the case. In the literature, this favorable check

is called the internal coherence of the NBS scale of pH.

The range of validity of the operational scale of pH is limited by the two

following constraints in order that the pH value keeps its physical significance,

that is to say, so that it is in agreement with the formal definition. The first constraint

is that the ionic strength of the solution under study does not exceed 0.1 mol L�1 in
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order that the obtained result remains compatible with the used Bates-

Guggenheim’s relation. The second is that pH values (which are to be found)

must lie between 2 and 12. The last two limits are those beyond which the constancy

of the junction potential, probably, is no longer granted, given the high mobility of

hydroxide and hydrogen ions of the solution under study.
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Chapter 19

General Principles of Calculations Involving
the Activities of Ionic Species in Solution

Abstract The chapter describes some methodologies in order to obtain thermody-

namic equilibrium constants, but in a manner less conventional and certainly more

modern than previously.

The determination of equilibrium constants entails the knowledge of the “at

equilibrium activities” of the species participating in it. There is a difficulty. It is the

following one. If the determination of the activities of the uncharged substances is

possible (but somewhat difficult and lengthy) it is impossible for the ions. As a rule,

this impossibility leads to a problem which may appear as being impossible to

solve.

The methodologies described in this chapter show how the thermodynamic

equilibrium constants involving some ions may be approached by calculations

using the Debye–Hückel relations. But, these calculations, in turn, also suffer as a

rule from a difficulty which is briefly mentioned in this chapter. To use the “Debye–

Hückel” relations, the ionic strength of the solution must be known and its knowl-

edge involves that of the equilibrium constants, one of which, at least, by hypothesis

is unknown! The principle and the followed methodology of these calculations are

described in this chapter with the examples of the determinations of acidic

constants.

Keywords Ion activity (experimental determination) ionic strength •

Debye–Hückel relations use • Concentrations of the different species at

equilibrium • Non-ideality corrections • Informatic calculations • Absorbance

pKa determination

In this chapter, we are continuing to describe some methodologies in order to obtain

thermodynamic equilibrium constants, but in a manner less conventional and

certainly more modern than previously.

We have seen that the determination of equilibrium constants entails the knowl-

edge of the “at equilibrium activities” of the species participating in it. Now, if the

determination of the activities of the uncharged substances is possible but some-

what difficult and lengthy, we also know that it is impossible for the ions. As a rule,

this impossibility leads to a problem fantastically difficult to solve.

The goal of this chapter is to show how the thermodynamic equilibrium

constants involving some ions may be approached by calculations using the
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Debye–Hückel relations. But, these calculations, in turn, as a rule, also suffer from a

difficulty that we first briefly mention. Then, we recall the conditions of ionic

strengths for which corrections of nonideality must be done. Finally, we mention

the principle and the methodology of these calculations.

19.1 Fundamental Difficulty

The fundamental difficulty concerning these calculations lies in the chain of the

following facts:

– The ionic strength of the solution must be known in order to calculate the activity

coefficients of the ions through the Debye–Hückel relations.
– The knowledge of the ionic strength entails that the extent of dissociation of the

electrolytes (which are not obligatorily strong) must be known. The knowledge of

this extent, in turn, entails the prior determination of the equilibrium constants . . .
being searched for!

We shall see how this difficulty may be overcome.

19.2 Nonideality Corrections

For rough calculations, nonideality corrections can be neglected. In these condi-

tions, the found values of the concentrations and those of the obtained equilibrium

constants are only approached. Moreover, they vary with the ionic strength of the

solution.

For ionic strengths of the solution less than 10�2 mol L�1, the calculations are

proved to be relatively simple. They are based on the Debye–Hückel limit equation.

There is no reason to take into account the identity of the ions, i.e., to use the

extended relation.

For ionic strengths ranging in the interval 10�2–10�1 mol L�1, it must be used.

But, then, the nature of the ions must be taken into account by introducing the “ion-

size parameter” a. This complicates the calculations.

Beyond ionic strength forces superior to 10�1 mol L�1, Davies’ relation (which

gives reasonable results up to ionic strengths of the order of 5� 10�1 mol L�1) may

be used.

Roughly, it can be said that the theoretical prediction of the activity coefficients

is very satisfactory up to ionic strengths of 0.1 mol L�1. When only electrolytes 1–1

are involved, the activity coefficients may be then obtained with an accuracy of

3 p 100 by founding ourselves on the limit equation. When an adjustable parameter

such as the so-called ion-size parameter a, is used, the accuracy may amount up to

�1 p 100. For the polycharged ions, an accuracy nearly as good as the preceding
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may be obtained, provided that all the equilibria existing in the solution are taken

into account.

We shall see, immediately under, that the calculations of the activities are often

necessary to perform at every step of the calculation of the equilibrium concentra-

tions and of equilibrium constants, both types of calculations being, indeed, inti-

mately linked.

19.3 Reasoning Allowing the Calculation
of the Concentrations of the Different Species
at Equilibrium

Before beginning the calculations (through the Debye–Hückel equations) of the
activities and those of the equilibrium constants in which some ions intervene, it is

judicious to give the strategy of the calculation of the different species concentra-

tions at equilibrium.

Let us assume, at this moment, that activities are equal to concentrations. The

strategy is based on the fact that the species concentrations at equilibrium must,

obligatorily, obey some mathematical relations. They are, of course, the reflection

of intangible physical laws. It happens that, from an absolute standpoint, they are

systematically in a sufficient number in order that the resultant mathematical

system is systematically determined. These relations are the following:

– The mass balance of the solution

– Its charge balance

– The equilibrium state

Let us take the example intentionally simple of the dissolution of C0 moles of

acetic acid in water to form 1 L of solution. The matter is to calculate the

concentrations of the different species stemming from the ionization of acetic

acid, once the equilibria are reached. The two chemical equilibria are the following:

– The revelation of the acid character of acetic acid:

CH3COOH Ð CH3COO
� þ Hþ

– The ionic product of water:

H2O Ð Hþ þ OH�

The corresponding mathematical equations, which must be obligatorily satisfied,

are the expressions of the equilibria, which we write temporarily (the species

concentrations are figured in square brackets):
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��CH3COO
�����Hþ��=��CH3COOH

�� ¼ Ka ð19:1Þ
��Hþ����OH��� ¼ Kw ð19:2Þ

– The mass law:

CH3COO
�½ � þ CH3COOH½ � ¼ C0 ð19:3Þ

(There is no reason to take into account the water balance because the theory is only

valid in dilute aqueous solutions. Since the “concentration” of water is expressed in

molar fractions—viz. Chap. 17—it can be considered as being constant and equal to

unity.) (Here, the equilibria are written according to the Arrhenius theory, equiv-

alent, in the occurrence, to that of Br€onsted.)

– The charge balance:

Hþ½ � ¼ OH�½ � þ CH3COO
�½ � ð19:4Þ

Hence, for this example, there exist four equations for four unknowns [H+], [OH�],
[CH3COOH], and [CH3COO

�]. The system is mathematically determined. It is

reduced easily into one equation with only one unknown. It is (19.5) of the third

order in |H+| which must be, finally, solved:

Hþ½ �3 þ Ka H
þ½ �2 � Kw þ KaC0ð Þ Hþ½ � � KaKw ¼ 0 ð19:5Þ

Of course, (19.5) depends on the parameters Ka, Kw, and C0 which govern the

system. Once the root [H+] is found, all the other concentrations are immediately

accessible through the handling of the initial relations which are obligatorily

satisfied at equilibrium.

19.4 Taking into Account the Activities

The taking into account of the activities is performed by using the Debye–Hückel
equations since some ions intervene in the equilibrium. Concerning, now, the

uncharged species, one assigns the value unity to their activity coefficients since

the solutions are sufficiently dilute in order that this is legitimate.

Let us recall that the problem we face with is that we must know the ionic

strength of the solution in order to use Debye–Hückel equations, and consequently

we must know the true species concentrations which are, actually, searched for.

Before entering into the problem of the unknown ionic strength, the fact that

some relations are expressed in terms of activities and other ones expressed in terms

of concentrations must be handled simultaneously. For example, in the above case
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of acetic acid, (19.1) and (19.2) are expressed, in principle, in activities, that is to

say according to (the terms located in round brackets are the activities)

Hþð Þ CH3COO
�ð Þ= CH3COOHð Þ ¼ Ka

� and Hþð Þ OH�ð Þ ¼ Kw
�

whereas (19.3) and (19.4) are expressed in concentrations. Let us also recall that the

conditional constants Ka
0 and Kw

0 are given by the expressions

Hþ½ � CH3COO
�½ �= CH3COOH½ � ¼ Ka

0 and Hþ½ � OH�½ � ¼ Kw
0

and that thermodynamic and conditional constants are linked together by the

relations

Ka
� ¼ Ka

0 γCH3COOH=γHþγCH3COO�
� �

and Kw
� ¼ Kw

0=γHþγOH�

According to the retained scale of “concentrations” (molarities or molalities), the

constants should, of course, be symbolized by Ka c
0 or Ka m

0 (viz. Chap. 11).

19.5 Calculations

The calculations of concentrations and of activities of the species are performed in

an iterative way.

Let us suppose that we are interested in the “concentrations” and the activities of

the different species at equilibrium and that we have at our disposal the thermody-

namic equilibrium constants (in the example of acetic acid Ka
� and Kw

�). Equations
(19.1)–(19.4) are not homogeneous. The first two are expressed in activities, and the

latter two in concentrations. Solving the system as it has been done above, that is to

say by not taking into account this inhomogeneity, induces the problem of the

physical significance of the calculated quantities: Are they activities or concentra-

tions? The answer and the whole problem are overcome by adopting the following

iterative process:

• In the first step of iterations, one operates by mixing activities and concentrations,

i.e., one supposes that the equations are homogeneous, i.e., one mixes activities

and concentrations. The system of the initial equations is reduced to a single one,

the unknown of which is |H+| (it is (19.5) in the case of acetic acid). It is solved.

One obtains a first value |H+|1 which has neither the meaning of an activity nor that

of a concentration, since it is obtained from initial equations involving both kinds

of quantities. Nevertheless, from this first value, one calculates the other “pseudo-

concentrations or activities”
��CH3COO

���
1,
��CH3COOH

��
1, and

��OH���
1. Thus, one

calculates a first pseudo-ionic strength I1. (Notice the used symbols with vertical

lines—and not round or square brackets—which mean that the quantities are a

kind of mixture of activity and of concentration.) Once obtained, the value I1 is
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introduced into the judicious equation Debye–Hückel equation (that applies for

the found I1). It permits to calculate a first set of pseudo-activity coefficients

γHþ1, γCH3COO� 1, γOH� 1. The latter ones, in turn, permit to obtain a first set of

the values of the conditional constants Ka
0
1 and Kw

0
1 by using the following

relations (and by setting up γCH3COOH� ¼ 1. This is justified—viz. Chap. 15)—

Ka
0
1 ¼ Ka

�=γCH3COO�γHþ and Kw
0
1 ¼ Kw

�=γHþγOH�

The first iteration is finished. It is important to notice that the constants Ka
0
1 and

Kw
0
1 do not have, yet, the meaning of pure formal constants. But, however, they

approach them and, hence, their meaning begins to deviate from that of thermody-

namic constants, given the manner which has permitted to obtain them.

• The second iteration is then initiated. It is strictly performed just like the first

one, but in the calculations intervene the pseudo-constants Ka
0
1 and Kw

0
1 stem-

ming from the preceding iteration. At the end of the second iteration, we obtain a

new set of pseudo-concentrations |H+|2, . . ., a new pseudo-ionic strength I2, new
pseudo-activity coefficients γH+2, and new formal equilibrium pseudo-constants.

After this second iteration, constants Ka
0
2 and Kw

0
2 do possess the meaning of

formal constants more than did Ka
0
1 and Kw

0
1 obtained at the end of the previous

iteration. It is the same thing concerning the activity coefficients of ionic species

which tend more and more to the coefficients such as they are defined, that is to

say, in such a manner that they transform pure concentrations into pure

activities.

• The further iterations evolve strictly in an analogous manner. The process is

stopped when the pseudo-ionic strength In is equal to the preceding one In�1.

Then, the constants Ka
0
n and Kw

0
n are the true conditional or formal constants.

The equation system is then homogeneous. They are all expressed in terms of

concentrations. At the end of this nnd and definitive loop of iteration, the

concentrations of all the species are found. They are no longer a cross of

concentrations and activities. The problem is solved.

At this point of the operations, one can immediately calculate the activities of the

different species since their concentrations are known and because of the “true ionic

strength” also. It suffices to calculate the activity coefficients through the Debye–

Hückel equations and to multiply them by their concentrations. Besides, the activity

coefficients are known through the calculations performed during the last iteration.

Generally, the convergence of the whole process is fast. The number of iterations

is weak, of the order of 3 or 4.1

This process is general. The difficulty often lies at the level of the obtention of

the suitable root of the single equation stemming from the reduction of the system

of initial equations which must be satisfied. Equations of the fourth order are not

rare in this realm. Abel’s theorem stipulates that there is no general solution to the

1These calculations can be performed on some pocket calculators.
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equations with one unknown of order superior to four. However, several informatic

routines permitting to obtain the root, with the required precision, exist in the

literature.

19.6 Simultaneous Determination of Concentrations,
Activities, and Equilibrium Constants Using
Computers

We finish this chapter by showing, with the help of an example, that the use of

computers may greatly facilitate the handling of activities and the obtaining of

equilibrium constants. The chosen example is that of the determination of the

successive acidity constants Ka1 and Ka2 of the diacid H2A:

H2A Ð HA� þ Hþ Ka1 )
HA� Ð A2� þ Hþ Ka2 )

The analytical instrumental method used is the UV-visible spectrophotometry

since, usually, the diacid H2A and the dibasic A2� forms exhibit spectra clearly

distinct from each other. In this case, of course, the use of the spectrophotometry is

convenient.

19.6.1 Determination for a Monoacid

In introduction, we recall the principle of the determination of the pKa of the

monoacid HA by spectrophotometry UV-visible. It is founded on the relation

pKa ¼ pHþ log HA½ �= A�½ � ð19:6Þ

where [HA] and [A�] are the concentrations of the conjugate forms at a given pH

value. The principle of the method consists in fixing the pH of the solution with the

help of a buffer and to measure both concentrations by spectrophotometry. Then,

relation (19.6) permits to calculate pKa. Let us already remark, however, that

relation (19.6) is not homogeneous since pH is defined as being rather a measure-

ment of the activity of the proton whereas [HA] and [A�] are concentrations, since
the UV-visible spectrophotometry responds to the concentrations.

In order to obtain [HA] and [A�], one uses the Beer-Lambert law which, at a

given fixed wavelength, relates the absorbance A of the solution to the concentra-

tion(s) of the species. For example, at very acid pH, provided that the pKa value is

not too low,
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A ¼ εHAC:1: HA½ � acid pHð Þ

where εHA is the molar extinction coefficient of the form HA, [HA] is its concen-

tration (for example in mol L�1) and l the length of the measurement cell. εHA is a

constant for a given temperature, wavelength, and solvent. Likewise, in a very basic

medium, provided that the pKa value is not too large,

A ¼ εAC:1: A
�½ � basic pHð Þ

At intermediary pH, that is to say in the pH interval where both forms are present,

the total absorbance A of the solution is the sum of the absorbances of both forms

since the two are present and also because of the properties of Beer-Lambert’s law:

A ¼ εHAC:1: HA½ � þ εAC:1: A
�½ � intermediary pHð Þ

From another side of reasoning, since in the solution

HA½ � þ A�½ � ¼ C

and

Ka ¼
��A�����Hþ��=��HA��

by assimilating activities (terms in which the pKa is expressed) and concentrations,

we obtain the two relations:

��HA�� ¼ ��Hþ��= ��Hþ�� þ Ka

� �
and

��A��� ¼ ��A���= ��Hþ�� þ Ka

� � ð19:7Þ

And by handling the relations (19.6) and (19.7), we obtain

pKa ¼ pHþ log A� εAC:lð Þ= εHAC:l � Að Þ ð19:8Þ

εAC.l and εHAC.l are the absorbances of the sole basic and acid forms at the total

concentration C of the whole species. These values are easily determined. It is

sufficient to “work” at the judicious pH. The measurement of the absorbance A at an

intermediary pH immediately gives the pKa value. The problem of the activities is

studied under. In principle, only one measurement is sufficient for the determina-

tion, but several ones are indicated in order to take into account a maximum of

experimental information and, thus, to obtain an optimal precision. In order to

perform the determination, the working wavelength (the “analytical wavelength”)

must be chosen in such a way that the spectra of the pure acid and basic forms differ

as much as possible from each other. This is the “analytical wavelength.”

When neither of both forms HA and A� absorb in the UV-visible domain, of

course, the determination is not possible. However, let us notice that when only one

form does absorb, the determination remains possible.
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19.6.2 Case of the Diacid H2A

The preceding considerations can be generalized, but a supplementary difficulty

may often happen. Both acidities Ka1 and Ka2 may, indeed, overlap. Then, it is

impossible to experimentally determine the molar absorption εHA since the inter-

mediary form HA� cannot exist, alone, contrary to the forms H2A and A2�. HA� is

always accompanied by one of the two other forms H2A or A2�, and even by both.

This is due to the overlapping of the two constants Ka1 and Ka2. Its spectrum in the

pure state is, therefore, inaccessible by an experimental way. However, at the

extreme pH values, H2A and A2� exist, alone, whence the possible registering of

their spectra in the “pure” state remains possible.

The absorbance at a given pHi is the sum of the absorbances of the three present

forms:

A ¼ εH2A H2A½ �i:1þ εHA HA�½ �i:1þ A2�� �
i
:1 ð19:9Þ

The handling of the equations which are obligatorily satisfied

Ka1 ¼
��Hþ��

i

��HA���
i=
��H2A

��
i and Ka2 ¼

��Hþ��
i

��A2���
i=
��HA���

i

and

C ¼ H2A½ �i þ HA�½ �i þ A2�� �
i

leads to the following expressions:

H2A½ �i ¼ 1 Hþ½ �i2C=D; HA�½ �i ¼ Ka1 H
þ½ �iC= D; A2�� �

i
¼ Ka1Ka2=D

n o

ð19:10Þ

with

D ¼ Hþ½ �i2 þ Ka1 H
þ½ �i þ Ka1Ka2 ð19:11Þ

The examination of (19.9)–(19.11) shows that the absorbance at a given pH

depends on the three molar extinction coefficients, on the constants Ka1 and Ka2,

on C, and on |H+|, that is to say on the pH.

19.6.3 Determination of Constants Ka1 and Ka2 Without
Taking into Account the Activities

The two unknowns to determine are both constants Ka1 and Ka2. Their determina-

tion entails that the molar extinction coefficient εHA of the intermediary pure form,
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which is directly inaccessible by an experimental means, must be known. There-

fore, it is the third unknown. On the other hand, the pH is known and, also, the

coefficients εH2A and εA which are, respectively, determined in very acid and very

basic media.

The methodology used to determine the three unknowns is a process of infor-

matic simulation (viz. Chap. 47).

In a first step, it consists in choosing the analytical wavelength and in performing

absorbance measurements at several pHi values. In order to have the best precision,

one must choose a number of pH values by far larger than the number of unknowns.

In a second step, one arbitrarily chooses values of the three unknowns Ka1, Ka2,

and εHA and, thanks to these values, one calculates the total absorbance Acalc for

each retained pHi. The calculation is performed through relation (19.9). Then, for

this set of the three parameters, one calculates the functionU defined by the relation

U ¼
X
i

Ai calc � Ai exp

� �2

where Ai exp is the measured absorbance at the same pHi as that for which Ai calc is

calculated. The function U is the cost function . In the following steps, one modifies

the values of the three parameters according to some order of logical decisions and

one calculates the functionU at each time up to obtaining the set of the values of the

three parameters leading to the value U as weak as possible. In other words, the

process is repeated till the three following conditions are simultaneously satisfied:

∂U=∂Ka1ð ÞKa2,εHA ¼ 0 ∂U=∂Ka2ð ÞKa1,εHA
¼ 0 ∂U=∂εHAð ÞKa1,Ka2

¼ 0

One must also check that, when it is the case, this is not a singular point or a

maximum of the function U. The values of the parameters which minimize the cost

function are those being searched for. The described methodology is a least square

process, in the occurrence of a nonlinear one since the constants Ka1 and Ka2

(contrarily to εHA) do not intervene linearly in the calculation of Ai calc. This is a

general methodology.

The difficulty, that this methodology may encounter, is that the research of the

parameters minimizing the function U may be difficult and lengthy. There exist

several described algorithms permitting to point toward the minimum minimorum,
of the cost function, but none is infallible. There exists no mathematical process

permitting to automatically reach this point.

19.6.4 Taking into Account the Activities

As a rule, one could imagine that one can assimilate activities and concentrations

when the equilibrium constants are determined by UV-visible spectrophotometry. It

is not rare, indeed, to work with concentrations of the order of 10�4 to 5 10�4 mol L�1
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of the compound with UV-visible spectrophotometry. Quite evidently, the working

concentration interval depends on the values of molar extinction coefficients. But

there is a data which must be taken into account: the presence of the buffer which

fixes the pH values to which the determinations are performed. Even, we know that to

be effective, the buffer solutions must be rather concentrated. Let us admit that for the

determination of the pKa value, the concentration 10�4 mol L�1 is satisfactory. That

of the buffer must be of the order of 10�2 mol L�1 in order to be effective. The ionic

strength exhibits about this value, the ions coming from the compound under study

contributing for a negligible amount. As a result, the activity coefficients cannot be

neglected.

In the chosen example, one converts the retained pH values into concentrations

by the following relations:

aHþ ¼ 10�pH and Hþ½ � ¼ aHþ=γH

γH+ is obtained through the Debye–Hückel relations since the ionic strength is

known. In these conditions, the calculations are performed with homogeneous

equations. Therefore, the Ka1 and Ka2 constants are the conditional ones. It is very

easy to go back to the thermodynamic constants, since the ionic strength is known.
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Chapter 20

Statistical Thermodynamics in Brief

Abstract The object of statistical thermodynamics is to set up a theory at the

molecular scale permitting an interpretation of the classical thermodynamics

which, itself, applies to the macroscopic level. Statistical thermodynamics is

founded on several postulates and, also, on the principles of quantum mechanics.

It permits to calculate the mechanical properties of a thermodynamic system. The

obtaining of the expressions relating the mechanical properties to molecular quan-

tities is founded on the ensemble theory of Gibbs. Several kinds of ensembles are

considered and used according to the thermodynamic environment of the studied

system. The most important are the following:

– The canonical ensemble: The canonical ensemble is a closed, isothermal and

volume-constant system

– The grand ensemble or the great ensemble, or the grand canonical ensemble: It

corresponds to an open, isothermal, and volume-constant system

– The microcanonical ensemble: It corresponds to an isolated system

– The isothermal, isobaric ensemble.

There happens to exist a well-definite mathematical function, characteristic of

each kind of ensembles. When it is known, it permits to calculate the other

thermodynamic quantities at the macroscopic scale. These mathematical functions

are called partition functions.

Keywords Quantum mechanics • Partition function • Canonical ensemble •

Grand-ensemble • Isothermal–isobaric ensemble • Microcanonical ensemble

The object of statistical thermodynamics is to provide a theory at the molecular

scale permitting an interpretation of the classical thermodynamics which, itself,

applies to the macroscopic level. This theory, indeed, concerns systems containing

a very great number of molecules of the order of, at least, about 1020. Therefore, the

goal of statistical thermodynamics is to calculate macroscopic properties from

molecular properties.

Statistical thermodynamics is founded on several postulates and, also, on the

principles of quantum mechanics. It permits to calculate the mechanical properties

of a thermodynamic system. Mechanical properties are those whose definition does

not involve the introduction of the concept of temperature. For example, they are
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pressure, energy, volume, and number of molecules. As examples of

nonmechanical thermodynamic quantities let us mention temperature, entropy,

the Gibbs and Helmholtz energies (formerly free energies—Gibbs or Helmholtz),

the chemical potential . . ..
The obtaining of the expressions relating the mechanical properties to molecular

quantities is founded on the ensemble theory of Gibbs. An ensemble is a mental

collection of an extremely large number of macroscopic systems representing that

under study (which is itself, of course, at the macroscopic scale). Although these

systems are all identical at the thermodynamic (macroscopic) scale, they are not at

the molecular scale. Gibbs’method consists in assimilating the mechanical variable

value in the macroscopic system under study to the average of the values of the

same mechanical variable that each system of the ensemble takes. The obtaining of

the nonmechanical quantity expressions is done by comparing the relations of

classical thermodynamics with those stemming from statistical thermodynamics,

that is to say by introducing the values of the mechanical quantities stemming from

the statistical theory into the classical one.

Several kinds of ensembles are considered and used according to the thermody-

namic environment. The most important are the following:

– The canonical ensemble: From the macroscopic standpoint, it is defined by the

three quantities N, V, and T, the values of which being given (N number of

molecules or species . . ., V the volume, and T the temperature of the system).

The canonical ensemble is a closed, isothermal, and volume-constant system.

– The grand ensemble or the great ensemble, or the grand canonical ensemble: It is

defined by the values of the volume V and of the temperature T of the system and

by the chemical potential μi of each constituent i. It corresponds to an open,

isothermal, and volume-constant system.

– The microcanonical ensemble: It corresponds to an isolated system, macroscop-

ically defined by the values N, V, and E.
– The isothermal, isobaric ensemble macroscopically defined by the values N, p,

and T.

There happens to exist a well-definite mathematical function, characteristic of

each kind of each of these ensembles. Each of these functions is a function of the

quantities defining these ensembles. When they are known, they permit to calculate

the other thermodynamic quantities (at the macroscopic scale). These mathematical

functions are called partition functions. Most of the time, they are determined, by

calculations, from spectroscopic data. Partition functions are dimensionless

numbers.

Incidentally, it seems interesting for us to recall that there exist several strategies

to tackle statistical thermodynamics. We confine ourselves to only mentioning

them. They essentially differ from each other by the averaging method and by the

step at which it is performed:

The strategies differ in the following respects:
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• Whether the averaging process is carried out over the collection of the quanto-

energetic states of the species or over the quanto-energetic states of the macro-

scopic systems (which must also obey the principles of quantum mechanics

(quanto-energetic states: energy states allowed by quantum mechanics princi-

ples)). The quanto-energetic states of the species must be distinguished from

those of the systems constituting an ensemble.

• Either the obtained averages are the true average values or the most probable.

• Or the kind of system under study. It may possess:

– Fixed values of its energy, and composition, that is to say it is an isolated

system.

– Fixed values of its volume, composition, and temperature (the last condition

being provided with the help of a heat source at constant temperature). That is

to say, it constitutes a canonical ensemble.

– A fixed value of its volume whereas it is in equilibrium with a heat source at

constant temperature and also with reservoirs containing the substances it

possesses. The latter equilibrium is obtained through the use of semiperme-

able membranes. In other words, the system is opened. Its corresponds to the

grand ensemble.

Concerning this book, the mentioned averages are related to the collections of

the quanto-energetic states of the macroscopic systems and the retained values are

the most probable ones.
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Chapter 21

Concept of Ensembles and Postulates

Abstract The followed strategy in order to introduce statistical thermodynamics

into the classical one is the one devised by Gibbs. It is based on the consideration of

ensembles of systems. It entails the adoption of two postulates permitting to relate

the average in time of a mechanical variable to the average of the same variable

calculated over one ensemble of systems.

According to:

– The first postulate, the value of the mechanical property in the thermodynamic

system under study is equal to its average over the ensemble of the systems,

when the number of systems!1.

– The second postulate, in a representative ensemble (ℵ!1) of an isolated

system, the systems are uniformly distributed, and, hence, they have the same

probability of existence.

The energy levels of the systems are given by the Schr€odinger’s equation.

Keywords Ensemble • System • Mechanical variable • Closed system • Stationary

energy state • Quantum mechanics • Quanto-energetic state • Schr€odinger’s
equation • Wave function • Isolated system • Open system • Ergodic theory of

matter • Thermodynamic system

The methods of thermodynamics are fully independent of the notions of atomic and

molecular structures as they also are of the notions of reaction mechanisms. The

results to which thermodynamics leads do not bring any direct piece of information

concerning these aspects of chemistry. Actually, thermodynamics only permits to

predict some relations and interconnections between variables describing macro-

scopic systems which can be directly observed or which can be deduced from

quantities which themselves are experimentally directly accessible.

The object of statistical thermodynamics is to provide classical thermodynamics

with a theoretical justification founded on the study of phenomena evolving at the

molecular level.
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21.1 Strategy: Ensembles and Postulates

The goal consists in finding the expressions of thermodynamics describing the

behavior of macroscopic systems at equilibrium by starting from atomic and

molecular properties of matter.

Solving this problem is tremendously difficult: it is to deduce these relations by

starting from the properties of a huge number of particles, of the order of 1020, at

least! As an example of the difficulty, let us regard the case of the pressure. In

principle, if we want to calculate the pressure of a system through purely molecular

considerations, we must calculate the force exerted per area unit upon the partitions
of the system. The force is calculated according to the laws of classical or quantum

mechanics (viz. next paragraph) . Given the huge number of particles constituting

the system, it is absolutely unthinkable to perform the calculation by following this

way. This is all the more inconceivable as the system evolves at every moment,

because all the particles are in interactions. Hence, in addition to the huge number

of particles, calculations should be performed by taking into account the incessant

changes with time of the state of the system.

However, one characteristic of the problem simplifies the matter. It is the fact

that given the inconceivably large number of particles, it is legitimate to admit that

the average values of some physical quantities of the systems are perfectly repre-

sentative of its (classical) thermodynamic properties.

The followed strategy in order to introduce statistical thermodynamics into the

classical one is the one devised by Gibbs. It is based on the consideration of

ensembles of systems. It entails the adoption of two postulates permitting to relate

the average in time of a mechanical variable to the average of the same variable

calculated over one ensemble of systems (viz. paragraph 3).

21.2 Quantum Mechanics: Schr€odinger’s
Equation—Quanto-Energetic States

The goal of statistical thermodynamics being to calculate the properties of macro-

scopic systems by starting from those of the particles constituting them, it is an

evidence that the latter must be known, including the nature of their interactions. In

principle, they are obtained by applying the principles of quantum mechanics.

For our purpose, we must take into consideration the fact that these particles and

the s macroscopic systems putting them together can only take some discrete

energetic levels of values E0, E1, E2, . . ., Ej, often called stationary quanto-energetic

states. Theoretically, they are obtained by resolution of the Schr€odinger’s equation
corresponding to the system which applies to the particles and to the macroscopic

systems as well.

Let us consider a particle i (molecule, atom) present in a container. Its mass ismi,

its cartesian coordinates xi, yi, and zi, and its momenta are pxi, pyi, and pzi. From the
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standpoint of quantum mechanics, the system is described by a function Ψ, called
wave function, possessing the following property: the probability that the particle

possesses its coordinates located in the intervals xi+ dxi, yi + dyi, and zi + dzi is given
by the expression

Ψ 2dxidyidzi

In other words, Ψ 2 plays the part of a probability density. Let us suppose that the

particle is in a state which is independent of time (it is often the case in chemistry,

the species being, most of the time, stable in time) and that it moves in a force field,

described by a potential energy Ep, function of the coordinates xi, yi, and zi. The
function Ψ is a solution of Schr€odinger’s equation taking into account these

conditions. It is

1=mi ∂2Ψ=∂xi
2 þ ∂2Ψ=∂yi

2 þ ∂2Ψ=∂zi
2

� �
þ 8π2=h2
� �

E � Ep

� �
Ψ ¼ 0

where h is the Planck’s constant and E the total energy of the particle. The function

Ψ, of course, must satisfy some conditions because of the fact that it must describe a

probability. It must, indeed, only possess one value, and be finished and continuous

in the domain of changes of the coordinates of the system. It must be null at the

outside of this domain. Let us notice, from the pure mathematical standpoint, that

the expression just above is a differential (with partial derivatives) equation of order

2 and of first degree.

For a macroscopic system containing n particles, the corresponding

Schr€odinger’s equation is

X
i

1=mi ∂2Ψ=∂xi
2 þ ∂2Ψ=∂yi

2 þ ∂2Ψ=∂zi
2

� �
þ 8π2=h2
� �

E� Ep

� �
Ψ ¼ 0

where xi, yi, and zi are the coordinates of each particle i and E and Ep the total and

potential energies of the macroscopic system, the sum being calculated over the

total number n of particles.

The equation remains of the same kind as the previous one, but extremely more

complicated. Complications are due to the huge number of coordinates to consider.

It is important, indeed, to highlight the phenomenal and even unappreciable diffi-

culty that the resolution of Schr€odinger’s equation relative to 1020 molecules must

show and this, after having admitted that it is possible to modelize the interactions

between them from the mathematical viewpoint and, moreover, that Schr€odinger’s
equation admits analytical solutions! Actually, it is quasi-never the case, even for

very simple systems. Notably, let us only think of the time one should spend, in

order to write the Hamiltonian operator of such a system!

Within the framework of this brief recall, let us also mention that the general

principles of quantum mechanics entail the existence of the quantification of some

physical quantities when and only when there is imposition of some conditions to
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the studied system, such as the occurrence of a finite volume of the system and that

of a finite number of particles. This property is very important in the realm of

statistical mechanics.

21.3 The Concept of Ensemble of Systems

An ensemble is simply a mental collection of a very great number ℵ of systems,

each being supposed to be a replicate of the thermodynamic system under study

(Fig. 21.1):

Fig. 21.1 Ensemble and systems
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Let us suppose that the system possesses the volume V and contains Nmolecules

of a component and that it is immerged in a very big heat bath at temperature T (it is

the case of the canonical ensemble—see just below). The knowledge of N, V, and
T is usually sufficient in order to determine the thermodynamic state of the system.

The ensemble is constituted by a very large number ℵ of these systems possessing

the same macroscopic thermodynamic properties (N, V, T ). Although they exhibit

the same macroscopic properties, they are not similar to the molecular scale, since

there exists an extremely important number of quantum states for the same set of

values N, V, and T (quantum state signifying, here, stationary energy state). For
example, in the case of pressure, there exist numerous such states. The average of

the pressures of the ensemble is the average over the separated values of the

pressures in each system, by giving the same weight to each system in order to

perform the calculation. It is the same for each mechanical property.

Among the most important systems encountered in thermodynamics, let us

mention the following:

– The isolated system defined in classical thermodynamics by the parameters N, V,
and E, the replication of which constituting the microcanonical ensemble. (E is

the symbol of internal energy. We are continuing to use it, as it is often the case

in the literature devoted to statistical thermodynamics, although IUPAC recom-

mends the symbol U.)
– The closed isothermal system defined by the parameters N, V, and T, the

replication of which constitutes the canonical ensemble.
– The open isothermal system defined by the parameters μ, V, and T where μ is the

chemical potential of the component. Its replication constitutes the grand canon-

ical ensemble (or grand ensemble). Of course, these systems may be constituted

of compounds labelized 1, 2, etc., the numbers of moles of which are N1, N2, etc.

and the chemical potentials are μ1, μ2, etc. In this case, the system is defined in

thermodynamics by the parameters μ1, μ2, V, and T (see later).

As we have just said, a system of an ensemble may or may not, according to its

kind, exchange heat, work, particles, and even nothing with its neighbors (viz.

Fig. 21.1).

21.4 Postulates

– First postulate: The value of the mechanical property M in the thermodynamic

system under study is equal to its average over the ensemble of the systems,

when ℵ!1.

– Second postulate: In a representative ensemble (ℵ!1) of an isolated system,

the energy of which is constant, the systems are uniformly distributed, that is to

say, they have the same probability of existence. This hypothesis of

equiprobability is founded on the fact that each system of the ensemble does
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possess the same internal energy. Thus, it seems to match the physical intuition

which tends to say that two states of the same energy are equiprobable.

In any case, its consequences do not lead to results in contradistinction with

experiments. This postulate constitutes the ergodic theory of matter.
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Chapter 22

The Canonical Ensemble: Notion
of Distribution

Abstract The goal of statistical thermodynamics is to permit to appreciate the

significance of the thermodynamic functions in terms of molecular parameters.

Firstly, this chapter illustrates this point with the aid of the study of the canonical

ensemble. It deals with the obtaining of the probabilities of the systems constituting

the canonical ensemble to be in some energy states. It provides a description of the

canonical ensemble and describes the followed strategy to calculate the average of

the mechanical properties such as the pressure and energy with the help of the

reasoning based on the fact that the mechanical variables have well-definite values

in a given quantum state. It leads to the notion of distribution of the systems in the

ensemble. It is the set of the numbers of systems found in well-defined energy states

exhibiting the same composition (in one or several compounds) and the same

volume. There can exist several distributions. Calculations, exemplified in the

chapter, permit to obtain the elementary and global probabilities that a system of

the ensemble would be in a definite energetic state. Once the probabilities are

obtained, it becomes possible to calculate the canonical partition function.

Keywords Mechanical properties • Partition function • Quantum state •

Supersystem • Canonical partition function • Distribution • Maximum term

method • Thermodynamic function

The goal of statistical thermodynamics is to permit to appreciate the significance of

the thermodynamic functions in terms of molecular parameters. Firstly, we choose

to illustrate this point with the aid of the study of the canonical ensemble.

Actually, this chapter is necessary to introduce this theory. It deals with the

obtaining of the probabilities of the systems constituting the canonical ensemble to

be in some energy states. Obtaining these probabilities is the first necessary

condition in order to be able, later, to specify the significance of some thermody-

namic quantities.

The problem of the obtention of the probabilities is essentially not different from

that of the determination of the distribution of the systems constituting the ensem-

ble in the different possible energetic states. (To aim at the same goal, later, we shall

consider the handling of other ensembles.)
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22.1 Description of the Canonical Ensemble
(N, V, T Imposed)

The canonical ensemble is constituted by a very large number ℵ (ℵ!1) of

systems replicating the thermodynamic system (under study) which, by definition,

possesses the fixed volume V, the number of molecules N (there can be several

types of molecules, the numbers of which N1, N2 . . . are then constant), and the

temperature T uniform and constant (viz. Fig. 22.1). The partitions between the

different systems are thermal conductors but do not allow the crossing of the

particles through them. The ensemble is placed in a heat bath granting an equal

temperature in the whole systems. The partitions of the systems are not distorting

excluding, hence, no work exchange between them.

If one places an isolating membrane outside the ensemble and the whole device

(ensemble +membrane) located outside the heat bath, the ensemble, now, consti-

tutes an isolated system of volume ℵV and of number of molecules ℵN and with a

total energy Et. This isolated system is called a supersystem.

22.2 Strategy

Let us recall that, finally, the goal is to find the meaning of some quantities of

classical thermodynamics with the help of a reasoning of statistical thermodynam-

ics, the meaning of which being searched for in the conditions which prevail in the

canonical ensemble (constant composition, temperature, volume). According to

what is preceding, the problem is to calculate the average of the mechanical

Fig. 22.1 Canonical ensemble
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properties such as the pressure and the energy with the help of this reasoning. Let us

notice, indeed, that since the thermodynamic system is not isolated (it is in contact

with other systems of the same ensemble), its energy fluctuates.

The process entails to know the value of the quantity under study in each

quantum state and to determine the number of systems of the ensemble exhibiting

this quantum state. The mechanical variables, indeed, have well-definite values in a
given quantum state. Hence, the problem is to determine the fraction of the systems

of the ensemble possessing a given quantum state.

These considerations are equivalent to say that the probability Pj that a system of

the ensemble is in the state of energy Ej must be known. Once known, the values of

the energy E and of the pressure p can be calculated through the following

expressions:

E ¼
X
j

Pj Ej

p ¼
X
j

Pj pj

pj is the pressure in the energetic state Ej; it is defined by the expression

pj ¼ � ∂Ej=∂V
� �

N

�pj dV¼ dEj is the work that has to be done on the system (with a constant number

of species N ) in the energetic state Ej in order to increase its volume by dV. This
expression is found by virtue of the quality of state function of E (viz. Appendix A).

One can write, indeed,

dE ¼ ∂E=∂Vð ÞN,TdV þ ∂E=∂Tð ÞN, VdT

where by hypothesis dT¼ 0 (T imposed).

22.3 The Mathematical Problem

Let us, now, consider one system of the canonical ensemble. It is a system obeying

quantummechanics. Its characteristics depend on the valuesN and Vwhich constitute

the limits entailing the energy quantification (viz. quantum mechanics). As a result,

there exists the collection of the following possible (authorized) energetic states

written by order of increasing energy: E1, E2, . . ., Ej. We must not forget that they

are the energy states of the whole system, that is to say of a great number of particles,

and not the energy states of one species. Let us recall that, for different reasons (some

of which being mathematical ones), it is not possible to calculate the energy states Ej
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from the Schr€odinger’s equation for a very large number of particles. Nevertheless,

for the following reasoning, we suppose that we know them.

22.3.1 The Notion of Distribution

Since all the systems of the canonical ensemble have the same composition

N (in one or several compounds) and the same volume V, everyone does possess

the same quantified levels of energy E1, E2, . . ., Ej. (It is a consequence of the

principles of quantum mechanics.) Let us suppose that we can simultaneously

observe the energetic state of each system and that we are able to count the number

of systems in every energetic state E1, . . ., Ej. Let n1, n2 . . . be the numbers of

systems found in sates E1, E2, . . .. The set of values n1, n2 . . . is a distribution of the
systems. For each distribution, the following relations are obligatorily satisfied:X

j

nj ¼ ℵ

X
j

nj Ej ¼ Et

where Ej is the energy of the considered system within the ensemble for the

considered distribution. Et is the energy of the ensemble (also named supersystem).

(We shall see that it is not necessary to know the values ℵ and Et because they

disappear during the calculations.)

Let us suppose, in order to simplify, that the ensemble possesses four systems

labelized A, B, C, and D and that the possible energy states of each system are E1,

E2, and E3. Let us also suppose that the total energy (of the supersystem) is as

follows:

Et ¼ E1 þ 2E2 þ E3 ð22:1Þ

that is to say n1¼ 1, n2¼ 2, and n3¼ 1. These values (Et, E1, E2, E3, n1, n2, n3)
define the distribution.

22.3.2 The Notion of Sub-distribution

There are several possibilities of attribution of the energies E1, E2, and E3 to the

systems A, B,C, andD in order that the distribution defined by relation (22.1) exists.

They are those mentioned in Table 22.1. We call them “sub-distributions” (personal

terminology).

We notice that there are 12 sub-distributions corresponding to the same distri-

bution, labelized k. This result is no more than the solution of the classical problem
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of combinatory analysis which, in this case, can be presented by giving the answer

to the following question: How many (numberΩ) possibilities to group 4 objects by
groups of 2, 1, and 1 do exist? The answer is

Ω ¼ 2þ 1þ 1ð Þ!= 2 !1 !1 !ð Þ ¼ 12

From the general viewpoint, the number Ω of possibilities to group (n1 + n2 + . . .nj)
objects by groups of n1, n2, . . ., nj objects is given by the relation

Ω ¼ n1 þ n2 þ . . . nj
� �

! = n1 ! n2 ! . . . nj !
� � ð22:2Þ

Let us recall that all the sub-distributions have the same energy.

22.3.3 Case of Several Distributions

Wemust bear in mind that there are numerous distributions existing for the same set

of parameters N, V, and T. For the same example as previously, let us suppose that it

is the case for the distribution n1¼ 2, n2¼ 0, and n3¼ 2, that is to say

2E1 þ 0E2 þ 2E3 ¼ Et

where the energy Et is the same as that of the preceding distribution. This new

distribution exists under (2 + 0 + 2) !/(2 !0 !2 !)¼ 6 sub-distributions. Let us also

suppose that only two distributions exist for the same total energy. Since they

possess the same energy Et, according to the second postulate, the sub-distributions

of both distributions are equiprobable, whichever their origin.

What is being searched for is the probability to find a system of the ensemble in

the energy state Ej, that is to say, remaining in the same example as previously, the

Table 22.1 Sub-distributions

corresponding to the

distribution n1¼ 1, n2¼ 2,

and n3¼ 1; N¼ 4, labelized

systems A, B, C, and D

A B C D

E2 E2 E3 E1

E2 E3 E2 E1

E3 E2 E2 E1

E2 E2 E1 E3

E2 E3 E1 E2

E3 E2 E1 E2

E3 E1 E2 E2

E2 E1 E3 E2

E2 E1 E2 E3

E1 E3 E2 E2

E1 E2 E3 E2

E1 E2 E2 E3
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probability to find the system A or B or C or D with the energy E1, E2, or E3. In this

very simple example, the result can be found by a direct numbering by placing in

the same table all the sub-distributions and by performing the numbering.

The direct numbering indicates that each system A, B, C, or D possesses 1/3

chance to possess the quantified energy levels E1, E2, and E3. (The fact that all these

probabilities are all equal (1/3) must not be generalized. It results solely from the

chosen numerical values. It must be considered as a numerical accident

(Table 22.2).)

The direct numbering is not, of course, envisageable in statistical thermodynam-

ics, given the huge number of the existing distributions and sub-distributions.

Fortunately, there exists a useful mathematical relation which generalizes what is

preceding. It results from the following reasoning:

• The elementary probability prob1 (1 because it concerns the first distribution) in

order that one of the systems A, B, C, or D possesses the energy E2 in the first

distribution is 2/4 since n2¼ 2 and since there are four systems. The number of

times that one of the systems in the first distribution is endowed with the energy

E2 is 12� 2/4¼ 6, that is to say by generalizing Ω1 • prob1.

• The elementary probability prob2 in order that one of the systems possesses the

energy E2 in the distribution 2 is 6� 0/4¼ 0, that is to say Ω2 • prob2.

• The total number of possibilities that a system would be in an ordinary state of

energy is this example 12 + 6¼ 18, that is, Ω1 +Ω2. The global probability (and

not elementary) P2 that a system would be in the energetic state E2 is as follows:

Table 22.2 Sub-distributions

of the same total energy

E and, hence, of the same

probability stemming from

two distributions (see text)

A B C D

E2 E2 E3 E1

E2 E3 E2 E1

E3 E2 E2 E1

E2 E2 E1 E3

E2 E3 E1 E2

E3 E2 E1 E2 (1
ère distribution)

E3 E1 E2 E2

E2 E1 E3 E2

E2 E1 E2 E3

E1 E3 E2 E2

E1 E2 E3 E2

E1 E2 E2 E2

E1 E1 E3 E3

E1 E3 E1 E3

E3 E1 E3 E1

E3 E1 E1 E3 (2
ème distribution)

E3 E3 E1 E1

E1 E3 E3 E1

266 22 The Canonical Ensemble: Notion of Distribution



P2 ¼ 12� 2=4þ 6� 0=4ð Þ = 12þ 6ð Þ ¼ 1= 3

and by generalizing

Pj ¼
X
j

probjΩk

 !�X
k

Ωk ð22:3Þ

where j marks the authorized state of energy of the system. probj is the elementary

probability in order that in the distribution k, the energy be Ej.

• The probability P2 can also be written (in a strictly equivalent manner) as

P2 ¼ 1=4ð Þ 2� 12þ 0� 6ð Þ= 12þ 6ð Þ

where 4 is the number of systems and 2� 12 and 0� 6 are the numbers of times that

the state of energy E2, respectively, appears in the first and second distribution.

The general relation (22.3) can also be written according to

Pj ¼ 1=ℵð Þ
X
k

njΩk

 !�X
k

Ωk ð22:4Þ

This expression is a generalization of the preceding which gave P2.

22.4 Obtention of Pj

22.4.1 Great Number of Distributions: Method
of the Maximal Term

The obtaining of Pj is performed in a mathematical way. It is based on the fact that

there exist numerous possible distributions obeying the constraints of the problem.

The latter ones are

– The number ℵ of systems of the ensemble

– The temperature T
– The different possible energies Ej of every system. (They depend on the total

number of particles N and of the volume V, according to the principles of

quantum mechanics.)

Given the very large number ℵ, one demonstrates that one distribution weighs

much more and even quasi-infinitely more than other ones. Therefore, one can

make the assumption that it entails its repartition of the systems in the ensemble,

and it is done as a function of the energies Ej. The hypothesis is entitled “method of
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the maximal term.” From the mathematical standpoint, it consists in replacing the

logarithm of a sum by the logarithm of the highest term of the sum, when the latter

is constituted of very numerous terms. The expression giving the probability Pj

to find a system of the ensemble in the energetic state Ej is constituted of

very numerous terms. Taking only into account the largest term seems to be

an approximation. It is the case, but it does not lead to any detectable error.

(viz. Appendix A).

By applying the hypothesis, the relation (22.4) reduces to

Pj ¼ n*j =ℵ

where n�j is the number of times that the quanto-energetic state Ej appears in the

most probable distribution. Of course, there are as many n�j to calculate as quanto-

energetic Ej levels do exist.

Hence, the most probable distribution must be found.

22.4.2 Calculations

The calculations are performed by starting from ln Ω rather than from Ω. It is easier
to process in such a manner and it does not change anything concerning the result

since ln x varies as x.
According to the expression (22.2), we obtain

ln Ω ¼ ln n1 þ n2 þ . . . nj
� �

!
� �� ln n1 ! � ln n2 ! � . . . lnnj!

Then, they are performed by using Stirling’s approximation which is written as

ln y ! � y ln y � y

The use of this approximation is all the more justified as y is a large number. This is

the case here. With this approximation, ln Ω becomes

ln Ω ¼ n1 þ n2 þ . . . nj
� �

ln n1 þ n2 þ . . . nj
� � � n1 þ n2 þ . . . nj

� �� n1 lnn1

þ n1 � n2 ln n2 þ n2 . . . . . .� nj ln nj þ nj

The mathematical process coming immediately in mind is to have to successively

vanish the partial derivatives (∂ ln Ω/∂n1), (∂ ln Ω/∂n2) . . . (∂ ln Ω/∂nj) and, from
this process, to extract the values n1, n2, . . ., nj leading to this result. But, there is a

difficulty: the mathematical system is submitted to the following constraints:

n1 þ n2 þ . . . nj ¼ ℵ

n1E1 þ n2E2 þ . . . njEj ¼ Et
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The smartest means permitting this process of maximalization taking into account

these constraints is to use the method of Lagrange’s multipliers (viz. Appendix A)

which, in this case, translates itself into the successive vanishing of the partial

derivatives with respect to n1, n2, . . ., nj of function F, and no longer of function

ln Ω:

F ¼ lnΩ� α n1 þ n2 þ . . . nj
� �� β n1E1 þ n2E2 þ . . . njEj

� �
where α and β are two constants, the physical meaning of which will appear in the

following calculations.

When the calculation of the derivatives is performed, we obtain the following

relations:

n1 ¼ ℵ e�α�βE1

n2 ¼ ℵ e�α�βE2

nj ¼ ℵ e�α�βEj

ð22:5Þ

These relations are very important. We can deduce the following points from them:

– The signification of the constant eα.

Since Σj nj¼ℵ, the addition of relations (22.5) leads to

eα ¼ e�βE1 þ e�βE2 þ . . . e�βEj

– The mean energy E of each system.

Since Et¼ℵ E, X
j

njEj ¼ ℵE

By replacing the nj by their expressions (22.5) and e
�α by the above expression, we

obtain

E ¼
X
j

Eje
�βEj=

X
j

e�βEj ð22:6Þ

It is important to notice that, according to the expression (22.6), the parameter β
appears as being an implicit function of the mean energyEand also, therefore, of the
composition N and of the volume V which govern the quantum levels Ej. It is the

same for α which depends on the same parameters. But, actually, the studied

ensemble is that defined by the macroscopic parameters N, V, and T and not by

N, V, and E. However, as we shall see, E depends on T. Let us anticipate what is

following by mentioning that β is inversely proportional to the absolute
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temperature. More precisely, β¼ 1/kT where k is Boltzmann’s constant and T the

absolute temperature.

– The expression giving the probability Pj to find a system of the ensemble in the

energetic state Ej is constituted of very numerous terms. Taking only into

account the largest term seems to be an approximation. It is the case, but it

does not lead to any detectable error.

It is calculated by applying the general definition of a probability, through the

relation

Pj ¼ nj=ℵ

By replacing nj by its expression (22.5) and by introducing the above expression e
�α,

we find

Pj ¼ e�βEj=
X
i

e�βEi ð22:7Þ

We shall see in the following chapter that these expressions permit to grasp the

meaning at the molecular scale of the great thermodynamic functions.

The expressions (22.6) and (22.7) call for the great importance of the sum Σie
�βEi .

Indeed, it will play a considerable part. In statistical thermodynamics, such a

function is called partition function. As it happens here, it is the partition function

of the canonical ensemble. It is symbolized by Q:

Q ¼
X
i

e�βEi
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Chapter 23

Thermodynamic Quantities Within
the Framework of the Canonical Ensemble

Abstract The chapter describes the handling of the mathematical relations previ-

ously found within the framework of the canonical ensemble through the partition

function in order to assimilate them to the expressions of classical thermodynamic

functions. Concerning now the introduction of the nonmechanical functions such as

the entropy and the temperature into the realm of statistical thermodynamics, the

strategy consists in comparing the expressions concerning the mechanical quanti-

ties obtained (thanks to the theory of the canonical ensemble) and those stemming

from classical thermodynamics. Therefore, the statistical expressions of internal

energy, entropy, pressure, and chemical potential are obtained. Some of these

functions are calculated with the aid of the characteristic function of the canonical

function which spontaneously introduces itself into the calculations.

Keywords Thermodynamic quantities • Entropy • Enthalpy • Partition function •

System • Quantum mechanics • Statistical analogues of classical thermodynamic

functions • Boltzmann’s constant • Characteristic functions • Canonical function •

Closed system • Chemical potential • Characteristic function • Nonmechanical

properties • Internal energy • Gibbs and Helmholtz energies

The theoretical handling of some ensembles throws some light, in terms of molec-

ular parameters, on the deep significance of some thermodynamic quantities,

among them, notably, the Gibbs energy from which are following the concepts of

fugacity and of activity.

In this chapter, as a first example, we handle the mathematical relations previ-

ously found within the framework of the canonical ensemble.

In order to introduce the nonmechanical functions such as the entropy and the

temperature into the realm of statistical thermodynamics, the strategy consists in

comparing the expressions concerning the mechanical quantities obtained thanks to

the theory of the canonical ensemble and those stemming from classical

thermodynamics.
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23.1 Association Average Energy E and Internal Energy

According to the expressions (22.6) and (22.7) of the previous chapter

E ¼
X
j

Eje
�βEj=

X
j

e�βEj relation 6 � previous chapterð Þ

Pj ¼ e�βEj=
X
i

e�βEi relation 7 � previous chapterð Þ

we obtain

E ¼
X
j

PjEj

or in differentials

dE ¼
X
j

Ej dPj þ
X
j

Pj dEj ð23:1Þ

The first term of the right member of (23.1) represents the energy change due to the

variation of the probability Pj for a system being in the energy state Ej which does

not vary during the process. This entails that there is no change in the volume of the

system, i.e., there is no work done on the system or performed by it. Hence, this

term represents an energy change of the system without the fact that a work would

be involved. According to the first principle, it follows that the first term of the right

member represents a heat exchange. A consideration of the fundamental postulates

shows that a heat absorption by a system must be associated with the probability

that a system of the ensemble does possess the (authorized) energy Ej. Hence, we

can set up the correspondence:

dq $
X
j

Ej dPj

According to the algebraic formulation of the first principle, the second term of the

right member of (23.1) must be identified to the work done on the system, whence

dw $
X
j

Pj dEj

Finally, we can set up the correspondence:

E $ internal energy
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23.2 Statistical Expression of the Entropy

From relation (23.7) of the preceding chapter

Pj ¼ e�βEj=
X
i

e�βEi relation 7� preceding chapterð Þ

we deduce

Ej ¼ �1=β lnPj þ lnQ
� �

with Q ¼
X
j

e�βEj ð23:2Þ

whence, according to (23.1) and the just preceding considerations,

dE ¼ �1=β
X
j

lnPj þ lnQ
� �

dPj þ
X
j

Pj dEj ð23:3Þ

Moreover, according to the expression of the total differential, we can write

dEj ¼ ∂Ej=∂V
� �

N
dV þ ∂Ej=∂N

� �
V
dN

Since, according to the conditions prevailing to the canonical ensemble, the number

of the particles of the system is constant, dN¼ 0, and

dEj ¼ ∂Ej=∂V
� �

N
dV

Relation (23.3) becomes

dE ¼ �1=β
X
j

lnPj þ lnQ
� �

dPj þ
X
j

Pj ∂Ej=∂V
� �

N
dV

and since dV¼ 0

dE ¼ �1=β
X
j

lnPj þ lnQ
� �

dPj

From another standpointX
j

Pj ¼ 1 whence
X
j

dPj ¼ 0

we obtain

dE ¼ �1=β
X
j

lnPj dPj
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This relation can be transformed into another one, more general. The transforma-

tion is done in the following manner. Already, let us mention that this transforma-

tion leads to the notion of statistical entropy. Let us consider the function Σj Pj ln Pj.

In differential writing, it gives

d
X
j

Pj lnPj

 !
¼
X
j

lnPj dPj þ
X
j

Pj d lnPj

d
X
j

Pj lnPj

 !
¼
X
j

lnPj dPj þ
X
j

Pj dPj=Pj

d
X
j

Pj lnPj

 !
¼
X
j

lnPj dPj since
X
j

dPj ¼ 0

As a result

dE ¼ �1=βd
X
j

Pj lnPj

 !

Let us compare this relation with that purely thermodynamic governing the internal

energy change of a system during a reversible heat exchange, without any produc-

tion of work:

dE ¼ TdS

Let us make the association:

TdS $ �1=βd
X
j

Pj lnPj

 !

whence

dS ¼ �1=βTð Þ d
X
j

Pj lnPj

 !

dS being an exact differential, the ratio 1/βT cannot be anything else than a constant.

It is called Boltzmann’s constant: symbol k. Its unity is the joule by kelvin J K�1.

Let us notice that we again find the fact that the ensemble is isothermal, condition of

the study with the canonical ensemble. Therefore

dS ¼ �k d
X
j

Pj lnPj

 !
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To sum up, by regarding these two first analogies: in a closed, isothermal, system

(ensemble N, V, T):

– The probability for the system to be in the state of energy Ej, entailed by the

composition N and the volume V (condition coming from the principles of

quantum mechanics), is given by the expression

Pj N;V; Tð Þ ¼ e�Ej N;Vð Þ = kT= Q N;V;Tð Þ ð23:4Þ

where Q N;V; Tð Þ ¼
X
j

e�Ej N;Vð Þ=kT is the partition function of the canonical

ensemble. (Let us recall that the symbolism N is general and can mean that there

is only one or several components with a constant number of moles, as well.)

– The entropy is given by the expression

S N;V; Tð Þ ¼ �k
X
j

Pj lnPj ð23:5Þ

where Pj is given by relation (23.4). It clearly appears that entropy is a statistic

quantity.

23.3 The Characteristic Function of the Canonical
Ensemble

As we shall see it, firstly in the case of the canonical ensemble and later in that of

other ensembles, there exists a characteristic function of each ensemble. It is a

function different from the partition function of the same ensemble, even if both are

mathematically related to each other.

The characteristic function appears naturally in thermodynamics, but statistical

thermodynamics permits to relate it, mathematically, to the corresponding partition

function. Once known, the characteristic function permits to calculate all the other

thermodynamic functions. We know, indeed, that to some thermodynamic func-

tions, i.e., the internal energy, the Gibbs and Helmholtz energies, and the enthalpy,

corresponds a set of independent variables for each of them, called their natural

variables (viz. Chap. 4). These sets (defining the system) permit to immediately

calculate all the other quantities of the system. For example, for the Gibbs energy,

they are the pressure, volume, and numbers of moles of every component. They are

the same variables than those which define the corresponding ensembles in statis-

tical thermodynamics.

The characteristic function of the canonical ensemble is obtained as follows. Let

us introduce the expression of Pj into that of entropy (given just above); we obtain,

after having taken into account the relation (23.6) of the preceding chapter and

since
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E ¼
X

j
Eje

�βEj=
X

j
e�βEj

S ¼ E=T þ k ln Q

By assimilating this expression of S to that of purely thermodynamic origin

S ¼ E=T � A=T

where A is the Helmholtz energy, it comes to light the following meaning of the

latter in statistical thermodynamics:

A N;V; Tð Þ $ �kT ln Q N;V; Tð Þ

The function A is the characteristic function of the canonical ensemble defined by

the parameters N, V, and T since, once it is known, it permits, as we shall see, to

calculate the entropy, pressure, internal energy, and chemical potentials of the

components.

23.4 Calculation of the Thermodynamic Functions
by Starting from the Characteristic Function
of the Canonical Ensemble

This kind of calculation is particularly important. It is the one which is practiced,

notably in the statistical part of this book, for the calculation of the changes of the

thermodynamic quantities and for obtaining the energy levels Ej. Analogous cal-

culations, of course, are also performed by starting from partition functions of other

ensembles.

Let us consider the following relation from purely thermodynamic origin by

noticing that it contains the three variables defining the canonical system (T, V, nk,
or N ):

dA ¼ � SdT � p dV þ
X
k

μkdnk

k index of the component the number of moles of which is nkð Þ
ð23:6Þ

and also from the expression of the total differential

dA ¼ ∂A=∂Tð ÞV, nkdT � ∂A=∂Vð ÞT, nkdV þ
X
k

∂A=∂nkð ÞT,V,njdnk ni 6¼ nkð Þ

By replacing A(N, V, T ) by the characteristic function kT lnQ(N, V, T ), by operating
the calculations of partial derivation on the characteristic function and by identify-

ing with the corresponding elements of the relation (23.6), some very interesting

results are obtained. Concerning:
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23.4.1 The Entropy

Since S¼�(∂A/∂T)V, N (dA exact total differential)

S ¼ � �∂kT ln Q N;V; Tð Þ =∂T½ �V,N

As a result

S ¼ kT ∂lnQ=∂Tð ÞV,N þ k ln Q ð23:7Þ

23.4.2 The Pressure

Since p¼�(∂A/∂V)T, N, we obtain

p ¼ kT ∂lnQ=∂Vð ÞT,N ð23:8Þ

23.4.3 The Internal Energy

Since E¼�T2 (∂A/T/∂T )V, N

U ¼ kT2 ∂lnQ =∂Tð ÞV,N ð23:9Þ

23.4.4 The Chemical Potential

Even if the canonical ensemble is a closed system, its component(s) possess(es) a

well-determined chemical potential, of course in the state of the system. It can also

be calculated from the characteristic function. According to relation (23.6), we

immediately obtain

μk ¼ ∂A=∂Nkð ÞT,V,N k 6¼i

μk ¼ �kT ∂lnQ=∂Nkð ÞT,V,N k 6¼i

ð23:10Þ
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23.5 Degenerated Energy States Ej and Energy Levels

For numerous applications or to tackle new problems, it is interesting to group all

the energetic states of the same level Ej. Let Ωi (N, V ) be the number of states of the

energy level Ei (N, V), i.e., in the listing of the possible states Ej, the same value Ei

existsΩi times.Ωi (N, V ) is the degeneracy. As a result, the partition function which
was

Q N;V; Tð Þ ¼
X
j

e�Ej N;Vð Þ=kT

becomes

Q N;V; Tð Þ ¼
X
i

Ωi N;Vð Þe�Ei N;Vð Þ=kT ð23:11Þ

where, this time, the sum is calculated on the energy levels, whereas before it was

calculated on all the states, included those of the same energy.
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Chapter 24

Other Ensembles

Abstract The chapter is a study of some other ensembles distinct from the

canonical one and which are of some interest for the purpose of activity. The

concerned ones are the grand ensemble, the microcanonical, and the isothermal-

isobaric ones. Calculations analogous to those carried out in the case of the

canonical ensemble permit to find the statistical analogues of classical thermody-

namic functions. Partition and characteristic functions introduce themselves during

these calculations. Overall, the famous Boltzmann’s relation appears within the

framework of the microcanonical ensemble.

Keywords Isothermal-isobaric ensemble • Grand ensemble partition function •

Microcanonical ensemble partition function • Statistical analogues of classical

thermodynamic functions • Absolute activity • Boltzmann’s constant •

Characteristic functions

In this chapter, we briefly study some other ensembles which are interesting for our

purpose.

24.1 Grand Canonical Ensemble or Grand Ensemble

24.1.1 Generalities

The grand canonical ensemble may be imagined as being one ensemble of thermo-

dynamic systems characterized by a constant volume. The ensemble itself is dipped

into a giant heat-bath-marie which maintains it at a constant temperature. The

systems can exchange the particles of their component(s) with their surroundings

(the other systems of the ensemble). The exchanges evolve up to equality of their

chemical potentials. Contrary to the case of the canonical ensemble, the systems are

not closed. The partitions of each system of the ensemble permit the crossing of

heat and matter through them. The ensemble is characterized by the thermodynamic

quantities V, T, and μ (Fig. 24.1).
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The strategy followed in order to study these systems from the statistical

standpoint is analogous to that followed for the study of the canonical ensemble.

However, here, there exists a great difference with the preceding case. According to

the principles of quantum mechanics, the stationary energetic states Ej are function

of V which remains constant as previously but are also function of N which is, now,

variable. As in the case of the canonical ensemble, each system may possess several

components.

Again, as before, one makes out several distributions and sub-distributions

among which one seeks the most probable ones. The research is performed through

a derivative calculation taking into account the Lagrange’s multipliers. From this

calculation, one deduces the probability Pj(N ) that a system of the ensemble would

be in the energetic state Ej (N, V) with the number of moles N of the component(s).

The energetic states Ej (N, V ), of course, are different from each other as a function

of N and, also, since they are dependent on V. As an example, in Table 24.1, we

mention an example of distribution. In this table, j is the number of particles in the

volume V. For the same volume V, there exist several levels of energy for the same

number j, for example: E1(1, V )�E2(1, V)�E3(1, V ) . . . and so f . . ..
The constraints for the determination of the most probable distribution are the

following:

• The total number (imposed) ℵ of the systems of the ensemble

n1 1ð Þ þ n1 2ð Þ þ n1 3ð Þ þ n2 1ð Þ þ n2 2ð Þ þ n2 3ð Þ þ n3 1ð Þ þ n3 2ð Þ þ n3 3ð Þ ¼ ℵ

or generally

Fig. 24.1 Grand canonical ensemble

280 24 Other Ensembles



X
j

X
N

nj Nð Þ ¼ ℵ

• The total energy (imposed) Et of the ensemble

n1 1ð ÞE1 1;Vð Þ þ n1 2ð ÞE1 2;Vð Þ þ n1 3ð ÞE1 3;Vð Þ þ n2 1ð Þ E2 1;Vð Þ þ . . .

n3 1ð ÞE3 1;Vð Þ þ . . . ¼ Et

or X
j

X
N

nj Nð Þ Ej N;Vð Þ ¼ Et

• The total (constant) number Nt of the components in the ensemble

n1 1ð Þ: 1 þ n1 2ð Þ:2 þ . . . . . . ::n3 3ð Þ:3 ¼ Nt

This latter expression is generalized asX
j

X
N

nj Nð ÞN ¼ Nt

The number of the possible quantum states of the supersystem Ωt is given by the

relation

Ωt ¼
X
j

X
N

nj Nð Þ
" #

! =
Y
j,N

nj Nð Þ! ð24:1Þ

By developing the calculations as in the case of the canonical ensemble, one

obtains

n*j Nð Þ ¼ ℵe�ae�βEj N;Vð Þe-γN

Table 24.1 Example of a distribution in the grand ensemble

E1(1,

V )
E1(2,

V )
E1(3,

V )
E2(1,

V )
E2(2,

V )
E2(3,

V )
E3(1,

V )
E3(2,

V )
E3(3,

V )

n1(1) n1(2) n1(3) n2(1) n2(2) n2(3) n3(1) n3(2) n3(3)

The possible energetic states are E1(1, V ), . . ., E3(3, V ). The ni( j) are the number of systems

exhibiting the energy Ei( j, V )
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for the most probable distribution. α, β, and γ are the three Lagrange’s multipliers,

the using of which is induced by the presence of three constraints. By operating as

previously, we find

eα ¼
X
j

X
N

e�βEj N;Vð Þe�γN

The probability Pj(N ) that a randomly chosen system in the grand ensemble does

contain N molecules and would be in the energy state Ej(N, V ) is given by the

relation

Pj

�
N
� ¼ e�βEj N;Vð Þ

e�γN=
X
i

X
N

e�βEi N;Vð Þe�γN0 ð24:2Þ

According to the first postulate, we can proceed to the following associations in

order to define the mechanical variables in statistical thermodynamics:

Internal energy $ E ¼ Et=ℵð Þ ¼
X
j

X
N

Pj Nð ÞEj N;Vð Þ ð24:3Þ

N $ N ¼ vt=ℵð Þ ¼
X
j

X
N

Pj Nð ÞN ð24:4Þ

p $ p ¼
X
j

X
N

Pj Nð Þ � ∂Ej N;Vð Þ =∂V� �
N

� � ð24:5Þ

where νt is the total number of particles in the ensemble. In order to introduce the

nonmechanical variables and in order to evaluate the parameters β and γ, we use the
expression (24.3) of E that is written in differentials:

dE ¼
X
j

X
N

Ej N;Vð Þ dPj Nð Þ þ
X
j

X
N

Pj Nð Þ dEj N;Vð Þ ð24:6Þ

The first term of the right member shows the change in the energy related to that of

the probabilities Pj(N ) when the energy levels Ej(N, V ) are constant. It clearly

corresponds to an energy change of the system without any work having been

performed. Hence, it must be identified to the heat exchanged by the system. On the

contrary, the second term of the right member must be identified as being the work

exchanged by the system. By replacing the first term in the right member of Ej(N,V)
by its expression stemming from (24.2), we find

dE ¼�1=β
X
j

X
N

γN þ lnPj Nð Þ þ lnΞ
� �

dPj Nð Þ

þ
X
j

X
N

Pj Nð Þ ∂Ej N;Vð Þ =∂V� �
dV
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where

Ξ ¼
X
j

X
N

e�βEj N;Vð Þe�γN

The second term of the right number is obtained, as in the case of the canonical

ensemble, by taking into account the fact that dE is an exact total differential and by

expressing it as a function of the two independent variables T and V. We obtain

dE ¼ � 1=βð Þ
X
j

X
N

γN þ lnPj Nð Þ þ lnΞ
� �

dPj Nð Þ � pdV

Let us develop the first term of the right member. Let us, firstly, notice that the

differential writing of (24.4) leads to

dN ¼
X
j

X
N

NdPj Nð Þ

Taking into account this result on the one hand and the fact that Σj ΣN dPj(N )¼ 0 on

the other, we obtain

dE ¼ �γ=βdN � pdV � 1 =βð Þ
X
j

X
N

lnPj Nð ÞdPj Nð Þ

For the same reason as for the canonical ensemble,

X
j

X
N

ln Pj Nð ÞdPj Nð Þ ¼ d
X
j

X
N

Pj Nð Þ ln Pj Nð Þ
" #

As a result, the preceding expression can be written as

� 1=βð Þd
X
j

X
N

Pj Nð Þ ln Pj Nð Þ
" #

¼ dE þ pdV þ γ=βdN

that must be compared to the following expression which is of purely thermody-

namic origin:

TdS ¼ dE þ pdV � μdN

where μ is the chemical potential of the component and E its internal energy. As a

result, the following assimilations may be made:
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μ $ �γ=β

S $ � k
X
j

X
N

Pj Nð Þ ln Pj Nð Þ

μ =kT $ � γ

with

β ¼ 1=kT

Therefore, for an open, isothermal system defined by the thermodynamic parame-

ters V, T, and μ, the probability that it possesses N molecules and that it is in the

energy state Ej(N, V ) is

Pj N ;V,T, μð Þ ¼ e� Ej N;Vð Þ=kT •Pj N;V;T; μð Þ eNμ=kT=Ξ V; T; μð Þ
avec Ξ V; T; μð Þ ¼

X
j

X
N

e� Ej N;Vð Þ=kTeNμ=kT

The function Ξ is called the grand partition function. (In the symbolism Pj(N; V, T,
μ), N has the status of a particular writing because, as j, it is a summation index,

whereas V, T, and μ are true thermodynamic variables.)

It is very important to notice that Ξ may also be written as follows:

Ξ V; T; μð Þ ¼ ΞN eNμ=kT
X
j

e� Ej N;Vð Þ=kT
" #

Ξ V; T; μð Þ ¼ P
NQ N;V; Tð Þ eNμ=kT

ð24:7Þ

Hence, the function grand partition appears as being a collection of functions of
partition of canonical ensembles. This property is very often used in this part of the
book.

The probability that the system possesses N molecules, whatever its energetic

state is, is given by the expression

P N; V, T, μð Þ ¼
X
j

Pj Nð Þ

¼ Q N;V; Tð Þ eNμ=kT=Ξ V; T; μð Þ
ð24:8Þ

As a consequence, the mean number of molecules is given by the expression

N V; T; μð Þ ¼
X
N

N Q N;V; Tð Þ eNμ=kT=Ξ V; T; μð Þ
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By a reasoning similar to that followed in the case of the canonical ensemble, by

linking the results obtained through statistical thermodynamics to the thermody-

namic function ST¼E�Nμ+ pV, one finds that the function pV is characteristic of

the grand canonical ensemble (viz. Appendix V). It is given by the expression

pV ¼ kT lnΞ V; T; μð Þ

Once known, it permits to calculate S, N, and p with the help of a reasoning

analogous to that followed for the canonical ensemble. The found expressions are

S ¼ kT ∂lnΞ=∂Tð ÞV,μ þ k lnΞ

N ¼ kT ∂lnΞ=∂μð ÞV,T
p ¼ kT ∂lnΞ=∂Vð Þμ,T ¼ kT lnΞð Þ

24.1.2 Grand Ensemble and Absolute Activity

In some cases, the grand ensemble is easier to handle than the canonical ensemble.

It is notably the case when we have to study systems containing numerous particles.

It is the case of chemical systems. With this ensemble, the challenge amounts to the

study of a system of one component, of a system of two components and so forth.

Relation (24.7), indeed, can also be written, equivalently, under the form of the

following series development:

Ξ V; T; μð Þ ¼ Q 0;V; Tð Þ þ Q 1;V; Tð Þλ1 þ Q 2;V; Tð Þλ2 þ � � �

with

λ ¼ eμ=kT

λ is called the absolute activity of the component. Hence, the relation (24.7) can also

be written as

Ξ V; T; μð Þ ¼
X
N

Q N;V; Tð Þλ½ �N= N! ð24:9Þ

We again find the fact that the function grand partition Ξ is a collection of canonical

functionsQ(N, V, T). It is through the handling of this relation that, for example, the

significance in molecular terms of the activity and of the fugacity of an imperfect

gas is grasped (viz. Chap. 34).
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24.1.3 The Case of Several Components (Grand Ensemble)

The preceding considerations spread to the cases where there are several compo-

nents. Let us envisage the case where there are two components, numbered 1 and

2. Therefore, we are facing with a system at constant temperature and volume and

in which the components 1 and 2 exhibit the chemical potentials μ1 and μ2. Let us
recall that it can freely exchange the compounds 1 and 2 with the other systems. In

this study, we also make the hypothesis that there is no interaction between the

molecules.

The first point to consider is that the possible quanto-energetic levels Ej depend

on the volume V and on the number of moles N1 and N2.

The study of the system is analogous to the preceding one. The existing

constraints prevailing over the system areX
j

X
N1

X
N2

nj N1;N2ð Þ ¼ ℵ

X
j

X
N1

X
N2

nj N1;N2ð Þ Ej V;N1;N2ð Þ ¼ Et

X
j

X
N1

X
N2

nj N1;N2ð Þ N2 ¼ N2

X
j

X
N2

X
N1

nj N2;N1ð Þ N1 ¼ N1

where N1 and N2 are the numbers of moles of compounds 1 and 2. The number of

possible quantum states of the “supersystem” Ωt is given by the relation (analogy

with the relation (24.1))

Ωt ¼
X
j

X
N1

X
N2

nj N1;N2ð Þ
" #

! =Πj,N1,N2
nj N1, N2ð Þ!

Successively cancelling the partial derivatives Ωt with respect to the terms nj (N1,

N2) by taking into account the preceding constraints permits to obtain the dominant

sub-distribution.

The probability Pj(N1, N2; V, T, μ1, μ2) for the system to be in the quanto-

energetic state Ej (N1, N2, V) is given by the expression

Pj N1;N2;V; T; μ1; μ2ð Þ ¼ e� Ej N1;N2;Vð Þ=kTe N1μ1=kTe N2μ2=kT=Ξ V; T; μ1; μ2ð Þ
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with

Ξ ¼
X
j

X
N1

X
N2

e�Ej N1 ,N2, Vð Þe N1μ1=kTe N2μ2=kT

Ξ can also be written as

Ξ ¼
X
N1

X
N2

eN1μ1=kTeN2μ2=kT
X
j

e� Ej N1;N2;Vð Þ=kT
( )

By writing

Q N1,N2, V,Tð Þ ¼
X
j

e� Ej N1,N2,Vð Þ=kT

λ1 ¼ eμ1 =kT and λ2 ¼ eμ2=kT

we obtain

Pj N1,N2 ;V,T, μ1, μ2ð Þ ¼ e� Ej N1;N2;Vð Þ=kTλ1N1λ2
N2=Ξ V; T; μ1; μ2ð Þ

with

Ξ ¼
X
N1

X
N2

Q N1,N2, V,Tð Þλ1N1λ2
N2

24.2 Microcanonical Ensemble: Boltzmann’s relation

The microcanonical ensemble permits to study the properties of an isolated system

characterized by the following thermodynamic variables: E, V, and N. Its energy,
volume, and composition are constants since the system is isolated. That means that

there are no heat, no matter, and no work exchanges with the surroundings

(Fig. 24.2).

The characteristic function of such an ensemble can be obtained, among differ-

ent ways, by starting from the properties of the canonical ensemble. Let us consider

a canonical ensemble and suppose that we only choose the systems possessing the

energy E, among all the systems it contains. Now, let us suppose that these systems

are picked out from the canonical ensemble. Therefore, we obtain a collection of

isolated systems which, all, possess the same energy, composition, and volume V.
Another equivalent manner to describe the system is to consider that the only

accessible quanto-energetic state is that of energy E. In the initial canonical state,

the probability P for a system to possess the energy E was proportional to e�E/kT.

E is the same for the systems of the new ensemble. Therefore, their probability P in
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the canonical initial ensemble was the same. Let Ω(N, V, E) be the number of these

states. Within the microcanonical system, we can write

P ¼ 1 =Ω since
X

P ¼ 1:

The entropy being a mean statistical quantity over all the systems of the initial

canonical ensemble and their number ℵ being very large, every system of the new

ensemble (called the degenerated state) possesses the same entropy since they have

the same energy. Hence, we can use the following relation concerning the canonical

ensemble:

S N;V; Tð Þ ¼ � k
X
j

Pjln Pj

For the present new ensemble, it can be written as

S N;V;Eð Þ ¼ � k
X
j

Pjln Pj ð24:10Þ

In order to find the relation being searched for, it is only sufficient to replace Pj by

1/Ω into these expressions of S, since Pj is the same for all Ω quantum states and

moreover since
P

jPj ¼ 1:

Pj ¼ 1=Ω

Fig. 24.2 Microcanonical

ensemble

288 24 Other Ensembles



As a result

S ¼ �kΩ 1=Ω ln 1=Ωð Þ
S ¼ k lnΩ N;V;Eð Þ

ð24:11Þ

This is the very famous Boltzmann’s relation which, the first, has given a “proba-

bilistic” meaning to the function entropy.

Expression (24.11) is the characteristic function of the microcanonic ensemble.

Once known, as in the cases of the other ensembles, it permits to calculate all the

other thermodynamic functions, by comparison with the relation from purely

thermodynamic origin:

dS ¼ 1=Tð Þ dE þ p=Tð Þ dV �
X
k

μk=Tð Þ dNk

where k is the index marking the different components.

24.3 Isothermal-Isobaric Ensemble

Now, we are considering a closed system in thermal and mechanical equilibrium

with the surroundings. It can be regarded as an ensemble of systems analogous to

those encountered in the canonical ensemble but where their volumes vary by

adoption of supple partitions for each of them to be in mechanical equilibrium

with its neighbor. Then, the volume of each system fluctuates. The studied system is

defined by the independent variables T, p, and N (Fig. 24.3).

By analogous processes to those already considered that the probability PV for a

system to possess a volume V is given by the relation

PV ¼ e� pV=kTQ T;V;Nð Þ =Δ

where Δ is the partition function of the ensemble. We must remark that this

expression is of the same type (24.8). In addition, it is obtained in an analogous

manner. The isothermal-isobaric partition function is given by the expression

Δ T, p, Nð Þ ¼
X
V

Q N;V; Tð Þ e� pV=kT

The sum is calculated over all the possible volumes. We remark that it appears as a

collection of canonical functions. In classical mechanics, where the volume varies

continuously, it is written as
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Δ T, p, Nð Þ ¼ C

Z 1

0

dV Q N;V; Tð Þ e� pV=kT

where C is a constant having the dimension of the inverse of a volume. The function

characteristic of the ensemble is the Gibbs energy:

G T; p;Nð Þ ¼ � kT lnΔ T; p;Nð Þ

It permits to calculate the chemical potential μi (T, p, N ) of the component(s), the

entropy S (T, p, N ) of the system, and the mean value of the volume of the system

Vi which is equally function of T, p, and N.

Fig. 24.3 Isothermal-isobaric ensemble
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Chapter 25

Systems of Molecules or Subsystems:
Independent, Distinguishable,
and “Indistinguishable”

Abstract In this chapter are given some general principles permitting the study of

systems composed of atoms, molecules, groups of molecules, and independent

“subsystems,” with the aid of statistical thermodynamics. “Subsystems” are defined

as, for example, the different degrees of freedom in the same molecule (such as

translational, rotational a.s.f.). They can also be the molecules adsorbed on inde-

pendent adsorption sites located on a solid surface . . . a.s.f.
The meaning of independent being specified, the cases of the molecules or

“subsystems” distinguishable and “indistinguishable” are studied. The invoked

calculations in this chapter are based on the handling of the canonical partition

function. Such calculations induce the introduction of a new kind of a partition

function, the molecular partition one.

Keywords Adsorption sites • Subsystems • Distinguishable and indistinguishable

systems and subsystems • Degrees of freedom • Maxwell–Boltzmann statistics •

Molecular partition function • Translational, rotational quanto-energetic states

In this chapter, we recall some general principles permitting the study of systems

composed of atoms, molecules, groups of molecules, and independent “subsys-

tems,” with the aid of statistical thermodynamics. For example, we call

“subsystem” the different degrees of freedom in the same molecule (such as

translational, rotational, a.s.f.). It can also be the molecules adsorbed on indepen-

dent adsorption sites located on a solid surface . . . a.s.f.
After having specified what we mean by independent, we successively envisage

the cases of the molecules or “subsystems” distinguishable and “indistinguishable.”

This chapter is based, in the different cases, on the structure of the partition function.

25.1 Meaning of the Independence of the Molecules
and “Subsystems”

One can consider that the particles, present in the same container, are independent

from each other when their displacement is not influenced by that of another. Each

particle exhibits a purely random displacement in the container. The lack of

© Springer International Publishing Switzerland 2017
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independence of atoms, molecules constituting the system, may be due to physical

interactions between the components or to some restrictions of symmetry regarding

the wave functions describing the system. The latter case is not envisaged here.

Actually, the strict independence of the components of the system cannot enter

within the framework of this study, since in such a case, the studied system cannot

reach the internal state of equilibrium. The statistical study of such systems

becomes, then, very difficult, if not impossible. Let us specify this point by, for

example, briefly, considering the case of perfect gases. Their density in the

container must be sufficiently weak so that the intermolecular forces do not

play a part in the properties of the gases. However, the internal equilibrium

(entailing that the perfect gas law is satisfied) must be still reached by the

collisions between the molecules out by the collisions between the latter with

the partitions of the container in order that the thermodynamic properties of such

systems do exist.

25.2 Calculation of the Partition Function of Independent
and Distinguishable Molecules or Subsystems

Since the thermodynamic properties of a system may be obtained from its partition

function, the latter must be calculated.

25.2.1 Definition of the System

Let us regard the case of one container of volume V, only containing two molecules

of different natures. Let ε0, ε1, ε2, and so forth be the quantified energies of the first
molecule, and ε0

0, ε10ε20 and so forth those of the second molecule. (These possible

energies are obtained by resolution of the Schr€odinger’s equation related to each

kind of molecule.)

• The independence of the particles is expressed by the fact that, since by

hypothesis both molecules do not exhibit noticeable interactions between

them, the energy of the system constituted by both kinds of molecules in the

volume V is the sum of the energies of the individual molecules, which are those

they possess when they are alone in the volume V.
• Clearly, in the previous reasoning, the particles are distinguishable. That is

shown by the fact that the possible energies εi, εi0 are distinctly marked.
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25.2.2 Calculation of the Partition Function

In the above example, it is evident that, since the molecules are independent, when

one is in the state of energy εi, the other may be found in every authorized other one

εj0. As a result, the partition function Q of the whole system is given by the

expression

Q ¼ e�ðε0þε0 0Þ=kT þ e�ðε0þε1 0Þ=kT þ e�ðε0þε2 0Þ=kT

þ e�ðε1þε0 0Þ=kT þ e�ðε1þε1 0Þ=kT þ e�ðε1þε2 0Þ=kT

þ e�ðε2þε0 0Þ=kT þ asf . . . :

That is,

Q ¼
X

i

e�εi=kT
X

j

e�εj=kT

 !

When the energy states εi are degenerated ωi times and those εj0ωj
0 times, the

partition function Q is given by the relation (viz. Chap. 22)

Q ¼
X

i

ωie
�εi=kT

 !
X

j

ωj
0 e�εi 0=kT

 !

The functions
X

i
e�εi=kT ,

X
j
e�εj=kT

� �
,
X

i
ωie

�εi=kT , and
X

j
ωj

0e�εj 0=kT are

called molecular partition functions. They must not be confused with the partition

function of the whole system Q. The former are symbolized by q.
Generalizing the foregoing example, we can deduce that in the case of systems

constituted by molecules or subsystems independent and distinguishable, the par-

tition function of the system Q is given by the relation

Q ¼ q1q2q3 . . . : independent and distinguishable particlesð Þ ð25:1Þ

where q1, q2, q3 . . . are the molecular partition functions of the molecules 1, 2, 3 . . .
or of the subsystems 1, 2, 3, and so forth.

25.3 Independent and “Indistinguishable” Molecules
or Subsystems

It is the case for example in which the molecules are identical and, hence, “indis-

tinguishable,” while not being in interactions by hypothesis, i.e., still independent

from each other.

The calculation of the partition function stems from the following reasoning.

Relation (1), if it was legitimate, would be in this case
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Q ¼ qN

where the molecular partition function q is the same for each molecule (or each

subsystem) since the molecules are identical and are contained in the same

volume V.
Actually, this relation is not exact. So, we adopt the same reasoning as in the

example above concerning both kinds of molecules; it appears, for example, that

the state energy of the previous system ε0 + ε10 of the foregoing example is, now,

equal to the energy of the state ε0
0 + ε1 of the former example, since in this new case

εi0 ¼ εi. It is the same thing for all the states where i 6¼ j. As a result, in this case

where there are two molecules, these “crossed” terms appear two times with the

preceding numeration system. It is clear that they must be counted only once in the

calculation of the partition function of the system. The generalization of this result

leads to the fact that for a system constituted by N identical molecules, the crossed

terms would appear N! times. The adopted solution in order to calculate Q is to use

the relation

Q ¼ qN=N! independent and “indistinguishable” particulesð Þ ð25:2Þ

However, by calculating in such a way, we are making an error since we also divide

the “non-crossed” terms of energy εi + εi by N! the “non-crossed” terms of energy

εi+ εi which do appear only once during the preceding numeration. But, this error

may be qualified justifiably as being perfectly negligible since, given the number of

molecules N excessively large (of the order of 1020), the number of “crossed terms”

is incomparably larger than that of the “non-crossed” ones and as a result the latter

ones are negligible in the sum Q.
Let us mention the important following point :the relation (25.2) is legitimate if

only the number of quanto-energetic states is by far larger than the number N. In
these conditions, it proves to be correct that all the terms bringing an important
contribution to the partition function Q correspond to the fact that each molecule is
in a different quanto-energetic state. It is said, then, that the kind of statistics which
is obeyed is that of Maxwell–Boltzmann.
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Chapter 26

Perfect Gases

Abstract This chapter is an example of calculation of the thermodynamic proper-

ties of compounds through reasonings of statistical thermodynamics. It gives the

demonstration of the perfect gas law by considerations of statistical thermodynam-

ics. Finally, some thermodynamic quantities relative to the perfect gases are

mentioned in terms of molecular parameters.

The demonstration is performed by handling the grand ensemble. In the case of

perfect monoatomic gases, the resolution of the Schr€odinger’s equation is possible.
The internal energy of each individual atom is then equal to the sum of its energies

of rotation, vibration, and electronic. The internal energy of the atom does not

depend on its position in space. As a result, the molecular partition function

corresponds to the whole internal and translation properties of the atom. Given

these facts, the classical thermodynamic functions, such as the Gibbs energy, the

chemical potential, and even the standard chemical potential of the gas (which is a

quantity somewhat mysterious in classical thermodynamics) can be expressed in

terms of molecular parameters as it is shown.

Keywords Perfect gas law • Schr€odinger’s equation • Standard chemical

potential • Perfect gas • Standard chemical potential • de Broglie’s thermal

wavelength • Perfect gas internal energy • Perfect gas Gibbs energy • Helmholtz

energy • Translational energy • Vibrational energy • Electronic energy • Molecular

partition function

Although the activity notion is principally applied to the case of liquid solutions, it

seems to us judicious, in introduction to their study, to consider the behavior of

gases and particularly to begin by that of perfect gases. A valuable reason to

proceed in such a manner is that the theoretical study of gases is by far more

advanced than that of liquids. Moreover, it is well known that the model of perfect

gases has proved to be particularly fruitful for the study of thermodynamics.

Noteworthy especially, it is very interesting for the study of the chemical potential

and, through the latter, for that of the activity notion.

We begin with the definition of a perfect gas. Then, we give a demonstration of

the perfect gas law by starting from considerations of statistical thermodynamics.

Finally, with the help of the same considerations, we explicit some thermodynamic

quantities relative to the perfect gases in terms of molecular parameters.
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26.1 Definitions

There exists some haziness concerning the definition of a perfect gas.

– For some authors, a gas is called perfect or ideal if it obeys the state equation:

p V ¼ n R T

where p is the pressure of the gas, V the total volume it occupies, n its number of

moles, T its absolute temperature, and R the perfect gas constant. R is a universal

constant. It is equal to the product of the Avogadro’s number NA and the

Boltzmann’s constant, k ¼ 1,3807� 10�23J K�1:

R ¼ k NA

R ¼ 8,3145� 10 J K�1mol�1

For other authors, a supplementary condition must be added to the preceding one:

the internal energy E of a perfect gas must be only a function of the temperature. It

is not a function of the volume in which it is contained nor it is a function of its

pressure, i.e.,

∂E=∂Vð ÞT ¼ 0 and ∂E=∂pð ÞT ¼ 0

– Finally, a latter group of authors defines a perfect gas by the following expres-

sion of its chemical potential μ in the considered thermodynamic state where it is

at the pressure p and at the temperature T:

μ ¼ μ� þ RT ln p=p�

In this expression, μ� is its chemical potential in the standard state where its

pressure is p�. The temperature is equal to T, identical to the previous one.

This latter definition is strictly equivalent to the first one. Later, we shall confine

ourselves to the first definition.

26.2 A Brief Discussion of These Definitions

A perfect gas is an abstraction that the real gases may approach more or less

according to their nature and the conditions where they are. From the molecular

standpoint, a perfect gas is composed of molecules (or atoms), the interactions

between them being fully negligible and the volume they occupy being also fully

negligible with respect to that of their container. There is no release nor heat

absorption during the expansion of a perfect gas, provided that there is no work
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arising during the process. The result is the occurrence of the two relations both

involving partial derivatives, already encountered in the statement of the second

definition. Actually, it seems that the state equation entails these two relations.

26.3 Types of Perfect Gases: The Case of Mixtures

Let us recall that every gas, whatever its molecular type is (monoatomic, diatomic,

polyatomic), including mixtures of different gases, tends toward the perfect behav-

ior. The sine qua non condition of existence of such a behavior is that every gas (and

even every molecule or atom of these gases) exhibits no interaction with the others.

26.4 The State Equation in Statistical Thermodynamics

The state equation in statistical thermodynamics is (viz. later Chap. 27)

pV ¼ N k T

or

p ¼ ρkT

N is the number of molecules (and not the number of moles), k the Boltzmann’s

constant, and ρ ¼ N/V the density number of the gas.

This equation may be obtained in different manners. We mention one, here. We

shall give another one, later, in Chap. 27.

We are considering the case of an ensemble of identical particles of a

monoatomic gas, without any mutual interactions and being “indistinguishable.”

For the perfect diatomic and polyatomic gases, we confine ourselves to recalling

some results. But, previously, we show that the perfect gas law can be obtained by

using the theory of the grand ensemble.

26.5 Obtaining the Perfect Gas Law Using an Ensemble
of Identical Molecules Without Mutual Interactions
and Being “Indistinguishable”

The demonstration is performed by handling the grand ensemble. The

corresponding partition function Ξ can be written (viz. Chap. 24) as
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Ξ ¼
X
N

Q N;V; Tð ÞλN N � 0

At this point of the demonstration, it must be noticed that within the framework of

the hypothesis of no interaction between the particles, the canonical partition

function intervening in Ξ does not contain a term involving any potential energy

of interaction. This fact is evidenced by a reasoning involving classical statistical

mechanics (viz. Chap. 27).

In this case, this relation can also be written as follows:

Ξ ¼
X
N

q N;V; Tð Þλ½ �N=N!

That is, more explicitly

Ξ ¼ 1þ q 1;V; Tð Þλþ q 2;V; Tð Þλ½ �2=2!þ q 3;V; Tð Þλ½ �3=3!þ andso

f::::

(This relation comes from the fact that the particles are independent and “indistin-

guishable.” See Sect. 26.6.4).

Let us notice the value q(0,V,T)¼ 1. The empty system has only one state, that

of null energy.

The previous expression of Ξ is nothing different from the expansion in series of

the expression

Ξ ¼ eqλ ð26:1Þ

From another standpoint, we know (viz. Chap. 24) that the characteristic function of

the grand ensemble is the function pV ¼ kT ln Ξ; i.e.,

Ξ ¼ epV=kT

The obtaining of the perfect gas equation results from the following equality. It is

evident according to the last two relations found above:

Qλ ¼ pV=kT

It remains to demonstrate that Qλ ¼ N is the number of particles of the system.

The starting point of the demonstration is the relation

N ¼ kT ∂lnΞ=∂μð Þv, t ð26:2Þ

stemming from the great ensemble theory.

According to (26.1)
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lnΞ ¼ qλ or q ¼ lnΞ=λ ð26:3Þ
d lnΞ ¼ qdλ whence

d lnΞ=dλ ¼ q ð26:4Þ

By eliminating q between relations (26.3) and (26.4), we obtain

lnΞ ¼ λ d lnΞ=dλð Þ or lnΞ ¼ d lnΞ= dλ=λð Þ
i:e: lnΞ ¼ d lnΞ =d lnλð Þ

or, since λ ¼ eμ=KT (k being the Boltzmann’s constant)

lnλ ¼ μ=kT

lnΞ ¼ kT ∂lnΞ =∂μð ÞV,T

and lnΞ ¼ N according to (26.2)

since

lnΞ ¼ qλ according to (26.3)

and

lnΞ ¼ N according to (26.2)

we obtain

qλ ¼ N

and

NkT ¼ pV perfect gas lawð Þ

Since we have worked within the framework of the grand ensemble, the value N is a

mean value, whence the symbolism N is derived. One demonstrates that its

fluctuations are very weak.

From the viewpoint of the pure scientific rigor, it is exceedingly satisfactory to
again find the perfect gas law, by starting from the principles of quantum mechanics
and by using statistical thermodynamics.

26.6 A Study of Perfect Monoatomic Gases

26.6.1 Translation Energy and Internal Energy

In the case of the perfect monoatomic gases, the resolution of the Schr€odinger’s
equation is possible, at least as regards the translation motion of the atoms. The
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internal energy of each individual molecule εint is equal to the sum of its energies of

rotation εrot, vibration εvib, and electronic εelec, i.e.,

εint ¼ εrot þ εvib þ εelec

The internal energy of the atom does not depend on its position in space. As a result,

the energy of an atom ε may be considered as being the sum of a translation energy

εtr and of an internal energy. Hence, one can write

ε ¼ εtr þ εint

In the canonical system, the molecular partition function is

q ¼
X
i

e�εi=kT

where q is the partition function which corresponds to the whole internal and

translation properties of the atom. By virtue of the “separability” of ε, we can write

q ¼
X
i

e�εi tr = kT
X
i

e�εi int = kT

q ¼ qtrqint

Regarding, now, the internal partition function qint, calculations show that its value

can be taken to be equal to the unity for the majority of monoatomic gases.

Consequently, all the following results only stem from the translation of the atoms.

26.6.2 Expression of the Molecular Partition Function
of Translation qtr

Calculations show (viz. Chap. 27) that the molecular partition function of transla-

tion is

qtr ¼ 2πmkT=h2
� �3=2

V ð26:5Þ

where m is the mass of each particle, k the Boltzmann’s constant, h the Planck’s

constant, and V the volume of the container.
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26.6.3 de Broglie’s Thermal Wavelength

It is convenient to introduce the parameter Λ into the varied relations. It is called de

Broglie’s thermal wavelength (viz. Chap. 27) such as

Λ ¼ h= 2πmkTð Þ1=2

The molecular partition function of translation is now

qtr ¼ V=Λ3 ð26:6Þ

26.6.4 Expression of ln Q as a Function of the Atomic
Parameters

Setting up this expression proved to be particularly fruitful because it actually

constitutes a kind of hub because it permits the quasi-immediate calculation of

the thermodynamic quantities of these gases as a function of their molecular

parameters, owing to the general relations stemming from the theory of the varied

ensembles.

Let us regard the canonical ensemble. Given the high dilution of the gas in the

volume V, the gas molecules are independent from each other and are not distin-

guishable. In these conditions, the canonical partition function can be written

according to

Q ¼ 1=N !ð ÞqN

with the principle q ¼ qtrqint, but since qint � 1,

Q ¼ 1=N !ð ÞqtrN ð26:7Þ

By introducing (26.5) into (26.7) and by using Stirling’s approximation, we

obtain

ln Q ¼ N ln 2πmkT=h2
� �3=2

Ve=Nð Þ
h i

where e is the basis of the Napierian logarithms.

26.6.5 Helmholtz Energy A

Since

A N;V; Tð Þ ¼ �kT lnQ (viz. Chap. 23)
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we immediately obtain

A ¼ �NkT ln 2πmkT=h2
� �3=2

Ve=Nð Þ
h i

We notice that A is an extensive property, since it is proportional to N. However,
the ratio A/N is an intensive quantity since it only depends on intensive quantities

themselves T and V/N. It is the Helmholtz energy.

26.6.6 Pressure

Since (viz. Chap. 23)

p ¼ kT ∂lnQ=∂Vð ÞT, N ð26:8Þ

by introducing the relations (26.5) and (26.7), we again find the perfect gas law.

26.6.7 Internal Energy E

It is calculated by using the relation (26.9) (Chap. 23):

E ¼ kT2 ∂lnQ =∂Tð ÞV ,N

That is,

E ¼ 3=2ð ÞNkT

The sample containing n moles of gas, one can also write

E ¼ 3=2ð ÞnRT

since n ¼ N=NA. The origin of this energy is entirely kinetic since, by hypothesis,

the potential energy is null. Indeed, we assumed that there exists no interaction

between the species. The expression above is equally found by starting from purely

kinetic considerations and it obeys the principle of energy equipartition. (Actually,

this principle is not general.)
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26.6.8 Entropy

The entropy can be calculated from the relation

S ¼ E� Að Þ=T

E and A are already expressed above. As a result:

– In terms of volume:

S ¼ Nk ln 2πmkT=h2
� �3=2

V e5=2=N
� �h i

– In terms of pressure:

S ¼ Nk ln 2πmkT=h2
� �3=2

kT e5=2=p
� �h i

26.6.9 Gibbs Energy G

The Gibbs energy being defined in thermodynamics by the relation

G ¼ Aþ pV

we obtain the following relations after the replacing of A and p by their expressions

above:

– In terms of volume:

G ¼ �N kT ln 2πmkT=h2
� �3=2

V=N
h i

– In terms of pressure:

G ¼ �N kT ln 2πmkT=h2
� �3=2

kT=p
h i

or

G ¼ �NkT ln kT =pΛ3
� �
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26.6.10 Chemical Potential μ

We know (viz. Chap. 23) that the chemical potential can be calculated through the

relation

μ ¼ � kT ∂lnQ =∂Nð ÞT,V

Given relation (26.6), we obtain

μ ¼ � kT ln q =Nð Þ
μ ¼ � kT ln 2πmkT=h2

� �3=2
V=N

h i

or

μ ¼ � kT ln 2πmkT=h2
� �3=2

kT=p
h i

ð26:9Þ

26.6.11 Standard Chemical Potential of a Perfect Gas

The relation (26.9) is particularly interesting since it permits to obtain one expres-

sion of the standard potential of a perfect gas in terms of molecular parameters. The

standard chemical potential, as it is introduced in thermodynamics, appears indeed

to be very mysterious because of two reasons. The first one, of course, is the fact it is

an integration constant. The second is that it may vary according to arbitrary

conventions.

In thermodynamics, we know that in the case of a perfect gas, the chemical

potential of a perfect gas is given by the expression

μ p; Tð Þ ¼ μ� Tð Þ þ kT ln p =p� ð26:10Þ

where μ�(T ) is the chemical potential in the standard state of the gas and p� is the
chosen standard pressure (for example p� ¼ 1 bar). The standard state itself (chosen

at temperature T of the system and at pressure p�) is particularly interesting. By

using relations (26.9) and (26.10), its chemical potential is given by the relation

μ� T,p�ð Þ ¼ � kT ln 2πmkT=h2
� �3=2

kT=p�
h i

ð26:11Þ

It is quite interesting to notice that the term below, between square brackets
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2πmkT=h2
� �3=2

kT
h i

has the dimension of a pressure. As a result, the argument of the logarithm of

relation (26.11) is truly dimensionless, as it must be the case from the mathematical

standpoint.

26.7 Binary Mixture of Two Perfect Monoatomic Gases

It seems interesting for us to study the case of the binary mixture of two perfect

monoatomic gases. In this case, the canonical partition function is simply the

product of the two canonical partition functions of each gas. Their behaviors are

different from each other. Hence, we can set up

Q ¼ qN1

1 = N1!
� �

qN2

2 =N2!
� �

where

q1 ¼ V=Λ3
1 and q2 ¼ V=Λ3

2

Λ1 and Λ2 are only different from each other through their masses m1 and m2. The

expressions of the Helmholtz energy and of the entropy are found by starting from

the general expressions (viz. Chap. 23):

A ¼ � kT lnQ

S ¼ k lnQþ kT ∂lnQ=∂Tð ÞN,V

whence

S ¼ N1k ln Ve5=2=Λ1
3N1

� �
þ N2k ln Ve5=2=Λ2

3N2

� �

Likewise, starting from the general equations governing the canonical ensemble,

we immediately find

pV ¼ N1 þ N2ð ÞkT

and

E ¼ 3=2 N1 þ N2ð ÞkT
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26.8 The Perfect Gas Law from Other Ensembles

Let us mention the fact, without stressing it, that it is possible to also find the perfect

gas law by reasoning with other types of ensembles.

26.9 Perfect Polyatomic Gases

Perfect polyatomic gases may obey the state law. Here, we just recall a general

formulation of their chemical potential.

– Obeying the state equation, as previously, entails that the molecules should be

independent, that is to say without interactions between them. They must also be

indistinguishable. In the present case, the respect of the law also entails to

consider the independence of the degrees of freedom in a molecule itself. The

latter condition constitutes an approximation which seems to be rather

satisfactory.

According to the theory of the canonical ensemble

Q ¼ 1 = N! qN

The difference between the cases of the polyatomic and monoatomic gases is that in

the former case, the molecular partition function q is more complex than in the

second. With the terminology of paragraph 2, we must also, at least in the reason-

ing, take into account the internal molecular partition function qint which is no

longer equal to unity. The molecular partition function is of the type

q ¼
X
j

e� εj=kT

One can admit that, here is the approximation of the independence of the degrees of
freedom, each level of energy ε of the molecule is the sum of the energy levels of

translation, vibration, rotation, and electronic, i.e.,

ε ¼ εt þ εr þ εv þ εel

εt, εr, εv, and εel are, respectively, the energy levels of translation, rotation,

vibration, and electronic. It is at this point that the approximation of the indepen-

dence of the degrees of freedom is present. The latter relation is valid for a diatomic

molecule, because of the existence of a vibration energy. For a polyatomic mole-

cule, eventually, one must also take into account the energy involved in the rotation

of some atoms or groups of atoms around a simple bond.
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The independence of the levels of energy permits to the Hamiltonian of the

molecule to be separable into Hamiltonians of translation, rotation, vibration, etc.

Then, the Schr€odinger equations with each Hamiltonian can be solved and one can

obtain the corresponding molecular partition functions qt, qr, qv, qel . . .. The global
molecular partition function is therefore

q ¼ qtqrqvqel

and the canonical partition function

Q ¼ qtqrqvqel
� �N

= N ! ð26:12Þ

Calculations show that the molecular partition functions qr, qv, and qel are only
functions of the temperature (and of course of the nature of the molecule). How-

ever, the partition function qt is a function of the volume of the container. For

example, for a diatomic molecule, its expression is

qt ¼ 2π kT m1 þ m2ð Þ=h2� �3=2
V ð26:13Þ

where m1 and m2 are the masses of both atoms. For a polyatomic molecule, it is

qt ¼ 2π kT
X
i

mi

 !
=h2

" #3=2
V

where Σimi is the sum of the masses of the atoms of the molecule. According to the

properties of the canonical ensemble, the pressure is given by the relation

p ¼ kT ∂lnQ=∂Vð ÞT,N

Replacing Q in the latter relation by its expression (26.12) directly leads to the

expression

p ¼ NkT ∂lnqt=∂Vð ÞT
i.e.,

p ¼ NkT = V

the equation of state.

Finally, this result found by considering the case of a diatomic molecule is the

same as that which would be obtained in the same manner in the case of a

polyatomic molecule.
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– Concerning now the expression of the chemical potential of these gases, it is

obtained by using the relation

μ ¼ A = N þ pV =N ð26:14Þ

stemming from chemical thermodynamics. A is the Helmholtz function (viz.

Chap. 23). The division by the number N of molecules stands out since A and pV

are extensive quantities whereas the chemical potential is an intensive quantity

(molar quantity). The reasoning is close to the preceding. A is given by the

expression stemming from the canonical system:

A ¼ � kT ln Q N;V; Tð Þ

Replacing Q by the expression (26.12), we obtain

A ¼ �kT ln qtqrqvqel
� �N

= N!
h i

A ¼ �kT lnqtN=N!þ lnqrN þ lnqvN þ lnqelN
� �

or

A ¼ At þ Ar þ Av þ Ael

At, Ar, Av, Ael are the Helmholtz energies of translation, etc.

Remembering that for a diatomic molecule relation (26.13)

qt ¼ �2π kT m1 þ m2ð Þ = h2
��3=2

V

one immediately finds by using Stirling’s approximation

At ¼ �NkT ln e qt= Nð Þ

(e base of Napierian logarithms).

Moreover,

Ar ¼ �NkT ln qr

Av ¼ �NkT ln qv and s:f:

The introduction of these relations into the expression (26.14) permits to calculate

the chemical potential μ of the gas in some conditions.
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Chapter 27

Classical Statistical Mechanics,
Configuration, and Classical Canonical
Partition Function

Abstract To deeply grasp the physical significance of an activity, statistical

thermodynamics must be considered and, in particular, it is the case of the notions

of configuration of a system and of the classical canonical partition function.

Firstly, the chapter presents a definition of the configuration of a system.

Secondly, the chapter is a presentation of the classical canonical partition function

and of some relations stemming from it. It may be viewed as being an extension, in

some definite conditions, of the canonical partition function occurring in quantum

mechanics. All the mathematical terms constituting the function are presented. This

is especially the case of the hamiltonian of the system. In some conditions,

Hamilton’s function is nothing more or less than the energy of the system. It entails

the kinetic energy of the whole particles constituting the system and their mutual

interacting potential energy. A simple example of its handling, concerning perfect

gases, is given at the end of the chapter.

The partition function, indeed, is the most used partition function in the field of

applications of statistical thermodynamics to chemistry. The function will be quasi-

systematically used until the end of the book. It is a physical parameter of first

importance in the grasping of the significance of an activity.

Keywords System • Stirling’s approximation • System configuration • Classical

statistical mechanics • Configurational partition function • Classical and quantum

mechanics • Classical canonical partition function • Hamiltonian

In order to grasp the physical significance of an activity more deeply than before,

we must turn ourselves toward statistical thermodynamics and especially, at the

beginning, toward the notion of partition function, notion which also exists in the

realm of classical statistical mechanics.

In this chapter, we present the classical canonical partition function and we

mention some relations stemming from it. It may be viewed as being an extension

of the canonical partition function occurring in quantum mechanics in some definite

conditions. This is the standpoint we adopt here.

The canonical partition function, indeed, is the most used partition function in

the field of applications of statistical thermodynamics to chemistry. We give an

example of its handling with the case of perfect gases at the end of this chapter.

© Springer International Publishing Switzerland 2017

J.-L. Burgot, The Notion of Activity in Chemistry,
DOI 10.1007/978-3-319-46401-5_27

309



27.1 Classical and Quantum Mechanics

In the classical mechanics, we consider that the state of a system is defined, at any

instant, by the values of its coordinates and of its momenta.

In quantum mechanics, the state of the system at any instant is defined by a

probability amplitude permitting to only know the probability of occurrence of

some values of its coordinates and its momenta.

In either case, there are some situations in which the theoretical treatments just

above evoked are not possible. In these cases, one no longer studies a sole system

but a collection (one ensemble) of several systems, each of them duplicating the one

studied. This is the essence of statistical methods.

27.2 Quantum and Classical Mechanics in Statistical
Thermodynamics

It is true that, in some definite conditions, the results following from quantum-

mechanical arguments tend toward those obtained from classical mechanics ones.

This is the case, for instance, when the quantum numbers involved in a process take

high numerical values. Thus, in the quantum-mechanical canonical ensemble

partition function, the terms corresponding to the higher quantum numbers make

more and more important contributions to the sum constituting it as the temperature

increases. Owing to the importance of the canonical partition function for our

purpose, it is of great interest for us to know the classical canonical partition

function.

According to the preceding example, one may prejudge that the quantum-

mechanical canonical function must tend toward the classical one.

Hence, one can infer that the quantum-mechanical canonical partition function

Q T;V;Nð Þ½ �quant ¼
X
i

exp �βEi N;Vð Þ½ � (viz. Chap. 23) must go over asymptoti-

cally into the corresponding classical function in the limit of large quantum

numbers,

Q T;V;Nð Þ quant large quantum numbersð Þ ! Qclass ¼ ?

The principal goal of this chapter is to express the function Qclass.

According to the very foundations of classical mechanics, the energy of a

moving body, for instance, varies continuously. Hence, one may already infer

from this observation that Qclass is a continuous function of energy instead of Qquant

which is a discrete function.
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27.3 Cartesian Coordinates of a Specific Particle
in a System

The locations of the centers of the molecules are often denoted in rectangular

coordinates x, y, z. It is the same as to locate it at the extremity of the vector

R defined by its components x, y, z. Thus, the center of the molecule i is defined by

the vector Ri (Fig. 27.1).

For simple particles such as hard spheres (which do not actually exist although,

however, argon atoms look closely like them), vectors Ri, Rj, . . . are sufficient to

describe one configuration of the system (constituted by the N particles i, j. . .). This
means that, in this case, the sole location of their centers is sufficient to describe the

configuration of the system symbolized by RN. It is symbolically written:

RN ¼ R1,R2,R3, . . .RN

The symbol RN means that the location of the centers of all the particles constitut-
ing the system is known through the knowledge of vectors Ri. They are, of course,

defined by the three components xi, yi, and zi.

27.4 Configuration of a System

More generally, the description of the configuration of a molecule may necessitate

to know both its location and its orientation Xi. This was not the case of the

preceding spherical particles having no internal structure. For a rigid nonspherical

molecule i (such as water for example), its orientation, defined by the parameterΩi,

must also be taken into account. Ωi is given by the relation (viz. Fig. 27.1):

Fig. 27.1 Symbolism used

to describe the

configuration of a molecule
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dΩi ¼ dϕi sin θidθi dψ i

The whole configuration of such a molecule is symbolized by Xi. The vector Xi is

related to vectors Ri and Ωi by:

Xi ¼ RiΩi

The configuration of the system is given by the relation:

XN ¼ X1,X2, . . .XN

and the infinitesimal element of a single molecule i is given by:

dXi ¼ dRidΩi

Vector Xi is a six-dimensional (xi, yi, zi, ϕi, θi, ψ i) vector (the definitions of these six

variables are given in Fig. 27.1). The integration over Ωi takes into account all the

orientations of the molecule. It is represented by the expression:

ð
dΩi ¼

ð2π
0

dϕi

ð π

0

sin θidθi

ð2π
0

dψ i

that is to say:

ð
dΩi ¼ 8π2

and

Xi ¼ 8π2Ri

Remark: For nonrigid molecules, a supplementary parameter describing their inter-

nal rotations may be needed. This is the case, for example, of n-butane. It is not

treated further in this book.

27.5 Spherical Coordinates ϕ, θ, r of a Particle

An infinitesimal element of volume located at the extremity of the vector R is

equally denoted dV, dR or dx dy dz (viz. Fig. 27.1). The change of the cartesian to

the spherical coordinates systems is done by using the expression:
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dRi ¼ dxi dyi dzi ¼ r2 sin θdθdϕdr

where r is the radius of the studied sphere.

27.6 Classical Analogue of the Quantum-Mechanical
Canonical Partition Function

Let Ei be the energy of a molecule i in a system of N simple, “indistinguishable,” in

mutual interactions but for which it is unnecessary to specify their orientations. It is

equal to the sum of its potential and kinetic energies U and Ek.
1 Its potential energy

U depends on its proper coordinates xi, yi, zi but also on those of other molecules in

mutual interactions with it. These interactions, indeed, depend on the

intermolecular distances. The kinetic energy of i depends on the components pxi,
pyi, pzi of its momentum p. Therefore, one can write:

Ei ¼ U xi; yi; zið Þ þ Ek pxi; pyi; pzi
� �

i ¼ 1 . . .N

The whole energy E of the system is equal to the sum of the individual energies Ei.

It is demonstrated that the classical canonical partition function of a N spherical

particles system, without an internal structure, is given by the relation (for an

approach of it, viz. Appendix F and the supplement one):

Q N; T;Vð Þ ¼ �
1=N!h3N

��
ðþ/

�1��

ð
exp �H x1, y1, z1 . . . xNyNzN ; px1, py1, pz1 . . . pxN pyN pzN

� �� �
� =kT � dx1, dy1, dz1 . . . dxN , dyN, dzN . . . dpx1, dpy1, dpz1 . . . dpxN , dpyN , dpzN

ð27:1Þ

H is Hamilton’s function involved in Lagrange’s mechanics. The terms in brackets,

x1, y1, z1. . .xN yN zN; px1, py1, pz1. . .pxN pyN pzN are the variables on which depend H.
It is sufficient for our purpose to know that Hamilton’s function is usually expressed

in terms of generalized coordinates q and p, but in the present case, using cartesian

coordinates and momenta is equivalent to the use of the generalized ones. h is

Planck’s constant h ¼ 6:626� 10�34 J s
� �

and k Boltzmann’s constant

k ¼ 1:38� 10�23 JK�1
� �

. T is the thermodynamic temperature.

For this kind of system, Hamilton’s function is nothing more or less than the

energy of the system, hence:

1We are continuing to symbolize the potential energy, which is an energy of interaction between

molecules, by U. According to IUPAC, U is, usually, the symbol of the internal energy and Ep is

the potential energy.
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H ¼
X
i

1=2mð Þ�p2
x1
þ � � �p2zN þ U x1; . . . ; zNð Þ ð27:2Þ

m is the molecular mass of each particle. In equation (27.1), all the summations are

over the whole coordinates from �1 to +1.

The fact that equation (27.1) contains the factor N! must be noticed. Its presence

is for the same reason as in the analogous quantum-mechanical partition function.

That is to say: particles are “indistinguishable” and the interactions between two of

them must not be taken into account several times. Surprisingly, also, equation

(27.1) contains Planck’s constant h which is a reminiscence of quantum mechanics.

It is introduced as an integration constant in the mathematical developments

devoted to the classical partition function. Its introduction is necessary since,

without it, calculations performed through the classical partition function fail to

provide correct values of the entropy and of other thermodynamic quantities of the

system.

Relation (27.1) is by no means surprising. We can, indeed, notice the similarity:

X
e
�energy=kT ,

ð
...

ð
e�energy =kTdx1 . . . dzN

Let us recall that the sum Σ goes over all the quantum states. Here, one again finds

the pathway between quantum and classical functions and, from a strict mathemat-

ical standpoint, the fact that an integral is a sum of infinitely small quantities over an

infinitely large number of them. Relation (27.1) is not surprising for a second

reason. Quite evidently, Q(N, T, V ) is a continuous function. (This point is some-

what detailed in Appendix F).

Equation (27.1) is often written equivalently as:

Q N; T;Vð Þ ¼ 1=N!h3N
�� �ðþ1

�1��

ð
exp �H=kT½ �dRNdpN ð27:3Þ

with:

H ¼ H pN;RN
� �

and more precisely:

H pN;RN
� � ¼ UN RN

� �þXN
i¼1

p2i =2m
� � ð27:4Þ

where pN andRN recalls the dependence of Hamilton’s function on momenta and on

the configuration.

With more complex molecules, the classical canonical partition function is:
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Q N; T;Vð Þ ¼ qN=8π2
�
NΛ3NN!

�� �ðþ/

�1��

ð
exp �βH XN

� �� �
dXNdpN ð27:5Þ

H ¼
X
i¼1

p2i =2m
� �þ UN XN

� �

and

β ¼ 1=kT

The symbol UN(X
N) means the total potential energy of interaction of the system in

the configuration XN. Note the use of (XN) in place of (RN) (with respect to the

preceding case) in agreement with the working hypothesis.

In the relation (27.5), there exist also some supplementary terms. Let us recall

that Λ is the thermal de Broglie wavelength, q is the molecular partition function of
the species constituting the system. q takes into account the proper partition

functions of translation, electronic, of vibration, of rotation, and nuclear of the

species (viz. Chap. 26). For example, for most monoatomic gases: q¼ 1. (The

product of electronic, nuclear, vibration, and rotation partition functions is called

internal partition function.) The factor 8π2 lying in the denominator is introduced in

order not to count the volume twice in the integration. The integration over dR
amounts, indeed, to obtain the volume in a first time and, in a second one, the

integration over the three angles also leads to the volume (viz. preceding

paragraph):

ð
dΩi ¼ 8π2

27.7 Condition Required for the Applicability
of the Partition Functions (27.1) and (27.3)

Partition functions (27.1) and (27.3) and those deriving from them cannot be used

for all kinds of systems. Their handling is legitimate when the following condition

is satisfied:

Λ3N=V � 1

where Λ is the thermal de Broglie wavelength of the particle defined by:

Λ ¼ h= 2πmkTð Þ1=2
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We see that the condition is satisfied when its density number N/V is small and the

mass of the particle and temperature are large. Both conditions are frequently

satisfied.

27.8 Some Examples of Handling of Classical Partition
Functions: The Case of Perfect Gases

A gas is considered as being perfect when there exist no intermolecular forces

between its particles. The mathematical counterpart of this definition is:

UN XN
� � ¼ 0

whichever the configuration XN is.

When the gas is monoatomic and is not endowed with internal structure, the

classical partition function reduces to:

Q N; T;Vð Þ ¼ 1=N!h3N
�� �ð

�1��

ð
exp �βH pN

� �� �
dRNdpN ð27:6Þ

Since the potential energy does not exist, the expression of H(pN) is:

H pN
� � ¼ X

i¼1

1=2m p2x1 þ � � � þ p2zN
� �

Integrations over dRN and dpN give:

Q T;V;Nð Þ ¼ VN=Λ3NN! ð27:7Þ

since:

– The integration over dRN is immediate, because it is carried out on a cube of

length unity:

ð
dRi ¼

ð1
0

dxi

ð1
0

dyi

ð1
0

dzi

and because there are N particles;

– The integration over the momenta dpN is carried out, firstly, by setting up the

following equality:
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h�3N

ðþ1

�1��

ð
exp �β p2i =2m

� �� �
dpN

¼ h�1

ðþ1

�1
exp

�� βp2=2m

� �
dp

�
3N

The right side of the last equality is justified by the fact that the particles are

identical and by the fact that there are 3N variables of integration (so that dpi ¼ dp3i
and dpi¼ dpj). The remaining integral is easily calculated by starting from the

standard integral value:

ð1
0

exp �ax2
� �

dx ¼ 1=2 π=að Þ1=2

It is very interesting to notice that the equality (27.7) is equivalent to the

following one:

μ ¼ kTlnΛ3 þ kTlnN=V ð27:8Þ

or:

μ ¼ kTlnΛ3 þ kTlnρ

(27.8) is obtained from the equality (27.7) and from the general relationship (viz.

Chap. 23)

μ ¼ �kT ∂lnQ=∂Nð ÞT,V

after use of Stirling’s approximation. Relation (27.8) is already very interesting. It

is sufficient to compare it to the following one (viz. Chap. 6)

μ ¼ μ� þ RTlnx

to be convinced.

• A polyatomic gas may exhibit a perfect behavior, but because it is polyatomic, it

does possess an internal structure. Its molecular partition function q is no longer
equal to 1 as in the monoatomic case. Of course, since by hypothesis, there exist

no mutual interactions between molecules

U XN
� � ¼ 0

The knowledge of the whole coordinates RN is no longer sufficient to describe

the system. The whole ensemble coordinates XN must be used. As a result, the

canonical partition function is:
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Q N;T;Vð Þ ¼ qN= 8π2
� �N

Λ3NN!
h in oð

v . . .

ð
dXN

The limits of integration are noticed in the following relation (v means that the

integration of R is carried out over a cube of length unity) (see before):

Q N;T;Vð Þ ¼ qN= 8π2
� �N

Λ3NN!
h in o ð

v

dR

ð2π
0

dϕ

ð π

0

sin θdθ

ð2π
0

dψ

� �N

Finally:

Q N; T;Vð Þ ¼ qNVN=Λ3NN!
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Chapter 28

The Configurational Partition Function:
Molecular Distribution Functions

Abstract The chapter introduces the very important notions of configurational

partition function and of molecular distribution functions. They are at the basis of

the notion of radial distribution function which, in turn, is at the cornerstone of our

purpose (which is to get some insight about the significance of an activity). The

radial distribution function enters, indeed, in the theoretical expressions of thermo-

dynamic quantities, among which the chemical potential.

The chapter is essentially devoted to definitions. The first given one is that of the

configuration integral. Other defined functions are the basic density distribution

function, the molecular distribution functions (both the specific and the generic

ones), the pair molecular distribution functions, and the pair correlation function

with the radial distribution function. The chapter mentions only one theoretical

study. It concerns the molecular distribution functions of monoatomic fluids. Some

aspects of the theoretical study of the radial distribution function are postponed to

the following chapter.

Most of the theoretical considerations mentioned in this chapter are developed

within the framework of the canonical ensemble and, only, the case of pure liquids

is investigated.

Keywords Configuration integral • Basic distribution function • Average of a

quantity • Molecular distribution function • Specific and generic distribution

functions • Pair correlation function • Radial distribution functions

This chapter introduces the very important notions of configurational partition
function and of molecular distribution functions. It will be seen later that they are

at the basis of the notion of radial distribution function which, in turn, is at the

cornerstone of our purpose which is to get some insight about the significance of an

activity. The radial distribution function enters, indeed, in the theoretical expres-

sions of thermodynamic quantities, among which the chemical potential. The latter

is of utmost importance.

The chapter is essentially devoted to definitions. It mentions only one theoretical

study. It concerns the molecular distribution functions of monoatomic fluids. Some

aspects of the theoretical study of the radial distribution function are postponed to

the following chapter.

© Springer International Publishing Switzerland 2017

J.-L. Burgot, The Notion of Activity in Chemistry,
DOI 10.1007/978-3-319-46401-5_28

319



Most of the theoretical considerations mentioned in this chapter are developed

within the framework of the canonical ensemble and, only, the case of pure liquids

is investigated.

28.1 The Configuration Integral ZN

In order to express the thermodynamic quantities starting from classical mechanics

considerations (and also in order to calculate them), the notion of configuration

integrals ZN has been introduced. They are also named configurational partition
functions.

Their expressions come from those of classical canonical partition functions,

such as the following one already encountered:

Q N; T;Vð Þ ¼ 1= N! h3N
� �� �ð

�1��

ð
exp � H=kT½ �dRNdpN ð28:1Þ

where H is the Hamilton’s function of the system:

H ¼ 1=2mð Þ p2x1 þ � � �p2zN
� �þ UN x1, . . . , zNð Þ

It is known (see Chap. 26) that:

ðþ1

�1��

ð
exp

�� H=KT
�
dRNdpN

¼
ðþ1

�1��

ð
exp

�� 1=2mð Þ px
2
1 þ � � �pz2N

� �
=kT

�
dp1 . . . dpN

�
ðþ1

�1��

ð
exp

�� UN x1; . . . ; zNð Þ=kT�dx1 . . . dzN

ð28:2Þ

The first group of multiple integrals of the right side can be immediately evaluated.

It is not possible to do that with the second since the analytical function linking UN

to variables x1. . .zN is unknown. The term which virtually results from the evalu-

ation of this second group is named the configuration integral.
Hence, the configuration integral is defined by the expression:

ZN ¼
ð
V...

ð
exp �βU RN

� �� �
dRN ð28:3Þ

or with a more explicit symbolism:
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ZN ¼
ð
V���

ð
exp �βUN x1 . . . zNð Þ½ �dx1 . . . dzN ð28:4Þ

N is the number of particles of the system and the limit vmeans that integrations are

evaluated over the three space coordinates from�1 to +1.

The first point to notice is that ZN depends on (and even characterizes) a given

configuration as it is evidenced by the occurrence of the term U(RN) in its

expression.

Another important point for our purpose must be already stressed. In connection

with the study of the activity of gases (viz. Chap. 34), we shall see that the

configuration integral is related to the corresponding canonical partition function

QN through the equality:

ZN ¼ N! QNV
N=Q

N

1

� �
ð28:5Þ

In (28.5), V is the volume of the system and Q1 is the canonical partition function of

the system when it is constituted by only one molecule.

As an example, the expression of the canonical partition function Q(N, T, V ) in
which the configuration integral for only one molecule (without any internal

structure but being in interaction with other molecules of the system) is incorpo-

rated is:

Q N; T;Vð Þ ¼ 1= N!Λ3N
� �� �

ZN

Note, also, that according to expressions (28.3) and (28.4), when the interactions

between molecules do not exist (U¼ 0):

ZN ¼ VN

[This result may be directly found from the equality (28.7) of the preceding

chapter.]

One can already conceive the important part played by the configuration integral

in the grasping of the significance of activity. It has, indeed, been already men-

tioned (viz. Chap. 6) that an activity takes into account the interactions between

particles whichever the state of matter where they are is, and it is a well-established

fact that these interactions are at the origin of the potential energy U. Let us briefly
anticipate what Chap. 33 contains in saying that the potential energy of the system

is the energy coming from the mutual interactions between its molecules.

It is not surprising that the evaluation of the configuration integral is endowed

with insuperable computational difficulties, given the fact that the functionU(RN) is

unknown, and, even if its evaluation was possible, it would be untractable given the

huge number of particles constituting the system.
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28.2 Basic Distribution Function

Let us consider the simple case where the studied system is constituted by

N monoatomic particles at temperature T and in a container of volume V. The
function, which can be called the basic one of all the other molecular distribution

functions which are defined below, is the basic density distribution function P(RN).

It is expressed by the relation:

P RN
� � ¼ exp �βUN RN

� �� �.ð
���

ð
dRNexp �βUN RN

� �� � ð28:6Þ

UN (R
N) is the total potential energy of the system with the configuration RN. Let us

recall that the symbolism RN means that particle 1 is in R1, 2 in R2. . ..N in RN, that

is to say in formal writing:

RN ¼ R1R2 . . .RN

In the expression (28.6), the denominator

ð
���

ð
dRNexp �βUN RN

� �� �
is the config-

urational partition ZN. Hence, the basic density distribution function can also be

expressed by:

P RN
� � ¼ exp �βUN RN

� �� �
=ZN ð28:7Þ

The meaning of P(RN) is the following one: it is the probability density for

observing the configuration RN. It is clear that, behind these considerations and

notably behind relation (28.6), there are the notions of continuous random variables

and of probability density (viz. Appendix F).

28.3 Average of Any Quantity F(RN)

In the canonical (T, V, N ) ensemble, the average of any quantity F(RN) dependent

on configuration RN is given by the relation:

F RN
� �� 	 ¼

ð
���

ð
dRNP RN

� �
F RN
� � ð28:8Þ

Of course, the quantity, the average of which is required, must be dependent on the

configuration RN of the system.
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The expression (28.8) is a generalization of the relation giving the average or the

expected value E(X) of the random variable X (viz. Appendix F and just below):

E Xð Þ ¼
X
i ¼1

pixi 1 � i � Nð Þ

28.4 Molecular Distribution Functions

Let us define now a series of functions named molecular distribution functions.
Before doing that, we give the meaning of the term P(RN) dR1 dR2. . .dRN.

Let us suppose that we are observing the configuration RN of the system of

N particles, the total potential energy of which is UN (RN). Since P(RN) is the

probability density function of the existence of the configurationRN, the probability

to find particle 1 in the element of volume dR1 (dx1dy1dz1), particle 2 in the element

dR2. . .particle N in dRN is, according to the preceding considerations:

P RN
� �

dR1dR2 . . . dRN or P RN
� �

dRN ð28:9Þ

which can be explicited according to:

P RN
� �

dRN ¼ exp �βUN RN
� �� �.ð

���

ð
dRNexp �βUN RN

� �� �
 �
dR1 . . . dRN

ð28:10Þ

or, according to the definition (28.3) of ZN:

P RN
� �

dRN ¼ exp �βUN RN
� �� �

=ZN

� 
dR1 . . . dRN

Hence, the term P(RN) dRN does have the meaning of a probability while P(RN) is a
probability density.

The term P(RN)dRN turns out to be the limit of the relation coming from

quantum considerations expressing the probability Pj(N, V, T ) that the system

should be in the state of energy Ej(N, V ) (viz. Chap. 23). The pure formal

correspondence is:

dRNexp �βUN RN
� �� �

classical mechanics

.ð
���

ð
dRNexp �βUN RN

� �� �

, exp �Ej N;Vð Þ=kT� �
quantum mechanics

.X
j

exp �Ej N;Vð Þ=kT� �

is evident.
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Molecular distribution functions are defined according to their order n and

according to the fact they are specific or generic.

28.4.1 Specific Distribution Functions

The probability P(n)(R1. . ..Rn)dR1. . .dRn that particle 1 could be in dR1 at R1,

particle 2 in dR2 at R2. . ..and particle n (n<N ) in dRn at Rn, whichever the

configurations of the (N – n) remaining molecules are, is the sum of all the proba-

bilities (28.9), once the configurations assignated to the molecules 1 to n have been
taken into account, that is to say:

P nð Þ R1 . . . :Rnð Þ ¼
ð
V

ð
exp �βUN RN

� �� �
=ZN

� 
dRnþ1 . . . dRN ð28:11Þ

P(n)(R1. . .Rn) is the specific molecular distribution function of the system of order

n. It must be noted that the integration is performed over the variables Rn+1. . .RN,

while the integrand involves all of them, from R1 to RN.

28.4.2 Generic Distribution Functions

One defines generic distribution functions ρ(n) of order n such as:

ρ nð Þ R1 . . .Rnð Þ ¼ N!= N � nð Þ!½ �P nð Þ R1 . . . :Rnð Þ
� ρ nð Þ R1 . . .Rnð Þ ¼ N != N � nð Þ!½ �

�
ð
v

ð
exp

�� βUN RN
� �

=ZN

� 
dRnþ1 . . . dRN

ð28:12Þ

It must be noted that they are defined in terms of the preceding specific functions.

ρ(n)(R1. . .Rn)dR1. . .dRn is the probability that a molecule (not necessarily mol-

ecule 1) will be found in the element of volume dR1 at R1, a second in dR2 at R2

. . .and another in dRn at Rn when the configuration of the system of N molecules

is observed.. It appears, therefore, that ρ
(n)(R1. . .Rn) is a probability density.

28.4.3 Examples

The most practical functions are those of orders (28.1) and (28.2) because they are

the best known ones from the theoretical standpoint. Among both kinds of molec-

ular distribution functions, those which are the most useful are the generic ones.
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• Functions of order (28.1)

According to the preceding definition of generic function, it is evident that:

ρ 1ð Þ ¼ NP 1ð Þ

ρ(1) is not only a probability density but it is also an average particles number. More

precisely, ρ(1)(R0) is the average particles number or the average local density of the

particles in the element of volume dR0. According to the definition of the specific

function P(1), the probability to find the particle 1 in dR1 is the certitude. As a result:

ð
v

P 1ð Þ R0ð ÞdR0 ¼ 1

For the same reason:

ð
V

ρ 1ð Þ R0ð ÞdR0 ¼ N

An important property of function ρ(1) is such that, in a homogeneous and isotropic

fluid, the local particles density in R0ρ(1)(R0) is equal to the density ρ (ρ¼N/V ) of
the particles in the bulk of the solution. ρ is also named number of density. It is clear
that ρ is related to the molar concentration, that is to say:

ρ 1ð Þ R0ð Þ ¼ ρ ð28:13Þ

This result was foreseeable given the meaning of the different terms and given, also,

the fact that the system is a homogeneous fluid.

• Pair molecular distribution functions

The specific pair molecular distribution function in the ensemble T, V, N is

defined as being the probability density function P(2)(R0, R00) to find particle 1 in
the element of volume dR0 and particle 2 in dR00 (dR0 and dR00 are actually dR1

and dR2 or any other pair of elements of volume. It is proved that from the

standpoint of the readability, it is interesting to use both kinds of symbols,

according to the circumstances). This specific pair distribution function is

expressed from the basic probability function P(RN)—viz. relation (28.9):

P 2ð Þ R0;R
00

� �
¼

ð
V��

ð
dR3 . . . dRNP RNð Þ

or

P 2ð Þ R0;R
00

� �
¼

ð
V��

ð
dR3 . . . dRNP R0,R

00
,R3 . . .RN

� �
ð28:14Þ
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in which the dependence on the variables is clarified. P(2)(R0, R00)dR0dR00 is the

probability to find particle 1 in dR0 at R0 and particle 2 in dR00 at R00. These
considerations apply to any possible pair of particles. The probabilities of the

events: particle i in dR0, particle j in dR00. . . is the same, that is to say P(2) (R0,
R00)dR0dR00. For example, the integration over dR0dR00 of ρ(2)(R0, R00)—see imme-
diately below the meaning of this function—can be that of ρ(2)(R1,R2) over dR1 and

dR2 as it can also be that of ρ(2)(R3, R7) over dR3 and dR7.

The generic pair molecular distribution function ρ(2)(R0,R00) is defined by the

expression:

ρ 2ð Þ R0;R
00

� �
¼ N N � 1ð ÞP 2ð Þ R0;R

00
� �

ð28:15Þ

The term ρ(2)(R0,R00)dR0dR00 is the probability to find any one molecule in dR0 at
R0 and any other one in dR00 at R00. It can be demonstrated that it is the average

number of pairs of particles in elements dR0 and dR00.

28.5 Pair Correlation Function and Radial Distribution
Function

This paragraph is an introduction to the notion of radial distribution function which

is studied in the next chapter. The radial distribution function is, indeed, a pair

correlation function.

It is known that two events are claimed to be independent when the probability

of their intersection (in other terms, the probability of the occurrence of the whole

event) is equal to the product of their probabilities. The event of interest here is:

one particule in dR0 and another one in dR
00

Usually, both events are not disjoint. The occurrence of one influences that of the

other. For example, if the separation between R0 and R00 is small compared to the

diameter of the particles, the occupancy of dR0 greatly influences that of dR00 and
inversely.

The problem of the intersection of two events may be tackled as it follows.

Since ρ(2)(R0, R00)dR0dR00 is the probability to find a particle in dR0 and another

in dR00 while ρ(1)(R0)dR0 is that to find one in the element dR0, the question to know
if the following equality is satisfied is open:

ρ 2ð Þ R0;R
00

� �
dR0dR

00 ¼ ρ 1ð Þ R0ð ÞdR0 � ρ 1ð Þ R
00

� �
dR

00
?

Intuitively, it may be conceivable that if the separation of the two elements is

very large, both events are independent. Hence, it is possible to set up the equality:
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ρ 2ð Þ R0;R
00

� �
dR0dR

00 ¼ ρ 1ð Þ R0ð ÞdR0 � ρ 1ð Þ R
00

� �
dR

00

volume elements very far from each otherð Þ
ð28:16Þ

or:

ρ 2ð Þ R0;R
00

� �
¼ ρ 1ð Þ R0ð Þρ 1ð Þ R

00
� �

ð28:17Þ

and given what is preceding:

ρ 2ð Þ R0;R
00

� �
¼ ρ2 ð28:18Þ

This last equality is satisfied when the separation is very large and, moreover, when

the fluid is isotropic.

For any finite separation, relations (28.16), (28.17), and (28.18) are no longer

satisfied. Relations (28.16) and (28.17) must be replaced by:

ρ 2ð Þ R0;R
00

� �
¼ ρ 1ð Þ R0ð Þρ 1ð Þ R

00
� �

g R0;R
00

� �
ð28:19Þ

g(R0,R00) is the pair correlation function. It plays the part of a corrective function.

For an isotropic fluid, for any finite distance between volume elements, (28.18)

becomes:

ρ 2ð Þ R0;R
00

� �
¼ ρ2 g R0;R

00
� �

ð28:20Þ
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Chapter 29

Radial Distribution Function

Abstract In the chapter, the concept of radial distribution function is introduced.

After that, two definitions of it have been recalled. Its physical meaning is given,

together with the link relating it to the potential of average force, under the

influence of which the studied particle is when it is surrounded by the whole

particles of the system. Studies of radial distributions of some simple systems are

then recalled. They are the cases of perfect gazes and also that of a gas of a

moderate low density. Finally, the general form of a radial distribution function is

shown.

The radial distribution function permits the calculation of some thermodynamic

quantities of a fluid such as, especially, the chemical potential of its components.

Here is its major interest for the purpose of the study of the activities. Hence, it can

be easily conceived that the study of liquids at the molecular level with this function

should help the understanding of the activity notion. The concept of radial distri-

bution function is very useful because its value can be evaluated either experimen-

tally or theoretically. In the chapter, the study is limited to the case of a sole

homogenous and isotropic liquid.

Keywords Radial distribution function (definition) • Physical meaning • Another

expression • Ion central curve • Radial distribution functions of some systems

In this chapter, we introduce the concept of radial distribution function. We give its

physical meaning and we also mention the link that relates it to the potential of

average force under the influence of which is a chosen particle when it is

surrounded by the whole particles of the system.

The radial distribution function permits the calculation of some thermodynamic

quantities of a fluid such as, especially, the chemical potentials of its components.

Here is its major interest for our purpose. Hence, we can conceive that the study of

liquids at the molecular level with this function should help the understanding of the

activity notion. The concept of radial distribution function is very useful because its

value can be evaluated either experimentally or theoretically. In this chapter, we

limit ourselves to the study of a sole homogenous and isotropic liquid.
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29.1 Definition of the Radial Distribution Function

In the preceding chapter, we defined the pair correlation function g(R0, R00) by the

following expression:

ρ 2ð Þ R0;R
00

� �
¼ ρ 1ð Þ R0ð Þρ 1ð Þ R

00
� �

g R0;R
00

� �
ð29:1Þ

where ρ(1)(R0) and ρ(1)(R00) are the generic molecular distribution functions of order

1 with respect to the presence of one molecule in the volume element dR0 and to that
of another one in the other element dR00. ρ(2)(R0, R00) is the generic pair distribution
function with respect to the simultaneous presence of both particles in the elements

dR0 and dR00. This definition applies to the case for which the configurations of the

particles of the system depend only on their localization as it is notified by the use of

the symbolism R0, R00. Starting from these definitions, one demonstrates that the

pair correlation function, in the particular case where the system is constituted by

simple and spherical particles, writes, according to the relations (28.14) and (28.15)

of the preceding chapter, as follows:

g R0;R
00� �¼ N N�2ð Þ=ρ2½ �Ð . . .Ð dR3 . . .dRNexp �βUN R0,R

00
,R0,R3, . . .RN

� �� �
=
Ð
V���

Ð
dR1 . . .dRNexp �βUN R0,R

00
,R3, . . .RN

� �� �
ð29:2Þ

Let us recall the following equality satisfied by every homogenous and isotropic

fluid (viz. Chap. 28).

ρ 2ð Þ R0;R
00

� �
¼ ρ2g R0;R

00
� �

ð29:3Þ

In this chapter, we are only interested in this kind of fluid. Hence, the function g(R0,
R00) depends only on the scalar distance R¼ |R0 –R00|. For example, owing to the

isotropic character of the medium, R0 may be chosen as origin, that is to say R0 ¼ 0.

Then, R remains the only variable. As a result, the pair correlation function g(R0,
R00) may be written g(R). g(R) is the radial distribution function. Because of the

spherical symmetry, implicitly involved by the kind of studied particles, the local

density of particles exhibits the same value at every point of a sphere of radius R,
the center of which being at R0. Hence, it is judicious to consider an infinitesimal

spherical volume element of thickness dR located at the distance R of R0. The
average particles number in this volume element is: ρg(R)4πR2dR. In the frame-

work of this spherical symmetry and for a homogenous and isotropic fluid, equation

(29.2) can be written now:

ρ 2ð Þ Rð Þ ¼ ρ2g Rð Þ ð29:4Þ
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29.2 Physical Meaning of the Radial Distribution Function

Consider a fluid at temperature T and with number density ρ. Imagine that an

observer is stationed on a particular particle in the solution, named central particle,

and that he counts the number of particles located at the distance R from him. Since

the system is a fluid, the distribution of the particles around the central one is

symmetrical and spherical. (Let us recall, indeed, that a fluid is characterized by the

homogeneity of its composition in all the directions of space.)

It is clear that the number of particles present in the volume element dτ located at
the distance R from it is not equal to the product ρdτ and that it changes with the

distance R.
The presence of a particle, indeed, disturbs the distribution of others. The

average number of particles located into dτ takes the value ρg(R)dτ, because of

this influence.

The average number of charged particles observed in the volume dτ is:

ρg Rð Þdτ

Hence, g(R) is the factor by which the mean “local density” ρg(R) at distance

R deviates from the bulk density ρ.

ρg Rð Þ 6¼ ρ

29.3 Another Expression of the Radial
Distribution Function

The function g(R0, R00) can be developed according to the following power series:

g R0;R
00

� �
¼ exp �βU R0;R

00
� �h in o

1þ B R0;R
00

� �
ρþ C R0;R

00
� �

ρ2 þ � � �
h i

ð29:5Þ

In turn, the coefficients B(R0, R00), C(R0, R00), etc. can be expressed in terms of

Mayer’s f-functions f(R0, R00), where:

f R;R0ð Þ ¼ exp �βU R0;R
00

� �h i
� 1

For example:

B R0;R
00

� �
¼

ð
V

f R0;R
00

� �
f R

00
;R3

� �
dR3
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These functions will be again encountered, but briefly, later. They are in connection

with the virial development and with activity coefficients of gases.

29.4 The Curve g(R)/R

By truncating the development (29.5), the equation of the curve g(R)/R becomes:

g Rð Þ ¼ exp �U Rð Þ½ �

g(R) is a complicated function of R since U(R) is itself a complicated function of

R (viz. Chap. 6). But, it can be already seen that:

g Rð Þ ! 0 where R ! 0

This is because the “central” molecule does possess a finite radius and, as a result,

other particles cannot approach its center for a distance lower than it. It becomes,

then, a kind of “hard sphere.”

Yet, we know that:

g Rð Þ ! 1 where R ! 1

as we have already seen it.

The radial distribution function depends on temperature, density number ρ and

R. Hence, it is sometimes written g(R, T, ρ).
Figure 29.1 shows a typical radial distribution curve for a liquid.

Figure 29.2 shows the radial distribution curves for liquid and gaseous argon.

It is interesting to notice that the liquid argon curve exhibits secondary peaks that

already existed for solid argon. In both cases, they are located at the same distances.

That means that the liquid state keeps a certain amount of short-range order which

existed in the crystal. For the sake of comparison, gaseous radial distribution curves

do not exhibit secondary peaks.

Fig. 29.1 Typical radial

distribution function for a

liquid. (In the picture, σ is

the van der Waals diameter

of the order of the few

angstroms)
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29.5 Radial Distribution Functions of Some Systems

Here, we give the expressions of the radial distribution functions of spherical

particles in some simple cases.

29.5.1 Perfect Gas

Since the Gas is perfect, the total potential energy is null:

U ¼ 0

Then, expression (29.2) becomes:

g R0;R
00

� �
¼ N N � 1ð Þ=ρ2� � ð

. . .

ð
dR3 . . . dRN=

ð
V

. . .

ð
dR1 . . . dRN

and since:

ð
V

dR1 ¼
ð
V

dR2 ¼ V

Fig. 29.2 Radial distribution functions for liquid and gaseous argon (σ: atom diameter)
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one obtains:

g R0;R
00

� �
¼ N N � 1ð Þ=ρ2V2

Since ρ¼N/V

g R0;R
00

� �
¼ 1� 1=N

and

g Rð Þ ¼ 1� 1=N

29.5.2 Radial Distribution Function of a Gas with a Low
Density Number

In this case, the expression of the radial distribution function is obtained as follows.

There exist, by definition, some interactions between particles but, since the density

number is low, the hypothesis on which the reasoning is based is that only

interactions between two particles occur. In other words, the system may be

considered as consisting of two particles only. Then, the general relation (29.5)

becomes:

g Rð Þ ¼ 2=ρ2
� �

exp �βU Rð Þ½ �=Z2

(since the potential energy of the system isU(R0,R00), introducing the differentialized
dR3. . .dRN is devoid of any meaning). In this expression, Z2 is the configuration

integral when there only exists two particles and U(R) is the potential energy related
to a particles pair. Given the fact that R!1 when g(1)¼ 1 the function becomes:

g Rð Þ ¼ 2= ρ2Z2

� �
R ! 1

The ratio g(R)/g(1) is equal to exp[�βU(R)]. Then, setting also up g(1)¼ 1, we

obtain the relation being searched for:

g Rð Þ ¼ exp �βU Rð Þ½ �

This result must be noticed, since it implies that the distribution of the particles
system is of the Boltzmann’s type. Let us anticipate what is studied in Chap. 46 by
saying that Debye and H€uckel have adopted this kind of distribution when they
have formulated their famous theory.
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Analogous, but more complex, reasoning than the preceding ones may be

followed for the cases of more complicated systems than the preceding ones.

29.6 Determination of the Radial Distribution Function

We have already mentioned that the radial distributions can be determined. We

confine ourselves in saying that this can be done:

– Experimentally by measurements of X-ray and neutron diffraction of the studied

liquid,

– Theoretical calculations,

– By simulations which consist in comparing experimental data to theoretical

calculations (viz. Chap. 47).
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Chapter 30

Radial Distribution Function
and Thermodynamic Quantities: Calculation
of the Internal Energy and of the Pressure
of the System

Abstract This chapter is devoted to the establishment of mathematical relations

between some thermodynamic quantities exhibited by a system and its radial

distribution function. The study is limited to establishment of the relations

concerning the energy and the pressure of the system. The setting up of the relations

between the radial distribution function and the compressibility factor on one hand

and with the chemical potential on the other are postponed in the two following

chapters. Given the fact that radial distribution functions can be experimentally

accessible, the interest of all these relations is evident.

The relations are obtained by putting the “pairwise additivity” hypothesis into

practice. The latter is briefly recalled at the beginning of the chapter. Then, the

general reasoning carried out in order to obtain the different relations being

searched for is described.

The considerations mentioned here are developed with respect to the simple

system formed by spherical particles. They can be generalized to more complicated

ones at the cost of some modifications of the mathematical relations figuring the

configurations.

Keywords Compressibility factor • Internal energy calculation • Pressure

calculation • Pairwise additivity hypothesis • State equation of a perfect gas •

Radial distribution function (specific or generic)

This chapter is devoted to the establishment of mathematical relations between

some thermodynamic quantities exhibited by a system and the radial distribution

function. We limit ourself to establish the relations concerning the energy and the

pressure of the system. Establishments of the relations between the radial distribu-

tion function and the compressibility factor on one hand and the chemical potential

on the other are postponed in the two following chapters. We have already men-

tioned the fact that radial distribution functions can be experimentally accessible,

hence, the evident interest of all these relations.

The relations are obtained by putting the “pairwise additivity” hypothesis into

practice. The latter is briefly recalled at the beginning of the chapter. Then, the

general reasoning carried out, in order to obtain the different relations being

searched for, is described.
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The considerations mentioned here are developed with respect to the simple

system formed by spherical particles. They can be generalized to more complicated

ones at the cost of some modifications of the mathematical relations figuring the

configurations.

30.1 The “Pairwise Additivity” Hypothesis

We have already highlighted the fact that the evaluation of the configuration

integral creates insuperable difficulties. It is because the potential energy of the

system U(RN) is present in its expression. As a result, the main points about the

subject we presently know come from hypothesis, the most fruitful of them being,

probably, that of the “pairwise additivity”.

Let us consider the quantity F(RN). The hypothesis amounts to saying that the

following equality is satisfied:

F RN
� � ¼ X

i, j
f Ri;Rj

� �
i 6¼ jð Þ ð30:1Þ

the sum being evaluated by considering the whole of the possible pairs of particles.

It is calculated such as 1 � i < j � N. This hypothesis is, of course, an approxima-

tion since the interactions between two particles are not the only ones that exist. For

the best, it is only an approximation. Nevertheless, it proved to be very interesting.

30.2 Gaining the Relations Being Searched for: Principle

In the canonical ensemble (T, V, N ), the mean value ‹F› of F(RN) is given by the

relation (viz. Chap. 28)

Fh i ¼
ð
. . .

ð
dRNP RN

� �
F RN
� � ð30:2Þ

where P(RN) is the probability density to observe the configuration RN. It is given

by the relation:

P RN
� � ¼ exp

�� βUN RN
� �

=ZN

Substitution of (30.1) into (30.2) gives:
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Fh i ¼
ð
. . .

ð
dRNP RN

� �X
i, j

f Ri;Rj

� �

All the particles being equivalent, the value of the quantity f(Ri,Rj) is the same

for each pair. Hence, one can invert the sign sum and the symbol sigma, that is to

say, we set up the expression:

Fh i ¼
X
i, j

ð
. . .

ð
dRNP RN

� �
f Ri;Rj

� �

Each sum in i and j has the same value whichever i and j are. Hence, it is possible
to arbitrarily choose a particular pair, for example, the pair R1, R2 and since there

exist N(N–1) pairs by distinguishing the pairs i –j from the pairs j–i, one can write:

Fh i ¼ N N � 1ð Þ
ð
. . .

ð
dRNP RN

� �
f R1;R2ð Þ

The multiple integral can be split up remembering that the quantity f(R1,R2)

depends only on coordinates R1 and R2 and not on R3. . .RN. The preceding relation

can, hence, be transformed into a product of several integrals:

Fh i ¼ N N � 1ð Þ
ðð

dR1dR2f R1;R2ð Þ �
ð
. . .

ð
dR3 . . . dRNP RN

� �� �

As a result, the integrals can be successively evaluated. Moreover, we already know

that (see Chap. 28):

N N � 1ð Þ
ð
. . .

ð
dR3 . . . dRNP RN

� � ¼ ρ 2ð Þ R1;R2ð Þ

Hence, we obtain the relation:

Fh i ¼
ðð

dR1dR2f R1;R2ð Þρ 2ð Þ R1;R2ð Þ ð30:3Þ

If one wants to rid oneself of the arbitrary character of the pair R1, R2, relation

(30.3) can be written as

Fh i¼
ðð

dR0dR
00
f R0;R

00
� �

ρ 2ð Þ R0;R
00

� �
ð30:4Þ

A particularly interesting case is that in which the quantity f(R0,R00) does depend
only on R0 together with the separation R00 �R

0 ¼R between the two points (R is a

scalar). Then, the integration over R leads to a result which is independent on the
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localization of R
0
. ρ(2)(R0, R00) depends only on R. The relation (30.4) can then be

modified. In order to perform this transformation, we proceed to the following

coordinates change:

R ¼ R0 and R ¼ R
00 � R0

by locating the central particle in R0, whence:

Fh i ¼
ð
dR

ð
dR f Rð Þρ 2ð Þ Rð Þ

and after integration over R

Fh i ¼ V

ð
dR f Rð Þρ 2ð Þ Rð Þ

according to relation (30.12) (viz. Chap. 28). Owing to the spherical symmetry and

since R becomes the scalar R, it is more convenient to reason with spherical

coordinates (viz. Chap. 27):

dR ¼ dx dy dz

dR ¼ R2 sin θdθdϕdR

After integration over all the orientations (θ varying from 0 to π and ϕ from 0 to 2π)
while R varies from 0 to 1, we get:

Fh i ¼ V

ð1
0

f Rð Þρ 2ð Þ Rð Þ4πR2dR ð30:5Þ

and, finally, since:

ρ 2ð Þ Rð Þ ¼ ρ2g Rð Þ

the definitive relation is:

Fh i ¼ ρ2V

ð1
0

f Rð Þ g Rð Þ4πR2dR ð30:6Þ

Thus, the very fact to know the “additivity function” f(R) together with that of

radial distribution g(R) permits the calculation of the average value of ‹F›, at least
within the framework of the “pairwise additivity” hypothesis. It is at this point that

the pair correlation functions and, hence, the radial distribution one begins to play

a part.
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30.3 Radial Distribution Function and Internal Energy
of a System

The starting points of the reasoning leading to the research for relation are the two

following relations. They issue from the general theory of the canonical ensemble

(viz. Chaps. 23 and 28).

E ¼ kT2 ∂lnQð Þ=∂T�V,N ð30:7Þ

Q ¼ qNZN=N! ð30:8Þ

After adoption of the “pairwise additivity” hypothesis at this point by setting up the

equality:

UN RN
� � ¼ 1=2

X
ij

U Ri;Rj

� �
i 6¼ jð Þ

(The factor 1/2 avoids counting the energy of two pairs two times when the pair i–j
is identical to the pair j–i), and following a simple mathematical reasoning applied

to spherical particles with no rigid structure (whence the symbolism R), we obtain

(viz. Appendix G):

E ¼ 3=2ð ÞNkT þ
ð
. . .

ð
dRNexp �βUN RN

� �� 	
UN RN

� �� 	
=ZN ð30:9Þ

(3/2)NkT is the average kinetic energy ‹K› of the system. The ratio exp

�βUN RN
� �� 	

=ZN is the probability density P(RN) to observe the event RN. As a

result:

ð
. . .

ð
dRNexp �βUN RN

� �� 	
UN RN

� �� 	
=ZN ¼

ð
. . .

ð
dRN P RN

� �	
UN RN

� �� 	

The term
Ð
. . .

Ð
dRN P RN

� �	�
UN RN

� �
is the average energy of interactions

between particles ‹UN›. The internal energy of the system is given by:

E ¼ Kh i þ UNh i ð30:10Þ

we obtain:

E ¼ Kh i þ 1=2

ðð
dR0dR

00
f R0;R

00
� �

ρ 2ð Þ R0;R
00

� �
ð30:11Þ

In the conditions described at the end of paragraph 2, that is to say when the pairs

functions f(R0, R00) depend only on R (the distance between both particles):
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E ¼ Kh i þ 1=2ρ2V

ð1
0

U Rð Þg Rð Þ4πR2dR ð30:12Þ

relation in which:

U Rð Þ ¼ f R0;R
00

� �

It is interesting to somewhat explore the physical meaning of the average potential

energy term in the expression (30.12). Let us begin by recalling that it can be also

written as:

1=2ρN

ð1
0

U Rð Þ g Rð Þ4πR2dR

since in the conditions in which it is obtained, ρ¼N/V. Let us consider a particle

and calculate its total interaction with the remainder of the system. Since the local

density of particles located at the distance R of the chosen molecule is ρg(R), the
average number of particles in the volume element 4πR2dR is ρg(R)4πR2dR. Thus,
the average interaction of the particle with the remainder of the system is given by

the expression:

ð1
0

U Rð Þρg Rð Þ4πR2dR

In order to obtain the total interaction, that is to say that involving the N particles,

we must multiply the previous expression by N and also by the factor 1/2 to avoid

counting the interaction between two particles, twice.

30.4 Radial Distribution Function and Pressure
of the System. Equation of State of a Perfect Gas

Let us recall that in the framework of the canonical ensemble, in quantum mechan-

ics, the pressure is given by the relation (viz. Chap. 23)

p ¼ kT ∂lnQquant=∂V
� �

T,N

In classical mechanics, it is given by:

p ¼ kT ∂lnQclass=∂Vð ÞT,N

We know (viz. Chap. 28) that:
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Qclass ¼ ZN= N!Λ3N
� �

Finally, since N and T are kept constant during the derivation operation, the

pressure is given by the relation:

p ¼ kT ∂lnZN=∂Vð ÞT,N ð30:13Þ

This is the starting relation of the mathematical calculation.

The followed reasoning followed to obtain the relation being searched for is

mentioned in Appendix H. It is:

p ¼ kTρ� ρ2=6
� � ð1

0

R ∂U Rð Þ=∂Rð Þ g Rð Þ4πR2dR ð30:14Þ

It can be applied for a system of spherical particles obeying to the “pairwise

additivity” hypothesis with respect to the total potential energy. It is interesting to

notice that the first term of the right member of this equation is that corresponding

to that of a perfect gas. Thus, relation (30.14) may be considered as being an

approach to the equation of state of natural gas.

It is very interesting for our purpose. Within the framework of the previous

hypothesis, it explicitly exhibits a term which, at least theoretically, permits to

evaluate the deflections of behavior with respect to perfect gases. It is a term which

must be in mathematical relation with the corresponding activity and activity

coefficient. It is the right term of the right member of equation (30.14). It is

sufficient to compare the latter to the equation of state of a perfect gas to be

convinced.
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Chapter 31

The Radial Distribution Function
and the Isothermal Compressibility
Coefficient of a System

Abstract The setting up of relations between the radial distribution function and

some thermodynamic quantities is continued in this chapter. That of interest, here,

is the isothermal compressibility coefficient. During the course of the reasoning

mentioned in this chapter, a new function is introduced. It is the function G which,

in turn, is itself a function of the radial distribution function g(R). The name of G is

spatial pair correlation function or Kirkwood–Buff’s integral. Another relation,

which relates the fluctuations of the numbers of molecules to the isothermal

compressibility factor, is also set up. All these quantities are linked together.

These relations are, actually, the starting theoretical basis of Kirkwood–Buff’s

theory which is very interesting for the study of activities.

Another very important quantity for our purpose is the chemical potential, given

its links with the activity. It can be related to the radial distribution function.

Actually, the chemical potential is related to the function G. This point is studied
in the next chapter.

All these evoked reasonings are set up in the realm of the grand ensemble. This is

the reason why considering the generic molecular distribution function in the grand

ensemble is mentioned firstly in the chapter.

Keywords Radial distribution function • Isothermal compressibility coefficient of

a system • Spatial pair correlation • Kirkwood–Buff’s integral • Kirkwood–Buff’s

theory • Generic molecular distribution function in the grand ensemble •

Compressibility coefficient of a fluid

In this chapter, we are continuing to set up relations between the radial distribution

function and some thermodynamic quantities. That of interest, here, is the isother-

mal compressibility coefficient. During the course of the reasoning mentioned in

this chapter, a new function is introduced. It is the functionGwhich, in turn, is itself

a function of the radial distribution function g(R). Another relation, which relates

the fluctuations of the numbers of molecules to the isothermal compressibility

factor, is also established. All these quantities are linked together. These relations

are, actually, the starting theoretical basis of Kirkwood–Buff’s theory (viz.

Chap. 42) which is very interesting for our purpose.

Another very important quantity for our purpose is the chemical potential, given

its links with the activity (viz. Chap. 5 and the following ones). It can be related to
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the radial distribution function. Actually, the chemical potential is related to the

function G. This point is studied in the next chapter.

All these evoked reasonings are set up in the realm of the grand ensemble (T, V,
μ, ensemble). This is the reason why we begin them by considering the generic

molecular distribution function in the grand ensemble.

31.1 The Generic Molecular Distribution Function
in the Grand Ensemble

In the T, V, μ, ensemble, the probability P(N ) of finding a system with exactly

N particles is (viz. Chap. 24):

P Nð Þ ¼ Q T;V;Nð Þ exp βμNð Þ½ �=Ξ T;V; μð Þ ð31:1Þ

Let us recall that in the grand ensemble, the system number of particles is

variable, Q(T, V, N ) is the canonical partition function, and Ξ(T, V, μ) the grand

canonical one.

When one of the canonical ensembles constituting the grand ensemble contains

exactly N particles, relations (31.1) and (31.2) apply (viz. Chap. 23):

P nð Þ R1,R2 . . .Rnð Þ ¼
ð
v . . .

ð
dRnþ1 . . . dRNP R1,R2 . . .RNð Þ ð31:2Þ

P(n)(R1, R2. . .Rn)dR1dR2. . .dRn is the probability of a well-specified molecule

1 being in dR1 at R1, a (well-specified) molecule 2 being in dR2. . . a last one

n being in dRn whichever the configurations of the N – n remaining particles, P(R1,

R2. . .RN) being the probability density function for observing the configuration R
N.

ρ(n), for its part, is the generic molecular distribution function of order (n) of the
configuration RN. For instance, the term ρ(2)(R0, R00)dR0dR00 is the probability of a

particle in dR0 and another in dR00. ρ(n) is related to P(n) by the expression:

ρ nð Þ ¼ N != N � nð Þ!½ �P nð Þ ð31:3Þ

In the grand canonical ensemble, the average generic molecular distribution

function ρ nð Þ RN
� �

is given by the expression:

ρ nð Þ RN
� � ¼ X

N

P Nð Þρ nð Þ RN=N
� �

N > nð Þ

where P(N ) is defined by (31.1). (One must note the used symbolism in this last
relation ρ(n)(RN/N). It expresses the fact that it is a conditional probability.
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After the development of the expression according to (31.1), one obtains (in the
writing below, the limits of integration are not mentioned in order to lighten it. The
integrals are evaluated from 0 to+1):

ρ nð Þ RN
� � ¼ 1=Ξð Þ�X

N

N!= N � nð Þ!½ �

� Q T;V;Nð Þ exp βμNð Þ½ � Ð . . . Ð dRnþ1 . . . dRNexp �βUN RN
� �� �

=ZN

� ð31:4Þ

For each value N, i.e., for each canonical ensemble constituting the grand

ensemble, we know that:

ρ nð Þ RN
� � ¼ N!= N � nð Þ!½ �

ð
v ::

ð
dRnþ1 . . . dRNexp �βUN RN

� �� �
=ZN

according to the properties of the canonical ensemble.

Let us integrate the left-hand side member of this equality over the differentials

dR1. . .dRn. We obtain the following result for the canonical ensemble containing

N particles:

ð
v ::

ð
ρ nð Þ Rnð ÞdR1 . . . dRn ¼ N!= N � nð Þ!½ �

The result is the same for each of the canonical ensembles involved in the grand

ensemble, i.e., for each value N. The explanation of this relation is as follows: the

integration from dR1 up to dRn completes that from dRn+1 up to dRN. As a result:

ð
v ::

ð
dR1 . . . dRn, dRnþ1 . . . dRNexp �βUN RN

� �� �
=ZN ¼ 1

Thus, the numerator of the left-hand member is purely and simply equal to ZN by

definition of the latter.

Let us carry out the same operation for each value of N. Integrate the right-hand
member of (31.4) over the same differentials and according to the same limits.

According to (31.1), we obtain the equality (31.5):

Ð
. . .

Ð
dRnρ nð Þ RN

� �¼ X
N

P Nð Þ N!= N � nð Þ!½ �
Ð
. . .

Ð
dRnρ nð Þ RN

� �¼ N!= N � nð Þ!h i
ð31:5Þ

for the generic molecular distribution function in the grand ensemble. Quite evi-

dently, it is an average value.

∑NP(N )[N!/(N – n)!] is the average value ‹N!/(N – n)!› of how many ways one

particle (not obligatory that labeled 1) is located at R1, a second at R2, and so forth

up to the particle n at Rn The average is calculated over all the possible values N.
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This relation is of utmost importance. We can, already, say that the Kirkwood–

Buff’s theory which provides us with a great insight into the meaning of an activity

(viz. Chap. 42) is based on it.

As a consequence of relation (31.5), one finds that:

– for n¼ 1,

ð
dR1ρ 1ð Þ R1ð Þ ¼ Nh i ð31:6Þ

– For n¼ 2:

ðð
dR1dR2ρ 2ð Þ R1R2ð Þ ¼ N N � 1ð Þh i

ðð
dR1dR2ρ 2ð Þ R1R2ð Þ ¼ N2

� 	� Nh i
ð31:7Þ

Finally, starting from (31.6) and by integration, one demonstrates that for a

homogeneous and isotropic system:

ρ 1ð Þ R1ð Þ ¼ Nh i=V
ρ 1ð Þ R1ð Þ ¼ ρ

ð31:8Þ

(All the terms located between ‹ › are average values). From a different standpoint,

one defines the pair correlation function g(R1, R2) for the grand ensemble by the

expression:

ρ 2ð Þ R1;R2ð Þ ¼ ρ 1ð Þ R1ð Þρ 1ð Þ R1ð Þg R1;R2ð Þ ð31:9Þ

31.2 Radial Distribution Function and Isothermal
Compressibility Coefficient of the System

The compressibility coefficient of a fluid κT is defined by the expression:

κT ¼ � 1 = Vð Þ ∂V =∂pð ÞV,T

where V and T are the volume and the temperature.

The reasoning is carried out according to the theory of the grand ensemble. We

have just set up the relations (31.6) and (31.7) above. Starting from them and also

from (31.9), it is possible to demonstrate (viz.: the end of this paragraph) that, in the

case of spherical particles and when g R1;R2ð Þ only depends on the separation

distance R¼ |R0 –R00|, κT is given by the relation:
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κT ¼ 1=kTρþ 1=kT

ð1
0

g Rð Þ � 1½ �4πR2dR ð31:10Þ

and, after having set up:

G ¼
ð1
0

g Rð Þ � 1½ �4πR2dR ð31:11Þ

kTρκT ¼ 1 þ ρG ð31:12Þ

The name of the G functions (such functions can be of several kinds according to

the number of components of the system—viz.: Chap. 42) is the spatial pair

correlation function or Kirkwood–Buff’s integral. Let us notice that the first term

on the right of (31.10) is the compressibility coefficient of a perfect gas. The second

one is the contribution brought to the compressibility by the interactions between

particles, that are expressed by the radial distribution function g(R). It is noteworthy
that in the reasoning leading to relation (31.12), in no case, it is a question of a

hypothesis concerning the total potential energy of the system (“pairwise additivity

hypothesis”). Moreover, the last relation applies whichever the kind of particles is.

The relation (31.10) is obtained as follows. It is set up by starting from the two
following relations which are just below, which must be demonstrated:

1þ ρ

ð1
0

dR
�
g Rð Þ � 1

�
4πR2dR ¼ N2

� 	 � Nh i2

 �

= Nh i ð31:13Þ

N2
� 	 � Nh i2 ¼ kTVρ2κT ð31:14Þ

Actually, after injection of (31.14) into (31.13), one obtains (31.10).

• Obtention of relation (31.13)
Let us consider a homogeneous and isotropic fluid, square (31.6) and subtract
the latter from (31.7). We obtain:

ðð
dR1dR2ρ 2ð Þ R1R2ð Þ �

ð
dR1ρ 1ð Þ R1ð Þ

ð
dR2ρ 1ð Þ R2ð Þ

¼ N2
� 	� Nh i2 � Nh i

or

ðð
dR1dR2 ρ 2ð Þ R1R2ð Þ � ρ 1ð Þ R1ð Þρ 1ð Þ R2ð Þ

h i
¼ N2

� 	 � Nh i2 � Nh i

By expressing ρ 2ð Þ R1R2ð Þ from the relation) (31.9), we obtain:
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ðð
dR1dR2ρ 1ð Þ R1ð Þρ 1ð Þ R2ð Þ g R1R2ð Þ � 1½ � ¼ N2

� 	� Nh i2 � Nh i

and according to (31.8):

ρ N=Vð Þ
ðð

dR1dR2 g R1R2ð Þ � 1½ � ¼ N2
� 	 � Nh i2 � Nh i

Since g R1,R2ð Þ only depends on the separation distance R (a scalar quantity) such
as R¼ |R1 –R2| (viz.: Chap. 30), we obtain the relation:

ρ N=Vð Þ
ð
dR1

ð
dR g Rð Þ � 1½ � ¼ N2

� 	 � Nh i2 � Nh i

ρN

ð
dR g Rð Þ � 1½ � ¼ N2

� 	 � Nh i2 � Nh i

Choosing polar coordinates (given the spherical symmetry) gives the following
relation:

ρN

ð
dR g Rð Þ � 1½ �4πR2dR ¼ N2

� 	 � Nh i2 � Nh i

or

1þ ρ

ð1
0

dR g Rð Þ � 1½ �4πR2dR ¼ N2
� 	 � Nh i2


 �
= Nh i ð31:13Þ

• Relation (31.14)
In the grand ensemble theory, the fluctuation of the number N of particles for a
one-component system is (viz. Appendix I):

N � Nh i2

 �D E

¼ N2
� 	� Nh i2

It is given by the expression (viz. Appendix J):

N2
� 	� Nh i2 ¼ kT ∂ Nh i=∂μð ÞT,V

N2
� 	� Nh i2 ¼ kTV ∂ρ=∂μð ÞT

The problem is, now, to obtain the partial derivative (∂ρ/∂μ)T. It is obtained
through this other partial derivative (∂P/∂μ)T.
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Let us start from Gibbs–Duhem’s relation (there is only one component):

�SdT þ Vdp ¼ Ndμ

or

∂p=∂μð ÞT ¼ N=V dT ¼ 0ð Þ

∂p=∂μð ÞT ¼ ρ ð31:15Þ

∂ρ=∂μð ÞT ¼ ∂ρ=∂pð ÞT ∂p=∂μð ÞT ð31:16Þ

Finally, in order to accede to (∂ρ/∂μ)T, it remains to explicit the quantity (∂ρ/∂p)T.
This last partial derivative is obtained as follows. Since:

V ¼ N=ρ

dρ ¼ � N=V2
� �

dV dN ¼ 0ð Þ

dρ=∂pð ÞT ¼ � N=V2
� �

∂V=∂pð ÞT,N

and by taking into account the expression of κT, we obtain the relation being
searched for:

N2
� 	� Nh i2 ¼ kTVρ2κT ð31:14Þ
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Chapter 32

The Chemical Potential and the Radial
Distribution Function: General Formal
Introduction of the Activity
and of the Activity Coefficient

Abstract The chemical potential μ plays a central part in the realms of physics,

chemistry, and even biochemistry. It is related to the activity a of the species that it

characterizes through a mathematical logarithmic relation. The latter can be for-

mally written under only one kind of mathematical expression, whichever the type

of activity is considered.

It is a well-known fact that, while relating the chemical potential of a perfect gas

to molecular parameters to its number density is not endowed with any problem, it

is not the case as soon as there exist interactions between the particles. In this case,

the problem becomes, even, immensely complicated to solve exactly. This chapter

mentions the setting up of general, but approximate, expressions, of the chemical

potential of the components of a system, when such interactions exist. The first one

links a decreasing exponential of the studied chemical potential to the difference of

two other exponentials involving Helmholtz’ energies of the system. It is obtained

within the framework of the canonical ensemble. The second relation is obtained

from the previous one through the using of the pairwise additivity hypothesis. It is

very interesting since it takes the form of the relation expressing the chemical

potential of a perfect gas, but does possess a supplementary term. The latter only

takes into account the mutual interactions of the particles and, hence, must be

related to an activity coefficient. Finally, the chapter also mentions the setting up of

theoretical relations between the chemical potential and the radial distribution

function.

Keywords Radial distribution function • Activity (general formal introduction) •

Activity coefficient • Chemical potential (formal expression when interactions

occur) • Helmholtz energy change • Chemical potential (formal expression within

the framework of the pairwise additivity hypothesis) • Other general expression of

the activity coefficient

The chemical potential μ plays a central part in the realms of physics, chemistry,

and even biochemistry. We also know (viz. Chap. 6) that it is related to the activity a

of the species that it characterizes through a mathematical logarithmic relation. We

also know that the latter can be formally written under only one kind of expression,

whichever the type of activity is considered.
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It is a well-known fact that, while relating the chemical potential of a perfect gas

to molecular parameters to its number density is not endowed with any problem, it

is not the case as soon as there exist interactions between the particles. In this case,

the problem becomes, even, immensely complicated. In this chapter, we give a

general expression of the chemical potential of the components of a system, when

such interactions exist. We also establish theoretical relations between the chemical

potential and the radial distribution function. The latter is experimentally

accessible.

32.1 General Relations

We know with the aid of statistical theory that, in the framework of the canonical

ensemble for instance, the chemical potential μ of a species is given by the relation

(viz. Chap. 23):

μ ¼ �kT ∂lnQ=∂Nð ÞT,V ð32:1Þ

The canonical partition function Q is given by the relation (viz. Chap. 27)

Q N; T;Vð Þ ¼ qN= 8π2
� �N

Λ3NN!
�h iðþ/

�1
::

ð
exp �βH XN

� �� �
dX

N

dpN ð32:2Þ

with

β ¼ 1=kT

Hamilton’s function H of the system is given by the expression:

H ¼
X

p2i ;X
N

� �þ UN XN
� �

i ¼ 1 . . .N

The occurrence of the symbol X is the mark that, here, we are considering the case

in which the component does possess an internal structure (with the occurrence of

the quantity q 6¼ 1). When this is not the case, the canonical partition function is:

Q N; T;Vð Þ ¼ 1= N!Λ3N
� �� �ðþ/

�1
::

ð
exp �H=kT½ �dRNdpN ð32:3Þ

with

H ¼ H pN;RN
� �

H pN;RN
� �¼ X

p2i =2m
� �þ UN RN

� �
i ¼ 1 . . .N

ð32:4Þ
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32.2 The Case of a Perfect Gas

The gas being perfect, there is by definition the lack of any intermolecular force

between the particles, whence in (32.2)::

UN XN
� � ¼ 0

Then, (32.2) becomes:

Q N; T;Vð Þ ¼ qN= 8π2
� �N

Λ3NN!
�h iðþ1

�1
::

ð
dXN

or (viz.: Chap. 27):

Q N; T;Vð Þ ¼ qN= 8π2
� �N

Λ3NN!
� ð

v

dR

ð2π
0

dϕ

ð π

0

sin θdθ

ð2π
0

dψ

� �N

that is to say

Q N; T;Vð Þ ¼ qNVN=Λ3NN! ð32:5Þ

If the particles are simple and spherical (q¼ 1), the canonical partition function

reduces to:

Q N; T;Vð Þ ¼ VN=Λ3NN! ð32:6Þ

Applying relation (32.1) to (32.5) leads to (32.7) after derivation and use of

Stirling’s approximation:

μ ¼ kT ln Λ3q�1
� �þ kTlnρ ð32:7Þ

where ρ¼N/V is the number density (more simpler the density) of the gas (m�3). It

is a kind of “concentration” of the gas. Relation (32.7) can also be written:

μ ¼ μ�g Tð Þ þ kT lnρ ð32:8Þ

μ�g(T ) is, by definition, the standard chemical potential of the particle in the

gaseous state. The factor kTln(Λ3q�1), quite evidently, takes molecular character-

istics of the gas into account.

From the standpoint of the scientific accuracy, it is very satisfying to find the

usual expression of the chemical potential of a gas, again. This is an argument in

favor of the hypothesis constituting a basis of statistical thermodynamics, even if it

is an indirect one.
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Let us notice in passing, without considering this point further, that relations
(32.7) and (32.8) written as they stand, are not fully satisfactory since, in them,
intervene logarithms of dimensional quantities.

(It may seem curious to express the chemical potential of a species in a liquid

phase as a function of its standard chemical potential in the gaseous phase. This

must not be the case because of the fact the choice of that state is purely arbitrary, as

we have already seen that. Moreover, at equilibrium, the chemical potential of the

solute is the same in both phases. Hence, the choice of the standard state does not

matter, but, then, activity values differ according to it).

32.3 A General Formal Expression of the Chemical
Potential When There Exist Interactions Between
the Particles of the System

Let us assume that the particles constituting the system are simple. That is to say,

their configuration is only defined by the vector R (monoatomic particles without

internal structure, q¼ 1).

In the N, T, V ensemble, the chemical potential is defined by the relation (viz.

Chap. 23)

μ ¼ ∂A=∂Nð ÞT,V ð32:9Þ

where A is the Helmholtz energy. We can also write:

μ ¼ A T,V,N þ 1ð Þ � A T;V;Nð Þ ð32:10Þ

or:

μ=kT ¼ A T,V,N þ 1ð Þ � A T;V;Nð Þ½ �=kT

The chemical potential, indeed, is equal to the change in the Helmholtz energy dA
when an infinitesimal amount dn mole of the species M is added, at constant

temperature and pressure, to the system already containing a finite amount of

M itself and of solvent. A “thought” equivalent process is to add 1 molecule M to

a very great amount of this solution. This is true because A is an extensive quantity

(Fig. 32.1).

Obtaining the general formal expression of the chemical potential when there are

interactions between the particles is as follows. According to what is aforemen-

tioned, the change in the Helmholtz energy due to the addition of one particle to the

system (in very great quantity) must be firstly expressed. Starting from (32.9) and

(32.10), we obtain:
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exp �μ=kTð Þ ¼ exp � A T,V,N þ 1ð Þ � A T;V;Nð Þ½ � 1=kTð Þf g

Handling the general relation, characteristic of the canonical ensemble (viz.

Chap. 23):

A T;V;Nð Þ ¼ �kTlnQ T;V;Nð Þ

we obtain, according to relation (32.5):

exp �μ=kTð Þ ¼ qNþ1=Λ3 Nþ1ð Þ N þ 1ð Þ!� �ð
v . . .

ð
exp �βUNþ1ð Þ

�dR0 . . . dRN=q
N=Λ3NN!

ð
v . . .

ð
exp �βUNð ÞdR1 . . . dRN

ð32:11Þ

Fig. 32.1 One way to define to define the chemical potential
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In the following sentences, the subscript 0 is the label of the added particle.

The general formal expression of the chemical potential when there exist

interactions between particles is obtained as it follows. According to what is

previously said, we must calculate the Helmholtz energy change when one mole-

cule is added to the system. Starting from relations (32.9) and (32.10), we obtain:

exp �μ=kTð Þ ¼ exp � A T,V,N þ 1ð Þ � A T;V;Nð Þ½ � 1=kTð Þf g

This relation expresses the chemical potential of the species in the conditions of the

canonical ensemble (N, T, V ) for the kind of investigated particle. Quite evidently,

it takes into account the total potential energies UN(R
N) and UN+1(R

N+1) for the

configurations RN and RN+1.

Relation (32.11) is the expression being searched for of the chemical potential. It

is general but formal. It turns out to be of great usefulness for the study of the

concept of activity coefficient. This study is valid for every fluid.

32.4 A General Expression of the Chemical Potential
in the Framework of the “Pairwise Additivity”
Hypothesis

Another expression of the chemical potential can be obtained from relation (32.11)

by using the “pairwise additivity” hypothesis. It consists in setting up the equality:

UNþ1 Ro . . .RNð Þ¼UN R1 . . .RNð Þ
þ
X
j

U Ro;Rj

� �¼UN R1 . . .RNð ÞþB Ro . . .RNð Þ j¼ 1 . . .N

ð32:12Þ

UN(R1. . .RN) is the sum of potential energies, the origins of which are the

interactions between particles 1 to N in configurations R1 to RN.

The term B(Ro. . .RN) is the sum of all the interactions between particle 0 and

others, in the same configurations.

The substitution of (32.12) into (32.11) leads to the expression (32.13):

exp �μ=kTð Þ ¼ q= Λ3 N þ 1ð Þ� � �
ð
v::

ð
dRo . . . dRNexp �βUNð Þ

exp
�� βB RO . . .RNð Þ=

ð
v::

ð
dR1 . . .dRNexp �βUNð Þ

ð32:13Þ

where
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exp �βUNð Þ=
ð
v::

ð
dR1 . . . dRNexp �βUNð Þ ¼ P R1 . . .RNð Þ

P(R1. . .RN) is the basic distribution function or density probability function to

observe the configuration R1. . .RN (viz. Chap. 28).

The relation (32.12) can also be written:

exp �μ=kTð Þ¼ q= Λ3 Nþ1ð Þ� � �
ð
v

ð
dRo . . .dRNP R1 . . .RNð Þexp �βB RO . . .RNð Þ½ �

ð32:14Þ

At this point of the reasoning, we must remark that the term exp(�βB(R0. . .RN)

which quantifies the interactions between the added particle “0” and the other ones

“1 to N” does not depend on the configuration R1 . . .RN [the probability of which is

P(R1. . .RN)] but is on the dependence of the configuration RO. . .RN. However, we

can adopt a system of relative coordinates defined by the general expression:

R0
i ¼ Ri � R0 with i from 1 to Nð Þ

Then, the term B(RO. . .RN) becomes a function of the relative coordinates Ri
0, that

is to say can be symbolized B(R1
0. . .RN

0). Hence, one can write:

exp �μ=kTð Þ¼q= Λ3 Nþ1ð Þ� ��
ð
dRo

ð
...

ð
dR0

1 ...dR
0
NP R0

1 ...R
0
N

� �
exp �β R0

1 ...R
0
N

� �� �
ð32:15Þ

Then, after this transformation, one can take out R0 and integrate over. The

integration gives V.
Given the fact that the integrand is the product of the exponential taking into

account the sum B (of all the interactions between the added particle and those

constituting the initial system) and of the basic distribution P(R
0
N), it appears that

the internal energy of the right-member of relation (32.14) is the average of the

quantity exp[�βB(R
0
1. . .R

0
N)] in the (T, V, N) ensemble. Hence, we obtain:

exp �μ=kTð Þ ¼ q V=Λ3 N þ 1ð Þ� �
exp

� �B=kTð Þ� 	

After the replacement of (N+ 1)/V by N/V since N + 1�N and by introduction of:

ρ ¼ N=V

we obtain:

32.4 A General Expression of the Chemical Potential in the Framework of the. . . 359

http://dx.doi.org/10.1007/978-3-319-46401-5_28


exp �μ=kTð Þ ¼ q=Λ3ρ
� �

exp �B=kTð Þh i

When all is done:

μ ¼ kTlnρΛ3=q� kTln exp �B=kTð Þh i ð32:16Þ

or

μ ¼ kTlnΛ3=qþ kTlnρ � kTln exp �B=kTð Þh i ð32:17Þ

It is interesting to notice that the right member of (32.17) is the chemical

potential of every gas, even if the studied fluid here, is a liquid. To be convinced,

it is sufficient to consider its “mathematical structure.” When the behavior of the

fluid is actually ideal, there is no interaction and B¼ 0. Then the relation (32.17)

becomes:

μ ¼ kTlnΛ3=qþ kTlnρ

This expression is identical to that giving the chemical potential of a perfect gas.

μ ¼ μ0g þ kTlnρ ð32:18Þ

According to (32.17), the chemical potential of a real gas can be expressed by the

relation:

μ ¼ μ0g þ kTlnρ � kTln exp �B=kTð Þh i ð32:19Þ

32.5 A General Meaning of the Activity Coefficient

Hence, the last term of the right member (32.19) is the contribution to the value of

the chemical potential of the interactions between molecules. B is actually the

interaction energy of the added particle with all others at the location R1. . .RN of

the system.

When we compare the relation (32.18) with the relation (32.19) below:

μ ¼ μ0g þ kTlnρþ kTln γ ð32:20Þ

where γ is the activity coefficient empirically introduced by Lewis in order to take

into account the interactions between the particles, it appears that:
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γ�1= exp �B=kTð Þh i ð32:21Þ

Relation (32.19) is very important. It is the basis of the affirmation that activity

coefficients take into account the particle interactions in the system. It provides a

general expression of an activity a, in terms of statistical thermodynamics:

a ¼ ρ= exp �B=kTð Þh i

Moreover, by itself, relation (32.21) is a general expression of activity coeffi-

cients. However, these expressions cannot be considered as anything else than an

approach to an activity because they are grounded in an approximation which is the

“pairwise additivity” hypothesis.

32.6 The Chemical Potential and the Radial
Distribution Function

Here, we mention one relation between the chemical potential and the radial

distribution function. (Obtaining it is given in Appendix K). It is:

μ ¼ kTln ρΛ3q�1
� �þ ρ

ð1
0

dξ

ð1
0

U Rð Þg R; ξð Þ4πR2dR ð32:22Þ

It has been set up by Kirkwood. From a general standpoint, it is based on the

“pairwise additivity” hypothesis applied to the global potential energy. More

precisely, it is founded on the virtual process consisting in coupling a particle

with others bit by bit, all along the addition. It involves the presence of the coupling

parameter ξ which can vary from 0 up to 1. When ξ¼ 0, the added particle is not

coupled to others, but the latter ones are coupled between themselves. When ξ¼ 1,

it is fully coupled with others. For the intermediary values, 0< ξ< 1, the added

particle is only partly coupled with others.

Hence, the term ρ

ð1
0

dξ

ð1
0

U Rð Þg R; ξð Þ4πR2dR is the work which has to be done

in order the interactions of the particle with the others constituting the system to be

effective. Let us symbolize the particle by A and the work byW(A|A). The left-hand
A figures the particle A which is coupled. The right-hand one figures the kind of

particles with which the previous one is coupled. In the occurrence, it is A itself:

W A


A� � ¼ ρ

ð1
0

dξ

ð1
0

U Rð Þg R; ξð Þ4πR2dR

Let us, already, notice that this relation is interesting because it directly leads to

another expression of the activity coefficient of a gas. Actually,
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kTln ρΛ3q�1
� � ¼ kTln Λ3q�1

� �þ kTlnρ

By definition, the term kT ln(Λ3q–1) is the standard potential in the gaseous phase:

kTln Λ3q�1
� � ¼ μ�g

Relation (32.21) can also be written:

μ ¼ μ�g þ kTlnρ� ρ

ð1
0

dξ

ð1
0

U Rð Þg R; ξð Þ4πR2dR

By comparison with the classical expression:

μ ¼ μ�g þ kTlnρþ kTlnγg

where γg is the activity coefficient of the gas.

Hence, the term ρ

ð1
0

dξ

ð1
0

U Rð Þg R; ξð Þ4πR2dR is an expression of the activity

coefficient.

Relation (32.22) proves to be very interesting for a study of activity coefficients.

32.7 Relation Between the Chemical Potential
and the Function G

We have already introduced the function G (cf. Chap. 31). It involves the radial

distribution function. It is given by the relation:

G ¼
ð1
0

g R
� �� 1

� �
4πR2dR

It results from the theory of grand ensemble.

It is also possible to express the chemical potential μ starting from G with the

help of the relation which we establish below. It involves the isothermal compress-

ibility coefficient of the system. The expression which links both quantities is:

μ ρð Þ ¼
ð
kT dρ= ρþ ρ2G

� �� �þ constant ð32:23Þ

Therefore, once the change inG as a function of the density number ρ is known, one
can conceive that the chemical potential can be obtained, the fact that G is acces-

sible through g(R) being well understood. Evidently, the relation (32.23) is one

integral solution of the expression (32.24):
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∂μ=∂ρð ÞT ¼ kT= ρþ ρ2G
� � ð32:24Þ

The way followed to obtain the latter is postponed to the end of this paragraph.

Relation (32.23) can also be equivalently written according to (32.25). Hence, the

integration can be done from it:

μ ρð Þ ¼ kT

ð
dr 1=ρ� G= 1þ ρGð Þ½ � þ constant ð32:25Þ

During the integration, the following mathematical difficulty happens: when

ρ¼ 0, the chemical potential does not exhibit a finite value. The trick used to

overcome it is as follows. Let us consider a solution of very low density

ρ0 (ρ0! 0). In these conditions, the interactions between molecules are negligible.

Then, the chemical potential μ(ρ0) is expressed according to a relation which is of

the same type as that which is encountered with the perfect gases:

μ ρ0ð Þ ¼ kTln ρ0Λ
3q�1

� �
μ ρ0ð Þ ¼ kTln Λ3q�1

� �þ kTlnρ0

The first term of the right member is nothing else than the chemical standard

potential μ�g of the liquid when it is in the gaseous state, as its mathematical

structure shows it. As a result,

μ ρ0ð Þ ¼ μ�g þ kTlnρ0

Hence, one can integrate from the lower limit ρ0 (and not from 0) up the limit ρ,
given the expression:

kT

ð ρ

0

dρ0 1=ρ0 � G= 1þ ρ0Gð Þ½ � ¼ μ�g þ kTlnρ0 þ kT

ð
ρρ
0 1=ρ0 � G= 1þ ρ0Gð Þ½ �dρ0

whence:

μ ρð Þ ¼ μ�g þ kTlnρ� kT

ð ρ

0

G= 1þ ρ0Gð Þ½ �dρ0 ð32:26Þ

A relation between the function G and the activity coefficient must now be found.

Evidently, it can be done through the integration of the latter expression.

According to what is preceding, we know that:
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kTln exp �B=kTð Þh i ¼ kT

ð ρ

o

G= 1þ ρ0Gð Þ½ �dρ0

Hence, we can deduce that the work of coupling of a molecule with all the others

is equal to the necessary work to increase the system density from 0 up to the final

one ρ. Hence, the relation (32.26) permits to find another expression of the activity

coefficients, which is:

lnγ ¼ �
ðρ

o

G= 1þ ρ0Gð Þ½ �dρ0 ð32:27Þ

As a result, thanks to this expression, it is possible to link the activity coefficient

to the radial distribution function g(R) through the function G.
The relation (32.26) will be generalized to systems consisting in fluid mixtures.

This possibility is demonstrated by the Kirkwood–Buff’s theory (viz. Chaps. 42 and

44).

• Obtention de la relation (32.24)

The demonstration is given in Chap. 31. Let us only recall that it involves the
isothermal compressibility coefficient kT and that it involves the following equali-
ties already demonstrated:

∂ρ=∂μð ÞT ¼ ∂ρ=∂pð ÞT ∂p=∂μð ÞT
∂ρ=∂pð ÞT ¼ ρκT

∂p=∂μð ÞT ¼ ρ

∂μ=∂pð ÞT ¼ 1= ρ2κT

kTρκT ¼ 1þ ρG
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Chapter 33

Virial Coefficients in Terms of Interaction
Potential Energies: Mayer’s Theory

Abstract It is proved that the experimental coefficients of the virial expansion are

related to some parameters coming from the theory of statistical thermodynamics.

This is a very important point since it permits to link theoretical results (coming

from statistical thermodynamics) with experimental ones. Above all, it permits to

attribute a physical origin to each virial coefficient, that is to say to attribute

interactions between well-known numbers of particles to every coefficient of the

virial expansion. The theory, mentioned in this chapter, leads to mathematical

expressions relating parameters stemming from the statistical theory to purely

thermodynamic quantities and inversely. The demonstration is done within the

framework of the great ensemble. It is based on some series developments. Inter-

vene in it some parameters such the absolute activity λ of the compound, canonical

partition functions, configuration integrals, and also, of course, the virial coeffi-

cients B(n). The expression of the latter involve an integral, which is also intro-

duced from another starting viewpoint, i.e., within the framework of the Kirkwood–

Buff’s theory, which has a different nature than that studied in this chapter and

which will be considered later.

Keywords Virial coefficient • Mayer’s theory • Absolute activity • Kirkwood–

Buff’s theory • Perfect and imperfect gases (in terms of canonical partition

function) • Virial expansion • Virial coefficients and statistical parameters •

Grand canonical ensemble • Physical significance of the virial coefficients in

statistical mechanics (monoatomic gas)

It is proved that the experimental coefficients of the virial expansion are related to

some parameters coming from the theory of statistical thermodynamics. This is a

very important point since it permits to link theoretical results with experimental

ones. Above all, it permits to attribute a physical origin to each virial coefficient,

that is to say to attribute interactions between well-known numbers of particles to

every coefficient of the virial expansion. The theory, given just below, leads to

interesting mathematical expressions relating parameters stemming from the sta-

tistical theory to purely thermodynamic quantities and inversely. One of them

involves an integral, which is also introduced from another starting viewpoint,

i.e., within the framework of the Kirkwood–Buff’s theory, which has a different

nature from that studied in this chapter. It will be considered later.
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33.1 Difference Between Perfect and Imperfect Gases

Let us recall that, according to considerations of classical mechanics, the canonical

partition function of a system consisting in only one component but possessing an

internal structure is given by the expression (relation (33.5)—Chap. 27):

Q N; T;Vð Þ ¼ qN= 8π2
� �N

Λ3N N!
�h i ð

�1
::

ðþ1

exp �βH XN
� �� �

dXNdpN relation 5ð Þ—Chap: 27ð Þ

H ¼
XN
i¼1

�
pi

2=2m
�þ UN XN

� �

with:

β ¼ 1=kT

This general expression applies to every system consisting in an imperfect gas.

We know that the term UN(X
N) is the total potential energy due to interactions

between the molecules of the gas in the configuration XN.

The fact that a gas is perfect is a consequence of the absence of intermolecular

forces between its molecules. This results in the equality:

UN XN
� � ¼ 0

in the expression of the canonical partition function, whatever the configuration

XN is.

33.2 The Virial Expansion

Let us also recall that for a sufficiently dilute gas so that it exhibits a perfect

behavior, the state equation (which is a universal law) is written as follows:

p ¼ ρ=kT

where ρ is the density number of the gas (ρ¼N/V, N being the number of moles of

the gas, V the container volume), k the Boltzmann’s constant, and T the temperature

of the system. For a greater density, the gas is no longer perfect. Its state equation is

given by the virial expression:

p=kT ¼ ρþ B2 Tð Þρ2 þ B3 Tð Þρ3 þ � � � ð33:1Þ
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The coefficients Bn(T ) are called virial coefficients. As a general rule, they differ

with each gas and their values depend on the intermolecular forces. The series

(33.1) is convergent up to a given value ρ when the temperature is lower than the

critical temperature. When the temperature is higher, the series is convergent for

every density number ρ.
Expression (33.1) can be also written:

p=ρkT ¼ 1þ B2 Tð Þρþ B3 Tð Þρ2 þ � � � ð33:2Þ

Let us remark, in passing, that when the gas is sufficiently dilute, the virial

expression reduces to the state equation of perfect gases.

Expanding in series the function p/ρkT as a function of ρ according to Taylor’s

development leads to the expression:

p=ρkT ¼ 1þ ∂ p=ρkTð Þ=∂ρ½ �T,ρ¼0ρþ 1=2! ∂2
p=ρkTð Þ=∂ρ2

h i
T,ρ¼0

ρ2 þ � � �
ð33:3Þ

The comparison of Equations (33.2) and (33.3) leads to the identities:

Bn Tð Þ ¼ 1= n� 1ð Þ!½ � ∂n�1
p=ρkTð Þ=∂ρn�1

h i
T,ρ¼0

ð33:4Þ

The virial coefficients are obtained from the slopes of the experimental curves. For

example, for the coefficient B2(T ), the slope of the curve (βp� ρ)/ρ with respect to

ρ permits to obtain the coefficient when ρ tends toward 0. The reasoning stems

evidently from the relation:

βp ¼ ρþ B2 Tð Þρ2

Remark: Let us also notice that the virial expansion is also written in the

literature under the form:

pV ¼ RT 1þ B=Vm þ C=Vm
2 þ � � �� �

where B, C . . . are constants depending on temperature and on the nature of the gas.

Vm is the molar volume of the gas. It is also written under other forms close to the

previous ones.

33.3 Virial Coefficients and Parameters Coming from
Statistical Thermodynamics

We shall show that the virial coefficients Bn(T ), experimentally accessible, are

related to statistical parameters, especially to canonical partition functions.
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The demonstration is performed in several steps which are:

– The establishment of a relation between λ and ρ, respectively, the absolute

activity and the average density number of the particle. The average is calculated

over the canonical partition functions which constitute the corresponding grand

canonical partition function

– The comparison of the classical expression of the virial and the relation between

λ and ρ

Let us consider a gas, mono or polyatomic but constituted by only one compo-

nent. It is simpler to reason in this case with the partition function of the great

ensemble Ξ (viz.: Chap. 24).

33.3.1 Setting Up the Relation Between λ and ρ

This relation is:

ρ ¼ Q1=Vð Þλþ 2 Q2 � 1=2Q12
� �

=V
� �

λ2 þ � � � ð33:5Þ

The QN are the canonical partition functions. Relation (33.5) is itself set up by

starting from two other relations which must be demonstrated:

– The first one is the relation (33.6) relating the average density number ρ to the

absolute activity λ. No canonical partition functions still intervene in this

relation:

ρ ¼ λ ∂p=kTð Þ=∂λ ð33:6Þ

– The second one is the following relation (33.7):

pV=kT ¼ ln 1þ
X
N�1

QN V; Tð ÞλN
" #

ð33:7Þ

Both relations stem from properties of the grand canonical ensemble. They are

based on the definition of the absolute activity of a species λ ¼ eμ=kT
� �

and on its

characteristic function pV ¼ kTlnΞð Þ—viz. Chap. 24 and Appendix V.

1. Setting up of the relation (33.6)

The mean density ρ is defined by the expression:

ρ ¼ N=V
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In the grand ensemble theory (viz. Chap. 24), the average number of molecules

is given by the relation:

N ¼ kT ∂lnΞ=∂μð Þv,T

Let us express N. We know that:

lnΞ ¼ pV=kT

whence:

ρ ¼ kT ∂ pV=kTð Þ=∂μ½ �v,T 1=vð Þ

and:

ρ ¼ ∂p=∂μð Þv,T

From another side:

lnλ¼ μ=kT
dlnλ¼ 1=kTð Þdμ
dμ¼ kT dlnλ
ρ¼ ∂ p=kTð Þ=∂lnλ
ρ¼ λ∂ p=kTð Þ=∂λ

ð33:6Þ

2. Setting up the relation (33.7)

The starting relation is:

Ξ λ;V; Tð Þ ¼ epV=kT ð33:8Þ

We also know that (viz.: Chap. 24):

Ξ λ;V; Tð Þ ¼ 1þ
X
N�1

QN V; Tð ÞλN ð33:9Þ

where we used the symbolism:

QN V; Tð Þ ¼ Q N;V; Tð Þ

QN(V, T ) is the canonical partition function relative to the number of particles N.
(This function enters into the grand canonical partition function—viz. Chap. 24).

Equation (33.9) is the series expansion of Ξ as a function of λ. It is interesting to
notice in passing that:

Qo ¼ 1
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When N¼ 0, the empty system does possess only one state, that of null energy,

whence the value Qo ¼ 1.

From (33.8) and (33.9), one immediately obtains (33.7).

3. Obtaining of the relation (33.5)

Let us expand in series the right member of relation (33.7) and limit it to its first

terms, according to the relation:

ln 1þ xð Þ ¼ x� x2=2þ � � �

We obtain:

pV=kT ¼ Q1λþ Q2 � 1=2Q1
2

� �
=V

� �
λ2 þ � � � ð33:10Þ

We can relate ρ to the canonical functions Q1, Q2 by using relations (33.6) and

(33.10). In order to do that, we derive expression (33.10) term by term with

regard to λ, divide by V and multiply by λ. We obtain:

ρ ¼ Q1=Vð Þλþ 2 Q2 � 1=2Q1
2

� �
=V

� �
λ2 þ � � � ð33:5Þ

33.3.2 Expressions of the Virial Parameters Bn(T)
Containing the Canonical Partition Functions

As it has been already said, we operate by comparison.

We begin by expressing λ as a function of ρ through a relation involving the

partition functions Q1, Q2, etc. Hence, we set up as a rule:

λ ¼ ao þ a1ρþ a2ρ
2 þ � � �

and we determine ao, a1, a2, etc. by replacing λ by this expression into (33.8) and by
identifying. Once all the calculations have been done, we obtain:

ao � 0, a1 � V=Q1, a2 � � 2 Q2 � 1=2Q1
2

� �
V2=Q1

3, . . .

and as a result:

p=kT ¼ ρ� V=Q1
2

� �
Q2 � 1=2Q1

2
� �

ρ2 þ � � � ð33:11Þ

The comparison of (33.11) and (33.1) permits, for example, to find the coeffi-

cient of order two of the virial. It is:

B2 Tð Þ ¼ �a2=2

that is to say:

370 33 Virial Coefficients in Terms of Interaction Potential Energies: Mayer’s Theory



B2 Tð Þ ¼ � V=Q1
2

� �
Q2 � 1=2Q1

2
� �

The terms of higher orders are obtained likewise. The parameter B2(T ) taken as an

example is very important. It is the most useful virial coefficient (viz. just below).

Hence, we can express the virial coefficients as being a function of different

canonical partition functions QN playing a part in the description of the system

through the use of the grand ensemble.

33.4 Physical Significance of the Virial Coefficients
of a Monoatomic Gas in Statistical Mechanics

It is interesting to explicit the virial coefficients in terms of potential energies of

molecular interactions. The study of a particular case, that is to say, that of a

monoatomic gas, the intermolecular potential energy of which obeying the

pairwise-additivity hypothesis, permits to do it.

In this chapter, we confine ourselves to only giving the mathematical expression

relating the configuration integrals Z1, Z2 and the virial coefficient B2(T ) and also,

the corresponding expression of the coefficient B3(T), though it is, by far, less

interesting than the previous ones.

Let us recall firstly that the configuration integrals ZN are given by the expres-

sions (viz. Chap. 28):

ZN ¼
ð
V

e
�UN x1...zNð Þ

dx1 . . . dzN

(We have already seen and we shall again see in the next chapter that they are

related to canonical partition functions Q1, QN by the expressions:

ZN V; Tð Þ=N! ¼ QN V; Tð ÞVN=Q1 V; Tð ÞN

One demonstrates that the relation between B2(T) and the configuration integrals
Z1 and Z2 is the following one (viz. Chap. 34):

B2 Tð Þ ¼ � 1=2Vð Þ Z2 � Z1
2

� �
Equivalently, it can be written as follows:

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r1; r2ð Þ=kT½ �dr1dr2 � V2

� �

where U(r1, r2) is the intermolecular potential energy between particles 1 and 2 of

the system. It depends on their coordinates r1 and r2 (x1. . .z2). It can also be written:
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B2 Tð Þ ¼ � 1=2ð Þ
ð1
0

exp �U rð ÞkT � 1½ �4πr2dr ð33:12Þ

This expression is often given in literature under the form:

B2 Tð Þ ¼ � 1=2ð Þ
ð1
0

f r12ð Þ4πr122 dr

f(r12) is called the Mayer’s f-function. Generally, Mayer’s f-functions are defined by
the expression:

f Xi;Xj

� � ¼ exp �βU Xi;Xj

� �� �� 1

or

f Xi;Xj

� � ¼ xi, j � 1

It appears the function G in the integrand of relation (33.12). It has been already

defined within the framework of the great ensemble (viz.: Chap. 31):

G ¼
ð1
0

�
g Rð Þ � 1

�
4πR2dR

In the latter expression, R is a scalar and, hence, no longer a vector as were r1 and
r2. R is the distance between the particles 1 and 2 (viz.: Chap. 42).

Owing to the importance of integrals G (viz.: Chap. 42 devoted to Kirkwood–

Buff theory), it is interesting to represent the curve [g(R)� 1] as a function of R and

more precisely its relationship with the electrostatic on which it is dependent

through the function g(R) (Fig. 33.1).
We notice that f(R) tends towards 0 when R tends toward 1.

Supposing that the pairwise-additivity hypothesis is validated, the configuration

integral Z3 can be written:

Z3 ¼
ððð
V

exp � U r1; r2ð Þ þ U r1; r3ð Þ þ U r2; r3ð Þ½ �f gdr1dr2dr3

and B3(T ) is given by the expression:

B3 Tð Þ ¼ � 1=3Vð Þ
ððð
V

x12 � 1ð Þ x13 � 1ð Þ x23 � 1ð Þdr1dr2dr3

Hence, we notice that statistical thermodynamics provide explicit expressions of
the virial coefficients Bk in terms of molecular interactions energies which occur in
a group of k particles. This is one of the most fundamental results it leads to.

372 33 Virial Coefficients in Terms of Interaction Potential Energies: Mayer’s Theory

http://dx.doi.org/10.1007/978-3-319-46401-5_31
http://dx.doi.org/10.1007/978-3-319-46401-5_42
http://dx.doi.org/10.1007/978-3-319-46401-5_42


One can say that, because of the handling of the varied canonical functions QN,
this theory amounts implicitly to considering the studied particle as being located in
the average electrostatic field developed by all the remaining particles of the
system, whereas the Kirkwood–Buff theory does only consider pairs interactions
(cf. Chap. 42).

We shall see (viz. Chaps. 39 and 40) that this is also true for some cases of

solutions. More precisely, the virial coefficients make due allowance for the fact

that, according to their order, they result from successive corrections (with respect

to the ideal behavior of gases) taking into account the interactions between pairs,

triplets, quadruplets of particles, and so forth. One result, among the most remark-

able ones, is that the coefficient Bk depends on the properties of the system exactly

containing k particles. For example, the coefficient B2 can be calculated for a

system containing two particles.

Fig. 33.1 Comparison

between electrostatic

potential U(R) and function

f Rð Þ ¼ g Rð Þ � 1½ � curves
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Chapter 34

A Statistical Expression of the Activity of a
Species: A Relation Between It
and the Corresponding Concentration
in the Case of an Imperfect Gas

Abstract This chapter brings some elements of answer to one of the most signif-

icant questions regarding the notion of activity, i.e., how are, mathematically

related to each other, the value of an activity and that of the corresponding

“concentration” of a species when the latter, no longer, tends toward zero? Recall,

indeed, that G.N. Lewis, when he introduced it, defined the notion of activity by the

following sentence:

a quantity which is “an active density number which bears the same relation to the chemical

potential μ at any density that N/V does as N! 0.”

The results mentioned in this chapter constitute a first mark of the fact that

statistical thermodynamics permits, at least in part, to answer the question. The

content of this chapter shows that the setting up of the expression relating the

activity of a gas to its corresponding concentration stems from a reasoning which, at

the onset, requires the definition of the activity in terms of statistical parameters. It

also shows that the obtained relation involves terms which are related to the virial

coefficients. According to the theory, an activity z of a compound can be identified

to the product of its absolute activity λ and of the second canonical function of the

grand ensemble Q1(N, V, T) (that is to say that corresponding to the presence of

only one particle in the system), product divided by the volume V of the system. The

relation also shows that z exhibits all the properties of Lewis’ activity. It has the

form of a series development of z in density ρ, the coefficients of which can be, in

principle, calculated from the experimental values of the virial relation.

Keywords Statistical expression of the activity of a species • Activity–

concentration relation of an imperfect gas • Lewis’ definition of an activity •

Statistical analogue of the activity • Configuration integral • Activity and

concentration relation • Grand ensemble • Series development • Density number •

Activity and virial coefficient relation • Fugacity in statistical thermodynamics •

Virial coefficients and configuration integrals

This chapter brings some elements of answer to one of the most significant

questions regarding the notion of activity, i.e., how are, mathematically related to
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each other, the value of an activity and that of the corresponding “concentration” of

a species when the latter, no longer, tends toward zero?

Let us recall, indeed, that G.N. Lewis, when he introduced it, defined the notion

of activity by the following sentence:

a quantity which is “an active density number which bears the same relation to the chemical

potential μ at any density that N/V does as N! 0.”

The results mentioned in this chapter constitute a first mark of the fact that

statistical thermodynamics permits, at least in part, to answer the question.

We shall see that the obtaining of the expression relating the activity of a gas to

its corresponding concentration stems from a reasoning which, at the onset, requires

the definition of the activity in terms of statistical parameters. We shall also see that

the obtained relation involve terms which are related to the virial coefficients which

can be experimentally obtained.

34.1 The Followed Reasoning

Let us recall the fact that the handling of the activity coefficient (and of that of

fugacity) finds all its interest when there are interactions between the particles

constituting the system. We know indeed (viz. Chap. 32) that, that in the framework

of the “pairwise additivity” hypothesis, the expression of the chemical potential of

the component is:

μ ¼ μ0g þ kTlnρ� kTln exp �B=kTð Þh i

It contains the term �kTln exp �B=kTð Þh i which takes into account the interactions

between the particles.

The reasoning followed in order to obtain the relation being searched for consists

in:

– In a first step, arbitrarily defining a parameter z which exhibits the behavior of

the activity as it has been introduced by Lewis, i.e., that z! ρ when ρ! 0. We

can call this quantity the statistical analog of the activity, symbolized by z.
– In a second one, setting up the mathematical relation activity–concentration

being searched for. It requires the crossing through the configuration integrals

ZN.
– In a third step, then, to set up the relations between the parameters playing a part

in the preceding relations and the virial coefficients applying to the real gases

(for which, actually, there exist interactions between the different particles).

At this point of the reasoning, we justify the calculations and the validity of the

statistical definition adopted for the activity. Then, we demonstrate that one of the

parameters involved in the preceding calculations is actually equal to a configura-

tion integral. Then, we shall perform a brief analysis of the physical meaning of the
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activity of a gas and give a statistical definition of its fugacity. Finally, we shall give

the expression of the virial coefficients as a function of the configuration integrals.

34.2 Introduction of the Activity

Let us consider a mono or polyatomic gas. Let us reason within the framework of

the grand ensemble. We know that the partition function can be written (viz.

Chap. 24):

Ξ λ;V; Tð Þ ¼ epV=kT ð34:1Þ

the term pV/kT representing the thermodynamic function characteristic of the grand

ensemble (viz. Appendix V). We also know that (viz. relation (33.9)—previous

chapter):

Ξ λ;V; Tð Þ ¼ 1þ
X
N�1

QN V; Tð ÞλN ð34:2Þ

where

QN V; Tð Þ ¼ Q N;V; Tð Þ and λ ¼ eμ=kT

QN(V, T ) is the canonical partition function entailing the constant number N of

particles which, with other canonical functions taking into account different num-

bers, enters into the grand canonical partition function. Equation (34.2) is the

expansion in series of Ξ in λ. The parameter λ has already been introduced and is,

in the occurrence, called the absolute activity of the gas (viz. Chap. 24).

According to what is preceding:

pV=kT ¼ ln 1þ
X
N�1

QN V; Tð ÞλN
" #

ð34:3Þ

Let us develop the logarithm in series. By only retaining the first terms, we obtain:

ln 1þ
X
N�1

QNλ
N

" #
¼ Q1λþ Q2λ

2 þ Q3λ
3 þ � � �� �

� Q1λþ Q2λ
2 þ Q3λ

3 þ � � �� �2
=2þ . . . ð34:4Þ

i.e.:
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ln 1þ
X
N�1

QNλ
N

" #
� Q1λ ð34:5Þ

according to the relation:

ln 1þ xð Þ ¼ x� 1=2x2 þ 1=3x3 � 1=4x4 þ � � � �1 < x � 1ð Þ
lnΞ � Q1λ ð34:6Þ

The equivalent expressions (34.5) and (34.6) induce the introduction of the param-

eter z defined by the following expression:

z ¼ Q1λ=V ð34:7Þ

The interest to adopt this definition is to show that, actually:

z ! ρ when ρ ! 0

The property of z to tend toward ρ is only true if all the other terms of the

development are lower than that kept.

As we shall see below, z exhibits the properties of Lewis’ activity. z is called a
statistical analogue of the activity.1 With this choice, according to relation (34.1)

we can write:

PV=kT ¼ Q1λ ð34:8Þ

A beginning of proof of the identity of the Lewis’ activity and of z is provided by
demonstrating that z! ρ when ρ! 0 which, indeed, is the definition of Lewis,

originating in thermodynamics.

The identification of z to the Lewis’ activity firstly entails to set up a relation

between the density number ρ and z. We immediately do that in two steps. In the

first step, we show that z tends toward ρ when the latter tends toward zero. In the

second step, we set up the relation being searched for.

34.3 Analogy of the Behaviors of z and of ρ When ρ Tends
Toward Zero

Since we are reasoning by using the grand ensemble, the density number is given by

the relation:

1Within the framework of statistical thermodynamics, we use the symbol z instead of a in order to

mark the fact than z is introduced by the statistical way.
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ρ ¼ N=V ð34:9Þ

The number of particles cannot be anything else than an average number given the

use of the grand ensemble. We have seen (viz. Chap. 33) that:

N ¼ λ ∂lnΞ=∂λð ÞV,T ð34:10Þ

According to (34.9) and (34.10), the condition:

ρ ! 0

entails that:

N ! 0 and λ ! 0

According to the statistical definition of the activity (adopted above), the relation

(34.7) is evidently satisfied lorsque λ! 0, z! 0. Consequently:

z ! ρ when ρ ! 0

The quantity z ¼ Q1λ=V, from purely statistical origin, exhibits the same behavior

as the Lewis activity, at least when ρ! 0.

34.4 Relation Between the Number of Density
ρ and Activity z

We have seen that, within the framework of the hypothesis of the truncation of the

series development of the grand partition function Ξ as a function of λ, the activity
z tends toward the density number of the gas ρ when the latter tends toward zero. It
is no longer the case when the latter does not tend toward zero.

Now, we set up a more general relation between z and ρ than that constituting the
Lewis’ definition.

Let us replace λ by z into (34.3) through:

λ ¼ zV=Q1

We obtain:

Ξ ¼ 1þ
X
N�1

QNV
N=QN

1

� �
zN ð34:11Þ

Let us introduce the term Z
0
N by the relation:
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Z0
N ¼ N! QN=Q

N
1

� �
VN ð34:12Þ

As we have already mentioned it in Chap. 28 and as we demonstrate it (viz.

paragraph 8), ZN is nothing else than the configuration integral ZN. Expression

(34.11) can be, now, written by already assimilating Z
0
N to ZN. Therefore:

Ξ ¼ 1þ
X
N�1

ZN=N!ð ÞzN ð34:13Þ

Let us take the logarithm of both members of this equality, i.e.:

lnΞ ¼ ln 1þ
X
N�1

ZN=N !ð Þ zN
" #

ð34:14Þ

or, taking into account (34.1):

pV=kT ¼ ln 1þ
X
N�1

ZN=N!ð Þ zN
" #

ð34:15Þ

Let us divide the above equation by V and expand in series the logarithm. We can

easily forecast that we shall obtain one relation of the type:

p=kT ¼ b1z
1 þ b2z

2 þ b3z
3 þ � � � ð34:16Þ

or equivalently:

p=kT ¼
X
j�1

bjz
j ð34:17Þ

Or

pV=kT ¼ V
X
j�1

bjz
j ð34:18Þ

or

lnΞ ¼ V
X
j�1

bjz
j ð34:19Þ

b1, b2, . . .. depend on temperature owing to the fact that we are reasoning within the

framework of the great ensemble.

The simple fact to identify the terms of same degree in z of both members of

relation (34.19), after having expanded in series the logarithm of the kind ln (1 + x)
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of relation (34.15) by using the symbol x ¼
X
N�1

ZN=N!ð Þ zN , permits to immediately

find:

Vb1�Z1 i:e: b1 ¼ 1

Vb2� Z2 � Z2
1

� �
=2

Vb3� Z3 � 3Z1Z2 þ Z2
1

� �
=3!

⋮

ð34:20Þ

Hence, coefficients b1, b2, b3. . . can be expressed as a function of the configuration

integrals. By limiting ourselves to the term of order 3, we obtain:

p=kT ¼ Z1=Vð Þ½ �z1 þ 1=2Vð Þ Z2 � Z2
1

� �� �
z2

þ �
1=6Vð Þ� Z3 � 3Z1Z2 þ 2Z3

1

� �
z3 þ � � � ð34:21Þ

At this point of the reasoning, we notice that the function p/kT, which is a

remnant of the perfect gas law, can be written under a series development as a

function of the statistical analogue z of the activity.
The relation being searched for between ρ, z, and the coefficients bi is found as it

follows. According to (34.10):

N ¼ λ ∂lnΞ=∂λð ÞV,T ð34:22Þ

Since:

λ ¼ V=Q1ð Þz

i.e.:

dλ ¼ V=Q1ð Þdz

As a result:

N ¼ z ∂lnΞ=∂zð ÞV,T

According to (34.1),

N ¼ z ∂ pV=kTð Þ=∂z½ �V,T
N=V ¼ ρ ¼ z ∂ p=kTð Þ=∂z½ �T

ð34:23Þ

and according to (34.17):
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∂ p=kTð Þ=∂z½ �T ¼
X
j�1

jbj Tð Þzj�1

ρ¼
X
j�1

jbj Tð Þzj
ð34:24Þ

The relation (34.24) between the density number ρ and the activity of the com-

ponent z is that which is being searched for. It depends on the configuration

integrals ZN, parameters stemming from statistical thermodynamics through the

coefficients bj.
Another interesting relation is its reciprocal one, i.e., that relating the activity z to

the density number ρ. Let us assume that it is of the following analytical type:

z ¼ a1ρþ a2ρ
2 þ a3ρ

3 þ � � � ð34:25Þ

At once, one can remark that a1 is set up equal to 1 in agreement with what is

preceding. In order to find the other coefficients an, it is sufficient to replace z by its
development (34.25) into its expression (34.24) and to identify the terms of the

same degree in ρ. Hence, by limiting ourselves to the terms of degree 2, we obtain:

ρ¼ b1 ρþ a2ρ2ð Þ þ 2b2 ρþ a2ρ2ð Þ2 þ � � �
ρ¼ b1ρþ b1a2ρ2 þ 2b2 ρ2 þ 2a2ρ3 þ a22ρ

4
� �þ � � �

ρ¼ b1ρþ b1a2 þ 2b2ð Þρ2 þ termsof superiordegrees

We deduce that, since b1¼ 1, the terms of superior degrees must be null, i.e.,

a2 ¼ �2b2

Likewise, we would find:

a3 ¼ �3b3 � 4a2b2

a3 ¼ �3b3 þ 8b22 etc . . .

Such is the relation (34.25) between the activity z and the density number,

whatever the value of the latter is. Its coefficients a1, a2 . . . are accessible by

starting from experimental data. Actually, from the practical standpoint, it is

more interesting than the relation (34.24). The density numbers being, indeed,

data which are immediately at our disposal, it is possible to reach the value of the

activity which is a thermodynamic data very important, as we have already said

it. In principle, the calculation can be done whatever the value of ρ is.

382 34 A Statistical Expression of the Activity of a Species: A Relation Between. . .



34.5 Discussion Around the Relation Between the Activity
and the Corresponding Concentration
of the Imperfect Gas

The relation (34.25) is at the core of our purpose. It can also be written:

z ¼ ρ� 2b2ρ
2 þ �3b3 þ 8b22

� �
ρ3 þ � � � ð34:25Þ

with the coefficients b2, b3, . . . which are function of the configuration integrals and
which are related to the virial coefficients (viz. the following paragraph).

We notice that:

– When ρ tends toward zero, z tends toward ρ
– z varies with ρ
– According to the Lewis’ definition of the activity, for every “concentration” ρ,

the chemical potential of the species must obey the relation:

μ ¼ μ0 þ RTlnz

As a result, z appears as being a pseudo-concentration which would confer the

same value to the chemical potential of the species as actually its concentration ρ
does, whatever its value, during an ideal behavior.

Unfortunately, in our current state of calculations, the expression (34.25) cannot

be anything else than a formal one, although as a rule, it permits the calculation of

the activity for every “concentration,” provided the values of the virial coefficients

are known after experimental measurements. The number of the virial coefficients

to know may be huge, owing to the recurrence of the calculation of the coefficients

bi and ai (about 10
20 coefficients!).

34.6 Relations Between the Density Number of the Gas, Its
Activity, and the Virial Coefficients

It is possible to obtain the numerical values of the coefficients bj and an from those

of the virial coefficients which are the experimental ones. Let us, indeed, compare

the virial relation:

p=kT ¼ ρþ B2 Tð Þρ2 þ B3 Tð Þρ3 þ � � �

and
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p=kT ¼ b1z
1 þ b2z

2 þ b3z
3 þ � � � ð34:16Þ

Let us replace the activities z by the development (34.25) into (34.16). We obtain

by writing only until the term of degree 2:

p=kT ¼ b1 ρþ a2ρ
2

� �þ b2 ρþ a2ρ
2

� �2 þ � � �

whence:

p=kT ¼ b1ρþ a2b1 þ b2ð Þρ2 þ � � � ð34:26Þ

By comparing (34.26) and the virial relation and by taking into account the an
expressions as a function of bj previously obtained, we find:

B2 Tð Þ ¼ �b2
B3 Tð Þ ¼ 4b22 � 2b3
⋮

Therefore, the coefficients bj and an (the latter ones through the reciprocal

relation) can be expressed as a function of the virial coefficients.

Moreover, it appears that the coefficients an do not depend on the coefficients bj
when j> n. For example, a2 only depends on b2 and on b1, i.e., only on the

configuration integrals Z1 and Z2. It is the same thing for an and bn which only

depend on the configuration integrals Z1. . .Zn. This point is very important. It means

that these coefficients together with those of the virial, take into account:

• When b2, a2, B2(T ) are concerned, only the interactions between two particles

• When b3, a3, B3(T ) are concerned, only the interactions between three particles

• When bn, an, Bn(T ) are concerned, only those between n particles.

In other words, B2(T ) only depends on the interactions between two

particles, etc.

34.7 Justification of the Preceding Calculations. Validity
of the Statistical Definition of the Activity

The problem, now, is to justify the validity of relation (34.16).

A first point to notice before the justification is the characteristic of the reasoning

followed up to now. It is the embedding and the interdependence of the different

calculations. Consequently, if the legitimacy of expression (34.19) can be demon-

strated, all the inferences stemming from it become legitimate.
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From the pure mathematical standpoint, the difficulty lays in the fact that, at this

point of the reasoning, it is not sure at all that the expansion in series, stemming

from (34.15), can be truncated as it has been done.

The justificatory reasoning given below can be qualified of “upside down

reasoning.” We start from the expression (34.16) set up, postulated as being a priori

perfectly legitimate, and we demonstrate that we come back to expression (34.15).

According to (34.16), we have:

epV=kT ¼ exp V
X
j�1

bjz
j

" #

Because of the properties of the exponential function:

exp V
X
j�1

bjz
j

" #
¼ exp Vb1z

1
� � � exp Vb2z

2
� � � exp Vb3z

3
� �� � � ð34:27Þ

Let us develop in series the exponentials of the right member of this expression

and let us perform the products. Let us explicit the product of the two series

developments (limited to the third degree) of the first two exponentials. This

product is:

exp Vb1z
1ð Þ � exp Vb2z

2ð Þ ¼ �
1þ Vb1ð Þ1z11 þ 1=2! Vb1ð Þ2z12

þ 1=3! Vb1ð Þ3z13 þ � � ��
• 1þ Vb2ð Þ1z21 þ 1=2! Vb2ð Þ2z22 þ 1=3! Vb2ð Þ3z23 þ � � �
h i

(Notice the use of both indices qualifying the activities, the first one permitting

the mark of the coefficient bj, the second being the exponent). The calculation

performed by multiplying the previous product by the series development of the

third exponential exp(Vb3z
3) leads to a series development as a function of z the

coefficients of the increasing powers of which are:

for z1 z2 Vb1=1ð Þ
for z2 z2 ½ Vb1ð Þ2 þ Vb2=1ð Þ
for z3 z3 1=3! Vb1ð Þ3 þ Vb=1ð Þ Vb2=1ð Þ þ Vb3=1ð Þ
⋮

Equalizing the coefficients ZN of equation (34.13) and those of equation (34.27), we
obtain the equalities:
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Vb1=1ð Þ ¼ Z1

½ Vb1ð Þ2 þ Vb2=1ð Þ ¼ 1=2Z2

1=3! Vb1ð Þ3 þ Vb1=1ð Þ Vb2=1ð Þ þ Vb3=1ð Þ ¼ 1=6Z3

In brief, we again find expression (34.13). It is the result that we wanted to

demonstrate.

34.8 Identity of Z
0
N and of the Integral of Configuration

in Classical Statistical Thermodynamics ZN

We have already mentioned in the paragraph 4 that the parameter Z
0
N introduced in

the preceding calculations and defined by the expression:

Z0
N V; Tð Þ ¼ N! QN=Q1

N
� �

VN ð34:12Þ

is identical to the corresponding configuration integral ZN in classical statistical

thermodynamics, defined by the expression (viz. Chap. 28):

Qclass ¼ ZN=N !Λ3N ð34:28Þ

Hence, we must demonstrate that:

Z0
N�ZN

When the gas is very weakly concentrated, it exhibits a perfect behavior. It is

obviously the case when there is only one molecule in the system, to which

corresponds the partition function Q1 by definition. Since the gas behaves ideally,

the following expression is justified (viz. Chap. 26):

Q ¼ 1=N!ð ÞqN

and therefore for N¼ 1:

with:

q ¼ V=Λ3

where q is the molecular partition function of the system—viz. Chap. 27. As a

result:
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Q1 ¼ V=Λ3

Replacing Q1 into (34.12) by the latter expression immediately leads to the identity

being searched for.

34.9 Physical Meaning of the Activity of a Gas

In this paragraph, we briefly comment on the results which we have obtained just

above.

– Let us begin by saying that relations (34.24) and (34.25) show distinctly how the

activity and the density numbers differ from each other. The relation (34.25), for

example, shows that the difference between both is expressed by terms

containing the density number itself at degrees larger than 2. As a result, one

can conceive that the more dense the gas is, the larger the difference between

both quantities may be. This conclusion can also be found when the notion of

activity coefficient is regarded (viz. Chap. 37).

– Let us consider the relation (34.7) defining the activity:

z ¼ Q1λ=V ð34:7Þ

Clearly, the activity takes its roots in classical thermodynamics through the

absolute activity λ. Certainly, the absolute activity is a quantity which is intro-

duced in statistical thermodynamics at the level of the grand ensemble, but its

definition:

λ ¼ eμ=kT

involves the concept of chemical potential of purely thermodynamic origin.

Clearly, we notice that, by its sole definition, the activity of a substance is linked

to its chemical potential.

– Still more significant than the last argument is the occurrence of the canonical

partition function Q1 in the definition of the activity. It is a characteristic of the

system which possesses one particle only in the system V. No interaction with

other particles, of course, can exist. Here, we again find the meaning which was

attributed to an activity by Lewis himself: i.e., to characterize a species as it

would have no interaction with other ones. (In passing let us recall that,

according to the general principles of quantum mechanics, Q1 depends on the

volume V and on the fact that there is one molecule in the system).
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34.10 Definition of the Fugacity

Incidentally, in this paragraph, we are interested in the meaning of the fugacity in

statistical thermodynamics. According to Lewis, the fugacity is defined as being the

quantity which tends toward the pressure p of a gas when the latter tends toward

zero (viz. Chap. 7), i.e.,

lim f
p!0

¼ p

According to relation (34.24), it is evident that:

p=kT ! b1z
1 when p ! 0

Since b1 ¼ 1, and since f ! p when p ! 0, f must be defined by the

expression:

f ¼ kTz f=kT ¼ z ð34:29Þ

i.e.,

f ¼ kT=Vð ÞQ1λ ð34:30Þ

34.11 Virial Coefficients and Configuration Integrals

We have mentioned in the preceding chapter that the virial coefficient of order

2, B2(T ) can be expressed as a function of the configuration integrals Z2 and Z1.

B2 Tð Þ ¼ � 1=2Vð Þ Z2 � Z2
1

� �

It can also be written according to:

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r1; r2ð Þ=kT½ �dr1dr2 � V2

� �

where U(r1, r2) is the intermolecular potential energy between the two particles of

the system of coordinates r1 and r2 (x1. . .z2). It can also be written:

B2 Tð Þ ¼ � 1=2ð Þ
ð1

0

exp �U rð Þ=kT � 1½ �4πr2dr

In the latter expression, r is a scalar. It is the distance which separates particles 1 and

2, particle 1 being supposed fixed.
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Let us recall that in this special case, the configuration integral is given by the

following expression:

ZN ¼
ð
V

� � �
ð
exp �UN x1, . . . zNð Þ=kT½ �dr1� � �drN

with dr1 ¼ dx1dy1dz1� � �

• For the calculation of Z1, evidently U x1, . . . zNð Þ ¼ 0, since there is only one

particle. Consequently:

Z1 ¼
Ð
Vdr1

Z1 ¼ V

• Z2 is given by the expression:

Z2 ¼
ð
V

ð
exp �U r1; r2ð Þ=kT½ �dr1dr2

U(r1, r2) is the intermolecular potential energy between the two particles,

depending on the coordinates r1 and r2 (x1. . ..z2). In order to relate B2(T ) to the

intermolecular potential energy between both particles, we use the equalities,

already demonstrated above, in which the configuration integrals intervene:

B2 Tð Þ ¼ � b2

and

Vb2 ¼ Z2 � Z2
1

whence:

B2 Tð Þ ¼ � 1=2Vð Þ Z2 � Z1
2

� �

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r1; r2ð Þ=kT½ �dr1dr2 � V2

� 	

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r1; r2ð Þ=kT½ �dr1dr2 þ V=2

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r1; r2ð Þ=kT½ �dr1dr2 þ 1=2

Ð
dr1

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r1; r2ð Þ=kT½ �dr1dr2 þ 1=2V

Ð
dr1

Ð
dr2

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r1v; r2ð Þ=kT � 1½ �dr1dr2
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By changing the variables, i.e., by using the variables dr1 and r12¼ r2� r1 (which

is the location of particle 2 with respect to particle 1 regarded as being at the origin),

we obtain:

B2 Tð Þ ¼ � 1=2Vð Þ
ð
V

ð
exp �U r12ð Þ=kT � 1½ �dr12

and adopting the polar coordinates:

dr12 ¼ 4πr2dr

B2 Tð Þ ¼ � 1=2ð Þ
ð1
0

exp �U rð Þ=kT � 1½ � 4πr2dr

or, according to what is preceding:

B2 Tð Þ ¼ �1=2

ð
x12 � 1ð Þdr12

• By supposing the hypothesis of the “pairwise additivity” validated (besides, it is

only at this term that it can be applied for the first time), the configuration

integral Z3 can be written:

Z3 ¼
ððð
V

exp �U r1; r2ð Þ � U r1; r3ð Þ � U r2; r3ð Þ½ �dr1dr2dr3

By adopting a reasoning analogous to the preceding and by using the same

symbolism, we obtain the following relation for B3(T):

B3 Tð Þ ¼ � 1=3Vð Þ
ððð
V

v x12 � 1ð Þ x13 � 1ð Þ x23 � 1ð Þdr1dr2dr3

Analogous expressions would be found for the superior coefficients.
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Chapter 35

Activities of Gases in a Mixture of Imperfect
Gases

Abstract The chapter is a simple generalization of a previous one. It is devoted to

the study of a binary mixture. The case is studied with the aid of the grand ensemble

and the activities of each gas are defined as for a sole imperfect one. In their

definition intervene their absolute activities, the volume of the solute and the

canonical partition functions when one molecule of each gas is present without

any molecule of the other.

Relations linking the chemical potential of each gas to its partial pressure

through statistical parameters are also mentioned.

Keywords Statistical gas activities in a mixture of perfect gases • Partial pressure •

Grand ensemble • Configuration integrals • Chemical potentials of the gases

This chapter is a simple generalization of the previous one. We confine ourselves to

the study of a binary mixture.

35.1 Activity of Both Gases

We have seen that, in the case of a fluid constituted by a binary mixture (viz.

Chap. 24), the grand partition function is:

Ξ λ1; λ2;V; Tð Þ ¼
X
N1�0

X
N2�0

QN1N2 V; Tð ÞλN11 λN22

or, with a slightly simplified writing:

Ξ λ1; λ2;V; Tð Þ ¼
X

N1,N2�0

QN1N2 V; Tð ÞλN11 λN22

QN1N2 is the canonical partition function of the system for the number of particles

N1 and N2, and λ1, λ2 the absolute activities:
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λ1 ¼ eμ1=kT λ2 ¼ eμ2=kT

The function Ξ can be also written as:

Ξ λ1; λ2;V; Tð Þ ¼ 1þ
X

N1,N2�1

QN1N2 V; Tð ÞλN11 λN22

(This writing is strictly equivalent to the previous one). By expanding in series with

respect to λ1 and λ2, it becomes:

Ξ ¼ 1þ Q10λ
1
1 þ Q01λ

1
2 þ Q20λ

2
1 þ Q10Q01λ

1
1λ

1
2 þ Q02λ

2
2 þ � � � ð35:1Þ

SymbolsQ10,Q01, respectively, represent the canonical partition functions of the

systems made up by only one molecule 1 and by zero molecule 2 on one hand and

by zero molecule 1 and by one molecule of 2 on the other.

As previously, one defines the activities z1 and z2 of species 1 and 2 by the

expressions:

z1 ¼ Q10λ1=V and z2 ¼ Q01λ2=V ð35:2Þ

As in the case of only one gas, z1 and z2 tend toward ρ1 and ρ2 when the latter

ones tend toward zero. This assertion is justified by the series development in series

of ln Ξ where Ξ is given by expression (35.1).

Let us replace λ1 and λ2 by their expressions in z1 and z2 (35.2), we obtain:

Ξ ¼ 1 þ Q10 V=Q10ð Þ z1 þ Q01 V=Q01ð Þ z2 þ Q20 V=Q10ð Þ2z21
þ Q10Q01 V=Q10ð Þ V=Q01ð Þ z1z2 þ Q02 V=Q01ð Þ2z22 þ � � �

Let us set up the general expression:

QN1N2V
N1þN2 =QN1

10Q
N2
01 ¼ ZN1N2=N1 !N2! ð35:3Þ

The ZN1N2 are the configuration integrals.

We obtain:

Ξ ¼ 1þ Vz1 þ Vz2 þ ½Z20z
2
1 þ Z11z1z2 þ ½ Z02z

2
2 þ � � � ð35:4Þ

It appears the numeral 2 in the denominator of some terms. Its presence results from

the definition of ZN1N2.
For the whole system,

lnΞ ¼ pV=kT
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By expanding in series ln Ξ stemming from (35.4), we obtain:

pV=kT ¼ Vz1 þ Vz2 þ ½ Z20z
2
1 þ Z11z1z2 þ ½ Z02z

2
2 þ � � �� �

� Vz1 þ Vz2 þ ½ Z20z
2
1 þ Z11z1z2 þ ½ Z02z

2
2 þ � � �� �2

=2

and by truncating the development by limiting it to the terms up to the degree two:

pV=kT ¼ Vz1 þ Vz2 þ 1=2Z20 z
2
1 � V2=2

� �
z21 þ Z11=Vð Þ z1z2 � V2z1z2

þ 1=2Z02z
2
2 � V2=2

� �
z22

whence:

p=kT ¼ z1 þ z2 þ Z20=2V � V=2ð Þ z21 þ Z11=V � Vð Þ z1z2
þ Z02=2V � V=2ð Þ z22� � � ð35:5Þ

which can be written after introduction of the intermediary coefficients bij:

p=kT ¼ z1 þ z2 þ b20 Tð Þz21 þ b11 Tð Þz1z2 þ b02 Tð Þ z22 þ � � � ð35:6Þ

This expression is analogous to the relation (34.16) of the preceding chapter. The

comparison of (35.5) and (35.6) permits to express the bij coefficients as a function
of the configuration integrals Zij.

As previously, it is possible to relate the virial coefficients to the configuration

integrals and to the different parameters after derivation.

In this case, the virial equation is:

p=kT ¼ ρ1 þ ρ2 þ B20 Tð Þρ21 þ B11 Tð Þρ1ρ2 þ B02ρ
2
2 þ � � �

The reasoning which leads to this relation is the same as previously. It consists in,

successively, expressing ρ1 and ρ2 as a function of z1 and z2 through the coefficients
bij and bji, then, in expressing z1 and z2 as a function of ρ1 and ρ2 and, finally, in
setting up an expression of p/kT as a function of the found relations and in

comparing it to the virial equation.

The relation:

N1 ¼ λ1 ∂lnΞ=∂λ1ð Þ

remains valid. Given the definition of the activity z1, we obtain:

N1 ¼ V=Q10ð Þz1 ∂lnΞ= V=Q10ð Þ∂z1½ �V,T, z2
N1 ¼ z1 ∂lnΞ=∂z1ð ÞV,T, z2
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The reasoning leading to the expression (34.23) of the preceding chapter remains

also valid. As a result with ρ1 ¼ N1=V i:e: ¼ ρ1
� �

:

ρ1 ¼ z1 ∂ p=kTð Þ=∂z1½ �T,V, z2

According to (35.5):

∂ p=kTð Þ=∂z1½ �T,V, z2 ¼ 1þ 2 Z20=2V � V=2ð Þz1 þ Z11=V � Vð Þz2 þ � � �
∂ p=kTð Þ=∂z1½ �T,V, z2 ¼ 1þ 2 b20z1 þ b11z2 þ � � �

and

ρ1 ¼ z1 þ 2b20z
2
1 þ b11z1z2 þ � � �

ρ2 ¼ z2 þ 2b02z
2
2 þ b11z1z2 þ � � �

The expressions z1 as a function of ρ1 and z2 as a function of ρ2 are found by putting
down:

z1 ¼ ρ1 þ a10ρ21 þ � � �
z2 ¼ ρ2 þ a01ρ22 þ � � �

By injecting the two latter expressions into the two preceding ones and by identi-

fying the coefficients of the terms in ρ1 and ρ2 of the same degree, we find:

z1 ¼ ρ1 � 2b20ρ21 � b11ρ1ρ2 þ � � �
z2 ¼ ρ2 � 2b02ρ22 � b11ρ1ρ2 þ � � �

These two relations immediately provide us with the expressions of the

corresponding activity coefficients γ1 ¼ z1=ρ1 and γ2 ¼ z2=ρ2.
From another standpoint, by putting back these expressions of z1 and z2 into

(35.6) and by comparing the obtained expression with that of the virial, we obtain

the “statistical” expressions of the coefficients of the latter. Hence, we obtain:

B20 ¼ � b20 B11 ¼ � b11 B02 ¼ � b02

It is significant to notice that the coefficients B20 and B02 are purely and simply the

second order coefficients of the virial expansion of each of the pure gas. However,

the coefficient B11 is new. It depends on the properties of the two different particles

in the same volume V. It is given by the expression:

B11 ¼ � 1=V Z11 � V2
� �

B11 ¼ � Ð1
0

exp �U11 rð Þ=kT � 1½ �4πr2dr

U11 is the intermolecular potential between a molecule of each type.
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In the particular case in which there is a mixture of two gases constituted by

spherical particles (gases without any internal structure), the term ZN1N2 present in
the expression below:

QN1N2 ¼ ZN1N2= N1!N2!Λ
3N1
1 Λ3N2

2

� �

is one of the configuration integrals of the system, defined by the expression:

ZN1N2 ¼
ð
V

exp � UN1N2=kT½ �d N1f gd N2f g

where d{N1} means dr1. . .drN1 and so forth . . .. so that we can write in an

equivalent manner:

ZN1N2 ¼
ð
V

exp �UN1N2=kT½ �d R1f gd R2f g

35.2 Chemical Potentials of Both Components
as a Function of Their Partial Pressure

It is interesting to express the chemical potential of each of the two components of

the mixture. Besides, these expressions will be handled in the case of diluted

solutions (viz. Chap. 38). Let us only reason on the compound 1 (the reasoning is

quite identical for the compound 2). According to relations (35.2), we can write:

ρ1 ¼ Q10λ1=V

since for a very weak density number ρ1 tends toward z1. Hence, we can write:

N1=V ¼ Q10λ1=V

Owing to the perfect gas law (applied at the molecular level), obligatorily satisfied,

once we have admitted the equivalence activity–concentration, we can write:

pV ¼ N1kT

p=kT ¼ Q10λ1=V

where k is the Boltzmann’s constant. From another standpoint, according to the

properties of the grand ensemble (viz. Chap. 24),

λ1 ¼ eμ1=kT
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As a result, after the handling of the last two relations:

V=Q10ð Þ p=kTð Þ ¼ eμ1=kT

μ1 ¼ kTln V= kTQ10ð Þ½ � þ kTlnp1 ð35:7Þ

In the same manner, we would find:

μ2 ¼ kTln V= kTQ01ð Þ½ � þ kTlnp2 ð35:8Þ

The factors kT ln[V/(kTQ10)] or kT ln[V/(kTQ01)] represent the corresponding stan-

dard potentials according to the meaning of classical thermodynamics. These

expressions of standard potentials are only accurate in the eventuality of the species

concentrations being indirectly expressed in terms of pressures. It is significant to

recall that when the latter ones are expressed in terms of density numbers, these

quantities do not exhibit the same value.

Besides, the following reasoning permits to calculate the standard potential of a

species according to the adopted type of “concentration” and that by starting from

another kind of “concentration.”

Let us, for example, reason with compound 2. According to relation (35.8), the

chemical potential μ2 may be written:

μ2 ¼ � kTlnkT þ kT lnV=Q01 þ kTlnp2

From another standpoint, we can explicit the chemical potential as a function of the

activity. Now, let us take the example of compound 1. We know (viz. paragraph 2)

that ρ1¼Q10λ1/V. In very dilute solution, we can assimilate ρ1 and z1, and by

expressing λ1, we obtain:

μ1 ¼ kTln V=Q01 þ kTlnz1

and likewise:

μ2 ¼ kTln V=Q02 þ kTlnz2

In this case, the standard potential becomes:

μ02 zð Þ ¼ kTln V=Q01ð Þ

The chemical potential μ2 being obligatory the same, we can deduce from the

preceding result that:

μ02 pð Þ ¼ μ02 zð Þ � kTlnkT ð35:9Þ

396 35 Activities of Gases in a Mixture of Imperfect Gases



Besides, this result may be directly found by using the perfect gas law, i.e.:

pV ¼ NkT

p ¼ ρkT

lnp ¼ lnkT þ lnρ

In sufficiently dilute solution z! ρ, whence:

lnp ¼ lnkT þ lnz
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Chapter 36

Chemical Equilibrium Between Gases
and Statistical Thermodynamics

Abstract The chapter mentions an overview of the study of the chemical equilib-

rium from the standpoint of statistical thermodynamics. This subject is quite

evidently of importance since equilibrium constants between gases (and also

between species in solutions) are expressed in activity or fugacity terms once

they do not exhibit an ideal behavior.

After a brief recall of the equilibrium condition in classical thermodynamics,

several examples of chemical equilibria are examined from the viewpoint of

statistical thermodynamics. Finally, the case of equilibria between imperfect

gases is dealt with. It is in this context that activities and fugacities play an

important part. From the developments of the chapter, it appears that the thermo-

dynamic equilibrium constants are only function of the partition functions of the

species involved in the equilibrium together with the stoichiometry of the reaction.

The described theory is carried out within the framework of the canonical

ensemble.

Keywords Chemical equilibria between gases and statistical thermodynamics •

Partition function • Equilibrium constants and molecular partition functions •

Absolute activities • Equilibrium constants and partition functions • Equilibrium

constants expressed in activities and in concentrations

In this chapter, we give an overview of the study of the chemical equilibrium from

the standpoint of statistical thermodynamics. This subject is quite evidently of

importance since equilibrium constants between gases (and also between species

in solutions) are expressed in activity or fugacity terms once they do not exhibit an

ideal behavior.

After a brief recall of the equilibrium condition in classical thermodynamics, we

study several examples of chemical equilibria from the viewpoint of statistical

thermodynamics. Finally, we deal with the case of equilibria between imperfect

gases. It is in this case that activities and fugacities play their part.
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36.1 Some Recalls: Chemical Equilibria and Classical
Thermodynamics

Let us recall (viz. Chap. 6) that, for example, for a reaction of the kind:

vAAþ vBB Ð vCC ð36:1Þ

evolving in a closed system at constant pressure and temperature, the equilibrium

condition from the standpoint of classical thermodynamics is given by the follow-

ing expression, which must be satisfied:

vAμA þ vBμB ¼ vCμC ð36:2Þ

where the νi are the stoichiometric coefficients and the μi the chemical potentials,

once the chemical equilibrium is reached. Let us also recall that this condition is

general. Not only does it apply to ideal (or not) gases but also it applies to all types

of chemical equilibria whether they occur between gases or not. It is a consequence

of the second principle of thermodynamics.

36.2 Equilibrium Constants and Molecular Partition
Functions of the Reactants and Products: Case of a
Mixture of Ideal Gases

Let us consider the case of the reaction (36.1) in which the reactants and products A,

B, and C are perfect gases. In order to treat the problem of this equilibrium from the

statistical standpoint, we must relate the chemical potentials appearing in relation

(36.2) to the partition function Q of the whole system and, through it, to the

molecular partition functions q of every reactant and product participating to the

equilibrium (viz. Chap. 26).

The first point we must take into account is that since the gases are perfect, their

behaviors are independent from each other. They are as if they were alone in the

container. This point is very important. Let us anticipate that is following by

asserting that this property differentiates them from imperfect gases. More specif-

ically, in the case of perfect gases, it is not fruitful to introduce the notions of

activity and fugacity in order to express the equilibrium constants.

(At this point of the reasoning, the ability to express the equilibrium constants as

a function of the activities and fugacities under an analogous form as in the case of

equilibria between perfect gases probably constitutes the major practical interest of

the introduction of the notions of activity and of fugacity.)

We know that when the gas (monoatomic, diatomic, or polyatomic) is alone, the
partition function of the system Q can be written (q being the molecular partition

function and N the number of molecules) (viz. Chap. 26):
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Q N;V; Tð Þ ¼ q V; Tð ÞN=N!

Let us also recall that according to the fact the gas is monoatomic or polyatomic,

q may be (or not) a composite function. For a mixture of two perfect gases 1 and

2 (and hence independent), the canonical partition function of the system is given

by the general relation:

Q N1;N2;V; Tð Þ ¼ q1 V; Tð ÞN1=N1!
h i

q2 V; Tð ÞN2=N2!
h i

ð36:3Þ

N1 and N2 are the numbers of moles of 1 and 2. The product of the molecular

partition functions must be considered because each of all the levels of energy of

molecule 2 can be associated with every level of molecule 1, since the gases are

independent. Let us insist on the fact that the partition function Q(N1,N2,V, T ) is
that of the system composed by N1 molecules of 1 and by N2 molecules of 2.

The relation between the chemical potentials of the species participating to the

equilibrium and the system partition function is that very general already seen (viz.

Chap. 26):

μi ¼ �kT ∂lnQ Ni;Nj; T;V
� �

=∂Ni

� �
T,V,Nj

j 6¼ ið Þ ð36:4Þ

The calculation of μ1 and μ2 by starting from (36.3) by taking into account (36.4)

easily leads to the following expressions (after the use of the Stirling’s

approximation):

μ1 ¼ �kTln q1 V;Tð Þ=N1½ � and μ2 ¼ �kTln q2 V; Tð Þ=N2½ � ð36:5Þ

Hence, we deduce that the chemical potential of each of the gas is the same as it

would be alone, provided, of course, that the mixture behaves “ideally.”

Let us apply to the reaction (36.1) the equilibrium condition (36.2) while taking

into account expressions (36.5) permitting the calculation of the different chemical

potentials, taking granted the fact that the canonical partition function of the system

Q(NA,NB,NC,T,V) is then given by the following expression:

Q NA;NB;NC; T;Vð Þ ¼ qA T;Vð ÞNA=NA!
h i

qB T;Vð ÞNB=NB!
h i

x qC T;Vð ÞNC=NC!
h i

We obtain:

NvC
C =NvA

A � NvB
B ¼ qvCC =qvAA qvBB ð36:6Þ

NC, NA, and NB are the numbers of molecules of C, A, and B at equilibrium.

The expression (36.6) can be differently written by introducing the density

numbers ρ of the species. It is an easy task since the number of density is defined
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as being the ratio of a number of molecules of a species and of the volume V of the

system:

ρi ¼ Ni=V

By dividing all the terms of expression (36.6) by V brought to the corresponding

power, we obtain:

ρvCC =ρvAA � ρvBB ¼ qC=Vð ÞvC= qA=Vð ÞvA � qB=Vð ÞvB ð36:7Þ

An important point to highlight is that the molecular partition functions q are equal
to the volume V of the system multiplied by a function which only depends on the

temperature, since they are of the type q¼V • f(T ). We have seen, indeed, (viz.

Chap. 26) that:

q V; Tð Þ ¼ V 2πmkT=h2
� �3=2

perfect gas monoatomic gasð Þ
q V; Tð Þ ¼ V 2π m1 þ m2ð ÞkT=h2� �3=2

perfect diatomic gasð Þ

q V; Tð Þ ¼ V 2π
X
i

mi

 !
=kT=h2

" #3=2
perfect polyatomic gasð Þ

As a result, whatever the gas (monoatomic or polyatomic) is, the right member

of the expression (36.7) only depends on the temperature. Hence, we can write:

ρvCC =ρvAA � ρvBB ¼ K Tð Þ ð36:8Þ

Therefore, the mass action law is confirmed on the bases of statistical

thermodynamics.

36.3 A Simple Example: A Dimerization Equilibrium

As an example, let us consider the following equilibrium of dimerization at constant

volume and temperature:

A Ð 2B

Contrary to the preceding problem in which we wanted to relate the equilibrium

constant value to those of the numbers moles existing at equilibrium, our present

goal, here, is to obtain the numbers of moles of A and B once the equilibrium is

reached, with the constraint that the initial matter must be conserved.
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This constraint is explicited by the equality:

2NA þ NB ¼ N N : constantð Þ

Let No
A and No

B be the number of molecules A and B initially present in a

container of volume V at the temperature T. From the experimental viewpoint,

the obtaining of the equilibrium at constant volume and temperature can be

obtained, for example, by addition of a catalysor, whereas, initially, the mixture

was frozen to the number of moles No
A and No

B such as:

2N o
A þ N o

B ¼ N

The partition function of the system in the initial state Q(No
A,N

o
B,V,T ) is given,

as we have seen it previously, by the expression:

Q N o
A;N

o
B;V; T

� � ¼ qNA∘A =N∘
A! qNB∘B =N∘

B! ð36:9Þ

According to considerations of thermodynamics, we know that the equilibrium

is reached when the Helmholtz energy A ¼ �kTlnQ of the whole system is

minimized, i.e., when the function Q is maximal. Hence, the problem is to search

for the number of moles N�
A maximizing Q, the following constraint:

2N*
A þ N*

B ¼ N

being obligatorily satisfied. It is quite evident that it is not necessary to separately

search for the value N�
B since the mole numbers N�

A and N�
B are related to by the

preceding expression. Hence, to solve the problem, it is sufficient to set up:

∂lnQ=∂NAð ÞN,V,T ¼ 0

It is a “mathematical fact” that the function Q is then maximal. We obtain:

N*2
B =N*

A ¼ q2B=qA

This result is perfectly analogous to that previously obtained. The equilibrium

constant is given by the expression:

K Tð Þ ¼ ρ2B=ρA

Let us highlight the fact that the value of the canonical partition function regarded

in this example Q(NAo,NBo,V, T ) is imposed by the number of moles of species A

and through it by that of B. Recall, indeed (viz. Chap. 21), that the different

energetic states allowed by quantum mechanics are a function of the volume

V and of the number of moles of the system. In the present case, the study is

performed with the number of moles NA
�,NB

�, and N which are certainly arbitrary

but fixed numbers.
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36.4 Chemical Equilibrium Between Imperfect Gases

When one studies the equilibria between imperfect gases, the mass action law, as

we shall see it now, is expressed in terms of activities and, no longer, in terms of

density numbers. In order to study such a case, let us again consider the case of a

dimerization equilibrium:

A Ð 2B

The equilibrium condition remains:

μA ¼ 2μB

or, in terms of absolute activities:

λA ¼ λ2B ð36:10Þ

since the chemical potential of a species is related to its absolute activity through

the relation λ ¼ eμ=kT . We know that when the density numbers are sufficiently

weak, the behavior of the species tends to be ideal and we have seen that (viz. the

above paragraph) the equilibrium constant expresses as a function of them:

K Tð Þ ¼ ρ2B=ρA

with:

K Tð Þ ¼ Q01=Vð Þ2= Q10=Vð Þ

the indices 01 and 10, respectively, being referred to compounds B and A. Symbols

Q10 andQ01, respectively, are related to the canonical partition functions of systems

of only 1 molecule of 1 and of 0 molecule 2 on one hand and of 0 molecule of 1 and

of 1 molecule of 2 on the other.

When the behavior is no longer perfect, the chemical potential must be

expressed as a function of the activity of the species and not as a function of the

density number as before in order to keep its significance of the tendency of the

species to change its thermodynamic state. Finally, the chemical potential when it is
related to the activity of a species, quantifies its tendency to react according to
physical or chemical transformations while taking into account its interactions with
the other species of the medium.

The equilibrium constant is expressed as a function of the activities with the help

of the following reasoning. The equilibrium condition (36.10) expressed as a

function of the absolute activities remains valid. From another standpoint, by

definition of the activity z in statistical thermodynamics:

404 36 Chemical Equilibrium Between Gases and Statistical Thermodynamics



λA ¼ VzA=Q10 and λB ¼ VzB=Q01

By applying relation (36.10), we immediately obtain:

z2BV
2=Q2

01 ¼ zAV=Q10

and since the ratios Q/V are only function of temperature:

K Tð Þ ¼ z2B=zA

It can also be written, by taking into account the activity coefficients γB and γA
(viz. the following chapter):

K Tð Þ ¼ ρ2Bγ
2
B=ρAγA

They are given by the expressions (viz. the preceding chapter):

zA ¼ ρA � 2b02ρ
2
A � b11ρBρA þ � � �

As a result:

K Tð Þ ¼ ρ2
B
=ρA

� �
1þ b11 � 4b20ð ÞρB þ � � �½ �

The term in square brackets expresses the deflection with respect to the “ideality.”

Actually, we notice that:

K Tð Þ ¼ ρ2
B
=ρA

� �

when ρB and ρA tend toward zero.

The definition of the formal, or conditional constant K0(T ) used, once the

behaviors are no longer ideal, by the expression:

K0 Tð Þ ¼ ρ2
B
=ρA

� �

differs from the thermodynamic constant K(T ) by the term located between the

square brackets. It varies with ρB and ρA.
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Chapter 37

Activity Coefficients of Gases

Abstract It is evident that the notion of activity coefficient is of utmost impor-

tance, because of the fact that expressed in general terms, the activity of a species is

equal to its concentration multiplied by its activity coefficient. Given the link

between activities and activity coefficients, it clearly happens that a thorough

study of the latter ones may lead to a better knowledge of the activities, but, of

course, indirectly.

Reasonings mentioned in the chapter show that the activity coefficient of a gas

can be expressed in terms of the virial coefficients, parameters which are, in

principle, experimentally accessible. They are based on the fact that there exists a

well-defined series development linking the activity of a compound and its density

(concentration). As a result of this fact, a mathematical expression of the

corresponding activity is immediately found.

Keywords Activity coefficients of gases • Activity coefficient on the molecular

level • Activity coefficient of a real gas • Gibbs–Duhem relation

It is evident that the notion of activity coefficient is of utmost importance for our

purpose, because of the fact that expressed in general terms, the activity of a species

is equal to its concentration multiplied by its activity coefficient. A direct study of

the activity with the help of considerations of statistical thermodynamics has

already been mentioned, here, in the case of the gases. Given the link between

activities and activity coefficients, it clearly happens that a thorough study of the

latter ones may provide us with a better knowledge of the activities, but this time, of

course, indirectly.

We shall see that the activity coefficient of a gas may be expressed in terms of

virial coefficients, parameters which are, in principle, experimentally accessible.

37.1 The Activity Coefficient at the Molecular Level

We have already mentioned that two theories somewhat explicit the general

significance of an activity coefficient. It seems interesting for us to briefly recall

the conclusions they lead to.
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• A first expression of the chemical potential of the component of a system, in

statistical thermodynamics, is the relation (37.1) (viz. Chap. 32):

exp �μ=kTð Þ ¼ qNþ1=Λ3 Nþ1ð Þ N þ 1ð Þ!� � Ð
v . . .

Ð
exp �βUNþ1ð Þ

�dR0 . . . dRN=q
N=Λ3NN!

Ð
v . . .

Ð
exp �βUNð ÞdR1 . . . dRN

ð37:1Þ

where the zero indice index concerns only one particle added into a very great

quantity (in principle an infinity) of other molecules of the system, a process which

permits to define the chemical potential. This relation expresses the chemical

potential of the compound within the framework of the canonical ensemble

(N, T, V). Let us recall that given the symbolism of this expression, the gas chosen

in this example possesses an internal structure (occurrence of the parameter q in the
expression) and, moreover, that its configuration only needs the knowledge of the

location of each particle (vectors R) in order to be specified.

Relation (37.1) is an expression of the chemical potential. It is proved of great

use for the study of the activity coefficient notion. It is important to notice that it

applies to every fluid.

We have seen that by adopting the hypothesis of the “pairwise additivity”,

expression (37.1) becomes:

exp �μ=kTð Þ ¼ qV=Λ3N
� �

exp �B=kTð Þh i ð37:2Þ

whence:

μ ¼ kTlnρΛ3=q� kTln exp �B=kTð Þh i ð37:3Þ

B is given by the expression:

B ¼
X
j

U R0;Rj

� �
1 � j � N

B is the sum of interaction energies, from one particle to the other one, between the

added particle (particle zero) and all the other constituting the initial system. The

factor exp �B=kTð Þh i is the average value of the quantity exp[�βB] with (β¼ 1/kT).
We have seen that the second term of the right member of (37.3) represents the

contribution to the value of the chemical potential of the interactions between

molecules and where γ is the activity coefficient, empirically introduced by

Lewis in order to take into account the interactions between molecules, is related

to the factor B by

γ � 1= exp �B=kTð Þh i ð37:4Þ
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The relation (37.3) is, like relation (37.1), very significant. It is important to

notice that it also applies to every fluid.

• A second expression stemming from Kirkwood’s theory (viz. Chap. 32) provides

us with an algebraic expression in which intervenes the function g(R, ξ) permit-

ting the calculation of γ:

μ ¼ kTln ρΛ3q�1
� �� ρ

ð1
0

dξ

ð1
0

U Rð Þg R; ξð Þ4πR2dR

The comparison of the latter with (37.3), indeed, leads to:

kTlnγ ¼ ρ

ð1
1

dξ

ð1
0

U Rð Þg R; ξð Þ4πR2dR ð37:5Þ

The latter relation seems to attribute a meaning to the activity coefficient which is

different from that coming from the previous one. Actually, this is not the case since

the Kirkwood’s theory involves the coupling of a particle with the other ones of the

system, i.e., takes into account their mutual interactions.

Both theories stemming from statistical thermodynamics demonstrate that the

activity coefficients permit to take into account the interactions between the

particles of a system, i.e., finally, the differences of behavior with “ideality.”

Although these considerations have been developed in Chap. 32 in the case of

gases, they are also valid for liquids and solutions.

We shall see (Chaps. 42, 43 and 44) that the Kirkwood–Buff’s theory brings

some further details concerning the meaning of activity coefficients in the case

of mixtures and solutions.

37.2 Expression of the Activity Coefficient of a Real Gas

The relation (34.25) of Chap. 34:

z ¼ ρ þ a2ρ
2 þ a3ρ

3 þ � � � relation 34:25ð Þ � Chap: 34ð Þ

permits to immediately get an expression of the activity coefficient of the gas since

γ¼ z/ρ, i.e.:1

γ ¼ 1þ a2ρþ a3ρ
2 þ � � � ð37:6Þ

According to the study mentioned in Chap. 34, it is evident that the activity

coefficient takes into account the interactions between the different molecules of

1The letter γ is used here as being a general symbol of an activity coefficient.
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gas through the coefficients a2, a3. . .an, given the relations existing between the an
and the coefficients bj on one hand and those existing between the bj and the

configuration integrals ZN on the other hand and, finally, owing to the meaning of

the latter ones.

We notice that when the density number tends toward zero, the activity coeffi-

cient tends toward 1 and the activity value tends toward the corresponding value ρ.
It is a familiar result in thermodynamics. However, the form of relation (37.6) is

not. It is usual within the framework of thermodynamics, indeed, to handle the

activity coefficient under the form of its logarithm, in relation with the chemical

potential of the species. The logarithmic expression is found by starting from the

two relations just below, of definition of the activity:

z ¼ Q1λ=V and γρ ¼ z

By identifying both values of z and replacing in the obtained equality the absolute

activity by its definition and, finally, taking its logarithm, we obtain:

μ ¼ kTlnρ þ kTlnγ þ kTln V=Q1ð Þ ð37:7Þ

the following writing of which:

μ ¼ kTln V=Q1ð Þ þ kTlnγρ

is very often encountered in pure thermodynamics.

γ is a function of ρ and of the temperature since the coefficients an of the

expression (37.6) depend on the configuration integrals. The term V/Q1, as for it,

is only function of the temperature since Q1 depends on the temperature and is

proportional to the volume V.
Evidently, it is interesting to relate the activity coefficient γ to the coefficients Bn

of the virial which are parameters in principle experimentally accessible. In order to

set up this relation, let us start from the purely thermodynamic one:

d μ=kTð Þ ¼ v dp=kTð Þ ð37:8Þ
where v is the volume occupied by one molecule of gas. It is convenient to report

the volume of one mole into this expression since the chemical potential is a molar

property. Relation (37.8) results from:

dμ ¼ vdp

This equality, itself, stems from the Gibbs–Duhem’s relation:

SdT � VdPþ
X
i

nidμi ¼ 0
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applying to the case of only one component at constant temperature. V is the molar

volume. N1/V is the density number ρ since v¼ 1/ρ and by using the mathematical

identity:

dp=kTð Þ ¼ ∂ p=kTð Þ=∂ρ½ �dp

we obtain:

v dp=kTð Þ ¼ 1=ρ ∂ p=kTð Þ=∂ρ½ �dp ð37:9Þ

Therefore:

d μ=kTð Þ ¼ 1=ρ ∂ p=kTð Þ=∂ρ½ �dρ ð37:10Þ

Using relation (37.10) and the expression of the virial:

p=kT ¼ ρþ B2 Tð Þρ2 þ B3 Tð Þρ3 þ � � � ð37:11Þ

it is easy to express the function μ/kT. We obtain:

d μ=kTð Þ ¼ 1=ρþ 2B2 Tð Þ þ 3B3 Tð Þρþ � � �

i.e.:

μ=kT ¼ integration constant þ lnρþ 2B2ρ þ 3=2B3ρ
2 þ � � � ð37:12Þ

The comparison of the expressions (37.7) and (37.12) for ρ! 0 shows that the

integration constant is:

integration constant ¼ ln V=Q1ð Þ

and that:

lnγ ¼ 2B2ρ þ 3=2B3ρ
2 þ � � �

or, equivalently, by using a recurrence formula (where k is an indice):

lnγ ¼ �
X
k�1

βk Tð Þρk ð37:13Þ

βk is an intermediary parameter defined by:

βk ¼ � k þ 1ð Þ =k½ �Bkþ1 ð37:14Þ

In principle, ln γ can be, therefore, expressed and calculated through the expansion

in series (37.14), as a function of the virial coefficients Bk+1.
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Chapter 38

Activities and Concentrations
of Nonelectrolytes in Dilute Liquid Solutions
Study of the Osmotic Pressure

Abstract The chapter mentions the study of the osmotic pressure of dilute liquid

solutions of nonelectrolytes. The study is performed within the framework of the

grand ensemble. Through a reasoning analogous to that followed for the study of

the activities of gases, a mathematical relation between the activity of the solute and

its density number is set up in the case of a binary solution solute–solvent. It is valid

for dilute solutions. In its expression intervene parameters related to the virial

coefficients, so-called coefficients of the osmotic pressure virial. The theory is

due to McMillan–Mayer. It entails the introduction of a new activity coefficient.

The developments constituting the theory take into account not only the interactions

solute–solute but also the solute–solvent ones and those exerting between solvent

molecules.

The reasoning developed here constitutes a model for that followed later devoted

to the study of solutions at constant temperature and pressure.

Keywords Activities and concentrations (nonelectrolytes dilute solutions) •

Osmotic pressure • Solute activity • McMillan–Mayer’s theory • Osmotic activity

coefficient • Osmotic equilibrium • Osmotic pressure (new activity type) •

Fundamental aspects of McMillan–Mayer’s theory • Grand ensemble

Here, we study the osmotic pressure of dilute liquid solutions of nonelectrolytes.

This study is performed within the framework of the grand ensemble. Through a

reasoning analogous to that followed for the study of the activities of gases, we set

up a mathematical relation between the activity of the solute and its density number

in the case of a binary solution solute–solvent. It is valid for dilute solutions. In its

expression intervene parameters related to the virial coefficients so-called coeffi-

cients of the osmotic pressure virial. The theory is due to McMillan–Mayer. It

entails the introduction of a new activity coefficient. The developments constituting

the theory take into account not only the interactions solute–solute but also the

solute–solvent ones and those exerting between solvent molecules.

The reasoning developed here constitutes a model for that followed later devoted

to the study of solutions at constant temperature and pressure.
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38.1 The Main Difference Between the Cases of a Mixture
of Real Gases and of Solutions

It is evident that even in the extremal case of a highly dilute solution, the interac-

tions between the solute and the solvent still remain. It is not the case for a mixture

of real gases, the density numbers of which are very weak. In this case, there

remains no longer interactions between the gas particles. Then, their chemical

potential only depends on their density number and on the temperature. Gases

are, then, ideal.

In the present case, even when the solution is very dilute, three types of

interactions must be still considered, the interactions solute–solute (which tend to

vanish, when the solutions are all the more diluted), the solute–solvent and the

solvent–solvent ones.

38.2 Osmotic Equilibrium

Figure 8.3 (viz. Chap. 8) shows the studied osmotic equilibrium. The compartment

called the “outside compartment” contains the pure solvent 1 the chemical potential

of which is μ1 and its temperature is T. The values μ1 and T fix its pressure p. The
“inside compartment” is also at the temperature T. Initially, before any addition of

solute, it is at the same pressure p as the “outside compartment” and the chemical

potential of the solvent is also μ1. Both compartments are separated by a membrane

through which the solvent (and only the solvent) can permeate. We know that the

addition of the solute 2 into the “inside compartment” increases its pressure which

takes the value p+ π, π varying with the concentration of the solute in the com-

partment. π is the osmotic pressure of the solution. Actually, adding solute

2 changes the chemical potential of solvent 1 in the “inside compartment.” How-

ever, at the equilibrium concerning the solvent, its chemical potential must be the

same in both compartments since it can freely move between both phases. The

equilibrium is restored by a change of the pressure exerting on the “inside com-

partment.” In order to reach it, an extra pressure, equal to the osmotic pressure, must

be applied on it.

38.3 Some Results Stemming from the McMillan–Mayer’s
Theory

In brief, the McMillan–Mayer’s theory leads to the following results:

– The expression just below which gives the osmotic pressure of a binary solution

(solute–solvent) is:
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π=kT ¼ ρ2 þ B2* T; λ1ð Þρ22 þ B3* T; λ1ð Þρ23 þ � � � ð38:1Þ

π is the osmotic pressure, λ1 the absolute activity of the solvent, ρ2 the number

density of the solute, B2
*(T, λ1), B3

*(T, λ1), . . . the coefficients of the series

development called the virial coefficients of the virial of the osmotic pressure.

Hence, the McMillan–Mayer’s theory expresses the osmotic pressure as a function

of the density number ρ2 of the solute.
Expression (38.1) shows a great formal analogy with the series development

expressing the pressure of a real gas:

p=kT ¼ ρþ B2 Tð Þρ2 þ B3 Tð Þρ3 þ � � �

However, there exists a very significant difference between the coefficients Bj
*

(T, λ1) and Bj(T ). The former ones depend on both temperature and absolute

activity absolute of the solvent, whereas the latter ones only depend on

temperature.

– The theory also leads to the definition of a new type of activity δ2. It is related to
the density number ρ2 by a relation of the type:

δ2 ¼ ρ2 þ m2ρ2
2 þ m3ρ2

3 þ � � � ð38:2Þ

This relation only applies to the sufficiently dilute solutions. It is analogous to that

obtained in the case of the activity of a gas (viz. Chap. 34):

z ¼ a1ρþ a2ρ
2 þ a3ρ

3 þ � � �

In the expression (38.2), the coefficients m2, m3 are given by the expressions:

m2�� 2b2, m3�8b2 � 3b3, . . .

where the bi are related to the coefficients Bj of the virial. We must notice that the

coefficients m2, m3, . . .mj. . .. depend only on the coefficients bi where i cannot be
larger than j. Hence, we find:

δ2 ¼ ρ2 þ �2b2ð Þρ22 þ 8b2 � 3b3ð Þρ23 þ � � �

The obtained expressions permit to explicit the activity coefficients and, hence,

the activities in terms of statistical thermodynamics.

38.4 Fundamental Aspects of the McMillan–Mayer’s

The McMillan–Mayer’s theory shows that as in the case of the coefficients Bj(T ) of
real gases, those Bj

*(T, λ1) exhibit the interactions between each other of j particles
of solute (immersed in the solvent). For the successive values (2, 3, . . .) of the
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indices j of the coefficients Bj
*(T, λ1), they respectively are the interactions between

2, 3, j, . . . particles of solute.
Another essential feature characterizing the McMillan–Mayer’s theory is that

the solvent 1 is considered as being a continuous medium of absolute activity λ1.
Regarding the solvent as being a continuous medium of constant absolute activity

constitutes an approximate consideration of the interactions solvent–solvent.

Owing to this fact, this theory is considered as being a theory of solutions at the

first level. (Another example of theory of the first same level is that of Debye–

Hückel—viz. Chap. 46. There exist more elaborate theories than the latter ones

which take into account more realistic models of the interactions solvent–solvent.)

38.5 Some Features of the McMillan–Mayer’ Theory

• The species which are considered in the study can be monoatomic or polyatomic

ones as well. The reasoning at the base of the theory is analogous to that treating

the case of real gases. It is described in the Appendices L, M, and N.

• It is founded on the handling of the grand canonical partition function. In order
to obtain the relation being searched for, we proceed to a series expansion of the
partition function as a function of the solute activity. The handled partition

function is given by the expression (viz. Chap. 35):

Ξ T;V; λ1; λ2ð Þ ¼
X

N1�0

X

N2�0

Q T;V;N1;N2ð ÞλN11 λN21 ð38:3Þ

where Q(T, V, N1, N2) are the canonical partition functions corresponding to all the

possible arrangements of the number of solvent molecules N1 and of solute N2,

evidently variable since the study is located within the framework of the grand

ensemble.

• The osmotic pressure π is introduced through the relation characteristic of the

great ensemble:

Ξ ¼ ePV=kT

P and V being the pressure and the volume of the system. In this expression, P is

the total pressure exerting on the inside compartment, once the osmotic equilib-

rium is reached:

P ¼ pþ π

p being the pressure over the outside compartment. Moreover let us recall that this

equality is valid only for the solutions sufficiently dilute (viz. Chaps. 8, 13 and 14).

This entails that this theory only applies to this type of solutions.
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• The reasoning leading to the relations being searched for, notably, introduces the

following ratio Ψ 1/Ψ o. Ψ 1 and Ψ o are canonical partition functions constituting

(with others) the grand canonical ensemble. They are the starting-points of the

theory (see Appendices L and M). As we shall see (see Appendix L), the ratio

Ψ 1/Ψ o appears as being the mark of the interaction energy of one solute

molecule with the pure solvent. The occurrence of the ratio Ψ 1/Ψ o in the

calculations below permits to specify the physical meaning of the new kind of

activity δ2 (see below).
• The reasoning also uses the statistical activities z1 and z2 of the solute and the

solvent as in the case of gases. From the standpoint of their definitions, they

exactly correspond to the general one introduced by Lewis which is from purely

thermodynamic origin, i.e.:

z1 ! ρ1 where ρ1 ! 0 ð38:4Þ

z2 ! ρ2 ρ2 ! 0 ð38:5Þ

In statistical thermodynamics, they are expressed by the relations (38.6):

z1 ¼ Q10λ1=V and z2 ¼ Q01 λ2=V ð38:6Þ

Q10 Q01 are the canonical partition functions of the system only containing respec-

tively one molecule of solvent and no molecule of solute on one hand and the

converse on the other. λ1 and λ2 are the absolute activities of both components and

V is the volume of the system.

• Performing it according to the same process as that followed in the case of real

gases, however, entails the introduction of new parameters. One of them δ2
proves to be a new kind of activity and another, γ2�, to be a new activity

coefficient.

*The activity of a new type δ2 of the solute has the properties to be proportional

to z2 and to tend toward ρ2 when ρ2 tends toward zero, since μ1 and T are fixed in the

bulk solution by the conditions of the osmotic equilibrium. Hence, the activity δ2 is
defined as follows:

δ2 / z2 and δ2 ! ρ2 where ρ2 ! 0 ð38:7Þ

The part played by the new activity δ2 is to take into account the interaction

between a molecule of solute and the whole of solvent molecules (viz. Fig. 38.1).

The theory also introduces the term γ2
0, which has the meaning of an activity

coefficient. Actually, z2 does not tend toward ρ2 when ρ2 tends toward zero as in the
case of a real gas, but toward the value of the term γ2

0ρ2. This is due to the fact that,
in this case, the activity z2 must take into account the interaction solute–solvent
when ρ2! 0. This possibility, of course, does not exist in the case of gases. We can

symbolize this behavior by:

38.5 Some Features of the McMillan–Mayer’ Theory 417

http://dx.doi.org/10.1007/978-3-319-46401-5_BM1
http://dx.doi.org/10.1007/978-3-319-46401-5_BM1
http://dx.doi.org/10.1007/978-3-319-46401-5_BM1


z2 ! γ2
0ρ2 ρ2 ! 0 ð38:8Þ

We have mentioned that, according to the manner through which it has been

introduced, δ2! ρ2 when ρ2! 0, as the Lewis’ definition of an activity demands

it. Hence, this property is sufficient to attribute the meaning of an activity to δ2, at
least in part..

Since by virtue of (38.7) δ2! ρ2 when ρ2! 0, it is judicious to immediately

assert that:

z2 ! γ2
0δ2 ρ2 ! 0 ð38:9Þ

where γ2
0 is a constant at a given temperature. According to what is described

previously concerning the activity coefficients, we can already anticipate the fact

that γ2� is the limit value (obtained for an infinite dilution of the solute) of its

activity coefficient γ2, defined as every activity coefficient by the expression:

z2 ¼ γ2ρ2 ð38:10Þ

According to the relations (38.6) and (38.9), we obtain:

Q01λ2=V ¼ γ2
�δ2 ð38:11Þ

In the Appendix O, we mention that the activity δ2 may also be defined by the

following expression, equivalent to the preceding:

δ2 ¼ λ2Ψ 1=Ψ oV

This definition permits to introduce the constant γ2� in terms of the statistical

functions Ψ 1 and Ψ o. According to (38.11) and the latter definition, one, indeed,

deduces:

Fig. 38.1 Relations between the activities z2, δ2, and ρ2
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γ2
� ¼ Q01Ψ o=Ψ 1

According to the meaning of the functions Ψ o and Ψ 1 (see Appendix N), not only

γ2� characterizes the solute, but also depends on the chemical potential of the

solvent μ1 which is constant in the case of the osmotic equilibrium. Moreover, γ2
0

does possess a finite value. γ2� depends on the properties of one molecule of solute

in vacuum through Q01..γ2� also depends on the nature of the interaction between

the molecule and the solvent.

According to the relation (38.11), we find:

δ2 ¼ Q01λ2=γ2
�V ð38:12Þ

The comparison of the expressions (38.6) of z2 and (38.12) of δ2 permits to better

grasp the meaning of these quantities. Let us recall that Q01 defines the behavior of

the compound 2 in vacuum, because of its statistical definition. The ratio Q01/γ2�

may be defined as describing the behavior of 2 in the solvent 1. It plays the part of
an actual partition function for one molecule 2 in the volume V filled by the solvent
1, the chemical potential of which is μ1 at the temperature T. Therefore, we may

regard δ2 as playing the part of an activity z2 adapted to the experimental conditions

under study.

• Another thermodynamic meaning of the constant γ2
0

The constant γ2
0 is also endowed with another thermodynamic meaning, differ-

ent from that mentioned above, at first glance. The term 1 /γ2
0, indeed, is nothing

else than the constant of the following equilibrium:

solute in a gas Ð solute in solution

This result is obtained by considering the ratio:

density number of the compound in infinite dilute solution/density number of the

compound in gaseous infinite dilute phase

It is simply the ratio δ2/z2 since, in these dilution conditions, the activities are

equal to the density numbers. By replacing δ2 and z2 by their expressions (38.12)
and (38.5), we obtain:

δ2=z2 ¼ Q01λ2=Vγ2
0

� �
=Q01λ2=V

i.e.:

δ2=z2 ¼ Q01=Vγ2
0

� �
=Q01=V

Let us symbolize this ratio by K. Hence, we have:

K ¼ 1=γ2
0
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K is the constant of the above equilibrium. The numerical value γ2
0 depends on the

affinity of one solute molecule for those of the solvent. This is in agreement with the

preceding result which proved that the numerical value γ2
0 depends on the affinity

of one molecule of solute for those of solvent.

38.6 Obtaining the Relations (38.1) and (38.2)

The problem is to express the osmotic pressure as a function of the number density

ρ2 of the solute. The obtained expression permits to clarify the meaning of the

activity coefficients and hence the activities in terms of statistical thermodynamics.

As we have already mentioned it, the followed reasoning is analogous to that

applied to the case of imperfect gases.

The starting point of the reasoning is the partition function of the grand ensemble

Ξ(T, V, λ1, λ2). It is given by the expression (viz. Chap. 35):

Ξ T;V; λ1; λ2ð Þ ¼
X

N1�0

X

N2�0

Q T;V;N1;N2ð Þλ1N1λ2N2 ð38:13Þ

where Q(T, V, N1, N2) are the canonical partition functions corresponding to all the

possible arrangements of the numbers of moles N1 and N2, evidently changing,

since the study is performed within the framework of the grand ensemble. Given the

very general fact that,

Ξ T;V; λ1; λ2ð Þ ¼ ePV=kT ð38:14Þ

p and V being the pressure and the volume of the system, the general process is the

following. It consists in:

– Introducing the pressure (including or not the osmotic one) present on the system

into the exponential of the right term of the relation (38.14).

– Expanding in series the partition function Ξ as a function of the solute activity

– Equalizing both members

Proceeding in such away permits to (somewhat arbitrarily) distinguish two steps.

– The first step consists in obtaining the relation:

exp πV=kTð Þ ¼ 1 þ
X

N�1

ZN
* μ1;V;Tð Þ=N!� �

δ2
N ð38:15Þ

where π is the osmotic pressure. The analogy with the following relation concerning

an imperfect gas is quasi-perfect (viz. Chap. 34).

– The second step consists in expanding in series the right member of (38.15) after

having set it up under the logarithmic form. The course of the process is quite
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analogous to that followed in the case of real gases (viz. Chap. 34). We obtain,

by limiting ourselves to the term of order 2:

Π=kT ¼ Z1
*=V

� �
δ2 þ 1=2V Z2

* � Z1
*2

� �
δ2

2 þ � � �

Setting up:

b1 ¼ Z1
*=V, b2 ¼ 1=2V Z2

* � Z1
*

� �
, . . .

we obtain:

Π=kT ¼
X

j�1

bjδ
j
2 ð38:16Þ

Let us notice that the coefficients bj depend on μ1 and T.
Concerning the obtaining of the expression relating the osmotic pressure π to the

density number ρ2 entails to express ρ2 as a function of δ2. Such a function is

obtained by using the following relation resulting from the properties of the grand

canonical ensemble:

N2 ¼ kT ∂lnΞ=∂μ2ð Þv,T
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Chapter 39

Relation(s) Activity: Concentration
of Nonelectrolytes in Dilute Liquid Solutions
at Constant Pressure and Temperature

Abstract This chapter remains devoted to the study of dilute solutions of non-

electrolytes. It is limited to the study of binary solutions. It exhibits very great

analogies with the previous one. What is mentioned here regards solutions at

constant temperature and pressure in which the changing composition of the solute

is expressed in molalities. The molality scale is that which is the most often used in

physical chemistry in order to express the “concentration” of a solute. The goal of

the study is to obtain a relation between the molality of the solute and its activity.

The mentioned developments are based on a new ensemble, the Γ one depending on

the independent variables which are the density number of the solvent, the pressure,

the temperature, and the chemical potential of the solute. The activity of the solute

is now defined in terms of its absolute activity and also in terms of two character-

istic functions of the isothermal isobaric ensemble. These functions take into

account the interactions between the solute and the solvent. The so-defined activity

exhibits the same properties as the Lewis’ one. It is linked to its molality by a well-

defined series development.

Keywords Activities and concentrations of nonelectrolytes (dilute solutions at

constant temperature and pressure) • Molalities scale • Gamma ensemble •

Isothermal isobaric ensemble • Statistical definition of an activity (at constant

temperature and pressure) • Activities molalities relations

This chapter is also devoted to the study of dilute solutions of nonelectrolytes. We

confine ourselves to the study of binary solutions. It shows very great analogies

with the previous one. What is mentioned here regards solutions at constant

temperature and pressure in which the changing composition of the solute is

expressed in molalities. The molality scale is that which is the most often used in

physical chemistry in order to express the “concentration” of a solute. The goal of

the study is to obtain a relation between the molality of the solute and its activity.
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39.1 The Studied Physical Process

The study of the dilute solutions at constant pressure and temperature differs from

the preceding one by the fact that the pressure is constant whereas it was not in the

preceding case. The consequence was the advent of the osmotic pressure. In the

present case, the initial state is constituted by the pure solvent (N1 molecules) at

constant temperature and pressure.

N2 molecules of solute are then added to the solution while keeping constant

these values. As a result, for the equilibrium to be maintained, the chemical

potential of the solvent μ1 varies with the number of solute molecules added.

39.2 Study

In this chapter we follow the theory of T.L. Hill (viz. bibliography).

39.2.1 Formalism

From the statistical thermodynamics standpoint, the most appropriate ensemble for

the study of this problem is the ensemble Γ depending on the independent variables

N1, p, T, μ2 defined by the expression:

�lnΓ N1; p; T; μ2ð Þ ¼ N1μ1=kT ð39:1Þ

of which the characteristic function is N1μ1/kT or G1. G1 is the Gibbs energy of the

component 1 (solvent) in the system. Γ is given by the expression:

Γ N1; p; T; μ2ð Þ ¼
X
N2�0

ΔN2 N1; p; Tð Þexp N2μ2=kT½ � ð39:2Þ

where

ΔN2 ¼
X
V

Q N1;N2;V;Tð Þe�pV =kT ð39:3Þ

The function ΔN2 is the function Δ( p, T, N ) already encountered (cf. Chap. 24). Its

expression is:
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ΔN2 ¼ Q N1; 0;V1; Tð Þe�pV1=kT N2 ¼ 0ð Þ
þ Q N1; 0;V2; Tð Þe�pV2=kT N2 ¼ 0ð Þ
þ � � �
þ Q N1; 1;V1; Tð Þe�pV1=kT N2 ¼ 1ð Þ
þ Q N1; 1;V2; Tð Þe�pV2=kT N2 ¼ 1ð Þ
þ � � �

i.e., by setting up for:

N2 ¼ 0
X
V

Q N1; 0;V; Tð Þ ¼ Δ0

N2 ¼ 1
X
V

Q N1; 1;V; Tð Þ ¼ Δ1

� � � � � �
ð39:4Þ

and since λ2 ¼ e�pV=kT , we obtain:

Γ ¼ Δ0 þ Δ1λ2 þ Δ2λ
2
2 þ Δ3λ

3
2 þ � � � ð39:5Þ

39.2.2 Definition of the Activity

Let us define the activity a2 of the solute as being related to its absolute activity λ2
by the expression (39.6). (Notice that the symbolism is no longer z but a. In
principle, according to IUPAC, the accurate symbolism should be am in order to

express the fact that the activity is related to the molality through Henry’s law):

a2 ¼ λ2 Δ1=Δ0N1ð Þ ð39:6Þ

Let us notice that the term Δ1/Δ0N1 takes into account the interactions between one

solute molecule with the N1 molecules of solvent.

By definition, according to Lewis, the activity a2 tends toward the molality m2

when the latter tends toward zero:

a2 ! m2 when m2 ! 0 ð39:7Þ

Let us recall (cf. Chap. 1) that the molality m2 is related to the number of moles N2

by the expression:

m2 ¼ N21000=N1M1
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where M1 is the molar mass of the solvent expressed in g mol�1. The system being

open to the compound 2, we must consider the average number of moles of

compound 2, i.e., N2 , and write:

m2 ¼ N2 1000=N1M1

For the sake of simplifying the above writing, let us assert that from now on:

m2 ¼ N2=N1

being understood that this is true although the proportionality constant 1000/M1 is

neglected. The accuracy of the reasoning, however, is not affected by this simpli-

fication. It is already interesting to notice that with this convention on the molality,

the latter slightly differs from the molar fraction x2:

m2 � x2

because only dilute solutions are considered here and then:

N2 � N1

39.2.3 Calculations

Let us replace the absolute activity λ2 by the relative one a2 in (39.5). We obtain:

Γ ¼ Δ0 þ Δ1 Δ0N1=Δ1ð Þa2 þ Δ2 Δ0N1=Δ1ð Þ2a22 þ Δ3 Δ0N1=Δ1ð Þ3a32 � � �

or after rearrangement:

Γ=Δ0 ¼ 1þ Δ1 N1=Δ1ð Þa2 þ Δ2 N1=Δ1ð Þ2Δ0a
2
2 þ Δ3 N1=Δ1ð Þ3Δ2

0a
3
2 � � �

ð39:8Þ

Inserting the intermediary variable XN such as:

XN ¼ ΔNN
N
1 Δ

N�1
0 N!=ΔN

1

The expression (39.8) becomes:

Γ=Δ0 ¼ 1þ
X
N�1

XN=N!ð ÞaN
2 ð39:9Þ
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Let us remark in passing that:

X1 ¼ N1

The relation (39.9) exhibits a very great similarity with, respectively, the relations

(34.13) and (38.18) of the Chaps. 34 and 38. This justifies the great similarity of the

theoretical treatments according to the respective cases.

What is differing slightly from the two other cases is the following change of

variable. In order to find the relation between the molality of the solute and its

activity in these conditions, let us begin by noticing that according to relations

(39.1) and (39.4), we find:

N1μ1 p; T; 0ð Þ ¼ �kTlnΔ0

μ1( p, T, 0) being the chemical potential of the pure solvent. It is interesting, as it is

proved by the following reasoning, to relate the chemical potential of the solvent,

which changes by addition of the solute 2 and which is expressed in terms of

molalities, to the activity a2 of the latter. Let us set up the relation (39.10) by

introducing the Gibbs energy μ10(T, p, m2):

μ1
0 T, p, m2ð Þ ¼ μ1 p; T;m2ð Þ � μ1 p; T; 0ð Þ ð39:10Þ

μ10(T,p,m2) is the change in the Gibbs energy of the solvent accompanying the

addition of the solute 2 at the molality m2 to itself, pure. The introduction of the

factor μ1
0 facilitates the handling of the expressions. The value of the chemical

potential of a species, of course, does not depend on the fact that it is expressed as a

function of its activity or of its molality, molarity and so forth. The relation (39.10)

can also be written:

μ1
0 T; p; a2ð Þ ¼ μ1 p; T; a2ð Þ þ kT=N1ð ÞlnΔ0

and since:

Γ N1; p; T; μ2ð Þ ¼ e� N1μ1=kT

μ1=kT ¼ �lnΓ=N1

we deduce from that:

�μ1
0 T; p; a2ð Þ=kT ¼ 1=N1ð Þln Γ=Δ0ð Þ ð39:11Þ

From the standpoint of the pure reasoning, the significant point is that we can

handle the relation (39.9) exactly as we have already done in the case of relations

(34.13) and (34.14) of Chap. 34.
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N ¼ λ ∂InΞ=∂λð ÞV,T relation 34:22ð Þ Chap: 34ð Þ
Ξ ¼ 1þ

X
N�1

ZN=N!ð ÞzN relation 34:13ð Þ Chap: 34ð Þ

ln Ξ ¼ ln 1þ
X
N�1

ZN=N!ð ÞzN
" #

relation 34:14ð Þ Chap: 34ð Þ

which applied to the case of imperfect gases and as we have done with the relation

(38.15) of the Chap. 38 devoted to the osmotic pressure:

exp πV=kTð Þ ¼ 1 þ
X
N�1

Z*
N μ1;V; Tð Þ=N!� �

δN2 relation 38:15ð Þ, Chap: 38ð Þ

Taking into account relations (39.9) and (39.11), we obtain:

ln Γ=Δ0ð Þ ¼ ln 1þ X1a2 þ X2=2 !ð Þa22 þ X3=3 !ð Þa32 þ � � �� �
and by expanding in series the logarithm, there comes the relation:

ln Γ=Δ0ð Þ ¼ �
X1a2 þ X2=2!ð Þa22 þ X3=3!ð Þa32 þ � � �

� 1=2 X1a2 þ X2=2!ð Þa22 þ X3=3!ð Þa32 þ � � �� �2 ð39:12Þ

Let us set up:

�μ1
0 T; p; a2ð Þ=kT ¼

X
j�1

ϑj p; Tð Þaj
2 ð39:13Þ

The identification of the expansion in series (39.12) with (39.13) leads to the

identities:

N1ϑ1 ¼ X1 ¼ N1 ϑ1 ¼ 1ð Þ
2!N1ϑ2 ¼ X2 � X2

1

3!N1ϑ3 ¼ X3 � 3X1X2 þ 2X3
1

� � �

The relations between the molality m2 and the activity a2 is found with the aid of
the Gibbs–Duhem relation applied at constant temperature and pressure.

We must, now, successively relate the molality m2 to the activity a2 and then,

inversely, to relate the activity a2 to the molality m2. According to the Gibbs–

Duhem relation at constant temperature and pressure:
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N1dμ1 þ N2 dμ2 ¼ 0

According to (39.10):

dμ1
0 ¼ dμ1

Since the term (kT/N1)lnΔ0 is constant, hence:

N1dμ1
0 þ N2dμ2 ¼ 0

dμ1
0 þ N2=N1

� �
dμ2 ¼ 0

dμ1
0 þ m2dμ2 ¼ 0

�dμ1
0 ¼ m2dμ2

�∂μ1
0=∂a2 ¼ m2 ∂μ2=∂a2ð Þ ð39:14Þ

and, since very generally

μ2 ¼ μ2
� þ kTlna2

whence:

dμ2=da2 ¼ kT dlna2=da2ð Þ
dμ2=da2 ¼ kT=a2

We obtain:

a2 ∂ �μ1
0=kTð Þ=∂a2½ �T,p ¼ m2

Finally, according to (39.13) and the latter relation:

m2 p; T; a2ð Þ ¼
X
j�1

jϑj p; Tð Þ aj
2

In order to determine the relation a2 as a function of m2, let us set up:

a2 ¼ r0m2 þ r1m
2
2 þ r2m

3
2 þ � � �

39.3 Relation Being Searched for

Let us identify the two latter relations. We find, given the fact that ϑ1¼ 1,
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r0	1, r2	� 2ϑ2, r3	 8ϑ22 � 3ϑ3
� �

and

a2 ¼ m2 � 2ϑ2m
2
2 þ 8ϑ22 � 3ϑ3

� �
m3

2 . . .

This is the relation between the solute activity and its molality being searched for.

Let us recall that it is established for constant temperature and pressure and that the

molality appearing in this expression is not equal to the usual molality. There is a

multiplicative term between them. As a result, the adopted standard state in this

case is not the usual one.

Remark: One also demonstrates (viz. Appendix O) that the logarithm of the ratio

ΔNΔ0
N–1/Δ1

N intervening in the term XN does possess the physical meaning of the

Gibbs energy change accompanying the following process:

N systems N1,N2 ¼ 1, p,Tð Þ ! 1system N1,N2 ¼ N, p, Tð Þ
þ N � 1ð Þ systems N1,N2 ¼ 0, p,Tð Þ

the N – 1 systems being constituted by the pure solvent.
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Chapter 40

Activity Coefficient of a Solute

Abstract The chapter mentions the relations which on one hand link the activity

and the concentration of the solute in the conditions in which an osmotic pressure is

developing and, on the other one, when the solution is maintained at constant

temperature and pressure. In other words, the activity coefficients are focused. It

is known that the activity coefficients of the imperfect gases can be theoretically

related to the virial coefficients (changing with the nature of the gas) which are

purely experimental parameters. For very weak density numbers of the gases, this

result is very interesting since it permits, at least in principle, to forecast the changes

in the value of the activity coefficient and therefore in the changes of the activity

when the density number vary, while, however, keeping a weak value.

Given the fact that the preceding theories, devoted to the osmotic pressure and to

the solutions at constant pressure and temperatures, are very close to that applied to

the real gases, it is not surprising that it is possible to theoretically relate the activity

coefficients of the nonelectrolyte solutes to some experimental parameters. The

reasonings involve the introduction of a new kind of activity applying to the

osmotic equilibrium. The chapter mentions these relations and their setting up.

Keywords Activity coefficient (solute) • Osmotic pressure • Osmotic equilibrium •

New kind of activity coefficient of a solute (when osmotic pressure is developing) •

Activity coefficients in relation with the concentrations and the virial coefficients •

Relations between activities and molalities

In this chapter, we give the relations between activity and concentration of the

solute, on one hand, in the conditions in which an osmotic pressure is developing

and, on the other one, when the solution is maintained at constant temperature and

pressure. In other words, we focus ourselves on the activity coefficients. We know

that the activity coefficients of the imperfect gases can be theoretically related to the

virial coefficients (changing with the nature of the gas) which are purely experi-

mental parameters. For very weak density numbers, this result is very interesting

since it permits to forecast the changes in the value of the activity coefficient and

therefore in the changes of the activity when the density number vary, while,

however, keeping a weak value.

Given the fact that the preceding theories, devoted to the osmotic pressure and to

the solutions at constant pressure and temperatures, are very close to that applied to
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the real gases, it is not surprising that it is possible to theoretically relate the activity

coefficients of the nonelectrolyte solutes to some experimental parameters. It is the

goal of this chapter to give these relations.

40.1 Expression of the Activity Coefficient of the Solute
in Terms of Experimental Parameters When
an Osmotic Pressure is Developing

Let us recall (viz. Chap. 38) that it is judicious to introduce the new type of activity

δ2 in this case. We have demonstrated that it is related to the density number ρ2 by
the following relation:

δ2 ¼ ρ2 þ m2 ρ
2
2 þ m3 ρ

3
2 þ � � � ð40:1Þ

The coefficients m2, m3 are given by the expressions:

m2�� 2b2,m3�8b2 � 3b3, . . .

It must be noticed that the coefficients m2, m3, . . ., mj. . .only depend on the

coefficients bi where i cannot be larger than j. Hence, we find:

δ2 ¼ ρ2 þ �2b2ð Þρ22 þ 8b2 � 3b3ð Þρ32 þ � � �

The coefficients bi themselves are related to the configuration integrals Z�N
. adapted

to the studied case. The latter ones, here in the case where Nmolecules of solute are

dissolved in the solvent, play the same formal part as the one played by the integrals

ZN in the case of N molecules of gas in vacuum (Appendix N). The coefficients bj,
here, are related to the integrals Z�N

.by the same expressions as those found in the

case of an imperfect gas (viz. Chap. 34).

It is evident that relation (40.1) is an expression of the activity coefficient γ2
defined by the relation γ2¼ δ2/ρ2.

1

Using two thermodynamic relations, one classical and the other statistical,

permits to explicit this expression of the activity coefficient of the solute.

The first results from the Gibbs–Duhem’s relation. It permits to obtain a first

expression of the chemical potential of the solute. The second expression permits to

express the same chemical potential by starting from its absolute activity. The

comparison of both expressions leads to the relation being searched for.

1In order to be as general as possible, we symbolize an activity coefficient by γ without deserving
any attention, for the moment, to the unity to which the solute concentration is related.
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– The Gibbs–Duhem’s relation can be written for a binary solution (viz. Chap. 5):

n1dμ1 þ n2dμ2 ¼ �SdT þ Vdp

where S is the entropy of the system and P its total pressure (P¼ p + π). In the

present case of the osmotic equilibrium, i.e., at constant μ1, p, and T, it becomes:

n2dμ2 ¼ Vdπ

Let us divide both members of this equality by the product kT in order to later

introduce the series expansion of the function π/kT into the following calcula-

tions. We obtain:

n2dμ2=kT ¼ Vdπ=kT

dμ2=kT ¼ V=n2ð Þdπ=kT
dμ2:=kT ¼ 1=ρ2ð Þdπ=kT

ð40:2Þ

By incorporating the expression (40.4) of statistical nature (viz. Appendix N)

into the relation (40.2):

π=kT ¼ ρ2 þ
X

n

B*
n ρ

n
2 n � 2ð Þ relation N:4ð Þ � Appendix Nð Þ

(where the coefficients B�
n are the virial coefficients of the osmotic pressure by

differentiating (π et ρ2 being the variables), dividing by ρ2 and, finally, by integrat-
ing, we obtain:

μ2=kT ¼ constant þ
X

k�1

k þ 1=kð ÞBkþ1ρ
k
2 þ lnρ2 ð40:3Þ

– From another view point, we know that:

z2 ¼ Q01λ2=V

i.e.:

z2 ¼ Q01exp μ2=kTð Þ=V½ �

and moreover:

z2 ¼ γ2ρ2

From the latter two relations, we deduce that:

Vγ2ρ2=Q01 ¼ exp μ2=kTð Þ
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i.e.:

μ2=kT ¼ lnV=Q01 þ lnγ2 þ lnρ2 ð40:4Þ

relation that we must compare with (40.3). The knowledge of the expression of γ2
(being searched for) imposes to know the integration constant present in relation

(40.3). Let us identify (40.3) and (40.4). We obtain:

constantþ
X

k�1

k þ 1=kð ÞBkþ1ρ
k
2 ¼ lnV=Q01 þ lnγ2 ð40:5Þ

In very dilute solution, γ2 ! γ02 and according to (40.5):

constant ¼ lnV=Q01 þ lnγ2
� �

X

k�1

k þ 1=kð ÞBkþ1ρ
k
2 ð40:6Þ

Let us inject the expression (40.6) into (40.3) and identify to (40.4). The result is the

relation being searched for, i.e.:

lnγ2 ¼ lnγ2
� �

X

k�1

k þ 1=kð ÞBkþ1ρ
k
2 ð40:7Þ

expression being searched for. It relates the activity coefficient to those of the virial

of the osmotic pressure.

40.2 A New Type of Activity Coefficient Applying
to the Osmotic Equilibrium

Relation (40.7) induces the introduction of a new thermodynamic parameter γ2 , by
setting up:

lnγ2 ¼ �
X

k�1

k þ 1=kð ÞBkþ1ρ
k
2 ð40:8Þ

One demonstrates that γ2 has the meaning of an activity coefficient. It is given by

the following relation (40.9).

γ2 ρ2 ¼ δ2 ð40:9Þ

The starting point of the reasoning leading to it is the relation below, stemming

from relations (40.4), (40.7), and (40.8):

μ2=kT ¼ lnVγ02=Q01 þ lnρ2 þ lnγ2
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We know (viz. Chap. 38 and Appendix N) that:

γ02 ¼ Q01Ψ 0=Ψ 1

whence:

μ2=kT ¼ lnVΨ 0=Ψ 1 þ lnρ2 þ lnγ2

It can be equivalently written:

exp μ2=kTð Þ ¼ V Ψ 0=Ψ 1ð Þρ2γ2

Let us compare this latter expression with the following relation (viz. Chap. 30)

δ2 ¼ λ2Q01=γ2
�V

in which λ2 is replaced by exp(μ2/kT), i.e.:

exp μ2=kTð Þ ¼ γ02δ2V=Q01

As a result:

V Ψ 0=Ψ 1ð Þρ2γ2 ¼ γ02δ2V=Q01

and since:

γ02 ¼ Q01Ψ 0=Ψ 1

we obtain:

V Ψ 0=Ψ 1ð Þρ2γ2 ¼ Q01Ψ 0=Ψ 1ð Þ δ2V=Q01ð Þ

and finally (40.9). γ2 has really the meaning of an activity coefficient. Let us also

notice that, as a true activity coefficient, it tends toward 1 when ρ2! 0 since, then

δ2! ρ2.
Another approach of the meaning of γ2 is as follows. According to the two

relations already encountered:

z2 ¼ γ2ρ2
z2 ¼ γ02δ2

we obtain:

z2 ¼ γ02γ2 ρ2
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with the aid of relation (40.9). Whence:

γ2ρ2 ¼ γ02γ2 ρ2
γ2 ¼ γ2=γ

0
2

Hence, γ2 is the ratio (changing with the concentration) between the normal activity

coefficient γ2 and the limit value of the latter γ02 when the density number of the

solute ρ2 tends toward zero. This value is not null, as it has been already said.

40.3 Activity Coefficient in the Case of a Binary Mixture at
Constant Temperature and Pressure

We have already seen (viz. Chap. 39) that the solute activity a2 is a function of its

molality m2 according to the expression:

a2 ¼ m2 � 2θ2m
2
2 þ 8θ22 � 3θ3

� �
m3

2� � � ð40:10Þ

Let us recall that the parameter θ is defined by the expression :

�μ1
0 T; p; a2ð Þ=kT ¼

X

j�1

ϑj p; Tð Þaj
2 ð40:11Þ

where μ10(T, p, a2)/kT is the change in the Gibbs energy of the solvent accompa-

nying the addition of the solute 2 up to the molality m2 to the pure solvent. The

molalitym2 (at constant temperature and pressure and at the activity a2) is related to
the parameter θ and at the activity a2 by the relation:

m2 p; T; a2ð Þ ¼
X

j�1

jϑj p;Tð Þaj
2

The parameters θ are related to the intermediary variables XN which, in the present

case, play the part of the configuration integrals of the preceding cases. For

example, N1 being the number of molecules of pure solvent, we find:

N1ϑ1 ¼ X1 ϑ1 ¼ 1ð Þ
2!N1ϑ2 ¼ X2 � X2

1

3!N1ϑ3 ¼ X3 � 3X1X2 þ 2X3
1

Let us also recall that these relations are only legitimate in the case of very dilute

solutions in which the solute molality is proportional to its number of molecules.
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The activity coefficient γ02 defined by the relation

γ02 ¼ a2=m2

can be, hence, written as the function of m2:

γ02 ¼ 1� 2ϑ2m2 þ 8ϑ22 � 3ϑ3
� �

m2
2� � � ð40:12Þ

lnγ02 ¼ ln 1� 2ϑ2m2 þ 8ϑ22 � 3ϑ3
� �

m2
2� � �

� � ð40:13Þ

Let us introduce the intermediary variable Y, given by the relation

Y ¼ �2ϑ2m2 þ 8ϑ22 � 3ϑ3
� �

m2
2

and expand ln (1 + Y ) in series:

ln 1þ Yð Þ ¼ Y=1� Y2=2þ � � �

We obtain:

lnγ02 ¼ �2ϑ2m2 þ 6ϑ22 � 3ϑ3
� �

m2
2� � �

that can be written under a more condensed form:

lnγ02 ¼ �
X

k�1

δkm
k
2 ð40:14Þ

with

δ1 ¼ 2ϑ2, δ2 ¼ 3ϑ2 � 6ϑ22

One can verify that, as it must be the case:

γ02 ! 1 a2 ! m2 when m2 ! 0

Such are the expressions of the solute activity coefficient as a function of its

molality.

Let us notice that the preceding results permit to express the “corrected from the

solvent chemical potential” in sufficiently dilute solution, by replacing a2 by m2 in

(40.11). Then, we obtain:

�μ1
0 T; p;m2ð Þ=kT ¼ m2 þ

X

n

Cnm
n
2 n � 2ð Þ ð40:15Þ

where

Cn ¼ � n� 1ð Þ=n½ �δn�1
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Chapter 41

Molecular Distribution Functions in Binary
Mixtures

Abstract In this chapter, the generalization of the notion of molecular distribution

functions to the cases of mixtures and solutions is described. It is based on the

“pairwise additivity” hypothesis. Here, are only studied binary solutions. (The

terms of mixtures and of solutions are endowed with the same general meaning

for the purpose of this book, but that of solution is rather devoted to the case in

which one substance, the solute, the quantity of which is the weakest one. It is

dissolved in the other one, named the solvent).

Intervene in the evoked reasonings, some molecular distribution functions such

as the pair distribution functions and the pair correlation function. It also appears

the notion of conditional distribution function.

Keywords Molecular distribution functions (binary mixtures) • Pairwise additivity

hypothesis • Pair distribution functions • Pair correlation functions • Conditional

distribution function • Pairwise additivity hypothesis in the cases of mixtures •

Density of base probability in the canonical ensemble

In this chapter, we generalize the notion of molecular distribution functions to the

cases of mixtures and solutions. The generalization is based on the hypothesis of the

“pairwise additivity”. Here, we only study binary solutions. The terms of mixtures and

of solutions are endowed with the same general meaning for our purpose, but the term

solution is rather devoted to the case in which one substance, the solute, the quantity

of which is the weakest one. It is dissolved in the other one, named the solvent.

41.1 The Notion of “Pairwise Additivity” in the Case
of Mixtures

As in the case of pure liquids, the knowledge of fundamental molecular quantities

imposes to determine the interactions between the different particles constituting

the mixture. Again, the “pairwise additivity” hypothesis proves to be of great aid,

although it remains a simplification, as before. A function F subscribing to this

hypothesis obeys the following relation:
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F RNAþNB
� � ¼

X
ij

fAA Ri;Rj

� �
i 6¼ jð Þ þ

X
ij

f BB Ri;Rj

� �
i 6¼ jð Þ

þ
X
i

X
j

fAB Ri;Rj

� �
1 � i � NA; 1 � j � NBð Þ

þ
X
i

X
j

f BA Ri;Rj

� �
1 � i � NB; 1 � j � NAð Þ

ð41:1Þ

RNA + NB is the configuration of the whole NA and NB particles of the system. fAA,
fBB, fBA, fAB are the pair potential energy functions into which is the function F is

decomposed. We must remark that in (41.1) the indices i and j are not related to the
same operations whether they address to the “symmetrical” fAA and fBB or to the

“crossed” ones fBA and fAB. In the first case, i and j apply to the same type of

molecules. In the second, i apply to the particles A and j to the particles B,

exclusively.

Let us explicit the relation (41.1) with the example of the interaction potential

energy. Let U RNAþNB
� �

be the total potential energy of the mixture of NA and NB

molecules of A and B in the well-specified RNA, RNB. The “pairwise additivity”

hypothesis permits to write:

U RNA þ NB
� � ¼ 1=2

X
ij

UAA Ri;Rj

� � þ 1=2
X
ij

UBB Ri;Rj

� �

þ
X
i

X
j

UAB Ri;Rj

� �
1 � i � NA and 1 � j � NB

The double sum of the last line takes into account the equality UAB ¼ UBA. In the

first line, Ri and Rj are the configurations of the i
eme and of the jeme particle of A or

of B. In the second, Ri is the configuration of the particle i of A and Rj that of

particle j of B.

41.2 Density of Base Probability in the Canonical System

The density of base probability P RNA þ NB
� �

is given in the present case by the

expression:

P RNA þ NB
� � ¼ exp �βU RNA;RNB

� �� �. ð ð
dRNAdRNBexp �βU RNA;RNB

� �� �

In the numerator, the symbolism RNA, RNB represents the case in which we

regard the total configuration of the well-specified system RNA, RNB whereas the

integrals of the denominator take into account all the possible configurations of the

system.
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41.3 Molecular Distribution Functions

They are defined, absolutely as in the case of a pure fluid (viz. Chap. 28). Notably,

one can distinguish:

• The functions ρA
(1)(R0) and ρB

(1)(R0) are the densities of A and B in the

configuration R0. As previously, in a homogeneous and isotropic fluid, the

following relations are verified:

ρA
1ð Þ R0ð Þ ¼ NA=V ¼ ρA

ρB
1ð Þ R0ð Þ ¼ NB=V ¼ ρB

• The pair distribution functions

In the case of a binarymixture, several pairs are possible, i.e., AA,AB, BA,BB. For

the “symmetrical pairs,” one defines the functions ρ(2)AA(R0,R00), ρ(2)BB(R0,R00) and
for the “crossed ones” the functions are ρ(2)AB(R0,R00)et ρ(2)BA(R0,R00).

Let us recall that in the case of one type of particles:

ρ 2ð Þ
�
R0,R

00�
dR0dR

00

is the probability to find one particle in dR0 in R0 and another in dR00 in R00. It is also
the average number of pairs occupying dR0 and dR00. The generalization is imme-

diate in the case of the binary mixture.

• Pair correlation functions

Several pair correlation functions are defined. They obey the general symbolism

according to (where α and β equally symbolize A or B):

ρ 2ð Þ
αβ R0;R

00
� �

¼ ρ 1ð Þ
α R0ð Þρ 1ð Þ

β R
00

� �
gαβ R0;R

00
� �

The function gαβ(R
0,R00) only depends on the distance R ¼ ��R0 � R

00 ��. R is a scalar.

From that, we can deduce that:

gAB R0;R
00

� �
¼ gBA R0;R

00
� �

• Conditional distribution function

Let us first recall that the definition of the conditional probability to see a particle

in the configuration element dX00 in X00, another particle being located in the

element dX0 in X0, is given by the expression (viz. Chap. 28)
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P X
00
=X0

� �
dX

00 ¼ ρ 2ð Þ X0;X
00

� �
dX0dX

00
=ρ 1ð Þ X0ð ÞdX0

i.e.,

P X
00
=X0

� �
dX

00 ¼ ρ 1ð Þ X
00

� �
g X0;X

00
� �

dX
00

In the present case, one also defines the new functions:

ρAB R0=R
00

� �
¼ ρ 2ð Þ

AB R0R
00

� �
=ρ 1ð Þ

B R
00

� �

ρAB R0=R
00

� �
¼ ρ 1ð Þ

A R0ð ÞgAB R0;R
00

� �

ρAB(R0/R00) is the density of particles A in the configuration R0 whereas a particle

B is fixed in the configuration R00. The other new conditional distribution function

ρBA(R0/R00) exhibit analogous properties.
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Chapter 42

Kirkwood–Buff’s Theory: Changes
of the Solutes Chemical Potentials
with the Concentrations at Constant Pressure
and Temperature

Abstract Kirkwood–Buff’s theory (1951) provides new relations between some

thermodynamic quantities such as the chemical potential and the spatial pair

correlation functions Gαβ also called Kirkwood–Buff integrals. It, especially, offers

expressions linking the chemical potential changes of solution components and

their concentrations, at constant pressure and temperature. These expressions are all

the more interesting as this kind of solutions is the most often encountered.

Expressions stemming from this theory probably set up the best means to begin

to grasp the physical significance of activities and of their coefficients. This point is

tackled in the next three following chapters.

The chapter is devoted to the sole study, according to this theory, of binary,

homogeneous and isotropic mixtures of nonelectrolytes. It is set up within the grand

ensemble framework. The starting point of the reasoning leading to the theory is the

setting up of two mathematical relations expressing the concentration fluctuations.

One of these relations links the fluctuations to the Kirkwood–Buff integrals Gαβ, the

other links the same fluctuations to the partial derivatives of the mean number of

particles with respect to the different chemical potentials.

Keywords Kirkwood–Buff’s theory • Chemical potentials changes with

concentrations at constant temperature and pressure • Kirkwood–Buff’s

integrals • Spatial pair correlation function • Concentration fluctuations •

Thermodynamic quantities as a function of Kirkwood–Buff’s integral • A very

important relation stemming from the Kirkwood–Buff’s theory • Kirkwood–Buff’s

theory (some aspects)

Kirkwood–Buff’s theory (1951) provides new relations between some thermody-

namic quantities such as the chemical potential and the spatial pair correlation

functions Gαβ also called Kirkwood–Buff integrals. It, especially, offers expres-

sions linking the chemical potential changes of solution components and their

concentrations, at constant pressure and temperature. These expressions are all

the more interesting as this kind of solutions is the most often encountered.

Expressions stemming from this theory probably set up the best means to begin

to grasp the significance of activities and their coefficients. This point is tackled in

the next three following chapters.
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We commit ourselves to the sole study, according to this theory, of binary,

homogeneous and isotropic mixtures of nonelectrolytes.

42.1 An Overview of Kirkwood–Buff’s Theory

The theory calls up a reasoning of classical mechanics and of statistical thermody-

namics. It is set up within the grand ensemble framework. It consists of a link

between some macroscopic thermodynamic properties of a system and the concen-

tration fluctuations of its components.

The starting point of the reasoning leading to the theory is the setting up of two

mathematical relations expressing the concentration fluctuations. Their setting up is

followed by their “matching.” This is the reason why the theory is also named

“Fluctuation Solution Theory.” One of these relations links the fluctuations to the

Kirkwood–Buff integrals Gαβ, the other links the same fluctuations to the partial

derivatives of the mean number of particles with respect to the different chemical

potentials. After some mathematical developments, the theory leads to a link

between the changes in concentrations and the thermodynamic properties of an

isothermal and isobaric system. The corresponding expressions make allowance for

the Kirkwood–Buff integrals Gαβ.

Kirkwood–Buff’s theory is an exact one. It is valid for any kind of solution.

42.2 Kirkwood–Buff Integrals Gαβ

The theory makes allowance for functions (42.1), named Kirkwood–Buff integrals:

G12 ¼
ð1
0

g12 Rð Þ � 1½ �4πR2dR ð42:1Þ

which are an extension of the G function, already encountered and defined in the

case of a pure liquid (viz.: Chap. 31) by the expression:

G ¼
ð1
0

g Rð Þ � 1½ �4πR2dR

where R is the distance between both particles 1 and 2. Just as it is written above

with R being a scalar, they apply to homogeneous and isotropic media. G functions

are themselves related to pair correlation functions gαβ and, then, to radial distri-

bution functions (viz. Chap. 31).

In the present case of a binary function, the functions of interest for us are G11,

G12, G21, and G22. They are defined below. (1 refers to the first component and so

forth. Indices α and β refer indifferently to 1 or 2).
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Before expliciting the Kirkwood–Buff’s theory, it is interesting to qualitatively

recall the physical significance of the integrals Gαβ, all the more because some

expressions of activities and of their coefficients make allowance for them (viz.

Chaps. 31, 32, and 33).

Let us suppose that we choose a particle 1 and that we observe the local density

of 2 in the spherical shells centered on molecule 1. The local density of molecules

2 at distance R from particle 1 is given by the term ρ2g21(R). (ρ2 is the density

number of (42.2), g21 the radial distribution function between 1 and 2 which is the

correlation function between 1 and 2). The mean number of particles 2 in the

spherical shell of thickness dR at the distance R from 1 is ρ2g21(R)4πR
2dR.

Otherwise, ρ24πR
2dR is the mean number of particles 2 in the same spherical

shell but, the center of which is a particle 1 chosen randomly.

Thus the expression ρ2[g21(R)� 1]4πR2dR is a measure of the excess (or of the

deficit) of particles 2 in a spherical shell of volume 4πR2dR around a particle 1 with

respect to the number which would be obtained if we would have made allowance

for only the mean number ρ2. Thus, ρ2G21 is the mean excess of particles 2 all

around 1. Therefore, the integral is the excess of 2 around 1 for a density of 2 equal

to the unity. The reasoning would be the same if we would have considered the

density of 1 around the particle 1 or that of 2 around 2. The integrals being

considered would then be G11, G12, and G22.

Figure 33.1 shows the general shape of a Kirkwood–Buff integral as the distance

of integration R, measured in nm.

42.3 Different Steps of the Setting-Up
of the Kirkwood–Buff’s Theory

One can estimate that it is developed in three steps consisting in:

– Relating the functions Gαβ to the mean density numbers of the components

– Setting up the mathematical relations between some partial derivatives involv-

ing the chemical potentials of the different components. These relations are

necessary to carry out the third step

– Expressing some thermodynamic quantities related to functions Gαβ.

42.4 First Step: Expressions Relating Functions Gαβ

to the Average Density Numbers of the Components

Two relations involve the fluctuations of concentrations. They are (viz. Chap. 31):
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G12 ¼ V N1N2h i � N1h i N2h i½ �= N1h i N2h ið Þ � δ12= N1h if g ð42:2Þ

kT ∂=∂μ2ð ÞT,V, μ1 ¼ N1N2h i � N1h i N2h i ð42:3Þ

hN1i and hN2i being the average numbers of particles 1 and 2. δ12 is Kronecker’s
function. In the same manner, it is demonstrated that:

kT ∂ N2h i=∂μ1ð ÞT,V,μ2 ¼ N1N2h i � N1h i N2h i ð42:4Þ

It is clear that the elimination of the right members from the relations of types

(42.2) and (42.3) permits to set up the relations to be searched for between density

numbers, chemical potentials, and Kirkwood–Buff’s integrals, that is to say:

kT=V ∂ N1h i=∂μ2ð ÞT,V,μ1
h i

¼ ρ1ρ2G12 þ ρ2dδ12 ð42:5Þ

kT=V ∂ N2h i=∂μ1ð ÞT,V,μ2
h i

¼ ρ1ρ2G12 þ ρ1δ12 ð42:6Þ

(We note, in passing, that:

kT ∂ N1h i=∂μ2ð ÞT,V,μ1 ¼ kT ∂ N2h i=∂μ1ð ÞT,V,μ2
∂ N1h i=∂μ2ð ÞT,V,μ1 ¼ V ∂ρ1=ρμ2ð ÞT,V,μ1

and

∂ N2h i=∂μ1ð ÞT,V,μ2 ¼ V ∂ρ2=∂μ1ð ÞT,V,μ2

knowing that ρ1 ¼ N1h i=V and ρ2 ¼ N2h i=V, since the solution is homoge-

neous and isotropic).

42.5 Second Step: Mathematical Relations Between Some
Partial Derivatives Involving the Chemical Potentials
of the Different Components

Before describing the second step, let us recall that, when all is said and done, the

Kirkwood–Buff’s theory relates the partial derivatives (∂μα/∂Nβ)T,P,Nγ (at constant

temperature, pressure and concentration of the other component) to the integrals

Gαβ.

(The other partial derivatives (∂Nα/∂μβ)T,V,μγ being already obtained (previous

step—relations (42.5) and (42.6)), though they are relations between
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thermodynamic quantities and functions Gαβ are not those required. Besides, they

cannot be immediately handled. We know, indeed, few data about them).

As a result, the following transformation must be carried out:

∂Nα=∂μβ
� �

T,V,μγ
! ∂μα=∂Nβ

� �
T,P,Nγ

The transformation involves two steps:

– In the first one, the partial derivatives at constant chemical potentials (∂Nα/

∂μβ)T,V,μγ(γ 6¼ β) [or equivalently the following ones (∂ρα/∂μβ)T,μγ] are

transformed into (∂μα/∂Nβ)T,VNγ, that is to say in the partial derivatives of the

chemical potentials with respect to the average numbers of the components, at

constant temperature, pressure and concentration of the other component (in the

following reasoning, ‹Nα› is replaced by Nα in order to reduce the writing)

– In the second step, the derivatives (∂μα/∂Nβ)T,V,Nγ are transformed in those at

constant pressure, temperature and Nγ, (∂μα/∂Nβ)T,P,Nγ. (Let us recall that the

partial derivatives which are the most easily handled are those at constant

pressure and temperature. This is because they are the most available

experimentally).

Finally, the partial derivatives (∂μα/∂Nβ)T,P,Nα at our disposal at the end of this

step are related to the functions Gαβ.

Hence, at the end of the second step, we face with some relations which permit to

express the following thermodynamic quantities, (∂μ1/∂N2)T,P,N1 and analogous

ones and also V1 ,V2 , kT as functions of the Kirkwood–Buff integrals Gαβ. These

relations are:

∂μ1=∂N2ð ÞT,P,N1 ¼ �kT=VΔ0ρ1ρ2G12 � V1 V2=VκT ð42:7Þ

∂μ2=∂N1ð ÞT,P,N2 ¼ �kT=VΔ0ρ1ρ2G12 � V1 V2=VκT ð42:8Þ

∂μ1=∂N1ð ÞT,P,N2 ¼ kT=VΔ0 ρ2
2G22 þ ρ2

� � � V1
2
=VκT ð42:9Þ

∂μ2=∂N2ð ÞT,P,N1 ¼ kT=VΔ0 ρ1
2G11 þ ρ1

� �� V2
2
=VκT ð42:10Þ

The Gibbs–Duhem’s relations:

ρ1 ∂μ1=∂N1ð ÞT,P,N2 þ ρ2 ∂μ1=∂N2ð ÞT,P,N1 ¼ 0 ð42:11Þ

ρ1 ∂μ2=∂N1ð ÞT,P,N2 þ ρ2 ∂μ2=∂N2ð ÞT,P,N1 ¼ 0 ð42:12Þ

and that linking the molar partial derivatives

ρ1V1 þ ρ2V2 ¼ 1 ð42:13Þ
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Let us recall that V1 and V2 are the molar partial volumes of components 1 and

2, V that of the whole system, and kT its compressibility isothermal coefficient. Δ0 is
the determinant which naturally introduces into the calculations.

42.6 Third Step: Expressions of Thermodynamic
Quantities as Functions of Kirkwood–Buff Integrals

These expressions are obtained by solving the system of equations (42.7) to (42.13).

We find:

V1 ¼ 1þ ρ2G22 � ρ2G12ð Þ=η V2 ¼ 1þ ρ1G11 � ρ1G12ð Þ=η ð42:14Þ

∂μ1=∂N2ð ÞT,P,N1 ¼ ∂μ2=∂N1ð ÞT,P,N2 ¼ �kT=Vη ð42:15Þ

∂μ1=∂N2ð ÞT,P,N1 ¼ ρ2kT=ρ1Vη ð42:16Þ

∂μ2=∂N1ð ÞT,P,N2 ¼ ρ1kT=ρ2Vη ð42:17Þ

relations in which:

η ¼ ρ1 þ ρ2 þ ρ1ρ2 G11 þ G22 � 2G12ð Þ

(η is a parameter introduced in order to lighten the writing).

42.7 Some Important Relations Stemming from
the Kirkwood–Buff’s Theory

The most important relations for our purpose, issuing from the Kirkwood–Buff’s

theory are those giving the partial derivatives of chemical potentials of both species

with respect to their density numbers, at constant temperature and pressure, that is

to say (∂μα/∂ρβ)T,P with α¼ or 6¼ β and with α or β¼ 1 or 2. The interesting point is

that they depend on functions Gαβ, because the latter ones are accessible. These

experimental conditions are often encountered in solution chemistry. The expres-

sions being searched for are found by handling partial derivatives already known.

We obtain:

∂μ2=∂ρ2ð ÞT,P ¼ kT=ρ2 1þ ρ2G22 � ρ2G12ð Þ ð42:18Þ
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Using the corresponding Gibbs–Duhem, we find:

∂μ1=∂ρ2ð ÞT,P ¼ �kT=ρ1 1þ ρ2G22 � ρ2G12ð Þ ð42:19Þ

In an analogous way, we would find:

∂μ1=∂ρ1ð ÞT,P ¼ kT=ρ1 1þ ρ1G11 � ρ1G12ð Þ ð42:20Þ

and

∂μ2=∂ρ1ð ÞT,P ¼ kT=ρ2 1þ ρ1G11 � ρ1G12ð Þ ð42:21Þ

Remarks:

– Contrary to partial derivatives (∂μ1/∂N2)T,P,N1 and (∂μ2/∂N1)T,P,N2 obtained in

the second step which are equal, those above (∂μ1/∂ρ2)T,P and (∂μ2/∂ρ1)T,P are

not:

∂μ1=∂ρ2ð ÞT,P 6¼ ∂μ2=∂ρ1ð ÞT,P

– It is interesting to recall the expression giving the change in ‹N› (or ρ) of a pure
liquid with respect to its chemical potential μ as a function of its proper pair

correlation function Gαα, nearby those found above. It is (viz. Chap. 32):

∂μ=∂ρð ÞT ¼ kT= ρþ ρ2Gαα

� �

We note the consistency of the whole expressions. Doubtless, this is a proof of

the validity of the basic theories.

42.8 Expression of the Derivative of the Chemical Potential
of a Component with Respect to Its Molar Fraction at
Constant Molar Concentration of the Other

As we shall see it a bit lengthily, it is of utmost importance for our purpose to get an

expression of the derivative of the chemical potential of a component, for example,

(∂μ1/∂x1)T,P, with respect to its molar fraction, the moles number N2 of the other

species being constant. It stems from the following relation which itself results from

the chain rule of derivation:

∂μ1=∂x1ð ÞT,P,N2 ¼ ∂μ1=∂ρ1ð ÞT,P,N2 � ∂ρ1=∂x1ð ÞT,P,N2
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∂ρ1=∂x1ð ÞT,P,N2 ¼ 1= ∂x1=∂ρ1ð ÞT,P,N2
x1 ¼ N1= N1 þ N2ð Þ

x1 ¼ ρ1= ρ1 þ ρ2ð Þ

dx1=dρ1 ¼ ρ2= ρ1 þ ρ2ð Þ2

dρ1=dx1 ¼ ρ1 þ ρ2ð Þ2V=N2

V/N2 is the molar volume of component 2 in the medium, at constant temperature

and pressure. In this case, it is of course its partial molar volume V2 . As a result:

∂μ1=∂x1ð ÞT,P,N2 ¼ ∂μ1=∂ρ1ð ÞT,P,N2 � ρ2V2

with ρ¼ ρ1 + ρ2. Taking into account this latter relation, the expression giving V2

and (42.21), we immediately obtain:

∂μ1=∂x1ð ÞT,P ¼ kTρ2=ρ1η

∂μ1=∂x1ð ÞT,P ¼ kT 1=x1 � ρ2Δ12= 1þ ρ2x1Δ12ð Þ½ � ð42:22Þ

relation in which:

Δ12 ¼ G11 þ G22 � 2G12 ð42:23Þ

∂μ1=∂x1ð ÞT,P ¼ kTρ2=ρ1η

∂μ1=∂x1ð ÞT,P ¼ kT 1=x1 � ρ2Δ12= 1þ ρ2x1Δ12ð Þ½ � ð42:22Þ

Relation (42.22) is of very great interest.We shall see (viz.: Chaps. 43 and 44) that

it permits to explicit the concepts of ideal solutions (the perfect ones and the very

dilute ones). We shall again turn ourselves towards this quantity in Chap. 45.

42.9 Some Aspects of Kirkwood–Buff’s Theory

To conclude this report upon the Kirkwood–Buff’s theory, let us mention the

following points, though they are not absolutely necessary for our purpose:

• It can be considered as being general because it applies to all types of particles,

whatever the number of components of the mixture is. Moreover, it does not call

on the hypothesis of “pairwise additivity” of the total potential energy, which is

nothing else than an approximation, saying the least.
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• As the McMillan–Mayer’s theory (viz.: Chap. 38) with which it can be com-

pared, let us repeat that it is a general theory, but it shows several advantages:

– It can be applied in the whole concentration ranges of the components,

whereas the other one can only be used with dilute solutions because it

explicits the thermodynamic quantities only under developments in series

and its coefficients are difficult to calculate and, even, to interpret.

– From the theoretical standpoint, although we have not developed this point,

one must know that the Kirkwood–Buff’s integrals depend directly on mean

force potentials between the pairs of solute particles, whereas the coefficients

of the McMillan–Mayer’s developments depend on a mean force potential at

infinite dilution. This is another difference between both methods.

• Kirkwood–Buff’s theory not only permits to calculate macroscopic thermody-

namic quantities starting from radial distribution functions g(R) but also and

inversely permits to get local information from macroscopic ones through those

brought by radial distribution functions which provide data upon the distance

between the two members of a pair.

• It permits a study of ideal and nonideal solutions, at least at the first level of

approximation (viz.: Chaps. 43 and 44).

• Finally, let us mention the fact that it only concerns the properties of solutions

the study of which is possible within the framework of the great ensemble by

differentiation with respect to the number of particles (or to the pressure).
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Chapter 43

Chemical Potentials of the Components
of Ideal Solutions of Nonelectrolytes

Abstract The expressions of the chemical potentials of the components of ideal

binary solutions of nonelectrolytes are given in this chapter. They result from a

reasoning of statistical thermodynamics. These expressions, not yet mentioned in

the book, are interesting for the purpose of the study of an activity at least for two

reasons. The first one is that they provide an intimate link existing between the

chemical potential of a component and its activity. The second reason is, simply,

the practical importance of solutions. It must not be forgotten, indeed, that most

processes probably occur in solutions.

The study mentioned in the chapter is deliberatively limited to that of the binary

ideal solutions of nonelectrolytes. This introductory step may facilitate the follow-

ing study of the activities and activity coefficients of the components of every

solution. As for that of electrolyte solutions, it is deferred to a later chapter because

of their particular properties.

A particular stress is laid on the fact that the results mentioned here (stemming from

statistical thermodynamics) are in full agreement with the experimental data which are

at the origin of the definition of ideal and very dilute solutions in classical thermody-

namics. In this chapter, the notion of coupling of amolecule of solutewith the remaining

solvent molecules and also that of a solvent molecule with the other ones is introduced.

Keywords A new statistical look on chemical potentials (components of ideal

solution of nonelectrolytes) • Ideal solutions (statistical thermodynamics) • Very

dilute solutions (statistical thermodynamics) • Characteristic partition function

(isothermal isobaric ensemble) • Coupling of molecules (solutes and solvent) • de

Broglie’s thermal wavelength • Raoult and Henry’s laws (statistical

thermodynamics) • Perfect solutions (mixtures of very similar components) •

Ideal solutions (very dilute ones) • Chemical potential of the solute

In this chapter, we give the expressions of the chemical potentials of the compo-

nents of ideal binary solutions of nonelectrolytes. They result from a reasoning of

statistical thermodynamics. These expressions, not yet mentioned in this book, are

interesting for our purpose, at least for two reasons. The first one is that they provide

an intimate link existing between the chemical potential of a component and its

activity. The second reason is, simply, the practical importance of solutions. It must

not be forgotten, indeed, that most processes probably occur in solutions.
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In this chapter, we deliberately choose to only study the binary ideal solutions of

nonelectrolytes. This introductory step may, in our opinion, facilitate the following

study of the activities and activity coefficients of the components of every solution. As

for thatof electrolyte solutions, it isdeferred toa later chapter becauseof their particular

properties. For the sake of simplicity, only binary solutions are investigated, here.

We already lay particular stress on the fact that the results mentioned below

(stemming from statistical thermodynamics) are in full agreement with the exper-

imental data which are at the origin of the definition of ideal solutions in classical

thermodynamics.

43.1 Looking Back on the Definition of Ideal Solutions

As we have already said it (viz., Chap. 8), the classification of ideal solutions is not

clear-cut. Some authors distinguish two kinds of ideal solutions. This will be

our case.

Let us recall that ideal solutions are those each component i of which exhibits a

chemical potential μi complying with the relation:

d μi ¼ RT d ln xi ð43:1Þ

where xi is its molar fraction. R and T have their usual meaning (viz., Chap. 8).

Actually, two types of ideal solutions are distinguished:

– The perfect solutions. The behavior of all the components is ideal over the whole

range of composition at all temperatures and pressures. They obey Raoult’s law.
In order to comply with this definition, the components must be very similar.

– The very dilute solutions. Then, the solute obeys Henry’s law whereas the

solvent obeys Raoult’s law. As soon as the solution is not dilute enough, it

remains no longer ideal.

These definitions and properties stem from the framework of classical

thermodynamics.

We successively consider both cases.

43.2 Perfect Solutions: Mixtures of Two Very Similar
Components

In this paragraph, we seek the relations which, in this case, link the chemical

potentials of the components to their “concentrations” at constant temperature

and pressure. The latter conditions are interesting to be taken into account because

of their frequent occurrence in practice.
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Through very similar components, we mean that the potential energy of inter-

action in a system of N molecules in the configuration XN is independent of the

identity of the species i which possesses the configuration Xi, (entering, of course,

into XN).

Let us label both components of the solution A and B. We choose reasoning

within the framework of the isothermal-isobaric ensemble (T,p,NA,NB) (cf,

Chap. 24). Given the experimental conditions which are under constant temperature

and pressure, it is the most convenient ensemble to use. (These solutions are the

most frequently encountered ones). Let us recall (viz., Chap. 24) that, for a sole

compound, the number particles of which being N, the partition function is:

Δ T; p;Nð Þ ¼
X
V

Q N;V; Tð Þe�pV=kT

In classical mechanics, it is written:

Δ T; p;Nð Þ ¼ C

ð1
0

dVQ N;V; Tð Þe� pV=kT

where C is a constant. The characteristic thermodynamic function of this ensemble

is the Gibbs energy function G of the system. It is related to the Δ(T,p,N ), the

characteristic function of the latter, through the expression:

G T; p;Nð Þ ¼ �kT lnΔ T; p;Nð Þ

and the chemical potential of species A is defined by the expression:

μA ¼ ∂G=∂NAð ÞT,P,NB

(B being another component of the solution).

It is equal to the change in the Gibbs energy accompanying the addition of one

molecule A to a system being composed of NA molecules A and NB molecules B,

NA and NB being very high numbers. Thus:

μA ¼ G T, p,NAþ1 ,NBð Þ � G T; p;NA;NBð Þ

and according to Chap. 32:

exp �βμAð Þ ¼ Δ T; p;NAþ1;NBð Þ=Δ T; p;NA;NBð Þ

or

exp �βμAð Þ ¼ qA

ð
dV

ð
dXNAþ1dXNBexp �βpV � βUNAþ1, NB XNAþ1;XNB

� �� �

=ΛA
3 NAþ1ð Þ � 8π2

ð
dV

ð
dXNAdXNBexp �βpV � βUNA,NB XNA;XNB

� �� �

ð43:2Þ
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(Let us note that, here, the considered example regards a particle possessing an

internal structure as it is indicated by the presence of symbols q and X in these

expressions).

The “out of integrals” term qA=ΛA
3 NAþ1ð Þ comes from the ratio:

qA
NAþ1= Λ3 NAþ1ð Þ

� �
NA þ 1ð Þ! 8π2� � NAþ1ð Þ

=qA
NA= Λ3NANA! 8π

2
� �NA

stemming from both partition functions. ΛA
3 and qA are, respectively, the de

Broglie’s thermal wavelength and the internal molecular partition function of

particle A.

Let us now consider the case of a system consisting of N particles A and

0 particle B, system being at the same temperature and pressure as the previous

one and into which is added 1 molecule A. The chemical potential μpA (superscript p

for pure) is given by the expression (43.3). (43.3) results obviously from the

adaptation of (43.2) to the new conditions:

exp �βμ p
A

� � ¼ qA

ð
dV

ð
dXNþ1exp �βpV � βUNþ1 XNþ 1

� �� �
=ΛA

3 N þ 1ð Þ 8π2ð Þ

�
ð
dV

ð
dXNexp �βpV � βUN XN

� �� �

ð43:3Þ

Let us suppose, now, that N in expression (43.3) is equal to the sum NA +NB in

expression (43.2) and let us replace N with NA +NB in (43.3). The hypothesis of the

very great similitude of compounds A and B manifests itself in the following

equalities:

dXNAþNBþ1 ¼ dXNAþ1dXNB

UNþ1 XNþ1
� � ¼ UNA þ 1, NB XNAþ1;XNB

� �

UN XN
� � ¼ UNA,NB XNA;XNB

� � ð43:4Þ

The three relations (43.4) must be written since, with respect to the intermediary

step in which A was alone, now, the species B does exist .

The ratio of expressions (43.2) and (43.3) leads to the equality:

exp �βμA þ βμp
A

� � ¼ N þ 1ð Þ= NA þ 1ð Þ ð43:5Þ

With:

N þ 1ð Þ = NA þ 1ð Þ � N=NA

we obtain:

μA T; p;NAð Þ ¼ μp
A T; pð Þ þ kT ln xA ð43:6Þ
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This result is in perfect agreement with the result of the integration of (43.1). Note

that the resulting integral solution is satisfied for xA ¼ 1.

The expression of the chemical potential of each component of an ideal solution

of this kind complies with expression (43.6). This result is very important. It

expresses Raoult’s law (viz., Chap. 8).

Hence, with the help of statistical thermodynamics and through relation (43.6)

we recover Raoult’ s law and all its inferences. Let us recall that it was set up, in
classical thermodynamics, on the basis of pure experimental data (viz., Chap. 8).

Relation (43.6) clearly shows that the natural expression of the concentration in

the context of Raoult’s law is the molar fraction NA=N ¼ NA=NA þ NB. Moreover,

an analogous reasoning with compound B would show that the latter would exhibit

the same behavior as A. In other words, the behavior of B is the same as that of A:

μB T; p;NAð Þ ¼ μp
B T; pð Þ þ kT ln xB ð43:7Þ

Again, we recover the fact that in an ideal solution of this kind, Raoult’s law is

obeyed by all the components of the solution. This kind of solution for which the

chemical potential of each component obeys the expression (43.7) or (43.6) is

sometimes named symmetric ideal solution. Let us notice that for them, the

standard state does exist.

All these results come from the validity of the equality (43.4), that is to say from

the condition of the very great similitude of the components of the solution.

Actually, the conditions of a behavior obeying Raoult’s law may be less stringent

than that of great similitude (viz., Chap. 44).

43.3 Ideal Solutions: Very Dilute Solutions

We know that the chemical potential μ of a fluid is given by the relation (viz.:

Chap. 32):

μ ¼ kT ln ρΛ3q�1
� �� kT ln exp �βBð Þh i ð43:8Þ

The term �kT ln exp �βBð Þh i is the coupling work of a particle when it is brought

from infinite to the bulk of the system. When the latter does possess as only

component particles A and if the coupled one is also A, the coupling work may

be symbolized by the term W A
��Aþ A

� �
, whereas when the system is a binary

solution, the components of which being A and B, the coupling work is

W A
��Aþ B

� �
either W B

��Bþ A
� �

depending on the coupled particle is being A or

B. Let A be the solute and B the solvent.

Now, with the aid of statistical thermodynamics, we are in position to discuss the

nature of the standard states and the expressions of the chemical potentials,

according to the fact that we regard either the solute or the solvent. After, we
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shall be able to compare the results of the reasoning and those directly stemming

from classical thermodynamics.

• Chemical potential of the solute

Its chemical potential is given by the expression (viz., Chap. 32)

μA ¼ W A
��Aþ B

� �þ kT ln ρAΛA
3qA

�1
� � ð43:9Þ

This relation is general. It can also be written as:

μA ¼ W A
��Aþ B

� �þ kT ln Λ3
Aq

�1
A

� �þ kT lnρA ð43:10Þ

It strongly looks like its expression stemming from classical thermodynamics (viz.

for example Chap. 6):

μA ¼ μA
� ρð Þ þ kT lnρA ð43:11Þ

From the very fact that the chemical potential of a compound must be the same in

the same thermodynamic state, we can deduce from (43.10) and (43.11) that the

standard chemical potential of A is given by the expression:

μA
� ¼ W A

��Aþ B
� �þ kT ln Λ3

Aq
�1
A

� � ð43:12Þ

– A first interesting particular case is that in which solute A is very dilute. One

particle A cannot “see” any particle different from B all around it. Then, the

coupling work is W A
��Bþ B

� �
and we can write for the expression of its

chemical potential:

μA ¼ W A
��Bþ B

� �þ kT ln Λ3
Aq

�1
A

� �þ kT lnρA very dilute solutionð Þ ð43:13Þ

Because the terms W A
��Bþ B

� �
and W A

��Aþ A
� �

differ, the standard chemical

potential of A in this case is not the same as when it is pure.

Let us recall that this is a case which is often encountered in practice, in

particular in analytical chemistry. It is widely studied in classical thermodynamics.

– A second interesting particular case is that where the particle B is very similar to

A. The coupling work of B is then equal to that of A and:

W A
��Aþ B

� � ¼ W A
��Aþ A

� �

Inserting this equality into (43.10), we obtain:

μA ¼ W A
��Aþ A

� �þ kT ln Λ3
Aq

�1
A

� �þ kT lnρA ð43:14Þ
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Then, the standard chemical potential is that of A pure. For the sake of immediate

reasoning, let us consider a system consisting of component A pure. Its density

number is ρpA. The chemical potential of A is, then:

μp
A ¼ W A

��Aþ A
� �þ kT ln Λ3

Aq
�1
A

� �þ kT lnρp
A ð43:15Þ

Comparing it to the previous system where the density number of A is ρA and

supposing that both systems do possess the same total number of particles, that is to

say:

np
A 2nd systemð Þ ¼ nA þ nB 1st systemð Þ

the ratio of both density numbers is then evidently as follows:

ρA=ρ
p
A ¼ nA=n

p
A ¼ nA=n

p
A

� �
=1 ¼ xA

We immediately deduce the relation (43.6) above from (43.14) and (43.15) in

agreement with the hypothesis that A and B are very similar.

• Let us study, now, the chemical potential of solvent B when the solute A is very

dilute.

Its chemical potential is given by the expression:

μB ¼ W B
��Aþ B

� �þ kT ln ΛB
3qB

�1
� �þ kT lnρB

We note that when the solution becomes more and more diluted:

W B
��Aþ B

� � ! W B
��Bþ B

� �

The chemical potential of the solvent goes over the one it possesses when it is pure.

Hence, thanks to the previous reasoning based on statistical thermodynamics, we

notice that concerning ideal very dilute solutions, but not the perfect ones:

– The standard chemical potential of the solute does not go over its chemical

potential when it is pure (viz. the previous subsection).

– When the solution is more and more dilute, the chemical potential of the solvent

goes over its chemical potential when it is pure. In other words, it obeys Raoult’s
law (viz. previous subsection).

The whole of both sentences are no more than Henry’s law.
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Chapter 44

Chemical Potentials of Components of Binary
Nonideal Solutions of Nonelectrolytes

Abstract The chapter mentions new expressions of the chemical potentials of the

components of the binary nonideal solutions of nonelectrolytes. According to the

foregoing considerations, it is logic to conceive that the comparison of the chemical

potentials of components of ideal solutions with those of the components of

nonideal ones may permit to get some insights into the expressions of activities

and activity coefficients.

For the sake of further comparisons are set up, here, the expressions of the

chemical potentials of the components of a nonideal solution, the behaviors of

which are slightly different from that of a perfect solution on one hand and from that

of an insufficiently dilute solution, on the other.

The reasoning leading to the expressions being searched for results from a

mathematical relation stemming from Kirkwood–Buff’s theory. This relation is

recalled. According to it, the derivative at constant temperature and pressures of the

chemical potential of a component of the solution with respect to its molar fraction

is a function of its molar fraction, of the concentration of the other component and

of a new parameter ΔAB which is a linear combination of the Kirkwood–Buff’s

integrals GAA, GBB, and GAB, where A and B symbolize the two components in

interaction. When they are possible, the integrations of the foregoing derivative and

of its variations (according to the experimental conditions) show the importance of

this parameter.

Keywords Chemical potentials (binary nonideal solutions of nonelectrolytes) •

Chemical potentials (ideal solutions) • Kirkwood–Buff’s theory • Kirkwood–Buff’s

integrals • Derivatives of the chemical potentials (with their respect of their molar

fractions) • Chemical potentials of the components of a solution (weakly deviating

from a perfect solution) • Molar and molality scale • Solvent chemical potential

In this chapter, we are interested in the expressions of the chemical potentials of

components of binary nonideal solutions of nonelectrolytes. According to the

foregoing considerations, it is logic to conceive that the comparison of the chemical

potentials of components of ideal solutions with those of the components of

nonideal ones may permit to get some insights into the expressions of activities

and activity coefficients.
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Here, we set up the expressions of the chemical potentials of the components of a

nonideal solution, the behavior of which is:

– Slightly different from that of a perfect solution, on one hand.

– That of an insufficiently dilute solution, on the other.

The reasoning leading to the expressions being searched for results from a

mathematical relation stemming from Kirkwood–Buff’s theory. We begin by

recalling this relation.

44.1 Derivatives of the Chemical Potentials of a Solution
Components with Respect to Their Molar Fractions

Let us already mention that these derivatives are partial ones at constant pressure

and temperature. For instance, in the case of compound A, it is the derivative:

∂μA=∂xAð ÞT,P;
The expression of the derivative is (viz., Chap. 42):

∂μA=∂xAð ÞT,P ¼ kT 1=xA � ρBΔAB= 1þ ρBxAΔABð Þ½ � ð44:1Þ

with:

ΔAB ¼ GAA þ GBB � 2GAB

Functions Gαβ α, β∘:Aand Bð Þ are spatial pair correlation functions or Kirkwood–

Buff’s integrals. They are themselves related to the radial distribution functions gαβ
by the following expression:

Gαβ ¼
ð1
0

gαβ Rð Þ � 1
h i

4πR2dR

44.2 Chemical Potentials of the Components of a Solution,
the Behavior of Which Weakly Deviates from that of a
Perfect Solution

For instance, this is the case of solutions, the components of which obey Raoult’s

law nearly in the whole range of “concentrations.” Given their great similarity with

symmetric ideal solutions, it is logic to choose the molar fraction as a unity of

“concentration” of their components, for the sake of later comparison.

As a rule, it is possible to get an expression of the chemical potential μA by

integration of (44.1). From another viewpoint, we know that an ideal solution obeys

the relation (viz.: Chap. 43):
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dμi ¼ kT d ln xi ð44:2Þ

The comparison of both integrated forms may be, as a rule, interesting to

carry out.

Let us formally integrate expression (44.1). By setting up:

ρ ¼ ρA þ ρB

xBρ ¼ ρB

it can be also written as:

∂μA=∂xAð ÞT,P,N ¼ kT 1=xA � xBρΔAB= 1þ ρxBxAΔABð Þ½ � ð44:3Þ

or:

dμA ¼ kT 1=xA � xBρΔAB= 1þ ρxAxBΔABð Þ½ �dxA dT ¼ 0, dp ¼ 0ð Þ

Taking into account that the solution is binary, that is to say that xA þ xB ¼ 1,

dxA ¼ �dxB

we obtain by integration:

μA T; p; xAð Þ ¼ μP
A T; pð Þ þ kT ln xA þ kT

ðxB
0

�
x0BρΔAB= 1þ ρxA

0xB0ΔABð Þ�dxB0
ð44:4Þ

Quite evidently, the definite integral kT

ðxB
0

xB
0ρΔAB= 1þ ρxA

0xB0ΔABð Þ½ �dxB0 must

be related to the expression of the activity coefficient of compound A on the molar

fractions scale.

44.3 Chemical Potentials of Components of Nonideal,
Insufficiently Dilute, Solutions

44.3.1 Chemical Potentials in Nonideal, Dilute Solutions
on the Density Numbers Scale

Let A be the most dilute component (the solute). We have seen (viz., Chap. 43) that

it is more natural and also in any case more practical to adopt the scale of the

density numbers in order to describe the behavior of the solutes. Since we are now

on this scale, the expressions of chemical potentials of components are obtained by
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starting from their partial derivatives with respect to their density number ρ, directly
set up by Kirkwood–Buff’s theory (viz.: Chap. 42).

Three partial derivatives are of interest from the practical viewpoint. They are:

– (∂μA/∂ρA)T,μB at constant chemical potential of the solvent and temperature.

This derivative is interesting for the study of the osmotic pressure (viz.:

Chap. 38).

– (∂μA/∂ρA)T,P at constant temperature and pressure. It is the most important

derivative because it concerns the kind of solution the most encountered in

chemistry.

– (∂μA/∂ρA)T,ρB at constant temperature and density number of the solvent.

(Obeying the latter condition is equivalent saying that the solvent volume is

constant). This derivative is less important than the previous ones.

The expressions of these derivatives are known. They are given by Kirkwood–

Buff’s theory (viz.: Chap. 22). They are:

∂μA=∂ρAð ÞT,μB ¼ kT= ρA þ ρA
2GAA

� �

It is also written as follows:

∂μA=∂ρAð ÞT,μB ¼ kT 1=ρA � GAA= 1þ ρAGAAð Þ½ � ð44:5Þ
∂μA=∂ρAð ÞT,P ¼ kT= ρA 1þ ρAGAA � ρAGABð Þ½ �

It is also written as:

∂μA=∂ρAð ÞT,P ¼ kT 1=ρA � GAA � GABð Þ= 1þ ρAGAA � ρAGABð Þ½ � ð44:6Þ
∂μA=∂ρAð ÞT, ρB ¼ kT 1=ρA � GAA þ ρB GAAGBB � GAB

2
� �� �

=D
� � ð44:7Þ

with:

D ¼ 1þ ρAGAA þ ρBGBB þ ρAρB GAAGBB � G2
AB

� �

Relation (44.7) also stems from the Kirkwood–Buff’s theory by taking into account

the relation:

V=kT ∂μA=∂NAð ÞT,V,NB ¼ 1=kT ∂μA=∂ρAð ÞT, ρB

Some interesting results can be inferred from relations (44.5)–(44.7).

– Partial derivatives are divergent for ρA ! 0

– If ρA ! 0, the solution is ideal. The first term of relations (44.5)–(44.7) is

dominant. As a result:
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∂μA=∂ρAð ÞT,μB ¼ ∂μA=∂ρAð ÞT,P ¼ ∂μA=∂ρAð ÞT, ρB ¼ kT=ρA ρA ! 0ð Þ

Then, the integration of the three partial derivatives leads to the three following

expressions:

μ
A
�
T,μB,ρA

� ¼ η�A T,μBð Þ þ kT lnρA

μ
A
�
T,P,ρA

� ¼ μ�A T;Pð Þ þ kT lnρA ρA ! 0ð Þ
μ
A
�
T,ρB,ρA

� ¼ μ�
A
�
T,ρB

� þ kT lnρA

ð44:8Þ

These expressions are evidently different although they exhibit the same kind of

mathematical expression since the three integration constants μ�A (called the

standard potential of A in the specified conditions) apply in different conditions

as it is indicated by the indices of the partial derivatives.

Here is a new reason, which is different from that involving the choice of the
scale of “concentrations,” of the diversity of choices of the conditions which
constitute the definition of standard states.

However, the similarity of the three expressions must be highlighted.

Returning to expressions (44.5)–(44.8), two observations must be made:

– The standard chemical potentials do not correspond to an actual standard state of

the system. (When ρA ¼ 1, indeed, the solution is not sufficiently dilute to

remain ideal—viz. Chap. 11). Let us recall that standard states of the compo-

nents of symmetric ideal solutions do actually exist. They are defined as being

their pure state in the conditions of the process xAandxB ¼ 1ð Þ.
– It is quite evident that the conditions underlying the fact that the term 1/ρA may

be much higher than others are different according to the investigated case. They

can depend only on GAA values for the first one, whether on both GAA and GAB

for the second or, even, on the three GAA, GAB, GBB for the third. This is a

striking illustration of the interest of Kirkwood–Buff’s theory.

44.3.2 Some Supplementary Considerations Concerning
the Chemical Potential of the Solute at Constant
Temperature and Pressure: The Part Played by
the Scale of Concentrations

Chemical potentials and activities at constant temperature and pressure are quan-

tities very often handled in the course of solutions studies. This is the reason why

we focus ourselves on them. In this case, several concentration scales can happen to

be used. As a result, activity values (and also those of their coefficients) vary.

Besides, the already tackled density numbers scale, we now consider the scale of

molar fractions and that of molalities.
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• The molar fraction scale

The relation (44.3) stemming from the Kirkwood–Buff’s theory remains valid

since the reasoning leading to it is a general one. We observe that when xA ! 0

(ideal solution), the term 1/xA is dominant. Then:

∂μA=∂xAð ÞT,P ¼ kT=xA xA ! 0ð Þ ð44:9Þ

whence

μA T,P,xAð Þ ¼ μ�xA T; pð Þ þ kT ln xA xA ! 0ð Þ ð44:10Þ

μ�xA(T,p, xA) is the integration constant, also named the standard potential. This

new standard potential is different from that at constant temperature and pressure

already encountered above (relation (8)):

μ�xA T; p; xAð Þ 6¼ μ�A T; p; ρAð Þ

This accounts for the occurrence of a different superscript. We must indicate the

adopted scale of concentration. μ�A(T, p, ρA) is, indeed, as it is recalled above, the

standard chemical potential (at constant pressure and temperature) entering in the

definition of the activity when it is related to the density number, whereas the

writing μ�xA(T,p, xA) indicates the concentration is expressed in molar fractions.

The expression relating one standard state to the other is:

μ�A T; pð Þ ¼ μ�xA T; pð Þ � kT lnρB ð44:11Þ

It results from the relation existing between the total density number ρ of the
solution, that of the solute A and its molar fraction xA:

xA ¼ ρA=ρ

Replacing xA by this expression into (44.9) gives:

μA ¼ μ�xA T; pð Þ þ kT lnρA � kT lnρ

The chemical potential of a compound in a given state can be endowed solely with
only one value, whatever the chosen scale of “concentrations.” As a result, we can
also write:

μA ¼ μ�A T; pð Þ þ kT lnρA

The comparison of both latter relations, after taking into account the fact that ρ
! ρB when ρA ! 0, leads to that mentioned above.

• Molality scale
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Another standard potential interesting to express is that applying when the

molalities scale is used. Let us recall that for dilute solutions, the molality value

of a solute is very close to that of its molarity (cf, Chap. 1). Both are very often used

especially in physical and analytical chemistries. When the solution is sufficiently

dilute, the molality mA is related to the molar fraction through the relation:

mA ¼ 1000 xA=MB

where MB is the solvent molecular weigh. Replacing xA in (44.9) by its expression

stemming from the relation just above, we obtain:

μA ¼ μ�xA T; pð Þ þ kT ln MB=1000ð Þ½ � þ kT ln mA

μA ¼ μ�mA T; pð Þ þ kT ln mA

We note that the standard potentials μ�mA(T,p) and μ�xA(T,p) are not identical,

whence their difference of superscripts.

44.3.3 Solvent Chemical Potential

Of course, it is also interesting to express the solvent B chemical potential. In order

to do that, we use the Gibbs–Duhem’s relation which is:

xB ∂μB=∂xAð ÞT,P þ xA ∂μA=∂xAð ÞT,P ¼ 0

Taking into account (44.8) which is valid when xA ! 0, it becomes:

�xB ∂μB=∂xBð ÞT,P þ kT ¼ 0 xA ! 0ð Þ

After integration, we get:

μB T; p; xBð Þ ¼ C T; pð Þ þ kT ln xB xA ! 0ð Þ

where C(T, p) is the integration constant. In order to specify it, we take into account
the fact that when xA ! 0, xB ! 1. Hence, C(T,p) is equal to the chemical

potential of the pure solvent xB ¼ 1ð Þ, that is to say:

C T; pð Þ ¼ μP
B T; pð Þ

and
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μB T; p; xBð Þ ¼ μP
B T; pð Þ þ kT ln xB xB ! 1ð Þ

This result has already been mentioned several times.

At this point, let us recall that quasi-systematically in chemistry, the solute
activities are related to their molalities or molarities and the solvent activity to
its molar fraction (viz.: Chap. 1).
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Chapter 45

Expressions of Activity Coefficients
and Activities in Relation to Kirkwood–Buff’s
Theory

Abstract As it has been anticipated and as it is shown in this chapter, the

Kirkwood–Buff’s theory can provide expressions for activities and their coeffi-

cients of the components of nonideal solutions of nonelectrolytes through the

derivatives of the chemical potentials, at least at the first level of approximation.

Actually, as it is described, comparisons of the expressions of the chemical poten-

tials of the component of ideal solutions with those found (for the same conditions)

by integration after the using of Kirkwood–Buff’s theory, indeed, permit to get

some expressions of activity coefficients and show that they are functions of some

molecular parameters with probably the most important one of them, the parameter

ΔAB and the Kirkwood–Buff’s integrals. They are different from those stemming

fromMcMillan–Mayer’s theory. Then, Kirkwood–Buff’s theory may be considered

as completing the latter, besides, of course, its intrinsic theoretical interest.

No doubt that the McMillan–Mayer’s theory and overall the Kirkwood–Buff’s
theory bring a very important piece in the understanding of the physical significance

of an activity.

Keywords Expressions of activities and activity coefficients in relation to

Kirkwood–Buff’s theory • The parameter ΔAB • Chemical potentials (components

of ideal solutions) in comparison with those found by integration of the theory •

Different kinds of ideal solutions • Activity and activity coefficients in the case of

symmetric nonideal solutions and of dilute solutions • Multiplicity of activities •

Meaning of the parameter ΔAB • Lattice model of solutions

We recently anticipated that Kirkwood–Buff’s theory can provide expressions for

activities and their coefficients of the components of nonideal solutions of non-

electrolytes, at least at the first level of approximation. Actually, we shall see that,

indeed, it permits to get some expressions of activity coefficients and that they are

functions of some molecular parameters. They are different from those stemming

fromMcMillan–Mayer’s theory. Then, Kirkwood–Buff’s theory may be considered

as completing the latter, besides, of course, its intrinsic theoretical interest.

In this chapter, again, we commit ourselves to the sole study of nonideal

solutions of non electrolytes.
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45.1 Some Introductory Points: Different Kinds of Ideal
Solutions

The considerations developed in the previous chapters provide us with some

mathematical relations which enable us to get expressions of activity coefficients

and of the corresponding activities, at least formally. But, before studying them, it is

judicious to recall the different kinds of ideal solutions to which are related the

nonideal ones.

We know, indeed, that the standard state is the same for both the ideal hypo-

thetical solution and the studied nonideal one, related to the former (viz. Chap. 11).

As a rule, the important point is to recall that the choice of another ideal solution

of reference than that just evocated induces the choice of another standard state. It

entails the introduction of another type of activity coefficient and of activity. But,

this choice is perfectly licit, because the chemical potential of a component in a

given state is a constant.

The differential equation (45.1), given the manner how it has been set up (viz.:

Chaps. 42 and 44), can apply to symmetrical solutions and to very dilute ones as

well (for definitions of symmetrical and very dilute solutions, see just below):

∂μA=∂xAð ÞT,P ¼ kT
�
1=xA � xBρΔAB= 1þ ρxAxBΔABð Þ� ð45:1Þ

(Let us recall that, in this equation, ρ is the total density number: ρ ¼ ρA þ ρB; xA
and xB are the molar fractions and ΔAB the combination of the Kirkwood–Buff’s
integrals: GAA þ GBB � 2GAB

�
) Fig. 45.1.

As we shall see, now, equation (45.1) permits to identify the ideality and

nonideality conditions. Through them, it is possible to characterize three different

types of ideal fluids.

– The first type corresponds to the case for which ρ! 0. Then, the particles

constituting the fluid are, on the average, very far from others. The

intermolecular forces exert no effect on the properties of the mixture. Its

behavior tends toward that of a perfect gases mixture, in which by hypothesis,

there exists no interaction between the particles. Then, the relation (45.1)

becomes:

Fig. 45.1 General shape of

a Kirkwood–Buff’s integral
as a function of the distance

R (nm) of integration
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∂μA=∂xAð ÞT,P ¼ kT=xA

This case is of little interest for us, because we are considering the case of

solutions.

– The second kind of ideal solution corresponds to the case for which ΔAB¼ 0 in

(45.1). It is that for which both components are symmetrical. The partial

derivative is written just as above:

∂μA=∂xAð ÞT,P ¼ kT=xA

It is interesting to notice that, once the conditionΔAB ¼ 0 is obeyed, the intensity

of the intermolecular and the total molar fraction ρ do not preclude the “ideality”
of the solution.

– The third type corresponds to the case for which xA! 0. Under these conditions,

the term 1/xA is by far stronger than the second in the right member of relation

(45.1). Hence, the expression of the partial derivative of the chemical potential

exhibits the simplified form above. It is the case of the very dilute solutions.

In order to theoretically treat a problem involving a nonideal solution, there is

absolutely no objection that it would be treated as being a deviant from an ideal one,

whether the latter is of the first, second, or the third types just above. In each case,

the introduction of a specific activity coefficient rectifies the nonideality character,

as it was thought up by Lewis.

According to the fact that the deviance from “ideality” must be related to one of

the three cases, the three corresponding activity coefficients are different. As a

result, the chemical potential of the solute A is written as:

μA ¼ c1 þ kT ln xAγgi
� �

μA ¼ c2 þ kT ln xAγSð Þ
μA ¼ c3 þ kT ln xAγDð Þ

γgi (gi: for ideal gas),, γS (S: for symmetric), γD (D: for dilute) are the activity

coefficients corresponding to the three types of solutions. c1, c2, c3 are the integra-
tion constants. As it has been already said, the activities exhibit different expres-

sions and values according to the case.

45.2 Expressions of the Activities and of the Activity
Coefficients in the Case of Symmetric Nonideal
Solutions

– General case

Sometimes, the solubility or the miscibility of the components permits to choose

their standard states, as being themselves in pure state xA or xB ¼ 1ð Þ, at the
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temperature and pressure of the system. For these practical reasons, it is more

convenient to adopt the molar fraction scale, since both molar fractions

xA or xB ¼ 1ð Þ can be reached. Because of this fact, both components can be

treated symmetrically. It is, then, advisable to reason with respect to the second

kind of ideal fluid.

The standard states do, indeed, exist really and their thermodynamic proper-

ties are known. The curves of the fugacities and activities of the components,

versus their molar fractions, are described in Chap. 11.

Hence, the activity coefficient is of the type γS and the activity of the type x γS.
One knows (viz.: Chap. 44) that relation (45.1) leads to expression (45.2) after

integration, given the fact that xA þ xB ¼ 1.

kT ln γ SA ¼ kT

ðxB
0

x0BρΔAB= 1þ ρx0Ax
0
BΔAB

� �� �
dx0B ð45:2Þ

(45.2) can be also written as (45.3):

γ SA ¼ exp
Ð xB
0

x0BρΔAB= 1þ ρx0Ax
0
BΔAB

� �� �
dx0B

h i

aS
A ¼ xAexp

Ð xB
0

x0BρΔAB= 1þ ρx0Ax
0
BΔAB

� �� �
dxB

h i ð45:3Þ

The Relations (45.3) are the expressions of the activity coefficients and of the
activities of the components of nonideal symmetric solutions on the molar
fraction scale, at the first level of approximation.

Unfortunately, these expressions remain purely formal because the integra-

tion cannot be carried out, since we do not know the variations of the function

ΔAB with the molar fractions. (Besides, we do not know them more with

molalities and molarities than with molar fractions).

We notice that activities and activity coefficients are a function of the total

density number ρ, the molar fractions xA, xB, and the quantity ΔAB. Moreover,

the function is more complicated than it seems at first sight because ΔAB.

depends itself on ρ, xA, xB. Furthermore, it must not be forgotten that these

expressions result from truncatures of series developments leading to

simplifications.

Actually, few binary systems are in this case for solubility or miscibility

reasons. An usual example is provided by some mixtures of liquids.

– Particular cases

At this point of the study, it is interesting to investigate some particular cases.

• We can consider the case in which the product ρΔAB is independent of the

composition.

The integration:

ðxB
0

x0BρΔAB= 1þ ρx0Ax
0
BΔAB

� �� �
dxB
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is then possible. We obtain:

μA T;P; xAð Þ ¼ μP
A T;Pð Þ þ kT lnxA þ 1 =2kTρx2BΔAB ð45:4Þ

Let us introduce the quantity γ
0S
A for the sake of argument. γ

0S
A is defined by the

equality:

γ
0S
A ¼ exp 1=2ρx2BΔAB

� � ð45:5Þ

(The exponent S recalls that the solution is related to a symmetric one and the

prime that we are facing a particular case). Relation (45.4) can, now, be

written:

μA T;P; xAð Þ ¼ μP
A T;Pð Þ þ kT ln xAγ

’S

A

� �
ð45:6Þ

After examination of relation (45.6), it appears that the quantity γ
0S
A is the

activity coefficient of A and that the product xAγ
0S
A is the activity of A. Such an

activity is related to the scale of molar fractions. Although this double

assimilation stems from a particular case, it has the great merit to induce

the following comments:

The activity coefficient depends on the molar fraction xB of the other com-

ponent and also of its own molar fraction xA, since xA and xB are linked. It

also depends on the total molar fraction ρ. The activity, for its part, directly
depends, of course, on its concentration xA but, moreover indirectly, also

on xB through the activity coefficient.

Relation (45.5) brings a theoretical support to Margules relation, the origin of

which is purely experimental. Let us recall that it permits to express the

activity of a component in the same conditions (viz. Chaps. 8 and 12)

according to the relation:

fA ¼ f 0AxAexp 1=2β1x
2
B þ � � �� �

We recall that fA and f 0A are the fugacities of A in the solution and in the pure

liquid state, the ratio fA/f
0
A being the activity of the compound. We can, in

particular, notice the dependence of the activity coefficient with the expo-

nential, the exponent of which is the square of the molar fraction of the other

component. Thus, such an exponent, somewhat unexpected at first sight, is

found in both relations: the experimental and theoretical ones. It is a satis-

factory point.

* Another interesting particular case is that in which ΔAB ¼ 0.

As a result, the chemical potential μA is given by the expression:
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μA T;P; xAð Þ ¼ μP
A T;Pð Þ þ kT lnxA ΔAB ¼ 0ð Þ

The activity coefficient γSA is, then, equal to unity. We must notice that such an

expression does not obligatorily mean that there exists no interaction between

the components. It may also mean that these interactions may counterbalance

themselves according to the equality:

GAA þ GBB � 2GAB ¼ 0

Remark: Standard state—Raoult’s law
In the case of symmetric nonideal solutions, the standard state chosen in order to
define the activities of both components is the component in pure state at
temperature and pressure of the solution. If xA ¼ 1 , indeed, the activity is

equal to unity (since aA ¼ xAγ SA) and the solution is ideal. The activity coefficient
is, then, referred to Raoult’s law.1

45.3 Expressions of Activity Coefficients and Activities
of the Components of Nonideal Dilute Solutions

This case has already been studied from the viewpoint of classical thermodynamics

(viz. Chap. 11). It is of great importance in analytical and physical chemistry.

We have already said that essentially for practical reasons of solubility of the

solutes, it is convenient to relate their activities to the concentration scale expressed

in density numbers, whereas the solvent activity remains related to its molar

fraction.

Now, we successively investigate the expressions of the activity coefficients and

of activities for both kinds of components.

• Concerning the solute:

Because of the choice of the concentration scale, the activity coefficients are

of the type γD and the behaviors of the components are related to the third type of

an ideal fluid.

We know (viz.: Chap. 44) that several partial derivatives (∂μA/∂ρA) exist
according to the experimental conditions. Their expressions are directly found

from Kirkwood–Buff’s theory (viz. Chap. 42). They are:

∂μA=∂ρAð ÞT,μB ¼ kT 1=ρA � GAA= 1þ ρAGAAð Þ½ � ð45:7Þ

1Let us recall that in this case, the activity coefficient must be symbolized by f according to

IUPAC. We prefer to keep the symbol γ in order to avoid any confusion with the fugacity.
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∂μA=∂ρAð ÞT,P ¼ kT 1=ρA � GAA � GABð Þ= 1þ ρAGAA � ρAGABð Þ½ � ð45:8Þ

∂μA=∂ρAð ÞT, ρB ¼ kT 1=ρA � GAA þ ρB GAAGBB � G2
AB

� �� �
=D

� 	 ð45:9Þ

with:

D ¼ 1þ ρAGAA þ ρBGBB þ ρAρB GAAGBB � G2
AB

� �

Let us consider expressions (45.7), (45.8), and (45.9) and develop in series the

integrals Gαβ of their right members in powers of ρA and finally only retain the first

two terms according to:

GAA ρAð Þ ¼ GAA ρA ¼ 0ð Þ þ ∂GAA=∂ρAð ÞρA¼0ρA þ � � �
GAB ρAð Þ ¼ GAB ρA ¼ 0ð Þ þ ∂GAB=∂ρAð ÞρA¼0ρA þ � � �
GBB rAð Þ ¼ GBB ρA ¼ 0ð Þ þ ∂GBB=∂ρAð ÞρA¼0ρA þ � � �

Symbolizing GAA(ρA¼ 0), GAB(ρA¼ 0), GBB(ρA¼ 0), respectively, by G�
AA,

G�
AB, G

�
BB, we obtain:

∂μA=∂ρAð ÞT,μB ¼ kT 1=ρA � G
�
AA þ � � �� � ð45:10Þ

∂μA=∂ρAð ÞT,P ¼ kT 1=ρA � G
�
AA � G

�
AB

� �þ � � �� � ð45:11Þ

∂μA=∂ρAð ÞT, ρB ¼ kT 1=ρA � G
�
AA þ ρ

�
B G

�
AAG

�
BB � G

�2
AA

� �� �
= 1þ ρ

�
BG

�
BB

� �þ � � �� 	
ð45:12Þ

As far as the truncatures are legitimate, the three above expressions can, then, be

integrated. We obtain:

μA T; μB; ρAð Þ ¼ μ
�
A T; μBð Þ þ kT lnρA � kTG

�
AAρA þ � � � ð45:13Þ

μA T;P; ρAð Þ ¼ μ
�
A T;Pð Þ þ kT lnρA � kT G

�
A � G

�
AB

� �
ρA þ � � � ð45:14Þ

μA T; ρA; ρBð Þ ¼ μ
�
A T; ρBð Þ þ kT lnρA

� kT G
�
AA � ρ

�
B G

�
AB

� �2h i
= 1þ ρ

�
BG

�
BB

� �n o
ρA þ � � � ð45:15Þ

These three expressions suggest defining the activity coefficients by the relations

(45.16), (45.17), (45.18) and the activities by relations (45.19), (45.20), (45.21),

(the arguments of the logarithms in the three latter relations being the activities of

the solute):
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kT lnγDA T; μB; ρAð Þ ¼ �kTG
�
AAρA ð45:16Þ

kT ln γDA T;P; ρAð Þ ¼ �kT G
�
AA � G

�
AB

� �
ρA ð45:17Þ

kT ln γDA T; ρB; ρAð Þ ¼ �kT G
�
AA � ρ

�
B G

�
AB

� �2h i
= 1þ ρ

�
BG

�
BB

� �n o
ρA ð45:18Þ

μA T; μB; ρAð Þ ¼ μ
�
A T; μBð Þ þ kT ln ρAγ

D
A T; μB; ρAð Þ� � ð45:19Þ

μA T;P; ρAð Þ ¼ μ
�
A T; pð Þ þ kT ln ρAγ

D
A T;P; ρAð Þ� � ð45:20Þ

μA T; ρA; ρBð Þ ¼ μ
�
A T; ρBð Þ þ kT ln ρAγ

D
A T; ρB; ρAð Þ� � ð45:21Þ

Relations (45.16) to (45.21) are the expressions of the activity coefficients and of
the activities of the solute of nonideal dilute solutions on the scale of density
numbers, at the first level of approximation.

Unfortunately, they remain also essentially formal. However, they induce the

following conclusions:

– According to the conditions defining the system (viz. the partial derivatives

indices), the activities differ since the respective activity coefficients are not

the same.

Here, again, we are facing up with the important fact that, according to
the experimental conditions, there exist different activities of a solute of a
dilute solution.

In strict scientific rigor, this fact would force to use cumbersome symbol-

ism which is not perceptible in literature. The reason of this matter of fact is

that the parameters defining a system are often (if not always) known. As a

result, there is omission of some symbols.

– Relations (45.16), (45.17), and (45.18) show that the activity coefficients

depend on the density numbers ρA and ρB and on the different integrals Gαβ.

Evidently, it is the same for activities. In this case, the dependence on ρA is

double, since besides that on the activity coefficients, the value of an activity

is equal to the product of a density number by the corresponding activity

coefficient.

– Relations (45.16), (45.17), and (45.18) also show that when ρA tends toward

zero, the activity coefficients γD, whatever they are, tends toward 1, in full

agreement with the Lewis’ definition:

limγD ρA ! 0ð Þ ¼ 1

– The above reasoning, especially the limited development in series shows that,

in the considered conditions, the standard state retained in order to define the

activities is the infinite dilute solution. In other words, for solutes, activities

are defined in such a way that Henry’s law is obeyed.
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– Coefficients γD are evidently different from coefficients γS.
– Again, we can also notice the presence of the Kirkwood–Buff’s integrals in

these expressions.

• Concerning the solvent

It is also interesting to consider the expression of the solvent chemical potential

in a dilute solution. The simplest way to grasp it is to use the relation related to

the solvent B, stemming from the Kirkwood–Buff’s theory:

∂μB=∂xBð ÞT,P ¼ kT 1=xB � ρAΔAB= 1þ ρAxBΔABð Þ½ �

For a solution, the behavior of which is very weakly different from that exhibited by

an ideal very dilute solution (ρA! 0), the relation becomes:

∂μB=∂xBð ÞT,P � kT 1=xB � ρAΔAB� � �ð Þ

or

∂μB=∂xBð ÞT,P ¼ kT 1=xB � ρxAΔAB . . .ð Þ

and after the development in series according to the powers of xA:

∂μB=∂xBð ÞT,P ¼ kT 1=xB � ρ�xAΔ
�
AB
. . .

� �
xA ! 0ð Þ

By integration of this expression, we obtain:

μB T;P; xBð Þ ¼ μP
B T;Pð Þ þ kT lnxB þ kT

Ð xA
0

ρ�Δ
�
AB
x0Adx

0
A xA ! 0ð Þ

μB T;P; xBð Þ ¼ μP
B T;Pð Þ þ kT lnxB þ 1=2kTρ

�
BΔ

�
AB
x2
A

xA ! 0 xA ! 1ð Þ

Contrary to the case of the solute, the chosen standard state for the solvent is itself in

pure state at the pressure and temperature of the system. It is a real state. Here, we

again find the fact that it obeys Raoult’s law.

45.4 Multiplicity of Activities: Other Kinds of Activities

A striking fact is the multiplicity of the possible activities of different values

characterizing notably a solute in a given system. We saw just above that nothing

but three activities can be effective when the scale of concentrations is based on the

density numbers. There remain other possibilities. For example, for the solutes, the

concentration scale may be that of molar fraction (even if it is often inconvenient)

but, also, those of molalities and molarities. In each case, the standard states are not
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the same and the activities of one component in a given thermodynamic system

exhibit different values (viz.: Chap. 11).

45.5 Meaning of the Parameter ΔAB

All these results highlight the importance of the parameter ΔAB:

ΔAB ¼ GAA þ GBB � 2GAB ð45:22Þ

in which the Gαβ are Kirkwood–Buff’s integrals (viz.: Chap. 42). We have already

mentioned that Kirkwood–Buff’s integrals represent the particles β in excess

around one α for a density unity and conversely. The expression ρB[gBA(R)� 1]4πR
2dR, indeed, measures the excess (or the deficit) of particles B in a spherical shell of

volume 4πR2dR around a particle A with respect to the number which would be

found if we would have only taken into account the average density ρB. Thus, we
may consider that Gαβ represents the affinity of α for β and conversely. (The term

affinity, used here, must not be endowed with the meaning it possesses in classical

thermodynamics.)

Owing to these last considerations plus the previous ones concerning solutions

which are weakly deviant from the ideal symmetric ones, we may acknowledge that

the linear combination ΔAB is a measure of the similarity of components A and B.

The mathematical structure of expression (45.22) refers to relation (45.23)

representing the lattice-model of solutions. According to it, the condition of the

status of ideal symmetric solution is (viz. Chap. 16):

WAA þWAB � 2WAB ¼ 0 ð45:23Þ

Wαβ are the interaction energies between the species α and β located on the neighbor
lattice points.

Finally, from a mathematical viewpoint, we notice that when ΔAB¼ 0,GAB is the

arithmetic average of the integrals GAA and GBB. This point must be compared with

the term (G11G22–G
2
12) arising in the definition of ζ found into Kirkwood–Buff’s

theory (viz.: Appendix D supplement 3) in which G12 is the geometrical average of

G11 and G12 when ΔAB¼ 0.
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Chapter 46

Debye–H€uckel Theory

Abstract According to the state of the art, it is impossible to determine the activity

or the activity coefficient of an ion. However, one knows how to approach their

numerical values, at least for the sufficiently dilute solutions in ions, solutions

qualified of weak ionic strengths. This calculation is possible thanks, notably, to the

Debye–Hückel relations. Hence, the Debye–Hückel’s theory is of utmost interest

not only, evidently, from the theoretical standpoint but also from the practical one.

In order to illustrate this point, the following example of the electrochemical

methods of chemical analysis may be mentioned. Some of them respond, indeed,

to the activities of species to which they are sensitive. Moreover, from the theoret-

ical standpoint, the Debye–Hückel relations are greatly useful as soon as calcula-

tions of the “concentrations” of the ions must be refined.

In this chapter, the setting up of the Debye–Hückel theory is given and its

validity is thoroughly discussed. It is particularly the case for some simplifications

accompanying the theory which, despite their occurrence, do not preclude its

validity, at least in some conditions. It can be said, indeed, that the Debye–Hückel
works better than it is awaited!

Some other relations which can be considered as being extensions of the

previous ones are also given in the chapter. They are devised in order to be useful

in the cases of solutions of less weak ionic strengths as those to which Debye–

Hückel relations can legitimately apply.

A brief review concerning the forces exerting between atoms and molecules

precede these considerations in order to better specify the range in which Debye–

Hückel laws apply and why.

Keywords Debye–Hückel’s relations (theory) • Electrochemical methods and

activities • Ionic strength • Intermolecular forces • Electrostatic potential •

Poisson–Boltzmann’s equation • Absolute permittivity • Debye–Hückel’s length •

Ionic interactions • Ion-size parameter • Ion solvatation • Ion pairs • Hypothesis on

which is based the Debye–Hückel’s theory • Agreement theory of the Debye–

Hückel relations (limited and extended) with experiments • Solvation of the

ions • Changes of the dielectric constants with the ions concentrations • Ion-pairs

formation
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According to the state of the art, one does not know how to measure the activity or

the activity coefficient of an ion. However, one knows how to approach their

numerical values, at least for the sufficiently dilute solutions in ions, solutions

qualified of weak ionic strengths. This calculation is possible thanks, notably, to the

Debye–Hückel relations. Hence, the Debye–Hückel theory is of utmost interest not

only, evidently, from the theoretical standpoint but also from the practical one. In

order to illustrate this point, let us take the following example of the electrochem-

ical methods of chemical analysis. Some of them respond, indeed, to the activities

of species to which they are sensitive. Moreover, from the theoretical standpoint,

the Debye–Hückel relations are greatly useful as soon as calculations of the

“concentrations” of the ions must be refined.

In this chapter, we study the Debye–Hückel theory, the validity of which is

discussed. We also mention some other relations which can be considered as being

extensions of the previous ones. They are devised in order to be useful in the case of

solutions of less weak ionic strengths as those to which Debye–Hückel relations can
legitimately apply.

But, before, we begin with a brief review concerning the forces exerting between

atoms and molecules in order to better specify the range in which Debye–Hückel
laws apply and why.

46.1 Intermolecular Forces

The forces exerting between atoms, molecules, and ions are from electrostatic

origin. They are of different kinds. Finally, their theoretical basis is Coulomb’s

law which commands the attraction and the repulsion of the electrical charges.

According to the type of molecular interactions, one speaks of long-range or short-

range forces. For example, it is evident that the force exerting between two

particles, which is expressed by a relation in 1/r2 (r being the distance between

both particles), does possess a range of action by far greater than that of the force

which is expressed in 1/r7.
Let us consider one system constituted by two charges (ions i and j). One knows

(viz. Appendix P) that the force occurring at the distance ro of one of both charges

is, in absolute value, equal to the gradient of the potential energy of electrostatic

interaction between both charges, that is to say:

f ¼ � dUij=dr
� �

ro

The intermolecular potential energy exhibits different forms according to the kinds

of interactions between the particles. One distinguishes the interaction energies

between:
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– Two ions. It is expressed by a relation of the kind:

Uij ¼ k=r

where k is a constant. It gives rise to a long-range force. The corresponding

potential interaction energy is of the order of 250 kJ mol�1.

– One ion and a permanent dipole. It is expressed by a relation of the type:

Uij ¼ k=r2

Its energy is of the order of 15 kJ mol�1.

– Two permanent dipoles. It is expressed by an expression of the kind:

Uij ¼ k=r6

This interaction gives rise to Keesom’s forces.

– A permanent dipole and the induced dipole in the other molecule by the first one,

with:

Uij ¼ k=r6

relation analogous to the previous one. This interaction gives rise to Debye’s

forces.

– Molecules or atoms, electrically neutral species, as it is the case for the rare gases

with, also, a relation of the type:

Uij ¼ k=r6

giving rise to London’s forces, which are essentially of quantum origin. The last

three types of interactions exhibit an energy of the order of 1 kJ mol�1.

All these interactions generate attractions between particles. Keesom, Debye,

and London’s forces are generally classified under the heading of Van der Waals’

forces, although there exists some incertitude in the literature concerning the forces

entering under this denomination. Let us notice that the Van der Waals forces entail

no electrical charges neither permanent dipoles. Moreover, among the three, the

London’s forces are the most intense.

46.2 Strategy Followed in the Drawing Up
of the Debye–H€uckel Theory

The impossibility to determine the activity of an ion alone is due to the fact that it is

not possible to experimentally measure the part of the Gibbs energy of a system

which can be assigned to the interaction of ion i (that the activity coefficient of

which is wanted) with the other ions of the solution (viz. Chap. 15).
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The following process has been devised.

At the initial point of the process, all the ions of the solution are mutually in

interactions. Among them, only one, ion i, is supposed, at the beginning of the

process to be electrically uncharged and to be located in the point O. O is chosen as

being the coordinates center. In the final state, i is endowed with the electrical

charge zieo (zi being the number of charges of the ion and eo the elementary charge).

The strategy consists in calculating the work w developed between both instants in

order that the ion should be charged (Fig. 46.1). The charging work is equal to the

reversible, isothermal one necessary in order to charge one mole of ion i at the point
O. Il is developed again in 46.3 under. The intermolecular forces are of electrostatic

origin. They stem from the remaining of the solution.

The charging work w multiplied by the avogadro number NA is equal to the

change in the chemical potential Δμ(i� I) due to the interactions between the ion

i and other ions:

Δμ i� Ið Þ ¼ WNA ð46:1Þ

(The symbolism (i� I) means the interaction between the ion i and the whole of

other ions I).
From a general standpoint in electrostatics, a charging work in a point requires to

know the electrostatic potential at this point. Hence, the electrostatic potential due

to the electric charges located around it must be calculated (Fig. 46.2). To be more

precise, this electrostatic potential Ψ cloud is the electrostatic potential occurring at

the distance r from the central ion i. It is due to the distribution of other ions around
i, distribution so-called ionic atmosphere (Fig. 46.2). At this point, the occurrence

of several existing electrostatic potentials must be emphasized.

Fig. 46.1 Initial and final states of the charging process of the ion i.(Reprinted from John O’M.
Bockris and Amulya K.N. Reddy in “Modern electrochemistry 1 Ionics, 2nd edition, with kind
permission from Springer Science plus Media LLC)
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They are:

– The electrostatic potential Ψ cloud which is due to the distribution of the ions

around the central one i.
– That due to the central ion i itself, Ψ ion.

– The mean electrostatic potential Ψ r at the distance r of the central ion i, which is
due to the whole ions of the solution, included i (for the term mean, see

paragraph 5).

They must not be confused. According to the principle of the superposition of

electrostatic potentials, they are linked by the relation:

ψ r ¼ ψ ion þ ψ cloud

As it has been already said just above, of interest in the Debye–Hückel theory is
the potential Ψ cloud since the foundation of the theory is to find one relation of the

kind:

Δμ i� Ið Þ ¼ kNAΨ cloud

where k is a constant, the meaning of which will be given by the following

calculations.

Already, it is interesting to mention that Ψ cloud is calculated from the two other

potentials Ψ r and Ψ ion.

Fig. 46.2 Reference point and electrostatic potential at distance r of it
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46.3 Hypotheses on Which Is Based the Debye–H€uckel
Theory

Debye and Hückel have made some hypothesis in order to perform this calculation.

They are:

– The strong electrolytes are fully dissociated. With this hypothesis, Debye and

Hückel have purely and simply retained the conclusions of S. Arrhenius.

– The difference in the behaviors of the solution of one electrolyte and of a

nonideal one is that the electrolyte solution becomes ideal only when it is, by

far, more dilute than the latter. This is because of, in the former, the particles of

the solute are charged. Without the electrostatic interactions between the ions,

the solution would behave as an ideal one. Then, the deflection with regard to the

“ideality” is only ascribed to mutual interactions between the electrical charges

brought by the ions.

– In order to specify this point, let us write the general expression (ideal solution or

not) of the chemical potential of the ion i:

μi x ¼ μi
�
x þ RTlnaix ð46:2Þ

or

μix ¼ μi
�
x þ RTlnxi þ RTlnγx i ð46:3Þ

Let us confine ourselves to study the case for which the activity coefficients are

related to the molar fraction scale. Considerations relative to other scales are

analogous to those presently developed.

In both relations, the chemical standard potential is the same since the solution

tends to be ideal when it is more and more dilute (viz. Chaps. 11 and 12). Hence, it

is evident that the term RT ln γx i quantifies the deflection with regard to the

“ideality.” Then, RT ln γx i is the change in the Gibbs energy accompanying the

crossing of one mole of particle i from the ideal system (where it would not bring

any electrical charge) to the actual system where it is charged. As a result,

according to what is preceding:

RTlnγx i ¼ Δμ i� Ið Þ ð46:4Þ

At this level of reasoning, it is essential to specify what is meant by the term

“electrostatic interactions” in the Debye–Hückel interactions. They are only the

coulombic interactions, the force of which being in 1/r2. All the other interactions
which are in 1/rn with n> 2, responsible for the dispersible forces, etc., are not

taken into account by the theory. Hence, the only interactions which are taken into

account are those which are considered as being long-range ones, as it is indicated

by the term in 1/r2. This point is very important because it is only for the solutions
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sufficiently diluted in electrolytes that the ions are sufficiently distant from each

other to no longer undergo these “short-range” interactions.

The fact that only the long-range interactions are taken into account may bring

about (and brings about), as a rule, some problems concerning the validity of the

theory. This is actually the case. From the experimental viewpoint, the activities,

indeed, take into account all the kinds of deflections with regard to the ideal

behavior. In other words, the values of the activities are blind to the phenomena

they lessen. They do not see the origin of the deflections they quantify. Here, a

source of discrepancy may happen between the reality and the theory. The latter

may explain the occurrence of several phenomena by taking only into account one

of them !This is irrational. To sum up, we can, already, assert that the theory can
represent the reality only when the interactions in 1/r2 overcome all other phenom-
ena which may be at the origin of the deflections, that is to say, solely in the case of
sufficiently dilute solutions.

– The ions are supposed to be spherical and unpolarizable.

For some authors, this constitutes the primitive model. It would be more

judicious to take into account all the kinds of interactions, not only those of

electrostatic origin.

46.4 Schematic Representation of the Solution
of an Electrolyte

The displacement of ions in the solution is not random because of the electrostatic

interactions. A great feature of electrolytes solutions to which the Debye–Hückel
theory leads, indeed, is that every ion of the solution is surrounded by an atmo-

sphere constituted in majority by ions of electric charges opposed to its proper one.

Let us consider, for example, the central positive ion i of charge zieo (eo being the

charge of the electron) located in a particular point of volume dV situated at the

distance r of this point (Fig. 46.2).
Because of the motions from thermal origin of ions, at a given moment, some

positive and negative ions go into and away from the element dV. But owing to the

fact that, by hypothesis, the central ion is positively charged, it happens that an

excess of negative ions is present in the element. The probability to find an excess of

negative ions in dV is larger than that to find an excess of positive charges. Hence,

the displacement of the ions is not random.

Then, from these last considerations, it is already possible to infer that every ion

is associated with an ionic atmosphere surrounding it, the sign of which is opposite

to its proper one. We can also infer that the density of the atmosphere close to the

central ion is larger than that existing farther where it tends to cancel. Furthermore,

intuitively, one can already imagine that the whole atmosphere of an ion does
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possess an electrical charge equal and opposite to that of its central ion, since the

solution is electrically neutral.

The Debye–Hückel theory justifies these preliminary assertions.

46.5 The Basic Equation of the Debye–H€uckel Theory: The
Poisson–Boltzmann Equation

The calculation of the charging work involved in the second paragraph involves not

only to know the charge of the ion i but also to know the electrostatic potential in

which it is located (viz. Appendix P). The potential ψ r prevailing in the volume dV,
located at the distance r of the ion i must be calculated. It is important to recall that

ψ r is the total electrostatic potential. This means that it is due to the whole ions

included the ion i itself.
The potential ψ r in a point is related to the charge density ρr prevailing at this

point. This relation is given by Poisson’s equation (46.5) given under (Appendix Q):

∂2ψ r=∂x
2 þ ∂2ψ r=∂y

2 þ ∂2ψ r=∂z
2 ¼ �4πρr=ε ð46:5Þ

ε is the absolute permittivity of the medium.

The absolute permittivity ε (or simply permittivity) is equal to the product of the
permittivity of the vacuum ε0 by the relative permittivity εr of the medium:

ε ¼ ε0 εr

The vacuum permittivity ε0 has for unity the Faraday per meter (F m�1) or the
coulomb per mole per meter (C mol�1 m�1). The relative permittivity εr (formerly
called dielectric constant of the medium) is a dimensionless number.

For the aqueous solutions, Debye and Hückel have adopted the value of the

permittivity of pure water for ε. It is interesting and somewhat surprising to notice

that the solvent plays a part in this equation solely through the constant value ε and
that it is considered as being a continuum medium. This is a condition of validity of

Poisson’s equation. Actually, the medium is not truly a continuum medium since

the distribution of the ions is not homogeneous within it. The objection can be

overcome by considering the average location of the different ions.

Remark: Since the Debye–Hückel theory is mainly centered on the behavior of

the solute and since it considers the solvent as being a continuum, it is classified at

the level so-called McMillan–Mayer level, on a scale devoted to the taking into

account all the phenomena constituting a process in a solution.

For the following calculations, it is easier to express the previous equation (46.5)

as being a function of the sole coordinate r instead of the coordinates x, y, z. The
variable r is the radius of a sphere centered on the central ion i. No doubt, indeed,

that the outer cover of the other ions of the solution around i does possess a
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spherical symmetry. The coordinate r is sufficient to describe the system. Equation

(46.5) becomes:

1=r2d=dr r2dψ r=dr
� � ¼ �4πρr=ε ð46:6Þ

(The transformation of (46.5) into (46.6) is easy to perform—viz. Appendix R).

The resolution of the equation (46.6) involves knowing the density ρr or, rather,
to know how it changes with the function ψ r. It is only when the expression of ρr as
a function of ψ r is introduced into (46.6) that it becomes possible to determine ψ r.

Actually, it is the case.

ψ r is, then, one judicious solution of the obtained differential equation. The ionic

density is given by the expression:

ρr ¼
X

k
Nkzkeo ð46:7Þ

where the indice k permits to mark out every kind of ions, zk being their number of

charges. The density ρr is related to the number Nk of ions k per cm
3 of the element

of volume dV. At this point of the reasoning is coming a very important hypothesis
of Debye and H€uckel. It is thoroughly discussed below, in this chapter. The number

Nk and hence ρr for every ion k are related to the number Nk
� thanks to the

Boltzmann equation (46.8) (viz. Appendix S):.

Nk ¼ Nk
� eozkexp � zkeoψ r=kTð Þ ð46:8Þ

Nk
� is the number of ions k per cm3 of the whole solution. The term zkeoψ r is the

electrostatic energy U that some ions k may acquire because of the occurrence of

the electrostatic potential ψ r in the volume dV. The electrostatic energy is:

U ¼ �zkeoψ r

ψ r is called potential of average force because it results from electrostatic forces

due to the charges of the whole ions.

Hence, the equation which plays the part of the basis of the Debye–Hückel
theory is:

1=r2d=dr r2dψ r=dr
� � ¼ �4π=ε

X
k

zkNk
�eoexp �zkeoψ r=kTð Þ ð46:9Þ

Its resolution permits to determine the potential ψ r as a function of r. The
relation (46.9) is often called the Poisson–Boltzmann equation.
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46.6 On the Legitimacy of the Poisson–Boltzmann
Equation

A very important point concerning the legitimacy of the Poisson–Boltzmann

equation must be, already, highlighted, before we come back on it. It concerns

the calculation of the density ρr and more specifically the use of the Boltzmann’s

exponential—relation (46.8).

In all scientific rigor, ρr is given by the expression (viz. Chap. 42):

ρr ¼ ρk gik ð46:10Þ

g(r)ik is the classical symbol of the pair correlation function. The indices i and
k recall that, in the occurrence, g(r)ik relates the central ion i to an ion k of the ionic
cloud. The symbol (r) recalls that gik depends on r. ρk is the density of the ion k in
the bulk solution. gik(r) is the factor by which the local density of the ion k ρkgik(r)
differs from its density in the bulk solution, where the electrostatic disturbances of

concentrations are negligible. The relation (46.10) must be equivalent to the

following (46.11):

ρr ¼ ρkexp �wik rð Þ=kT½ � ð46:11Þ

where wik(r) is the potential of average force between the ions i and k. (The gradient
of wik(r) with its sign inverted is the acting force between i and k). The weakness of
the Poisson–Boltzmann equation lies in the fact that the correlation by pairs

function is not an exponential in the great majority of cases as it has been admitted,

as a rule, by Debye and Hückel. As a result, the following relation which has been

settled by Debye and Hückel:

wik rð Þ=kT ¼ zkeoψ r ð46:12Þ

cannot always be applied. Because of that, the theory can be considered as being

only approximate. In the case of a gas, we have seen (visualize Chap. 29) that it is

only when it is extremely dilute we can assimilate the correlation function to one

exponential. (The demonstration has already been realized that it is the case when

only two molecules of gas are in interaction (cf Chap. 29)!

46.7 A Solution of the Poisson–Boltzmann Equation
and Some Inferences

An important point of the resolution process of the Poisson–Boltzmann equation is

the truncation of the series expansion of the Boltzmann’s exponential, the first two

terms of which are only kept. Debye and Hückel have, indeed, expressed the
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hypothesis that the electrical energy of each particle zkeoψ r is small with respect to

the thermal factor kT. The merits and the interest of this hypothesis are studied in

paragraph 14.5. Hence, the exponential is approximated according to:

exp �zkeoψ r=kT½ � � 1� zkeoψ r=kT

The charge density becomes:

ρr ¼
X

k
Nk

�zkeo �
X

k
Nk

�zk2eo2ψ r=kT

The first term of the right member of this equation is null because the whole

solution is electrically neutral. As a result, the Poisson–Boltzmann equation

which remains to be solved becomes:

1=r2 d r2dψ r=dr
� �

=dr
� �

χ2ψ r ¼
�
4π=εkTð Þ

X
k

Nk
�zk2eo2

�
ψ r ð46:13Þ

It is called the linearized Poisson–Boltzmann equation.

– In equation (46.13), the term on the right between brackets is nothing different

from a collection of constants for a given solution at a given temperature. Hence,

it is a constant which is symbolized by χ2:

�
4π=εkTð Þ

X
k

Nk
�zk2eo2

� ¼ χ2 ð46:14Þ

The constant χ is not only interesting to introduce for the facility of writing, it is
also interesting for the following fact. Its inverse χ�1 does possess a physical

unambiguous meaning (see under).

Now, the linearized Poisson–Boltzmann equation is:

1

2

�
d π2dψ2=dπ
� �

=dπ�χ2ψ2 ð46:15Þ

The appropriate solution of (46.15) is (viz. Appendix T);

ψ r ¼ zieo=εð Þ exp �χrð Þ=r½ � ð46:16Þ

ψ r is the total electrostatic potential, that is to say that due to the whole of ions k
plus ion i, at the distance r of the central ion i.

The solution (46.16) leads to the following results:

– The charge density at the distance r of the central ion is given by the relation:

ρr ¼ � zieo=4πð Þχ2 e�χr=rð Þ ð46:17Þ
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– The total charge in excess qcloud (ionic atmosphere) around the central ion is

given by the relation:

qcloud ¼ �zieo ð46:18Þ

This result is a very interesting one. It shows that the central ion, the charge of

which is +zieo, is surrounded by an ionic cloud, the total charge of which is exactly

equal, but opposed to its proper one. This result is in full agreement with the fact

that the whole solution is electrically neutral. Concerning this result, a point

deserves a particular comment. It is the fact that the value 0 has been retained

(in order to obtain this result), as the lowest limit of an integral intervening in the

calculations (viz. Appendix U). This choice entails that the central ion is assimi-

lated to a point charge. This working hypothesis is thoroughly discussed in para-

graph 12.

– The geometrical locus of the maximal charge around the central ion is the sphere

of radius r, the length of which is given by:

r ¼ χ�1 ð46:19Þ

It is for this reason that χ� 1 is called radius or thickness of the ionic cloud

surrounding the central ion. A simple analysis of the dimension of relation

(46.20) given below shows that, actually, χ�1 does possess the dimension of a

length.

When we look, indeed, at the equality:

χ�1 ¼ εkT=4πð Þ � 1=
X
k

Nk
�zk2eo2

 !" #1=2

ð46:20Þ

we see that e0
2 is expressed in C2, Nk

� number of ions per volume unit is

expressed in m�3, zk is a dimensionless number, and ε in C mol�1 m�1. It is

for this reason that χ�1 is also called Debye and H€uckel’s length. We notice that

when the concentration tends toward 0, the cloud tends to spread out. This

property is interesting.

– The electrostatic potential ψcloud only due to the ionic cloud is given by the

expression:

ψ cloud ¼ zieo=εrð Þ e�χr � 1ð Þ ð46:21Þ

This relation is very important because of the fact that it is the calculation of

Ψ cloud which permits to determine the corrective term of Gibbs energy due to the

ionic interactions (viz. paragraph 2). Its fruitfulness gets clearer in the case of

sufficiently dilute solutions. The sum ΣkNk
�zk

2eo
2 is, then, sufficiently weak in

order the product χr to be markedly weaker than 1. Under these conditions:
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e�χr � 1 � �χr

ψ cloud ¼ �zieo=εχ
�1 ð46:22Þ

The relation (46.22) shows that the central ion i may be considered as being

submitted to a potential due to a sole ion of charge�zieo/ε located at the distance
χ�1 from it.

It is interesting to notice that it is only when this potential value takes

precedence that the Debye–Hückel relations apply.

46.8 Limiting Equation of Debye–H€uckel

The change in the chemical potential Δμ(i� I) due to interactions ion–ion is equal

to the charging work W of the central species I multiplied by the Avogadro’s

number.

46.8.1 Calculation of the Corrective Term of the Gibbs
Energy of Ions–Ions Interactions

The charging work W of i is developed under the potential ψcloud due to the ionic

atmosphere around i. Because of this work, the charge of the ion i changes from the

null value up to the charge zieo,
From the general physical standpoint, we know that:

dW�electric ¼ ψdq

Thus, for the ion i:

dW�electric ¼ ψ clouddq

dW�electric ¼ � zieo=εχ
�1

� �
dq

Since zieo is a charge, let us write for simplicity:

q ¼ zi eo

W�electr: ¼ �
ðzi eo

0

qdq=εχ�1

W�electr: ¼ �zi
2eo

2=2εχ�1

46.8 Limiting Equation of Debye–Hückel 491



and

Δμ i� Ið Þ ¼ �NA zieoð Þ2=2εχ�1 ð46:23Þ

46.8.2 Expression of the Activity Coefficient γx of One Ion

The result (46.23) permits the calculation of the activity coefficient of the ion i.
According to paragraphs 2 and 3, we obtain:

RTlnγx i ¼ �NA zieoð Þ2=2εχ�1 ð46:24Þ

46.8.3 Introduction of the Ionic Strength

It is easy to verify that, in literature, using the scale of molalities (or of molarities) in

order to quantify the « concentrations » of the solutes largely prevails on that of

molar fractions in solution chemistry. Concerning this purpose, there are two points

to remark in the previous theory:

– The activity coefficients are quantified on the basis of the molar fractions. This

point has no practical interest since we have seen that, for the sufficiently dilute

solutions, the values of the different activity coefficients γx, γm, and γc differ very
little from each other (viz. Chap. 11). This is the case, notably, when the limit

and extended Debye–Hückel can legitimately be used.

– Before the Debye–Hückel theory has been stated, Lewis had, already, introduced
the parameter I on a purely experimental basis, which he defined by the relation:

I ¼ 1=2
X
k

Ckzk
2

He had identified this parameter as being an important one in order to take

correctly into account the behavior of the solutions, and he has named it the ionic
strength of the solution. According to the Lewis’s definition, Ck is the concen-

tration of the ion k expressed in molarities in the whole solution. The term χ�1 is

expressed in number of moles per cm3. Thus, it must be expressed in mol L�1.

Nk
� being the number of ions in 1 cm3 of solution and NA the Avogadro’s

number, the relation permitting the correction is:

Nk
� ¼ NACk=1000

Ck is the concentration (mol L�1) of the ion. As a result:X
k

Nk
�zk2eo2 ¼ eo

2NA=1000
X

k
Ckzk

2 ð46:25Þ
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and:

χ ¼ 8πeo
2NA=1000εkT

� � 1=2 � √I

Usually, the term in braces is symbolized by B, i.e.:

B ¼ 8πeo
2NA=1000εkT

� � 1=2

and

χ ¼ B√I

46.8.4 The Limit Debye–H€uckel Equation

According to what is preceding and adopting the decimal logarithm, we obtain:

lnγx i ¼ � zi
2eo

2NA=2εRT
� �

B√I

logγx i ¼ � 1=2:303ð Þ eo
2NA=2εRT

� �
BZi

2√I

Introducing, now, the factor A:

A ¼ 1=2:303ð Þ eo
2NA=2εRT

� � ð46:26Þ

one finally obtains:

logγx i ¼ �Azi
2√I ð46:27Þ

It is the limit Debye–Hückel law. A is a constant which is independent of the

nature of the ion i. It depends on the temperature and on the nature of the solvent

through its permittivity ε absolute which, also, depends on the temperature. For

water at 298 K, εr¼ 78,54:

A ¼ 0:509mol�1=2L1=2

(Other values of A are given in the literature depending on those retained for the

value ε of water. Thus, with ε¼ 78.54, A¼ 0.5085, whereas with ε¼ 78.30,

A¼ 0.5115) B is a function of the temperature and of ε. For water at 298 K

B ¼ 0:329 � 10 8 cm�1mol1=2 L1=2

To the ionic strengths for which the Debye–Hückel equations are legitimate, the

constants appearing in the limit equation above are the same, whether the ionic
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strength is expressed in molalities or in molarities. This is due to the fact that for the

sufficiently dilute solutions, the values of the “concentrations” of a species in

solution are quasi-equal when they are expressed in molalities or in molarities.

An important point to underline is that the Debye–Hückel limiting law equation

does not only apply (when its use is legitimate) to strong electrolytes, it also applies

to the ions of solutions containing weak electrolytes, provided its true ionic strength

is taken into account. That is to say, the dissociation extent of the electrolyte must

be known (viz. Chap. 19).

46.9 On the Agreement of the Limit Equation
with Experiments

46.9.1 Relation Derivating from the Limit Equation
the Results of Which Can Be Directly Confronted
with the Experimental Results

It is impossible to experimentally determine the activity coefficient of an ion.

Hence, equation (46.27) cannot be directly confronted with the experience. How-

ever, the value of the mean ionic activity coefficient of one electrolyte is experi-

mentally attainable (viz. Chaps. 14 and 15). Hence, if it were possible to modify the

limit equation (46.27) (permitting to separately calculate the activities of the ion

and of its counterion of one electrolyte) in order to obtain an equation which would

permit to calculate their mean coefficient, the values obtained in such a way could

be confronted with the experience. Evidently, the potential fit between the calcu-

lated and measured values found would then only give an indirect proof of the

validity of the limit equation permitting to calculate the activity coefficient of a

simple ion, at least in the conditions for which it can be used. However, such an

agreement would be very convincing.

The transformation of the limit equation into another taking into account the

mean coefficients is easily feasible. The mean activity coefficient of an electrolyte

is given by the expression (viz. Chaps. 14 and 15):

γ� ¼ γvþþ � γv��
� �1=v

ν is the total number of ions given by one molecule of the electrolyte:

v ¼ vþ þ v�

By taking the logarithm, we obtain

lnγ� ¼ vþlnγþ þ v�lnγ�
� �

= vþ þ v�ð Þ
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and, at this step of reasoning, by expressing log γ+ log γ� by relations (46.24):

lnγ� ¼ �1=v NAeo
2=2εRT

� �
χ vþzþ2 þ v�z�2
� �� �

It is easy to verify that:

vþz2þ þ v�z�2
� �

= vþ þ v�ð Þ ¼ zþz�

because of the fact that each electrolyte being neutral,��vþzþ�� ¼ ��v�z���
As a result:

lnγ� ¼ � NAeo
2=2εRT

� ���zþz���� �
χ

Replacing χ by its expression (46.21), and proceeding as above lead to the

relation:

logγ� ¼ �A zþz�ð Þ√I ð46:28Þ

i.e., to say at 25 �C

logγ� ¼ �0:509
��zþz���√I ð46:29Þ

This is the limit equation of Debye–Hückel, but applying to the whole electro-

lyte. For a monovalent electrolyte, at the concentration C

I ¼ C

and

logγ� ¼ �0:509√C
�
electrolyte monovalent at 25 �C

� ð46:30Þ

Equations (46.28),(46.29), and (46.30) can be, then, directly compared with the

experiments.

46.9.2 Agreement of the Debye–H€uckel Limiting Law
with Experiments

The Debye–Hückel limiting law (46.28) or (46.29) shows that:
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– The logarithm of the activity coefficient of an electrolyte must linearly decrease

with the square root of the ionic strength of the solution. In the case of an

electrolyte 1-1, it must decrease linearly with the square root of its

“concentration.”

– The slope of the straight line log γ�/√I can be computed without ambiguity by

starting from fundamental physical constants and using the values z+ and z�.
– It must not depend on the nature of the electrolyte. It only depends on the kind of

the electrolyte, that is to say according to their types 1-1, 2-2. . .
– At null ionic strength, the mean activity coefficient must be equal to 1.

By considering the relations (46.28) or (46.29), we already notice that the theory

subscribes to the latter condition: indeed, for I¼ 0, γ�¼ 1. Now, by taking the

example of the aqueous solutions of an electrolyte 1-1 shown (Fig. 46.3), we see

that the condition 1 is satisfied for the very weak concentrations.

Figure 46.4 shows that, on one hand, the slopes are actually different according

to the type of the electrolyte and, on the other, that their values are those calculated.

Finally, the change of the slope of the limiting law with the permittivity (dielectric

constant of the medium) is also in agreement with the theory. According to the

relation (46.26) and the expression of B, indeed, the slope of the line log γ�/√I, at
constant temperature, must be proportional to the inverse of the value ε3/2. Figure 46.5
exhibits this behavior for low values of I in the cases, for example, of solutions in

Fig. 46.3 Debye–Hückel
limiting law: approximate

range of validity
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methanol, ethanol as well as in the mixtures water-dioxan, the dielectric constant

values of which being located in the interval 9.53–78.6.

Now, concerning the changes of the slope of the limit equation as a function of

the temperature, according to the realized studies, they are in full agreement with

the experience, although they are difficult to interpret, since, when the temperature

changes, some other factors do also change. This is, for example, the case of the

dielectric constant.

All this information, strengthening the theory, constitutes what is called by some

authors: the great triumph of the Debye–Hückel theory.

46.10 Limitations of Debye–H€uckel Limiting Equation

However, the Debye–Hückel limiting law exhibits serious limits.1

The essential observation of its imperfection appears at the examination of

Figs. 46.3 and 46.4 which shows that all the conclusions it predicts are only

accurate for very weak ionic strengths. These figures show that, broadly speaking,

beyond the ionic strength I¼ 0.01 mol L�1, the activity coefficient decreases less

quickly than it is predicted by the limit theory.

Fig. 46.4 Calculated and experimentally obtained slopes according to the kind of electrolyte (i, j:
charges of the cation and of the anion)

1It has been endowed with a considerable success, but it is not perfect. P. Debye, himself, said that

the theory did not merit such a success!

46.10 Limitations of Debye–Hückel Limiting Equation 497



Figure 46.5 shows that above an ionic strength such as √I> 0.3 mol L�1, the

electrolytes of the same kinds are, actually, “distinguishable” from each other

(Table 46.1).

46.11 Possible Causes of the Limitations
of the Debye–H€uckel Limiting Equation

According to the starting hypothesis and the followed reasoning to set up this

theory, one can infer that there exist several causes to the limitations of the limiting

law, that is to say:

– The ions and especially the central ion have a finite size. They cannot be

assimilated to charged points.

– The series development of the exponential in the Poisson–Boltzmann’s equation

is not justified.

– The fact to only consider the interactions in 1/r2 may be an error. Are there any

reasons not to take into account other interactions in the reasoning and even

Fig. 46.5 Obtained Debye–Hückel limiting law as a function of the dielectric constant of the

medium
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other processes such as, for example, the formation of ions-pairs or, also, the

occurrence of dispersion forces?

– Finally, another cause merits to be considered. It is the fact that, in this theory,

the solvent is assimilated to a continuum and plays a part solely through its

dielectric constant. From a different viewpoint it would play, for example, it is,

simply, that of solvating ions!

Fig. 46.6 Differences of

behaviors between two

electrolytes of the same type

(NaCl and KCl) once the

ionic strength exceeds some

value

Table 46.1 Comparison of the calculated and experimental mean activity coefficients γ� of NaCl

at 298 K (according to J.O’M. Bockis and Amulya K.N. Ready “Modern Electrochemistry”
1 Ionics, 2nd edition, Plenum Press, New York and London, 1998)

Molalities log γ� (experimental) log γ� (calculated)

0.001 0.0155 0.0162

0.002 0.0214 0.0229

0.005 0.0327 0.0361

0.01 0.0446 0.0510

0.02 0.0599 0.0722
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46.12 Ions Have a Finite Size Radius: The Extended
Debye–H€uckel Theory

A way in order to improve the previous theory came, immediately, in mind: it was

to consider that the ions, actually, have a finite radius.

Taking into account the fact that the central ion having the finite radius a leads to
the equation so-called the extended Debye–Hückel equation—viz. Appendix U, it

is:

logγi ¼ �Azi
2√I= 1þ Ba√I

� � ð46:31Þ

A and B are the same constants as those occurring in the limiting equation. a is

believed to be the radius of the ion in solution (viz. the discussion below). a is called
“ion size parameter” or the shorter distance of approach to every ion with the

central one. Thus, the extended Debye–Hückel relation law differs from the

reduced one by the presence of the denominator 1 +Ba√I. For the whole electrolyte,
the relation is:

logγ� ¼ �A zþz�ð Þ√I= 1þ Ba√I
� � ð46:32Þ

Then, the value of a may be assimilated to a kind of mean value of the ion size

parameters of the ions constituting the electrolyte.

46.13 On the Meaning of the “Ion Size Parameter”

• From the theoretical standpoint, we can notice that:

– If one writes the expression of the mean ionic activity coefficient under the

following equivalent form (viz. Appendix T and relation (46.16):

logγ� ¼ �A zþz�ð Þ√I= 1þ a=χ�1
� �

we can notice that the more dilute the solution is, the larger the radius of the ionic

cloud χ�1 is. Then, the ratio a/χ�1 tends to be negligible with respect to 1 and the

extended equation becomes the limiting one. This behavior is in full agreement with

the physical intuition. (The principle, so-called the correspondence principle in

physics, is obeyed). The result of the existence of the denominator in the extended

law is that the value of �log γ� is slightly larger than that given by the limiting

equation. This effect is all the more significant as the ionic strength is larger. By

applying the following series development:

500 46 Debye–Hückel Theory

http://dx.doi.org/10.1007/978-3-319-46401-5_BM1
http://dx.doi.org/10.1007/978-3-319-46401-5_BM1


1= 1þ xð Þ ¼ 1� xþ x2=2! . . .

to the term 1 +Ba√I and by only retaining the first two terms, we obtain:

1= 1þ Ba√I
� � � 1� Ba√I

and:

logγ� ¼ �A
��zþz���√I þ CteI ð46:33Þ

where the symbol Cte means constant. Actually, it appears a positive correction for

the calculation of log γ� with respect to the limiting equation. Let us recall that in

the determination of the activity coefficients of electrolytes by conductometry (viz.

Chap. 18) some extrapolation relations of the type (46.33) are used. However, even

if the presence of the term (1 +Ba√I) in the extended equation bends the curve

�log γ�/√I (of the limiting equation), definitively, it cannot give rise, from the pure

mathematical standpoint, to the occurrence of a minimum in the curve.

• According to the experimental results, that is to say after the fitting of the

theoretical curve (calculated values log γ�/√I ) to the corresponding experimen-

tal ones, it appears that, for weak ionic strengths, the value a is larger than the

sum of the crystallographic radius of the positive and negative ions of the

solution and is lower than the sum of the radius of the solvated ions. That is to

say, it lies in the range 0.35–0.45 nm. This is a reasonable value. However, from

some less weak value of the ionic strength, that of amay considerably vary when

the latter increases. Thus, for molalities of sodium chloride in aqueous solutions

located in the range 9 � 10�2 mol kg�1 to 1 mol kg�1, a varies from 6 up to 14 Å
(1 angstr€om: 10�10 m)! Likewise, for aqueous solutions of hydrochloric acid of

molalities varying from 1 up to 1.8 mol kg�1, a varies from 1.38 up to 8.50 nm.

Even, for larger concentrations, a may be endowed with aberrant values. Thus,

for a molality of 2 mol kg�1 in hydrochloric acid, a¼�41.12 nm! For a molality

2.5 mol kg�1 in lithium chlorid, a¼�14.19 nm! These results explain why a,
now, is considered as being an adjustable parameter permitting to get the best fit

between the experimental and calculated values of –log γ� as a function of √I,
rather than a quantity possessing a true physical meaning.

• The limits of using the extended Debye–Hückel equation are the following ones.
Roughly, it permits to calculate the mean ionic activity coefficient of an elec-

trolyte up to an ionic strength of 0.1 mol L�1 with reasonable values a.

Clearly, even if it is undeniable that taking into account the radius of the ions

improves the capabilities of calculation of reasonable values of activity coefficients,

it is true that the model remains imperfect. In this respect, the aberrant values taken

by the parameter a for some ionic strengths provide us with a dazzling proof of this

assertion.
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46.14 Other Causes of Discrepancy Between
the Experiments and the Debye–H€uckel Laws

46.14.1 Solvation of the Ions of the Electrolyte

We know, that in solutions, ions are surrounded by several sheaths of solvent

molecules which solvate the former ones. As a result, the effective “concentrations”

and hence the activities of the ions and of the solvent may not be those forecast by

the simple consideration of the “concentrations.” We name effective “concentra-

tions,” i.e., activities, the quantities which govern the value of their chemical

potential. The number of solvent molecules mobilized for the solvation is evidently

all the larger as the electrolyte “concentration” is. The Debye–Hückel theories do
not take into account this phenomenon. Therefore, it is easy to conceive that

(by taking, for example, the solvent water), the number of water molecules avail-

able to play the part of the bulk water is weaker than forecast. As a result, the

effective “concentration” of the ions is greater than that estimated as a rule. The

number of water molecules solvating the two antagonist ions in their first solvation

layers may be important. For example, the total hydration number nh would be of

the order of 8. Thus for 1 mol L�1 of NaCl, the solvatation of both ions leads to the

concentration 48.5 mol L�1 of bulk water instead of 55.5 mol L�1. The value

55.5 mol L�1 only takes into account the stoichiometric concentration and not the

latter phenomenon.

Concerning, now, the experimental value of the activity, it is sure that it takes it

into account. The solute activity being equal to the product of the “concentration”

by the activity coefficient, the latter becomes larger than forecast since the effective

“concentration,” the only one which matters according to this theory, is larger. A

simple theory shows that the two following terms:

�2:303RT nh=nð Þlogaw þ 2:303RTlog nw þ nð Þ= nw þ n� nhð Þ½ �

must be added to the “classical” one—log γ� of the Debye–Hückel theory for the

calculation of the activity coefficients. nw is the total number of water molecules, nh
that of water molecules linked to both ions per mole of ions, n the number of moles

of electrolytes, aw the activity of water after the addition of the ions (aw is slightly

less than the unity), and C the analytical concentration of an electrolyte 1-1. The

modified Debye–Hückel is the following one:

RTlogγ� ¼ �A√C= 1þ Ba√C
� �� 2:303RT nh=nð Þlogaw

þ 2:303RTlog nw þ nð Þ= nw þ n� nhð Þ½ �
ð46:34Þ

The encouraging results found by using this relation must be tempered with the

fact that the Debye–Hückel term �A√C/(1 +Ba√C) is maintained, in this occur-

rence, at high levels of ionic strengths of the order of 2–4 mol L�1. They may, no
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longer, remain pertinent. It is not sure at all that with such concentrations, the

solution surrounding the ion may be, still, considered as being a continuum, a basic

hypothesis formulated by Debye and Hückel.

46.14.2 The Adoption of the Boltzmann’s Definition
for the Density ρr

This point has been already discussed in paragraph 6 above. Let us recall that, in

principle, ρr is given by the expression:

ρr ¼ ρk gik rð Þ ð46:10Þ

g(r)ik being the pair correlation function between the central ion i and one ion k of
the ionic cloud. According to the Debye–Hückel hypothesis, the relation (46.10) is

equivalent to the following one (46.11):

ρr ¼ ρkexp �wik rð Þ=kT½ � ð46:11Þ

where wik(r) is the potential of the mean force between the ion i and one ion k of the
ionic cloud. The approximation of the Poisson–Boltzmann’s equation lies in the

fact that the following equality has been set up:

wik rð Þ=kT ¼ zkeoψ r

This equality is only accurate when the solutions are very dilute. When the

distance r is short, wik(r) takes into account not only the interactions between ions

(this is done by the Boltzmann’s term) but also the indirect interactions due to the

solvent (this is not done by the Boltzmann’s term). As we know, the more dilute the

solutions are, the farther from each other are the ions.

46.14.3 Change of the Dielectric Constant with the Ions
Concentrations in the Solution

Actually, the permittivity (i.e., the dielectric constant) changes with the ions

concentrations, that is to say also with the distance r. The Poisson–Boltzmann’s

equation does not take this factor into account. The medium is not one without any

structure.

Moreover, using the Poisson’s equation entails a continued charges density

around the central ion. This is not the case. However, assimilating the solution

comprising discrete charges to a continued cloud of charges may be justified by

introducing a mean and continued location of charges in the time.
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According to the cosphere theory, there is no sufficient taking into account of the

solvation phenomena (viz. paragraph 14-1) and of the changes in the relative

permittivity of the solvent close to the ions in the Debye–Hückel theory. For this
reason, a more complicated potential of electrostatic interaction than that retained

in the Debye–Hückel theory has been chosen in it.

According to the theoretical calculations which result from it, it is proved that

this approach differs in its conclusions from that of Debye–Hückel because the

equation stemming from the theory involves a term which is specific of the involved

ions. Hence, according to the Debye–Hückel limiting law, indeed, there is only

dependence on the ionic strength of the activity coefficients. According to the

cosphere theory, solutions of equal molarities in sodium chloride and sodium

hydroxide, even for weak concentrations, exhibit different mean ionic activity

coefficients. Moreover, it shows that the linear term present in the Guggenheim

(viz. Chap. 15) and Davies’ relations is characteristic of the electrolyte. The

cosphere theory is due to Gurney and Friedmann.

46.14.4 Formation of Ion-Pairs and of Superior Aggregates

Here, we only evocate the formation of ion-pairs, although in some cases, the

formation of triple ions and even that of superior aggregates must be taken into

account. It can disrupt the fit between the mean activity coefficients (and hence,

indirectly, the activity coefficients of the constituting ions alone) and the calculated

coefficients. The Debye–Hückel theory does not take into account the formation of

ion-pairs and of other aggregates. It is usual to neglect their formation in the

solvents of large dielectric constant such as water. But it is an error as soon as the

solution contains ions which are not monovalent (viz. below). The formation of

pair-ions AMip can be represented by the following equilibrium (ip: ion-pairs):

Aþ þM� Ð AMip

the constant Kip of which is given by the expression:

Kip ¼ aAM=aAþ aM�

A theory, due to N. Bjerrum, relative to the formation of ion-pairs, indicates that

the factors which favor the formation of ion-pairs are a weak dielectric constant of

the solvent, a weak ionic radius of the ions and strong electrical charges. If there

exist few ion-pairs involving monovalent ions in water (εr¼ 78.6), it seems that it is

no longer the case as soon as the solvent contains bivalent ions and obviously ions
of superior electrovalence, and that even in water. One example is provided by an

aqueous solution of zinc sulfate for which Kip¼ 240.

The ion-pairs being neutral, they must not, as a rule, play a direct part in the

value of the ionic strength of a solution. (It is not the case of triple-ions which are of
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the types A+M�A+ andM�A+M�). They are randomly distributed in the whole

solution. However, the formation of aggregates, whatever they are, plays an indirect

part. The Debye–Hückel theory cannot give the accurate answer as soon as there are
the formations of ion-pairs and aggregates in non-negligible amounts. It disturbs,

indeed, the normally foreseeable “concentration” of the free ions. Only the ions

non-engaged in ion-pairs and aggregates must be considered in order to study the

ionic atmosphere surrounding the central ion. The result is analogous to that

resulting from the phenomenon of ion solvation (see above). This is all the more

true as the ion-pairs pairs and all the kinds of aggregates are themselves more and

less solvated! The effective “concentration” which must be considered for the study

is evidently weaker than the analytical concentration. If one only takes into account

the ion-pairs formation and if the fraction θ of the total number of ions gives rise to

the formation of ion-pairs, it is only the fraction (1� θ) which can enter the Debye–
Hückel theory. One relation giving the mean theoretical ionic activity coefficient

γ�th taking into account the formation of ion-pairs does exist.

The fraction θ of formed ion-pairs can be calculated as a function of the size of

the ions, the dielectric constant of the solvent and the analytical concentrations,

thanks to Bjerrum’s theory. One demonstrates that the observed mean ionic activity

coefficient γ� obs is linked to the theoretical one γ�th by the relation:

logγ�obs ¼ logγ�th þ log 1� θð Þ

46.14.5 Legitimacy of the Series Development
of the Boltzmann’s exponential

Another possible cause of the shortcomings of the Debye–Hückel theory may lie in

the legitimacy of the truncature of the series development of the Poisson–

Boltzmann’s equation. Actually, the answer to this question may be qualified as

being unexpected.

The demonstration has been done that the non-linearization of this exponential

would entail the existence, unexpectedly, of a theoretical contradistinction! The

linearization, as it has been performed above, is necessary in order to avoid this

contradistinction! The demonstration has been based by performing the calcula-

tions involving the entire exponential. (Besides, they have necessitated the use of

computers). The results obtained in this manner are inaccurate and are proved to be

inconsistent).

We have seen that the linearization leads, indeed, to the relation:

ρr ¼ �
X

k

�
Nk

�zi2eo2=kT
�
ψ r

that is to say to a linear relation between ρr and ψ r. In the case of the “unlinearized”

Poisson–Boltzmann’s equation, the relation between these two quantities is no

longer linear. But, the obtention of the Debye–Hückel relations comes from the
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legitimacy and the use of the electrostatics theorem known under the name of

“principle of linear superposition of fields.” It stipulates that the total potential due

to two (or more) systems of charges located at two well-defined points is equal to

the sum of the potentials due to both systems. This can no longer be the case if the

charge at a point is in an exponential relation with the potential.

From a general viewpoint, some authors note that a pitfall of the Debye–Hückel
theory is that it does not take into account the potential energy stemming from some

electrostatic interactions (viz. paragraph 3), whence the name of primitive model

with which it is endowed. Neither, does it take into account other factors such as the

formation of hydrogen bonds, the existence of quantum effects and of donor–

acceptor properties of the solvent.
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Chapter 47

Radial Distribution Functions
and Electrolytes Solutions Theory

Abstract Recent progresses concerning the theory of solutions, in particular those

of electrolytes, are based on statistical thermodynamic reasonings. For example, it

is possible to calculate changes of chemical potentials of some electrolytes with

their concentrations, thanks to the radial distribution function, that is to say by

applying the Kirkwood–Buff’s theory. Hence, it is possible to have access to

activity coefficients in various conditions. But obtaining these results involves

performing very complex calculations, impossible to do without the help of com-

puters. Among the informatic methodologies used, the so-called “technique of

informatic simulations” deserve some considerations.

Keywords Radial distribution functions • Electrolytes solutions theories •

Kirkwood–Buff’s theory • Informatics and simulation theories (algorithm) •

Monte Carlo method • Molecular dynamics method • Cost function • Particular

Kirkwood–Buff’s integrals • Least squares regressions (linear and not linear) • Ion-
pairs

Recent progresses concerning the theory of solutions, in particular those of elec-

trolytes, are based on statistical thermodynamic reasoning. For example, it is

possible to calculate changes of chemical potentials of some electrolytes with

their concentrations, thanks to the radial distribution function, that is to say by

applying the Kirkwood–Buff theory. Hence, it is possible to have access to activity

coefficients in various conditions. But obtaining these results involves performing

very complex calculations, impossible to do without the help of computers. Among

the informatic methodologies used, that so-called “technique of informatic simu-

lation” deserves some considerations.

47.1 Informatic Simulation Techniques

In this paragraph, we confine ourselves to mention some considerations on the

general principles.
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47.1.1 Generalities

Informatic methods of simulation consist in obtaining the calculated results of some

studied physicochemical experimental processes and in comparing them to the

corresponding experimental results. The latter ones must be obtained in exactly

the same conditions as those prevailing in the calculations. The comparison permits

to verify the accuracy of the initially chosen physicochemical model governing the

calculations (through judicious algorithms) and the accuracy of these calculations

themselves. When they are satisfactory, the data to which they lead are chosen to

eventually give a better starting base of calculations than previously and so forth.

The great advantage of these methodologies is that they “work” with a great number

of experimental data. In other words, they benefit from a consequent number of

experimental information. This characteristic strengthens the accuracy and the

precision of the determination.

These techniques require to know the studied process as well as possible in order

to write the most plausible as possible initial mathematical model permitting the

calculations mentioned above. Actually, the writing of the model entails adopting

hypothesis which, at the end of the simulation, proves to be verified or to be

invalided. For example, the validation of a hypothesis (through the comparison of

the results) may permit to evidence the occurrence of some electrostatic interaction.

(We have already, in this book, given a very simple example of informatic simu-

lation—viz. Chap. 19).

A simulation involves several successive steps. They are:

– To acquire a knowledge as accurate as possible of the studied physical or

chemical process. This step is called the writing (or the conception) of the

physicochemical model.

– To write its corresponding mathematical model. This step is crucial. It consists

in writing all the equations describing and quantifying all the processes envis-

aged in the previous step. It also consists in linking them in order that their more

or less simultaneous resolution permits to obtain the results.

– To perform the calculations with a computer. This step entails to write the

algorithm corresponding to the preceding steps. Let us notice that its writing

also entails the conception of a strategy (eventually) permitting the automatic
continuation of the steps and also the end of the whole process. It also entails the

adoption of constraints in order to minimize the calculation times and to avoid

the obtaining of intermediary aberrant results.

For our purpose, two great techniques of informatic simulations are used. They

are those so-called “Monte Carlo” and “molecular dynamics” ones.
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47.1.2 The “Monte Carlo” Approach

According to its principle, the method consists in calculating and summing all the

potential energies due to the electrostatic interactions between (in the most simple

case) each pair of particles in a given configuration, as a function of their distance

and, then, to average the obtained results over all the configurations. The major

interest of the technique is that every possible and conceivable interaction between

the particles may be introduced in the model for calculations. It is very important to

notice that, in this first description, the potential energies are calculated by only

taking into account the electrostatic interactions between two particles. We shall

come back to this point in paragraph 4.

In order to take into account the interactions between two particles, one can, for

example, adopt the Lennard–Jones’ relation:

Uij ¼ �A=r6 þ B=r12

where A and B are two constants. Their values are automatically found during the

simulation process in order to give the best fit.1

The strategy is as follows. The particles are placed in the starting configuration

which must be chosen (arbitrarily) as judiciously as possible in order to minimize

the calculation time. Then, each particle is randomly displaced, hence the name of

the method. Then, the following question is asked: does the displacement of the

particle decrease the potential energy of the system? If the answer is yes, the

algorithm accepts the displacement of the particle. If the answer is no, the displace-

ment is rejected. (Some softenings of this constraint are sometimes adopted.)

The operation is repeated numerous times until the system is in equilibrium, that

is to say when it becomes impossible to get any more decrease in its energy. Some

thermodynamic quantities may be calculated in this manner. For example, as soon

as in 1970, period during which the computers were, by far, less powerful than to

day, with a sampling as weak as a number of particles of the order of one hundred

(compare with the Avogadro’s number!), some authors could again find the exact

location of the minimum of the curve log γ� of one electrolyte as a function of √C
(viz. Chap. 15).

47.1.3 Molecular Dynamic Technique

In this technique, the computer is used in order to calculate how the particles system

evolves with time. The calculations are performed by applying the laws of classical

mechanics. At each beginning of the micromotion of one particle, the resolution of

the movement equations of classical mechanics allows to define the trajectories of

1A and B are not the same constants as those of the Debye–Hückel equations.
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all the particles and, hence, to guide them for a new displacement. Thus, contrary to

the “Monte Carlo” technique, the sequence of the events is not random since it

obeys the solutions of the movement equations. The global force playing a part in

the movement equations is from electrostatic origin. It results from the occurrence

of an average potential due to the presence of the other particles.

The major hypothesis on which the technique is based is that the global force

which, finally, commands the displacement of particles is constant during a time

interval which must be very short, in order that the parameters governing the motion

equations can be considered as being constant. In practice, it is of the order of the

femtosecond (10�15 s). It must be noticed that in this technique, there is no true

condition of arrest of the process. One way to know that the process is finished is to

look at the obtained numerical values. Then, when it is the case, they do not vary

anymore when the process is still continuing. Furthermore, one can, also, repeat the

whole same process by starting from other initial conditions than previously and

verify that, finally, the same equilibrium as previously is found. Besides, this test is

advised for every simulation process, in order not to be the victim of a mirage!

47.1.4 Some Remarks

Actually, these methods appear as being special processes of numerical evaluation

of multidimensional integrals. Hence, they permit to calculate the average value ‹F›
of the integrals:

Fh i ¼
ð
. . .

ð
dRNP RN

� �
F RN
� �

where P(RN) is the distribution function (or the basic probability density) (viz.

Chap. 28) and F(RN) the function in the configuration RN. It can be the radial

distribution function.

The very stringent limit of using these methods and from which it is not possible

to go away is the capability of calculation of the computers. Having the Avogadro’s
number in mind (6.023� 1023 mol�1), one can easily conceive that a computer

cannot treat such a sampling of one mole, overall if one reminds that each particle

must be described by three cartesian coordinates and by three moment coordinates.

Furthermore, we only, here, mention the case of spherical particles devoided of any

internal structure. When it is not the case, the handling of one or two supplementary

coordinate(s) per molecule is necessary (viz. Chap. 27 and Appendix F). It must be

noticed that this lack of power of calculation inevitably raises the question of the

legitimacy of the obtained results with a limited number of particles, of the order of

103 up to 104.
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47.2 General Principle of the Calculation of the Activity
Coefficients of the Electrolytes Through the Use
of the Kirkwood–Buff Theory

As in the case of nonelectrolytes solutions, the activity coefficients are obtained

from the spatial pair correlation functions Gαβ , also called Kirkwood–Buff

integrals:

Gαβ ¼
ð1
0

g rð Þαβ � 1
h i

4πr2dr

They depend themselves on the radial distribution functions g (r)αβ. Let us recall
that the theory leads to mathematical relations linking some thermodynamic quantities

(among them the chemical potential) and the Kirkwood–Buff integrals. The latter are

themselves related to the radial distribution functions g(r)αβ. The results obtained

through the theory notably allow to obtain the chemical potentials changes with the

species “concentrations” at constant temperature and pressure. It is through the occur-

rence of these relations that the activity coefficients are reached (viz. Chap. 42).

Let us also recall that the radial distribution functions can be experimentally

evaluated and eventually even calculated. Some mixed methodologies based both

on experimental results and on theoretical calculations, as for example those

involving informatic simulations are also used (viz. Chap. 29).

It is important to notice that, up to now, the mentioned radial distribution

functions involve interactions exerting between two species. In the Debye–Hückel
theory, this is not the case.

47.3 Radial Distribution Functions and the Corresponding
Theory of the Electrolytes

47.3.1 Radial Distribution Functions Only Involving
Interactions Between Two Species

In the case of nonelectrolytes, α may be identical to β, as they may not be. For

solutions of electrolytes, it is necessary to define and to use special radial distribu-

tion functions. Thus, for those describing the interactions between two ions

(of general type g(2)(r)) the functions g 2ð Þ
þþ rð Þ, g 2ð Þ

þ� rð Þ and g 2ð Þ
�� rð Þ are

introduced. In the symbols, the first index is that of the charge of the central ion

and the second that of the other ion. It must be noticed that:
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g 2ð Þ
þ� rð Þ ¼ g 2ð Þ

�þ rð Þ

because the central ion may also be in the ionic sheath of another ion.

It is certain that only considering the interactions between two species (ionic or not)

is the easiest means to perform the calculations. The reason is as follows: the calcula-

tion of the radial distribution functions, that is to say that of the potential electrostatic

energy (due to the electrostatic interaction between both species as a function of their

distance r) can be strictly solved, that is to say without any approximation. There exists

an analytical solution to the differential equations describing the process.

The criticism concerning the fact that one bases the calculations by only

considering the interactions exerting between two particles is evident. This way

to perform the calculations is purely and simply one approximation since more than

two particles may interact simultaneously. The consequence of this state of matter

is the following: even when the calculated result is in full agreement with the

experimental data, it remains, however, the fruit of an approximate process. This

fact means that the fitting technique compensates an imperfect approach by a

process, which because of that, is obligatorily itself imperfect! If we again consider

the example of the calculation based on the Lennard–Jones’ model, we have said

that the values A and B tidy themselves automatically to obtain the best fit with the

experimental data. According to that we have just said, the apparent validity of the

result is not necessarily the reflection of the strict scientific reality. A and B are,

certainly, endowed with values optimizing the simulation but, despite this positive

point, they do not adopt realistic values.

However, it remains true that this methodology is particularly fruitful in the

study of fluids.

47.3.2 Radial Distribution Functions More Complex

Intuitively, one can imagine that taking into account the interactions between several

ions rather than between only two may significantly improve the approach to the

reality. Thus, distribution functions of the types g(3)(r12, r13, r23), g
(4), g(5), g(6), . . .

and hence, of course in the cases of electrolyte solutions, the functions of types

g 3ð Þ
þþþ, g

3ð Þ
þþ�, g

3ð Þ
þ��, g

3ð Þ
��� have been introduced. Let us mention in passing,

without insisting that there exists a theory permitting to relate the functions g(4) to g(3),
g(3) to g(2), . . ., step by step.

A very serious difficulty is appearing as soon as radial distribution functions g(n)

such as n> 2 are handled. Then, it is no longer possible to exactly calculate the

corresponding radial distribution functions and more precisely the electrostatic poten-

tial energy of the n species in interactions as a function of the distances separating

them. It is the problem of the three bodies in astronomy. Therefore, for the calcula-

tions, one must operate through approximations, for example, the following one:
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g 3ð Þ rαβ; rβγ; rαγ
� � ¼ g 2ð Þrαβg 2ð Þrβγg 2ð Þrαγ

It appears that this kind of approximations is far from being satisfactory.

47.4 Debye–H€uckel Theory and Radial Distribution
Function

Finally, it is interesting to recall the difference of approaches of the solutions of

electrolytes between the Debye–Hückel theory and that based on the radial distri-

bution function.

47.4.1 The Radial Distribution Function
in the Debye–H€uckel Theory

Let us recall that in the Debye–Hückel theory, the Maxwell–Boltzmann

distribution:

nk ¼ nk
�exp �zkeψ cloud=RTð Þ

has been arbitrarily retained by the authors (viz. Chap. 46). zke is the charge of one
ion k and ψcloud is the mean electrostatic potential due to the other particles. The

average is taken over the whole configurations of all the particles. The choice of this

distribution is the essential approximation of the Debye–Hückel theory.
It amounts to introducing the ratio nk/nk

� as the function of radial distribution,

that is to say:

g rð Þ ¼ nk=nk
�

g rð Þ ¼ exp �zkeψ cloud=kTð Þ

47.4.2 Some Advantages of the Approach Through
the Radial Distribution Functions

The approach through the radial distribution functions permits to take into account:

– All the interactions that can be conceived between the different particles con-

stituting the system. The Debye–Hückel theory takes only into account the

electrostatic interactions. This is done through the use of functions GAB, which
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are themselves related to the radial functions g(r). In this chapter, we have seen

this case. We have seen, indeed, that the study of electrolytes solutions entails

the introduction of functions g 2ð Þ
þþ, etc. It is true that taking into account all the

possible interactions between the particles make significantly more complex the

calculations and these ones would not been possible without the use of com-

puters without great calculation capacities. At this point of the description of the

methods of study of the solutions, it is quite legitimate to assert that the couple

distribution function/computer works in perfect synergy for the study of

solutions.

– The interactions between the solutes (whichever they are) and the solvent,

whence the introduction of the functions of the kinds g(2)– solv, g 2ð Þ
þsolv,

g 2ð Þ
solv�solv. In brief, the part played by the solvent is no longer proved. Besides,

the Poisson’s equation does not appear in the last calculations. Hence, the theory
takes into account the molecular structure of the solvent. This is absolutely not

the case in the theory of Debye–Hückel. Hence, the treatment of solutions

through the radial distribution functions permits to begin to study the solutions

at the level so-called “the Born–Oppenheimer” level. The Debye–Hückel, as we
have already said, remains to the Mc-Millan level.

– The formation of ion-pairs. They are implicitly considered in the calculations.

47.5 Some Results

Concerning the activity coefficients, some arguments and very complex calcula-

tions of statistical thermodynamics allow to obtain new pieces of information

concerning the relations which link them to the ion concentrations. For example,

in the case of a symmetrical electrolyte, the following conclusions have been

retained:

∂lnγ�=∂Cþð ÞT,P ¼ 1� 2CþNA Gþ� � Gþsolvð Þ½ �= 2Cþ2NA Gþ�� � Gþsolvð Þ� �

and

∂lnγ�=∂Cð ÞT,P ¼ 1� 2CNA Gþ� � Gþsolvð Þ½ �= 2C2NA Gþ� � Gþsolvð Þ� �

where C+ or C is the cation or the whole electrolyte concentration and NA the

Avogadro’s number. (Let us notice in passing that these expressions entail func-

tions of the type g(3)).

– A first interesting point appears. The mean ionic activity coefficient of the

electrolyte explicitly depends on the interactions solute–solvent.
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– A second one lies in the fact that it does not depend on the other interactions, as it

is proved by the absence of the radial distribution functions g++, g�� g– solv,

gsolv– solv in the preceding relations.

Some other conclusions do appear:

– The values g(r) and their dependence with the distance r which separates the

particles in interactions depend on the nature of the ions and not only of their

charges.

– When the ions have different sizes (a hypothesis which is absolutely not envis-

aged in the Debye–Hückel theory) one finds that the values:

• g(2)�� do vary a little when the cation size is changed

• g(2)++ decreases when the cation size decreases

• g(2)+� increases when its size decreases.
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Chapter 48

The Activity Concept in Retrospect

Abstract The chapter essentially summarizes the interest of the notion of activity.

As it is well known in classical thermodynamics, the chemical potential function,

introduced by Gibbs in 1875, permits to treat physicochemical problems as math-

ematical ones. The difficulty is, once the mathematical solution found, to transform

it into numerical physicochemical answers because the relations between the

chemical potential and real parameters such as the temperature, pressure, and

molar fractions are difficult to grasp at first sight.

Using activities simplify the problem, in the opinion of the author, activities play

the part of an auxiliary function facilitating the understanding of the experimental

reality, once the behaviors are no longer ideal. But, their exact physical significance

is not known. However, as it has been shown, Mc-Millan–Mayer and Kirkwood–

Buff’s theories have brought some insights in this field.

Keywords Lewis definition of activities • Interesting features of the notion of

activity/summary

As it is well known in classical thermodynamics, the chemical potential function,

introduced by Gibbs in 1875, permits to treat physicochemical problems as math-

ematical ones. The difficulty is, once the mathematical solution found, to transform

it into numerical physicochemical answers because the relations between the

chemical potential and real parameters such as the temperature, pressure, and

molar fractions are difficult to grasp at first sight.

Using activities simplify the problem, since as we have seen it, they are related to

these experimental parameters without, besides, knowing their significance. In our

opinion, such a part of auxiliary function played by activities together with their

exact physical significance, which can be approached as we have seen, deserve a

summing-up of its principal features.

48.1 Lewis’ General Definition of Activity

G.N. Lewis defined the activity of a compound in a given state of a thermodynamic

system as being:
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an active density member which bears the same relation to the chemical potential μ at any

density that N/V does as N! 0.

If we take the example of a solute in a very dilute solution, we know that its

chemical potential μ is given by a relation of kind (48.1):

μ ¼ Cteþ RT ln C very dilute solutionð Þ ð48:1Þ

where C is an expression of its concentration and Cte is a constant. When the

solution is not diluted enough, relation (48.1), no longer, correctly describes the

behavior of the solute. In order that the case remains, the chemical potential must be

expressed by relation (48.2):

μ ¼ Cteþ RTlna every solutionð Þ ð48:2Þ

where a is the activity of the solute. It is a quantity arbitrarily introduced by Lewis.
It permits to correctly describe the behavior of the compound through the value it

confers to its chemical potential μ.
We observe that, owing to the fact that relation (48.2) applies to every solution

and in particular to very dilute ones, the constant Cte is the same in both expressions

(48.1) and (48.2) for identical pressure and temperature of the systems, since for

dilute solutions, indeed, the activity is defined as being equal to its concentration):

a ¼ C very dilute solutionsð Þ

In brief, an activity may be considered as being a kind of fictitious concentration of
a component in a given thermodynamic system, in such a manner that it does exhibit
an ideal behavior under these conditions, while it keeps the value of the chemical
potential it actually possesses.

The activity is a thermodynamic quantity depending on the nature of the

substance it qualifies, on its concentration, temperature, pressure, and on the nature

of the rest of the system. It is a quantity without any unity. It has been exclusively

introduced within the framework of classical thermodynamics.

48.2 Interesting Features of the Introduction of Activities

Handling activities is of a major interest when a system does no longer exhibit an

ideal behavior, whichever its composition is.

When, indeed, the behavior of the compound or, more generally, of the system is

studied by making an allowance for its chemical potential (as it must be the case),

but when the latter is expressed in terms of concentrations, the results of the process

become incorrect once the dilution considerations are no longer obeyed. As an

interesting example coming from the realm of chemistry, let us take that of an
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equilibrium. If we base our reasoning on the concentrations of the reactants and

products, the prediction of the characteristics of the equilibrium state (its thermo-

dynamic equilibrium constant) becomes false when the dilution conditions are no

longer obeyed. They remain correct if activities are used.

Very highly also, G.N. Lewis has introduced the activity notion in such a manner

that its handling allows the (correct) study of the physical and chemical processes

by using the same reasoning and mathematical formalism as those used to describe

the courses of ideal systems in concentration terms.

48.3 Ideal Solutions: Causes of Deviation from
the Ideal Case

We know that a gas is ideal when there exists no interaction between its atoms or

molecules. Both classical and statistical thermodynamics clearly show that, then,

gases obey the perfect gases law. Of course, strictly and scientifically speaking,

actually, it always remains some interactions between particles, even when the

quantity of matter is very low and when it is confined into a very large container.

Hence, the notion of ideal gas is a fiction. But, it is an experimental fact that gases

obey the perfect law in some instances.

The “ideality” notion in the case of solutions is more complex than with gases

for the following reason. In a solution (containing two components obligatory at

least), there remain interactions between the solute and the solvent even at very

high dilution.

Some authors distinguish two kinds of ideal solutions. They are actually limiting

cases.

– The first one results from the fact that the solute and the solvent do possess

structures which are very close to each other. The interactions between solute

molecules, between solute solvent molecules, and between solvent–solvent

molecules are of the same intensity. Then, both solute and solvent obey Raoult’s

law. This is one of the two criteria of ideality. This case corresponds to the

so-called ideal symmetric solutions, also named perfect solutions.

– The second case is that in which the solute is very dilute. One solute particle can

only see solvent molecules all around it. Then, the solute obeys Henry’s law.

This is the other criterion of ideality. Let us recall that when the solute obeys

Henry’s law, then the solvent obeys Raoult’s law.

– Deviations from the ideal case are the mark of electrostatic interactions between

the different particles of the system. As an example of such a case, this affirma-

tion applies to those of nonelectrolytes and of electrolytes as well. The result is

the occurrence of a potential energy of interaction.

– Concerning now:
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– The solutions of nonelectrolytes, two theories stemming from statistical ther-

modynamics strengthen this affirmation, at least in some conditions (see under

paragraph 10).

– The solutions of electrolytes, several theories of different levels of complexity,

theories of which the most well-known are those of Debye and Hückel and their
extensions, quantify the interactions between the ions.

48.4 The Activity Coefficient

From a general viewpoint, the activity ai of a compound i is related to its “concen-

tration” Ci through the following general relation:

ai ¼ γiCi

where γi is its activity coefficient. The activity coefficient function is an arbitrary

one, quite evidently inseparable from that of the activity coefficient. The value of

the activity coefficient is a measure of the deviation of behavior of i from the ideal

case. The activity coefficient is a quantity without any dimension, as the

activities are.

We must pay attention to the fact that the above relation is not a linear function

between the activity and the “concentration” despite its appearance because the

coefficient γi is not a constant. In the case of electrolytes solutions, for instance, it

changes with the ionic strength of the medium (viz.: Paragraph 12).

48.5 Multiplicity of the Activities of a Species in a Given
Thermodynamic State

The above relation does not give all the links between activities and concentrations,

although it is general from the formal standpoint. It masks the fact that a given

species in a given thermodynamic state may exhibit several activities of different

values. The reason is the arbitrary character of the definition of an activity.

48.6 On the Arbitrary Character of the Definition of an
Activity: The Standard State

The arbitrary character of the definition of an activity lies in the fact that the activity

value of a species depends on the choice of a standard state which is necessary to

define it. The choice of a standard state is itself arbitrary. An activity, indeed, can
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only be defined with respect to the definition of a standard state. In the standard

state, its chemical potential is μ� and its activity is equal to the unity.

In every thermodynamic state, the activity of a substance (and its coefficient) is

linked to its chemical potential through the relation:

μi ¼ μi
� þ RTlnai 1ð Þ with ai ¼ γiCi

According to its choice, the standard state μi
� of a species is defined by character-

istic values which change with its nature and its activity value is also defined in such

a manner that the chemical potential remains the same for a given thermodynamic

system. In other words, fixing an arbitrary value to an activity (this is always

possible) entails the choice of a defined standard state.

Finally, the invariance of the chemical potential in a given state is not surprising

because the change of the Gibbs energy accompanying a given process at constant

temperature and pressure must be a constant. This is a consequence of the definition

of the Gibbs energy, the change of which accompanying a definite process is a

constant.

48.7 Standard States Usually Chosen

For practical reasons, some standard states are quasi-systematically chosen by the

community of the physico-chemists. In the case, for instance, of binary solutions:

– For symmetric solutions, the standard state of each component is itself in pure

state at the pressure and temperature of the system. In these conditions,

according to relation (48.1), RT ln ai is, hence, the (measurable) Gibbs energy

change accompanying the transformation of one mole of i from the pure state

into its state in the system. The concentration scale to which is related the

activity is that of molar fractions x. This scale permits to easily scan the whole

range of concentrations, since the molar fraction can vary only between 0 and 1:

ai
S ¼ γi,x

Sxi S : symmetricalð Þ;

– For dilute solutions, the standard state of solvent B is itself in pure state at

temperature and pressure of the system. The concentration scale to which is

referred its activity is that of molar fractions. When it is pure xB¼ 1. For the

solute A, the standard state is that in which it would exhibit an ideal behavior at

temperature and pressure of the system, usually at a “concentration”

m¼ 1 mol kg�1 or c¼ 1 mol L�1. For solubility reasons, the standard state is a

hypothetical one. Let us recall that in the standard state, the solution exhibits an

ideal behavior as it does in the reference state in which the solute is very dilute.

The reference state has the very important property to be actual. Therefore, the

thermodynamic properties of the standard state are obtained by extrapolation of
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those of the reference state. Whether the scale of concentration is the molality

one or molarity one, the activity is given by the following expressions:

aA
D ¼ γA,m

DmA or aA
D ¼ γAc

DcA D : diluteð Þ

It is clear that the solute shows different values of its activity according to the

adopted “concentration” scales.

In literature, one also adopts the following conventions quasi-systematically:

– The activity of pure liquids and solids in equilibrium with their solutions is

exactly equal to the unity. They are themselves their proper standard state;

– Gases in equilibrium with a solution have an activity equal to their fugacity.

These conventions are followed for nonelectrolytes and for electrolytes solutions

as well.

48.8 Activities, Equilibrium Constants, and Gibbs Energy
Changes Accompanying Processes

Thermodynamic constants of chemical equilibria (which quantify the so-called mass

action law) are expressed in activity terms. They are not endowed with a dimension.

Although it is not frankly apparent in literature because of the agreement ruling

on the choice of the standard states and hence on the activities, the values of the

equilibrium constants do vary with the kind of activity retained. However, despite

the activity values which may vary, the chemical processes which are quantified

through them show a constant Gibbs energy change.

This phenomenon can be summarized by saying that in the expression of the

chemical potential, there exists a subtle balancing of the chemical potential and of

the activity values.

Again, quite evidently here, we meet the fact that Gibbs energy is a state

function.

48.9 Other Definition of the Activity of a Species

The activity ai of a species is also defined as being the ratio of its fugacity fi and its
fugacity fi

� in the standard state:

ai ¼ f i=f i
�

Actually, with judicious choices of standard states permitting to anchor both

fugacities and activities values, for the same thermodynamic state, the activity

values found from the fugacities are made identical to those coming from the

chemical potentials.
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48.10 Activity Coefficients, Activities, and Deviations from
the Ideal Behavior in the Case of a Liquid or
a Solution

Statistical thermodynamics and the pairwise-additivity hypothesis (which postu-

lates that the potential energy of interaction between the whole particles is equal to

the sum of energy interactions of these ones taken two by two), lead to the

expression:

μ ¼ kTln ρΛ3q�1
� � � kTln exp �βBð Þh i

μ is the chemical potential of the species, the factor kTln Λ3q�1
� �

its standard

chemical potential in the gaseous state μ�g, ρ its density number and β the ratio 1/kT.
B is the sum of the interaction energies Uij between two particles. The factor ‹exp

(�βB)› is the average exponential of the same term. We notice that the previous

expression can be written strictly equivalently as:

μ ¼ kTln Λ3q�1
� �þ kTlnρ� kTln exp �βBð Þh i

or:

μ ¼ kTln Λ3q�1
� �þ kTln ρ= exp �βBð Þh i½ �

The term in brackets ρ= exp �βBð Þh i½ � is the activity.

48.11 Activities of Nonelectrolytes and Molecular
Quantities

Classical thermodynamics does not provide answers to this question. In no case, it is

surprising since, sensu stricto, in its whole corpus, it has no need to recognize the

very existence of atoms, molecules, ions whereas statistical thermodynamics pro-

vide some insight in this realm. It is its vocation.

Two theories stemming from the handling of the grand ensemble permit to

approach and to begin expressing the activities in terms of molecular parameters.

They are McMillan–Mayer and Kirkwood–Buff’s theories.

• McMillan–Mayer’s theory leads to the following expressions (among others):

– For the definition of the activity z of a real gas:

z ¼ Q1λ=V
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where λ is the absolute activity of the gas, V the volume of the system, and Q1 the

canonical partition function corresponding to the presence of only one particle in

the system. The activity z of the gas is related to its density number ρ by a power

series of the kind:

z ¼ ρþ a2ρ
2 þ a3ρ

3 þ . . .

This relation is a true scientific advance. It permits, at least formally, to calculate

the activity starting from the corresponding value of the concentration. This was not

conceivable, before. Another interesting point is that we know the significance of

every coefficient of the power series. It is not always the case for every coefficient

of power series in physics. It is one of the most remarkable achievements of

statistical thermodynamics that it provides explicit expressions for the virial coef-

ficients in terms of the intermolecular interaction energy of groups of 2 particles,

3 particles . . .n particles, respectively, for the coefficients a2, a3. . .an particles.
Coefficients a2, a3, . . .are indirectly related to those of the virial of the gas.

Hence, they are indirectly accessible experimentally. They show the great

following feature: the coefficient a2 expresses and quantifies the interactions

between two particles of the gas, a3 those between three particles . . . and so

forth. Hence, when the number density is very weak, the interactions between

more than two particles are most unlikely to occur. As a result, we can only

keep the first two terms of the series in order to explicit the activity of the

compound.

It is evident that activity coefficients are also accessible through the calcula-

tion of the ratio z/ρ. Let us stress the fact that the above relation, as a rule,

permits to express an activity as a function of the corresponding

concentration.

Likewise, McMillan–Mayer and Hill’s theories provide a power series of the

same kind which relates an activity of a solute to its molality in a solution at

constant pressure and temperature. They also permit, in this case, to introduce

a new type of activity coefficient having the property to take into account the

interactions existing between only one molecule of solute and the whole

solvent molecules, that is to say when it obeys Henry’s law. In this state,

the studied particle is immerged in an average electrostatic field stemming

from the whole of the other ones. This kind of interactions does not exist, of

course, in a gas because of the occurrence of the vacuum between the

particles.

– Kirkwood–Buff’s theory is grounded on the properties of spatial pair-

correlation functions Gαβ (or Kirkwood–Buff integrals) defined by the

expression:

Gαβ ¼
ð1
0

gαβ Rð Þ � 1
h i

4πR2dR
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where gαβ(R) is the radial distribution function (which is experimentally accessible)

between both molecules α and β, R being the distance between them. gαβ(R) is the
factor quantifying the deviance (at the distance R between them) of the behavior of

the average local density ρgαβ(R) related to the real density ρ. The theory leads to

several interesting results. Among them let us mention several expressions of

chemical potentials and hence, through them, expressions of activities and of

their relevant coefficients of components of solutions in different conditions. In

particular, it demonstrates the importance of the following parameter:

Δαβ ¼ Gαα þ Gββ � 2Gαβ

where symbols Gαα, Gββ, Gαβ are the Kirkwood–Buff’s integrals in the binary

mixture. Let us recall that the theory reduces the interactions between particles to

the electrostatic ones within pairs. The expression of Δαβ permits to characterize

three kinds of ideal fluids. They are those which exhibit the behavior of:

Perfect gases

Symmetric solutions

Dilute solutions

As it has been already said, to these behaviors are related different choices of

different standard states, of concentration scales and of activities.

The Kirkwood–Buff’s theory, notably, leads to the following relations:

– For symmetric solutions in which A and B are the two components, xA and xB
their molar fractions, ρ the total density number and for which the activities are

related to the molar fractions:

kT lnγA
S ¼ kT

ðxB
0

x0BρΔAB= 1þ ρx0Ax
0
BΔAB

� �� �
dxB

aA
S ¼ xAexp

ðxB
0

x0BρΔAB= 1þ ρx0Ax
0
BΔAB

� ��
dxB

� �

– For dilute solutions, at constant temperature and pressure and with the activities

related to the density numbers:

kT lnγDA T;P; ρAð Þ ¼ �kT G�
AA � G�

AB

� �
ρA

μA T;P; ρAð Þ ¼ μ�A T;Pð Þ þ kTln ρAγ
D
A T;P; ρAð Þ½ �

G�
AA and G�

AB are the first terms of the series developments of Kirkwood–Buff’s

integrals GAA, GAB as functions of density numbers.

According to the Kirkwood–Buff’s theory, it appears that the parameter Δαβ,

linear combination of Kirkwood–Buff’s integrals, is a parameter of utmost impor-

tance since it commands the behavior of a solution from the standpoint of “ideal-

ity,” at least in great part. Δαβ can be considered as being the deviation of the

mixture behavior with respect to that of an ideal symmetric solution.
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Otherwise, Kirkwood, by grounding its reasoning on the notion of radial distri-

bution, has demonstrated that the chemical potential of a gas is given by the

expression:

μ ¼ kTln ρΛ3q�1
� �þ ρ

ð1
0

dξ

ð1
0

U Rð Þ g R; ξð Þ4πR2dR

Λ is the de Broglie’s thermal wavelength and q is its internal molecular partition

function. ρ is its density number. ξ is a coupling parameter for the electrostatic interac-

tions of one particle of the system with all others. It can change from 0 to 1. When the

added particle is completely discharged ξ¼ 0. When it is fully charged, ξ¼ 1.

g(R, ξ) is the radial distribution function between the added particle charged at

the value ξ and every other one located at distance R from the former. U(R) is the
interaction energy between them. Its occurrence is the mark of the fact that the

activity coefficient (and the activity) takes into account the electrostatic interac-

tions. Considering the last relation, it is evident that:

kTlnγ ¼ ρ

ð1
0

dξ

ð1
0

U Rð Þ g R; xð Þ4πR2dR

γ being the activity coefficient of the gas and the term kT ln(Λ3q�1) its standard

potential.

Now, putting the theories of McMillan–Mayer and of Kirkwood–Buff in a brief

comparison, the first point to stress is that they are both exact. Hence, necessarily,

they must be equivalent. However, they are somewhat different because the

McMillan–Mayer theory appeals to the pairwise-additivity of the total potential

energy hypothesis, whereas the Kirkwood–Buff’s does not in any case.

It seems that the McMillan–Mayer approach is more convenient to use in

applications if we consider the study of the solution from an unsymmetrical

viewpoint of the components. The typical example is that of the osmotic pressure.

On the other hand, the Kirkwood–Buff’s theory is more convenient if we want to

consider the components from a symmetrical point of view, that is to say as having

the same status. Actually, the latter is easier to handle.

48.12 Activities of Electrolytes: Expressions of Activities
and of Activity Coefficients of Electrolytes in Terms
of Molecular Parameters

Concerning the activities of ions, the most important point to highlight is the fact

that it is impossible to measure the activity of an ion, whereas it is possible to

measure that of the whole electrolyte it stems from. However, the calculation of the

activity of an ion is feasible thanks to some theoretical equations, at least in some

experimental conditions.
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The great difference between the behaviors of electrolytes and nonelectrolytes in

solutions lies in the fact that the interionic interactions are by far much stronger than

those existing between nonelectrolytes. They occur through very much greater

interionic distances than those between nonelectrolytes do. As a result, even in

very dilute solutions in which the ions are statistically far from others all the more

the solutions dilute are, “long range” interactions are still perceptible. This is not the

case with solutions of nonelectrolytes.

Numerous theoretical models permit to calculate activities of ions and of whole

electrolytes through their activity coefficients. The most well known are those of

Debye and Hückel. One distinguishes the limit and extended Debye–Hückel’s
equations.

• The limit equation follows from two starting hypothesis according to:

– An ion can be assimilated to a simple electrically charged point

– It is supposed as being immersed in a continuummedium possessing the same

permittivity as the pure solvent

In these conditions, from the laws of electrostatics and thermodynamics, it

follows:

logγxi ¼ � Azi
2√I

γx is the activity coefficient of the ion, zi its charge, and I the ionic strength of the

solution, defined by the relation:

I ¼ 1=2
X
i

Cizi
2

The ionic strength is half the sum applying to all the ions in solution of the products

of their squared charge and of their concentration, usually expressed in molarities,

whereas the activity coefficient links the ion activity to its concentration expressed

in molar fraction.

A is a composite constant for given temperature and solvent. It is interesting to

notice that when I tends toward 0, γx tends toward 1 in agreement with the general

considerations devoted to the activities. We also notice that all the ions, cations

whether anions, exhibit the same activity coefficients provided they bring the

same relative charge. In water at 25 �C, the limit equation can apply to the sole

solutions, the ionic strengths of which are less than about 10�3 mol L�1.

• The extended Debye–Hückel equation follows from the same basements as the

previous one but after having taking into account the fact that a ion does possess

a finite radius. Its expression is:

logγi ¼ �Azi
2√I= 1þ Ba√I

� �
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B is a constant depending only on the nature of the solvent through its permittivity

and on the temperature. The parameter a can be considered as being an adjustment

parameter after having been considered very wrongly as the radius of the hydrated

ion. In any case, it occurrence permits the individualization of every ion. This was

not possible with the equation limit. The extended relation can be applied for ionic

strengths weaker than 10�1 mol L�1.

Debye–Hûckel equations only apply in some ionic strengths ranges, otherwise

they lead to spurious values, even absurd, of ionic activities. Their failures at too

high values of the ionic strengths have several causes. They are:

– The solvation of the ions of the electrolytes that the theory does not take into

account,

– The arbitrary adoption of a Boltzmann’s distribution for the density of the

counter-ions all around a reference ion of the solution. This approximation is

justified only when solutions are very dilute in ions. This assertion is perfectly

demonstrated by the study of solutions by the consideration of the

corresponding radial distribution functions,

– The changes in the values of the dielectric constant in the bulk solution with

the concentration of ions which are not taken into account,

– The formation of ions-pairs and of ionic aggregates, which are also not taken

into account,

– The false hypothesis according to which the deviant behavior of an electro-

lyte solution with respect to that of an ideal solution is exclusively due to the

fact that the solute particles are electrically charged and that, without the

electrostatic interionic interactions, the solutions would be ideal. Here is one

of the hypothesis on which is founded the theory. In other words, the

deviation from ideality is only attributed to the mutual interactions of the

electric charges of the ions. Of course, at weak and average distances between

ions, the already existing interactions existing in solutions without electrolyte

add up the “long-range” ones existing in electrolytes solutions.

It is an experimental fact that expressions of the type:

logγ� ¼ �A
��zþz���√I= 1þ √I

� �þ bI

in which the term bI is of a purely empirical origin enhances the fit between the

values experimentally found and those calculated (the calculations being carried

out on the average activity coefficients). More complicated expressions have been

proposed. The followed one is due to Guggenheim:

logγ� ¼ �A
��zþz���√I= 1þ √I

� �þ bI þ cI2 þ dI3 þ � � �

where b, c, d, . . . are empirical coefficients.

– Another approach consists in starting from excess functions, putting them

under a polynomial form after having found the best fit with the experimental

data and, finally, in proceeding to some derivations in order to find the

activity coefficients.
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For this purpose, let us recall the Pitzer’s relations linking the excess Gibbs

energies to the moles numbers of the different electrolytes. They are very

often used. When water is the solvent, they are of the kind:

GE=RT ¼ wwf Ið Þ þ 1=ww

X
ij

λij Ið Þ ninj þ 1=ww
2
X
ijk

μijkninjnk

ww is the weight of the solvent (water) in the solution. ni, nj, nk are the mole

numbers of species i, j, k. f(I) is a function of the ionic strength, of the nature of the
solvent and of the temperature. It takes into account the “long range” interactions.

From the mathematical standpoint, f(I ) can take the form of the Debye–Hückel’s
term or of that issuing from the radial distribution function. λij(I) is also a function

of the ionic strength of the solution. It takes the interactions at short distances into

account, but these interactions are only those developing between two ions. The

parameter μijk reflects the interactions between three molecules.

– Let us finally mention that the progresses of the last decades in the realm of

the solution theory, progresses founded on the use of statistical thermody-

namics, permitted to calculate the changes of the average activity coefficients

of electrolytes with their concentrations. This was possible by handling the

radial distribution function. But these calculations are extremely compli-

cated, not tractable without the use of computers.

48.13 Determination of Activities

The determination of the activities of nonelectrolytes is possible, that of a whole

electrolyte also. It is the same for that of an average activity coefficient of an

electrolyte. This fact permits to indirectly check the possibility of applying the

Debye–Hückel’s relations and others.

On the contrary, the determination of the activity of an ion is impossible.

Fortunately, it is reasonably calculable, at least in some ionic strength conditions,

thanks due to Debye–Hückel’s relations and others.
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Appendix A
Mathematical Apparatus

A.1 State Functions: Mathematical Implications

Let us consider a function L of several variables x, y, z. Its total differential is given
by the expression:

dL x; y; zð Þ ¼ ∂L=∂xð Þy, z dxþ ∂L=∂yð Þx, zdyþ ∂L=∂zð Þx,y dz

Let us also suppose that L is a state function. Physics and especially thermodynam-

ics tell us that there exist quantities such as their changes from a state A to a state B

are independent from the way along which the process is carried out. In this case:

ΔL ¼ LB � LA

ΔL ¼ constant

From the mathematical viewpoint, in order a function L be a state function, its

total differential must be exact. A convenient criterion of the exact character of a

total differential is that partial derivatives related to this function obey to the

relation given under. For the sake of simplification, let us suppose that L is a

function of only two variables. Its total differential is:

dL x; yð Þ ¼ ∂L=∂xð Þy dxþ ∂L=∂yð Þx dy

The most often, both partial derivatives are functions of x and y, that is to say:

∂L=∂xð Þy ¼ M x; yð Þ and ∂L=∂yð Þx ¼ N x; yð Þ
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The total differential can be written:

dL x; yð Þ ¼ M x; yð Þdxþ N x; yð Þdy

The condition in order the total differential be an exact one is the following

equality:

∂M x; yð Þ=∂y½ �x ¼ ∂N x; yð Þ=∂x½ �y

A.2 Homogeneous Functions: Euler’s Theorem

Let us consider the function:

y ¼ ax2 þ bxyþ cy2

and replace the variables x and y, respectively, by the products λx and λy, where λ is
a parameter. The function y is transformed into y0 which is written:

y0 ¼ a λxð Þ2 þ b λxð Þ λyð Þ þ c λyð Þ2
y0 ¼ λ2 ax2 þ bxyþ cy2ð Þ
y0 ¼ λ2 y

The result of the multiplication of variables x and y by λ is the multiplication of the

whole function y by the term λ2. The possibility to put the former function

y (in which the factor λ is not present) in a common factor entails that it is

homogeneous. Since, in the present case, the parameter λ is at the square order,

the function y is defined as being a homogeneous function of second order.
Euler’s theorem rationalizes and generalizes this result. Let us consider the

function of two variables x and y f(x, y) for the sake of simplification. According

to the theorem, f(x, y) is homogeneous and of order n when the following expression

is satisfied:

x ∂f x; yð Þ=∂x½ �y þ y ∂f x; yð Þ=∂y½ �x ¼ n f x; yð Þ

This expression may be easily generalized to the case of n independent variables. A
straightforward example is the case of the volume V of a mixture of two liquids. The

experience shows that V is a homogeneous function of order 1 of the numbers of

moles n1 and n2 of each component, that is to say:

V ¼ f n1; n2ð Þ
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and, hence, according to Euler’s theorem:

n1 ∂V=∂n1½ � þ n2 ∂V=∂n2½ � ¼ V

The notion of homogeneous function is particularly useful when the partial molar

quantities are handled.

A.3 Schwartz’s Theorem

The Schwartz’s theorem stipulates that for a function of two independent variables

x and z, the derivation order in order to obtain the cross derivative is of no

importance. Hence, for the function:

y ¼ f x; zð Þ x and z independent variablesð Þ
∂2

f=∂x∂z ¼ ∂2
f=∂z∂x

the second mixed derivatives are equal.

A.4 Method of Lagrangian Multipliers

The method of lagrangian multipliers permits to localize the maximum or the

minimum of a function f(x, y, z) when there are one or more constraints imposed

on the system. (This limits the domains of x, y, and z in which one can hunt for a

maximum or a minimum.) One can write:

df ¼ ∂f=∂xð Þy, zdxþ ∂f=∂yð Þx, zdyþ ∂f=∂zð Þx,ydz

At the maximum, df¼ 0 whichever the choice of dx, dy, dz is. In other words, the

variations of x, y, z are independent from each other. Hence, the only way to get

df¼ 0 is to obtain the values of x, y, z such as the three following relations are

simultaneously verified:

∂f=∂xð Þy, z ¼ 0, ∂f=∂yð Þx, z ¼ 0, ∂f=∂zð Þx,y ¼ 0

Let us suppose that we are seeking a maximum (or a minimum) in the domain of

the three variables in which they obey to the function G(x, y, z)¼ a where a is a

constant.
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The method consists in building the function:

F x; y; zð Þ ¼ f 0 x; y; zð Þ þ λG x; y; zð Þ

Where λ is an arbitrary constant called Lagrangian multiplier. (The method

involves an equal number of multipliers as that of constraints.) Then, the method

consists in setting up the partial derivatives (∂F/∂x)y,z, (∂F/∂y)x,z, (∂F/∂z)x,y
become equal to 0. As a result, with the help of the three (in the present case)

found relations, it becomes possible to express two of the three variables as a

function of the third and, since the three are related to each other through the

function f(x, y, z), to deduce the values making the latter maximum or minimum.

The method also permits to calculate the value of this function at its maximum

(or minimum). Usually, knowing the multipliers values is unnecessary, excepted in

statistical thermodynamics.

Example: Searching for the maximum of the function xmynzp to which the constraint
x+ y + z¼ a (a: constant) is imposed.

F x; y; zð Þ ¼ xmynzp þ λ xþ yþ zð Þ
∂F=∂xð Þy, z ¼ mxm �1ynzp þ λ ¼ 0

∂F=∂yð Þx, z ¼ xmyn�1zp þ λ ¼ 0

∂F=∂xð Þx,y ¼ xmynzp�1 þ λ ¼ 0

Starting from the last three relations, one finds:

x ¼ my=n; z ¼ py=n

and:

my=nþ yþ py=n ¼ a

whence:

y ¼ an= mþ nþ pð Þ

and so far. . .

A.5 Maximum-Term Method

The method consists in replacing the logarithm of a sum by the logarithm of the

most important term of this sum. Strictly speaking, the method appears to be

approximate but, in some conditions, it can be considered as being quasi-exact.
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As an example, let us consider the sum ∑ defined by the expression:

X
¼

XM
N

tN N ¼ 0 . . .Mð Þ

where

tN ¼ M!xN=N! M � Nð Þ! ðA:1Þ

The sum ∑ is strictly equal to the following expression:X
¼ 1þ xð ÞM

and:

ln
X

¼ Mln 1þ xð Þ ðA:2Þ

One is searching for the most important term tN
* of the sum (A.1). Since the term tN

*

is also the highest of the ln tN sum, it is more judicious to reason about this last

series.

Let us use the Stirling’s approximation which permits to approximate the

factorial of a very large number without detectable error. It is:

lny! ¼ ylny� y

whence:

ln tN ¼ MlnM � NlnN � M � Nð Þln M � Nð Þ þ N lnx ðA:3Þ

The condition

∂lntN=∂N ¼ 0

leads to the expressions:

N*= M � N*
� � ¼ x and N* ¼ xM= 1þ xð Þ

N* is the value of N which confers the maximum value on the term tN. Introducing
this expression into (3), one finds:

lnt*N ¼ Mln 1þ xð Þ ðA:4Þ
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The comparison of (A.2) and (A.4) shows that:

ln
X

tN ¼ lnt*N

This result may appear to be illogical but we must not forget that it is obtained at the

price of a starting approximation, that of Stirling. Owing to the fact that the

Stirling’s approximation is all the more exact as the factorial in question is large,

one may deduce that this kind of reasoning is all the more accurate as the logarithm

arguments are large. Fortunately, it is the case in statistical thermodynamics.
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Appendix B
Relation Between the Activity aC i

and the Fugacity of a Gas (viz. Chap. 10)

The partial pressure of gas i in an ideal gaseous mixture is given by the relation:

pi ¼ niRT=V

or

pi ¼ RTci

After introduction of the relation (7.15) of Chap. 7 into this expression,

μi ¼ μ*i þ RTlnpi

we obtain (in numerical values):

μi ¼ μ*i þ RTlnRT þ RTlnci

Now, we can introduce the new standard chemical potential μci� such as:

μo
ci ¼ μ*i þ RTlnRT

whence:

μi ¼ μo
ci þ RTlnci

We notice, indeed, that when Ci¼ 1 mol L�1

μi ¼ μo
ci
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(Let us notice in passing that μoci only depends on the temperature and on the nature

of the gas.) The expression of the chemical potential of the gas i with this new

standard potential is, whatever its behavior is:

μi ¼ μo
ci þ RTlnaci

or

μi ¼ μ*i þ RTlnRT þ RTlnaci

The chemical potential expressed with the usual chemical potential is (viz. relation

(10.13) Chap. 10):

μi ¼ μ*i þ RTlnai

The comparison of the last two relations gives:

RTlnRT þ RTlnaci ¼ RTlnai

i.e.:

aci ¼ ai=RT ðB:1Þ

and since in the standard state:

ai ¼ f i= f ∘i

and since in the usual standard state fi
� ¼ 1 atm:

aci ¼ f i=RT ðB:2Þ

Expressions (B.1) and (B.2) are only valid when they are expressed in numerical

values. With this new standard state, the proportionality constant relating the

activity to the fugacity is now equal to 1/RT (in numerical values).

The relations are pertinent only because, as standard states, we have adopted

those for which there exists a perfect behavior of the component i, respectively, for
pi

� ¼ 1 atm and Ci
� ¼ 1 mol L�1.
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Appendix C
Integration of the Equation
dln a�¼ dθ/νλm+αθdθ/νm

The problem is to integrate the following relation:

dlna� ¼ dθ=vλm þ αθdθ=vm ðC:1Þ

The integration involves the use of the intermediary function j defined by the

relation:

j ¼ 1 � θ=vλm ðC:2Þ

The function j tends toward zero when m tends toward zero since, then, the ratio θ/
νλm tends toward unity. In the case of a nonelectrolyte, indeed, we must admit (it is

demonstrated) that:

θ � λm

The more diluted the solution is, the more exact this relation is. The generaliza-

tion to the case of the electrolytes is immediate.

Differentiating the relation (C.2) by keeping in mind that m and θ are, indeed,

variables, whereas ν and λ are constant gives:

dJ ¼ θdm=vλm2 � dθ=vλm

or

dJ ¼ 1� Jð Þ dm=m� dθ=vλm

dθ=vλm ¼ 1� Jð Þdlnm � dJ

© Springer International Publishing Switzerland 2017

J.-L. Burgot, The Notion of Activity in Chemistry,
DOI 10.1007/978-3-319-46401-5

539



Combining this relation with the expression which is to be evaluated:

dlna0� ¼ dθ=vλmþ αθdθ=vm

leads to the relation:

dlna0� ¼ 1� Jð Þdlnm� dJ þ αθdθ=vm ðC:3Þ

given that:

γ� ¼ a�=m�

and that,

mvþ
þ � mv�

� ¼ mv vvþþ � vv��
� �

we obtain:

lnγ� ¼ lna� � lnm� ln vvþþ � vv��
� �1=v

Hence

dlnγ� ¼ dlna� � dlnm

and the relation (C.3) becomes:

dlnγ� ¼ �Jdlnm � dJ þ αθdθ=vm

The integration gives, since when m¼ 0, j¼ 0 and since in very dilute solution, the

ratio θ/νλm tends toward 1 and j tends toward unity:

lnγ� ¼ �
ð m

0

jdlnm� j þ α=vð Þ
ð m

0

θ=mð Þdθ
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Appendix D
Determination with Cells with Transference

One example is provided by the determination of the mean activity coefficient of a

solution of hydrochloric acid with the following cell:

Pt
��H2 1atm:ð Þ��HCl m0ð Þ����HCl mð Þ��H2 1 atm:ð Þ��Pt

Both solutions of different molarities in hydrochloric acid are in contact through

a device permitting the flow of current.

The principle of the determination is based on the fact that as soon as the value of

the transference number of an ion is known as a function of its “concentration,” its

activity coefficient may be obtained from the measurement of the emf of a suitable

cell with transference.

Let us suppose that the galvanic cell have reversibly debited 1 faraday. Let us

study the processes that occur in the cell.

The electrochemical reactions are:

at the anode 1 = 2H2 Ð Hþ þ 1e�

at the cathode Hþ þ 1e� Ð 1 = 2H2

The left-hand solution, in a first step, grows richer of one mole of ions H+ but one

part of the latter ones migrates into the solution toward the compartment on the

right. Let t+ be the transference number of ion H+ and t� that of the chloride ion.

One knows that t+ + t–¼ 1 (viz. electrochemistry). But, in the solution, the current is

ensured by t+ ions H
+ flowing toward the right and by t� anions Cl� flowing toward

the left. The fluxes of these ions in solution actually constitute the current in

solution, current so-called ionic current. By these displacements, the ionic current

ensures the neutrality of the solutions. As a result, after a flow of 1 faraday, it

remains (1 – t+)¼ t� mole of ions H+ in the left compartment. In order to maintain

the electrical neutrality in this compartment, t� mole of ions Cl� migrate from the

right toward the left in the solution. Concerning the left compartment, in total, there
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is a gain of t� mole de HCL for 1 debited faraday. For the right compartment, there

is a loss of 1 mol of hydrogen ions because of the electrolyse but compensated by

the arrival of t+ ions by the solution. There is a loss of (1 – t+)¼ t� ions H+ by the

right compartment. The neutrality of the compartment is maintained by the migra-

tion in solution of t� ions Cl- from the right toward the left, already mentioned.

Finally, for one debited faraday, the left compartment gains t� moles of HCl and

the right one loses t� moles of HCl.

Naming μ0þ the chemical potential of the positive ion (here H+) in the left

compartment and μ0þ that of the anion (here Cl�) whereas μ+, μ� are the chemical

potentials of the same ions of the right compartment, the change in the Gibbs energy

accompanying the flow of one faraday (flow of one electron from the left toward the

right in the external circuit) is:

ΔG ¼ � t� μ0þ � μþ
� � þ t� μ0� � μ�

� �� �
This relation is nothing different from a balance of the transformation. In order to

relate the emf of the cell (that is to say ΔG) to the mean ionic activity a� of the

electrolyte in the cell, one must takes into account the fact that the values of the

transference numbers change with the “concentration” of the ion. This is done by

setting up the previous expression under the form of differentials and after by

integration.

μ0þ ¼ μþ þ dμþ and μ0� ¼ μ� þ dμ�

As a result, the following relation is obtained:

dG ¼ � t� dμþ þ dμ�
� �

By introducing the general definition of the chemical potential μ¼ μ� +RT ln a, the
previous relation becomes:

dG ¼ �t�RT dlnaþ þ dlna�ð Þ

and since:

a� ¼ aþa�ð Þ1 = 2

dG ¼ � 2t�RTdlna�
ðD:1Þ

According to the equation (viz. Chap. 5):

dG ¼ � FdE

where dG is the variation of the Gibbs energy corresponding to the debit of one

faraday and where dE is the emf of the cell when the concentrations of both
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solutions differ from each other by an infinitesimal quantity. Hence, relation (D.1)

becomes:

dE ¼ 2t� RT=Fð Þ dlna� ðD:2Þ

For the integration, we begin by replacing the mean ionic activity by the product of

the mean ionic molality m� by the mean ionic activity coefficient γ�. This permits

to introduce the latter:

a� ¼ m�γ�

(We would define the mean ionic concentration in an analogous manner as that

followed in order to define the mean molality, that is to say by the expression:)

cv� ¼ cvþþ cv��
� �

For the above example of an electrolyte 1-1, m�¼m. The relation (D.2) can be

written:

dE ¼ 2t� RT=Fð Þ dlnm þ dlnγ�ð Þ

or

dE=t� ¼ 2RT=Fð Þ dlnm þ dlnγ�ð Þ ðD:3Þ

m is the molality of the solution, E the emf of the cell, t� the transference number of

the anion, and γ� the mean activity coefficient.
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Appendix E
Kielland’s Tables

An approached calculation of the activity coefficient of an ion is possible by starting

from the values mentioned in Tables E.1 and E.2 resulting from the compilation by

Kielland in 1937 of data present in the literature. The first gives the values of a for

the listed ions which are classified as a function of their electrical charge. For

example, the proton appears with the value a¼ 9. In the second table are mentioned

the activity coefficients of the ions as a function of the ionic strength of the solution,

once their values a are known. Then, for the ionic strengths 10�3 and 10�1 mol L�1,

the proton exhibits the following respective values γ¼ 0.967 and 0.83. The anion

citrate 3� would possess the value a¼ 5. Its activity coefficients for the ionic

strengths 10�3 and 10�1 mol L�1 would present the respective values 0.728 and

0.115. In this occurrence, the activities considerably differ from the concentrations.

Here, we again find the influence of the charge of the ion.

Tables E.1 and E.2, respectively, contain the values a for 130 ions and the values

of the activity coefficients as a function of the ionic strength.

From a practical viewpoint, the following questions can come in mind:

– For the relation (15.6) (Chap. 15), what value a must we choose? that of the

cation or that of the anion? Answer: it is judicious to choose the mean value;

– What strategy must we adopt when the ion is not listed? Answer: generally, one

takes the values of a listed one of the same charge and of about the same volume

as that studied.
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Table E.1 Values of the a parameter of several ions

Charge 1

9 H4

8 (C6H5)2CHCOO
�, (C3H7)4N

+

7 OC6H2(NO3)3, (C3H7)3NH
+, CH3OC6H4COO

�

6 Li+, C6H5COO
�, C6H4OHCOO

�, C6H4ClCOO
�, C6H5CH2COO

�, CH2�
2 CHCH2COO

�,
(CH3)2CCHCOO

�, (C2H5)4N
+, C3H7ð Þ2NHþ

2

5 CHCl2COO
�, CCl3COO

�, (C2H5)3NH
+, C3H7ð ÞNHþ

3

4 Na+, CdCl+, ClO�
2 , IO

�
3 , HCO

�
3 , H2PO

�
4 , HSO

�
3 , H2AsO

�
4 , Co NH3ð Þ4 NO2ð Þþ2 , CH3COO

�,
CH2ClCOO

�, (CH3)4N
+, C2H5ð Þ2NHþ

2 , NH2CH2COO
�, +NH3CH2COOH, (CH3)3NH

+,

C2H5NH
þ
3

3 OH�, F�, CNS�, CNO�, HS�, ClO�
3 , ClO

�
4 , BrO

�
3 , IO

�
4 , MnO�

4 , K
+, Cl�, Br�, I�, CN�,

NO�
2 , NO

�
3 , Rb

+, CS+, NHþ
4 , Tl

+, Ag+, HCOO�, H2 (citrate)
�, CH3NH

þ
3 , CH3ð Þ2NHþ

2

Charge 2

8 Mg2+, Be2+

7 CH2ð Þ5 COOð Þ2�2 , CH2ð Þ6 COOð Þ2�2 , congoredð Þ2�
6 Ca2+, Cu2+, Zn2+, Sn2+, Mn2+, Fe2+, Ni2+, Co2+, C6H4 COOð Þ2�2 , H2C CH2COOð Þ2�2 ,

CH2CH2COOð Þ2�2
5 Sr2+, Ba2+, Ra2+, Cd2+, Hg2+, S2�, S2O2�

4 , WO2�
4 , Pb2+, CO2�

3 , SO2�
3 , MoO2�

4 ,

Co(NH3)5Cl
2+, Fe CNð Þ5NO2�, H2C COOð Þ2�2 , CH2COOð Þ2�2 , CHOHCOOð Þ2�2 ,

CCOð Þ2�2 , H citrateð Þ2�
4 Hg2þ2 , SO2�

4 , S2O
2�
3 , S2O

2�
8 , SeO2�

4 , CrO2�
4 , HPO2�

4 , S2O
2�
6

Charge 3

9 Al3+, Fe3+, Cr3+, Sc3+, Y3+, La3+, In3+, Ce3+, Pr3+, Nd3+, Sm3+

6 Co ethylenediamineð Þ3þ3
5 Citrate3�

4 PO�3
4 , Fe CNð Þ�3

6 , Cr NH3ð Þþ3
6 , Co NH3ð Þþ3

6 , Co(NH3)5H2O
3+

Charge 4

11 Th4+, Zn4+, Ce4+, Sn4+

6 Co S2O3ð Þ CNð Þ4�5
5 Fe CNð Þ4�6

Charge 5

9 Co S2O3ð Þ2 CNð Þ5�4
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Table E.2 Values of the activity coefficients as a function of the ionic strength and of the

parameter a (According to J. Kielland, J .Am. Chem. Soc., 1937, 59, 1675)

Ionic strength

a 0.001 0.0025 0.005 0.01 0.025 0.05 0.1

Charge 1

9 0.967 0.950 0.933 0.914 0.88 0.86 0.83

8 0.966 0.949 0.931 0.912 0.88 0.85 0.82

7 0.965 0.948 0.930 0.909 0.875 0.845 0.81

6 0.965 0.948 0.929 0.907 0.87 0.835 0.80

5 0.964 0.947 0.928 0.904 0.865 0.83 0.79

4 0.964 0.947 0.927 0.901 0.855 0.815 0.77

3 0.964 0.945 0.925 0.899 0.85 0.805 0.755

Charge 2

8 0.872 0.813 0.755 0.69 0.595 0.52 0.45

7 0.872 0.812 0.753 0.685 0.58 0.50 0.425

6 0.870 0.809 0.749 0.675 0.57 0.485 0.405

5 0.868 0.805 0.744 0.67 0.555 0.465 0.38

4 0.867 0.803 0.740 0.660 0.545 0.445 0.355

Charge 3

9 0.738 0.632 0.54 0.445 0.325 0.245 0.18

6 0.731 0.620 0.52 0.415 0.28 0.195 0.13

5 0.728 0.616 0.51 0.405 0.27 0.18 0.115

4 0.725 0.612 0.505 0.395 0.25 0.16 0.095

Charge 4

11 0.588 0.455 0.35 0.255 0.155 0.10 0.005

6 0.575 0.43 0.315 0.21 0.105 0.055 0.027

5 0.57 0.425 0.31 0.20 0.10 0.048 0.021
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Appendix F
Classic Canonical Partition Function

The following explanations only consist in a qualitative approach of expressions

(27.1) and (27.3) of Chap. 27. (They are, respectively, numbered (F.1) and (F.2)

here.) It is the classical canonical partition function for a system of spherical

particles, devoided of any internal structure. Here is only an attempt to explicate

it and to give its origin:

Q N; T;Vð Þ ¼ 1= N!h3N
� �� �

•ðþ/

�1::

ð
exp ½�Hðx1, y1, z1 . . . xNyNzN; px1, py1pz1 . . . pxNpyNpzNÞ�=kT •

dx1, dy1, dz . . . dpxN , dpyN , dpzN

ðF:1Þ

Q N; T;Vð Þ ¼ 1= N!h3N
� �� �ðþ/

�1::

ð
exp �H=kT½ �dRNdpN ðF:2Þ

Expression (F.2) is strictly equivalent to the previous one (F.1).

After some elementary recallings concerning the probability theory, we justify

relations (F.1) and (F.2) in two steps.

– In the first step, we mention the genesis of the following relation:

Q N; T;Vð Þ ¼ 1= N!h3N
� �� �ð1

�1::

ð
f RN;pN
� �

dRNdpN ðF:3Þ

We note the occurrence of the function f(RN, pN), which is undetermined at this

point. The purpose of its introduction is on one hand to favor the discovery of the

link existing between the studied expressions and some elements of the probability

theory.

© Springer International Publishing Switzerland 2017

J.-L. Burgot, The Notion of Activity in Chemistry,
DOI 10.1007/978-3-319-46401-5

549

http://dx.doi.org/10.1007/978-3-319-46401-5_27


– In the second step, we introduce an exponential function instead of the function

f(RN, pN). This step deserves a particular treatment, as we shall see.

The cornerstone of the explanation of the mathematical expression of the

Q(T, V, N ) function is the concept of phase space.

F.1 Some Elements of the Probability Theory

• Let us consider a trial which leads to a finite number of distinct events. A value

X of the random variable x and a probability P(x) are associated to each of these

events. P(x) is a function of x and exhibits a well-defined value for each Xi value.

The function P(x) is a discontinuous probability function.

The random variable is discrete and of finite order. The sum of all the values

P(Xi) is equal to 1. (The considered trial, indeed, obligatorily leads to the events

Ei. . .Ej which are mutually exclusive.) This condition is called the “normaliza-

tion condition.” We know that the average ‹Xi› is given by the expression:

Xih i ¼
X
i

XiP Xið Þ

It is also called the “expected value.”

• The random variable can, in some instances, lead to an infinity of eventualities.

Then, it can exhibit any value in a defined interval. It is continuous. From a more

general standpoint, when the random variable x can exhibit any value between

a and b (included from �1 till +1), one can define a distribution law by

choosing a function f(x) called the density probability function, which is always

positive or null for the values x located in the interval [a, b]. The probability for

the event x located in the interval [x1, x2] is

ðx2
x1

f xð Þdx (viz.: Fig. F.1).

Fig. F.1 Example of one

continuous density

probability function at one

dimension x
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The probability for x could be located at the value x1 in the very very small

interval dx is f(x1)dx. As previously, the function f(x) is such that:

ð b

a

f xð Þdx ¼ 1

The notion of average can be generalized to the continuous case. Given the different

values Xi of the random variable and supposing that x can take all the possible

values between a and b, we can cut out the interval [a, b] in partial intervals, the

length of which tending toward 0. These “subintervals” are the following ones:

a, x1 � x1, x2 � � � �xi, xj� � �xN�1, b

The probability that xiwill belong to any of these intervals is (xi�1, xi) f(Xi), Xi being

a value of this interval. In it, x values differ all the less from Xi than the interval is

small. When its length tends toward zero, one can admit that all the values x lying
between xi�1 and xi can be merged with Xi. The average value is the limit of the

expression:

Xh i ¼
X
i¼1

Xif Xið Þ xi � xi�1ð Þ xi � xi�1ð Þ ! 0

that is to say:

Xh i ¼
ð b

a

x f xð Þdx

The reasoning can be extended to the calculation of the average of any other

quantity, provided it, mathematically, depends on x. From a general standpoint,

let us consider the function F(x). In these conditions, its value is given by the

expression

F xð Þh i ¼
ð b

a

F xð Þ f xð Þdx ðF:4Þ

• One can extend the previous relations and reasonings to the case of two dimen-

sions. Let us suppose there are two continuous random variables x and y. The
density probability function is of the kind f(x, y).
Thus, the probability that the point (x, y) locating in the area element dxdywill be
at x¼ x1 and at y¼ y1 is f(x1, y1)dxdy. The probability that x and y will be located
in the intervals [a, b] and [α, β] is:

ð β

α

ð b

a

f x; yð Þdxdy
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In this case, the averages of the variables x and y

Xh i ¼
ð β

α

ð b

a

x f x; yð Þdxdy

Yh i ¼
ð β

α

ð b

a

yf x; yð Þdxdy

These considerations can be immediately extended for N random variables.

F.2 Genesis of Expression (F.2)

Let us recall that the configuration of a system, in its most general meaning,

expresses both the location of its particles and their orientation. For the following

discussion, we only consider their position. It is actually this type of system that

equations (F.1), (F.2), and (F.3) describe as it is shown by the symbolism R instead

of X. (It must be noticed, however, that the choice of these conditions does not

impair the generality of the reasoning, at all.) In other words, we only consider the

spherical particles without any internal structure. Only, the space coordinates are of

importance for us in these conditions. We are not interested, now, in the momenta

coordinates for reasons that we will give at the end of this appendix.

• Let us explicit the analogy between the canonical partition functions occurring

in quantum and classical mechanics. In quantummechanics, the function is (viz.:

Chap. 22):

Q T;V;Nð Þquant ¼
X
j

exp �Ej N;V; Tð Þ� �

that, uniquely for the sake of the presentation, we write here:

Q T;V;Nð Þquant ¼
X
j

f T;V;Nð Þ

Let us notice that the function f(T, V, N ) implies the intervention of space coordi-

nates x1, y1, z1 . . .xn, yn, zn through the volume V of the system. We know, indeed,

that according to the very principles of quantum mechanics, the permitted energy

levels depend on the volume and on the number of particles of the system. Thus, it

appears clearly that, since the results of classical mechanics can be considered as

being identical to those stemming from quantum mechanics when the energy levels

become near to each other, the canonical partition function must be of the type for a

space of 3N dimensions (viz. the following paragraph):
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Q N; T;Vð Þclass ! ??

ðþ/

�1
::

ð
f x1, y1, z1 . . . xNyN zNð Þ dx1, dy1, dz1 . . . dxNdyNdzN

• It remains to explain the presence of the « out-integral » terms in the right-hand

members of equations (F.1) and (F.2) and to consider the integration over the

momenta coordinates.

The presence of factorial N! in the denominator comes from the fact that the

particles are interchangeable and that identical configurations would be counted

several times without this presence, owing to the manner how the expressions

are built. h is Planck’s constant. It appears in calculations as integration con-

stants. h is a remnant of quantum mechanics existing, somewhat surprisingly, in

the calculations of classical mechanics.

Finally, so far, during these explanations, we have not taken the momenta into

account. Concerning the integrations over these coordinates, visualize the par-

agraph 4.

F.3 Phase Space

The following considerations are grounded in the concept of classical phase space

of a macroscopic isolated system of volume V containing N molecules of a species.

• The total number n of space coordinates defining the location of all the particles

of the system is n¼ 3N. The number n is huge, of the order of about 1023

(Avogadro’s number.) Moreover, momenta pxi, pyi, pzi coordinates of each

species must be added to the previous ones in order to fully describe the state

of the system at the molecular level. (This is, indeed, the ultimate goal of

statistical thermodynamics!). Hence, 2n coordinates are necessary to define the

system. Thus, the classical phase space is conceived to be at 2n dimensions, n for
the space and n for the momenta coordinates.

• The state of the system at instant t (included its dynamical state) is known if the

location and speed components of each particle present in it are specified. All the

information is gathered by the location of the point of phase space defined by its

corresponding space and momenta coordinates. Every one of these points is

named “phase point.” Owing to the classical mechanics laws, once a point is

positioned at an instant t, its future position (and even its past position) in the

phase space is known. According to the theory, in order to know its future

position, it is sufficient to integrate the 2n differential equations of first order

to obtain the expressions x1(t), y1(t), z1(t). . .xN(t), yN(t), zN(t)!!!. Since the

coordinates number is huge, it is illusory to hope to carry out this tremendous

work of integration.

The result of these considerations is the statistical method proposed by Gibbs.

• The foundation of the statistical method lies in the fact that a point of the phase
space represents an isolated system (T, V, N) and not a particle. One studies an
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isolated system of characteristics T, V, N, that is to say a canonical system. (Let

us remark in passing that space coordinates do intervene through the volume V.)
In Gibbs’ statistical theory, one is forced to consider 1 ensemble of ℵ isolated

systems with ℵ!1. All the systems of the ensemble are endowed with the

same thermodynamic characteristics as that studied (same temperature, volume,

and particles number). Nothing precludes to figure the detailed state of each of

these systems by a point in the same phase space. The fact that a point in the

phase space does not represent the state of a particle but a system (which

contains a great number of particles) must be emphasized. In the phase space,

a system is represented by a point defined by 2n coordinates located on 2n axes.
Every particle of the system contributes to supply to the point figuring the system

six coordinates values.

Since (ℵ!/), the whole ensemble is represented by a continuous cloud, more

and less dense, of the representative points of every system. The cloud is moving

with time since the dynamical state of the system is described. As time goes

along, each point constituting the cloud has its own trajectory defined by the

mechanics laws. The fact that we consider a continuous cloud implies that the

ensemble contains an infinite number of systems.

• The concept of a continuous density of points permits, at least formally, to define

the function:

f x1, y1, z1 . . . xNyNzN , px1, py1pz1 . . . pxNpyNpzN ; t
� �

in such a way that it represents the fraction of the ℵ points (systems) present at any

instant t in the volume element [dx1, dy1, dz1, dpx1, dpy1, dpz1. . .dxN, dyN, dzN, dpxN,
dpyN, dpzN] of the phase space. From now on, we symbolize this function as f(x, p;
t). Hence, the number of points of the phase space in that volume element symbol-

ized by dxdp is:

ℵf x; p; tð Þ dxdp

The function f(x, p; t) is named probability density function since if a system is

randomly chosen in the ensemble at an instant t, the probability that the point

representative of its dynamical state will be located in the volume element dpdx is:

f x; p; tð Þdxdp

• The probability density function f(x, p; t) is such that:ð
::::

ð
f x; p; tð Þdxdp ¼ 1

This means that the whole systems of the ensemble must be located in the phase

space. This the normalization condition.
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• Thus, f(x, p; t) being the probability density function, one can admit that the

probability that the point phase representative of the dynamic state of the studied

system will be in the domain f(x, p; t)dxdp is:

f x; p; tð Þdxdp=
ð
. . .

ð
f x; p; tð Þdxdp ðF:5Þ

In agreement with the postulates of statistical mechanics, that is to say with the

ergodic theory of matter which stipulates that the average value of a mechanical

quantity over a very brief moment is equal to the average of the same quantity

established over the whole ensemble of systems replicating the previous one. In

these conditions, the average of the ensemble of every function φ(x, p) is given by

the expression:

φh i ¼
ð
. . .

ð
φ x; pð Þf x; p; tð Þ dxdp=

ð
. . .

ð
f x; p; tð Þdxdp

and taking into account the normalization condition:

φh i ¼
ð
. . .

ð
φ x; pð Þf x; p; tð Þdxdp

When the system is at equilibrium, it does not further evolve with time. Then, we

can write:

φh i ¼
ð
. . . ::

ð
φ x; pð Þf x; pð Þdxdp equilibriumð Þ

At equilibrium, the average ‹φ› is independent of time.

F.4 The Distribution Function; Boltzmann’s Law

Here, we are in the field of the postulate.

For a closed, isotherm system for which the independent variables T, V, N are

fixed, the function f(x, p; t), introduced in (F.4) is postulated as being of the type:

f x; p; tð Þ ¼ constant � exp �βH x; pð Þ½ �

where β¼ 1/kT. Actually, this assigning is not a true postulate. However, it logi-

cally and directly results from a true postulate related to the distribution function of

the microcanonical ensemble which leads to Boltzmann’s law.Only the exponential
function is, indeed, compatible with Boltzmann’s theory.
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F.5 Exponential Function and Integration

From the strict mathematical standpoint, the fact that the function f(x, p; t) is an
exponential greatly simplifies integrations and reasoning. Hamilton’s function falls
in this case. Its exponential can be written:

exp �βH x; pð Þ½ � ¼ exp
�� β

X
i¼1

p2i =2m
� �� � exp�� βUN RN

� �

For this reason, the integrations involved in relation (F.2):

ðþ/

�1
::

ð
exp �H=kT½ �dRNdpN

can be equivalently written under the form of the following product:

ðþ/

�1
::

ð
exp

�� β
X
i¼1

p2i =2m
� ��

dpN �
ðþ/

�1
::

ð
exp

�� βUN RN
� �

dRN

The integration of the part devoted to the momenta of Hamilton’s function is

possible.
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Appendix G
The Concept of Fugacity

From the mathematical standpoint, the problem is to calculate the derivate:

∂ln qNZN=N!½ �=∂Tð ÞV,N
In this expression, both qN and ZN depend on temperature. qN depends on

temperature through Λ. After having split the logarithm according to:

ln qNZN=N!
� � ¼ lnqN=N! þ lnZN

one successively derives both terms of the right member of this relation with respect

to temperature and in both cases one uses the derivative chain rule.

– For the first derivation, one obtains:

lnq ¼ �3lnΛ

lnΛ ¼ lnh �½ ln 2πmkTð Þ
lnΛ¼ lnh � 1=2ln2πmk � ½lnT

whence:

∂lnq=∂T ¼ 3=2∂lnT=∂T

and finally

NkT2lnqN=N! ¼ 3=2NkT

– The second derivate to evaluate is:

kT2∂lnZN=∂T
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with:

ZN ¼ Ð
. . .

Ð
dRNexp �βUN RN

� �� �
∂lnZN=∂T ¼ ∂ln

Ð
. . .

Ð
dRNexp �βUN RN

� �� �� �
=∂T

For sake of shortness, let us set up:

ð
. . .

ð
dRNexp �βUN RN

� �� �	 

¼ f g

The chain rule of derivation permits us to write:

∂lnZN=∂T ¼ ∂lnfg=∂fg •∂fg=∂T
∂lnZN=∂T ¼ 1=fg •∂ Ð

. . .
Ð
dRNexp �βUN RN

� �� �
=∂T

Let us notice that variables RN and T are independent. Owing to this point, it is

allowed to derivate the exponential with respect to temperature while staying under

the sign sum. Let us use the chain rule for the second time by setting up:

∂exp �βUN RN
� �� �

=∂T ¼ ∂exp �βUN RN
� �� �

=∂ �βUN RN
� �� �

•∂ �βUN RN
� �� �

=∂T

Since β¼ 1/kT, we obtain:

∂lnZN=∂T ¼ 1=fg � Ð . . . Ð dRNexp �βUN RN
� �� �

UN RN
� �

∂ �1=kTð Þ=∂T
∂lnZN=∂T¼ 1=fg � Ð . . . Ð dRNexp �βUN RN

� �� �
UN RN

� �
1=kT2
� �

Finally:

kT2∂lnZN=∂T ¼
ð
. . .

ð
dRNexp �βUN RN

� �� �
UN RN

� �� �
=ZN

whence the relation being searched for.
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Appendix H
Ideal Solutions

Obtaining the expression: p ¼ kT ∂lnZN=∂Vð ÞT,N
In order to calculate this partial derivative, it is evident that we must express ZN

in relation to V. Given the fact that for a macroscopic system we can assume that

pressure is independent from the geometrical shape of the system, we adopt a cube

of side equal to V1/3 as the volume of the system. The configurational partition

function ZN is then:

ZN ¼
ðV1=3
0

. . .

ðV1=3

0

exp �βUN RN
� �� �

dx1dy1dz1 . . . dxNdyNdzN

Let us introduce the variables:

x0i ¼ V�1=3xi; y0i ¼ V�1=3yi; z0i ¼ V�1=3zi

Now, the integrand is independent from the volume V. ZN can now be written:

ZN ¼ VN

ð1
0

� � �
ð1
0

exp �βUN RN
� �� �

dx01 . . . dz
0
N

After derivation of this expression, we obtain

∂ZN=∂Vð ÞN,T ¼NVN�1

ð1
0

...

ð1
0

exp �βUN RN
� �� �

dx01 ...dz
0
N

þVN ∂
�ð1

0

...

ð1
0

dx01 ...dz
0
N

�
exp �βUN RN

� �� ���β∂UN RN
� ��

=∂VN,T

	 

ðH:1Þ
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It is at this step that the “pairwise additivity” hypothesis is adopted. It is written as:

UN RN
� � ¼ 1=2

X
ij

U Rij

� �
i 6¼ jð Þ

where, as we shall immediately demonstrate it,

UN RN
� � ¼ 1=2

X
ij

U V1=3R0
ij

� �
i 6¼ jð Þ

According to the metric properties of space, we can indeed set up:

Rij ¼ xi � xj
� �2 þ yi � yj

� �2

þ zi � zj
� �2 �1=2

Rij ¼ V1= 3 x0i � x0j
� �2

þ y0i � y0j
� �2

þ z0i � z0j
� �2

 �1=2

and for sake of shortness

Rij ¼ V1= 3σ

σ being the square root of the term between the square brackets. One also writes:

σ ¼ R0
ij

According to the previous considerations, for the operation of derivation, one can

write:

∂UN RN
� �

=∂V ¼ 1=2
X
ij

∂U Rij

� �
=∂Rij

��
∂Rij=∂V

� �
i 6¼ jð Þ

∂UN RN
� �

=∂V ¼ 1=2
X
ij

∂U Rij

� �
=∂Rij

� �
1=3ð ÞV�2=3R0

ij

∂UN RN
� �

=∂V ¼ 1=6Vð Þ
X
ij

∂U Rij

� �
=∂Rij

� �
Rij

ðH:2Þ

Let us inject (H.2) into (H.1) and return to the previous variables xi, yi, zi. We obtain:

∂lnZN=∂Vð ÞT,N ¼ N=V � β=6Vð Þ
ð
. . .

ð
dRNP RN

� �X
ij

∂U Rij

� �
=∂Rij

� �
Rij
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The multiple integral is the average value of the function [∂U(Rij)/∂Rij]Rij in the

framework of the “pairwise additivity” hypothesis. Hence, the reasoning of the first

paragraph can be used. We obtain (viz. Chap. 30) the following expression:

p ¼ kTρ � ρ2=6
� �ð1

0

R ∂U Rð Þ=∂R½ �g Rð Þ4πR2dR ðH:3Þ

as in the case already encountered in which R0-R0 is only a function of R (a scalar).
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Appendix I
Definitions of Activity

Let us begin by recalling that the square root of the variance σE (or root mean-

square deviation from the mean or fluctuation) of a statistical series of some

experimental quantity E is defined by the expression:

σE ¼ E� E
� �2h i1=2

It is easy to check that:

E� E
� �2h i

¼ E2 � 2E E
� � þ E

� �2h i
E� E
� �2h i

¼ E
2 � E

� �2 ðI:1Þ

Obligatorily, it is a positive quantity.
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Appendix J
Activity of a Gas

Demonstration of the relation: kT ∂ N
� �

=∂μ
� �

V,T
¼ N

2 � N
� �2

Let us differentiate the following equality (viz. Chap. 24):

N
X
N

Q N;V; Tð Þexp Nμ=kTð Þ ¼
X
N

NQ N;V; Tð Þexp Nμ=kTð Þ

with respect to μ without forgetting that N is a function of μ. (For the origin of this

expression, visualize Chap. 24 given the fact that the probability P(N) that the

system possesses N particles (whichever its energy is) is P(N )¼Q(N, V, T )exp(Nμ/
kT)/Ξ). After derivation and division by Ξ, we obtain:

∂N=∂μ
� �

V,T
þ N=ΞkT
� �X

N

NQ N;V; Tð Þexp Nμ=kTð Þ

¼ 1 =ΞkTð Þ
X
N

N2Q N;V; Tð Þ exp Nμ=kTð Þ

We notice that in the last two terms of this equality, we again find the expression of

the probability that the system possesses N particles. Hence, with the help of (I.1)

and of expression P(N ), we obtain:

kT ∂N=∂μ
� �

V,T
¼ N

2 � N
� �2

or

N � Nh ið Þ2
D E

¼ kT ∂N=∂μ
� �

V,T
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Appendix K
Activities of Nonelectrolytes in Solutions

Establishing relation (32.22) of Chap. 32:

μ ¼ kT ln ρΛ3q�1
� � þ ρ

ð1
0

dξ

ð1
0

U Rð Þg R; ξð Þ4πR2dR

Kirkwood has defined an auxiliary potential energy U(ξ) such as:

U ξð Þ ¼ UN R1; . . . ;RNð Þ þ ξ
X
j

U R0;Rj

� �
1 � j � N ðK:1Þ

the added particle, named central particle, being labeled by the indice 0.

The “pairwise additivity” hypothesis applies to the factor ∑jU(R0, Rj). It entails

that the potential energy of interactions between the whole particles of the system is

equal to the sum of interaction energies for each possible pair of them.

When we compare expressions (32.10) and (32.12) of Chap. 32, it appears that:

U ξ ¼ 0ð Þ ¼ UN R1; . . . ;RNð Þ
U ξ ¼ 1ð Þ ¼ UNþ1 R0; . . . ;RNð Þ

The reasoning consists in admitting that while ξ changes from zero till 1, functionU
(ξ) changes in a continuous manner between U(ξ¼ 0) and U(ξ¼ 1). It is based on

the introduction of the following auxiliary configurational partition function:

Z ξð Þ ¼
ð
. . .

ð
dR0, dR1 . . . dRNexp �βU ξð Þ½ �

Its comparison with equation (9.3) (Chap. 9) shows that this relation has the

structure of a configuration integral. It appears that:
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Z ξ ¼ 0ð Þ ¼
ð
. . .

ð
dR0, dR1 . . . dRNexp �βUN½ �

¼ VZN

When ξ¼ 0, according to the above definition of U(ξ), U(ξ) does not indeed depend
on R0 and the integration over R0 is immediate since dR0 can be taken out the

multiple integral. It is also clear that:

Z ξ ¼ 1ð Þ ¼ ZNþ1

where

ZNþ1 ¼ Z ξ ¼ 1ð Þ

The expression (32.15) of Chap. 32 can be also written after introduction of

function Z(ξ):

μ ¼ kTln ρΛ3q�1
� � � kTlnZ ξ ¼ 1ð Þ þ kTlnZ ξ ¼ 0ð Þ

by setting up:

kTln exp
�� B=kT

� � ¼ kTlnZ ξ ¼ 1ð Þ � kTlnZ ξ ¼ 0ð Þ

since the function U(ξ) is introduced in order to take into account of the interac-

tions. By using the mathematical identity:

kTlnZ ξ ¼ 1ð Þ � kTlnZ ξ ¼ 0ð Þ ¼ kT

ð1
0

∂lnZ ξð Þ=∂ξð Þdξ

we obtain:

μ ¼ kTln ρΛ3q�1
� �� kT

ð1
0

∂lnZ ξð Þ=∂ξð Þdξ ðK:2Þ

Let us differentiate with respect to ξ in order to calculate the integrand. By applying
the chain rule several times and by taking into account relation (K.1):

kT ∂ln Z ξð Þ=∂ξð Þ ¼ kT=Z ξð Þ
ð
. . .

ð
dRo . . . dRN exp �βU ξð Þ½ �f g •�� β

X
j

U R0;Rj

� ��
1 � j � N

ðK:3Þ
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The derivation process is given at the end of this appendix.

Since:

exp �βU ξð Þ½ � =Z ξð Þ ¼ P RNþ1; ξ
� �

where P(RN+1, ξ) is the probability density (or the basic distribution function) for

the observation of the configuration RN+1 with the value ξ of the coupling constant,
we obtain:

kT ∂lnZ ξð Þ=∂ξð Þ ¼ �
ð
. . .

ð
dRo . . . dRNP RNþ1; ξ

� �
β
X
j

U R0;Rj

� �" #

kT ∂lnZ ξð Þ=∂ξð Þ ¼ �
X
j

ð
. . .

ð
dRo . . . dRN RNþ1; ξ

� ��
U R0;Rj

� �

By arbitrarily privileging the pair 0,1 (all the pairs being equivalent):

kT ∂lnZ ξð Þ=∂ξð Þ ¼ �N

ðð
dRodR1U RoR1ð Þ

ð
. . .

ð
dR2 . . . dRNP RNþ1; ξ

� �

Owing to the fact (viz.: Chap. 28)ð
. . .

ð
dR2 . . . dRNP RNþ1; ξ

� � ¼ P 2ð Þ Ro;R1; ξð Þ

and that:

P 2ð Þ Ro;R1; ξð Þ ¼ 1=N N � 1ð Þ½ �ρ 2ð Þ Ro;R1; ξð Þ

we obtain:

kT ∂lnZ ξð Þ=∂ξð Þ ¼ �1= N � 1ð Þ
ðð

dRodR1U RoR1ð Þρ 2ð Þ Ro;R1; ξð Þ

and since

ρ 2ð Þ Ro;R1; ξð Þ ¼ g Ro;R1; ξð Þρ2

By taking into account the spherical symmetry and the isotropic character of the

system:

kT ∂lnZ ξð Þ=∂ξð Þ ¼ �ρ2= N � 1ð Þ
ðð

dRodR1U RoR1ð Þg Ro;R1; ξð Þ
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expression which can be written:

kT ∂lnZ ξð Þ=∂ξð Þ ¼ �ρ2= N � 1ð Þ
ð
dRo

ð
dR1U RoR1ð Þg Ro;R1; ξð Þ

By carrying out the first integration, taking into account that N� 1�N and, finally,

owing to the spherical symmetry and the isotropy of the system, we obtain:

kT ∂lnZ ξð Þ=∂ξð Þ ¼ �ρ

ð1
0

U Rð Þg R; ξð Þ4πR2dR

which injected into relation (K.2), leads the searched for relation.

Calculating the partial derivative ∂ln Z(ξ)/∂ξ
It consists, once more, in applying the chain rule, that is to say:

∂lnZ ξð Þ=∂ξ ¼ ∂lnZ ξð Þ=∂Z ξð Þ½ � ∂Z ξð Þ=∂ξ½ �
∂lnZ ξð Þ=∂ξ ¼ 1 =Z ξð Þ½ � ∂Z ξð Þ=∂ξ½ �

Thus, the derivative to be calculated is:

∂Z ξð Þ=∂ξ¼∂
�ð

V

::

ð
dRodR1 ...dRNexp

���β
�
UN

�
R1 ...RNþξ

X
j

U Ro;Rj

� �����=∂ξ
It is perfectly legitimate to derivate with respect to the coupling ξ under the signs

sum since the variables Ro, RN, and ξ are independent. The term under the signs

sum which depend on ξ is ξ∑jU(Ro, Rj). Thus, the derivation to carry out is: ∂exp
[�βξ∑jU(Ro, Rj)]/∂ξ.

∂exp
�� βξ

X
j

U Ro;Rj

� ��
=∂ξ

¼ ∂exp �βξ
X
j

U Ro;Rj

� �" #
=∂ξ=∂ �βξ

X
j

U Ro;Rj

� �" #
•

∂ �βξ
X
j

U Ro;Rj

� �" #
=∂ξ

whence the relation being searched for.
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Appendix L
Partition Functions in the McMillan–Mayer’s
Theory

The grand ensemble partition function, in the case of a system of two components,

is given by the expression (viz. Chap. 35):

Ξ T;V; λ1; λ2ð Þ ¼
X
N1	0

X
N2	0

Q T;V;N1;N2ð ÞλN1

1 λ
N2

1 ðL:1Þ

where the functions Q(T, V, N1, N2) are the canonical partition ones corresponding

to all the possible arrangements of the numbers of moles N1 and N2, evidently

changing since the study is performed within the realm of the great ensemble. Given

the fact that from a general standpoint,

Ξ ¼ ePV=kT

P is the pressure in the inside compartment and V the volume of the system. One

can, starting from these two last relations, write the following expressions, once the

osmotic equilibrium is reached (with P¼ p+ π):

exp pþ πð ÞV=kT½ � ¼ Q00λ
0
1λ

0
2 þ Q01λ

0
1λ

1
2 þ Q02λ

0
1λ

1
2 þ Q03λ

0
1λ

1
2 þ . . .

þ Q10λ
1
1λ

0
2 þ Q11λ

1
1λ

1
2 þ Q12λ

1
1λ

2
2 þ Q13λ

1
1λ

3
2 þ . . .

þ Q20λ
2
1λ

0
2 þ Q21λ

2
1λ

1
2 þ Q22λ

2
1λ

2
2 þ Q23λ

2
1λ

3
2 þ . . .

þ Q30λ
3
1λ

0
2 þ Q31λ

3
1λ

1
2 þ Q32λ

3
1λ

2
2 þ Q33λ

3
1λ

3
2 þ . . .

ðL:2Þ

π is the osmotic pressure. p is the pressure of the system before the osmotic

phenomenon has arisen. The expression (L.2) is by no means mysterious. Function

Ξ is simply the grand ensemble partition function adapted to the problem.
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Expression (L.2) can also be written under the equivalent form (L.3):

exp pþ πð ÞV=kT½ � ¼
X
N1	0

X
N2	0

QN1,N2 V; Tð ÞλN11 λN22 ðL:3Þ

For the inside solution (that developing the osmotic pressure after the solute have

been added), the grand partition function can be expressed under a more concise

form than above, by setting up:

exp pþ πð ÞV=kT½ � ¼
X
N2	0

ΨN2 μ1;V; Tð ÞλN22 ðL:4Þ

where:

ΨN2 ¼
X
N1	0

QN1,N2λ
N1
1 ðL:5Þ

ΨN2(μ1, V, T) may be regarded as being the partition function of a system at

constant temperature and volume, open to the component 1 but closed to the

component 2. (Being not open to all the components, one speaks, rather of the

partition function of the “semi-grand ensemble.”) The expression (L.5) corresponds

to a vertical reading, column after column, of the expression (L.2), i.e., at a constant

composition of the solute 2 (N2 constant) and at a variable solvent (N1 variable).

However, the expression (L.4) corresponds to the horizontal reading of (L.2), i.e., to

a constant composition in solvent and to a variable composition in solute 2. Let us

remark that when N2¼ 0 (solvent alone—first vertical column of (L.2)), no osmotic

pressure, of course, develops and one can write:

exp pV=kT½ � ¼ Ψ o ðL:6Þ

with

Ψ o ¼ Ψ N2 ¼ 0ð Þ
Ψ o ¼

X
N1	0

QN1λ
N1
1

ðL:7Þ

Given the fact that the values of the activities tend to become equal to those of

the concentrations when the latter ones become very weak, it is clear that, in order

to relate the meaning of the activity of the solute b z2 to its density number ρ2 in this
case, the functions Ψ o, Ψ 1(ΨN2¼1), Ψ 2, . . ., expressing the fact that the considered

solutions are very dilute, will have to be handled in the following reasoning.

The ratio Ψ 1/Ψ o arises as being interesting. It is written in terms of partition

functions. It is pertinent to wonder about its physical meaning. According to what is

preceding:
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Ψ o ¼
X
N1	0

QN1λ
N1
1

Ψ 1 ¼
X
N1	0

QN1N2λ
N1
1 λ12

By developing,

Ψ o ¼ Q00λ1
0 þ Q10λ1

1 þ Q20λ1
2 þ . . .

� �
λ2

0

since Q00¼ 1 and λ1
0¼ 1 together with λ2

0:

Ψ o ¼ 1 þ Q10λ1
1 þ Q20λ1

2 þ � � �
Ψ 1 ¼ Q01 þ Q11λ1

1 þ Q21λ1
2 þ � � �� �

λ2

we obtain:

Ψ 1=Ψ o ¼ Q01 þ Q11λ1
1 þ Q21λ1

2 þ � � �� �
λ2= 1 þ Q10λ1

1 þ Q20λ1
2 þ � � �� �

ðL:8Þ

The ratio Ψ 1/Ψ o appears as being the mark of the interaction of one molecule of

solute with the pure solvent. The latter plays its part through the denominator of the

ratio and also through the term in square brackets of the numerator. The molecule of

solute intervenes through its absolute activity λ2 at the order 1 and also through the

term in square brackets of the numerator. Moreover, one knows (viz. Chap. 23) that

the canonical functions Qij are directly related to the Helmholtz energy of the

systems that they represent. Given the equivalence Helmholtz energy/work

(in the conditions of reversibility), one can forecast that the ration Ψ 1/Ψ o is an

expression of the energy of interaction between the molecule of solute and the

molecules of pure solvent.
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Appendix M
Relations Between π and the Virial Coefficients
and Also with the Density Number ρ2 (First Step)

The followed reasoning is analogous to that permitting to relate the density number

of a gas to its activity. From a pure mathematical standpoint, we can say that the

introduction of the term Ψ 0/Ψ 1 permits to work out the case of a dilute solution of a

nonelectrolyte in a similar manner as that followed in the case of real gases.

According to what is preceding:

Ξ ¼ exp pþ pð ÞV=kT½ �
Ξ ¼

X
N2	0

ΨN2 μ1;V; Tð ÞλN22 ðM:1Þ

where (viz. Appendix L):

ΨN2 μ1;V; Tð Þ ¼
X
N1	0

QN1,N2λ
N1
1

In order to simplify the writing, let us set up N
N2 and replace λ2 by its expression

λ2 ¼ z2V=Q01

We obtain (by simplifying further the writing):

Ξ ¼
X
N

ΨN VN=QN
01

� �
z
N

2
ðM:2Þ

By replacing z2 by its expression:

z2 ¼ γ02δ2
Ξ ¼

X
N

ΨN VN=QN
01

� �
γ0N2 δN2 ðM:3Þ
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and by replacing γ2� by its expression (viz. preceding chapter),

γ2
� ¼ Q01Ψ 0=Ψ 1

we obtain:

Ξ ¼
X
N	0

ΨN Ψ 0=Ψ 1ð ÞNVNδ2
N ðM:4Þ

or

exp pþ πð ÞV=kT½ � ¼
X
N	0

ΨN Ψ 0V=Ψ 1ð Þδ2½ � N ðM:5Þ

exp pþ πð ÞV=kT½ � ¼ Ψ 0 þ Ψ 1 Ψ 0V=Ψ 1ð Þδ2 þ Ψ 2 Ψ 0V=Ψ 1ð Þ2δ22
þ Ψ 3 Ψ 0V=Ψ 1ð Þ�3δ32 þ � � �

in which the functions Ψ 1, Ψ 2, Ψ 3 are defined in the preceding appendix. The

expression (M.5) can also be written:

exp pþ πð ÞV=kT½ � ¼ Ψ 0 þ Ψ 0

X
N	1

ΨN ΨN�1
0 =Ψ N

1

� �
VNδN2

exp pþ πð ÞV=kT½ � ¼ Ψ 0

�
1 þ

X
N	1

ΨN ΨN�1
0 =Ψ N

1

� �
VNδN2

�

Starting from (M.5), we obtain:

exp πV=kTð Þ ¼ 1 þ
X
N	1

ΨN ΨN�1
0 =Ψ N

1

� �
VNδN

2

The analogy with the following relation regarding an imperfect gas (viz.

Chap. 34)

Ξ ¼ 1 þ
X
N	1

ZN V; Tð Þ=N!�zN �
relation 34:12ð Þ—Chap: 34

� �

is quasi-perfect. It becomes definitively perfect by setting up:

Z*
N μ1;V; Tð Þ ¼ N!ΨN ΨN�1

0 =Ψ N
1

� �
VN ðM:6Þ

The expression is now:

exp πV=kTð Þ ¼ 1þ
X
N	1

Z*
N μ1;V; Tð Þ=N!� �

δN
2 ðM:7Þ
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Appendix N
Relations Between π and the Virial
Coefficients and Also with the Density
Number ρ2 (Second Step)

The following expansion in series is quite analogous to that followed in the case of

real gases:

exp ΠV=kT½ � ¼ 1 þ
X
N	1

Z*
N=N!

� �
δN2

" #

ΠV=kT ¼ ln 1þ
X
N	1

Z*
N=N!

� �
δN2

" #

relation analogous to that (34.17) of Chap. 34. Then, we proceed to the expansion in

series of the logarithm. We obtain, limiting it to the term of order 2:

ΠV=kT ¼
X
N	1

Z*
N=N!

� �
δN2 � 1=2

X
N	1

Z*
N=N!

� �
δN2

( )2

. . .

i.e.:

Π=kT ¼ Z*
1=V

� �
δ2 þ 1=2V Z*

2 � Z*2
1

� �
δ22 þ � � �

admitting that, from the strict mathematical viewpoint,

�1 �
X
N	1

Z*
N=N!

� �
δN2 � 1

Setting up:

b1 ¼ Z*
1=V, b2 ¼ 1=2V Z*

2 � Z*2
1

� �
, . . .
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we obtain:

Π=kT ¼
X
j	1

bjδ
j
2 ðN:1Þ

Let us notice at this point that the coefficients bj depend on μ1 and T.
The obtention of the relation expressing the osmotic pressure π as a function of

the density number ρ2 involves that of the expression of ρ2 as a function of δ2. The
latter is obtained according to the following reasoning.

According to the properties of the grand canonical ensemble:

N2 ¼ kT ∂Ξ=∂μ2ð ÞV,T

Moreover:

lnΞ ¼ exp pþ πð ÞV=kT½ �

whence:

N2 ¼ kT ∂ pþ πð ÞV=kT=∂μ2ð ÞV,T
N2 ¼ ∂ pþ πð ÞV=∂μ2ð ÞV,T

p being constant, we obtain:

N2=V ¼ ∂π=∂μ2
ρ2 ¼ ∂π=∂μ2

ðN:2Þ

dμ2 is obtained as follows:

λ2 ¼ exp μ2=kT½ �
lnλ2 ¼ μ2=kT

dμ2 ¼ kTdlnλ2

Transferring into relation (N.2), we find:

ρ2 ¼ ∂ π=kTð Þ=∂lnλ2

In the preceding reasoning, it was set up by definition that:

λ2 ¼ δ2Ψ 0V=Ψ 1
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i.e.:

lnλ2 ¼ lnδ2 þ ln Ψ 0V=Ψ 1ð Þ

whence

dlnλ2 ¼ dlnδ2

As a result:

ρ2 ¼ δ2 ∂π=kTð Þ=∂δ2ð Þ

and according to (N.1):

ρ2 ¼
X
j	1

jbj δ
j
2 ðN:3Þ

whence:

δ2 ∂π=kTð Þ=∂δ2ð Þ ¼
X
j	1

jbjδ
j
2

This relation must be compared with that expressing the development of the virial

of the osmotic pressure:

π=kT ¼ ρ2 þ
X
n

B*
nρ

n
2 n 	 2ð Þ ðN:4Þ

The virial coefficients Bn
* are related to the bj through relation (N.4) by taking into

account the fact that δ2! ρ2 when ρ2! 0.

As in the case of imperfect gases, it is interesting to express the osmotic pressure

as a function of the density number ρ2 in order to express the activity coefficients in
statistical thermodynamics terms. This would permit to better grasp their physical

meaning. Although the preceding reasoning permits to answer this question, we can

proceed as follows. We use the expressions (N.1) and (N.3). In a first step, we set up

(after having noticed that, evidently, m1¼ b1¼ 1):

δ2 ¼ ρ2 þ m2ρ
2
2 þ m3ρ

3
2 þ � � �

Limiting the development to the term of order 3, we immediately find:

δ22 ¼ ρ22 þ 2m2ρ32 þ � � �
δ32 ¼ m3ρ32 þ � � �
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By transferring these powers δ2 into (N.3) and by identifying term to term, we

obtain the following identities:

m2
� 2b2, m3
8b2 � 3b3, . . .

It must be noticed that the coefficients m2, m3, . . .mj. . .. depend only on the

coefficients bi for which i cannot be superior to j. Hence, we find:

δ2 ¼ ρ2 þ �2b2ð Þρ22 þ 8b2 � 3b3ð Þρ32 þ � � �

By reporting this expression into (N.1), we obtain the following expression of the

type (N.5):

π=kT ¼
X
n	2

Bnρ
n
2 ðN:5Þ

The coefficients Bn are only functions of the bi and only depend on μ1 and T.
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Appendix O

Meaning of the Ratio ΔNΔN�1
0 /ΔN

1

The significance of the ratio is based on the general relation (viz. Chap. 24):

G T; p;Nð Þ ¼ � kTlnΔ T; p;Nð Þ

and on the following calculation. Let us take the logarithm of the studied ratio. We

obtain:

ln ΔNΔ
N�1
0 =ΔN

1

� �¼ lnΔN þ ln ΔN�1
0

� � � ln ΔN
1

� �
�ln ΔNΔ

N�1
0 =Δ1

N
� � ¼ �lnΔN � ln ΔN�1

0

� � þ ln Δ1
N

� �
� kTln ΔNΔ

N�1
0 =ΔN

1

� �¼ �kTlnΔN � kTln ΔN�1
0

� � þ kTln ΔN
1

� �
� kTln ΔNΔ

N�1
0 =ΔN

1

� � ¼ � kTlnΔN � kTln ΔN�1
0

� � þ kTln ΔN
1

� �
i.e.:

�kTln ΔNΔ
N�1
0 =ΔN

1

� � ¼ GN þ N � 1ð ÞG0 � NG1

�kTln ΔNΔ
N�1
0 =ΔN

1

� � ¼ G N1,N2 ¼ N, p, Tð Þ
þ N � 1ð ÞG N1,N2 ¼ 0,P, Tð Þ � NG N1,N2 ¼ 1, p,Tð Þ
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Appendix P
Work and Electrostatic Interactions Energy

When the state of a system is such that it only gives rise to electrostatic interactions:

– The work done on it is equal to its total energy change

– It is equal to the change in its kinetic energy plus its potential energy change.

P.1 Potential Electrostatic Energy

Let us suppose that the system is constituted by two electric charges z1e and z2e.
When the forces exerted by the surroundings on both charges force them to move

extremely slowly, one can consider that the kinetic energy of the system is constant.

In these conditions:

– The work supplied to the system for the charge z2e to be moved from the distance

a to the distance b of the other charge z1e is equal to the change in the potential

energy due to the electrostatic interactions

– It is hence equal to the difference in the potential energy of both charges at the

points b and a.

P.2 Expression of the Work to Do

Hence, obtaining the electrostatic potential energy entails to know the work to be

done in order to perform the preceding displacement. The results obtained in this

case may be, besides, generalized without difficulty. The general definition of the

work permits to write that the one w supplied to the system in the above example is

of the type:
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w ¼
ð b

a

f dr

where f is the electrostatic interactions force exerting between both charges and

r being the distance between both charges. According to Coulomb’s law, f is given
by the expression:

f ¼ z1z2e
2=4πεoεrr

2

Where εo is the vacuum permittivity (expressed in F m�1), εr the relative permit-

tivity (dimensionless) of the vacuum (εr¼ ε/εo), and ε the permittivity of the

medium expressed in (F m�1). The force developed by the surroundings to do the

work must be equal and opposed to the interaction force f. As a result, the work

supplied by the surroundings is given by the relation:

w ¼ �
ð b

a

z1z2e
2=4πεoεr

� �
1=r2
� �

dr

w¼ z1z2e
2=4πεoεrð Þ 1=rð Þ��b

a

w¼ z1z2e
2= 4πεoεrð Þ 1=bð Þ � z1z2e

2=4πεoεrð Þ 1 =að Þ

From these results, we can deduce that:

– The potential energies of the system constituted by the two charges located in

points a and b are, respectively, (z1z2e
2/4πεoεr)(1/a) and (z1z2e

2/4πεoεr)(1/b)
– The potential energy of both charges at every distance r is given by the

expression (z1z2e
2/4πεoεr)(1/r)

– The value of the derivative of the potential energy with respect to the distance

r is equal (but with the opposite sign) to the force exerting in this point r:

d potential energyð Þ=dr�r ¼ � force at the point r

P.3 Relation Between the Potential Electrostatic Energy
and the Electrostatic Potential

We have just seen that the potential energy of interaction between the two charges

located at the distance r is given by the relation (z1z2e
2/4πεoεr)(1/r). This relation

can also be written:

z1e=4πεoεrrð Þ½ �z2e and z2e=4πεoεrrð Þ½ �z1e

The two terms in square braces only depend on the charge in r. The term [ (z1e/
4πεoεrr)] is the electrostatic potential Ψ 1 due to the charge z1e located at the
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distance r from the charge z2e. The term [(z2e/4πεoεrr)] is the electrostatic potential
Ψ 2 due to the charge z2e located at the distance r from the charge z1e. Therefore, it is
possible to set up in a general way that the potential (electrostatic) energy of
interaction between two charges located at the distance r from each other is
equal to the product of the potential by the charge on which the potential is acting.

It is interesting to notice that the electrostatic potential at one point only depends

on its charge. It does not depend on the value of the charge on which it is acting or,

more simply on the fact that whether there exists another charge or not.
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Appendix Q
Poisson’s Relation

Poisson’s equation results from the expression of the total force flux dϕ (for

example, of charges) which goes away from a volume dV through the external

surfaces. It also results from the Gauss’ theorem. The total force flux is given by the

following expression (its setting up is given in the second part of this appendix):

dϕ ¼ � ∂2ψ=∂x2 þ ∂2ψ=∂y2 þ ∂2ψ=∂z2
� �

dx dy dz ðQ:1Þ

(the following term in braces is the laplacian operator:

∂2
=∂x2 þ ∂2

=∂y2 þ ∂2
=∂z2

� �

which, here, applies to the potential Ψ from which stems, in the present case, the

electrostatic operating force.

Gauss’ theorem stipulates that the total flux of charges going away from a closed

volume through the external surface is equal to the term k∑q in air where ∑q is the

algebraic sum of the electrical charges contained by this volume and k a constant

characterizing the medium (the insulator). Let us consider the case in which the

medium possesses free electric charges and let ρ the charges density, i.e., the ratio

of the charges and of the volume. The total charge dq contained in the volume

element dxdydz is:

dq ¼ πdxdydz

The conjunction of these theoretical principles leads to the equality:

� ∂2ψ=∂x2 þ ∂2ψ=∂y2 þ ∂2ψ=∂z2
� �

dx dy dz ¼ kρ dx dy dz

This is the Poisson’s relation.
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The demonstration leading to the relation (Q.1) is the following one. Let us

calculate the flux of forces through the total surface S of the volume element

dV¼ dx dy dz (Fig. Q.1).
One names the force flux through the surface S the product of S by the compo-

nent force perpendicular to the surface. Let us recall that F is changing in every

point of the space. At the point O, the components of F are X, Y, Z but after a

displacement during which x is varying from dx, y from dy, and z from dz, the
components become:

on the xaxis X þ ∂X=∂xð Þdx
on theyaxis Y þ ∂Y=∂yð Þdy
on the zaxis Z þ ∂Z=∂zð Þdz

By arbitrarily adopting the convention that a going away flux is positive and that an

incoming one is negative, one obtains the following results:

– The entering flux through the surface OAad is

ϕx ¼ �XdS ¼ �Xdzdy

and the going away flux through the parallel surface cCBb is:

ϕx þ dϕx ¼ X þ ∂X=∂xð Þdx½ �dzdy

The algebraic sum is:

dϕx ¼ ∂X=∂xð Þ dxdydz

Fig. Q.1 Volume element

through which circulates

the flux
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It is the same thing for the fluxes going out through the axis z and y. One obtains:

dϕz ¼ ∂Z=∂zð Þ dzdxdy and dϕy ¼ ∂Y=∂yð Þdydzdx

The total flux going away from the volume element dV is:

dϕ ¼ ∂X=∂xþ ∂Y=∂y þ ∂Z=∂zð Þdx dydz ðQ:2Þ

But, in the case of the flux of an electrostatic field (viz. electrostatics),

one can write:

X ¼ � ∂ψ=∂xð Þ Y ¼ � ∂ψ=∂yð Þ Z ¼ � ∂ψ=∂zð Þ ðQ:3Þ

(This is true because the work done by the electrostatic force when the point to

which it applies crosses from a point A to a point B is independent from the

followed path. According to relation (Q.3), ∂X/∂x which lies in (Q.2) becomes:

∂X=∂x ¼ � ∂2ψ=∂x2
� �

Likewise,

∂Y=∂y ¼ � ∂2ψ=∂y2
� �

∂Z=∂z ¼ � ∂2ψ=∂z2
� �

The introduction into (Q.2) leads to (Q.1).

Appendix Q 589



Appendix R
Change of Coordinates in Poisson’s Equation

This corresponds to the crossing from the equation (46.5) to equation (46.6)—viz.

Chap. 46

∂2ψ r=∂x
2 þ ∂2ψ r=∂y

2 þ ∂2ψ r=∂z
2 ¼ � 4πρr=ε 46:5ð Þ—Chap: 46ð Þ

1=r2d =dr r2dψ r=drð Þ ¼ � 4πρr=ε 46:6ð Þ—Chap: 46ð Þ

The crossing is easily performed by using the chain rule law of derivation. Let us

consider the partial second derivative ∂2Ψ r/∂x
2 and write (according to this rule):

∂ψ r=∂x ¼ ∂ψ r=∂rð Þ � ∂r=∂xð Þ
∂2ψ r=∂x

2 ¼ ∂ ∂ψ r=∂rð Þ � ∂r=∂xð Þ½ �=∂x

By doing the same process with the two other second partial derivatives lying in the

laplacian and doing the sum, one obtains the expression (46.6) given the relation:

x2 þ y2 þ z2 ¼ r2
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Appendix S
General Principles of Calculations of Ionic
Species Concentrations in Solutions Involving
Activities

Used exponential in the Poisson–Boltzmann equation

Let N�
k be the number of ions k in 1 cm3 of solution. The number of ions k in the

volume dVwould be N�
k dVwithout electrostatic energy. Because of the occurrence

of the electrostatic potential Ψ r in the volume dV, the average number of ions k in
dV is not this one. It is given by the Boltzmann’s relation, i.e.:

N
�
k dVexp �zkεoψ r=kTð Þ ¼ NkdV

The charge in the volume dV, due to the ion k, is:

zkeoN
�
k dV exp �zkεoψ r=kTð Þ

The total charge due to the whole ions contained in the volume dV is:

eoΣkzkN
�
k dVexp �zkeoψ r=kTð Þ

As a result, the charge density ρr is given by the expression:

ρr ¼
X
k

N
�
k zkeoexp �zkeoψ r=kTð Þ
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Appendix T
Solution of Poisson–Boltzmann’s Equation
and Inferences

The indexes of the equations of this appendix are labelized “in primes” in order to

distinguish them from those coming from Chap. 46 which keep their previous

numerotation.

T.1 Solution of the Differential Equation

The general solution of this kind of differential equation is known. It is of the type:

ψ r ¼ A exp �χrð Þ =r½ � þ A’0 exp χrð Þ=r½ �

A and A0 are the two integration constants which are fixed by the limit conditions.

The first condition is that the potential Ψ r must vanish for the distance r infinite. As

a result, A0 must be null. Hence, it remains as a solution:

ψ r ¼ A exp �χrð Þ=r½ �

The second condition concerns the limit case in which the central ion is alone.

Then, χ is null and the potential Ψ r reduces to that due to the central ion i. Let us
assume that the central ion is a point charge. (We shall come back on this

hypothesis in the following appendix.) From the general standpoint, the potential

due to a punctual charge q located at the distance r from the chosen point in order to

evaluate it and occurring in a medium of dielectric constant ε is:

ψ r ¼ q=ε

i.e., here,
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ψ ion centralð Þ ¼ zieo=4πεr

This expression added to the fact that χ¼ 0 leads to the equality:

zieo=4πε ¼ A

Therefore, the appropriate solution of the linearized Poisson–Boltzmann’s equation
is:

ψ r ¼ zieo=4πεexp �χrð Þ=r ðT:1Þ

This relation expresses the potential Ψ r due to all the ions (included ion i) at the
distance r of the central ion as a function of the concentrations of the ions.

T.2 Charge Density at the Distance r of the Central Ion

Given the relations (46.6), (46.15), and (46.16) of Chap. 46, we obtain:

�4πρr=ε ¼ χ2ψ r ðT:2Þ

and according to (T.1):

ρr ¼ � zieo=4πð Þχ2e�χ r=r

It is the relation (46.17) of Chap. 46

T.3 Total Charge in Excess All Around the Central Ion

Let us consider a spherical sheath of thickness dr at the distance r of the central ion.
The charge dq of this sheath is equal to the charge density dρr multiplied by its

volume:

dq ¼ ρr4πr
2dr

As a result, the total charge is given by the expression:

q ¼
ð1

lower limit

ρr4πr
2dr ðT:3Þ
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lower limit

q ¼ �
ð1

lower limit

zieo=4πð Þχ2 e�χ r=rð Þ4πr2dr

This charge is the total one but without that of the central ion. For the process of

integration, the question of the lower limit of r is open. In a first time, Debye and

Hückel have put forward the hypothesis that the ion is nothing different from a point

charge. As a result, one can write:

q cloud ¼
ð1
0

zieo=4πð Þχ2 e�χ r=rð Þ4πr2dr

that can be equivalently written, χ being a constant:

q cloud ¼ �zieo

ðr¼1

r¼0

e�
�
χ r
�
χrð Þ d χrð Þ

Integrating by parts gives:

q cloud ¼ � zieo

T.4 Locus of the Maximal Charge Around the Central Ion

The net charge of a spherical sheath of thickness dr around the central ion, at the

distance r, is given by the expression:

dq ¼ ρr4πr
2dr

dq¼ � zieoe
�χ rχ2rdr

The r value for which there is the maximum of charge is given by setting up:

dq=dr ¼ 0

The result is:

r ¼ χ�1
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Hence, the maximal value of the charge contained in a sheath located around the

central ion is such that the distance from the latter one is given by the expression:

r ¼ χ�1

T.5 Electrostatic Potential Only due to the Ionic
Atmosphere

The potential Ψ r calculated above is the total electrostatic potential. It is equal to the

sum of the potential due to the ionic atmosphere (cloud) and of that due to the

central ion:

ψ r ¼ ψ ion central þ ψ atm ionique

According to what is preceding:

ψ cloud ¼ zieo=εð Þ e�χ r=rð Þ � zieo=εr

ψ cloud ¼ zieo=εr e�χ r � 1ð Þ

For the case in which the sum ∑kNkzk
2eo

2 becomes sufficiently weak for the product

χr to be largely weaker than 1, one can set up:

e�χ r � 1� χr

e�χ r � 1 � �χr

Then, Ψ cloud becomes:

ψ cloud ¼ �zieo=εχ
�1
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Appendix U
Extended Debye–Huckel Equation

It is convenient to consider again the theory which leads to the limit equation. Let us

recall that in the latter, the central ion is assimilated to a charge point. We know

that, in these conditions, the solution of the linearized Poisson–Boltzmann equation

is of the type:

ψ r ¼ Ae�χ r=r

The evaluation of the constant A permits to introduce the radius a of the central ion

that, henceforth, we suppose to be spherical and of finite dimension.

The charge dq in a spherical sheath of thickness dr located at the distance r of i is
given by the expression:

dq ¼ ρr4πr
2dr

The charge density is given by the expression:

ρr ¼ � ε=4πð Þχ2ψ r

By introducing into the latter relation the expression of Ψ r as a function of A, we
obtain:

ρr ¼ � ε=4πð Þχ2Ae�χ r=r

By combining the latter relations, we obtain:

dq ¼ �Aχ2ε e�χ rrdrð Þ

The total charge of the ionic atmosphere must remain equal, as previously, to �zieo
in order to respect the neutrality of the solution (for a central ion of charge +zieo).
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Let a be the radius of the central ion. The latter is calculated according to the

expression:

zieo ¼ �
ð1
a

dq

�zieo ¼ �Aχ2ε

ð1
a

e�χ rrdr

which can be equivalently written

�zieo ¼ � Aε

ð1
a

e�χ r χrð Þd χrð Þ

�zieo ¼ � Aεe�χa 1þ χað Þ

The value of A obtained by taking into account the radius a is:

A ¼ zieo=εð Þ eχa= 1þ χað Þ½ �

The solution of the corresponding Poisson–Boltzmann equation is, given the

relation (46.31) of Chap. 46:

ψ r ¼ zieo=εð Þ eχa= 1þ χað Þ½ � e�χ r=rð Þ

In order to follow the same strategy as previously, the electrostatic potential

Ψ cloud acting on the central ion must be known. It is given as previously by the

expression:

ψ cloud ¼ ψ r � ψ central ion

ψ cloud ¼ zieo=εrð Þ � eχ a�rð Þ= 1þ χað Þ � zieo=εr

ψ cloud ¼
�
zieo=εr

��
eχ

a�rð Þ
= 1þ χað Þ � 1

�
But the difference with the preceding case lies in the fact that the potential due to

the cloud begins at the point at which ends the radius of the ion, i.e., for r¼ a. As a
result, by replacing r by a in the preceding relation, we obtain:

ψ cloud ¼ � zieo=εχ
�1

� �
1= 1þ χað Þ½ �

and

lnγi ¼ �NA zieoð Þ2=2εRTχ�1
h i�

1= 1þ χað Þ
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By following the same process as previously, we obtain:

lnγ� ¼ �A
��zþz���√I= 1þ χAð Þ

and according to the relation (46.27) of Chap. 46 which remains valid:

χ ¼ B√I

we obtain:

lnγ� ¼ �A
��zþz���√I= 1 þ Ba√I

� �
This is the equation of the extended Debye–Hückel theory.
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Appendix V
Demonstration That the Function PV Is
the Function Characteristic of the Grand
Canonical Ensemble

Let us substitute the expression below (viz. Chap. 24):

Pj N : V,T, μð Þ ¼ e�Ej N;Vð Þ=kTeNμ=kT=Ξ

into the expression:

S ¼ �k
X
j

X
N

Pj Nð ÞlnPj Nð Þ

We obtain:

S ¼ E=T � Nμ=T þ klnΞ

Let us identify this equation to the following coming from thermodynamics:

S ¼ E=T � Nμ=T þ PV=T

We find:

kTlnΞ ¼ PV

Remark: This reasoning is rigorous only when the integrations leading to the two

expressions of the entropy above involve a null integration constant. This hypoth-

esis is very reasonable since the entropy is an indicator of the number of microstates

accessible to a system and since in particular, there subsists only one microstate

when the number of moles of the components of a system tends toward zero.
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