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Preface to the first edition

Showing a Fourier transform to a physics student generally produces the same
reaction as showing a crucifix to Count Dracula. This may be because the
subject tends to be taught by theorists who themselves use Fourier methods to
solve otherwise intractable differential equations. The result is often a heavy
load of mathematical analysis.

This need not be so. Engineers and practical physicists use Fourier theory in
quite another way: to treat experimental data, to extract information from noisy
signals, to design electrical filters, to ‘clean’ TV pictures and for many similar
practical tasks. The transforms are done digitally and there is a minimum of
mathematics involved.

The chief tools of the trade are the theorems in Chapter 2, and an easy
familiarity with these is the way to mastery of the subject. In spite of the forest
of integration signs throughout the book there is in fact very little integration
done and most of that is at high-school level. There are one or two excursions
in places to show the breadth of power that the method can give. These are not
pursued to any length but are intended to whet the appetite of those who want
to follow more theoretical paths.

The book is deliberately incomplete. Many topics are missing and there is
no attempt to explain everything: but I have left, here and there, what I hope
are tempting clues to stimulate the reader into looking further; and of course,
there is a bibliography at the end.

Practical scientists sometimes treat mathematics in general, and Fourier the-
ory in particular, in ways quite different from those for which it was invented.1

The late E. T. Bell, mathematician and writer on mathematics, once described
mathematics in a famous book title as ‘The Queen and Servant of Science’.

1 It is a matter of philosophical disputation whether mathematics is invented or discovered. Let
us compromise by saying that theorems are discovered; proofs are invented.
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x Preface to the first edition

The queen appears here in her role as servant and is sometimes treated quite
roughly in that role, and furthermore, without apology. We are fairly safe in the
knowledge that mathematical functions which describe phenomena in the real
world are ‘well-behaved’ in the mathematical sense. Nature abhors singularities
as much as she does a vacuum.

When an equation has several solutions, some are discarded in a most
cavalier fashion as ‘unphysical’. This is usually quite right.2 Mathematics is
after all only a concise shorthand description of the world and if a position-
finding calculation based, say, on trigonometry and stellar observations, gives
two results, equally valid, that you are either in Greenland or Barbados, you
are entitled to discard one of the solutions if it is snowing outside. So we
use Fourier transforms as a guide to what is happening or what to do next,
but we remember that for solving practical problems the blackboard-and-chalk
diagram, the computer screen and the simple theorems described here are to be
preferred to the precise tedious calculations of integrals.

Manchester, January 1994 J. F. James

2 But Dirac’s equation, with its positive and negative roots, predicted the positron.



Preface to the second edition

This edition follows much advice and constructive criticism which the author
has received from all quarters of the globe, in consequence of which vari-
ous typos and misprints have been corrected and some ambiguous statements
and anfractuosities have been replaced by more clear and direct derivations.
Chapter 7 has been largely rewritten to demonstrate the way in which Fourier
transforms are used in CAT scanning, an application of more than usual inge-
nuity and importance: but overall this edition represents a renewed effort to
rescue Fourier transforms from the clutches of the pure mathematicians and
present them as a working tool to the horny-handed toilers who strive in the
fields of electronic engineering and experimental physics.

Glasgow, January 2001 J. F. James
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Preface to the third edition

Fourier transforms are eternal. They have not changed their nature since the
last edition ten years ago: but the intervening time has allowed the author to
correct errors in the text and to expand it slightly to cover some other interesting
applications. The van Cittert–Zernike theorem makes a belated appearance, for
example, and there are hints of some aspects of radio aerial design as interesting
applications.

I also take the opportunity to thank many people who have offered criticism,
often anonymously and therefore frankly, which has (usually) been acted upon
and which, I hope, has improved the appeal both of the writing and of the
contents.

Kilcreggan, August 2010 J. F. James

xiii





1

Physics and Fourier transforms

1.1 The qualitative approach

Ninety percent of all physics is concerned with vibrations and waves of one
sort or another. The same basic thread runs through most branches of physical
science, from acoustics through engineering, fluid mechanics, optics, electro-
magnetic theory and X-rays to quantum mechanics and information theory. It
is closely bound to the idea of a signal and its spectrum. To take a simple
example: imagine an experiment in which a musician plays a steady note on a
trumpet or a violin, and a microphone produces a voltage proportional to the
instantaneous air pressure. An oscilloscope will display a graph of pressure
against time, F (t), which is periodic. The reciprocal of the period is the fre-
quency of the note, 440 Hz, say, for a well-tempered middle A – the tuning-up
frequency for an orchestra.

The waveform is not a pure sinusoid, and it would be boring and colourless
if it were. It contains ‘harmonics’ or ‘overtones’: multiples of the fundamental
frequency, with various amplitudes and in various phases,1 depending on the
timbre of the note, the type of instrument being played and on the player.
The waveform can be analysed to find the amplitudes of the overtones, and
a list can be made of the amplitudes and phases of the sinusoids which it
comprises. Alternatively a graph, A(ν), can be plotted (the sound-spectrum) of
the amplitudes against frequency (Fig. 1.1).

A(ν) is the Fourier transform of F (t).

Actually it is the modular transform, but at this stage that is a detail.
Suppose that the sound is not periodic – a squawk, a drumbeat or a crash

instead of a pure note. Then to describe it requires not just a set of overtones

1 ‘Phase’ here is an angle, used to define the ‘retardation’ of one wave or vibration with respect
to another. One wavelength retardation, for example, is equivalent to a phase difference of 2π .
Each harmonic will have its own phase, φm, indicating its position within the period.

1



2 Physics and Fourier transforms

Fig. 1.1. The spectrum of a steady note: fundamental and overtones.

with their amplitudes, but a continuous range of frequencies, each present in
an infinitesimal amount. The two curves would then look like Fig. 1.2.

The uses of a Fourier transform can be imagined: the identification of a
valuable violin; the analysis of the sound of an aero-engine to detect a faulty
gear-wheel; of an electrocardiogram to detect a heart defect; of the light curve
of a periodic variable star to determine the underlying physical causes of the
variation: all these are current applications of Fourier transforms.

1.2 Fourier series

For a steady note the description requires only the fundamental frequency, its
amplitude and the amplitudes of its harmonics. A discrete sum is sufficient. We
could write

F (t) D a0 C a1 cos(2πν0t)C b1 sin(2πν0t)C a2 cos(4πν0t)

C b2 sin(4πν0t)C a3 cos(6πν0t)C � � � ,

where ν0 is the fundamental frequency of the note. Sines as well as cosines are
required because the harmonics are not necessarily ‘in step’ (i.e. ‘in phase’)
with the fundamental or with each other.

More formally:

F (t) D
1∑

nD�1

an cos(2πnν0t)C bn sin(2πnν0t) (1.1)

and the sum is taken from �1 to1 for the sake of mathematical symmetry.
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Fig. 1.2. The spectrum of a crash: all frequencies are present.

This process of constructing a waveform by adding together a fundamental
frequency and overtones or harmonics of various amplitudes is called Fourier
synthesis.

There are alternative ways of writing this expression: since cos x D cos(�x)
and sin x D �sin(�x) we can write

F (t) D A0/2C
1∑

nD1

An cos(2πnν0t)C Bn sin(2πnν0t) (1.2)

and the two expressions are identical, provided that we set An D a�n C an and
Bn D bn � b�n. A0 is divided by two to avoid counting it twice: as it is, A0 can
be found by the same formula that will be used to find all the An’s.
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Mathematicians and some theoretical physicists write the expression as

F (t) D A0/2C
1∑

nD1

An cos(nω0t)C Bn sin(nω0t)

and there are entirely practical reasons, which are discussed later, for not writing
it this way.

1.3 The amplitudes of the harmonics

The alternative process – of extracting from the signal the various frequencies
and amplitudes that are present – is called Fourier analysis and is much more
important in its practical physical applications. In physics, we usually find the
curve F (t) experimentally and we want to know the values of the amplitudes
Am and Bm for as many values of m as necessary. To find the values of
these amplitudes, we use the orthogonality property of sines and cosines. This
property is that, if you take a sine and a cosine, or two sines or two cosines,
each a multiple of some fundamental frequency, multiply them together and
integrate the product over one period of that frequency, the result is always zero
except in special cases.

If P D 1/ν0 is one period, then∫ P

tD0
cos(2πnν0t) � cos(2πmν0t)dt D 0

and ∫ P

tD0
sin(2πnν0t) � sin(2πmν0t)dt D 0

unless m D ˙n, and∫ P

tD0
sin(2πnν0t) � cos(2πmν0t)dt D 0

always.
The first two integrals are both equal to 1/(2ν0) if m D n.
We multiply the expression (1.2) for F (t) by sin(2πmν0t) and the product

is integrated over one period, P :∫ P

tD0
F (t)sin(2πmν0t)dt D

A0

2

∫ P

tD0
sin(2πmν0t)dt

C

∫ P

tD0

1∑
nD1

fAn cos(2πnν0t)C Bn sin(2πnν0t)gsin(2πmν0t)dt (1.3)
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and all the terms of the sum vanish on integration except∫ P

0
Bm sin2(2πmν0t)dt D Bm

∫ P

0
sin2(2πmν0t)dt

D Bm/(2ν0) D BmP/2

so that

Bm D (2/P )
∫ P

0
F (t)sin(2πmν0t)dt (1.4)

and, provided that F (t) is known in the interval 0! P , the coefficient Bm can
be found. If an analytic expression for F (t) is known, the integral can often be
done. On the other hand, if F (t) has been found experimentally, a computer is
needed to do the integrations.

The corresponding formula for Am is

Am D (2/P )
∫ P

0
F (t)cos(2πmν0t)dt. (1.5)

The integral can start anywhere, not necessarily at t D 0, so long as it extends
over one period.

Example: Suppose that F (t) is a square-wave of period 1/ν0, so that F (t) D
h for t D �b/2! b/2 and 0 during the rest of the period, as in Fig. 1.3.
Then

Am D 2ν0

∫ 1/(2ν0)

�1/(2ν0)
F (t)cos(2πmν0t)dt

D 2hν0

∫ b/2

�b/2
cos(2πmν0t)dt

and the new limits cover only that part of the cycle where F (t) is different
from zero.

Fig. 1.3. A rectangular wave of period 1/ν0 and pulse-width b.
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If we integrate and put in the limits:

Am D
2hν0

2πmν0
fsin(πmν0b) � sin(�πmν0b)g

D
2h

πm
sin(πmν0b)

D 2hν0bfsin(πν0mb)/(πν0mb)g .

All the Bn’s are zero because of the symmetry of the function – we
took the origin to be at the centre of one of the pulses.

The original function of time can be written

F (t) D hν0bC 2hν0b

1∑
mD1

fsin(πν0mb)/(πν0mb)gcos(2πmν0t) (1.6)

or, alternatively,

F (t) D
hb

P
C

2hb

P

1∑
mD1

fsin(πν0mb)/(πν0mb)gcos(2πmν0t). (1.7)

Notice that the first term, A0/2, is the average height of the function –
the area under the top-hat divided by the period; and that the function
sin(x)/x, called ‘sinc(x)’, which will be described in detail later, has the
value unity at x D 0, as can be shown using de l’Hôpital’s rule.2

There are other ways of writing the Fourier series. It is convenient occasion-
ally, though less often, to write Am D Rm cos φm and Bm D Rm sin φm, so that
equation (1.2) becomes

F (t) D
A0

2
C

1∑
mD1

Rm cos(2πmν0t C φm) (1.8)

and Rm and φm are the amplitude and phase of the mth harmonic. A single
sinusoid then replaces each sine and cosine, and the two quantities needed to
define each harmonic are these amplitudes and phases in place of the previous
Am and Bm coefficients. In practice it is usually the amplitude, Rm, which is
important, since the energy in an oscillator is proportional to the square of the
amplitude of oscillation, and jRmj

2 gives a measure of the power contained in
each harmonic of a wave. ‘Phase’ is a simple and important idea. Two wave
trains are ‘in phase’ if wave crests arrive at a certain point together. They are
‘out of phase’ if a trough from one arrives at the same time as the crest of the
other. (Alternatively, they have 180ı phase difference.) In Fig. 1.4 there are two

2 De l’Hôpital’s rule is that, if f (x)! 0 as x! 0 and φ(x)! 0 as x! 0, the ratio f (x)/φ(x)
is indeterminate, but is equal to the ratio (df/dx)/(dφ/dx) as x! 0.
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Fig. 1.4. Two wave trains with the same period but different amplitudes and
phases. The upper has 0.7 times the amplitude of the lower and there is a phase-
difference of 70ı.

wave trains. The upper has 0.7 times the amplitude of the other and it lags (not
leads, as it appears to do) the lower by 70ı. This is because the horizontal axis
of the graph is time, and the vertical axis measures the amplitude at a fixed
point as it varies with time. Wave crests from the lower wave train arrive earlier
than those from the upper. The important thing is that the ‘phase-difference’
between the two is 70ı.

The most common way of writing the series expansion is with complex
exponentials instead of trigonometrical functions. This is because the algebra
of complex exponentials is easier to manipulate. The two ways are linked, of
course, by de Moivre’s theorem. We can write

F (t) D
1∑
�1

Cme2πimν0t ,

where the coefficients Cm are now complex numbers in general and Cm D C��m.
(The exact relationship is given in detail in Appendix A.3.) The coefficients
Am, Bm and Cm are obtained from the inversion formulae:

Am D 2ν0

∫ 1/v0

0
F (t)cos(2πmν0t)dt,

Bm D 2ν0

∫ 1/v0

0
F (t)sin(2πmν0t)dt,

Cm D 2ν0

∫ 1/v0

0
F (t)e�2πmν0t dt
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(the minus sign in the exponent is important) or, if ω0 has been used instead of
ν0 (ν0 D ω0/(2π )), then

Am D (ω0/π )
∫ 2π/ω0

0
F (t)cos(mω0t)dt,

Bm D (ω0/π )
∫ 2π/ω0

0
F (t)sin(mω0t)dt,

Cm D (2ω0/π )
∫ 2π/ω0

0
F (t)e�imω0t dt.

The useful mnemonic form to remember for finding the coefficients in a Fourier
series is

Am D
2

period

∫
one period

F (t)cos

{
2πmt

period

}
dt, (1.9)

Bm D
2

period

∫
one period

F (t)sin

{
2πmt

period

}
dt (1.10)

and remember that the integral can be taken from any starting point, a, provided
that it extends over one period to an upper limit a C P . The integral can be
split into as many subdivisions as needed if, for example, F (t) has different
analytic forms in different parts of the period.

1.4 Fourier transforms

Whether F (t) is periodic or not, a complete description of F (t) can be given
using sines and cosines. If F (t) is not periodic it requires all frequencies to
be present if it is to be synthesized. A non-periodic function may be thought
of as a limiting case of a periodic one, where the period tends to infinity, and
consequently the fundamental frequency tends to zero. The harmonics are more
and more closely spaced and in the limit there is a continuum of harmonics,
each one of infinitesimal amplitude, a(ν)dν, for example. The summation sign
is replaced by an integral sign and we find that

F (t) D
∫ 1
�1

a(ν)dν cos(2πνt)C
∫ 1
�1

b(ν)dν sin(2πνt) (1.11)

or, equivalently,

F (t) D
∫ 1
�1

r(ν)cos(2πνt C φ(ν))dν (1.12)

or, again,

F (t) D
∫ 1
�1

�(ν)e2πiνt dν. (1.13)
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If F (t) is real, that is to say, if the insertion of any value of t into F (t) yields
a real number, then a(ν) and b(ν) are real too. However, �(ν) may be complex
and indeed will be if F (t) is asymmetrical so that F (t) 6D F (�t). This can
sometimes cause complications, and these are dealt with in Chapter 8: but F (t)
is often symmetrical and then �(ν) is real and F (t) comprises only cosines.
We could then write

F (t) D
∫ 1
�1

�(ν)cos(2πνt)dν

but, because complex exponentials are easier to manipulate, we take equation
(1.13) above as the standard form. Nevertheless, for many practical purposes
only real and symmetrical functions F (t) and �(ν) need be considered.

Just as with Fourier series, the function �(ν) can be recovered from F (t) by
inversion. This is the cornerstone of Fourier theory because, astonishingly, the
inversion has exactly the same form as the synthesis, and we can write, if �(ν)
is real and F (t) is symmetrical,

�(ν) D
∫ 1
�1

F (t)cos(2πνt)dt, (1.14)

so that not only is �(ν) the Fourier transform of F (t), but also F (t) is the
Fourier transform of �(ν). The two together are called a ‘Fourier pair’.

The complete and rigorous proof of this is long and tedious3 and it is not
necessary here; but the formal definition can be given and this is a suitable
place to abandon, for the moment, the physical variables time and frequency
and to change to the pair of abstract variables, x and p, which are usually used.
The formal statement of a Fourier transform is then

�(p) D
∫ 1
�1

F (x)e2πipx dx, (1.15)

F (x) D
∫ 1
�1

�(p)e�2πipx dp (1.16)

and this pair of formulae4 will be used from here on.

3 It is to be found, for example, in E. C. Titchmarsh, Introduction to the Theory of Fourier
Integrals, Clarendon Press, Oxford, 1962 or in R. R. Goldberg, Fourier Transforms, Cambridge
University Press, Cambridge, 1965.

4 Sometimes one finds

�(p) D
1

2π

∫ 1
�1

F (x)eipx dx; F (x) D

∫ 1
�1

�(p)e�ipx dp

as the defining equations, and again symmetry is preserved by some people by defining the
transform by

�(p) D

{
1

2π

}1/2 ∫ 1
�1

F (x)eipx dx; F (x) D

{
1

2π

}1/2 ∫ 1
�1

�(p)e�ipx dp.
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Symbolically we write

�(p)• F (x).

One and only one of the integrals must have a minus sign in the exponent.
Which of the two you choose does not matter, so long as you keep to the rule.
If the rule is broken half way through a long calculation the result is chaos; but
if someone else has used the opposite choice, the Fourier pair calculated of a
given function will be the complex conjugate of that given by your choice.

When time and frequency are the conjugate variables we shall use

�(ν) D
∫ 1
�1

F (t)e�2πiνt dt, (1.17)

F (t) D
∫ 1
�1

�(ν)2πiνt dν (1.18)

and again, symbolically,

�(ν)• F (t).

There are two good reasons for incorporating the 2π into the exponent.
Firstly the defining equations are easily remembered without worrying where
the 2π ’s go, but, more importantly, quantities like t and ν are actually physically
measured quantities – time and frequency – rather than time and angular
frequency, ω. Angular measure is for mathematicians. For example, when one
has to integrate a function wrapped around a cylinder it is convenient to use
the angle as the independent variable. Physicists will generally find it more
convenient to use t and ν, for example, with the 2π in the exponent.

1.5 Conjugate variables

Traditionally x and p are used when abstract transforms are considered and they
are called ‘conjugate variables’. Different fields of physics and engineering use
different pairs, such as frequency, ν, and time, t , in acoustics, telecommunica-
tions and radio; position, x, and momentum divided by Planck’s constant, p/h̄,
in quantum mechanics; and aperture, x, and the sine of the diffraction angle
divided by the wavelength, p D sin θ/λ, in diffraction theory.

In general we will use x and p as abstract entities and give them a physical
meaning when an illustration seems called for. It is worth remembering that
x and p have inverse dimensionality, as in time, t , and frequency, t�1. The
product px, like any exponent, is always a dimensionless number.

One further definition is needed: the ‘power spectrum’ of a function.5 This
notion is important in electrical engineering as well as in physics. If power

5 Actually the energy spectrum; ‘power spectrum’ is just the conventional term used in most
books. This is discussed in more detail in Chapter 4.
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is transmitted by electromagnetic radiation (radio waves or light) or by wires
or waveguides, the voltage at a point varies with time as V (t). �(ν), the
Fourier transform of V (t), may very well be – indeed usually is – complex.
However, the power per unit frequency interval being transmitted is propor-
tional to �(ν)��(ν), where the constant of proportionality depends on the
load impedance. The function S(ν) = �(ν)��(ν) D j�(ν)j2 is called the power
spectrum or the spectral power density (SPD) of F (t). This is what an optical
spectrometer measures, for example.

1.6 Graphical representations

It frequently happens that greater insight into the physical processes which are
described by a Fourier transform can be achieved by use of a diagram rather
than a formula. When a real function F (x) is transformed it generally produces
a complex function �(p), which needs an Argand diagram to demonstrate it.
Three dimensions are required: Re �(p), Im �(p) and p. A perspective drawing
will display the function, which appears as a more or less sinuous line. If F (x)
is symmetrical, the line lies in the Re p-plane, whereas if it is antisymmetrical,
the line lies in the Im p-plane. Figures 8.1 and 8.2 in Chapter 8 illustrate this
point.

Electrical engineering students, in particular, will recognize the end-on view
along the p-axis as the ‘Nyquist diagram’ of feedback theory. There will be
examples of this graphical representation in later chapters.

1.7 Useful functions

There are some functions which occur again and again in physics, and whose
properties should be learned. They are extremely useful in the manipulation and
general taming of other functions which would otherwise be almost unman-
ageable. Chief among these are the following.

1.7.1 The ‘top-hat’ function6

This has the property that

	a(x) D

⎧⎨
⎩

0, �1 < x < �a/2
1, �a/2 < x < a/2
0, a/2 < x <1

and the symbol 	 is chosen as an obvious aid to memory.

6 In the USA this is called a ‘box-car’ or ‘rect’ function.
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Fig. 1.5. The top-hat function and its transform, the sinc-function.

Its Fourier pair is obtained by integration:

�(p) D
∫ 1
�1

	a(x)e2πipx dx

D

∫ a/2

�a/2
e2πipx dx

D
1

2πip
[eπipa � e�πipa]

D a

{
sin(πpa)

πpa

}
D a sinc(πpa)

and the ‘sinc-function’, defined7 by sinc(x) = sin x/x, is one which recurs
throughout physics (Fig. 1.5). As before, we write symbolically

	a(x)• a sinc(πpa).

1.7.2 The sinc-function

The sinc-function sinc(x) D sin x/x has the value unity at x D 0, and has zeros
whenever x D nπ . The function sinc(πpa) above, the most common form, has
zeros when p D 1/a, 2/a, 3/a, . . .

7 Caution: some people define sinc(x) as sin(πx)/(πx), although without noticeable advantage
and with occasional confusion when the argument is complicated.
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1.665a

0.53/a

Fig. 1.6. The Gaussian function and its transform, another Gaussian with full
width at half maximum inversely proportional to that of its Fourier pair.

1.7.3 The Gaussian function

Suppose G(x) D e�x2/a2
, where a is the ‘width parameter’ of the function. The

value of G(x) D 1/2 when (x/a)2 D loge2, or x D ˙0.8325a so that the full
width at half maximum (FWHM) is 1.665a and (which every scientist should
know!)

∫1
�1 e�x2/a2

dx D a
p

π.

Its Fourier transform is g(p), given by

g(p) D
∫ 1
�1

e�x2/a2
e2πipx dx

(Fig. 1.6). The exponent can be rewritten (by ‘completing the square’) as

�(x/a � πipa)2 � π2p2a2
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and then

g(p) D e�π2p2a2
∫ 1
�1

e�(x/a�πipa)2
dx.

Put x/a � πipa D z, so that dx D a dz. Then

g(p) D ae�π2p2a2
∫ 1
�1

e�z2
dz

D a
p

πe�π2a2p2

so that g(p) is another Gaussian function, with width parameter 1/(πa).
Notice that the wider the original Gaussian, the narrower will be its Fourier

pair.
Notice, too, that the value at p D 0 of the Fourier pair is equal to the area

under the original Gaussian.

1.7.4 The exponential decay

This, in physics, is generally the positive part of the function e�x/a . It is
asymmetrical, so its Fourier transform is complex:

�(p) D
∫ 1

0
e�x/ae2πipx dx

D

[
e2πipx�x/a

2πip � 1/a

]1
0

D
�1

2πip � 1/a
.

Usually, with this function, the power spectrum is the most interesting:

j�(p)j2 D
a2

4π2p2a2 C 1
.

This is a bell-shaped curve, similar in appearance to a Gaussian curve, and is
generally known as a Lorentz profile.8 Its FWHM is 1/(πa).

It is the shape found in spectrum lines when they are observed at very low
pressure, when collisions between emitting particles are infrequent compared
with the transition probability. If the line profile is taken as a function of
frequency, I (ν), the FWHM, 
ν, is related to the ‘lifetime of the excited state’,
the reciprocal of the transition probability in the atom which undergoes the
transition. In this example, a and x obviously have dimensions of time. Looked

8 It is also known to mathematicians as the ‘Witch of Agnesi’ or more accurately as the ‘curve of
Agnesi’, having been studied by the eighteenth-century mathematician Maria Agnesi
(1718–1799). The translator confused versiera – ‘curve’ – with avversiera – witch.
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Fig. 1.7. The exponential decay e�jxj/a and its Fourier transform.

at classically, the emitting particle is behaving like a damped harmonic oscillator
radiating power at an exponentially decreasing rate. Quantum mechanics yields
the same equation through perturbation theory.

There is more discussion of this profile in Chapter 5.

1.7.5 The Dirac ‘delta-function’

This has the following properties:

δ(x) D 0 unless x D 0,

δ(0) D 1,∫ 1
�1

δ(x)dx D 1.

It is an example of a function which disobeys one of Dirichlet’s conditions,
since it is unbounded at x D 0. It can be regarded crudely as the limiting case
of a top-hat function (1/a)	a(x) as a ! 0. It becomes narrower and higher,
and its area, which we shall refer to as its amplitude, is always equal to unity. Its
Fourier transform (Fig. 1.7) is sinc(πpa) and, as a ! 0, sinc(πpa) stretches
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and in the limit is a straight line at unit height above the x-axis. In other
words,

the Fourier transform of a delta-function is unity

and we write

δ(x)• 1.

Alternatively, and more accurately, it is the limiting case of a Gaussian
function of unit area as it gets narrower and higher. Its Fourier transform then
is another Gaussian of unit height, getting broader and broader until in the limit
it is a straight line at unit height above the axis.

Although the function has infinite height, we frequently encounter it multi-
plied by a constant. In this case it is convenient, if not strictly accurate, to refer
to the function aδ(x) as having a ‘height’ a.

The following useful properties of the delta-function (or δ-function) should
be memorized. They are

δ(x � a) D 0 unless x D a

and the so-called ‘shift theorem’:∫ 1
�1

f (x)δ(x � a)dx D f (a),

where the product under the integral sign is zero except at x D a, where, on
integration, the δ-function has the amplitude f (a).

It is then easy to show, using this shift theorem, that for positive9 values of
a, b, c and d

δ(x/a � 1) D aδ(x � a).

To show this, put x D au; dx D a du. Then∫ 1
�1

δ(x/a � 1)f (x)dx D a

∫ 1
�1

δ(u � 1)f (au)du

and the integrand is zero except at the point u D 1, so that the result is af (a).
Compare this with ∫ 1

�1

δ(x � a)f (x)dx D f (a)

and the substitution is obvious.

9 For negative values of these quantities a minus sign may be needed, bearing in mind that the
integral of a δ-function is always positive, even though a, for example, may be negative.
Alternatively, we may write, for example, δ(x/a � 1) D jajδ(x � a).
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Similarly, we find

δ(a/b � c/d) D acδ(ad � bc)

D bdδ(ad � bc)

δ(ax) D (1/a)δ(x).

Another important consequence of the shift theorem is that∫ 1
�1

e2πipxδ(x � a)dx D e2πipa

so that we can write

δ(x � a)• e2πipa,

δ(mx � a)• (1/m)e2πipa/m

and a formula which we shall need in Chapter 7:

1

n
δ

(
p

l
�

r

n

)
D δ

(
pn

l
� r

)
• e�2πi( pn

l
�r).

1.7.6 A pair of δ-functions

If two δ-functions are equally disposed on either side of the origin, the Fourier
transform is a cosine wave:

δ(x � a)C δ(x C a)• e2πipa C e�2πipa

D 2 cos(2πpa).

1.7.7 The Dirac comb

This is an infinite set of equally-spaced δ-functions, usually denoted by the
Cyrillic letter Ш (shah). Formally, we write

Шa(x) D
1∑

nD�1

δ(x � na).

It is useful because it allows us to include Fourier series in the general theory
of Fourier transforms. For example, the convolution (to be described later) of
Шa(x) and (1/b)	b(x) (where b < a) is a square wave similar to that in the
earlier example, of period a and width b, and with unit area in each rectangle.
The Fourier transform is then a Dirac comb, with ‘teeth’ of height am spaced
at intervals 1/a. The am are, of course, the coefficients in the series.

If the square wave is allowed to become infinitesimally wide and infinitely
high so that the area under each rectangle remains unity, then the coefficients am
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Fig. 1.8. A rectangular pulse-train with a 4 : 1 ‘mark–space’ ratio.

will all become of the same height, 1/a. In other words, the Fourier transform
of a Dirac comb is another Dirac comb:

Шa(x)•
1

a
Ш1/a(p)

and again notice that the period in p-space is the reciprocal of the period in
x-space.

This is not a formal demonstration of the Fourier transform of a Dirac comb.
A rigorous proof is much more elaborate, but is unnecessary here.

1.8 Worked examples

(1) A train of rectangular pulses, as in Fig. 1.8, has a pulse width equal to 1/4
of the pulse period. Show that the 4th, 8th, 12th etc. harmonics are missing.

Taking zero at the centre of one pulse, the function is clearly symmetrical
so that there are only cosine amplitudes:

An D
2

P

∫ P/8

�P/8
h cos

(
2πnx

P

)
dx

D

(
h

πn

)
2 sin

(
2πn

P
�
P

8

)

D

(
h

2

)
sinc

(
πn

4

)

so that An D 0 if n D 4, 8, 12, . . .

(2) Find the sine-amplitude of a sawtooth waveform as in Fig. 1.9.
By choosing the origin half way up one of the teeth, the function is clearly

made antisymmetrical, so that there are no cosine amplitudes:

Bn D
2

P

∫ P/2

�P/2

xh

P
sin

(
2πnx

P

)
dx

D
2h

P 2

[
�x cos

(
2πnx

P

)
P

2πn
C

P 2

4π2n2
sin

(
2πnx

P

)]P/2

�P/2

D [�2h/(πn)]cos(πn)
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Fig. 1.9. A sawtooth waveform, antisymmetrical about the origin.

since sin(πn) D 0, so that

B0 D 0,

Bn D (�1)nC1[2h/(πn)], n 6D 0.

As a matter of interest, it is worthwhile calculating the sine-amplitudes when
the origin is taken at the tip of a tooth, to see how changing the position of the
origin changes the amplitudes. It is also worthwhile doing the calculation for a
similar wave, with negative-going slopes instead of positive.
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Useful properties and theorems

2.1 The Dirichlet conditions

Not all functions can be Fourier-transformed. They are transformable if they
fulfil certain conditions, known as the Dirichlet conditions.

The integrals which formally define the Fourier transform in Chapter 1 will
exist if the integrands fulfil the following conditions:

� The functions F (x) and �(p) are square-integrable, i.e.
∫1
�1 jF (x)j2 dx is

finite, which implies that F (x)! 0 as jxj ! 1.
� F (x) and �(p) are single-valued. For example, a curve such as that in

Fig. 2.1, despite having a respectable-looking Cartesian equation,1 is not
Fourier-transformable.

� F (x) and �(p) are ‘piece-wise continuous’. The function can be broken up
into separate pieces, so that there can be isolated discontinuities, as many as
you like, at the junctions, but the functions must be continuous, as defined
for instance by Weierstrass, between these discontinuities.2

� The functions F (x) and �(p) have upper and lower bounds. This is a con-
dition which is sufficient but has not been proved necessary. In fact we shall
assume that it is not. The Dirac δ-function, for instance, disobeys this con-
dition. Figure 2.2 shows another example. No engineer or physicist has yet
lost sleep over this one.

In Nature, all the phenomena that can be described mathematically seem to
require only well-behaved functions which obey the Dirichlet conditions. For

1 y D (x � 1)
p

x.
2 The classical nonconformist example is Dirichlet’s function, W (x), which has the property that

W (x) D 1 if x is rational and W (x) D 0 if x is irrational. It looks like a straight line but it is not
transformable, since it can be shown that between any two rational numbers, however close,
there is at least one irrational number, and between any two irrational numbers there is at least
one rational number, so that the function is everywhere discontinuous.

20
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Fig. 2.1. A double-valued function like this is not Fourier-transformable.

Fig. 2.2. F (x) D 1/(x � a)2, an unbounded function of x which is not Fourier-
transformable.
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example, we can describe the electric field of a ‘wave-packet’ by a function
which is continuous, finite and single-valued everywhere, and, since the wave-
packet contains only a finite amount of energy, the electric field is square-
integrable.

2.2 Theorems

There are several theorems which are of great use in manipulating Fourier pairs,
and they should be memorized. For the most part the proofs are elementary.
The art of practical Fourier-transforming is in the manipulation of functions
using these theorems, rather than in doing extensive and tiresome elementary
integrations. It is this, as much as anything, which makes Fourier theory such
a powerful tool for the practical working scientist.

In what follows, we assume that

F1(x)• �1(p); F2(x)• �2(p),

where ‘•’ implies that F1 and �1 are a Fourier pair.
The addition theorem states that

F1(x)C F2(x)• �1(p)C�2(p). (2.1)

The shift theorem already mentioned in Chapter 1 has the following lemmas:

F1(x C a)• �1(p)e2πipa,

F1(x � a)• �1(p)e�2πipa, (2.2)

F1(x � a)C F1(x C a)• 2�1(p)cos(2πpa).

In particular, notice that, if F1(x) is a δ-function, the lemmas are

δ(x C a)• e�2πipa,

δ(x � a)• e2πipa,

δ(x � a)C δ(x C a)• 2 cos(2πpa). (2.3)

The third of these is illustrated in Fig. 2.3.

2.3 Convolutions and the convolution theorem

Convolutions are an important concept, especially in practical physics, and the
idea of a convolution can be illustrated simply by an example.

Imagine a ‘perfect’ spectrometer, plotting a graph of intensity against wave-
length, of a monochromatic source of light of intensity S and wavelength λ0.
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x = −a

1/a

p

0 x

x = a

Fig. 2.3. A pair of δ-functions and its transform.

Represent the spectral power density (‘the spectrum’, see Fig. 2.4) of the source
by Sδ(λ � λ0). The spectrometer will plot the graph as kSδ(λ � λ0), where k

is a factor which depends on the throughput of the spectrometer, its geometry
and its detector sensitivity.

No spectrometer is perfect in practice, and what a real instrument will plot in
response to a monochromatic input is a continuous curve kSI (λ � λ0), where
I (λ) is called the ‘instrumental function’ and

∫1
�1 I (λ)dλ D 1.

Now we inquire what the instrument will plot in response to a continuous
spectrum input. Suppose that the intensity of the source as a function of wave-
length is S(λ). We assume that a monochromatic line at any wavelength λ1

will be plotted as a similarly shaped function kI (λ � λ1). Then an infinitesimal
interval of the spectrum can be considered as a monochromatic line, at λ1, say,
and of intensity S(λ1)dλ1 and it is plotted by the spectrometer as a function
of λ:

dO(λ) D kS(λ1)dλ1I (λ � λ1)

and the intensity apparently at another wavelength λ2 is

dO(λ2) D kS(λ1)I (λ2 � λ1)dλ1.
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Fig. 2.4. The spectrum of a monochromatic wave (a) entering and (b) leaving
a spectrometer. The area under curve (b) must be unity – the same as the ‘area’
under the δ-function – in order to preserve the idea of an ‘instrumental function’.

The total power apparently at λ2 is got by integrating this over all wave-
lengths:

O(λ2) D k

∫ 1
�1

S(λ1)I (λ2 � λ1)dλ1

or, dropping unnecessary subscripts,

O(λ) D k

∫ 1
�1

S(λ1)I (λ � λ1)dλ1,

and the output curve, O(λ), is said to be the convolution of the spectrum S(λ)
with the instrumental function I (λ).

It is the idea of an instrumental function, I (λ), which is important here. We
assume that the same shape I (λ) is given to any monochromatic line input.
The idea extends to all sorts of measuring instruments and has various names,
such as ‘impulse response’, ‘point-spread function’, ‘Green’s function’ and so
on, depending on which branch of physics or electrical engineering is being
discussed. In an electronic circuit, for example, it answers the question ‘if
you put in a sharp pulse, what comes out?’. Most instruments have no fixed
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unique ‘instrumental function’, but the function often changes slowly enough
(with wavelength, in the spectrometer example) that the idea can be used for
practical calculations.

The same idea can be envisaged in two dimensions: a point object – a
distant star for instance – is imaged by a camera lens as a small smear of light,
the ‘point-spread function’ of the lens. Even a ‘perfect’ lens has a diffraction
pattern, so that the best that can be done is to convert a point object into an
‘Airy-disc’ – a spot, 1.22f λ/d in diameter, where f is the focal length and
d the diameter of the lens. The lens in general, when taking a photograph,
gives an image which is the convolution, in two dimensions, of its point-spread
function with the object.

The formal definition of a convolution of two functions is then

C(x) D
∫ 1
�1

F1(x0)F2(x � x0)dx0 (2.4)

and we write this symbolically as

C(x) D F1(x) � F2(x).

Convolutions obey various rules of arithmetic, and can be manipulated using
them.

� The commutative rule:

C(x) D F1(x) � F2(x) D F2(x) � F1(x)

or

C(x) D
∫ 1
�1

F2(x0)F1(x � x0)dx0

as can be shown by a simple substitution.
� The distributive rule:

F1(x) � [F2(x)C F3(x)] D F1(x) � F2(x)C F1(x) � F3(x).

� The associative rule: the idea of a convolution can be extended to three or
more functions, and the order in which the convolutions are done does not
matter:

F1(x) � [F2(x) � F3(x)] D [F1(x) � F2(x)] � F3(x)

and usually the convolution of three functions is written without the square
brackets:

C(x) D F1(x) � F2(x) � F3(x)

D

∫ 1
�1

∫ 1
�1

F1(x � x0)F2(x0 � x00)F3(x00)dx0 dx00.
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In fact a whole algebra of convolutions exists and is very useful in taming
some of the more fearsome-looking functions that are found in physics. For
example,

[F1(x)C F2(x)] � [F3(x)C F4(x)] D F1(x) � F3(x)C F1(x) � F4(x)

C F2(x) � F3(x)C F2(x) � F4(x).

There is a way of visualizing a convolution. Draw the graph of F1(x). Draw,
on a piece of transparent paper, the graph of F2(x). Turn the transparent graph
over about a vertical axis and lay this mirror-image of F2 on top of the graph of
F1. When the two y-axes are displaced by a distance x0, integrate the product
of the two functions. The result is one point on the graph of C(x0).

2.3.1 The convolution theorem

With the exception of Fourier’s inversion theorem, the convolution theorem is
the most astonishing result in Fourier theory. It is as follows.

If C(x) is the convolution of F1(x) with F2(x) then its Fourier pair, �(p),
is the product of �1(p) and �2(p), the Fourier pairs of F1(x) and F2(x).
Symbolically:

F1(x) � F2(x)• �1(p) ��2(p). (2.5)

The applications of this theorem are manifold and profound. Its proof is
elementary:

C(x) D
∫ 1
�1

F1(x0)F2(x � x0)dx0

by definition.
Fourier transform both sides (and note that, because the limits are ˙1, x0

is a dummy variable and can be replaced by any other symbol not already in
use):

�(p) D
∫ 1
�1

C(x)e2πipx dx D

∫ 1
�1

∫ 1
�1

F1(x0)F2(x � x0)e2πipx dx0 dx.

(2.6)

Introduce a new variable y D x � x0. Then, during the x-integration, x0 is held
constant and dx D dy:

�(p) D
∫ 1
�1

∫ 1
�1

F1(x0)F2(y)e2πip(x0Cy) dx0 dy,
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which can be separated to give

�(p) D
∫ 1
�1

F1(x0)e2πipx0 dx0 �

∫ 1
�1

F2(y)e2πipy dy

D �1(p) ��2(p).

2.3.2 Examples of convolutions

One of the chief uses of convolutions is to generate new functions which are
easy to transform using the convolution theorem.

Convolution of a function with a δ-function, δ(x � a), gives

C(x) D
∫ 1
�1

F (x � x0)δ(x0 � a)dx0 D F (x � a)

by virtue of the properties of δ-functions. This can be written symbolically
as

F (x) � δ(x � a) D F (x � a).

Applying the convolution theorem to this is instructive since it yields the
shift theorem:

F (x)• �(p); δ(x � a)• e�2πipa

so that F (x � a) D F (x) � δ(x � a)• �(p)e�2πipa.

More interesting is the convolution of a pair of δ-functions with another
function:

[δ(x � a)C δ(x C a)]• 2 cos(2πpa).

Hence

[δ(x � a)C δ(x C a)] � F (x)• 2 cos(2πpa) ��(p) (2.7)

and this is illustrated in Fig. 2.5.
The Fourier transform of a Gaussian g(x) D e�x2/a2

is, from Chapter 1,
a
p

πe�π2p2a2
. The convolution of two unequal Gaussian curves, e�x2/a2

�

e�x2/b2
, can then be done, either as a tiresome exercise in elementary calculus,

or by application of the convolution theorem:

e�x2/a2
� e�x2/b2

• abπe�π2p2(a2Cb2)
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Fig. 2.5. Convolution of a pair of δ-functions with F (x), and its transform.

Fig. 2.6. The triangle function, a(x), as the convolution of two top-hat functions.

and the Fourier transform of the right-hand side is

ab
p

π
p

a2 C b2
e�x2/(a2Cb2) (2.8)

so that we arrive at a useful practical result:

the convolution of two Gaussians of width parameters a and b

is another Gaussian of width parameter
p

a2 C b2

or, to put it another way, the resulting half-width is the Pythagorean sum of the
two component half-widths.

The convolution of two equal top-hat functions (Fig. 2.6) is a good example
of the power of the convolution theorem. It can be seen by inspection that the
convolution of two top-hat functions, each of height h and width a, is going to
be a triangle, usually called the ‘triangle function’ and denoted by a(x), with
height h2a and base length 2a.

The Fourier transform of this triangle function can be done by elementary
integration, splitting the integral into two parts: x D �a ! 0 and x D 0! a.
This, too, is tiresome. On the other hand, it is trivial to see that if h	a(x)•
ah sinc(πpa) then h2aa(x)• a2h2 sinc2(πpa) or, more usefully,

ha(x)• ah sinc2(πpa)

since the height of the sinc2-function is the area under the triangle.
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2.3.3 The autocorrelation theorem

This is superficially similar to the convolution theorem but it has a different
physical interpretation. This will be mentioned later in connection with the
Wiener–Khinchine theorem. The autocorrelation function of a function F (x)
is defined as

A(x) D
∫ 1
�1

F (x0)F (x C x0)dx0.

The process of autocorrelation can be thought of as a multiplication of every
point of a function by another point at distance x0 further on, and then summing
all the products; or like a convolution as described earlier, but with identical
functions and without taking the mirror-image of one of the two.

There is a theorem similar to the convolution theorem. Beginning with the
definition

A(x) D
∫ 1
�1

F (x0)F (x C x0)dx0

Fourier transform both sides:

�(p) D
∫ 1
�1

A(x)e2πipx dx D

∫ 1
�1

∫ 1
�1

F (x0)F (x C x0)e2πipx dx0 dx.

Let x C x0 D y. Then, if x0 is held constant, dx D dy:

�(p) D
∫ 1
�1

∫ 1
�1

F (x0)F (y)e2πip(y�x0) dx0 dy,

which can be separated into

�(p) D
∫ 1
�1

F (x)e�2πipx0 dx0 �

∫ 1
�1

F (y)e2πipy dy

D ��(p) ��(p)

so that

A(x)• j�(p)j2.

It is worth noting that, since ��(p) ��(p) is real, an autocorrelation is
automatically a symmetrical function of x. This is something which may be
intuitively obvious anyway.

The Wiener–Khinchine theorem, to be described in Chapter 4, may be
thought of as a physical version of this theorem. It says that, if F (t) represents
a signal, then its autocorrelation is (apart from a constant of proportionality)
the Fourier transform of its power spectrum, j�(ν)j2.
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2.4 The algebra of convolutions

You can think of convolution as a mathematical operation analogous to addi-
tion, subtraction, multiplication, division, integration and differentiation. There
are rules for combining convolution with the other operations. It cannot be asso-
ciated with multiplication for example, and in general

[A(x) � B(x)] � C(x) 6D A(x) � [B(x) � C(x)].

But convolution signs and multiplication signs can be exchanged across
a Fourier transform symbol, and this is very useful in practice. For
example,

[A(x) � B(x)] � [C(x) �D(x)]• [a(p) � b(p)] � [c(p) � d(p)].

(Obviously upper-case and lower-case letters have been used to associate
Fourier pairs.)

As further examples:

A(x) � [B(x) � C(x)]• a(p) � [b(p) � c(p)],

[A(x)C B(x)] � [C(x)CD(x)]• [a(p)C b(p)] � [c(p)C d(p)],

[A(x) � B(x)C C(x) �D(x)] � E(x)• [a(p) � b(p)C c(p) � d(p)] � e(p).

Insofar as we use Fourier transforms in physics and engineering, we are con-
cerned mostly with functions and manipulations like this to solve problems, and
fluency in this relatively easy algebra is the key to success. Computation, rather
than calculation, is involved, and there is much software available to compute
Fourier transforms digitally. However, most computation is done using com-
plex exponentials and these involve the full complex transform. A later chapter
deals with this subject.

2.4.1 Convolution of two δ-functions

The convolution of two δ-functions can be regarded as the limiting case of the
convolution of two Gaussians: in other words it is another δ-function,

Aδ(x) � Bδ(x) D ABδ(x),

and this follows, after a few lines of algebra, from the definition of the δ-function
as

lim
a!0

1

a
p

π
� e�x2/a2

.
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2.5 Other theorems

2.5.1 The derivative theorem

If �(p) and F (x) are a Fourier pair F (x)• �(p), then

dF/dx • �2πip�(p).

Proofs are elementary. You can integrate dF/dx by parts or you can differen-
tiate3 F (x):

F (x) D
∫ 1
�1

�(p)e�2πipx dp.

Differentiate with respect to x:

dF/dx D

∫ 1
�1

�2πip�(p)e�2πipx dp

D �2πi

∫ 1
�1

p�(p)e�2πipx dp (2.9)

and the right-hand side is �2πi times the Fourier transform of p�(p).

Example 1: The top-hat function 	a(x)• a sinc(πpa). If the top-hat func-
tion is differentiated with respect to x, the result is a pair of δ-functions
at the points where the slope was infinite:

d	a(x)

dx
D δ(x C a/2) � δ(x � a/2).

Transforming both sides gives

δ(x C a/2) � δ(x � a/2)• e�πipa � eπipa D �2i sin(πpa)

D �2πip[a sinc(πpa)].

The theorem extends to further derivatives:

dnF (x)/dxn • (�2πip)n�(p)

and much use is made of this in mathematics.

Example 2: If the moment of inertia about the y-axis of a symmetrical curve
is infinite, its Fourier transform has a cusp at the origin. Because∫ 1

1

f (x)dx D φ(0),

3 A word of caution: this works only if F (x) is an analytic function obeying the Dirichlet
conditions. Do not try it with a δ-function or a Heaviside step-function, for instance.
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if (
∂2f

∂x2

)
xD0

D �4π2
∫ 1
�1

p2φ(p)dp D1

there is a discontinuity in (∂f/∂x) at the origin.

Example 3: The differential equation of simple harmonic motion is

md2F (t)/dt2 C kF (t) D 0,

where F (t) is the displacement of the oscillator from equilibrium at time
t . If we Fourier-transform this equation, F (t) becomes �(ν) and d2F/dt2

becomes �4π2ν2�(ν). The equation then becomes

�(ν)(k/m � 4π2ν2) D 0,

which, apart from the trivial solution �(ν) D 0, requires

ν D ˙
1

2π

√
k

m

– and this is just a small taste of the power which is available for the
solution of differential equations using Fourier transforms.

2.5.2 The convolution derivative theorem

d

dx
[F1(x) � F2(x)] D F1(x) �

dF2(x)

dx
D

dF1(x)

dx
� F2(x). (2.10)

The derivative of the convolution of two functions is the convolution of
either of the two with the derivative of the other. The proof is simple and is left
as an exercise.

2.5.3 Parseval’s theorem

This is met under various guises. It is sometimes called ‘Rayleigh’s theorem’
or simply the ‘power theorem’. In general it states that∫ 1

�1

F1(x)F �2 (x)dx D

∫ 1
�1

�1(p)��2 (p)dp, (2.11)

where the superscript � denotes a complex conjugate. The proof of the theorem
is given in Appendix A.1.
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Fig. 2.7. The sampling theorem.

Two special cases of particular interest are

1

P

∫ P

0
jF (x)j2 dx D

1∑
�1

(a2
n C b2

n) D
A2

0

4
C

1

2

1∑
1

[A2
n C B2

n], (2.12)

which is used for finding the power in a periodic waveform, and∫ 1
�1

jF (x)j2 dx D

∫ 1
�1

j�(p)j2 dp (2.13)

for non-periodic Fourier pairs.

2.5.4 The sampling theorem

This is also known as the ‘cardinal theorem’ of interpolary function theory, and
originated with Whittaker,4 who asked and answered the following question:
how often must a signal be measured (sampled) in order that all the frequencies
present should be detected? The answer is that the sampling interval must be
the reciprocal of twice the highest frequency present.

The theorem is best illustrated with a diagram (Fig. 2.7). The highest
frequency is sometimes called the ‘folding frequency’, or alternatively the
‘Nyquist’ frequency, and is given the symbol νf .

Suppose that the frequency spectrum, �(ν), of the signal is symmetrical
about the origin and stretches from �νf to νf . The convolution of this with a
Dirac comb of period 2ν0 provides a periodic function and the Fourier transform

4 J. M. Whittaker, Interpolary Function Theory, Cambridge University Press, Cambridge, 1935.
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of this periodic function is the product of a Dirac comb with the original signal
(and, to be strict, its reflection in the origin): in other words it is the set
of Fourier coefficients in the series representing the periodic function. The
periodic function is known, provided that the coefficients are known, and the
coefficients are the values of the original signal F (t), at intervals 1/(2νf ),
multiplied by a suitable constant. The more coefficients are known, the more
harmonics can be added to make the spectrum, and the more detail can be
seen in the function when it is reconstructed. With the help of the interpolation
theorem (below) all the points between the sample points can be filled in.

Formally, the process can be written with F (t) and �(ν) a Fourier pair as
usual. The Fourier transform of F (t)Шa(t) is∫ 1

�1

F (t)Шa(t)e�2πiνt dt D �(ν) �Ш1/a(ν).

Rewrite the left-hand side as∫ 1
�1

F (t)
1∑

nD�1

δ(t � na)e�2πiνt dt D

1∑
nD�1

∫ 1
�1

F (t)δ(t � na)e�2πiνt dt

D

1∑
nD�1

F (na)e�2πiνna D �0(ν).

The left-hand side is now a Fourier series, so that �0(ν) is a periodic function,
namely the convolution of �(ν) with a Dirac comb of period 1/a. The constraint
is that �(ν) must occupy the interval �1/(2a) to 1/(2a) only; in other words,
1/a is twice the highest frequency in the function F (t), in accordance with the
sampling theorem.

2.6 Aliasing

In the sampling theorem it is strictly necessary that the signal should contain
no power at frequencies above the folding frequency. If it does, this power will
be ‘folded’ back into the spectrum and will appear to be at a lower frequency.
If the frequency is νf C νa it will appear to be at νf � νa in the spectrum. If
it is at twice the folding frequency, it will appear to be at zero frequency. For
example, a sine-wave sampled at intervals a, 2π C a, 4π C a, . . . will give a
set of samples which are identical. There are, in effect, ‘beats’ between the
frequency and the sampling rate. It is always necessary to take precautions
when examining a signal in order to be sure that a given ‘spike’ corresponds
to the apparent frequency. This can be done either by deliberate filtering of
the incoming signal, or by making several measurements at different sampling
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Fig. 2.8. A signal occupying a high alias of a fundamental in frequency space,
and its recovery by deliberate undersampling or ‘demodulating’.

frequencies. The former is the obvious method but not necessarily the best: if
the signal is in the form of a pulse and is in a noisy environment, a lot of the
power can be lost by filtering.

Aliasing can be put to good use. If the frequency band stretches from ν0 to
ν1, the empty frequency band between ν0 and 0 can be divided into a number of
equal frequency intervals each less than 2(ν1 � ν0). The sampling interval then
need be only 1/[2(ν1 � ν0)] instead of 1/(2ν1). This is a way of demodulating
the signal, and the spectrum that is recovered appears to occupy the first alias
even though the original occupied a possibly much higher one. The process is
illustrated in Fig. 2.8.

2.6.1 The interpolation theorem

This too comes from Whittaker’s interpolary function theory. If the signal
samples are recorded, the values of the signal in between the sample points
can be calculated. The spectrum of the signal can be regarded as the product
of the periodic function with a top-hat function of width 2νf . In the signal,
each sample is replaced by the convolution of the sinc-function with the corre-
sponding δ-function. Each sample, anδ(t � tn), is replaced by the sinc-function,
an sinc(πνf ), and each sinc-function conveniently has zeros at the positions of
all the other samples (this is hardly a coincidence, of course) so that the signal
can be reconstructed from a knowledge of its samples, which are the coefficients
of the Fourier series which form its spectrum.

This is much used in practical physics, where digital recording of data is
common, and generally the signal at a point can be well enough recovered by a



36 Useful properties and theorems

sum of sinc-functions over twenty or thirty samples on either side. The reason
for this is that, unless there is a very large amplitude to a sample at some distant
point, the sinc-function at a distance of 30π from the sample has fallen to such
a low value that it is lost in the noise. It depends obviously on practical details
such as the signal-to-noise ratio in the original data and, more importantly, on
the absence of any power at frequencies higher than the folding frequency.

Stated formally, the signal F (t) sampled at times 0, t0, 2t0, 3t0, 4t0, 5t0, . . .

can be computed at any intermediate point t as the sum

F (nt0 C t) D
N∑

mD�N

F f(nCm)t0gsinc[π (m � t/t0)],

where N , infinite in theory, is about 20–30 in practice. The sum cannot be
computed accurately near the ends of the data stream and there is a loss of N

samples at each end unless fewer samples are taken there.

2.6.2 The similarity theorem

This is fairly obvious: if you stretch F (x) so that it is twice as wide, then �(p)
will be only half as wide, but twice as high as it was. Formally,

if F (x)• �(p) then F (ax)• j(1/a)j�(p/a).

The proof is trivial, and it is done by substituting x D ay, dx D a dy; p D
z/a, dp D (1/a)dz. Because the integrals are between �1 and 1, the vari-
ables for integration are ‘dummy’ variables and can be replaced by any other
symbol not already in use.

2.7 Worked examples

2.7.1 An arithmetical result using Parseval’s theorem

The sawtooth used in Chapter 1 shows an interesting result using Parseval’s
theorem. The nth sine-coefficient, as we saw, is (�1)nC12h/(nπ ). The sum to
infinity of the squares is

1∑
nD1

4h2

π2n2
D

2

P

∫ P/2

�P/2

[
2hx

P

]2

dx

D
8h2

P 3

[
x3

3

]P/2

�P/2

D
2h2

3
D

4h2

π2

1∑
nD1

1

n2
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so that finally

1∑
nD1

1

n2
D

π2

6
.

This is an example of an arithmetical result coming from a purely analytic
calculation. As a way of computing π it is not very efficient: it is accurate to
only six significant figures (3.14159) after one million terms. Using the fact that
π D 6 sin�1(1/2), with sin�1 obtained by integrating 1/

p
1 � x2 term-by-term,

is much more efficient.

2.7.2 Alternating pulse-heights

In a rectangular waveform with pulses of length a/4 separated by spaces
of length a/4 and with alternate rectangles twice the height of their neigh-
bours, the amplitude of the second harmonic is greater than the fundamental
amplitude.

The waveform can be represented by

F (t) D h	a/4(t) � [Шa(t)CШa/2(t)].

The Fourier transform is

�(ν) D (ah/4)sinc(πνa/4) � [(1/a)Ш1/a(ν)C (2/a)Ш2/a(ν)]

and the teeth of this Dirac comb are at ν D 1/a, 2/a, . . . , with heights

(h/4)sinc(π/4), (3h/4)sinc(π/2), (h/4)sinc(3π/4) . . .

and the ratio of heights of the first and second harmonics is
p

2 : 3.
This effect can be seen in astronomy or radioastronomy when searching

for pulsars using a real-time Fourier transformer. The ‘interpulses’ between
the main pulses generate extra power in the second harmonic and can make it
larger than the fundamental (Fig. 2.9).

Fig. 2.9. A square-wave with alternating pulse heights. The Fourier transform
will show more power in the second harmonic than in the fundamental.
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Fig. 2.10. The double-sawtooth waveform.

2.7.3 The double-sawtooth waveform

This cannot be regarded as the convolution of two rectangular waveforms of
equal mark–space5 ratio, since the effect of integration is to give an embarrass-
ing infinity. Instead it is the convolution of a top-hat of width a with another
identical top-hat and with a Dirac comb of period 2a. Thus

	a(t) �	a(t) �Ш2a(t)• (a/2)sinc2(πνa) �Ш1/(2a)(ν).

So the amplitudes, which occur at ν D 1/(2a), 1/a, 3/(2a), . . . , are
2a/π2, 0, 2a/(9π2), 0, 2a/(25π2), . . .

2.7.4 Convolution with a sinusoid

Consider an ordinary analytic function of x which obeys the Dirichlet conditions
and is neither symmetrical nor antisymmetrical. Its convolution with a cosine
of unit amplitude and period 1/r is formally

C(x) D f (x) � cos(2πrx).

To calculate this convolution, first split the function f (x) into its symmetrical
and antisymmetrical parts (see Fig. 8.1 for how to do this). Then

C(x) D [fs(x)C fa(x)] � cos(2πrx).

The Fourier transform of this is

�(p) D [φs(p)C iφa(p)] � [δ(p � r)C δ(p C r)]/2.

5 The term ‘equal mark–space ratio’ comes from radio jargon, and implies that the signal is zero
for the same interval as that during which it is not.
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Γ(r ) d (p – r)

Γ(p)

Γ(r) d (p + r)

p

Fig. 2.11. Convolution of a function with a sinusoid. �(p) is the Fourier transform
of f (x) and the two δ-functions are the Fourier transform of cos(2πrx), the other
partner in the convolution. The product is the pair of δ-functions modified in height
by the appropriate Fourier component of �(p).

Notice that the product of a function with a δ-function is still a δ-function,
i.e.

φ(p) � δ(p � r) D φ(r)δ(p � r).

Thus

�(p) D
1

2
[φs(r)δ(p � r)C φs(�r)δ(p C r)

C iφa(r)δ(p � r)C iφa(�r)δ(p C r)]

and, since φs(r) D φs(�r) and φa(r) D �φa(�r), we have

�(p) D
1

2
fφs(r)[δ(p � r)C δ(p C r)]C iφa(r)[δ(p � r) � δ(p C r)]g

and on transforming back we find

C(x) D φs(r)cos(2πrx)C φa(r)sin(2πrx)

so that C(x) is a sinusoid of amplitude
√

φs(r)2 C φa(r)2 and phase-shifted by
comparison with the original sinusoid by an angle α, given by

α D tan�1[φa(r)/φs(r)].

This result (see Fig. 2.11) is important in the next chapter when we consider
the Michelson stellar interferometer and the van Cittert–Zernike theorem.
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Applications 1: Fraunhofer diffraction

3.1 Fraunhofer diffraction

The application of Fourier theory to Fraunhofer diffraction problems, and
to interference phenomena generally, was hardly recognized before the late
1950s. Consequently, only textbooks written since then mention the tech-
nique. Diffraction theory, of which interference is only a special case, derives
from Huygens’ principle: that every point on a wavefront which has come
from a source can be regarded as a secondary source; and that all the wave-
fronts from all these secondary sources combine and interfere to form a new
wavefront.

Some precision can be added by using calculus. In Fig. 3.1, suppose that at
O there is a source of ‘strength’ q, defined by the fact that at A, a distance r

from O, there is a ‘field’, E, of strength E D q/r . Huygens’ principle is now
as follows:

If we consider an area dS on the surface S we can regard it as a source of strength
E dS giving at B, a distance r 0 from A, a field E0 D q dS/(rr 0). All these
elementary fields at B, summed over the transparent part of the surface S, each
with its proper phase,1 give the resultant field at B. This is quite general – and
vague.

In elementary Fraunhofer diffraction theory we simplify. We assume the
following.

� That only two dimensions need be considered. All apertures bounding the
transparent part of the surface S are rectangular and of length unity perpen-
dicular to the plane of the diagram.

1 Remember: phase changeD (2π/λ)� path change and the paths from different points on the
surface S (which, being a wavefront, is a surface of constant phase) to B are all different.

40
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Fig. 3.1. Secondary sources in Fraunhofer diffraction.

Fig. 3.2. Fraunhofer diffraction by a plane aperture.

� That the dimensions of the aperture are small compared with r 0.
� That r is very large so that the field E has the same magnitude at all points on

the transparent part of S, and a slowly varying or constant phase. (Another
way of putting it is to say that plane wavefronts arrive at the surface S from
a source at �1.)

� That the aperture S lies in a plane.

To begin, suppose that the source, O, lies on a line perpendicular to the
surface S, the diffracting aperture. Use Cartesian coordinates, x in the plane of
S, and z perpendicular to this (x and z are traditional here; see Fig. 3.2). Then
the magnitude of the field E at P can be calculated.
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Consider an infinitesimal strip at Q, of unit length perpendicular to the x, z-
plane, of width dx and distance x above the z-axis. Let the field strength2 there
be E D E0e

2πiνt . Then the field strength at P from this source will be

dE(P ) D E0e
2πiνt e�2πir 0/λ dx,

where r 0 is the distance QP . The exponent in this last factor is the phase
difference between Q and P .

For convenience, choose a time t so that the phase of the wavefront is zero
at the plane S, i.e. t D 0. Then at P

E(P ) D
∫

aperture,S
E0e
�2πir 0/λ dx

and the aperture S may have opaque spots or partially transmitting spots, so
that E0 is generally a function of x.

This is not yet a useable expression.
Now, because r 0 � x (the condition for Fraunhofer diffraction), we can

write

r 0 � r0 � x sin θ

and then the field E at P is obtained by summing all the infinitesimal contri-
butions from the secondary sources like that at Q, and remembering to include
the phase-factor for each. The result is

E D E0e
�2πir0/λ

∫
aperture

e2πix sin θ/λ dx

and if we write sin θ/λ D p we have, finally,

E D E0e
�2πir0/λ

∫ 1
�1

A(x)e2πipx dx,

where A(x) is the ‘aperture function’ which describes the transparent and
opaque parts of the screen S. The result of the Fourier transform is to give the
amplitude diffracted through an angle θ . Where it appears on a screen depends
on the distance to the screen, and on whether the screen is perpendicular to the
z-direction and other geometrical factors.3

The important thing to remember is this: that diffraction of a certain wave-
length at a certain aperture is always through an angle: the variable p conjugate

2 As usual, we use complex variables to represent real quantities – in this case the electric field
strength. This complex variable is called the ‘analytic’ signal and the real part of it represents
the actual physical quantity at any time at any place.

3 This is all an approximation: in fact the field outside the diffracting aperture is not exactly zero
and depends in practice on whether the opaque part of the screen is conducting or insulating
and on the direction of polarization of the passing light. These are subtleties which can safely
be left to post-graduate students.
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Fig. 3.3. Oblique incidence from a source not on the z-axis.

to x is sin θ/λ and it is θ which matters. Diffraction theory alone says nothing
about the size of the pattern: that depends on geometry.

Very often, in practice, the diffracting aperture is followed by a lens, and
the pattern is observed at the focal plane of this lens. The approximation that
r 0 D r0 � x sin θ is now exact, since the image of the focal plane, seen from
the diffracting aperture, is at infinity.

Problems in Fraunhofer diffraction can thus be reduced to writing down
the aperture function, A(x), and taking its Fourier transform. The result gives
the amplitude in the diffraction pattern on a screen at a large distance from the
aperture. For example, for a simple parallel-sided slit of width a, the aperture
function, A(x), is 	a(x). For two parallel-sided slits of width a separated by a
distance b between their centres, A(x) D 	a(x) � [δ(x � b/2)C δ(x C b/2)],
and so on. Apertures of various sizes are now encompassed by the same formula
and the amplitude of the light (or sound, or radio waves or water waves)
diffracted by the aperture through an angle θ can be calculated. The intensity of
the wave is given by the r.m.s. value of the amplitude multiplied by its complex
conjugate and the factor e2πir0/λ disappears when this is done.

If the original source is not on the z-axis, then the amplitude of E at z D 0
contains a phase factor, as in Fig. 3.3.
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Fig. 3.4. The intensity pattern, sinc2(πa sin θ/λ), from diffraction at a single slit.

W �W 0 is a wavefront (a surface of constant phase) and, if we choose a
moment when the phase is zero at the origin, the phase at x at that moment
is given by (2π/λ)x � sin φ, and the phase factor that must multiply E0 is
e(�2π/λ)x sin φ .

The magnitude at P is then

E D E0e
2πir0/λ

∫ 1
�1

A(x)e(�2πi/λ)x(sin θCsin φ) dx

and when the Fourier transform is done, the oblique incidence is accounted for
by remembering that p D (sin θ C sin φ)/λ.

3.2 Examples

3.2.1 Single-slit diffraction, normal incidence

For a single slit with parallel sides, of width a, the aperture function is A(x) D
	a(x). Then

E D k � sinc(πap) D k � sinc(πa sin θ/λ)

(where k is the constant4 E0ae�2πir0/λ), and the intensity is this multiplied by
its complex conjugate:

EE� D I (θ ) D jkj2 � sinc2(πa sin θ/λ). (3.1)

See Fig. 3.4.

4 For most practical purposes, the unimportant constant.
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Fig. 3.5. The intensity pattern from interference between two point sources.

3.2.2 Two point sources at˙b/2 (for example, two antennae,
transmitting in phase from the same oscillator)

We have

A(x) D δ(x � b/2)C δ(x C b/2)

and the Fourier transform of this is (Chapter 1, equation (1.19))

E D 2k � cos(πb sin θ/λ)

and the intensity is this amplitude multiplied by its complex conjugate:

I (θ ) D 4jkj2 � cos2(πb sin θ/λ)

D 2jkj2[1C cos(2πb sin θ/λ)].

See Fig. 3.5.

3.2.3 Two slits, each of width a, with centres separated by a
distance b (Young’s slits, Fresnel’s biprism, Lloyd’s mirror,

Rayleigh’s refractometer, Billet’s split-lens)

We have

A(x) D 	a(x) � [δ(x � b/2)C δ(x C b/2)].

Then, applying the convolution theorem,

I (θ ) D 4k2 sinc2(πa sin θ/λ)cos2(πb sin θ/λ).

See Fig. 3.6.
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Fig. 3.6. The intensity pattern from interference between two slits of width a

separated by a distance b.

3.2.4 Three parallel slits, each of width a, with centres separated
by a distance b

To simplify the algebra, put sin θ/λ D p:

A(x) D 	0(x) � [δ(x � b)C δ(x)C δ(x C b)],

A(p) D k sinc(πpa)[e2πibp C 1C e�2πipb]

D k sinc(πpa)[2 cos(2πpb)C 1]

and the intensity diffracted at angle θ is

I (p) D k2 sinc2(πpa)[2 cos(4πpb)C 4 cos(2πpb)C 3]

D k2 sinc2(πa sin θ/λ)[2 cos(4πb sin θ/λ)C 4 cos(2πb sin θ/λ)C 3].

See Fig. 3.7.

3.2.5 The transmission diffraction grating

There are two obvious ways of representing the aperture function. In either
case we assume that there are N slits, each of width w, each separated
from its neighbours by a, the grating constant, and that N is a large number
(104–105).

Then, since A(x) D 	w(x) �Шa(x) represents an infinitely wide grating,
its width can be restricted by multiplying it by 	Na(x), so that the aperture
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Fig. 3.7. The intensity pattern from interference between three slits of width a,
separated by b.

function is

A(x) D 	Na(x) � [	w(x) �Шa(x)].

Then the diffraction amplitude is

E(θ ) D Na � sinc(πNa sin θ/λ) � [w � sinc(πw sin θ/λ) � (1/a)Ш1/a(sin θ/λ)]

D Nw � sinc(πNa sin θ/λ) � [sinc(πw sin θ/λ) �Ш1/a(sin θ/λ)].

(N.B. The convolution is with respect to sin θ/λ.)
A diagram here is helpful, see Fig. 3.8: the second factor (in the square

brackets) is the product of a Dirac comb and a very broad (because w is very
small) sinc-function; and the convolution of this with the first factor, a very
narrow sinc-function, represents the diffraction produced by the whole aperture
of the grating. Since the narrow sinc-function is reduced to insignificance by
the time it has reached as far as the next tooth in the Dirac comb, the intensity
distribution is this very narrow line profile sinc2(πNa sin θ/λ), reproduced at
each tooth position with its intensity reduced by the factor sinc2(πwa sin θ/λ).

This is not precise, but is close enough for all practical purposes. To be
precise, fastidious and pedantic, the aperture function, as described in the older
optics textbooks, is

A(x) D
N�1∑
nD0

δ(x � na) �	w(x)
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Fig. 3.8. The amplitude transmitted by a diffraction grating.

and since δ(x � na)• e2πinpa the diffracted amplitude is

Ē(θ ) D k � sinc(πwp)
N�1∑
nD0

e2πinpa,

where k D w � E0e
�2πir0/λ. The third factor in the equation is the sum of a

geometrical progression of common ratio e2πipa and, after a few lines of algebra,
the equation becomes

Ē(θ ) D k � sinc(πwp)eπi(N�1)pa sin(πNpa)/sin(πpa)

with p D sin θ/λ as usual.
The intensity is given by Ē(θ )Ē(θ )�. The exponential factor disappears

together with its own complex conjugate and if we write I0 for E2
0 the intensity

distribution is

I (θ ) D I0 �

(
sin(πNpa)

sin(πpa)

)2

sinc2(πwp). (3.2)

If N is large, the first factor is very similar to a sinc2-function, especially near
the origin, where sin(πpa) ' πpa, and although it is exact it yields no more
information about the diffraction pattern details than the previous approximate
derivation. Either way, the factor in the first bracket gives details about the
line shape and the resolution to be obtained, and the third factor, the broad
sinc2-function, gives information about the intensities of the various diffraction
maxima in the pattern.

In particular, if a maximum for one wavelength λ falls at the same diffrac-
tion angle θ as the first zero of an adjacent wavelength λC δλ (the usual
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Fig. 3.9. The shape of a spectrum line from a grating. The profile has the form
sinc2(πNap).

criterion for resolution in a grating spectrometer), the two values of p can be
compared:

for λ at maximum, sin θ � θ D mλ/a;

for λ at first zero, θ D mλ/a C λ/(Na),

which is the same angle as for λC δλ at maximum, i.e. m(λC δλ)/a,
whence

δλ D λ/(mN ),

which gives the theoretical resolution of the grating.
Two points are worth noting.

(1) No one expects to get the full theoretical resolution from a grating. Manu-
facturing imperfections may reduce it in practice to�70% of the theoretical
value.

(2) Although this is the closest spacing for which two wavelengths can still
produce separate images, more closely spaced wavelengths can be disen-
tangled if the combined shape is known. The process of deconvolution can
be used to enhance resolution if need be, although the improvement can be
disappointing.

The sinc2-function in Fig. 3.9 represents the radiation intensity near the
diffraction image of a monochromatic spectrum line. Although the diffraction
intensity corresponds to a direction, θ , in practice a lens or a mirror will focus
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Fig. 3.10. A diffraction grating with a diamond-shaped apodizing mask.

all the radiation that comes from the grating at that angle θ to a place on its
focal surface where the CCD or other photo-sensitive detector is located.

The intensity distribution in the image will be the square modulus of the
amplitude distribution, in this case a sinc2-function, which has its width5 deter-
mined by the width Na of the grating.

The minima at λ0 and λ00 are at a wavelength difference˙1/(Na), from the
properties of the sinc2-function.

Interesting things can be done to the amplitude of the radiation transmitted
(or reflected) by the grating by covering the grating with a mask. A diamond-
shaped mask, for example (Fig. 3.10), will change the aperture function from
	a(x) to a(x) and the Fourier transform of the aperture function is then

E(θ ) D k � sinc2(π (aN/2)sin θ/λ) � [sinc(πw sin θ/λ) � (1/a)Ш1/a(sin θ/λ)].

The shape of the image of a monochromatic line is changed. Instead of
sinc2[πNa(sin θ/λ)], it becomes sinc4[(πNa/2)(sin θ/λ)]. The sinc4-function
is nearly twice as wide as the sinc2-function and the peak intensity of the light
is reduced by a factor of 4, but the intensities of the ‘side-lobes’ are reduced
from 1.6 � 10�3 to 2.56 � 10�6 of the main peak intensity. This reduction is
important if faint satellite lines are to be identified – for example in studies
of fine structure or Raman-scattered lines, where the satellite intensities are
10�6 of the parent or less. The process, which is widely used in optics and
radioastronomy, is called apodizing.6

5 By ‘width’ we mean here the full width at half maximum intensity of the spectrum line, usually
denoted by ‘FWHM’.

6 From the Greek ‘without feet’, implying that the side-lobes are reduced or removed.
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Fig. 3.11. An AC B cos(2πx/(Na)) apodizing mask for a grating.

There are more subtle ways of reducing the side-lobe intensities by masking
the grating. For example, a mask as in Fig. 3.11 allows the amplitude transmitted
to vary sinusoidally across the aperture according to

	Na(x)[AC B cos(2πx/(Na))].

The Fourier transform of this is

E(θ ) D Na sinc(πpNa) � fAδ(p)C (B/2)[δ(p � 1/(Na))C δ(p C 1/(Na))]g

and this is the sum of three sinc-functions, suitably displaced. Figure 3.12
illustrates the effect.

Even more complicated masking is possible and in general what happens
is that the power in the side-lobes is redistributed according to the particular
problem that is faced. The nearer side-lobes can be suppressed almost com-
pletely, for example, and the power absorbed into the main peak or pushed out
into the ‘wings’ of the line. Favourite values for A and B are A D 0.35H and
B D 0.15H , where H is the length of the grating rulings (not the ruled width
of the grating).

3.2.6 Apertures with phase-changes instead of amplitude changes

The aperture function may be (indeed must be) bounded by a mask edge of
finite size and it is possible – for example by introducing refracting elements –
to change the phase as a function of x. A prism or lens would do this.
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Fig. 3.12. The intensity-profile of a spectrum line from a grating with a sinusoidal
apodizing mask. The upper curve is the lower curve multiplied by 1000 to show
the low level of the secondary maxima.

3.2.7 Diffraction at an aperture with a prism

Because the ‘optical’ path is n times the geometrical path, the passage of light
through a distance x in a medium of refractive index n introduces an extra ‘path’
(n � 1)x compared with the same length of path in air or vacuum. Consequently
there is a phase change (2π/λ)(n � 1)x.

There is thus (Fig. 3.13) a variation of phase instead of transmission across
the aperture, so that the aperture function is complex. If the prism angle is φ

and the aperture width is a, the thickness of the prism at its base is a tan φ and,
when parallel wavefronts coming from�1 have passed through the prism, the
phases at the apex and the base of the prism are 0 and (2π/λ)(n � 1)a tan φ.

However, we can choose the phase to be zero at the centre of the aperture,
and this is usually a good idea because it saves unnecessary algebra later on.

Then the phase at any point x in the aperture is ζ (x) = (2π/λ)x(n � 1)tan φ

and the aperture function describing the Huygens wavelets is

A(x) D 	a(x)e(2πi/λ)x(n�1) tan φ.

The Fourier transform of this, with p D sin θ/λ as usual, is

E(θ ) D A

∫ a/2

�a/2
e(2πi/λ)x(n�1)tan φe2πipx dx

so that, after integrating and multiplying the amplitude distribution by its com-
plex conjugate, we get

I (θ ) D A2a2 sinc2faπ [p C (n � 1)tan φ/λ]g .
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Fig. 3.13. A single-slit aperture with a prism and its displaced diffraction
pattern.

Notice that if n D 1 we have the same expression as in equation (3.1). Here
we see that the shape of the diffraction function is identical, but that the principal
maximum is shifted to the direction p D sin θ/λ D �(n � 1)tan φ/λ or to the
diffraction angle θ D sin�1[(n � 1)tan φ]. This is what would be expected from
elementary geometrical optics when θ and φ are small.

3.2.8 The blazed diffraction grating

It is only a small step to the description of the diffraction produced by a grating
which comprises, instead of alternating opaque and transparent strips, a grid
of parallel prisms. There are two advantages in such a construction. Firstly the
aperture is completely transparent and no light is lost; and secondly the prism
arrangement means that, for one wavelength at least, all the incident light is
diffracted into one order of the spectrum.

The aperture function is, as before, the convolution of the function for a
single slit with a Dirac comb, the whole being multiplied by a broad 	Na(x)
representing the whole width of the grating.

The diffracted intensity is then the same shifted sinc2-function as above, but
multiplied by the convolution of a Dirac comb with a narrow sinc-function, the
Fourier pair of 	Na(x), which represents the shape of a single spectrum line.
Now, there is a difference, because the broad sinc-function produced by a single
slit has the same width as the spacing of the teeth in the Dirac comb. The zeros
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of this broad sinc-function are adjusted accordingly, and for one wavelength
the first order of diffraction falls on its maximum, while all the other orders
fall on its zeros. For this wavelength, all the transmitted light is diffracted into
the first order. For adjacent wavelengths the efficiency is similarly high, and in
general the efficiency remains usefully high for wavelengths between 2/3 and
3/2 of this wavelength.

This is the ‘blaze wavelength’ of the grating and the corresponding angle θ

is the ‘blaze-angle’.
Reflection gratings are made by ruling lines on an aluminium surface with

a diamond scribing tip, held at an angle to the surface so as to produce a series
of long thin mirrors, one for each ruling. The angle is the ‘blaze-angle’ that the
grating will have, and a similar analysis will show easily that the phase-change
across one slit is (2π/λ)2a tan β, where β is the ‘blaze-angle’ and a the width
of one ruling (and the separation of adjacent rulings). In practice, gratings are
usually used with light incident normally or near-normally on the ruling facets,
that is at an incidence angle β to the surface of the grating. There is then a
phase-change of zero across one ruling, but a delay (2π/λ)2a sin θ between
reflections from adjacent rulings. If this phase-change equals 2π then there is
a principal maximum in the diffraction pattern.

Transmission gratings, generally found in undergraduate teaching laborato-
ries, are usually blazed, and the effect can easily be seen by holding one up to
the eye and looking at a fluorescent lamp through it. The diffracted images in
various colours are much brighter on one side than on the other.

3.3 Babinet’s principle

This is a neglected but useful corollary of Fraunhofer diffraction theory. It says,
in effect, that the Fraunhofer diffraction pattern from any aperture is the same
as that from the complementary obstruction. In other words, if the screen is
removed and an opaque object of the same shape as the screen aperture is put
in the same place, the same diffraction pattern will be seen. The reasoning is
simple: if there were no screen, the amplitude scattered at an angle θ would
be zero. If there is a screen with an aperture, there is a (complex) scattering
amplitude A(θ ). It follows then that if the screen is removed an amplitude
�A(θ ) has been added to cancel out the first. That amplitude must have come
from the obstructing part of the screen, and if that alone is diffracting it will
have an amplitude �A(θ ) and an intensity AA� – in other words the same as
that from the original aperture.

(Babinet’s principle fails on the axis, i.e. at zero diffraction angle. Why is
this?)
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Its practical application was originally in Young’s eriometer, a device which
measures the size of blood cells. In modern times its application is in nuclear
physics. Fraunhofer diffraction theory is not confined to light or to electromag-
netic radiation generally, but holds true for sound or any other kind of wave
motion. Electron diffraction is well understood. The de Broglie waves of an
electron, neutron or ion beam may be scattered from a particular species of
atomic nucleus to give information, via the differential scattering amplitude,
about the shape and structure of the scattering centres.

3.4 Dipole arrays

There is an obvious analogy between the diffraction grating and a linear
array of equally-spaced dipole aerials. A diffraction grating reflects or trans-
mits coherent plane wavefronts and the dipole array, fed from a common
radio-frequency oscillator by properly matched transmission lines (in which
the speed of transmission is a considerable fraction, 1/10 to 3/4, of the
speed of light, depending on the type of line, dielectric constants etc.), is
in effect an array of coherent point sources, at least at large distances from the
array.

There are differences which make the aerial array interesting. These are
chiefly that the spacing of the individual dipoles is changeable, and that phase
delays can be introduced in the feeds to the individual aerials. We can represent
the aerial array by a shah-function corresponding to the aperture function in
optics:

A(x) DШa(x)	Na(x),

where N is the number of dipoles in the array and a is the spacing.
The output beam amplitude is the Fourier transform of this:

A(p) D
1

a
Шa(p) � sinc(Nπpa),

where p as before is sin θ/λ and the narrow sinc-function determines the width
of the transmitted beam.

Now here is an opportunity to experiment – on paper at least – with various
arrangements of dipoles, to calculate their behaviour. We have the advantage
over the spectroscopists that we can change the phases at the dipoles. The
shah-function Шa(x) may be written, for example, as the sum of two shah-
functions, each with twice the spacing but with one of them displaced sideways
by a distance a:

A(x) D [Ш2a(x)CШ2a(x) � δ(x � a)] �	a(Nx)
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but now we can introduce a phase-shift φ into alternate members of the array,
so that the aperture function looks like

A(x) D [Ш2a(x)eiφ CШ2a(x) � δ(x � a)] �	a(Nx)

and we can try various values of φ to see what happens.
The output beam amplitude is

A(p) D

[
1

2a
Ш1/(2a)(p)eiφ C

1

(2a)
Ш1/(2a)(p)e2πipa

]
� sinc(Nπpa)

D
1

(2a)
Ш1/(2a)(p)[eiφ C e2πipa] � sinc(Nπpa).

At this point we put in some interesting values for a and δ.

3.4.1 a D λ and φ D π

Let a D λ so that the dipoles are one wavelength apart:

A(θ ) D 2λШ1/(2λ)(sin θ/λ)[eiφ C e2πi sin θ ] � sinc(Nπ )sin θ.

If φ D π the dipoles alternate in phase.
The shah-function tells us that there is a ‘tooth’ in the (radiated) Dirac comb

at sin θ D 1/2, i.e. at θ D 30ı. In the square brackets eiδ and e2πi sin θ are both
equal to �1 so that power will be emitted at this angle on both sides of the
array-normal, with the beam-width being governed by the sinc-function, which
in turn depends on the number N of dipoles in the array. There will likewise
be emission at θ D 150ı, where sin θ D 1/2 once more (as might be expected
anyway, simply on grounds of symmetry).

3.4.2 a D λ/2 and φ D π

The amplitude function is now given by

A(θ ) D
1

2λ
Ш1/λ(sin θ/λ)[eiφ C eπi sin θ ] � sinc(N/(2π ))sin θ.

The shah-function here requires sin θ D 1 for a tooth, and the phases agree
within the square bracket. Emission will be along the line of the dipoles and
the beam width will be determined by sin θ D 2/N .

There is a hint here of how the Yagi aerial works; but it is no more than a
hint. A word of caution is appropriate: although the basic idea of Fraunhofer
diffraction may guide antenna design, and indeed allows proper calculation
for so-called ‘broadside arrays’, there are considerable complications when
describing ‘end-fire’ arrays, or ‘Yagi’ aerials (the sort once used for radar



3.4 Dipole arrays 57

transmission and television reception). The broadside array, which comprises
a number of dipoles (each dipole consisting of two rods, lying along the same
line, each λ/4 long and with an alternating voltage applied in the middle),
behaves like a row of point sources of radiation, and the amplitude at dis-
tances large compared with a wavelength can be calculated. Both the amplitude
and the relative phase radiated by each dipole can be controlled7 so that the
shape of the radiation pattern and the strengths of the side-lobes are under
control.

End-fire antennae, on the other hand, have one dipole driven by an oscillator
and rely on resonant oscillation of the other ‘passive’ dipoles to interfere with
the radiation pattern and direct the output power in one direction. The nearest
optical analogue is probably the Fabry–Pérot étalon or, which is practically the
same thing, the interference filter. The phase re-radiated by a passive dipole
depends on whether it is really half a wavelength long, on its conductivity, which
is not perfect, and on the dielectric constant of any sheath which may surround
it. Consequently, aerial design tends to be based on experience, experiment
and computation, rather than on strict Fraunhofer theory. The passive elements
may be λ/3 apart, for example, and their lengths will taper along the direction
of the aerial, being slightly shorter on the transmission side and longer on the
reflecting side of the excited dipole. Spacings are non-uniform, sometimes with
the spacing changing logarithmically or exponentially, with some elements
of peculiar shape, some ‘folded’, some ‘batwinged’ – and so it goes.8 Such
modifications allow a broader band of radiation to be transmitted or received
along a narrow cone possibly only a few degrees wide. Aerial design is a black
art, a path bestrewn with empiricism, with Christmas-tree designs of weird
complexity and with patent-infringement law-suits.

3.4.3 To continue . . .

At this point the reader’s curiosity may take up the challenge. For instance the
amplitude function may be split into three or more components. For example,

A(x) D
[
Ш3a(x)eiφ1 CШ3a(x)eiφ2 � δ(x � a)

CШ3a(x)eiφ3 � δ(x � 2a)
]
�	a(Nx)

so that a different phase shift is applied to every third aerial.
So far we have considered Dirac combs with uniform spacing between the

teeth. The door is wide open for the exploration of the convolution algebra of

7 This is equivalent to apodizing in optics, but with more flexibility.
8 To paraphrase Vonnegut.
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Fig. 3.14. The polar diagram of a sinc2-function.

delta-function combs with unequal spacing, which may be logarithmic, arith-
metic, exponential, Fibonacci and so on, all possibly yielding deeper insights
into the black art mentioned above.

3.5 Polar diagrams

Since the important feature of Fraunhofer theory is the angle of diffraction, it
is sometimes more useful, especially in antenna theory, to draw the intensity
pattern on a polar diagram, with intensity as r , the length of the radius vector,
and θ as the azimuth angle. The sinc2-function then appears as in Fig. 3.14.
Sometimes the logarithm of the intensity is plotted instead, to give the gain of
the antenna as a function of angle.

3.6 Phase and coherence

Coherence is an important concept, not only in optics, but whenever oscillators
are compared.

No natural light source is exactly monochromatic, and there are small varia-
tions in period and hence wavelength from time to time. Two sources are said to
be coherent when any small variation in one is matched by a similar variation
in the other, so that, for example, if a crest of a wave from one arrives at a
given point at the same instant as the trough of a wave from the other, then at
all subsequent times troughs and crests will arrive together and there is always
destructive interference between the two.



3.6 Phase and coherence 59

In practice the variations of wavelength and phase in a quasi-monochromatic
source are slow and if the wave train is divided – for example by a beam-
splitter, then one wave train will be almost coherent with the other which
has been delayed by a few wavelengths, as happens in an interferometer. As
the path-difference is increased, by moving one of the interferometer mirrors,
the fringes become less and less distinct and if the path-difference is great
enough they vanish. We have reached the limit of coherence and can refer
to the coherence length of the wave train. In ‘allowed’ (i.e. dipole) atomic
transitions, for example, each individual wave train has a coherence length of
a few metres, corresponding to the time taken for the atom to emit its light.
In a laser, where the emitted light is in phase with the stimulating light, the
coherence length may be anything up to a hundred times as long as the laser
cavity,9 the length depending on the reflectivity of the laser mirrors. The line
width is correspondingly narrow, much narrower than the ‘natural’ width of the
light emitted by the gas in the cavity. Similarly one can imagine the coherence
of light from a distant extended source, where no source element is coherent
with any other element. In this case, when light passes through a narrow slit, the
wave trains arriving at one edge of the slit will sum to a complicated function of
time, but, if the paths to the other edge of the slit all differ from the first set by
less than a few wavelengths, the function of time there will be almost the same
as for the first set and all the wave trains passing through the slit will interfere
as if the source were coherent. You can hold close to your eye a spectroscope
slit open a few microns, and look at a distant bright extended source such as
a frosted light-bulb: it will show the secondary maxima of the sinc2-function
which would be produced if all the source-elements in the bulb were coherent.
If the slit is opened slowly, the secondary maxima will crowd in to the principal
maximum and eventually disappear.

In this case we refer to the slit width as the coherence width of the source –
it is a property of the source, not of the equipment used to view it. If the
experiment is done in two orthogonal directions the coherence area of the
source can be measured.

The coherence width of the sun in green (λ D 550 nm) light, for example, is
about 60 μm, and with a narrow-band interference filter over the slit (to avoid
eye-damage!) the familiar sinc2 pattern can be seen with the slit opened to about
this width. It is no coincidence of course that plane monochromatic wavefronts
incident on and diffracted through the same slit will show a principal maximum
in their diffraction pattern of the same angular width as the extended source.

9 Sometimes much greater. See J. L. Hall’s 2005 Nobel Prize lecture, J. L. Hall, Rev. Mod. Phys.
78 (2006), 1279–1295.
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Fig. 3.15. The vector addition of two analytic wave-vectors representing two
coherent sources. All three vectors are rotating at the same frequency ν. The
three vectors are described by complex numbers of the form Ae2πiνt , the so-
called ‘analytic signal’, but it is the real part of each, the horizontal component
in the graph, which represents the instantaneous value of the electric field of the
light-wave.

A star, on the other hand, has a coherence width of many – perhaps tens or
hundreds – of metres and a Young’s-slit interferometer with the apertures spaced
by this sort of distance will show interference fringes, with the fringe visibility
falling slowly as the distance between the apertures is increased. Michelson
used this effect to measure the coherence width and hence the angular diameter
of several stars.

3.7 Fringe visibility

An alternative way of describing coherence is by considering the analytic wave-
vectors on the Argand plane, which rotate at about 6 � 1014 Hz for green light,
but which, for two coherent sources, are rigidly linked by the phase-difference
between them. If we abandon the time variation, the vector diagram looks like
Fig. 3.15 and the resultant amplitude is the vector sum of the components.
The resultant amplitude may be zero if the two sources are perfectly coherent,
of equal amplitude and opposite in phase. Otherwise the resultant intensity is
proportional to the square of the length of this vector.

If the sources are only partially coherent (Fig. 3.16) it means that the ampli-
tude and phase angles are varying randomly over angles small compared with
2π . Interference fringes from such a pair of sources will show an intensity
pattern on a screen given by

I D I1 C I2 C 2�12

√
I1I2 cos φ,
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Fig. 3.16. The analytic vector diagram for two quasi-coherent sources. The two
vectors here are varying randomly only in phase. Nevertheless, the resultant vector
varies both in phase and in amplitude, and wanders randomly within the general
area of the quadrilateral. Even if the amplitudes were the same and the phases
opposed, there would not be complete cancellation.

where �12 is known as the degree of coherence, the coherence factor or the
coefficient of coherence. �12 is always 	1.

As usual, φ is the phase difference, which varies from place to place on the
diffraction pattern.

The maximum intensity Imax in the pattern is at places where φ D 2nπ and is
given by Imax D I1 C I2 C �12. The minimum intensity, where φ D (2nC 1)π ,
is Imin D I1 C I2 � �12.

We can now define the visibility, V , of the fringe pattern by

V D (Imax � Imin)/(Imax C Imin)

and clearly, provided that the two sources are of equal intensity, V D �12.

3.8 The Michelson stellar interferometer

This is essentially a Young’s-slit interferometer on an heroic scale. The aper-
tures are two mirrors mounted on carriages which run along a beam fixed to the
upper end of an astronomical reflecting telescope and they reflect light from a
bright star to two more mirrors fixed near the centre of the beam, which in turn
direct the light to the telescope objective and hence to the focus. At high magni-
fication, interference fringes can be seen in the eyepiece, superimposed on the
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Fig. 3.17. Young’s-slit interferometry with a distant extended source. An element
of the source coming from a direction making an angle θ with the optic axis will
produce its own infinitesimal fringe pattern displaced by this angle θ . All these
fringe patterns, incoherent with each other, have their intensities added to form the
resultant fringe pattern of lower visibility.

(large!) diffraction-limited image of the star. Atmospheric turbulence causes
the image to move and shimmer, but the fringes move with the stellar image
and remain visible to the observer. The visibility of the fringes diminishes as
the mirror separation increases and may fall to zero at some point.

We now demonstrate that the fringe visibility, measured as a function
of the mirror separation, is the modular Fourier transform of the

intensity distribution across the source.

In Fig. 3.17, a distant, monochromatic point source of intensity S(0) lying on
the optic axis will give fringes and the intensity will vary sinusoidally according
to

I (α) D S(0)

[
1C cos

(
2π

λ
w cos α

)]
,

where λ is the wavelength, w the slit separation and α the angular variable
describing the fringe pattern. The period of the pattern is λ/w, and depends on
the slit separation, w.

This, of course, is a standard result in physical optics.
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Another such source, situated at an angle θ to the optic axis, similarly
produces perfect10 fringes but displaced sideways by the same angle θ on the
fringe pattern. The two sources are incoherent, so if they are both present their
intensities are added.

If instead there is an extended distant source with intensity varying as S(θ ),
an element of infinitesimal intensity S(θ )dθ will produce its own infinitesimal
fringe pattern in the interferometer, displaced sideways by θ .

All these separate fringe patterns must be summed, so that the resultant
intensity emerging at angle α to form the fringe pattern will be

I (α) D
∫ 1
�1

S(θ )dθ

[
1C cos

(
2π

λ
w(α � θ )

)]
,

which separates to

I (α) D
∫ 1
�1

S(θ )dθ C

∫ 1
�1

S(θ )

[
cos

(
2π

λ
w(α � θ )

)]
dθ,

where the sines of the small angles α and θ have been replaced by the angles
themselves.

The first term represents the total intensity coming from the extended source.
The second term is the convolution of the source intensity distribution S(θ ) with
the cosine, which we write as C(α),

C(α) D S(θ ) � cos(2πpθ ),

and the variable p, conjugate to α, is w/λ.
The convolution integral, nominally from �1 to C1, is in practice over

the angular width of the source.
The result of the convolution, as we saw11 in Chapter 2, is a sinusoid with

period 1/p, determined by the wavelength λ and the (adjustable) distance
w between the two apertures. It has an amplitude A(p), the amplitude of
the corresponding Fourier component in the transform of the source intensity
distribution. (Bear in mind that in the Fourier transform the variable conjugate
to α is p, and A(p)• S(α).) The intensity maxima of the resultant fringe
pattern are S C A and the minima are S � A so that the fringe visibility, as a
function of p, that is, of w/λ, is

V D
A(w/λ)

S
(3.3)

and A(w/λ) is the Fourier transform of S(θ ). This is demonstrated in Fig. 3.18.

10 That is, of visibility V D 1. 11 On p. 38.



64 Applications 1
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S

Fig. 3.18. The fringe visibility as a function of w/λ.

The fringe visibility thus decreases as w increases. When stellar diameters
were measured it was a reasonable assumption that S(θ ) was symmetrical so
that its Fourier transform was real and symmetrical.

Otherwise A(w/λ) was the modular transform, as for example when observ-
ing a double-star with components of unequal intensity, but in practice the point
was academic, since phase-shifts in the fringe pattern would anyway be lost
in the atmospheric disturbance, and it is simply the minima or vanishing of
the fringes that were observed at particular values of w. If, for example, a
double star with two equal components were observed, S(θ ) would be a pair
of δ-functions and the fringe visibility as a function of w/λ would decrease
sinusoidally to zero, then increase again in inverse phase. The value of w at
zero visibility would be observable but the phase inversion would not.

3.9 The van Cittert–Zernike theorem

The original Michelson stellar interferometer12 comprised two 150-mm-
diameter plane mirrors mounted with their normals at 45ı to the optic axis
of the 10000 Hooker telescope at the Mount Wilson observatory. To vary w,
they could be moved on trolleys along a 6-m-long girder fixed to the top of
the telescope tube, and the light from them was directed to two fixed mirrors
also at 45ı, whence the light was passed through to the telescope objective
and hence to the focus. The Young ‘slits’ were thus the two moveable mirrors
on the girder, which reflected starlight13 from a star or perhaps a double star.
The point of this description is that the orientation of the two apertures could
have been altered and, if the star had had an ellipsoidal shape, for example,

12 A. A. Michelson and F. G. Pease, Astrophys. J. 53 (1921), 249.
13 In fact they began with the red giant Betelgeuse, also known as α-Orionis.
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the coherence width would have been greater when the apertures were aligned
with the star’s minor axis. The fringe visibility would measure the degree of
coherence for that particular separation and that particular orientation. A shape,
called the ‘coherence area’ of the star, could in principle be mapped out, and the
van Cittert–Zernike theorem, in its crudest form, states that the fringe visibility,
i.e. the degree of coherence, as a function of w and the orientation angle ξ , is
the two-dimensional Fourier transform of the intensity distribution on the sky
as a function of α and ξ .

Thus, in its most elementary – and practical – form, the van Cittert–Zernike
theorem is described by equation (3.3) above.

This is not the place for a full rigorous derivation and proof of the theorem
which considers the complex degree of coherence (as exemplified by the phase-
shift of the fringes) and which occupies two pages in Born & Wolf’s Principles
of Optics.14 The idea of a ‘coherence area’ is the important thing. It is not fixed
in space (the telescope is moving both with Earth’s orbital speed and with the
diurnal rotational speed of the Mount Wilson observatory) but is measured by
the separation of the two apertures. It is the ‘area over which some degree of
coherence can be observed’.

To put it another way: if there were a circular coherent source of monochro-
matic light of the diameter and at the distance of Betelgeuse its ‘Airy disc’ here
on Earth would have a diameter of about 6 m.

14 M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 7th edn,
1999, pp. 572–574.



4

Applications 2: signal analysis and
communication theory

4.1 Communication channels

Although the concepts involved in communication theory are general enough
to include bush-telegraph drums, alpine yodelling or a ship’s semaphore flags,
by ‘communication channel’ is usually meant a single electrical conductor,
a waveguide, a fibre-optic cable or a radio-frequency carrier wave. Commu-
nication theory covers the same general ground as information theory, which
discusses the ‘coding’ of messages (such as Morse code, not to be confused with
encryption, which is what spies do) so that they can be transmitted efficiently.
Here we are concerned with the physical transmission, by electric currents
or radio waves, of the signal or message that has already been encoded. The
distinction is that communication is essentially an analogue process, whereas
information coding is essentially digital.

For the sake of argument, consider an electrical conductor along which is
sent a varying current, sufficient to produce a potential difference V (t) across
a terminating impedance of one ohm (1�).

The mean level or time-average of this potential is denoted by the symbol
hV (t)i defined by the equation:

hV (t)i D
1

2T

∫ T

�T

V (t)dt.

The power delivered by the signal varies from moment to moment, and it too
has a mean value:

hV 2(t)i D
1

2T

∫ T

�T

V 2(t)dt.

For convenience, signals are represented by functions like sinusoids which, in
general, disobey one of the Dirichlet conditions described at the beginning of

66
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Chapter 2: they are not square-integrable:

lim
T!1

∫ T

�T

V 2(t)dt !1.

However, in practice, the signal begins and ends at finite times and we regard
the signal as the product of V (t) with a very broad top-hat function. Its Fourier
transform – which tells us about its frequency content – is then the convolution
of the true frequency content with a sinc-function so narrow that it can for most
purposes be ignored. We thus assume that V (t)! 0 at jt j > T and that∫ 1

�1

V 2(t)dt D

∫ T

�T

V 2(t)dt.

We now define a function C(ν) such that C(ν)• V (t), and Rayleigh’s theorem
gives ∫ 1

�1

jC(ν)j2 dν D

∫ 1
�1

V 2(t)dt D

∫ T

�T

V 2(t)dt.

The mean power level in the signal is then

1

2T

∫ T

�T

jV (t)j2 dt

since V 2(t) is the power delivered into unit impedance; and then

1

2T

∫ T

�T

jV (t)j2 dt D

∫ 1
�1

jC(ν)j2

2T
dν

and we define jC(ν)j2/(2T ) D G(ν) to be the spectral power density (SPD) of
the signal.

4.1.1 The Wiener–Khinchine theorem

The autocorrelation function of V (t) is defined to be

lim
T!1

1

2T

∫ T

�T

V (t)V (t C τ )dt D hV (t)V (t C τ )i.

Again the integral on the left-hand side diverges and we use the shift theorem
and Parseval’s theorem to give∫ T

�T

V (t)V (t C τ )dt D

∫ 1
�1

C�(ν)C(ν)e2πiντ dν.
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Then

1

2T

∫ T

�T

V (t)V (t C τ )dt D

∫ 1
�1

jC(ν)j2

2T
e2πiντ dν D R(τ )

so that, with the definition of G(ν) above,

R(τ ) D
∫ 1
�1

G(ν)e2πiντ dν

and finally

R(τ )• G(ν).

In other words,

the spectral power density is the Fourier transform of the
autocorrelation function of the signal.

This is the Wiener–Khinchine theorem.

4.2 Noise

The term originally meant the random fluctuation of signal voltage which was
heard as a hissing sound in early telephone receivers, and which is still heard in
radio receivers which are not tuned to a transmitting frequency. Now it is taken
to mean any randomly fluctuating signal which carries no message or ‘informa-
tion’. If it has equal power density at all frequencies it is called ‘white’ noise.1

Its autocorrelation function is always zero since at any time the signal n(t),
being random, is as likely to be negative as to be positive. The only exception is
at zero delay, τ D 0, where the integral diverges. The autocorrelation function
is therefore a δ-function and its Fourier transform is unity, in accordance with
the Wiener–Khinchine theorem and with this definition of ‘white’.

In practice the band of frequencies which is received is always finite, so
that the noise power is always finite. There are other types of noise, for
example:

� Electron shot noise, or ‘Johnson noise’, in a resistor, giving a random fluctua-
tion of voltage across it: hV 2(t)i D 4πRkT 
ν, where 
ν is the bandwidth,
R the resistance, k Boltzmann’s constant and T the absolute temperature.2

1 This is a rebarbative use of ‘white’, which really defines a rough surface which reflects all the
radiation incident upon it. It is used, less compellingly, to describe the colour of the light
emitted by the Sun or, even less compellingly, to describe light of constant spectral power
density in which all wavelengths (or frequencies; take your pick) contribute equal power.

2 hV 2i D 1.3� 10�10(R 
ν)1/2 volts in practice.
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� Photo-electron shot noise, which has a normal (Gaussian) distribution of
count-rate3 at frequencies low compared with the average generation-rate
and, more accurately, a Poisson distribution when equal time-samples are
taken. This kind of noise is met chiefly in fibre optics when light is used
for communication, and only then when the light is weak. Typically, a laser
beam delivers 1018 photons s�1, so that even at 100 MHz there are 1010

photons/sample, or an S/N ratio of 105 : 1.
� Semiconductor noise, which gives a time-varying voltage with a spectral

power density which varies as 1/ν – which is why many semiconductor
detectors of radiation are best operated at high frequency with a ‘chopper’ to
switch the radiation on and off. There is usually an optimum frequency, since
the number of photons in a short sample may be small enough to increase
photon shot noise to the level of the semiconductor noise.

4.3 Filters

By ‘filter’ we mean an electrical impedance which depends on the frequency
of the signal current trying to pass. The exact structure of the filter, namely
the arrangement of resistors, capacitors and inductances, is immaterial. What
matters is the effect that the filter has on a signal of fixed frequency and unit
amplitude. The filter does two things: it attenuates the amplitude and it shifts
the phase. This is all that it does.4 The frequency-dependence of its impedance
is described by its filter function Z(ν). This is defined to be the ratio of the
output voltage divided by the input voltage, as a function of frequency:

Z(ν) D Vo/Vi D A(ν)eiφ(ν),

where Vi and Vo are ‘analytic’ representations of the input and output voltages,
i.e. they include the phase as well as the amplitude. The impedance is complex
since both the amplitude and the phase of Vo may be different from those
of Vi. The filter impedance, Z, is usually shown graphically by plotting a
polar diagram of the attenuation, A, radially against the angle of phase-shift,
eliminating ν as a variable. The result is called a Nyquist diagram (Fig. 4.1).
This is the same figure as that which is used to describe a feedback loop in
servo-mechanism theory, with the difference that the amplitude A is always less
than unity in a passive filter, so that there is no fear of the curve encompassing
the point (�1, 0), the criterion for oscillation in a servo-mechanism.

3 Which may be converted into a time-varying voltage by a rate-meter.
4 Unless it is ‘active’. Active filters can do other things, such as doubling the frequency of the

input signal.
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Fig. 4.1. The Nyquist diagram of a typical filter.

4.4 The matched filter theorem

Suppose that a signal V (t) has a frequency spectrum C(ν) and a spectral
power density S(ν) D jC(ν)j2/(2T ). The signal emerging from the filter then
has a frequency spectrum C(ν)Z(ν) and the spectral power density is G(ν),
given by

G(ν) D
jC(ν)Z(ν)j2

2T
.

If there is white noise passing through the system, with spectral power density
jN (ν)j2/(2T ), the total signal power and noise power are

1

2T

∫ 1
�1

jC(ν)Z(ν)j2 dν

and

1

2T

∫ 1
�1

jN (ν)Z(ν)j2 dν.

For white noise jN (ν)j2 is a constant, equal to A, say, so that the transmitted
noise power is

A

2T

∫ 1
�1

jZ(ν)j2 dν

and the ratio of signal power to noise power is the ratio

(S/N )power D

∫ 1
�1

jC(ν)Z(ν)j2 dν

/
A

∫ 1
�1

jZ(ν)j2 dν.
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Here we use Schwartz’s inequality5

[∫ 1
�1

jC(ν)Z(ν)j2 dν

]2

	

∫ 1
�1

jC(ν)j2 dν

∫ 1
�1

jZ(ν)j2 dν

so that the S/N power ratio is always	A
∫1
�1 jC(ν)j2 dν and the equality sign

holds if and only if C(ν) is a multiple of Z(ν). Hence

the S/N power ratio will always be greatest if the filter characteristic
function Z(ν) has the same shape as the frequency content of the

signal to be received.

This is the matched filter theorem. In words, it means that the best signal-
to-noise ratio is obtained if the filter transmission function has the same shape
as the signal power spectrum.

It has a surprisingly wide application, in spatial as well as temporal data
transmission. The tuned circuit of a radio receiver is an obvious example of a
matched filter: it passes only those frequencies containing the information in
the programme, and rejects the rest of the electromagnetic spectrum. The tone-
control knob does the same for the accoustic output. A monochromator does the
same thing with light. The ‘radial velocity spectrometer’ used by astronomers6

is an example of a spatial matched filter. The negative of a stellar spectrum
is placed in the focal plane of a spectrograph, and its position is adjusted
sideways – perpendicular to the slit-images – until there is a minimum of total
transmitted light. The movement of the mask necessary for this measures the
Doppler-effect produced by the line-of-sight velocity on the spectrum of a star.

4.5 Modulations

When a communication channel is a wireless telegraphy channel (a term
which comprises everything from a modulated laser beam to an extremely low-
frequency (ELF) transmitter used to communicate with submerged submarines)
it is usual for it to consist of a ‘carrier’ frequency on which is superimposed a
‘modulation’. If there is no modulating signal, the voltage at the receiver varies
with time according to

V (t) D V e2πi(νctCφ),

5 See, for example, D. C. Champeney, Fourier Transforms and their Physical Applications,
Academic Press, New York, 1973, Appendix F.

6 Particularly by R. F. Griffin. See R. F. Griffin, Astrophys. J. 148 (1967), 465.
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Fig. 4.2. A carrier wave with amplitude modulation.

vc − nmod nc + nmodncn

A(n)

Fig. 4.3. Various modulating frequencies occupy a band of the spectrum. The time
function is AC B cos(2πνmodt) and in frequency space the spectrum becomes the
convolution of δ(ν � νc) with Aδ(ν)C B[(δ(ν � νmod)C δ(ν C νmod)]/2.

where νc is the carrier frequency; and the modulation may be carried out by
making V , νc or φ a function of time.

� Amplitude modulation (Fig. 4.3). If V varies with a modulating frequency
νmod, then V D AC B cos(2πνmodt) and the resulting frequency distribution
will be as in Fig. 4.2 and, as various modulating frequencies from 0! νmax

are transmitted, the frequency spectrum will occupy a band of the spectrum
from νc � νmax to νc C νmax. If low modulating frequencies predominate in
the signal, the band of frequencies occupied by the channel will have the
appearance of Fig. 4.3 and the filter in the receiver should have this profile
too.
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Fig. 4.4. Frequency modulation of the carrier. Many sidebands are present, with
their amplitudes given by the Jacobi expansion.

The power transmitted by the carrier is wasted unless very low frequencies
are present in the signal. The power required from the transmitter can be
reduced by filtering its output so that only the range from νc to νmax is
transmitted. The receiver is doctored in like fashion. The result is single-
sideband transmission.

� Frequency modulation (Fig. 4.4). This is important because it is possible to
increase the bandwidth used by the channel. (By ‘channel’ is meant here
perhaps the radio-frequency link used by a spacecraft approaching Neptune
and its receiver on Earth, some 4 � 109 km away.) The signal now is

V (t) D A cos(2πν(t)t)
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and ν(t) itself is varying according to ν(t) D νcarrier C μ cos(2πνmod(t)t).
The parameter μ can be made very large so that, for example, a voice
telephone signal normally requiring about 3 � 103 Hz bandwidth can be made
to occupy several MHz if necessary. The advantage in doing this is found
in the Hartley–Shannon theorem of information theory, which states that the
‘channel capacity’, the rate at which a noisy channel can transmit information
in bits s�1 (‘bauds’), is given by

dB/dt 	 2� loge(1C S/N ),

where � is the channel bandwidth, S/N is the power signal-to-noise ratio
and dB/dt is the ‘baud-rate’ or bit-transmission rate.

So, to get a high data transmission rate, you need not slave to improve the
S/N ratio because only the logarithm of that is involved: instead you increase
the bandwidth of the transmission. In this way the low power available to
the spacecraft transmitter near Neptune is used more effectively than would
be possible in an amplitude-modulated transmitter. Theorems in information
theory, like those in thermodynamics, tend to tell you what is possible, without
telling you how to do it.

To see how the power is distributed in a frequency-modulated carrier, the
message-signal, a(t), can be written in terms of the phase of the carrier signal,
bearing in mind that frequency can be defined as rate of change of phase. If
the phase is taken to be zero at time t D 0, then the phase at time t can be
written as

φ D

∫ t

0

∂φ

∂t
dt

and ∂φ/∂t D νc C
∫ t

0 a(t)dt and the transmitted signal is

V (t) D ae
2πi

[
νcC

∫ t

0 a(t)dt

]
t
.

Consider a single modulating frequency νmod, such that a(t) D
k cos(2πνmodt). Then

2πi

∫ t

0
a(t)dt D

2πik

2πνmod
sin(2πνmodt),

where k is the depth of modulation, and k/νmod is called the modulation
index, m. Then

V (t) D Ae2πiνct eim sin(2πνmodt).

It is a cardinal rule in applied mathematics that, when you see an exponential
function with a sine or cosine in the exponent, there is a Bessel function
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lurking somewhere. This is no exception. The second factor in the expression
for V (t) can be expanded in a series of Bessel functions by the Jacobi
expansion7

eim sin(2πνmodt) D

1∑
nD�1

Jn(m)e2πinνmodt

and this is easily Fourier transformable to

χ (ν) D
1∑

nD�1

Jn(m)δ(ν � nνmod).

The spectrum of the transmitted signal is the convolution of χ (ν) with δ(ν �
νc). In other words, χ (ν) is shifted sideways so that the n D 0 tooth of the
Dirac comb is at ν D νc.

The amplitudes of the Bessel functions must be computed or looked up in
a table8 and for small values of the argument m are J0(m) D 1, J1(m) D m/2,
J2(m) D m2/4 etc. Each of these Bessel functions multiplies a corresponding
tooth in the Dirac comb of period νmod to give the spectrum of the modulated
carrier. Bearing in mind that m D k/νmod, we see that the channel is not
uniformly filled and there is less power in higher frequencies.

As an example of the cross-fertilizing effect of Fourier transforms, the
theory above can equally be applied to the diffraction produced by a grating
in which there is a periodic error in the rulings. In Chapter 3 there was an
expression for the ‘aperture function’ of a grating, which was

A(x) D 	Na(x)[	a(x) �Шa(x)],

and if there is a periodic error in the ruling, it is Шa(x) that must be replaced.
The rulings, which should have been at x D 0, a, 2a, 3a, . . . , will be
at 0, a C α sin(2πβ � a), 2a C α sin(2πβ � 2a), . . . etc. and the Ш-function
is replaced by

G(x) D
1∑
�1

δ[x � na � α sin(2πβna)],

where α is the amplitude of the periodic error and 1/β is its ‘pitch’. This has
a Fourier transform

G(p) D
1∑
�1

e2πi[naCα sin(2πβna)]

7 See, for example, H. Jeffreys & B. Jeffreys, Methods of Mathematical Physics, 3rd edn,
Cambridge University Press, Cambridge, 1999, p. 589.

8 For example, in Jahnke & Emde or Abramowitz & Stegun (see the bibliography).
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Fig. 4.5. Rowland ghosts in the spectrum produced by a diffraction grating with
a period error in its rulings. The spacing of the ghost from its parent line depends
on the period of the error, and the intensity depends on the square of the amplitude
of the error.

with p D sin θ/λ as in Chapter 3. There is a clear analogy with V (t) above.
The diffraction pattern then contains what are called ‘ghost’ lines9 around
each genuine spectrum line as in Fig. 4.5.

The analysis is not quite as simple as in the case of a frequency-modulated
radio wave because the simple sinusoids are replaced by δ-functions. What
happens is that the infinite sum G(p) can be analysed into a whole set of Dirac
combs, of periods slightly above and below the true error-free period, and
with amplitudes decreasing rapidly according to the amplitude of the Bessel
function which multiplies them. The Rowland ghosts are then separated
from the parent line by distances which depend on the pitch 1/β of the lead-
screw of the grating ruling engine and have amplitudes which depend on the
square10 of the amplitude α of the periodic error.

These satellites on either side of a spectrum line with intensity π2p2α2

times the height of the parent and separated from it by 
λ D ˙aβλ are
the first-order Rowland ghosts. The next ones, of height π4p4α4 times
the parent intensity, are the second-order ghosts, and so on. The anal-
ogy with the channel occupation of a frequency-modulated carrier is
exact.

There are, of course, many other ways of modulating a carrier, such as phase
modulation, pulse-width modulation, pulse-position modulation, pulse-height
modulation and so on, quite apart from digital encoding, which is a quite
separate way of conveying information. Several different kinds of modulation
can be applied simultaneously to the same carrier, each requiring a differ-
ent type of demodulating circuit at the receiver. The design of communica-
tions channels includes the art of combining and separating these modulators

9 Rowland ghosts, after H. A. Rowland, the inventor of the first effective grating-ruling engine.
10 Because G(p) gives the diffraction amplitude.



4.7 Passage of signals through simple filters 77

and ensuring that they do not influence each other with various kinds of
‘cross-talk’.

4.6 Multiplex transmission along a channel

There are two ways of sending a number of independent signals along the same
communication channel. They are known as time-multiplexing and frequency-
multiplexing. Frequency multiplexing is the more commonly used. The sig-
nals to be sent are used to modulate11 a sub-carrier, which then modulates
the main carrier. A filter at the receiving end demodulates the main carrier
and transmits only the sub-carrier and its sidebands (which contain the mes-
sage). Different sub-carriers require different filters and it is usual to leave a
small gap in the frequency spectrum between sub-carriers in order to guard
against ‘cross-talk’, that is one signal spreading into the pass-band of another
signal.

Time-multiplexing involves the ‘sampling’ of the carrier at regular time
intervals. If, for example, there are ten separate signals to be sent, the sam-
pling rate must be twenty times the highest frequency present in each band.
The samples are sent in sequence and switched to ten different channels for
decoding, and there must be some way of collating each message channel at
the transmitting end with its counterpart at the receiving end so that the right
message goes to the right recipient. The ‘serial link’ between a computer and
a peripheral, which uses only one wire, is an example of this, with about eight
channels,12 one for each bit-position in each byte of data.

4.7 The passage of some signals through simple filters

This is not a comprehensive treatment of the subject, but illustrates the methods
used to solve problems. Firstly we need to know about the Heaviside step-
function.

4.7.1 The Heaviside step-function

When a switch is closed in an electric circuit there is a virtually instanta-
neous change of voltage on one side. This can be represented by a ‘Heaviside

11 ‘Modulate’ here means that the main carrier signal is multiplied by the message-bearing
sub-carrier. Demodulation is the reverse process, in which the sub-carrier and its message are
extracted from the transmitted signal by one of various electronic tricks.

12 Anything between five and eleven channels in practice, so long as the transmitter and receiver
have agreed beforehand about the number.
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0 t

Fig. 4.6. An analytic function approximating to a Heaviside step-function in the
limit a! 0.

step-function’, H (t). It has the property that H (t) D 0 for t < 0 and H (t) D 1
for t > 0.13 Like the delta-function, it can be represented as the limit of an
analytic function (Fig. 4.6), for example

H (t) D lim
a!0

[
1

1C e�2t/a

]
,

which tends to unity as t tends to 1, tends to zero as t tends to �1 and
automatically takes the value 1/2 at t D 0.

However, this function is not Fourier-transformable because it does not
satisfy the Dirichlet condition of being square-integrable.

Instead we construct a function as follows.
We begin with the so-called ‘sgn’-function (Fig. 4.7), defined by

sgn(t) D

{
�1, �1 < t < 0,

C1, 0 < t <1

and we divide it by 2 and add 1/2 to give a Heaviside step of unit height.
The function sgn(t)/2 likewise does not obey the Dirichlet conditions but

can be approximated in several ways. It may be regarded, for example, as the
limiting case of a pair of ‘ramp’ functions, defined by

f (t) D

⎧⎪⎪⎨
⎪⎪⎩

lim
a!0

�(at C 1)

2
, �1/a < x < 0,

lim
a!0

(1 � at)

2
, 0 < x < 1/a

and the functions of this pair obey the Dirichlet conditions (at least before we go
to the limit!), and together form an antisymmetrical function which, as a ! 0,

13 Its value at x D 0 is the subject of debate, but is usually taken as H (0) D 1/2.
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0, 1

0, –1

Fig. 4.7. The sgn function sgn(t).
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Fig. 4.8. Representation of a Heaviside step-function by two functions which
obey the Dirichlet conditions.

approaches sgn(t)/2. As it does so those parts of its Fourier transform which
have a factor a all vanish, leaving us with the Fourier transform of sgn(t)/2.
Adding 1/2 to give the step function means that we add δ(ν)/2 to the Fourier
transform of sgn(t)/2. (See Fig. 4.8.)

The sum of the Fourier transforms14 of these three components in the limit
as a ! 0 is

φ(ν) D
δ(ν)

2
C

1

2πiν
.

For all practical purposes we can ignore the δ-function since it cancels itself
out when any finite limits appear in the Fourier transform.

14 Remember to do the inverse transform, with �2πiνt in the exponent, when integrating with
respect to t .
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Alternatively, and this is worth doing as an exercise, we can get the same
result using a pair of exponentials:15

H (t) D

⎧⎪⎪⎨
⎪⎪⎩

1

2
C lim

a!0

1

2

(
eat � 1

)
, �1 < t < 0,

1

2
C lim

a!0

1

2

(
1C e�at

)
, 0 < t <1.

4.7.2 The passage of a voltage step through a ‘perfect’
low-pass filter

Suppose that the filter is a ‘low-pass’ filter with no attenuation or phase-
shift up to a critical frequency νc and zero transmission thereafter.16 If the
height of the step is V volts, the voltage as a function of time is a Heaviside
step-function, V H (t). Its frequency content is then V/(2πiν) and the output
frequency spectrum is the product of this with the filter profile: that is, V (ν) D
V/(2πiν) �	νc (ν). The output signal, as a function of time, is the Fourier
transform of this, which is

f0(t) D V

∫ νc

�νc

e2πiνt

2πiν
dν,

where the top-hat has been replaced by finite limits on the integral.
The function to be transformed is antisymmetrical and so there is only a

sine-transform:

f0(t) D iV

∫ νc

�νc

sin(2πνt)

2πiν
dν D V t

∫ νc

�νc

sinc(2πνt)dν

D 2V t

∫ νc

0
sinc(2πνt)dν D

1

π

∫ 2πνct

0
sinc(x)dx

with the obvious substitution x D 2πνt .
The integral is a function of t , obviously, and must be computed since

sinc-functions are not directly integrable. The result is shown graphically in
Fig. 4.9.

The rise-time depends on the filter bandwidth. People who use oscilloscopes
on the fastest time-base settings to look at edges will recognize this curve.

15 This pair was pointed out to me by an unknown referee who took me to task for a glaring error
in previous editions of this book: I gave the Fourier transform as a pure imaginary function,
despite the fact that H (t) is not antisymmetrical. Mea culpa.

16 Such a filter, known colloquially as a ‘brick-wall’ filter, is impossible practically and there are
inevitably phase-shifts tied to the attenuation or ‘roll-off’ rates: nevertheless, various
approximations abound in the world of electronics.
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Fig. 4.9. Passage of a Heaviside step-function through a perfect low-pass filter.
The pass band is a top-hat function in frequency space, and this sets the limits on
the integral of the Heaviside step’s transform.

4.8 The Gibbs phenomenon

When you display a square-wave on an oscilloscope, the edges are never
quite sharp (unless they are made so by some subtle and deliberate electronic
trick) but show small oscillations which increase in amplitude as the corner is
approached. They may be quite small in a high-bandwidth oscilloscope.

The reason is to be found in the finite bandwidth of the oscilloscope. The
square-wave, regarded as the convolution of a top-hat with a Dirac comb, is
synthesized from a Dirac comb with tooth-heights modulated by an enveloping
sinc-function. To give a perfect square-wave, an infinite number of teeth is
required, that is to say, the series expansion for F (t) must have an infinite
number of terms: sharp corners need high frequencies. Since there is an upper
limit to the available frequencies, only a finite number of terms can, in practice,
be included. This is equivalent to multiplying the sinc-modulated Dirac comb
in frequency-space by a top-hat function of width 2νmax, and in t-space, which
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is what the oscilloscope displays, you see the convolution of the square-wave
with a very narrow sinc-function sinc(2πνmax). Convolution with the leading
edge of the displayed square-wave (effectively with a Heaviside step-function)
replaces the sharp edge by the integral of the sinc-function between �1 and
t , and the result is shown in Fig. 4.9.

The phenomenon was discovered experimentally by A. A. Michelson and
Stratton. They designed a mechanical Fourier synthesizer, in which a pen
position was controlled by eighty springs pulling together against a master-
spring, each controlled by eighty gear-wheels which turned at relative rates
of 1/80, 2/80, 3/80, . . . , 79/80 and 80/80 turns per turn of a crank-handle.
The synthesizer could have the spring tensions set to represent the eighty
amplitudes of the Fourier coefficients and the pen position gave the sum of the
series. As the operator turned the crank-handle a strip of paper moved uniformly
beneath the pen and the pen drew the graph on it, reproducing, to Michelson’s
mystification, a square-wave as planned, but showing the Gibbs phenomenon.
Michelson assumed, wrongly, that mechanical shortcomings were the cause:
Gibbs gave the true explanation in a letter to Nature.17

The machine itself, a marvel of its period, was constructed by Gaertner & Co.
of Chicago in 1898. It now languishes in the archives of the South Kensington
Science Museum.

4.8.1 The passage of a train of pulses through a low-pass filter

Suppose that we represent the pulse train by a Ш-function. If the pulse repetition
frequency is ν0 the train is described by Шa(t), where a D 1/ν0. Suppose that
the filter, as before, transmits perfectly all frequencies below a certain limit and
nothing above that limit. In other words, the filter’s frequency profile or ‘filter
function’ is the same top-hat function 	νf . The Fourier transforms of the signal
and the filter function are (1/a)Шν0 (ν) and 	νf (ν), respectively. The frequency
spectrum of the output signal is then the product of the input spectrum and
the filter function, (1/a)Шν0 (ν) �	νf (ν), and the output signal is the Fourier
transform of this, namely the convolution of the original train of pulses with
sinc(2πνf t). If the filter bandwidth is wide compared with the pulse repetition
frequency, 1/a, the sinc-function is narrow compared with the separation of
individual pulses, and each pulse is replaced, in effect, by this narrow sinc-
function. On the other hand, if the filter bandwidth is small and contains only
a few harmonics of this fundamental frequency, the pulse-train will resemble
a sinusoidal wave. An interesting sidelight is that if the transmission function

17 J. W. Gibbs, Nature 59 (1899), 606.
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Fig. 4.10. Attenuation of a pulse train by a narrow-band low-pass filter.

Fig. 4.11. A simple high-pass filter passing a voltage step.

of the filter is a decaying exponential,18 Z(ν) D e�kjνj, then the wave train is
the convolution of Шa(t) with (k/(2π2))/[t2 C (k/(2π ))2]. The square of the
resulting function may be familiar to students of the Fabry–Pérot étalon as the
‘Airy’ profile. (See Fig. 4.10.)

4.8.2 Passage of a voltage step through a simple high-pass filter

This is an example which shows that contour integration has simple practical
uses occasionally.

By Ohm’s law (Fig. 4.11):

Vo D Vi
R

R C 1/(2πiνC)
D Vi

2πiνRC

2πiνRC C 1
D Vi

2πiν

2πiν C α
,

where R is the resistance, C the capacitance in the circuit and α D 1/(RC).

18 Do the Fourier transform of this in two parts: �1! 0 and 0!1.
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Let the input step have height V so that it is described by the Heaviside
step-function V i(t) D V H (t). Its frequency content is then V/(2πiν) D Vi(ν)
and

Vo(ν) D
V

2πiν
�

2πiν

2πiν C α
D

V

2πiν C α
.

The time-variation of the output voltage is the Fourier transform of this:

V o(t) D V

∫ 1
�1

e2πiνt

2πiν C α
dν.

Replace 2πν by z:

V o(t) D
V

2π

∫ 1
�1

eizt

izC α
dz

and multiply top and bottom by �i to clear z of any coefficient:

V o(t) D
�iV

2π

∫ 1
�1

eizt

z � iα
dz.

This integral will not yield to elementary methods (‘quadrature’). So we use
Cauchy’s integral formula:19 if z is complex, the integral of f (z)/(z � a) anti-
clockwise round a closed loop in the Argand plane containing the point a is
equal to 2πif (a). The quantity f (a) is the residue of f (z)/(z � a) at the ‘pole’,
a. Written formally, it is ∮

f (z)

z � a
dx D 2πif (a).

Here the pole is at z D iα, so eizt D e�αt and

�iV

2π

∫
C

eizt

z � iα
dz D �2πi

iV

2π
e�αt D V e�αt

and the loop (‘contour’) comprises (a) the real axis, to give the desired integral
with dz D dx, and (b) the positive semicircle at infinite radius where the
integrand vanishes. Along the real axis the integral is

lim
r!1

�iV

2π

∫ r

�r

eixt

x � iα
dx,

which is the integral we want. Along the semicircle at large r , z is complex
and so can be written z D eiθ or as r(cos θ C i sin θ ) so that eizt becomes
eir(cos θCi sin θ)t . The real part of this is e�rt sin θ , which, for positive values of t ,

19 Which is of fundamental importance and to be found in any book dealing with the functions of
a complex variable.
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Fig. 4.12. Vo as a function of time after passing through a simple high-pass filter
when the input is a Heaviside step-function.

vanishes as r tends to infinity (this is why we choose the positive semicircle –
sin θ is positive). The integral around the positive semicircle then contributes
nothing to the total.

Thus, for t > 0, the time variation Vo(t) of the output voltage is

Vo(t) D V e�αt .

For negative values of t , the negative semicircle must be used for integration
in order to make the integral vanish. The negative semicircle contains no pole,
so the real axis integral is also zero. So the complete picture of the response is
that shown in Fig. 4.12.
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Applications 3: interference spectroscopy and
spectral line shapes

5.1 Interference spectrometry

One of the fundamental formulae of interferometry is the equation giving the
condition for maxima and minima in an optical interference pattern:

2μd cos θ D mλ,

where m must be integer for a maximum and half-integer for a minimum.
There are five possible variables in this equation, and by holding three con-

stant, allowing one to be the independent variable and calculating the other,
many different types of fringe can be described, sufficient for nearly all inter-
ferometers; and nearly all the types of interference fringe referred to in optics
textbooks,1 such as ‘localized’ fringes, fringes of constant inclination, Tolansky
fringes, Edser–Butler fringes etc. are included.

5.2 The Michelson multiplex spectrometer

The Michelson interferometer (Fig. 5.1) dates from about 1887. In the original
version, a lens collimates light from a source and transmits it through a so-called
beam-splitter, a half-silvered reflector which transmits and reflects equal ampli-
tudes of the incident light. (It also absorbs a considerable fraction.) The two
separated beams are coherent and are reflected from two flat mirrors, or pos-
sibly two reflecting cube-corners, and returned to the beam-splitter. There the
two beams recombine and equal fractions are again transmitted and reflected.
The transmitted fractions are the ones of interest. Because of the coherence
the combined amplitudes may be added, and the addition is vectorial because,

1 For example, M. Born & E. Wolf, Principles of Optics, 7th edn, Cambridge University Press,
Cambridge, 2002; or E. Hecht & A. Zajac, Optics, 4th edn, Addison Wesley, New York, 2003.

86
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fixed reflector

beam-splitter

moving reflector

detector

source

Fig. 5.1. The Michelson interferometer: optical arrangement. The moving reflec-
tor must be displaced in steps which are accurately λ/4, where λ is the shortest
wavelength in the spectrum, and the alignment of its surface must be maintained
constant to within˙λ/8 or better.

unless the two arms are of exactly equal length, there is a phase-difference
between the two components and they may reinforce or cancel each other out
if the path-difference is an integer or half-integer number of wavelengths. If
the light is monochromatic the transmitted intensity varies sinusoidally as one
of the reflectors is moved uniformly to change the path-difference. Michelson
originally used this fact to measure wavelengths and ultimately to calibrate
measuring-rods by tediously counting the number of fringes passing when
moving a mirror by a known, measured distance.

When several wavelengths are present the output signal contains a range
of frequencies with amplitudes corresponding to the intensities of the vari-
ous spectral components. Fourier analysis of the signal can thus recover the
spectrum of the source.
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It was Lord Rayleigh who, in a letter2 to Michelson, pointed out that the
intensity of the light in the fringe system is the Fourier transform of the spectrum
of the transmitted light, although there were no means at the time of measuring
the intensity, let alone computing its Fourier transform.

With improvements in technology in the latter half of the twentieth cen-
tury both light intensity and reflector positions became measurable with the
necessary accuracy. Fourier transforms became computable via the FFT,3 and
high-resolution Fourier spectrometry became possible. The reasons for doing
spectroscopy in this way were two-fold.

(1) The ‘throughput’ or ‘light-grasp’ of an interferometer is greater by a fac-
tor of several hundred than that of a grating spectrometer of the same
aperture.

(2) There is a substantial gain in signal-to-noise ratio in infra-red spectroscopy,
where electronic noise in the detector is the chief source of noise, since the
whole spectrum is being observed at once instead of having small wave-
length intervals selected and measured sequentially by a monochromator.
This gain is generally known as the multiplex advantage or the Fellgett
advantage after its discoverer.4

All this allows the analysis of very faint astrophysical or aeronomic sources,
or the very rapid measurement of infra-red absorption spectra, sometimes
in ‘real-time’ as gaseous fractions come successively through from a gas-
chromatograph column to an absorption cell.

There were formidable technical problems to be overcome, since the device
is mechanically equivalent to a grating-ruling engine with a new grating ruled
every time a spectrum is measured, and a similar precision is needed.

5.2.1 The theory of the Michelson–Fourier spectrometer

In normal adjustment, the focusing lens produces a series of concentric fringes
at its focal plane, and there is an aperture through which light from one fringe
can pass through to the detector. This aperture is equivalent to the slit of a
grating spectrometer. Light of wavenumber ν arriving at the beam splitter can
be described5 by

A D A0e
2πiνt

2 Lord Rayleigh, Phil. Mag. 34 (1892), 407. 3 See Chapter 9.
4 P. B. Fellgett, Proc. Phys. Soc. B 62 (1949), 529.
5 It is more convenient to consider wavenumber rather than wavelength in this type of

spectroscopy.
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and immediately after the beam-splitter the two emerging wavefronts, ignoring
absorption, are

A1 D A2 D
A0
p

2
e2πiνt .

If the two beams travel distances d1 and d2 in the two arms of the interfer-
ometer, then on recombining they emerge in the transmitted direction as

Atrans D

[
A(0)

2
e2πiνd1 C

A0

2
e2πiνd2

]
e2πiνt .

Notice, incidentally, that even if the transmitted and reflected amplitudes are
not equal, each beam experiences one transmission and one reflection and the
two finally transmitted amplitudes are (or ought to be) the same.

The transmitted intensity, which is what the detector sees, is then

I D
jA0j

2

2
[1C cos(2πν(d1 � d2))]

and from here on we shall refer to (d1 � d2) as the path-difference 
.
So much for monochromatic light. In reality a monochromatic beam would

convey no power, since power is proportional to bandwidth, and the intensity
received by the detector from a source of infinitesimal bandwidth, dν, can be
described by

I (ν)dν D
I0(ν)dν

2
[1C cos(2πν
)],

again neglecting losses in the beam-splitter, scattering and other practical
matters.

Now, if a real source of light of spectral power density S(ν) is sent through
the instrument the power received at the detector is

I (
) D
∫ 1

0

S(ν)dν

2
[1C cos(2πν
)]

D
S

2
C

1

2

∫ 1
0

S(ν)dν cos(2πν
)

and we generally write this expression as

2I (
) � S D J (
) D
∫ 1

0
S(ν)dν cos(2πν
),

where S represents the total power delivered to the detector. J (
), by its
definition, may well be negative when the path-difference is such as to send
half the incident power back to the source.
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More succinctly, we write

J (
)• S(ν).

The ‘interferogram’, J (
), which is what is recorded, is the Fourier cosine
transform of S(ν), the spectral power density.

Various practical matters intervene. Before the days of the digital computer
and even then only after the discovery or invention of the fast Fourier transform
(q.v.), there was no real possibility of doing serious Fourier spectroscopy despite
the display of much ingenuity in the invention of analogue devices for carrying
out the transform. In modern practice the interferogram is recorded digitally,
either as the path-difference is changed continuously by a smooth motion
of one of the reflectors, or by a step-by-step change of path-difference, a
‘sample’ being taken at each step. Here the sampling theorem intervenes and,
in principle, the interferogram should be sampled at intervals of path-difference
not greater than the reciprocal of twice the highest wavenumber in the spectrum.
In practice this may be wasteful if the source occupies less than an octave of the
electromagnetic spectrum and an analysis of the complete interferogram would
only show that large parts of the spectrum are empty. With suitable optical
filtering, step-lengths can be made larger and the spectrum recovered from a
higher alias of the true spectrum.

Again, in practice, optical and mechanical shortcomings make it difficult
to find the exact position of zero path-difference and there may be wave-
length dispersion in the optics, so that the position of zero path-difference is
wavenumber-dependent. Various techniques are in use to correct for these
instrumental defects, for example by using the interpolation theorem to find the
‘true’ sample magnitudes (what they would have been if the samples had been
taken exactly from zero path-difference) and by computing the power transform.

The similarity to the mechanism of a grating-ruling engine extends to similar
errors of measurement. If, for example, there is a cyclic variation in the step
length, there will be spurious satellite lines.

The technique generally is valuable only where detector noise predominates.
In the visible and ultra-violet, photo-electric detectors are chiefly used and
photo-electron shot noise from the incoming signal is the chief noise source.
Then not only is there no multiplex advantage, but there is actually a multiplex
disadvantage, since photo-electron shot noise from a dominant emission line
appears throughout the recovered spectrum and can swamp all the other faint
emission lines which may be present.

Other Fourier-transform-related processes are involved in the analysis of the
interferogram. If, for example, the path-difference has been changed smoothly
instead of step-wise, each sample recorded for the interferogram is accumulated
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over a small change of path-difference and so is the convolution of the true
sample with a top-hat function of width equal to one sample interval. The
spectrum coming from the transformer has been multiplied by a very broad
sinc-function with zero-crossing points at 2νf and the computed spectrum must
be divided by this sinc-function to recover the true spectrum.

The instrumental profile of a Fourier spectrometer is a sinc-function, rather
than the sinc2-function of a grating spectrograph. This has the disadvantage of
enormous side-lobes, or secondary maxima, which are 22% of the height of the
principal maximum so that apodization is essential. This is done by multiplying
the interferogram by some suitable function, so that the output line profile is
the convolution of the sinc-profile with the apodizing function.

The process is exactly analogous to the covering of a diffraction grating
with an apodizing mask as outlined in Chapter 3. There was much experimen-
tation with functions of different proportions, and the function discovered by
Janine Connes6 has found much favour. It requires that the nth sample of an
interferogram with N samples be multiplied by [1 � (n/N )2]2. It is illustrated
in Fig. 5.2.

5.3 The shapes of spectrum lines

When an electrical charge is accelerated it loses energy to the radiation field
around it. In uniform motion it produces a magnetic field proportional to
the current, that is, to e ∂x/∂t ; and if the charge is accelerated the changing
magnetic field produces an electric field proportional to e ∂2x/∂t2. This in turn
induces a magnetic field (via Maxwell’s equations), which is also proportional
to e ∂2x/∂t2.

If the charge is oscillating, so are the fields induced around it and these
are seen as electromagnetic radiation – in other words, light or radio waves.
The power radiated is proportional to the squares of the field strengths
1
2 (ε0E2 C μ0H2), which are proportional to e(∂2x/∂t2)2. The total power radi-
ated is [2/(3c2)]jẌXj2, where X is the maximum value of the dipole moment
ex generated by the oscillating charge. A dipole losing energy in this way is a
damped oscillator, and one of Planck’s early successes7 was to show that the
damping constant γ is given (in SI units) by

γ D
1

4πε0

8π2

3

e2

mc

1

λ2
.

6 J. Connes, Aspen Conference on Multiplex Fourier Spectroscopy, G. A. Vanasse, A. T. Stair &
D. J. Baker, (eds). AFCRL-71-0019. 1971, p. 83.

7 M. Planck, Ann. Phys. 60 (1897), 577.
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Fig. 5.2. The Connes apodizing function for infra-red Fourier spectroscopy and
its effect on the instrumental profile. Without it each emission line in the spectrum
would be represented by a sinc-function with secondary maxima �22% of the
principal maximum in height.

The equation of motion for an oscillating dipole is then the usual damped
harmonic oscillator equation:

ẍ C γ ẋ C Cx D 0,

where C is the ‘elastic’ coefficient, which depends on the particular dipole, and
which describes its stiffness and the frequency of the oscillation. Here γ is of
course the damping coefficient which determines the rate of loss of energy.
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The solution of the equation is well known, being

f (t) D e�
γ

2 t
(
Ae2πiν0t C Be�2πiν0t

)
,

and it is convenient to put A D 0 here so that the amplitude, as a function of
time, is

f (t) D e�
γ

2 tBe�2πiν0t .

The Fourier transform of this gives the spectral distribution of amplitude and,
when multiplied by its complex conjugate, gives the spectral power density:

φ(ν) D
∫ 1

0
e�

γ

2 tBe2πiν0t e�2πiνt dt

(the lower limit of integration is 0 because the oscillation is deemed to begin
then). On integrating we get

φ(ν) D e�
γ

2 t

[
e2πi(ν0�ν)t

2πi(ν0 � ν) � γ /2

]1
0

D
1

2πi(ν0 � ν) � γ /2
.

The spectral power density is then

I (ν) D
1

4π2(ν0 � ν)2 C (γ /2)2

and the line profile is the Lorentz profile discussed in Chapter 1. See Fig. 5.3.
The same equation can be derived quantum mechanically8 for the radiation

of an excited atom. The constant γ /2 is now the ‘transition probability’, the
reciprocal of the ‘lifetime of the excited state’ if only one downward transition
is possible. The FWHM of a spectrum line emitted by an ‘allowed’ or ‘dipole’
atomic transition of this sort is usually called the ‘natural’ width of the line. The
shape occurs yet again in nuclear physics, this time called the ‘Breit–Wigner
formula’, and describing in the same way the energy spread in radioactive-
decay energy spectra. The underlying physics is obviously the same as in the
other cases.

There is thus a direct link between the transition probability and the breadth
of a spectrum line, and in principle it is possible to measure transition probabil-
ities by measuring this breadth. With typical ‘allowed’ or ‘dipole’ transitions –
the sort usually seen in spectral discharge lamps – the transition probabilities
are in the region of 108 s�1 and the breadth of a spectrum line at 5000 Å – in the
green – is about 0.003 Å. This requires high resolution, a Fabry–Pérot étalon
for instance, to resolve it. The measurement is quite difficult since atoms in a

8 See, for example, N. F. Mott & I. N. Sneddon, Wave Mechanics and its Applications, Oxford
University Press, Oxford, 1948, Chapter 10, Section 48.



94 Applications 3

Fig. 5.3. The amplitude of a damped harmonic oscillator and the corresponding
spectrum line profile: a Lorentz function with FWHM γ /(2π ). This would be the
shape of a spectrum line emitted by an atomic transition if the atoms were held
perfectly still during their emission.

gas are in violent motion, and a collimated beam of excited atoms is required
in order to see the natural decay by this means.

The violent motion of atoms or molecules in a gas is described by the
Maxwellian distribution of velocities. The kinetic energy has a Boltzmann
distribution, and the fraction of atoms with velocity v in the observer’s line-of-
sight has a Gaussian distribution:

n(v) D n0e
�mv2/(2kT )
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with a proportionate Doppler shift, giving a Gaussian profile to what otherwise
would be a monochromatic line:

I (λ) D I0e
�(λ�λ0)2/a2

.

The width parameter, a, comes from the Maxwell velocity distribution and
a2 D 2λ2

0kT /(mc2), where k is Boltzmann’s constant, T the temperature, m

the mass of the emitting species and c the speed of light.
When we substitute numbers into this formula we find that the inten-

sity profile is a Gaussian with FWHM proportional to wavelength, and with

λ/λ D 7.16 � 10�7pT/M , where M is the molecular weight of the emitting
species.

This Doppler broadening, or temperature broadening, by itself would give a
different line shape from that caused by radiation damping: a Gaussian profile
rather than a Lorentz profile. Unless the emitter has a fairly high molecular
weight or the temperature is low, the Doppler width is much greater than the
natural width. However, the line shape that is really observed, after making
allowance for the instrumental function, is the convolution of the two into what
is called a ‘Voigt’ profile,

V (λ) D G(λ) � L(λ).

The Fourier transform will be the product of another Gaussian shape and
the Fourier transform of the Lorentz shape. This Lorentz shape is a spectral
power density and its Fourier transform is, according to the Wiener–Khinchine
theorem, the autocorrelation of the truncated exponential function representing
the decay of the damped oscillator. This autocorrelation is easily calculated.
Let s be the variable paired with λ. Then L(λ)• l(s), where

l(s) D
∫ 1

s

e�
γ

2 s0e�
γ

2 (s0�s) ds0

D

⎧⎪⎪⎨
⎪⎪⎩

1

γ
e�

γ

2 s γ > 0,

1

γ
e

γ

2 s γ < 0.

Autocorrelations are necessarily symmetrical and so we can write

l(s) D
2

γ
e

γ

2 jsj.

For positive values of s, the Fourier transform of the Voigt line profile is the
product

v(s) D e�π2s2a2
e�

γ

2 s
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and a graph of loge v(s) versus s is a parabola. From this parabola the two quan-
tities γ and a can be extracted by elementary methods, and the two components
of the convolution are separated.

Voigt profiles occur fairly frequently in spectroscopy. Not only is the line
profile of a damped oscillator a Lorentz curve, but the instrumental profile of a
Fabry–Pérot étalon is the convolution of a Lorentz profile9 with a Dirac comb.
Fabry–Pérot fringes, when used to measure the temperature of a gas or a plasma,
therefore show Voigt profiles and if the instrument is used properly – that is
with the appropriate spacing between the plates for the given experiment – the
Lorentz half-width will be similar to the Gaussian half-width.

Other causes of spectral line shapes can easily be imagined. If the pressure
is high, atoms will collide with each other before they have had time to finish
their transition. The decaying exponential is then cut short, and the resulting
line shape is the convolution of the Lorentz profile with a sinc-function. The
width of the sinc-function will be different for every decay, with a Poisson
distribution about some average value. The resulting spectrum line then shows
‘pressure-broadening’, which increases as the intercollision time diminishes,
i.e. as the pressure increases. This is a phenomenon which can be used, for
example, to diagnose conditions in remote plasmas.

9 Because where the transmitted intensity is non-trivial the sine of the phase-angle in the Airy
formula can be replaced by the angle itself.
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Two-dimensional Fourier transforms

6.1 Cartesian coordinates

The extension of the basic ideas to two dimensions is simple and direct. As
before, we assume that the function F (x, y) obeys the Dirichlet conditions and
we can write

A(p, q) D
∫ 1

yD�1

∫ 1
xD�1

F (x, y)e2πi(pxCqy) dx dy,

F (x, y) D
∫ 1

qD�1

∫ 1
pD�1

A(p, q)e�2πi(pxCqy) dp dq.

The space of the transformed function is of course two-dimensional, like the
original space. The extension to three or more dimensions is obvious.

It sometimes happens that the function F (x, y) is separable into a product
f1(x)f2(y). In this case the Fourier pair, A(p, q), is separable into φ1(p)φ2(q)
and we find separately that

f1(x)• φ1(p); f2(y)• φ2(q).

If F (x, y) is not separable in this way then the transform must be done in
two stages:

A(p, q) D
∫ 1
�1

e2πiqy

{∫ 1
�1

F (x, y)e2πipx dx

}
dy,

and whether the x-integral or the y-integral is done first may depend on the
particular function, F .
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6.2 Polar coordinates

Sometimes – often – there is circular symmetry and polar coordinates can be
used. The transform space is also defined by polar coordinates, ρ and φ, and
the substitutions are

x D r cos θ ; y D r sin θ ;

p D ρ cos φ; q D ρ sin φ.

Then

A(ρ, φ) D
∫ 1

rD0

∫ 2π

θD0
F (r, θ )e2πi(ρ cos φ � r cos θC ρ sin φ � r sin θ)r dr dθ,

where r dr dθ is now the element of area in the integration, as can be seen
directly or from the Jacobian ∂(x, y)/∂(r, θ ).

This shortens to

A(ρ, φ) D
∫ 1

rD0

∫ 2π

θD0
F (r, θ )e2πiρr cos(θ�φ)r dr dθ

and, if the function F is separable into P (r)�(θ ), the integrals separate into∫ 1
rD0

P (r)

{∫ 2π

θD0
�(θ )e2πiρr cos(θ�φ) dθ

}
r dr.

If there is circular symmetry A is a function of r only, and �(θ ) D 1. We can
write

A(ρ, φ) D
∫ 1

rD0
P (r)

[∫ 2π

θD0
e2πiρr cos(θ�φ) dθ

]
r dr.

We now put θ � φ D α, a new independent variable, with dα D dφ (the inte-
gral, being taken around 2π , does not depend on the value of θ ).

Then the θ -integral becomes∫ 2π

0
e2πiρr cos α dα

and this (see Appendix A.2) is equal to 2πJ0(2πρr), where J0 denotes the
zeroth-order Bessel function.

Then

A(ρ) D 2π

∫ 1
0

P (r)rJ0(2πρr)dr,

which is known as a Hankel transform. It is a close relative of the Fourier
transform.
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The Bessel functions of any order n, Jn(x), have the property that when
they are multiplied by x1/2 they form an orthogonal set1 like the trigonometric
functions: ∫ 1

0
xJn(x)Jm(x)dx D δn

m,

where δn
m is the usual Kronecker-delta (δn

m D 0 if m 6D n and δm
m D 1).

Consequently there is an inversion formula as in the Fourier transform, so
that P (r) can be recovered from

P (r) D 2π

∫ 1
0

A(ρ)ρJ0(2πρr)dρ

and the two functions are symbolically linked by

P (r), A(ρ).

6.3 Theorems

Some, but not all, of the theorems derived in Chapter 2 carry over into
two dimensions. As above, assume that P (r), A(ρ); then we have the
following.

� The similarity theorem: P (kr), (1/k2)A(ρ/k).
� The addition theorem: P1(r)C P2(r), A1(ρ)C A2(ρ).
� Rayleigh’s theorem:∫ 1

0
jP (r)j2r dr D

∫ 1
0
j�(ρ)j2ρ dρ.

� The convolution theorem. There is a convolution theorem like that in one
dimension but one of the functions has to explore the whole plane in two
dimensions instead of just sliding over the other. The product integral is done
at each point in the plane to obtain the convolution:

C(r 0) D P1(r) � �P2(r) D
∫ 1

rD0

∫ 2π

θD0
P1(r)P2(R)r dr dθ,

where R2 D r2 C r 02 � 2rr 0 cos θ and the symbol �� is used to denote a
two-dimensional convolution. Then

C(r), A1(ρ)A2(ρ).

1 A proof of the orthogonality is given by Bracewell (see the bibliography).
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6.4 Examples of two-dimensional Fourier transforms with
circular symmetry

� The top-hat function, also known as ‘circ’ or ‘disk’:

P (r) D

{
h, 0 < r < a,

0, a < r <1,

A(ρ) D 2πh

∫ a

0
r � J0(2πρr)dr.

We use the property (see Appendix A.2)

d

dx
(xJ1(x)) D xJ0(x).

Let

2πρr D x; 2πρ dr D dx.

Then

A(ρ) D 2πh

∫ 2πaρ

0

x

2πρ
J0(x)

dx

2πρ

D
h

2πρ2

∫ 2πaρ

0
xJ0(x)dx D

h

2πρ2
[xJ1(x)]2πaρ

0

D
ah

ρ
J1(2πaρ) D πa2h

{
2J1(2πaρ)

2πaρ

}

and finally

A(ρ) D πa2h Jinc(2πaρ), where Jinc(x) D
2J1(x)

x
.

Jinc contains the factor of 2 in order that Jinc(0) D 1.
This, with a as the aperture radius and ρ as sin θ/λ, gives the amplitude

of diffraction of light or radio waves at a circular aperture. The intensity
distribution, which is the square modulus of this, is the famous ‘Airy disc’
familiar to students of the telescope and other optical imaging instruments.

� The thin annulus. P (r) is a circle of radius a. In optics, for a very thin ring
transmitting light,

P (r) D hδ(r � a).

Then

A(ρ) D 2πh

∫ 1
0

rδ(r � a)J0(2πρr)dr

D 2πahJ0(2πaρ).
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6.5 Applications

6.5.1 Fraunhofer diffraction by a rectangular slot

The simple two-dimensional Fraunhofer theory of Chapter 3 can now be elab-
orated. There, we assumed that the element dS on the surface S was equal in
area to dx, the width of a slit � unit length perpendicular to the diagram.

Now we can use dS D dx dy, a small rectangle in the diffracting aperture,
perpendicular to the direction of propagation, and we can calculate the diffracted
amplitude in a direction specified by direction cosines l, m, n. From this we
can calculate the intensity at a point on a plane at a distance z from the aperture.
If the amplitude at the element of area dx dy at Q(x, y) is K dx dy, then at P ,
on the distant screen, it will be K dx dy e

2πi
λ

R0 and, from elementary coordinate
geometry, R0 D R � lx �my, where l and m are the direction cosines of the
line OP and R is the distance from the origin to the point P on the distant
screen. See Fig. 6.1.

The total disturbance at P is then the sum of all the elementary disturbances
from the z D 0 plane, so that we can write

A(p, q) D
∫ ∫

aperture
K dx dy e

2πi

(
R
λ
� lx

λ
�

my

λ

)

D C

∫ ∫
aperture

e�2πi(pxCqy) dx dy,

Fig. 6.1. The two-dimensional diffracting aperture, in Cartesian coordinates.
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where p D l/λ, q D m/λ and C is a constant which depends on the area of the
aperture, and contains the constant phase factors and any other things which
do not affect the relative intensity in the diffraction pattern.

If the aperture is a rectangle of sides 2a and 2b, the integrals separate:

A(p, q) D C

∫ a

�a

e�2πipx dx

∫ b

�b

e�2πiqy dy,

and the intensity diffracted in the direction whose direction cosines are pλ and
qλ is the square-modulus of this:

I (p, q) D I0 sinc2(2πap)sinc2(2πbq).

Notice that, perhaps surprisingly, the intensity at the central peak is proportional
to the square of the area of the aperture.

6.5.2 Fraunhofer diffraction by a circular aperture

If the aperture is circular and of radius a, the Hankel transform is used, with
x D r cos θ, y D r sin θ as before and with p D l/λ D ρ cos φ, q D m/λ D

ρ sin φ and ρ2 D p2 C q2.
The third direction cosine, n, is given by

n2 D 1 � l2 �m2 D 1 � (pλ)2 � (qλ)2

so that

ρ2 D
1

λ2
(l2 Cm2) D

1 � n2

λ2

or ρ D sin θ/λ, where θ is the angle between OP and the z-axis.
Then, immediately, we have

A(θ ) D A(0)
J1(2πa sin θ/λ)

2πa sin θ/λ

and

I (θ ) D I (0)

[
J1(2πa sin θ/λ)

2πa sin θ/λ

]2

,

which is the formal equation for the intensity in the Airy disc. Again notice that
I (0) is proportional to the square of the area of the aperture. The total power
in the pattern is of course proportional to the area of the aperture, but as the
radius of the diffracting aperture doubles, for example, the pattern on a distant
screen has half the radius and one-quarter the area, out to the first zero-intensity
ring.
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As an exercise, the calculation of the intensity distribution in the diffraction
pattern made by an annular aperture can be done. If the inner and outer radii of
the annulus are a and b, the amplitude function is

A(θ ) D K

[
a2 J1(2πa sin θ/λ)

2πa sin θ/λ
� b2 J1(2πb sin θ/λ)

2πb sin θ/λ

]

and the intensity distribution is the square of this.
A graph of this function shows that the central maximum is narrower than

that of the Airy disc for the same outer radius. A telescope with an annular
aperture apparently beats the ‘Rayleigh criterion’ for spatial resolution. How-
ever, it does so at the expense of putting a lot of intensity into the ring around
the central maximum, and the gain is usually more illusory than real.

6.6 Solutions without circular symmetry

In general, provided that the aperture function can be separated into P (r) and
�(θ ), then, as we saw earlier,

A(ρ, φ) D
∫ 1

rD0
P (r)

{∫ 2π

θD0
�(θ )e2πiρr cos(θ�φ) dθ

}
r dr.

Consider the interference pattern of a set of apertures – or antennae – equally
spaced around the circumference of a circle. If there are N of them, the θ -
dependent function is

�(θ ) D
N�1∑

0

δ(θ � 2πn/N )

and the r-dependent part is

P (r) D δ(r � a).

In other words, the sources are equally spaced at angles 2π/N around the circle
of radius a

Then

A(ρ, φ) D
∫ 1

0
rδ(r � a)

N�1∑
0

e2πiρr cos(2πn/N�φ) dr

D a

N�1∑
0

e2πiρa cos(2πn/N�φ).

This is as far as the analysis can be taken. The pattern, I (ρ, φ), can be computed
without difficulty from this expression, and is a typical example of a problem
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Fig. 6.2. The cones of maximum intensity in a two-beam interference pattern.
The two interfering sources are on the x-axis, above and below the origin.

solved by computer after analysis fails. The particular case of N D 2 yields the
familiar pattern of two-beam interference, including the hyperbolic shapes of
the fringes on a distant plane surface:

A(ρ, φ) D a[e2πiaρ cos φ C e2πiaρ cos(π�φ)]

D 2a cos(2πaρ cos φ),

and the intensity pattern is given by

I (ρ, φ) D 4a2 cos2(2πaρ cos φ),

which has maxima when 2aρ cos φ is integer. Since ρ D sin α/λ, the maxima
occur when φ D nλ/2a sin α. Here α is the angle between the z-axis and
the direction of diffraction, and φ is the azimuth (angle in the p, q-plane),
so that interference fringes, the maxima of I (ρ, φ), emerge along directions
defined by the condition (2a/λ)sin α cos φ D constant, that is to say, on cones
of semi-angle φ about the φ D 0-axis (see Fig. 6.2). If they are received on
a plane perpendicular to the z-axis they show hyperbolic shapes, but on a
plane perpendicular to the x-axis (the φ D 0-axis: the axis containing the two
sources) the shapes would be concentric circles.

Other cases, such as N D 4, yield to analysis as well. But in general, to
parody Clausewitz, it is best to regard computation as the continuation of
analysis by other means.
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Multi-dimensional Fourier transforms

The physical world seems to comprise four dimensions of space and time,
and other dimensions, such as electrical potential or temperature, are used
occasionally for drawing graphs. For this reason Fourier transforms in three or
more dimensions can be useful sometimes. The extension is not difficult and
can sometimes give greater insight into what is happening in Nature than can
mere geometry. This chapter describes some of the functions and ideas which
are helpful in manipulating multi-dimensional Fourier transforms.

7.1 The Dirac wall

This is described by

f (x, y) D δ(x � a)

and is zero everywhere except on the line x D a, where it is infinite. Despite
this infinity, it may be envisaged as a wall, parallel to the y-axis, of unit height,
as in Fig. 7.1.

Its two-dimensional Fourier transform (Fig. 7.2) is given by

φ(p, q) D
∫ 1

xD�1

∫ 1
yD�1

δ(x � a)e2πipxe2πiqy dx dy

D

∫ 1
yD�1

e2πipae2πiqy dy

D e2πipaδ(q),

which has a complex amplitude1 and is zero except on the line q D 0.

1 In the sense mentioned in Chapter 1, namely that a δ-function is infinite at each point but its
integral, which we consider to be its ‘amplitude’, is unity.
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Fig. 7.1. A simple Dirac wall, f (x, y) D δ(x � a).

Fig. 7.2. The Fourier tranform of a pair of Dirac walls.
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A pair of these Dirac walls, equally disposed about the y-axis, has a Fourier
transform given by

φ(p, q) D 2δ(q)cos(2πpa).

A wall standing on a line inclined to the y-axis at an angle θ is described by
f (x, y) D δ(lx Cmy � c), where l D cos θ , m D sin θ and c is the length of
the perpendicular from the origin to the line. The δ-function is zero everywhere
on the x, y-plane except on the line and its two-dimensional Fourier transform
is

φ(p, q) D
∫ 1

xD�1

∫ 1
yD�1

δ(lx Cmy � c)e2πipxe2πiqy dx dy.

Do the y-integration first,2

φ(p, q) D
1

m

∫ 1
xD�1

e2πipxe2πiq(c�lx)/m dx,

and notice that ‘integration’ here is a simple replacement of the variable in the
exponential by the argument of the δ-function.

Then, rearranging the exponents,

φ(p, q) D
1

m
e2πiqc/m

∫ 1
xD�1

e2πix(p�lq/m) dx

D e2πiqc/mδ(mp � lq),

which is zero except on the line mp � lq D 0 in the p, q-plane.
Equally, the y-integration could have been done first, in which case the

Fourier transform would have been

e2πipc/lδ(mp � lq).

The period in the phase-factor is 1/c and it is measured along the direc-
tion of the line mp � lq D 0 in p, q-space. As we shall see later, it is possi-
ble to envisage a one-dimensional variable u D p/l or q/m, conjugate to c,
along that line, and then the above function describes a complex sinusoid of
period 1/c along the Dirac wall. Its one-dimensional Fourier transform along
that line would then be a δ-function at a distance c from the origin, situ-
ated at the point lc,mc in x, y-space. This δ-function would lie on the line
mx � ly D 0.

This is the place to mention that much insight can be gained by superposing
the two planes so that the p- and q-axes of one coincide with the x- and y-axes

2 Bearing in mind from Chapter 1 that δ(lx Cmy � c) D (1/m)δ(y � (c � lx)/m).
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of the other. In this example, the Fourier transform of the Dirac wall lies on a
line in the p, q-plane perpendicular to the wall in the x, y-plane.

A pair of Dirac walls, equally disposed on either side of the origin, has a
two-dimensional Fourier transform given by

δ(lx Cmy � c)C δ(lx Cmy C c)• δ(mp � lq) � 2 cos(2πqc/m),

that is to say, a Dirac wall with a sinusoidally-varying amplitude and lying on
the line mp � lq D 0.

Notice particularly that, with this superposition of the two planes, the func-
tion and its transform are related in spatial position, irrespective of the orienta-
tion3 of the coordinate systems chosen. In this example they lie on perpendicular
Dirac walls.

7.2 Computerized axial tomography

A particularly useful application of these ideas is to be found in computerized
transverse axial scanning tomography, vulgarly known as CAT-scanning or
C-T scanning. Imagine a Dirac wall taking a vertical slice through a two-
dimensional function F (x, y) lying on the x, y-plane (Fig. 7.3(a)). If the wall
stands on the line lx Cmy � c D 0 the product is zero everywhere except on
the line. On the line stands a Dirac wall (Fig. 7.3(b)) with amplitude varying as
F (x, (c � lx)/m). The line-integral (Fig. 7.3(c))

Pl(c) D
∫ 1
�1

F (x, y)δ(lx Cmy � c)ds (7.1)

(where ds is the line element along the direction defined by l) depends only
on l and c. Incidentally, Pl(c) is known as the Radon transform4 of F (x, y). It
can be imagined, as in the previous section, as a δ-function of amplitude Pl(c)
standing on the line mx � ly D 0 at a distance c from the origin. With c as
variable it becomes a function of c along the line and this function is called the
projection of F (x, y) in the direction θ where cos θ D l.

Now, as the direction θ rotates from 0 to π , the various functions Pl(c)
sweep out a two-dimensional function Q(x, y) on the x, y-plane.

What is more interesting, however, is the function which results from first
taking the one-dimensional Fourier transform of Pl(c) along the line mx � ly D

0, with c as variable on the x, y-plane and u as its conjugate on the p, q-plane.

3 But not of the position of the origin.
4 Vide e.g. S. R. Deans, The Radon Transform and Some of its Applications, John Wiley, New

York, 1983.
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Fig. 7.3. The steps in computerized axial tomography. (a) A Dirac wall through the
function F (x, y). (b) The slice to be integrated along the line lx Cmy C c D 0.

(c) The integral of the slice along the line, making one point of the function P (c),
the Radon transform of F (x, y). (d) The one-dimensional Fourier transform of that
point with c as variable, lying on the line in conjugate p, q-space perpendicular
to the Dirac wall. (e) The complete one-dimensional Fourier transform, φ(u), of
P (c) in p, q-space. (f) The point on this function which defines one point of the
two-dimensional function �(ul, um) which is shown to be the two-dimensional
Fourier transform of the original F (x, y).

In the p, q-plane this Fourier transform, φl(u), will lie on the line mp � lq D 0
which is superimposed on mx � ly D 0 on the x, y-plane. This set of Fourier
transforms, too, sweeps out a two-dimensional function �(p, q) (the func-
tion φl(u) in Fig. 7.3(e)) as the direction of the projection changes from
0 to π .

We now demonstrate the remarkable fact that �(p, q) is the two-dimensional
Fourier transform of F (x, y).
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To do this we first of all write δ(lx Cmy � c) as a one-dimensional Fourier
integral, using c as the variable and u as its conjugate:

δ(lx Cmy � c) D
∫ 1

uD�1

e2πi(lxCmy�c)u du

D

∫ 1
uD�1

e2πiu(lxCmy)e�2πicu du,

and if we insert this into the equation for Pl(c) (equation (7.1)) we find

Pl(c) D
∫ 1

xD�1

∫ 1
yD�1

F (x, y)
∫ 1

uD�1

e2πiu(lxCmy)e�2πicu du dx dy

and, on changing the order of integration,

Pl(c) D
∫ 1

uD�1

(∫ 1
xD�1

∫ 1
yD�1

F (x, y)e2πiu(lxCmy) dx dy

)
e�2πicu du.

Within the brackets is �(ul, um), the two-dimensional Fourier transform of
F (x, y), and notice (Fig. 7.3(e)) that on the p, q-plane ul D p and um D q.

Thus

Pl(c) D
∫ 1
�1

�(ul, um)e�2πicu du,

whence, for a fixed direction θ ,

�(ul, um) D �(p, q) D
∫ 1
�1

Pl(c)e2πicu dc.

This is still a one-dimensional transform and it defines �(p, q) along the
line mp � lq D 0. In Radon transform theory it is called the projection slice
theorem.

Thus, if we know Pl(c) for all azimuths θ , from 0 to π , and do the complete
set of one-dimensional transforms, the two-dimensional function �(p, q) is
known. The original function F (x, y) is then obtained from

F (x, y) D
∫ 1
�1

∫ 1
�1

�(p, q)e�2πi(pxCqy) dp dq.

If a three-dimensional object is partially transparent to radiation such as X-
rays, visible light or a particle beam, it is possible to make a two-dimensional
map of the absorption coefficient (α) on a plane section through it. When
monochromatic radiation is transmitted through the object it is attenuated
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according to Beer’s law, which states that the intensity of the radiation trans-
mitted in the x-direction falls according to

∂I

∂x
D �Iα,

where I is the intensity at the point x along the direction of transmission, and
α is the absorption coefficient for that wavelength or frequency. The coefficient
depends on the nature of the absorbing material and, if the absorption is constant
along the path, Beer’s law in one dimension takes the form

I (x) D I0e
�αx.

If α varies from point to point, then the integral along the transmission path
(the ‘line-integral’) must be taken and

I (x) D I0e
�
∫ x

0 α(x) � dx.

From this the following useful equation emerges:∫ x

0
α(x) � dx D ln(I0/I (x)).

The function of computer-aided tomography is to make a two-dimensional
plot – the map – of α in a plane slice through the object. Notice that if the
source and the detector are both outside the object then the line-integral of α is
identical with ∫ 1

�1

α(x) � dx D ln(I0/I (x)).

Consider an absorbing object – a skull, for example – through which a
narrow beam of X-rays can be transmitted from a source to a detector. The
line-integral of the absorption coefficient α follows from the logarithm of the
ratio of the intensity at the source to the intensity at the detector.

We now use this narrow beam as a saw-blade to ‘cut’ a plane section through
the object.

In Fig. 7.3 the z-axis is used to depict the absorption coefficient, α(x, y), in
the section and the radiation beam is directed along the line lx Cmy � c D 0.
We replace the F (x, y) by α(x, y) in equation (7.1):

Pl(c) D
∫ 1
�1

α(x, y) � δ(lx Cmy � c)ds.

As the source and detector move together in the x, y-plane in a direction
perpendicular to the transmission direction, c is changing while l is constant.
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The beam, as it moves, takes a slice through the absorbing object (hence the
word ‘tomography’) and there will be a measurement of the line-integral Pl(c)
as a function of c (Fig. 7.3(c)).

The one-dimensional Fourier transform, φl(u), of Pl(c) maps out, as the
direction θ of the projection changes, the two-dimensional function �(p, q),
the aggregate of these φ-functions over all azimuths and this, as we have seen,
is the two-dimensional Fourier transform of α(x, y).

This is the central idea in computerized axial tomography.

The inevitable conclusion is that, provided that Pl(c) is measured for every
azimuth θ (θ D cos�1l) from θ D 0 to θ D 180ı, and the one-dimensional
Fourier transforms are taken, then the function �(ul, um) is known over the
whole p, q-plane5 and the inverse transform of �(ul, um) is α(x, y), the orig-
inal desired function:

α(x, y) D
∫ 1
�1

∫ 1
�1

�(q, p) � e�2πiqxe�2πipy dq � dp.

The function α(x, y) then represents the two-dimensional distribution of
density, or absorption cross-section, of X-rays or other exploring radiation
beams by the material through which the radiation passes.

The practical implementations6 of the idea have been manifold and to the
universal public good. This brief description ignores the extraordinary exten-
sions of the idea7 in areas as diverse as cosmology and geophysics, and it must
also be mentioned that other methods than Fourier transforms may be used to
recover the required data. There can have been few inventions more deserving
of a Nobel prize than this one.

7.3 A ‘spike’ or ‘nail’

This is described by a two-dimensional δ-function, δ(x � a)δ(y � b), and is
zero everywhere in the x, y-plane except at the point (a, b). Being the product
of a function of x and a function of y, it is separable and its Fourier transform
is e2πipae2πiqb.

5 Or as much of it as the resolution of the source and detector will permit. Instrumental
considerations limit the spatial frequencies accessible to a CAT-scanner and only a limited
area – about 2 mm�2 – of frequency-space (the p, q-plane) is useable in practice with X-ray
tomography.

6 The 1979 Nobel prize for physiology and medicine was awarded to G. N. Hounsfield and
A. Cormack for the invention of CAT-scanning. The prototype CAT-scanner, constructed by
EMI, went into service at the Atkinson Morley Hospital, Wimbledon, in 1971.

7 Described, for example, by Herman (see the bibliography).
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Fig. 7.4. The Fourier transform of a pair of nails at˙(x, y).

A pair of such nails equally disposed about the origin is described by

f (x, y) D δ(x � a)δ(y � b)C δ(x C a)δ(y C b)

and its Fourier transform is

φ(p, q) D 2 cos[2π (pa C qb)].

This is a corrugated sheet. Lines of constant phase (wave crests) lie on the lines
pa C qb D integer, and are illustrated in Fig. 7.4 and again, on superposition,
the line joining the nails on the x, y-plane is perpendicular to the wave crests
on the p, q-plane.
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7.4 The Dirac fence

This is an infinite row of equally-spaced δ-functions (the fence-posts) along a
line. When it runs along the x-axis and the spacing of the posts is a, the fence
is described by

f (x, y) D

[
1∑

nD�1

δ(x � na)

]
δ(y) DШa(x)δ(y).

Its Fourier transform follows from the Fourier transform of a Ш-function
mentioned in Chapter 1 and is (1/a)Ш1/a(p), a parallel set of walls, all parallel
to the q-axis, with spacing 1/a.

If the fence is inclined to the x-axis at an angle θ , then l D sin θ and
m D cos θ define the direction of the line of the fence, and the fence is described
by

f (x, y) D

[
1∑

nD�1

δ(lx Cmy � na)

]
δ(mx � ly).

The first factor requires the function to be zero except when lx Cmy D na

(thus defining a set of parallel walls) and the second requires that it be zero
except on a line perpendicular to the first set, passing through the origin. This
can also be written as

f (x, y) DШa(lx Cmy)δ(mx � ly).

The Fourier transform can be seen graphically as the convolution of the two
separate transforms. The transform of the first factor is

φ1(p, q) D
∫ 1
�1

∫ 1
�1

1∑
nD�1

δ(lx Cmy � na)e2πipxe2πiqy dx dy

and once more the simple rule for integrating a product which includes a
δ-function applies:

φ1(p, q) D
1

l

∫ 1
�1

1∑
nD�1

e2πip(na�my)/le2πiqy dy

D
1

l

1∑
nD�1

e2πipna/l

∫ 1
�1

e2πiy(q�pm/l) dy

D δ(ql � pm)
1∑

nD�1

e2πipna/l,
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Fig. 7.5. (a) A line of fence-posts of spacing c and (b) its Fourier transform, a
series of parallel walls a distance 1/c apart.

which is a row of fence-posts spaced 1/a apart8 lying on the line
lq D mp.

The second factor transforms similarly:

φ2(p, q) D
∫ 1
�1

∫ 1
�1

δ(mx � ly)e2πipxe2πiqy dx dy

D
1

m

∫ 1
�1

e2πip(ly/m)e2πiqy dy

D δ(lp Cmq),

which is a wall passing through the origin, lying on the line lp D �mq, that
is, perpendicular to the fence-post of the first factor when the p, q-plane is
superimposed on the x, y-plane.

The convolution of these two factors, φ1(p, q) � � φ2(p, q) D w(p, q), is
an infinite series of parallel walls, spaced 1/a apart, lying on lines parallel
to the line lp D �mq. On superposition of the two spaces, these walls are
perpendicular to the original fence line. See Fig. 7.5.

7.5 The ‘bed of nails’

Now consider the convolution of two fences, f1 and f2. Let each lie on a
line through the origin, at angles θ1 and θ2 and with spacings a1 and a2. The
convolution, f1 � � f2, will be a two-dimensional array of δ-functions – a ‘bed
of nails’ (Fig. 7.6).

8 Actually the product of a wall lying on the line ql D pm and an infinite set of walls of spacing
a/l lying perpendicular to the p-axis.
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Fig. 7.6. The convolution of two lines of fence-posts, (a) and (b), to give a ‘bed
of nails’, (c).

The Fourier transform of this convolution is the product w1w2 of the
two transforms, each one a series of parallel walls, and differs from zero
only when both factors are different from zero. This gives another ‘bed of
nails’.

The interesting thing is that the route to w1w2 from f1 � � f2 is not unique.
The two-dimensional array w1w2 could have been composed from two different
factors, both again parallel sets of walls, but transformed from different fences
f 01 and f 02 with different spacings a01 and a02 and different angles θ 01 and θ 02.
But the convolution of this new pair will necessarily yield the same function
f1 � � f2 as before.

The correspondence between the two beds of nails is this: corresponding to
any set of parallel lines that can be drawn through points in one plane there
is a point9 in the other. In Fig. 7.7, parallel lines separated by 1/a in one
plane are matched by a point distance a in the other; another set separated
by 1/b correspond to the point distance b, and so on. The whole thing is the
two-dimensional analogue of the ‘reciprocal lattice’ idea in crystallography.

There is a familiar illustration: seats in a theatre or cinema are arranged
regularly, often staggered so that people do not sit directly behind someone.
Alignments of seat-backs can be seen in different directions, and these corre-
spond to the lines that can be drawn through beds of nails.

7.6 Parallel-plane delta-functions

In three dimensions the function δ(lx Cmy C nz) describes a function of unit
amplitude which is zero except on the plane lx Cmy C nz D 0.

Its three-dimensional Fourier transform is

φ(p, q, r) D
∫ 1
�1

∫ 1
�1

∫ 1
�1

δ(lx Cmy C nz)e2πipxe2πiqye2πirz dx dy dz

9 Actually a pair of points – one on either side of the origin.
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Fig. 7.7. Reciprocal lattices: the correspondence between a bed of nails and its
Fourier pair. The pair are not unique: dashed lines show other possible Dirac walls,
with different spacings, and the letters u and v show the corresponding directions
of the Dirac fences which are their Fourier transforms. In the diagram on the right,
u and v are the reciprocals of u and v: the narrow spacing of the walls implies a
greater spacing between the fence-posts.

and, after the x-integration,

φ(p, q, r) D
1

l

∫ 1
�1

∫ 1
�1

e2πi(p/l)(�my�nz)e2πiqye2πirz dy dz

D
1

l

∫ 1
�1

∫ 1
�1

e2πiy(q�mp/l)e2πiz(r�np/l) dy dz,

which is separable into

1

l

∫ 1
�1

e2πiy(q�mp/l) dy

∫ 1
�1

e2πiz(r�np/l) dz

so that

φ(p, q, r) D lδ(lq �mp)δ(lr � np),

a δ-function which, when the coordinate systems are superimposed, is zero
except on the line p/l D q/m D r/n, a line through the origin, perpendicular
to the original plane in the x, y, z frame.

The extension is intuitive: a pair of parallel planes equally disposed about
the origin and each at a distance a from the origin will have as a Fourier
transform a line along which the amplitude varies sinusoidally with period
1/a. An infinite sequence of equally separated parallel planes will transform
to a row of equally-spaced points along a line passing through the origin and
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perpendicular to the planes. It is the three-dimensional version of a Dirac comb
but the function differs from zero at isolated points.

7.7 Point arrays

The ideas are even more apparent when transforms are done in three dimen-
sions, when point-arrays are defined by products of three three-dimensional
Ш-functions. For example, Шa(l1x Cm1y C n1z) defines a set of paral-
lel planes on which the function is not zero. The planes have equations
l1x Cm1y C n1z � λa D 0, where l, m and n are direction cosines, λ is any
integer and a is the perpendicular distance between two adjacent planes.

Two other sets of parallel planes can be defined similarly by Шb(l2x C
m2y C n2z) and Шc(l3x Cm3y C n3z) and the point array or lattice is defined
by the product of these three functions.

The Fourier transform of one of these functions is simple:

φ(p, q, r)D
∫ 1
�1

∫ 1
�1

∫ 1
�1

1∑
λD�1

δ(lxCmyCnz�λa)e2πi(pxCqyCrz) dx dy dz.

Do the x-integral first:

φ(p, q, r) D
1

l

1∑
λD�1

∫ 1
�1

∫ 1
�1

e2πip(λa�nz�my)/le2πi(qyCrz) dy dz,

where the λ-sum provides the Ш-function and the integral as before is merely
the substitution of the value into the δ-function argument which makes it
non-zero.

The integral is now separable:

φ(p, q, r) D
1

l

1∑
λD�1

e2πipaλ/l �

∫ 1
�1

e
�2πi

(
pn

l
�r

)
z
dz

∫ 1
�1

e
�2πi

(
pm

l
�q

)
y
dy

D
1

l

1∑
λD�1

e2πipaλ/l �
1

n
δ
(p

l
�

r

n

)
�

1

m
δ
(p

l
�

q

m

)
.

The last two factors, the δ-functions, define two planes. The intersection of the
planes defines a line. The sum over λ defines those points on the line where the
lattice points exist in p, q, r-space.10

10 By analogy with all the other entities to which the prefix ‘Dirac’ has been attached, the idea of
a ‘Dirac string’ might be advanced to describe a spatial curve on which a three-dimensional
function f (x, y, z) is defined, on the understanding that it is zero everywhere except on that
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Again, if the p, q, r-space is superimposed on the x, y, z-space, we find that
φ(p, q, r) is a set of equispaced points along a line perpendicular to the set
of planes defined by δ(lx Cmy C nz � λa) and that the spacing between the
points is 1/a.

7.8 Lattices

A complete three-dimensional lattice, described by the product of three planar
Ш-functions of the type Шa(lx Cmy C nz) has as its Fourier transform the
triple convolution of three lines of equispaced points. This gives a new lattice –
the reciprocal lattice11 in p, q, r-space, which is used in crystallography. Points
on this reciprocal lattice define various planes in x, y, z-space, which contain
two-dimensional arrays of lattice points. Lines from the origin to points on
the reciprocal lattice define both the orientation and the separation of the
corresponding planes in x, y, z-space.

This now clears up a fundamental problem in describing crystals. The three
Ш-functions used to define the crystal lattice in x, y, z-space are not the only
possible ones. Other sets of planes can be used – an infinite number of possi-
bilities exists. The points in the reciprocal lattice define uniquely such sets of
parallel planes. The lines (‘vectors’) from the origin to these points in p, q, r-
space are normal to the lattice-planes in x, y, z-space and the length of each
vector is inversely proportional to the separation of the planes in x, y, z-space.
The coordinates of the lattice points in p, q, r-space, when multiplied by a fac-
tor to make them integer, are the Miller indices, beloved of crystallographers,
of the x, y, z-planes.

curve. For example, f (x, y, z)δ(l1x Cm1y C n1z)δ(l2x Cm2y C n2z) describes a function
which is zero everywhere except on the line x/(n1m2 � n2m1) D y/(l1n2 � l2n1) D
z/(l1n2 � l2n1).

11 Vide e.g. H. M. Rosenberg, The Solid State, 3rd edn, Oxford University Press, Oxford, 1988.
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The formal complex Fourier transform

In physics we are usually concerned with functions of real variables, which
are often experimental curves, data strings, or shapes and patterns. Generally
the function is asymmetrical about the y-axis and so its Fourier transform is
a complex function of a real variable; that is, for any value of p, a complex
number is defined.

Any function obeying the Dirichlet conditions can be divided into a
symmetrical and an antisymmetrical part. In Fig. 8.1, for example, and gener-
ally, fs(x) D 1

2 [f (x)C f (�x)] and fa(x) D 1
2 [f (x) � f (�x)]. The symmet-

rical part is synthesized only from cosines and the antisymmetrical part only
from sines. We write

f (x) D fs(x)C fa(x); fs(x)• φs(p); fa(x)• φa(p),

where φs(p), being made of cosines, is real and symmetrical and φa(p) is
imaginary and, being made of sines, is antisymmetrical.

We can also define the following.

(a) The phase transform of f (x), which is the function θ (p), where

tan θ (p) D φa(p)/φs(p).

(b) The power transform:

P (p) D jφ(p)j2 D φa(p)2 C φs(p)2.

(c) The modular transform:

M(p) D jφ(p)j D
√

φa(p)2 C φs(p)2.

All these have their practical uses, although none of them has a unique
inverse.

120
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Fig. 8.1. Dividing a function into symmetrical and antisymmetrical parts.

A useful corollary of the convolution theorem is that if C(x) D f1(x) � f2(x)
and C(x)• �(p) then the power transforms of C, f1 and f2, given by j�j2,
jφ1j

2 and jφ2j
2, are related by

j�j2 D jφ1j
2 � jφ2j

2.

A simple example shows the use of phase transforms. Consider for instance
a displaced top-hat function (any function would do, in fact), of width a and
displaced sideways by a distance b.

The function is

f (x) D 	a(x) � δ(x � b).

Its Fourier transform is

φ(p) D a sinc(πap) � e2πibp

D a sinc(πap)
[

cos(2πbp)C i sin(2πbp)
]

and its phase transform is

θ (p) D tan�1(sin(2πpb)/cos(2πpb))

so that θ (p) D 0 when p D 0 and θ (p) D 2π when p D 1/b.
Phase transforms are useful when an experimentally measured function,

which should have been symmetrical, has been displaced by an unknown
amount from its axis of symmetry – for example by sampling it in the wrong
places. A quick calculation of a few points on the phase transform will find the
displacement and allow any adjustments to be made or the true, symmetrical
samples to be computed by interpolation. It also confirms (or not!) that the
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Fig. 8.2. A top-hat function displaced by half its own width. (a) The dissection
of the top-hat into symmetrical and antisymmetrical parts.

function really is symmetrical, since only then is its phase transform a straight
line.

It is worth including here something which will be useful later when con-
sidering computing Fourier transforms. Since it is easy to separate the real
and imaginary parts of a complex function of x or p and then to divide these
into their symmetrical and antisymmetrical parts, it is possible to combine two
real functions of x into a complex function and then separate the combined
complex Fourier transform into its constituent parts. This is a useful technique
when computing digital Fourier transforms: one can do two transforms for the
price of one.

Written analytically, let the two functions be f1(x) and f2(x) and separate
each into its symmetrical and antisymmetrical parts:

f1(x) D f1s(x)C f1a(x); f2(x) D f2s(x)C f2a(x).
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Fig. 8.2. (cont.) (b) The cosine transform. (c) The sine transform.

Let

F (x) D f1(x)C if2(x).

Let

F (x)• �(p).

Then

�(p) D
∫ 1
�1

[f1(x)C if2(x)]e2πipx dx.



124 The formal complex Fourier transform

Fig. 8.2. (cont.) (d) The transform in perspective. (e) The Nyquist diagram – the
view looking along the ν-axis.

Remember that a symmetrical function has only a cosine transform, etc.,

�(p) D
∫

f1s(x)cos(2πpx)dx C i

∫
f1a(x)sin(2πpx)dx

C i

∫
f2s(x)cos(2πpx)dx �

∫
f2a(x)sin(2πpx)dx

D φ1s(p)C iφ1a(p)C iφ2s(p) � φ2a(p),

where the meaning of each suffix is the same as in the f -functions.
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Then

�(p) D [φ1s(p) � φ2a(p)]C i[φ1a(p)C φ2s(p)].

Both the real part and the imaginary part of �(p) now have symmetrical and
antisymmetrical components. When �(p) has been computed, it has a real part,
�r(p), and an imaginary part, �i(p).

The symmetrical real part is

1

2
[�r(p)C�r(�p)] D φ1s(p)

and the antisymmetrical part is

1

2
[�r(p) ��r(�p)] D �φ2a(p).

Similarly,

1

2
[�i(p) ��i(�p)] D φ1a(p)

and

1

2
[�i(p)C�i(�p)] D φ2s(p)

so that, finally,

f1(x)•
1

2
[�r(p)C�r(�p)]C

(
i

2

)
[�i(p) ��i(�p)]

•
1

2
φ1s(p)C

(
i

2

)
φ1a(p)

and, similarly,

f2(x)•
1

2
φ2s(p)C

(
i

2

)
φ2a(p).

In other words, the Fourier transform of f1(x) is 1
2 � (the symmetrical part of

the real component of �(p) plus i � the antisymmetrical part of the imaginary
component of �(p)), and the Fourier transform of f2(x) is 1

2 � (the symmetrical
part of the imaginary component plus i � the antisymmetrical part of the real
component). The computer sorts these out without difficulty!

Notice that all the F ’s, �’s, f ’s and φ’s with suffixes are real quantities. This
is because a computer deals ultimately in real numbers, although its program
may include complex arithmetic. This level of complication is not commonly
met when discussing analytic Fourier transforms. However, computing algo-
rithms compute the complex transform whether you like it or not, and the
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relations above can be used to do tricks in shortening computing time when
you know that the data represent only real functions.

Diagrammatically, the process can be represented by

f1s(x) cos ! φ1s(p),

f1a  i sin! iφ1a,

if2s  cos ! iφ2s,

if2a  i sin! �φ2a.

A function is said to be Hermitian if its real part is symmetrical and its
imaginary part is antisymmetrical. So, if f1(x) is symmetrical and f2(x) is
antisymmetrical, then φ1a 
 0 and φ2s 
 0. Then

�(p) D φ1s(p)C φ2a(p)

and is real. Alternatively, the Fourier transform of a real but asymmetrical
function is Hermitian:

f1(x)• φ1s(p)C iφ1a(p).
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Discrete and digital Fourier transforms

9.1 History

Fourier transformation is formally an analytic process which uses integral cal-
culus. In experimental physics and engineering, however, the integrand may
be a set of experimental data, and the integration is necessarily done artifi-
cially. Since a separate integration is needed to give each point of the trans-
formed function, the process would become exceedingly tedious if it were
to be attempted manually, and many ingenious devices have been invented for
performing Fourier transforms mechanically, electrically, acoustically and opti-
cally. These are all now part of history since the arrival of the digital computer
and more particularly since the discovery – or invention – of the ‘fast Fourier
transform’ algorithm or FFT as it is generally called. Using this algorithm, the
data are put (‘read’) into a file (or ‘array’, depending on the computer jargon
in use), the transform is carried out, and the array then contains the points of
the transformed function. It can be achieved by a software program, or by a
purpose-built integrated circuit. It can be done very quickly so that vibration-
sensitive instruments with Fourier transformers attached can be used for tuning
pianos and motor engines, for aircraft and submarine detection and so on. It
must not be forgotten that the ear is Nature’s own Fourier transformer,1 and,
as used by an expert piano-tuner, for example, is probably the equal of any
electronic simulator in the 20–20 000-Hz range. The diffraction grating, too, is
a passive Fourier transformer device, provided that it is used as a spectrograph
taking full advantage of the simultaneity of outputs.

The history of the FFT is complicated and has been researched by Brigham2

and, as with many discoveries and inventions, it arrived before the (com-
puter) world was ready for it. Its digital apotheosis came with the publication

1 It detects the power transform, and is not sensitive to phase.
2 E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ, 1974.

127
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of the ‘Cooley–Tukey’ algorithm3 in 1965. Since then other methods have
been virtually abandoned except for certain specialized cases and this chap-
ter is a description of the principles underlying the FFT and how to use it in
practice.

9.2 The discrete Fourier transform

There is a pair of formulae by which sets of numbers [an] and [Am], each set
having N elements, can be mutually transformed:

A(m) D
1

N

N�1∑
0

a(n)e2πinm/N ; a(n) D
N�1∑

0

A(m)e�2πinm/N . (9.1)

In appearance and indeed in function, these are very similar to the formulae
of the analytic Fourier transform and are generally known as a ‘discrete Fourier
transform’ (DFT). They can be associated with the true Fourier transform by
the following argument.

Suppose, as usual, that f (x) and φ(p) are a Fourier pair. If f (x) is multiplied
by a Ш-function of period a then the Fourier transform becomes

�(p) D
∫ 1
�1

f (x)Шa(x)e2πipx dx D (1/a)[φ(p) �Ш1/a(p)].

Now suppose that f (x) is negligibly small for all x outside the limits �a/2!
(N � 1/2)a, so that there are N teeth in the Dirac comb, and f (x) extends over
a range 	Na. We rewrite the integral and use the properties of δ-functions so
that

�(p) D
∫ 1
�1

1∑
nD�1

f (x)e2πipxδ(x � na)dx

D

1∑
nD�1

∫ 1
�1

f (x)e2πipxδ(x � na)dx.

Because there are only N teeth in the comb, the sum is finite and the integral
means substituting the argument of the δ-function as usual.

�(p) D
N�1∑
nD0

f (na)e2πipna

D (1/a)[φ(p) �Ш1/a(p)].

3 J. W. Cooley & J. W. Tukey, ‘An algorithm for the machine calculation of complex Fourier
series’, Math. Computation 19 (April 1965), 297–301.
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This in turn is periodic in p with period 1/a, and can be written

�(p) D (1/a)φ(p) �Ш1/a(p)

D (1/a)[φ(p)C φ(p C 1/a)C φ(p � 1/a)

C φ(p C 2/a)C φ(p � 2/a)C � � � ],

and in its first period �(p) is the same as the analytic function (1/a)φ(p).
Now consider n small intervals of p, each of width 1/(Na). At the mth such

interval the equation becomes

�(m/(Na)) D
N�1∑
nD0

f (na)e2πina(m/(Na)) D (1/a)φ(m/(Na))

or, more succinctly,
N�1∑
nD0

f (n)e2πinm/N D (1/a)φ(m),

and this approximates to the analytic Fourier transform. The approximation
is that in its first period the periodic �(p) D φ(p). Theoretically it is not –
there is bound to be some overlap since φ(p) is not zero – but practically the
discrepancy can be ignored.4

The choice of the interval �a/2! (N � 1/2)a for f (x) is so as to have
exactly N teeth in the Dirac comb without the embarrassment of having teeth
at the very edge – where a top-hat function changes from 1 to 0, for example.
In theory any interval of the same length would do.

9.3 The matrix form of the DFT

One way of looking at the formula for the discrete Fourier transform is to set
it out as a matrix operation. The data set [a(n)] can be written as a column
matrix or ‘vector’ (in an N -dimensional space), to be multiplied by a square
matrix containing all the exponentials and giving another column matrix with
N components, [A(m)], as its result:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(0)
A(1)
A(2)
A(3)

...
A(N � 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
D

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 e2πi/N e4πi/N . . . e2(N�1)πi/N

1 e4πi/N e8πi/N . . . e4(N�1)πi/N

1 e6πi/N e12πi/N . . . e6(N�1)πi/N

...
...

...
...

...
1 . . . . . . . . . e(N�1)22πi/N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(0)
a(1)
a(2)
a(3)

...
a(N � 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4 It is not possible for a function and its Fourier pair both to be finite in extent – one at least must
extend to˙1 – but the condition that both be small compared with the values in the region of
interest is allowable.
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The process of matrix multiplication requires n2 multiplications for its comple-
tion. If large amounts of data are to be processed, this can become inordinate,
even for a computer. Some people like to process columns of data with 106 num-
bers occasionally, but normally experimenters make do with 1024, although
they often require the transform in a few microseconds.

The secret of the fast Fourier transform is that it reduces the number of
multiplications to be done from N2 to about 2N log2(N ). A data ‘vector’ 106

numbers long then requires 4.2 � 107 multiplications instead of 1012, a gain
in speed by a factor of approximately 26 200. In this year of grace 2010, the
computation time on a desktop computer is reduced from about 2 minutes to a
few microseconds.

The way it does this is, in essence, to factorize the matrix of exponentials,
but there are easier ways of looking at the process. For example, suppose that
the number N of components in the vector is the product of two numbers k and
l. Instead of writing the subscript of each number in the vector to denote its
position (0 . . . N � 1), it can be given two subscripts s and t , and written a(s, t),
with a(s, t) D a(sk C t), where s takes values from 0 to (l � 1) and t runs from
0 to (k � 1). In this way all the numbers in the vector are labelled, but now with
two suffixes instead of one. There is absolutely no point in doing this except
for computational purposes: it is purely a piece of computer-mathematical
manipulation, and would have struck mathematicians of pre-computer days as
ludicrous. However, we now write the digital transform as

A(u, v) D
l�1∑
sD0

k�1∑
tD0

a(s, t)e2πi(skCt)(ulCv)/kl,

where the suffix m in the transformed vector has similarly been dissected into
u and v, with m D ul C v. The suffix u runs from 0 to (k � 1) and v runs from
0 to (l � 1).

The exponent is now multiplied out and gives

A(u, v) D
l�1∑
sD0

k�1∑
tD0

a(s, t)e2πisue2πisv/le2πitu/ke2πivt/(kl).

The first exponential factor is unity and is discarded. The double sum can
be rewritten now as

A(u, v) D
l�1∑
tD0

e2πitu/ke2πivt/(kl)
k�1∑
sD0

a(s, t)e2πisv/l,

which is legitimate since only the last exponent contains a factor of s.
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This sum over k terms gives a new set of numbers [g(v, t)] and we write

A(u, v) D
l�1∑
tD0

[g(v, t)e2πivt/(kl)]e2πitu/k.

The array [g(v, t)] is multiplied by e2πivt/(kl) to give an array [g0(v, t)] and
finally the sum

g00(v, u) D
l�1∑
tD0

g0(v, t)e2πitu/k

and g00(v, u) D A(u, v). (The reversing of the order of v and u is important.)
The transform has been split into two stages. There are k transforms, each

of length l, followed by N multiplications by the exponential factors e2πivt/(kl)

(the ‘twiddle-factors’), followed by l transforms, each of length k: a total of
kl2 C lk2 D N (k C l) multiplications, apart from the relatively small number,
N , of multiplications (by e2πivt/(kl)) in the middle.

The lesson is that, provided N can be factorized, the vector [a(n)] can be
turned into a rectangular k � l matrix and treated column by column as a set of
shorter transforms. For example, if there were a factor of 2, the even-numbered
a’s could be put into one vector of length N/2 and the odd-numbered a’s into
another. Then each is subjected to a Fourier transform of half the length to
give two more vectors, and these, after multiplying by the ‘twiddle-factors’ as
above, can be recombined into a vector of length N .

The same process can be repeated, provided that N/2 can be factorized; and
if the factors are always 2, it continues until only 2 � 2 matrices are left, with
trivially easy Fourier transforms (and a multiplicity of twiddle-factors!). The
interesting thing is that each number in the transformed vector has its address in
bit-reversed order. In the example given earlier the final outcome was g00(v, u),
so that the two indices have to be reversed – the number g00(v, u) is in the
wrong place in the array. This effect is multiplied until, in the 2N transform,
the transformed data appear in the wrong addresses, the true address being the
bit-reversed order of the apparent address.

The fast Fourier transform is thus usually done with N a power of 2. This
is not only very efficient in terms of computing time, but also ideally suited
to the binary arithmetic of digital computers. The details of the way programs
are written are given by Brigham5 and a BASIC listing of an FFT routine is
given at the end of this chapter. There are many such routines, the results of
many hours of research, and sometimes they are very efficient. This one is not

5 E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ, 1974.
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Fig. 9.1. The implementation of the FFT using a sinc-function as an example.
The two cylinders, unwrapped, represent the input and output data arrays. Do not
expect zero to be in the middle as in the analytic case of a Fourier transform. If the
input data are symmetrical about the centre, these two halves must be exchanged
(en-bloc, not mirror-imaged) before and after doing the FFT.

particularly fast but will suffice for practice and is certainly suitable for student
laboratory work.

The data file for this program must be 2048 words long (1024 complex
numbers, alternately real and imaginary parts), and, if only real data are to be
transformed, they should go in the even-numbered elements of the array, from
0 to 2046. Some caution is needed: zero frequency is at array element 0. If
you want to Fourier transform a sinc-function, for example, the positive part
of the function should go at the beginning of the array and the negative part
at the end. Figure 9.1 illustrates the point: the output will similarly contain
the zero-frequency value in element 0, so that the top-hat appears to be split
between the beginning and the end.

Alternatively, you can arrange to have zero frequency at point 1024 in the
array, in which case the input and output arrays must both be transposed, by
having the first and second halves interchanged (but not flipped over) before
and after the FFT is done.

Attention to these details saves a lot of confusion! It helps to think of the
array as wrapped around a cylinder, with the beginning of the array at zero
frequency and the end at point (�1) instead of (C1023).

9.3.1 Two-dimensional FFTs

Two-dimensional transforms can be done using the same routines. The data
are in a rectangular array of ‘pixels’ which form the picture which is to be
transformed. Each row should first have its right and left halves transposed.
Then each column must have the top and bottom halves transposed, so that what
was perhaps a circle in the middle of the picture becomes four quadrants, one in
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each corner. Then each row is given the FFT treatment. Then each column in
the resulting array gets the same. Then the rows and finally the columns are
transposed again to give the complete FFT. At this stage periodic features, such
as a TV raster, for example, will appear as Dirac nails (provided that the original
picture has been sampled often enough) and can be suppressed by altering the
contents of the pixels where they appear. Then the whole procedure is reversed
to give the whole ‘clean’ picture.

Apodizing functions can similarly be applied to remove false information,
to smooth edges and to improve the picture cosmetically.

Obviously far more elaborate techniques than this have been developed, but
this is the basis of the whole process.

The output can be used in a straightforward way to give the power, phase
or modular transforms, and the data can be presented graphically with simple
routines which need no description here.

9.4 A BASIC FFT routine

FFT routines can be routinely downloaded from the Web, so that observational
or experimental data can be loaded into them, the handle pulled and, like magic,
out comes the Fourier transform. However, there are many people who like to
enter the computational fray at a more fundamental level, to load their own
FFT routine into a BASIC, FORTRAN or C++ program and experiment with
it. Translation of the instructions between one and another is relatively simple
and so I have resisted the urging of colleagues to delete the BASIC routine
which was given in previous editions.

9.4.1 A routine for 1024 complex numbers

The listing below is of a simple BASIC routine for the fast Fourier transform
of 1024 complex numbers.6 This is a routine which can be incorporated into a
program which you can write for yourself.

The data to be transformed are put in an array D(I) declared at the begin-
ning of the program as ‘DIM D(2047)’. The reals go in the even-numbered
places, beginning at 0, and the imaginaries in the odd-numbered places. The
transformed data are found similarly in the same array. The variable G on line
131 should be set to 1 for a direct transform and to�1 for an inverse transform.
Numbers to be entered into the D(I) array should be in ASCII format. The

6 But N can be changed by changing the first line of the program.
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program should fill the D(I) array with data; call the FFT as a routine with a
‘GOSUB 100’ statement (the ‘RETURN’ is the last statement, on line 10), and
this can be followed by instructions for displaying the data.

It is well worth your while to incorporate a routine for transposing the two
halves of the D(I) array before and after doing the transform, as an aid to
understanding what is happening.

100 ND2048 REM for 1024 complex points
PRINT ”BEGIN FFT” transform.
JD1
GD1 REM for direct transform. GD-1
FOR ID1 TO N STEP 2 for inverse.
IF (I-J)<0 GOTO 1
IF IDJ GOTO 2
IF (I-J)>0 GOTO 2

1 TDD(J-1)
SDD(J)
D(J-1)DD(I-1)
D(J)DD(I)
D(I-1)DT
D(I)DS

2 MDN/2
3 IF (J-M)<0 GOTO 5

IF JDM GOTO 5
IF (J-M)>0 GOTO 4

4 JDJ-M
MDM/2
IF (M-2)<0 GOTO 5
IF MD2 GOTO 3
IF(M-2)>0 GOTO 3

5 JDJCM
NEXT I
XD2
IF (X-N)<0 GOTO 7

6 IF XDN GOTO 8
IF (X-N)>0 GOTO 8

7 FD2*X
HD6.28319/(G*X)
RDSIN(H/2)
WD�2*R*R
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VDSIN(H)
PD1
QD0
FOR MD1 TO X STEP 2
FOR IDM TO N STEP F
JDICX
TDP*D(J-1)-Q*D(J)
SDP*D(J)CQ*D(J-1)
D(J-1)DD(I-1)-T
D(J)DD(I)-S
D(I-1)DD(I-1)CT
D(I)DD(I)CS
NEXT I
TDP
PDP*W-Q*VCP
QDQ*WCT*VCQ
NEXT M
XDF
GOTO 6

8 CLS
FOR ID0 TO N-1
D(I)DD(I)/(SQR(N/2))
NEXT I
PRINT ”FFT DONE”

10 RETURN

Next, here is a short program to generate a file with .DAT extension which
will contain a top-hat function of any width you choose. The data are generated
in ASCII and can be used directly with the FFT program above.

REM Program to generate a “Top-hat” function.
INPUT “input desired file name”, A$
INPUT ‘Top-hat Half-width ?’, N
PID3.141 592 654
DIM B(2047)
FOR ID1024-N TO 1024CN STEP 2
B(I)D1/(2�N)
NEXT I
C$D“.DAT”
C$DA$CC$
PRINT
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OPEN C$ FOR OUTPUT AS #1
FOR ID0 TO 2047
PRINT #1,B(I)
NEXT I
CLOSE #1

The simple file-generating arithmetic in lines 6–8 can obviously be replaced
by something else, and this sort of ‘experiment’ is of great help in understanding
the FFT process.

The file thus generated can be read into the FFT program with the following:

REM Subroutine FILELOAD
REM To open a file and load contents into D(I)
GOSUB 24
(insert the next stage of the program, e.g. ‘GOSUB 100’, here)
CLS:LOCATE 10,26,0
PRINT “NAME OF DATA FILE ?”
LOCATE 14,26,0
INPUT A$
ON ERROR GOTO 35
OPEN “I”,#1,A$
FOR ID0 TO 2047
ON ERROR GOTO 35
INPUT #1,D(I)
NEXT I
CLOSE

35 RETURN
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A.1 Parseval’s theorem and Rayleigh’s theorem

Parseval’s theorem states that∫ 1
�1

f (x)g�(x)dx D

∫ 1
�1

F (p)G�(p)dp.

This proof relies on the fact that if

g(x) D
∫ 1
�1

G(p)e2πipx dp

then

g�(x) D
∫ 1
�1

G�(p)e�2πipx dp

(simply by taking complex conjugates of everything).
Then it follows that

G�(p) D
∫ 1
�1

g�(x)e2πipx dx.

The argument of the integral on the left-hand side of the theorem can now
be written as

f (x)g�(x) D
∫ 1
�1

F (q)e2πiqx dq

∫ 1
�1

G�(p)e�2πipx dp.

We integrate both sides with respect to x. If we choose the order of integration
carefully, we find∫ 1
�1

f (x)g�(x)dx D

∫ 1
�1

{∫ 1
�1

F (q)

[∫ 1
�1

G�(p)e�2πipx dp

]
e2πiqx dq

}
dx

137
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and, on changing the order of integration,

D

∫ 1
�1

{
F (q)

∫ 1
�1

g�(x)e2πiqx dx

}
dq

D

∫ 1
�1

F (q)G�(q)dq.

The theorem is often seen in a simplified form, with g(x) D f (x) and
G(p) D F (p). Then it is written∫ 1

�1

jf (x)j2 dx D

∫ 1
�1

jF (p)j2 dp.

This is Rayleigh’s theorem.
Another version of Parseval’s theorem involves the coefficients of a Fourier

series. In words, it states that the average value of the square of F (t) over one
period is the sum of the squares of all the coefficients of the series.

The proof, using the half-range series, is simple:

F (t) D
A0

2
C

1∑
0

An cos

(
2πnt

T

)
C Bn sin

(
2πnt

T

)

and, since all cross-products vanish on integration and

∫ T

0
cos2(2πnt)dt D

∫ T

0
sin2(2πnt)dt D

1

2
,

we have

∫ T

0
[F (t)]2 dt D T

[
A2

0

4
C

1∑
1

A2
n C B2

n

2

]
.

A.2 Useful formulae from Bessel-function theory

The Jacobi expansion

eix cos y D J0(x)C 2
1∑

nD1

inJn(x)cos(ny),

eix sin y D

1∑
zD�1

Jz(x)eizy .
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The integral expansion

J0(2πρr) D
1

2π

∫ 2π

0
e2πiρr cos θ dθ,

which is a particular case of the general formula

Jn(x) D
i�n

2π

∫ 2π

0
einθ eix cos θ dθ,

d

dx

(
xnC1JnC1(x)

)
D xnC1Jn(x).

The Hankel transform
This is similar to a Fourier transform, but with polar coordinates, r, θ . The
Bessel functions form a set with orthogonality properties similar to those of
the trigonometrical functions and there are similar inversion formulae. These
are

F (x) D
∫ 1

0
pf (p)Jn(px)dp,

f (p) D
∫ 1

0
xF (x)Jn(px)dx,

where Jn is a Bessel function of any order.
Bessel functions are analogous in many ways to the trigonometrical func-

tions sine and cosine. In the same way as sine and cosine are the solutions
of the SHM equation d2y/dx2 C k2y D 0, they are the solutions of Bessel’s
equation, which is

x2 d2y

dx2
C x

dy

dx
C (x2 � n2)y D 0.

In its full glory, n need not be an integer and neither x nor n need be real.
The functions are tabulated in various books1 for real x and for integer and
half-integer n, and can be calculated numerically, as are sines and cosines, by
computer.

In its simpler form, as shown, the Hankel transform occurs with θ as variable
when Laplace’s equation is solved in cylindrical polar coordinates and variables
are separated to give functions R(r)�(θ )�(φ), and this is why it proves useful
in Fourier transforms with circular symmetry.

1 For example, in Jahnke & Emde (see the bibliography).
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A.3 Conversion of Fourier-series coefficients into complex
exponential form

We use de Moivre’s theorem to do the conversion. Write 2πν0t as θ . Then,
expressed as a half-range series, F (t) becomes

F (t) D A0/2C
1∑

mD1

Am cos(mθ )C Bm sin(mθ ).

This can also be written as a full-range series:

F (t) D
1∑

mD�1

am cos(mθ )C bm sin(mθ ),

where Am D am C a�m and Bm D bm � b�m.
Then, by virtue of de Moivre’s theorem, the full-range series becomes

F (t) D
1∑

mD�1

am

2
(eimθ C e�imθ )C

bm

2i
(eimθ � e�imθ )

D

1∑
mD�1

am � ibm

2
eimθ C

1∑
mD�1

am C ibm

2
e�imθ .

The two sums are independent and m is a dummy suffix, which means that
it can be replaced by any other suffix not already in use. Here, we replace
m D �m in the second sum. Then

F (t) D
1∑

mD�1

am � ibm

2
eimθ C

1∑
mD�1

a�m C ib�m

2
eimθ

D

1∑
mD�1

eimθ

{
Am � iBm

2

}

D

1∑
mD�1

eimθCm

and C�m D C�m.
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Fabry–Pérot étalon 57
fringes and Lorentz profile 96

fast Fourier transform (FFT)
BASIC routine for 133
history of 127

filter 69
low-pass 80
matched, theorem 70

folding frequency 33
Fourier

coefficients 8
inversion theorem
pairs 9
series 2, 6, 7, 8, 17
synthesizer 82

Fourier transforms
digital 127 et seq.

history of 127f
discrete 128

matrix form 129
formal complex 120 et seq.
modular 1, 64, 120
multi-dimensional 105
phase 120
power 120
two-dimensional 97, 132

in polar coordinates 98
with circular symmetry 100
without circular symmetry 103

Fraunhofer diffraction 40 et seq.
two-dimensional 101

by circular aperture 102
by rectangular slot 101

frequency
angular 10
folding 33
fundamental 1
modulation 73
spectrum 70

fringe visibility 60, 61
defined 61

FWHM (width parameter) 13, 94, 95

Gaussian
function 13, 16
profile 95

ghosts, Rowland 76
Gibbs phenomenon 81



Index 145

Green’s function 24
graphical representation

half-width, Gaussian 96
Hankel transforms 98, 139
harmonics 1, 6

amplitude of 4
harmonic oscillator, damped 92 et seq.
Hartley–Shannon theorem 74
Hermitian functions 126
Heaviside step function 77 et seq.
history, discrete transforms 127f
Huygens’ principle 40

wavelets 52

impulse response 24
intensity

in a diffraction grating 48
in single-slit diffraction 43
of a wave 43

interference spectrometry 86
interferogram 90
interferometer, Michelson 87
interferometry, fundamental formula 86
interpolary function theory 33
interpolation theorem 35
interval, sampling 33
instrumental function 23
inverse transform 9
inversion formulae 7

Hankel transform 99

Jacobi expansion 75, 138
jinc-function 100
Johnson noise 68

Kronecker-delta 99

lattices 119
lifetime of an excited state 93
line shapes, spectral 49, 86, 91, 96
line width, natural 93
Lorentz profile 14, 94

and Fabry–Pérot fringes 96
low-pass filter 80, 82

matched-filter theorem 70
Maxwellian velocity distribution 94
Michelson

interferometer 86
stellar interferometer 61 et seq.

Michelson and Stratton harmonic integrator
82

Miller indices 119
modular transform
modulating signal
modulations 71
modulation

amplitude 72
frequency 73
index 74
pulse-height 76
pulse-width 76

multiplex advantage 88
transmission 77

multiplex spectrometer 86
multiplex transmission 77
multiplexing

frequency 77
time 77

nail, Dirac 112
pair of 113

noise 68
filters 69 et seq.
Johnson 68
photo-electron shot 69
semi-conductor 69
white 68

Nyquist diagram 69, 124
frequency 33

oblique incidence 43, 44
orthogonality

of Bessel functions 139
of sines and cosines 4

overtones 1

Parseval’s theorem 32, 67
periodic errors 75
phase 6f

angle 1f, 60, 69, 96f
change 40f
and coherence 58
difference 6, 7, 42
transform 120

Planck, M. 91
point arrays 118
point-spread function 24
polar coordinates 98

diagrams 58
power spectrum, see spectral power density



146 Index

profile
Gaussian 95
instrumental 91
line 14
Lorentz 14, 93

projection 108
slice theorem 110

pulse-train, passage through a filter 82

radiation damping 91
Radon transform 108, 109

projection slice theorem 110
Rayleigh, Lord 88
Rayleigh criterion 103
Rayleigh’s theorem 32, 67

in two dimensions 99
reciprocal lattice 117, 119
rect function 11f
resolution, difraction grating
Rowland ghosts 76

sampling 77
frequency 35
rate 34, 77
theorem 33
under- 35

saw-tooth waveform 19
Schwartz’s inequality 71
serial link 77
sgn function 78
shah (Ш )-function 17
shift theorem 22, 27, 67
signal analysis 66 et seq.
signal/noise ratio 69, 74
similarity theorem 36
sinc-function 12, 44
sinusoid, convolution with 38
spectral

lines, shapes of 49, 86, 91, 96
power density (SPD) 89, 90, 93, 95

spectrometer, perfect 22, 23
spike, two-dimensional, FT of 112
square-wave 5
Stratton, Michelson and, harmonic integrator

82
sub-carrier 77
superposition of planes 108
symmetry 120 et seq.

temperature broadening 95
theorems

addition 22
autocorrelation 29
cardinal, of interpolary function theory

33
convolution 26

derivative 32
in two-dimensional FTs 99

de Moivre’s 7, 140
derivative 31
Fourier inversion 9
matched filter 70
Parseval’s 32, 67, 137
power 32
projective slice 110
Rayleigh’s 32, 137
sampling 33
similarity 36

in two-dimensional FTs 99
shift 22, 27, 67

in two-dimensional FTs 99
Van Cittert–Zernike 64
Wiener–Khinchine 67

tomography, computer axial 108
top-hat function 11, 31

in two-dimensional FT’s 100
transition probablity 93
triangle function 28
twiddle factors 131

Van Cittert–Zernike theorem 64
variables

abstract 9
conjugate 10
physical 9

velocity distribution, Maxwell 95
visibility of fringes 60, 61
Voigt profile 95

separation of components 95
voltage-step, passage through a filter 80

waveform
double sawtooth 38
rectangular 5, 37

wavenumber 88, 90
width parameter (FWHM) 13, 14, 95
Witch of Agnesi 14f
Wiener–Khinchine theorem 67

Yagi aerial 56
Young’s slits 64

interferometer 61




