

http://www.oreilly.com/programming/newsletter

Mark Richards

Microservices vs. Service-
Oriented Architecture

978-1-491-94161-4

[LSI]

Microservices vs. Service-Oriented Architecture
by Mark Richards

Copyright © 2016 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Nan Barber, Rachel Roumeliotis
Production Editor: Nicholas Adams
Copyeditor: Eileen Cohen
Proofreader: Nicholas Adams

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

November 2015: First Edition

Revision History for the First Edition
2015-11-17: First Release
2015-04-22: Second Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Microservices vs.
Service-Oriented Architectures and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://safaribooksonline.com

Table of Contents

Foreword. ix

Preface. xi

1. The World of Service-Based Architectures. 1
Service Contracts 2
Service Availability 5
Security 7
Transactions 8
Too Much Complexity? 9

2. Comparing Service Characteristics. 11
Service Taxonomy 11
Service Ownership and Coordination 14
Service Granularity 17
Granularity and Pattern Selection 19

3. Comparing Architecture Characteristics. 21
Component Sharing 22
Service Orchestration and Choreography 24
Middleware vs. API Layer 30
Accessing Remote Services 33

4. Comparing Architecture Capabilities. 35
Application Scope 35
Heterogeneous Interoperability 36

vii

Contract Decoupling 39

5. Summary. 43

viii | Table of Contents

Foreword
One of the fascinating aspects of software engineering is how great
concepts endure, but their execution and application are regularly
reinvented using the tools and practices of the day. The rise of
microservices patterns and practices is a great example of this pro‐
cess.

Skeptics may dismiss microservices as little more than the service-
oriented architecture (SOA) practices of the 2000s, reheated. The
reality is that microservices are an example of convergent evolution,
emerging from modern development, testing, and deployment tech‐
niques and shaped by the democratizing influence of open source.
The resulting incarnation of SOA is transforming our industry.

What’s the nature of this transformation? Early adopters report that
when used with an agile and autonomous approach to engineering
structures and a DevOps approach to delivery, the microservices
approach enables a much quicker cadence of application develop‐
ment. In turn, software developers welcome this, having learned
their trade in the fast-moving, app-driven world of services and
applications. The net result is faster innovation, and a potential
competitive advantage for Internet-facing organizations that
embrace these practices.

The power of microservices comes from their non-prescriptive
nature. There is no formal, slow-moving, industry-driven specifica‐
tion; rather, the microservices approach has emerged as a pattern of
development that has been practiced and refined by pioneers. Born
in the modern Web, microservices are interconnected using a thin
layer of simple APIs and the lingua franca of HTTP. At NGINX, we
are incredibly proud of our role in accelerating, securing, scaling,
and delivering microservices-based applications. As the HTTP
“connective tissue” of modern applications, NGINX serves as both
the stable entry point to a microservices-based application, and the
traffic manager for communication between the microservices
themselves.

The lack of a prescriptive industry specification is sure to raise
many, many questions—especially if you have experience with pre‐
vious SOA practices. Microservices have at times been billed as
“SOA done right,” but is that really the case? And what exactly did

earlier practices do wrong that microservices are getting right? In
this report, Mark Richards provides a thoughtful breakdown of the
two approaches and discusses where one approach might be prefer‐
red over the other. By the end of this report, you’ll have not only a
greater understanding of these two architectural patterns, but also of
application development as a whole. We hope you enjoy this report.

—Owen Garrett,
Head of Products, NGINX, Inc.

Preface

In the mid-2000’s, service-oriented architecture (SOA) took the IT
industry by storm. Numerous companies adopted this new architec‐
ture style as a way to bring better business functionality reuse into
the organization and to enable the IT organization and the business
to better communicate and collaborate with each other. Dozens of
best practices for implementing SOA emerged at that time, as well as
a plethora of third-party products to help companies implement
SOA. Unfortunately, companies learned the hard way that SOA was
a big, expensive, complicated architecture style that took too long to
design and implement, resulting in failed projects that drove SOA
out of favor in the industry.

Today, microservices architecture is taking the IT industry by storm
as the go-to style for developing highly scalable and modular appli‐
cations. Microservices architecture holds the promise of being able
to address some of the problems associated with large, complex
SOAs as well as the problems found with big, bloated monolithic
applications. But how much do microservices and SOA differ? Is the
industry destined to repeat the same experience with microservices
as with SOA?

In this report I walk you through a detailed comparison of the
microservices and SOA architecture patterns. You will learn the
basics of each of these architectures and core differences between
them in terms of the architecture style, architecture characteristics,
service characteristics, and capabilities. By using the information in
this report, you will know how these two architecture styles differ
from each other and which of the two is best suited for your particu‐
lar situation.

xi

CHAPTER 1

The World of Service-Based
Architectures

Both microservices architecture and SOA are considered service-
based architectures, meaning that they are architecture patterns that
place a heavy emphasis on services as the primary architecture com‐
ponent used to implement and perform business and nonbusiness
functionality. Although microservices and SOA are very different
architecture styles, they share many characteristics.

One thing all service-based architectures have in common is that
they are generally distributed architectures, meaning that service
components are accessed remotely through some sort of remote-
access protocol—for example, Representational State Transfer
(REST), Simple Object Access Protocol (SOAP), Advanced Message
Queuing Protocol (AMQP), Java Message Service (JMS), Microsoft
Message Queuing (MSMQ), Remote Method Invocation (RMI),
or .NET Remoting. Distributed architectures offer significant
advantages over monolithic and layered-based architectures, includ‐
ing better scalability, better decoupling, and better control over
development, testing, and deployment. Components within a dis‐
tributed architecture tend to be more self-contained, allowing for
better change control and easier maintenance, which in turn leads to
applications that are more robust and more responsive. Distributed
architectures also lend themselves to more loosely coupled and
modular applications.

1

In the context of service-based architecture, modularity is the prac‐
tice of encapsulating portions of your application into self-contained
services that can be individually designed, developed, tested, and
deployed with little or no dependency on other components or serv‐
ices in the application. Modular architectures also support the
notion of favoring rewrite over maintenance, allowing architectures
to be refactored or replaced in smaller pieces over time as the busi‐
ness grows—as opposed to replacing or refactoring an entire appli‐
cation using a big-bang approach.

Unfortunately, very few things in life are free, and the advantages of
distributed architectures are no exception. The trade-offs associated
with those advantages are, primarily, increased complexity and cost.
Maintaining service contracts, choosing the right remote-access
protocol, dealing with unresponsive or unavailable services, secur‐
ing remote services, and managing distributed transactions are just
a few of the many complex issues you have to address when creating
service-based architectures. In this chapter I’ll describe some of
these complex issues as they relate to serviced-based architecture.

Service Contracts
A service contract is an agreement between a (usually remote) ser‐
vice and a service consumer (client) that specifies the inbound and
outbound data along with the contract format (XML, JavaScript
Object Notation [JSON], Java object, etc.). Creating and maintaining
service contracts is a difficult task that should not be taken lightly or
treated as an afterthought. As such, the topic of service contracts
deserves some special attention in the scope of service-based archi‐
tecture.

In service-based architecture you can use two basic types of service
contract models: service-based contracts and consumer-driven con‐
tracts. The real difference between these contract models is the
degree of collaboration. With service-based contracts, the service is
the sole owner of the contract and is generally free to evolve and
change the contract without considering the needs of the service
consumers. This model forces all service consumers to adopt new
service contract changes, whether or not the service consumers need
or want the new service functionality.

Consumer-driven contracts, on the other hand, are based on a closer
relationship between the service and the service consumers. With

2 | Chapter 1: The World of Service-Based Architectures

this model there is strong collaboration between the service owner
and the service consumers so that needs of the service consumers
are taken into account with respect to the contracts that bind them.
This type of model generally requires the service to know who its
consumers are and how the service is used by each service con‐
sumer. Service consumers are free to suggest changes to the service
contract, which the service can either adopt or reject depending on
how it affects other service consumers. In a perfect scenario, service
consumers deliver tests to the service owner so that if one consumer
suggests a change, tests can be executed to see if the change breaks
another service consumer. Open source tools such as Pact and Pacto
can help with maintaining and testing consumer-driven contracts.

Another critical topic within the context of service contracts is con‐
tract versioning. Let’s face it—at some point the contracts binding
your services and service consumers are bound to change. The
degree and magnitude of this change are largely dependent on how
those changes affect each service consumer and the backward com‐
patibility supported by the service with respect to the contract
changes.

Contract versioning allows you to roll out new service features that
involve contract changes and at the same time provide backward
compatibility for service consumers that are still using prior con‐
tracts. Perhaps one of the most important pieces of advice in this
chapter is to plan for contract versioning from the very start of your
development effort, even if you don’t think you’ll need it—because
eventually you will. While several open source and commercial
frameworks are available to help you manage and implement
contract-versioning strategies, you can use two basic techniques to
implement your own custom contract-versioning strategy: homoge‐
neous versioning and heterogeneous versioning.

Homogeneous versioning involves using contract version numbers
in the same service contract. Notice in Figure 1-1 that the contract
used by service consumer A and service consumer B are both the
same circle shape (signifying the same contract) but contain differ‐
ent version numbers. A simple example of this might be an XML-
based contract that represents an order for some goods, with a con‐
tract version number 1.0. Let’s say a newer version (version 1.1) is
released containing an additional field used to provide delivery
instructions in the event the recipient is not at home when the order
is delivered. In this case the original contract (version 1.0) can

Service Contracts | 3

https://github.com/realestate-com-au/pact
http://thoughtworks.github.io/pacto

remain backward compatible by making the new delivery-
instructions field optional.

Figure 1-1. Contract version numbers

Heterogeneous versioning involves supporting multiple types of
contracts. This technique is closer to the concept of consumer-
driven contracts described earlier in this section. With this techni‐
que, as new features are introduced, new contracts are introduced as
well that support that new functionality. Notice the difference
between Figure 1-1 and Figure 1-2 in terms of the service contract
shape. In Figure 1-2, service consumer A communicates using a con‐
tract represented by a circle, whereas service consumer B uses an
entirely different contract represented by the triangle. In this case,
backward compatibility is supplied by different contracts rather than
versions of the same contract. This is a common practice in many
JMS-based messaging systems, particularly those leveraging the
ObjectMessage message type. For instance, a Java-based receiver
can interrogate the payload object sent through the message using
the instanceof keyword and take appropriate action based on the
object type. Alternatively, XML payload can be sent through a JMS
TextMessage that contains entirely different XML schema for each
contract, with a message property indicating the corresponding
XML schema associated with the XML payload.

Figure 1-2. Multiple contracts

4 | Chapter 1: The World of Service-Based Architectures

Providing backward compatibility is the real goal of contract ver‐
sioning. Maintaining a mindset that services must support multiple
versions of a contract (or multiple contracts) will allow your devel‐
opment teams to quickly deploy new features and other changes
without fear of breaking the existing contracts with other service
consumers. Keep in mind that it is also possible to combine these
two techniques by supporting multiple version numbers for differ‐
ent contract types.

One last thing about service contracts with respect to contract
changes: be sure to have a solid service consumer communication
strategy in place from the start so that service consumers know
when a contract changes or a particular version or contract type is
no longer supported. In many circumstances this may not be feasi‐
ble because the number of internal and/or external service consum‐
ers is large. In this situation an integration hub (i.e., messaging mid‐
dleware) can help by providing an abstraction layer to transform
service contracts between services and service consumers. I’ll be
talking more about this capability later in this report in the “Con‐
tract Decoupling” section in Chapter 4.

Service Availability
Service availability and service responsiveness are two other consid‐
erations common to all service-based architectures. Although both
of these topics relate to the ability of the service consumer to com‐
municate with a remote service, they have slightly different mean‐
ings and are addressed by service consumers in different ways.

Service availability refers to the ability of a remote service to accept
requests in a timely manner (e.g., establishing a connection to the
remote service). Service responsiveness refers to the ability of the ser‐
vice consumer to receive a timely response from the service. The
diagram in Figure 1-3 illustrates this difference.

Figure 1-3. Service availability and responsiveness

Service Availability | 5

Although the end result of these error conditions is the same (the
service request cannot be processed), they are handled in different
ways. Since service availability is related to service connectivity,
there is not much a service consumer can do except to retry the con‐
nection for a set number of times or queue the request for later pro‐
cessing if possible.

Service responsiveness is much more difficult to address. Once you
successfully send a request to a service, how long should you wait
for a response? Is the service just slow, or did something happen in
the service to prevent the response from being sent?

Addressing timeout conditions can be one of the more challenging
aspects of remote service connectivity. A common way to determine
reasonable timeout values is to first establish benchmarks under
load to get the maximum response time, and then add extra time to
account for variable load conditions. For example, let’s say you run
some benchmarks and find that the maximum response time for a
particular service request is 2,000 milliseconds. In this case you
might double that value to account for high load conditions, result‐
ing in a timeout value of 4,000 milliseconds.

Although this may seem like a reasonable solution for calculating a
service response timeout, it is riddled with problems. First of all, if
the service really is down and not running, every request must wait
four seconds before determining that the service is not responding.
This is inefficient and annoying to the end user of the service
request. Another problem is that your benchmarks may not have
been accurate, and under heavy load the service response is actually
averaging five seconds rather than the four seconds you calculated.
In this case the service is in fact responding, but the service con‐
sumer will reject every request because the timeout value is set too
low.

A popular technique to address this issue is to use the circuit breaker
pattern. If the service is not responding in a timely manner (or not
at all), a software circuit breaker will be thrown so that service con‐
sumers don’t have to waste time waiting for timeout values to occur.
The cool thing is that unlike a physical circuit breaker, this pattern
can be implemented to reset itself when the service starts respond‐
ing or becomes available. There are numerous open-source imple‐
mentations of the circuit breaker pattern, including Ribbon from

6 | Chapter 1: The World of Service-Based Architectures

Netflix. You can read more about the circuit breaker pattern in
Michael Nygard’s book Release It! (Pragmatic Bookshelf).

When dealing with timeout values, try to avoid the use of global
timeout values for every request. Instead, consider using context-
based timeout values, and always make these externally configurable
so that you can respond quickly for varying load conditions without
having to rebuild or redeploy the application. Another option is to
create “smart timeout values” embedded in your code that can
adjust themselves based on varying load conditions. For example,
the application could automatically increase the timeout value in
response to heavy load or network issues. As load decreases and
response times become faster, the application could then calculate
the average response time for a particular request and lower the
timeout value accordingly.

Security
Because services are generally accessed remotely in service-based
architectures, it is important to make sure the service consumer is
allowed to access a particular service. Depending on your situation,
service consumers may need to be both authenticated and author‐
ized. Authentication refers to whether the service consumer can con‐
nect to the service, usually through sign-on credentials using a user‐
name and password. In some cases authentication is not enough: the
fact that service consumers can connect to a service doesn’t neces‐
sarily mean that they can access all of the functionality in that ser‐
vice. Authorization refers to whether or not a service consumer is
allowed to access specific business functionality within a service.

Security was a major issue with early SOA implementations. Func‐
tionality that used to be located in a secure silo-based application
was suddenly available globally to the entire enterprise. This issue
created a major shift in how we think about services and how to
protect them from consumers who should not have access to them.

With microservices, security becomes a challenge primarily because
no middleware component handles security-based functionality.
Instead, each service must handle security on its own, or in some
cases the API layer can be made more intelligent to handle the secu‐
rity aspects of the application. One security design I have seen
implemented in microservices that works well is to delegate authen‐
tication to a separate service and place the responsibility for authori‐

Security | 7

zation in the service itself. Although this design could be modified
to delegate both authentication and authorization to a separate secu‐
rity service, I prefer encapsulating the authorization in the service
itself to avoid chattiness with a remote security service and to create
a stronger bounded context with fewer external dependencies.

Transactions
Transaction management is a big challenge in service-based archi‐
tectures. Most of the time when we talk about transactions we are
referring to the ACID (atomicity, consistency, isolation, and durabil‐
ity) transactions found in most business applications. ACID transac‐
tion are used to maintain database consistency by coordinating mul‐
tiple database updates within a single request so that if an error
occurs during processing, all database updates are rolled back for
that request.

Given that service-based architectures are generally distributed
architectures, it is extremely difficult to propagate and maintain a
transaction context across multiple remote services. As illustrated in
Figure 1-4, a single service request (represented by the box next to
the red X) may need to call multiple remote services to complete the
request. The red X in the diagram indicates that it is not feasible to
use an ACID transaction in this scenario.

Figure 1-4. Service transaction management

Transaction issues are much more prevalent in SOA because, unlike
in microservices architecture, multiple services are typically used to
perform a single business request. I discuss this in more detail in the
“Service Orchestration” section of Chapter 3.

Rather than use ACID transactions, service-based architectures rely
on BASE transactions. BASE is a family of styles that include basic
availability, soft state, and eventual consistency. Distributed applica‐
tions relying on BASE transactions strive for eventual consistency in
the database rather than consistency at every transaction. A classic

8 | Chapter 1: The World of Service-Based Architectures

example of BASE transactions is making a deposit into an ATM.
When you deposit cash into your account through an ATM, it can
take from several minutes to several hours for the deposit to appear
in your account. In other words, there is a soft transition state in
which the money has left your hands but has not reached your bank
account. We are tolerant of this time lag and rely on soft state and
eventual consistency, knowing and trusting that the money will
reach our account at some point soon. Batch jobs also sometimes
rely on eventual consistency when seen from a holistic system view.

Switching to the world of service-based architectures requires us to
change our way of thinking about transactions and consistency. In
situations in which you simply cannot rely on eventual consistency
and soft state and require transactional consistency, you can make
your services more coarse-grained to encapsulate the business logic
into a single service, allowing the use of ACID transactions to ach‐
ieve consistency at the transaction level. You can also leverage event-
driven techniques to push notifications to consumers when the state
of a request has become consistent. This technique adds a significant
amount of complexity to an application but helps in managing
transactional state when BASE transactions are used.

Too Much Complexity?
Service-based architectures are a significant improvement over
monolithic applications, but as you can see they involve many con‐
siderations—including service contracts, availability, security, and
transactions (to name a few). Unfortunately, moving to a service-
based architecture approach such as microservices or SOA involves
trade-offs. For this reason, you shouldn’t embark on a service-based
architecture solution unless you are ready and willing to address the
many issues facing distributed computing.

The issues identified in this chapter are complex, but they certainly
aren’t showstoppers. Most teams using service-based architectures
are able to successfully address and overcome these challenges
through a combination of open source tools, commercial tools, and
custom solutions.

Are service-based architectures complex? Absolutely. However, with
added complexity come additional characteristics and capabilities
that will make your development teams more productive, produce
more reliable and robust applications, reduce overall costs, and

Too Much Complexity? | 9

improve overall time to market. In the next three chapters I walk
you through those capabilities by comparing microservices and SOA
to help you decide which architecture pattern is right for you.

10 | Chapter 1: The World of Service-Based Architectures

CHAPTER 2

Comparing Service Characteristics

The OASIS Reference Model for Service Oriented Architecture
defines a service as “a mechanism to enable access to one or more
capabilities, where the access is provided using a prescribed inter‐
face and is exercised consistent with constraints and policies as
specified by the service description.” In other words, a service has
some business capabilities and has a well-defined interface and well-
defined contract to access that service. What this definition does not
specify, however, is how services are further defined based on classi‐
fication, organizational ownership, and granularity (i.e., service
size). Understanding these service characteristics helps define the
context of a service within a particular architecture pattern.

Although microservices and SOA both rely on services as the main
architecture component, they vary greatly in terms of service char‐
acteristics. In this chapter I compare microservices and SOA by
focusing on how the services are classified within each pattern (i.e.,
service taxonomy), how services are coordinated based on the ser‐
vice owner, and finally the difference in service granularity between
microservices and SOA.

Service Taxonomy
The term service taxonomy refers to how services are classified
within an architecture. There are two basic types of service classifi‐
cations—service type and business area. Service type classification
refers to the type of role the service plays in the overall architecture.
For example, some services might implement business functionality,

11

http://bit.ly/oasisrefmod

whereas other services might implement some sort of nonbusiness
functionality such as logging, auditing, and security. Business area
classification refers to the role a business service plays with regard to
a specific business functional area such as reporting, trade process‐
ing, or order shipping.

Service type classification is generally defined at the architecture
pattern level, whereas business area classification is defined at the
architecture implementation level. Although architecture patterns
provide a good base and starting point for defining the service types,
as an architect you are free to modify these and come up with your
own classifications. In this section I focus on architecture patterns
and therefore the types of services that you would generally find in
microservices and SOA.

Microservices architectures have a limited service taxonomy when it
comes to service type classification, mostly consisting of only two
service types as illustrated in Figure 2-1. Functional services are serv‐
ices that support specific business operations or functions, whereas
infrastructure services support nonfunctional tasks such as authenti‐
cation, authorization, auditing, logging, and monitoring. This is an
important distinction within a microservices architecture, because
infrastructure services are not exposed to the outside world but
rather are treated as private shared services only available internally
to other services. Functional services are accessed externally and are
generally not shared with any other service.

Figure 2-1. Microservice service taxonomy

12 | Chapter 2: Comparing Service Characteristics

The service taxonomy within SOA varies significantly from micro‐
services taxonomy. In SOA there is a very distinct and formal ser‐
vice taxonomy in terms of the type of service and the role of that
service in the overall architecture. While there can be any number of
service types within SOA, the architecture pattern defines four basic
types, as illustrated in Figure 2-2.

Figure 2-2. SOA taxonomy

Business services are abstract, high-level, coarse-grained services that
define the core business operations that are performed at the enter‐
prise level. Being abstract, they are devoid of any implementation or
protocol, and they usually only include the name of the service, the
expected input, and the expected output. Optionally, these services
types also can include processing steps or special orchestration rules
associated with the service. Business services are typically repre‐
sented through either XML, Web Services Definition Language
(WSDL), or Business Process Execution Language (BPEL). A good
litmus test for determining if a service should be considered a busi‐
ness service is to add the words “Are we in the business of ” in front
of the context of the service name. For example, consider the
ProcessTrade and InsertCustomer services. Saying “Are we in the
business of processing trades” makes it clear that ProcessTrade is a
good business service candidate, whereas “Are we in the business of
inserting customers” is a clear indication that the InsertCustomer
service is not a good abstract business service candidate, but rather a
concrete service that is invoked as a response to a business service.

Enterprise services are concrete, enterprise-level, coarse-grained
services that implement the functionality defined by business serv‐
ices. As illustrated in Figure 2-2, it is usually the middleware compo‐
nent that bridges the abstract business services and the correspond‐
ing concrete enterprise services implementations. Enterprise serv‐

Service Taxonomy | 13

ices can have a one-to-one or one-to-many relationship with a busi‐
ness service. They can be custom-written using any programming
language and platform, or they can be implemented using a third-
party commercial off-the-shelf (COTS) product. One unique thing
about enterprise services is that they are generally shared across the
organization. For example, a RetrieveCustomer enterprise service
may be used by different parts of the organization to provide a com‐
mon way to retrieve customer information. CheckTradeCompliance,
CreateCustomer, ValidateOrder, and GetInventory are all good exam‐
ples of enterprise services. Enterprise services typically rely on appli‐
cation services and infrastructure services to fulfill a particular busi‐
ness request, but in some cases all of the business functionality
needed for a particular request may be self-contained within that
enterprise service.

Application services are fine-grained, application-specific services
that are bound to a specific application context. Application services
provide specific business functionality not found at the enterprise
level. For example, an auto-quoting application as part of a large
insurance company might expose services to calculate auto insur‐
ance rates—something that is specific to that application and not to
the enterprise. Application services may be called directly through a
dedicated user interface, or through an enterprise service. Some
examples of an application service might be AddDriver, AddVehicle,
and CalculateAutoQuote.

The final basic type of service found in SOA is infrastructure serv‐
ices. As in microservices architecture, these are services that imple‐
ment nonfunctional tasks such as auditing, security, and logging. In
SOA, infrastructure services can be called from either application
services or enterprise services.

Remember, as an architect you can choose to use the standard ser‐
vice types that are part of these architecture patterns, or completely
discard them and create your own classification scheme. Regardless
of which you do, the important thing is to make sure you have a
well-defined and well-documented service taxonomy for your archi‐
tecture.

Service Ownership and Coordination
A service owner is the type of group within the organization that is
responsible for creating and maintaining a service. Because micro‐

14 | Chapter 2: Comparing Service Characteristics

services architecture has a limited service taxonomy (functional
services and infrastructure services), it is typical for application
development teams to own both the infrastructure and functional
services. Even though dozens of application development teams
might be writing services, the important thing here to note is that
they all belong to the same type of group (i.e., application develop‐
ment teams). Figure 2-3 illustrates the typical service ownership
model for microservices.

Figure 2-3. Microservices service ownership model

With SOA, there are usually different service owners for each type of
service. Business services are typically owned by business users,
whereas enterprise services are typically owned by shared services
teams or architects. Application services are usually owned by appli‐
cation development teams, and infrastructure services are owned by
either application development teams or infrastructure services
teams. Although not formally a service, the middleware components
usually found in SOA are typically owned by integration architects
or middleware teams. Figure 2-4 illustrates the typical service own‐
ership model for SOA.

Service Ownership and Coordination | 15

Figure 2-4. SOA service ownership model

The significance of the service owner is that of overall service coor‐
dination. In SOA, you must coordinate with multiple groups to cre‐
ate or maintain a single business request; business users must be
consulted about the abstract business services, shared services teams
must be consulted about the enterprise services created to imple‐
ment the business services, application development teams must be
coordinated so that enterprise services can invoke lower-level func‐
tionality, and infrastructure teams must be coordinated to ensure
nonfunctional requirements are met through the infrastructure
services. Finally, all of that needs to be coordinated through the
middleware teams or integration architects managing the messaging
middleware.

With microservices, there is little or no coordination among services
to fulfill a single business request. If coordination is needed among
service owners, it is done quickly and efficiently through small
application development teams.

This difference between microservices and SOA in service owner‐
ship and overall coordination directly relates to the effort and time
involved in developing, testing, deploying, and maintaining services
in each of these architecture patterns. This is an area in which the
microservices pattern stands out from the crowd. Thanks to the
small service size and minimal coordination needed with other
groups, services can be quickly developed, tested, and deployed
through an effective deployment pipeline. This translates to faster
time to market, lower development and maintenance costs, and
more-robust applications.

16 | Chapter 2: Comparing Service Characteristics

Service Granularity
One of the bigger differences from a services perspective between
microservices and SOA is service granularity. As the name suggests,
microservices are small, fine-grained services. More specifically, ser‐
vice components within a microservices architecture are generally
single-purpose services that do one thing really, really well. With
SOA, service components can range in size anywhere from small
application services to very large enterprise services. In fact, it is
common to have a service component within SOA represented by a
large product or even a subsystem.

Interestingly enough, one of the biggest challenges originally facing
SOA was service granularity. Not understanding the impact of ser‐
vice granularity, architects frequently designed services that were
too fine-grained, resulting in chatty and poorly performing applica‐
tions. Architects and component designers quickly learned that
large, coarse-grained services with views into the data were the way
to go. For example, rather than fine-grained getter and setter serv‐
ices like GetCustomerAddress, GetCustomerName, UpdateCustomer‐
Name, and so on, architects and shared services teams adopted an
approach of having an enterprise Customer service that handled
more coarse-grained update and retrieval data views, delegating the
lower-level getters and setters to application-level services that were
not exposed remotely to the enterprise. In this manner, operations
such as GetCustomerDemographics or GetCustomerInformation
would return a bulk of customer data related to that context rather
than each individual field.

This difference in granularity naturally relates to differences in ser‐
vice component scope and functionality. With microservices, the
service component functionality (what the service actually does)
tends to be very small, sometimes implemented through only one or
two modules. With SOA, services tend to encompass much more
business functionality, sometimes implemented as complete subsys‐
tems (e.g., claims-processing engines or warehousing systems).
However, more typically SOA relies on multiple services to complete
a single business request, whereas microservices architecture gener‐
ally does not. I discuss this topic in more detail in the “Service
Orchestration” section of the next chapter.

Whether you are using a microservices architecture or SOA, design‐
ing services with the right level of granularity is not an easy task.

Service Granularity | 17

Service granularity affects both performance and transaction man‐
agement. Services that are too fine-grained will require interservice
communication to fulfill a single business request, resulting in
numerous remote service calls that take up valuable time. For exam‐
ple, let’s say it takes four services to process a particular user request.
Let’s also say that the time spent just on the remote-access protocol
to communicate to or from the service is 100 milliseconds. The dia‐
gram in Figure 2-5 shows that in this example 600 milliseconds
would be spend just on transport time. Consolidating these services
into a single service would reduce that transport time to 200 milli‐
seconds, shaving off close to half a second of processing time.

Figure 2-5. Service granularity impact on performance

Transaction management is also impacted by service granularity. I
am referring here to traditional ACID transactions, not the BASE
transactions I discussed in the previous chapter. If your remote serv‐
ices are too fine-grained, you will not be able to coordinate the serv‐
ices using a single transactional unit of work, as shown by the top
diagram in Figure 2-6. However, by combining these services into
one larger remote service, as shown by the bottom diagram in
Figure 2-6, you can now use a transaction to coordinate the services,
thereby ensuring that database updates are all contained within a
single transactional unit of work.

18 | Chapter 2: Comparing Service Characteristics

Figure 2-6. Service granularity impact on transactions

When dealing with service granularity I usually find it easier to start
out with services that are more coarse-grained than that you might
otherwise create, and then break them apart as you learn how they
are used. As Sam Newman states in his excellent book Building
Microservices (O’Reilly), “Start with a small number of larger services
first.” Just watch out for transaction issues and too much interser‐
vice communication, particularly with microservices—these are
good indicators that your services might be too fine-grained.

Granularity and Pattern Selection
Out of the three service characteristics described in this chapter, ser‐
vice granularity has the most potential impact on your choice of
which architecture pattern is best suited for your situation. The very
small, fine-grained service concept within microservices allows this
architecture pattern to improve all aspects of the software develop‐
ment lifecycle, including development, testing, deployment, and
maintenance. Although moving to services that are more coarse-
grained certainly resolves performance and transactional issues, it
also adversely affects development, testing, deployment, and main‐
tenance. If you find that your services range in size from small to
large, you will likely need to look toward more of a SOA pattern
than the more simple microservices architecture pattern. However,

Granularity and Pattern Selection | 19

http://shop.oreilly.com/product/0636920033158.do
http://shop.oreilly.com/product/0636920033158.do

if you are able to break down the business functionality of your
application into very small, independent parts, then the microservi‐
ces pattern is a likely candidate for your architecture.

There are many other aspects to consider besides service character‐
istics when comparing microservices to SOA. In the next chapter I
take more of a global view and compare their architectural aspects,
including the level of sharing among components, service orchestra‐
tion and choreography, the use of middleware vs. a simple API layer,
and finally differences in how remote services are accessed in each
pattern.

20 | Chapter 2: Comparing Service Characteristics

CHAPTER 3

Comparing Architecture
Characteristics

A component is a unit of software that has a well-defined interface
and a well-defined set of roles and responsibilities. Components
form the building blocks of the architecture. For service-based
architectures those building blocks are usually referred to as services
(or service components). Regardless of the label you put on a compo‐
nent, when creating an architecture you will need to determine how
components are shared, how they communicate, how they are com‐
bined to fulfill a particular business request, and how they are
accessed from remote service consumers.

Determining all of this is not always an easy task. This is where
architecture patterns come in. Each architecture pattern has a
unique topology that defines the shape and general characteristics of
the architecture, including how components relate, communicate,
and act together to fulfill business requests. By analyzing the topol‐
ogy of the architecture pattern, you can better determine if the pat‐
tern is the right choice for you.

In this chapter I explore the differences between microservices and
SOA in terms of the overall architecture topology and the defining
characteristics of the architecture pattern. Specifically, I focus on the
differences between the two patterns with respect to the level of
service-component sharing, the level of service-component commu‐
nication, and how remote service components are typically accessed.
I also dive into the differences between the messaging middleware

21

found in the SOA architecture pattern and the optional API layer
found in the microservices architecture pattern.

Component Sharing
Microservices and SOA are inherently different when it comes to
sharing components. SOA is built on the concept of a share-as-
much-as-possible architecture style, whereas microservices architec‐
ture is built on the concept of a share-as-little-as-possible architec‐
ture style. In this section I explore the differences between these two
concepts as they relate to microservices and SOA.

Component sharing is one of the core tenets of SOA. As a matter of
fact, component sharing is what enterprise services are all about. For
example, consider a large retail company, as illustrated in Figure 3-1,
that has many applications associated with the processing of an
order, such as a customer-management system, warehouse-
management system, and order-fulfillment system. All of these sys‐
tems have their own version of an Order service. In this example,
let’s assume that the process to update an order requires special
business logic. This means that the special processing logic needs to
be replicated across several applications in the enterprise, requiring
additional verification and coordination among these applications.
The other thing to notice in Figure 3-1 is that each system in this
example has its own database, so each system might have a sightly
different representation of an order.

Figure 3-1. Silo-based processing

22 | Chapter 3: Comparing Architecture Characteristics

SOA tries to address this problem through enterprise-level shared
services (enterprise services). Continuing with our retail example, if
a centrally shared Order enterprise service is created, as shown in
Figure 3-2, every application can share the same processing logic
associated with updating an order.

Figure 3-2. Service component sharing

Notice in Figure 3-2 that although the Order service is now shared,
it still accesses three different databases (each one representing the
respective system it is associated with). This is a critical concept in
SOA when the share-as-much-as-possible architecture style is used.
The Order service is smart enough to know which database to go to
to retrieve and update order data for each system, at the same time
synchronizing the data among all three systems. In other words, the
order is represented not by one database, but by a combination of
three databases.

Alhtough the concept of a share-as-much-as-possible architecture
solves issues associated with the duplication of business functional‐
ity, it also tends to lead to tightly coupled components and increases
the overall risk associated with change. For example, suppose you
make a change to the Order service in Figure 3-2. Since the Order
service is an enterprise service and available globally across the com‐
pany, it is very difficult to test all possible uses of this global service
to make sure the change isn’t affecting other areas of the enterprise.

Microservices architecture, being built on the concept of share-as-
little-as-possible, leverages a concept from domain-driven design
called a bounded context. Architecturally, a bounded context refers
to the coupling of a component (or in this case, a service) and its

Component Sharing | 23

associated data as a single closed unit with minimal dependencies. A
service component designed this way is essentially self-contained
and only exposes a well-defined interface and a well-defined con‐
tract.

Realistically, there will always be some services that are shared, even
in a microservices architecture (for example, infrastructure serv‐
ices). However, whereas SOA tries to maximize component sharing,
microservices architecture tries to minimize on sharing, through the
concept of a bounded context. One way to achieve a bounded con‐
text and minimize dependencies in extreme cases is to violate the
Don’t Repeat Yourself (DRY) principle and replicate common func‐
tionality across services to achieve total independence. Another way
is to compile relatively static modules into shared libraries that ser‐
vice components can use in either a compile-time or runtime bind‐
ing. My friend and colleague Neal Ford takes a slightly different view
of this by saying that microservices architecture is a share-nothing
architecture with the exception of two things—how services inte‐
grate with one another, and the infrastructure plumbing to ensure
engineering consistency.

There are numerous advantages to leveraging the bounded context
concept. Maintaining services becomes much easier because of the
lack of dependent modules, allowing services to change and evolve
independent of other services. Deployment becomes much easier as
well because there is less code to deploy and also less risk that a
change made to one module or service will affect other parts of the
application. This in turn creates more-robust applications that have
fewer side effects based on service changes.

Service Orchestration and Choreography
The difference between service orchestration and service choreogra‐
phy is unfortunately not always clear. In this section I describe the
differences between orchestration and choreography and how these
service communication concepts are used in both microservices and
SOA.

The term service orchestration refers to the coordination of multiple
services through a centralized mediator such as a service consumer
or an integration hub (Mule, Camel, Spring Integration, etc.). The
diagram in Figure 3-3 illustrates the concept of service orchestra‐
tion.

24 | Chapter 3: Comparing Architecture Characteristics

Figure 3-3. Service orchestration

The easy way to think about service orchestration is to think about
an orchestra. A number of musicians are playing different instru‐
ments at different times, but they are all coordinated through a cen‐
tral person—the conductor. In the same way, the mediator compo‐
nent in service orchestration acts as an orchestra conductor, coordi‐
nating all of the service calls necessary to complete the business
transaction.

Service choreography refers to the coordination of multiple service
calls without a central mediator. The term inter-service communica‐
tion is sometimes used in conjunction with service choreography.
With service choreography, one service calls another service, which
may call another service and so on, performing what is also referred
to as service chaining. This concept is illustrated in Figure 3-4.

Figure 3-4. Service choreography

One way to think about service choreography is to think about a
dance company performing on stage. All of the dancers move in
synchronization with one another, but no one is conducting or
directing the dancers. Dances are choreographed through the indi‐
vidual dancers working in conjunction with one another, whereas
concerts are orchestrated by a single conductor.

Service Orchestration and Choreography | 25

Microservices architecture favors service choreography over service
orchestration, primarily because the architecture topology lacks a
centralized middleware component. The diagram in Figure 3-5
shows that the overall architecture topology consists of only two
major components—service components and, optionally, an unin‐
telligent API layer. (I discuss the API layer and its role in the next
section.) From an implementation standpoint, you may have other
components such as a service registration and discovery component,
a service monitoring component, and a service deployment man‐
ager, but architecturally those components would be considered
infrastructure services as part of the service taxonomy of the micro‐
services architecture pattern.

Figure 3-5. Microservices architecture topology

Because microservices architecture is a share-as-little-as-possible
architecture, you should try to minimize the amount of service
choreography in your architecture, restricting interactions to those
between functional services and infrastructure services. As I men‐
tioned in the prior chapter, if you find that you need a lot of service
choreography between your functional services, chances are your
services are too fine-grained.

Too much service choreography in a microservices architecture can
lead to high efferent coupling, which is the degree to which one com‐
ponent is dependent on other components to complete a single busi‐
ness request. Consider the example illustrated in Figure 3-6, which
shows three services that are required to process an order request—
validate order, place order, and notify customer. Architecturally, this

26 | Chapter 3: Comparing Architecture Characteristics

business request has a high degree of efferent coupling, something
architects strive to minimize in most microservices architectures.

Figure 3-6. Order processing service choreography example

This type of service coupling within service choreography can lead
to poor performance and less robust applications. As I discussed in
the prior chapter, since services are generally remote in a microser‐
vices architecture, each service call made while coordinating serv‐
ices using service choreography adds response time to the request
due to the remote-access protocol communication and transport
time. Furthermore, coordinating multiple services for a single busi‐
ness request increases the probability that a particular service in the
call chain might be unavailable or unresponsive, resulting in a less
reliable and robust application.

One solution to the issue of service choreography among functional
services within a microservices architecture is to combine fine-
grained services into a more coarse-grained service. If a fine-grained
service happens to be shared among multiple services, you can
either keep this as a separate service, or—depending on the size and
nature of the functionality—violate the DRY principle and add that
common functionality to each coarse-grained service.

Figure 3-7 shows how moving from three fine-grained services to
one coarse-grained service eliminates the need for service choreog‐
raphy, thereby addressing three issues associated with service chor‐
eography. First, it increases overall performance because fewer
remote calls are needed. Second, it increases overall robustness
because fewer service availability issues occur. Finally, it simplifies
overall development and maintenance by eliminating the need for
remote service contracts.

Service Orchestration and Choreography | 27

Figure 3-7. Order processing consolidated service example

SOA, being a share-as-much-as-possible architecture, relies on both
service orchestration and service choreography to process business
requests. As illustrated in Figure 3-8, the messaging middleware
component of SOA manages service orchestration by calling multi‐
ple enterprise services based on a single business service request.
Once it is in the enterprise service, service choreography can be used
to call application services or infrastructure services to help fulfill
the particular business request.

28 | Chapter 3: Comparing Architecture Characteristics

Figure 3-8. SOA topology

Figure 3-8 also illustrates the variations that can occur within SOA
with regard to service choreography. For example, an enterprise ser‐
vice may need to call an application service, and that application ser‐
vice may in turn need to call an infrastructure service to complete its
business processing. Alternatively, the enterprise service may only
need to call an application service or an infrastructure service
directly, or the business logic may be self-contained within the
enterprise service, thereby not requiring any service choreography.

The differences between microservices and SOA with regard to ser‐
vice orchestration and service choreography underscore many dif‐
ferences between the two patterns in architectural characteristics,
including performance, development, testing, and deployment.
Because SOA typically relies on multiple services (and service types)
to complete a single business request, systems built on SOA tend to
be slower than microservices and require more time and effort to
develop, test, deploy, and maintain. In fact, these factors were some
of the drivers that led architects away from SOA and more toward
the simple and streamlined microservices architecture pattern.

Service Orchestration and Choreography | 29

Middleware vs. API Layer
If you compare Figure 3-5 and Figure 3-8 from the previous section
you will notice that both architecture patterns appear to have a mid‐
dleware component that handles mediation. However, this is not the
case. The microservices architecture pattern typically has what is
known as an API layer, whereas SOA has a messaging middleware
component. In this section I compare these two components in
terms of the roles they play and the capabilities they provide.

The microservices pattern does not support the concept of messag‐
ing middleware (e.g., integration hub or enterprise service bus).
Rather, it supports the notion of an API layer in front of the services
that acts as a service-access facade. Placing an API layer between
your service consumers and the services is generally a good idea
because it forms an abstraction layer so that service consumers don’t
need to know the actual location of the service endpoints. It also
allows you to change the granularity level of your services without
impacting the service consumers. Abstracting service granularity
does require a bit of intelligence and some level of orchestration
within the API layer, but this can be refactored over time, allowing
services to evolve without constant changes to the corresponding
service consumers.

For example, let’s say you have a service that performs some busi‐
ness functionality related to product ordering. You decide that it is
too coarse-grained, and you want to split the service into two
smaller fine-grained services to increase scalability and ease deploy‐
ment. Without an API layer abstracting the actual service endpoints,
each service consumer using the service would have to be modified
to call two services rather than just one. If you use an API layer, the
service consumers don’t know (or care) that the single request is
now going to two separate services.

SOA relies on its messaging middleware to coordinate service calls.
Using messaging middleware (what I like to refer to as an integra‐
tion hub) provides a host of additional architectural capabilities not
found in the microservices architecture style, including mediation
and routing, message enhancement, message transformation, and
protocol transformation.

Mediation and routing describes the capability of the architecture to
locate and invoke a service (or services) based on a specific business

30 | Chapter 3: Comparing Architecture Characteristics

or user request. This capability is illustrated in Figure 3-9. Notice in
the diagram the use of a service registry or service-discovery com‐
ponent, as well as the use of service orchestration. Both microservi‐
ces and SOA share this capability, particularly with regard to a ser‐
vice registry or service-discovery component. However, with micro‐
services service orchestration is typically minimized or not used at
all, whereas with SOA it is frequently used.

Figure 3-9. Mediation and routing capability

Message enhancement describes the capability of the architecture to
modify, remove, or augment the data portion of a request before it
reaches the service. Examples of message enhancement include
things like changing a date format, adding additional derived or cal‐
culated values to the request, and performing a database lookup to
transform one value into another (such as a Committee on Uniform
Security Identification Procedures [CUSIP] number into a stock
symbol, and vice versa). The microservices pattern does not support
this capability, primarily because it doesn’t include a middleware
component to implement this functionality. SOA fully supports this
capability through its messaging middleware. Figure 3-10 illustrates
this capability. Notice in the diagram that the service consumer is
sending a CUSIP number (a standard trading-instrument identifier)
and a date in MM/DD/YY format, whereas the service is expecting a
Stock Exchange Daily Official List (SEDOL) number (another type
of trading instrument identifier), the date in YYYY.MM.DD format,
and the stock symbol (in the event of an equity trade). In this case
the messaging middleware can perform these enhancements to con‐
vert the CUSIP number for Apple, Inc. (037833100) into the SEDOL

Middleware vs. API Layer | 31

number for Apple, Inc. (2046251), look up and add the symbol
(AAPL), and convert the date from 04/23/15 to 2015.04.23.

Figure 3-10. Message enhancement capability

Message transformation describes the capability of the architecture to
modify the format of the data from one type to other. For example,
as illustrated in Figure 3-11, the service consumer is calling a service
and sending the data in JSON format, whereas the service requires a
Java object. Notice that message enhancement is not concerned
about the data of the request, but rather only about the format of the
wrapper containing the data. Again, microservices architecture does
not support this capability, but SOA does through the use of the
messaging middleware.

Figure 3-11. Message transformation capability

Finally, protocol transformation describes the capability of the archi‐
tecture to have a service consumer call a service with a protocol that
differs from what the service is expecting. Figure 3-12 illustrates this
capability. Notice in the diagram that the service consumer is com‐
municating through REST, but the services invoked that are respon‐
sible for processing the request require an RMI/IIOP connection
(e.g., Enterprise JavaBeans 3 [EJB3] bean) and an AMQP connec‐
tion. Microservices can support multiple protocol types, but the ser‐

32 | Chapter 3: Comparing Architecture Characteristics

vice consumer and service must use the same protocol. In SOA, you
can mix and match them as much as you want.

Figure 3-12. Protocol transformation capability

I discuss these capabilities in more detail in the next chapter as they
relate to the comparison of architecture capabilities between micro‐
services and SOA.

Accessing Remote Services
Since services are usually accessed remotely in microservices and
SOA, these architecture patterns need to provide a way for service
consumers to access the remote services. One of the fundamental
differences between microservices and SOA with regard to remote
access is that microservices architectures tend to rely on REST as
their primary remote-access protocol, whereas SOA has no such
restrictions. As a matter of fact, having the ability to handle dozens
of different kinds of remote-access protocols is one of the main
things that sets SOA apart from microservices.

One of the fundamental principles within microservices that con‐
tributes to the simplicity of the architecture pattern is that the num‐
ber of technology and architecture choices is generally limited to a
few options. For example, most microservices architectures usually
rely on only two different remote-access protocols to access services
—REST and simple messaging (JMS, MSMQ, AMQP, etc.). That’s
not to say you couldn’t leverage other remote-access protocols such
as SOAP or .NET Remoting, but the point is that the remote-access
protocol found in microservices is usually homogeneous. In other
words, services are either REST-based, messaging-based, or based
on some other access protocol, but the access protocols rarely mixed
within the same application or system. One exception to this is the
case in which services that rely on publish-and-subscribe broadcast

Accessing Remote Services | 33

capabilities might be message-based, whereas other nonbroadcast
services might be REST-based.

SOA has no pre-described limits as to which remote-access proto‐
cols can be used as part of the architecture pattern. As you will see
in the next chapter, it is the messaging middleware component of
the architecture that provides support for any number of remote
access protocols, allowing for transformation from one protocol to
another. That being said, most SOA architectures typically rely on
messaging (e.g., JMS, AMQP, MSMQ) and SOAP as the primary
service remote-access protocols. Depending on the scope and size of
the SOA architecture, it’s not uncommon to use upwards of a half a
dozen different remote-access protocols among heterogeneous serv‐
ices.

34 | Chapter 3: Comparing Architecture Characteristics

CHAPTER 4

Comparing Architecture
Capabilities

In the last chapter I showed you how architecture patterns can help
define basic architectural characteristics. In this chapter I take a sim‐
ilar approach, but instead of architecture characteristics I focus on
the architecture capabilities that are described through the patterns.
By looking at an architecture pattern you can tell if applications will
likely be scalable, maintainable, and extensible, and if they will be
relatively easy to develop, test, and deploy.

In this chapter I compare microservices and SOA by focusing on
three major architectural capabilities—the size of the application
each architecture pattern supports, the type of systems and compo‐
nents that can be integrated using each architecture pattern, and
finally the ability of the architecture pattern to support contract
decoupling.

Application Scope
Application scope refers to the overall size of the application that an
architecture pattern can support. For example, architecture patterns
such as the microkernel or pipeline architecture are better suited for
smaller applications or subsystems, whereas other patterns such as
event-driven architecture are well-suited for larger, more complex
applications. So where do the microservices and SOA patterms fit
along this spectrum?

35

SOA is well-suited for large, complex, enterprise-wide systems that
require integration with many heterogeneous applications and serv‐
ices. It is also well-suited for applications that have many shared
components, particularly components that are shared across the
enterprise. As such, SOA tends to be a good fit for large insurance
companies due to the heterogeneous systems environment and the
sharing of common services—customer, claim, policy, etc.—across
multiple applications and systems.

However, workflow-based applications that have a well-defined pro‐
cessing flow and not many shared components (such as securities
trading) are difficult to implement using the SOA architecture pat‐
tern. Small web-based applications are also not a good fit for SOA
because they don’t need an extensive service taxonomy, abstraction
layers, and messaging middleware components.

The microservices pattern is better suited for smaller, well-
partitioned web-based systems rather than large-scale enterprise-
wide systems. The lack of a mediator (messaging middleware) is one
of the factors that makes it ill-suited for large-scale complex busi‐
ness application environments. Other examples of applications that
are well-suited for the microservices architecture pattern are ones
that have few shared components and ones that can be broken down
into very small discrete operations.

In some cases you might find that the microservices pattern is a
good initial architecture choice in the early stages of your business,
but as the business grows and matures, you begin to need capabili‐
ties such as complex request transformation, complex orchestration,
and heterogeneous systems integration. In these situations you will
likely turn to the SOA pattern to replace your initial microservices
architecture. Of course, the opposite is true as well—you may have
started out with a large, complex SOA architecture, only to find that
you didn’t need all of those powerful capabilities that it supports
after all. In this case you will likely find yourself in the common
position of moving from an SOA architecture to microservices to
simplify the architecture.

Heterogeneous Interoperability
Heterogeneous interoperability refers to the ability to integrate with
systems implemented in different programming languages and plat‐
forms. For example, you might have a situation in which a single

36 | Chapter 4: Comparing Architecture Capabilities

complex business request requires the coordination of a Java-based
application, a .NET application, and a Customer Information Con‐
trol System (CICS) COBOL program to process the single request.
Other examples include a trading application implemented in
the .NET platform that needs to access an AS400 to perform compli‐
ance checks on a stock trade, and a Java-based retail shop that needs
to integrate with a large third-party .NET warehousing system.

These examples are found everywhere in most large companies.
Many banking and insurance systems still have a majority of the
backend core processing in COBOL mainframe applications that
must be accessed by modern web-based platforms. The ability to
integrate with multiple heterogeneous systems and services is one of
the few areas where microservices architecture takes a back seat to
SOA.

The microservices architecture style attempts to simplify the archi‐
tecture pattern and corresponding implementations by reducing the
number of choices for services integration. REST and simple mes‐
saging are two of the most common remote-access protocols used.
SOA, has no upper limit and promotes the proliferation of multiple
heterogeneous protocols through its messaging middleware compo‐
nent.

The microservices architecture style supports protocol-aware hetero‐
geneous interoperability. With protocol-aware heterogeneous intero‐
perability, the architecture can support multiple types of remote-
access protocols, but the communication between a particular ser‐
vice consumer and the corresponding service that it’s invoking must
be the same (e.g., REST). As illustrated in Figure 4-1, the fact that
the remote-access protocol between the service consumer and ser‐
vice is known does not necessarily mean that the implementation of
either is known or has to be the same. With REST, for example, the
service consumer could easily be implemented in C# with .NET,
whereas the service could be implemented in Java. However, with
microservices, the protocol between the service consumer and ser‐
vice must be the same because there is no central middleware com‐
ponent to transform the protocol.

Heterogeneous Interoperability | 37

Figure 4-1. Protocol-aware heterogeneous interoperability

SOA also supports protocol-aware heterogeneous interoperability,
but it takes this concept one step further by supporting protocol-
agnostic heterogeneous interoperability. With protocol-agnostic het‐
erogeneous interoperability, the service consumer is ignorant not
only of the implementation of the service, but also of the protocol
the service is listening on. For example, as illustrated in Figure 4-2, a
particular service consumer written in C# on the .NET platform
may invoke a corresponding service using REST, but the service (in
this case an EJB3 bean) is only able to communicate using RMI.
Being able to translate the consumer protocol to the service protocol
known as protocol transformation is supported through the use of a
messaging middleware component. Again, since a microservices
architecture has no concept of a messaging middleware component,
it does not support the concept of protocol-agnostic heterogeneous
interoperability.

38 | Chapter 4: Comparing Architecture Capabilities

Figure 4-2. Protocol-agnostic heterogeneous interoperability

If you find yourself in a heterogeneous environment where you need
to integrate several different types of systems or services using dif‐
ferent protocols, chances are that you will need to look toward SOA
rather than microservices. However, if all of your services can be
exposed and accessed through the same remote-access protocol
(e.g., REST), then microservices can be the right choice. In either
case, this is one area where you need to know your interoperability
requirements prior to selecting an architecture pattern.

Contract Decoupling
Contract decoupling is the holy grail of abstraction. Imagine being
able to communicate with a service using different data in a message
format that differs from what the service is expecting—that is the
very essence of contract decoupling.

Contract decoupling is a very powerful capability that provides the
highest degree of decoupling between service consumers and serv‐
ices. This capability allows services and service consumers to evolve

Contract Decoupling | 39

independently from each other while still maintaining a contract
between them. It also helps give your service consumers the ability
to drive contract changes using consumer-driven contracts, thereby
creating a more collaborative relationship between the service and
the service consumer.

There are two primary forms of contract decoupling: message trans‐
formation and message enhancement. Message transformation is
concerned only about the format of the message, not the actual
request data. For example, a service might require XML as its input
format, but a service consumer decides to send JSON payload
instead. This is a straightforward transformation task that is handled
very nicely by most of the open source integration hubs, including
Apache Camel, Mule, and Spring Integration.

Things tend to get a bit more complicated when the data sent by a
service consumer differs from the data expected by the correspond‐
ing service. This impedance mismatch in the actual contract data is
addressed through message enhancement capability. Whereas mes‐
sage transformation is concerned about the format of the request,
message enhancement is concerned about the request data. This
capability allows a component (usually a middleware component) to
add or change request data so that the data sent by the service con‐
sumer matches the data expected by the service (and vice versa).

Consider the scenario in which a service consumer is sending some
data as a JSON object for a simple stock trade. In this example, the
service consumer is invoking a service by sending a customer ID, a
CUSIP number identifying the stock to be traded, the number of
shares to be traded, and finally the trade date in MM/DD/YY for‐
mat:

{"trade": {
 "cust_id": "12345",
 "cusip": "037833100",
 "shares": "1000",
 "trade_dt": "10/12/15"
}}

The service, on the other hand, is expecting data in XML format
consisting of an account number, a stock symbol (assuming an
equity trade), the shared to be traded, and the trade date in
YYYY.MM.DD format:

40 | Chapter 4: Comparing Architecture Capabilities

<trade>
 <acct>321109</acct>
 <symbol>AAPL</symbol>
 <shares>1000</shares>
 <date>2015-10-12</date>
</trade>

When differences occur in the format of the contract between the
service consumer and the service, it is usually the messaging mid‐
dleware component or custom client adapter that performs the nec‐
essary data transformation and data-lookup functionality to make
the different contracts work together. The diagram in Figure 4-3
illustrates this example. Database or cache lookups are performed to
get the account number based on the customer ID and the symbol
based on the CUSIP number. The date is also converted to a differ‐
ent format, and the shares are copied over to the new format since
that field does not require any translation. This allows the service
consumer to have a different contract from the service, so that when
contract changes are made, they can be abstracted through the mes‐
saging middleware.

Figure 4-3. Contract decoupling

There are obviously some practical limitations to contract decou‐
pling. If the data required by a service cannot be derived from
another source or calculated using the data provided by the service
consumer, the service call will fail because the service contract is not
satisfied. Fortunately, lookup capabilities and basic transformations
(such as date, time, and number fields) can usually fix most contract
variances between service consumers and services.

An ongoing struggle in the IT industry is knowing how to prevent
technology (the IT department) from driving the business. Whether
you are performing a major software version upgrade of a large sub‐
system or replacing your accounting or customer management sys‐
tem, abstracting the interfaces and contracts through contract
decoupling allows the IT department to make technology changes

Contract Decoupling | 41

with no impact on the business applications across the enterprise.
The stock trading scenario described earlier is a good example of
this; swapping out a trading platform that uses CUSIP numbers to
one that requires SEDOL numbers should not require all the busi‐
ness applications throughout the enterprise to change to SEDOL
numbers.

Unfortunately, microservices must once again take a back seat to
SOA with respect to this architecture capability. Microservices
architecture does not support contract decoupling, whereas contract
decoupling is one of the primary capabilities offered within a SOA.
If you require this level of abstraction in your architecture, you will
need to look toward a SOA solution rather than a microservices one
for your application or system.

42 | Chapter 4: Comparing Architecture Capabilities

CHAPTER 5

Summary

The microservices architecture pattern is a rising star in the IT
industry. Although the microservices pattern has certainly
addressed the many issues commonly found in large monolithic
applications and complex SOA architectures, it does lack some of
the core capabilities provided by a SOA—including contract decou‐
pling and protocol-agnostic heterogeneous interoperability.

One of the fundamental concepts to remember is that microservices
architecture is a share-as-little-as-possible architecture pattern that
places a heavy emphasis on the concept of a bounded context,
whereas SOA is a share-as-much-as-possible architecture pattern
that places heavy emphasis on abstraction and business functionality
reuse. By understanding this fundamental concept—as well as the
other characteristics, capabilities, and shortcomings of both micro‐
services and SOA that I discussed in this report—you can make a
more informed decision about which architecture pattern is right
for your situation.

For more information about microservices, SOA, and distributed
architecture in general, you can view Service-Based Architectures:
Structure, Engineering Practices, and Migration (O’Reilly video) by
Neal Ford and Mark Richards.

For an excellent in-depth look at microservices, I highly recommend
Sam Newman’s book Building Microservices (O’Reilly).

Finally, for more information about messaging as it relates to
service-based architectures for both microservices and SOA, you

43

http://shop.oreilly.com/product/0636920042655.do
http://shop.oreilly.com/product/0636920042655.do
http://shop.oreilly.com/product/0636920033158.do

can view Enterprise Messaging: JMS 1.1 and JMS 2.0 Fundamentals
(O’Reilly video) and Enterprise Messaging: Advanced Topics and
Spring JMS (O’Reilly video).

44 | Chapter 5: Summary

http://shop.oreilly.com/product/0636920034698.do
http://shop.oreilly.com/product/0636920034865.do
http://shop.oreilly.com/product/0636920034865.do

About the Author
Mark Richards is an experienced, hands-on software architect
involved in the architecture, design, and implementation of micro‐
services architectures, service-oriented architectures, and dis‐
tributed systems in J2EE and other technologies. He has been in the
software industry since 1983 and has significant experience and
expertise in application, integration, and enterprise architecture.
Mark served as the president of the New England Java Users Group
from 1999 through 2003. He is the author of numerous technical
books and videos, including Software Architecture Fundamentals
Understanding the Basics (O’Reilly video), Enterprise Messag‐
ing (O’Reilly video), Java Message Service, 2nd Edition (O’Reilly),
and a contributing author to 97 Things Every Software Architect
Should Know (O’Reilly). Mark has a master’s degree in computer sci‐
ence and numerous architect and developer certifications from IBM,
Sun, The Open Group, and BEA. He is a regular conference speaker
at the No Fluff Just Stuff (NFJS) Symposium Series and has spoken
at more than 100 conferences and user groups around the world on
a variety of enterprise-related technical topics. When he is not
working, Mark can usually be found hiking in the White Mountains
of New Hampshire and along the Appalachian Trail.

http://bit.ly/sa-fundamentals
http://bit.ly/sa-fundamentals
http://bit.ly/enterprise-messaging
http://bit.ly/enterprise-messaging
http://bit.ly/java-message-service
http://bit.ly/97-things-software
http://bit.ly/97-things-software

	Cover
	Additional Resources
	Copyright
	Table of Contents
	Preface
	Chapter 1. The World of Service-Based Architectures
	Service Contracts
	Service Availability
	Security
	Transactions
	Too Much Complexity?

	Chapter 2. Comparing Service Characteristics
	Service Taxonomy
	Service Ownership and Coordination
	Service Granularity
	Granularity and Pattern Selection

	Chapter 3. Comparing Architecture Characteristics
	Component Sharing
	Service Orchestration and Choreography
	Middleware vs. API Layer
	Accessing Remote Services

	Chapter 4. Comparing Architecture Capabilities
	Application Scope
	Heterogeneous Interoperability
	Contract Decoupling

	Chapter 5. Summary

