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PREFACE

Newnes Engineering Mathematics Pocket Book is intended to provide stu-
dents, technicians, scientists and engineers with a readily available reference
to the essential engineering mathematics formulae, definitions and general
information needed during their studies and/or work situation — a handy book
to have on the bookshelf to delve into as the need arises.

The text is divided, for convenience of reference, into fourteen
main sections embracing number and algebra, mensuration, geometry and
trigonometry, graphs, vectors, complex numbers, matrices and determinants,
Boolean algebra and logic circuits, differential and integral calculus,
differential equations, statistics and probability, Laplace transforms and
Fourier series. Within the main sections are arranged 93 chapters and over
800 numerical examples and 400 diagrams are included to aid understanding.

The text assumes little previous knowledge and is suitable for a wide
range of courses of study. It will be particularly useful for students study-
ing mathematics within NVQ’s and GNVQ’s, National and Higher National
technician certificates and diplomas, GCSE and A levels and for Engineering
Degree courses.

John Bird
University of Portsmouth



Number and Algebra

1 Basic Arithmetic
Arithmetic operations

Whole numbers are called integers. C3, C5, C72 are called positive integers;
�13, �6, �51 are called negative integers. Between positive and negative
integers is the number 0 which is neither positive nor negative.
The four basic arithmetic operators are: add (C), subtract (�), multiply (x)
and divide (ł)
For addition and subtraction, when unlike signs are together in a calcula-
tion, the overall sign is negative. Thus, adding minus 4 to 3 is 3C�4 and
becomes 3� 4 D �1. Like signs together give an overall positive sign. Thus
subtracting minus 4 from 3 is 3��4 and becomes 3C 4 D 7
For multiplication and division, when the numbers have unlike signs, the
answer is negative, but when the numbers have like signs the answer is
positive. Thus 3ð�4 D �12, whereas �3ð�4 D C12. Similarly

4
�3 D � 4

3 and �4
�3 D C 4

3

For example, to add 27, �74, 81 and �19:

This example is written as 27� 74C 81� 19

Adding the positive integers: 27
81

Sum of positive integers is: 108

Adding the negative integers: 74
19

Sum of negative integers is: 93

Taking the sum of the negative integers from the sum of the positive integers
gives:

108
�93

15 Thus 27 − 74Y 81 − 19 = 15

In another example, to subtract 89 from 123:
This is written mathematically as 123� 89

123
�89

34 Thus 123 − 89 = 34

In another example, to multiply 74 by 13:
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This is written as 74ð 13

74
13

222  74ð 3
740  74ð 10

Adding: 962

Thus 74 × 13 = 962
In another example, to divide l043 by 7:
When dividing by the numbers 1 to 12, it is usual to use a method called
short division.

1 4 9

7
)

103463

Step 1. 7 into 10 goes 1, remainder 3. Put 1 above the 0 of 1043 and carry
the 3 remainder to the next digit on the right, making it 34

Step 2. 7 into 34 goes 4, remainder 6. Put 4 above the 4 of 1043 and carry
the 6 remainder to the next digit on the right, making it 63

Step 3. 7 into 63 goes 9, remainder 0. Put 9 above the 3 of 1043. Thus
1043 ÷ 7 = 149

In another example, to divide 378 by 14:
When dividing by numbers which are larger than 12, it is usual to use a method
called long division.

27

14
)

378
(2) 2ð 14! 28

98
(4) 7ð 14! 98

Ð Ð

(1) 14 into 37 goes twice. Put 2
above the 7 of 378

(3) Subtract. Bring down the 8. 14
into 98 goes 7 times. Put 7
above the 8 of 378.

(5) Subtract.

Thus 378 ÷ 14 = 27

Highest common factors and lowest common multiples

When two or more numbers are multiplied together, the individual numbers
are called factors. Thus a factor is a number that divides into another number
exactly. The highest common factor (HCF) is the largest number that divides
into two or more numbers exactly.
A multiple is a number that contains another number an exact number of
times. The smallest number that is exactly divisible by each of two or more
numbers is called the lowest common multiple (LCM).
For example, to determine the HCF of the numbers 12, 30 and 42:
Each number is expressed in terms of its lowest factors. This is achieved by
repeatedly dividing by the prime numbers 2, 3, 5, 7, 11, 13. . . (where possible)
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in turn. Thus
12 D 2 ð 2ð 3

30 D 2 ð 3ð 5

42 D 2 ð 3ð 7

The factors that are common to each of the numbers are 2 in column 1 and
3 in column 3, shown by the broken lines. Hence the HCF is 2 × 3, i.e. 6.
That is, 6 is the largest number which will divide into 12, 30 and 42.
In another example, to determine the LCM of the numbers 12, 42 and 90:
The LCM is obtained by finding the lowest factors of each of the numbers,
and then selecting the largest group of any of the factors present.
Thus

12 D 2ð 2 ð 3

42 D 2 ð 3 ð 7

90 D 2 ð 3ð 3 ð 5

The largest group of any of the factors present are shown by the broken lines
and are 2ð 2 in 12, 3ð 3 in 90, 5 in 90 and 7 in 42
Hence the LCM is 2 × 2 × 3 × 3 × 5 × 7 = 1260, and is the smallest num-
ber which 12, 42 and 90 will all divide into exactly.

Order of precedence and brackets

When a particular arithmetic operation is to be performed first, the numbers
and the operator(s) are placed in brackets. Thus 3 times the result of 6 minus
2 is written as 3ð �6� 2� or 3�6� 2�.
In arithmetic operations, the order in which operations are performed are:

(i) to determine the values of operations contained in brackets;
(ii) multiplication and division (the word ‘of’ also means multiply); and

(iii) addition and subtraction.

This order of precedence can be remembered by the word BODMAS, stand-
ing for Brackets, Of, Division, Multiplication, Addition and Subtraction, taken
in that order.
The basic laws governing the use of brackets and operators are shown by the
following examples:

(i) 2C 3 D 3C 2, i.e. the order of numbers when adding does not matter;
(ii) 2ð 3 D 3ð 2, i.e. the order of numbers when multiplying does not

matter;
(iii) 2C �3C 4� D �2C 3�C 4, i.e. the use of brackets when adding does not

affect the result;
(iv) 2ð �3ð 4� D �2ð 3�ð 4, i.e. the use of brackets when multiplying does

not affect the result;
(v) 2ð �3C 4� D 2�3C 4� D 2ð 3C 2ð 4, i.e. a number placed outside

of a bracket indicates that the whole contents of the bracket must be
multiplied by that number;
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(vi) �2C 3��4C 5� D �5��9� D 45, i.e. adjacent brackets indicate multipli-
cation;

(vii) 2[3C �4ð 5�] D 2[3C 20] D 2ð 23 D 46, i.e. when an expression con-
tains inner and outer brackets, the inner brackets are removed first.

For example, to find the value of 6C 4ł �5� 3�:
The order of precedence of operations is remembered by the word BODMAS.

Thus 6C 4ł �5� 3� D 6C 4ł 2 (Brackets)

D 6C 2 (Division)

D 8 (Addition)

In another example, to determine the value of 13 � 2ð 3C 14ł �2C 5�:

13� 2ð 3C 14ł �2C 5� D 13� 2ð 3C 14ł 7 (B)

D 13� 2ð 3C 2 (D)

D 13� 6C 2 (M)

D 15� 6 (A)

D 9 (S)

2 Revision of Fractions, Decimals and
Percentages

Fractions

When 2 is divided by 3, it may be written as 2
3 or 2/3. 2

3 is called a fraction.
The number above the line, i.e. 2, is called the numerator and the number
below the line, i.e. 3, is called the denominator.

When the value of the numerator is less than the value of the denominator,
the fraction is called a proper fraction; thus 2

3 is a proper fraction. When
the value of the numerator is greater than the denominator, the fraction is
called an improper fraction. Thus 7

3 is an improper fraction and can also be
expressed as a mixed number, that is, an integer and a proper fraction. The
improper fraction 7

3 is equal to the mixed number 2 1
3

When a fraction is simplified by dividing the numerator and denominator by
the same number, the process is called cancelling. Cancelling by 0 is not
permissible.
For example, to simplify 1

3 C 2
7 :

The lowest common multiple (i.e. LCM) of the two denominators is 3ð 7,
i.e. 21
Expressing each fraction so that their denominators are 21, gives:

1

3
C 2

7
D
(

1

3
ð 7

7

)
C
(

2

7
ð 3

3

)
D 7

21
C 6

21
D 7C 6

21
D 13

21
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Alternatively:
Step (2) Step (3)

# #
1

3
C 2

7
D �7ð 1�C �3ð 2�

21
"

Step (1)

Step 1: the LCM of the two denominators;
Step 2: for the fraction 1

3 , 3 into 21 goes 7 times, 7ð the numerator is 7ð 1;

Step 3: for the fraction 2
7 , 7 into 21 goes 3 times, 3ð the numerator is 3ð 2

Thus
1

3
C 2

7
D 7C 6

21
D 13

21
as obtained previously.

In another example, to find the value of 3 2
3 � 2 1

6 :

One method is to split the mixed numbers into integers and their fractional
parts. Then

3 2
3 � 2 1

6 D
(

3C 2
3

)
�
(

2C 1
6

)
D 3C 2

3 � 2� 1
6

D 1C 4
6 � 1

6 D 1 3
6 D 1 1

2

Another method is to express the mixed numbers as improper fractions.

Since 3 D 9

3
, then 3

2

3
D 9

3
C 2

3
D 11

3

Similarly, 2
1

6
D 12

6
C 1

6
D 13

6

Thus 3
2

3
� 2

1

6
D 11

3
� 13

6
D 22

6
� 13

6
D 9

6
D 1

1
2

as obtained previously.

In another example, to find the value of
3

7
ð 14

15
:

Dividing numerator and denominator by 3 gives:
13

7
ð 14

155
D 1

7
ð 14

5
D 1ð 14

7ð 5

Dividing numerator and denominator by 7 gives:

1ð 214

17 ð 5
D 1ð 2

1ð 5
D 2

5

This process of dividing both the numerator and denominator of a fraction by
the same factor(s) is called cancelling.

In another example, to simplify
3

7
ł 12

21
:

3

7
ł 12

21
D

3

7
12

21
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Multiplying both numerator and denominator by the reciprocal of the denom-
inator gives:

3

7
12

21

D

13

17
ð 21

3

12 4

112

121
ð 21

1

12 1

D
3

4
1
D 3

4

This method can be remembered by the rule: invert the second fraction and
change the operation from division to multiplication. Thus:

3

7
ł 12

21
D

13

17
ð 21

3

12 4
D 3

4
as obtained previously.

Ratio and proportion

The ratio of one quantity to another is a fraction, and is the number of times
one quantity is contained in another quantity of the same kind.
If one quantity is directly proportional to another, then as one quantity
doubles, the other quantity also doubles. When a quantity is inversely propor-
tional to another, then as one quantity doubles, the other quantity is halved.
For example, a piece of timber 273 cm long is cut into three pieces in the
ratio of 3 to 7 to 11. To determine the lengths of the three pieces:
The total number of parts is 3C 7C 11, that is, 21. Hence 21 parts correspond
to 273 cm.

1 part corresponds to
273

21
D 13 cm

3 parts correspond to 3ð 13 D 39 cm

7 parts correspond to 7ð 13 D 91 cm

11 parts correspond to 11ð 13 D 143 cm

i.e. the lengths of the three pieces are 39 cm, 91 cm and 143 cm (Check:
39C 91C 143 D 273)

In another example, a gear wheel having 80 teeth is in mesh with a 25-tooth
gear. The gear ratio is determined as follows:

Gear ratio D 80 : 25 D 80

25
D 16

5
D 3.2

i.e. gear ratio D 16 : 5 or 3.2 : 1

In another example, an alloy is made up of metals A and B in the ratio 2.5 : 1
by mass. The amount of A which has to be added to 6 kg of B to make the
alloy is determined as follows:

Ratio A :B :: 2.5 : 1 i.e.
A

B
D 2.5

1
D 2.5
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When B D 6 kg,
A

6
D 2.5 from which, A D 6ð 2.5 D 15 kg

In another example, 3 people can complete a task in 4 hours. To determine
how long it will take 5 people to complete the same task, assuming the rate
of work remains constant:
The more the number of people, the more quickly the task is done, hence
inverse proportion exists.
3 people complete the task in 4 hours,
1 person takes three times as long, i.e. 4ð 3 D 12 hours,

5 people can do it in one fifth of the time that one person takes, that is
12

5
hours or 2 hours 24 minutes

Decimals

The decimal system of numbers is based on the digits 0 to 9. A number such
as 53.17 is called a decimal fraction, a decimal point separating the integer
part, i.e. 53, from the fractional part, i.e. 0.17

A number which can be expressed exactly as a decimal fraction is called a
terminating decimal and those which cannot be expressed exactly as a deci-
mal fraction are called non-terminating decimals. Thus, 3

2 D 1.5 is a termi-
nating decimal, but 4

3 D 1.33333 . . . is a non-terminating decimal. 1.33333. . .
can be written as 1.P3, called ‘one point-three recurring’.

The answer to a non-terminating decimal may be expressed in two ways,
depending on the accuracy required:

(i) correct to a number of significant figures, that is, figures which signify
something, and

(ii) correct to a number of decimal places, that is, the number of figures after
the decimal point.

The last digit in the answer is unaltered if the next digit on the right is in the
group of numbers 0, 1, 2, 3 or 4, but is increased by 1 if the next digit on
the right is in the group of numbers 5, 6, 7, 8 or 9. Thus the non-terminating
decimal 7.6183. . . becomes 7.62, correct to 3 significant figures, since the next
digit on the right is 8, which is in the group of numbers 5, 6, 7, 8 or 9. Also
7.6183. . . becomes 7.618, correct to 3 decimal places, since the next digit on
the right is 3, which is in the group of numbers 0, 1, 2, 3 or 4.
For example, to evaluate 42.7C 3.04C 8.7C 0.06:
The numbers are written so that the decimal points are under each other. Each
column is added, starting from the right.

42.7
3.04
8.7
0.06

54.50

Thus 42.7 Y 3.04 Y 8.7 Y 0.06 = 54.50
In another example, to determine the value of 74.3ð 3.8:
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When multiplying decimal fractions: (i) the numbers are multiplied as if they
are integers, and (ii) the position of the decimal point in the answer is such
that there are as many digits to the right of it as the sum of the digits to the
right of the decimal points of the two numbers being multiplied together. Thus

(i) 743
38

5944
22 290
28 234

(ii) As there are �1C 1� D 2 digits to the right of the decimal points of the
two numbers being multiplied together, �74.3ð 3.8�, then

74.3 × 3.8 = 282.34

In another example, to evaluate 37.81 ł 1.7, correct to (i) 4 significant figures
and (ii) 4 decimal places:

37.81ł 1.7 D 37.81

1.7

The denominator is changed into an integer by multiplying by 10. The numer-
ator is also multiplied by 10 to keep the fraction the same. Thus

37.81ł 1.7 D 37.81ð 10

1.7ð 10
D 378.1

17

The long division is similar to the long division of integers and the first four
steps are as shown:

22.24117..

17
)

378.100000
34
38
34

41
34
70
68

20

(i) 37.81 ÷ 1.7 = 22.24, correct to 4 significant figures, and
(ii) 37.81 ÷ 1.7 = 22.2412, correct to 4 decimal places.

In another example, to convert 0.4375 to a proper fraction:

0.4375 can be written as
0.4375ð 10 000

10 000
without changing its value,

i.e. 0.4375 D 4375

10 000

By cancelling
4375

10 000
D 875

2000
D 175

400
D 35

80
D 7

16

i.e. 0.4375 =
7
16
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In another example, to express
9

16
as a decimal fraction:

To convert a proper fraction to a decimal fraction, the numerator is divided
by the denominator. Division by 16 can be done by the long division method,
or, more simply, by dividing by 2 and then 8:

4.50

2
)

9.00

0.5625

8
)

4.5000
Thus,

9
16

= 0.5625

Percentages

Percentages are used to give a common standard and are fractions having the

number 100 as their denominators. For example, 25 per cent means
25

100
i.e.

1

4
and is written 25%.

For example, to express 0.0125 as a percentage:
A decimal fraction is converted to a percentage by multiplying by 100. Thus,
0.0125 corresponds to 0.0125 ð 100%, i.e. 1.25%

In another example, to express
5

16
as a percentage:

To convert fractions to percentages, they are (i) converted to decimal fractions
and (ii) multiplied by 100

By division,
5

16
D 0.3125, hence

5

16
corresponds to 0.3125 ð 100%, i.e.

31.25%
In another example, it takes 50 minutes to machine a certain part. Using a
new type of tool, the time can be reduced by 15%. The new time taken is
determined as follows:

15% of 50 minutes D 15

100
ð 50 D 750

100
D 7.5 minutes

hence the new time taken is 50� 7.5 D 42.5 minutes
Alternatively, if the time is reduced by 15%, then it now takes 85% of the

original time, i.e. 85% of 50 =
85

100
ð 50 =

4250

100
= 42.5 minutes, as above.

In another example, a German silver alloy consists of 60% copper, 25% zinc
and 15% nickel. The masses of the copper, zinc and nickel in a 3.74 kilogram
block of the alloy is determined as follows:
By direct proportion:

100% corresponds to 3.74 kg

1% corresponds to
3.74

100
D 0.0374 kg

60% corresponds to 60ð 0.0374 D 2.244 kg

25% corresponds to 25ð 0.0374 D 0.935 kg

15% corresponds to 15ð 0.0374 D 0.561 kg
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Thus, the masses of the copper, zinc and nickel are 2.244 kg, 0.935 kg and
0.561 kg, respectively.
(Check: 2.244C 0.935C 0.561 D 3.74).

3 Indices and Standard Form
Indices

The lowest factors of 2000 are 2ð 2ð 2ð 2ð 5ð 5ð 5. These factors are
written as 24 ð 53, where 2 and 5 are called bases and the numbers 4 and 3
are called indices.
When an index is an integer it is called a power. Thus, 24 is called ‘two to
the power of four’, and has a base of 2 and an index of 4. Similarly, 53 is
called ‘five to the power of 3’ and has a base of 5 and an index of 3.
Special names may be used when the indices are 2 and 3, these being called
‘squared’ and ‘cubed’, respectively. Thus 72 is called ‘seven squared’ and
93 is called ‘nine cubed’. When no index is shown, the power is 1, i.e. 2
means 21.

Reciprocal

The reciprocal of a number is when the index is �1 and its value is given
by 1 divided by the base. Thus the reciprocal of 2 is 2�1 and its value is 1

2
or 0.5. Similarly, the reciprocal of 5 is 5�1 which means 1

5 or 0.2

Square root

The square root of a number is when the index is 1
2 , and the square root

of 2 is written as 2
1
2 or

p
2. The value of a square root is the value of

the base which when multiplied by itself gives the number. Since 3ð 3 D 9,
then
p

9 D 3. However, ��3�ð ��3� D 9, so
p

9 D �3. There are always two
answers when finding the square root of a number and this is shown by putting
both a C and a � sign in front of the answer to a square root problem. Thus
p

9 D š3 and 4
1
2 D p4 D š2, and so on.

Laws of indices

When simplifying calculations involving indices, certain basic rules or laws
can be applied, called the laws of indices. These are given below.

(i) When multiplying two or more numbers having the same base, the indices
are added. Thus 32 ð 34 D 32C4 D 36

(ii) When a number is divided by a number having the same base, the indices

are subtracted. Thus 35

32 D 35�2 D 33

(iii) When a number which is raised to a power is raised to a further power,
the indices are multiplied. Thus �35�2 D 35ð2 D 310

(iv) When a number has an index of 0, its value is 1. Thus 30 D 1
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(v) A number raised to a negative power is the reciprocal of that number
raised to a positive power. Thus 3�4 D 1

34 . Similarly, 1
2�3 D 23.

(vi) When a number is raised to a fractional power the denominator of the
fraction is the root of the number and the numerator is the power.

Thus 8
2
3 D 3p

82 D �2�2 D 4

and 25
1
2 D 2p

251 D
p

251 D š5 (Note that
p � 2p )

For example, to evaluate (a) 52 ð 53 (b) 32 ð 34 ð 3:

From law (i):

(a) 52 ð 53 D 5�2C3� D 55 D 5ð 5ð 5ð 5ð 5 D 3125
(b) 32 ð 34 ð 3 D 3�2C4C1� D 37 D 3ð 3ð Ð Ð Ð to 7 terms D 2187

In another example, to find the value of (a) 75

73 and (b) 57

54 :

From law (ii):

�a�
75

73
D 7�5�3� D 72 D 49 �b�

57

54
D 5�7�4� D 53 D 125

In another example, to simplify: (a) �23�4 (b) �32�5, expressing the answers
in index form:
From law (iii):

(a) �23�4 D 23ð4 D 212 (b) �32�5 D 32ð5 D 310

In another example, to evaluate
�102�3

104 ð 102
:

From the laws of indices:

�102�3

104 ð 102
D 10�2ð3�

10�4C2�
D 106

106
D 106�6 D 100 D 1

In another example, to evaluate (a) 41/2 (b) 163/4 (c) 272/3 (d) 9�1/2:

(a) 41/2 D p4 D ±2
(b) 163/4 D 4p

163 D �2�3 D 8

(Note that it does not matter whether the 4th root of 16 is found first or whether
16 cubed is found first — the same answer will result.)

(c) 272/3 D 3p
272 D �3�2 D 9

(d) 9�1/2 D 1

91/2
D 1p

9
D 1

š3
D ±

1
3

In another example, to evaluate
33 ð 57

53 ð 34
:

The laws of indices only apply to terms having the same base. Grouping
terms having the same base, and then applying the laws of indices to each of
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the groups independently gives:

33 ð 57

53 ð 34 D
33

34 ð
57

53 D 3�3�4� ð 5�7�3�

D 3�1 ð 54 D 54

31
D 625

3
D 208

1
3

In another example, to evaluate:
41.5 ð 81/3

22 ð 32�2/5
:

41.5 D 43/2 D
p

43 D 23 D 8, 81/3 D 3p8 D 2,

22 D 4, 32�2/5 D 1

322/5
D 1

5p
322
D 1

22
D 1

4

Hence
41.5 ð 81/3

22 ð 32�2/5 D
8ð 2

4ð 1
4

D 16

1
D 16

Alternatively,
41.5 ð 81/3

22 ð 32�2/5 D
[�2�2]3/2 ð �23�1/3

22 ð �25��2/5

D 23 ð 21

22 ð 2�2
D 23C1�2���2� D 24 D 16

Standard form

A number written with one digit to the left of the decimal point and multiplied
by 10 raised to some power is said to be written in standard form. Thus:
5837 is written as 5.837 ð 103 in standard form, and 0.0415 is written as
4.15ð 10�2 in standard form.
When a number is written in standard form, the first factor is called the
mantissa and the second factor is called the exponent. Thus the number
5.8ð 103 has a mantissa of 5.8 and an exponent of 103.

(i) Numbers having the same exponent can be added or subtracted in standard
form by adding or subtracting the mantissae and keeping the exponent the
same. Thus:

2.3ð 104 C 3.7ð 104 D �2.3C 3.7�ð 104 D 6.0ð 104, and

5.9ð 10�2 � 4.6ð 10�2 D �5.9� 4.6�ð 10�2 D 1.3ð 10�2

When the numbers have different exponents, one way of adding or sub-
tracting the numbers is to express one of the numbers in non-standard
form, so that both numbers have the same exponent. Thus:

2.3ð 104 C 3.7ð 103 D 2.3ð 104 C 0.37ð 104

D �2.3C 0.37�ð 104 D 2.67ð 104

Alternatively, 2.3ð 104 C 3.7ð 103 D 23 000C 3700

D 26 700 D 2.67ð 104
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(ii) The laws of indices are used when multiplying or dividing numbers given
in standard form. For example,

�2.5ð 103�ð �5ð 102� D �2.5ð 5�ð �103C2�

D 12.5ð 105 or 1.25ð 106

In another example,
6ð 104

1.5ð 102
D 6

1.5
ð �104�2� D 4ð 102

In another example, to express in standard form: (a) 38.71 (b) 0.0124
For a number to be in standard form, it is expressed with only one digit
to the left of the decimal point. Thus:

(a) 38.71 must be divided by 10 to achieve one digit to the left of the decimal
point and it must also be multiplied by 10 to maintain the equality, i.e.

38.71 D 38.71

10
ð 10 D 3.871 × 10 in standard form

(b) 0.0124 D 0.0124 ð 100

100

D 1.24

100
D 1.24 × 10−2 in standard form

In another example, to express in standard form, correct to 3 significant
figures:

(a) 19
2

3
(b) 741

9

16

(a) 19
2

3
D 19.P6 D 1.97 × 10 in standard form, correct to 3 significant figures

(b) 741
9

16
D 741.5625 D 7.42 × 102 in standard form, correct to 3 significant

figures

In another example, to find the value of (a) 7.9ð 10�2 � 5.4ð 10�2 and
(b) 9.293ð 102 C 1.3ð 103 expressing the answers in standard form:
(a) 7.9ð 10�2 � 5.4ð 10�2 D �7.9� 5.4�ð 10�2 D 2.5 × 10−2

(b) Since only numbers having the same exponents can be added by straight
addition of the mantissae, the numbers are converted to this form before
adding.

Thus: 9.293 ð 102 C 1.3ð 103 D 9.293ð 102 C 13ð 102

D �9.293 C 13�ð 102

D 22.293 ð 102

D 2.2293 × 103 in standard form

Alternatively, the numbers can be expressed as decimal fractions, giving:

9.293ð 102 C 1.3ð 103 D 929.3C 1300 D 2229.3

D 2.2293 × 103 in standard form
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as obtained previously. This method is often the ‘safest’ way of doing this
type of example.

4 Errors, Calculations and Evaluation of
Formulae

Errors and approximations

In all problems in which the measurement of distance, time, mass or other
quantities occurs, an exact answer cannot be given; only an answer that is
correct to a stated degree of accuracy can be given. To take account of this
an error due to measurement is said to exist.
To take account of measurement errors it is usual to limit answers so that the
result given is not more than one significant figure greater than the least
accurate number given in the data.
Rounding-off errors can exist with decimal fractions. For example, to state
that 	 D 3.142 is not strictly correct, but ‘	 D 3.142 correct to 4 significant
figures’ is a true statement. (Actually, 	 D 3.14159265 . . .).
It is possible, through an incorrect procedure, to obtain the wrong answer to
a calculation. This type of error is known as a blunder.
An order of magnitude error is said to exist if incorrect positioning of the
decimal point occurs after a calculation has been completed.
Blunders and order of magnitude errors can be reduced by determining approx-
imate values of calculations. Answers that do not seem feasible must be
checked and the calculation repeated as necessary.
An engineer will often need to make a quick mental approximation for

a calculation. For example,
49.1ð 18.4ð 122.1

61.2ð 38.1
may be approximated

to
50ð 20ð 120

60ð 40
and then, by cancelling,

50ð 20
1 ð 120

2
1

160 ð 40
2 1

D 50. An

accurate answer somewhere between 45 and 55 could therefore be expected.
certainly an answer around 500 or 5 would not be expected. Actually, by

calculator
49.1ð 18.4ð 122.1

61.2ð 38.1
D 47.31, correct to 4 significant figures.

Use of calculator

The most modern aid to calculations is the pocket-sized electronic calculator.
With one of these, calculations can be quickly and accurately performed, cor-
rect to about 9 significant figures. The scientific type of calculator has made
the use of tables and logarithms largely redundant.
To help you to become competent at using your calculator check that you
agree with the answers to the following examples:

21.93ð 0.012981 D 0.2846733 . . . D 0.2847, correct to 4 significant figures
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1

0.0275
D 36.3636363 . . . D 36.364, correct to 3 decimal places

46.272 � 31.792 D 1130.3088 D 1.130 × 103, correct to 4 significant figures
p

5.462 D 2.3370922 . . . D 2.337, correct to 4 significant figures
p

0.007328 D 0.08560373 D 0.086, correct to 3 decimal places

4.723 D 105.15404 . . . D 105.2, correct to 4 significant figures
3p47.291 D 3.61625876 . . . D 3.62, correct to 3 significant figures

Conversion tables and charts

It is often necessary to make calculations from various conversion tables and
charts. Examples include currency exchange rates, imperial to metric unit
conversions, train or bus timetables, production schedules and so on.
For example, some approximate imperial to metric conversions are shown in
Table 4.1.

Table 4.1

length 1 inch D 2.54 cm
1 mile D 1.61 km

weight 2.2 lb D 1 kg
(1 lb D 16 oz)

capacity 1.76 pints D 1 litre
(8 pints D 1 gallon)

9.5 inches D 9.5ð 2.54 cm D 24.13 cm

and 24.13 cm D 24.13ð 10 mm D 241.3 mm

50 m.p.h. D 50ð 1.61 km/h D 80.5 km=h

300 km D 300

1.61
miles D 186.3 miles

30 lb D 30

2.2
kg D 13.64 kg

42 kg D 42ð 2.2 lb D 92.4 lb

0.4 lb D 0.4ð 16 oz D 6.4 oz D 6 oz,

correct to the nearest ounce

Thus 42 kg D 92 lb 6 oz, correct to the nearest ounce

15 gallons D 15ð 8 pints D 120 pints

120 pints D 120

1.76
litres D 68.18 litres
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40 litres D 40ð 1.76 pints D 70.4 pints

70.4 pints D 70.4

8
gallons D 8.8 gallons

Evaluation of formulae

The statement v D uC at is said to be a formula for v in terms of u, a and t.
v, u, a and t are called symbols.
The single term on the left-hand side of the equation, v, is called the subject
of the formulae.
Provided values are given for all the symbols in a formula except one, the
remaining symbol can be made the subject of the formula and may be evaluated
by using a calculator.
For example, velocity v is given by v D uC at. To find v, correct to 3 sig-
nificant figures if u D 9.86 m/s, a D 4.25 m/s2 and t D 6.84 s:

v D uC at D 9.86C �4.25��6.84�

D 9.86C 29.07 D 38.93
Hence velocity v = 38.9 m/s, correct to 3 significant figures
In another example, the volume V cm3 of a right circular cone is given by
V D 1

3	r
2h. To find the volume, correct to 4 significant figures, given that

r D 4.321 cm and h D 18.35 cm:
V D 1

3	r
2h D 1

3	�4.321�2�18.35� D 1
3	�18.671041��18.35�

Hence volume, V = 358.8 cm3, correct to 4 significant figures

In another example, force F Newton’s is given by the formula F D Gm1m2

d2
,

where m1 and m2 are masses, d their distance apart and G is a constant. To
find the value of the force given that G D 6.67ð 10�11, m1 D 7.36, m2 D 15.5
and d D 22.6, expressing the answer in standard form, correct to 3 significant
figures:

F D Gm1m2

d2
D �6.67ð 10�11��7.36��15.5�

�22.6�2

D �6.67��7.36��15.5�

�1011��510.76�
D 1.490

1011

Hence force F = 1.49 ×10−11 Newtons, correct to 3 significant figures

5 Algebra

Basic operations

Algebra is that part of mathematics in which the relations and properties
of numbers are investigated by means of general symbols. For example, the
area of a rectangle is found by multiplying the length by the breadth; this is
expressed algebraically as A D lð b, where A represents the area, l the length
and b the breadth.
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The basic laws introduced in arithmetic are generalised in algebra. Let a,
b, c and d represent any four numbers. Then:

(i) aC �bC c� D �aC b�C c
(ii) a�bc� D �ab�c

(iii) aC b D bC a
(iv) ab D ba
(v) a�bC c� D abC ac

(vi)
aC b
c
D a

c
C b

c
(vii) �aC b��c C d� D ac C adC bc C bd

For example, to find the value of 4p2qr3, given that p D 2, q D 1
2 and

r D 1 1
2 :

Replacing p, q and r with their numerical values gives:

4p2qr3 D 4�2�2
(

1
2

)(
3
2

)3

D 4ð 2ð 2ð 1
2 ð 3

2 ð 3
2 ð 3

2 D 27

In another example, to find the sum of 5a� 2b, 2aC c, 4b� 5d and
b� aC 3d� 4c:
The algebraic expressions may be tabulated as shown below, forming columns
for the a0s, b0s, c0s and d0s. Thus:

C 5a � 2b
C 2a C c

C 4b � 5d
� a C b � 4c C 3d

Adding gives: 6a C 3b � 3c � 2d

In another example, to multiply 2aC 3b by aC b:
Each term in the first expression is multiplied by a, then each term in the first
expression is multiplied by b, and the two results are added. The usual layout
is shown below.

2a C 3b
a C b

Multiplying by a ! 2a2 C 3ab
Multiplying by b ! C 2ab C 3b2

Adding gives: 2a2 Y 5ab Y 3b2

In another example, to simplify 2pł 8pq:

2pł 8pq means
2p

8pq
. This can be reduced by cancelling, as in arithmetic.

Thus:
2p

8pq
D 2

1 ð p 1

4 8 ð 1p ð q
D 1

4q
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Laws of indices

The laws of indices are:

(i) am ð an D amCn (ii)
am

an
D am�n (iii) �am�n D amn

(iv) a
m
n D n
p
am (v) a�n D 1

an
(vi) a0 D 1

For example, to simplify a3b2cð ab3c5:

Grouping like terms gives: a3 ð að b2 ð b3 ð cð c5

Using the first law of indices gives: a3C1 ð b2C3 ð c1C5

i.e. a4 ð b5 ð c6 D a4b5c6

In another example, to simplify
a3b2c4

abc�2 and evaluate when a D 3, b D 1
8

and c D 2:

Using the second law of indices,
a3

a
D a3–1 D a2,

b2

b
D b2�1 D b and

c4

c�2
D c4��2 D c6

Thus
a3b2c4

abc�2
D a2bc6

When a D 3, b D 1
8 and c D 2, a2bc6 D �3�2

(
1
8

)
�2�6

D �9�
(

1
8

)
�64� D 72

In another example, to simplify
x2y3 C xy2

xy
:

Algebraic expressions of the form
aC b
c

can be split into
a

c
C b

c
. Thus

x2y3 C xy2

xy
D x2y3

xy
C xy2

xy
D x2–1y3–1 C x1–1y2–1 D xy2 Y y

(since x0 D 1, from the sixth law of indices)

In another example, to simplify
�mn2�3

�m1/2n1/4�4
:

The brackets indicate that each letter in the bracket must be raised to the
power outside.
Using the third law of indices gives:

�mn2�3

�m1/2n1/4�4
D m1ð3n2ð3

m�1/2�ð4n�1/4�ð4 D
m3n6

m2n1

Using the second law of indices gives:
m3n6

m2n1 D m3�2n6�1 D mn5
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Brackets and factorisation

When two or more terms in an algebraic expression contain a common factor,
then this factor can be shown outside of a bracket. For example

abC ac D a�bC c�
which is simply the reverse of law (v) of algebra on page 17, and

6px C 2py � 4pz D 2p�3x C y � 2z�

This process is called factorisation.
In another example, to remove the brackets and simplify the expression:

2a� [3f2�4a� b�� 5�aC 2b�g C 4a]

Removing the innermost brackets gives: 2a� [3f8a� 2b� 5a� 10bg C 4a]

Collecting together similar terms gives: 2a� [3f3a� 12bg C 4a]

Removing the ‘curly’ brackets gives: 2a� [9a� 36bC 4a]

Collecting together similar terms gives: 2a� [13a� 36b]

Removing the outer brackets gives: 2a� 13aC 36b
i.e. −11a Y 36b or 36b − 11a (see law (iii), page 17)
In another example, to factorise (a) xy � 3xz (b) 4a2 C 16ab3

(c) 3a2b� 6ab2 C 15ab:
For each part of this example, the HCF of the terms will become one of the
factors.
Thus: (a) xy � 3xz D x.y − 3z /

(b) 4a2 C 16ab3 D 4a.a Y 4b3�
(c) 3a2b� 6ab2 C 15ab D 3ab.a − 2b Y 5/

In another example, to factorise ax � ay C bx � by:
The first two terms have a common factor of a and the last two terms a
common factor of b. Thus: ax � ay C bx � by D a�x � y�C b�x � y�
The two newly formed terms have a common factor of (x � y). Thus:

a�x � y�C b�x � y� D .x − y/.a Y b/

Fundamental laws and precedence

The laws of precedence which apply to arithmetic also apply to algebraic
expressions. The order is Brackets, Of, Division, Multiplication, Addition and
Subtraction (i.e. BODMAS).
For example, to simplify 2aC 5að 3a� a:
Multiplication is performed before addition and subtraction thus:

2a C 5að 3a� a D 2aC 15a2 � a D aC 15a2 D a.1Y 15a/

In another example, to simplify ał 5aC 2a � 3a:
The order of precedence is division, then addition and subtraction. Hence

ał 5a C 2a� 3a D a

5a
C 2a� 3a D 1

5
C 2a� 3a D 1

5
� a
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In another example, to simplify 3c C 2c ð 4c C c ł 5c � 8c:
The order of precedence is division, multiplication, addition and subtraction.

Hence: 3c C 2cð 4c C c ł 5c � 8c D 3c C 2cð 4c C c

5c
� 8c

D 3c C 8c2 C 1

5
� 8c

D 8c2 − 5c Y
1
5

or c.8c − 5/ Y
1
5

Direct and inverse proportionality

An expression such as y D 3x contains two variables. For every value of x
there is a corresponding value of y. The variable x is called the independent
variable and y is called the dependent variable.
When an increase or decrease in an independent variable leads to an increase
or decrease of the same proportion in the dependent variable this is termed
direct proportion. If y D 3x then y is directly proportional to x, which may be
written as y / x or y D kx, where k is called the coefficient of proportionality
(in this case, k being equal to 3).
When an increase in an independent variable leads to a decrease of the same
proportion in the dependent variable (or vice versa) this is termed inverse
proportion. If y is inversely proportional to x then y / �1/x� or y D k/x.
Alternatively, k D xy, that is, for inverse proportionality the product of the
variables is constant.
Examples of laws involving direct and inverse proportional in science
include:

(i) Hooke’s law, which states that within the elastic limit of a material, the
strain ε produced is directly proportional to the stress, �, producing it,
i.e. ε / � or ε D k�

(ii) Charles’s law, which states that for a given mass of gas at constant
pressure the volume V is directly proportional to its thermodynamic tem-
perature T, i.e. V / T or V D kT

(iii) Ohm’s law, which states that the current I flowing through a fixed resistor
is directly proportional to the applied voltage V, i.e. I / V or I D kV

(iv) Boyle’s law, which states that for a gas at constant temperature, the
volume V of a fixed mass of gas is inversely proportional to its absolute
pressure p, i.e. p / �1/V� or p D k/V, i.e. pV D k

Polynomial division

A polynomial is an expression of the form f�x� D aC bx C cx2 C dx3 C Ð Ð
and polynomial division is sometimes required when resolving into partial
fractions — (see chapter 14, page 61).
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For example, to divide 2x2 C x � 3 by x � 1:
2x2 C x � 3 is called the dividend and x � 1 the divisor. The usual layout
is shown below with the dividend and divisor both arranged in descending
powers of the symbols.

2x C 3

x � 1
)

2x2 C x � 3

2x2 � 2x
3x � 3
3x � 3
Ð Ð

Dividing the first term of the dividend by the first term of the divisor, i.e.
2x2/x gives 2x, which is put above the first term of the dividend as shown.
The divisor is then multiplied by 2x, i.e. 2x�x � 1� D 2x2 � 2x, which is placed
under the dividend as shown. Subtracting gives 3x � 3. The process is then
repeated, i.e. the first term of the divisor, x, is divided into 3x, giving C3,
which is placed above the dividend as shown. Then 3�x � 1� D 3x � 3 which
is placed under the 3x � 3. The remainder, on subtraction, is zero, which
completes the process.
Thus .2x2 Y x − 3/ ÷ .x − 1/ = .2x Y 3/

[A check can be made on this answer by multiplying �2x C 3� by �x � 1�
which equals 2x2 C x � 3]

In another example, to divide �x2 C 3x � 2� by �x � 2�:

x C 5

x � 2
)
x2 C 3x � 2

x2 � 2x
5x � 2
5x � 10

8

Hence
x2 C 3x � 2

x � 2
D x Y 5Y

8
x − 2

The factor theorem

There is a simple relationship between the factors of a quadratic expression
and the roots of the equation obtained by equating the expression to zero.
For example, consider the quadratic equation x2 C 2x � 8 D 0. To solve this
we may factorise the quadratic expression x2 C 2x � 8 giving �x � 2��x C 4�.
Hence �x � 2��x C 4� D 0
Then, if the product of two numbers is zero, one or both of those numbers
must equal zero. Therefore, either

�x � 2� D 0, from which, x D 2

or �x C 4� D 0, from which, x D �4
It is clear then that a factor of (x � 2) indicates a root of C2, while a factor
of (x C 4) indicates a root of �4.
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In general, we can therefore say that:
a factor of (x − a) corresponds to a root of x = a

In practice, we always deduce the roots of a simple quadratic equation from
the factors of the quadratic expression, as in the above example. However,
we could reverse this process. If, by trial and error, we could determine that
x D 2 is a root of the equation x2 C 2x � 8 D 0 we could deduce at once
that (x � 2) is a factor of the expression x2 C 2x � 8. We wouldn’t normally
solve quadratic equations this way — but suppose we have to factorise a cubic
expression (i.e. one in which the highest power of the variable is 3). A cubic
equation might have three simple linear factors and the difficulty of discovering
all these factors by trial and error would be considerable. It is to deal with
this kind of case that we use the factor theorem. This is just a generalised
version of what we established above for the quadratic expression.
The factor theorem provides a method of factorising any polynomial, f�x�,
which has simple factors.
A statement of the factor theorem says:

‘if x = a is a root of the equation f .x/ = 0, then (x − a) is a factor
of f .x/’

For example, to factorise x3 � 7x � 6 and use it to solve the cubic equation
x3 � 7x � 6 D 0:

Let f�x� D x3 � 7x � 6

If x D 1, then f�1� D 13 � 7�1�� 6 D �12

If x D 2, then f�2� D 23 � 7�2�� 6 D �12

If x D 3, then f�3� D 33 � 7�3�� 6 D 0

If f�3� D 0, then (x � 3) is a factor — from the factor theorem.

We have a choice now. We can divide x3 � 7x � 6 by (x � 3) or we could
continue our ‘trial and error’ by substituting further values for x in the given
expression — and hope to arrive at f�x� D 0.
Let us do both ways. Firstly, dividing out gives:

x2 C 3x C 2

x � 3
)
x3 C 0� 7x � 6

x3 � 3x2

3x2 � 7x � 6
3x2 � 9x

2x � 6
2x � 6
Ð Ð

Hence
x3 � 7x � 6

x � 3
D x2 C 3x C 2

i.e. x3 � 7x � 6 D �x � 3��x2 C 3x C 2�

x2 C 3x C 2 factorises ‘on sight’ as �x C 1��x C 2�
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Therefore x3 − 7x − 6 = .x − 3/.x Y 1/.x Y 2/

A second method is to continue to substitute values of x into f�x�.
Our expression for f�3� was 33 � 7�3�� 6. We can see that if we continue
with positive values of x the first term will predominate such that f�x� will
not be zero.
Therefore let us try some negative values for x. Therefore
f��1� D ��1�3 � 7��1�� 6 D 0; hence �x C 1� is a factor (as shown above).
Also f��2� D ��2�3 � 7��2�� 6 D 0; hence �x C 2� is a factor (also as
shown above).
To solve x3 � 7x � 6 D 0, we substitute the factors, i.e.

�x � 3��x C 1��x C 2� D 0

from which, x = 3, x = −1 and x = −2
Note that the values of x, i.e. 3, �1 and �2, are all factors of the constant
term, i.e. the 6. This can give us a clue as to what values of x we should
consider.

The remainder theorem

Dividing a general quadratic expression (ax2 C bx C c) by (x � p), where p
is any whole number, by long division gives:

ax C �bC ap�
x � p

)
ax2 C bx C c
ax2 � apx

�bC ap�x C c
�bC ap�x � �bC ap�p

cC �bC ap�p
The remainder, c C �bC ap�p D c C bpC ap2 or ap2 C bpC c
This is, in fact, what the remainder theorem states, i.e.

‘if (ax2 Y bx Y c) is divided by (x − p), the remainder will be
ap2 Y bp Y c’

If, in the dividend �ax2 C bx C c�, we substitute p for x we get the remainder
ap2 C bpC c
For example, when �3x2 � 4x C 5� is divided by �x � 2� the remainder is
ap2 C bpC c, (where a D 3, b D �4, c D 5 and p D 2), i.e. the remainder is

3�2�2 C ��4��2�C 5 D 12–8C 5 D 9

We can check this by dividing (3x2 � 4x C 5) by (x � 2) by long division:
3x C 2

x � 2
)

3x2 � 4x C 5

3x2 � 6x
2x C 5
2x � 4

9
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Similarly, when (x2 C 3x � 2) is divided by (x � 1), the remainder is
1(1)2 C 3�1�� 2 D 2
It is not particularly useful, on its own, to know the remainder of an alge-
braic division. However, if the remainder should be zero then (x � p) is a
factor. This is very useful therefore when factorising expressions.
The remainder theorem may also be stated for a cubic equation as:

‘if (ax3 Y bx2 Y cx Y d) is divided by (x − p), the remainder will
be ap3 Y bp2 Y cp Y d ’

As before, the remainder may be obtained by substituting p for x in the
dividend.

For example, when (3x3 C 2x2 � x C 4) is divided by (x � 1), the remainder
is ap3 C bp2 C cpC d (where a D 3, b D 2, c D �1, d D 4 and p D 1), i.e.
the remainder is 3�1�3 C 2�1�2 C ��1��1�C 4 D 3C 2–1C 4 D 8
Similarly, when (x3 � 7x � 6) is divided by (x � 3), the remainder is
1�3�3 C 0�3�2 � 7�3�� 6 D 0, which means that (x � 3) is a factor of
(x3 � 7x � 6).

Continued fractions

Any fraction may be expressed in the form shown below for the fraction
26

55
:

26

55
D 1

55

26

D 1

2C 3

26

D 1

2C 1
26

3

D 1

2C 1

8C 2

3

D 1

2C 1

8C 1
3
2

D 1

2C 1

8C 1

1C 1
2

The latter factor can be expressed as:
1

A C ˛

B C ˇ

C C &

D C υ
Comparisons show that A, B, C and D are 2, 8, 1 and 2 respectively. A
fraction written in the general form is called a continued fraction and the
integers A, B, C and D are called the quotients of the continued fraction.
The quotients may be used to obtain closer and closer approximations, being
called convergents.
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A tabular method may be used to determine the convergents of a fraction:

1 2 3 4 5

a 2 8 1 2

b

{
bp

bq

0

1

1

2

8

17

9

19

26

55

The quotients 2, 8, 1 and 2 are written in cells a2, a3, a4 and a5 with cell a1
being left empty.
The fraction 0

1 is always written in cell b1.

The reciprocal of the quotient in cell a2 is always written in cell b2, i.e. 1
2 in

this case.

The fraction in cell b3 is given by
�a3ð b2p�C b1p

�a3ð b2q�C b1q
,

i.e.
�8ð 1�C 0

�8ð 2�C 1
D 8

17

The fraction in cell b4 is given by
�a4ð b3p�C b2p

�a4ð b3q�C b2q
,

i.e.
�1ð 8�C 1

�1ð 17�C 2
D 9

19
, and so on.

Hence the convergents of
26

55
are

1

2
,

7

17
,

9

19
and

26

55
, each value approximating

closer and closer to
26

55
.

These approximations to fractions are used to obtain practical ratios for gear-
wheels or for a dividing head (used to give a required angular displacement).

6 Simple Equations

Expressions, equations and identities

(3x � 5) is an example of an algebraic expression, whereas 3x � 5 D 1 is an
example of an equation (i.e. it contains an ‘equals’ sign)
An equation is simply a statement that two quantities are equal. For example,

1 m D 1000 mm or F D 9
5CC 32 or y D mx C c

An identity is a relationship that is true for all values of the unknown,
whereas an equation is only true for particular values of the unknown. For
example, 3x � 5 D 1 is an equation, since it is only true when x D 2, whereas
3x � 8x � 5x is an identity since it is true for all values of x. (Note ‘�’ means
‘is identical to’).



26

Simple linear equations (or equations of the first degree) are those in which
an unknown quantity is raised only to the power 1.
To ‘solve an equation’ means ‘to find the value of the unknown’.
Any arithmetic operation may be applied to an equation as long as the equality
of the equation is maintained.
For example, to solve the equation 4x D 20:

Dividing each side of the equation by 4 gives:
4x

4
D 20

4
(Note that the same operation has been applied to both the left-hand side
(LHS) and the right-hand side (RHS) of the equation so the equality has been
maintained).
Cancelling gives: x = 5, which is the solution to the equation.

In another example, to solve
2x

5
D 6:

The LHS is a fraction and this can be removed by multiplying both sides of

the equation by 5. Hence 5
(

2x

5

)
D 5�6�

Cancelling gives: 2x D 30

Dividing both sides of the equation by 2 gives:
2x

2
D 30

2
i.e. x = 15

In another example, to solve a� 5 D 8:
Adding 5 to both sides of the equation gives:

a� 5C 5 D 8C 5

i.e. a D 13

The result of the above procedure is to move the ‘�5’ from the LHS of the
original equation, across the equals sign, to the RHS, but the sign is changed
to C.

In another example, to solve 6x C 1 D 2x C 9:
In such equations the terms containing x are grouped on one side of the
equation and the remaining terms grouped on the other side of the equation.
Changing from one side of an equation to the other must be accompanied by
a change of sign. Thus since 6x C 1 D 2x C 9

then 6x � 2x D 9� 1

4x D 8

4x

4
D 8

4

i.e. x D 2

In another example, to solve 4�2r � 3�� 2�r � 4� D 3�r � 3�� 1:

Removing brackets gives: 8r � 12� 2r C 8 D 3r � 9� 1

Rearranging gives: 8r � 2r � 3r D �9� 1C 12� 8

i.e. 3r D �6

and r D �6

3
D −2
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Note that when there is only one fraction on each side of an equation, ‘cross-

multiplication’ can be applied. For example, if
3

x
D 4

5
then �3��5� D 4x, from

which, x =
15
4

or 3
3
4

In another example, to solve
p
x D 2:

[
p
x D 2 is not a ‘simple equation’ since the power of x is 1

2 i.e.
p
x D x

1
2 ;

however, it is included here since it occurs often in practise].
Wherever square root signs are involved with the unknown quantity, both
sides of the equation must be squared. Hence(p

x
)2 D �2�2

i.e. x = 4

In another example, to solve

(p
bC 3p
b

)
D 2:

To remove the fraction each term is multiplied by
p
b. Hence

p
b

(p
bC 3p
b

)
D
p
b�2�

Cancelling gives:
p
bC 3 D 2

p
b

Rearranging gives: 3 D 2
p
b�
p
b D
p
b

Squaring both sides gives: 9 = b

In another example, to solve x2 D 25:
This problem involves a square term and thus is not a simple equation (it is,
in fact, a quadratic equation). However the solution of such an equation is
often required and is therefore included here for completeness.
Whenever a square of the unknown is involved, the square root of both sides
of the equation is taken. Hence√

x2 D
p

25

i.e. x D 5

However, x D �5 is also a solution of the equation because
��5�ð ��5� D C25
Therefore, whenever the square root of a number is required there are always
two answers, one positive, the other negative.
The solution of x2 D 25 is thus written as: x = ±5

Practical problems involving simple equations

For example, a copper wire has a length l of 1.5 km, a resistance R of 5 *
and a resistivity of 17.2ð 10�6 *mm. To find the cross-sectional area, a, of
the wire, given that R D +l/a:
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Since R D +l/a then 5 * D �17.2ð 10�6 * mm��1500 ð 103 mm�

a

From the units given, a is measured in mm2

Thus 5a D 17.2ð 10�6 ð 1500 ð 103

and a D 17.2ð 10�6 ð 1500 ð 103

5

D 17.2ð 1500ð 103

106 ð 5
D 17.2ð 15

10ð 5
D 5.16

Hence the cross-sectional area of the wire is 5.16 mm2

In another example, the temperature coefficient of resistance ˛ may be calcu-
lated from the formula Rt D R0�1C ˛t�. To find ˛ given Rt D 0.928, R0 D 0.8
and t D 40:
Since Rt D R0�1C ˛t� then 0.928 D 0.8[1C ˛�40�]

0.928 D 0.8C �0.8��˛�40�

0.928� 0.8 D 32˛

0.128 D 32˛

Hence a =
0.128

32
= 0.004

In another example, the distance s metres travelled in time t seconds is given
by the formula s D ut C 1

2 at2, where u is the initial velocity in m/s and a is the
acceleration in m/s2. To find the acceleration of the body if it travels 168 m
in 6 s, with an initial velocity of 10 m/s:

s D ut C 1
2at

2, and s D 168, u D 10 and t D 6

Hence 168 D �10��6�C 1
2a�6�

2

168 D 60C 18a

168� 60 D 18a

108 D 18a

a D 108

18
D 6

Hence the acceleration of the body is 6 m/s2

In another example, the extension x m of an aluminium tie bar of length l m
and cross-sectional area A m2 when carrying a load of F newtons is given
by the modulus of elasticity E D Fl/Ax. To find the extension of the tie bar
(in mm) if E D 70ð 109 N/m2, F D 20ð 106 N, A D 0.1 m2 and l D 1.4 m:
E D Fl/Ax, hence

70ð 109 N

m2
D �20ð 106 N��1.4 m�

�0.1 m2��x�

(the unit of x is thus metres)
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70ð 109 ð 0.1ð x D 20ð 106 ð 1.4

x D 20ð 106 ð 1.4

70ð 109 ð 0.1

Cancelling gives: x D 2ð 1.4

7ð 100
m

D 2ð 1.4

7ð 100
ð 1000 mm

Hence the extension of the tie bar, x = 4 mm

7 Simultaneous Equations

Introduction to simultaneous equations

Only one equation is necessary when finding the value of a single unknown
quantity (as with simple equations in chapter 6). However, when an equation
contains two unknown quantities it has an infinite number of solutions. When
two equations are available connecting the same two unknown values then
a unique solution is possible. Similarly, for three unknown quantities it is
necessary to have three equations in order to solve for a particular value of
each of the unknown quantities, and so on.
Equations that have to be solved together to find the unique values of the
unknown quantities, which are true for each of the equations, are called simul-
taneous equations.
Two methods of solving simultaneous equations in two unknowns analyti-
cally are: (a) by substitution, and (b) by elimination.
(A graphical solution of simultaneous equations is shown in Chapter 35 and
matrices and determinants are used in Chapter 44).

For example, to solve the following equations for x and y, (a) by substitution,
and (b) by elimination:

x C 2y D �1 �1�

4x � 3y D 18 �2�

(a) By substitution
From equation (1): x D �1� 2y
Substituting this expression for x into equation (2) gives:

4��1� 2y�� 3y D 18

This is now a simple equation in y.
Removing the bracket gives:

�4� 8y � 3y D 18

�11y D 18C 4 D 22

y D 22

�11
D �2
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Substituting y D �2 into equation (1) gives:
x C 2��2� D �1

x � 4 D �1

x D �1C 4 D 3
Thus x = 3 and y = −2 is the solution to the simultaneous equations

(b) By elimination
x C 2y D �1 �1�

4x � 3y D 18 �2�
If equation (1) is multiplied throughout by 4 the coefficient of x will be
the same as in equation (2), giving:

4x C 8y D �4 �3�
Subtracting equation (3) from equation (2) gives:

4x � 3y D 18 (2)
4x C 8y D �4 (3)
0 � 11y D 22

Hence y D 22

�11
D �2

(Note, in the above subtraction, 18��4 D 18C 4 D 22).
Substituting y D �2 into either equation (1) or equation (2) will give
x D 3 as in method (a). The solution x = 3, y = −2 is the only pair
of values that satisfies both of the original equations.

In another example, to solve 7x � 2y D 26 �1�

6x C 5y D 29 �2�
When equation (1) is multiplied by 5 and equation (2) by 2 the coefficients of
y in each equation are numerically the same, i.e. 10, but are of opposite sign.

5ð equation (1) gives: 35x � 10y D 130 (3)
2ð equation (2) gives: 12x C 10y D 58 (4)
Adding equation (3) and (4) gives: 47x C 0 D 188

Hence x D 188

47
D 4

[Note that when the signs of common coefficients are different the two
equations are added, and when the signs of common coefficients are the same
the two equations are subtracted]
Substituting x D 4 in equation (1) gives:

7�4�� 2y D 26

28� 2y D 26

28� 26 D 2y

2 D 2y

Hence y D 1
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Thus the solution is x = 4, y = 1, since these values maintain the equality
when substituted in both equations.

Practical problems involving simultaneous equations

There are a number of situations in engineering and science where the solu-
tion of simultaneous equations is required.

For example, the law connecting friction F and load L for an experiment is
of the form F D aL C b, where a and b are constants. When F D 5.6, L D 8.0
and when F D 4.4, L D 2.0. To find the values of a and b and the value of F
when L D 6.5:

Substituting F D 5.6, L D 8.0 into F D aL C b gives:

5.6 D 8.0a C b �1�

Substituting F D 4.4, L D 2.0 into F D aL C b gives:

4.4 D 2.0a C b �2�

Subtracting equation (2) from equation (1) gives:

1.2 D 6.0a

a D 1.2

6.0
D 1

5

Substituting a D 1
5 into equation (1) gives:

5.6 D 8.0
(

1
5

)
C b

5.6 D 1.6C b
5.6� 1.6 D b

i.e. b = 4

Hence a = 1
5 and b = 4

When, say, L = 6.5, F D aL C b D 1
5 �6.5�C 4 D 1.3C 4, i.e. F = 5.30

In another example, the resistance R * of a length of wire at t°C is given
by R D R0�1C ˛t�, where R0 is the resistance at 0°C and ˛ is the temperature
coefficient of resistance in /°C. To find the values of ˛ and R0 if R D 30 *
at 50°C and R D 35 * at 100°C:
Substituting R D 30, t D 50 into R D R0�1C ˛t� gives:

30 D R0�1C 50˛� �1�

Substituting R D 35, t D 100 into R D R0�1C ˛t� gives:

35 D R0�1C 100˛� �2�
Although these equations may be solved by the conventional substitution
method, an easier way is to eliminate R0 by division. Thus, dividing
equation (1) by equation (2) gives:

30

35
D R0�1C 50˛�

R0�1C 100˛�
D 1C 50˛

1C 100˛
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‘Cross-multiplying’ gives:

30�1C 100˛� D 35�1C 50˛�

30C 3000˛ D 35C 1750˛

3000˛ � 1750˛ D 35� 30

1250˛ D 5

i.e. a D 5

1250
D 1

250
or 0.004

Substituting ˛ D 1

250
into equation (1) gives:

30 D R0

{
1C �50�

(
1

250

)}

30 D R0�1.2�

R0 D 30

1.2
D 25

Thus the solution is a = 0.004=°C and R0 = 25 Z

8 Transposition of Formulae
When a symbol other than the subject is required to be calculated it is usual
to rearrange the formula to make a new subject. This rearranging process is
called transposing the formula or transposition.
The rules used for transposition of formulae are the same as those used for the
solution of simple equations (see Chapter 6) — basically, that the equality of
an equation must be maintained.

For example, to transpose p D q C r C s to make r the subject:
The aim is to obtain r on its own on the left-hand side (LHS) of the equation.
Changing the equation around so that r is on the LHS gives:

q C r C s D p �1�

Subtracting �q C s� from both sides of the equation gives:

qC r C s� �q C s� D p� �q C s�
Thus q C r C s� q � s D p� q� s
i.e. r = p − q − s �2�

It is shown with simple equations, that a quantity can be moved from one
side of an equation to the other with an appropriate change of sign. Thus
equation (2) follows immediately from equation (1) above.

In another example, to transpose v D f. to make . the subject:

Rearranging gives: f. D v
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Dividing both sides by f gives:
f.

f
D v

f
, i.e. l =

v

f

In another example, to rearrange I D V

R
for V:

Rearranging gives:
V

R
D I

Multiplying both sides by R gives:

R

(
V

R

)
D R�I�

Hence V = IR

In another example, to rearrange the formula R D +l

a
to make a the subject:

Rearranging gives:
+l

a
D R

Multiplying both sides by a gives:

a

(
+l

a

)
D a�R� i.e. +l D aR

Rearranging gives: aR D +l
Dividing both sides by R gives:

aR

R
D +l

R

i.e. a =
rl
R

In another example, the final length, l2 of a piece of wire heated through /°C
is given by the formula l2 D l1�1C ˛/�. Making the coefficient of expansion,
˛, the subject:
Rearranging gives: l1�1C ˛/� D l2
Removing the bracket gives: l1 C l1˛/ D l2
Rearranging gives: l1˛/ D l2 � l1
Dividing both sides by l1/ gives:

l1˛/

l1/
D l2 � l1

l1/

i.e. a D l2 − l1
l1q

In another example, a formula for kinetic energy is k D 1
2mv

2. To transpose
the formula to make v the subject:

Rearranging gives: 1
2mv

2 D k
Whenever the prospective new subject is a squared term, that term is isolated
on the LHS, and then the square root of both sides of the equation is taken.

Multiplying both sides by 2 gives: mv2 D 2k
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Dividing both sides by m gives:
mv2

m
D 2k

m

i.e. v2 D 2k

m

Taking the square root of both sides gives:

√
v2 D

√(
2k

m

)

i.e. v =

√(
2k
m

)

In another example, the impedance of an a.c. circuit is given by
Z D pR2 C X2. To make the reactance, X, the subject:

Rearranging gives:
√
R2 C X2 D Z

Squaring both sides gives: R2 C X2 D Z2

Rearranging gives: X2 D Z2 � R2

Taking the square root of both sides gives: X =
p

Z 2 − R2

In another example, to transpose the formula p D a2x C a2y

r
to make a the

subject:

Rearranging gives:
a2x2 C a2y

r
D p

Multiplying both sides by r gives: a2x C a2y D rp
Factorising the LHS gives: a2�x C y� D rp

Dividing both sides by �x C y� gives:
a2�x C y�
�x C y� D

rp

�x C y�

i.e. a2 D rp

�x C y�

Taking the square root of both sides gives: a =

√(
rp

x Y y

)
In another example, expressing p in terms of D, d and f given that

D

d
D
√(

fC p
f� p

)
:

Rearranging gives:

√(
fC p
f� p

)
D D

d

Squaring both sides gives:
(
fC p
f� p

)
D D2

d2
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Cross-multiplying, i.e. multiplying each term by d2�f� p�, gives:

d2�fC p� D D2�f� p�
Removing brackets gives: d2fC d2p D D2f� D2p

Rearranging, to obtain terms in p on the LHS gives:

d2pC D2p D D2f� d2f

Factorising gives: p�d2 C D2� D f�D2 � d2�

Dividing both sides by (d2 C D2) gives:

p =
f �D2 − d2�

�d2 Y D2�

9 Quadratic Equations

Introduction to quadratic equations

As stated in chapter 6, an equation is a statement that two quantities are equal
and to ‘solve an equation’ means ‘to find the value of the unknown’. The
value of the unknown is called the root of the equation.
A quadratic equation is one in which the highest power of the unknown
quantity is 2. For example, x2 � 3x C 1 D 0 is a quadratic equation.
There are four methods of solving quadratic equations.

These are: (i) by factorisation (where possible)
(ii) by ‘completing the square’

(iii) by using the ‘quadratic formula’
or (iv) graphically (see Chapter 35)

Solution of quadratic equations by factorisation

Multiplying out �2x C 1��x � 3� gives 2x2 � 6x C x � 3, i.e. 2x2 � 5x � 3.
The reverse process of moving from 2x2 � 5x � 3 to �2x C 1��x � 3� is called
factorising.
If the quadratic expression can be factorised this provides the simplest method
of solving a quadratic equation.

For example, if 2x2 � 5x � 3 D 0, then, by factorising:
�2x C 1��x � 3� D 0

Hence either �2x C 1� D 0 i.e. x D � 1
2

or �x � 3� D 0 i.e. x D 3

The technique of factorising is often one of ‘trial and error’

In another example, to solve the equations x2 C 2x � 8 D 0 by factorisation:
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The factors of x2 are x and x. These are placed in brackets thus: (x )(x )
The factors of �8 are C8 and �1, or �8 and C1, or C4 and �2, or �4 and C2.
The only combination to give a middle term of C2x is C4 and �2, i.e.

x2 C 2x � 8 D �x C 4��x � 2�

(Note that the product of the two inner terms added to the product of the two
outer terms must equal the middle term, C2x in this case.)
The quadratic equation x2 C 2x � 8 D 0 thus becomes �x C 4��x � 2� D 0.
Since the only way that this can be true is for either the first or the second,
or both factors to be zero, then either �x C 4� D 0 i.e. x D �4

or �x � 2� D 0 i.e. x D 2
Hence the roots of x2 Y 2x − 8 = 0 are x = −4 and 2
In another example, to determine the roots of x2 � 6x C 9 D 0 by factorisa-
tion:
Since x2 � 6x C 9 D 0 then �x � 3��x � 3� D 0, i.e. �x � 3�2 D 0 (the left-
hand side is known as a perfect square). Hence x = 3 is the only root of the
equation x2 � 6x C 9 D 0.

In another example, to determine the roots of 4x2 � 25 D 0 by factorisation:
4x2 � 25 D 0 (the left-hand side is the difference of two squares, �2x�2 and
(5)2).
Thus �2x C 5��2x � 5� D 0

Hence either �2x C 5� D 0 i.e. x = − 5
2

or �2x � 5� D 0 i.e. x = 5
2

In another example, the roots of a quadratic equation are 1
3 and �2. To

determine the equation in x:
If the roots of a quadratic equation are ˛ and ˇ then (x � ˛��x � ˇ� D 0.
Hence if ˛ D 1

3 and ˇ D �2, then(
x � 1

3

)
�x � ��2�� D 0

(
x � 1

3

)
�x C 2� D 0

x2 � 1
3 x C 2x � 2

3 D 0

x2 C 5
3 x � 2

3 D 0

Hence 3x2 Y 5x − 2 = 0

Solution of quadratic equations by ‘completing the square’

An expression such as x2 or �x C 2�2 or �x � 3�2 is called a perfect square.

If x2 D 3 then x D š
p

3

If �x C 2�2 D 5 then x C 2 D š
p

5 and x D �2š
p

5

If �x � 3�2 D 8 then x � 3 D š
p

8 and x D 3š
p

8
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Hence if a quadratic equation can be rearranged so that one side of the equation
is a perfect square and the other side of the equation is a number, then the
solution of the equation is readily obtained by taking the square roots of
each side as in the above examples. The process of rearranging one side of a
quadratic equation into a perfect square before solving is called ‘completing
the square’.

�x C a�2 D x2 C 2ax C a2

Thus in order to make the quadratic expression x2 C 2ax into a perfect square

it is necessary to add (half the coefficient of x)2 i.e.
(

2a

2

)2

or a2

For example, x2 C 3x becomes a perfect square by adding
(

3
2

)2
, i.e.

x2 C 3x C
(

3
2

)2 D
(
x C 3

2

)2

In another example, to solve 2x2 C 5x D 3 by ‘completing the square’:
The procedure is as follows:

1. Rearrange the equation so that all terms are on the same side of the equals
sign (and the coefficient of the x2 term is positive). Hence 2x2 C 5x � 3 D 0

2. Make the coefficient of the x2 term unity. In this case this is achieved by
dividing throughout by 2.

Hence
2x2

2
C 5x

2
� 3

2
D 0

i.e. x2 C 5

2
x � 3

2
D 0

3. Rearrange the equations so that the x2 and x terms are on one side of the
equals sign and the constant is on the other side. Hence x2 C 5

2 x D 3
2

4. Add to both sides of the equation (half the coefficient of x)2. In this case the

coefficient of x is 5
2 . Half the coefficient squared is therefore

(
5
4

)2
. Thus

x2 C 5
2 x C

(
5
4

)2 D 3
2 C

(
5
4

)2

The LHS is now a perfect square, i.e.(
x C 5

4

)2 D 3
2 C

(
5
4

)2

5. Evaluate the RHS. Thus
(
x C 5

4

)2

D 3

2
C 25

16
D 24C 25

16
D 49

16
6. Taking the square root of both sides of the equation (remembering that the

square root of a number gives a š answer). Thus√(
x C 5

4

)2

D
√(

49

16

)

i.e. x C 5
4 D š 7

4
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7. Solve the simple equation. Thus x D � 5
4 š 7

4

i.e. x D � 5
4 C 7

4 D 2
4 D 1

2

and x D � 5
4 � 7

4 D � 12
4 D �3

Hence x = 1
2 or −3 are the roots of the equation 2x2 C 5x D 3.

Solution of quadratic equations by formula

If ax2 C bx C c D 0 then x =
−b ±

p
b2 − 4ac

2a

This is known as the quadratic formula

For example, to solve 3x2 � 11x � 4 D 0 by using the quadratic formula:
Comparing 3x2 � 11x � 4 D 0 with ax2 C bx C c D 0 gives a D 3, b D �11
and c D �4.

Hence, x D ���11�š
√
��11�2 � 4�3���4�

2�3�

D C11šp121C 48

6
D 11šp169

6

D 11š 13

6
D 11C 13

6
or

11� 13

6

Hence, x D 24

6
= 4 or

�2

6
= −

1
3

Practical problems involving quadratic equations

There are many practical problems where a quadratic equation has first to
be obtained, from given information, before it is solved.

For example, the height s metres of a mass projected vertically upwards at
time t seconds is s D ut � 1

2gt
2. To determine how long the mass will take

after being projected to reach a height of 16 m (a) on the ascent and (b) on
the descent, when u D 30 m/s and g D 9.81 m/s2:
When height s D 16 m, 16 D 30t � 1

2 �9.81�t2

i.e. 4.905t2 � 30t C 16 D 0
Using the quadratic formula:

t D ���30�š
√
��30�2 � 4�4.905��16�

2�4.905�

D 30šp586.1

9.81
D 30š 24.21

9.81
D 5.53 or 0.59
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t

2.0 m

4.0 m (4.0+2t)

SHED

t

Figure 9.1

Hence the mass will reach a height of 16 m after 0.59 s on the ascent and
after 5.53 s on the descent.
In another example, a shed is 4.0 m long and 2.0 m wide. A concrete path
of constant width is laid all the way around the shed and the area of the path
is 9.50 m2. To calculate its width, to the nearest centimetre:
Figure 9.1 shows a plan view of the shed with its surrounding path of width
t metres. Area of path D 2�2.0ð t�C 2t�4.0C 2t�

i.e. 9.50 D 4.0t C 8.0t C 4t2

or 4t2 C 12.0t � 9.50 D 0

Hence t D ��12.0�š
√
�12.0�2 � 4�4���9.50�

2�4�

D �12.0šp296.0

8
D �12.0š 17.20465

8

Hence t D 0.6506 m or �3.65058 m
Neglecting the negative result which is meaningless, the width of the path,
t = 0.651 m or 65 cm, correct to the nearest centimetre.

The solution of linear and quadratic equations simultaneously

Sometimes a linear equation and a quadratic equation need to be solved simul-
taneously.

For example, to determine the values of x and y which simultaneously satisfy
the equations:

y D 5x � 4� 2x2 and y D 6x � 7

For a simultaneous solution the values of y must be equal, hence the RHS of
each equation is equated. Thus

5x � 4� 2x2 D 6x � 7
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Rearranging gives: 5x � 4–2x2 � 6x C 7 D 0

i.e. � x C 3� 2x2 D 0

or 2x2 C x � 3 D 0

Factorising gives: �2x C 3��x � 1� D 0

i.e. x D � 3
2 or x D 1

In the equation y D 6x � 7,

when x D � 3
2 , y D 6

(
� 3

2

)
� 7 D �16

and when x D 1, y D 6� 7 D �1

[Checking the result in y D 5x � 4� 2x2:

when x D �3

2
, y D 5

(
�3

2

)
� 4� 2

(
�3

2

)2

D �15

2
� 4� 9

2
D �16

as above; and when x D 1, y D 5� 4� 2 D �1 as above]

Hence the simultaneous solutions occur when x = − 3
2 , y = −16 and when

x = 1, y = −1

10 Inequalities

Introduction to inequalities

An inequality is any expression involving one of the symbols <, >, � or ½
p < q means p is less than q

p > q means p is greater than q

p � q means p is less than or equal to q

p ½ q means p is greater than or equal to q

Some simple rules

(i) When a quantity is added or subtracted to both sides of an inequality,
the inequality still remains. For example,

if p < 3 then pC 2 < 3C 2 (adding 2 to both sides)

and p� 2 < 3� 2 (subtracting 2 from both sides)
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(ii) When multiplying or dividing both sides of an inequality by a positive
quantity, say 5, the inequality remains the same. For example,

if p > 4 then 5p > 20 and
p

5
>

4

5

(iii) When multiplying or dividing both sides of an inequality by a negative
quantity, say �3, the inequality is reversed. For example,

if p > 1 then � 3p < �3 and
p

�3
<

1

�3

�Note > has changed to <�

To solve an inequality means finding all the values of the variable for which
the inequality is true.

Simple inequalities

For example, to solve the following inequalities:
(a) 3C x > 7 (b) z � 2 ½ 5
(a) Subtracting 3 from both sides of the inequality 3C x > 7 gives:

3C x � 3 > 7� 3 i.e. x > 4

Hence all values of x greater than 4 satisfy the inequality
(b) Adding 2 to both sides of the inequality z � 2 ½ 5 gives:

z � 2C 2 ½ 5C 2 i.e. z ≥ 7

Hence all values of z equal to or greater than 7 satisfy the inequality

In another example, to solve the inequality 4x C 1 > x C 5:
Subtracting 1 from both sides of the inequality 4x C 1 > x C 5 gives:

4x > x C 4

Subtracting x from both sides of the inequality 4x > x C 4 gives:

3x > 4

Dividing both sides of the inequality 3x > 4 by 3 gives:

x > 4
3

Hence all values of x greater than 4
3 satisfy the inequality 4x C 1 > x C 5

Inequalities involving a modulus

The modulus of a number is the size of the number, regardless of sign; it is
denoted by vertical lines enclosing the number.
For example, j4j D 4 and j�4j D 4 (the modulus of a number is never nega-
tive).
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The inequality jtj < 1 means that all numbers whose actual size, regardless of
sign, is less than 1, i.e. any value between �1 and C1.
Thus jtj < 1 means −1 < t < 1
Similarly, jx j > 3 means all numbers whose actual size, regardless of sign, is
greater than 3, i.e. any value greater than 3 and any value less than �3.
Thus jx j > 3 means x > 3 and x < −3

For example, to solve the following inequality j3x C 1j < 4
Since j3x C 1j < 4 then �4 < 3x C 1 < 4

�4 < 3x C 1 becomes �5 < 3x and − 5
3 < x

3x C 1 < 4 becomes 3x < 3 and x < 1

Hence these two results together become � 5
3 < x < 1 and mean that the

inequality j3x C 1j < 4 is satisfied for any value of x greater than � 5
3 but

less than 1.

Inequalities involving quotients

If
p

q
> 0 then

p

q
must be a positive value.

For
p

q
to be positive, either p is positive and q is positive

or p is negative and q is negative

i.e.
C
C D C and

�
� D C

If
p

q
< 0 then

p

q
must be a negative value.

For
p

q
to be negative, either p is positive and q is negative

or p is negative and q is positive

i.e.
C
� D � and

�
C D �

For example, to solve the inequality
t C 1

3t � 6
> 0:

Since
t C 1

3t � 6
> 0 then

t C 1

3t � 6
must be positive.

For
t C 1

3t � 6
to be positive, either (i) t C 1 > 0 and 3t � 6 > 0

or (ii) t C 1 < 0 and 3t � 6 < 0

(i) If t C 1 > 0 then t > �1
and if 3t � 6 > 0 then 3t > 6 and t > 2
Both of the inequalities t > �1 and t > 2 are only true when t > 2, i.e.

the fraction
t C 1

3t � 6
is positive when t > 2

(ii) If t C 1 < 0 then t < �1
and if 3t � 6 < 0 then 3t < 6 and t < 2
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Both of the inequalities t < �1 and t < 2 are only true when t < �1, i.e.

the fraction
t C 1

3t � 6
is positive when t < −1

Summarising,
t C 1

3t � 6
> 0 when t > 2 or t < −1

Inequalities involving square functions

The following two general rules apply when inequalities involve square func-
tions:
(i) if x2 > k then x >

p
k or x < −

p
k (1)

(ii) if x2 < k then −
p

k < x <
p

k (2)

For example, to solve the inequality t2 > 9 :
Since t2 > 9 then t2 � 9 > 0
i.e. �t C 3��t � 3� > 0 by factorising
For �t C 3��t � 3� to be positive,

either (i) �t C 3� > 0 and �t � 3� > 0

or (ii) �t C 3� < 0 and �t � 3� < 0
(i) If �t C 3� > 0 then t > �3

and if �t � 3� > 0 then t > 3
Both of these are true only when t > 3

(ii) If �t C 3� < 0 then t < �3
and if �t � 3� < 0 then t < 3
Both of these are true only when t < −3
Summarising, t2 > 9 when t > 3 or t < −3 which demonstrates rule (1)
above

In another example, to solve the inequality t2 < 9:
Since t2 < 9 then t2 � 9 < 0
i.e. �t C 3��t � 3� < 0 by factorising
For �t C 3��t � 3� to be negative,

either (i) �t C 3� > 0 and �t � 3� < 0

or (ii) �t C 3� < 0 and �t � 3� > 0

(i) If �t C 3� > 0 then t > �3
and if �t � 3� < 0 then t < 3
Hence (i) is satisfied when t > �3 and t < 3 which may be written a
−3 < t < 3

(ii) If �t C 3� < 0 then t < �3
and if �t � 3� > 0 then t > 3
It is not possible to satisfy both t < �3 and t > 3, thus no values of t
satisfies (ii)

Summarising, t2 < 9 when −3 < t < 3 which means that all values of t
between �3 and C3 will satisfy the inequality, satisfying rule (2) above.



44

Quadratic inequalities

Inequalities involving quadratic expressions are solved using either factorisa-
tion or ‘completing the square’.

For example, x2 � 2x � 3 is factorised as �x C 1��x � 3�

and 6x2 C 7x � 5 is factorised as �2x � 1��3x C 5�

If a quadratic expression does not factorise, then the technique of ‘completing
the square’ is used. In general, the procedure for x2 C bx C c is:

x2 C bx C c �
(
x C b

2

)2

C c �
(
b

2

)2

For example, x2 C 4x � 7 does not factorise; completing the square gives:

x2 C 4x � 7 � �x C 2�2 � 7� 22 � �x C 2�2 � 11

Similarly, x2 � 6x � 5 � �x � 3�2 � 5� 32 � �x � 3�2 � 14

For example, to solve the inequality x2 C 2x � 3 > 0:
Since x2 C 2x � 3 > 0 then �x � 1��x C 3� > 0 by factorising
For the product �x � 1��x C 3� to be positive,

either (i)�x � 1� > 0 and �x C 3� > 0

or (ii)�x � 1� < 0 and �x C 3� < 0

(i) Since �x � 1� > 0 then x > 1
and since �x C 3� > 0 then x > �3
Both of these inequalities are satisfied only when x > 1

(ii) Since �x � 1� < 0 then x < 1
and since �x C 3� < 0 then x < �3
Both of these inequalities are satisfied only when x < −3

Summarising, x2 C 2x � 3 > 0 is satisfied when either x > 1 or x < −3

In another example, to solve the inequality y2 � 8y � 10 ½ 0:
y2 � 8y � 10 � �y � 4�2 � 10� 42 � �y � 4�2 � 26
y2 � 8y � 10 does not factorise; completing the square gives:

The inequality thus becomes: �y � 4�2 � 26 ½ 0

or �y � 4�2 ½ 26

From equation 1, �y � 4� ½
p

26

or �y � 4� � �
p

26

from which, y≥ 4Y
p

26

or y≤ 4 −
p

26

Hence y2 � 8y � 10 ½ 0 is satisfied when y ≥ 9.10 or y ≤ −1.10 correct to
2 decimal places.



45

Regions

A region is a set of points on a graph that satisfies an inequality.
For example, in Figure 10.1(a), the shaded region is defined as x > 3 where
the straight line x D 3 is shown as a broken line, and in Figure 10.1(b), the
shaded region is defined as x ½ 3, where the straight line x D 3 is shown as
a solid line. The region x ½ 3 includes all the points on the line x D 3 and to
the right of it.
Similarly, in Figure 10.2, the shaded region is defined as y � �2
In Figure 10.3, the line x C y D 4 is shown as a broken line (note, if x C y D 4,
then y D �x C 4, which is a straight line of gradient �1 and y-axis intercept
4); the shaded region is defined as x C y < 4

For example, to show on Cartesian axes the following regions: (a) y > 3x � 2
(b) x C 2y < 8

(a) Figure 10.4 shows the straight line y D 3x � 2 and the shaded region
defines the inequality y > 3x � 2

(b) Figure 10.5 shows the straight line x C 2y D 8 (i.e. 2y D �x C 8 or
y D � 1

2 x C 4 which is a straight line of gradient � 1
2 and y-axis intercept

4) as a broken line and the shaded region defines the inequality x C 2y < 8
(As a check, take any point, say, x D 1, y D 1; then x C 2y D 1C 2 D 3
which is less than 8. The shaded area indicates all the points where
x C 2y < 8�.

(a)

y

x0 3

(b)

y

x0 3

Figure 10.1

y

x

2

0

Figure 10.2

y

x0

4

4

x+y = 4

Figure 10.3
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y

0 x42

y = 3x−2

−2

Figure 10.4

y

0 x84

x+2y = 8

4

8

Figure 10.5

11 Logarithms

Introduction to logarithms

With the use of calculators firmly established, logarithmic tables are now rarely
used for calculation. However, the theory of logarithms is important, for there
are several scientific and engineering laws that involve the rules of logarithms.

If a number y can be written in the form ax , then the index x is called the
‘logarithm of y to the base of a’,

i.e. if y = ax then x = loga y

Thus, since 1000 D 103, then 3 D log10 1000
Check this using the ‘log’ button on your calculator.

(a) Logarithms having a base of 10 are called common logarithms and log10
is usually abbreviated to lg. The following values may be checked by using
a calculator: lg 17.9 D 1.2528 . . ., lg 462.7 D 2.6652 . . . and lg 0.0173 D
�1.7619 . . .

(b) Logarithms having a base of e (where ‘e’ is a mathematical constant
approximately equal to 2.7183) are called hyperbolic, Napierian or nat-
ural logarithms, and loge is usually abbreviated to ln.
The following values may be checked by using a calculator:
ln 3.15 D 1.1474 . . ., ln 362.7 D 5.8935 . . . and ln 0.156 D �1.8578 . . .
For more on Napierian logarithms see Chapter 12.

Laws of logarithms

There are three laws of logarithms, which apply to any base:

(i) To multiply two numbers:

log.A × B/ = log AY log B
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(ii) To divide two numbers:

log
(

A
B

)
= log A − log B

(iii) To raise a number to a power:

lg An = n log A

For example, to evaluate (a) log3 9 (b) log10 10 (c) log16 8:

(a) Let x D log3 9 then 3x D 9 from the definition of a logarithm, i.e. 3x D 32,
from which x D 2
Hence log3 9 = 2

(b) Let x D log10 10 then 10x D 10 from the definition of a logarithm, i.e.
10x D 101, from which x D 1
Hence log10 10 = 1 (which may be checked by a calculator)

(c) Let x D log16 8 then 16x D 8, from the definition of a logarithm, i.e.
�24�x D 23, i.e. 24x D 23 from the laws of indices, from which, 4x D 3
and x D 3

4
Hence log16 8 = 3

4

In another example, to evaluate (a) lg 0.001 (b) ln e (c) log3
1

81
:

(a) Let x D lg 0.001 D log10 0.001 then 10x D 0.001, i.e. 10x D 10�3, from
which x D �3
Hence lg 0.001 = −3 (which may be checked by a calculator)

(b) Let x D ln e D loge e then ex D e, i.e. ex D e1 from which x D 1.
Hence ln e = 1 (which may be checked by a calculator)

(a) Let x D log3
1

81
then 3x D 1

81
D 1

34
D 3�4, from which x D �4

Hence log3
1
81

= −4

In another example, to solve the equations:
(a) lg x D 3 (b) log2 x D 3 (c) log5 x D �2:

(a) If lg x D 3 then log10 x D 3 and x D 103, i.e. x = 1000
(b) If log2 x D 3 then x = 23 = 8

(c) If log5 x D �2 then x D 5�2 D 1

52 D
1
25

In another example, to solve the equation:
log�x � 1�C log�x C 1� D 2 log�x C 2�:

log�x � 1�C log�x C 1� D log�x � 1��x C 1� from the first law
of logarithms

D log�x2 � 1�
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2 log�x C 2� D log�x C 2�2 D log�x2 C 4x C 4�

Hence if log�x2 � 1� D log�x2 C 4x C 4�

then x2 � 1 D x2 C 4x C 4

i.e. � 1 D 4x C 4

i.e. � 5 D 4x

i.e. x = − 5
4 or −1 1

4

Indicial equations

The laws of logarithms may be used to solve certain equations involving
powers — called indicial equations.

For example, to solve, say, 3x D 27, logarithms to a base of 10 are taken
of both sides, i.e. log10 3x D log10 27

and x log10 3 D log10 27 by the third law of logarithms

Rearranging gives x D log10 27

log10 3
D 1.43136 . . .

0.4771 . . .
D 3 which may be readily

checked.(
Note,

log 27

log 3
is not equal to log

27

3

)
.

In another example, to solve the equation 2xC1 D 32x�5 correct to 2 decimal
places:

Taking logarithms to base 10 of both sides gives:

log10 2xC1 D log10 32x�5

i.e. �x C 1� log10 2 D �2x � 5� log10 3

x log10 2C log10 2 D 2x log10 3� 5 log10 3

x�0.3010� C �0.3010� D 2x�0.4771� � 5�0.4771�

i.e. 0.3010x C 0.3010 D 0.9542x � 2.3855

Hence 2.3855C 0.3010 D 0.9542x � 0.3010x

2.6865 D 0.6532x

from which x D 2.6865

0.6532
D 4.11, correct to

2 decimal places.

Graphs of logarithmic functions

A graph of y D log10 x is shown in Figure 11.1 and a graph of y D loge x is
shown in Figure 11.2. Both are seen to be of similar shape; in fact, the same
general shape occurs for a logarithm to any base.
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In general, with a logarithm to any base a, it is noted that:

(i) loga 1 = 0
(ii) loga a = 1

(iii) loga 0! −∞

12 Exponential Functions

The exponential function

An exponential function is one which contains ex , e being a constant called
the exponent and having an approximate value of 2.7183. The exponent arises
from the natural laws of growth and decay and is used as a base for natural
or Napierian logarithms.

Evaluating exponential functions

The value of ex may be determined by using:
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(a) a calculator, or
(b) the power series for ex , or
(c) tables of exponential functions.
The most common method of evaluating an exponential function is by using
a scientific notation calculator, this now having replaced the use of tables.

Most scientific notation calculators contain an ex function which enables all
practical values of ex and e�x to be determined, correct to 8 or 9 significant
figures. For example,

e1 D 2.7182818, e2.4 D 11.023176

and e�1.618 D 0.19829489, correct to 8 significant figures
In practical situations the degree of accuracy given by a calculator is often far
greater than is appropriate. The accepted convention is that the final result
is stated to one significant figure greater than the least significant measured
value.
Use your calculator to check the following values:

e0.12 D 1.1275, correct to 5 significant figures

e�1.47 D 0.22993, correct to 5 decimal places

e�0.431 D 0.6499, correct to 4 decimal places

e9.32 D 11 159, correct to 5 significant figures

e�2.785 D 0.0617291, correct to 7 decimal places

The power series for ex

The value of ex can be calculated to any required degree of accuracy since it
is defined in terms of the following power series:

ex D 1C x C x2

2!
C x3

3!
C x4

4!
C . . . �1�

(where 3! D 3ð 2ð 1 and is called ‘factorial 3’)
The series is valid for all values of x.
The series is said to converge, i.e. if all the terms are added, an actual value
for ex (where x is a real number) is obtained. The more terms that are taken,
the closer will be the value of ex to its actual value. The value of the exponent
e, correct to say 4 decimal places, may be determined by substituting x D 1
in the power series of equation (1). Thus

e1 D 1C 1C �1�2

2!
C �1�3

3!
C �1�4

4!
C �1�5

5!
C �1�6

6!
C �1�7

7!
C �1�8

8!
C Ð Ð Ð

D 1C 1C 0.5C 0.16667 C 0.04167 C 0.00833 C 0.00139

C 0.00020 C 0.00002 C Ð Ð Ð
D 2.71828

i.e. e D 2.7183 correct to 4 decimal places
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The value of e0.05, correct to say 8 significant figures, is found by substituting
x D 0.05 in the power series for ex . Thus

e0.05 D 1C 0.05C �0.05�2

2!
C �0.05�3

3!
C �0.05�4

4!
C �0.05�5

5!
C Ð Ð Ð

D 1C 0.05C 0.00125 C 0.000020833 C 0.000000260

C 0.000000003

and by adding,
e0.05 D 1.0512711, correct to 8 significant figures

In this example, successive terms in the series grow smaller very rapidly and it
is relatively easy to determine the value of e0.05 to a high degree of accuracy.
However, when x is nearer to unity or larger than unity, a very large number
of terms are required for an accurate result.
If in the series of equation (1), x is replaced by �x, then

e�x D 1C ��x�C ��x�2
2!
C ��x�3

3!
C Ð Ð Ð

i.e. e�x D 1� x C x2

2!
� x3

3!
C Ð Ð Ð

In a similar manner the power series for ex may be used to evaluate any
exponential function of the form aekx , where a and k are constants.
In the series of equation (1), let x be replaced by kx. Then

aekx D a
{

1C �kx�C �kx�2

2!
C �kx�3

3!
C . . .

}

Thus 5e2x D 5

{
1C �2x�C �2x�2

2!
C �2x�3

3!
C . . .

}

D 5

{
1C 2x C 4x2

2
C 8x3

6
C . . .

}

i.e. 5e2x D 5
{

1C 2x C 2x2 C 4

3
x3 C Ð Ð Ð

}

Graphs of exponential functions

Values of ex and e�x obtained from a calculator, correct to 2 decimal places,
over a range x D �3 to x D 3, are shown in the following table.

x �3.0 �2.5 �2.0 �1.5 �1.0 �0.5 0 0.5 1.0 1.5 2.0 2.5 3.0
ex 0.05 0.08 0.14 0.22 0.37 0.61 1.00 1.65 2.72 4.48 7.39 12.18 20.09
e�x 20.0912.18 7.39 4.48 2.72 1.65 1.00 0.61 0.37 0.22 0.14 0.08 0.05

Figure 12.1 shows graphs of y D ex and y D e�x .
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For example, the decay of voltage, v volts, across a capacitor at time t seconds
is given by v D 250e�t/3. To draw a graph showing the natural decay curve
over the first 6 seconds:

A table of values is drawn up as shown below.

t 0 1 2 3 4 5 6
e�t/3 1.00 0.7165 0.5134 0.3679 0.2636 0.1889 0.1353
v D 250e�t/3 250.0 179.1 128.4 91.97 65.90 47.22 33.83

The natural decay curve of v D 250e�t/3 is shown in Figure 12.2.
From the graph, when, say, time t D 3.4 s, voltage v = 80 volts
and when, say, voltage v = 150 volts, time t = 1.5 seconds.

Napierian logarithms

Logarithms having a base of e are called hyperbolic, Napierian or natural
logarithms and the Napierian logarithm of x is written as loge x, or more
commonly, ln x.

Evaluating Napierian logarithms

The value of a Napierian logarithm may be determined by using:

(a) a calculator, or
(b) a relationship between common and Napierian logarithms, or
(c) Napierian logarithm tables

The most common method of evaluating a Napierian logarithm is by a sci-
entific notation calculator, this now having replaced the use of four-figure
tables, and also the relationship between common and Napierian logarithms,

loge y D 2.3026 log10 y
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Most scientific notation calculators contain a ‘ln x’ function which displays
the value of the Napierian logarithm of a number when the appropriate key is
pressed. Using a calculator,

ln 4.692 D 1.5458589 . . .

D 1.5459, correct to 4 decimal places

and ln 35.78 D 3.57738907 . . .

D 3.5774, correct to 4 decimal places

Use your calculator to check the following values:

ln 1.732 D 0.54928, correct to 5 significant figures

ln 1 D 0

ln 1750 D 7.4674, correct to 4 decimal places

ln 0.00032 D �8.04719, correct to 6 significant figures

ln e3 D 3

ln e1 D 1

From the last two examples we can conclude that

logeex = x

This is useful when solving equations involving exponential functions.
For example, to solve e3x D 8, take Napierian logarithms of both sides, which
gives

ln e3x D ln 8

i.e. 3x D ln 8

from which x D 1
3 ln 8 D 0.6931, correct to 4 decimal places

Laws of growth and decay

The laws of exponential growth and decay are of the form y D Ae�kx and
y D A�1� e�kx�, where A and k are constants. When plotted, the form of
each of these equations is as shown in Figure 12.3. The laws occur frequently
in engineering and science and examples of quantities related by a natural law
include:

(i) Linear expansion l D l0e˛/
(ii) Change in electrical resistance with temperature R/ D R0e˛/

(iii) Tension in belts T1 D T0e6/

(iv) Newton’s law of cooling / D /0e�kt
(v) Biological growth y D y0ekt

(vi) Discharge of a capacitor q D Qe�t/CR
(vii) Atmospheric pressure p D p0e�h/c

(viii) Radioactive decay N D N0e�.t
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(ix) Decay of current in an inductive circuit i D Ie�Rt/L
(x) Growth of current in a capacitive circuit i D I�1� e�t/CR�

For example, the current i amperes flowing in a capacitor at time t seconds
is given by i D 8.0�1� e�t/CR�, where the circuit resistance R is 25ð 103

ohms and capacitance C is 16ð 10�6 farads. To determine (a) the current i
after 0.5 seconds and (b) the time, to the nearest millisecond, for the current
to reach 6.0 A:

(a) Current i D 8.0�1� e�t/CR� D 8.0[1� e�0.5/�16ð10�6��25ð103�]

D 8.0�1� e�1.25� D 8.0�1� 0.2865047 Ð Ð�
D 8.0�0.7134952 Ð Ð� D 5.71 amperes

(b) Transposing i D 8.0�1� e�t/CR� gives:
i

8.0
D 1� e�t/CR

from which, e�t/CR D 1� i

8.0
D 8.0� i

8.0

Taking the reciprocal of both sides gives: et/CR D 8.0

8.0� i
Taking Napierian logarithms of both sides gives:

t

CR
D ln

(
8.0

8.0� i
)

y

y =Ae−kx

A

0 x

y

y = A(1−e−kx)

A

0 x

Figure 12.3
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Hence t D CR ln
(

8.0

8.0� i
)
D �16ð 10�6��25ð 103� ln

(
8.0

8.0� 6.0

)

when i D 6.0 amperes,

i.e. t D 400

103
ln
(

8.0

2.0

)
D 0.4 ln 4.0 D 0.4�1.3862943 Ð Ð�

D 0.5545 s D 555 ms, to the nearest millisecond

A graph of current against time is shown in Figure 12.4.

13 Hyperbolic Functions
Introduction to hyperbolic functions

Functions which are associated with the geometry of the conic section called
a hyperbola are called hyperbolic functions. Applications of hyperbolic func-
tions include transmission line theory and catenary problems.

By definition:

(i) Hyperbolic sine of x, sinh x =
ex − e−x

2
�1�

‘sinh x’ is often abbreviated to ‘sh x’ and is pronounced as ‘shine x’

(ii) Hyperbolic cosine of x, cosh x =
ex Y e−x

2
�2�

‘cosh x’ is often abbreviated to ‘ch x’ and is pronounced as ‘kosh x’

(iii) Hyperbolic tangent of x, tanh x =
sinh x
cosh x

=
ex − e−x

ex Y e−x �3�

‘tanh x’ is often abbreviated to ‘th x’ and is pronounced as ‘than x’

(iv) Hyperbolic cosecant of x, cosech x =
1

sinh x
=

2
ex − e−x �4�

‘cosech x’ is pronounced as ‘coshec x’

(v) Hyperbolic secant of x, sech x =
1

cosh x
=

2
ex Y e−x �5�

‘sech x’ is pronounced as ‘shec x’

(vi) Hyperbolic cotangent of x, coth x =
1

tanh x
=

ex Y e−x

ex − e−x �6�

‘coth x’ is pronounced as ‘koth x’
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Some properties of hyperbolic functions

Replacing x by 0 in equation (1) gives:

sinh 0 D e0 � e�0

2
D 1� 1

2
D 0

Replacing x by 0 in equation (2) gives:

cosh 0 D e0 C e�0

2
D 1C 1

2
D 1

If a function of x, f��x� D �f�x�, then f�x� is called an odd function of x.
Replacing x by �x in equation (1) gives:

sinh��x� D e�x � e���x�
2

D e�x � ex
2

D �
(
ex � e�x

2

)
D � sinh x

Replacing x by �x in equation (3) gives:

tanh��x� D e�x � e���x�
e�x C e���x� D

e�x � ex
e�x C ex D �

(
ex � e�x
ex C e�x

)
D � tanh x

Hence sinh x and tanh x are both odd functions, as also are

cosech x
(
D 1

sinh x

)
and coth x

(
D 1

tanh x

)
If a function of x, f��x� D f�x�, then f�x� is called an even function of x.
Replacing x by �x in equation (2) gives:

cosh��x� D e�x C e���x�
2

D e�x C ex
2

D cosh x

Hence cosh x is an even function, as also is sech x
(
D 1

cosh x

)

Hyperbolic functions may be evaluated easiest using a calculator. Many scien-
tific notation calculators actually possess sinh and cosh functions; however, if
a calculator does not contain these functions, then the definitions given above
may be used.
For example, to evaluate sinh 5.4, correct to 4 significant figures:

sinh 5.4 D 1
2 �e

5.4 � e�5.4� D 1
2 �221.406416 . . . � 0.00451658 . . .�

D 1
2 �221.401899 . . .� D 110.7, correct to 4 significant figures

In another example, to evaluate sech 0.86, correct to 4 significant figures:

sech 0.86 D 1

cosh 0.86
D 1

1
2 �e

0.86 C e�0.86�

D 2

�2.36316069 . . . C 0.42316208 . . .�

D 2

2.78632277 . . .
D 0.7178
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Graphs of hyperbolic functions

A graph of y = sinh x is shown in Figure 13.1. Since the graph is symmetrical
about the origin, sinh x is an odd function.
A graph of y = cosh x is shown in Figure 13.2. Since the graph is symmetrical
about the y-axis, cosh x is an even function. The shape of y D cosh x is that of
a heavy rope or chain hanging freely under gravity and is called a catenary.
Examples include transmission lines, a telegraph wire or a fisherman’s line, and
is used in the design of roofs and arches. Graphs of y D tanh x, y D cosech x,
y D sech x and y D coth x are shown in Figures 13.3 and 13.4.
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y D tanh, y D coth x and y D cosech x are symmetrical about the origin and
are thus odd functions. y D sech x is symmetrical about the y-axis and is thus
an even function.

Hyperbolic identities

For every trigonometric identity there is a corresponding hyperbolic identity.
Hyperbolic identities may be proved by either

(i) replacing sh x by
ex � e�x

2
and ch x by

ex C e�x
2

, or

(ii) by using Osborne’s rule, which states: ‘the six trigonometric ratios used in
trigonometrical identities relating general angles may be replaced by their
corresponding hyperbolic functions, but the sign of any direct or implied
product of two sines must be changed’.

For example, since cos2 x C sin2 x D 1 then, by Osborne’s rule,
ch2 x � sh2x D 1, i.e. the trigonometric functions have been changed to their
corresponding hyperbolic functions and since sin2 x is a product of two sines
the sign is changed from C to �. Table 13.1 shows some trigonometric
identities and their corresponding hyperbolic identities.

Solving equations involving hyperbolic functions

Equations of the form a ch x Y b sh x = c, where a, b and c are constants
may be solved either by:

(a) plotting graphs of y D a ch x C b sh x and y D c and noting the points of
intersection, or more accurately,
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Table 13.1

Trigonometric identity Corresponding hyperbolic identity

cos2 xC sin2 x D 1 ch2 x � sh2 x D 1

1C tan2 x D sec2 x 1� th2 x D sech2 x

cot2 xC 1 D cosec2 x coth2 x� 1 D cosech2 x

Compound angle formulae

sin�Aš B� D sin A cos Bš cos A sin B sh�Aš B� D sh A ch Bš ch A sh B

cos�Aš B� D cos A cos BÝ sin A sin B ch�Aš B� D ch A ch Bš sh A sh B

tan�Aš B� D tan Aš tan B
1Ý tan A tan B

th�Aš B� D th Aš th B
1š th A th B

Double angles

sin 2x D 2 sin x cos x sh 2x D 2 sh x ch x

cos 2x D cos2 x� sin2 x ch 2x D ch2 xC sh2 x

D 2 cos2 x� 1 D 2 ch2 x� 1

D 1� 2 sin2 x D 1C 2 sh2 x

tan 2x D 2 tan x

1� tan2 x
th 2x D 2 th x

1C th2 x

(b) by adopting the following procedure:

(i) Change sh x to
(
ex � e�x

2

)
and ch x to

(
ex C e�x

2

)
(ii) Rearrange the equation into the form pex C qe�x C r D 0, where p, q and

r are constants.
(iii) Multiply each term by ex , which produces an equation of the form

p�ex�2 C rex C q D 0 (since �e�x��ex� D e0 D 1�

(iv) Solve the quadratic equation p�ex�2 C rex C q D 0 for ex by factorising
or by using the quadratic formula.

(v) Given ex D a constant (obtained by solving the equation in (iv)), take
Napierian logarithms of both sides to give x D ln (constant)

For example, to solve the equation 2.6 ch x C 5.1 sh x D 8.73, correct to 4
decimal places:

Following the above procedure:
(i) 2.6 ch x C 5.1 sh x D 8.73

i.e. 2.6
(
ex C e�x

2

)
C 5.1

(
ex � e�x

2

)
D 8.73

(ii) 1.3ex C 1.3e�x C 2.55ex � 2.55e�x D 8.73

i.e. 3.85ex � 1.25e�x � 8.73 D 0
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(iii) 3.85�ex�2 � 8.73ex � 1.25 D 0

(iv) ex D ���8.73�š
√

[��8.73�2 � 4�3.85���1.25�]

2�3.85�

D 8.73šp95.463

7.70
D 8.73š 9.7705

7.70

Hence ex D 2.4027 or ex D �0.1351
(v) x D ln 2.4027 or x D ln��0.1351� which has no real solution.

Hence x = 0.8766, correct to 4 decimal places.

Series expansions for cosh x and sinh x

By definition, ex D 1C x C x2

2!
C x3

3!
C x4

4!
C x5

5!
C . . from chapter 12

Replacing x by �x gives:

e�x D 1� x C x2

2!
� x3

3!
C x4

4!
� x5

5!
C . .

cosh x D 1

2
�ex C e�x� D 1

2

[(
1C x C x2

2!
C x3

3!
C x4

4!
C x5

5!
C . .

)

C
(

1� x C x2

2!
� x3

3!
C x4

4!
� x5

5!
C . .

)]

D 1

2

[(
2C 2x2

2!
C 2x4

4!
C . .

)]

i.e. coshx = 1Y
x2

2!
Y

x4

4!
Y . . �which is valid for all values of x�

cosh x is an even function and contains only even powers of x in its expansion.

sinh x D 1

2
�ex � e�x� D 1

2

[(
1C x C x2

2!
C x3

3!
C x4

4!
C x5

5!
C . .

)

�
(

1� x C x2

2!
� x3

3!
C x4

4!
� x5

5!
C . .

)

D 1

2

[
2x C 2x3

3!
C 2x5

5!
C . .

]

i.e. sinh x = x Y
x3

3!
Y

x5

5!
Y . . (which is valid for all values of x)

sinh x is an odd function and contains only odd powers of x in its expansion.



61

14 Partial Fractions
By algebraic addition,

1

x � 2
C 3

x C 1
D �x C 1�C 3�x � 2�

�x � 2��x C 1�
D 4x � 5

x2 � x � 2

The reverse process of moving from
4x � 5

x2 � x � 2
to

1

x � 2
C 3

x C 1
is called

resolving into partial fractions.
In order to resolve an algebraic expression into partial fractions:
(i) the denominator must factorise (in the above example, x2 � x � 2 fac-

torises as �x � 2��x C 1�), and
(ii) the numerator must be at least one degree less than the denominator (in

the above example (4x � 5) is of degree 1 since the highest powered x
term is x1 and (x2 � x � 2) is of degree 2).

When the degree of the numerator is equal to or higher than the degree of
the denominator, the numerator must be divided by the denominator until the
remainder is of less degree than the denominator.

There are basically three types of partial fraction and the form of partial
fraction used is summarised in Table 14.1, where f�x� is assumed to be of
less degree than the relevant denominator and A, B and C are constants to be
determined.
(In the latter type in Table 1.2, ax2 C bx C c is a quadratic expression which
does not factorise without containing surds or imaginary terms.)
Resolving an algebraic expression into partial fractions is used as a preliminary
to integrating certain functions (see chapter 60).

For example, to resolve
11� 3x

x2 C 2x � 3
into partial fractions:

The denominator factorises as �x � 1��x C 3� and the numerator is of less

degree than the denominator. Thus
11� 3x

x2 C 2x � 3
may be resolved into partial

fractions.

Let
11� 3x

x2 C 2x � 3
� 11� 3x

�x � 1��x C 3�
� A

�x � 1�
C B

�x C 3�
, where A and B are

constants to be determined, i.e.
11� 3x

�x � 1��x C 3�
� A�x C 3�C B�x � 1�

�x � 1��x C 3�
, by

Table 14.1

Type Denominator Expression Form of partial fraction
containing

1 Linear factors
f�x�

�xC a��x � b��x C c�
A

�xC a�
C B
�x � b�

C C
�x C c�

2 Repeated
linear factors

f�x�
�xC a�3

A
�xC a�

C B
�x C a�2

C C
�x C a�3

3 Quadratic
factors

f�x�
�ax2 C bxC c��x C d�

AxC B
�ax2 C bxC c�

C C
�x C d�
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algebraic addition. Since the denominators are the same on each side of the
identity then the numerators are equal to each other.

Thus, 11� 3x � A�x C 3�C B�x � 1�

To determine constants A and B, values of x are chosen to make the term in
A or B equal to zero.

When x D 1, then 11� 3�1� � A�1C 3�C B�0�
i.e. 8 D 4A

i.e. A = 2

When x D �3, then 11�3��3� � A�0�C B��3� 1�

i.e. 20 D �4B

i.e. B = −5

Thus
11 − 3x

x2 Y 2x − 3
� 2

.x − 1/
C �5

�x C 3�
� 2

.x − 1/
� 5

.x Y 3/[
Check:

2

�x � 1�
� 5

�x C 3�
D 2�x C 3�� 5�x � 1�

�x � 1��x C 3�
D 11� 3x

x2 C 2x � 3

]

In another example, to express
x3 � 2x2 � 4x � 4

x2 C x � 2
in partial fractions:

The numerator is of higher degree than the denominator. Thus dividing out
gives:

x � 3

x2 C x � 2
)
x3 � 2x2 � 4x � 4

x3 C x2 � 2x
� 3x2 � 2x � 4
� 3x2 � 3x C 6

x � 10

Thus
x3 � 2x2 � 4x � 4

x2 C x � 2
� x � 3C x � 10

x2 C x � 2

� x � 3C x � 10

�x C 2��x � 1�

Let
x � 10

�x C 2��x � 1�
� A

�x C 2�
C B

�x � 1�
� A�x � 1�C B�x C 2�

�x C 2��x � 1�

Equating the numerators gives: x � 10 � A�x � 1�C B�x C 2�

Let x D �2. Then � 12 D �3A

i.e. A = 4

Let x D 1. Then � 9 D 3B

i.e. B = −3

Hence
x � 10

�x C 2��x � 1�
� 4

�x C 2�
� 3

�x � 1�
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Thus
x3 − 2x2 − 4x − 4

x2 Y x − 2
� x−3 Y

4
.x Y 2/

� 3
.x − 1/

In another example to express
5x2 � 2x � 19

�x C 3��x � 1�2
as the sum of three partial

fractions:
The denominator is a combination of a linear factor and a repeated linear

factor.

Let
5x2 � 2x � 19

�x C 3��x � 1�2
� A

�x C 3�
C B

�x � 1�
C C

�x � 1�2

� A�x � 1�2 C B�x C 3��x � 1�C C�x C 3�

�x C 3��x � 1�2
,

by algebraic addition

Equating the numerators gives:
5x2 � 2x � 19 � A�x � 1�2 C B�x C 3��x � 1�CC�x C 3�

�1�
Let x D �3. Then

5��3�2 � 2��3�� 19 � A��4�2 C B�0���4�CC�0�
i.e. 32 D 16A

i.e. A = 2

Let x D 1. Then

5�1�2 � 2�1�� 19 � A�0�2 C B�4��0�CC�4�
i.e. � 16 D 4C

i.e. C = −4

Without expanding the RHS of equation (1) it can be seen that equating the
coefficients of x2 gives: 5 D AC B, and since A D 2,B = 3

Hence
5x2 − 2x − 19
.x Y 3/.x − 1/2 ≡

2
.x Y 3/

Y
3

.x − 1/
−

4
.x − 1/2

In another example, to resolve
3C 6x C 4x2 � 2x3

x2�x2 C 3�
into partial fractions:

Terms such as x2 may be treated as �x C 0�2, i.e. they are repeated linear fac-
tors. (x2 C 3) is a quadratic factor which does not factorise without containing
surds and imaginary terms.

Let
3C 6x C 4x2 � 2x3

x2�x2 C 3�
� A

x
C B

x2
C Cx C D
�x2 C 3�

� Ax�x2 C 3�C B�x2 C 3�C �Cx C D�x2

x2�x2 C 3�

Equating the numerators gives:

3C 6x C 4x2 � 2x3 � Ax�x2 C 3�C B�x2 C 3�C �Cx C D�x2

� Ax3 C 3Ax C Bx2 C 3BC Cx3 C Dx2

Let x D 0. Then 3 D 3B
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i.e. B = 1

Equating the coefficients of x3 terms gives: � 2 D AC C �1�

Equating the coefficients of x2 terms gives: 4 D BC D
Since B D 1, D = 3

Equating the coefficients of x terms gives: 6 D 3A

i.e. A = 2

From equation (1), since A D 2, C = −4

Hence
3Y 6x Y 4x2 − 2x3

x2.x2 Y 3/
� 2

x
C 1

x2
C �4x C 3

x2 C 3
� 2

x
C 1

x2 C
3 − 4x
x2 Y 3

15 Number Sequences
Simple sequences

A set of numbers which are connected by a definite law is called a series or
a sequence of numbers. Each of the numbers in the series is called a term
of the series.
For example, 1, 3, 5, 7,Ð Ð is a series obtained by adding 2 to the previous
term, and 2, 8, 32, 128,Ð Ð is a sequence obtained by multiplying the previous
term by 4.
In another example, to find the next three terms in the series: 9, 5, 1,Ð Ð We
notice that each term in the series 9, 5, 1,Ð Ð progressively decreases by 4, thus
the next two terms will be 1� 4, i.e. −3 and �3� 4, i.e. −7
In another example, to determine the next two terms in the series: 2, 6, 18,
54,Ð Ð We notice that the second term, 6, is three times the first term, the third
term, 18, is three times the second term, and that the fourth term, 54, is three
times the third term. Hence the fifth term will be 3ð 54 D 162 and the sixth
term will be 3ð 162 D 486

The n’th term of a series

If a series is represented by a general expression, say, 2nC 1, where n is an
integer (i.e. a whole number), then by substituting n D 1, 2, 3, Ð Ð the terms of
the series can be determined; in this example, the first three terms will be:

2�1�C 1, 2�2�C 1, 2�3�C 1, Ð Ð , i.e. 3, 5, 7, Ð Ð
What is the n’th term of the sequence 1, 3, 5, 7,Ð Ð? Firstly, we notice that the
gap between each term is 2, hence the law relating the numbers is:

‘2nC something’

The second term, 3 D 2nC something,

hence when n D 2 (i.e. the second term of the series), then 3 D 4C something
and the ‘something’ must be �1. Thus the n’th term of 1, 3, 5, 7,. . is
2n − 1. Hence the fifth term is given by 2(5) �1 D 9, and the twentieth term is
2�20�� 1 D 39, and so on.
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Arithmetic progressions

When a sequence has a constant difference between successive terms it is
called an arithmetic progression (often abbreviated to AP).
Examples include:

(i) 1, 4, 7, 10, 13, . . . . where the common difference is 3
and (ii) a, aC d, aC 2d, aC 3d, . . . . where the common difference is d.

If the first term of an AP is ‘a’ and the common difference is ‘d’ then

the n’th term is : a Y .n − 1/d

In example (i) above, the 7th term is given by 1C �7� 1�3 D 19, which may
be readily checked.
The sum S of an AP can be obtained by multiplying the average of all the
terms by the number of terms.

The average of all the terms D aC l
2

, where ‘a’ is the first term and l is the

last term, i.e. l D aC �n� 1�d, for n terms.
Hence the sum of n terms,

Sn D n
(
aC l

2

)
D n

2
faC [aC �n� 1�d]g

i.e. Sn =
n
2

[2a Y .n − 1/d]

For example, the sum of the first 7 terms of the series 1, 4, 7, 10, 13, . . . is
given by

S7 D 7

2
[2�1�C �7� 1�3], since a D 1 and d D 3

D 7

2
[2C 18] D 7

2
[20] D 70

In another example, to determine (a) the ninth, and (b) the sixteenth term of
the series 2, 7, 12, 17, . . .
2, 7, 12, 17, . . . is an arithmetic progression with a common difference, d,
of 5

(a) The n’th term of an AP is given by aC �n� 1�d
Since the first term a D 2, d D 5 and n D 9
then the 9th term is: 2C �9� 1�5 D 2C �8��5� D 2C 40 D 42

(b) The 16th term is: 2C �16� 1�5 D 2C �15��5� D 2C 75 D 77

Geometric progressions

When a sequence has a constant ratio between successive terms it is called a
geometric progression (often abbreviated to GP). The constant is called the
common ratio, r .
Examples include

(i) 1, 2, 4, 8, . . . . where the common ratio is 2
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and (ii) a, ar, ar2, ar3, . . . . where the common ratio is r

If the first term of a GP is ‘a’ and the common ratio is r, then

the n’th term is : arn�1

which can be readily checked from the above examples.
For example, the 8th term of the GP 1, 2, 4, 8,. . .. is (1)(2)7 D 128, since
a D 1 and r D 2

The sum of n terms, Sn =
a.1 − rn /

.1 − r/
which is valid when r < 1

or Sn =
a.rn − 1/

.r − 1/
which is valid when r > 1

For example, the sum of the first 8 terms of the GP 1, 2, 4, 8, 16, . . .. is
given by

S8 D 1�28 � 1�

�2� 1�
, since a D 1 and r D 2

i.e. S8 D 1�256 � 1�

1
D 255

When the common ratio r of a GP is less than unity, the sum of n terms,

Sn D a�1� rn�
�1� r� , which may be written as Sn D a

�1� r� �
arn

�1� r�
Since r < 1, rn becomes less as n increases, i.e. rn ! 0 as n!1
Hence

arn

�1� r� ! 0 as n!1. Thus Sn ! a

�1� r� as n!1
The quantity

a

�1 � r� is called the sum to infinity, S1, and is the limiting

value of the sum of an infinite number of terms,

i.e. S∞ =
a

.1 − r/
which is valid when� 1 < r < 1

For example, the sum to infinity of the GP 1C 1
2 C 1

4 C Ð Ð Ð Ð Ð is

S1 D 1

1� 1
2

, since a D 1 and r D 1
2 ,

i.e. S1 = 2

In another example, a hire tool firm finds that their net return from hiring
tools is decreasing by 10% per annum. Their net gain on a certain tool this
year is £400. To find the possible total of all future profits from this tool
(assuming the tool lasts for ever):
The net gain forms a series: £400C £400 ð 0.9C £400 ð 0.92 C Ð Ð Ð Ð Ð , which
is a GP with a D 400 and r D 0.9
The sum to infinity,

S1 D a

�1� r� D
400

�1� 0.9�
D £4000 = total future profits
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In another example, a drilling machine is to have 6 speeds ranging from 50
rev/min to 750 rev/min. To determine their values, each correct to the nearest
whole number, if the speeds form a geometric progression:
Let the GP of n terms be given by a, ar, ar2, . . .. arn�1

The first term a D 50 rev/min
The 6th term is given by ar6�1, which is 750 rev/min, i.e. ar5 D 750 from

which r5 D 750

a
D 750

50
D 15

Thus the common ratio, r D 5p15 D 1.7188

The first term is a D 50 rev/min

the second term is ar D �50��1.7188� D 85.94,

the third term is ar2 D �50��1.7188�2 D 147.71,

the fourth term is ar3 D �50��1.7188�3 D 253.89,

the fifth term is ar4 D �50��1.7188�4 D 436.39,

the sixth term is ar5 D �50��1.7188�5 D 750.06
Hence, correct to the nearest whole number, the 6 speeds of the drilling
machine are 50, 86, 148, 254, 436 and 750 rev/min

16 The Binomial Series
Pascal’s triangle

A binomial expression is one which contains two terms connected by a plus
or minus sign. Thus �pC q�, �aC x�2, �2x C y�3 are examples of binomial
expressions. Expanding �aC x�n for integer values of n from 0 to 6 gives the
following results:

�aC x�0 D 1
�aC x�1 D aC x
�aC x�2 D �aC x��aC x� D a2 C 2ax C x2

�aC x�3 D �aC x�2�aC x� D a3 C 3a2x C 3ax2 C x3

�aC x�4 D �aC x�3�aC x� D a4 C 4a3x C 6a2x2 C 4ax3 C x4

�aC x�5 D �aC x�4�aC x� D a5 C 5a4x C 10a3x2 C 10a2x3 C 5ax4 C x5

�aC x�6 D �aC x�5�aC x� D a6 C 6a5x C 15a4x2 C 20a3x3 C 15a2x4 C 6ax5 C x6

From the above results the following patterns emerge:

(i) ‘a’ decreases in power moving from left to right.
(ii) ‘x’ increases in power moving from left to right.

(iii) The coefficients of each term of the expansions are symmetrical about the
middle coefficient when n is even and symmetrical about the two middle
coefficients when n is odd.

(iv) The coefficients are shown separately in Table 16.1 and this arrangement
is known as Pascal’s triangle. A coefficient of a term may be obtained by
adding the two adjacent coefficients immediately above in the previous
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Table 16.1

(a + x)0 1
(a + x)1 1 1

1 12
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

15 15 6 1201 6

(a + x)2

(a + x)3

(a + x)4

(a + x)5

(a + x)6

row. This is shown by the triangles in Table 16.1, where, for example,
1C 3 D 4, 10C 5 D 15, and so on.

(v) Pascal’s triangle method is used for expansions of the form �aC x�n for
integer values of n less than about 8

For example, using Pascal’s triangle method to determine the expansion of
�aC x�7:

From Table 16.1, the row of Pascal’s triangle corresponding to �aC x�6 is
as shown in (1) below. Adding adjacent coefficients gives the coefficients of
�aC x�7 as shown in (2) below.

1

1 7 21 35 35 21 7 1 (2)

6 15 20 15 6 1 (1)

The first and last terms of the expansion of �aC x�7 are a7 and x7 respec-
tively.
The powers of ‘a’ decrease and the powers of ‘x’ increase moving from left
to right.

Hence .a Y x/7= a7 Y 7a6x Y 21a5x2 Y 35a4x3 Y 35a3x4

Y 21a2x5 Y 7ax 6 Y x7

The binomial series

The binomial series or binomial theorem is a formula for raising a binomial
expression to any power without lengthy multiplication. The general binomial
expansion of �aC x�n is given by:

.a Y x/n = an Y nan−1x Y
n.n − 1/

2!
an−2x2

Y
n.n − 1/.n − 2/

3!
an−3x3 Y . . .Y xn
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where 3! denotes 3ð 2ð 1 and is termed ‘factorial 3’.
With the binomial theorem n may be a fraction, a decimal fraction or a positive
or negative integer.
In the general expansion of �aC x�n it is noted that the 4th term is:
n�n� 1��n� 2�

3!
an�3x3. The number 3 is very evident in this expression.

For any term in a binomial expansion, say the r’th term, �r � 1� is very
evident.
It may therefore be reasoned that the r’th term of the expansion
.aY x/n is:

n�n� 1��n� 2� . . . to �r � 1� terms

�r � 1�!
an��r�1�xr�1

If a D 1 in the binomial expansion of �aC x�n then:

.1Y x/n = 1Y nx Y
n.n − 1/

2!
x2 Y

n.n − 1/.n − 2/

3!
x3 Y . . . . . . .

which is valid for �1 < x < 1
When x is small compared with 1 then: �1C x�n ³ 1C nx
For example, using the binomial series to determine the expansion of
�2C x�7:
When a D 2 and n D 7 the binomial expansion is given by:

�2C x�7 D 27 C 7�2�6x C �7��6�

�2��1�
�2�5x2 C �7��6��5�

�3��2��1�
�2�4x3

C �7��6��5��4�

�4��3��2��1�
�2�3x4 C �7��6��5��4��3�

�5��4��3��2��1�
�2�2x5

C �7��6��5��4��3��2�

�6��5��4��3��2��1�
�2�x6 C �7��6��5��4��3��2��1�

�7��6��5��4��3��2��1�
x7

i.e. .2Y x/7= 128 Y 448x Y 672x2 Y 560x3 Y 280x4 Y 84x5 Y 14x6 Y x7

In another example, to expand
1

�1C 2x�3
in ascending powers of x as far as

the term in x3, using the binomial series:
Using the binomial expansion of �1C x�n, where n D �3 and x is replaced
by 2x gives:

1

�1C 2x�3
D �1C 2x��3 D 1C ��3��2x�C ��3���4�

2!
�2x�2

C ��3���4���5�

3!
�2x�3 C . .

D 1 − 6x Y 24x2 − 80x3Y

The expansion is valid provided j2xj < 1, i.e. jx j < 1
2 or − 1

2 < x < 1
2
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In another example, to simplify
3
p
�1� 3x�

p
�1C x�(

1C x

2

)3 given that powers of x

above the first may be neglected:
3
p
�1� 3x�

p
�1C x�(

1C x

2

)3 D �1� 3x�1/3�1C x�1/2
(

1C x

2

)�3

³
[

1C
(

1

3

)
��3x�

] [
1C

(
1

2

)
�x�

] [
1C ��3�

( x
2

)]
when expanded by the binomial theorem as far as the x term only,

D �1� x�
(

1C x

2

)(
1� 3x

2

)

D
(

1� x C x

2
� 3x

2

)
when powers of x higher than unity are neglected

D .1 − 2x/

Practical problems involving the binomial theorem

Binomial expansions may be used for numerical approximations, for calcula-
tions with small variations and in probability theory.
For example, the second moment of area of a rectangle through its centroid

is given by
bl3

12
. To determine the approximate change in the second moment

of area if b is increased by 3.5% and l is reduced by 2.5%:
New values of b and l are �1C 0.035�b and �1� 0.025�l respectively.

New second moment of area D 1

12
[�1C 0.035�b][�1 � 0.025�l]3

D bl3

12
�1C 0.035��1� 0.025�3

³ bl3

12
�1C 0.035��1� 0.075�,

neglecting powers of small terms

³ bl3

12
�1C 0.035� 0.075�,

neglecting products of small terms

³ bl3

12
�1� 0.040� or �0.96�

bl3

12
,

i.e. 96% of the original second moment of area
Hence the second moment of area is reduced by approximately 4%
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17 Maclaurin’s Series
Introduction

Some mathematical functions may be represented as power series, containing
terms in ascending powers of the variable. For example,

ex D 1C x C x2

2!
C x3

3!
C Ð Ð Ð

sin x D x � x3

3!
C x5

5!
� x7

7!
C Ð Ð Ð

and cosh x D 1C x2

2!
C x4

4!
C Ð Ð Ð

Using a series, called Maclaurin’s series, mixed functions containing, say,
algebraic, trigonometric and exponential functions, may be expressed solely
as algebraic functions, and differentiation and integration can often be more
readily performed.
Maclaurin theorem or Maclaurin’s series states:

f .x/ = f .0/Y xf ′.0/Y
x2

2!
f ′′.0/Y

x3

3!
f ′′′.0/Y · · · �1�

Conditions of Maclaurin’s series

Maclaurin’s series may be used to represent any function, say f�x�, as a power
series provided that at x D 0 the following three conditions are met:

(a) f .0/ 6= ∞
For example, for the function f�x� D cos x, f�0� D cos 0 D 1, thus cos x
meets the condition. However, if f�x� D ln x, f�0� D ln 0 D �1, thus
ln x does not meet this condition.

(b) f ′.0/, f ′′.0/, f ′′′.0/, Ð Ð 6D 1
For example, for the function f�x� D cos x, f0�0� D � sin 0 D 0, f00�0� D
� cos 0 D �1, and so on; thus cos x meets this condition. However, if
f�x� D ln x, f0�0� D 1

0 D 1, thus ln x does not meet this condition.

(c) The resultant Maclaurin’s series must be convergent
In general, this means that the values of the terms, or groups of terms,
must get progressively smaller and the sum of the terms must reach a
limiting value. For example, the series 1C 1

2 C 1
4 C 1

8 C Ð Ð Ð is convergent
since the value of the terms is getting smaller and the sum of the terms is
approaching a limiting value of 2

Worked examples on Maclaurin’s series

For example, to determine the first four terms of the power series for cos x:
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The values of f�0�, f0�0�, f00�0�, . . . in the Maclaurin’s series are obtained
as follows:

f�x� D cos x

f0�x� D � sin x

f00�x� D � cos x

f000�x� D sin x

fiv�x� D cos x

fv�x� D � sin x

fvi�x� D � cos x

f�0� D cos 0 D 1

f0�0� D � sin 0 D 0

f00�0� D � cos 0 D �1

f000�0� D sin 0 D 0

fiv�0� D cos 0 D 1

fv�0� D � sin 0 D 0

fvi�0� D � cos 0 D �1

Substituting these values into equation (1) gives:

f�x� D cos x D 1C x�0�C x2

2!
��1�C x3

3!
�0�C x4

4!
�1�

C x5

5!
�0�C x6

6!
��1�C Ð Ð

i.e. cos x= 1� x2

2!
C x4

4!
� x6

6!
C Ð Ð Ð

In another example, to determine the power series for cos 2/:
Replacing x with 2/ in the series obtained in the previous example gives:

cos 2/ D 1� �2/�2

2!
C �2/�4

4!
� �2/�6

6!
C Ð Ð Ð

D 1� 4/2

2
C 16/4

24
� 64 /6

720
C Ð Ð Ð

i.e. cos 2q D 1 − 2q2 Y
2
3

q4 −
4
45

q6 Y ··

In another example, to expand ln�1C x� to five terms:

f�x� D ln�1C x�

f0�x� D 1

�1C x�

f00�x� D �1

�1C x�2

f000�x� D 2

�1C x�3

fiv�x� D �6

�1C x�4

fv�x� D 24

�1C x�5

f�0� D ln�1C 0� D 0

f0�0� D 1

1C 0
D 1

f00�0� D �1

�1C 0�2
D �1

f000�0� D 2

�1C 0�3
D 2

fiv�0� D �6

�1C 0�4
D �6

fv�0� D 24

�1C 0�5
D 24
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Substituting these values into equation (1) gives:

f�x� D ln�1C x� D 0C x�1�C x2

2!
��1�C x3

3!
�2�

C x
4

4!
��6�C x5

5!
�24�

i.e. ln�1C x� D x−
x2

2
C x3

3
� x4

4
C x5

5
� Ð Ð Ð

Numerical integration using Maclaurin’s series

The value of many integrals cannot be determined using the various analytical
methods. In chapter 64, the trapezoidal, mid-ordinate and Simpson’s rules
are used to numerically evaluate such integrals. Another method of finding
the approximate value of a definite integral is to express the function as a
power series using Maclaurin’s series, and then integrating each algebraic
term in turn.
For example, to evaluate

∫ 0.4
0.1 2esin /d/, correct to 3 significant figures:

A power series for esin / is firstly obtained using Maclaurin’s series.

f�/� D esin / f�0� D esin0 D e0 D 1

f0�/� D cos /esin / f0�0� D cos 0esin 0 D �1�e0 D 1

f00�/� D �cos /��cos /esin /�C �esin /��� sin /�, by the product rule,

D esin /�cos2 / � sin /�; f00�0� D e0�cos2 0� sin 0� D 1

f000�/� D �esin /�[�2 cos /�� sin /�� cos /�]C �cos2 / � sin /��cos /esin /�

D esin / cos /[�2 sin / � 1C cos2 / � sin /]

f000�0� D e0 cos 0[�0� 1C 1� 0�] D 0

Hence from equation (1):

esin/ D f�0�C /f0�0�C /2

2!
f00�0�C /3

3!
f000�0�C . . .

D 1C / C /2

2
C 0

Thus
∫ 0.4

0.1 2esin /d/

D
∫ 0.4

0.1
2

(
1C / C /2

2

)
d/ D

∫ 0.4

0.1
�2C 2/ C /2�d/

D
[

2/ C 2/2

2
C /3

3

]0.4

0.1
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D
(

0.8C �0.4�2 C �0.4�3

3

)
�
(

0.2C �0.1�2 C �0.1�3

3

)

D 0.98133 � 0.21033

D 0.771, correct to 3 significant figures

Limiting values

It is sometimes necessary to find limits of the form limit
υx!a

{
f�x�

g�x�

}
, where

f�a� D 0 and g�a� D 0

For example, limit
υx!1

{
x2 C 3x � 4

x2 � 7x C 6

}
D 1C 3� 4

1� 7C 6
D 0

0
, and

0

0
is generally

referred to as indeterminate.
L’Hopital’s rule enables us to determine such limits when the differential
coefficients of the numerator and denominator can be found.

L’Hopital’s rule states: limit
υx!a

{
f �x�
g�x�

}
= limit

υx!a

{
f 0�x�
g 0�x�

}
provided

g0�a� 6D 0

It can happen that limit
υx!0

{
f0�x�
g0�x�

}
is still

0

0
; if so, the numerator and denom-

inator are differentiated again (and again) until a non-zero value is obtained
for the denominator.

For example, to determine limit
υx!1

{
x2 C 3x � 4

x2 � 7x C 6

}
:

The first step is to substitute x D 1 into both numerator and denominator. In

this case we obtain
0

0
. It is only when we obtain such a result that we then

use L’Hopital’s rule. Hence applying L’Hopital’s rule,

limit
υx!1

{
x2 C 3x � 4

x2 � 7x C 6

}
D limit

υx!1

{
2x C 3

2x � 7

}

i.e. both numerator and denominator have been differentiated

D 5

�5
D −1

18 Solving Equations by Iterative Methods
Introduction to iterative methods

Many equations can only be solved graphically or by methods or successive
approximations to the roots, called iterative methods. Three methods of suc-
cessive approximations are (i) the bisection method, (ii) an algebraic method,
and (iii) by using the Newton-Raphson formula.
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Each successive approximation method relies on a reasonably good first
estimate of the value of a root being made. One way of determining this is to
sketch a graph of the function, say y D f�x�, and determine the approximate
values of roots from the points where the graph cuts the x-axis. Another way is
by using a functional notation method. This method uses the property that the
value of the graph of f�x� D 0 changes sign for values of x just before and just
after the value of a root. For example, one root of the equation x2 � x � 6 D 0
is x D 3. Using functional notation:

f�x� D x2 � x � 6

f�2� D 22 � 2� 6 D �4

f�4� D 42 � 4� 6 D C6
It can be seen from these results that the value of f�x� changes from �4 at
f�2� to C6 at f�4�, indicating that a root lies between 2 and 4. This is shown
more clearly in Figure 18.1.

f(x)

8

4

0−2 2 4 x

−4

−6

f(x) = x2−x−6

Figure 18.1

The bisection method

As shown above, by using functional notation it is possible to determine the
vicinity of a root of an equation by the occurrence of a change of sign, i.e.
if x1 and x2 are such that f�x1� and f�x2� have opposite signs, there is at
least one root of the equation f�x� D 0 in the interval between x1 and x2
(provided f�x� is a continuous function). In the method of bisection the mid-

point of the interval, i.e. x3 D x1 C x2

2
, is taken, and from the sign of f�x3�

it can be deduced whether a root lies in the half interval to the left or right
of x3. Whichever half interval is indicated, its mid-point is then taken and the
procedure repeated. The method often requires many iterations and is therefore
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slow, but never fails to eventually produce the root. The procedure stops when
two successive value of x are equal, to the required degree of accuracy.
For example, using the bisection method to determine the positive root of the
equation x C 3 D ex , correct to 3 decimal places:
Let f�x� D x C 3� ex then, using functional notation:

f .0/ D 0C 3� e0 D Y2

f .1/ D 1C 3� e1 D Y1.2817 . .

f .2/ D 2C 3� e2 D −2.3890 . .
Since f�1� is positive and f�2� is negative, a root lies between x D 1 and
x D 2. A sketch of f�x� D x C 3� ex , i.e. x C 3 D ex is shown in Figure 18.2.

Bisecting the interval between x D 1 and x D 2 gives
1C 2

2
i.e. 1.5

Hence f .1.5/ D 1.5C 3� e1.5 D Y0.01831 . .
Since f�1.5� is positive and f�2� is negative, a root lies between x D 1.5 and

x D 2. Bisecting this interval gives
1.5C 2

2
i.e. 1.75

Hence f .1.75/ D 1.75C 3� e1.75 D −1.00460 . .
Since f�1.75� is negative and f�1.5� is positive, a root lies between x D 1.75
and x D 1.5

Bisecting this interval gives
1.75C 1.5

2
i.e. 1.625

Hence f .1.625/ D 1.625C 3� e1.625 D −0.45341 . .
Since f�1.625� is negative and f�1.5� is positive, a root lies between
x D 1.625 and x D 1.5

Bisecting this interval gives
1.625C 1.5

2
i.e. 1.5625

Hence f .1.5625/ D 1.5625 C 3� e1.5625 D −0.20823 . .
Since f�1.5625� is negative and f�1.5� is positive, a root lies between
x D 1.5625 and x D 1.5.
The iterations are continued and the results are presented in the table shown.

f(x)

4

−2 

f(x) = ex

f(x) = x+3

3

2

0 

1

−1 1 2 x 

Figure 18.2
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The last two values of x3 in the table are 1.504882813 and 1.505388282, i.e.
both are equal to 1.505, correct to 3 decimal places. The process therefore
stops.
Hence the root of x Y 3 = ex is x = 1.505, correct to 3 decimal places.

x1 x2 x3 D x1 C x2

2
f�x3�

0 C2
1 C1.2817. .
2 �2.3890. .

1 2 1.5 C0.0183. .
1.5 2 1.75 �1.0046. .
1.5 1.75 1.625 �0.4534. .
1.5 1.625 1.5625 �0.2082. .
1.5 1.5625 1.53125 �0.0927. .
1.5 1.53125 1.515625 �0.0366. .
1.5 1.515625 1.5078125 �0.0090. .
1.5 1.5078125 1.50390625 C0.0046. .
1.50390625 1.5078125 1.505859375 �0.0021. .
1.50390625 1.505859375 1.504882813 C0.0012. .
1.504882813 1.505859375 1.505388282

An algebraic method of successive approximations

This method can be used to solve equations of the form:
aC bx C cx2 C dx3 C . . . . D 0, where a, b, c, d, . . . are constants.
Procedure:
First approximation
(a) Using a graphical or the functional notation method determine an approx-

imate value of the root required, say x1
Second approximation
(b) Let the true value of the root be �x1 C υ1�
(c) Determine x2 the approximate value of �x1 C υ1� by determining the value

of f�x1 C υ1� D 0, but neglecting terms containing products of υ1
Third approximation
(d) Let the true value of the root be (x2 C υ2)
(e) Determine x3, the approximate value of (x2 C υ2) by determining the value

of f�x2 C υ2� D 0, but neglecting terms containing products of υ2
(f) The fourth and higher approximations are obtained in a similar way.
Using the techniques given in paragraphs (b) to (f), it is possible to con-
tinue getting values nearer and nearer to the required root. The procedure is
repeated until the value of the required root does not change on two consec-
utive approximations, when expressed to the required degree of accuracy.
[Note on accuracy and errors. Depending on the accuracy of evaluating the
f�x C υ� terms, one or two iterations (i.e. successive approximations) might be
saved. However, it is not usual to work to more than about 4 significant figures
accuracy in this type of calculation. If a small error is made in calculations,
the only likely effect is to increase the number of iterations.]
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For example, to determine the value of the smallest positive root of the
equation 3x3 � 10x2 C 4x C 7 D 0, correct to 3 significant figures, using an
algebraic method of successive approximations:

The functional notation method is used to find the value of the first approx-
imation.

f�x� D 3x3 � 10x2 C 4x C 7

f�0� D 3�0�3 � 10�0�2 C 4�0�C 7 D 7

f�1� D 3�1�3 � 10�1�2 C 4�1�C 7 D 4

f�2� D 3�2�3 � 10�2�2 C 4�2�C 7 D �1

Following the above procedure:
First approximation
(a) Let the first approximation be such that it divides the interval 1 to 2 in

the ratio of 4 to �1, i.e. let x1 be 1.8
Second approximation
(b) Let the true value of the root, x2, be (x1 C υ1)
(c) Let f�x1 C υ1� D 0, then since x1 D 1.8,

3�1.8C υ1�3 � 10�1.8C υ1�2 C 4�1.8C υ1�C 7 D 0
Neglecting terms containing products of υ1 and using the binomial series
gives:

3[1.83 C 3�1.8�2υ1 � 10[1.82 C �2��1.8�υ1]C 4�1.8C υ1�C 7 ³ 0

3�5.832 C 9.720υ1�� 32.4� 36υ1 C 7.2C 4υ1 C 7 ³ 0

17.496C 29.16υ1 � 32.4� 36υ1 C 7.2C 4υ1 C 7 ³ 0

υ1 ³ �17.496C 32.4� 7.2� 7

29.16� 36C 4
³ �0.704

2.84
³ �0.2479

Thus x2 ³ 1.8� 0.2479 D 1.5521

Third approximation
(d) Let the true value of the root, x3, be (x2 C υ2)
(e) Let f�x2 C υ2� D 0, then since x2 D 1.5521,

3�1.5521 C υ2�
3 � 10�1.5521 C υ2�

2 C 4�1.5521 C υ2�C 7 D 0

Neglecting terms containing products of υ2 gives:

11.217C 21.681υ2 � 24.090� 31.042υ2 C 6.2084 C 4υ2 C 7 ³ 0

υ2 ³ �11.217C 24.090 � 6.2084 � 7

21.681 � 31.042 C 4
³ �0.3354

�5.361
³ 0.06256

Thus x3 ³ 1.5521 C 0.06256 ³ 1.6147
(f) Values of x4 and x5 are found in a similar way.

f�x3�C υ3 D 3�1.6147 C υ3�
3 � 10�1.6147 C υ3�

2

C 4�1.6147 C υ3�C 7 D 0
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giving υ3 ³ 0.003175 and x4 ³ 1.618, i.e. 1.62 correct to 3 significant
figures

f�x4 C υ4� D 3�1.618 C υ4�
3 � 10�1.618 C υ4�

2

C 4�1.618 C υ4�C 7 D 0

giving υ4 ³ 0.0000417, and x5 ³ 1.62, correct to 3 significant figures.
Since x4 and x5 are the same when expressed to the required degree of
accuracy, then the required root is 1.62, correct to 3 significant figures.

The Newton-Raphson method
The Newton-Raphson formula, often just referred to as Newton’s method,
may be stated as follows:

if r1 is the approximate value of a real root of the equation f�x� D 0, then
a closer approximation to the root r2 is given by:

r2 = r1 −
f .r1/

f ′.r1/

The advantages of Newton’s method over the algebraic method of successive
approximations is that it can be used for any type of mathematical equation
(i.e. ones containing trigonometric, exponential, logarithmic, hyperbolic and
algebraic functions), and it is usually easier to apply than the algebraic method.
For example, using Newton’s method to find the positive root of

�x C 4�3 � e1.92x C 5 cos
x

3
D 9, correct to 3 significant figures:

The functional notational method is used to determine the approximate value
of the root.

f�x� D �x C 4�3 � e1.92x C 5 cos
x

3
� 9

f�0� D �0C 4�3 � e0 C 5 cos 0� 9 D 59

f�1� D 53 � e1.92 C 5 cos 1
3 � 9 ³ 114

f�2� D 63 � e3.84 C 5 cos 2
3 � 9 ³ 164

f�3� D 73 � e5.76 C 5 cos 1� 9 ³ 19

f�4� D 83 � e7.68 C 5 cos 4
3 � 9 ³ �1660

From these results, let a first approximation to the root be r1 D 3
Newton’s formula states that a better approximation to the root,

r2 D r1 � f�r1�

f0�r1�

f�r1� D f�3� D 73 � e5.76 C 5 cos 1� 9 D 19.35
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f0�x� D 3�x C 4�2 � 1.92e1.92x � 5

3
sin

x

3

f0�r1� D f0�3� D 3�7�2 � 1.92e5.76 � 5

3
sin 1 D �463.7

Thus, r3 D 3� 19.35

�463.7
D 3C 0.042 D 3.042 D 3.04,

correct to 3 significant figure

Similarly, r3 D 3.042� f�3.042�

f0�3.042�
D 3.042� ��1.146�

��513.1�

D 3.042� 0.0022 D 3.0398

D 3.04, correct to 3 significant figures.

Since r2 and r3 are the same when expressed to the required degree of accu-
racy, then the required root is 3.04, correct to 3 significant figures.

19 Computer Numbering Systems

Decimal and binary numbers

The system of numbers in everyday use is the denary or decimal system of
numbers, using the digits 0 to 9. It has ten different digits (0, 1, 2, 3, 4, 5, 6,
7, 8 and 9) and is said to have a radix or base of 10.
The binary system of numbers has a radix of 2 and uses only the digits 0
and 1.

Conversion of binary to denary

The denary number 234.5 is equivalent to
2ð 102 C 3ð 101 C 4ð 100 C 5ð 10�1

i.e. is the sum of terms comprising: (a digit) multiplied by (the base raised to
some power).
In the binary system of numbers, the base is 2, so 1101.1 is equivalent to:

1ð 23 C 1ð 22 C 0ð 21 C 1ð 20 C 1ð 2�1

Thus the denary number equivalent to the binary number 1101.1 is
8C 4C 0C 1C 1

2 , that is 13.5 i.e. 1101.12 = 13.510, the suffixes 2 and 10
denoting binary and denary systems of numbers respectively.
In another, to convert 101.01012 to a denary number:

101.01012 D 1ð 22 C 0ð 21 C 1ð 20 C 0ð 2�1

C 1ð 2�2 C 0ð 2�3 C 1ð 2�4

D 4C 0C 1C 0C 0.25C 0C 0.0625 D 5.312510



81

Conversion of denary to binary

An integer denary number can be converted to a corresponding binary number
by repeatedly dividing by 2 and noting the remainder at each stage, as shown
below for 3910

1
0
0
1
1
1

Remainder

0
1
2
4
9

19
39

(least significant bit)(most significant bit) 1 0 0 1 1 1

0
2
2
2
2
2
2

The result is obtained by writing the top digit of the remainder as the least
significant bit, (a bit is a binary digit and the least significant bit is the one
on the right). The bottom bit of the remainder is the most significant bit, i.e.
the bit on the left. Thus 3910 = 1001112
The fractional part of a denary number can be converted to a binary number
by repeatedly multiplying by 2, as shown below for the fraction 0.625

0.250 × 2 =  

0.625 × 2 =  

1 0. 1

1.250

0.500     

1.000     0.500 × 2 =  

(least significant bit)(most significant bit)

For fractions, the most significant bit of the result is the top bit obtained
from the integer part of multiplication by 2. The least significant bit of the
result is the bottom bit obtained from the integer part of multiplication by 2.
Thus 0.62510 = 0.1012

Conversion of denary to binary via octal

For denary integers containing several digits, repeatedly dividing by 2 can be
a lengthy process. In this case, it is usually easier to convert a denary number
to a binary number via the octal system of numbers. This system has a radix
of 8, using the digits 0, 1, 2, 3, 4, 5, 6 and 7. The denary number equivalent
to the octal number 43178 is

4ð 83 C 3ð 82 C 1ð 81 C 7ð 80

i.e. 4ð 512C 3ð 64C 1ð 8C 7ð 1 or 225510



82

Thus 43178 = 225510

An integer denary number can be converted to a corresponding octal number
by repeatedly dividing by 8 and noting the remainder at each stage, as shown
below for 49310

7
5
5

Remainder

0
7

61
493

7 5 5

8
8
8

Thus 49310 = 7558
The fractional part of a denary number can be converted to an octal number

by repeatedly multiplying by 8, as shown below for the fraction 0.437510

0.5        × 8 = 4  .  0

0. 4375 × 8 =

. 3 4

3  .  5

For fractions, the most significant bit is the top integer obtained by multipli-
cation of the denary fraction by 8, thus

0.437510 = 0.348

The natural binary code for digits 0 to 7 is shown in Table 19.1, and an octal
number can be converted to a binary number by writing down the three bits
corresponding to the octal digit.

Thus 4378 D 100 011 1112

and 26.358 D 010 110.011 1012

Table 19.1

Octal digit Natural
binary number

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
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The ‘0’ on the extreme left does not signify anything, thus

26.358 D 10 110.011 1012

To convert 11 110 011.100 012 to a denary number via octal:
Grouping the binary number in three’s from the binary point gives:

011 110 011.100 0102

Using Table 19.1 to convert this binary number to an octal number gives:
363.428 and

363.428 D 3ð 82 C 6ð 81 C 3ð 80 C 4ð 8�1C 2ð 8�2

D 192C 48C 3C 0.5C 0.03125

D 243.5312510

Hence 11 110 011.100 012 = 363.428 = 243.5312510

Hexadecimal numbers

The complexity of computers requires higher order numbering systems, such
as octal (base 8) and hexadecimal (base 16), which are merely extensions of
the binary system. A hexadecimal numbering system has a radix of 16 and
uses the following 16 distinct digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F
‘A’ corresponds to 10 in the denary system, B to 11, C to 12, and so on.

To convert from hexadecimal to decimal

For example, 1A16 D 1ð 161 C Að 160 D 1ð 161 C 10ð 1

D 16C 10 D 26

i.e. 1A16 = 2610

Similarly, 2E16 D 2ð 161 C Eð 160 D 2ð 161 C 14ð 160

D 32C 14 D 4610

and 1BF16 D 1ð 162 C Bð 161 C Fð 160

D 1ð 162 C 11ð 161 C 15ð 160

D 256C 176C 15 D 44710

Table 19.2 compares decimal, binary, octal and hexadecimal numbers and
shows, for example, that 2310 = 101112 = 278 = 1716

To convert from decimal to hexadecimal

This is achieved by repeatedly dividing by 16 and noting the remainder at
each stage, as shown below for 2610
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Table 19.2

Decimal Binary Octal Hexadecimal

0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14
21 10101 25 15
22 10110 26 16
23 10111 27 17
24 11000 30 18
25 11001 31 19
26 11010 32 1A
27 11011 33 1B
28 11100 34 1C
29 11101 35 1D
30 11110 36 1E
31 11111 37 1F
32 100000 40 20

  1  ≡  116

10  ≡  A16 

Remainder

0
1

26

least significant bitmost significant bit 1 A

16
16

Hence 2610 = 1A16

Similarly, for 44710
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11  ≡  B16

  1  ≡  116

15  ≡  F16

Remainder

1
0

27
447

B F

16
16

16

1

Thus 44710 = 1BF16

To convert from binary to hexadecimal

The binary bits are arranged in groups of four, starting from right to left, and a
hexadecimal symbol is assigned to each group. For example, the binary number
1110011110101001 is initially grouped in fours as: 1110 0111 1010 1001 and
a hexadecimal symbol assigned to each group as E 7 A 9
from Table 19.2
Hence 11100111101010012 = E7A916

To convert from hexadecimal to binary

The above procedure is reversed, thus, for example,

6CF316 D 0110 1100 1111 0011 from Table 19.2

i.e. 6CF316 = 1101100111100112



Mensuration

20 Areas of Plane Figures

Mensuration

Mensuration is a branch of mathematics concerned with the determination of
lengths, areas and volumes.

Properties of quadrilaterals

A polygon is a closed plane figure bounded by straight lines. A polygon,
which has:

(i) 3 sides is called a triangle
(ii) 4 sides is called a quadrilateral

(iii) 5 sides is called a pentagon
(iv) 6 sides is called a hexagon
(v) 7 sides is called a heptagon

(vi) 8 sides is called an octagon

There are five types of quadrilateral, these being

(i) rectangle
(ii) square

(iii) parallelogram
(iv) rhombus
(v) trapezium

(The properties of these are given below).

If the opposite corners of any quadrilateral are joined by a straight line, two
triangles are produced. Since the sum of the angles of a triangle is 180°, the
sum of the angles of a quadrilateral is 360°.
In a rectangle, shown in Figure 20.1:

(i) all four angles are right angles,
(ii) opposite sides are parallel and equal in length, and

(iii) diagonals AC and BD are equal in length and bisect one another.

In a square, shown in Figure 20.2:
(i) all four angles are right angles,

(ii) opposite sides are parallel,
(iii) all four sides are equal in length, and
(iv) diagonals PR and QS are equal in length and bisect one another at right

angles.

In a parallelogram, shown in Figure 20.3:
(i) opposite angles are equal,

(ii) opposite sides are parallel and equal in length, and
(iii) diagonals WY and XZ bisect one another.
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A

D

B

C

Figure 20.1

P Q

S R

Figure 20.2

Z Y

XW

Figure 20.3

A B

D C

α α

β
β

Figure 20.4

In a rhombus, shown in Figure 20.4:
(i) opposite angles are equal,

(ii) opposite angles are bisected by a diagonal,
(iii) opposite sides are parallel,
(iv) all four sides are equal in length, and
(v) diagonals AC and BD bisect one another at right angles.

In a trapezium, shown in Figure 20.5:
(i) only one pair of sides is parallel.

E F

H G

Figure 20.5

Areas of plane figures

A summary of areas of common shapes is shown in Table 20.1.
For example, a rectangular tray is 820 mm long and 400 mm wide. To find
its area in (a) mm2 (b) cm2 (c) m2:

(a) Area D lengthðwidth D 820ð 400 D 328 000 mm2

(b) 1 cm2 D 100 mm2, hence 328 000 mm2 D 328 000

100
cm2

D 3280 cm2

(c) 1 m2 D 10 000 cm2, hence 3280 cm2 D 3280

10 000
m2 D 0.3280 m2
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Table 20.1

In another example, to find (a) the cross-sectional area of the girder shown
in Figure 20.6(a) and (b) the area of the path shown in Figure 20.6(b):

(a) The girder may be divided into three separate rectangles as shown.

Area of rectangle A D 50ð 5 D 250 mm2

Area of rectangle B D �75� 8� 5�ð 6 D 62ð 6 D 372 mm2

Area of rectangle C D 70ð 8 D 560 mm2

Total area of girder D 250C 372C 560 D 1182 mm2 or 11.82 cm2

(b) Area of path D area of large rectangle� area of small rectangle

D �25ð 20�� �21ð 16� D 500� 336 D 164 m2
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50 mm

5 mm

8 mm

6 mm

2 m

25 m

20
 m

75
 m

m

A

B

C

70 mm

(a) (b)

Figure 20.6

A

D C E

B

h15

25
34

Figure 20.7

5 m 5 m

6 m

B
D

A

C

8 m

Figure 20.8

In another example, to find the area of the parallelogram shown in
Figure 20.7 (dimensions are in mm):
Area of parallelogram D baseð perpendicular height. The perpendicular
height h is found using Pythagoras’ theorem.

BC2 D CE2 C h2

i.e. 152 D �34� 25�2 C h2

h2 D 152 � 92 D 225� 81 D 144

Hence, h D
p

144 D 12 mm (�12 can be neglected).

Hence, area of ABCD D 25ð 12 D 300 mm2

In another example, Figure 20.8 shows the gable end of a building. To deter-
mine the area of brickwork in the gable end:
The shape is that of a rectangle and a triangle.

Area of rectangle D 6ð 8 D 48 m2

Area of triangle D 1
2 ð baseð height

CD D 4 m, AD D 5 m, hence AC D 3 m (since it is a 3, 4, 5 triangle)

Hence, area of triangle ABD D 1
2 ð 8ð 3 D 12 m2

Total area of brickwork D 48C 12 D 60 m2
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In another example, to find the areas of the circles having (a) a radius of
5 cm, (b) a diameter of 15 mm, (c) a circumference of 70 mm:

Area of a circle D �r2 or
�d2

4
(a) Area D �r2 D ��5�2 D 25� D 78.54 cm2

(b) Area D �d2

4
D ��15�2

4
D 225�

4
D 176.7 mm2

(c) Circumference, c D 2�r, hence r D c

2�
D 70

2�
D 35

�
mm

Area of circle D �r2 D �

(
35

�

)2

D 352

�

D 389.9 mm2 or 3.899 cm2

In another example, to calculate the area of a regular octagon, if each side
is 5 cm and the width across the flats is 12 cm:
An octagon is an 8-sided polygon. If radii are drawn from the centre of the
polygon to the vertices then 8 equal triangles are produced (see Figure 20.9).

Area of one triangle D 1

2
ð baseð height D 1

2
ð 5ð 12

2
D 15 cm2

Area of octagon D 8ð 15 D 120 cm2

In another example, to determine the area of a regular hexagon which has
sides 8 cm long:
A hexagon is a 6-sided polygon that may be divided into 6 equal triangles as
shown in Figure 20.10. The angle subtended at the centre of each triangle is
360°/6 D 60°.
The other two angles in the triangle add up to 120° and are equal to each
other.
Hence each of the triangles is equilateral with each angle 60° and each side
8 cm.

Area of one triangle D 1
2 ð baseð height D 1

2 ð 8ð h

h is calculated using Pythagoras’ theorem:

82 D h2 C 42

12
 c

m

5 cm

Figure 20.9

4 cm

8 cm

8 cm

60°

h

Figure 20.10
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from which, h D
√

82 � 42 D 6.928 cm

Hence area of one triangle D 1
2 ð 8ð 6.928 D 27.71 cm2

Area of hexagon D 6ð 27.71 D 166.3 cm2

Areas of similar shapes

The areas of similar shapes are proportional to the squares of correspond-
ing linear dimensions. For example, Figure 20.11 shows two squares, one of
which has sides three times as long as the other.

3x

x

(a) (b)

x 3x

Figure 20.11

Area of Figure 20.11�a� D �x��x� D x2

Area of Figure 20.11�b� D �3x��3x� D 9x2

Hence Figure 20.11(b) has an area �3�2, i.e. 9 times the area of Figure 20.11(a).

For example, a rectangular garage on a building plan has dimensions 10 mm
by 20 mm. If the plan is drawn to a scale of 1 to 250, the true area of the
garage in square metres, is determined as follows:
Area of garage on the plan D 10 mmð 20 mm D 200 mm2

Since the areas of similar shapes are proportional to the squares of correspond-
ing dimensions then:

True area of garage D 200ð �250�2 D 12.5ð 106mm2

D 12.5ð 106

106
m2 D 12.5 m2

21 The Circle and its Properties

Introduction

A circle is a plain figure enclosed by a curved line, every point on which is
equidistant from a point within, called the centre.
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Properties of circles

(i) The distance from the centre to the curve is called the radius, r, of the
circle (see OP in Figure 21.1).

(ii) The boundary of a circle is called the circumference, c.
(iii) Any straight line passing through the centre and touching the circum-

ference at each end is called the diameter, d (see QR in Figure 21.1).
Thus d = 2r.

(iv) The ratio
circumference

diameter
D a constant for any circle.

This constant is denoted by the Greek letter � (pronounced ‘pie’), where
� D 3.14159, correct to 5 decimal places.
Hence c/d D � or c = pd or c = 2pr

(v) A semicircle is one half of the whole circle.
(vi) A quadrant is one quarter of a whole circle.

(vii) A tangent to a circle is a straight line that meets the circle in one point
only and does not cut the circle when produced. AC in Figure 21.1 is a
tangent to the circle since it touches the curve at point B only. If radius
OB is drawn, then angle ABO is a right angle.

(viii) A sector of a circle is the part of a circle between radii (for example,
the portion OXY of Figure 21.2 is a sector). If a sector is less than a
semicircle it is called a minor sector, if greater than a semicircle it is
called a major sector.

(ix) A chord of a circle is any straight line that divides the circle into
two parts and is terminated at each end by the circumference. ST, in
Figure 21.2 is a chord.

(x) A segment is the name given to the parts into which a circle is divided
by a chord. If the segment is less than a semicircle it is called a minor
segment (see shaded area in Figure 21.2). If the segment is greater than
a semicircle it is called a major segment (see the unshaded area in
Figure 21.2).

(xi) An arc is a portion of the circumference of a circle. The distance SRT
in Figure 21.2 is called a minor arc and the distance SXYT is called a
major arc.

(xii) The angle at the centre of a circle, subtended by an arc, is double the
angle at the circumference subtended by the same arc. With reference
to Figure 21.3: Angle AOC = 2 × angle ABC

(xiii) The angle in a semicircle is a right angle (see angle BQP in Figure 21.3).

P

R

C

B

A

O

Q

Figure 21.1

S

R

T

Y
O

X

Figure 21.2

A

P
C

O

Q B

Figure 21.3
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o

s
r

r
θ

Figure 21.4

Arc length and area of a sector

One radian is defined as the angle subtended at the centre of a circle by an arc
equal in length to the radius. With reference to Figure 21.4, for arc length s,

 radians D s/r or arc length, s = rq �1�

where  is in radians
When s D whole circumference (D 2�r) then  D s/r D 2�r/r D 2�

i.e. 2� radians D 360° or p radians = 180°

Thus 1 rad D 180°/� D 57.30°, correct to 2 decimal places.
Since � rad D 180°, then �/2 D 90°, �/3 D 60°, �/4 D 45°, and so on.

Area of a sector D q

360
.p r2/ when  is in degrees

D 

2�
��r2� D 1

2
r2q when  is in radians �2�

For example, to convert (a) 125°, (b) 69°47’, to radians:
(a) Since 180° D � rad then 1° D �/180 rad, therefore

125° D 125
(

�

180

)
D 2.182 radians

(b) 69°470 D 69
47°

60
D 69.783°

69.783° D 69.783
(

�

180

)c

D 1.218 radians

In another example, to convert (a) 0.749 radians, (b) 3�/4 radians, to degrees
and minutes:
(a) Since � rad D 180° then 1 rad D 180°/�, therefore

0.749 D 0.749
(

180

�

)°
D 42.915°

0.915° D �0.915 ð 60�0 D 550, correct to the nearest minute, hence

0.749 radians = 42°55′

(b) Since 1 rad D
(

180

�

)°
then

3�

4
rad D 3�

4

(
180

�

)°

D 3

4
�180�° D 135°
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In another example, expressing (a) 150° (b) 270° (c) 37.5° in radians, in
terms of �:
Since 180° D � rad then 1° D 180/�, hence

(a) 150° D 150
(

�

180

)
rad D 5p

6
rad

(b) 270° D 270
(

�

180

)
rad D 3p

2
rad

(c) 37.5° D 37.5
(

�

180

)
rad D 75�

360
rad D 5p

24
rad

In another example, to find the length of arc of a circle of radius 5.5 cm when
the angle subtended at the centre is 1.20 radians:

From equation (1), length of arc, s D r, where  is in radians,

hence s D �5.5��1.20� D 6.60 cm

In another example, to determine the diameter and circumference of a circle if
an arc of length 4.75 cm subtends an angle of 0.91 radians:

Since s D r then r D s


D 4.75

0.91
D 5.22 cm

Diameter D 2ð radius D 2ð 5.22 D 10.44 cm

Circumference, c D �d D ��10.44� D 32.80 cm

In another example, a football stadium floodlight can spread its illumination
over an angle of 45° to a distance of 55 m. To determine the maximum area
that is floodlit:

Floodlit area D area of sector D 1

2
r2

D 1

2
�55�2

(
45ð �

180

)
from equation (2)

= 1188 m2

The equation of a circle

The simplest equation of a circle, centre at the origin, radius r, is given by:

x2 C y2 D r2

For example, Figure 21.5 shows a circle x2 C y2 D 9
More generally, the equation of a circle, centre (a, b), radius r, is given by:

�x � a�2 C �y � b�2 D r2 �1�

Figure 21.6 shows a circle �x � 2�2 C �y � 3�2 D 4
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The general equation of a circle is:

x2 C y2 C 2ex C 2fy C c D 0 �2�

Multiplying out the bracketed terms in equation (1) gives:

x2 � 2ax C a2 C y2 � 2by C b2 D r2

Comparing this with equation (2) gives:

2e D �2a, i.e. a = −
2e
2

and 2f D �2b, i.e. b = −
2f
2

and c D a2 C b2 � r2, i.e. r =
p

a2 Y b2 − c
Thus, for example, the equation

x2 C y2 � 4x � 6y C 9 D 0

represents a circle with centre a D �
(�4

2

)
, b D �

(�6

2

)
, i.e. at (2, 3) and

radius r D p22 C 32 � 9 D 2
Hence x2 C y2 � 4x � 6y C 9 D 0 is the circle shown in Figure 21.6,
which may be checked by multiplying out the brackets in the equation
�x � 2�2 C �y � 3�2 D 4

22 Volumes of Common Solids
Volumes and surface areas of regular solids
A summary of volumes and surface areas of regular solids is shown in
Table 22.1.
For example, a water tank is the shape of a rectangular prism having length
2 m, breadth 75 cm and height 50 cm. To determine the capacity of the tank
in (a) m3 (b) cm3 (c) litres :



96

Table 22.1
(i) Rectangular prism

(or cuboid)

(ii) Cylinder

(iii) Pyramid

(iv) Cone

(v) Sphere

Volume = l × b × h
Surface area = 2 (bh  + hl  + lb)

Volume = πr 2h

Total surface area = 2πrh + 2πr2

Total surface area = (sum of areas of
triangles forming sides) + (area of base)

Curved surface area = πrl
Total surface area = πrl + πr 2

h

b

h

h

l
h

r

r

r

l

Volume =     × A × h
where A = area of base
and h = perpendicular height

1
3

Volume =    πr2h1
3

Volume =    πr 3

Surface area = 4πr 2 

4
3

Volume of rectangular prism D lð bð h (see Table 22.1)

(a) Volume of tank D 2ð 0.75ð 0.5 D 0.75 m3

(b) 1 m3 D 106 cm3, hence 0.75 m3 D 0.75ð 106 cm3 D 750 000 cm3

(c) 1 litre D 1000 cm3, hence 750 000 cm3 D 750 000

1000
litres D 750 litres

In another example, to calculate the volume and total surface area of the
solid prism shown in Figure 22.1:
The solid shown in Figure 22.1 is a trapezoidal prism.

Volume D cross-sectional area ð height

D 1
2 �11C 5�4ð 15 D 32ð 15 D 480 cm3

Surface area D sum of two trapeziums C 4 rectangles
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11 cm

4 cm

15 cm

5 cm
5 cm

5 cm

Figure 22.1

5 cm

5 cm
C

D

B E

A

Figure 22.2

D �2ð 32�C �5ð 15�C �11ð 15�C 2�5ð 15�

D 64C 75C 165C 150 D 454 cm2

In another example, to determine the volume and the total surface area of the
square pyramid shown in Figure 22.2 if its perpendicular height is 12 cm :

Volume of pyramid D 1
3 (area of base) ð perpendicular height

D 1
3 �5ð 5�ð 12 D 100 cm3

The total surface area consists of a square base and 4 equal triangles.
Area of triangle ADE D 1

2 ð base ð perpendicular height D 1
2 ð 5ð AC The

length AC may be calculated using Pythagoras’ theorem on triangle ABC,

where AB D 12 cm, BC D 1
2 ð 5 D 2.5 cm, and AC D

√
AB2 C BC2

D p122 C 2.52 D 12.26 cm

Hence area of triangle ADE D 1
2 ð 5ð 12.26 D 30.65 cm2

Total surface area of pyramid D �5ð 5�C 4�30.65� D 147.6 cm2

In another example, to determine the volume and total surface area of a cone
of radius 5 cm and perpendicular height 12 cm:
The cone is shown in Figure 22.3.

Volume of cone D 1
3 �r2h D 1

3 ð � ð 52 ð 12 D 314.2 cm3

Total surface area D curved surface areaC area of base D � rlC � r2

From Figure 22.3, slant height l may be calculated using Pythagoras’ theorem

l D
√

122 C 52 D 13 cm,
Hence total surface area D �� ð 5ð 13�C �� ð 52� D 282.7 cm2

In another example, a wooden section is shown in Figure 22.4. To find (a)
its volume (in m3), and (b) its total surface area:
The section of wood is a prism whose end comprises a rectangle and a semi-
circle. Since the radius of the semicircle is 8 cm, the diameter is 16 cm.
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h =
12 cm

r = 5 cm

l

Figure 22.3

3 m
12 cm

r = 8 mm

r

Figure 22.4

Hence the rectangle has dimensions 12 cm by 16 cm.

Area of end D �12ð 16�C 1
2 �82 D 292.5 cm2

Volume of wooden section D area of endð perpendicular height

D 292.5ð 300 D 87 750 cm3

D 87 750 m3

106
D 0.08775 m3

The total surface area comprises the two ends (each of area 292.5 cm2), three
rectangles and a curved surface (which is half a cylinder), hence

total surface area D �2ð 292.5�C 2�12ð 300�C �16ð 300�

C 1
2 �2� ð 8ð 300�

D 585C 7200C 4800C 2400�

D 20 125 cm2 or 2.0125 m2

In another example, a boiler consists of a cylindrical section of length 8 m
and diameter 6 m, on one end of which is surmounted a hemispherical section
of diameter 6 m, and on the other end a conical section of height 4 m and base
diameter 6 m. To calculate the volume of the boiler and the total surface area:
The boiler is shown in Figure 22.5.

Volume of hemisphere, P D 2
3 �r3 D 2

3 ð � ð 33 D 18� m3

Volume of cylinder, Q D �r2h D � ð 32 ð 8 D 72� m3

Volume of cone, R D 1
3 �r2h D 1

3 ð � ð 32 ð 4 D 12� m3

Total volume of boiler D 18� C 72� C 12� D 102� D 320.4 m3

Surface area of hemisphere, P D 1
2 �4� r2� D 2ð � ð 32 D 18� m2

Curved surface area of cylinder, Q D 2�rh D 2ð � ð 3ð 8 D 48� m2

The slant height of the cone, l, is obtained by Pythagoras’ theorem on triangle
ABC, i.e. l D

√
�42 C 32� D 5

Curved surface area of cone, R D �rl D � ð 3ð 5 D 15� m2

Total surface area of boiler D 18� C 48� C 15� D 81� D 254.5 m2
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Volumes and surface areas of frusta of pyramids and cones

The frustum of a pyramid or cone is the portion remaining when a part
containing the vertex is cut off by a plane parallel to the base.
The volume of a frustum of a pyramid or cone is given by the volume of
the whole pyramid or cone minus the volume of the small pyramid or cone
cut off.
The surface area of the sides of a frustum of a pyramid or cone is
given by the surface area of the whole pyramid or cone minus the sur-
face area of the small pyramid or cone cut off. This gives the lateral sur-
face area of the frustum. If the total surface area of the frustum is required
then the surface area of the two parallel ends are added to the lateral sur-
face area.
There is an alternative method for finding the volume and surface area of a
frustum of a cone. With reference to Figure 22.6:

Volume = 1
3 ph.R2 Y Rr Y r2/

Curved surface area = pl.R Y r/

Total surface area= pl.R Y r/Y pr2 Y pR2

r

hI

R

Figure 22.6

For example, a lampshade is in the shape of a frustum of a cone. The vertical
height of the shade is 25.0 cm and the diameters of the ends are 20.0 cm and
10.0 cm, respectively. To determine the area of the material needed to form
the lampshade, correct to 3 significant figures:
The curved surface area of a frustum of a cone D �l�RC r� from above.
Since the diameters of the ends of the frustum are 20.0 cm and 10.0 cm, then
from Figure 22.7,
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 c
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.0
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Figure 22.8

r D 5.0 cm, R D 10.0 cm and l D
√

[25.02 C 5.02] D 25.50 cm, from
Pythagoras’ theorem.
Hence curved surface area D ��25.50��10.0 C 5.0� D 1201.7 cm2, i.e. the area
of material needed to form the lampshade is 1200 cm2, correct to 3 significant
figures.

In another example, a cooling tower is in the form of a cylinder surmounted
by a frustum of a cone as shown in Figure 22.8. To determine the volume
of air space in the tower if 40% of the space is used for pipes and other
structures:

Volume of cylindrical portion D �r2h D �

(
25.0

2

)2

�12.0� D 5890 m3

Volume of frustum of cone D 1

3
�h�R2 C Rr C r2� where h D 30.0� 12.0 D

18.0 m, R D 25.0/2 D 12.5 m and r D 12.0/2 D 6.0 m.

Hence volume of frustum of cone D 1
3 ��18.0�[�12.5�2C�12.5��6.0�C�6.0�2]

D 5038 m3

Total volume of cooling tower D 5890 C 5038 D 10 928 m3

If 40% of space is occupied then volume of air space

D 0.6ð 10 928 D 6557 m3

The frustum and zone of a sphere

Volume of sphere D 4
3 �r3 and the surface area of sphere D 4�r2.

A frustum of a sphere is the portion contained between two parallel planes.
In Figure 22.9, PQRS is a frustum of the sphere. A zone of a sphere is the
curved surface of a frustum. With reference to Figure 22.9:

Surface area of a zone of a sphere = 2prh

Volume of frustum of sphere =
ph
6

.h2 Y 3r2
1 Y 3r2

2/
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For example, to determine the volume of a frustum of a sphere of diameter
49.74 cm if the diameter of the ends of the frustum are 24.0 cm and 40.0 cm,
and the height of the frustum is 7.00 cm:

From above, volume of frustum of a sphere D �h

6
�h2 C 3r2

1 C 3r2
2 �

where h D 7.00 cm, r1 D 24.0/2 D 12.0 cm and r2 D 40.0/2 D 20.0 cm.

Hence volume of frustum D ��7.00�

6
[�7.00�2 C 3�12.0�2 C 3�20.0�2]

D 6161 cm3

In another example, to determine the curved surface area of the frustum in
the previous example:
The curved surface area of the frustum D surface area of zone D 2�rh (from
above), where r D radius of sphere D 49.74/2 D 24.87 cm and h D 7.00 cm.
Hence, surface area of zone D 2��24.87��7.00� D 1094 cm2

In another example, a spherical storage tank is filled with liquid to a depth of
20 cm. To determine the number of litres of liquid in the container (1 litre D
1000 cm3), if the internal diameter of the vessel is 30 cm:
The liquid is represented by the shaded area in the section shown in
Figure 22.10. The volume of liquid comprises a hemisphere and a frustum
of thickness 5 cm.

Hence volume of liquid D 2

3
�r3 C �h

6
[h2 C 3r2

1 C 3r2
2 ]

where r2 D 30/2 D 15 cm and r1 D
p

152 � 52 D 14.14 cm

Volume of liquid D 2

3
��15�3 C ��5�

6
[52 C 3�14.14�2 C 3�15�2]

D 7069 C 3403 D 10 470 cm3

Since 1 litre D 1000 cm3, the number of litres of liquid

D 10 470

1000
D 10.47 litres
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Volumes of similar shapes

The volumes of similar bodies are proportional to the cubes of corre-
sponding linear dimensions. For example, Figure 22.11 shows two cubes,
one of which has sides three times as long as those of the other.

Volume of Figure 22.11(a) D �x��x��x� D x3

Volume of Figure 22.11(b) D �3x��3x��3x� D 27x3

Hence Figure 22.11(b) has a volume (3)3, i.e. 27 times the volume of
Figure 22.11(a).
For example, a car has a mass of 1000 kg. A model of the car is made to a
scale of 1 to 50. To determine the mass of the model if the car and its model
are made of the same material:
Volume of model

Volume of car
D
(

1

50

)3

since the volume of similar bodies are propor-

tional to the cube of corresponding dimensions. Mass D densityð volume, and
since both car and model are made of the same material then:

Mass of model

Mass of car
D
(

1

50

)3

Hence mass of model D (mass of car)
(

1

50

)3

D 1000

503 D 0.008 kg or 8 g

23 Irregular Areas and Volumes and Mean
Values

Areas of irregular figures

Areas of irregular plane surfaces may be approximately determined by
using (a) a planimeter, (b) the trapezoidal rule, (c) the mid-ordinate rule, and



103

(d) Simpson’s rule. Such methods may be used, for example, by engineers
estimating areas of indicator diagrams of steam engines, surveyors estimating
areas of plots of land or naval architects estimating areas of water planes or
transverse sections of ships.

(a) A planimeter is an instrument for directly measuring small areas bounded
by an irregular curve.

(b) Trapezoidal rule
To determine the areas PQRS in Figure 23.1:

(i) Divide base PS into any number of equal intervals, each of width d
(the greater the number of intervals, the greater the accuracy)

(ii) Accurately measure ordinates y1, y2, y3, etc

(iii) Area PQRS D d

[
y1 C y7

2
C y2 C y3 C y4 C y5 C y6

]
In general, the trapezoidal rule states:

Area =

(
width of
interval

)[
1
2

(
firstY last
ordinate

)
Y

(
sum of remaining

ordinates

)]

(c) Mid-ordinate rule
To determine the area ABCD of Figure 23.2:

(i) Divide base AD into any number of equal intervals, each of width d
(the greater the number of intervals, the greater the accuracy)

(ii) Erect ordinates in the middle of each interval (shown by broken lines
in Figure 23.2)

(iii) Accurately measure ordinates y1, y2, y3, etc.
(iv) Area ABCD D d�y1 C y2 C y3 C y4 C y5 C y6�
In general, the mid-ordinate rule states:

Area = (width of interval)(sum of mid-ordinates)

(d) Simpson’s rule
To determine the area PQRS of Figure 23.1:

(i) Divide base PS into an even number of intervals, each of width d
(the greater the number of intervals, the greater the accuracy)

(ii) Accurately measure ordinates y1, y2, y3, etc.

(iii) Area PQRS D d

3
[�y1 C y7�C 4�y2 C y4Cy6�C2�y3Cy5�]

Q R

SP
d d d d d d

y1 y2 y3 y4 y5 y6 y7

Figure 23.1

A

B

d d d d d d

y
1

y
2

y
3

y
4

y
5

y
6

C

D

Figure 23.2
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In general, Simpson’s rule states:

Area =
1
3

(width of
interval

) [( first Y last
ordinate

)
Y 4

( sum of even
ordinates

)

Y 2
( sum of remaining

odd ordinates

)]

For example, a car starts from rest and its speed is measured every second for

6 s: Time t(s) 0 1 2 3 4 5 6
Speed v (m/s) 0 2.5 5.5 8.75 12.5 17.5 24.0

To determine the distance travelled in 6 seconds (i.e. the area under the v/t
graph), by (a) the trapezoidal rule, (b) the mid-ordinate rule, and (c) Simpson’s
rule:
A graph of speed/time is shown in Figure 23.3.

(a) Trapezoidal rule (see para.(b) above)
The time base is divided into 6 strips each of width 1 s, and the length of
the ordinates measured. Thus

area D �1�

[(
0C 24.0

2

)
C 2.5C 5.5C 8.75C 12.5C 17.5

]
D 58.75 m

(b) Mid-ordinate rule (see para.(c) above)
The time base is divided into 6 strips each of width 1 second.
Mid-ordinates are erected as shown in Figure 23.3 by the broken lines.
The length of each mid-ordinate is measured. Thus

area D �1�[1.25C 4.0C 7.0C 10.75 C 15.0C 20.25] D 58.25 m

30

25

Graph of speed/time

20

15

S
pe

ed
 (

m
/s

)

10

5

0 1 2 3

Time (seconds)

4 5 6

1.
25

2.
5

4.
0

7.
0

15
.0

5.
5

8.
75

10
.7

5
12

.5

17
.5

20
.2

5

24
.0

Figure 23.3
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(c) Simpson’s rule (see para.(d) above)
The time base is divided into 6 strips each of width 1 s, and the length of
the ordinates measured. Thus

area D 1
3 �1�[�0C 24.0�C4�2.5C 8.75C 17.5�C2�5.5C 12.5�]D58.33 m

Volumes of irregular solids using Simpson’s rule

If the cross-sectional areas A1, A2, A3, . . of an irregular solid bounded by
two parallel planes are known at equal intervals of width d (as shown in
Figure 23.4), then by Simpson’s rule:

Volume, V =
d
3

[.A1 Y A7/Y 4.A2 Y A4 Y A6/Y 2.A3 Y A5/]

For example, a tree trunk is 12 m in length and has a varying cross-section.
The cross-sectional areas at intervals of 2 m measured from one end are:

0.52, 0.55, 0.59, 0.63, 0.72, 0.84, 0.97 m2

To estimate the volume of the tree trunk:
A sketch of the tree trunk is similar to that shown in Figure 23.4 above, where
d D 2 m, A1 D 0.52 m2, A2 D 0.55 m2, and so on.
Using Simpson’s rule for volumes gives:

Volume D 2
3 [�0.52C 0.97�C 4�0.55C 0.63C 0.84�C 2�0.59 C 0.72�]

D 2
3 [1.49C 8.08C 2.62] D 8.13 m3

Prismoidal rule for finding volumes

The prismoidal rule applies to a solid of length x divided by only three equidis-
tant plane areas, A1, A2 and A3 as shown in Figure 23.5 and is merely an
extension of Simpson’s rule — but for volumes.
With reference to Figure 23.5,

Volume, V =
x
6

[A1 Y 4A2 Y A3]
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Figure 23.6

The prismoidal rule gives precise values of volume for regular solids such as
pyramids, cones, spheres and prismoids.
For example, a container is in the shape of a frustum of a cone. Its diameter
at the bottom is 18 cm and at the top 30 cm. To determine the capacity of the
container, correct to the nearest litre, by the prismoidal rule, if the depth is
24 cm :
The container is shown in Figure 23.6. At the midpoint, i.e. at a distance of
12 cm from one end, the radius r2 is �9C 15�/2 D 12 cm, since the sloping
sides change uniformly.

Volume of container by the prismoidal rule D x

6
[A1 C 4A2 C A3], from above,

where x D 24 cm, A1 D ��15�2 cm2, A2 D ��12�2 cm2 and A3 D ��9�2 cm2

Hence volume of container D 24

6
[��15�2 C 4��12�2 C ��9�2]

D 4[706.86 C 1809.56 C 254.47]

D 11 080 cm3 D 11 080

1000
litres

D 11 litres, correct to the nearest litre

The mean or average value of a waveform

The mean or average value, y, of the waveform shown in Figure 23.7 is
given by:

y =
area under curve
length of base, b

If the mid-ordinate rule is used to find the area under the curve, then:

y D sum of mid-ordinates

number of mid-ordinates(
D y1 C y2 C y3 C y4 C y5 C y6 C y7

7
for Figure 23.7

)

For a sine wave, the mean or average value:
(i) over one complete cycle is zero (see Figure 23.8(a)),
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(ii) over half a cycle is 0.637 × maximum value, or
2=p × maximum value,

(iii) of a full-wave rectified waveform (see Figure 23.8(b)) is
0.637×maximum value

(iv) of a half-wave rectified waveform (see Figure 23.8(c)) is
0.318×maximum value, or 1=p × maximum value

For example, to determine the average values over half a cycle of the periodic
waveforms shown in Figure 23.9:
(a) Area under triangular waveform (a) for a half cycle is given by:

Area D 1
2 (base)(perpendicular height)D 1

2 �2ð 10�3��20�D20 ð 10�3 Vs

Average value of waveform D area under curve

length of base
D 20ð 10�3 Vs

2ð 10�3 s
D10 V

(b) Area under waveform (b) for a half cycle D �1ð 1�C �3ð 2� D 7 As

Average value of waveform D area under curve

length of base
D 7 As

3 s
D 2.33 A

(c) A half cycle of the voltage waveform (c) is completed in 4 ms.
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Area under curve D 1
2 f�3� 1�10�3g�10� D 10ð 10�3 Vs

Average value of waveform D area under curve

length of base
D 10ð 10�3 Vs

4ð 10�3 s
D2.5 V

In another example, an indicator diagram for a steam engine is shown in
Figure 23.10. The base line has been divided into 6 equally spaced intervals
and the lengths of the 7 ordinates measured with the results shown in centime-
tres. To determine (a) the area of the indicator diagram using Simpson’s rule,
and (b) the mean pressure in the cylinder given that 1 cm represents 100 kPa.

(a) The width of each interval is
12.0

6
cm. Using Simpson’s rule,

area D 1
3 �2.0�[�3.6C 1.6�C 4�4.0C 2.9C 1.7�C 2�3.5C 2.2�]

D 2
3 [5.2C 34.4C 11.4] D 34 cm2

(b) Mean height of ordinates D area of diagram

length of base
D 34

12
D 2.83 cm

Since 1 cm represents 100 kPa,

the mean pressure in the cylinder D 2.83 cmð 100 kPa/cm D 283 kPa

3.6 3.5 2.9

12.0 cm

2.2 1.7 1.64.0

Figure 23.10
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24 Geometry and Triangles

Angular measurement

Geometry is a part of mathematics in which the properties of points, lines,
surfaces and solids are investigated.
An angle is the amount of rotation between two straight lines.
Angles may be measured in either degrees or radians (see Chapter 21).

1 revolution D 360 degrees, thus 1 degree D 1

360
th of one revolution. Also

1 minute D 1

60
th of a degree and 1 second D 1

60
th of a minute. 1 minute is

written as 10 and 1 second is written as 100 Thus 1° = 60′ and 1′ = 60′′

For example, to determine (a) 13°4205100 C 48°2201700 (b) 37°120800 �
21°1702500:
(a) 13°4205100

48°2201700
Adding: 62° 5′ 8′′

1°10
(b) 36°110

37° 12
0
800

21°1702500
Subtracting: 15°54′43′′

In another example, to convert 78°1502600 to degrees:

Since 1 second D 1

60
th of a minute,

2600 D
(

26

60

)0
D 0.43330

Hence 78°1502600 D 78°15.4P30

15.43330 D
(

15.4P3
60

)°
D 0.2572°, correct to 4 decimal places.

Hence 78°15′26′′ = 78.26°, correct to 4 significant places.

Types and properties of angles

(a) (i) Any angle between 0° and 90° is called an acute angle.
(ii) An angle equal to 90° is called a right angle.

(iii) Any angle between 90° and 180° is called an obtuse angle.
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(iv) Any angle greater than 180° and less than 360° is called a reflex
angle.

(b) (i) An angle of 180° lies on a straight line.
(ii) If two angles add up to 90° they are called complementary angles.

(iii) If two angles add up to 180° they are called supplementary angles.
(iv) Parallel lines are straight lines which are in the same plane and never

meet. (Such lines are denoted by arrows, as in Figure 24.1).
(v) A straight line which crosses two parallel lines is called a transversal

(see MN in Figure 24.1).
(c) With reference to Figure 24.1:

(i) a D c, b D d, e D g and f D h. Such pairs of angles are called ver-
tically opposite angles.

(ii) a D e, b D f, c D g and d D h. Such pairs of angles are called cor-
responding angles.

(iii) c D e and b D h. Such pairs of angles are called alternate angles.
(iv) bC e D 180° and cC h D 180°. Such pairs of angles are called inte-

rior angles.

For example, the angle complementary to 58°390 is (90° � 58°390), i.e.
31°21′

In another example, the angle supplementary to 111°110 is (180° � 111°110),
i.e. 68°49′

In another example, to determine angle b in Figure 24.2:
˛ D 180° � 133° D 47° (i.e. supplementary angles)

˛ D b = 47° (corresponding angles between parallel lines).
In another example, to determine the value of angle q in Figure 24.3:
Let a straight line FG be drawn through E such that FG is parallel to AB
and CD. 6 BAE D 6 AEF (alternate angles between parallel lines AB and FG),
hence 6 AEF D 23°370. 6 ECD D 6 FEC (alternate angles between parallel lines
FG and CD), hence 6 FEC D 35°490

Angle q D 6 AEFC 6 FEC D 23°370 C 35°490 D 59°26′

In another example, to determine angles c and d in Figure 24.4:

b D 46° (corresponding angles between parallel lines).

P

R

Q

S
h e

g

M

N

f

d a
c b

Figure 24.1

b

133°

a

Figure 24.2
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A B
23°37′

qF G
E

C D
35°49′

Figure 24.3

d
46°

b a
c

Figure 24.4

Also bC c C 90° D 180° (angles on a straight line).

Hence 46° C c C 90° D 180°, from which c = 44°.

b and d are supplementary, hence d D 180° � 46° D 134°

Alternatively, 90° C c D d (vertically opposite angles).

Properties of triangles

A triangle is a figure enclosed by three straight lines. The sum of the three
angles of a triangle is equal to 180°. Types of triangles:
(i) An acute-angled triangle is one in which all the angles are acute, i.e. all

the angles are less than 90°.
(ii) A right-angled triangle is one that contains a right angle.

(iii) An obtuse-angled triangle is one that contains an obtuse angle, i.e. one
angle which lies between 90° and 180°.

(iv) An equilateral triangle is one in which all the sides and all the angles
are equal (i.e. each 60°).

(v) An isosceles triangle is one in which two angles and two sides are equal.
(vi) A scalene triangle is one with unequal angles and therefore unequal

sides.
With reference to Figure 24.5:

(i) Angles A, B and C are called interior angles of the triangle.
(ii) Angle q is called an exterior angle of the triangle and is equal to the

sum of the two opposite interior angles, i.e. q D AC C
(iii) aC bC c is called the perimeter of the triangle.

A

CBθ

bc

a

Figure 24.5

A

B
C

D

E

θ

a

62°

15°

Figure 24.6
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56°

A

B

D

C

Figure 24.7

P Q

X Y

R

Z

67°
28° 28°

Figure 24.8

For example, to determine the value of q and a in Figure 24.6:
In triangle ABC, 6 AC 6 BC 6 C D 180° (angles in a triangle add up to 180°),
hence 6 C D 180° � 90° � 62° D 28°. Thus 6 DCE D 28° (vertically opposite
angles). q D 6 DCEC 6 DEC (exterior angle of a triangle is equal to the sum
of the two opposite interior angles). Hence 6 6 q D 28° C 15° D 43°
6 6 a and 6 DEC are supplementary, thus a D 180° � 15° D 165°
In another example, ABC is an isosceles triangle in which the unequal angle
BAC is 56°. AB is extended to D as shown in Figure 24.7. To determine the
angle DBC:
Since the three interior angles of a triangle add up to 180° then
56° C 6 BC 6 C D 180°, i.e. 6 BC 6 C D 180° � 56° D 124°

Triangle ABC is isosceles hence 6 B D 6 C D 124°

2
D 62°

6 DBC D 6 AC 6 C (exterior angle equals sum of two interior opposite angles),
i.e. 6 DBC D 56° C 62° D 118°

[Alternatively, 6 DBCC 6 ABC D 180° (i.e. supplementary angles)]

Congruent triangles

Two triangles are said to be congruent if they are equal in all respects, i.e.
three angles and three sides in one triangle are equal to three angles and three
sides in the other triangle. Two triangles are congruent if:
(i) the three sides of one are equal to the three sides of the other (SSS),

(ii) they have two sides of the one equal to two sides of the other, and if the
angles included by these sides are equal (SAS),

(iii) two angles of the one are equal to two angles of the other and any side
of the first is equal to the corresponding side of the other (ASA), or

(iv) their hypotenuses are equal and if one other side of one is equal to the
corresponding side of the other (RHS).

For example, in Figure 24.8, triangle PQR is isosceles with Z the mid-point
of PQ. To prove that triangles PXZ and QYZ are congruent, triangles RXZ
and RYZ are congruent and to find the values of angles RPZ and RXZ:
Since triangle PQR is isosceles PR D RQ and thus 6 QPR D 6 RQP
6 RXZ D 6 QPRC 28° and 6 RYZ D 6 RQPC 28° (exterior angles of a triangle
equal the sum of the two interior opposite angles). Hence 6 RXZ D 6 RYZ.
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6 PXZ D 180° � 6 RXZ and 6 QYZ D 180° � 6 RYZ. Thus
6 PXZ D 6 QYZ.
Triangles PXZ and QYZ are congruent since 6 XPZ D 6 YQZ, PZ D ZQ and
6 XZP D 6 YZQ (ASA). Hence XZ D YZ.
Triangles PRZ and QRZ are congruent since PR D RQ, 6 RPZ D 6 RQZ and
PZ D ZQ (SAS). Hence 6 RZX D 6 RZY.
Triangles RXZ and RYZ are congruent since 6 RXZ D 6 RYZ, XZ D YZ and
6 RZX D 6 RZY (ASA). 6 QRZ D 67° and thus 6 PRQ D 67° C 67° D 134°.
Hence
6 RPZ D 6 RQZ D 180° � 134°

2
D 23° and 6 RXZ D 23° C 28° D 51°

(external angle of a triangle equals the sum of the two interior opposite angles)

Similar triangles

Two triangles are said to be similar if the angles of one triangle are equal to
the angles of the other triangle. With reference to Figure 24.9: Triangles ABC
and PQR are similar and the corresponding sides are in proportion to each
other,

i.e.
p
a

=
q
b

=
r
c

For example, to find the length of side a in Figure 24.10:
In triangle ABC, 50° C 70° C 6 C D 180°, from which 6 C D 60°

In triangle DEF, 6 E D 180° � 50° � 60° D 70°. Hence triangles ABC and
DEF are similar, since their angles are the same. Since corresponding sides
are in proportion to each other then:

a

d
D c

f
i.e.

a

4.42
D 12.0

5.0

Hence a D 12.0

5.0
4.42� D 10.61 cm

A

B Ca

c
r

pQ R

P

q

65° 65° 58°58°

57°

57°
b

Figure 24.9

A

a
B

70°

50°

50°
60°

C

D

E F

c =12.0 cm

f = 5.0 cm

d = 4.42 cm

Figure 24.10
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Construction of triangles

To construct any triangle the following drawing instruments are needed:
(i) ruler and/or straight edge, (ii) compass, (iii) protractor, (iv) pencil.
For example, to construct a triangle whose sides are 6 cm, 5 cm and 3 cm:
With reference to Figure 24.11:
(i) Draw a straight line of any length, and with a pair of compasses, mark

out 6 cm length and label it AB.
(ii) Set compass to 5 cm and with centre at A describe arc DE.

(iii) Set compass to 3 cm and with centre at B describe arc FG.
(iv) The intersection of the two curves at C is the vertex of the required

triangle. Join AC and BC by straight lines.
It may be proved by measurement that the ratio of the angles of a triangle is
not equal to the ratio of the sides (i.e. in this problem, the angle opposite the
3 cm side is not equal to half the angle opposite the 6 cm side).
In another example, To construct a triangle ABC such that a D 6 cm,
b D 3 cm and 6 C D 60°:

With reference to Figure 24.12:
(i) Draw a line BC, 6 cm long.

(ii) Using a protractor centred at C make an angle of 60° to BC.
(iii) From C measure a length of 3 cm and label A.
(iv) Join B to A by a straight line.

F
E

BA 6 cm

C G
D

Figure 24.11

A

CB a = 6 cm

b = 3 cm

60°

Figure 24.12

Q

P

R′
Q′

5 cm

70° 44°
R

Figure 24.13
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In another example, to construct a triangle PQR given that QR D 5 cm,
6 Q D 70° and 6 R D 44°:
With reference to Figure 24.13:

(i) Draw a straight line 5 cm long and label it QR.
(ii) Use a protractor centred at Q and make an angle of 70°. Draw QQ0.

(iii) Use a protractor centred at R and make an angle of 44°. Draw RR0.
(iv) The intersection of QQ0 and RR0 forms the vertex P of the triangle.

25 Introduction to Trigonometry
Trigonometry is the branch of mathematics that deals with the measurement
of sides and angles of triangles, and their relationship with each other. There
are many applications in engineering where knowledge of trigonometry is
needed.

The theorem of Pythagoras

With reference to Figure 25.1, the side opposite the right angle (i.e. side b) is
called the hypotenuse. The theorem of Pythagoras states:
‘In any right-angled triangle, the square on the hypotenuse is equal to the sum
of the squares on the other two sides.’
Hence b2 = a2 Y c2

For example, To find the length of EF in Figure 25.2:

By Pythagoras’ theorem: e2 D d2 C f2

Hence 132 D d2 C 52

169 D d2 C 25

d2 D 169� 25 D 144

Thus d D
p

144 D 12 cm

i.e. EF = 12 cm

In another example, two aircraft leave an airfield at the same time. One
travels due north at an average speed of 300 km/h and the other due west at
an average speed of 220 km/h. To calculate their distance apart after 4 hours:

A

c

a

b

B C

Figure 25.1

D

E
d

f = 5 cm e = 13 cm

F

Figure 25.2
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N

S

W E
B

C A

1200 km

880 km

Figure 25.3

θ

c

a

b

Figure 25.4

After 4 hours, the first aircraft has travelled 4ð 300 D 1200 km, due north,
and the second aircraft has travelled 4ð 220 D 880 km due west, as shown
in Figure 25.3. Distance apart after 4 hours D BC
From Pythagoras’ theorem:

BC2 D 12002 C 8802

D 1 440 000 C 774 400 and BC D
p

2 214 400

Hence distance apart after 4 hours = 1488 km

Trigonometric ratios of acute angles

(a) With reference to the right-angled triangle shown in Figure 25.4:

(i) sine q D opposite side

hypotenuse
, i.e. sin q =

b
c

(ii) cosine q D adjacent side

hypotenuse
, i.e. cos q =

a
c

(iii) tangent q D opposite side

adjacent side
, i.e. tan q =

b
a

(iv) secant q D hypotenuse

adjacent side
, i.e. sec q =

c
a

(v) cosecant q D hypotenuse

opposite side
, i.e. cosec q =

c
b

(vi) cotangent q D adjacent side

opposite side
, i.e. cot q =

a
b

(b) From above,

(i)
sin q

cos q
D

b

c
a

c

D b

a
D tan q, i.e. tan q =

sin q

cos q
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X

Z

41

9
Y

Figure 25.5 Figure 25.6 Figure 25.7

(ii)
cos q

sin q
D

a

c
b

c

D a

b
D cot q, i.e. cot q =

cos q

sin q

(iii) sec q =
1

cos q

(iv) cosec q =
1

sin q
(Note ‘s’ and ‘c’ go together)

(v) cot q =
1

tan q

Secants, cosecants and cotangents are called the reciprocal ratios.
For example, to determine the value of the other five trigonometry ratios if

cosX D 9

41
:

Figure 25.5 shows a right-angled triangle XYZ.

Since cos X D 9

41
, then XY D 9 units and XZ D 41 units.

Using Pythagoras’ theorem: 412 D 92 C YZ2

from which YZ D
√

412 � 92 D 40 units

Thus sin X =
40
41
, tan X =

40
9

= 4
4
9
, cosec X =

41
40

= 1
1
40
,

sec X =
41
9

= 4
5
9

and cot X =
9
40

Fractional and surd forms of trigonometric ratios

In Figure 25.6, ABC is an equilateral triangle of side 2 units. AD bisects angle
A and bisects the side BC. Using Pythagoras’ theorem on triangle ABC gives:
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AD D p22 � 12 D p3.

Hence, sin 30° D BD

AB
D 1

2
, cos 30° D AD

AB
D
p

3

2

and tan 30° D BD

AD
D 1p

3

sin 60° D AD

AB
D
p

3

2
, cos 60° D BD

AB
D 1

2

and tan 60° D AD

BD
D
p

3

In Figure 25.7, PQR ia an isosceles triangle with PQ D QR D 1 unit. By
Pythagoras’ theorem, PR D p12 C 12 D p2

Hence, sin 45° D 1p
2
, cos 45° D 1p

2
and tan 45° D 1

A quantity that is not exactly expressible as a rational number is called a surd.
For example,

p
2 and

p
3 are called surds because they cannot be expressed

as a fraction and the decimal part may be continued indefinitely. For example,p
2 D 1.4142135 . . . , and

p
3 D 1.7320508 . . .

From above, sin 30° D cos 60°, sin 45° D cos 45° and sin 60° D cos 30°.
In general, sin q = cos.90° − q/ and cos q = sin.90° − q/

For example, it may be checked by calculator that sin 25° D cos 65°,
sin 42° D cos 48° and cos 84°100 D sin 5°500, and so on.

For example, to evaluate
3 tan 60° � 2 cos 30°

tan 30°
using surd forms:

From above, tan 60° D p3, cos 30° D
p

3

2
and tan 30° D 1p

3
, hence

3 tan 60° � 2 cos 30°

tan 30°
D

3
p

3�� 2

(p
3

2

)

1p
3

D 3
p

3�p3
1p
3

D 2
p

3
1p
3

D 2
p

3

(p
3

1

)
D 23� D 6

Solution of right-angled triangles

To ‘solve a right-angled triangle’ means ‘to find the unknown sides and
angles’. This is achieved by using (i) the theorem of Pythagoras, and/or
(ii) trigonometric ratios.
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P

Q R
38°

7.5 cm

Figure 25.8

For example, to find the lengths of PQ and PR in triangle PQR shown in
Figure 25.8:

tan 38° D PQ

QR
D PQ

7.5
,

hence PQ D 7.5 tan 38° D 7.50.7813� D 5.860 cm

cos 38° D QR

PR
D 7.5

PR
,

hence PR D 7.5

cos 38°
D 7.5

0.7880
D 9.518 cm

[Check: Using Pythagoras’ theorem 7.5�2 C 5.860�2 D 90.59 D 9.518�2]

Angles of elevation and depression

(a) If, in Figure 25.9, BC represents horizontal ground and AB a vertical
flagpole, then the angle of elevation of the top of the flagpole, A, from
the point C is the angle that the imaginary straight line AC must be raised
(or elevated) from the horizontal CB, i.e. angle q.

(b) If, in Figure 25.10, PQ represents a vertical cliff and R a ship at sea, then
the angle of depression of the ship from point P is the angle through
which the imaginary straight line PR must be lowered (or depressed) from
the horizontal to the ship, i.e. angle f. (Note, 6 PRQ is also f — alternate
angles between parallel lines.)

For example, an electricity pylon stands on horizontal ground. At a point
80 m from the base of the pylon, the angle of elevation of the top of the pylon
is 23°. To calculate the height of the pylon to the nearest metre:

C B

A

θ

Figure 25.9

P

Q R

φ

Figure 25.10
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C B
80 m

23°

A

Figure 25.11

A

B C x D

75 m

30°

20°

30°

20°

Figure 25.12

Figure 25.11 shows the pylon AB and the angle of elevation of A from point

C is 23°. Now tan 23° D AB

BC
D AB

80
.

Hence height of pylon AB D 80 tan 23° D 800.4245� D 33.96 m

D 34 m to the nearest metre

In another example, the angle of depression of a ship viewed at a particular
instant from the top of a 75 m vertical cliff is 30°. The ship is sailing away
from the cliff at constant speed and 1 minute later its angle of depression from
the top of the cliff is 20°. To find (a) the distance of the ship from the base
of the cliff at this instant, and (b) the speed of the ship in km/h:

(a) Figure 25.12 shows the cliff AB, the initial position of the ship at C and
the final position at D. Since the angle of depression is initially 30° then
6 ACB D 30° (alternate angles between parallel lines).

tan 30° D AB

BC
D 75

BC
hence initial position of ship from base of cliff,

BC D 75

tan 30°
D 75

0.5774
D 129.9 m

(b) In triangle ABD, tan 20° D AB

BD
D 75

BCC CD
D 75

129.9C x

Hence 129.9C x D 75

tan 20°
D 75

0.3640
D 206.0 m

from which x D 206.0� 129.9 D 76.1 m

Thus the ship sails 76.1 m in 1 minute, i.e. 60 s,

hence, speed of ship D distance

time
D 76.1

60
m/s

D 76.1ð 60ð 60

60ð 1000
km/h D 4.57 km=h

Evaluating trigonometric ratios

Four-figure tables are available which gives sines, cosines, and tangents, for
angles between 0° and 90°. However, the easiest method of evaluating trigono-
metric functions of any angle is by using a calculator.
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The following values, correct to 4 decimal places, may be checked:

sine 18° D 0.3090, cosine 56° D 0.5592
sine 172° D 0.1392 cosine 115° D �0.4226,
sine 241.63° D �0.8799, cosine 331.78° D 0.8811

tangent 29° D 0.5543, tangent 296.42° D �2.0127
tangent 178° D �0.0349

To evaluate, say, sine 42°230 using a calculator means finding sine 42
23°

60
since there are 60 minutes in 1 degree.

23

60
D 0.383P3, thus 42°230 D 42.383P3°

Thus sine 42°230 D sine 42.383P3° D 0.6741,

correct to 4 decimal places.

Similarly, cosine 72°380 D cosine 72
38°

60
D 0.2985,

correct to 4 decimal places.

Most calculators contain only sine, cosine and tangent functions. Thus to
evaluate secants, cosecants and cotangents, reciprocals need to be used. The
following values, correct to 4 decimal places, may be checked:

secant 32°D 1

cos 32°
D 1.1792 secant 215.12°D 1

cos 215.12°
D �1.2226

cosecant 75°D 1

sin 75°
D 1.0353 cosecant 321.62°D 1

sin 321.62°
D �1.6106

cotangent 41°D 1

tan 41°
D 1.1504 cotangent 263.59°D 1

tan 263.59°
D 0.1123

For example, to evaluate, correct to 4 significant figures: (a) sin 1.481
(b) tan 2.93 (c) secant 5.37 (d) cosecant �/4

(a) sin 1.481 means the sine of 1.481 radians. Hence a calculator needs to be
on the radian function. Hence sin 1.481 D 0.9960

(b) tan 2.93 D −0.2148

(c) sec 5.37 D 1

cos 5.37
D 1.6361

(d) cosec�/4� D 1

sin�/4�
D 1

sin 0.785398 . . .
D 1.4142

In another example, to determine the acute angles:
(a) sec�1 2.3164 (b) cosec�11.1784

(a) sec�1 2.3164 D cos�1
(

1

2.3164

)
D cos�1 0.4317 . .

D 64.42° or 64°25′ or 1.124 rad
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(b) cosec�1 1.1784 D sin�1
(

1

1.1784

)
D sin�1 0.8486 . .

D 58.06° or 58°4′ or 1.013 rad

In another example, to evaluate correct to 4 decimal places: (a) sec�115°�
(b) cosec�95°470�
(a) Positive angles are considered by convention to be anticlockwise and neg-

ative angles as clockwise.
Hence �115° is actually the same as 245° (i.e. 360° � 115°�

Hence sec�115°� D sec 245° D 1

cos 245°
D −2.3662

(b) cosec�95°470� D 1

sin
(
�95

47°

60

) D −1.0051

26 Cartesian and Polar Co-ordinates
Introduction

There are two ways in which the position of a point in a plane can be repre-
sented. These are (a) by Cartesian co-ordinates, i.e. (x, y), and (b) by polar
co-ordinates, i.e. (r, �), where r is a ‘radius’ from a fixed point and � is an
angle from a fixed point.

Changing from Cartesian into polar co-ordinates

In Figure 26.1, if lengths x and y are known, then the length of r can be
obtained from Pythagoras’ theorem (see Chapter 25) since OPQ is a right-
angled triangle.

Hence r2 D x2 C y2�

from which, r =
√

x2 Y y2

From trigonometric ratios (see Chapter 25), tan � D y

x

from which q = tan−1 y
x

r D
√
x2 C y2 and � D tan�1 y

x
are the two formulae we need to change from

Cartesian to polar co-ordinates. The angle �, which may be expressed in
degrees or radians, must always be measured from the positive x-axis, i.e.
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Figure 26.1 Figure 26.2

measured from the line OQ in Figure 26.1. It is suggested that when changing
from Cartesian to polar co-ordinates a diagram should always be sketched.
For example, to express in polar co-ordinates the position (�4, 3):
A diagram representing the point using the Cartesian co-ordinates (�4, 3) is
shown in Figure 26.2.

From Pythagoras’ theorem, r D
√

42 C 32 D 5

By trigonometric ratios, ˛ D tan�1 3
4 D 36.87° or 0.644 rad

Hence � D 180° � 36.87° D 143.13° or � D � � 0.644 D 2.498 rad
Hence the position of point P in polar coordinate form is (5, 143.13°) or
(5, 2.498 rad)
In another example, to express (�5, �12) in polar co-ordinates:
A sketch showing the position (�5, �12) is shown in Figure 26.3.

r D
√

52 C 122 D 13 and ˛ D tan�1 12

5
D 67.38° or 1.176 rad

Hence � D 180° C 67.38° D 247.38° or � D � C 1.176 D 4.318 rad
Thus (−5, −12) in Cartesian co-ordinates corresponds to (13, 247.38°) or
(13, 4.318 rad) in polar co-ordinates.

Figure 26.3 Figure 26.4
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Changing from polar into Cartesian co-ordinates

From the right-angled triangle OPQ in Figure 26.4,

cos � D x

r
and sin � D y

r
, from trigonometric ratios

Hence x = r cos q and y = r sin q

If lengths r and angle � are known then x D r cos � and y D r sin � are the
two formulae we need to change from polar to Cartesian co-ordinates.
For example, to express (6, 137°) in Cartesian co-ordinates:
A sketch showing the position (6, 137°) is shown in Figure 26.5.

x D r cos � D 6 cos 137° D �4.388

which corresponds to length OA in Figure 26.5.

y D r sin � D 6 sin 137° D 4.092

which corresponds to length AB in Figure 26.5.
Thus (6, 137°) in polar co-ordinates corresponds to (−4.388, 4.092) in
Cartesian co-ordinates.
(Note that when changing from polar to Cartesian co-ordinates it is not quite so
essential to draw a sketch. Use of x D r cos � and y D r sin � automatically
produces the correct signs).
In another example, to express (4.5, 5.16 rad) in Cartesian co-ordinates:
A sketch showing the position (4.5, 5.16 rad) is shown in Figure 26.6.

x D r cos � D 4.5 cos 5.16 D 1.948

which corresponds to length OA in Figure 26.6.

y D r sin � D 4.5 sin 5.16 D �4.057

which corresponds to length AB in Figure 26.6.
Thus (1.948, −4.057) in Cartesian co-ordinates corresponds to
(4.5, 5.16 rad) in polar co-ordinates.

Figure 26.5 Figure 26.6
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Use of R! P and P! R functions on calculators

Another name for Cartesian co-ordinates is rectangular co-ordinates. Many
scientific notation calculators possess R! P and P! R functions. The R is
the first letter of the word rectangular and the P is the first letter of the word
polar. Check the operation manual for your particular calculator to determine
how to use these two functions. They make changing from Cartesian to polar
co-ordinates, and vice-versa, so much quicker and easier.

27 Triangles and Some Practical Applications

Sine and cosine rules

To ‘solve a triangle’ means ‘to find the values of unknown sides and angles’. If
a triangle is right-angled, trigonometric ratios and the theorem of Pythagoras
may be used for its solution, as shown in chapter 25. However, for a non-
right-angled triangle, trigonometric ratios and Pythagoras’ theorem cannot
be used. Instead, two rules, called the sine rule and thecosine rule, are used.
Sine rule
With reference to triangle ABC of Figure 27.1, the sine rule states:

a
sin A

=
b

sin B
=

c
sin C

The rule may be used only when:
(i) 1 side and any 2 angles are initially given, or

(ii) 2 sides and an angle (not the included angle) are initially given.

Cosine rule
With reference to triangle ABC of Figure 27.1, the cosine rule states:

a2= b2 Y c2 − 2bc cos A

or b2= a2 Y c2 − 2ac cos B

or c2= a2 Y b2 − 2ab cos C

A

B Ca

c b

Figure 27.1

X

Y

z y

x = 15.2 cm Z

51°

67°

Figure 27.2
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The rule may be used only when:
(i) 2 sides and the included angle are initially given, or

(ii) 3 sides are initially given.

Area of any triangle

The area of any triangle such as ABC of Figure 27.1 is given by:

(i) 1
2 × base × perpendicular height, or

(ii) 1
2 ab sin C or 1

2 ac sin B or 1
2 bc sin A, or

(iii)
p

[s.s − 1/.s − b/.s − c/], where s =
a Y b Y c

2

For example, in a triangle XYZ, 6 X D 51°, 6 Y D 67° and YZ D 15.2 cm.
To solve the triangle and find its area:
The triangle XYZ is shown in Figure 27.2. Since the angles in a triangle add
up to 180°, then Z D 180° � 51° � 67° D 62°. Applying the sine rule:

15.2

sin 51°
D y

sin 67°
D z

sin 62°

Using
15.2

sin 51°
D y

sin 67°
and transposing gives :

y D 15.2 sin 67°

sin 51°
D 18.00 cm = XZ

Using
15.2

sin 51°
D z

sin 62°
and transposing gives :

z D 15.2 sin 62°

sin 51°
D 17.27 cm = XY

Area of triangle XYZ D 1
2 xy sinZ

D 1
2 15.2�18.00� sin 62° D 120.8 cm2

(or area D 1
2 xz sinY D 1

2 15.2�17.27� sin 67° D 120.8 cm2)
It is always worth checking with triangle problems that the longest side is
opposite the largest angle, and vice-versa. In this problem, Y is the largest
angle and XZ is the longest of the three sides.
In another example, to solve triangle DEF and find its area given that EF D
35.0 mm, DE D 25.0 mm and 6 E D 64°:
Triangle DEF is shown in Figure 27.3.
Applying the cosine rule: e2 D d2 C f2 � 2df cosE

i.e. e2 D 35.0�2 C 25.0�2 � [235.0�25.0� cos 64°]

D 1225C 625� 767.1 D 1083

from which, e D
p

1083 D 32.91 mm
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Applying the sine rule:
32.91

sin 64°
D 25.0

sinF

from which, sin F D 25.0 sin 64°

32.91
D 0.6828

Thus 6 F D sin�1 0.6828 D 43°40 or 136°560

D

ef = 25.0
mm

d = 35.0 mm

64°
FE

Figure 27.3

F D 136°560 is not possible in this case since 136°560 C 64° is greater than
180°. Thus only F = 43°4′ is valid.

6 D D 180° � 64° � 43°40 D 72°56′

Area of triangle DEF D 1
2df sin E

D 1
2 35.0�25.0� sin 64° D 393.2 mm2

Practical situations involving trigonometry

There are a number of practical situations where the use of trigonometry is
needed to find unknown sides and angles of triangles.

For example, a room 8.0 m wide has a span roof that slopes at 33° on one
side and 40° on the other. To find the length of the roof slopes, correct to the
nearest centimetre:
A section of the roof is shown in Figure 27.4.
Angle at ridge, B D 180° � 33° � 40° D 107°

From the sine rule:
8.0

sin 107°
D a

sin 33°

from which, a D 8.0 sin 33°

sin 107°
D 4.556 m

Also from the sine rule:
8.0

sin 107°
D c

sin 40°

from which, c D 8.0 sin 40°

sin 107°
D 5.377 m

A

B

C33° 40°
8.0 m

Figure 27.4

A

C B

V 2 = 100 V

V1 = 40 V

45°

Figure 27.5
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Hence the roof slopes are 4.56 m and 5.38 m, correct to the nearest cen-
timetre.
In another example, two voltage phasors are shown in Figure 27.5 where
V1 D 40 V and V2 D 100 V. To determine the value of their resultant (i.e.
length OA) and the angle the resultant makes with V1:
Angle OBA D 180° � 45° D 135°
Applying the cosine rule:

OA2 D V2
1 C V2

2 � 2V1V2 cos OBA

D 402 C 1002 � f240�100� cos 135°g
D 1600 C 10000 � f�5657g
D 1600 C 10000 C 5657 D 17257

The resultant OA D
p

17257 D 131.4 V

Applying the sine rule:

131.4

sin 135°
D 100

sin AOB

from which, sin AOB D 100 sin 135°

131.4
D 0.5381

Hence angle AOB D sin�1 0.5381 D 32°330 (or 147°270, which is impossible
in this case). Hence, the resultant voltage is 131.4 volts at 32°33′ to V1
In another example, a crank mechanism of a petrol engine is shown in
Figure 27.6. Arm OA is 10.0 cm long and rotates clockwise about 0. The
connecting rod AB is 30.0 cm long and end B is constrained to move hor-
izontally. To determine the angle between the connecting rod AB and the
horizontal and the length of OB for the position shown in Figure 27.6:

Applying the sine rule:
AB

sin 50°
D AO

sinB

from which, sinB D AO sin 50°

AB
D 10.0 sin 50°

30.0
D 0.2553

Hence B D sin�1 0.2553 D 14°470 (or 165°130, which is impossible in this
case).
Hence the connecting rod AB makes an angle of 14°47′ with the horizontal.

B

A

O

10.0 cm
50°

30.0 cm

Figure 27.6

B

C

D

A

56°

62.3 m

39.8 m

21.4 m

42.5 m

114°

Figure 27.7
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Angle OAB D 180° � 50° � 14°470 D 115°130

Applying the sine rule:
30.0

sin 50°
D OB

sin 115°130

from which, OB D 30.0 sin 115°130

sin 50°
D 35.43 cm

In another example, the area of a field is in the form of a quadrilateral ABCD
as shown in Figure 27.7. To determine its area:
A diagonal drawn from B to D divides the quadrilateral into two triangles.

Area of quadrilateral ABCD

D area of triangle ABD + area of triangle BCD

D 1
2 39.8�21.4� sin 114° C 1

2 42.5�62.3� sin 56°

D 389.04C 1097.5 D 1487 m2

28 Trigonometric Waveforms

Graphs of trigonometric functions

By drawing up tables of values from 0° to 360°, graphs of y D sinA, y D cosA
and y D tanA may be plotted as shown in Figure 28.1.
From the graphs it is seen that:

(i) Sine and cosine graphs oscillate between peak values of š1
(ii) The cosine curve is the same shape as the sine curve but displaced by

90°

(iii) The sine and cosine curves are continuous and they repeat at intervals
of 360°; the tangent curve appears to be discontinuous and repeats at
intervals of 180°.

Angles of any magnitude

Figure 28.2 shows rectangular axes XX0 and YY0 intersecting at origin 0. As
with graphical work, measurements made to the right and above 0 are positive,
while those to the left and downwards are negative. Let 0A be free to rotate
about 0. By convention, when 0A moves anticlockwise angular measurement
is considered positive, and vice versa.
Let OA be rotated anticlockwise so that �1 is any angle in the first quadrant and
let perpendicular AB be constructed to form the right-angled triangle OAB in
Figure 28.3. Since all three sides of the triangle are positive, the trigonometric
ratios sine, cosine and tangent will all be positive in the first quadrant. (Note:
OA is always positive since it is the radius of a circle).
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Figure 28.1

Let 0A be further rotated so that �2 is any angle in the second quadrant and
let AC be constructed to form the right-angled triangle 0AC. Then

sin �2 D CC D C cos �2 D �C D � tan �2 D C� D �

Let 0A be further rotated so that �3 is any angle in the third quadrant and let
AD be constructed to form the right-angled triangle 0AD. Then

sin �3 D �C D � cos �3 D �C D � tan �3 D �� D C



131

Figure 28.2 Figure 28.3

Let 0A be further rotated so that �4 is any angle in the fourth quadrant and
let AE be constructed to form the right-angled triangle 0AE. Then

sin �4 D �C D � cos �4 D CC D C tan �4 D �C D �

The above results are summarised in Figure 28.4. The letters underlined spell
the word CAST when starting in the fourth quadrant and moving in an anti-
clockwise direction.
In the first quadrant of Figure 28.1 all of the curves have positive values; in
the second only sine is positive; in the third only tangent is positive; in the
fourth only cosine is positive — exactly as summarised in Figure 28.4.
A knowledge of angles of any magnitude is needed when finding, for example,
all the angles between 0° and 360° whose sine is, say, 0.3261. If 0.3261 is
entered into a calculator and then the inverse sine key pressed (or sin�1 key)
the answer 19.03° appears. However, there is a second angle between 0° and
360° which the calculator does not give. Sine is also positive in the second
quadrant [either from CAST or from Figure 28.1(a)]. The other angle is shown

Figure 28.4
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in Figure 28.5 as angle � where � D 180° � 19.03° D 160.97° . Thus 19.03°

and 160.97° are the angles between 0° and 360° whose sine is 0.3261 (check
that sin 160.97° D 0.3261 on your calculator).
Be careful! Your calculator only gives you one of these answers. The sec-
ond answer needs to be deduced from a knowledge of angles of any
magnitude.
For example, to determine all the angles between 0° and 360° whose sine is
�0.4638:
The angles whose sine is �0.4638 occurs in the third and fourth quadrants
since sine is negative in these quadrants — see Figure 28.6.
From Figure 28.7, � D sin�1 0.4638 D 27.63°. Measured from 0°, the two
angles between 0° and 360° whose sine is �0.4638 are 180° C 27.63°, i.e.
207.63° and 360° � 27.63°, i.e. 332.37°

(Note that a calculator only gives one answer, i.e. �27.632588°).
In another example, to determine all the angles between 0° and 360° whose
tangent is 1.7629:
A tangent is positive in the first and third quadrants — see Figure 28.8.

From Figure 28.9, � D tan�1 1.7629 D 60.44°

Measured from 0°, the two angles between 0° and 360° whose tangent is
1.7629 are 60.44° and 180° C 60.44°, i.e. 240.44°

Figure 28.5 Figure 28.6

Figure 28.7 Figure 28.8
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Figure 28.9

The production of a sine and cosine wave

In Figure 28.10, let OR be a vector 1 unit long and free to rotate anticlockwise
about O. In one revolution a circle is produced and is shown with 15° sectors.
Each radius arm has a vertical and a horizontal component. For example, at
30°, the vertical component is TS and the horizontal component is OS.
From trigonometric ratios,

sin 30° D TS

TO
D TS

1
, i.e. TS D sin 30°

and cos 30° D OS

TO
D OS

1
, i.e. OS D cos 30°

The vertical component TS may be projected across to T0S0, which is the
corresponding value of 30° on the graph of y against angle x°. If all such

Figure 28.10

Figure 28.11
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vertical components as TS are projected on to the graph, then a sine wave is
produced as shown in Figure 28.10.
If all horizontal components such as OS are projected on to a graph of y
against angle x°, then a cosine wave is produced. It is easier to visualise
these projections by redrawing the circle with the radius arm OR initially in
a vertical position as shown in Figure 28.11.
From Figures 28.10 and 28.11 it is seen that a cosine curve is of the same
form as the sine curve but is displaced by 90° (or �/2 radians).

Sine and cosine curves

Graphs of sine and cosine waveforms

Graphs of y D sinA and y D sin 2A are shown in Figure 28.12

A graph of y D sin 1
2A is shown in Figure 28.13.

Graph of y D cosA and y D cos 2A are shown in Figure 28.14.

A graph of y D cos 1
2A is shown in Figure 28.15.

Figure 28.12

Figure 28.13
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Figure 28.14

Figure 28.15

Figure 28.16

Periodic functions and period
Each of the graphs shown in Figures 28.12 to 28.15 will repeat themselves as
angle A increases and are thus called periodic functions.
y D sinA and y D cosA repeat themselves every 360° (or 2� radians); thus
360° is called the period of these waveforms. y D sin 2A and y D cos 2A
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repeat themselves every 180° (or � radians); thus 180° is the period of these
waveforms.
In general, if y D sinpA or y D cospA (where p is a constant) then the period
of the waveform is 360°/p (or 2�/p rad). Hence if y D sin 3A then the period
is 360/3, i.e. 120°, and if y D cos 4A then the period is 360/4, i.e. 90°.
Amplitude
Amplitude is the name given to the maximum or peak value of a sine wave.
Each of the graphs shown in Figures 28.12 to 28.15 has an amplitude of C1
(i.e. they oscillate between C1 and �1). However, if y D 4 sinA, each of the
values of sinA is multiplied by 4 and the maximum value, and thus amplitude,
is 4. Similarly, if y D 5 cos 2A, the amplitude is 5 and the period is 360°/2,
i.e. 180°.

For example, to sketch y D 3 sin 2A from A D 0 to A D 360°:

Amplitude D 3 and period D 360/2 D 180°.

A sketch of y D 3 sin 2A is shown in Figure 28.16.

In another example, to sketch y D 4 cos 2x from x D 0° to x D 360°:

Amplitude D 4 and period D 360°/2 D 180°

A sketch of y D 4 cos 2x is shown in Figure 28.17.
Lagging and leading angles
A sine or cosine curve may not always start at 0°. To show this a periodic
function is represented by y D sinAš ˛� or y D cosAš ˛� where ˛ is a
phase displacement compared with y D sinA or y D cosA.
By drawing up a table of values, a graph of y D sinA� 60°� may be plotted
as shown in Figure 28.18. If y D sinA is assumed to start at 0° then y D
sinA� 60°� starts 60° later (i.e. has a zero value 60° later). Thus
y D sinA� 60°� is said to lag y D sinA by 60°.
By drawing up a table of values, a graph of y D cosAC 45°� may be plotted
as shown in Figure 28.19. If y D cosA is assumed to start at 0° then y D
cosAC 45°� starts 45° earlier (i.e. has a zero value 45° earlier). Thus y D
cosAC 45°� is said to lead y D cosA by 45°.
Generally, a graph of y D sinA� ˛� lags y D sinA by angle ˛, and a graph
of y D sinAC ˛� leads y D sinA by angle ˛.

Figure 28.17
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Figure 28.18

Figure 28.19

Figure 28.20

A cosine curve is the same shape as a sine curve but starts 90° earlier, i.e.
leads by 90°. Hence cosA D sinAC 90°�.
For example, to sketch y D 5 sinAC 30°� from A D 0° to A D 360°:
Amplitude D 5 and period D 360°/1 D 360°
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Figure 28.21

5 sinAC 30°� leads 5 sinA by 30° (i.e. starts 30° earlier)
A sketch of y D 5 sinAC 30°� is shown in Figure 28.20.
In another example, to sketch y D 7 sin2A� �/3� in the range
0  A  360°:

Amplitude D 7 and period D 2�/2 D � radians

In general, y = sin.pt − a/ lags y = sin pt by a=p, hence 7 sin2A� �/3�
lags 7 sin 2A by �/3�/2, i.e. �/6 rad or 30°.
A sketch of y D 7 sin2A� �/3� is shown in Figure 28.21.

Sinusoidal form A sin.!t ± a/

In Figure 28.22, let OR represent a vector that is free to rotate anticlockwise
about O at a velocity of ω rad/s. A rotating vector is called a phasor. After
a time t seconds OR will have turned through an angle ωt radians (shown as
angle TOR in Figure 28.22). If ST is constructed perpendicular to OR, then
sinωt D ST/OT, i.e. ST D OT sinωt.
If all such vertical components are projected on to a graph of y against ωt, a
sine wave results of amplitude OR (as shown earlier).

ωt
ωt ωtπ/2 3π/2

ω rads/s

0 0S

T

R π 2π

−1.0

1.0

y

90° 180° 270° 360°

y = sin ωt

Figure 28.22
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If phasor OR makes one revolution (i.e. 2� radians) in T seconds, then the

angular velocity, ω D 2�/T rad/s, from which, T = 2p=! seconds.
T is known as the periodic time.
The number of complete cycles occurring per second is called the
frequency, f.

Frequency D number of cycles

second
D 1

T
D ω

2�
Hz i.e. f =

!

2p
Hz

Hence angular velocity, ! = 2pf rad/s

Given a general sinusoidal function y = A sin.!t ± a/, then

(i) A D amplitude
(ii) ω D angular velocity D 2�f rad/s

(iii)
2�

ω
D periodic time T seconds

(iv)
ω

2�
D frequency, f hertz

(v) ˛ D angle of lead or lag (compared with y D A sinωt), in radians.

For example, an alternating current is given by i D 30 sin100�t C 0.27�
amperes. To find the amplitude, periodic time, frequency and phase angle
(in degrees and minutes):

i D 30 sin100�t C 0.27�A, hence amplitude = 30 A

Angular velocity ω D 100�, hence

periodic time, T D 2�

ω
D 2�

100�
D 1

50
D 0.02 s or 20 ms

Frequency, f D 1

T
D 1

0.02
D 50 Hz

Phase angle, a D 0.27 rad D
(

0.27ð 180

�

)°
D 15.47° or 15°28′ leading

i = 30 sin.100pt/.

In another example, an oscillating mechanism has a maximum displacement
of 2.5 m and a frequency of 60 Hz. At time t D 0 the displacement is 90 cm.
To express the displacement in the general form A sinωt š ˛�:

Amplitude D maximum displacement D 2.5 m

Angular velocity, ω D 2�f D 2�60� D 120� rad/s

Hence displacement D 2.5 sin120�t C ˛� m

When t D 0, displacement D 90 cm D 0.90 m

Hence 0.90 D 2.5 sin0C ˛� i.e. sin˛ D 0.90

2.5
D 0.36

Hence ˛ D sin�1 0.36 D 21.10° D 21°60 D 0.368 rad

Thus displacement = 2.5 sin.120pt Y 0.368/ m
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In another example, the instantaneous value of voltage in an a.c. circuit at
any time t seconds is given by v D 340 sin50�t � 0.541� volts. To determine
(a) the amplitude, periodic time, frequency and phase angle (in degrees),
(b) the value of the voltage when t D 0,
(c) the value of the voltage when t D 10 ms, and
(d) the time when the voltage first reaches 200 V

(a) Amplitude = 340 V
Angular velocity, ω D 50�

Hence periodic time, T D 2�

ω
D 2�

50�
D 1

25
D 0.04 s or 40 ms

Frequency f D 1

T
D 1

0.04
D 25 Hz

Phase angle D 0.541 rad D
(

0.541ð 180

�

)
D 31° lagging v D 340 sin50�t�

(b) When t = 0, v D 340 sin0� 0.541� D 340 sin�31°� D −175.1 V

(c) When t = 10 ms then v D 340 sin
(

50�
10

103
� 0.541

)
D 340 sin1.0298� D 340 sin 59° D 291.4 volts

(d) When v D 200 volts then 200 D 340 sin50�t � 0.541�
200

340
D sin50�t � 0.541�

Hence 50�t � 0.541� D sin�1 200

340
D 36.03° or 0.6288 rad

50�t D 0.6288 C 0.541 D 1.1698

Hence when v D 200 V, time, t D 1.1698

50�
D 7.447 ms

A sketch of v D 340 sin50�t � 0.541� volts is shown in Figure 28.23.

Figure 28.23
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29 Trigonometric Identities and Equations

Trigonometric identities

A trigonometric identity is a relationship that is true for all values of the
unknown variable.

tan � D sin �

cos �
, cot � D cos �

sin �
, sec � D 1

cos �

cosec � D 1

sin �
and cot � D 1

tan �

are examples of trigonometric identities from chapter 25. Applying Pythago-
ras’ theorem to the right-angled triangle shown in Figure 29.1 gives:

a2 C b2 D c2 1�

Dividing each term of equation (1) by c2 gives:
a2

c2 C
b2

c2 D
c2

c2 , i.e.
(
a

c

)2

C
(
b

c

)2

D 1

cos ��2 C sin ��2 D 1

Hence cos2 qY sin2 q = 1 2�
Dividing each term of equation (1) by a2 gives:

a2

a2
C b2

a2
D c2

a2
, i.e. 1C

(
b

a

)2

D
(
c

a

)2

Hence 1Y tan2 q = sec2 q 3�
Dividing each term of equation (1) by b2 gives:

a2

b2
C b2

b2
D c2

b2
, i.e.

(
a

b

)2

C 1 D
(
c

b

)2

Hence cot2qY 1 = cosec2 q 4�
Equations (2), (3) and (4) are further examples of trigonometric identities.
For example, to prove the identity sin2 � cot � sec � D sin �:
With trigonometric identities it is necessary to start with the left-hand side
(LHS) and attempt to make it equal to the right-hand side (RHS) or vice-
versa. It is often useful to change all of the trigonometric ratios into sines and

Figure 29.1
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cosines where possible. Thus

LHS D sin2 � cot � sec � D sin2 �

(
cos �

sin �

)(
1

cos �

)

D sin � (by cancelling) D RHS

In another example, to prove that
1C cot �

1C tan �
D cot �:

LHS D 1C cot �

1C tan �
D

1C cos �

sin �

1C sin �

cos �

D
sin � C cos �

sin �
cos � C sin �

cos �

D
(

sin � C cos �

sin �

)(
cos �

cos � C sin �

)

D cos �

sin �
D cot � D RHS

Trigonometric equations

Equations which contain trigonometric ratios are called trigonometric
equations. There are usually an infinite number of solutions to such equations;
however, solutions are often restricted to those between 0° and 360°.
A knowledge of angles of any magnitude is essential in the solution of trigono-
metric equations and calculators cannot be relied upon to give all the solutions
(as shown in chapter 28). Figure 29.2 shows a summary for angles of any
magnitude.
Equations of the type a sin2 AY b sin AY c = 0

(i) When a = 0, b sinAC c D 0, hence

sinA D � c
b

and A = sin−1
(

−
c
b

)

Figure 29.2
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There are two values of A between 0° and 360° that satisfy such an

equation, provided �1  c

b
 1

(ii) When b = 0, a sin2 AC c D 0, hence

sin2 A D � c
a

, sinA D
√(
� c
a

)
and A = sin−1

√(
−

c
a

)

If either a or c is a negative number, then the value within the square root
sign is positive. Since when a square root is taken there is a positive and
negative answer there are four values of A between 0° and 360° which

satisfy such an equation, provided �1  c

a
 1

(iii) When a , b and c are all non-zero:
a sin2 AC b sinAC c D 0 is a quadratic equation in which the unknown is
sinA. The solution of a quadratic equation is obtained either by factorising
(if possible) or by using the quadratic formula:

sin A =
−b ±

√
.b2 − 4ac/

2a
(iv) Often the trigonometric identities cos2 AC sin2 A D 1,

1C tan2 A D sec2 A and cot2 AC 1 D cosec2 A need to be used to reduce
equations to one of the above forms.

For example, to solve the trigonometric equation 5 sin � C 3 D 0 for values
of � from 0° to 360°:

5 sin � C 3 D 0, from which sin � D �3/5 D �0.6000

Hence � D sin�1�0.6000�. Sine is negative in the third and fourth quadrants
(see Figure 29.3). The acute angle sin�10.6000� D 36.87° (shown as ˛ in
Figure 29.3(b)).

Hence � D 180° C 36.87°, i.e. 216.87° or � D 360° � 36.87°, i.e. 323.13°

In another example, to solve 4 sec t D 5 for values of t between 0° and 360°:
4 sec t D 5, from which sec t D 5

4 D 1.2500

Figure 29.3
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36.87°

36.87°

Figure 29.4

Hence t D sec�1 1.2500

Secant D 1

cosine
is positive in the first and fourth quadrants (see Figure 29.4).

The acute angle sec�1 1.2500 D 36.87°. Hence

t = 36.87° or 360° � 36.87°= 323.13°

In another example, to solve 2� 4 cos2 A D 0 for values of A in the range
0° < A < 360°:

2� 4 cos2 A D 0, from which cos2 A D 2
4 D 0.5000

Hence cosA D p0.5000 D š0.7071 and A D cos�1š0.7071�
Cosine is positive in quadrants one and four and negative in quadrants two
and three. Thus in this case there are four solutions, one in each quadrant (see
Figure 29.5).

The acute angle cos�1 0.7071 D 45°.
Hence, A = 45°, 135°, 225° or 315°

In another example, to solve the equation 8 sin2 � C 2 sin � � 1 D 0, for all
values of � between 0° and 360°:

Factorising 8 sin2 � C 2 sin � � 1 D 0 gives 4 sin � � 1�2 sin � C 1� D 0
Hence 4 sin � � 1 D 0, from which, sin � D 1

4 D 0.2500,
or 2 sin � C 1 D 0, from which, sin � D � 1

2 D �0.5000

Figure 29.5
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(Instead of factorising, the quadratic formula can, of course, be used).
� D sin�1 0.250 D 14.48° or 165.52°, since sine is positive in the first and sec-
ond quadrants, or � D sin�1�0.5000� D 210° or 330°, since sine is negative
in the third and fourth quadrants. Hence � = 14.48°, 165.52° , 210° or 330°

In another example, to solve 18 sec2 A� 3 tanA D 21 for values of A
between 0° and 360°:
1C tan2 A D sec2 A. Substituting for sec2 A in 18 sec2 A� 3 tanA D 21 gives

181C tan2 A�� 3 tanA D 21

i.e. 18C 18 tan2 A� 3 tanA� 21 D 0

18 tan2 A� 3 tanA� 3 D 0

Factorising gives 6 tanA� 3�3 tanAC 1� D 0

Hence 6 tanA� 3 D 0, from which, tanA D 3
6 D 0.5000 or 3 tanAC 1 D 0,

from which, tanA D � 1
3 D �0.3333. Thus A D tan�10.5000� D 26.57° or

206.57°, since tangent is positive in the first and third quadrants, or A D
tan�1�0.3333� D 161.57° or 341.57° , since tangent is negative in the second
and fourth quadrants.

Hence, A = 26.57°, 161.57° , 206.57° or 341.57°

30 The Relationship Between Trigonometric and
Hyperbolic Functions

In chapter 42, it is shown that

cos � C j sin � D ej� 1�

and cos � � j sin � D e�j� 2�

Adding equations (1) and (2) gives:

cos q = 1
2 .ejq Y e−jq/ 3�

Subtracting equation (2) from equation (1) gives:

sin q =
1
2j

.ejq − e−jq/ 4�

Substituting j� for � in equations (3) and (4) gives:

cos j� D 1
2 e

jj�� C e�jj���

and sin j� D 1

2j
ejj�� � e�jj���

Since j2 D �1, cos j� D 1
2 e
�� C e�� D 1

2 e
� C e���

Hence from chapter 13, cos j q = cosh q 5�
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Similarly, sin j� D 1

2j
e�� � e�� D � 1

2j
e� � e���

D �1

j

[
1

2
e� � e���

]

D �1

j
sinh � see chapter 13�

But �1

j
D �1

j
ð j

j
D � j

j2 D j,

hence sin j q = j sinh q 6�

Equations (5) and (6) may be used to verify that in all standard trigonometric
identities, j� may be written for � and the identity still remains true.
For example, to verify that cos2 j� C sin2 j� D 1:
From equation (5), cos j� D cosh �, and from equation (6), sin j� D j sinh �
Thus, cos2 j� C sin2 j� D cosh2 � C j2 sinh2 �, and since j2 D �1,
cos2 j� C sin2 j� D cosh2 � � sinh2 �
But, cosh2 � � sinh2 � D 1, from Chapter 13,

hence cos2 j qY sin2 j q = 1

In another example, to verify that sin j2A D 2 sin jA cos jA:
From equation (6), writing 2A for �, sin j2A D j sinh 2A, and from chapter 13,
Table 13.1, page 59, sinh 2A D 2 sinhA coshA
Hence, sin j2A D j2 sinhA coshA�
But, sinhA D 1

2 e
A � e�A� and coshA D 1

2 e
A C e�A�

Hence, sin j2A D j2

(
eA � e�A

2

)(
eA C e�A

2

)

D �2

j

(
eA � e�A

2

)(
eA C e�A

2

)

D �2

j

(
sin j�

j

)
cos j��

D 2 sin jA cos jA since j2 D �1

i.e. sin j 2A = 2 sin jA cos jA

Hyperbolic identities

From chapter 13, cosh � D 1
2 e

� C e���

Substituting j� for � gives:

cosh j� D 1
2 e

j� C e�j�� D cos �, from equation (3),

i.e. cosh j q = cos q 7�
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Similarly, from chapter 13, sinh � D 1
2 e

� � e���

Substituting j� for � gives:

sinh j� D 1
2 e

j� � e�j�� D j sin �, from equation 4�

Hence sinh jq = j sin q 8�

tan j� D sin j�

cos j�

From equations (5) and (6),
sin j�

cos j�
D j sinh �

cosh �
D j tanh �

Hence tan j q = j tanh q 9�

Similarly, tanh j� D sinh j�

cosh j�

From equations (7) and (8),
sinh j�

cosh j�
D j sin �

cos �
D j tan �

Hence tanh j q = j tan q 10�

Two methods are commonly used to verify hyperbolic identities. These are
(a) by substituting j� (and j&) in the corresponding trigonometric identity
and using the relationships given in equations (5) to (10), and (b) by applying
Osborne’s rule given in chapter 13, page 58.

For example, to determine the corresponding hyperbolic identity by writing
jA for � in cot2 � C 1 D cosec2 �:
Substituting jA for � gives:

cot2 jAC 1 D cosec2 jA, i.e.
cos2 jA

sin2 jA
C 1 D 1

sin2 jA

But from equation (5), cos jA D coshA
and from equation (6), sin jA D j sinhA

Hence
cosh2 A

j2 sinh2 A
C 1 D 1

j2 sinh2 A

and since j2 D �1, � cosh2 A

sinh2 A
C 1 D � 1

sinh2 A

Multiplying throughout by �1, gives:

cosh2 A

sinh2 A
� 1 D 1

sinh2 A
i.e. coth2 A − 1 = cosech2 A

In another example, to show that

coshA� coshB D 2 sinh
(
AC B

2

)
sinh

(
A� B

2

)
by substituting jA and jB

for � and & respectively in the trigonometric identity for cos � � cos&:
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cos � � cos& D �2 sin
(
� C &

2

)
sin
(
� � &

2

)
(see chapter 31)

thus cos jA� cos jB D �2 sin j
(
AC B

2

)
sin j

(
A� B

2

)

But from equation (5), cos jA D coshA
and from equation (6), sin jA D j sinhA

Hence, coshA� coshB D �2j sinh
(
AC B

2

)
j sinh

(
A� B

2

)

D �2j2 sinh
(
AC B

2

)
sinh

(
A� B

2

)

But j2 D �1, hence

cosh A − cosh B = 2 sinh
(

AY B
2

)
sinh

(
A − B

2

)

31 Compound Angles

Compound angle formulae

An electric current i may be expressed as i D 5 sinωt � 0.33� amperes. Sim-
ilarly, the displacement x of a body from a fixed point can be expressed
as x D 10 sin2t C 0.67� metres. The angles (ωt� 0.33) and (2t C 0.67) are
called compound angles because they are the sum or difference of two angles.
The compound angle formulae for the sum and difference of two angles A
and B are:

sinAC B� D sinA cosBC cosA sinB

sinA� B� D sinA cosB� cosA sinB

cosAC B� D cosA cosB� sinA sinB

cosA� B� D cosA cosBC sinA sinB

tanAC B� D tanAC tanB

1� tanA tanB

tanA� B� D tanA� tanB

1C tanA tanB
(Note, sinAC B� is not equal to (sinAC sinB), and so on.)
The compound-angle formulae are true for all values of A and B, and by
substituting values of A and B into the formulae they may be shown to be true.
For example, to expand and simplify the following expressions (a) sin� C ˛�
(b) � cos90° C ˇ� (c) sinA� B�� sinAC B�:
(a) sin� C ˛� D sin� cos˛C cos� sin ˛ (from the formula for sinAC B��

D 0�cos ˛�C �1� sin ˛ D − sin a
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(b) � cos90° C ˇ� D �[cos 90° cosˇ � sin 90° sin ˇ]

D [0�cos ˇ�� 1� sin ˇ] D sin b

(c) sinA� B�� sinAC B�
D [sinA cosB � cosA sinB]� [sinA cosBC cosA sinB]

D −2 cos A sin B

In another example, to prove that cosy � ��C sin
(
y C �

2

)
D 0:

cosy � �� D cos y cos� C sin y sin�

D cos y��1�C sin y�0� D � cos y

sin
(
y C �

2

)
D sin y cos

�

2
C cos y sin

�

2

D sin y�0�C cos y�1� D cos y

Hence cosy � ��C sin
(
y C �

2

)
D � cos y�C cos y� D 0

In another example, to solve the equation 4 sinx � 20°� D 5 cos x for values
of x between 0° and 90°:

4 sinx � 20° D 4[sin x cos 20° � cos x sin 20°],

from the formula for sinA� B�
D 4[sin x0.9397� � cos x0.3420�]

D 3.7588 sin x � 1.3680 cos x

Since 4 sinx � 20°� D 5 cos x then 3.7588 sin x � 1.3680 cos x D 5 cos x.
Rearranging gives:

3.7588 sin x D 5 cos x C 1.3680 cos x D 6.3680 cos x

and
sin x

cos x
D 6.3680

3.7588
D 1.6942

i.e. tan x D 1.6942, and x D tan�1 1.6942 D 59.449° or 59°27′

[Check: LHS D 4 sin59.449° � 20°� D 4 sin 39.449° D 2.542

RHS D 5 cos x D 5 cos 59.449° D 2.542]

Conversion of a sin !t Y b cos !t into R sin.!t Y a/

(i) R sinωt C ˛� represents a sine wave of maximum value R, periodic time
2�/ω, frequency ω/2� and leading R sinωt by angle ˛ (see
Chapter 28).
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(ii) R sinωt C ˛� may be expanded using the compound-angle formula for
sinAC B�, where A D ωt and B D ˛
Hence R sinωt C ˛� D R[sinωt cos˛C cosωt sin˛]

D R sinωt cos˛C R cosωt sin ˛

D R cos ˛� sinωt C R sin ˛� cosωt

(iii) If a D R cos ˛ and b D R sin ˛, where a and b are constants, then
R sinωt C ˛� D a sinωt C b cosωt, i.e. a sine and cosine function of the
same frequency when added produce a sine wave of the same frequency
(which is further demonstrated in Chapter 39).

(iv) Since a D R cos˛, then cos˛ D a/R, and since b D R sin ˛, then
sin ˛ D b/R.

If the values of a and b are known then the values of R and ˛ may be
calculated. The relationship between constants a, b, R and ˛ are shown in
Figure 31.1.
From Figure 31.1, by Pythagoras’ theorem: R =

p
a2 Y b2 and from

trigonometric ratios: a = tan−1 b=a

For example, to find an expression for 3 sinωt C 4 cosωt in the form
R sinωt C ˛� and sketch graphs of 3 sinωt, 4 cosωt and R sinωt C ˛� on
the same axes:
Let 3 sinωtC 4 cosωt D R sinωt C ˛�
then 3 sinωtC 4 cosωt D R[sinωt cos˛C cosωt sin ˛]

D R cos ˛� sinωt C R sin˛� cosωt
Equating coefficients of sinωt gives:

3 D R cos ˛, from which, cos ˛ D 3

R
Equating coefficients of cosωt gives:

4 D R sin ˛, from which, sin ˛ D 4

R
There is only one quadrant where both sin˛ and cos ˛ are positive, and this is
the first, as shown in Figure 31.2. From Figure 31.2, by Pythagoras’ theorem:

R D
√

32 C 42 D 5
From trigonometric ratios: ˛ D tan�1 4

3 D 53.13° or 0.927 radians
Hence 3 sin !t Y 4 cos !t = 5 sin.!t Y 0.927/

Figure 31.1 Figure 31.2
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A sketch of 3 sinωt, 4 cosωt and 5 sinωt C 0.927� is shown in Figure 31.3.
Two periodic functions of the same frequency may be combined by
(a) plotting the functions graphically and combining ordinates at intervals, or
(b) by resolution of phasors by drawing or calculation.
The example below demonstrates a third method of combining waveforms.
For example, to express 4.6 sinωt � 7.3 cosωt in the form R sinωt C ˛�:
Let 4.6 sinωt � 7.3 cosωt D R sinωt C ˛�
then 4.6 sinωt � 7.3 cosωt D R[sinωt cos ˛C cosωt sin ˛]

D R cos˛� sinωt C R sin ˛� cosωt

Equating coefficients of sinωt gives:

4.6 D R cos ˛, from which, cos ˛ D 4.6

R
Equating coefficients of cosωt gives:

�7.3 D R sin ˛, from which sin˛ D �7.3

R
There is only one quadrant where cosine is positive and sine is negative, i.e.
the fourth quadrant, as shown in Figure 31.4. By Pythagoras’ theorem:

R D
√

4.62 C �7.3�2 D 8.628

−5

−4

−3

−2

−1
0 π/2 3π/2π 2π ωt (rad)

1

2

3

4

5
y

0.927 rad

0.927 rad
y = 4 cos ωt

y = 3 sin ωt

y = 5 sin (ωt + 0.927)

Figure 31.3

Figure 31.4
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By trigonometric ratios:

˛ D tan�1
(�7.3

4.6

)
D �57.78° or �1.008 radians

Hence 4.6 sin !t − 7.3 cos !t = 8.628 sin.!t − 1.008/

Double Angles

(i) If, in the compound-angle formula for sinAC B�, we let B D A then
sin 2A = 2 sin A cos A
Also, for example, sin 4A D 2 sin 2A cos 2A

and sin 8A D 2 sin 4A cos 4A, and so on.

(ii) If, in the compound-angle formula for cosAC B�, we let B D A then
cos 2A = cos2A − sin2A
Since cos2 AC sin2 A D 1, then cos2 A D 1� sin2 A, and
sin2 A D 1� cos2 A, and two further formula for cos 2A can be produced.
Thus cos 2A D cos2 A� sin2 A D 1� sin2 A�� sin2 A
i.e. cos 2A = 1 − 2 sin2 A
and cos 2A D cos2 A� sin2 A D cos2 A� 1� cos2 A�
i.e. cos 2A = 2 cos2 A − 1
Also, for example,

cos 4A D cos2 2A� sin2 2A or 1� 2 sin2 2A or 2 cos2 2A� 1

and cos 6A D cos2 3A� sin2 3A or 1� 2 sin2 3A or 2 cos2 3A� 1,
and so on.

(iii) If, in the compound-angle formula for tanAC B�, we let B D A
then tan 2A =

2 tan A

1 − tan2 A

Also, for example, tan 4A D 2 tan 2A

1� tan2 2A

and tan 5A D 2 tan 5
2A

1� tan2 5
2A

and so on.

For example, I3 sin 3� is the third harmonic of a waveform. To express the
third harmonic in terms of the first harmonic sin �, when I3 D 1:

When I3 D 1, I3 sin 3� D sin 3� D sin2� C ��
D sin 2� cos � C cos 2� sin �, from the sinAC B� formula

D 2 sin � cos �� cos � C 1� 2 sin2 �� sin �,

from the double angle expansions

D 2 sin � cos2 � C sin � � 2 sin3 �

D 2 sin �1� sin2 ��C sin � � 2 sin3 �, (since cos2 � D 1� sin2 ��
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D 2 sin � � 2 sin3 � C sin � � 2 sin3 �

i.e. sin 3q = 3 sin q − 4 sin3 q

In another example, to prove that cot 2x C cosec 2x D cot x

LHS D cot 2x C cosec 2x D cos 2x

sin 2x
C 1

sin 2x
D cos 2x C 1

sin 2x

D 2 cos2 x � 1�C 1

sin 2x
D 2 cos2 x

sin 2x

D 2 cos2 x

2 sin x cos x
D cos x

sin x
D cot x D RHS

Changing products of sines and cosines into sums or differences

(i) sinAC B�C sinA� B� D 2 sinA cosB (from the earlier formulae)

i.e. sin A cos B = 1
2 [sin.AY B/ Y sin.A − B/] 1�

(ii) sinAC B�� sinA� B� D 2 cosA sinB

i.e. cos A sin B = 1
2 [sin.AY B/ − sin.A − B/] 2�

(iii) cosAC B�C cosA� B� D 2 cosA cosB

i.e. cos A cos B = 1
2 [cos.AY B/Y cos.A − B/] 3�

(iv) cosAC B�� cosA� B� D �2 sinA sinB

i.e. sin A sin B = − 1
2 [cos.AY B/ − cos.A − B/] 4�

For example, to express sin 4x cos 3x as a sum or difference of sines and
cosines:

From equation (1), sin 4x cos 3x D 1
2 [sin4x C 3x�C sin4x � 3x�]

D 1
2 .sin 7xY sin x/

In another example, to express 2 cos 5� sin 2� as a sum or difference of sines
or cosines:
From equation (2),

2 cos 5� sin 2� D 2
{

1
2 [sin5� C 2��� sin5� � 2��]

}
D sin 7q − sin 3q

Changing sums or differences of sines and cosines into products

In the compound-angle formula let AC B� D X and A� B� D Y
Solving the simultaneous equations gives

A D XC Y
2

and B D X� Y
2
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Thus sinAC B�C sinA� B� D 2 sinA cosB

becomes sin XY sin Y = 2 sin
(

X Y Y
2

)
cos
(

X − Y
2

)
5�

Similarly, sin X − sin Y = 2 cos
(

XY Y
2

)
sin
(

X − Y
2

)
6�

cos X Y cos Y = 2 cos
(

XY Y
2

)
cos
(

X − Y
2

)
7�

cos X − cos Y = −2 sin
(

X Y Y
2

)
sin
(

X − Y
2

)
8�

For example, to express sin 5� C sin 3� as a product:
From equation (5),

sin 5� C sin 3� D 2 sin
(

5� C 3�

2

)
cos
(

5� � 3�

2

)
D 2 sin 4q cos q

In another example, to express sin 7x � sin x as a product:
From equation (6),

sin 7x � sin x D 2 cos
(

7x C x
2

)
sin
(

7x � x
2

)
D 2 cos 4x sin 3x



Graphs

32 Straight Line Graphs

Introduction to graphs

A graph is a pictorial representation of information showing how one quantity
varies with another related quantity.
The most common method of showing a relationship between two sets of data
is to use Cartesian or rectangular axes as shown in Figure 32.1.
The points on a graph are called co-ordinates. Point A in Figure 32.1 has the
co-ordinates (3, 2), i.e. 3 units in the x direction and 2 units in the y direction.
Similarly, point B has co-ordinates (�4, 3) and C has co-ordinates (�3, �2).
The origin has co-ordinates (0, 0).
The horizontal distance of a point from the vertical axis is called the abscissa
and the vertical distance from the horizontal axis is called the ordinate.

The straight line graph

Let a relationship between two variables x and y be y D 3x C 2

When x D 0, y D 3�0�C 2 D 2. When x D 1, y D 3�1�C 2 D 5.
When x D 2, y D 3�2�C 2 D 8, and so on.
Thus co-ordinates (0, 2), (1, 5) and (2, 8) have been produced from the
equation by selecting arbitrary values of x, and are shown plotted in
Figure 32.2. When the points are joined together, a straight-line graph results.

B (−4, 3)

A (3, 2)

4

−4 −3 −2 −1 0 1 2 3 4

3

2

1

−1

−2

−3

−4

Origin

Abscissa

Ordinate

C (−3, −2)

y

x

Figure 32.1
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−1 1 2

y = 3x + 2

x0

2

4

6

8

y

Figure 32.2

The gradient or slope of a straight line is the ratio of the change in the
value of y to the change in the value of x between any two points on
the line. If, as x increases, (!), y also increases ("), then the gradient is
positive.
In Figure 32.3(a),

the gradient of AC D change in y

change in x
D CB

BA
D 7� 3

3� 1
D 4

2
D 2

If as x increases (!), y decreases (#), then the gradient is negative.
In Figure 32.3(b),

the gradient of DF D change in y

change in x
D FE

ED
D 11� 2

�3� 0
D 9

�3
D �3

Figure 32.3(c) shows a straight line graph y D 3. Since the straight line is
horizontal the gradient is zero.

y

y

8
7
6
5
4
3
2

2

1

0 1 2 3

3

1

0−1 1 2

(a)

(c)

3 4 x

C

BA

x

y = −3x + 2

y = 3

y
11

10

8

6
4

D
2

−4 −3 −2

(b)

−1 0 x

E

Fy = 2x + 1

Figure 32.3
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The value of y when x D 0 is called the y-axis intercept. In Figure 32.3(a)
the y-axis intercept is 1 and in Figure 32.3(b) is 2.
If the equation of a graph is of the form y = mx Y c, where m and c are
constants, the graph will always be a straight line, m representing the gra-
dient and c the y-axis intercept. Thus y D 5x C 2 represents a straight line of
gradient 5 and y-axis intercept 2. Similarly, y D �3x � 4 represents a straight
line of gradient �3 and y-axis intercept �4.
In another example, to determine the gradient of the straight line graph
passing through the co-ordinates (�2, 5) and (3, 4):
A straight line graph passing through co-ordinates (x1, y1) and (x2, y2) has a
gradient given by:

m D y2 � y1

x2 � x1
(see Figure 32.4).

y2

y

y1

0 x1 x2 x

(x1, y1)

(x2, y2)

(x2 −x1)

(y2 −y1)

Figure 32.4

A straight line passes through (�2, 5) and (3, 4), from which, x1 D �2, y1 D 5,
x2 D 3 and y2 D 4, hence gradient

m D y2 � y1

x2 � x1
D 4� 5

3� ��2�
= −

1
5

Summary of general rules to be applied when drawing graphs

(i) Give the graph a title clearly explaining what is being illustrated.
(ii) Choose scales such that the graph occupies as much space as possible

on the graph paper being used.
(iii) Choose scales so that interpolation is made as easy as possible. Usually

scales such as 1 cm D 1 unit, or 1 cm D 2 units, or 1 cm D 10 units are
used. Awkward scales such as 1 cm D 3 units or 1 cm D 7 units should
not be used.

(iv) The scales need not start at zero, particularly when starting at zero pro-
duces an accumulation of points within a small area of the graph paper.

(v) The co-ordinates, or points, should be clearly marked. This may be done
either by a cross, or a dot and circle, or just by a dot (see Figure 32.1).

(vi) A statement should be made next to each axis explaining the numbers
represented with their appropriate units.

(vii) Sufficient numbers should be written next to each axis without cramping.
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Practical problems involving straight line graphs

When a set of co-ordinate values are given or are obtained experimentally and
it is believed that they follow a law of the form y D mx C c, then if a straight
line can be drawn reasonably close to most of the co-ordinate values when
plotted, this verifies that a law of the form y D mx C c exists. From the graph,
constants m (i.e. gradient) and c (i.e. y-axis intercept) can be determined. This
technique is called determination of law (see also Chapter 33).

For example, the temperature in degrees Celsius and the corresponding values
in degrees Fahrenheit are shown in the table below.

°C 10 20 40 60 80 100
°F 50 68 104 140 176 212

Axes with suitable scales are shown in Figure 32.5. The co-ordinates (10, 50),
(20, 68), (40, 104), and so on are plotted as shown. When the co-ordinates
are joined, a straight line is produced. Since a straight line results there is a
linear relationship between degrees Celsius and degrees Fahrenheit.
To find the Fahrenheit temperature at, say, 55°C, a vertical line AB is con-
structed from the horizontal axis to meet the straight line at B. The point
where the horizontal line BD meets the vertical axis indicates the equivalent
Fahrenheit temperature. Hence 55°C is equivalent to 131°F.
This process of finding an equivalent value in between the given information
in the above table is called interpolation.
To find the Celsius temperature at, say, 167°F, a horizontal line EF is con-
structed as shown in Figure 32.5. The point where the vertical line FG cuts
the horizontal axis indicates the equivalent Celsius temperature. Hence 167°F
is equivalent to 75°C.
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If the graph is assumed to be linear even outside of the given data, then the
graph may be extended at both ends (shown by broken lines in Figure 32.5).
From Figure 32.5, it is seen that 0°C corresponds to 32°F and 230°F is seen
to correspond to 110°C.
The process of finding equivalent values outside of the given range is called
extrapolation.

In another example, experimental tests to determine the breaking stress � of
rolled copper at various temperatures t gave the following results.

Stress � N/cm2 8.46 8.04 7.78 7.37 7.08 6.63

Temperature t°C 70 200 280 410 500 640

The co-ordinates (70, 8.46), (200, 8.04), and so on, are plotted as shown in
Figure 32.6. Since the graph is a straight line then the values obey the law
� D at C b, and the gradient of the straight line, is

a D AB

BC
D 8.36� 6.76

100� 600
D 1.60

�500
D −0.0032

Vertical axis intercept, b = 8.68

Hence the law of the graph is: s = −0.0032t Y 8.68

When the temperature is, say, 250°C, stress � is given by

� D �0.0032�250� C 8.68 D 7.88 N=cm2

Rearranging � D �0.0032t C 8.68

gives: 0.0032 t D 8.68� �,
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160

i.e. t D 8.68� �
0.0032

Hence when the stress � is, say, 7.54 N/cm2,

temperature t D 8.68� 7.54

0.0032
D 356.3°C

33 Reduction of Non-linear Laws to Linear
Form

Determination of law

Frequently, the relationship between two variables, say x and y, is not a linear
one, i.e. when x is plotted against y a curve results. In such cases the non-
linear equation may be modified to the linear form, y D mx C c, so that the
constants, and thus the law relating the variables can be determined. This
technique is called ‘determination of law’.
Some examples of the reduction of equations to linear form include:

(i) y D ax2 C b compares with Y D mXC c, where m D a, c D b and
X D x2.
Hence y is plotted vertically against x2 horizontally to produce a straight
line graph of gradient ‘a’ and y-axis intercept ‘b’

(ii) y D a

x
C b

y is plotted vertically against
1

x
horizontally to produce a straight line

graph of gradient ‘a’ and y-axis intercept ‘b’
(iii) y D ax2 C bx

Dividing both sides by x gives
y

x
D ax C b

Comparing with Y D mXC c shows that
y

x
is plotted vertically against

x horizontally to produce a straight line graph of gradient ‘a’ and
y

x
axis

intercept ‘b’.
For example, experimental values of x and y, shown below, are believed to
be related by the law y D ax2 C b.

x 1 2 3 4 5
y 9.8 15.2 24.2 36.5 53.0

If y is plotted against x a curve results and it is not possible to determine
the values of constants a and b from the curve. Comparing y D ax2 C b with
Y D mXC c shows that y is to be plotted vertically against x2 horizontally.

A table of values is drawn up as shown below.

x 1 2 3 4 5
x2 1 4 9 16 25
y 9.8 15.2 24.2 36.5 53.0
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A graph of y against x2 is shown in Figure 33.1, with the best straight line
drawn through the points. Since a straight line graph results, the law is verified.
From the graph, gradient

a D AB

BC
D 53� 17

25� 5
D 36

20
D 1.8

and the y-axis intercept, b = 8.0
Hence the law of the graph is y = 1.8x2 Y 8.0
In another example, values of load L newtons and distance d metres obtained
experimentally are shown in the following table.

Load, L N 32.3 29.6 27.0 23.2 18.3 12.8 10.0 6.4
Distance, d m 0.75 0.37 0.24 0.17 0.12 0.09 0.08 0.07

Comparing L D a

d
C b i.e. L D a

(
1

d

)
C b with Y D mXC c shows that L

is to be plotted vertically against
1

d
horizontally. Another table of values is

drawn up as shown below.

L 32.3 29.6 27.0 23.2 18.3 12.8 10.0 6.4
d 0.75 0.37 0.24 0.17 0.12 0.09 0.08 0.07
1
d 1.33 2.70 4.17 5.88 8.33 11.11 12.50 14.29

A graph of L against
1

d
is shown in Figure 33.2. A straight line can be drawn

through the points, which verifies that load and distance are related by a law

of the form L D a

d
C b
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Gradient of straight line, a D AB

BC
D 31� 11

2� 12
D 20

�10
D −2

L-axis intercept, b = 35

Hence, the law of the graph is L = −
2
d
Y35

When the distance d is, say, 0.20 m, load L D �2

0.20
C 35 D 25.0 N

Rearranging L D � 2

d
C 35 gives

2

d
D 35� L and d D 2

35� L
Hence, when the load L is, say, 20 N,

distance d D 2

35� 20
D 2

15
D 0.13 m
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Figure 33.2

Determination of law involving logarithms

Examples of reduction of equations to linear form involving logarithms,
include:

(i) y D axn
Taking logarithms to a base of 10 of both sides gives:

lg y D lg�axn� D lg aC lg xn

i.e. lg y D n lg x C lg a

by the laws of logarithms which compares with Y D mXC c and shows
that lg y is plotted vertically against lg x horizontally to produce a straight
line graph of gradient n and lg y-axis intercept lg a.
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(ii) y D abx
Taking logarithms to a base of 10 of both sides gives:

lg y D lg�abx�

i.e. lg y D lg aC lg bx

i.e. lg y D x lg bC lg a by the laws of logarithms

or lg y D �lg b�x C lg a which compares with

Y D mXC c
and shows that lg y is plotted vertically against x horizontally to produce
a straight line graph of gradient lg b and lg y-axis intercept lg a.

(iii) y D aebx

Taking logarithms to a base of e of both sides gives:

ln y D ln�aebx�

i.e. ln y D ln aC ln ebx

i.e. ln y D ln aC bx ln e

i.e. ln y D bx C ln a (since ln e D 1�, which compares with

Y D mXC c
and shows that ln y is plotted vertically against x horizontally to produce
a straight line graph of gradient b and ln y-axis intercept ln a.

For example, the current flowing in, and the power dissipated by a resistor
are measured experimentally for various values and the results are as shown
below.

Current, I amperes 2.2 3.6 4.1 5.6 6.8
Power, P watts 116 311 403 753 1110

To show that the law relating current and power is of the form P D RIn, where
R and n are constants, and determine the law:

Taking logarithms to a base of 10 of both sides of P D RIn gives:

lgP D lg�RIn� D lgRC lg In

D lgRC n lg I by the laws of logarithms

i.e. lgP D n lg IC lgR, which is of the form Y D mXC c,
showing that lgP is to be plotted vertically against lg I horizontally.

A table of values for lg I and lgP is drawn up as shown below.

I 2.2 3.6 4.1 5.6 6.8
lg I 0.342 0.556 0.613 0.748 0.833
P 116 311 403 753 1110
lgP 2.064 2.493 2.605 2.877 3.045

A graph of lgP against lg I is shown in Figure 33.3 and since a straight line
results the law P D RIn is verified.
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Gradient of straight line, n D AB

BC
D 2.98� 2.18

0.8� 0.4
D 0.80

0.4
D 2

It is not possible to determine the vertical axis intercept on sight since the
horizontal axis scale does not start at zero. Selecting any point from the graph,
say point D, where lg I D 0.70 and lgP D 2.78, and substituting values into

lgP D n lg IC lgR

gives: 2.78 D �2��0.70� C lgR

from which lgR D 2.78� 1.40 D 1.38

Hence R D antilog 1.38 �D 101.38� D 24.0

Hence the law of the graph is P = 24.0I 2

In another example, the current i mA flowing in a capacitor which is being
discharged varies with time t ms as shown below.

i mA 203 61.14 22.49 6.13 2.49 0.615
t ms 100 160 210 275 320 390

To show that these results are related by a law of the form i D Iet/T, where I
and T are constants:
Taking Napierian logarithms of both sides of i D Iet/T gives

ln i D ln�Iet/T� D ln IC ln et/T

i.e. ln i D ln IC t

T
(since ln e D 1�

or ln i D
(

1

T

)
t C ln I
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which compares with y D mx C c, showing that ln i is plotted vertically
against t horizontally. (For methods of evaluating Napierian logarithms see
Chapter 12).

Another table of values is drawn up as shown below.

t 100 160 210 275 320 390
i 203 61.14 22.49 6.13 2.49 0.615
ln i 5.31 4.11 3.11 1.81 0.91 �0.49

A graph of ln i against t is shown in Figure 33.4 and since a straight line
results the law i D Iet/T is verified.

Gradient of straight line,

1

T
D AB

BC
D 5.30� 1.30

100� 300
D 4.0

�200
D �0.02

Hence T D 1

�0.02
D −50

Selecting any point on the graph, say point D, where t D 200 and ln i D 3.31,

and substituting into ln i D
(

1

T

)
t C ln I

gives: 3.31 D � 1

50
�200�C ln I

from which, ln I D 3.31C 4.0 D 7.31

and I D antilog 7.31 �D e7.31� D 1495 or 1500 correct to 3 significant figures

Hence the law of the graph is i = 1500 e−t=50
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34 Graphs with Logarithmic Scales

Logarithmic scales

Graph paper is available where the scale markings along the horizontal and
vertical axes are proportional to the logarithms of the numbers. Such graph
paper is called log-log graph paper.
A logarithmic scale is shown in Figure 34.1 where the distance between, say
1 and 2, is proportional to lg 2� lg 1, i.e. 0.3010 of the total distance from 1
to 10. Similarly, the distance between 7 and 8 is proportional to lg 8� lg 7,
i.e. 0.05799 of the total distance from 1 to 10. Thus the distance between
markings progressively decreases as the numbers increase from 1 to 10.
With log-log graph paper the scale markings are from 1 to 9, and this pattern
can be repeated several times. The number of times the pattern of markings is
repeated on an axis signifies the number of cycles. When the vertical axis has,
say, 3 sets of values from 1 to 9, and the horizontal axis has, say, 2 sets of
values from 1 to 9, then this log-log graph paper is called ‘log 3 cycle ð 2
cycle’ (see Figure 34.2). Many different arrangements are available ranging
from ‘log 1 cycle ð 1 cycle’ through to ‘log 5 cycle ð 5 cycle’.
To depict a set of values, say, from 0.4 to 161, on an axis of log-log graph
paper, 4 cycles are required, from 0.1 to 1,1 to 10, 10 to 100 and 100 to 1000.

1 2 4 53 6 7 8 910

Figure 34.1

Graphs of the form y = ax n

Taking logarithms to a base of 10 of both sides of y D axn gives:
lg y D lg�axn� D lg aC lg xn

i.e. lg y D n lg x C lg a

which compares with Y D mXC c
Thus, by plotting lg y vertically against lg x horizontally, a straight line results,
i.e. the equation y D axn is reduced to linear form. With log-log graph paper
available x and y may be plotted directly, without having first to determine
their logarithms, as was the case in Chapter 33.

For example, experimental values of two related quantities x and y are shown
below:

x 0.41 0.63 0.92 1.36 2.17 3.95
y 0.45 1.21 2.89 7.10 20.79 82.46

The law relating x and y is believed to be y D axb, where a and b are constants.
To verify that this law is true and determine the approximate values of a
and b: If y D axb then lg y D b lg x C lg a, from above, which is of the form
Y D mXC c, showing that to produce a straight line graph lg y is plotted
vertically against lg x horizontally. x and y may be plotted directly on to log-
log graph paper as shown in Figure 34.2. The values of y range from 0.45
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to 82.46 and 3 cycles are needed (i.e. 0.1 to 1, 1 to 10 and 10 to 100). The
values of x range from 0.41 to 3.95 and 2 cycles are needed (i.e. 0.1 to 1
and 1 to 10). Hence ‘log 3 cycle ð 2 cycle’ is used as shown in Figure 34.2
where the axes are marked and the points plotted. Since the points lie on a
straight line the law y D axb is verified.
To evaluate constants a and b:
Method 1. Any two points on the straight line, say points A and C, are
selected, and AB and BC are measured (say in centimetres). Then, gradient,

b D AB

BC
D 11.5 units

5 units
D 2.3

Since lg y D b lg x C lg a, when x D 1, lg x D 0 and lg y D lg a.
The straight line crosses the ordinate x D 1.0 at y D 3.5. Hence
lg a D lg 3.5, i.e. a = 3.5

Method 2. Any two points on the straight line, say points A and C, are
selected. A has co-ordinates (2, 17.25) and C has co-ordinates (0.5, 0.7).

Since y D axb then 17.25 D a�2�b �1�

and 0.7 D a�0.5�b �2�
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i.e. two simultaneous equations are produced and may be solved for a and b.
Dividing equation (1) by equation (2) to eliminate a gives:

17.25

0.7
D �2�b

�0.5�b
D
(

2

0.5

)b

i.e. 24.643 D �4�b
Taking logarithms of both sides gives lg 24.643 D b lg 4,

i.e. b D lg 24.643

lg 4
D 2.3, correct to 2 significant figures.

Substituting b D 2.3 in equation (1) gives: 17.25 D a�2�2.3,

i.e. a D 17.25

�2�2.3
D 17.25

4.925
D 3.5, correct to 2 significant figures.

Hence the law of the graph is y = 3.5x2.3

Graphs of the form y = abx

Taking logarithms to a base of 10 of both sides of y D abx gives:

lg y D lg�abx� D lg aC lg bx D lg aC x lg b

i.e. lg y D �lg b�x C lg a

which compares with Y D mXC c
Thus, by plotting lg y vertically against x horizontally a straight line results,
i.e. the graph y D abx is reduced to linear form. In this case, graph paper
having a linear horizontal scale and a logarithmic vertical scale may be used.
This type of graph paper is called log-linear graph paper, and is specified
by the number of cycles on the logarithmic scale. For example, graph paper
having 3 cycles on the logarithmic scale is called ‘log 3 cycle ð linear’ graph
paper.

Graphs of the form y = aekx

Taking logarithms to a base of e of both sides of y D aekx gives:

ln y D ln�aekx� D ln aC ln ekx D ln aC kx ln e

i.e. ln y D kx C ln a (since ln e D 1�

which compares with Y D mXC c
Thus, by plotting ln y vertically against x horizontally, a straight line results,
i.e. the equation y D aekx is reduced to linear form. In this case, graph paper
having a linear horizontal scale and a logarithmic vertical scale may be used.

For example, the voltage, v volts, across an inductor is believed to be related
to time, t ms, by the law v D Vet/T, where V and T are constants.
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Experimental results obtained are:

v volts 883 347 90 55.5 18.6 5.2
t ms 10.4 21.6 37.8 43.6 56.7 72.0

To show that the law relating voltage and time is as stated and determine the
approximate values of V and T:

Since v D Vet/T then ln v D 1

T
t C lnV, which is of the form Y D mXC c

Using ‘log 3 cycleð linear’ graph paper, the points are plotted as shown in
Figure 34.3. Since the points are joined by a straight line the law v D Vet/T

is verified.

Gradient of straight line,

1

T
D AB

BC
D ln 100� ln 10

36.5� 64.2
D 2.3026

�27.7

Hence T D �27.7

2.3026
D −12.0, correct to 3 significant figures

Since the straight line does not cross the vertical axis at t D 0 in Figure 34.3,
the value of V is determined by selecting any point, say A, having co-ordinates
(36.5, 100) and substituting these values into v D Vet/T.
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Thus 100 D Ve36.5/�12.0 i.e. V D 100

e�36.5/12.0
D 2090 volts, correct to 3 sig-

nificant figures.

Hence the law of the graph is v = 2090e−t=12.0

When, say, time t D 25 ms, voltage v D 2090e�25/12.0 D 260 V

When, say, the voltage is 30.0 volts, 30.0 D 2090e�t/12.0,

hence e�t/12.0 D 30.0

2090
and et/12.0 D 2090

30.0
D 69.67

Taking Napierian logarithms gives:
t

12.0
D ln 69.67 D 4.2438

from which, time t D �12.0��4.2438� D 50.9 ms

35 Graphical Solution of Equations

Graphical solution of simultaneous equations

Linear simultaneous equations in two unknowns may be solved graphically
by:
(i) plotting the two straight lines on the same axes, and

(ii) noting their point of intersection.
The co-ordinates of the point of intersection give the required solution.

For example, to solve graphically the simultaneous equations
2x � y D 4

x C y D 5
Rearranging each equation into y D mx C c form gives:

y D 2x � 4 �1�

y D �x C 5 �2�
Only three co-ordinates need be calculated for each graph since both are
straight lines.

x 0 1 2 x 0 1 2
y = 2x � 4 �4 �2 0 y D �x + 5 5 4 3

Each of the graphs is plotted as shown in Figure 35.1. The point of intersection
is at (3, 2) and since this is the only point which lies simultaneously on both
lines then x = 3, y = 2 is the solution of the simultaneous equations.
(It is sometimes useful initially to sketch the two straight lines to determine the
region where the point of intersection is. Then, if necessary, for greater accu-
racy, a graph having a smaller range of values can be drawn to ‘magnify’ the
point of intersection).

Graphical solutions of quadratic equations

A general quadratic equation is of the form y D ax2 C bx C c, where a, b
and c are constants and a is not equal to zero.
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A graph of a quadratic equation always produces a shape called a parabola.
The gradient of the curve between 0 and A and between B and C in Figure 35.2
is positive, whilst the gradient between A and B is negative. Points such as A
and B are called turning points. At A the gradient is zero and, as x increases,
the gradient of the curve changes from positive just before A to negative just
after. Such a point is called a maximum value. At B the gradient is also zero,
and, as x increases, the gradient of the curve changes from negative just before
B to positive just after. Such a point is called a minimum value.

Quadratic graphs

(i) y = ax2

Graphs of y D x2, y D 3x2 and y D 1
2 x

2 are shown in Figure 35.3.
All have minimum values at the origin (0, 0).
Graphs of y D �x2, y D �3x2 and y D � 1

2 x
2 are shown in Figure 35.4.
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All have maximum values at the origin (0, 0).
When y D ax2,
(a) curves are symmetrical about the y-axis,
(b) the magnitude of ‘a’ affects the gradient of the curve, and
(c) the sign of ‘a’ determines whether it has a maximum or minimum

value
(ii) y = ax2 Y c

Graphs of y D x2 C 3, y D x2 � 2, y D �x2 C 2
and y D �2x2 � 1 are shown in Figure 35.5.
When y D ax2 C c:
(a) curves are symmetrical about the y-axis,
(b) the magnitude of ‘a’ affects the gradient of the curve, and
(c) the constant ‘c’ is the y-axis intercept

(iii) y = ax2 Y bx Y c
Whenever ‘b’ has a value other than zero the curve is displaced to the
right or left of the y-axis. When b/a is positive, the curve is displaced
b/2a to the left of the y-axis, as shown in Figure 35.6(a). When b/a is
negative the curve is displaced b/2a to the right of the y-axis, as shown
in Figure 35.6(b).

Quadratic equations of the form ax2 C bx C c D 0 may be solved graphi-
cally by:
(i) plotting the graph y D ax2 C bx C c, and

(ii) noting the points of intersection on the x-axis (i.e. where y D 0).

The x values of the points of intersection give the required solutions since at
these points both y D 0 and ax2 C bx C c D 0. The number of solutions, or
roots of a quadratic equation, depends on how many times the curve cuts the
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x-axis and there can be no real roots (as in Figure 35.6(a)) or one root (as in
Figures 35.3 and 35.4) or two roots (as in Figure 35.6(b)).

For example, to solve the quadratic equation 4x2 C 4x � 15 D 0 graphically
given that the solutions lie in the range x D �3 to x D 2:
Let y D 4x2 C 4x � 15. A table of values is drawn up as shown below.

x �3 �2 �1 0 1 2
4x2 36 16 4 0 4 16
4x �12 �8 �4 0 4 8
�15 �15 �15 �15 �15 �15 15

y D 4x2 C 4x � 15 9 �7 �15 �15 �7 9
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A graph of y D 4x2 C 4x � 15 is shown in Figure 35.7. The only points where
y D 4x2 C 4x � 15 and y D 0 are the points marked A and B. This occurs at
x = −2.5 and x = 1.5 and these are the solutions of the quadratic equation
4x2 C 4x � 15 D 0. (By substituting x D �2.5 and x D 1.5 into the original
equation the solutions may be checked). The curve has a turning point at
(�0.5, �16) and the nature of the point is a minimum.
An alternative graphical method of solving 4x2 C 4x � 15 D 0 is to rear-
range the equation as 4x2 D �4x C 15 and then plot two separate graphs-in
this case y D 4x2 and y D �4x C 15. Their points of intersection give the
roots of equation 4x2 D �4x C 15, i.e. 4x2 C 4x � 15 D 0. This is shown in
Figure 35.8, where the roots are x D �2.5 and x D 1.5 as before.

In another example, to plot the graph of y D �2x2 C 3x C 6 for values of x
from x D �2 to x D 4 and to use the graph to find the roots of the following
equations (a) �2x2 C 3x C 6 D 0 (b) �2x2 C 3x C 2 D 0
(c) �2x2 C 3x C 9 D 0 (d) �2x2 C x C 5 D 0 :
A table of values is drawn up as shown below.

x �2 �1 0 1 2 3 4
�2x2 �8 �2 0 �2 �8 �18 �32
C3x �6 �3 0 3 6 9 12
C6 6 6 6 6 6 6 6

y �8 1 6 7 4 �3 �14

A graph of �2x2 C 3x C 6 is shown in Figure 35.9.

(a) The parabola y D �2x2 C 3x C 6 and the straight line y D 0 intersect at
A and B, where x = −1.13 and x = 2.63 and these are the roots of the
equation �2x2 C 3x C 6 D 0
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(b) Comparing y D �2x2 C 3x C 6 (1)
with 0 D �2x2 C 3x C 2 (2)
shows that if 4 is added to both sides of equation (2), the right-hand side of
both equations will be the same. Hence 4 D �2x2 C 3x C 6. The solution
of this equation is found from the points of intersection of the line y D 4
and the parabola y D �2x2 C 3x C 6, i.e. points C and D in Figure 35.9.
Hence the roots of �2x2 C 3x C 2 D 0 are x = −0.5 and x = 2

(c) �2x2 C 3x C 9 D 0 may be rearranged as �2x2 C 3x C 6 D �3, and the
solution of this equation is obtained from the points of intersection
of the line y D �3 and the parabola y D �2x2 C 3x C 6, i.e. at points
E and F in Figure 35.9 Hence the roots of �2x2 C 3x C 9 D 0 are
x = −1.5 and x = 3

(d) Comparing y D �2x2 C 3x C 6 (3)
with 0 D �2x2 C x C 5 (4)
shows that if 2x C 1 is added to both sides of equation (4) the right-hand
side of both equations will be the same. Hence equation (4) may be written
as 2x C 1 D �2x2 C 3x C 6. The solution of this equation is found from
the points of intersection of the line y D 2x C 1 and the parabola
y D �2x2 C 3x C 6, i.e. points G and H in Figure 35.9. Hence the roots
of �2x2 C x C 5 D 0 are x = −1.35 and x = 1.85

Graphical solution of linear and quadratic equations
simultaneously

The solution of linear and quadratic equations simultaneously may be
achieved graphically by: (i) plotting the straight line and parabola on the same
axes, and (ii) noting the points of intersection. The co-ordinates of the points
of intersection give the required solutions.

For example, to determine graphically the values of x and y which simulta-
neously satisfy the equations y D 2x2 � 3x � 4 and y D 2� 4x:
y D 2x2 � 3x � 4 is a parabola and a table of values is drawn up as shown
below.

x �2 �1 0 1 2 3
2x2 8 2 0 2 8 18
�3x 6 3 0 �3 �6 �9
�4 �4 �4 �4 �4 �4 �4

y 10 1 �4 �5 �2 5

y D 2� 4x is a straight line and only three co-ordinates need be calculated.

x 0 1 2
y 2 �2 �6

The two graphs are plotted in Figure 35.10 and the points of intersection,
shown as A and B, are at co-ordinates (�2, 10) and (1.5, �4). Hence the simul-
taneous solutions occur when x = −2, y = 10 and when x = 1.5, y = −4.
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(These solutions may be checked by substituting into each of the original
equations.)

Graphical solution of cubic equations

A cubic equation of the form ax3 C bx2 C cx C d D 0 may be solved graph-
ically by:
(i) plotting the graph y D ax3 C bx2 C cx C d, and (ii) noting the points of
intersection on the x-axis (i.e. where y D 0). The x-values of the points of
intersection give the required solution since at these points both y D 0 and
ax3 C bx2 C cx C d D 0.
The number of solutions, or roots of a cubic equation depends on how many
times the curve cuts the x-axis and there can be one, two or three possible
roots, as shown in Figure 35.11.
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x x

Figure 35.11
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For example, to solve graphically the cubic equation 4x3 � 8x2 � 15x C 9 D
0 given that the roots lie between x D �2 and x D 3:
Let y D 4x3 � 8x2 � 15x C 9. A table of values is drawn up as shown
below.

x �2 �1 0 1 2 3
4x3 �32 �4 0 4 32 108
�8x2 �32 �8 0 �8 �32 �72
�15x 30 15 0 �15 �30 �45
C9 9 9 9 9 9 9

y �25 12 9 �10 �21 0

A graph of y D 4x3 � 8x2 � 15x C 9 is shown in Figure 35.12.
The graph crosses the x-axis (where y D 0) at x = −1.5, x = 0.5 and x = 3
and these are the solutions to the cubic equation 4x3 � 8x2 � 15x C 9 D 0.
The turning points occur at .−0.6, 14.2/, which is a maximum, and .2, −21/,
which is a minimum.

36 Polar Curves
With Cartesian coordinates the equation of a curve is expressed as a general
relationship between x and y, i.e. y D f�x�.
Similarly, with polar coordinates the equation of a curve is expressed in the
form r D f�#�. When a graph of r D f�#� is required a table of values needs
to be drawn up and the coordinates, (r, #) plotted.
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For example, to plot the polar graph of r D 5 sin # between # D 0° and # D
360° using increments of 30°:
A table of values at 30° intervals is produced as shown below.

# 0 30° 60° 90° 120° 150° 180° 210°
r D 5 sin # 0 2.50 4.33 5.00 4.33 2.50 0 �2.50

# 240° 270° 300° 330° 360°
r D 5 sin # �4.33 �5.00 �4.33 �2.50 0

The graph is plotted as shown in Figure 36.1.
Initially the zero line OA is constructed and then the broken lines in Figure 32.1
at 30° intervals are produced. The maximum value of r is 5.00 hence OA is
scaled and circles drawn as shown with the largest at a radius of 5 units. The
polar coordinates (0, 0°), (2.50, 30°), (4.33, 60°), (5.00, 90°). . . . are plotted
and shown as points O, B, C, D, . . . in Figure 32.1. When polar coordinate (0,
180°) is plotted and the points joined with a smooth curve a complete circle
is seen to have been produced. When plotting the next point, (�2.50, 210°),
since r is negative it is plotted in the opposite direction to 210°, i.e. 2.50 units
long on the 30° axis. Hence the point (�2.50, 210°) is equivalent to the point
(2.50, 30°).
Similarly, (�4.33, 240°) is the same point as (4.33, 60°).
When all the coordinates are plotted the graph r D 5 sin # appears as a single
circle; it is, in fact, two circles, one on top of the other.
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60°
90°
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240°

150°

360°0 1 2 3 4 5 A

B
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F

r = 5 sin q

Figure 36.1
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a
r = a sin q
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Figure 36.2

r = a cos q

O a

Figure 36.3

In general, a polar curve r = a sin q is as shown in Figure 36.2.
In a similar manner to that explained above, it may be shown that the polar
curve r = a cos q is as sketched in Figure 36.3.

In another example, to plot the polar graph of r D 4 sin2 # between # D 0

and # D 2$ radians using intervals of
$

6
:

A table of values is produced as shown below.

# 0
$

6

$

3

$

2

2$

3

5$

6
$

7$

6

sin # 0 0.50 0.866 1.00 0.866 0.50 0 �0.50

r D 4 sin2 # 0 1 3 4 3 1 0 1

#
4$

3

3$

2

5$

3

11$

6
2$

sin # �0.866 �1.00 �0.866 �0.50 0

r D 4 sin2 # 3 4 3 1 0

The zero line OA is firstly constructed and then the broken lines at inter-

vals of
$

6
rad (or 30°) are produced. The maximum value of r is 4 hence

OA is scaled and circles produced as shown with the largest at a radius of
4 units.

The polar coordinates (0, 0),
(

1,
$

6

)
,
(

3,
$

3

)
, . . . (0, $) are plotted

and shown as points O, B, C, D, E, F, O, respectively. Then
(

1,
7$

6

)
,(

3,
4$

3

)
, . . . (0, 0) are plotted as shown by points G, H, I, J, K, O

respectively. Thus two distinct loops are produced as shown in Figure 36.4.
In general, a polar curve r D a sin2 # is as shown in Figure 36.5. In a similar
manner it may be shown that the polar curve r D a cos2 # is as sketched in
Figure 36.6.
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In another example, to plot the polar graph of r D 3 sin 2# between # D 0°

and # D 360°, using 15° intervals:
A table of values is produced as shown below.

# 0 15° 30° 45° 60° 75° 90° 105° 120° 135°
r D 3 sin 2# 0 1.5 2.6 3.0 2.6 1.5 0 �1.5 �2.6 �3.0

# 150° 165° 180° 195° 210° 225° 240°
r D 3 sin 2# �2.6 �1.5 0 1.5 2.6 3.0 2.6

# 255° 270° 285° 300° 315° 330° 345° 360°
r D 3 sin 2# 1.5 0 �1.5 �2.6 �3.0 �2.6 �1.5 0

The polar graph r D 3 sin 2# is plotted as shown in Figure 36.7 and is seen to
contain four similar shaped loops displaced at 90° from each other.
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In general, a polar curve r D a sin 2# is as shown in Figure 36.8.
In a similar manner it may be shown that polar curves of r D a cos 2#,
r D a sin 3# and r D a cos 3# are as sketched in Figure 36.9.

In another example, to sketch the polar curve r D 2# between # D 0 and

# D 5$

2
rad at intervals of

$

6
:
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A table of values is produced as shown below.

# 0
$

6

$

3

$

2

2$

3

5$

6
$

7$

6

4$

3
r D 2# 0 1.05 2.09 3.14 4.19 5.24 6.28 7.33 8.38

#
3$

2

5$

3

11$

6
2$

13$

6

7$

3

5$

2
r D 2# 9.42 10.47 11.52 12.57 13.61 14.66 15.71
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The polar graph of r D 2# is shown in Figure 36.10 and is seen to be an
ever-increasing spiral.

In another example, to plot the polar curve r D 5�1C cos #� from # D 0° to
# D 360°, using 30° intervals:

Figure 36.11

Figure 36.12
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r = a + b cos θ
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a

a

a
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A table of values is shown below.

# 0 30° 60° 90° 120° 150°
r D 5�1C cos #� 10.0 9.33 7.50 5.00 2.50 0.67

# 180° 210° 240° 270° 300° 330° 360°
R D 5�1C cos #� 0 0.67 2.50 5.00 7.50 9.33 10.00

The polar curve r D 5�1C cos #� is shown in Figure 36.11.
In general, a polar curve r D a�1C cos #� is as shown in Figure 36.12 and the
shape is called a cardioid.
In a similar manner it may be shown that the polar curve r D aC b cos # varies
in shape according to the relative values of a and b. When a D b the polar
curve shown in Figure 36.12 results.
When a < b the general shape shown in Figure 36.13(a) results and when
a > b the general shape shown in Figure 36.13(b) results.

37 Functions and their Curves

Standard curves

When a mathematical equation is known, co-ordinates may be calculated for
a limited range of values, and the equation may be represented pictorially
as a graph, within this range of calculated values. Sometimes it is useful to
show all the characteristic features of an equation, and in this case a sketch
depicting the equation can be drawn, in which all the important features are
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shown, but the accurate plotting of points is less important. This technique is
called ‘curve sketching’ and can involve the use of differential calculus, with,
for example, calculations involving turning points.
If, say, y depends on, say, x, then y is said to be a function of x and the
relationship is expressed as y D f�x�; x is called the independent variable and
y is the dependent variable.
In engineering and science, corresponding values are obtained as a result of
tests or experiments.
Here is a brief resumé of standard curves, some of which have been met earlier
in this text.

(i) Straight line (see Chapter 32, page 155.)
The general equation of a straight line is y D mx C c, where m is the

gradient
(

i.e.
dy

dx

)
and c is the y-axis intercept.

(ii) Quadratic graphs (see Chapter 35, page 171.)
The general equation of a quadratic graph is y D ax2 C bx C c, and its
shape is that of a parabola.

(iii) Cubic equations (see Chapter 35, page 177.)
The general equation of a cubic graph is
y D ax3 C bx2 C cx C d.

(iv) Trigonometric functions (see Chapter 28.)
Graphs of y D sin #, y D cos # and y D tan # are shown in Figure 28.1,
page 130.

(v) Circle
The simplest equation of a circle is x2 C y2 D r2, with centre at the
origin and radius r, as shown in Figure 21.5, page 95.
More generally, the equation of a circle, centre (a, b), radius r, is
given by: �x � a�2 C �y � b�2 D r2

(vi) Ellipse

The equation of an ellipse is
x2

a2
C y

2

b2
D 1 and the general shape is as

shown in Figure 37.1.
The length AB is called the major axis and CD the minor axis. In the
above equation, ‘a’ is the semi-major axis and ‘b’ is the semi-minor axis.

(Note that if b D a, the equation becomes
x2

a2
C y

2

a2
D 1,

i.e. x2 C y2 D a2, which is a circle of radius a).
(vii) Hyperbola

The equation of a hyperbola is
x2

a2
� y

2

b2
D 1 and the general shape is

shown in Figure 37.2. The curve is seen to be symmetrical about both
the x- and y-axes.
The distance AB in Figure 37.2 is given by 2a.

(viii) Rectangular hyperbola

The equation of a rectangular hyperbola is xy D c or y D c

x
and the

general shape is shown in Figure 37.3.
(ix) Logarithmic function

y D ln x and y D lg x are both of the general shape shown in Figures 11.1
and 11.2, page 49.
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(x) Exponential functions
y D ex is of the general shape shown in Figure 12.1, page 52.

(xi) Polar curves
The equation of a polar curve is of the form r D f�#� and examples of
polar curves may be found on pages 178 to 185.

Simple transformations

From the graph of y D f�x� it is possible to deduce the graphs of other
functions which are transformations of y D f�x�. For example, knowing the
graph of y D f�x�, can help us draw the graphs of y D af�x�,
y D f�x�C a, y D f�x C a�, y D f�ax�, y D �f�x� and y D f��x�.
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(i) y = af .x/

For each point �x1, y1� on the graph of y D f�x� there exists a point
�x1, ay1� on the graph of y D af�x�. Thus the graph of y D af�x� can be
obtained by stretching y D f�x� parallel to the y-axis by a scale factor ‘a’.
Graphs of y D x C 1 and y D 3�x C 1� are shown in Figure 37.4(a) and
graphs of y D sin # and y D 2 sin # are shown in Figure 37.4(b).

(ii) y = f .x/Y a
The graph of y D f�x� is translated by ‘a’ units parallel to the y-axis to
obtain y D f�x�C a. For example, if f�x� D x, y D f�x�C 3 becomes
y D x C 3, as shown in Figure 37.5(a). Similarly, if f�#� D cos #, then
y D f�#�C 2 becomes y D cos # C 2, as shown in Figure 37.5(b). Also,
if f�x� D x2, then y D f�x�C 3 becomes y D x2 C 3, as shown in
Figure 37.5(c).

(iii) y = f .x Y a/

The graph of y D f�x� is translated by ‘a’ units parallel to the x-axis
to obtain y D f�x C a�. If ‘a’ > 0 it moves y D f�x� in the negative
direction on the x-axis (i.e. to the left), and if ‘a’ < 0 it moves y D f�x�
in the positive direction on the x-axis (i.e. to the right). For example,

if f�x� D sin x, y D f
(
x � $

3

)
becomes y D sin

(
x � $

3

)
as shown in

Figure 37.6(a) and y D sin
(
x C $

4

)
is shown in Figure 37.6(b).

Similarly graphs of y D x2, y D �x � 1�2 and y D �x C 2�2 are shown in
Figure 37.7.

(iv) y = f .ax/

For each point �x1, y1� on the graph of y D f�x�, there exists a point(
x1

a
, y1

)
on the graph of y D f�ax�. Thus the graph of y D f�ax� can be

obtained by stretching y D f�x� parallel to the x-axis by a scale factor
1

a
.

For example, if f�x� D �x � 1�2, and a D 1

2
,

0 π
2

π 3π
2

2π

1

y
2

θ

y = 2 sinθ

y = sinθ

(b)

Figure 37.4
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Figure 37.7

Figure 37.8

then f�ax� D
( x

2
� 1
)2

.

Both of these curves are shown in Figure 37.8(a).
Similarly, y D cos x and y D cos 2x are shown in Figure 37.8(b).

(v) y = −f .x/

The graph of y D �f�x� is obtained by reflecting y D f�x� in the x-axis.
For example, graphs of y D ex and y D �ex are shown in Figure 37.9(a),
and graphs of y D x2 C 2 and y D ��x2 C 2� are shown in Figure 37.9(b).
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(vi) y = f .−x/

The graph of y D f��x� is obtained by reflecting y D f�x� in the y-
axis. For example, graphs of y D x3 and y D ��x�3 D �x3 are shown
in Figure 37.10(a) and graphs of y D ln x and y D � ln x are shown in
Figure 37.10(b).

Periodic functions

A function f�x� is said to be periodic if f�x C T� D f�x� for all values of x,
where T is some positive number. T is the interval between two successive
repetitions and is called the period of the function f�x�. For example, y D
sin x is periodic in x with period 2$ since sin x D sin�x C 2$� D sin�x C 4$�,
and so on. Similarly, y D cos x is a periodic function with period 2$ since
cos x D cos�x C 2$� D cos�x C 4$�, and so on. In general,if y D sinωt or
y D cosωt then the period of the waveform is 2$/ω. The function shown
in Figure 37.11 is also periodic of period 2$ and is defined by:

f�x� D
{�1, when �$ � x � 0

1. when 0 � x � $

Continuous and discontinuous functions

If a graph of a function has no sudden jumps or breaks it is called a continuous
function, examples being the graphs of sine and cosine functions. However,
other graphs make finite jumps at a point or points in the interval. The square
wave shown in Figure 37.11 has finite discontinuities as x D $, 2$, 3$, and
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so on, and is therefore a discontinuous function. y D tan x is another example
of a discontinuous function.

Even and odd functions

Even functions

A function y D f�x� is said to be even if f��x� D f�x� for all values of x.
Graphs of even functions are always symmetrical about the y-axis (i.e. is a
mirror image). Two examples of even functions are y D x2 and y D cos x as
shown in Figure 33.12.
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Odd functions

A function y D f�x� is said to be odd if f��x� D �f�x� for all values of x.
Graphs of odd functions are always symmetrical about the origin. Two
examples of odd functions are y D x3 and y D sin x as shown in Figure 37.13.
Many functions are neither even nor odd, two such examples being y D ex
and y D ln x.

Inverse functions

If y is a function of x, the graph of y against x can be used to find x when any
value of y is given. Thus the graph also expresses that x is a function of y.
Two such functions are called inverse functions.
In general, given a function y D f�x�, its inverse may be obtained by inter-
changing the roles of x and y and then transposing for y. The inverse function
is denoted by y D f�1�x�.

For example, if y D 2x C 1, the inverse is obtained by

(i) transposing for x, i.e. x D y � 1

2
D y

2
� 1

2
and
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(ii) interchanging x and y, giving the inverse as y D x

2
� 1

2

Thus if f�x� D 2x C 1, then f�1�x� D x

2
� 1

2

A graph of f�x� D 2x C 1 and its inverse f�1�x� D x

2
� 1

2
is shown in

Figure 37.14 and f�1�x� is seen to be a reflection of f�x� in the line y D x.
In another example, if y D x2, the inverse is obtained by (i) transposing for
x, i.e. x D špy and (ii) interchanging x and y, giving the inverse y D špx
Hence the inverse has two values for every value of x. Thus f�x� D x2 does
not have a single inverse. In such a case the domain of the original function
may be restricted to y D x2 for x > 0. Thus the inverse is then
y D Cpx.
A graph of f�x� D x2 and its inverse f�1�x� D px for x > 0 is shown in
Figure 37.15 and, again, f�1�x� is seen to be a reflection of f�x� in the line
y D x.
It is noted from the latter example, that not all functions have a single inverse.
An inverse, however, can be determined if the range is restricted.

Inverse trigonometric functions

If y D sin x, then x is the angle whose sine is y. Inverse trigonometrical func-
tions are denoted either by prefixing the function with ‘arc’ or by using�1.
Hence transposing y D sin x for x gives x D arcsin y or sin�1 y. Interchanging
x and y gives the inverse y D arcsin x or sin�1 x.
Similarly, y D arccos x, y D arctan x, y D arcsec x, y D arccosec x and y D
arccot x are all inverse trigonometric functions. The angle is always expressed
in radians.
Inverse trigonometric functions are periodic so it is necessary to specify the
smallest or principal value of the angle. For arcsin x, arctan x, arccosec x and

arccot x, the principal value is in the range �$
2
< y <

$

2
.



195

10

2

4

y

2 3 x

y = x2

y = x

y =  √x

Figure 37.15

For arccos x and arcsec x the principal value is in the range 0 < y < $.
Graphs of the six inverse trigonometric functions are shown in Figure 53.1,
page 290.

For example, to determine the principal values of

(a) arcsin 0.5 (b) arctan��1� (c) arccos

(
�
p

3

2

)

Using a calculator,

(a) arcsin 0.5 � sin�1 0.5 D 30° D p

6
rad or 0.5236 rad

(b) arctan��1� � tan�1��1� D �45° D −
p

4
rad or −0.7854 rad

(c) arccos

(
�
p

3

2

)
� cos�1

(
�
p

3

2

)
D 150° D 5$

6
rad or 2.6180 rad

Asymptotes

If a table of values for the function y D x C 2

x C 1
is drawn up for various values of

x and then y plotted against x, the graph would be as shown in Figure 37.16. The
straight lines AB, i.e. x D �1, and CD, i.e. y D 1, are known as asymptotes.
An asymptote to a curve is defined as a straight line to which the curve
approaches as the distance from the origin increases. Alternatively, an asymp-
tote can be considered as a tangent to the curve at infinity.
Asymptotes parallel to the x - and y-axes
There is a simple rule that enables asymptotes parallel to the x- and y-axes to
be determined. For a curve y D f�x�:
(i) the asymptotes parallel to the x-axis are found by equating the coefficient

of the highest power of x to zero
(ii) the asymptotes parallel to the y-axis are found by equating the coefficient

of the highest power of y to zero

With the above example y D x C 2

x C 1
, rearranging gives:

y�x C 1� D x C 2
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i.e. yx C y � x � 2 D 0 �1�

and x�y � 1�C y � 2 D 0

The coefficient of the highest power of x (in this case x1) is (y � 1).
Equating to zero gives: y � 1 D 0 from which, y = 1, which is an asymptote

of y D x C 2

x C 1
as shown in Figure 37.16.

Returning to equation (1): yx C y � x � 2 D 0

from which, y�x C 1�� x � 2 D 0

The coefficient of the highest power of y (in this case y1 is) (x C 1).

Equating to zero gives: x C 1 D 0

from which, x = −1, which is another asymptote of y D x C 2

x C 1
as shown in

Figure 37.16.

Other asymptotes

To determine asymptotes other than those parallel to x- and y-axes a simple
procedure is:
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(i) substitute y D mx C c in the given equation
(ii) simplify the expression

(iii) equate the coefficients of the two highest powers of x to zero and deter-
mine the values of m and c. y D mx C c gives the asymptote.

For example, to determine the asymptotes for the function:

y�x C 1� D �x � 3��x C 2�

Following the above procedure:
(i) Substituting y D mx C c into y�x C 1� D �x � 3��x C 2�

gives �mx C c��x C 1� D �x � 3��x C 2�

(ii) Simplifying gives mx2 C mx C cx C c D x2 � x � 6

and �m � 1�x2 C �m C c C 1�x C c C 6 D 0

(iii) Equating the coefficient of the highest power of x to zero

gives m � 1 D 0 from which,m = 1

Equating the coefficient of the next highest power of x to zero

gives m C c C 1 D 0

and since m D 1, 1C cC 1 D 0 from which, c = −2

Hence y D mx C c D 1x � 2

i.e. y= x − 2 is an asymptote

To determine any asymptotes parallel to the x-axis:

Rearranging y�x C 1� D �x � 3��x C 2�

gives yx C y D x2 � x � 6

The coefficient of the highest power of x (i.e. x2) is 1. Equating this to zero
gives 1 D 0, which is not an equation of a line. Hence there is no asymptote
parallel to the x-axis.
To determine any asymptotes parallel to the y-axis:
Since y�x C 1� D �x � 3��x C 2� the coefficient of the highest power of y is
x C 1. Equating this to zero gives x C 1 D 0, from which, x D �1. Hence
x = −1 is an asymptote

When x = 0, y�1� D ��3��2�, i.e. y = −6

When y D 0, 0 D �x � 3��x C 2�, i.e. x = 3 and x = −2

A sketch of the function y�x C 1� D �x � 3��x C 2� is shown in Figure 37.17.
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Brief guide to curve sketching

The following steps will give information from which the graphs of many
types of functions y D f�x� can be sketched.

(i) Use calculus to determine the location and nature of maximum and min-
imum points (see chapter 49)

(ii) Determine where the curve cuts the x- and y-axes
(iii) Inspect the equation for symmetry.

(a) If the equation is unchanged when �x is substituted for x, the graph
will be symmetrical about the y-axis (i.e. it is an even function).

(b) If the equation is unchanged when �y is substituted for y, the graph
will be symmetrical about the x-axis.

(c) If f��x� D �f�x�, the graph is symmetrical about the origin (i.e. it
is an odd function).

(iv) Check for any asymptotes.



Vectors

38 Vectors
Introduction

Some physical quantities are entirely defined by a numerical value and are
called scalar quantities or scalars. Examples of scalars include time, mass,
temperature, energy and volume. Other physical quantities are defined by both a
numerical value and a direction in space and these are called vector quantities or
vectors. Examples of vectors include force, velocity, moment and displacement.

Vector addition

A vector may be represented by a straight line, the length of line being directly
proportional to the magnitude of the quantity and the direction of the line being
in the same direction as the line of action of the quantity. An arrow is used to
denote the sense of the vector, that is, for a horizontal vector, say, whether it
acts from left to right or vice-versa. The arrow is positioned at the end of the
vector and this position is called the ‘nose’ of the vector. Figure 38.1 shows
a velocity of 20 m/s at an angle of 45° to the horizontal and may be depicted
by oa D 20 m/s at 45° to the horizontal.
To distinguish between vector and scalar quantities, various ways are used.
These include:

(i) bold print,
(ii) two capital letters with an arrow above them to denote the sense of

direction, e.g.
�!
AB, where A is the starting point and B the end point of

the vector,
(iii) a line over the top of letters, e.g. AB or a
(iv) letters with an arrow above, e.g. Ea, EA
(v) underlined letters, e.g. a

(vi) xiC jy, where i and j are axes at right-angles to each other; for example,
3iC 4j means 3 units in the i direction and 4 units in the j direction, as
shown in Figure 38.2.

(vii) a column matrix
(
a
b

)
; for example, the vector OA shown in Figure 38.2

could be represented by
(

3
4

)

Thus, in Figure 38.2, OA � �!OA � OA � 3iC 4j �
(

3
4

)
The one adopted in this text is to denote vector quantities in bold print.
Thus, oa represents a vector quantity, but oa is the magnitude of the vector
oa. Also, positive angles are measured in an anticlockwise direction from a
horizontal, right facing line and negative angles in a clockwise direction from
this line — as with graphical work. Thus 90° is a line vertically upwards and
�90° is a line vertically downwards.
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The resultant of adding two vectors together, say V1 at an angle �1 and V2
at angle (��2), as shown in Figure 38.3(a), can be obtained by drawing oa to
represent V1 and then drawing ar to represent V2. The resultant of V1 Y V2
is given by or. This is shown in Figure 38.3(b), the vector equation being
oa Y ar = or . This is called the ‘nose-to-tail’ method of vector addition.
Alternatively, by drawing lines parallel to V1 and V2 from the noses of V2 and
V1, respectively, and letting the point of intersection of these parallel lines be
R, gives OR as the magnitude and direction of the resultant of adding V1 and
V2, as shown in Figure 38.3(c). This is called the ‘parallelogram’ method of
vector addition.

For example, a force of 4 N is inclined at an angle of 45° to a second force
of 7 N, both forces acting at a point. To find the magnitude of the resultant
of these two forces and the direction of the resultant with respect to the 7 N
force by both the ‘triangle’ and the ‘parallelogram’ methods:
The forces are shown in Figure 38.4(a). Although the 7 N force is shown as
a horizontal line, it could have been drawn in any direction.
Using the ‘nose-to-tail’ method, a line 7 units long is drawn horizontally to
give vector oa in Figure 38.4(b). To the nose of this vector ar is drawn 4 units
long at an angle of 45° to oa. The resultant of vector addition is or and by
measurement is 10.2 units long and at an angle of 16° to the 7 N force.
Figure 38.4(c) uses the ‘parallelogram’ method in which lines are drawn
parallel to the 7 N and 4 N forces from the noses of the 4 N and 7 N forces,
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respectively. These intersect at R. Vector OR give the magnitude and direction
of the resultant of vector addition and, as obtained by the ‘nose-to-tail’ method,
is 10.2 units long at an angle of 16° to the 7 N force.

In another example, to use a graphical method to determine the magnitude
and direction of the resultant of the three velocities shown in Figure 38.5:
It is easier to use the ‘nose-to-tail’ method when more than two vectors are
being added. The order in which the vectors are added is immaterial. In this
case the order taken is v1, then v2, then v3 but just the same result would have
been obtained if the order had been, say, v1, v3 and finally v2. v1 is drawn
10 units long at an angle of 20° to the horizontal, shown by oa in Figure 38.6.
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v2 is added to v1 by drawing a line 15 units long vertically upwards from a,
shown as ab. Finally, v3 is added to v1 C v2 by drawing a line 7 units long at
an angle at 190° from b, shown as br. The resultant of vector addition is or
and by measurement is 17.5 units long at an angle of 82° to the horizontal.
Thus v1 Y v2 Y v3 = 17.5 m/s at 82° to the horizontal.

Resolution of vectors

A vector can be resolved into two component parts such that the vector addition
of the component parts is equal to the original vector. The two components
usually taken are a horizontal component and a vertical component. For the
vector shown as F in Figure 38.7, the horizontal component is F cos � and the
vertical component is F sin �.
For the vectors F1 and F2 shown in Figure 38.8, the horizontal component of
vector addition is:

H D F1 cos �1 C F2 cos �2

and the vertical component of vector addition is:
V D F1 sin �1 C F2 sin �2

Having obtained H and V, the magnitude of the resultant vector R is given

by:
p

H 2 Y V 2 and its angle to the horizontal is given by tan−1 V
H

For example, to calculate the resultant velocity of the three velocities shown
in Figure 38.5:

Horizontal component of the velocity,

H D 10 cos 20° C 15 cos 90° C 7 cos 190°

D 9.397C 0C ��6.894� D 2.503 m=s

Vertical component of the velocity,

V D 10 sin 20° C 15 sin 90° C 7 sin 190°

D 3.420C 15C ��1.216� D 17.204 m=s

F sin θ

F cos θ
θ

F 

Figure 38.7
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Magnitude of the resultant of vector addition

D
√
H2 C V2 D

√
2.5032 C 17.2042 D

p
302.24 D 17.39 m=s

Direction of the resultant of vector addition

D tan�1
(
V

H

)
D tan�1

(
17.204

2.503

)
D tan�1 6.8734 D 81.72°

Thus, the resultant of the three velocities is a single vector of 17.39 m/s
at 81.72° to the horizontal.

Vector subtraction

In Figure 38.9, a force vector F is represented by oa. The vector (−oa) can
be obtained by drawing a vector from o in the opposite sense to oa but having
the same magnitude, shown as ob in Figure 38.9, i.e. ob = .−oa/

For two vectors acting at a point, as shown in Figure 38.10(a), the resultant of
vector addition is os = oa Y ob. Figure 38.10(b) shows vectors ob Y .−oa/,
that is, ob − oa and the vector equation is ob − oa = od . Comparing od in
Figure 38.10(b) with the broken line ab in Figure 38.10(a) shows that the
second diagonal of the ‘parallelogram’ method of vector addition gives the
magnitude and direction of vector subtraction of oa from ob.

For example, accelerations of a1 D 1.5 m/s2 at 90° and a2 D 2.6 m/s2 at
145° act at a point. To find a1 Y a2 and a1 − a2 by (i) drawing a scale vector
diagram and (ii) by calculation:

(i) The scale vector diagram is shown in Figure 38.11. By measurement,

a1 Y a2 D 3.7 m=s2 at 126°

a1 − a2 D 2.1 m=s2 at 0°

b

−F o

F a

Figure 38.9

b s

ao

(a) (b)

bd

−a ao

Figure 38.10
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(ii) Resolving horizontally and vertically gives:

Horizontal component of a1 Y a2,

H D 1.5 cos 90° C 2.6 cos 145° D �2.13

Vertical component of a1 Y a2,

V D 1.5 sin 90° C 2.6 sin 145° D 2.99

Magnitude of a1 Y a2 D
√
��2.13�2 C 2.992 D 3.67 m=s2

Direction of a1 Y a2 D tan�1
(

2.99

�2.13

)
and must lie in the

second quadrant since H is negative and V is positive.

tan�1
(

2.99

�2.13

)
D �54.53°, and for this to be in the second quadrant,

the true angle is 180° displaced, i.e. 180° � 54.53° or 125.47° .
Thus a1 Y a2 = 3.67 m=s2 at 125.47° .

Horizontal component of a1 − a2, that is, a1 Y .−a2/

D 1.5 cos 90° C 2.6 cos�145° � 180°� D 2.6 cos��35°� D 2.13

Vertical component of a1 − a2, that is, a1 Y .−a2/

D 1.5 sin 90° C 2.6 sin��35°� D 0

Magnitude of a1 − a2 D
√

2.132 C 02 D 2.13 m/s2

Direction of a1 − a2 D tan�1
(

0

2.13

)
D 0°

Thus a1 − a2 D 2.13 m=s2 at 0°
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In another example, to calculate the resultant of v1 − v2 Y v3 when v1 D
22 units at 140°, v2 D 40 units at 190° and v3 D 15 units at 290°:
(i) The vectors are shown in Figure 38.12.

The horizontal component of v1 − v2 Y v3

D �22 cos 140°�� �40 cos 190°�C �15 cos 290°�

D ��16.85�� ��39.39� C �5.13� D 27.67 units

The vertical component of v1 − v2 Y v3

D �22 sin 140°�� �40 sin 190°�C �15 sin 290°�

D �14.14�� ��6.95�C ��14.10� D 6.99 units

The magnitude of the resultant, R, which can be represented by the math-
ematical symbol for ‘the modulus of’ as jv1 � v2 C v3j is given by:

jRj D
√

27.672 C 6.992 D 28.54 units

The direction of the resultant, R, which can be represented by the mathe-
matical symbol for ‘the argument of’ as arg (v1 � v2 C v3� is given by:

arg R D tan�1
(

6.99

27.67

)
D 14.18°

Thus v1 − v2 Y v3 D 28.54 units at 14.18°

Relative velocity

For relative velocity problems, some fixed datum point needs to be selected.
This is often a fixed point on the earth’s surface. In any vector equation, only
the start and finish points affect the resultant vector of a system. Two different
systems are shown in Figure 38.13, but in each of the systems, the resultant
vector is ad.
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The vector equation of the system shown in Figure 38.13(a) is:

ad = ab Y bd

and that for the system shown in Figure 38.13(b) is:

ad = ab Y bc Y cd

Thus in vector equations of this form, only the first and last letters, a and d,
respectively, fix the magnitude and direction of the resultant vector.

For example, two cars, P and Q, are travelling towards the junction of two
roads which are at right angles to one another. Car P has a velocity of 45 km/h
due east and car Q a velocity of 55 km/h due south. To calculate (i) the velocity
of car P relative to car Q, and (ii) the velocity of car Q relative to car P:

(i) The directions of the cars are shown in Figure 38.14(a), called a space
diagram. The velocity diagram is shown in Figure 38.14(b), in which pe
is taken as the velocity of car P relative to point e on the earth’s surface.
The velocity of P relative to Q is vector pq and the vector equation is
pq = pe Y eq . Hence the vector directions are as shown, eq being in the
opposite direction to qe. From the geometry of the vector triangle,

jpq j D
√

452 C 552 D 71.06 km/h and

arg pq D tan�1
(

55

45

)
D 50.71°

i.e. the velocity of car P relative to car Q is 71.06 km/h at 50.71°
(ii) The velocity of car Q relative to car P is given by the vector equation

qp = qe Y ep and the vector diagram is as shown in Figure 38.14(c),
having ep opposite in direction to pe. From the geometry of this vector
triangle:
jqpj D

√
452 C 552 D 71.06 m/s and

arg qp D tan�1
(

55

45

)
D 50.71°

N

W E
S

55 km/hP Q
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p
e

q

p
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Figure 38.14
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but must lie in the third quadrant, i.e. the required angle is
180° C 50.71° D 230.71°
Thus the velocity of car Q relative to car P is 71.06 m/s at 230.71°

39 Combination of Waveforms

Combination of two periodic functions

There are a number of instances in engineering and science where waveforms
combine and where it is required to determine the single phasor (called
the resultant) that could replace two or more separate phasors. (A phasor
is a rotating vector). Uses are found in electrical alternating current theory,
in mechanical vibrations, in the addition of forces and with sound waves.
There are several methods of determining the resultant and two such
methods — plotting/measuring, and resolution of phasors by calculation — are
explained in this chapter.

Plotting periodic functions

This may be achieved by sketching the separate functions on the same axes
and then adding (or subtracting) ordinates at regular intervals.

For example, the graphs of y1 D 3 sinA and y2 D 2 cosA are to be plotted from
A D 0° to A D 360° on the same axes. To plot yR D 3 sinAC 2 cosA by adding
ordinates, and obtain a sinusoidal expression for this resultant waveform:
y1 D 3 sinA and y2 D 2 cosA are shown plotted in Figure 39.1. Ordinates may
be added at, say, 15° intervals. For example,

at 0°, y1 C y2 D 0C 2 D 2

at 15°, y1 C y2 D 0.78C 1.93 D 2.71

at 120°, y1 C y2 D 2.60C�1 D 1.6

at 210°, y1 C y2 D �1.50� 1.73 D �3.23, and so on

The resultant waveform, shown by the broken line, has the same period, i.e.
360°, and thus the same frequency as the single phasors. The maximum value,
or amplitude, of the resultant is 3.6. The resultant waveform leads y1 D 3 sinA
by 34° or 0.593 rad. The sinusoidal expression for the resultant waveform is:

yR = 3.6 sin.AY 34°/ or yR = 3.6 sin.AY 0.593/

In another example, the graphs of y1 D 4 sinωt and y2 D 3 sin�ωt � �/3�
are to be plotted on the same axes, over one cycle. By adding ordinates at
intervals plot yR D y1 C y2. To obtain a sinusoidal expression for the resultant
waveform:
y1 D 4 sinωt and y2 D 3 sin�ωt � �/3� are shown plotted in Figure 39.2.
Ordinates are added at 15° intervals and the resultant is shown by the broken
line. The amplitude of the resultant is 6.1 and it lags y1 by 25° or 0.436 rad.
Hence the sinusoidal expression for the resultant waveform is:

yR = 6.1 sin.!t − 0.436/
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Figure 39.1

Figure 39.2

Figure 39.3
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In another example, to determine a sinusoidal expression for y1 � y2 when
y1 D 4 sinωt and y2 D 3 sin�ωt � �/3�:
y1 and y2 are shown plotted in Figure 39.3. At 15° intervals y2 is subtracted
from y1. For example:

at 0°, y1 � y2 D 0� ��2.6� D C2.6

at 30°, y1 � y2 D 2� ��1.5� D C3.5

at 150°, y1 � y2 D 2� 3 D �1, and so on.

The amplitude, or peak value of the resultant (shown by the broken line), is
3.6 and it leads y1 by 45° or 0.79 rad. Hence

y1 − y2 = 3.6 sin.!t Y 0.79/

Resolution of phasors by calculation

The resultant of two periodic functions may be found from their relative
positions when the time is zero. For example, if y1 D 4 sinωt and
y2 D 3 sin�ωt � �/3� then each may be represented as phasors as shown in
Figure 39.4, y1 being 4 units long and drawn horizontally and y2 being 3 units
long, lagging y1 by �/3 radians or 60°. To determine the resultant of y1 C y2,
y1 is drawn horizontally as shown in Figure 39.5 and y2 is joined to the end
of y1 at 60° to the horizontal. The resultant is given by yR. This is the same
as the diagonal of a parallelogram that is shown completed in Figure 39.6.
Resultant yR, in Figures 39.5 and 39.6, is determined either by:

Figure 39.4 Figure 39.5

Figure 39.6 Figure 39.7
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(a) use of the cosine rule (and then sine rule to calculate angle �), or
(b) determining horizontal and vertical components of lengths oa and ab in

Figure 39.5, and then using Pythagoras’ theorem to calculate ob.
In the above example, by calculation, yR D 6.083 and angle � D 25.28° or
0.441 rad. Thus the resultant may be expressed in sinusoidal form as
yR D 6.083 sin�ωt � 0.441�. If the resultant phasor, yR D y1 � y2 is required,
then y2 is still 3 units long but is drawn in the opposite direction, as shown
in Figure 39.7, and yR is determined by calculation.

For example, given y1 D 2 sinωt and y2 D 3 sin�ωt C �/4�, to obtain
an expression for the resultant yR D y1 C y2, (a) by drawing and (b) by
calculation:

(a) When time t D 0 the position of phasors y1 and y2 are as shown in
Figure 39.8(a). To obtain the resultant, y1 is drawn horizontally, 2 units
long, y2 is drawn 3 units long at an angle of �/4 rads or 45° and joined
to the end of y1 as shown in Figure 39.8(b). yR is measured as 4.6 units
long and angle � is measured as 27° or 0.47 rad. Alternatively, yR is the
diagonal of the parallelogram formed as shown in Figure 39.8(c).
Hence, by drawing, yR = 4.6 sin.!t Y 0.47/

(b) From Figure 39.8(b), and using the cosine rule:

y2
R D 22 C 32 � [2�2��3� cos 135° D 4C 9� [�8.485] D 21.49

Hence yR D
p

21.49 D 4.64

Using the sine rule:
3

sin�
D 4.64

sin 135°

y2 = 3

y2 = 3

yR

yR

y1 = 2

φ

φ

y2 = 3

y1 = 2 y1 = 2

π/4 or 45°

(a) (b)

(c)

45°135°

Figure 39.8
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from which, sin � D 3 sin 135°

4.64
D 0.4572

Hence � D sin�1 0.4572 D 27.21° or 0.475 rad.

By calculation, yR D 4.64 sin.!t Y 0.475/

40 Scalar and Vector Products
The unit triad

When a vector x of magnitude x units and direction �° is divided by the
magnitude of the vector, the result is a vector of unit length at angle �°. The

unit vector for a velocity of 10 m/s at 50° is
10 m/s at 50°

10 m/s
, i.e. 1 at 50°. In

general, the unit vector for oa is
oa
joaj , the oa being a vector and having both

magnitude and direction and joaj being the magnitude of the vector only.
One method of completely specifying the direction of a vector in space relative
to some reference point is to use three unit vectors, mutually at right angles
to each other, as shown in Figure 40.1. Such a system is called a unit triad.
In Figure 40.2, one way to get from o to r is to move x units along i to point

z

x

y
o ji

k

Figure 40.1

y

a

i
O

x j
z

k

r

b

Figure 40.2
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a, then y units in direction j to get to b and finally z units in direction k to
get to r. The vector or is specified as

or = xi Y yj Y zk

The scalar product of two vectors

When vector oa is multiplied by a scalar quantity, say k, the magnitude of
the resultant vector will be k times the magnitude of oa and its direction will
remain the same. Thus 2ð �5 N at 20°� results in a vector of magnitude 10 N
at 20°.
One of the products of two vector quantities is called the scalar or dot product
of two vectors and is defined as the product of their magnitudes multiplied
by the cosine of the angle between them. The scalar product of oa and ob
is shown as oa ž ob. For vectors oa D oa at �1, and ob D ob at �2 where
�2 > �1, the scalar product is:

oa ž ob D oa ob cos��2 � �1�

It may be shown that oa ž ob = ob ž oa
The angle between two vectors can be expressed in terms of the vector
constants as follows:

Since a ž b D ab cos �, then cos � D a ž b
ab

�1�

Let a D a1i C a2j C a3k and b D b1i C b2j C b3k
a ž b D �a1i C a2j C a3k� ž �b1i C b2j C b3k�
Multiplying out the brackets gives:

a ž b D a1b1i ž i C a1b2i ž j C a1b3i ž k C a2b1j ž i C a2b2j ž j

C a2b3j ž k C a3b1k ž i C a3b2k ž j C a3b3k ž k

However, the unit vectors i, j and k all have a magnitude of 1 and
i ž i D �1��1� cos 0° D 1, i ž j D �1��1� cos 90° D 0, i ž k D �1��1� cos 90° D
0 and similarly j ž j D 1, j ž k D 0 and k ž k D 1. Thus, only terms containing
i ž i , j ž j or k ž k in the expansion above will not be zero.

Thus, the scalar product a ž b D a1b1 C a2b2 C a3b3 �2�
Both a and b in equation (1) can be expressed in terms of a1, b1, a2, b2, a3
and b3
From the geometry of Figure 40.3, the length of diagonal OP in terms of side
lengths a, b and c can be obtained from Pythagoras’ theorem as follows:

OP2 D OB2 C BP2 and OB2 D OA2 C AB2

Thus, OP2 D OA2 C AB2 C BP2

D a2 C b2 C c2, in terms of side lengths

Thus, the length or modulus or magnitude or norm of vector OP is given by:

OP D
√
�a2 C b2 C c2� �3�
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c

a

b

O

A B

P

Figure 40.3

Relating this result to the two vectors a1i C a2j C a3k and b1i C b2j C b3k ,

gives: a D
√
�a2

1 C a2
2 C a2

3� and b D
√
�b2

1 C b2
2 C b2

3�
That is, from equation (1),

cos � D a1b1 C a2b2 C a3b3√
�a2

1 C a2
2 C a2

3�
√
�b2

1 C b2
2 C b2

3�
�4�

For example, to determine: (i) p ž q (ii) p Y q (iii) jp Y qj and (iv) jpj C jqj
if p D 2i C j � k and q D i � 3j C 2k :

(i) From equation (2), if p D a1i C a2j C a3k and q D b1i C b2j C b3k

then p ž q D a1b1 C a2b2 C a3b3

When p D 2i C j � k , a1 D 2, a2 D 1 and a3 D �1

and when q D i � 3j C 2k , b1 D 1, b2 D �3 and b3 D 2

Hence p ž q D �2��1�C �1���3�C ��1��2�

i.e. p ž q = −3

(ii) p Y q D �2i C j � k�C �i � 3j C 2k� D 3i − 2j Y k
(iii) jp Y qj D j3i� 2jC kj

From equation (3), jp Y q j D
√

[32 C ��2�2 C 12�] D p14
(iv) From equation (3), jpj D j2iC j� kj D

√
[22 C 12 C ��1�2] D p6

Similarly, jqj D ji� 3jC 2kj D
√

[12 C ��3�2 C 22] D p14
Hence jpj C jqj D p6Cp14 D 6.191,
correct to 3 decimal places

In another example, to determine the angle between vectors oa and ob when
oa D i C 2j � 3k and ob D 2i � j C 4k :
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From equation (4), cos � D a1b1 C a2b2 C a3b3√
�a2

1 C a2
2 C a2

3�
√
�b2

1 C b2
2 C b2

3�

Since oa D i C 2j � 3k , a1 D 1, a2 D 2 and a3 D �3

Since ob D 2i � j C 4k , b1 D 2, b2 D �1 and b3 D 4

Thus, cos � D �1ð 2�C �2ð�1�C ��3ð 4�√
�12 C 22 C ��3�2�

√
�22 C ��1�2 C 42�

D �12p
14
p

21
D �0.6999

i.e. � D 134.4° or 225.6°

By sketching the position of the two vectors, it will be seen that 225.6° is
not an acceptable answer. Thus the angle between the vectors oa and ob,
q = 134.4°

Direction Cosines

From Figure 40.2, or D xi C yj C zk and from equation (3),
jor j D

√
x2 C y2 C z2.

If or makes angles of ˛, ˇ and " with the co-ordinate axes i, j and k respec-
tively, then:

cos a =
x√

x2 Y y2 Y z 2
, cos b =

y√
x2 Y y2 Y z 2

and

cos g =
y√

x2 Y y2 Y z 2

such that cos2 ˛C cos2 ˇ C cos2 " D 1
The values of cos ˛, cosˇ and cos " are called the direction cosines of or

Practical Application of Scalar Product

For example, a constant force of F D 10i C 2j � k Newton’s displaces an
object from A D i C j C k to B D 2i � j C 3k (in metres). To find the work
done in Newton metres:
The work done is the product of the applied force and the distance moved in
the direction of the force,
i.e. work done = F ž d

The principles developed in the final example of chapter 39, apply equally to
this example when determining the displacement. From the sketch shown in
Figure 40.4,

AB D AO C OB D OB � OA

that is AB D �2i � j C 3k�� �i C j C k� D i � 2j C 2k
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O (0, 0, 0)

A (1, 1, 1)

B (2, −1, 3)

Figure 40.4

The work done is F ž d , that is F ž AB in this case

i.e. work done D �10i C 2j � k� ž �i � 2j C 2k�
But from equation (2), a ž b D a1b1 C a2b2 C a3b3
Hence workdone D �10ð 1�C �2ð ��2��C ��1�ð 2� D 4 Nm

Vector Products

A second product of two vectors is called the vector or cross product and
is defined in terms of its modulus and the magnitudes of the two vectors and
the sine of the angle between them. The vector product of vectors oa and ob
is written as oa × ob and is defined by:

joa × obj D oa ob sin �

where � is the angle between the two vectors.
The direction of oa × ob is perpendicular to both oa and ob, as shown in
Figure 40.5
The direction is obtained by considering that a right-handed screw is screwed
along oa × ob with its head at the origin and if the direction of oa × ob is
correct, the head should rotate from oa to ob, as shown in Figure 40.5(a).
It follows that the direction of ob × oa is as shown in Figure 40.5(b). Thus

qo

a

boa × ob
q

a

b

ob × oa

(a) (b)

o

Figure 40.5
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oa × ob is not equal to ob × oa . The magnitudes of oa ob sin � are the same
but their directions are 180° displaced, i.e.

oa × ob D −ob × oa

The vector product of two vectors may be expressed in terms of the unit
vectors. Let two vectors, a and b, be such that:

a D a1i C a2j C a3k and b D b1i C b2j C b3k

Then, a × b D �a1i C a2j C a3k�ð �b1i C b2j C b3k�

D a1b1i ð i C a1b2i ð j C a1b3i ð k C a2b1j ð i

C a2b2j ð j C a2b3j ð k C a3b1k ð i

C a3b2k ð j C a3b3k ð k

But by the definition of a vector product,

i ð j D k , j ð k D i and k ð i D j

Also i ð i D j ð j D k ð k D �1��1� sin 0° D 0

Remembering that a × b D −b × a gives:

a × b D a1b2k � a1b3j � a2b1k C a2b3i C a3b1j � a3b2i

Grouping the i, j and k terms together, gives

a × b D �a2b3 � a3b2�i C �a3b1 � a1b3�j C �a1b2 � a2b1�k

The vector product can be written in determinant form (see Chapter 43) as:

a × b D
∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣ �5�

The 3ð 3 determinant

∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣ is evaluated as:

i
∣∣∣∣ a2 a3
b2 b3

∣∣∣∣� j
∣∣∣∣ a1 a3
b1 b3

∣∣∣∣Ck
∣∣∣∣ a1 a2
b1 b2

∣∣∣∣ where∣∣∣∣ a2 a3
b2 b3

∣∣∣∣Da2b3 � a3b2,

∣∣∣∣ a1 a3
b1 b3

∣∣∣∣Da1b3 � a3b1 and

∣∣∣∣ a1 a2
b1 b2

∣∣∣∣
D a1b2 � a2b1

The magnitude of the vector product of two vectors can be found by expressing
it in scalar product form and then using the relationship

a ž b D a1b1 C a2b2 C a3b3

Squaring both sides of a vector product equation gives:

.ja × bj/2 D a2b2 sin2 � D a2b2�1� cos2 ��

D a2b2 � a2b2 cos2 � �6�



217

It is stated earlier that a ž b D ab cos �, hence

a ž a D a2 cos �. But � D 0°, thus

a ž a D a2

Also, cos � D a ž b
ab

Multiplying both sides of this equation by a2b2 and squaring gives

a2b2 cos2 � D a2b2�a ž b�2
a2b2

D .a ž b/2

Substituting in equation (6) above for a2 D a ž a , b2 D b ž b and
a2b2 cos2 � D .a ž b/2 gives:

.ja × bj/2 D .a ž a/.b ž b/� .a ž b/2

That is, ja × bj =
√

[.a ž a/.b ž b/ − .a ž b/2] �7�

For example, to find (i) að b and (ii) ja × bj for the vectors a D i C 4j � 2k
and b D 2i � j C 3k :

(i) From equation 5,

a × b =

∣∣∣∣∣
i j k
1 4 �2
2 �1 3

∣∣∣∣∣ D i
∣∣∣∣ 4 �2
�1 3

∣∣∣∣� j
∣∣∣∣ 1 �2
2 3

∣∣∣∣C k
∣∣∣∣ 1 4
2 �1

∣∣∣∣
D i �12� 2�� j �3C 4�C k��1� 8�

D 10i − 7j − 9k

(ii) From equation (7), ja × bj D
√

[.a ž a/.b ž b/� .a ž b/2]

Now a ž a D �1��1�C �4ð 4�C ��2���2� D 21

b ž b D �2��2�C ��1���1�C �3��3� D 14

and a ž b D �1��2�C �4���1�C ��2��3� D �8

Thus ja × bj D
√
�21ð 14� 64� D

p
230 D 15.17

Practical application of vector products

For example, to find the moment and the magnitude of the moment of a force
of �i C 2j � 3k� Newton’s about point B having co-ordinates (0, 1, 1), when
the force acts on a line through A whose co-ordinates are (1, 3, 4):
The moment M about point B of a force vector F that has a position vector
of r from A is given by: M = r × F
r is the vector from B to A, i.e. r D BA
But BA D BO C OA D OA� OB (see the final example in chapter 39), that
is, r D �i C 3j C 4k�� �j C k� D i C 2j C 3k
Moment, M = r × F D �i C 2j C 3k�ð �i C 2j � 3k�
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D
∣∣∣∣∣
i j k
1 2 3
1 2 �3

∣∣∣∣∣D i ��6� 6�� j ��3� 3�C k�2� 2�

D −12i Y 6j Nm

The magnitude of M, jM j D jr × F j D
√

[.r ž r/.F ž F /� .r ž F /2]

r ž r D �1��1�C �2��2�C �3��3� D 14

F ž F D �1��1�C �2��2�C ��3���3� D 14

r ž F D �1��1�C �2��2�C �3���3� D �4

jM j D
√

[14ð 14� ��4�2] D
p

180 Nm D 13.42 Nm



Complex Numbers

41 Complex Numbers

Cartesian complex numbers

If the quadratic equation x2 C 2x C 5 D 0 is solved using the quadratic formula
then

x D �2š
√

[�2�2 � �4��1��5�]

2�1�
D �2šp[�16]

2

D �2šp[�16���1�]

2
D �2šp16

p�1

2

D �2š 4
p�1

2
D �1š 2

p�1

It is not possible to evaluate
p�1 in real terms. However, if an operator j is

defined as j =
p

−1 then the solution may be expressed as x D �1š j2.
�1C j2 and �1� j2 are known as complex numbers. Both solutions are of
the form aC jb, ‘a’ being termed the real part and jb the imaginary part. A
complex number of the form aC jb is called a Cartesian complex number.

Since j D p�1, then j2 D �1,

j3 D j2 ð j D ��1�ð j D −j ,

j4 D j2 ð j2 D ��1�ð ��1� D 1

and j23 D jð j22 D jð �j2�11 D jð ��1�11 D jð ��1� D −j

In pure mathematics the symbol i is used to indicate
p�1 (i being the first

letter of the word imaginary). However i is the symbol of electric current in
engineering, and to avoid possible confusion the next letter in the alphabet, j,
is used to represent

p�1.
For example, the quadratic equation 2x2 C 3x C 5 D 0 is solved as follows:
Using the quadratic formula,

x D �3š
√

[�3�2 � 4�2��5�]

2�2�
D �3šp�31

4

D �3šp��1�
p

31

4
D �3š j

p
31

4

Hence x = −
3
4
Y j

p
31
4

or −0.750 ± j 1.392 , correct to 3 decimal places.

(Note, a graph of y D 2x2 C 3x C 5 does not cross the x-axis and hence
2x2 C 3x C 5 D 0 has no real roots).
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−3 −2 −1 0 1 2 3 Real axis

Aj2

j

−j

−j2

j3

j4

−j3

−j4
D

B

Imaginary
axis

−j5
C

Figure 41.1

The Argand diagram

A complex number may be represented pictorially on rectangular or Cartesian
axes. The horizontal (or x) axis is used to represent the real axis and the vertical
(or y) axis is used to represent the imaginary axis. Such a diagram is called an
Argand diagram. In Figure 41.1, the point A represents the complex number
(3C j2) and is obtained by plotting the co-ordinates (3, j2) as in graphical
work. Figure 41.1 also shows the Argand points B, C and D representing the
complex numbers (�2C j4), (�3� j5) and (1� j3) respectively.

Addition and subtraction of complex numbers

Two complex numbers are added/subtracted by adding/subtracting separately
the two real parts and the two imaginary parts.
For example, if Z1 D aC jb and Z2 D c C jd,

then Z1 C Z2 D �aC jb�C �c C jd� D �aC c�C j�bC d�

and Z1 � Z2 D �aC jb�� �c C jd� D �a� c�C j�b� d�

For example, �2C j3�C �3� j4� D 2C j3C 3� j4 D 5 − j 1

and �2C j3�� �3� j4� D 2C j3� 3C j4 D −1Y j 7
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Multiplication and division of complex numbers

Multiplication of complex numbers is achieved by assuming all quantities
involved are real and then using j2 D �1 to simplify.

Hence �aC jb��c C jd� D ac C a�jd�C �jb�c C �jb��jd�

D ac C jadC jbc C j2bd

D �ac � bd�C j�adC bc� since j2 D �1

For example, �3C j2��4� j5� D 12� j15C j8� j210

D �12��10�C j��15C 8�

D 22 − j 7

The complex conjugate of a complex number is obtained by changing the sign
of the imaginary part. Hence the complex conjugate of �aC jb� is �a� jb�.
The product of a complex number and its complex conjugate is always a real
number.
For example, �3C j4��3� j4� D 9� j12C j12� j216 D 9C 16 D 25
[�aC jb��a� jb� may be evaluated ‘on sight’ as a2 C b2]
Division of complex numbers is achieved by multiplying both numerator and
denominator by the complex conjugate of the denominator.
For example,

2� j5

3C j4
D 2� j5

3C j4
ð �3� j4�

�3� j4�
D 6� j8� j15C j220

32 C 42

D �14� j23

25
D −14

25
− j

23
25

or −0.56 − j 0.92

Complex equations

If two complex numbers are equal, then their real parts are equal and their
imaginary parts are equal. Hence if aC jb D c C jd, then a D c and b D d
For example, solving the complex equation �1C j2���2� j3� D aC jb
gives:

�1C j2���2� j3� D aC jb

�2� j3� j4� j26 D aC jb

Hence 4� j7 D aC jb
Equating real and imaginary terms gives: a = 4 and b = −7

The polar form of a complex number

Let a complex number Z be x C jy as shown in the Argand diagram of
Figure 41.2.
Let distance OZ be r and the angle OZ makes with the positive real axis
be �.
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Z

jyr

θ
O

x
A Real axis

Imaginary
axis

Figure 41.2

From trigonometry, x D r cos � and y D r sin �
Hence Z D x C jy D r cos � C jr sin � D r�cos � C j sin ��
Z D r�cos � C j sin �� is usually abbreviated to Z D r 6 � which is known as
the polar form of a complex number.
r is called the modulus (or magnitude) of Z and is written as mod Z or jZj.
r is determined using Pythagoras’ theorem on triangle OAZ in Figure 41.2,

i.e. r =
√

x2 Y y2

� is called the argument (or amplitude) of Z and is written as arg Z.

By trigonometry on triangle OAZ, argZ D q = tan−1 y
x

Whenever changing from Cartesian form to polar form, or vice-versa, a sketch
is invaluable for determining the quadrant in which the complex number
occurs.
For example, expressing (a) 3C j4 and (b) �3C j4 in polar form:

(a) 3C j4 is shown in Figure 41.3 and lies in the first quadrant.

Modulus, r D
√

32 C 42 D 5

and argument � D tan�1 4
3 D 53.13° D 53°80

Hence 3Y j 4 = 56 6 53.13°
(b) �3C j4 is shown in Figure 41.3 and lies in the second quadrant.

Modulus, r D 5 and angle ˛ D 53.13°, from part (a).
Argument D 180° � 53.13° D 126.87° (i.e. the argument must be mea-
sured from the positive real axis)
Hence −3Y j 4 = 56 6 126.87°

Similarly it may be shown that .−3 − j 4/ = 56 6 233.13° or 56 6 −126.87° , (by
convention the principal value is normally used, i.e. the numerically least
value, such that �� < � < ��, and .3 − j 4/ = 56 6 −53.13° .

In another example, 76 �145° into aC jb form:
76 �145° is shown in Figure 41.4 and lies in the third quadrant.

76 6 −145° D 7 cos��145°�C j7 sin��145°� D −5.734 − j 4.015
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1 2−1−2
−j

−j2

−j3

−4

j

j2

j3

j4 (3+j4)(−3+j4)

(−3−j4) (3−j4)

3−3

r

r

r

Real axis

Imaginary
axis

r

θ
αα

α

Figure 41.3

Real axis

7
145°

x

jy

α

Figure 41.4

Multiplication and division in polar form

If Z1 D r1 6 �1 and Z2 D r2 6 �2 then:

Z1Z2 D r1r2 6 ��1 C �2� and
Z1

Z2
D r1

r2

6 ��1 � �2�

For example,

36 16° ð 56 �44° ð 26 80° D �3ð 5ð 2�6 [16° C ��44°�C 80°]

D 306 6 52°

In another example,
166 75°

26 15°
D 16

2
6 �75° � 15°� D 86 6 60°

In another example, to evaluate, in polar form
26 30° C 56 �45° � 46 120°:

26 30° D 2�cos 30° C j sin 30°� D 2 cos 30° C j2 sin 30°

D 1.732C j1.000

56 �45° D 5�cos��45°�C j sin��45°��

D 5 cos��45°�C j5 sin��45°� D 3.536� j3.536

46 120° D 4�cos 120° C j sin 120°� D 4 cos 120° C j4 sin 120°

D �2.000C j3.464
Hence

26 30° C 56 �45° � 46 120° D �1.732 C j1.000�C �3.536� j3.536�

���2.000C j3.464�

D 7.268� j6.000,

which lies in the fourth quadrant
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D
√

7.2682 C 6.0002 6 tan�1
(�6.000

7.268

)

D 9.4256 6 −39.54°

Applications of complex numbers

There are several applications of complex numbers in science and engineering,
in particular in electrical alternating current theory and in mechanical vector
analysis.
The effect of multiplying a phasor by j is to rotate it in a positive direction (i.e.
anticlockwise) on an Argand diagram through 90° without altering its length.
Similarly, multiplying a phasor by �j rotates the phasor through �90°. These
facts are used in a.c. theory since certain quantities in the phasor diagrams
lie at 90° to each other. For example, in the R-L series circuit shown in
Figure 41.5(a), VL leads I by 90° (i.e. I lags VL by 90°) and may be written
as jVL , the vertical axis being regarded as the imaginary axis of an Argand
diagram. Thus VR C jVL D V and since VR D IR, V D IXL (where XL is the
inductive reactance, 2�fL ohms) and V D IZ (where Z is the impedance)
then RC jXL D Z.
For example, Z D �4C j7� � represents an impedance consisting of a 4 �
resistance in series with an inductance of inductive reactance 7 �.
Similarly, for the R-C circuit shown in Figure 41.5(b), VC lags I by 90° (i.e.
I leads VC by 90°) and VR � jVC D V, from which R� jXC D Z (where

XC is the capacitive reactance
1

2�fC
ohms).

For example, Z D �5� j3� � represents an impedance consisting of a 5 �
resistance in series with a capacitance of capacitive reactance 3 �.
In another example, to determine the value of current I and its phase relative
to the 240 V supply for the parallel circuit shown in Figure 41.6:

R L

V

l
VR VL

R C

V

l VR VC

VVL

VR l

(a)

Phasor diagram
VR l

VC V
(b)

Phasor diagram

θ

φ

Figure 41.5
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R1 = 4 Ω XL = 3 Ω

R2 = 10 Ω

R3 = 12 Ω XC = 5 Ω
l

240 V, 50 Hz

Figure 41.6

Current I D V

Z
. Impedance Z for the three-branch parallel circuit is given by:

1

Z
D 1

Z1
,C 1

Z2
C 1

Z3
, where Z1 D 4C j3, Z2 D 10 and Z3 D 12� j5

Admittance, Y1 D 1

Z1
D 1

4C j3
D 1

4C j3
ð 4� j3

4� j3

D 4� j3

42 C 32
D 0.160� j0.120 siemens

Admittance, Y2 D 1

Z2
D 1

10
D 0.10 siemens

Admittance, Y3 D 1

Z3
D 1

12� j5
D 1

12� j5
ð 12C j5

12C j5

D 12C j5

122 C 52
D 0.0710 C j0.0296 siemens

Total admittance, Y D Y1 C Y2 C Y3

D �0.160 � j0.120�C �0.10�C �0.0710C j0.0296�

D 0.331 � j0.0904 D 0.3436 �15.28° siemens

Current I D V

Z
D VY D �2406 0°��0.3436 �15.28°� D 82.326 6 −15.28° A

In another example, to determine the magnitude and direction of the resultant
of the three coplanar forces shown in Figure 41.7:
Force A,fA D 106 45°, force B, fB D 86 120° and force C, fC D 156 210°

The resultant force D fA C fB C fC D 106 45° C 86 120° C 156 210°

D 10�cos45°Cjsin45°�C8�cos120°Cjsin120°�

C15�cos210° C jsin210°�
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45°

120°
210°

10 N8 N

15 N

Figure 41.7

D �7.071C j7.071�C ��4.00C j6.928�

C��12.99� j7.50�

D �9.919C j6.499

Magnitude of resultant force D
√

��9.919�2 C 6.4992 D 11.86 N

Direction of resultant force D tan�1
(

6.499

�9.919

)
D 146.77°

(since �9.919C j6.499 lies in the second quadrant).

42 De Moivre’s Theorem
Introduction

From multiplication of complex numbers in polar form,

�r 6 ��ð �r 6 �� D r2 6 2�

Similarly, �r 6 ��ð �r 6 ��ð �r 6 �� D r3 6 3�, and so on.
In general, de Moivre’s theorem states:

[r 6 6 q]n = rn 6 6 nq

The theorem is true for all positive, negative and fractional values of n. The
theorem is used to determine powers and roots of complex numbers.

Powers of complex numbers

For example, [36 20°]4 D 34 6 �4ð 20°� D 816 80° by de Moivre’s theorem.

In another example, to determine ��2C j3�6 in polar form:

��2C j3� D
√

��2�2 C 32 6 tan�1 3
�2 D

p
13 6 123.69°,

since �2C j3 lies in the second quadrant
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��2C j3�6 D [
p

13 6 123.69°]6

D �
p

13�6 6 �6ð 123.69°�, by de Moivre’s theorem

D 21976 742.14°

D 21976 382.14° (since 742.14 
 742.14° � 360° D 382.14°�

D 21976 6 22.14° (since 382.14° 
 382.14° � 360° D 22.14°�

Roots of complex numbers

The square root of a complex number is determined by letting n D 1
2 in de

Moivre’s theorem,

i.e.
p

r 6 � D [r 6 �]1/2 D r1/2 6 1

2
� D pr 6

�

2
There are two square roots of a real number, equal in size but opposite in
sign.
For example, to determine the two square roots of the complex number (5C
j12) in polar and Cartesian forms:

�5C j12� D
√

52 C 122 6 tan�1 12

5
D 136 67.38°

When determining square roots two solutions result. To obtain the second
solution one way is to express 13 6 67.38° also as 136 �67.38° C 360°�, i.e.
136 427.38°. When the angle is divided by 2 an angle less than 360° is
obtained.

Hence
√

52 C 122 D
p

136 67.38° and
p

136 427.38°

D [136 67.38°]1/2 and [136 427.38°]1/2

D 131/2 6
(

1
2 ð 67.38°

)
and 131/2 6

(
1
2 ð 427.38°

)
D
p

13 6 33.69° and
p

13 6 213.69°

D 3.616 33.69° and 3.616 213.69°

Thus, in polar form, the two roots are 3.616 6 33.69° and 3.616 6 −146.69°
p

13 6 33.69° D
p

13�cos 33.69° C j sin 33.69°� D 3.0C j2.0
p

13 6 213.69° D
p

13�cos 213.69° C j sin 213.69°� D �3.0� j2.0

Thus, in Cartesian form, the two roots are ±.3.0Y j 2.0/.
From the Argand diagram shown in Figure 42.1 the two roots are seen to
be 180° apart, which is always true when finding square roots of complex
numbers.
In general, when finding the n th root of a complex number, there are
n solutions. For example, there are three solutions to a cube root, five solutions
to a fifth root, and so on. In the solutions to the roots of a complex number, the
modulus, r, is always the same, but the arguments, �, are different. Arguments

are symmetrically spaced on an Argand diagram and are
360°

n
apart, where n
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Imaginary axis

j2

213.69°
33.69°

3.61

3.61

−j2

−3 3 Real axis

Figure 42.1

is the number of the roots required. Thus if one of the solutions to the cube
root of a complex number is, say, 5 6 20°, the other two roots are symmetrically

spaced
360°

3
, i.e. 120° from this root, and the three roots are 56 20°, 56 140°

and 56 260°.

The exponential form of a complex number

Certain mathematical functions may be expressed as power series, three
examples being:

(i) ex D 1C x C x2

2!
C x3

3!
C x4

4!
C x5

5!
C . . . �1�

(ii) sin x D x � x3

3!
C x5

5!
� x7

7!
C . . . �2�

(iii) cos x D 1� x2

2!
C x4

4!
� x6

6!
C . . . �3�

Replacing x in equation (1) by the imaginary number j� gives:

ej� D 1C j� C �j��2

2!
C �j��3

3!
C �j��4

4!
C �j��5

5!
C . . .

D 1C j� C j2�2

2!
C j3�3

3!
C j4�4

4!
C j5�5

5!
C . . .

By definition, j D p�1, hence j2 D �1, j3 D �j, j4 D 1, j5 D j, and so on.

Thus ej� D 1C j� � �2

2!
� j

�3

3!
C �4

4!
C j

�5

5!
� . . .

Grouping real and imaginary terms gives:

ej� D
(

1� �2

2!
C �4

4!
� . . .

)
C j

(
� � �3

3!
C �5

5!
� . . .

)
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However, from equations (2) and (3):

(
1� �2

2!
C �4

4!
� . . .

)
D cos � and

(
� � �3

3!
C �5

5!
� . . .

)
D sin �

Thus e jq = cos qY j sin q (4)

Writing �� for � in equation (4), gives:

ej���� D cos����C j sin����

However, cos���� D cos � and sin���� D � sin �

Thus e−jq = cos q − j sin q (5)

The polar form of a complex number z is: z D r�cos � C j sin ��. But, from
equation (4), cos � C j sin � D ej� .

Therefore z = re jq

When a complex number is written in this way, it is said to be expressed in
exponential form.
There are therefore three ways of expressing a complex number:
1. z D �aC jb�, called Cartesian or rectangular form,
2. z D r�cos � C j sin �� or r 6 �, called polar form, and
3. z D rej� called exponential form.
The exponential form is obtained from the polar form. For example, 46 30°

becomes 4ej�/6 in exponential form. (Note that in rej� , � must be in
radians).

For example, �3� j4� D 56 6 −53.13° D 56 6 −0.927 in polar form

D 5e−j 0.927 in exponential form

In another example,

7.2ej1.5 D 7.26 1.5 rad �D 7.26 85.94°� in polar form

D 7.2 cos 1.5C j7.2 sin 1.5

D .0.509 Y j 7.182/ in rectangular form

In another example,

z D 2e1Cj�/3 D �2e1��ej�/3� by the laws of indices

D �2e1�6
�

3
�or 2e 6 60°� in polar form

D 2e
(

cos
�

3
C j sin

�

3

)
D .2.718 Y j 4.708/ in Cartesian form
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In another example, if

z D 4ej1.3 then ln z D ln�4ej1.3�

D ln 4Y j 1.3 �or 1.386 Y j 1.300� in Cartesian form.

D 1.906 6 43.17° or 1.906 6 0.753 in polar form.

In another example,

ln�3C j4� D ln[56 0.927] D ln[5ej0.927] D ln 5C ln�ej0.927�

D ln 5C j0.927 D 1.609C j0.927

D 1.8576 6 29.95° or 1.8576 6 0.523



Matrices and Determinants

43 The Theory of Matrices and Determinants

Matrix notation

Matrices and determinants are mainly used for the solution of linear simul-
taneous equations. The theory of matrices and determinants is dealt with in
this chapter and this theory is then used in chapter 44 to solve simultaneous
equations. The coefficients of the variables for linear simultaneous equations
may be shown in matrix form. The coefficients of x and y in the simultaneous
equations

x C 2y D 3

4x � 5y D 6

become
(

1 2
4 �5

)
in matrix notation

Similarly, the coefficients of p, q and r in the equations

1.3p� 2.0q C r D 7

3.7pC 4.8q � 7r D 3

4.1pC 3.8q C 12r D �6

become

(
1.3 �2.0 1
3.7 4.8 �7
4.1 3.8 12

)
in matrix form

The numbers within a matrix are called an array and the coefficients forming
the array are called the elements of the matrix. The number of rows in a matrix
is usually specified by m and the number of columns by n and a matrix referred

to as an ‘m by n’ matrix. Thus,
(

2 3 6
4 5 7

)
is a ‘2 by 3’ matrix.

Matrices cannot be expressed as a single numerical value, but they can often
be simplified or combined, and unknown element values can be determined
by comparison methods. Just as there are rules for addition, subtraction, mul-
tiplication and division of numbers in arithmetic, rules for these operations
can be applied to matrices and the rules of matrices are such that they obey
most of those governing the algebra of numbers.

Addition, Subtraction and Multiplication of Matrices

Addition of matrices
Corresponding elements in two matrices may be added to form a single matrix.
For example,(

2 �1
�7 4

)
C
(�3 0

7 �4

)
D
(

2C 	�3
 �1C 0
�7C 7 4C 	�4


)

D
(

−1 −1
0 0

)
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Subtraction of matrices

If A is a matrix and B is another matrix, then (A� B) is a single matrix formed
by subtracting the elements of B from the corresponding elements of A.
For example,(

2 �1
�7 4

)
�
(�3 0

7 �4

)
D
(

2� 	�3
 �1� 0
�7� 7 4� 	�4


)

D
(

5 −1
−14 8

)

Multiplication

When a matrix is multiplied by a number, called scalar multiplication, a
single matrix results in which each element of the original matrix has been
multiplied by the number.

For example, if A D
(�3 0

7 �4

)
, B D

(
2 �1
�7 4

)
and C D

(
1 0
�2 �4

)

then 2A� 3B C 4C D 2
(�3 0

7 �4

)
� 3

(
2 �1
�7 4

)
C 4

(
1 0
�2 �4

)

D
( �6 0

14 �8

)
�
(

6 �3
�21 12

)
C
(

4 0
�8 �16

)

D
( �6� 6C 4 0� 	�3
C 0

14� 	�21
C 	�8
 �8� 12C 	�16


)

D
(

−8 3
27 −36

)

When a matrix A is multiplied by another matrix B, a single matrix results in
which elements are obtained from the sum of the products of the corresponding
rows of A and the corresponding columns of B.
Two matrices A and B may be multiplied together, provided the number of
elements in the rows of matrix A are equal to the number of elements in
the columns of matrix B. In general terms, when multiplying a matrix of
dimensions (m by n) by a matrix of dimensions (n by r), the resulting matrix
has dimensions (m by r). Thus a 2 by 3 matrix multiplied by a 3 by 1 matrix
gives a matrix of dimensions 2 by 1.

For example, let A D
(

2 3
1 �4

)
and B D

(�5 7
�3 4

)

Let Að B D C where C D
(

c11 c12
c21 c22

)
C11 is the sum of the products of the first row elements of A and the first
column elements of B taken one at a time, i.e. C11 D 	2ð 	�5

C 	3ð
	�3

 D �19. C12 is the sum of the products of the first row elements of
A and the second column elements of B, taken one at a time, i.e. C12 D
	2ð 7
C 	3ð 4
 D 26. C21 is the sum of the products of the second row
elements of A and the first column elements of B, taken one at a time, i.e.
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C21 D 	1ð 	�5

C 	�4
ð 	�3

 D 7. Finally, C22 is the sum of the prod-
ucts of the second row elements of A and the second column elements of B,
taken one at a time, i.e. C22 D 	1ð 7
C 	�4
ð 4
 D �9

Thus, Að B =

(
−19 26

7 −9

)
In another example

(
3 4 0
�2 6 �3

7 �4 1

)
ð
(

2
5
�1

)

D

 	3ð 2
C 	4ð 5
C 	0ð 	�1



	�2ð 2
C 	6ð 5
C 	�3ð 	�1



	7ð 2
C 	�4ð 5
C 	1ð 	�1




 D

(
26
29

−7

)

In algebra, the commutative law of multiplication states that að b D bð a.
For matrices, this law is only true in a few special cases, and in general Að B
is not equal to Bð A

The unit matrix

A unit matrix, I, is one in which all elements of the leading diagonal (n)
have a value of 1 and all other elements have a value of 0. Multiplication of
a matrix by I is the equivalent of multiplying by 1 in arithmetic.

The determinant of a 2 by 2 matrix

The determinant of a 2 by 2 matrix,
(

a b
c d

)
is defined as (ad� bc).

The elements of the determinant of a matrix are written between vertical lines.

Thus, the determinant of
(

3 �4
1 6

)
is written as

∣∣∣∣ 3 �4
1 6

∣∣∣∣ and is equal to

	3ð 6
� 	�4ð 1
, i.e. 18� 	�4
 D 22. Hence the determinant of a matrix

can be expressed as a single numerical value, i.e.

∣∣∣∣ 3 �4
1 6

∣∣∣∣ D 22

The inverse or reciprocal of a 2 by 2 matrix

The inverse of matrix A is A�1 such that Að A�1 D I, the unit matrix.

For any matrix
(

p q
r s

)
the inverse may be obtained by:

(i) interchanging the positions of p and s,
(ii) changing the signs of q and r, and

(iii) multiplying this new matrix by the reciprocal of the determinant of(
p q
r s

)
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Thus the inverse of matrix
(

1 2
3 4

)
is

1

4� 6

(
4 �2
�3 1

)
D
( �2 1

3
2 � 1

2

)

The determinant of a 3 by 3 matrix

(i) The minor of an element of a 3 by 3 matrix is the value of the 2 by 2
determinant obtained by covering up the row and column containing that
element.

Thus for the matrix

(
1 2 3
4 5 6
7 8 9

)
the minor of element 4 is obtained

by covering the row (4 5 6) and the column

(
1
4
7

)
, leaving the 2 by 2

determinant

∣∣∣∣ 2 3
8 9

∣∣∣∣, i.e. the minor of element 4 is 	2ð 9
� 	3ð 8
 D
�6

(ii) The sign of a minor depends on its position within the matrix, the sign

pattern being

(C � C
� C �
C � C

)
. Thus the signed-minor of element 4 in the

matrix

(
1 2 3
4 5 6
7 8 9

)
is �

∣∣∣∣ 2 3
8 9

∣∣∣∣ D �	�6
 D 6

The signed-minor of an element is called the cofactor of the element.
(iii) The value of a 3 by 3 determinant is the sum of the products of

the elements and their cofactors of any row or any column of the
corresponding 3 by 3 matrix.

There are thus six different ways of evaluating a 3ð 3 determinant-and all
should give the same value.

For example, to evaluate

∣∣∣∣∣
1 4 �3
�5 2 6
�1 �4 2

∣∣∣∣∣:
Using the first row:∣∣∣∣∣

1 4 �3
�5 2 6
�1 �4 2

∣∣∣∣∣ D 1

∣∣∣∣ 2 6
�4 2

∣∣∣∣� 4

∣∣∣∣�5 6
�1 2

∣∣∣∣ C 	�3


∣∣∣∣�5 2
�1 �4

∣∣∣∣
D 	4C 24
� 4	�10C 6
� 3	20C 2


D 28C 16� 66 D −22

Using the second column:∣∣∣∣∣
1 4 �3
�5 2 6
�1 �4 2

∣∣∣∣∣ D �4

∣∣∣∣�5 6
�1 2

∣∣∣∣C 2

∣∣∣∣ 1 �3
�1 2

∣∣∣∣� 	�4


∣∣∣∣ 1 �3
�5 6

∣∣∣∣
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D �4	�10C 6
C 2	2� 3
C 4	6� 15


D 16� 2� 36 D −22

The inverse or reciprocal of a 3 by 3 matrix

The adjoint of a matrix A is obtained by:
(i) forming a matrix B of the cofactors of A, and

(ii) transposing matrix B to give BT, where BT is the matrix obtained by
writing the rows of B as the columns of BT. Then adj A = BT

The inverse of matrix A, A�1 is given by A�1=
adj A
jAj where adj A is the

adjoint of matrix A and jAj is the determinant of matrix A.

For example, to find the inverse of

(
1 5 �2
3 �1 4
�3 6 �7

)

Inverse D adjoint

determinant

The matrix of cofactors is

(�17 9 15
23 �13 �21
18 �10 �16

)

The transpose of the matrix of cofactors (i.e. the adjoint) is(�17 23 18
9 �13 �10
15 �21 �16

)

The determinant of(
1 5 �2
3 �1 4
�3 6 �7

)
D 1	7� 24
� 5	�21C 12
� 2	18� 3


D �17C 45� 30 D �2

Hence the inverse of

(
1 5 �2
3 �1 4
�3 6 �7

)
D

(�17 23 18
9 �13 �10
15 �21 �16

)

�2
D
(

8.5 −11.5 −9
−4.5 6.5 5
−7.5 10.5 8

)

44 The Solution of Simultaneous Equations by
Matrices and Determinants

Solution of simultaneous equations by matrices

Two unknowns
The procedure for solving linear simultaneous equations in two unknowns
using matrices is:
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(i) write the equations in the form

a1x C b1y D c1

a2x C b2y D c2

(ii) write the matrix equation corresponding to these equations,

i.e.
(

a1 b1
a2 b2

)
ð
(

x
y

)
D
(

c1
c2

)

(iii) determine the inverse matrix of
(

a1 b1
a2 b2

)
,

i.e.
1

a1b2 � b1a2

(
b2 �b1
�a2 a1

)
, 	from chapter 43


(iv) multiply each side of (ii) by the inverse matrix, and
(v) solve for x and y by equating corresponding elements.

For example, using matrices to solve the simultaneous equations:

3x C 5y � 7 D 0 	1


4x � 3y � 19 D 0 	2


(i) Writing the equations in the a1x C b1y D c form gives:

3x C 5y D 7

4x � 3y D 19

(ii) The matrix equation is
(

3 5
4 �3

)
ð
(

x
y

)
D
(

7
19

)

(iii) The inverse of matrix
(

3 5
4 �3

)
is

1

3ð 	�3
� 5ð 4

(�3 �5
�4 3

)
D




3

29

5

29
4

29

�3

29




(iv) Multiplying each side of (ii) by (iii) and remembering that Að A�1 D I,
the unit matrix, gives:

(
1 0
0 1

)(
x
y

)
D




3

29

5

29
4

29

�3

29


ð

(
7

19

)

Thus
(

x
y

)
D




21

29
C 95

29
28

29
� 57

29


 i.e.

(
x
y

)
D
(

4
�1

)



237

(v) By comparing corresponding elements: x = 4 and y = −1, which can
be checked in the original equations.

Three unknowns
The procedure for solving linear simultaneous equations in three unknowns
using matrices is:

(i) write the equations in the form

a1x C b1y C c1z D d1

a2x C b2y C c2z D d2

a3x C b3y C c3z D d3

(ii) write the matrix equation corresponding to these equations, i.e.(
a1 b1 c1
a2 b2 c2
a3 b3 c3

)
ð
(

x
y
z

)
D
(

d1
d2
d3

)

(iii) determine the inverse matrix of

(
a1 b1 c1
a2 b2 c2
a3 b3 c3

)
(see chapter 43)

(iv) multiply each side of (ii) by the inverse matrix, and
(v) solve for x, y and z by equating the corresponding elements.

For example, using matrices to solve the simultaneous equations:

x C y C z � 4 D 0 	1


2x � 3y C 4z � 33 D 0 	2


3x � 2y � 2z � 2 D 0 	3


(i) Writing the equations in the a1x C b1y C c1z D d1 form gives:

x C y C z D 4

2x � 3y C 4z D 33

3x � 2y � 2z D 2

(ii) The matrix equation is

(
1 1 1
2 �3 4
3 �2 �2

)
ð
(

x
y
z

)
D
(

4
33
2

)

(iii) The inverse matrix of A D
(

1 1 1
2 �3 4
3 �2 �2

)
is given by A�1 D adj A

jAj
The adjoint of A is the transpose of the matrix of the cofactors of the

elements (see chapter 43). The matrix of cofactors is

(
14 16 5
0 �5 5
7 �2 �5

)

and the transpose of this matrix gives: adj A D
(

14 0 7
16 �5 �2
5 5 �5

)
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The determinant of A, i.e. the sum of the products of elements and their
cofactors, using a first row expansion is

1

∣∣∣∣�3 4
�2 �2

∣∣∣∣� 1

∣∣∣∣ 2 4
3 �2

∣∣∣∣C 1

∣∣∣∣ 2 �3
3 �2

∣∣∣∣
D 	1ð 14
� 	1ð�16
C 	1ð 5
 D 35

Hence the inverse of A, A�1 D 1

35

(
14 0 7
16 �5 �2
5 5 �5

)

(iv) Multiplying each side of (ii) by (iii), and remembering that Að A�1 D I,
the unit matrix, gives:

(
1 0 0
0 1 0
0 0 1

)
ð
(

x
y
z

)
D 1

35

(
14 0 7
16 �5 �2
5 5 �5

)
ð
(

4
33
2

)

(
x
y
z

)
D 1

35

(
	14ð 4
C 	0ð 33
C 	7ð 2


	16ð 4
C 	�5ð 33
C 		�2
ð 2

	5ð 4
C 	5ð 33
C 		�5
ð 2


)

D 1

35

(
70
�105

175

)
D
(

2
�3

5

)

(v) By comparing corresponding elements, x = 2, y = −3, z = 5, which
can be checked in the original equations.

Solution of simultaneous equations by determinants

Two unknowns
When solving linear simultaneous equations in two unknowns using deter-
minants:

(i) write the equations in the form

a1x C b1y C c1 D 0

a2x C b2y C c2 D 0

(ii) the solution is given by
x

Dx
D �y

Dy
D 1

D
, where

Dx D
∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ i.e. the determinant of the coefficients left
when the x-column is covered up,

Dy D
∣∣∣∣ a1 c1
a2 c2

∣∣∣∣ i.e. the determinant of the coefficients left
when the y-column is covered up,

and

D D
∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ i.e. the determinant of the coefficients left
when the constants-column is covered up.
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For example, to solve the following simultaneous equations using determi-
nants:

3x � 4y D 12

7x C 5y D 6.5

Following the above procedure:

(i) 3x � 4y � 12 D 0

7x C 5y � 6.5 D 0

(ii)
x∣∣∣∣�4 �12

5 �6.5

∣∣∣∣
D �y∣∣∣∣ 3 �12

7 �6.5

∣∣∣∣
D 1∣∣∣∣ 3 �4

7 5

∣∣∣∣
i.e.

x

	�4
	�6.5
� 	�12
	5

D �y

	3
	�6.5
� 	�12
	7


D 1

	3
	5
� 	�4
	7


i.e.
x

26C 60
D �y

�19.5C 84
D 1

15C 28

i.e.
x

86
D �y

64.5
D 1

43

Since
x

86
D 1

43
then x D 86

43
D 2

and since
�y

64.5
D 1

43
then y D �64.5

43
D −1.5

Three unknowns
When solving simultaneous equations in three unknowns using determi-
nants:
(i) write the equations in the form

a1x C b1y C c1z C d1 D 0

a2x C b2y C c2z C d2 D 0

a3x C b3y C c3z C d3 D 0

(ii) the solution is given by:
x

Dx
D �y

Dy
D z

Dz
D �1

D

where Dx D
∣∣∣∣∣
b1 c1 d1
b2 c2 d2
b3 c3 d3

∣∣∣∣∣
i.e. the determinant of the
coefficients obtained by covering
up the x column

Dy D
∣∣∣∣∣
a1 c1 d1
a2 c2 d2
a3 c3 d3

∣∣∣∣∣
i.e. the determinant of the
coefficients obtained by covering
up the y column
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Dz D
∣∣∣∣∣
a1 b1 d1
a2 b2 d2
a3 b2 d3

∣∣∣∣∣
i.e. the determinant of the
coefficients obtained by covering
up the z column

and D D
∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣
i.e. the determinant of the
coefficients obtained by covering
up the constants column.

For example, a d.c. circuit comprises three closed loops. Applying Kirchhoff’s
laws to the closed loops gives the following equations for current flow in

milliamperes: 2I1 C 3I2 � 4I3 D 26

I1 � 5I2 � 3I3 D �87

�7I1 C 2I2 C 6I3 D 12

Using determinants to solve for I1, I2 and I3:
Following the above procedure:
(i) 2I1 C 3I2 � 4I3 � 26 D 0

I1 � 5I2 � 3I3 C 87 D 0

�7I1 C 2I2 C 6I3 � 12 D 0

(ii) The solution is given by:
I1

DI1

D �I2

DI2

D I3

DI3

D �1

D
, where

DI1 D
∣∣∣∣∣

3 �4 �26
�5 �3 87

2 6 �12

∣∣∣∣∣
D 	3


∣∣∣∣�3 87
6 �12

∣∣∣∣� 	�4


∣∣∣∣�5 87
2 �12

∣∣∣∣C 	�26


∣∣∣∣�5 �3
2 6

∣∣∣∣
D 3	�486
C 4	�114
� 26	�24
 D −1290

DI2 D
∣∣∣∣∣

2 �4 �26
1 �3 87
�7 6 �12

∣∣∣∣∣
D 	2
	36 � 522
� 	�4
	�12C 609
C 	�26
	6� 21


D �972C 2388 C 390 D 1806

DI3 D
∣∣∣∣∣

2 3 �26
1 �5 87
�7 2 �12

∣∣∣∣∣
D 	2
	60 � 174
� 	3
	�12C 609
C 	�26
	2 � 35


D �228� 1791 C 858 D −1161

and D D
∣∣∣∣∣

2 3 �4
1 �5 �3
�7 2 6

∣∣∣∣∣
D 	2
	�30C 6
� 	3
	6� 21
C 	�4
	2� 35


D �48C 45C 132 D 129
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Thus
I1

�1290
D �I2

1806
D I3

�1161
D �1

129

giving I1 = ��1290

129
= 10 mA I2 D 1806

129
D 14 mA

and I3 = ��1161

129
= 9 mA

Solution of simultaneous equations using Cramer’s rule

Cramer’s rule states that if

a11x C a12y C a13z D b1

a21x C a22y C a23z D b2

a31x C a32y C a33z D b3

then x =
Dx

D
, y =

Dy

D
and z =

Dz

D
, where D D

∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣
Dx D

∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣ i.e. the x-column has been replaced
by the R.H.S. b column

Dy D
∣∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣ i.e. the y-column has been replaced
by the R.H.S. b column

Dz D
∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣ i.e. the z-column has been replaced
by the R.H.S. b column

For example, to solve the following simultaneous equations using
Cramer’s rule

x C y C z D 4

2x � 3y C 4z D 33

3x � 2y � 2z D 2

Following the above method:

D D
∣∣∣∣∣
1 1 1
2 �3 4
3 �2 �2

∣∣∣∣∣ D 1	6��8
� 1	�4� 12
C 1	�4��9


D 14C 16C 5 D 35

Dx D
∣∣∣∣∣

4 1 1
33 �3 4
2 �2 �2

∣∣∣∣∣ D 4	6��8
� 1	�66� 8
C 1	�66��6


D 56C 74� 60 D 70
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Dy D
∣∣∣∣∣
1 4 1
2 33 4
3 2 �2

∣∣∣∣∣ D 1	�66� 8
� 4	�4� 12
C 1	4� 99


D �74C 64� 95 D −105

Dz D
∣∣∣∣∣
1 1 4
2 �3 33
3 �2 2

∣∣∣∣∣ D 1	�6��66
� 1	4� 99
C 4	�4��9


D 60C 95C 20 D 175

Hence x D Dx

D
D 70

35
D 2, y D Dy

D
D �105

35
D −3

and z D Dz

D
D 175

35
D 5

Solution of simultaneous equations using the Gaussian elimination
method

Consider the following simultaneous equations:

x C y C z D 4 	1


2x � 3y C 4z D 33 	2


3x � 2y � 2z D 2 	3


Leaving equation (1) as it is gives:

x C y C z D 4 	1


Equation 	2
� 2ð equation (1) gives:

0� 5y C 2z D 25 	20


and equation 	3
� 3ð equation (1) gives:

0� 5y � 5z D �10 	30


Leaving equations (1) and (20) as they are gives:

x C y C z D 4 	1


0� 5y C 2z D 25 	20


Equation (30
�equation (2) gives: 0C 0� 7z D �35 	300


By appropriately manipulating the three original equations we have deliber-
ately obtained zeros in the positions shown in equations (20) and (300).

Working backwards, from equation (300), z D �35

�7
D 5, from equa-

tion (20), �5y C 2	5
 D 25, from which, y D 25� 10

�5
D −3 and from

equation (1), x C 	�3
C 5 D 4, from which, x D 4C 3� 5 D 2
The above method is known as the Gaussian elimination method.
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We conclude from the above example that if

a11x C a12y C a13z D b1 	1


a21x C a22y C a23z D b2 	2


a31x C a32y C a33z D b3 	3


the three-step procedure to solve simultaneous equations in three unknowns
using the Gaussian elimination method is:

(i) Equation (2)� a21

a11
ð equation (1) to form equation (20) and equation

(3)� a31

a11
ð equation (1) to form equation (30)

(ii) Equation 	30
� a32

a22
ð equation 	20
 to form equation (300)

(iii) Determine z from equation (300), then y from equation (20) and finally, x
from equation (1)

For example, a d.c. circuit comprises three closed loops. Applying Kirchhoff’s
laws to the closed loops gives the following equations for current flow in
milliamperes:

2I1 C 3I2 � 4I3 D 26 	1


I1 � 5I2 � 3I3 D �87 	2


�7I1 C 2I2 C 6I3 D 12 	3


Using the Gaussian elimination method to solve for I1, I2 and I3:
Following the above procedure:

(i) 2I1 C 3I2 � 4I3 D 26 (1)

Equation 	2
� 1
2 ð equation 	1
 gives: 0� 6.5I2 � I3 D �100 	20


Equation (3)� �7
2 ð equation (1) gives: 0C 12.5I2 � 8I3 D 103 	30


(ii) 2I1 C 3I2 � 4I3 D 26 	1


0� 6.5I2 � I3 D �100 	20


Equation 	30
� 12.5

�6.5
ð equation 	20
 gives:

0C 0� 9.923I3 D �89.308 	300


(iii) From equation (300), I3 D �89.308

�9.923
D 9 mA, from equation (20),

�6.5I2 � 9 D �100, from which, I2 D �100C 9

�6.5
D 14 mA and from

equation (1), 2I1 C 3	14
� 4	9
 D 26, from which, I1 D 26� 42C 36

2

D 20

2
D 10 mA



Boolean Algebra and Logic Circuits

45 Boolean Algebra

Boolean algebra and switching circuits

A two-state device is one whose basic elements can only have one of two
conditions. Thus, two-way switches, which can either be on or off, and the
binary numbering system, having the digits 0 and 1 only, are two-state devices.
In Boolean algebra, if A represents one state, then A, called ‘not-A’, represents
the second state.

The or-function
In Boolean algebra, the or-function for two elements A and B is written as
AC B, and is defined as ‘A, or B, or both A and B’. The equivalent electrical
circuit for a two-input or-function is given by two switches connected in
parallel. With reference to Figure 45.1(a), the lamp will be on when A is
on, when B is on, or when both A and B are on. In the table shown in
Figure 45.1(b), all the possible switch combinations are shown in columns 1
and 2, in which a 0 represents a switch being off and a 1 represents the switch
being on, these columns being called the inputs. Column 3 is called the output
and a 0 represents the lamp being off and a 1 represents the lamp being on.
Such a table is called a truth table.

The and-function
In Boolean algebra, the and-function for two elements A and B is written
as A.B and is defined as ‘both A and B’. The equivalent electrical circuit
for a two-input and-function is given by two switches connected in series.
With reference to Figure 45.2(a) the lamp will be on only when both A
and B are on. The truth table for a two-input and-function is shown in
Figure 45.2(b).

The not-function
In Boolean algebra, the not-function for element A is written as A, and is
defined as ‘the opposite to A’. Thus if A means switch A is on, A means that

A

A Z = A + BB
0 0

0 1

1 0

1 1

0

1

1

1

B

0

1

0

1

1 2 3
Input
(switches)

Output
(lamp)

(a) Switching circuit for or - function (b) Truth table for or - function

Figure 45.1
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A
A Z = A . BB

0 0

0 1

1 0

1 1

0

0

0

1

B
0

1

0

1

Input
(switches)

Output
(lamp)

(a) Switching circuit for and - function (b) Truth table for and - function

Figure 45.2

Table 45.1

Input

A

0 1
01

Output

Z = A

switch A is off. The truth table for the not-function is shown in Table 45.1.
In the above, the Boolean expressions, equivalent switching circuits and truth
tables for the three functions used in Boolean algebra are given for a two-
input system. A system may have more than two inputs and the Boolean
expression for a three-input or-function having elements A, B and C is AC BC
C. Similarly, a three-input and-function is written as A.B.C. The equivalent
electrical circuits and truth tables for three-input or and and-functions are
shown in Figures 45.3(a) and (b) respectively.
To achieve a given output, it is often necessary to use combinations of switches
connected both in series and in parallel. If the output from a switching cir-
cuit is given by the Boolean expression Z D A.BC A.B, the truth table is as
shown in Figure 45.4(a). In this table, columns 1 and 2 give all the possible
combinations of A and B. Column 3 corresponds to A.B and column 4 to A.B,
i.e. a 1 output is obtained when A D 0 and when B D 0. Column 5 is the
or-function applied to columns 3 and 4 giving an output of Z D A.BC A.B.
The corresponding switching circuit is shown in Figure 45.4(b) in which A
and B are connected in series to give A.B, A and B are connected in series to
give A.B, and A.B and A.B are connected in parallel to give A.BC A.B. The
circuit symbols used are such that A means the switch is on when A is 1, A
means the switch is on when A is 0, and so on.

For example, to derive the Boolean expression and construct a truth table for
the switching circuit shown in Figure 45.5.
The switches between 1 and 2 in Figure 45.5 are in series and have a Boolean
expression of B.A. The parallel circuit 1 to 2 and 3 to 4 have a Boolean expres-
sion of (B.AC B). The parallel circuit can be treated as a single switching unit,
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A

A B C
B

C

Input

Input

Output

Output

Input Output

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

(a) The or - function
electrical circuit and

 truth table

(b) The and - function
electrical circuit and

truth table

Z = A+B+C

0

1

1

1

1

1

1

1

Input Output
A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Z = A.B.C

0

0

0

0

0

0

0

1

Figure 45.3
giving the equivalent of switches 5 to 6, 6 to 7 and 7 to 8 in series. Thus the
output is given by: Z = A..B .A Y B/.B
The truth table is as shown in Table 45.2. Columns 1 and 2 give all the possible
combinations of switches A and B. Column 3 is the and-function applied to
columns 1 and 2, giving B.A. Column 4 is B, i.e. the opposite to column 2.
Column 5 is the or-function applied to columns 3 and 4. Column 6 is A, i.e.
the opposite to column 1. The output is column 7 and is obtained by applying
the and-function to columns 4, 5 and 6.
In another example, to derive the Boolean expression and construct a truth
table for the switching circuit shown in Figure 45.6:
The parallel circuit 1 to 2 and 3 to 4 gives (AC B) and this is equivalent
to a single switching unit between 7 and 2. The parallel circuit 5 to 6 and
7 to 2 gives CC �AC B� and this is equivalent to a single switching unit
between 8 and 2. The series circuit 9 to 8 and 8 to 2 gives the output
Z = B .[C Y .AY B/]
The truth table is shown in Table 45.3. Columns 1, 2 and 3 give all the possible
combinations of A, B and C. Column 4 is B and is the opposite to column 2.
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Figure 45.4

5

1

6

3

2

7 8

4

Input Output
A B

B

B A

Figure 45.5
Table 45.2

1

0
0
1
1

A

2

0
1
0
1

B

4

1
0
1
0

B

3

0
0
0
1

B . A
−

5

1
0
1
1

B . A + B

7

1
0
0
0

Z = A . (B . A + B). B

6

1
1
0
0

A
− − −−−

Column 5 is the or-function applied to columns 1 and 4, giving (AC B). Col-
umn 6 is the or-function applied to columns 3 and 5 giving CC �AC B�. The
output is given in column 7 and is obtained by applying the and-function to
columns 2 and 6, giving Z D B.[CC �AC B�]



248

Figure 45.6

Table 45.3

1

0
0
0
0
1
1
1
1

A

0
0
1
1
0
0
1
1

2

B

0
1
0
1
0
1
0
1

3

C

1
1
0
0
1
1
0
0

4

B
− −

1
1
0
0
1
1
1
1

5

A + B

0
0
0
1
0
0
1
1

7

Z = B . [C +(A + B)]
−

1
1
0
1
1
1
1
1

6

C + (A + B )−

Simplifying Boolean Expressions
A Boolean expression may be used to describe a complex switching circuit or
logic system. If the Boolean expression can be simplified, then the number of
switches or logic elements can be reduced resulting in a saving in cost. Three
principal ways of simplifying Boolean expressions are:
(a) by using the laws and rules of Boolean algebra,
(b) by applying de Morgan’s laws, and
(c) by using Karnaugh maps.

Laws and rules of Boolean algebra
A summary of the principal laws and rules of Boolean algebra are given in
Table 45.4.
For example, to simplify the Boolean expression: P.QC P.QC P.Q

With reference to Table 45.4: Reference

�P.Q�C P.QC P.Q D P.�QC Q�C P.Q 5

D P.1C P.Q 10

= P Y P .Q 12
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Table 45.4

Ref. Name Rule or law

A + B = B + A

A + 0 = A

A + A = A

A + A · B = A

A + A · B = A + B
A · (A + B) = A

A + A = 1

A + 1 = 1

A · 0 = 0
A · 1 = A
A · A = A

(A + B) + C = A + (B + C)

A · (B + C) = A · B + A · C
A + (B · C)
           = (A + B) · (A + C)

A · B = B · A

(A · B) · C = A · (B · C)

Commutative laws

Associative laws

Distributive laws

Sum rules

Product rules

Absorption rules

1
2
3
4
5
6

7
8
9

10
11
12
13
14
15
16
17

−

−

A · A = 0
−

In another example, to simplify (PC P.Q�.�QC Q.P)

With reference to Table 45.4: Reference

�PC P.Q�.�QC Q.P� D P.�QC Q.P�C P.Q.�QC Q.P� 5

D P.QC P.Q.PC P.Q.QC P.Q.Q.P 5

D P.QC P.QC P.QC P.Q.Q.P 13

D P.QC P.QC P.QC 0 14

D P.QC P.QC P.Q 7

D P.�QC Q�C P.Q 5

D P.1C P.Q 10

D P Y P .Q 12

In another example, to simplify F.G.HC F.G.HC F.G.H

With reference to Table 45.4: Reference

F.G.HC F.G.HC F.G.H D F.G.�HCH�C F.G.H 5

D F.G.1C F.G.H 10

D F.GC F.G.H 12

D G..F Y F .H / 5
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De Morgan’s laws

De Morgan’s laws may be used to simplify not-functions having two or more
elements. The laws state that:

AY B = A.B and A.B = AY B

and may be verified by using a truth table.
For example, to simplify the Boolean expression A.BC AC B by using de
Morgan’s laws and the rules of Boolean algebra:
Applying de Morgan’s law to the first term gives:

A.B D AC B D AC B since A D A

Applying de Morgan’s law to the second term gives:

AC B D A.B D A.B

Thus, A.BC AC B D �AC B�C A.B

Removing the bracket and reordering gives: AC A.BC B
But, by rule 15, Table 45.4, AC A.B D A. It follows that: AC A.B D A. Thus:

A.B C AY B = AY B

In another example, to simplify the Boolean expression �A.BCC�.�AC B.C�
by using de Morgan’s laws and the rules of Boolean algebra:
Applying de Morgan’s laws to the first term gives:

�A.BC C� D A.B.C D �AC B�.C D �AC B�.C D A.CC B.C

Applying de Morgan’s law to the second term gives:

�AC B.C� D AC �BCC� D AC �BC C�

Thus �A.BC C�.�AC BC� D �A.CC B.C�.�AC BCC�

D A.A.CC A.B.CC A.C.CC A.B.C

C B.B.CC B.C.C

But from Table 45.4, A.A D A and C.C D B.B D 0
Hence the Boolean expression becomes

A.CC A.B.CC A.B.C D A.C�1C BC B� D A.C�1C B� D A.C

Thus: �A.B Y C �.�AY B .C � = A.C
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Karnaugh maps

(i) Two-variable Karnaugh maps
A truth table for a two-variable expression is shown in Table 45.5(a), the
‘1’ in the third row output showing that Z D A.B. Each of the four possible
Boolean expressions associated with a two-variable function can be depicted
as shown in Table 45.5(b) in which one cell is allocated to each row of the
truth table. A matrix similar to that shown in Table 45.5(b) can be used to
depict Z D A.B, by putting a 1 in the cell corresponding to A.B and 0’s in
the remaining cells. This method of depicting a Boolean expression is called
a two-variable Karnaugh map, and is shown in Table 45.5(c).
To simplify a two-variable Boolean expression, the Boolean expression is
depicted on a Karnaugh map, as outlined above. Any cells on the map hav-
ing either a common vertical side or a common horizontal side are grouped
together to form a couple. (This is a coupling together of cells, not just com-
bining two together). The simplified Boolean expression for a couple is given
by those variables common to all cells in the couple.

(ii) Three-variable Karnaugh maps
A truth table for a three-variable expression is shown in Table 45.6(a), the l’s
in the output column showing that: Z D A.B.CC A.B.CC A.B.C. Each of the
eight possible Boolean expressions associated with a three-variable function
can be depicted as shown in Table 45.6(b) in which one cell is allocated to each
row of the truth table. A matrix similar to that shown in Table 45.6(b) can be
used to depict: Z D A.B.CC A.B.CC A.B.C, by putting l’s in the cells corre-
sponding to the Boolean terms on the right of the Boolean equation and 0’s in

Table 45.5

(b)

(a)

(c)

A.BA.B1(B)

A.BA.B0(B)

(A)(A)
10A

B

001

100

10
A

B

Inputs
Output

A

0
0
1
1

B

0
1
0
1

Z

0
0
1
0

Boolean
expression

A · B
A · B
A · B
A · B
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Table 45.6

(b) (c)

1(C) A.B.C A.B.C A.B.C A.B.C

0(C) A.B.C A.B.C A.B.C A.B.C

(A.B) (A.B) (A.B) (A.B)
10110100A.B

C

1 1 1 0 0

0 0 0 1 0

00 01 11 10
A.B

C

(a)

Inputs

A

0
0
0
0

1
1
1
1

B

0
0
1

1
1
0
0
1

C

0
1
0

1
0
1
0
1

Output
Z

0
1
0
1
0
0
1
0

Boolean
expression

A · B · C
A · B · C
A · B · C
A · B · C
A · B · C
A · B · C
A · B · C
A · B · C

the remaining cells. This method of depicting a three-variable Boolean expres-
sion is called a three-variable Karnaugh map, and is shown in Table 45.6(c).
To simplify a three-variable Boolean expression, the Boolean expression is
depicted on a Karnaugh map as outlined above. Any cells on the map having
common edges either vertically or horizontally are grouped together to form
couples of four cells or two cells. During coupling the horizontal lines at the
top and bottom of the cells are taken as a common edge, as are the vertical
lines on the left and right of the cells. The simplified Boolean expression for
a couple is given by those variables common to all cells in the couple.

(iii) Four-variable Karnaugh maps
A truth table for a four-variable expression is shown in Table 45.7(a), the l’s
in the output column showing that: Z D A.B.C.DC A.B.C.DC A.B.C.DC
A.B.C.D Each of the sixteen possible Boolean expressions associated with a
four-variable function can be depicted as shown in Table 45.7(b), in which one
cell is allocated to each row of the truth table. A matrix similar to that shown
In Table 45.7(b) can be used to depict: Z D A.B.C.DC A.B.C.DC A.B.C.DC
A.B.C.D by putting l’s in the cells corresponding to the Boolean terms on the
right of the Boolean equation and 0’s in the remaining cells. This method of
depicting a four-variable expression is called a four-variable Karnaugh map,
and is shown in Table 45.7(c).
To simplify a four-variable Boolean expression, the Boolean expression is
depicted on a Karnaugh map as outlined above. Any cells on the map having
common edges either vertically or horizontally are grouped together to form
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Table 45.7

A.B 00
(A.B)

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

01
(A.B)

11
(A.B)

10
(A.B)C.D

00
(C.D)

01
(C.D)

11
(C.D)

10
(C.D)

(b)

C.D
0.0

0.1

1.1

1.0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

A.B
0.0 0.1 1.1 1.0

(c)

(a)

Inputs

A

0
0
0
0

0

1
1
1
1
1
1
1
1

0
0
0

B

0
0
0
0

1

1
1
1
1
0
0
0
0

1
1
1

C

0
0
1
1

1

1
1
0
0
1
1
0
0

1
0
0

D

0
1
0
1

1

1
0
1
0
1
0
1
0

0
1
0

Z

0
0
1
0

0

0
1
0
0
0
1
0
0

1
0
0

Output Boolean
expression

A · B · C · D
A · B · C · D
A · B · C · D
A · B · C · D
A · B · C · D
A · B · C · D
A · B · C · D
A · B · C · D
A · B · C · D
A · B · C · D
A · B · C · D
A · B · C · D
A · B · C · D
A · B · C · D
A · B · C · D
A · B · C · D

couples of eight cells, four cells or two cells. During coupling, the horizontal
lines at the top and bottom of the cells may be considered to be common edges,
as are the vertical lines on the left and the right of the cells. The simplified
Boolean expression for a couple is given by those variables common to all
cells in the couple.

Summary of procedure when simplifying a Boolean expression
using a Karnaugh map

(a) Draw a four, eight or sixteen-cell matrix, depending on whether there are
two, three or four variables.

(b) Mark in the Boolean expression by putting l’s in the appropriate
cells.
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(c) Form couples of 8, 4 or 2 cells having common edges, forming the largest
groups of cells possible. (Note that a cell containing a 1 may be used more
than once when forming a couple. Also note that each cell containing a 1
must be used at least once.)

(d) The Boolean expression for a couple is given by the variables which are
common to all cells in the couple.

For example, to simplify the expression: P.QC P.Q using Karnaugh map
techniques:
Using the above procedure:

(a) The two-variable matrix is drawn and is shown in Table 45.8.
(b) The term P.Q is marked with a 1 in the top left-hand cell, corresponding

to P D 0 and Q D 0; P.Q is marked with a 1 in the bottom left-hand cell
corresponding to P D 0 and Q D 1.

(c) The two cells containing 1’s have a common horizontal edge and thus a
vertical couple, shown by the broken line, can be formed.

(d) The variable common to both cells in the couple is P D 0, i.e. P thus

P .Q Y P .Q = P

Table 45.8

1 1 0

0 1 0

0 1
P

Q

In another example, to simplify X.Y.ZC X.Y.ZC X.Y.ZC X.Y.Z using Kar-
naugh map techniques:
Using the above procedure:
(a) A three-variable matrix is drawn and is shown in Table 45.9.
(b) The 1’s on the matrix correspond to the expression given, i.e. for X.Y.Z,

X D 0, Y D 1 and Z D 0 and hence corresponds to the cell in the top row
and second column, and so on.

(c) Two couples can be formed, shown by the broken lines. The couple in the
bottom row may be formed since the vertical lines on the left and right
of the cells are taken as a common edge.

(d) The variables common to the couple in the top row are Y D 1 and Z D 0,
that is, Y .Z and the variables common to the couple in the bottom row

Table 45.9
X.Y

0.0 0.1 1.1 1.0

00

1 1

1

0

1

0

0

1

Z
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Table 45.10

(a) (b)

4
1

4
2

3
1

4
11

3
2

3
2

3
1

3
10

0.0 0.1 1.1 1.0R
P.Q

1

0 X X

X X X

0.0 0.1 1.1 1.0R
P.Q

are Y D 0, Z D 1, that is, Y .Z . Hence:

X .Y .Z Y X .Y .Z Y X .Y .Z Y X .Y .Z = Y .Z Y Y .Z

In another example, to simplify �PC Q.R�C �P.Q C R� using a Karnaugh
map technique:
The term (PC Q.R) corresponds to the cells marked 1 on the matrix in
Table 45.10(a), hence �PC Q.R� corresponds to the cells marked 2. Simi-
larly, (P.QC R) corresponds to the cells marked 3 in Table 45.10(a), hence
�P.Q C R� corresponds to the cells marked 4. The expression �PC Q.R�C
�P.Q C R� corresponds to cells marked with either a 2 or with a 4 and is
shown in Table 45.10(b) by X’s. These cells may be coupled as shown by the
broken lines. The variables common to the group of four cells is P D 0, i.e.
P , and those common to the group of two cells are Q D 0, R D 1, i.e. Q .R

Thus: �P Y Q .R/C .P .Q Y R/ = P Y Q .R

46 Logic Circuits and Gates
Logic circuits
In practice, logic gates are used to perform the and, or and not-functions
introduced in Chapter 45. Logic gates can be made from switches, magnetic
devices or fluidic devices, but most logic gates in use are electronic devices.
Various logic gates are available. For example, the Boolean expression (A.B.C)
can be produced using a three-input, and-gate and (CC D) by using a two-
input or-gate. The principal gates in common use are introduced below. The
term ‘gate’ is used in the same sense as a normal gate, the open state being
indicated by a binary ‘1’ and the closed state by a binary ‘0’. A gate will only
open when the requirements of the gate are met and, for example, there will
only be a ‘1’ output on a two-input and-gate when both the inputs to the gate
are at a ‘1’ state.

The and-gate
The different symbols used for a three-input, and-gate are shown in
Figure 46.1(a) and the truth table is shown in Figure 46.1(b). This shows that
there will only be a ‘1’ output when A is 1 and B is 1 and C is 1, written as:
Z D A.B.C
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Figure 46.1

The or-gate
The different symbols used for a three-input or-gate are shown in
Figure 46.2(a) and the truth table is shown in Figure 46.2(b). This shows that
there will be a ‘1’ output when A is 1, or B is 1, or C is 1, or any combination
of A, B or C is 1, written as: Z D AC B CC

The invert-gate or not-gate
The different symbols used for an invert-gate are shown in Figure 46.3(a) and
the truth table is shown in Figure 46.4(b). This shows that a ‘0’ input gives a
‘1’ output and vice versa, i.e. it is an ‘opposite to’ function. The invert of A
is written A and is called ‘not-A’

The nand-gate
The different symbols used for a nand-gate are shown in Figure 46.4(a) and
the truth table is shown in Figure 46.4(b). This gate is equivalent to an and-
gate and an invert-gate in series (not-and D nand) and the output is written as:
Z D A.B.C

The nor-gate
The different symbols used for a nor-gate are shown in Figure 46.5(a) and
the truth table is shown in Figure 46.5(b). This gate is equivalent to an or-
gate and an invert-gate in series, (not-or D nor), and the output is written as:
Z D AC BC C
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Figure 46.2

Figure 46.3

Combinational logic networks
In most logic circuits, more than one gate is needed to give the required
output. Except for the invert-gate, logic gates generally have two, three or
four inputs and are confined to one function only. Thus, for example, a two-
input, or-gate or a four-input and-gate can be used when designing a logic
circuit.
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Figure 46.4

For example, to devise a logic system to meet the requirements of:
Z D A.BCC
With reference to Figure 46.6 an invert-gate, shown as (1), gives B. The and-
gate, shown as (2), has inputs of A and B, giving A.B. The or-gate, shown as
(3), has inputs of A.B and C, giving: Z = A.B Y C

In another example, to devise a logic system to meet the requirements of

�PC Q�.�RC S�

The logic system is shown in Figure 46.7. The given expression shows that
two invert-functions are needed to give Q and R and these are shown as
gates (1) and (2). Two or-gates, shown as (3) and (4), give (PC Q) and
(RC S) respectively. Finally, an and-gate, shown as (5), gives the required
output,

Z = .P Y Q/..R Y S /

In another example, to devise a logic circuit to meet the requirements of the
output given in Table 46.1, using as few gates as possible:
The ‘1’ outputs in rows 6, 7 and 8 of Table 46.1 show that the Boolean
expression is: Z D A.B.CC A.B.CC A.B.C
The logic circuit for this expression can be built using three, 3-input and-
gates and one, 3-input or-gate, together with two invert-gates. However, the
number of gates required can be reduced by using the techniques introduced
in Chapter 45, resulting in the cost of the circuit being reduced. Any of the
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Figure 46.5

Figure 46.6

Figure 46.7

techniques can be used, and in this case, the rules of Boolean algebra (see
Table 45.4) are used.

Z D A.B.CC A.B.CC A.B.C D A.[B.CC B.CC B.C]

D A.[B.CC B�CCC�] D A.[B.CC B]

D A.[BC B.C] D A.[B Y C ]
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Table 46.1

Inputs

A

0
0

0
0

1

1
1
1

B

0
0

1
1

0

1
1
0

C

0
1

1
0

0

1
0
1

Z

0
0

0
0

0

1
1
1

Output

The logic circuit to give this simplified expression is shown in Figure 46.8.

Figure 46.8

Universal logic gates

The function of any of the five logic gates in common use can be obtained by
using either nand-gates or nor-gates and when used in this manner, the gate
selected is called a universal gate.
For example, to show how invert, and, or and nor-functions can be produced
using nand-gates only:
A single input to a nand-gate gives the invert-function, as shown
in Figure 46.9(a). When two nand-gates are connected, as shown in
Figure 46.9(b), the output from the first gate is A.B.C and this is inverted by
the second gate, giving Z D A.B.C D A.B.C i.e. the and-function is produced.

When A, B and C are the inputs to a nand-gate, the output is A.B.C

By de Morgan’s law, A.B.C D AC BCC D AC BCC, i.e. a nand-gate is
used to produce the or-function. The logic circuit is shown in Figure 46.9(c).
If the output from the logic circuit in Figure 46.9(c) is inverted by adding an
additional nand-gate, the output becomes the invert of an or-function, i.e. the
nor-function, as shown in Figure 46.9(d).
In another example, to show how invert, or, and and nand-functions can
be produced by using nor-gates only:
A single input to a nor-gate gives the invert-function, as shown
in Figure 46.10(a). When two nor-gates are connected, as shown in
Figure 46.10(b), the output from the first gate is AC BCC and this is inverted
by the second gate, giving Z D AC B CC D AC B CC, i.e. the or-function
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Figure 46.9

Figure 46.10
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is produced. Inputs of A, B and C to a nor-gate give an output of AC BC C

By de Morgan’s law, AC BC C D A.B.C D A.B.C, i.e. the nor-gate
can be used to produce the and-function. The logic circuit is shown
in Figure 46.10(c). When the output of the logic circuit, shown in
Figure 46.10(c), is inverted by adding an additional nor-gate, the output
then becomes the invert of an or-function, i.e. the nor-function as shown
in Figure 46.10(d).

In another example, to design a logic circuit, using nand-gates having not
more than three inputs, to meet the requirements of the Boolean expression:

Z D AC BCCC D

When designing logic circuits, it is often easier to start at the output of the
circuit. The given expression shows there are four variables joined by or-
functions. From the principles introduced above, if a four-input nand-gate is
used to give the expression given, the inputs are A, B, C and D that is A, B, C
and D. However, the problem states that three-inputs are not to be exceeded
so two of the variables are joined, i.e. the inputs to the three-input nand-gate,
shown as gate (1) in Figure 46.10, is A, B, C and D. From above, the and-
function is generated by using two nand-gates connected in series, as shown
by gates (2) and (3) in Figure 46.10. The logic circuit required to produce the
given expression is as shown in Figure 46.10.
In another example, an alarm indicator in a grinding mill complex should
be activated if (a) the power supply to all mills is off and (b) the hopper
feeding the mills is less than 10% full, and (c) if less than two of the three

Figure 46.11

Figure 46.12
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grinding mills are in action. To devise a logic system to meet these require-
ments:
Let variable A represent the power supply on to all the mills, then A rep-
resents the power supply off. Let B represent the hopper feeding the mills
being more than 10% full, then B represents the hopper being less than
10% full. Let C, D and E represent the three mills respectively being in
action, then C, D and E represent the three mills respectively not being
in action. The required expression to activate the alarm is:
Z D A.B.�CC DC E�
There are three variables joined by and-functions in the output, indicating that
a three-input and-gate is required, having inputs of A, B and (CC DC E�. The
term (CC D C E� is produced by a three-input nand-gate. When variables C,
D and E are the inputs to a nand-gate, the output is C.D.E, which, by de
Morgan’s law is CC D C E. Hence the required logic circuit is as shown in
Figure 46.12.



Differential Calculus

47 Introduction to Differentiation
Introduction to calculus

Calculus is a branch of mathematics involving or leading to calculations deal-
ing with continuously varying functions.
Calculus is a subject that falls into two parts:
(i) differential calculus (or differentiation) and

(ii) integral calculus (or integration).
Differentiation is used in calculations involving velocity and acceleration, rates
of change and maximum and minimum values of curves.
Integration may be used to determine areas, volumes, mean and r.m.s. values,
centroids and second moments of areas.

Functional notation

In an equation such as y D 3x2 C 2x � 5, y is said to be a function of x and
may be written as y D f�x�.
An equation written in the form f�x� D 3x2 C 2x � 5 is termed functional
notation.
The value of f�x� when x D 0 is denoted by f�0�, and the value of f�x�
when x D 2 is denoted by f�2� and so on.

For example, if f�x� D 3x2 C 2x � 5, then

f�0� D 3�0�2 C 2�0�� 5 D �5

f�2� D 3�2�2 C 2�2�� 5 D 11

and f��1� D 3��1�2 C 2��1�� 5 D �4

The gradient of a curve

(a) If a tangent is drawn at a point P on a curve, then the gradient of this
tangent is said to be the gradient of the curve at P. In Figure 47.1, the
gradient of the curve at P is equal to the gradient of the tangent PQ.

(b) For the curve shown in Figure 47.2, let the points A and B have coordi-
nates �x1, y1� and �x2, y2�, respectively. In functional notation, y1 D f�x1�
and y2 D f�x2� as shown.

The gradient of the chord AB D BC

AC
D BD� CD

ED
D f�x2�� f�x1�

�x2 � x1�
(c) For the curve f�x� D x2 shown in Figure 47.3:

(i) the gradient of chord AB D f�3�� f�1�
3� 1

D 9� 1

2
D 4
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Figure 47.1

0

A

E D

C

B

x1

f(x1)

f (x)

f (x2)

x2 x

Figure 47.2

Figure 47.3

(ii) the gradient of chord AC D f�2�� f�1�
2� 1

D 4� 1

1
D 3

(iii) the gradient of chord AD D f�1.5�� f�1�
1.5� 1

D 2.25� 1

0.5
D 2.5

(iv) if E is the point on the curve (1.1, f�1.1�) then the gradient of chord

AE D f�1.1�� f�1�
1.1� 1

D 1.21� 1

0.1
D 2.1

(v) if F is the point on the curve (1.01, f�1.01�) then the gradient of

chord AF D f�1.01�� f�1�
1.01� 1

D 1.0201 � 1

0.01
D 2.01

Thus as point B moves closer and closer to point A the gradient of the chord
approaches nearer and nearer to the value 2. This is called the limiting value
of the gradient of the chord AB and when B coincides with A the chord
becomes the tangent to the curve.
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Differentiation from first principles

(i) In Figure 47.4, A and B are two points very close together on a curve,
υx (delta x) and υy (delta y) representing small increments in the x and
y directions, respectively.

Gradient of chord AB D υx

υy
, however υy D f�x C υx�� f�x�

Hence
υx

υy
D f�x C υx�� f�x�

υx

As υx approaches zero,
υx

υy
approaches a limiting value and the gradient

of the chord approaches the gradient of the tangent at A.
(ii) When determining the gradient of a tangent to a curve there are two

notations used. The gradient of the curve at A in Figure 47.4 can either
be written as:

limit
υx!0

υy

υx
or limit

υx!0

{
f�x C υx�� f�x�

υx

}

In Leibniz notation,
dy
dx

= limit
dx!0

dy
dx

In functional notation, f ′.x/ = limit
dx!0

{
f .x Y dx/ − f .x/

dx

}

(iii)
dy

dx
is the same as f0�x� and is called the differential coefficient or the

derivative. The process of finding the differential coefficient is called
differentiation.

Summarising, the differential coefficient,

dy

dx
D f0�x� D limit

υx!0

υy

υx
D limit

υx!0

{
f�x C υx�� f�x�

υx

}

Figure 47.4
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For example, differentiating from first principle f�x� D x2 means ‘to find

f0�x�’ by using the expression f0�x� D limit
υx!0

{
f�x C υx�� f�x�

υx

}
Substituting �x C υx� for x gives

f�x C υx� D �x C υx�2 D x2 C 2xυx C υx2,

hence f0�x� D limit
υx!0

{
�x2 C 2xυx C υx2�� �x2�

υx

}

D limit
υx!0

{
2xυx C υx2

υx

}
D limit

υx!0
f2x C υxg

As υx! 0, [2x C υx]! �2x C 0]�. Thus f ′.x/ = 2x , i.e. the differential coef-
ficient of x2 is 2x.
At, say, x D 2, the gradient of the curve, f0�x� D 2�2� D 4.

Differentiation of y = ax n by the general rule

From differentiation by first principles, a general rule for differentiating axn

emerges where a and n are any constants. This rule is:

if y = axn then
dy
dx

= anxn−1

or, if f .x/ = axn then f ′.x/ = anxn−1

When differentiating, results can be expressed in a number of ways. For
example:

(i) if y D 3x2 then
dy

dx
D 6x,

(ii) if f�x� D 3x2 then f0�x� D 6x,
(iii) the differential coefficient of 3x2 is 6x,
(iv) the derivative of 3x2 is 6x, and

(v)
d

dx
�3x2� D 6x

For example, using the general rule, differentiating the following with respect

to x: (a) y D 5x7 (b) y D 3
p
x (c) y D 4

x2

(a) Comparing y D 5x7 with y D axn shows that a D 5 and n D 7. Using the
general rule,

dy
dx
D anxn�1 D �5��7�x7�1 D 35x6

(b) y D 3
p
x D 3x

1
2 . Hence a D 3 and n D 1

2

dy
dx
D anxn�1 D �3�

1

2
x

1
2�1 D 3

2
x�

1
2 D 3

2x
1
2

D 3
2
p

x
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(c) y D 4

x2
D 4x�2. Hence a D 4 and n D �2

dy
dx
D anxn�1 D �4���2�x�2�1 D �8x�3 D � 8

x3

Differentiation of sine and cosine functions

Figure 47.5(a) shows a graph of y D sin �. The gradient is continually chang-
ing as the curve moves from O to A to B to C to D. The gradient, given by
dy

d�
, may be plotted in a corresponding position below y D sin �, as shown in

Figure 47.5(b).
(i) At 0, the gradient is positive and is at its steepest. Hence 00 is a maximum

positive value.
(ii) Between 0 and A the gradient is positive but is decreasing in value until

at A the gradient is zero, shown as A0.
(iii) Between A and B the gradient is negative but is increasing in value until

at B the gradient is at its steepest. Hence B0 is a maximum negative value.
(iv) If the gradient of y D sin � is further investigated between B and C and C

and D then the resulting graph of
dy

d�
is seen to be a cosine wave. Hence

(b)
0

(a)
0

−

0′

+

+

y

−

dy
dx

 d
dx

A′

B′

C′
3π /2

D′

C

2π x radπ

π /2 3π /2 x radπ

A
y = sin x

2π
B D

(sin x) = cos x

π /2

Figure 47.5
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the rate of change of sin � is cos �, i.e. if y = sin q then
dy
dq

= cos q

It may also be shown that:

if y = sin aq,
dy
dq

= a cos aq (where a is a constant)

and if y = sin.aqY a/,
dy
dq

= a cos.aqY a/ (where a and a are con-

stants).
If a similar exercise is followed for y D cos � then the graphs of Figure 47.6

result, showing
dy

d�
to be a graph of sin �, but displaced by � radians. If each

point on the curve y D sin � (as shown in Figure 47.6(a)) were to be made

negative, (i.e. C�
2

is made ��
2

, �3�

2
is made C3�

2
, and so on) then the

graph shown in Figure 47.6(b) would result.
This latter graph therefore represents the curve of � sin �. Thus,

if y = cos q,
dy
dq

= − sin q.

It may also be shown that:

if y = cos aq,
dy
dq

= −a sin aq (where a is a constant)

and if y =cos.aqY a/,
dy
dq

=−a sin.aqY a/ (where a and ˛ are constants).

0

y

(a)

−

+

q radians

y = cos q

π
2

π 2π3π
2

0
(b)

−

+

q radiansπ
2

π 2π3π
2

(cos q) = −sin qdy
dq

dy
dq

Figure 47.6
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For example, if y D 7 sin 2x � 3 cos 4x then
dy

dx
D �7��2� cos 2x � �3���4� sin 4x D 14 cos 2x Y 12 sin 4x

In another example, if f��� D 5 sin�100�� � 0.40�
f ′.q/ D 5[100� cos�100�� � 0.40�] D 500p cos.100pq − 0.40/

Differentiation of eax and ln ax

A graph of y D ex is shown in Figure 47.7(a). The gradient of the curve at

any point is given by
dy

dx
and is continually changing. By drawing tangents

to the curve at many points on the curve and measuring the gradient of the

tangents, values of
dy

dx
for corresponding values of x may be obtained. These

values are shown graphically in Figure 47.7(b). The graph of
dy

dx
against x is

identical to the original graph of y D ex . It follows that:

if y = ex , then
dy
dx

= ex

It may also be shown that if y = eax , then
dy
dx

= aeax

For example, if y D 2e6x , then
dy

dx
D �2��6e6x� D 12e6x .

A graph of y D ln x is shown in Figure 47.8(a). The gradient of the curve at

any point is given by
dy

dx
and is continually changing. By drawing tangents

to the curve at many points on the curve and measuring the gradient of the

tangents, values of
dy

dx
for corresponding values of x may be obtained. These

values are shown graphically in Figure 47.8(b). The graph of
dy

dx
against x is

the graph of
dy

dx
D 1

x
. It follows that:

if y = ln x , then
dy
dx

=
1
x

−3 −2 −1

5

10

15

20
y

1 −3 −2 −1 0 21 3 x

y = ex

0

5

10

15

20

dy
dx

2 3 x

dy
dx

= ex

(a) (b)

Figure 47.7
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1
x

=

Figure 47.8

It may also be shown that

if y = ln ax , then
dy
dx

=
1
x

(Note that in the latter expression ‘a’ does not appear in the
dy

dx
term).

Thus if y D 3 ln 4x, then
dy

dx
D �3�

(
1

x

)
D 3

x

48 Methods of Differentiation
Differentiation of common functions

The standard derivatives summarised below were derived in Chapter 47 and
are true for all real values of x.

y or f�x�
dy

dx
or f0�x�

axn anxn�1

sin ax a cos ax
cos ax �a sin ax
eax aeax

ln ax
1

x

For example, to differentiate y D 6:
y D 6 may be written as y D 6x0, i.e. in the general rule a D 6 and

n D 0. Hence
dy

dx
D �6��0�x0�1 D 0.

In general, the differential coefficient of a constant is always zero.

In another example, to differentiate y D 6x: Since y D 6x, in the general rule

a D 6 and n D 1. Hence
dy

dx
D �6��1�x1�1 D 6x0 D 6
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In another example, to find the differential coefficients of y D 3 sin 4x: When

y D 3 sin 4x then
dy

dx
D �3��4 cos 4x� D 12 cos 4x

In general, the differential coefficient of kx, where k is a constant, is k.
The differential coefficient of a sum or difference is the sum or differ-
ence of the differential coefficients of the separate terms.
Thus, if f�x� D p�x�C q�x�� r�x�, (where f, p, q and r are functions), then
f0�x� D p0�x�C q0�x�� r0�x�
For example, to differentiate

y D 5x4 C 4x � 1

2x2 C
1p
x
� 3 with respect to x:

y D 5x4 C 4x � 1

2x2
C 1p

x
� 3 is rewritten as

y D 5x4 C 4x � 1
2 x
�2 C x�1/2 � 3

Thus
dy

dx
D �5��4�x4�1 C �4��1�x1�1 � 1

2 ��2�x�2�1

C�1�
(
� 1

2

)
x��1/2��1 � 0

D 20x3 C 4C x�3 � 1
2 x
�3/2

i.e.
dy

dx
= 20x3 Y 4 −

1
x3 −

1

2
p

x3

In another example, to determine the derivative of f��� D 2

e3�
C 6 ln 2�:

f��� D 2

e3�
C 6 ln 2� D 2e�3� C 6 ln 2�

Hence f0��� D �2���3�e�3� C 6
(

1

�

)
D �6e�3� C 6

�
D −6

e3q
Y

6
q

Differentiation of a product

When y D uv, and u and v are both functions of x,

then
dy
dx

= u
dv

dx
Y v

du
dx

This is known as the product rule.
For example, to find the differential coefficient of y D 3x2 sin 2x:
3x2 sin 2x is a product of two terms 3x2 and sin 2x
Let u D 3x2 and v D sin 2x
Using the product rule:

dy

dx
D u

dv

dx
C v

du

dx
# # # #

gives:
dy

dx
D �3x2� �2 cos 2x� C �sin 2x��6x�

i.e.
dy

dx
D 6x2 cos 2x C 6x sin 2x D 6x.x cos 2x Y sin 2x/
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Note that the differential coefficient of a product is not obtained by merely
differentiating each term and multiplying the two answers together.

Differentiation of a quotient

When y D u

v
, and u and v are both functions of x

then dy
dx

=
v

du
dx

− u
dv

dx
v2

This is known as the quotient rule.

For example, to find the differential coefficient of y D 4 sin 5x

5x4
:

4 sin 5x

5x4
is a quotient. Let u D 4 sin 5x and v D 5x4.

(Note that v is always the denominator and u the numerator)

dy

dx
D

v
du

dx
� udv

dx
v2

D �5x4��20 cos 5x�� �4 sin 5x��20x3�

�5x4�2

D 100x4 cos 5x � 80x3 sin 5x

25x8
D 20x3[5x cos 5x � 4 sin 5x]

25x8

i.e.
dy
dx
D 4

5x5 .5x cos 5x − 4 sin 5x/

Note that the differential coefficient is not obtained by merely differentiating
each term in turn and then dividing the numerator by the denominator.
In another example, to determine the differential coefficient of y D tan ax:

y D tan ax D sin ax

cos ax
.

Differentiation of tan ax is thus treated as a quotient with u D sin ax and
v D cos ax

dy

dx
D

v
du

dx
� udv

dx
v2

D �cos ax��a cos ax�� �sin ax���a sin ax�

�cos ax�2

D a cos2 ax C a sin2 ax

�cos ax�2
D a�cos2 ax C sin2 ax�

cos2 ax

D a

cos2 ax
, since cos2 ax C sin2 ax D 1 (see Chapter 29)

Hence
dy
dx

=a sec2 ax since sec2 ax D 1

cos2 ax
(see Chapter 25)
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Function of a function

It is often easier to make a substitution before differentiating.

If y is a function of x then
dy
dx

=
dy
du

×
du
dx

This is known as the ‘function of a function’ rule (or sometimes the chain
rule).
For example, if y D �3x � 1�9 then, by making the substitution u D �3x � 1�,
y D u9, which is of the ‘standard’ form.

Hence
dy

du
D 9u8 and

du

dx
D 3

Then
dy

dx
D dy

du
ð du

dx
D �9u8�3� D 27u8

Rewriting u as (3x � 1) gives:
dy
dx

= 27.3x − 1/8. Since y is a function of u,

and u is a function of x, then y is a function of a function of x.
In another example, to determine the differential coefficient of
y D p3x2 C 4x � 1:

y D
√

3x2 C 4x � 1 D �3x2 C 4x � 1�1/2

Let u D 3x2 C 4x � 1 then y D u1/2

Hence
du

dx
D 6x C 4 and

dy

du
D 1

2
u�1/2 D 1

2
p
u

Using the function of a function rule,

dy

dx
D dy

du
ð du

dx
D
(

1

2
p
u

)
�6x C 4� D 3x C 2p

u

i.e.
dy
dx

=
3x Y 2√

.3x2 Y 4x − 1/

Successive differentiation

When a function y D f�x� is differentiated with respect to x the differential

coefficient is written as
dy

dx
or f0�x�. If the expression is differentiated again,

the second differential coefficient is obtained and is written as
d2y

dx2
(pro-

nounced dee two y by dee x squared) or f00�x� (pronounced f double-dash x).

By successive differentiation further higher derivatives such as
d3y

dx3 and
d4y

dx4

may be obtained.
For example, if y D 3x4,

dy

dx
D 12x3,

d2y

dx2
D 36x2,

d3y

dx3
D 72x,

d4y

dx4
D 72
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and
d5y

dx5
D 0

In another example, if f�x� D 2x5 � 4x3 C 3x � 5

then f0�x� D 10x4 � 12x2 C 3

and f ′′.x/ D 40x3 − 24x = 4x.10x2 − 6/

Differentiation of hyperbolic functions

From Chapter 13,
d

dx
�sinh x� D d

dx

(
ex � e�x

2

)
D
[

ex � ��e�x�
2

]

D
(

ex C e�x

2

)
D cosh x

If y = sinh ax , where ‘a’ is a constant, then
dy
dx

= a cosh ax

d

dx
�cosh x� D d

dx

(
ex C e�x

2

)
D
[

ex C ��e�x�
2

]

D
(

ex � e�x

2

)
D sinh x

If y = cosh ax , where ‘a’ is a constant, then
dy
dx

= a sinh ax

Using the quotient rule of differentiation the derivatives of tanh x, sech x,
cosech x and coth x may be determined using the above results. A summary
is given below

y or f.x/
dy
dx

or f ′.x/

sinh ax a cosh ax
cosh ax a sinh ax
tanh ax a sech2 ax
sech ax �a sech ax tanh ax
cosech ax �a cosech ax coth ax
coth ax �a cosech2 ax

For example, to differentiate the following with respect to x:

(a) y D 4 sh 2x � 3

7
ch 3x (b) y D 5 th

x

2
� 2 coth 4x

(a)
dy

dx
D 4�2 cosh 2x�� 3

7
�3 sinh 3x� D 8 cosh 2x −

9
7

sinh 3x

(b)
dy

dx
D 5

(
1

2
sech2 x

2

)
� 2��4 cosech2 4x� D 5

2
sech2 x

2
Y 8 cosech2 4x

In another example, to differentiate the following with respect to the variable:

(a) y D 4 sin 3t ch 4t �b� y D ln�sh 3��� 4 ch 23�
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(a) y D 4 sin 3t ch 4t (i.e. a product)

dy

dx
D �4 sin 3t��4 sh 4t�C �ch 4t��4��3 cos 3t�

D 16 sin 3t sh 4t C 12 ch 4t cos 3t

D 4.4 sin 3t sh 4t Y 3 cos 3t ch 4t/

(b) y D ln�sh 3��� 4 ch 23� (i.e. a function of a function)

dy

d�
D
(

1

sh 3�

)
�3 ch 3��� �4��2 ch 3���3 sh 3��

D 3 coth 3� � 24 ch 3� sh 3� D 3.coth 3q − 8 ch 3q sh 3q/

49 Some Applications of Differentiation

Rates of Change

If a quantity y depends on and varies with a quantity x then the rate of change

of y with respect to x is
dy

dx
. Thus, for example, the rate of change of pressure

p with height h is
dp

dh
.

A rate of change with respect to time is usually just called ‘the rate of change’,
the ‘with respect to time’ being assumed. Thus, for example, a rate of change

of current, i, is
di

dt
and a rate of change of temperature, �, is

d�

dt
, and so on.

For example, Newtons law of cooling is given by � D �0e�kt, where the
excess of temperature at zero time is �°

0C and at time t seconds is �°C. To
determine the rate of change of temperature after 40 s, given that �0 D 16°C
and k D �0.03:

The rate of change of temperature is
d�

dt
.

Since � D �0e�kt then
d�

dt
D ��0���k�e�kt D �k�0e�kt

When �0 D 16, k D �0.03 and t D 40

then
d�

dt
D ���0.03��16�e���0.03��40� D 0.48e1.2 D 1.594°C/s

Velocity and Acceleration

If a body moves a distance x metres in a time t seconds then:
(i) distance x = f(t)

(ii) velocity v = f ′.t/ or
dx
dt

, which is the gradient of the distance/time

graph
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(iii) acceleration a =
dv

dt
= f ′′ or

d2x
dt2 , which is the gradient of the

velocity/time graph.

For example, the distance x metres travelled by a vehicle in time t seconds
after the brakes are applied is given by x D 20t � 5

3 t
2. To determine (a) the

speed of the vehicle (in km/h) at the instant the brakes are applied, and (b)
the distance the car travels before it stops:

(a) Distance, x D 20t � 5

3
t2. Hence velocity v D dx

dt
D 20� 10

3
t. At the

instant the brakes are applied, time D 0. Hence

velocity v D 20 m/s D 20ð 60ð 60

1000
km/h D 72 km=h.

(Note: changing from m/s to km/h merely involves multiplying by 3.6).
(b) When the car finally stops, the velocity is zero,

i.e. v D 20� 10
3 t D 0, from which, 20 D 10

3 t, giving t D 6 s. Hence the
distance travelled before the car stops is given by:

x D 20t � 5
3 t

2 D 20�6�� 5
3 �6�

2 D 120� 60 D 60 m

In another example, the angular displacement � radians of a flywheel varies
with time t seconds and follows the equation � D 9t2 � 2t3. To determine
(a) the angular velocity and acceleration of the flywheel when time, t D 1 s,
and (b) the time when the angular acceleration is zero:
(a) Angular displacement � D 9t2 � 2t3 rad

Angular velocity ω D d�

dt
D 18t � 6t2 rad/s

When time t D 1 s, ω D 18�1� � 6�1�2 D 12 rad=s

Angular acceleration ˛ D d2�

dt2
D 18� 12t rad/s

When time t D 1 s, a D 18� 12�1� D 6 rad=s2

(b) When the angular acceleration is zero, 18� 12t D 0,
from which, 18 D 12t, giving time, t = 1.5 s

Turning points

In Figure 49.1, the gradient (or rate of change) of the curve changes from
positive between O and P to negative between P and Q, and then positive
again between Q and R. At point P, the gradient is zero and, as x increases,
the gradient of the curve changes from positive just before P to negative just
after. Such a point is called a maximum point and appears as the ‘crest of a
wave’. At point Q, the gradient is also zero and, as x increases, the gradient
of the curve changes from negative just before Q to positive just after. Such
a point is called a minimum point, and appears as the ‘bottom of a valley’.
Points such as P and Q are given the general name of turning points.

It is possible to have a turning point, the gradient on either side of which
is the same. Such a point is given the special name of a point of inflexion,
and examples are shown in Figure 49.2.
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Figure 49.1

Figure 49.2

Maximum and minimum points and points of inflexion are given the general
term of stationary points.
Procedure for finding and distinguishing between stationary points

(i) Given y D f�x�, determine
dy

dx
(i.e. f0�x))

(ii) Let
dy

dx
D 0 and solve for the values of x

(iii) Substitute the values of x into the original equation, y D f�x�, to find the
corresponding y-ordinate values. This establishes the co-ordinates of the
stationary points. To determine the nature of the stationary points:
Either

(iv) Find
d2y

dx2
and substitute into it the values of x found in (ii).

If the result is: (a) positive — the point is a minimum one,
(b) negative — the point is a maximum one,
(c) zero — the point is a point of inflexion

or
(v) Determine the sign of the gradient of the curve just before and just after

the stationary points. If the sign change for the gradient of the curve is:
(a) positive to negative — the point is a maximum one
(b) negative to positive — the point is a minimum one
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(c) positive to positive or negative to negative — the point is a point of
inflexion

For example, to find the maximum and minimum values of the curve
y D x3 � 3x C 5:

Since y D x3 � 3x C 5 then
dy

dx
D 3x2 � 3. For a maximum or minimum value

dy

dx
D 0. Hence 3x2 � 3 D 0, from which, 3x2 D 3 and x D š1.

When xD1, yD �1�3 � 3�1�C 5 D 3
When xD�1, yD ��1�3 � 3��1�C 5 D 7.
Hence (1, 3) and (�1, 7) are the co-ordinates of the turning points.
Considering the point (1, 3):

If x is slightly less than 1, say 0.9, then
dy

dx
D 3�0.9�2 � 3, which is negative.

If x is slightly more than 1, say 1.1, then
dy

dx
D 3�1.1�2 � 3, which is positive.

Since the gradient changes from negative to positive, the point (1, 3) is a
minimum point.
Considering the point (�1, 7):

If x is slightly less than � 1, say � 1.1, then
dy

dx
D 3��1.1�2 � 3, which is

positive. If x is slightly more than � 1, say � 0.9, then
dy

dx
D 3��0.9�2 � 3,

which is negative. Since the gradient changes from positive to negative, the
point (−1, 7) is a maximum point.

Since
dy

dx
D 3x2 � 3, then

d2y

dx2
D 6x. When x D 1,

d2y

dx2
is positive, hence

(1, 3) is a minimum value. When x D �1,
d2y

dx2
is negative, hence (�1, 7) is

a maximum value.
Thus the maximum value is 7 and the minimum value is 3.
It can be seen that the second differential method of determining the nature
of the turning points is, in this case, quicker than investigating the gradient.

Practical problems involving maximum and minimum values
There are many practical problems involving maximum and minimum values
which occur in science and engineering. Usually, am equation has to be deter-
mined from given data, and rearranged where necessary, so that it contains
only one variable.
For example, to determine the area of the largest piece of rectangular ground
that can be enclosed by 100 m of fencing, if part of an existing straight wall
is used as one side:
Let the dimensions of the rectangle be x and y as shown in Figure 49.3,
where PQ represents the straight wall.

From Figure 49.3, x C 2y D 100 �1�

Area of rectangle, A D xy �2�
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Figure 49.3

Since the maximum area is required, a formula for area A is needed in terms
of one variable only. From equation (1), x D 100� 2y
Hence area A = xy = .100 − 2y/y = 100y − 2y2

dA

dy
D 100� 4y D 0, for a turning point, from which, y D 25 m.

d2A

dy2
D �4, which is negative, giving a maximum value.

When y D 25 m, x D 50 m from equation (1).
Hence the maximum possible area D xy D �50��25� D 1250 m2

In another example, an open rectangular box with square ends is fitted with
an overlapping lid which covers the top and the front face. To determine the
maximum volume of the box if 6 m2 of metal are used in its construction:
A rectangular box having square ends of side x and length y is shown in
Figure 49.4
Surface area of box, A, consists of two ends and five faces (since the lid also
covers the front face).

Hence A D 2x2 C 5xy D 6 �1�

Since it is the maximum volume required, a formula for the volume in terms
of one variable only is needed. Volume of box, V D x2y

From equation (1), y D 6� 2x2

5x
D 6

5x
� 2x

5
�2�

Hence volume V D x2y D x2
(

6

5x
� 2x

5

)
D 6x

5
� 2x3

5
dV

dx
D 6

5
� 6x2

5
D 0 for a maximum or minimum value.

Figure 49.4
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Hence 6 D 6x2, giving x D 1 m (x D �1 is not possible, and is thus neglected).
d2V

dx2
D �12x

5
. When x D 1,

d2V

dx2
is negative, giving a maximum value. From

equation (2), when x D 1, y D 6

5�1�
� 2�1�

5
D 4

5
Hence the maximum volume of the box is given by

V D x2y D �1�2
(

4

5

)
=

4
5

m3

Tangents and normals

Tangents
The equation of the tangent to a curve y D f�x� at the point (x1, y1) is
given by:

y − y1 = m.x − x1/

where m D dy

dx
D gradient of the curve at (x1, y1).

For example, to find the equation of the tangent to the curve y D x2 � x � 2
at the point (1, �2):

Gradient, m D dy

dx
D 2x � 1.

At the point (1, �2), x D 1 and m D 2�1�� 1 D 1. Hence the equation of the
tangent is: y � y1 D m�x � x1�

i.e. y ��2 D 1�x � 1�

i.e. y C 2 D x � 1

or y = x − 3

The graph of y D x2 � x � 2 is shown in Figure 49.5. The line AB is the
tangent to the curve at the point C, i.e. (1, �2), and the equation of this line
is y D x � 3.

Normals
The normal at any point on a curve is the line that passes through the point
and is at right angles to the tangent. Hence, in Figure 49.5, the line CD is the
normal.
It may be shown that if two lines are at right angles then the product of their
gradients is �1. Thus if m is the gradient of the tangent, then the gradient of

the normal is � 1

m
Hence the equation of the normal at the point (x1, y1) is given by:

y − y1 = −
1
m

.x − x1/

For example, to find the equation of the normal to the curve y D x2 � x � 2
at the point (1, �2):
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Figure 49.5

m D 1 from above, hence the equation of the normal is

y � ��2� D � 1
1 �x � 1�

i.e. y C 2 D �x C 1 or y = −x − 1

Thus the line CD in Figure 49.5 has the equation y D �x � 1

Small changes

If y is a function of x, i.e. y D f�x�, and the approximate change in y corre-
sponding to a small change υx in x is required, then:

υy

υx
³ dy

dx

and dy ≈
dy
dx

.dx or dy ≈ f ′.x/.dx

For example, the time of swing T of a pendulum is given by T D k
p
l, where

k is a constant. To determine the percentage change in the time of swing if
the length of the pendulum l changes from 32.1 cm to 32.0 cm:

If T D k
p
l D kl1/2, then

dT

dl
D k

(
1

2
l�1/2

)
D k

2
p
l

Approximate change in T, υt ³ dT

dl
υl ³

(
k

2
p
l

)
υl

³
(

k

2
p
l

)
��0.1� (negative since l decreases)
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Percentage error D
(

approximate change in T

original value of T

)
100%

D

(
k

2
p
l

)
��0.1�

k
p
l

ð 100% D
(�0.1

2l

)
100%

D
( �0.1

2�32.1�

)
100% D −0.156%

Hence the change in the time of swing is a decrease of 0.156%

50 Differentiation of Parametric Equations
Introduction

Certain mathematical functions can be expressed more simply by expressing,
say, x and y separately in terms of a third variable. For example, y D r sin �,
x D r cos �. Then, any value given to � will produce a pair of values for x and
y, which may be plotted to provide a curve of y D f�x�.
The third variable, �, is called a parameter and the two expressions for y and
x are called parametric equations.
The above example of y D r sin � and x D r cos � are the parametric equations
for a circle. The equation of any point on a circle, centre at the origin and of
radius r is given by: x2 C y2 D r2.
To show that y D r sin � and x D r cos � are suitable parametric equations for
such a circle:

left hand side of equation D x2 C y2

D �r cos ��2 C �r sin ��2

D r2 cos2 � C r2 sin2 �

D r2�cos2 � C sin2 ��

D r2 D right hand side (since cos2 � C sin2 � D 1�

Some common parametric equations

The following are some of the more common parametric equations, and
Figure 50.1 shows typical shapes of these curves.

(a) Ellipse x D a cos �, y D b sin �
(b) Parabola x D at2, y D 2at
(c) Hyperbola x D a sec �, y D b tan �

(d) Rectangular hyperbola x D ct, y D c

t
(e) Cardioid x D a�2 cos � � cos 2��, y D a�2 sin � � sin 2��
(f) Astroid x D a cos3 �, y D a sin3 �
(g) Cycloid x D a�� � sin ��, y D a�1� cos ��
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(a) Ellipse (c) Hyperbola  

(e) Cardioid

(b) Parabola   

(d) Rectangular
      hyperbola

(f) Astroid

(g) Cycloid

Figure 50.1

Differentiation in parameters

When x and y are given in terms of a parameter, say, �, then by the function
of a function rule of differentiation:

dy
dx

=
dy
dq

×
dq

dx

It may be shown that this can be written as:

dy
dx

=

dy
dq
dx
dq

�1�
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For the second differential,
d2y

dx2
D d

dx

(
dy

dx

)
D d

d�

(
dy

dx

)
d�

dx

or
d2y
dx2 =

d
dq

(
dy
dx

)
dx
dq

�2�

For example, given x D 5� � 1 and y D 2��� � 1�, to determine
dy

dx
in terms

of �:
x D 5� � 1, hence

dx

d�
D 5

y D 2��� � 1� D 2�2 � 2�, hence
dy

d�
D 4� � 2 D 2�2� � 1�

From equation (1),
dy
dx
D

dy

d�
dx

d�

D 2�2� � 1�

5
or

2
5

.2q − 1/

In another example, when determining the surface tension of a liquid, the
radius of curvature �, of part of the surface is given by:

� D

√√√√[1C
(

dy

dx

)2
]3

d2y

dx2

To find the radius of curvature of the part of the surface having the parametric
equations x D 3t2, y D 6t at the point t D 2:

x D 3t2, hence
dx

dt
D 6t and y D 6t, hence

dy

dt
D 6

From equation (1),
dy

dx
D

dy

dt
dx

dt

D 6

6t
D 1

t

From equation (2),
d2y

dt2
D

d

dt

(
dy

dx

)
dx

dt

D
d

dt

(
1

t

)
6t

D
d

dt
�t�1�

6t

D �t
�2

6t
D
� 1

t2

6t
D �1

6t3
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Hence radius of curvature,

� D

√√√√[1C
(

dy

dx

)2
]3

d2y

dx2

D

√√√√[1C
(

1

t

)2
]3

�1

6t3

When t D 2, � D

√√√√[1C
(

1

2

)2
]3

� 1

6�2�3

D
√
�1.25�3

� 1

48

D �48
√

1.253 D �48 D −67.08

51 Differentiation of Implicit Functions
Implicit functions
When an equation can be written in the form y D f�x� it is said to be an
explicit function of x. Examples of explicit functions include

y D 2x3 � 3x C 4, y D 2x ln x and y D 3ex

cos x
. In these examples y may be

differentiated with respect to x by using standard derivatives, the product rule
and the quotient rule of differentiation respectively.

Sometimes with equations involving, say, y and x, it is impossible to make y
the subject of the formula. The equation is then called an implicit function and
examples of such functions include y3 C 2x2 D y2 � x and sin y D x2 C 2xy

Differentiating implicit functions

It is possible to differentiate an implicit function by using the function of
a function rule, which may be stated as

du

dx
D du

dy
ð dy

dx

Thus, to differentiate y3 with respect to x, the substitution u D y3 is made,

from which,
du

dy
D 3y2. Hence,

d

dx
�y3� D �3y2�ð dy

dx
, by the function of a

function rule.
A simple rule for differentiating an implicit function is summarised as:

d
dx

[f .y/] =
d

dy
[f .y/] ×

dy
dx �1�

For example, to differentiate u D sin 3t with respect to x:

du

dx
D du

dt
ð dt

dx
D d

dt
�sin 3t�ð dt

dx
D 3 cos 3t

dt
dx
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In another example, to differentiate u D 4 ln 5y with respect to t:

du

dt
D du

dy
ð dy

dt
D d

dy
�4 ln 5y�ð dy

dt
D
(

4
y

)
dy
dt

Differentiating implicit functions containing products and
quotients

The product and quotient rules of differentiation must be applied when differ-
entiating functions containing products and quotients of two variables.

For example,
d

dx
�x2y� D �x2�

d

dx
�y�C �y� d

dx
�x2�, by the product rule

D �x2�

(
1

dy

dx

)
C y�2x�, by using equation (1)

D x2 dy
dx

Y 2xy

In another example,

d

dx

(
3y

2x

)
D
�2x�

d

dx
�3y�� �3y� d

dx
�2x�

�2x�2
D
�2x�

(
3

dy

dx

)
� �3y��2�

4x2

D
6x

dy

dx
� 6y

4x2
D 3

2x2

(
x

dy
dx

− y
)

Further implicit differentiation

An implicit function such as 3x2 C y2 � 5x C y D 2, may be differentiated
term by term with respect to x. This gives:

d

dx
�3x2�C d

dx
�y2�� d

dx
�5x�C d

dx
�y� D d

dx
�2�

i.e. 6x C 2y
dy

dx
� 5C 1

dy

dx
D 0, using equation (1) and standard derivatives.

An expression for the derivative
dy

dx
in terms of x and y may be obtained by

rearranging this latter equation. Thus:

�2y C 1�
dy

dx
D 5� 6x

from which,
dy

dx
D 5� 6x

2y C 1
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52 Logarithmic Differentiation

Introduction to logarithmic differentiation

With certain functions containing more complicated products and quotients,
differentiation is often made easier if the logarithm of the function is taken
before differentiating. This technique, called ‘logarithmic differentiation’ is
achieved with a knowledge of (i) the laws of logarithms, (ii) the differential
coefficients of logarithmic functions, and (iii) the differentiation of implicit
functions.

Laws of logarithms

Three laws of logarithms may be expressed as:

(i) log�Að B� D logAC logB (ii) log
(
A

B

)
D logA� logB

(iii) logAn D n logA

In calculus, Napierian logarithms (i.e. logarithms to a base of ‘e’) are invariably
used. Thus for two functions f�x� and g�x� the laws of logarithms may be
expressed as:

(i) ln[f�x�.g�x�] D lnf�x�C ln g�x� (ii) ln
(
f�x�

g�x�

)
D lnf�x�� ln g�x�

(iii) ln[f�x�]n D n lnf�x�

Taking Napierian logarithms of both sides of the equation y D f�x�.g�x�

h�x�

gives: ln y D ln
(
f�x�.g�x�

h�x�

)

which may be simplified using the above laws of logarithms, giving:
ln y D lnf�x�C ln g�x�� ln h�x�

This latter form of the equation is often easier to differentiate.

Differentiation of logarithmic functions

The differential coefficient of the logarithmic function ln x is given by:

d
dx

.ln x/ =
1
x

More generally, it may be shown that:
d

dx
[ln f .x/] =

f ′.x/

f .x/
�1�

For example, if y D ln�3x2 C 2x � 1� then
dy

dx
D 6x C 2

3x2 C 2x � 1
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In another example, if y D ln�sin 3x�, then
dy

dx
D 3 cos 3x

sin 3x
D 3 cot 3x.

As explained in Chapter 51, by using the function of a function rule:

d
dx

.ln y/ =

(
1
y

)
dy
dx

�2�

For example, differentiation of y D �1C x�2p�x � 1�

x
p
�x C 2�

may be achieved by

using the product and quotient rules of differentiation; however the working
would be rather complicated. With logarithmic differentiation the following
procedure is adopted:

(i) Take Napierian logarithms of both sides of the equation. Thus

ln y D ln

{
�1C x�2p�x � 1�

x
p
�x C 2�

}
D ln

{
�1C x�2�x � 1�1/2

x�x C 2�1/2

}

(ii) Apply the laws of logarithms.
Thus ln y D ln�1C x�2 C ln�x � 1�1/2 � ln x � ln�x C 2�1/2, by laws (i)
and (ii)
i.e. ln y D 2 ln�1C x�C 1

2 ln�x � 1�� ln x � 1
2 ln�x C 2�, by law (iii)

(iii) Differentiate each term in turn with respect to x using equations (1)
and (2)

Thus
1

y

dy

dx
D 2

�1C x� C
1
2

�x � 1�
� 1

x
�

1
2

�x C 2�

(iv) Rearrange the equation to make
dy

dx
the subject.

Thus
dy

dx
D y

{
2

�1C x� C
1

2�x � 1�
� 1

x
� 1

2�x C 2�

}

(v) Substitute for y in terms of x

Thus
dy
dx

=
.1Y x/2p.x − 1/

x
p

.x Y 2/

{
2

.1Y x/
Y

1
2.x − 1/

−
1
x

−
1

2.x Y 2/

}

Differentiation of [f .x /]x

Whenever an expression to be differentiated contains a term raised to a power
which is itself a function of the variable, then logarithmic differentiation must
be used. For example, the differentiation of expressions such as xx , �x C 2�x ,
x
p
�x � 1� and x3xC2 can only be achieved using logarithmic differentiation.

For example, to determine
dy

dx
given y D xx:

Taking Napierian logarithms of both sides of y D xx gives:
ln y D ln xx D x ln x, by law (iii)
Differentiating both sides with respect to x gives:

1

y

dy

dx
D �x�

(
1

x

)
C �ln x��1�, using the product rule
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i.e.
1

y

dy

dx
D 1C ln x, from which,

dy

dx
D y�1C ln x�

i.e.
dy
dx

= xx .1Y ln x/

53 Differentiation of Inverse Trigonometric and
Hyperbolic Functions

Inverse functions

If y D 3x � 2, then by transposition, x D y C 2

3
. The function x D y C 2

3
is

called the inverse function of y D 3x � 2.
Inverse trigonometric functions are denoted by prefixing the function with
‘arc’. For example, if y D sin x, then x D arcsin y. Similarly, if y D cos x, then
x D arccosy, and so on. Alternatively, if y D sin x, then x D sin�1 y. A sketch
of each of the inverse trigonometric functions is shown in Figure 53.1.
Inverse hyperbolic functions are denoted by prefixing the function with ‘ar’.
For example, if y D sinh x, then x D arsinhy. Similarly, if y D sech x, then
x D arcsech y, and so on. Alternatively, if y D sinh x, then x D sinh�1 y. A
sketch of each of the inverse hyperbolic functions is shown in Figure 53.2.

Differentiation of inverse trigonometric functions

The differential coefficients of inverse trigonometric functions are summarised
in Table 53.1.

y
3π/2

π/2
π

−π/2

−π
−3π/2

+1 x

B

y = arcsin x

A
−1

(a)

y
3π/2

π/2

π

0

−π

−3π/2

+1 x−1

(b)

y = arccos x

−π/2

y

π/2

0

−π/2

y = arctan x

(c)

y

π

0

−π

3π/2

π/2

−π/2

−3π/2

y = arcsec x

x+1−1

(d)

y

π

0

−π

3π/2

π/2

−π/2

−3π/2

y = arccosec x

x+1

(e)

y

y = arccot x

−π

0

π

x

(f)

x

−1

−π/2

π/2

C

D

0

Figure 53.1
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0 1 2 3 x

1

3

2

−3 −2 −1
−1
−2

−3

y
y = arsinh x

1 2 30−1−2
−1
−2

−3

1
2

3
y

x

y = arcosh x

1
2

3

0
−1
−2
−3

1 x

y
y = arsech x y = arcosech x

x

y

0

y = arcoth x

x

y

0 +1−1

(a) (b) (c)

(d) (e) (f)

0 x

y

y = artanh x

+1−1

Figure 53.2

Table 53.1 Differential coefficients of
inverse trigonometric functions

y or f.x/
dy
dx

or f′.x/

(i) arcsin
x
a

1p
a2 � x2

arcsin f�x�
f 0�x�√

1� [f�x�]2

(ii) arccos
x
a

�1p
a2 � x2

arccos f�x�
�f 0�x�√

1� [f�x�]2

(iii) arctan
x
a

a
a2 C x2

arctan f�x�
f 0�x�

1C [f�x�]2

(iv) arcsec
x
a

a

x
p

x2 � a2

arcsec f�x�
f 0�x�

f�x�
√

[f�x�]2 � 1

(v) arccosec
x
a

�a

x
p

x2 � a2

arccosec f�x�
�f 0�x�

f�x�
√

[f�x�]2 � 1

(vi) arccot
x
a

�a
a2 C x2

arccot f�x�
�f 0�x�

1C [f�x�]2
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For example, to find
dy

dx
given y D arcsin 5x2.

From Table 53.1(i), if y D arcsinf�x� then
dy

dx
D f0�x�√

1� [f�x�]2
.

Hence, if y D arcsin 5x2 then f�x� D 5x2 and f0�x� D 10x.

Thus
dy

dx
D 10x√

1� �5x2�2
D 10xp

1–25x4
.

In another example, to find the differential coefficient of y D ln�arccos 3x�:
Let u D arccos 3x then y D ln u. By the function of a function rule,

dy

dx
D dy

du
Ð du

dx
D 1

u
ð d

dx
�arccos 3x� D 1

arccos 3x

{
�3√

1� �3x�2

}

i.e.
d

dx
[ln.arccos 3x/] =

−3p
1 − 9x2 arccos 3x

Logarithmic forms of the inverse hyperbolic functions

Inverse hyperbolic functions may be evaluated most conveniently when
expressed in a logarithmic form.

For example, if y D arcsinh
x

a
then

x

a
D sinh y.

From Chapter 13, ey D cosh y C sinh y and cosh2 y � sinh2 y D 1, from which,

cosh y D
√

1C sinh2 y which is positive since cosh y is always positive (see
Figure 13.2, page 57).

Hence ey D
√

1C sinh2 y C sinh y

D
√√√√[1C

(
x

a

)2
]
C x

a
D
√√√√(a2 C x2

a2

)
C x

a

D
p
a2 C x2

a
C x

a
or

x Cpa2 C x2

a

Taking Napierian logarithms of both sides gives:

y D ln

{
x Cpa2 C x2

a

}

Hence arcsinh
x
a

= ln

{
x Y
p

a2 Y x2

a

}
�1�

For example, to evaluate arsinh 3
4 , let x D 3 and a D 4 in equation (1).

Then arcsinh
3

4
D ln

{
3Cp42 C 32

4

}
D ln

(
3C 5

4

)

D ln 2 D 0.6931



293

By similar reasoning to the above it may be shown that:

arccosh
x
a

= ln

{
x Y
p

x2 − a2

a

}
and arctanh

x
a

=
1
2

ln
(

a Y x
a − x

)

In another example, to evaluate cosh�1 1.4, correct to 3 decimal places:

From above, cosh�1 x

a
D ln

{
x špx2 � a2

a

}
and

cosh�1 1.4 D cosh�1 14

10
D cosh�1 7

5

In the equation for cosh�1 x

a
, let x D 7 and a D 5 then cosh�1 7

5
D

ln

{
7Cp72 � 52

5

}
D ln 2.3798 D 0.867, correct to 3 decimal places

Differentiation of inverse hyperbolic functions

The differential coefficients of inverse hyperbolic functions are summarised
in Table 53.2

For example, to find the differential coefficient of y D arcsinh 2x:
From Table 53.2(i),

d

dx
[arcsinhf�x�] D f0�x�√[

f�x�
]2 C 1

Hence
d

dx
�arcsinh 2x� D 2√

[�2x�2 C 1]
D 2√

[4x2 Y 1]

In another example, to determine
d

dx
[cosh�1

√
�x2 C 1�]

If y D cosh�1 f�x�,
dy

dx
D f0�x�√{

[f�x�]2 � 1
}

If y D cosh�1
√
�x2 C 1�, then f�x� D

√
�x2 C 1�

and f0�x� D 1

2
�x C 1��1/2�2x� D x√

�x2 C 1�

Hence
d

dx
[cosh�1

√
�x2 C 1�] D

x√
�x2 C 1�√{

[
√
�x2 C 1�]2 � 1

} D
x√

�x2 C 1�√
�x2 C 1� 1�

D
x√

�x2 C 1�
x

D 1√
.x2 Y 1/
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Table 53.2 Differential coefficients of
inverse hyperbolic functions

y or f.x/
dy
dx

or f′.x/

(i) arcsinh
x
a

1p
x2 C a2

arcsinh f�x�
f 0�x�√

[f�x�]2 C 1

(ii) arccosh
x
a

1p
x2 � a2

arccosh f�x�
f 0�x�√

[f�x�]2 � 1

(iii) arctanh
x
a

a
a2 � x2

arctanh f�x�
f 0�x�

1� [f�x�]2

(iv) arcsech
x
a

�a

x
p

a2 � x2

arcsech f�x�
�f 0�x�

f�x�
√

1� [f�x�]2

(v) arccosech
x
a

�a

x
p

x2 C a2

arccosech f�x�
�f 0�x�

f�x�
√

[f�x�]2 C 1

(vi) arccoth
x
a

a
a2 � x2

arccoth f�x�
f 0�x�

1� [f�x�]2

54 Partial Differentiation
Introduction to partial derivatives

In engineering, it sometimes happens that the variation of one quantity depends
on changes taking place in two, or more, other quantities. For example, the
volume V of a cylinder is given by V D �r2h. The volume will change if
either radius r or height h is changed. The formula for volume may be stated
mathematically as V D f�r, h� which means ‘V is some function of r and h’.
Some other practical examples include:
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(i) time of oscillation, t D 2�

√
l

g
i.e. t D f�l, g�

(ii) torque T D I˛, i.e. T D f�I, ˛�

(iii) pressure of an ideal gas p D mRT

V
i.e. p D f�T,V�

(iv) resonant frequency fr D 1

2�
p
LC

i.e. fr D f�L,C�, and so on.

When differentiating a function having two variables, one variable is kept
constant and the differential coefficient of the other variable is found with
respect to that variable. The differential coefficient obtained is called a partial
derivative of the function.

First order partial derivatives

A ‘curly dee’, ∂, is used to denote a differential coefficient in an expression
containing more than one variable.

Hence if V D �r2h then
∂V

∂r
means ‘the partial derivative of V with respect

to r, with h remaining constant’. Thus
∂V

∂r
D ��h�

d

dr
�r2� D ��h��2r� D 2�rh.

Similarly,
∂V

∂h
means ‘the partial derivative of V with respect to h, with r

remaining constant’. Thus
∂V

∂h
D ��r2�

d

dh
�h� D ��r2�1�� D �r2.

∂V

∂r
and

∂V

∂h
are examples of first order partial derivatives, since n D 1

when written in the form
∂nV

∂rn
.

First order partial derivatives are used when finding the total differential, rates
of change and errors for functions of two or more variables (see Chapter 55),
and when finding maxima, minima and saddle points for functions of two
variables (see Chapter 56).
For example, if Z D 5x4 C 2x3y2 � 3y

then
∂Z

∂x
D d

dx
�5x4�C �2y2�

d

dx
�x3�� �3y� d

dx
�l�

D 20x3 C �2y2��3x2�� �3y��0� D 20x3 Y 6x2y2

and
∂Z

∂y
D �5x4�

d

dy
�1�C �2x3�

d

dy
�y2�� 3

d

dy
�y�

D 0C �2x3��2y�� 3 D 4x3y − 3

Second order partial derivatives

As with ordinary differentiation where a differential coefficient may be dif-
ferentiated again, a partial derivative may be differentiated partially again, to
give higher order partial derivatives.
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If V D �r2h, then
∂V

∂r
D ��h�

d

dr
�r2� D ��h��2r� D 2�rh

and
∂V

∂h
D ��r2�

d

dh
�h� D ��r2��1� D �r2

from the previous section

(i) Differentiating
∂V

∂r
with respect to r, keeping h constant, gives

∂

∂r

(
∂V

∂r

)
, which is written as

∂2V

∂r2

Thus if V D �r2h then
∂2V

∂r2 D
∂

∂r
�2�rh� D 2ph

(ii) Differentiating
∂V

∂h
with respect to h, keeping r constant, gives

∂

∂h

(
∂V

∂h

)
, which is written as

∂2V

∂h2

Thus
∂2V

∂h2
D ∂

∂h
��r2� D 0

(iii) Differentiating
∂V

∂h
with respect to r, keeping h constant, gives

∂

∂r

(
∂V

∂h

)
, which is written as

∂2V

∂r∂h

Thus
∂2V

∂r∂h
D ∂

∂r

(
∂V

∂h

)
D ∂

∂r
��r2� D 2pr

(iv) Differentiating
∂V

∂r
with respect to h, keeping r constant, gives

∂

∂h

(
∂V

∂r

)
, which is written as

∂2V

∂h∂r
.

Thus
∂2V

∂h∂r
D ∂

∂h

(
∂V

∂r

)
D ∂

∂h
�2�rh� D 2pr

(v)
∂2V

∂r2
,
∂2V

∂h2
,
∂2V

∂r∂h
and

∂2V

∂h∂r
are examples of second order partial deriva-

tives.

(vi) It is seen from (iii) and (iv) that
∂2V

∂r∂h
D ∂2V

∂h∂r
and such a result is always

true for continuous functions (i.e. a graph of the function has no sudden
jumps or breaks).

Second order partial derivatives are used in the solution of partial differential
equations, in waveguide theory, in such areas of thermodynamics covering
entropy and the continuity theorem, and when finding maxima, minima and
saddle points for functions of two variables (see Chapter 56).
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For example, to find

(a)
∂2Z

∂x2
(b)

∂2Z

∂y2
(c)

∂2Z

∂x∂y
(d)

∂2Z

∂y∂x
given Z D 4x2y3 � 2x3 C 7y2:

(a)
∂Z

∂x
D 8xy3 � 6x2

∂2Z

∂x2
D ∂

∂x

(
∂Z

∂x

)
D ∂

∂x
�8xy3 � 6x2� D 8y3 − 12x

(b)
∂Z

∂y
D 12x2y2 C 14y

∂2Z

∂y2
D ∂

∂y

(
∂Z

∂y

)
D ∂

∂y
�12x2y2 C 14y� D 24x2y Y 14

(c)
∂2Z

∂x∂y
D ∂

∂x

(
∂Z

∂y

)
D ∂

∂x
�12x2y2 C 14y� D 24xy2

(d)
∂2Z

∂y∂x
D ∂

∂y

(
∂Z

∂x

)
D ∂

∂y
�8xy3 � 6x2� D 24xy2

55 Total Differential, Rates of Change and Small
Changes

Total differential
In Chapter 54, partial differentiation is introduced for the case where only one
variable changes at a time, the other variables being kept constant. In practice,
variables may all be changing at the same time.
If Z D f�u, v, w, . . .�, then the total differential, dZ, is given by the sum of
the separate partial differentials of Z

i.e. dZ =
@Z
@u

du Y
@Z
@v

dvY
@Z
@w

dw Y . . �1�

For example, if Z D f�u, v, w� and Z D 3u2 � 2vC 4w3v2 the total

differential dZ D ∂Z

∂u
duC ∂Z

∂v
dvC ∂Z

∂w
dw

∂Z

∂u
D 6u (i.e. v and w are kept constant)

∂Z

∂v
D �2C 8w3v (i.e. u and w are kept constant)

∂Z

∂w
D 12w2v2 (i.e. u and v are kept constant)

Hence dZ = 6u du Y .8vw3 − 2/ dvY .12v2w2/ dw
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Rates of change
Sometimes it is necessary to solve problems in which different quantities have

different rates of change. From equation (1), the rate of change of Z,
dZ

dt
, is

given by:

dZ
dt

=
@Z
@u

du
dt
Y

@Z
@v

dv

dt
Y

@Z
@w

dw
dt

Y . . �2�

For example, if the height of a right circular cone is increasing at 3 mm/s
and its radius is decreasing at 2 mm/s, then the rate at which the volume is
changing (in cm3/s) when the height is 3.2 cm and the radius is 1.5 cm, is
determined as follows:
Volume of a right circular cone, V D 1

3�r
2h

Using equation (2), the rate of change of volume,

dV

dt
D ∂V

∂r

dr

dt
C ∂V

∂h

dh

dt

∂V

∂r
D 2

3
�rh and

∂V

∂h
D 1

3
�r2

Since the height is increasing at 3 mm/s, i.e. 0.3 cm/s, then
dh

dt
D C0.3 and

since the radius is decreasing at 2 mm/s, i.e. 0.2 cm/s, then
dr

dt
D �0.2

Hence
dV

dt
D
(

2

3
�rh

)
��0.2�C

(
1

3
�r2
)
�C0.3� D �0.4

3
�rh C 0.1�r2

However, h D 3.2 cm and r D 1.5 cm.

Hence
dV

dt
D �0.4

3
��1.5��3.2� C �0.1���1.5�2

D �2.011C 0.707 D �1.304 cm3/s

Thus the rate of change of volume is 1.30 cm3/s decreasing

Small changes
It is often useful to find an approximate value for the change (or error) of a
quantity caused by small changes (or errors) in the variables associated with
the quantity. If Z D f�u, v, w, . . .� and υu, υv, υw, . . . denote small changes
in u, v, w, . . . respectively, then the corresponding approximate change υZ
in Z is obtained from equation (1) by replacing the differentials by the small
changes

Thus dZ ≈
@Z
@u

du Y
@Z
@v

dvY
@Z
@w

dw Y . . �3�

For example, if the modulus of rigidity G D �R4��/L, where R is the radius,
� the angle of twist and L the length, the approximate percentage error in G
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when R is increased by 2%, � is reduced by 5% and L is increased by 4% is
determined as follows:
From equation (3), υG ³ ∂G

∂R
υRC ∂G

∂�
υ� C ∂G

∂L
υL

Since G D R4�

L
,
∂G

∂R
D 4R3�

L
,
∂G

∂�
D R4

L

and
∂G

∂L
D �R

4�

L2

Since R is increased by 2%, υR D 2

100
R D 0.02 R. Similarly, υ� D �0.05�

and υL D 0.04 L

Hence υG ³
(

4R3�

L

)
�0.02R�C

(
R4

L

)
��0.05��C

(
�R

4�

L2

)
�0.04L�

³ R4�

L
[0.08� 0.05� 0.04] ³ �0.01

R4�

L

i.e. υG ³ � 1

100
G

Hence the approximate percentage error in G is a 1% decrease.

56 Maxima, Minima and Saddle Points of
Functions of two Variables

Functions of two independent variables

If a relation between two real variables, x and y, is such that when x is
given, y is determined, then y is said to be a function of x and is denoted
by y D f�x�; x is called the independent variable and y the dependent vari-
able.
If y D f�u, v�, then y is a function of two independent variables u and v.
For example, if, say, y D f�u, v� D 3u2 � 2v then when u D 2 and v D 1,
y D 3�2�2 � 2�1� D 10. This may be written as f�2, 1� D 10. Similarly, if
u D 1 and v D 4, f�1, 4� D �5.
Consider a function of two variables x and y defined by z D f�x, y� D 3x2 �
2y. If �x, y� D �0, 0�, then f�0, 0� D 0 and if �x, y� D �2, 1�, then f�2, 1� D
10. Each pair of numbers, (x, y), may be represented by a point P in the (x, y)
plane of a rectangular Cartesian co-ordinate system as shown in Figure 56.1.
The corresponding value of z D f�x, y� may be represented by a line PP0
drawn parallel to the z-axis. Thus, if, for example, z D 3x2 � 2y, as above,
and P is the co-ordinate (2, 3) then the length of PP0 is 3�2�2 � 2�3� D 6.
Figure 56.2 shows that when a large number of (x, y) co-ordinates are taken
for a function f�x, y�, and then f�x, y� calculated for each, a large number
of lines such as PP0 can be constructed, and in the limit when all points
in the �x, y� plane are considered, a surface is seen to result as shown in
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x

y

z

6

30

2 p

p ′

Figure 56.1

y

x

z

o

Figure 56.2

Figure 56.2. Thus the function z D f�x, y� represents a surface, and not a
curve.

Maxima, minima and saddle points

Partial differentiation is used when determining stationary points for functions
of two variables. A function f�x, y� is said to be a maximum at a point (x, y)
if the value of the function there is greater than at all points in the immediate
vicinity, and is a minimum if less than at all points in the immediate vicin-
ity. Figure 56.3 shows geometrically a maximum value of a function of two
variables and it is seen that the surface z D f�x, y� is higher at �x, y� D �a, b�
than at any point in the immediate vicinity.
Figure 56.4 shows a minimum value of a function of two variables and it is
seen that the surface z D f�x, y� is lower at �x, y� D �p, q� than at any point
in the immediate vicinity.
If z D f�x, y� and a maximum occurs at (a, b), the curve lying in the two
planes x D a and y D b must also have a maximum point (a, b) as shown in
Figure 56.5. Consequently, the tangents (shown as t1 and t2) to the curves at

(a, b) must be parallel to Ox and Oy respectively. This requires that
∂z

∂x
D 0

Maximum
pointz

b

a

y

x

Figure 56.3

Minimum
point

y
q

p

x

z

Figure 56.4
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z

a

O

t1

t2

x

Figure 56.5

Q

Curve 1

Curve 2

Figure 56.6

and
∂z

∂y
D 0 at all maximum and minimum values, and the solution of these

equations gives the stationary (or critical) points of z.
With functions of two variables there are three types of stationary points
possible, these being a maximum point, a minimum point, and a saddle point.
A saddle point Q is shown in Figure 56.6 and is such that a point Q is a
maximum for curve 1 and a minimum for curve 2.

Procedure to determine maxima, minima and saddle points for
functions of two variables

Given z D f�x, y�:

(i) determine
∂z

∂x
and

∂z

∂y

(ii) for stationary points,
∂z

∂x
D 0 and

∂z

∂y
D 0,
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(iii) solve the simultaneous equations
∂z

∂x
D 0 and

∂z

∂y
D 0 for x and y, which

gives the co-ordinates of the stationary points,

(iv) determine
∂2z

∂x2
,
∂2z

∂y2
and

∂2z

∂x∂y
(v) for each of the co-ordinates of the stationary points, substitute values

of x and y into
∂2z

∂x2
,
∂2z

∂y2
and

∂2z

∂x∂y
and evaluate each,

(vi) evaluate

(
∂2z

∂x∂y

)2

for each stationary point,

(vii) substitute the values of
∂2z

∂x2
,
∂2z

∂y2
and

∂2z

∂x∂y
into the equation

 D
(
∂2z

∂x∂y

)2

�
(
∂2z

∂x2

)(
∂2z

∂y2

)
and evaluate,

(viii) (a) if 1 > 0 then the stationary point is a saddle point

(b) if 1 < 0 and
@2z
@x2 < 0, then the stationary point is a maximum

point, and

(c) if 1 < 0 and
@2z
@x2 > 0, then the stationary point is a minimum point

For example, the co-ordinates of the stationary point and its nature for the
function z D �x � 1�2 C �y � 2�2 is determined as follows:
Following the above procedure:

(i)
∂z

∂x
D 2�x � 1� and

∂z

∂y
D 2�y � 2�

(ii) 2�x � 1� D 0 �1�

2�y � 2� D 0 �2�

(iii) From equations (1) and (2), x D 1 and y D 2, thus the only stationary
point exists at (1, 2)

(iv) Since
∂z

∂x
D 2�x � 1� D 2x � 2,

∂2z

∂x2
D 2

and since
∂z

∂y
D 2�y � 2� D 2y � 4,

∂2z

∂y2
D 2

and
∂2z

∂x∂y
D ∂

∂x

(
∂z

∂y

)
D ∂

∂x
�2y � 4� D 0

(v)
∂2z

∂x2
D ∂2z

∂y2
D 2 and

∂2z

∂x∂y
D 0

(vi)

(
∂2z

∂x∂y

)2

D 0
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(vii)  D �0�2 � �2��2� D �4

(viii) Since  < 0 and
∂2z

∂x2
> 0, the stationary point (1, 2) is a minimum.

The surface z D �x � 1�2 C �y � 2�2 is shown in three dimensions in
Figure 56.7. Looking down towards the x-y plane from above, it is possible
to produce a contour map. A contour is a line on a map that gives places
having the same vertical height above a datum line (usually the mean sea-
level on a geographical map). A contour map for z D �x � 1�2 C �y � 2�2 is
shown in Figure 56.8. The values of z are shown on the map and these give
an indication of the rise and fall to a stationary point.
In another example, an open rectangular container is to have a volume of
62.5 m3. The least surface area of material required is determined as follows:
Let the dimensions of the container be x, y and z as shown in Figure 56.9.

Volume V D xyz D 62.5 �1�

Surface area, S D xy C 2yz C 2xz �2�

1
o

1 2

x

y

z

Figure 56.7

y

1

2
z = 4

z = 9
z = 16

1 2 x

z = 1

Figure 56.8
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z

x

y

Figure 56.9

From equation (1), z D 62.5

xy

Substituting in equation (2) gives: S D xy C 2y
(

62.5

xy

)
C 2x

(
62.5

xy

)

i.e. S D xy C 125

x
C 125

y
which is a function of two variables

∂S

∂x
D y � 125

x2 D 0 for a stationary point, hence x2y D 125 �3�

∂S

∂y
D x � 125

y2
D 0 for a stationary point, hence xy2 D 125 �4�

Dividing equation (3) by (4) gives:
x2y

xy2 D 1, i.e.
x

y
D 1, i.e. x D y

Substituting y D x in equation (3) gives x3 D 125, from which, x D 5 m.
Hence y D 5 m also.

From equation (1), �5��5��z� D 62.5 from which, z D 62.5

25
D 2.5 m

∂2S

∂x2 D
250

x3 ,
∂2S

∂y2 D
250

y3 and
∂2S

∂x∂y
D 1

When x D y D 5,
∂2S

∂x2 D 2,
∂2S

∂y2 D 2 and
∂2S

∂x∂y
D 1

 D �1�2 � �2��2� D �3

Since  < 0 and
∂2S

∂x2
> 0, then the surface area S is a minimum

Hence the minimum dimensions of the container to have a volume of 62.5 m3

are 5 m by 5 m by 2.5 m
From equation (2),

minimum surface area,S D �5��5�C 2�5��2.5� C 2�5��2.5�= 75 m2



Integral Calculus

57 Introduction to Integration

The Process of integration

The process of integration reverses the process of differentiation. In differ-
entiation, if f�x� D 2x2 then f0�x� D 4x. Thus the integral of 4x is 2x2, i.e.
integration is the process of moving from f0�x� to f�x�. By similar reasoning,
the integral of 2t is t2.
Integration is a process of summation or adding parts together and an elongated
S, shown as

∫
, is used to replace the words ‘the integral of’. Hence, from

above,
∫

4x D 2x2 and
∫

2t is t2.

In differentiation, the differential coefficient
dy

dx
indicates that a function of

x is being differentiated with respect to x, the dx indicating that it is ‘with
respect to x’. In integration the variable of integration is shown by adding
d(the variable) after the function to be integrated.
Thus

∫
4x dx means ‘the integral of 4x with respect to x’, and

∫
2t dt means

‘the integral of 2t with respect to t’
As stated above, the differential coefficient of 2x2 is 4x, hence

∫
4x dx D 2x2.

However, the differential coefficient of 2x2 C 7 is also 4x. Hence
∫

4x dx
is also equal to 2x2 C 7. To allow for the possible presence of a constant,
whenever the process of integration is performed, a constant ‘c’ is added to
the result.

Thus
∫

4x dx D 2x2 C c and
∫

2t dt D t2 C c

‘c’ is called the arbitrary constant of integration.

The general solution of integrals of the form ax n

The general solution of integrals of the form
∫
axn dx, where a and n are

constants is given by:
∫

axn dx =
axnY1

n Y 1
Y c

This rule is true when n is fractional, zero, or a positive or negative integer,
with the exception of n D �1.

For example,
∫

3x4 dx D 3x4C1

4C 1
C c D 3

5
x5 Y c

In another example,∫
2

x2
dx D

∫
2x�2 dx D 2x�2C1

�2C 1
C c D 2x�1

�1
C c D −2

x
Y c
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In another example,

∫ p
x dx D

∫
x1/2 dx D x

1
2C1

1
2 C 1

C c D x
3
2

3
2

C c D 2
3

√
x3 Y c

Each of these three results may be checked by differentiation.
The integral of a constant k is kx C c.
For example,

∫
8 dx D 8x C c

When a sum of several terms is integrated the result is the sum of the integrals
of the separate terms.
For example,∫
�3x C 2x2 � 5� dx D

∫
3x dx C

∫
2x2dx�

∫
5 dx D 3x2

2
Y

2x3

3
− 5x Y c

Standard integrals

Since integration is the reverse process of differentiation the standard integrals
listed in Table 57.1 may be deduced and readily checked by differentiation.

Table 57.1 Standard integrals

(i)
∫

axn dx D axnC1

nC 1
C c (except when n D �1)

(ii)
∫

cos ax dx D 1
a

sin ax C c

(iii)
∫

sin ax dx D � 1
a

cos axC c

(iv)
∫

sec2 ax dx D 1
a

tan ax C c

(v)
∫

cosec2 ax dx D � 1
a

cot ax C c

(vi)
∫

cosec ax cot ax dx D � 1
a

cosec ax C c

(vii)
∫

sec ax tan ax dx D 1
a

sec axC c

(viii)
∫

eax dx D 1
a

eax C c

(ix)
∫

1
x

dx D ln xC c

For example,∫
2x3 � 3x

4x
dx D

∫
2x3

4x
� 3x

4x
dx D

∫
x2

2
� 3

4
dx

D
(

1

2

)
x2C1

2C 1
� 3

4
x C c D

(
1

2

)
x3

3
� 3

4
xCcD 1

6
x3 −

3
4

xYc
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In another example,

∫ �5

9
4p
t3

dt D
∫ �5

9t3/4
dt D

∫ (
�5

9

)
t�

3
4 dt D

(
�5

9

)
t�

3
4C1

� 3
4 C 1

C c

D
(
�5

9

)
t

1
4

1
4

C c D
(
�5

9

)(
4

1

)
t

1
4 C c D −

20
9

4pt Y c

In another example,∫
�4 cos 3x � 5 sin 2x� dx D �4�

(
1

3

)
sin 3x � �5�

(
�1

2

)
cos 2x

D 4
3

sin 3x Y
5
2

cos 2x Y c

In another example,∫
�7 sec2 4t C 3 cosec2 2t� dt D �7�

(
1

4

)
tan 4t C �3�

(
�1

2

)
cot 2t C c

D 7
4

tan 4t −
3
2

cot 2t Y c

In another example,
∫

2

3e4t
dt D

∫
2

3
e�4t dt D

(
2

3

)(
�1

4

)
e�4t C c

D �1

6
e�4t C c D −

1
6e4t Y c

In another example,
∫

3

5x
dx D

∫ (
3

5

)(
1

x

)
dx D 3

5
ln x Y c

Definite Integrals

Integrals containing an arbitrary constant c in their results are called indefi-
nite integrals since their precise value cannot be determined without further
information. Definite integrals are those in which limits are applied.
If an expression is written as [x]ba, ‘b’ is called the upper limit and ‘a’ the
lower limit.
The operation of applying the limits is defined as [x]ba D �b�� �a�
The increase in the value of the integral x2 as x increases from 1 to 3 is written
as
∫ 3

1 x2 dx
Applying the limits gives:

∫ 3

1
x2 dx D

[
x3

3
C c
]3

1

D
(

33

3
C c
)
�
(

13

3
C c
)

D �9C c��
(

1

3
C c
)
D 8

2
3
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Note that the ‘c’ term always cancels out when limits are applied and it need
not be shown with definite integrals.
For example,∫ �/2

0
3 sin 2x dx D

[
�3�
(
�1

2

)
cos 2x

]�/2
0
D
[
�3

2
cos 2x

]�/2
0

D
{
�3

2
cos 2

(�
2

)}
�
{
�3

2
cos 2�0�

}

D
{
�3

2
cos�

}
�
{
�3

2
cos 0

}

D
{
�3

2
��1�

}
�
{
�3

2
�1�
}
D 3

2
C 3

2
D 3

In another example,∫ 2

1
4 cos 3t dt D

[
�4�
(

1

3

)
sin 3t

]2

1
D
[

4

3
sin 3t

]2

1
D
{

4

3
sin 6

}
�
{

4

3
sin 3

}

Note that limits of trigonometric functions are always expressed in radians,
thus, for example, sin 6 means the sine of 6 radians D �0.279415 . .

Hence
∫ 2

1
4 cos 3t dt D

{
4

3
��0.279415 . .�

}
�
{

4

3
�0.141120 . .�

}

D ��0.37255� � �0.18816� D −0.5607

In another example,
∫ 2

1
4e2x dx D

[
4

2
e2x
]2

1
D 2[e2x]2

1 D 2[e4 � e2]

D 2[54.5982 � 7.3891] D 94.42

In another example,∫ 4

1

3

4u
du D

[
3

4
ln u
]4

1
D 3

4
[ln 4� ln 1] D 3

4
[1.3863� 0] D 1.040

58 Integration Using Algebraic Substitutions

Introduction

Functions that require integrating are not always in the ‘standard form’ shown
in Chapter 57. However, it is often possible to change a function into a form
that can be integrated by using either:

(i) an algebraic substitution (see below),

(ii) trigonometric and hyperbolic substitutions (see Chapters 59 and 61),

(iii) partial fractions (see Chapter 60),
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(iv) integration by parts (see Chapter 62), or

(v) reduction formulae (see Chapter 63).

Algebraic substitutions

With algebraic substitutions, the substitution usually made is to let u be equal
to f�x� such that f�u� du is a standard integral. It is found that integrals of the

forms: k
∫

[f�x�]nf0�x� dx and k
∫ f0�x�

[f�x�]n
dx, (where k and n are constants)

can both be integrated by substituting u for f�x�.

For example, to determine
∫

cos�3x C 7� dx:∫
cos�3x C 7� dx is not a standard integral of the form shown in Table 57.1,

page 306, thus an algebraic substitution is made.

Let u D 3x C 7 then
du

dx
D 3 and rearranging gives dx D du

3

Hence
∫

cos�3x C 7� dx D
∫
�cos u�

du

3
D
∫

1

3
cos u du,

which is a standard integral

D 1

3
sin uC c

Rewriting u as �3x C 7� gives:
∫

cos�3x C 7� dx D 1
3 sin.3x Y 7/Y c, which

may be checked by differentiating it.

In another example, to find
∫
�2x � 5�7 dx:

�2x � 5� may be multiplied by itself 7 times and then each term of the result
integrated. However, this would be a lengthy process, and thus an algebraic
substitution is made.

Let u D �2x � 5� then
du

dx
D 2 and dx D du

2

Hence
∫
�2x � 5�7 dx D

∫
u7 du

2
D 1

2

∫
u7 du D 1

2

(
u8

8

)
C c D 1

16
u8 C c

Rewriting u as �2x � 5� gives:
∫

.2x − 5/7 dx =
1
16

.2x − 5/8 Y c

In another example, to find
∫

4

�5x � 3�
dx:

Let u D �5x � 3� then
du

dx
D 5 and dx D du

5

Hence
∫

4

�5x � 3�
dx D

∫
4

u

du

5
D 4

5

∫
1

u
du

D 4

5
ln uC c D 4

5
ln.5x − 3/Y c
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In another example, to evaluate
∫ �/6

0 24 sin5 � cos � d�:

Let u D sin � then
du

d�
D cos � and d� D du

cos �

Hence
∫

24 sin5 � cos � d� D
∫

24u5 cos �
du

cos �
D 24

∫
u5 du, by cancelling

D 24
u6

6
C c D 4u6C c D 4�sin ��6C c D 4 sin6�Cc

Thus
∫ �/6

0
24 sin5 � cos � d� D

[
4 sin6 �

]�/6
0
D4

[(
sin

�

6

)6

��sin 0�6
]

D 4

[(
1

2

)6

� 0

]
D 1

16
or 0.0625

Change of limits

When evaluating definite integrals involving substitutions it is sometimes more
convenient to change the limits of the integral.
For example, to evaluate

∫ 3
1 5x
p

2x2 C 7 dx, taking positive values of square
roots only:

Let u D 2x2 C 7, then
du

dx
D 4x and dx D du

4x
When x D 3, u D 2�3�2 C 7 D 25 and when x D 1, u D 2�1�2 C 7 D 9

Hence,
∫ xD3

xD1
5x
√

2x2 C 7 dx D
∫ uD25

uD9
5x
p
u

du

4x

D 5

4

∫ 25

9

p
u du D 5

4

∫ 25

9
u1/2 du

Thus the limits have been changed, and it is unnecessary to change the integral
back in terms of x.

Thus,
∫ xD3

xD1
5x
√

2x2 C 7 dx D 5

4

[
u3/2

3/2

]25

9

D 5

6

[√
u3
]25

9

D 5

6
[
√

253 �
√

93] D 5

6
�125� 27� D 81

2
3

59 Integration Using Trigonometric and
Hyperbolic Substitutions

Table 59.1 gives a summary of trigonometric and hyperbolic substitutions.
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Table 59.1 Integrals using trigonometric substitutions

f�x�
∫

f�x�dx Method

1. cos2 x
1
2

(
xC sin 2x

2

)
C c Use cos 2x D 2 cos2 x� 1

2. sin2 x
1
2

(
x� sin 2x

2

)
C c Use cos 2x D 1� 2 sin2 x

3. tan2 x tan x� x C c Use 1C tan2 x D sec2 x
4. cot2 x � cot x� x C c Use cot2 xC 1 D cosec2 x

5. cosm x sinn x (a) If either m or n is odd (but not both),
use cos2 xC sin2 x D 1

(b) If both m and n are even, use either
cos 2x D 2 cos2 x � 1 or cos 2x D 1� 2 sin2 x

6. sin A cos B Use 1
2 [sin�AC B�C sin�A� B�]

7. cos A sin B Use 1
2 [sin�AC B�� sin�A� B�]

8. cos A cos B Use 1
2 [cos�AC B�C cos�A� B�]

9. sin A sin B Use � 1
2 [cos�AC B�� cos�A� B�]

10.
1√

�a2 � x2�
sin�1 x

a
C c

Use x D a sin � substitution

11.
p

a2 � x2 a2

2
sin�1 x

a
C x

2

p
a2 � x2 C c

12.
1

a2 C x2

1
a

tan�1 x
a
C c Use x D a tan � substitution

13.
1√

�x2 C a2�
arsinh

x
a
C c or ln

{
x C
√
�x2 C a2�

a

}
C c

Use x D a sinh � substitution

14.
√
�x2 C a2�

a2

2
arsinh

x
a
C x

2

√
�x2 C a2�C c

15.
1√

�x2 � a2�
arcosh

x
a
C c or ln

{
xC
√
�x2 � a2�

a

}
C c

Use x D a cosh � substitution

16.
√
�x2 � a2�

x
2

√
�x2 � a2�� a2

2
arcosh

x
a
C c

For example, to evaluate
∫ �/4

0 2 cos2 4t dt:
Since cos 2t D 2 cos2 t � 1 (from Chapter 29), then cos2 t D 1

2 �1C cos 2t� and
cos2 4t D 1

2 �1C cos 8t�.

Hence
∫ �/4

0
2 cos2 4t dt D 2

∫ �/4

0

1

2
�1C cos 8t� dt D

[
t C sin 8t

8

]�/4
0

D


�

4
C

sin 8
(�

4

)
8


�[0C sin 0

8

]
D p

4
or 0.7854
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In another example, to find 3
∫

tan2 4x dx:
Since 1C tan2 x D sec2 x, then tan2 x D sec2 x � 1 and tan2 4x D sec2 4x � 1

Hence 3
∫

tan2 4x dx D 3
∫
�sec2 4x � 1� dx D 3

(
tan 4x

4
− x
)
Y c

In another example, to determine
∫

sin5 � d�:

Since cos2 � C sin2 � D 1 then sin2 � D �1� cos2 ��

Hence
∫

sin5 � d� D
∫

sin ��sin2 ��2 d�D
∫

sin ��1�cos2 ��2 d�

D
∫

sin ��1� 2 cos2 � C cos4 �� d�

D
∫
�sin � � 2 sin � cos2 � C sin � cos4 �� d�

D − cos qY
2 cos3 q

3
−

cos5 q

5
Y c

[Whenever a power of a cosine is multiplied by a sine of power 1, or vice-
versa, the integral may be determined by inspection as shown.

In general,
∫

cosn � sin � d� D � cosnC1 �

�nC 1�
C c and

∫
sinn � cos � d� D sinnC1 �

�nC 1�
C c

Alternatively, an algebraic substitution may be used as shown in Chapter 58.]
In another example, to find

∫
sin2 t cos4 t dt:∫

sin2 t cos4 t dt D
∫

sin2 t�cos2 t�2 dt

D
∫ (

1� cos 2t

2

)(
1C cos 2t

2

)2

dt

D 1

8

∫
�1� cos 2t��1C 2 cos 2t C cos2 2t� dt

D 1

8

∫
�1C 2 cos 2t C cos2 2t � cos 2t

�2 cos2 2t � cos3 2t� dt

D 1

8

∫
�1C cos 2t � cos2 2t � cos3 2t� dt

D 1

8

∫ [
1C cos 2t �

(
1C cos 4t

2

)
� cos 2t�1� sin2 2t�

]
dt

D 1

8

∫ (
1

2
� cos 4t

2
C cos 2t sin2 2t

)
dt

D 1
8

(
t
2

−
sin 4t

8
Y

sin3 2t
6

)
Y c
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In another example, to determine
∫

sin 3t cos 2t dt:∫
sin 3t cos 2t dtD

∫
1

2
[sin�3t C 2t�C sin�3t � 2t�] dt, from 6 of Table 59.1,

D 1

2

∫
�sin 5t C sin t� dt D 1

2

(− cos 5t
5

− cos t
)
Yc

In another example, to evaluate
∫ 3

0

1√
�9� x2�

dx:

From 10 of Table 59.1,∫ 3

0

1√
�9� x2�

dx D
[

sin�1 x

3

]3

0
, since a D 3

D �sin�1 1� sin�1 0� D p

2
or 1.5708

In another example, to evaluate
∫ 4

0

p
16� x2 dx:

From 11 of Table 59.1,∫ 4

0

√
16� x2 dx D

[
16

2
arcsin

x

4
C x

2

√
�16� x2�

]4

0

D [8 sin�1 1C 2
p

0]� [8 sin�1 0C 0]

D 8 sin�1 1 D 8
(�

2

)
D 4p or 12.57

In another example, to evaluate
∫ 2

0

1

�4C x2�
dx:

From 12 of Table 59.1,∫ 2

0

1

�4C x2�
dx D 1

2

[
tan�1 x

2

]2

0
since a D 2

D 1

2
�tan�1 1� tan�1 0� D 1

2

(�
4
� 0
)
D p

8
or 0.3927

In another example, to evaluate
∫ 2

0

1√
�x2 C 4�

dx, correct to 4 decimal

places:

∫ 2

0

1√
�x2 C 4�

dx D
[
arsinh

x

2

]2

0
or

[
ln

{
x C
√
�x2 C 4�

2

}]2

0

from 13 of Table 59.1, where a D 2

Using the logarithmic form,

∫ 2

0

1√
�x2 C 4�

dx D
[

ln

(
2Cp8

2

)
� ln

(
0Cp4

2

)]
D ln 2.4142� ln 1

D 0.8814, correct to 4 decimal places
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In another example, to determine
∫

2x � 3√
�x2 � 9�

dx:

∫
2x � 3√
�x2 � 9�

dx D
∫

2x√
�x2 � 9�

dx �
∫

3√
�x2 � 9�

dx

The first integral is determined using the algebraic substitution u D �x2 � 9�,

and the second integral is of the form
∫

1√
�x2 � a2�

dx (see 15 of Table 59.1).

Hence∫
2x√
�x2 � 9�

dx �
∫

3√
�x2 � 9�

dx D 2
√

.x2 − 9/ − 3 arcosh
x
3
Y c

60 Integration Using Partial Fractions

Introduction

The process of expressing a fraction in terms of simpler fractions — called par-
tial fractions — is discussed in Chapter 14, with the forms of partial fractions
used being summarised in Table 14.1, page 61.
Certain functions have to be resolved into partial fractions before they can be
integrated.

Linear factors

For example, to determine
∫

11� 3x

x2 C 2x � 3
dx:

As shown on page 61:
11� 3x

x2 C 2x � 3
� 2

�x � 1�
� 5

�x C 3�

Hence
∫

11� 3x

x2 C 2x � 3
dx D

∫ {
2

�x � 1�
� 5

�x C 3�

}
dx

D 2 ln.x − 1/ − 5 ln.x Y 3/ Y c

by algebraic substitutions (see Chapter 58) or ln

{
.x − 1/2

.x Y 3/5

}
Y c by the laws

of logarithms

In another example, to evaluate
∫ 3

2

x3 � 2x2 � 4x � 4

x2 C x � 2
dx, correct to 4 sig-

nificant figures:
By dividing out and resolving into partial fractions, it was shown on page 62:
x3 � 2x2 � 4x � 4

x2 C x � 2
� x � 3C 4

�x C 2�
� 3

�x � 1�
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Hence∫ 3

2

x3 � 2x2 � 4x � 4

x2 C x � 2
dx �

∫ 3

2

{
x � 3C 4

�x C 2�
� 3

�x � 1�

}
dx

D
[
x2

2
� 3x C 4 ln�x C 2�� 3 ln�x � 1�

]3

2

D
(

9

2
� 9C 4 ln 5� 3 ln 2

)
��2� 6C 4 ln 4� 3 ln 1� D −1.687,

correct to 4 significant figures

Repeated linear factors

For example, to find
∫

5x2 � 2x � 19

�x C 3��x � 1�2
dx:

It was shown on page 63:

5x2 � 2x � 19

�x C 3��x � 1�2
� 2

�x C 3�
C 3

�x � 1�
� 4

�x � 1�2

Hence
∫

5x2 � 2x � 19

�x C 3��x � 1�2
dx �

∫ {
2

�x C 3�
C 3

�x � 1�
� 4

�x � 1�2

}
dx

D 2 ln.x Y 3/ Y 3 ln.x − 1/Y
4

.x − 1/
Y c

or ln.x Y 3/2.x − 1/3 Y
4

.x − 1/
Y c

Quadratic factors

For example, to find
∫

3C 6x C 4x2 � 2x3

x2�x2 C 3�
dx:

It was shown on page 63:
3C 6x C 4x2 � 2x2

x2�x2 C 3�
� 2

x
C 1

x2
C 3� 4x

�x2C3�

Thus
∫

3C 6x C 4x2 � 2x3

x2�x2 C 3�
dx�

∫ (
2

x
C 1

x2
C 3� 4x

�x2 C 3�

)
dx

D
∫ {

2

x
C 1

x2
C 3

�x2 C 3�
� 4x

�x2 C 3�

}
dx
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3

�x2 C 3�
dx D 3

∫
1

x2 C �p3�2
dx D 3p

3
tan�1 xp

3
, from 12, Table 59.1,

page 311.∫
4x

x2 C 3
dx is determined using the algebraic substitution u D �x2 C 3�

Hence,
∫ {

2

x
C 1

x2
C 3

�x2 C 3�
� 4x

�x2 C 3�

}
dx

D 2 ln x � 1

x
C 3p

3
tan�1 xp

3
� 2 ln�x2 C 3�C c

D ln
(

x
x2 Y 3

)2

−
1
x
Y
p

3 tan−1 xp
3
Y c

61 The t = tan
q

2
Substitution

Integrals of the form
∫ 1

a cos � C b sin � C c d�, where a, b and c are constants,

may be determined by using the substitution t D tan
�

2
. The reason is explained

below.
If angle A in the right-angled triangle ABC shown in Figure 61.1 is made equal

to
�

2
then, since tangent D opposite

adjacent
, if BC D t and AB D 1, then tan

�

2
D t.

By Pythagoras’ theorem, AC D p1C t2

Therefore sin
�

2
D tp

1C t2 and cos
�

2
D 1p

1C t2
Since sin 2x D 2 sin x cos x (from double angle formulae, Chapter 31), then

sin � D 2 sin
�

2
cos

�

2
D 2
(

tp
1C t2

)(
1p

1C t2
)

i.e. sin q =
2t

.1Y t2/
�1�

1A B

C

t
(1 + t2)

q
2

Figure 61.1
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Since cos 2x D cos2 x � sin2 x (from double angle formulae), then

cos � D cos2 �

2
� sin2 �

2
D
(

1p
1C t2

)2

�
(

tp
1C t2

)2

i.e. cos q =
1 − t2

1Y t2
�2�

Also, since t D tan
�

2
,

dt

d�
D 1

2
sec2 �

2
D 1

2

(
1C tan2 �

2

)
from trigonometric

identities, i.e.
dt

d�
D 1

2
�1C t2�

from which, dq =
2 dt

1Y t2 �3�

Equations (1), (2) and (3) are used to determine integrals of the form∫
1

a cos � C b sin � C c d� where a, b or c may be zero.

For example, to determine
∫ d�

sin �
:

If tD tan
�

2
then sin �D 2t

1C t2 and d�D 2 dt

1C t2 from equations (1) and (3).

Thus
∫

d�

sin �
D
∫

1
2t

1C t2

(
2 dt

1C t2
)
D
∫

1

t
dt D ln t C c

Hence
∫

dq

sin q
= ln

(
tan

q

2

)
Y c

In another example, to determine
∫

d�

5C 4 cos �
:

If t D tan
�

2
then cos � D 1� t2

1C t2 and d� D 2dt

1C t2 from equations (2) and (3).

Thus
∫

d�

5C 4 cos �
D
∫

1

5C 4

(
1� t2
1C t2

) ( 2 dt

1C t2
)

D
∫

1

5�1C t2�C 4�1� t2�
1C t2

(
2 dt

�1C t2�
)

D 2
∫

dt

t2 C 9
D 2
∫

dt

t2 C 32

D 2
(

1

3
tan�1 t

3

)
C c

Hence
∫

dq

5Y 4 cos q
=

2
3

tan−1
(

1
3

tan
q

2

)
Y c
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In another example, to determine
∫

dx

sin x C cos x
:

If t D tan
x

2
then sin x D 2t

1C t2 , cos x D 1� t2
1C t2 and dx D 2dt

1C t2
from equations (1), (2) and (3).

Thus
∫

dx

sin x C cos x
D
∫ 2 dt

1C t2(
2t

1C t2
)
C
(

1� t2
1C t2

) D ∫
2 dt

1C t2
2t C 1� t2

1C t2

D
∫

2 dt

1C 2t � t2 D
∫ �2 dt

t2 � 2t � 1

D
∫ �2 dt

�t � 1�2 � 2
D
∫

2 dt

�
p

2�2 � �t � 1�2

D 2

[
1

2
p

2
ln

{p
2C �t � 1�p
2� �t � 1�

}]
C c

(by using partial fractions)

i.e.
∫

dx

sin x C cos x
D 1p

2
ln



p

2 − 1Y tan
x
2p

2Y 1 − tan
x
2


Y c

62 Integration by Parts

From the product rule of differentiation:
d

dx
�uv� D v

du

dx
C udv

dx
, where u and

v are both functions of x.

Rearranging gives: u
dv

dx
D d

dx
�uv�� v

du

dx

Integrating both sides with respect to x gives:∫
u

dv

dx
dx D

∫
d

dx
�uv� dx �

∫
v

du

dx
dx

i.e. u
dv

dx
dx =

∫
uv −

∫
v

du
dx

dx or

∫
u dv = uv −

∫
v du

This is known as the integration by parts formula and provides a method
of integrating such products of simple functions as

∫
xex dx,

∫
t sin t dt,∫

e� cos � d� and
∫
x ln x dx.

Given a product of two terms to integrate the initial choice is: ‘which part
to make equal to du’ and ‘which part to make equal to dv’. The choice must
be such that the ‘u part’ becomes a constant after successive differentiation
and the ‘dv part’ can be integrated from standard integrals. Invariable, the
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following rule holds: ‘If a product to be integrated contains an algebraic term
(such as x, t2 or 3�) then this term is chosen as the u part. The one exception
to this rule is when a ‘ln x’ term is involved; in this case ln x is chosen as the
‘u part’
For example, to determine

∫
x cos x dx:

From the integration by parts formula,
∫
u dv D uv� ∫ v du

Let u D x, from which
du

dx
D 1, i.e. du D dx, and let dv D cos x dx, from which

v D ∫ cos x dx D sin x
Expressions for u, du, v and dv are now substituted into the ‘by parts’ formula
as shown below.∫

∫ u

x

dv

cos x dx

D
D

u

�x�

v

�sin x�

� ∫
� ∫

v

�sin x�

du

�dx�

i.e.
∫
x cos x dx D x sin x � �� cos x�C c D x sin x Y cos x Y c

[This result may be checked by differentiating the right hand side,

i.e.
d

dx
�x sin x C cos x C c�

D [�x��cos x�C �sin x��1�]� sin x C 0 using the product rule

D x cos x, which is the function being integrated]

In another example, to find
∫

3te2t dt:

Let u D 3t, from which,
du

dt
D 3, i.e. du D 3 dt, and let dv D e2t dt, from

which, v D ∫ e2t dt D 1
2 e2t

Substituting into
∫
u dv D uv� ∫ v du gives:∫

3te2t dt D �3t�
(

1

2
e2t
)
�
∫ (

1

2
e2t
)
�3 dt� D 3

2
te2t � 3

2

∫
e2t dt

D 3

2
te2t � 3

2

(
e2t

2

)
C c

Hence
∫

3te2t dt =
3
2

e2t
(

t −
1
2

)
Y c, which may be checked by differen-

tiating
In another example, to determine

∫
x2 sin x dx:

Let u D x2, from which,
du

dx
D 2x, i.e. du D 2x dx, and let dv D sin x dx, from

which, v D ∫ sin x dx D � cos x

Substituting into
∫
u dv D uv�

∫
v du gives :

∫
x2 sin x dx D �x2��� cos x��

∫
�� cos x��2x dx�

D �x2 cos x C 2
[∫

x cos x dx
]
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The integral,
∫
x cos x dx, is not a ‘standard integral’ and it can only be deter-

mined by using the integration by parts formula again.
From the first example,

∫
x cos x dx D x sin x C cos x

Hence
∫
x2 sin x dx D �x2 cos x C 2fx sin x C cos xg C c

D �x2 cos x C 2x sin x C 2 cos x C c
D .2 − x2/ cos x Y 2x sin x Y c

In general, if the algebraic term of a product is of power n, then the integration
by parts formula is applied n times.

In another example, to find
∫
x ln x dx:

The logarithmic function is chosen as the ‘u part’

Thus when u D ln x, then
du

dx
D 1

x
, i.e. du D dx

x

Letting dv D x dx gives v D ∫ x dx D x2

2

Substituting into
∫
u dv D uv� ∫ v du gives:

∫
x ln x dx D �ln x�

(
x2

2

)
�
∫ (

x2

2

)
dx

x

D x2

2
ln x � 1

2

∫
x dx

D x2

2
ln x � 1

2

(
x2

2

)
C c

Hence
∫
x ln x dx D x2

2

(
ln x −

1
2

)
Y c or

x2

4
.2 ln x − 1/ Y c

63 Reduction Formulae
Introduction

When using integration by parts in Chapter 62, an integral such as
∫
x2ex dx

requires integration by parts twice. Similarly,
∫
x3ex dx requires integration

by parts three times. Thus, integrals such as
∫
x5ex dx,

∫
x6 cos x dx and∫

x8 sin 2x dx for example, would take a long time to determine using
integration by parts. Reduction formulae provide a quicker method for
determining such integrals.
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Using reduction formulae for integrals of the form
∫

x n ex dx

To determine
∫
xnex dx using integration by parts, let u D xn from which,

du

dx
D nxn�1 and du D nxn�1 dx, and dv D ex dx from which,

v D ∫ ex dx D ex

Thus,
∫
xnex dx D xnex �

∫
ex nxn�1 dx using the integration

by parts formula

D xnex � n
∫
xn�1ex dx

The integral on the far right is seen to be of the same form as the integral on
the left-hand side, except that n has been replaced by n� 1.

Thus, if we let
∫
xnex dx D In, then

∫
xn�1ex dx D In�1

Hence
∫
xnex dx D xnex � n

∫
xn�1ex dx

can be written as: In = xn ex − nIn−1 �1�

Equation (1) is an example of a reduction formula since it expresses an integral
in n in terms of the same integral in n� 1

For example, to determine
∫
x3ex dx using a reduction formula:

From equation (1), In D xnex � nIn�1

Hence
∫
x3ex dx D I3 D x3ex � 3 I2, I2 D x2ex � 2I1,

I1 D x1ex � 1 I0

and I0 D
∫
x0ex dx D

∫
ex dx D ex

Thus
∫
x3ex dx D x3ex � 3

[
x2ex � 2I1

]
D x3ex � 3

[
x2ex � 2�xex � I0�

]
D x3ex � 3

[
x2ex � 2�xex � ex�

]
D x3ex � 3x2ex C 6�xex � ex�

D x3ex � 3x2ex C 6xex � 6ex

i.e.
∫

x3ex dx = ex .x3 − 3x2 Y 6x − 6/ Y c
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Using reduction formulae for integrals of the form
∫

x n cos x dx

Let In D
∫
xn cos x dx then, using integration by parts:

if u D xn then
du

dx
D nxn�1 and if

dv D cos x dx then v D
∫

cos x dx D sin x

Hence In D xn sin x �
∫
�sin x�nxn�1 dx

D xn sin x � n
∫
xn�1 sin x dx

Using integration by parts again, this time with u D xn�1:
du

dx
D �n� 1�xn�2, and dv D sin x dx, from which, v D ∫ sin x dx D � cos x

Hence In D xn sin x � n
[
xn�1�� cos x��

∫
�� cos x��n� 1�xn�2 dx

]

D xn sin x C n
[
xn�1 cos x � n�n� 1�

∫
xn�2 cos x dx

]

i.e. In = xn sin x Y nxn−1 cos x − n.n − 1/In−2 �2�

For example , to determine
∫
x2 cos x dx using a reduction formula:

Using the reduction formula of equation (2):∫
x2 cos x dx D I2 D x2 sin x C 2x1 cos x � 2�1�I0

and I0 D
∫
x0 cos x dx D

∫
cos x dx D sin x

Hence
∫

x2 cos x dx = x2 sin x Y 2x cos x − 2 sin x Y c

Using reduction formulae for integrals of the form
∫

x n sin x dx

Let In D
∫
xn sin x dx. Using integration by parts, if u D xn then

du

dx
D nxn�1

and if dv D sin x dx then v D ∫ sin x dx D cos x

Hence
∫
xn sin x dx D In D xn�� cos x��

∫
�� cos x�nxn�1 dx

D �xn cos x C n
∫
xn�1 cos x dx
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Using integration by parts again, with u D xn�1, from which,
du

dx
D �n� 1�xn�2, and dv D cos x, from which, v D ∫ cos x dx D sin x

Hence In D �xn cos x C n
[
xn�1�sin x��

∫
�sin x��n� 1�xn�2 dx

]

D �xn cos x C nxn�1�sin x�� n�n� 1�
∫
xn�2 sin x dx

i.e. In = −xn cos x Y nxn−1.sin x/ − n.n − 1/In−2 �3�

For example, to determine
∫
x3 sin x dx using a reduction formula:

Using equation (3),∫
x3 sin x dx D I3 D �x3 cos x C 3x2 sin x � 3�2�I1

and I1 D �x1 cos xC1x0 sin xD�x cos xCsin x

Hence
∫
x3 sin x dx D �x3 cos x C 3x2 sin x � 6 [�x cos x C sin x]

= −x3 cos x Y 3x2 sin x Y 6x cos x−6 sin x Y c

Using reduction formulae for integrals of the form
∫

sinn x dx

Let In D
∫

sinn x dx � ∫ sinn�1 x sin x dx from laws of indices.
Using integration by parts, let u D sinn�1 x, from which,
du

dx
D �n� 1� sinn�2 x cos x and du D �n� 1� sinn�2 x cos x dx, and let

dv D sin x dx, from which, v D ∫ sin x dx D � cos x

Hence In D
∫

sinn�1 x sin x dx D �sinn�1 x��� cos x�

� ∫ �� cos x��n� 1� sinn�2 x cos x dx

D � sinn�1 x cos x C �n� 1�
∫

cos2 x sinn�2 x dx

D � sinn�1 x cos x C �n� 1�
∫
�1� sin2 x� sinn�2 x dx

D �sinn�1 x cos xC�n�1�
{∫

sinn�2 x dx�
∫

sinn x dx
}

i.e. In D � sinn�1 x cos x C �n� 1�In�2 � �n� 1�In

i.e. In C �n� 1�In D � sinn�1 x cos x C �n� 1�In�2

and nIn D � sinn�1 x cos x C �n� 1�In�2

from which,
∫

sinn x dx D In =−
1
n

sinn−1 x cos xY
n−1

n
In−2 �4�
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For example, to determine
∫

sin4 x dx using a reduction formula:

Using equation (4),
∫

sin4 x dx D I4 D �1

4
sin3 x cos x C 3

4
I2

I2 D �1

2
sin1 x cos x C 1

2
I0 and I0 D

∫
sin0 x dx D

∫
1 dx D x

Hence
∫

sin4 x dx D I4D�1

4
sin3 x cos xC 3

4

[
�1

2
sin x cos xC 1

2
�x�

]

= −
1
4

sin3 x cos x −
3
8

sin x cos x Y
3
8

x Y c

Using reduction formulae for integrals of the form
∫

cosn x dx

Let In D
∫

cosn x dx � ∫ cosn�1 x cos x dx from laws of indices
Using integration by parts, let u D cosn�1 x from which,
du

dx
D �n� 1� cosn�2 x�� sin x� and duD �n� 1� cosn�2 x�� sin x�dx, and let

dv D cos x dx from which, v D ∫ cos x dx D sin x. Then

In D �cosn�1 x��sin x��
∫
�sin x��n� 1� cosn�2 x�� sin x� dx

D �cosn�1 x��sin x�C �n� 1�
∫

sin2 x cosn�2 x dx

D �cosn�1 x��sin x�C �n� 1�
∫
�1� cos2 x� cosn�2 x dx

D �cosn�1 x��sin x�C �n� 1�
{∫

cosn�2 x dx �
∫

cosn x dx
}

i.e. In D �cosn�1 x��sin x�C �n� 1�In�2 � �n� 1�In

i.e. In C �n� 1�In D �cosn�1 x��sin x�C �n� 1�In�2

i.e. nIn D �cosn�1 x��sin x�C �n� 1�In�2

Thus In =
1
n

cosn−1 x sin x Y
n − 1

n
In−2 �5�

For example, to determine a reduction formula for
∫ �/2

0 cosn x dx and hence

evaluate
∫ �/2

0 cos5 x dx:
From equation (5),∫

cosn x dx D 1

n
cosn�1 x sin x C n� 1

n
In�2
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and hence
∫ �/2

0
cosn x dx D

[
1

n
cosn�1 x sin x

]�/2
0
C n� 1

n
In�2

D [0� 0]C n� 1

n
In�2

i.e.
∫ p=2

0
cosn x dx = In =

n − 1
n

In−2 �6�

(This result is usually known as Wallis’s formula)
Thus, from equation (6),

∫ �/2
0 cos5 x dx D 4

5 I3

I3 D 2

3
I1 and I1 D

∫ �/2

0
cos1 x dx D [sin x]�/20 D �1� 0� D 1

Hence
∫ �/2

0
cos5 x dx D 4

5
I3 D 4

5

[
2

3
I1

]
D 4

5

[
2

3
�1�
]
D 8

15

Further reduction formulae

For example, to determine a reduction formula for
∫

tann x dx and hence find∫
tan7 x dx:

Let In D
∫

tann x dx �
∫

tann�2 x tan2 x dx by the laws of indices

D
∫

tann�2x�sec2 x � 1� dx since 1C tan2 x D sec2 x

D
∫

tann�2 x sec2 x dx �
∫

tann�2 x dx

D
∫

tann�2 x sec2 x dx � In�2

i.e. In =
tann−1 x

n − 1
− In−2

When n D 7, I7 D
∫

tan7 x dx D tan6 x

6
� I5

I5 D tan4 x

4
� I3 and I3 D tan2 x

2
� I1

I1 D
∫

tan x dx D ln�sec x� using tan x D sin x

cos x
and letting u D cos x

Thus
∫

tan7 x dx D tan6 x

6
�
[

tan4 x

4
�
(

tan2 x

2
� �ln�sec x��

)]

Hence
∫

tan7 x dx =
1
6

tan6 x −
1
4

tan4 x Y
1
2

tan2 x −ln.sec x/Yc
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64 Numerical Integration

Introduction

Even with advanced methods of integration there are many mathematical func-
tions which cannot be integrated by analytical methods and thus approximate
methods have then to be used. Approximate methods of definite integrals may
be determined by what is termed numerical integration.

It may be shown that determining the value of a definite integral is, in
fact, finding the area between a curve, the horizontal axis and the specified
ordinates. Three methods of finding approximate areas under curves are the
trapezoidal rule, the mid-ordinate rule and Simpson’s rule, and these rules are
used as a basis for numerical integration.

The trapezoidal rule

Let a required definite integral be denoted by
∫ b
a y dx and be represented by

the area under the graph of y D f�x� between the limits x D a and x D b as
shown in Figure 64.1.
Let the range of integration be divided into n equal intervals each of width d,

such that nd D b� a, i.e. d D b� a
n

The ordinates are labelled y1, y2, y3, . . . . . . ynC1 as shown.
The trapezoidal rule states:

∫ b

a
y dx ≈

(width of
interval

){1
2

(first Y last
ordinate

)
Y

( sum of
remaining
ordinates

)}

�1�

y
y = f (x)

y1 y2 y3 y4 yn +1

O x = a x = b x 

d d d
Figure 64.1
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For example, using the trapezoidal rule with 8 intervals to evaluate
∫ 3

1

2p
x

dx,

correct to 3 decimal places:

With 8 intervals, the width of each is
3� 1

8
i.e. 0.25 giving ordinates at 1.00,

1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75 and 3.00. Corresponding values of
2p
x

are shown in the table below.

x 1.00 1.25 1.50 1.75 2.00
2p
x

2.0000 1.7889 1.6330 1.5119 1.4142

x 2.25 2.50 2.75 3.00
2p
x

1.3333 1.2649 1.2060 1.1547

From equation (1):

∫ 3

1

2p
x

dx ³ �0.25�




1

2
�2.000 C 1.1547�C 1.7889C 1.6330

C1.5119C 1.4142C 1.3333
C1.2649C 1.2060




D 2.932, correct to 3 decimal places

The greater the number of intervals chosen (i.e. the smaller the interval width)
the more accurate will be the value of the definite integral. The exact value is
found when the number of intervals is infinite, which is, of course, what the
process of integration is based upon. Using integration:

∫ 3

1

2p
x

dx D
∫ 3

1
2x��1/2� dx D


2x��1/2�C1

�1

2
C 1




3

1

D [4x1/2]3
1 D 4[

p
x]3

1

D 4[
p

3�
p

1] D 2.928, correct to 3 decimal places

The mid-ordinate Rule

Let a required definite integral be denoted again by
∫ b
a y dx and represented

by the area under the graph of y D f�x� between the limits x D a and x D b,
as shown in Figure 64.2.
With the mid-ordinate rule each interval of width d is assumed to be replaced
by a rectangle of height equal to the ordinate at the middle point of each
interval, shown as y1, y2, y3, . . . yn in Figure 64.2.
The mid-ordinate rule states:

∫ b

a
y dx ≈.width of interval/.sum of mid-ordinates/ �2�
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a

d d d

O

y

yny3y2y1

b x

y = f (x)

Figure 64.2

For example, using the mid-ordinate rule with 8 intervals, to evaluate∫ 3

1

2p
x

dx, correct to 3 decimal places:

With 8 intervals, each will have a width of 0.25 and the ordinates will occur at
1.00, 1.25, 1.50, 1.75, .. . . . and thus mid-ordinates at 1.125, 1.375, 1.625.. . . . .

Corresponding values of
2p
x

are shown in the following table.

x 1.125 1.375 1.625 1.875 2.125 2.375 2.625 2.875

2p
x

1.8856 1.7056 1.5689 1.4606 1.3720 1.2978 1.2344 1.1795

From equation (2):

∫ 3

1

2p
x

dx ³ �0.25�[1.8856 C 1.7056C 1.5689C 1.4606

C1.3720C 1.2978C 1.2344 C 1.1795]

D 2.926, correct to 3 decimal places

As previously, the greater the number of intervals the nearer the result is to
the true value (of 2.928, correct to 3 decimal places).

Simpson’s rule

The approximation made with the trapezoidal rule is to join the top of two
successive ordinates by a straight line, i.e. by using a linear approximation
of the form aC bx. With Simpson’s rule, the approximation made is to join
the tops of three successive ordinates by a parabola, i.e. by using a quadratic
approximation of the form aC bx C cx2
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y

y1 y2 y3 y4 y2n+1

a

d d d

b x

y = f (x)

O

Figure 64.3

Let a definite integral be denoted by
∫ b
a y dx and represented by the area

under the graph of y D f�x� between the limits x D a and x D b, as shown in
Figure 64.3. The range of integration, b� a, is divided into an even number
of intervals, say 2n, each of width d.
Simpson’s rule states:

∫ b

a
y dx ≈

1
3

(width of
interval

){(first Y last
ordinate

)
Y 4
( sum of even

ordinates

)

Y2
( sum of remaining

odd ordinates

)} �5�

Note that Simpson’s rule can only be applied when an even number of intervals
is chosen, i.e. an odd number of ordinates.

For example, using Simpson’s rule with 8 intervals, to evaluate
∫ 3

1

2p
x

dx,

correct to 3 decimal places:

With 8 intervals, each will have a width of
3� 1

8
, i.e. 0.25 and the ordinates

occur at 1.00, 1.25, 1.50, 1.75, . . . , 3.0. The values of the ordinates are as
shown in the table on page 327.
Thus, from equation (5):∫ 3

1

2p
x

dx ³ 1

3
�0.25�[�2.0000 C 1.1547� C 4�1.7889 C 1.5119

C1.3333 C 1.2060�C 2�1.6330 C 1.4142 C 1.2649�]

D 1

3
�0.25�[3.1547 C 23.3604 C 8.6242]

D 2.928, correct to 3 decimal places
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It is noted that the latter answer is exactly the same as that obtained by
integration. In general, Simpson’s rule is regarded as the most accurate of the
three approximate methods used in numerical integration.

In another example, an alternating current i has the following values at equal
intervals of 2.0 milliseconds.

Time (ms) 0 2.0 4.0 6.0 8.0 10.0 12.0

Current i�A� 0 3.5 8.2 10.0 7.3 2.0 0

Charge, q, in millicoulombs, is given by q D ∫ 12.0
0 i dt. Using Simpson’s rule

to determine the approximate charge in the 12 millisecond period:
From equation (5):

Charge, q D
∫ 12.0

0
i dt ³ 1

3
�2.0�[�0C 0�C 4�3.5C 10.0C 2.0�

C2�8.2C 7.3�] D 62 mC

65 Areas Under and Between Curves
Area under a curve

The area shown shaded in Figure 65.1 may be determined using approximate
methods (such as the trapezoidal rule, the mid-ordinate rule or Simpson’s rule)
or, more precisely, by using integration.
Let A be the area shown shaded in Figure 65.1 and let this area be divided
into a number of strips each of width υx. One such strip is shown and let the
area of this strip be υA.
Then: υA ³ yυx �1�
The accuracy of statement (1) increases when the width of each strip is
reduced, i.e. area A is divided into a greater number of strips.
Area A is equal to the sum of all the strips from x D a to x D b,

i.e. A D limit
υx!0

xDb∑
xDa

yυx �2�

0 x

δx

x = a x = b

y

y

y = f(x)

Figure 65.1



331

From statement (1),
υA

υx
³ y �3�

In the limit, as υx approaches zero,
υA

υx
becomes the differential coefficient

dA

dx
.

Hence limit
υx!0

(
υA

υx

)
D dA

dx
D y, from statement (3).

By integration,
∫

dA

dx
dx D

∫
y dx i.e. A D

∫
y dx

The ordinates x D a and x D b limit the area and such ordinate values are
shown as limits. Hence

A D
∫ b

a
y dx �4�

Equating statements (2) and (4) gives:

Area A D limit
υx!0

xDb∑
xDa

yυx D
∫ b

a
y dx D

∫ b

a
f�x� dx

If the area between a curve x D f�y�, the y-axis and ordinates y D p and
y D q is required then area D ∫ qp x dy
Thus determining the area under a curve by integration merely involves eval-
uating a definite integral.
There are several instances in engineering and science where the area beneath
a curve needs to be accurately determined. For example, the areas between
limits of a velocity/time graph gives distance travelled, force/distance graph
gives work done, voltage/current graph gives power, and so on.
Should a curve drop below the x-axis, then y�D f�x�� becomes negative and
f�x� dx is negative. When determining such areas by integration, a negative
sign is placed before the integral. For the curve shown in Figure 65.2, the total
shaded area is given by (area EC area FC area G).

By integration,
total shaded area =

∫ b
a f .x/ dx −

∫ c
b f .x/ dxY

∫ d
c f .x/ dx .

(Note that this is not the same as
∫ d
a f�x� dx).

It is usually necessary to sketch a curve in order to check whether it crosses
the x-axis.

0 xdcba

y

F

E
G

y = f (x)

Figure 65.2
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For example, the velocity v of a body t seconds after a certain instant is
�2t2 C 5�m/s. To find by integration how far it moves in the interval from
t D 0 to t D 4 s:
Since 2t2 C 5 is a quadratic expression, the curve v D 2t2 C 5 is a parabola
cutting the v-axis at v D 5, as shown in Figure 65.3.
The distance travelled is given by the area under the v/t curve, shown shaded
in Figure 65.3.

By integration, shaded areaD∫ 4
0 v dtD∫ 4

0 �2t
2 C 5� dtD

[
2t3

3
C 5t

]4

0

i.e. distance travelled = 62.67 m

0 1 2 3 4 t(s)

5

10

30

20

40

v (m/s)

v = 2t 2 + 5

Figure 65.3

In another example, to find the area enclosed by the curve y D sin 2x, the

x-axis and the ordinates x D 0 and x D �

3
:

A sketch of y D sin 2x is shown in Figure 65.4.

(Note that y D sin 2x has a period of
2�

2
, i.e. � radians)

Shaded area D
∫ �/3

0
y dx D

∫ �/3

0
sin 2x dx D

[
�1

2
cos 2x

]�/3
0

D
{
�1

2
cos

2�

3

}
�
{
�1

2
cos 0

}

D
{
�1

2

(
�1

2

)}
�
{
�1

2
�1�
}
D 1

4
C 1

2

D 3
4

square units
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y

1

0 π/3 π/2 π x

y = sin 2x

Figure 65.4

In another example, to determine the area between the curve
y D x3 � 2x2 � 8x and the x-axis:

y D x3 � 2x2 � 8x D x�x2 � 2x � 8� D x�x C 2��x � 4�

When y D 0, x D 0 or �x C 2� D 0 or �x � 4� D 0,
i.e. when y D 0, x D 0 or �2 or 4, which means that the curve crosses the
x-axis at 0, �2, and 4. Since the curve is a continuous function, only one other
co-ordinate value needs to be calculated before a sketch of the curve can be
produced. When x D 1, y D �9, showing that the part of the curve between
x D 0 and x D 4 is negative. A sketch of y D x3 � 2x2 � 8x is shown in
Figure 65.5. (Another method of sketching Figure 65.5 would have been to
draw up a table of values).

Shaded area D
∫ 0

�2
�x3 � 2x2 � 8x� dx �

∫ 4

0
�x3 � 2x2 � 8x� dx

D
[
x4

4
� 2x3

3
� 8x2

2

]0

�2

�
[
x4

4
� 2x3

3
� 8x2

2

]4

0

D
(

6
2

3

)
�
(
�42

2

3

)
D 49

1
3

square units

−2 −1 0

10

−10

−20

x1 2 3 4

y = x3 −2x2 −8x

y

Figure 65.5
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The area between curves

The area enclosed between curves y D f1�x� and y D f2�x�, shown shaded
in Figure 65.6, is given by:

shaded area D
∫ b

a
f2�x� dx �

∫ b

a
f1�x� dxD

∫ b

a
[f2.x/ − f1.x/] dx

0 x = a x = b x

y

y = f2(x)

y = f1(x)

Figure 65.6

For example, to determine the area enclosed between the curves y D x2 C 1
and y D 7� x:
At the points of intersection the curves are equal. Thus, equating the y values
of each curve gives:

x2 C 1 D 7� x
from which, x2 C x � 6 D 0

Factorising gives: �x � 2��x C 3� D 0

from which x D 2 and x D �3

By firstly determining the points of intersection the range of x-values has been
found. Tables of values are produced as shown below.

x
y D x2 C 1

�3 �2 �1 0 1 2
10 5 2 1 2 5

x
y D 7� x

�3 0 2
10 7 5

−3 −2 −1 0

10

y

1 2 x

5

y = x2 + 1

y = 7 − x

Figure 65.7



335

A sketch of the two curves is shown in Figure 65.7.

Shaded area D
∫ 2

�3
�7� x� dx �

∫ 2

�3
�x2 C 1� dx

D
∫ 2

�3
[�7� x�� �x2 C 1�] dx

D
∫ 2

�3
�6� x � x2� dx D

[
6x � x

2

2
� x

3

3

]2

�3

D
(

12� 2� 8

3

)
�
(
�18� 9

2
C 9
)

D
(

7
1

3

)
�
(
�13

1

2

)
D 20

5
6

sq. units

In another example, to determine by integration the area bounded by the
three straight lines y D 4� x, y D 3x and 3y D x:
Each of the straight lines are shown sketched in Figure 65.8.

Shaded area D
∫ 1

0

(
3x � x

3

)
dx C

∫ 3

1

[
�4� x�� x

3

]
dx

D
[

3x2

2
� x

2

6

]1

0

C
[

4x � x
2

2
� x

2

6

]3

1

D
[(

3

2
� 1

6

)
� �0�

]
C
[(

12� 9

2
� 9

6

)
�
(

4� 1

2
� 1

6

)]

D
(

1
1

3

)
C
(

6� 3
1

3

)
D 4 square units

4

y

2

0 1 2 3 4 x

y = 4 − x y = 3x

3y = x (or y =    ) x
3

Figure 65.8
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66 Mean and Root Mean Square Values

Mean or average values

The mean or average value of the curve shown in Figure 66.1, between x D a
and x D b, is given by:

mean or average value, y =
area under curve

length of base

When the area under a curve may be obtained by integration then:

mean or average value, y D
∫ b
a y dx

b� a

i.e. y =
1

b − a

∫ b

a
f .x/ dx

For a periodic function, such as a sine wave, the mean value is assumed to
be ‘the mean value over half a cycle’, since the mean value over a complete
cycle is zero.
For example, to determine, using integration, the mean value of y D 5x2

between x D 1 and x D 4:

Mean value, y D 1

4� 1

∫ 4

1
y dx D 1

3

∫ 4

1
5x2 dx

D 1

3

[
5x3

3

]4

1

D 5

9
[x3]4

1 D
5

9
�64� 1� D 35

In another example, a sinusoidal voltage is given by v D 100 sinωt volts. To
determine the mean value of the voltage over half a cycle using integration:
Half a cycle means the limits are 0 to � radians.

Mean value, v D 1

� � 0

∫ �

0
v d�ωt� D 1

�

∫ �

0
100 sinωt d�ωt�

y = f(x)

y

xx = bx = a

y

0

Figure 66.1
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D 100

�
[� cosωt]�0 D

100

�
[�� cos��� �� cos 0�]

D 100

�
[�C1�� ��1�] D 200

�
D 63.66 volts

[Note that for a sine wave, mean value =
2
p

× maximum value

In this case, mean value D 2

�
ð 100 D 63.66 V]

Root mean square values

The root mean square value of a quantity is ‘the square root of the mean value
of the squared values of the quantity’ taken over an interval. With reference
to Figure 66.1, the r.m.s. value of y D f�x� over the range x D a to x D b is
given by:

r.m.s. value =

√√√√{ 1
b − a

∫ b

a
y2 dx

}

One of the principal applications of r.m.s. values is with alternating currents
and voltages. The r.m.s. value of an alternating current is defined as ‘that
current which will give the same heating effect as the equivalent direct current’.

For example, to determine the r.m.s. value of y D 2x2 between x D 1 and
x D 4:

R.m.s. value D
√√√√{ 1

4� 1

∫ 4

1
y2 dx

}
D
√√√√{1

3

∫ 4

1
�2x2�2 dx

}

D
√√√√{1

3

∫ 4

1
4x4 dx

}
D

√√√√√

4

3

[
x5

5

]4

1




D
√{

4

15
�1024� 1�

}
D
p

272.8 D 16.5

In another example, a sinusoidal voltage has a maximum value of 100 V. To
calculate its r.m.s. value:

A sinusoidal voltage v having a maximum value of 10 V may be written as
v D 10 sin �. Over the range � D 0 to � D �,

r.m.s. value D
√{

1

� � 0

∫ �

0
v2 d�

}
D
√{

1

�

∫ �

0
�100 sin ��2 d�

}

D
√{

10000

�

∫ �

0
sin2 � d�

}
which is not a

‘standard’ integral
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It is shown in Chapter 31 that cos 2A D 1� 2 sin2 A and this formula is used
whenever sin2 A needs to be integrated.
Rearranging cos 2A D 1� 2 sin2 A gives sin2 A D 1

2 �1� cos 2A�

Hence

√{
10 000

�

∫ �

0
sin2 � d�

}

D
√{

10 000

�

∫ �

0

1

2
�1� cos 2�� d�

}

D
√{

10 000

�

1

2

[
� � sin 2�

2

]�
0

}

D
√{

10 000

�

1

2

[(
� � sin 2�

2

)
�
(

0� sin 0

2

)]}

D
√{

10 000

�

1

2
[�]
}
D
√{

10000

2

}

D 100p
2
D 70.71 volts

[Note that for a sine wave, r.m.s. value =
1p
2

× maximum value.

In this case, r.m.s. value D 1p
2
ð 100 D 70.71 V]

67 Volumes of Solids of Revolution
Introduction

If the area under the curve y D f�x�, (shown in Figure 67.1(a)), between x D a
and x D b is rotated 360° about the x-axis, then a volume known as a solid
of revolution is produced as shown in Figure 67.1(b).
The volume of such a solid may be determined precisely using integration.
Let the area shown in Figure 67.1(a) be divided into a number of strips each
of width υx. One such strip is shown shaded.
When the area is rotated 360°about the x-axis, each strip produces a solid of
revolution approximating to a circular disc of radius y and thickness υx.

Volume of discD (circular cross-sectional area) (thickness) D ��y2��υx�

Total volume, V, between ordinates x D a and x D b is given by:

Volume, V = limit
dx!0

x=b∑
x=a

py2dx =

∫ b

a
py2 dx
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0 0 a b

y

xx = a x = b

y = f (x) y = f (x)

δx

δx

x

y y

y

(a) (b)

Figure 67.1

0

y

y = d

y = c

x = f (y)

x

x
δx

Figure 67.2

0 1

CD

A B

2 3 4 5 x

4
5

10

20

30

y = x2+4

y

Figure 67.3

If a curve x D f�y� is rotated about the y-axis 360° between the limits y D c
and y D d, as shown in Figure 67.2, then the volume generated is given by:

Volume, V = limit
dy!0

y=d∑
y=c

px2dy =

∫ b

a
px2 dy

For example, the curve y D x2 C 4 is rotated one revolution about the x-axis
between the limits x D 1 and x D 4. To determine the volume of the solid of
revolution produced:
Revolving the shaded area shown in Figure 67.3 about the x-axis 360° pro-
duces a solid of revolution given by:

Volume D
∫ 4

1
�y2 dx D

∫ 4

1
��x2 C 4�2 dxD

∫ 4

1
��x4 C 8x2 C 16� dx

D �
[
x5

5
C 8x3

3
C 16x

]4

1

D �[�204.8C 170.67C 64���0.2C 2.67C16�]

D 420.6p cubic units
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y

x2 + y2 = 42

x0 1 2 3 4−4 −2

Figure 67.4

The volume produced when the curve y D x2 C 4 is rotated about the y-
axis between y D 5 (when x D 1) and y D 20 (when x D 4), i.e. rotating area
ABCD of Figure 67.3 about the y-axis is given by: volume D ∫ 20

5 �x2 dy

Since y D x2 C 4, then x2 D y � 4

Hence volume D
∫ 20

5
��y � 4� dy D �

[
y2

2
� 4y

]20

5

D �[�120�� ��7.5�] D 127.5p cubic units

In another example, to calculate the volume of a frustum of a sphere of
radius 4 cm that lies between two parallel planes at 1 cm and 3 cm from the
centre and on the same side of it:
The volume of a frustum of a sphere may be determined by integration by
rotating the curve x2 C y2 D 42 (i.e. a circle, centre 0, radius 4) one revolution
about the x-axis, between the limits x D 1 and x D 3 (i.e. rotating the shaded
area of Figure 67.4).

Volume of frustum D
∫ 3

1
�y2 dxD

∫ 3

1
��42�x2� dxD�

[
16x� x

3

3

]3

1

D�
[
�39��

(
15

2

3

)]
D23

1
3

p cubic units

68 Centroids of Simple Shapes

Centroids

A lamina is a thin flat sheet having uniform thickness. The centre of gravity
of a lamina is the point where it balances perfectly, i.e. the lamina’s centre
of mass.
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When dealing with an area (i.e. a lamina of negligible thickness and mass)
the term centre of area or centroid is used for the point where the centre of
gravity of a lamina of that shape would lie.

The first moment of area

The first moment of area is defined as the product of the area and the per-
pendicular distance of its centroid from a given axis in the plane of the area.
In Figure 68.1, the first moment of area A about axis XX is given by �A y�
cubic units.

Centroid of area between a curve and the x-axis

Figure 68.2 shows an area PQRS bounded by the curve y D f�x�, the x-axis
and ordinates x D a and x D b. Let this area be divided into a large number
of strips, each of width υx. A typical strip is shown shaded drawn at point
(x, y) on f�x�.
The area of the strip is approximately rectangular and is given by yυx.

The centroid, C, has coordinates
(
x,
y

2

)
First moment of area of shaded strip about axis OY D �y υx��x� D xy υx
Total first moment of area PQRS about axis OY

D limit
υx!0

xDb∑
xDa

xy υx D ∫ ba xy dx

First moment of area of shaded strip about axis OX

D �y υx�
(y

2

)
D 1

2
y2x

Total first moment of area PQRS about axis OX

D limit
υx!0

xDb∑
xDa

1

2
y2 υx D 1

2

∫ b
a y

2 dx

Area of PQRS, A D ∫ ba y dx (from Chapter 65)

Area A

C

X

y

X

Figure 68.1 Figure 68.2
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Let x and y be the distances of the centroid of area A about OY and OX
respectively then:

�x��A� D total first moment of area A about axis OY D ∫ ba xy dx

from which, x =

∫ b

a
xy dx∫ b

a
y dx

and �y��A�D total first moment of area A about axis OX D 1

2

∫ b
a y

2 dx

from which, y =

1
2

∫ b

a
y2 dx∫ b

a
y dx

For example, to find the position of the centroid of the area bounded by the
curve y D 3x2, the x-axis and the ordinates x D 0 and x D 2:

If �x, y� are the co-ordinates of the centroid of the given area then:

x D

∫ 2

0
xy dx∫ 2

0
y dx

D

∫ 2

0
x�3x2� dx∫ 2

0
3x2 dx

D

∫ 2

0
3x3 dx∫ 2

0
3x2 dx

D

[
3x4

4

]2

0

[x3]2
0

D 12

8
D 1.5

y D
1
2

∫ 2

0
y2 dx∫ 2

0
y dx

D
1
2

∫ 2

0
�3x2�2 dx

8
D

1
2

∫ 2

0
9x4 dx

8
D

9

2

[
x5

5

]2

0

8
D

9

2

(
32

5

)
8

D 18

5
D 3.6

Hence the centroid lies at (1.5, 3.6)

Centroid of area between a curve and the y-axis

If x and y are the distances of the centroid of area EFGH in Figure 68.3 from
OY and OX respectively, then, by similar reasoning to earlier:

�x� (total area) D limit
υy!0

yDd∑
yDc

xυy
( x

2

)
D 1

2

∫ d

c
x2 dy
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Figure 68.3

from which, x =

1
2

∫ d

c
x2 dy∫ d

c
x dy

and �y� (total area) D limit
υy!0

yDd∑
yDc
�xυy�y D

∫ d

c
xy dy

from which, y =

∫ d

c
xy dy∫ d

c
x dy

For example, to locate the centroid of the area enclosed by the curve y D 2x2,
the y-axis and ordinates y D 1 and y D 4, correct to 3 decimal places:

x D
1

2

∫ 4

1
x2 dy∫ 4

1
x dy

D
1

2

∫ 4

1

y

2
dy∫ 4

1

√
y

2
dy

D

1

2

[
y2

4

]4

1[
2y3/2

3
p

2

]4

1

D
15

8
14

3
p

2

D 0.568

y D

∫ 4

1
xy dy∫ 4

1
x dy

D

∫ 4

1

√
y

2
�y� dy

14

3
p

2

D

∫ 4

1

y3/2
p

2
dy

14

3
p

2

D

1p
2


y5/2

5

2




4

1
14

3
p

2

D
2

5
p

2
�31�

14

3
p

2

D 2.657

Hence the position of the centroid is at (0.568, 2.657)
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Theorem of Pappus

A theorem of Pappus states:
‘If a plane area is rotated about an axis in its own plane but not intersecting
it, the volume of the solid formed is given by the product of the area and the
distance moved by the centroid of the area’.
With reference to Figure 68.4, when the curve y D f�x� is rotated one rev-
olution about the x-axis between the limits x D a and x D b, the volume V
generated is given by:

volume V D �A��2�y�, from which, y =
V

2pA

For example, to determine the position of the centroid of a semicircle of
radius r by using the theorem of Pappus:

A semicircle is shown in Figure 68.5 with its diameter lying on the x-axis and

its centre at the origin. Area of semicircle D �r2

2
. When the area is rotated

about the x-axis one revolution a sphere is generated of volume 4
3�r

3

Let centroid C be at a distance y from the origin as shown in Figure 68.5.
From the theorem of Pappus, volume generated D areað distance moved
through by centroid

i.e.
4

3
�r3 D

(
�r2

2

)
�2�y� Hence y D

4

3
�r3

�2r2
D 4r

3�


By integration, y D

1

2

∫ r

�r
y2 dx

area
D

1

2

∫ r

�r
�r2 � x2� dx

�r2

2

D

1

2

[
r2x � x

3

3

]r
�r

�r2

2

D

1

2

[(
r3 � r

3

3

)
�
(
�r3 C r

3

3

)]

�r2

2

D 4r

3�




y

y

xx = a x = b

y = f (x)

C
Area A

Figure 68.4

y

−r r x

x2 + y 2 = r 2

0

C
y

Figure 68.5
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Hence the centroid of a semicircle lies on the axis of symmetry, distance
4r
3p

(or 0.424 r) from its diameter.

In another example: (a) To calculate the area bounded by the curve
y D 2x2, the x-axis and ordinates x D 0 and x D 3, (b) if the area in part (a)
is revolved (i) about the x-axis and (ii) about the y-axis, to find the volumes
of the solids produced, and (c) to locate the position of the centroid using (i)
integration, and (ii) the theorem of Pappus:
(a) The required area is shown shaded in Figure 68.6.

Area D
∫ 3

0
y dx D

∫ 3

0
2x2 dx D

[
2x3

3

]3

0

D 18 square units

(b) (i) When the shaded area of Figure 68.6 is revolved 360° about the x-axis,
the volume generated

D
∫ 3

0
�y2 dx D

∫ 3

0
��2x2�2 dx D

∫ 3

0
4�x4 dx

D 4�

[
x5

5

]3

0

D 4�
(

243

5

)
D 194.4p cubic units

(ii) When the shaded area of Figure 68.6 is revolved 360° about the y-
axis, the volume generated D �volume generated by x D 3�

��volume generated by y D 2x2�

D
∫ 18

0
��3�2 dy �

∫ 18

0
�
(y

2

)
dy

D �
∫ 18

0

(
9� y

2

)
dy D �

[
9y � y

2

4

]18

0

D 81p cubic units

y = 2x2

Figure 68.6
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(c) If the co-ordinates of the centroid of the shaded area in Figure 68.6 are
�x, y� then:
(i) by integration,

x D

∫ 3

0
xy dx∫ 3

0
y dx

D

∫ 3

0
x�2x2� dx

18
D

∫ 3

0
2x3 dx

18
D

[
2x4

4

]3

0

18
D 81

36
D 2.25

y D
1

2

∫ 3

0
y2 dx∫ 3

0
y dx

D
1

2

∫ 3

0
�2x2�2 dx

18
D

1

2

∫ 3

0
4x4 dx

18
D

1

2

[
4x5

5

]3

0

18
D 5.4

(ii) using the theorem of Pappus:
Volume generated when shaded area is revolved about OY
D �area��2�x�

i.e. 81� D �18��2�x�, from which, x D 81�

36�
D 2.25

Volume generated when shaded area is revolved about OX
D �area��2�y�

i.e. 194.4� D �18��2�y�, from which, y D 194.4�

36�
D 5.4

Hence the centroid of the shaded area in Figure 68.6 is at
(2.25, 5.4)

69 Second Moments of Area of Regular Sections

Moments of area

The first moment of area about a fixed axis of a lamina of area A, perpendic-
ular distance y from the centroid of the lamina is defined as Ay cubic units.
The second moment of area of the same lamina as above is given by Ay2,
i.e. the perpendicular distance from the centroid of the area to the fixed axis
is squared.

Second moments of areas are usually denoted by I and have units of mm4,
cm4, and so on.

Radius of gyration

Several areas, a1, a2, a3, . . at distances y1, y2, y3, . . from a fixed axis, may be
replaced by a single area A, where A D a1 C a2 C a3 C . . at distance k from
the axis, such that Ak2 D∑ ay2. k is called the radius of gyration of area
A about the given axis. Since Ak2 D∑ ay2 D I then the radius of gyration,

k =

√
I
A
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P

P

δx

x

l

b

Figure 69.1

The second moment of area is a quantity much used in the theory of bending
of beams, in the torsion of shafts, and in calculations involving water planes
and centres of pressure.
The procedure to determine the second moment of area of regular sections
about a given axis is (i) to find the second moment of area of a typical ele-
ment and (ii) to sum all such second moments of area by integrating between
appropriate limits. For example, the second moment of area of the rectan-
gle shown in Figure 69.1 about axis PP is found by initially considering an
elemental strip of width υx, parallel to and distance x from axis PP. Area
of shaded strip D bυx. Second moment of area of the shaded strip about
PP D �x2��bυx�.
The second moment of area of the whole rectangle about PP is obtained by

summing all such strips between x D 0 and x D l, i.e.
xDl∑
xD0

x2bυx

It is a fundamental theorem of integration that limit
υx!0

xDl∑
xD0

x2bυx D ∫ l0 x2b dx

Thus the second moment of area of the rectangle about PP

D b
∫ l

0
x2 dx D b

[
x3

3

]l
0

D bl3

3

Since the total area of the rectangle, A D lb, then Ipp D �lb�
(
l2

3

)
D Al2

3

Ipp D Ak2
pp thus k2

pp D
l2

3

i.e. the radius of gyration about axis PP, kpp D
√
l2

3
D lp

3

Parallel axis theorem

In Figure 69.2, axis GG passes through the centroid C of area A. Axes DD
and GG are in the same plane, are parallel to each other and distance d apart.
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G

G

C

Area A

D

Dd

Figure 69.2

P

P

δx

x

G

G

bC

l
2

l
2

Figure 69.3

The parallel axis theorem states:

IDD = IGG Y Ad2

Using the parallel axis theorem the second moment of area of a rectangle
about an axis through the centroid may be determined. In the rectangle shown

in Figure 69.3, Ipp D bl3

3
(from above)

From the parallel axis theorem Ipp D IGG C �bl�
(
l

2

)2

i.e.
bl3

3
D IGG C bl

3

4
from which, IGG D bl3

3
� bl

3

4
D bl3

12

Perpendicular axis theorem

In Figure 69.4, axes OX, OY and OZ are mutually perpendicular. If OX and
OY lie in the plane of area A then the perpendicular axis theorem states:

IOZ = I OX C IOY

O

Z

Y

X

Area A

Figure 69.4

A
B

C
b=4.0 cm

A
l =12.0 cm

B

C

Figure 69.5
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A summary of derived standard results for the second moment of area and
radius of gyration of regular sections are listed in Table 69.1.

For example, to determine the second moment of area and the radius of
gyration about axes AA, BB and CC for the rectangle shown in Figure 69.5:
From Table 69.1, the second moment of area about axis AA,

IAA D bl3

3
D �4.0��12.0�3

3
D 2304 cm4

Radius of gyration, kAA D lp
3
D 12.0p

3
D 6.93 cm

Similarly, IBB D lb3

3
D �12.0��4.0�3

3
D 256 cm4

and kBB D bp
3
D 4.0p

3
D 2.31 cm

Table 69.1 Summary of standard results of the second moments of areas of regular
sections

Shape Position of axis Second Radius of
moment gyration, k
of area, I

Rectangle (1) Coinciding with b
bl3

3
lp
3

length l (2) Coinciding with l
lb3

3
bp
3

breadth b (3) Through centroid, parallel
to b

bl3

12
lp
12

(4) Through centroid, parallel
to l

lb3

12
bp
12

Triangle (1) Coinciding with b
bh3

12
hp
6

Perpendicular (2) Through centroid, parallel
to base

bh3

36
hp
18

height h, base b (3) Through vertex, parallel to
base

bh3

4
hp
2

Circle radius r (1) Through centre,
perpendicular to plane (i.e.
polar axis)

�r4

2
rp
2

(2) Coinciding with diameter
�r4

4
r
2

(3) About a tangent
5�r4

4

p
5

2
r

Semicircle radius r Coinciding with diameter
�r4

8
r
2
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The second moment of area about the centroid of a rectangle is
bl3

12
when the

axis through the centroid is parallel with the breadth b. In this case, the axis
CC is parallel with the length l

Hence ICC D lb3

12
D �12.0��4.0�3

12
D 64 cm4

and kCC D bp
12
D 4.0p

12
D 1.15 cm

In another example, to find the second moment of area and the radius of
gyration about axis PP for the rectangle shown in Figure 69.6:

IGG D lb3

12
where l D 40.0 mm and b D 15.0 mm

Hence IGG D �40.0��15.0�3

12
D 11250 mm4

From the parallel axis theorem,IPP D IGG C Ad2, where A D 40.0ð 15.0 D
600 mm2 and d D 25.0C 7.5 D 32.5 mm, the perpendicular distance between
GG and PP. Hence IPP D 11 250C �600��32.5�2 D 645 000 mm4

IPP D Ak2
PP,

from which, kPP D
√
IPP

area
D
√(

645 000

600

)
D 32.79 mm

In another example, to determine the second moment of area and radius of
gyration about axis QQ of the triangle BCD shown in Figure 69.7:

Using the parallel axis theorem: IQQ D IGG C Ad2, where IGG is the second
moment of area about the centroid of the triangle,

i.e.
bh3

36
D �8.0��12.0�3

36
D 384 cm4,

A is the area of the triangle D 1
2bh D 1

2 �8.0��12.0� D 48 cm2

and d is the distance between axes GG and QQ D 6.0C 1
3 �12.0� D 10 cm

40.0 mm

15.0 mm
G

25.0 mm

G

P P

Figure 69.6

B

GG

C D

Q Q

12.0 cm

8.0 cm 6.0 cm

Figure 69.7
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Hence the second moment of area about axis QQ,

IQQ D 384C �48��10�2 D 5184 cm4

Radius of gyration, kQQ D
√
IQQ

area
D
√(

5184

48

)
D 10.4 cm

In another example, to determine the polar second moment of area of the
propeller shaft cross-section shown in Figure 69.8:

The polar second moment of area of a circle D �r4

2
The polar second moment of area of the shaded area is given by the polar
second moment of area of the 7.0 cm diameter circle minus the polar second
moment of area of the 6.0 cm diameter circle.
Hence the polar second moment of area of the cross-section shown

D �

2

(
7.0

2

)4

� �
2

(
6.0

2

)4

D 235.7� 127.2 D 108.5 cm4

7.
0 

cm

6.
0 

cm

Figure 69.8

4.0
 cm

X X
1.0 cm 1.0 cm

8.0 cm

6.0 cm
TT

2.0 cm 2.0 cm

CT

Figure 69.9
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In another example, to determine correct to 3 significant figures, the second
moment of area about axis XX for the composite area shown in Figure 69.9:

For the semicircle, IXX D �r4

8
D ��4.0�4

8
D 100.5 cm4

For the rectangle, IXX D bl3

3
D �6.0��8.0�3

3
D 1024 cm4

For the triangle, about axis TT through centroid CT,

ITT D bh3

36
D �10��6.0�3

36
D 60 cm4

By the parallel axis theorem, the second moment of area of the triangle about

axis XX D 60C
[

1
2 �10��6.0�

] [
8.0C 1

3 �6.0�
]2 D 3060 cm4

Total second moment of area about XX D 100.5 C 1024C 3060 D 4184.5
D 4180 cm4, correct to 3 significant figures



Differential Equations

70 Solution of First Order Differential
Equations by Separation of Variables

Family of curves

Integrating both sides of the derivative
dy

dx
D 3 with respect to x gives

y D ∫ 3 dx, i.e. y D 3x C c, where c is an arbitrary constant. y D 3x C c rep-
resents a family of curves, each of the curves in the family depending on
the value of c. Examples include y D 3x C 8, y D 3x C 3, y D 3x and y D
3x � 10 and these are shown in Figure 70.1. Each are straight lines of gra-
dient 3. A particular curve of a family may be determined when a point on
the curve is specified. Thus, if y D 3x C c passes through the point (1, 2)
then 2 D 3�1�C c, from which, c D �1. The equation of the curve passing
through (1, 2) is therefore y D 3x � 1.

y

16

12

8

4

−4
1 2 4 x

−8

−16

y = 3x + 8

y = 3x + 3

y = 3x − 10

y = 3x

−4 −3 −2 −1 0 3

−12

Figure 70.1

Differential equations

A differential equation is one that contains differential coefficients. Examples

include (i)
dy

dx
D 7x and (ii)

d2y

dx2
C 5

dy

dx
C 2y D 0

Differential equations are classified according to the highest derivative that
occurs in them. Thus example (i) above is a first order differential equation,
and example (ii) is a second order differential equation.
The degree of a differential equation is that of the highest power of the highest
differential which the equation contains after simplification.
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Thus

(
d2x

dt2

)3

C 2
(

dx

dt

)5

D 7 is a second order differential equation of

degree three.
Starting with a differential equation it is possible, by integration and by being
given sufficient data to determine unknown constants, to obtain the original
function. This process is called ‘solving the differential equation’.
A solution to a differential equation that contains one or more arbitrary con-
stants of integration is called the general solution of the differential equation.
When additional information is given so that constants may be calculated
the particular solution of the differential equation is obtained. The addi-
tional information is called boundary conditions. It was shown above that

y D 3x C c is the general solution of the differential equation
dy

dx
D 3. Given

the boundary conditions x D 1 and y D 2, produces the particular solution of
y D 3x � 1.

Equations which can be written in the form
dy

dx
D f�x�,

dy

dx
D f�y� and

dy

dx
D f�x�.f�y� can all be solved by integration. In each case it is pos-

sible to separate the y’s to one side of the equation and the x’s to the
other. Solving such equations is therefore known as solution by separation
of variables.

The solution of equations of the form
dy
dx

= f .x /

A differential equation of the form
dy

dx
D f�x� is solved by direct integration,

i.e. y =
∫

f .x/ dx

For example, to find the particular solution of the differential equation

5
dy

dx
C 2x D 3, given the boundary conditions y D 1 2

5 when x D 2:

Since 5
dy

dx
C 2x D 3 then

dy

dx
D 3� 2x

5
D 3

5
� 2x

5

Hence y D
∫ (

3

5
� 2x

5

)
dx

i.e. y D 3x

5
� x2

5
C c, which is the general solution.

Substituting the boundary conditions y D 1 2
5 and x D 2 to evaluate c gives:

1 2
5 D 6

5 � 4
5 C c, from which, c D 1.

Hence the particular solution is y =
3x
5

−
x2

5
Y 1
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The solution of equations of the form
dy
dx

= f .y/

A differential equation of the form
dy

dx
D f�y� is initially rearranged to give

dx D dy

f�y�
and then the solution is obtained by direct integration,

i.e.

∫
dx =

∫
dy

f .y/

For example, to determine the particular solution of �y2 � 1�
dy

dx
D 3y given

that y D 1 when x D 2 1
6 :

Rearranging gives: dx D
(
y2 � 1

3y

)
dy D

(
y

3
� 1

3y

)
dy

Integrating gives:
∫

dx D
∫ (

y

3
� 1

3y

)
dy

i.e. x D y2

6
� 1

3
ln y C c, which is the

general solution

When y D 1, x D 2
1

6
, thus 2

1

6
D 1

6
� 1

3
ln 1C c, from which, c D 2

Hence the particular solution is: x =
y2

6
−

1
3

ln y Y 2

The solution of equations of the form
dy
dx

= f .x /.f .y/

A differential equation of the form
dy

dx
D f�x�.f�y�, where f�x� is a function

of x only and f�y� is a function of y only, may be rearranged as
dy

f�y�
D f�x� dx, and then the solution is obtained by direct integration, i.e.

∫
dy

f .y/
=

∫
f .x/ dx

For example, to solve the equation 4xy
dy

dx
D y2 � 1:

Separating the variables gives:
(

4y

y2 � 1

)
dy D 1

x
dx

Integrating both sides gives:
∫ (

4y

y2 � 1

)
dy D

∫ (
1

x

)
dx
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E

i

R L

VR VL

Figure 70.2

i

0 Time t

(1−e−Rt/L)i =  E
R

E
R

Figure 70.3

Using the substitution u D y2 � 1, the general solution is:

2 ln.y2 − 1/ = ln x Y c

In another example, the current i in an electric circuit containing resistance R
and inductance L in series with a constant voltage source E is given by the

differential equation E� L

(
di

dt

)
D Ri. Solving the equation to find i in terms

of time t, given that when t D 0, i D 0:

In the R-L series circuit shown in Figure 70.2, the supply p.d., E, is given by
E D VR C VL

VR D iR and VL D L
di

dt

Hence E D iR C L
di

dt
from which E� L

di

dt
D Ri

Most electrical circuits can be reduced to a differential equation.

Rearranging E� L
di

dt
D Ri gives

di

dt
D E� Ri

L

and separating the variables gives:
di

E� Ri
D dt

L

Integrating both sides gives:
∫

di

E� Ri
D
∫

dt

L

Hence the general solution is: � 1

R
ln�E� Ri� D t

L
C c

(by making a substitution u D E� Ri, see Chapter 58)

When t D 0, i D 0, thus � 1

R
lnE D c

Thus the particular solution is: � 1

R
ln�E� Ri� D t

L
� 1

R
lnE

Transposing gives: � 1

R
ln�E� Ri�C 1

R
lnE D t

L

1

R
[lnE� ln�E� Ri�] D t

L
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ln
(

E

E� Ri

)
D Rt

L
from which

E

E� Ri
D eRt/L

Hence
E� Ri

E
D e�Rt/L and E� Ri D Ee�Rt/L and Ri D E� Ee�Rt/L

Hence current, i =
E
R

.1 − e−Rt=L/, which represents the law of growth of

current in an inductive circuit as shown in Figure 70.3.

71 Homogeneous First Order Differential
Equations

Introduction

Certain first order differential equations are not of the ‘variable-separable’ type
but can be made separable by changing the variable.

An equation of the form P
dy

dx
D Q, where P and Q are functions of both x and

y of the same degree throughout, is said to be homogeneous in y and x. For
example, f�x, y� D x2 C 3xy C y2 is a homogeneous function since each of

the three terms are of degree 2. Similarly, f�x, y� D x � 3y

2x C y
is homogeneous

in x and y since each of the four terms are of degree 1. However, f�x, y� D
x2 � y

2x2 C y2 is not homogeneous since the term in y in the numerator is of degree

1 and the other three terms are of degree 2.

Procedure to solve differential equations of the form P
dy
dx

= Q

(i) Rearrange P
dy

dx
D Q into the form

dy

dx
D Q

P
(ii) Make the substitution y D vx (where v is a function of x), from which,

dy

dx
D v�1�C x

dv

dx
by the product rule.

(iii) Substitute for both y and
dy

dx
in the equation

dy

dx
D Q

P
. Simplify, by

cancelling, and an equation results in which the variables are sepa-
rable.

(iv) Separate the variables and solve using the method shown in Chapter 70.

(v) Substitute v D y

x
to solve in terms of the original variables.

For example, to determine the particular solution of the equation

x
dy

dx
D x2 C y2

y
, given the boundary conditions that x D 1 when y D 4:
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Using the above procedure:

(i) Rearranging x
dy

dx
D x2 C y2

y
gives

dy

dx
D x2 C y2

xy
which is homogeneous

in x and y since each of the three terms on the right hand side are of the
same degree (i.e. degree 2).

(ii) Let y D vx then
dy

dx
D v�1�C x

dv

dx

(iii) Substituting for y and
dy

dx
in the equation

dy

dx
D x2 C y2

xy
gives:

vC x
dv

dx
D x2 C �vx�2

x�vx�
D x2 C v2x2

vx2
D 1C v2

v

(iv) Separating the variables give:

x
dv

dx
D 1C v2

v
� v D 1C v2 � v2

v
D 1

v

Hence, v dv D 1

x
dx

Integrating both sides gives:
∫

v dvD
∫

1

x
dx i.e.

v2

2
D ln x C c

(v) Replacing v by
y

x
gives:

y2

2x2
D ln x C c, which is the general solution.

When x D 1, y D 4, thus:
16

2
D ln 1C c, from which, c D 8

Hence, the particular solution is:
y2

2x2 = ln x Y 8 or y2 = 2x2.ln x Y 8/

72 Linear First Order Differential Equations

Introduction

An equation of the form
dy

dx
C Py D Q, where P and Q are functions of x

only is called a linear differential equation since y and its derivatives are of
the first degree.

The solution of
dy

dx
C Py D Q is obtained by multiplying throughout by what

is termed an integrating factor.

Multiplying
dy

dx
C Py D Q by say R, a function of x only, gives:

R
dy

dx
C RPy D RQ �1�

The differential coefficient of a product Ry is obtained using the product

rule, i.e.
d

dx
�Ry� D R

dy

dx
C y

dR

dx
, which is the same as the left hand side



359

of equation (1), when R is chosen such that RP D dR

dx
. If

dR

dx
D RP, then

separating the variables gives
dR

R
D P dx.

Integrating both sides gives:∫
dR

R
D
∫

P dx i.e. lnR D
∫

P dx C c

from which, R D e
∫
P dxCc D e

∫
P dxec

i.e. R D Ae
∫
P dx, where A D ec D a constant

Substituting R D Ae
∫
P dx in equation (1) gives:

Ae
∫
P dx

(
dy

dx

)
C Ae

∫
P dxPy D Ae

∫
P dxQ

i.e. e
∫
P dx

(
dy

dx

)
C e
∫
P dxPy D e

∫
P dxQ �2�

The left hand side of equation (2) is
d

dx
�ye
∫
P dx� which may be checked by

differentiating ye
∫
P dx with respect to x, using the product rule.

From equation (2),
d

dx
�ye
∫
P dx� D e

∫
P dxQ

Integrating both sides gives: ye
∫

P dx =

∫
e
∫

P dx Q dx �3�

e
∫
P dx is the integrating factor.

Procedure to solve differential equations of the form
dy
dx

Y Py = Q

(i) Rearrange the differential equation into the form
dy

dx
C Py D Q, where P

and Q are functions of x
(ii) Determine

∫
P dx

(iii) Determine the integrating factor e
∫
P dx

(iv) Substitute e
∫
P dx into equation (3)

(v) Integrate the right hand side of equation (3) to give the general solution
of the differential equation. Given boundary conditions, the particular
solution may be determined.

For example, to solve the differential equation
1

x

dy

dx
C 4y D 2, given the

boundary conditions x D 0 when y D 4:
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Using the above procedure:

(i) Rearranging gives
dy

dx
C 4xy D 2x, which is of the form

dy

dx
C Py D Q,

where P D 4x and Q D 2x
(ii)

∫
P dx D ∫ 4x dx D 2x2

(iii) Integrating factor, e
∫
P dx D e2x2

(iv) Substituting into equation (3) gives: ye2x2 D ∫ e2x2
�2x� dx

(v) Hence the general solution is: ye2x2 D 1
2 e2x2 C c, by using the substitu-

tion u D 2x2

When x D 0, y D 4, thus 4e0 D 1
2 e0 C c, from which, c D 7

2

Hence the particular solution is: ye2x2 D 1
2 e2x2 C 7

2

i.e. y = 1
2 Y

7
2 e−2x2

or y = 1
2 .1Y 7e−2x2

/

73 Second Order Differential Equations of the

Form a
d2y
dx2 Y b

dy
dx

Y cy = 0

Introduction

An equation of the form a
d2y

dx2 C b
dy

dx
C cy D 0, where a, b and c are con-

stants, is called a linear second order differential equation with constant
coefficients. When the right-hand side of the differential equation is zero, it is
referred to as a homogeneous differential equation. When the right-hand side
is not equal to zero (as in Chapter 74) it is referred to as a non-homogeneous
differential equation.
There are numerous engineering examples of second order differential equa-
tions. Two examples are:

(i) L
d2q

dt2
C R

dq

dt
C 1

C
q D 0, representing an equation for charge q in an

electrical circuit containing resistance R, inductance L and capacitance
C in series.

(ii) m
d2s

dt2
C a

ds

dt
C ks D 0, defining a mechanical system, where s is the dis-

tance from a fixed point after t seconds, m is a mass, a the damping
factor and k the spring stiffness.

If D represents
d

dx
and D2 represents

d2

dx2 then the above equation may be

stated as (aD2 C bD C c�y D 0. This equation is said to be in ‘D-operator’
form.

If y D Aemx then
dy

dx
D Amemx and

d2y

dx2
D Am2emx

Substituting these values into a
d2y

dx2 C b
dy

dx
C cy D 0 gives:

a�Am2emx�C b�Amemx�C c�Aemx� D 0
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i.e. Aemx�am2 C bm C c� D 0

Thus y D Aemx is a solution of the given equation provided that
�am2 C bm C c� D 0.

am2 C bm C c D 0 is called the auxiliary equation, and since the equation is
a quadratic, m may be obtained either by factorising or by using the quadratic
formula. Since, in the auxiliary equation, a, b and c are real values, then the
equation may have either

(i) two different real roots (when b2 > 4ac)
or (ii) two equal real roots (when b2 D 4ac)

or (iii) two complex roots (when b2 < 4ac)

Procedure to solve differential equations of the form

a
d2y
dx 2

Y b
dy
dx

Y cy = 0

(a) Rewrite the differential equation a
d2y

dx2
C b

dy

dx
C cy D 0 as

�aD2 C bD C c�y D 0
(b) Substitute m for D and solve the auxiliary equation am2 C bm C c D 0

for m
(c) If the roots of the auxiliary equation are:

(i) real and different, say m D ˛ and m D ˇ, then the general solution is

y = Aeax Y Bebx

(ii) real and equal, say m D ˛ twice, then the general solution is

y = .Ax Y B/eax

(iii) complex, say m D ˛š jˇ, then the general solution is

y = eax fA cos bx Y B sin bxg
(d) Given boundary conditions, constants A and B, may be determined and

the particular solution of the differential equation obtained. The par-
ticular solution obtained with differential equations may be verified by

substituting expressions for y,
dy

dx
and

d2y

dx2
into the original equation.

For example, to solve 2
d2y

dx2
C 5

dy

dx
� 3y D 0, given that when x D 0, y D 4

and
dy

dx
D 9:

Using the above procedure:

(a) 2
d2y

dx2
C 5

dy

dx
� 3y D 0 in D-operator form is �2D2 C 5D � 3�y D 0,

where D � d

dx
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(b) Substituting m for D gives the auxiliary equation
2m2 C 5m � 3 D 0

Factorising gives: �2m � 1��m C 3� D 0,

from which, m D 1
2 or m D �3

(c) Since the roots are real and different the general solution is

y = Ae
1
2 x Y Be−3x

(d) When x D 0, y D 4, hence 4 D AC B (1)

Since y D Ae
1
2 x C Be�3x then

dy

dx
D 1

2Ae
1
2 x � 3Be�3x

When x D 0,
dy

dx
D 9 thus 9 D 1

2A� 3B �2�

Solving the simultaneous equations (1) and (2) gives A D 6 and B D �2

Hence the particular solution is y = 6e
1
2 x −2e−3x

In another example, to solve 9
d2y

dt2
� 24

dy

dt
C 16y D 0 given that when

t D 0, y D dy

dt
D 3:

(a) 9
d2y

dt2
� 24

dy

dt
C 16y D 0 in D-operator form is �9D2 � 24D C 16�y D 0

where D � d

dt
(b) Substituting m for D gives the auxiliary equation

9m2 � 24m C 16 D 0

Factorising gives: �3m � 4��3m � 4� D 0, i.e. m D 4
3 twice.

(c) Since the roots are real and equal, the general solution is

y = .At Y B/e
4
3 t

(d) When t D 0, y D 3 hence 3 D �0C B�e0, i.e. B D 3

Since y D �At C B�e
4
3 t then

dy

dt
D �At C B�� 4

3 e
4
3 t�C Ae

4
3 t,

by the product rule.

When t D 0,
dy

dt
D 3 thus 3 D �0C B� 4

3 e0 C Ae0

i.e. 3 D 4
3BC A from which, A D �1, since B D 3

Hence the particular solution is y = .−t Y 3/e
4
3 t or y = .3 − t/e

4
3 t

In another example, to solve
d2y

dx2
C 6

dy

dx
C 13y D 0, given that when x D 0,

y D 3 and
dy

dx
D 7:

(a)
d2y

dx2
C 6

dy

dx
C 13y D 0 in D-operator form is �D2 C 6DC 13�y D 0,

where D � d

dx
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(b) Substituting m for D gives the auxiliary equation m2 C 6m C 13 D 0
Using the quadratic formula:

m D �6š
√

[�6�2 � 4�1��13�]

2�1�
D �6šp��16�

2

i.e. m D �6š j4

2
D �3š j2

(c) Since the roots are complex, the general solution is

y = e−3x .A cos 2x Y B sin 2x/

(d) When x D 0, y D 3, hence 3 D e0�A cos 0C B sin 0�, i.e. A D 3.

Since y D e�3x�A cos 2x C B sin 2x�

then
dy

dx
D e�3x��2A sin 2x C 2B cos 2x�

�3e�3x�A cos 2x C B sin 2x�, by the product rule,

D e�3x[�2B � 3A� cos 2x � �2AC 3B� sin 2x]

When x D 0,
dy

dx
D 7,

hence 7 D e0[�2B� 3A� cos 0� �2AC 3B� sin 0]

i.e. 7 D 2B� 3A, from which, B D 8, since A D 3

Hence the particular solution is y = e−3x .3 cos 2x Y 8 sin 2x/

74 Second Order Differential Equations of the

Form a
d2y
dx2 Y b

dy
dx

Y cy = f .x /

Complementary function and particular integral

If in the differential equation

a
d2y

dx2
C b

dy

dx
C cy D f�x� �1�

the substitution y D uC v is made then:

a
d2�uC v�

dx2
C b

d�u C v�

dx
C c�uC v� D f�x�

Rearranging gives:(
a

d2u

dx2
C b

du

dx
C cu

)
C
(
a

d2v

dx2
C b

dv

dx
C cv

)
D f�x�

If we let a
d2v

dx2
C b

dv

dx
C cv D f�x� �2�
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then a
d2u

dx2
C b

du

dx
C cu D 0 �3�

The general solution, u, of equation (3) will contain two unknown constants,
as required for the general solution of equation (1). The method of solution
of equation (3) is shown in Chapter 73. The function u is called the comple-
mentary function (C.F.)
If the particular solution, v, of equation (2) can be determined without con-
taining any unknown constants then y D uC v will give the general solution
of equation (1). The function v is called the particular integral (P.I.). Hence
the general solution of equation (1) is given by:

y = C.F.Y P.I.

Procedure to solve differential equations of the form

a
d2y
dx 2

Y b
dy
dx

Y cy = f .x /

(i) Rewrite the given differential equation as �aD2 C bDC c�y D f�x�
(ii) Substitute m for D, and solve the auxiliary equation am2 C bm C c D 0

for m
(iii) Obtain the complementary function, u, which is achieved using the same

procedure as in Chapter 74, page 361.
(iv) To determine the particular integral, v, firstly assume a particular inte-

gral which is suggested by f�x�, but which contains undetermined co-
efficients. Table 74.1 gives some suggested substitutions for different
functions f�x�.

(v) Substitute the suggested P.I. into the differential equation
�aD2 C bD C c�v D f�x� and equate relevant coefficients to find the con-
stants introduced.

(vi) The general solution is given by y D C.F.C P.I., i.e. y D uC v
(vii) Given boundary conditions, arbitrary constants in the C.F. may be deter-

mined and the particular solution of the differential equation obtained.

For example, to solve 2
d2y

dx2 � 11
dy

dx
C 12y D 3x � 2:

(i) 2
d2y

dx2
� 11

dy

dx
C 12y D 3x � 2 in D-operator form is

�2D2 � 11D C 12�y D 3x � 2
(ii) Substituting m for D gives the auxiliary equation

2m2 � 11m C 12 D 0

Factorising gives: �2m � 3��m � 4� D 0,

from which, m D 3

2
or m D 4

(iii) Since the roots are real and different, the C.F., u = Ae
3
2 x Y Be4x

(iv) Since f�x� D 3x � 2 is a polynomial, let the P.I., v D ax C b (see
Table 74.1(b))
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Table 74.1 Form of particular integral for different functions

Type Straightforward cases ‘Snag’ cases
Try as particular integral: Try as particular

integral:

(a) f�x� D a constant v D k v D kx (used when C.F.
contains a constant)

(b) f�x� D polynomial (i.e.
f�x� D LCMx C Nx2 C . .
where any of the
coefficients may be
zero)

v D aC bxC cx2 C . .

(c) f�x� D an exponential
function (i.e. f�x� D Aeax )

v D keax (i) v D kxeax (used
when eax appears
in the C.F.)

(ii) v D kx2eax (used
when eax and xeax

both appear in the
C.F.) etc.

(d) f�x� D a sine or cosine
function (i.e. f�x� D
a sin pxC b cos px
where a or b may be
zero)

v D A sin pxC B cos px v D
x�A sin pxC B cos px�
(used when sin px
and/or cos px appears
in the C.F.)

(e) f�x� D a sum e.g.
(i) f�x� D 4x2 � 3 sin 2x
(ii) f�x� D 2� x C e3x

(i) v D ax2 C bxC cC
d sin 2xC e cos 2x

(ii) v D ax C bC ce3x

(f) f�x� D a product
e.g. f�x� D 2ex cos 2x

v D
ex�A sin 2xC B cos 2x�

(v) Substituting v D ax C b into �2D2 � 11D C 12�v D 3x � 2 gives:
�2D2 � 11D C 12��ax C b� D 3x � 2,

i.e. 2D2�ax C b�� 11D�ax C b�C 12�ax C b� D 3x � 2

i.e. 0� 11aC 12ax C 12b D 3x � 2

Equating the coefficients of x gives: 12a D 3, from which, a D 1
4

Equating the constant terms gives: �11a C 12b D �2

i.e. �11
(

1

4

)
C 12b D �2

from which, 12b D �2C 11

4
D 3

4
i.e. b D 1

16

Hence the P.I., v D ax C b D 1
4

x Y
1

16
(vi) The general solution is given by y D uC v, i.e.

y = Ae
3
2 x Y Be4x Y

1
4

x Y
1
16



366

In another example, to solve
d2y

dx2
� 2

dy

dx
C y D 3e4x given that when x D 0,

y D �2

3
and

dy

dx
D 4

1

3
:

(i)
d2y

dx2
� 2

dy

dx
C y D 3e4x in D-operator form is �D2 � 2D C 1�y D 3e4x

(ii) Substituting m for D gives the auxiliary equation

m2 � 2m C 1 D 0

Factorising gives: �m � 1��m � 1� D 0,

from which, m D 1 twice

(iii) Since the roots are real and equal the C.F., u = .Ax Y B/ex

(iv) Let the particular integral, v D ke4x (see Table 74.1(c))
(v) Substituting v D ke4x into �D2 � 2D C 1�v D 3e4x gives:

�D2 � 2D C 1�ke4x D 3e4x

i.e. D2�ke4x�� 2D�ke4x�C 1�ke4x� D 3e4x

i.e. 16ke4x � 8ke4x C ke4x D 3e4x

Hence 9ke4x D 3e4x , from which, k D 1
3

Hence the P.I., v = ke4x = 1
3 e4x

(vi) The general solution is given by y D uC v,

i.e. y = .Ax Y B/ex Y 1
3 e4x

(vii) When x D 0, y D � 2
3 thus � 2

3 D �0C B�e0 C 1
3 e0, from which, B D �1

dy

dx
D �Ax C B�ex C ex�A�C 4

3
e4x

When x D 0,
dy

dx
D 4

1

3
, thus

13

3
D BC AC 4

3

from which, A D 4, since B D �1

Hence the particular solution is: y = .4x − 1/ex Y 1
3 e4x

In another example, to solve 2
d2y

dx2
C 3

dy

dx
� 5y D 6 sin 2x:

(i) 2
d2y

dx2 C 3
dy

dx
� 5y D 6 sin 2x in D-operator form is

�2D2 C 3D � 5�y D 6 sin 2x
(ii) The auxiliary equation is 2m2 C 3m � 5 D 0, from which,

�m � 1��2m C 5� D 0, i.e. m D 1 or m D � 5
2

(iii) Since the roots are real and different the C.F., u = Aex Y Be− 5
2 x

(iv) Let the P.I., v D A sin 2x C B cos 2x (see Table 74.1(d))
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(v) Substituting v D A sin 2x C B cos 2x into �2D2 C 3D � 5�v D 6 sin 2x
gives: �2D2 C 3D� 5��A sin 2x C B cos 2x� D 6 sin 2x

D�A sin 2x C B cos 2x� D 2A cos 2x � 2B sin 2x

D2�A sin 2x C B cos 2x� D D�2A cos 2x � 2B sin 2x�

D �4A sin 2x � 4B cos 2x

Hence �2D2 C 3D � 5��A sin 2x C B cos 2x� D �8A sin 2x � 8B cos 2x

C 6A cos 2x � 6B sin 2x � 5A sin 2x � 5B cos 2x D 6 sin 2x

Equating coefficient of sin 2x gives:

�13A� 6B D 6 �1�

Equating coefficients of cos 2x gives:

6A� 13B D 0 �2�

6ð �1� gives: �78A� 36B D 36 �3�

13ð �2� gives: 78A� 169B D 0 �4�

�3�C �4� gives: �205B D 36

from which, B D �36

205

Substituting B D �36

205
into equation (1) or (2) gives A D �78

205

Hence the P.I., v =
−78
205

sin 2x −
36
205

cos 2x

(vi) The general solution, y D uC v,

i.e. y = Aex Y Be− 5
2 x −

2
205

.39 sin 2x Y 18 cos 2x/

75 Numerical Methods for First Order
Differential Equations

Introduction

Not all first order differential equations may be solved using the methods
used in Chapters 70 to 72. A number of other analytical methods of solving
differential equations exist; however the differential equations that can be
solved by such analytical methods is fairly restricted.

Where a differential equation and known boundary conditions are given,
an approximate solution may be obtained by applying a numerical method.
There are a number of such numerical methods available and the simplest of
these is called Euler’s method.
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y
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Figure 75.1

y
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Q y = f(a+x)

x0
a

Figure 75.2

Euler’s method

From Chapter 17, Maclaurin’s series may be stated as:

f�x� D f�0�C x f0�0�C x2

2!
f00�0�C . .

Hence at some point f�h� in Figure 75.1:

f�h� D f�0�C h f0�0�C h2

2!
f00�0�C . .

If the y-axis and origin are moved a units to the left, as shown in Figure 75.2,
the equation of the same curve relative to the new axis becomes y D f�aC x�
and the function value at P is f�a�.
At point Q in Figure 75.2:

f .a Y h/ = f .a/Y h f ′.a/Y
h2

2!
f ′′.a/Y . . �1�

which is a statement called Taylor’s series.
If h is the interval between two new ordinates y0 and y1, as shown in
Figure 75.3, and if f�a� D y0 and y1 D f�aC h�, then Euler’s method states:

f�aC h� D f�a�C h f0�a�

i.e. y1 = y0 Y h.y ′/0 �2�

The approximation used with Euler’s method is to take only the first two terms
of Taylor’s series shown in equation (1).
Hence if y0, h and �y0�0 are known, y1, which is an approximate value for the
function at Q in Figure 75.3, can be calculated.

For example, to obtain a numerical solution of the differential equation
dy

dx
D

3�1C x�� y given the initial conditions that x D 1 when y D 4, for the range

x D 1.0 to x D 2.0 with intervals of 0.2 is determined as follows:
dy

dx
D y0 D

3�1C x�� y

With x0 D 1 and y0 D 4, .y ′/0 D 3�1C 1�� 4 D 2

By Euler’s method: y1 D y0 C h�y0�0, from equation(2)

Hence y1 D 4C �0.2��2� D 4.4, since h D 0.2
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Figure 75.3
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Figure 75.4

At point Q in Figure 75.4, x1 D 1.2, y1 D 4.4

and �y0�1 D 3�1C x1�� y1

i.e. .y ′/1 D 3�1C 1.2�� 4.4 D 2.2

If the values of x, y and y0 found for point Q are regarded as new starting
values of x0, y0 and �y0�0, the above process can be repeated and values found
for the point R shown in Figure 75.5.

Thus at point R, y1 D y0 C h�y0�0 from equation �2�

D 4.4C �0.2��2.2� D 4.84

When x1 D 1.4 and y1 D 4.84, .y ′/1 D 3�1C 1.4�� 4.84 D 2.36
This step by step Euler’s method can be continued and it is easiest to list the
results in a table, as shown in Table 75.1. The results for lines 1 to 3 have
been produced above.
For line 4, where x0 D 1.6 :

y1 D y0 C h�y0�0 D 4.84C �0.2��2.36� D 5.312
and .y ′/0 D 3�1C 1.6�� 5.312 D 2.488
For line 5, where x0 D 1.8:

y1 D y0 C h�y0�0 D 5.312C �0.2��2.488� D 5.8096
and .y ′/0 D 3�1C 1.8�� 5.8096 D 2.5904
For line 6, where x0 D 2.0:

y1 D y0 C h�y0�0 D 5.8096C �0.2��2.5904� D 6.32768

0 1.0 x0 = 1.2 x1 = 1.4

h

x

y

P
Q

R

y
0

y1

Figure 75.5



370

Table 75.1

x0 y0 �y0�0

1. 1 4 2
2. 1.2 4.4 2.2
3. 1.4 4.84 2.36
4. 1.6 5.312 2.488
5. 1.8 5.8096 2.5904
6. 2.0 6.32768

1.0 1.2 1.4 1.6 1.8 2.0 x

5.0

6.0

y

4.0

Figure 75.6

(As the range is 1.0 to 2.0 there is no need to calculate �y0�0 in line 6) The
particular solution is given by the value of y against x.

A graph of the solution of
dy

dx
D 3�1C x�� y with initial conditions x D 1

and y D 4 is shown in Figure 75.6.
In practice it is probably best to plot the graph as each calculation is made,
which checks that there is a smooth progression and that no calculation errors
have occurred.

An improved Euler method

In the above Euler’s method, the gradient �y0�0 at P�x0,y0� in Figure 75.7 across
the whole interval h is used to obtain an approximate value of y1 at point Q.
QR in Figure 75.7 is the resulting error in the result.
In an improved Euler method, called the Euler-Cauchy method, the gradient
at P�x0,y0� across half the interval is used and then continues with a line whose
gradient approximates to the gradient of the curve at x1, shown in Figure 75.8
Let yP1 be the predicted value at point R using Euler’s method, i.e. length
RZ, where

yP1 = y0 Y h.y ′/0 �3�

The error shown as QT in Figure 75.8 is now less than the error QR used in
the basic Euler method and the calculated results will be of greater accuracy.

0 x0 x1 x

h

P
R

Q

y

y0

Figure 75.7

0 x0 x0+   h x1
1
2 x

P
S

R

T
Q

y

h

Z

Figure 75.8
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The corrected value, yC1 in the improved Euler method is given by:

yC1 = y0 Y
1
2 h[.y ′/0 Y f .x1, yP1 /] �4�

For example, applying the Euler-Cauchy method to solve the differential

equation
dy

dx
D y � x in the range 0(0.1)0.5, given the initial conditions that

at x D 0, y D 2, is achieved as follows:

dy

dx
D y0 D y � x

Since the initial conditions are x0 D 0 and y0 D 2 then �y0�0 D 2� 0 D 2
Interval h D 0.1, hence x1 D x0 C h D 0C 0.1 D 0.1

From equation �3�, yP1 D y0 C h�y0�0 D 2C �0.1��2� D 2.2

From equation �4�, yC1 D y0 C 1
2h[�y0�0 C f�x1, yP1 �]

D y0 C 1
2h[�y0�0 C �yP1 � x1�] in this case

D 2C 1
2 �0.1�[2C �2.2� 0.1�] D 2.205

�y0�1 D yC1 � x1 D 2.205� 0.1 D 2.105

If we produce a table of values, as in Euler’s method, we have so far deter-
mined lines 1 and 2 of Table 75.2.

Table 75.2

x y y 0

1. 0 2 2
2. 0.1 2.205 2.105
3. 0.2 2.421025 2.221025
4. 0.3 2.649232625 2.349232625
5. 0.4 2.89090205 2.49090205
6. 0.5 3.147446765

The results in line 2 are now taken as x0, y0 and �y0�0 for the next interval
and the process is repeated.

For line 3, x1 D 0.2

yP1 D y0 C h�y0�0 D 2.205C �0.1��2.105� D 2.4155

yC1 D y0 C 1
2h[�y0�0 C f�x1, yP1 �]

D 2.205C 1
2 �0.1�[2.105 C �2.4155 � 0.2�] D 2.421025

�y0�0 D yC1 � x1 D 2.421025 � 0.2 D 2.221025

and so on.
dy

dx
D y � x may be solved analytically by the integrating factor method of

Chapter 72, with the solution y D x C 1C ex . Substituting values of x of 0,
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Table 75.3

x Euler method Euler-Cauchy method Exact value
y y y D x C 1C ex

1. 0 2 2 2
2. 0.1 2.2 2.205 2.205170918
2. 0.2 2.41 2.421025 2.421402758
3. 0.3 2.631 2.649232625 2.649858808
4. 0.4 2.8641 2.89090205 2.891824698
5. 0.5 3.11051 3.147446765 3.148721271

Table 75.4

x Error in Euler method Error in Euler-Cauchy method

0 0 0
0.1 0.234% 0.00775%
0.2 0.472% 0.0156%
0.3 0.712% 0.0236%
0.4 0.959% 0.0319%
0.5 1.214% 0.0405%

0.1, 0.2, . . give the exact values shown in Table 75.3. Also shown in the Table
are the values that would result from using the Euler method.
The percentage error for each method for each value of x is shown in
Table 75.4. For example when x D 0.3,

% error with Euler method D
(

actual� estimated

actual

)
ð 100%

D
(

2.649858808 � 2.631

2.649858808

)
ð 100% D 0.712%

% error with Euler-Cauchy method

D
(

2.649858808 � 2.649232625

2.649858808

)
ð 100% D 0.0236%

This calculation and the others listed in Table 75.4 show the Euler-Cauchy
method to be more accurate than the Euler method.



Statistics and Probability

76 Presentation of Statistical Data
Some statistical terminology

Data are obtained largely by two methods:
(a) by counting — for example, the number of stamps sold by a post office in

equal periods of time, and
(b) by measurement — for example, the heights of a group of people.
When data are obtained by counting and only whole numbers are possible,
the data are called discrete. Measured data can have any value within certain
limits and are called continuous.
A set is a group of data and an individual value within the set is called a
member of the set. Thus, if the masses of five people are measured correct to
the nearest 0.1 kilogram and are found to be 53.1 kg, 59.4 kg, 62.1 kg, 77.8 kg
and 64.4 kg, then the set of masses in kilograms for these five people is:

f53.1, 59.4, 62.1, 77.8, 64.4g
and one of the members of the set is 59.4
A set containing all the members is called a population. Some members
selected at random from a population are called a sample. Thus all car reg-
istration numbers form a population, but the registration numbers of, say, 20
cars taken at random throughout the country are a sample drawn from that
population.
The number of times that the value of a member occurs in a set is called the
frequency of that member. Thus in the set: f2, 3, 4, 5, 4, 2, 4, 7, 9g, member
4 has a frequency of three, member 2 has a frequency of 2 and the other
members have a frequency of one.
The relative frequency with which any member of a set occurs is given by

the ratio:
frquency of member

total frequency of all members
For the set: f2, 3, 5, 4, 7, 5, 6, 2, 8g, the relative frequency of member 5 is 2

9 .
Often, relative frequency is expressed as a percentage and the percentage
relative frequency is: (relative frequency ð 100)%

Presentation of ungrouped data

Ungrouped data can be presented diagrammatically in several ways and these
include:
(a) pictograms, in which pictorial symbols are used to represent quantities,
(b) horizontal bar charts, having data represented by equally spaced hori-

zontal rectangles, and
(c) vertical bar charts, in which data are represented by equally spaced ver-

tical rectangles.
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Figure 76.1

For example, the number of television sets repaired in a workshop by a
technician in six, one-month periods is as shown below.

Month January February March April May June
Number repaired 11 6 15 9 13 8

This data may be represented as a pictogram as shown in Figure 76.1
where each symbol represents two television sets repaired. Thus, in January,
5 1

2 symbols are used to represent the 11 sets repaired, in February, 3 symbols
are used to represent the 6 sets repaired, and so on.

In another example, The distance in miles traveled by four salesmen in a
week are as shown below.

Salesmen P Q R S
Distance traveled (miles) 413 264 597 143

To represent these data diagrammatically by a horizontal bar chart, equally
spaced horizontal rectangles of any width, but whose length is proportional to
the distance traveled, are used. Thus, the length of the rectangle for salesman
P is proportional to 413 miles, and so on. The horizontal bar chart depicting
these data is shown in Figure 76.2.
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Figure 76.2

In another example, the number of issues of tools or materials from a store
in a factory is observed for seven, one-hour periods in a day, and the results
of the survey are as follows:



375

Period 1 2 3 4 5 6 7
Number of issues 34 17 9 5 27 13 6

In a vertical bar chart, equally spaced vertical rectangles of any width, but
whose height is proportional to the quantity being represented, are used. Thus
the height of the rectangle for period 1 is proportional to 34 units, and so on.
The vertical bar chart depicting these data is shown in Figure 76.3.
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Figure 76.3

Percentage component bar chart
Trends in ungrouped data over equal periods of time can be presented dia-
grammatically by a percentage component bar chart. In such a chart, equally
spaced rectangles of any width, but whose height corresponds to 100%, are
constructed. The rectangles are then subdivided into values corresponding to
the percentage relative frequencies of the members.

For example, the numbers of various types of dwellings sold by a company
annually over a three-year period are as shown below.

Year 1 Year 2 Year3

4-roomed bungalows 24 17 7
5-roomed bungalows 38 71 118
4-roomed houses 44 50 53
5-roomed houses 64 82 147
6-roomed houses 30 30 25

To draw percentage component bar charts to present these data, a
table of percentage relative frequency values, correct to the nearest
1%, is the first requirement. Since, percentage relative frequency D
frequency of memberð 100

total frequency
then for 4-roomed bungalows in year 1:

percentage relative frequency D 24ð 100

24C 38C 44C 64C 30
D 12%

The percentage relative frequencies of the other types of dwellings for each
of the three years are similarly calculated and the results are as shown in the
table below.
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Year 1 Year 2 Year 3

4-roomed bungalows 12% 7% 2%
5-roomed bungalows 19% 28% 34%
4-roomed houses 22% 20% 15%
5-roomed houses 32% 33% 42%
6-roomed houses 15% 12% 7%

The percentage component bar chart is produced by constructing three equally
spaced rectangles of any width, corresponding to the three years. The heights
of the rectangles correspond to 100% relative frequency, and are subdivided
into the values in the table of percentages shown above. A key is used (dif-
ferent types of shading or different colour schemes) to indicate corresponding
percentage values in the rows of the table of percentages. The percentage
component bar chart is shown in Figure 76.4.
A pie diagram is used to show diagrammatically the parts making up the
whole. In a pie diagram, the area of a circle represents the whole, and the
areas of the sectors of the circle are made proportional to the parts that make
up the whole.
For example, the retail price of a product costing £2 is made up as follows:
materials 10p, labour 20p, research and development 40p, overheads 70p,
profit 60p.
To present these data on a pie diagram, a circle of any radius is drawn, and
the area of the circle represents the whole, which in this case is £2. The circle
is subdivided into sectors so that the areas of the sectors are proportional to
the parts, i.e. the parts that make up the total retail price. For the area of a
sector to be proportional to a part, the angle at the centre of the circle must
be proportional to that part. The whole, £2 or 200p, corresponds to 360°.

Therefore, 10p corresponds to 360ð 10

200
degrees, i.e. 18°

20p corresponds to 360ð 20

200
degrees, i.e. 36°
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and so on, giving the angles at the centre of the circle for the parts of the
retail price as: 18°, 36°, 72°, 126° and 108°, respectively.
The pie diagram is shown in Figure 76.5.

Presentation of grouped data

When the number of members in a set is small, say ten or less, the data
can be represented diagrammatically without further analysis, by means of
pictograms, bar charts, percentage components bar charts or pie diagrams.
For sets having more than ten members, those members having similar values
are grouped together in classes to form a frequency distribution. To assist in
accurately counting members in the various classes, a tally diagram is used.
A frequency distribution is merely a table showing classes and their corre-
sponding frequencies.
The new set of values obtained by forming a frequency distribution is called
grouped data.
The terms used in connection with grouped data are shown in Figure 76.6(a).
The size or range of a class is given by the upper class boundary value

Class interval

7.4 to 7.6

7.35 7.5 7.65

7.7 toto 7.3

Lower
class

boundary

Class
mid-point

Upper
class

boundary

(a)

(b)

Figure 76.6
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minus the lower class boundary value, and in Figure 76.6 is 7.65 �7.35, i.e.
0.30. The class interval for the class shown in Figure 76.6(b) is 7.4 to 7.6
and the class mid-point value is given by

�upper class boundary value�C �lower class boundary value�

2

and in Figure 76.6 is
7.65C 7.35

2
, i.e. 7.5

One of the principal ways of presenting grouped data diagrammatically is
by using a histogram, in which the areas of vertical, adjacent rectangles
are made proportional to frequencies of the classes. When class intervals are
equal, the heights of the rectangles of a histogram are equal to the frequencies
of the classes. For histograms having unequal class intervals, the area must
be proportional to the frequency. Hence, if the class interval of class A is
twice the class interval of class B, then for equal frequencies, the height of
the rectangle representing A is half that of B.
Another method of presenting grouped data diagrammatically is by using a
frequency polygon, which is the graph produced by plotting frequency against
class mid-point values and joining the co-ordinates with straight lines.
A cumulative frequency distribution is a table showing the cumulative fre-
quency for each value of upper class boundary. The cumulative frequency for
a particular value of upper class boundary is obtained by adding the frequency
of the class to the sum of the previous frequencies.
The curve obtained by joining the co-ordinates of cumulative frequency (ver-
tically) against upper class boundary (horizontally) is called an ogive or a
cumulative frequency distribution curve.

For example, the masses of 50 ingots, in kilograms, are measured correct to
the nearest 0.1 kg and the results are as shown below.

8.0 8.6 8.2 7.5 8.0 9.1 8.5 7.6 8.2 7.8
8.3 7.1 8.1 8.3 8.7 7.8 8.7 8.5 8.4 8.5
7.7 8.4 7.9 8.8 7.2 8.1 7.8 8.2 7.7 7.5
8.1 7.4 8.8 8.0 8.4 8.5 8.1 7.3 9.0 8.6
7.4 8.2 8.4 7.7 8.3 8.2 7.9 8.5 7.9 8.0

The range of the data is the member having the largest value minus the
member having the smallest value. Inspection of the set of data shows that:

range D 9.1� 7.1 D 2.0

The size of each class is given approximately by
range

number of classes

If about seven classes are required, the size of each class is 2.0/7, that is
approximately 0.3, and thus the class limits are selected as 7.1 to 7.3, 7.4 to
7.6, 7.7 to 7.9, and so on.

The class mid-point for the 7.1 to 7.3 class is
7.35C 7.05

2
, i.e. 7.2, for the

7.4 to 7.6 class is
7.65C 7.35

2
, i.e. 7.5, and so on.

To assist with accurately determining the number in each class, a tally diagram
is produced as shown in Table 76.1. This is obtained by listing the classes in
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Table 76.1

Class Tally

7.1 to 7.3 111
7.4 to 7.6 1111
7.7 to 7.9 1111 1111
8.0 to 8.2 1111 1111 1111
8.3 to 8.5 1111 1111 1
8.6 to 8.8 1111 1
8.9 to 9.1 11

Table 76.2

Class Class mid-point Frequency

7.1 to 7.3 7.2 3
7.4 to 7.6 7.5 5
7.7 to 7.9 7.8 9
8.0 to 8.2 8.1 14
8.3 to 8.5 8.4 11
8.6 to 8.8 8.7 6
8.9 to 9.1 9.0 2

the left-hand column and then inspecting each of the 50 members of the set
of data in turn and allocating it to the appropriate class by putting a ‘1’ in the
appropriate row. Each fifth ‘1’ allocated to a particular row is marked as an
oblique line to help with final counting.
A frequency distribution for the data is shown in Table 76.2 and lists classes and
their corresponding frequencies. Class mid-points are also shown in this table,
since they are used when constructing the frequency polygon and histogram.
A frequency polygon is shown in Figure 76.7, the co-ordinates corresponding
to the class mid-point/frequency values, given in Table 76.2. The co-ordinates
are joined by straight lines and the polygon is ‘anchored-down’ at each end
by joining to the next class mid-point value and zero frequency.
A histogram is shown in Figure 76.8, the width of a rectangle corresponding
to (upper class boundary value� lower class boundary value) and height cor-
responding to the class frequency. The easiest way to draw a histogram is to
mark class mid-point values on the horizontal scale and to draw the rectangles
symmetrically about the appropriate class mid-point values and touching one
another. A histogram for the data given in Table 76.2 is shown in Figure 76.8.
A cumulative frequency distribution is a table giving values of cumulative
frequency for the values of upper class boundaries, and is shown in Table 76.3.
Columns 1 and 2 show the classes and their frequencies. Column 3 lists the
upper class boundary values for the classes given in column 1. Column 4 gives
the cumulative frequency values for all frequencies less than the upper class
boundary values given in column 3. Thus, for example, for the 7.7 to 7.9 class
shown in row 3, the cumulative frequency value is the sum of all frequencies
having values of less than 7.95, i.e. 3C 5C 9 D 17, and so on.
The ogive for the cumulative frequency distribution given in Table 76.3 is
shown in Figure 76.9. The co-ordinates corresponding to each upper class
boundary/cumulative frequency value are plotted and the co-ordinates are
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Table 76.3

1 2 3 4
Class Frequency Upper class boundary Cumulative frequency

Less than
7.1-7.3 3 7.35 3
7.4-7.6 5 7.65 8
7.7-7.9 9 7.95 17
8.0-8.2 14 8.25 31
8.3-8.5 11 8.55 42
8.6-8.8 6 8.85 48
8.9-9.1 2 9.15 50
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joined by straight lines (–not the best curve drawn through the co-ordinates
as in experimental work). The ogive is ‘anchored’ at its start by adding the
co-ordinate (7.05, 0).

77 Measures of Central Tendency and
Dispersion

Measures of central tendency

A single value, which is representative of a set of values, may be used to give
an indication of the general size of the members in a set, the word ‘average’
often being used to indicate the single value.
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The statistical term used for ‘average’ is the arithmetic mean or just the mean.
Other measures of central tendency may be used and these include the median
and the modal values.

Mean, median and mode for discrete data

Mean
The arithmetic mean value is found by adding together the values of the
members of a set and dividing by the number of members in the set. Thus,
the mean of the set of numbers: f4, 5, 6, 9g is:

4C 5C 6C 9

4
, i.e. 6

In general, the mean of the set: fx1, x2, x3, . . . xng is

x D x1 C x2 C x3 C Ð Ð Ð C xn
n

, written as

∑
x

n

where
∑

is the Greek letter ‘sigma’ and means ‘the sum of’, and x (called
x-bar) is used to signify a mean value.

Median
The median value often gives a better indication of the general size of a
set containing extreme values. The set: f7, 5, 74, 10g has a mean value of 24,
which is not really representative of any of the values of the members of the
set. The median value is obtained by:
(a) ranking the set in ascending order of magnitude, and
(b) selecting the value of the middle member for sets containing an odd

number of members, or finding the value of the mean of the two middle
members for sets containing an even number of members.

For example, the set: f7, 5, 74, 10g is ranked as f5, 7, 10, 74g, and since it
contains an even number of members (four in this case), the mean of 7 and
10 is taken, giving a median value of 8.5.

In another example, the set: f3, 81, 15, 7, 14g is ranked as f3, 7, 14, 15, 81g
and the median value is the value of the middle member, i.e. 14.

Mode
The modal value, or mode, is the most commonly occurring value in a set.
If two values occur with the same frequency, the set is ‘bi-modal’.
For example, the set: f5, 6, 8, 2, 5, 4, 6, 5, 3g has a modal value of 5, since
the member having a value of 5 occurs three times.

Mean, median and mode for grouped data

The mean value for a set of grouped data is found by determining the sum
of the �frequencyð class mid-point values� and dividing by the sum of the
frequencies,

i.e. mean value x D f1x1 C f2x2 C . . . fnxn
f1 C f2 C Ð Ð Ð C fn D

∑
�fx�∑
f
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where f is the frequency of the class having a mid-point value of x, and so
on.
For example, the frequency distribution for the value of resistance in ohms
of 48 resistors is:

20.5–20.9 3, 21.0–21.4 10, 21.5–21.9 11,
22.0–22.4 13, 22.5–22.9 9, 23.0–23.4 2

The class mid-point/frequency values are:

20.7 3, 21.2 10, 21.7 11, 22.2 13, 22.7 9 and 23.2 2

For grouped data, the mean value is given by: x D
∑
�fx�∑
f

where f is the class frequency and x is the class mid-point value. Hence mean
value,

x D
�3ð 20.7�C �10ð 21.2�C �11ð 21.7�

C�13ð 22.2�C �9ð 22.7�C �2ð 23.2�
48

D 1052.1

48
D 21.919..

i.e. the mean value is 21.9 ohms, correct to 3 significant figures.

Histogram
The mean, median and modal values for grouped data may be determined
from a histogram. In a histogram, frequency values are represented vertically
and variable values horizontally. The mean value is given by the value of the
variable corresponding to a vertical line drawn through the centroid of the
histogram. The median value is obtained by selecting a variable value such
that the area of the histogram to the left of a vertical line drawn through the
selected variable value is equal to the area of the histogram on the right of
the line. The modal value is the variable value obtained by dividing the width
of the highest rectangle in the histogram in proportion to the heights of the
adjacent rectangles.
For example, the time taken in minutes to assemble a device is measured 50
times and the results are as shown below:.

14.5–15.5 5, 16.5–17.5 8, 18.5–19.5 16,
20.5–21.5 12, 22.5–23.5 6, 24.5–25.5 3

The mean, median and modal values of the distribution may be determined
from a histogram depicting the data:
The histogram is shown in Figure 77.1. The mean value lies at the centroid
of the histogram. With reference to any arbitrary axis, say YY shown at a
time of 14 minutes, the position of the horizontal value of the centroid can
be obtained from the relationship AM D∑�am�, where A is the area of the
histogram, M is the horizontal distance of the centroid from the axis YY, a is
the area of a rectangle of the histogram and m is the distance of the centroid of
the rectangle from YY. The areas of the individual rectangles are shown circled
on the histogram giving a total area of 100 square units. The positions, m, of
the centroids of the individual rectangles are 1, 3, 5, . . . units from YY. Thus

100M D �10ð 1�C �16ð 3�C �32ð 5�C �24ð 7�C �12ð 9�C �6ð 11�

i.e. M D 560

100
D 5.6 units from YY
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Thus the position of the mean with reference to the time scale is 14 C 5.6,
i.e. 19.6 minutes.
The median is the value of time corresponding to a vertical line dividing the
total area of the histogram into two equal parts. The total area is 100 square
units, hence the vertical line must be drawn to give 50 units of area on each
side. To achieve this with reference to Figure 77.1, rectangle ABFE must be
split so that 50� �10C 16� units of area lie on one side and 50� �24C 12C
6� units of area lie on the other. This shows that the area of ABFE is split so
that 24 units of area lie to the left of the line and 8 units of area lie to the
right, i.e. the vertical line must pass through 19.5 minutes. Thus the median
value of the distribution is 19.5 minutes.
The mode is obtained by dividing the line AB, which is the height of the
highest rectangle, proportionally to the heights of the adjacent rectangles. With
reference to Figure 77.1, this is done by joining AC and BD and drawing a
vertical line through the point of intersection of these two lines. This gives
the mode of the distribution and is 19.3 minutes.

Standard deviation with discrete data

The standard deviation of a set of data gives an indication of the amount of
dispersion, or the scatter, of members of the set from the measure of central
tendency. Its value is the root-mean-square value of the members of the set
and for discrete data is obtained as follows:

(a) determine the measure of central tendency, usually the mean value, (occa-
sionally the median or modal values are specified),

(b) calculate the deviation of each member of the set from the mean, giving

�x1 � x�, �x2 � x�, �x3 � x�, . . . ,
(c) determine the squares of these deviations, i.e.

�x1 � x�2, �x2 � x�2, �x3 � x�2, . . . ,
(d) find the sum of the squares of the deviations, that is

�x1 � x�2 C �x2 � x�2 C �x3 � x�2, . . . ,
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(e) divide by the number of members in the set, n, giving

�x1 � x�2 C �x2 � x�2 C �x3 � x�2 C . . .
n

(f) determine the square root of (e)

The standard deviation is indicated by � (the Greek letter small ‘sigma’) and
is written mathematically as:

standard deviation, s =

√√√√{∑.x − x /2

n

}

where x is a member of the set, x is the mean value of the set and n is
the number of members in the set. The value of standard deviation gives an
indication of the distance of the members of a set from the mean value.
The set: f1, 4, 7, 10, 13g has a mean value of 7 and a standard deviation
of about 4.2. The set f5, 6, 7, 8, 9g also has a mean value of 7, but the
standard deviation is about 1.4. This shows that the members of the sec-
ond set are mainly much closer to the mean value than the members of the
first set.
For example, to determine the standard deviation from the mean of the set of
numbers: f5, 6, 8, 4, 10, 3g, correct to 4 significant figures:

The arithmetic mean, x D
∑
x

n
D 5C 6C 8C 4C 10C 3

6
D 6

Standard deviation, � D
√√√√{∑�x � x�2

n

}

The �x � x�2 values are: �5–6�2, �6–6�2, �8–6�2, �4–6�2, �10–6�2 and �3–6�2

The sum of the �x � x�2 values,

i.e.
∑
�x � x�2 D 1C 0C 4C 4C 16C 9 D 34

and

∑
�x � x�2
n

D 34

6
D 5.P6 since there are 6 members in the set.

Hence, standard deviation, � D
√√√√{∑�x � x�2

n

}
D
√

5.P6 D 2.380,

correct to 4 significant figures

Standard deviation with grouped data

For grouped data, standard deviation s =

√√√√{∑ff .x − x/2g∑
f

}

where f is the class frequency value, x is the class mid-point value and x is
the mean value of the grouped data.
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For example, the frequency distribution for the values of resistance in ohms
of 48 resistors is:

20.5–20.9 3, 21.0–21.4 10, 21.5–21.9 11,
22.0–22.4 13, 22.5–22.9 9, 23.0–23.4 2

To find the standard deviation:
From earlier, the distribution mean value, x D 21.92, correct to 4 significant
figures.
The ‘x-values’ are the class mid-point values, i.e. 20.7, 21.2, 21.7, . . ..
Thus the �x � x2� values are

�20.7–21.92�2, �21.2–21.92�2, �21.7–21.92�2, . . . ,

and the f�x � x�2 values are

3�20.7–21.92�2, 10�21.2–21.92�2, 11�21.7–21.92�2, . . . .

The
∑
f�x � x�2 values are

4.4652 C 5.1840 C 0.5324 C 1.0192 C 5.4756C 3.2768 D 19.9532∑{
f�x � x�2}∑

f
D 19.9532

48
D 0.41569

and standard deviation, � D
√√√√{∑ff�x � x�2g∑

f

}
D
p

0.41569

D 0.645, correct to 3 significant figures

Quartiles, deciles and percentiles

Other measures of dispersion which are sometimes used are the quartile, decile
and percentile values. The quartile values of a set of discrete data are obtained
by selecting the values of members which divide the set into four equal parts.
Thus for the set: f2, 3, 4, 5, 5, 7, 9, 11, 13, 14, 17g there are 11 members and
the values of the members dividing the set into four equal parts are 4, 7, and
13. These values are signified by Q1, Q2 and Q3 and called the first, second and
third quartile values, respectively. It can be seen that the second quartile value,
Q2, is the value of the middle member and hence is the median value of the set.
For grouped data the ogive may be used to determine the quartile values. In
this case, points are selected on the vertical cumulative frequency values of
the ogive, such that they divide the total value of cumulative frequency into
four equal parts. Horizontal lines are drawn from these values to cut the ogive.
The values of the variable corresponding to these cutting points on the ogive
give the quartile values.
For example, the frequency distribution given below refers to the overtime
worked by a group of craftsmen during each of 48 working weeks in a year.

25–29 5, 30–34 4, 35–39 7, 40–44 11,
45–49 12, 50–54 8, 55–59 1
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The cumulative frequency distribution (i.e. upper class boundary/cumulative
frequency values) is:

29.5 5, 34.5 9, 39.5 16, 44.5 27, 49.5 39, 54.5 47, 59.5 48

The ogive is formed by plotting these values on a graph, as shown in Figure 77.2.
The total frequency is divided into four equal parts, each having a range of
48/4, i.e. 12. This gives cumulative frequency values of 0 to 12 corresponding
to the first quartile, 12 to 24 corresponding to the second quartile, 24 to 36
corresponding to the third quartile and 36 to 48 corresponding to the fourth
quartile of the distribution, i.e. the distribution is divided into four equal parts.
The quartile values are those of the variable corresponding to cumulative
frequency values of 12, 24 and 36, marked Q1, Q2 and Q3 in Figure 77.2.
These values, correct to the nearest hour, are 37 hours, 43 hours and 48
hours, respectively. The Q2 value is also equal to the median value of the
distribution. One measure of the dispersion of a distribution is called the semi-

interquartile range and is given by
Q2 � Q1

2
, and is

48� 37

2
in this case,

i.e. 5 1
2 hours.

When a set contains a large number of members, the set can be split into
ten parts, each containing an equal number of members. These ten parts are
then called deciles . For sets containing a very large number of members, the
set may be split into one hundred parts, each containing an equal number of
members. One of these parts is called a percentile.

78 Probability

Introduction to probability
The probability of something happening is the likelihood or chance of it
happening. Values of probability lie between 0 and 1, where 0 represents an
absolute impossibility and 1 represents an absolute certainty. The probability
of an event happening usually lies somewhere between these two extreme
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values and is expressed either as a proper or decimal fraction. Examples of
probability are:

that a length of copper wire has zero resistance at 100°C 0

that a fair, six-sided dice will stop with a 3 upwards 1
6 or 0.1667

that a fair coin will land with a head upwards 1
2 or 0.5

that a length of copper wire has some resistance at l00°C 1

If p is the probability of an event happening and q is the probability of the
same event not happening, then the total probability is pC q and is equal to
unity, since it is an absolute certainty that the event either does or does not
occur, i.e. p Y q = 1

Expectation
The expectation, E, of an event happening is defined in general terms as the
product of the probability p of an event happening and the number of attempts
made, n, i.e. E = pn
Thus, since the probability of obtaining a 3 upwards when rolling a fair dice is
1
6 , the expectation of getting a 3 upwards on four throws of the dice is 1

6 ð 4,

i.e. 2
3

Thus expectation is the average occurrence of an event.

Dependent event
A dependent event is one in which the probability of an event happening
affects the probability of another ever happening. Let 5 transistors be taken at
random from a batch of 100 transistors for test purposes, and the probability
of there being a defective transistor, p1, be determined. At some later time,
let another 5 transistors be taken at random from the 95 remaining transistors
in the batch and the probability of there being a defective transistor, p2, be
determined. The value of p2 is different from p1 since batch size has effec-
tively altered from 100 to 95, i.e. probability p2 is dependent on probability
p1. Since transistors are drawn, and then another 5 transistors drawn with-
out replacing the first 5, the second random selection is said to be without
replacement.

Independent event
An independent event is one in which the probability of an event happening
does not affect the probability of another event happening. If 5 transistors are
taken at random from a batch of transistors and the probability of a defective
transistor p1 is determined and the process is repeated after the original 5
have been replaced in the batch to give p2, then p1 is equal to p2. Since the
5 transistors are replaced between draws, the second selection is said to be
with replacement.

Laws of probability

The addition law of probability
The addition law of probability is recognised by the word ‘or’ joining the
probabilities. If pA is the probability of event A happening and pB is the
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probability of event B happening, the probability of event A or event B hap-
pening is given by pA C pB. Similarly, the probability of events A or B or C
or . . .N happening is given by

pA Y pB Y pC Y · · ·Y pN

The multiplication law of probability
The multiplication law of probability is recognised by the word ‘and’ joining
the probabilities. If pA is the probability of event A happening and pB is the
probability of event B happening, the probability of event A and event B
happening is given by pA ð pB. Similarly, the probability of events A and B
and C and . . .N happening is given by

pA × pB × pC × · · · × pN

For example, to determine the probability of selecting at random the winning
horse in a race in which 10 horses are running:
Since only one of the ten horses can win, the probability of selecting at random

the winning horse is
number of winners

number of horses
, i.e.

1
10

or 0.10

To determine the probability of selecting at random the winning horses in both
the first and second races if there are 10 horses in each race:

The probability of selecting the winning horse in the first race is
1

10
.

The probability of selecting the winning horse in the second race is
1

10
.

The probability of selecting the winning horses in the first and second race is
given by the multiplication law of probability, i.e.

probability D 1

10
ð 1

10
D 1

100
or 0.01

In another example, the probability of a component failing in one year due

to excessive temperature is
1

20
, due to excessive vibration is

1

25
and due to

excessive humidity is
1

50
.

Let pA be the probability of failure due to excessive temperature, then

pA D 1

20
and pA D 19

20
(where pA is the probability of not failing)

Let pB be the probability of failure due to excessive vibration, then

pB D 1

25
and pB D 24

25

Let pC be the probability of failure due to excessive humidity, then

pC D 1

50
and pC D 49

50

The probability of a component failing due to excessive temperature and
excessive vibration is given by:

pA ð pB D 1

20
ð 1

25
D 1

500
or 0.002
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The probability of a component failing due to excessive vibration or excessive
humidity is:

pB C pC D 1

25
C 1

50
D 3

50
or 0.06

The probability that a component will not fail due excessive temperature and
will not fail due to excess humidity is:

pA ð pC D 19

20
ð 49

50
D 931

1000
or 0.931

In another example, a batch of 40 components contains 5 which are defec-
tive. If a component is drawn at random from the batch and tested and then a
second component is drawn at random, the probability of having one defective
component, both with and without replacement, is determined as follows:
The probability of having one defective component can be achieved in two
ways. If p is the probability of drawing a defective component and q is the
probability of drawing a satisfactory component, then the probability of having
one defective component is given by drawing a satisfactory component and
then a defective component or by drawing a defective component and then a
satisfactory one, i.e. by qð pC pð q
With replacement:

p D 5

40
D 1

8
and q D 35

40
D 7

8

Hence, probability of having one defective component is:

1

8
ð 7

8
C 7

8
ð 1

8
, i.e.

7

64
C 7

64
D 7

32
or 0.2188

Without replacement:

p1 D 1
8 and q1 D 7

8 on the first of the two draws. The batch number is now

39 for the second draw, thus, p2 D 5

39
and q2 D 35

39

p1q2 C q1p2 D 1

8
ð 35

39
C 7

8
ð 5

39
D 35C 35

312
D 70

312
or 0.2244

79 The Binomial and Poisson Distributions
The binomial distribution

The binomial distribution deals with two numbers only, these being the prob-
ability that an event will happen, p, and the probability that an event will not
happen, q. Thus, when a coin is tossed, if p is the probability of the coin
landing with a head upwards, q is the probability of the coin landing with a
tail upwards. pC q must always be equal to unity. A binomial distribution
can be used for finding, say, the probability of getting three heads in seven
tosses of the coin, or in industry for determining defect rates as a result of
sampling. One way of defining a binomial distribution is as follows:
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‘if p is the probability that an event will happen and q is the probability
that the event will not happen, then the probabilities that the event will
happen 0, 1, 2, 3,. . ., n times in n trials are given by the successive
terms of the expansion of �q C p�n, taken from left to right’.

The binomial expansion of �q C p�n is:

qn C nqn�1pC n�n� 1�

2!
qn�2p2 C n�n� 1��n� 2�

3!
qn�3p3 C Ð Ð Ð

from Chapter 16.

For example, let a dice be rolled 9 times.
Let p be the probability of having a 4 upwards. Then p D 1/6, since dice
have six sides.
Let q be the probability of not having a 4 upwards. Then q D 5/6. The prob-
abilities of having a 4 upwards 0, 1, 2, . . n times are given by the successive
terms of the expansion of �q C p�n, taken from left to right.
From the binomial expansion:

�q C q�9 D q9 C 9q8pC 36q7p2 C 84q6p3 C . .
The probability of having a 4 upwards no times is

q9 D �5/6�9 D 0.1938

The probability of having a 4 upwards once is

9q8p D 9�5/6�8�1/6� D 0.3489

The probability of having a 4 upwards twice is

36q7p2 D 36�5/6�7�1/6�2 D 0.2791

The probability of having a 4 upwards 3 times is

84q6p3 D 84�5/6�6�1/6�3 D 0.1302

The probability of having a 4 upwards less than 4 times is the sum of the
probabilities of having a 4 upwards 0, 1, 2, and 3 times, i.e.

0.1938 C 0.3489 C 0.2791C 0.1302 D 0.9520

Industrial inspection
In industrial inspection, p is often taken as the probability that a component
is defective and q is the probability that the component is satisfactory. In this
case, a binomial distribution may be defined as:

‘the probabilities that 0, 1, 2, 3,. . ., n components are defective in a
sample of n components, drawn at random from a large batch of com-
ponents, are given by the successive terms of the expansion of �q C p�n,
taken from left to right’.

For example, a package contains 50 similar components and inspection shows
that four have been damaged during transit. Let six components be drawn at
random from the contents of the package.
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The probability of a component being damaged, p, is 4 in 50, i.e. 0.08 per
unit. Thus, the probability of a component not being damaged, q, is 1� 0.08,
i.e. 0.92 The probability of there being 0, 1, 2,..., 6 damaged components is
given by the successive terms of �q C p�6, taken from left to right.

�q C p�6 D q6 C 6q5pC 15q4p2 C 20q3p3 C ÐÐÐ

The probability of one damaged component is 6q5p D 6ð 0 925 ð 0.08 D
0.3164. The probability of less than three damaged components is given by
the sum of the probabilities of 0, 1 and 2 damaged components.

q6C6q5pC15q4p2 D0.926C6ð 0.925ð0.08C15ð0.924ð0.082

D 0.6064C 0.3164C 0.0688 D 0.9916

The Poisson distribution
When the number of trials, n, in a binomial distribution becomes large (usually
taken as larger than 10), the calculations associated with determining the values
of the terms becomes laborious. If n is large and p is small, and the product
np is less than 5, a very good approximation to a binomial distribution is given
by the corresponding Poisson distribution, in which calculations are usually
simpler.
The Poisson approximation to a binomial distribution may be defined as fol-
lows:

‘the probabilities that an event will happen 0, 1, 2, 3, . ., n times in n
trials are given by the successive terms of the expression

e��
(

1C �C �
2

2!
C �

3

3!
C . . .

)
taken from left to right’

The symbol � is the expectation of an event happening and is equal to np
For example, let 3% of the gearwheels produced by a company be defective,
and let a sample of 80 gearwheels be taken.
The sample number, n, is large, the probability of a defective gearwheel, p,
is small and the product np is 80 ð 0.03, i.e. 2.4, which is less than 5.
Hence a Poisson approximation to a binomial distribution may be used. The
expectation of a defective gearwheel, � D np D 2.4
The probabilities of 0, 1, 2,. . . defective gearwheels are given by the successive

terms of the expression e��
(

1C �C �
2

2!
C �

3

3!
C Ð Ð Ð

)
taken from left to

right, i.e. by e��, �e��,
�2e��

2!
, . . Thus:

the probability of no defective gearwheels is e�� D e�2.4 D 0.0907

the probability of 1 defective gearwheel is �e�� D 2.4e�2.4 D 0.2177

the probability of 2 defective gearwheels is
�2e��

2!
D 2.42e�2.4

2ð 1
D 0.2613
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The probability of having more than 2 defective gearwheels is 1–(the sum of
the probabilities of having 0, 1, and 2 defective gearwheels), i.e.

1� �0.0907 C 0.2177 C 0.2613�, that is, 0.4303

The principal use of a Poisson distribution is to determine the theoretical
probabilities when p, the probability of an event happening, is known, but
q, the probability of the event not happening is unknown. For example, the
average number of goals scored per match by a football team can be calculated,
but it is not possible to quantify the number of goals which were not scored.
In this type of problem, a Poisson distribution may be defined as follows:

‘the probabilities of an event occurring 0, 1, 2, 3. . .. times are given by

the successive terms of the expression e��
(

1C �C �
2

2!
C �

3

3!
C Ð Ð Ð

)
,

taken from left to right’

The symbol � is the value of the average occurrence of the event.
For example, a production department has 35 similar milling machines. The
number of breakdowns on each machine averages 0.06 per week.
Since the average occurrence of a breakdown is known but the number of
times when a machine did not break down is unknown, a Poisson distri-
bution must be used. The expectation of a breakdown for 35 machines is
35 ð 0.06, i.e. 2.1 breakdowns per week. The probabilities of a breakdown
occurring 0,1, 2,. . . times are given by the successive terms of the expression

e��
(

1C �C �
2

2!
C �

3

3!
C . . .

)
, taken from left to right. Hence:

the probability of no breakdowns e�� D e�2.1 D 0.1225

the probability of 1 breakdown is �e�� D 2.1e�2.1 D 0.2572

the probability of 2 breakdowns is
�2e��

2!
D 2.12e�2.1

2ð 1
D 0.2700

The probability of less than 3 breakdowns per week is the sum of the proba-
bilities of 0, 1 and 2 breakdowns per week,

i.e. 0.1225 C 0.2572C 0.2700, i.e. 0.6497

80 The Normal Distribution
Introduction to the normal distribution

When data is obtained, it can frequently be considered to be a sample (i.e.
a few members) drawn at random from a large population (i.e. a set having
many members). If the sample number is large, it is theoretically possible to
choose class intervals which are very small, but which still have a number
of members falling within each class. A frequency polygon of this data then
has a large number of small line segments and approximates to a continuous
curve. Such a curve is called a frequency or a distribution curve.
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An extremely important symmetrical distribution curve is called the normal
curve and is as shown in Figure 80.1. This curve can be described by a
mathematical equation and is the basis of much of the work done in more
advanced statistics. Many natural occurrences such as the heights or weights
of a group of people, the sizes of components produced by a particular machine
and the life length of certain components approximate to a normal distribution.

Variable

F
re

qu
en

cy

Figure 80.1

Probability
density

Standard deviations

z1 z20 z-value

Figure 80.2

Normal distribution curves can differ from one another in the following four
ways:
(a) by having different mean values
(b) by having different values of standard deviations
(c) the variables having different values and different units and
(d) by having different areas between the curve and the horizontal axis.
A normal distribution curve is standardised as follows:
(a) The mean value of the unstandardized curve is made the origin, thus

making the mean value, x, zero.
(b) The horizontal axis is scaled in standard deviations. This is done by letting

z D x � x
�

, where z is called the normal standard variate, x is the value

of the variable, x is the mean value of the distribution and � is the standard
deviation of the distribution.

(c) The area between the normal curve and the horizontal axis is made equal
to unity.

When a normal distribution curve has been standardised, the normal curve is
called a standardised normal curve or a normal probability curve, and any
normally distributed data may be represented by the same normal probability
curve.
The area under part of a normal probability curve is directly proportional to
probability and the value of the shaded area shown in Figure 80.2 can be
determined by evaluating:∫

1p
�2��

e�z
2/2� dz, where z D x � x

�

To save repeatedly determining the values of this function, tables of partial
areas under the standardised normal curve are available in many mathematical
formulae books, and such a table is shown in Table 80.1.

For example, let the mean height of 500 people be 170 cm and the standard
deviation be 9 cm. Assuming the heights are normally distributed, the number
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Table 80.1 Partial areas under the standardised normal curve

z0

z D x� x
�

0 1 2 3 4 5 6 7 8 9

0.0 0.0000 0.0040 0.0080 0.0120 0.0159 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0678 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1388 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2086 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2760 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3451 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4430 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4762 0.4767
2.0 0.4772 0.4778 0.4783 0.4785 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4882 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4076 0.4977 0.4977 0.4978 0.4979 0.4980 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993
3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995
3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997
3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998
3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998
3.6 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.9 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
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of people likely to have heights between 150 cm and 195 cm is determined
as follows:
The mean value, x, is 170 cm and corresponds to a normal standard variate
value, z, of zero on the standardised normal curve. A height of 150 cm has

a z-value given by z D x � x
�

standard deviations, i.e.
150� 170

9
or �2.22

standard deviations. Using a table of partial areas beneath the standardised
normal curve (see Table 80.1), a z-value of �2.22 corresponds to an area of
0.4868 between the mean value and the ordinate z D �2.22. The negative
z-value shows that it lies to the left of the z D 0 ordinate.
This area is shown shaded in Figure 80.3(a). Similarly, 195 cm has a z-value

of
195� 170

9
that is 2.78 standard deviations. From Table 80.1, this value of

z corresponds to an area of 0.4973, the positive value of z showing that it lies
to the right of the z D 0 ordinate. This area is shown shaded in Figure 80.3(b).
The total area shaded in Figures 80.3(a) and (b) is shown in Figure 80.3(c)
and is 0.4868 C 0.4973, i.e. 0.9841 of the total area beneath the curve.
However, the area is directly proportional to probability. Thus, the probability
that a person will have a height of between 150 and 195 cm is 0.9841. For a
group of 500 people, 500ð 0.9841, i.e. 492 people are likely to have heights
in this range. The value of 500ð 0.9841 is 492.05, but since answers based on
a normal probability distribution can only be approximate, results are usually
given correct to the nearest whole number.
Similarly, the number of people likely to have heights of less than 165 cm is
determined as follows:

A height of 165 cm corresponds to
165� 170

9
, i.e. �0.56 standard deviations.

The area between z D 0 and z D �0.56 (from Table 80.1) is 0.2123, shown
shaded in Figure 80.4(a). The total area under the standardised normal curve

0 z-value−2.22
(a)

0 z-value2.78
(b)

0 z-value2.78−2.22
(c)

Figure 80.3

0 z-value−0.56 0 z-value−0.56
(a) (b)

Figure 80.4
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is unity and since the curve is symmetrical, it follows that the total area
to the left of the z D 0 ordinate is 0.5000. Thus the area to the left of
the z D �0.56 ordinate (‘left’ means ‘less than’, ‘right’ means ‘more than’)
is 0.5000� 0.2123, i.e. 0.2877 of the total area, which is shown shaded
in Figure 80.4(b). The area is directly proportional to probability and since
the total area beneath the standardised normal curve is unity, the probabil-
ity of a person’s height being less than 165 cm is 0.2877. For a group of
500 people, 500ð 0.2877, i.e. 144 people are likely to have heights of less
than 165 cm.

Testing for a normal distribution

It should never be assumed that because data is continuous it automatically
follows that it is normally distributed. One way of checking that data is nor-
mally distributed is by using normal probability paper, often just called
probability paper. This is special graph paper which has linear markings on
one axis and percentage probability values from 0.01 to 99.99 on the other
axis (see Figure 80.5). The divisions on the probability axis are such that
a straight line graph results for normally distributed data when percentage
cumulative frequency values are plotted against upper class boundary values.
If the points do not lie in a reasonably straight line, then the data is not
normally distributed.
The mean value and standard deviation of normally distributed data may be
determined using normal probability paper. For normally distributed data, the
area beneath the standardised normal curve and a z-value of unity (i.e. one
standard deviation) may be obtained from Table 80.1. For one standard devi-
ation, this area is 0.3413, i.e. 34.13%. An area of š1 standard deviation is
symmetrically placed on either side of the z D 0 value, i.e. is symmetrically
placed on either side of the 50 per cent cumulative frequency value. Thus an
area corresponding to š1 standard deviation extends from percentage cumu-
lative frequency values of �50C 34.13�% to �50� 34.13�%, i.e. from 84.13%
to 15.87%. For most purposes, these values are taken as 84% and 16%. Thus,
when using normal probability paper, the standard deviation of the distribution
is given by:(

variable value for 84%
cumulative frequency

)
�
(

variable value for 16%
cumalative frequency

)
2

For example, the data given below refers to the masses of 50 copper ingots.

Class mid-point
value (kg)

29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 37.5 38.5

Frequency 2 4 6 8 9 8 6 4 2 1

To test the normality of a distribution, the upper class boundary/percentage
cumulative frequency values are plotted on normal probability paper. The
upper class boundary values are: 30, 31, 32, . . . , 38, 39. The corresponding
cumulative frequency values (for ‘less than’ the upper class boundary val-
ues) are: 2, �4C 2� D 6, �6C 4C 2� D 12, 20, 29, 37, 43, 47, 49 and 50.
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The corresponding percentage cumulative frequency values are
2

50
ð 100 D 4,

6

50
ð 100 D 12, 24, 40, 58, 74, 86, 94, 98 and 100%

The co-ordinates of upper class boundary/percentage cumulative frequency
values are plotted as shown in Figure 80.5. When plotting these values, it will
always be found that the co-ordinate for the 100% cumulative frequency value
cannot be plotted, since the maximum value on the probability scale is 99.99.
Since the points plotted in Figure 80.5 lie very nearly in a straight line,
the data is approximately normally distributed.
The mean value and standard deviation can be determined from Figure 80.5.
Since a normal curve is symmetrical, the mean value is the value of the variable
corresponding to a 50% cumulative frequency value, shown as point P on the
graph. This shows that the mean value is 33.6 kg. The standard deviation is
determined using the 84% and 16% cumulative frequency values, shown as
Q and R in Figure 80.5. The variable values for Q and R are 35.7 and 31.4
respectively; thus two standard deviations correspond to 35.7� 31.4, i.e. 4.3,

showing that the standard deviation of the distribution is approximately
4.3

2
i.e. 2.15 standard deviations.
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81 Linear Correlation
Introduction to linear correlation

Correlation is a measure of the amount of association existing between two
variables. For linear correlation, if points are plotted on a graph and all the
points lie on a straight line, then perfect linear correlation is said to exist.
When a straight line having a positive gradient can reasonably be drawn
through points on a graph positive or direct linear correlation exists, as
shown in Figure 81.1(a). Similarly, when a straight line having a negative
gradient can reasonably be drawn through points on a graph, negative or
inverse linear correlation exists, as shown in Figure 81.1(b). When there is
no apparent relationship between co-ordinate values plotted on a graph then no
correlation exists between the points, as shown in Figure 81.1(c). In statistics,
when two variables are being investigated, the location of the co-ordinates on
a rectangular co-ordinate system is called a scatter diagram — as shown in
Figure 81.1.

The product-moment formula for determining the linear
correlation coefficient

The amount of linear correlation between two variables is expressed by a
coefficient of correlation, given the symbol r. This is defined in terms of the
deviations of the co-ordinates of two variables from their mean values and is
given by the product-moment formula which states:

coefficient of correlation, r =
6xy√

f.6x2/.6y2/g �1�

y y

y

x x

x

Positive linear correlation Negative linear correlation

No correlation

(a) (b)

(c)
Figure 81.1
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where the x-values are the values of the deviations of co-ordinates X from
X, their mean value and the y-values are the values of the deviations of
co-ordinates Y from Y, their mean value, i.e. x D �X� X� and y D �Y� Y�.
The results of this determination give values of r lying between C1 and �1,
where C1 indicates perfect direct correlation, �1 indicates perfect inverse
correlation and 0 indicates that no correlation exists. Between these values,
the smaller the value of r, the less is the amount of correlation which exists.
Generally, values of r in the ranges 0.7 to 1 and �0.7 to �1 show that a fair
amount of correlation exists.
For example, in an experiment to determine the relationship between force
on a wire and the resulting extension, the following data is obtained:

Force (N) 10 20 30 40 50 60 70
Extension (mm) 0.22 0.40 0.61 0.85 1.20 1.45 1.70

The linear coefficient of correlation for this data is obtained as follows:
Let X be the variable force values and Y be the dependent variable extension
values. The coefficient of correlation is given by:

r D xy√
f�x2��y2�g

where x D �X� X� and y D �Y� Y�, X and Y being the mean values of the X
and Y values respectively. Using a tabular method to determine the quantities
of this formula gives:

X Y x D �X� X� y D �Y� Y� xy x2 y2

10 0.22 �30 �0.699 20.97 900 0.489
20 0.40 �20 �0.519 10.38 400 0.269
30 0.61 �10 �0.309 3.09 100 0.095
40 0.85 0 �0.069 0 0 0.005
50 1.20 10 0.281 2.81 100 0.079
60 1.45 20 0.531 10.62 400 0.282
70 1.70 30 0.781 23.43 900 0.610

X D 280 Y D 6.43 xy D x2 D y2 D
X D 280

7
Y D 6.43

7
71.30 2800 1.829

D 40 Y D 0.919

Thus r D 71.3p
[2800ð 1.829]

D 0.996

This shows that a very good direct correlation exists between the values
of force and extension.

The significance of a coefficient of correlation

When the value of the coefficient of correlation has been obtained from the
product moment formula, some care is needed before coming to conclusions
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based on this result. Checks should be made to ascertain the following two
points:
(a) that a ‘cause and effect’ relationship exists between the variables; it is rela-

tively easy, mathematically, to show that some correlation exists between,
say, the number of ice creams sold in a given period of time and the
number of chimneys swept in the same period of time, although there is
no relationship between these variables;

(b) that a linear relationship exists between the variables; the product-moment
formula given above is based on linear correlation. Perfect non-linear cor-
relation may exist (for example, the co-ordinates exactly following the
curve y D x3), but this gives a low value of coefficient of correlation
since the value of r is determined using the product-moment formula,
based on a linear relationship.

82 Linear Regression

Introduction to linear regression

Regression analysis, usually termed regression, is used to draw the line of
‘best fit’ through co-ordinates on a graph. The techniques used enable a math-
ematical equation of the straight line form y D mx C c to be deduced for a
given set of co-ordinate values, the line being such that the sum of the devia-
tions of the co-ordinate values from the line is a minimum, i.e. it is the line of
’best fit’. When a regression analysis is made, it is possible to obtain two lines
of best fit, depending on which variable is selected as the dependent variable
and which variable is the independent variable. For example, in a resistive
electrical circuit, the current flowing is directly proportional to the voltage
applied to the circuit. There are two ways of obtaining experimental values
relating the current and voltage. Either, certain voltages are applied to the
circuit and the current values are measured, in which case the voltage is the
independent variable and the current is the dependent variable; or, the voltage
can be adjusted until a desired value of current is flowing and the value of
voltage is measured, in which case the current is the independent value and
the voltage is the dependent value.

The least-squares regression lines

For a given set of co-ordinate values, (X1, Y1), (X2, Y2),. . ., (XN,YN) let
the X values be the independent variables and the Y-values be the dependent
values. Also let D1,. . . , DN be the vertical distances between the line shown
as PQ in Figure 82.1 and the points representing the co-ordinate values. The
least-squares regression line, i.e. the line of best fit, is the line which makes
the value of D2

1 C D2
2 C Ð Ð Ð C D2

N a minimum value.
The equation of the least-squares regression line is usually written as Y D
a0 C a1X, where a0 is the Y-axis intercept value and a1 is the gradient of the
line (analogous to c and m in the equation y D mx C c). The values of a0 and
a1 to make the sum of the ’deviations squared’ a minimum can be obtained
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Figure 82.1

from the two equations: ∑
Y D a0NC a1

∑
X �1�

∑
�XY� D a0

∑
XC a1

∑
X2 �2�

where X and Y are the co-ordinate values, N is the number of co-ordinates
and a0 and a1 are called the regression coefficients of Y on X. Equations
(1) and (2) are called the normal equations of the regression line of Y on X.
The regression line of Y on X is used to estimate values of Y for given values
of X.
If the Y-values (vertical-axis) are selected as the independent variables, the
horizontal distances between the line shown as PQ in Figure 82.1 and the
co-ordinate values (H3, H4, etc.) are taken as the deviations. The equation
of the regression line is of the form: X D b0 C b1Y and the normal equations
become: ∑

X D b0NC b1

∑
Y �3�

∑
�XY� D b0

∑
YC b1

∑
Y2 �4�

where X and Y are the co-ordinate values, b0 and b1 are the regression coeffi-
cients of X on Y and N is the number of co-ordinates. These normal equations
are of the regression line of X on Y, which is slightly different to the regression
line of Y on X. The regression line of X on Y is used to estimate values of X
for given values of Y. The regression line of Y on X is used to determine any
value of Y corresponding to a given value of X. If the value of Y lies within
the range of Y-values of the extreme co-ordinates, the process of finding the
corresponding value of X is called linear interpolation. If it lies outside of
the range of Y-values of the extreme co-ordinates then the process is called
linear extrapolation and the assumption must be made that the line of best
fit extends outside of the range of the co-ordinate values given. By using the
regression line of X on Y, values of X corresponding to given values of Y
may be found by either interpolation or extrapolation.
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For example, the experimental values relating centripetal force and radius,
for a mass travelling at constant velocity in a circle, are as shown:

Force (N) 5 10 15 20 25 30 35 40
Radius (cm) 55 30 16 12 11 9 7 5

Let the radius be the independent variable X, and the force be the dependent
variable Y. (This decision is usually based on a ‘cause’ corresponding to X
and an ‘effect’ corresponding to Y).
The equation of the regression line of force on radius is of the form Y D a0 C
a1X and the constants a0 and a1 are determined from the normal equations:∑

Y D a0NC a1

∑
X and

∑
XY D a0

∑
XC a1

∑
X2

(from equations (1) and (2))
Using a tabular approach to determine the values of the summations gives:

Radius, X Force, Y X2 XY Y2

55 5 3025 275 25
30 10 900 300 100
16 15 256 240 225
12 20 144 240 400
11 25 121 275 625
9 30 81 270 900
7 35 49 245 1225
5 40 25 200 1600∑
X

∑
Y

∑
X2 ∑

XY
∑
Y2

D 145 D 180 D 4601 D 2045 D 5100

Thus 180 D 8a0 C 145a1 and 2045 D 145a0 C 4601a1
Solving these simultaneous equations gives a0 D 33.7 and a1 D �0.617, cor-
rect to 3 significant figures. Thus the equation of the regression line of force
on radius is: Y = 33.7 − 0.617 X
Thus the force, Y, at a radius of, say, 40 cm, is

Y D 33.7� 0.617�40� D 9.02,
i.e. the force at a radius of 40 cm is 9.02 N
The equation of the regression line of radius on force is of the form X D b0 C
b1Y and the constants b0 and b1 are determined from the normal equations:∑

X D b0NC b1

∑
Y and

∑
XY D b0

∑
YC b1

∑
Y2

(from equations (3) and (4))
The values of the summations have been obtained above giving:

145 D 8b0 C 180b1 and 2045 D 180b0 C 5100b1

Solving these simultaneous equations gives b0 D 44.2 and b1 D �1.16, correct
to 3 significant figures. Thus the equation of the regression line of radius on
force is: X = 44.2 − 1.16 Y
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Thus, the radius, X, when the force is, say, 32 newtons is
X D 44.2� 1.16�32� D 7.08,

i.e. the radius when the force is 32 N is 7.08 cm.

83 Sampling and Estimation Theories

Introduction

The concepts of elementary sampling theory and estimation theories introduced
in this chapter will be provide the basis for a more detailed study of inspection,
control and quality control techniques used in industry. Such theories can be
quite complicated; in this chapter a full treatment of the theories and the
derivation of formulae have been omitted for clarity-basic concepts only have
been developed.

Sampling distributions
In statistics, it is not always possible to take into account all the members of
a set and in these circumstances, a sample, or many samples, are drawn from
a population. Usually when the word sample is used, it means that a random
sample is taken. If each member of a population has the same chance of being
selected, then a sample taken from that population is called random. A sample
that is not random is said to be biased and this usually occurs when some
influence affects the selection.

When it is necessary to make predictions about a population based on
random sampling, often many samples of, say, N members are taken, before
the predictions are made. If the mean value and standard deviation of each
of the samples is calculated, it is found that the results vary from sample
to sample, even though the samples are all taken from the same population.
In the theories introduced in the following sections, it is important to know
whether the differences in the values obtained are due to chance or whether
the differences obtained are related in some way. If M samples of N members
are drawn at random from a population, the mean values for the M samples
together form a set of data. Similarly, the standard deviations of theM samples
collectively form a set of data. Sets of data based on many samples drawn
from a population are called sampling distributions. They are often used to
describe the chance fluctuations of mean values and standard deviations based
on random sampling.

The sampling distribution of the means

Suppose that it is required to obtain a sample of two items from a set containing
five items. If the set is the five letters A, B, C, D and E, then the different
samples which are possible are:

AB, AC, AD, AE, BC, BD, BE,CD,CE and DE,
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that is, ten different samples. The number of possible different samples in this

case is given by
5ð 4

2ð 1
i.e. 10. Similarly, the number of different ways in

which a sample of three items can be drawn from a set having ten members

can be shown to be
10ð 9ð 8

3ð 2ð 1
i.e. 120. It follows that when a small sample

is drawn from a large population, there are very many different combinations
of members possible. With so many different samples possible, quite a large
variation can occur in the mean values of various samples taken from the same
population.

Usually, the greater the number of members in a sample, the closer will
be the mean value of the sample to that of the population. Consider the set
of numbers 3, 4, 5, 6 and 7. For a sample of 2 members, the lowest value

of the mean is
3C 4

2
, i.e. 3.5; the highest is

6C 7

2
, i.e. 6.5, giving a range

of mean values of 6.5� 3.5 D 3. For a sample of 3 members, the range is,
3C 4C 5

3
to

5C 6C 7

3
that is, 2. As the number in the sample increases,

the range decreases until, in the limit, if the sample contains all the members
of the set, the range of mean values is zero. When many samples are drawn
from a population and a sample distribution of the mean values of the samples
is formed, the range of the mean values is small provided the number in the
sample is large. Because the range is small it follows that the standard deviation
of all the mean values will also be small, since it depends on the distance of the
mean values from the distribution mean. The relationship between the standard
deviation of the mean values of a sampling distribution and the number in each
sample can be expressed as follows:
Theorem 1 ‘If all possible samples of size N are drawn from a finite popula-
tion, Np, without replacement, and the standard deviation of the mean values
of the sampling distribution of means is determined, then:

�x D �p
N

√(
Np �N
Np � 1

)

where �x is the standard deviation of the sampling distribution of means and
� is the standard deviation of the population’
The standard deviation of a sampling distribution of mean values is called the
standard error of the means, thus

standard error of the means, sx =
sp
N

√(
Np − N
Np − 1

)
�1�

Equation (1) is used for a finite population of size Np and/or for sampling
without replacement. The word ‘error’ in the ‘standard error of the means’
does not mean that a mistake has been made but rather that there is a degree
of uncertainty in predicting the mean value of a population based on the mean
values of the samples. The formula for the standard error of the means is
true for all values of the number in the sample, N. When Np is very large
compared with N or when the population is infinite (this can be considered
to be the case when sampling is done with replacement), the correction factor
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Np �N
Np � 1

)
approaches unity and equation (1) becomes:

sx =
sp
N

�2�

Equation (2) is used for an infinite population and/or for sampling with
replacement.
Theorem 2 ‘If all possible samples of size N are drawn from a population
of size Np and the mean value of the sampling distribution of means #x is
determined then

mx = m �3�

where # is the mean value of the population’
In practice, all possible samples of size N are not drawn from the population.
However, if the sample size is large (usually taken as 30 or more), then the
relationship between the mean of the sampling distribution of means and the
mean of the population is very near to that shown in equation (3). Similarly,
the relationship between the standard error of the means and the standard
deviation of the population is very near to that shown in equation (2).

Another important property of a sampling distribution is that when the
sample size, N, is large, the sampling distribution of means approximates
to a normal distribution, of mean value #x and standard deviation �x . This
is true for all normally distributed populations and also for populations that
are not normally distributed provided the population size is at least twice as
large as the sample size. This property of normality of a sampling distribution
is based on a special case of the ‘central limit theorem’, an important theorem
relating to sampling theory. Because the sampling distribution of means and
standard deviations is normally distributed, the table of the partial areas under
the standardised normal curve (shown in Table 80.1 on page 394) can be used
to determine the probabilities of a particular sample lying between, say, š1
standard deviation, and so on.
For example, the heights of 3000 people are normally distributed with a mean
of 175 cm and a standard deviation of 8 cm. Random samples are taken of
40 people. The standard deviation and the mean of the sampling distribution of
means if sampling is done (a) with replacement, and (b) without replacement,
may be predicted as follows:

For the population: number of members, Np D 3000;

standard deviation, � D 8 cm;

mean, # D 175 cm

For the samples: number in each sample, N D 40

(a) When sampling is done with replacement, the total number of possi-
ble samples (two or more can be the same) is infinite. Hence, from
equation (2) the standard error of the mean (i.e. the standard deviation
of the sampling distribution of means)

sx D �p
N
D 8p

40
D 1.265 cm

From equation (3), the mean of the sampling distribution
mx D # D 175 cm
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(b) When sampling is done without replacement, the total number of possible
samples is finite and hence equation (1) applies. Thus the standard error
of the means

sx D �p
N

√(
Np �N
Np � 1

)
D 8p

40

√(
3000� 40

3000� 1

)

D �1.265��0.9935� D 1.257 cm
As stated, following equation (3), provided the sample size is large, the
mean of the sampling distribution of means is the same for both finite and
infinite populations. Hence, from equation (3), mx = 175 cm

The estimation of population parameters based on a large
sample size

When a population is large, it is not practical to determine its mean and
standard deviation by using the basic formulae for these parameters. In fact,
when a population is infinite, it is impossible to determine these values. For
large and infinite populations the values of the mean and standard deviation
may be estimated by using the data obtained from samples drawn from the
population.

Point and interval estimates
An estimate of a population parameter, such as mean or standard deviation,
based on a single number is called a point estimate. An estimate of a popu-
lation parameter given by two numbers between which the parameter may be
considered to lie is called an interval estimate. Thus if an estimate is made
of the length of an object and the result is quoted as 150 cm, this is a point
estimate. If the result is quoted as 150š 10 cm, this is an interval estimate
and indicates that the length lies between 140 and 160 cm. Generally, a point
estimate does not indicate how close the value is to the true value of the
quantity and should be accompanied by additional information on which its
merits may be judged. A statement of the error or the precision of an esti-
mate is often called its reliability. In statistics, when estimates are made of
population parameters based on samples, usually interval estimates are used.
The word estimate does not suggest that we adopt the approach ‘let’s guess
that the mean value is about. .’, but rather that a value is carefully selected
and the degree of confidence which can be placed in the estimate is given in
addition.

Confidence intervals

It is stated earlier that when samples are taken from a population, the mean val-
ues of these samples are approximately normally distributed, that is, the mean
values forming the sampling distribution of means is approximately normally
distributed. It is also true that if the standard deviation of each of the samples
is found, then the standard deviations of all the samples are approximately nor-
mally distributed, that is, the standard deviations of the sampling distribution of
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standard deviations are approximately normally distributed. Parameters such
as the mean or the standard deviation of a sampling distribution are called
sampling statistics, S. Let #S be the mean value of a sampling statistic of the
sampling distribution, that is, the mean value of the means of the samples or
the mean value of the standard deviations of the samples. Also let �S be the
standard deviation of a sampling statistic of the sampling distribution, that is,
the standard deviation of the means of the samples or the standard deviation
of the standard deviations of the samples. Because the sampling distribution of
the means and of the standard deviations are normally distributed, it is possible
to predict the probability of the sampling statistic lying in the intervals:

meanš 1 standard deviation,

meanš 2 standard deviations,

or meanš 3 standard deviations,
by using tables of the partial areas under the standardised normal curve given
in Table 80.1 on page 394. From this table, the area corresponding to a z-value
of C1 standard deviation is 0.3413, thus the area corresponding to š1 standard
deviation is 2ð 0.3413, that is, 0.6826. Thus the percentage probability of a
sampling statistic lying between the mean š1 standard deviation is 68.26%.
Similarly, the probability of a sampling statistic lying between the mean š2
standard deviations is 95.44% and of lying between the mean š3 standard
deviations is 99.74%.
The values 68.26%, 95.44% and 99.74% are called the confidence levels for
estimating a sampling statistic. A confidence level of 68.26% is associated
with two distinct values, these being, S� �1 standard deviation), i.e. S� �S
and SC �1 standard deviation), i.e. SC �S.These two values are called the
confidence limits of the estimate and the distance between the confidence
limits is called the confidence interval. A confidence interval indicates the
expectation or confidence of finding an estimate of the population statistic in
that interval, based on a sampling statistic. The list in Table 83.1 is based on
values given in Table 80.1, and gives some of the confidence levels used in
practice and their associated z-values; (some of the values given are based
on interpolation). When the table is used in this context, z-values are usually
indicated by ‘zC’ and are called the confidence coefficients.
Any other values of confidence levels and their associated confidence coeffi-
cients can be obtained using Table 80.1.
For example, to determine the confidence coefficient corresponding to a con-
fidence level of 98.5%:

98.5% is equivalent to a per unit value of 0.9850. This indicates that
the area under the standardised normal curve between �zC and CzC, i.e.
corresponding to 2zC, is 0.9850 of the total area. Hence the area between

the mean value and zC is
0.9850

2
i.e. 0.4925 of the total area. The z-value

Table 83.1

Confidence
level, %

99 98 96 95 90 80 50

Confidence
coefficient, zC

2.58 2.33 2.05 1.96 1.645 1.28 0.6745
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corresponding to a partial area of 0.4925 is 2.43 standard deviations from
Table 80.1. Thus, the confidence coefficient corresponding to a confidence
limit of 98.5% is 2.43

(a) Estimating the mean of a population when the standard
deviation of the population is known

When a sample is drawn from a large population whose standard deviation
is known, the mean value of the sample, x, can be determined. This mean
value can be used to make an estimate of the mean value of the popula-
tion, #. When this is done, the estimated mean value of the population is
given as lying between two values, that is, lying in the confidence interval
between the confidence limits. If a high level of confidence is required in the
estimated value of #, then the range of the confidence interval will be large.
For example, if the required confidence level is 96%, then from Table 83.1
the confidence interval is from �zC to CzC, that is, 2ð 2.05 D 4.10 standard
deviations wide. Conversely, a low level of confidence has a narrow confi-
dence interval and a confidence level of, say, 50%, has a confidence interval of
2ð 0.6745, that is 1.3490 standard deviations. The 68.26% confidence level
for an estimate of the population mean is given by estimating that the popu-
lation mean, #, is equal to the same mean, x, and then stating the confidence
interval of the estimate. Since the 68.26% confidence level is associated with
‘š1 standard deviation of the means of the sampling distribution’, then the
68.26% confidence level for the estimate of the population mean is given
by: x š �x
In general, any particular confidence level can be obtained in the estimate,
by using x š zC�x , where zC is the confidence coefficient corresponding to
the particular confidence level required. Thus for a 96% confidence level, the
confidence limits of the population mean are given by x š 2.05�x
Since only one sample has been drawn, the standard error of the means, �x ,is
not known. However, it is shown earlier that

�x D �p
N

√(
Np �N
Np � 1

)

Thus, the confidence limits of the mean of the population are:

x ±
zC sp

N

√(
Np − N
Np − 1

)
�4�

for a finite population of size Np
The confidence limits for the mean of the population are:

x ±
zC sp

N
�5�

for an infinite population .
Thus for a sample of size N and mean x, drawn from an infinite population
having a standard deviation of �, the mean value of the population is estimated
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to be, for example, x š 2.33�p
N

for a confidence level of 98%. This indicates

that the mean value of the population lies between x � 2.33�p
N

and x C 2.33�p
N

,

with 98% confidence in this prediction.
For example, it is found that the standard deviation of the diameters of rivets
produces by a certain machine over a long period of time is 0.018 cm. The
diameters of a random sample of 100 rivets produced by this machine in a
day have a mean value of 0.476 cm. If the machine produces 2500 rivets a
day, (a) the 90% confidence limits, and (b) the 97% confidence limits for an
estimate of the mean diameter of all the rivets produced by the machine in a
day, is determined as follows:

For the population: standard deviation, � D 0.018 cm

number in the population, Np D 2500

For the sample: number in the sample, N D 100

mean, x D 0.476 cm

There is a finite population and the standard deviation of the population is
known, hence expression (4) is used.
(a) For a 90% confidence level, the value of zC, the confidence coefficient,

is 1.645 from Table 83.1. Hence, the estimate of the confidence limits of
the population mean, #, is:

0.476š
(
�1.645��0.018�p

100

)√(
2500 � 100

2500� 1

)

i.e. 0.476š �0.00296��0.9800� D 0.476š 0.0029 cm

Thus, the 90% confidence limits are 0.473 cm and 0.479 cm
This indicates that if the mean diameter of a sample of 100 rivets is
0.476 cm, then it is predicted that the mean diameter of all the rivets
will be between 0.473 cm and 0.479 cm and this prediction is made with
confidence that it will be correct nine times out of ten.

(b) For a 97% confidence level, the value of zC has to be determined from
a table of partial areas under the standardised normal curve given in
Table 80.1, as it is not one of the values given in Table 83.1. The total area
between ordinates drawn at �zC and CzC has to be 0.9700. Because the
standardised normal curve is symmetrical, the area between zC D 0 and

zC is
0.9700

2
, i.e. 0.4850. From Table 80.1 an area of 0.4850 corresponds

to a zC value of 2.17.
Hence, the estimated value of the confidence limits of the population mean
is between

x š zC�p
N

√(
Np �N
Np � 1

)
D 0.476š

(
�2.17��0.018�p

100

)√(
2500� 100

2500 � 1

)

D 0.476š �0.0039��0.9800� D 0.476š 0.0038
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Thus, the 97% confidence limits are 0.472 cm and 0.480 cm
It can be seen that the higher value of confidence level required in part (b)
results in a larger confidence interval.

(b) Estimating the mean and standard deviation of a population
from sample data

The standard deviation of a large population is not known and, in this case,
several samples are drawn from the population. The mean of the sampling
distribution of means, #x and the standard deviation of the sampling distribu-
tion of means (i.e. the standard error of the means), �x , may be determined.
The confidence limits of the mean value of the population, #, are given by:

mx ± zC sx �6�

where zC is the confidence coefficient corresponding to the confidence level
required.
To make an estimate of the standard deviation, �, of a normally distributed
population:
(i) a sampling distribution of the standard deviations of the samples is formed,

and
(ii) the standard deviation of the sampling distribution is determined by using

the basic standard deviation formula.
This standard deviation is called the standard error of the standard deviations
and is usually signified by �S. If s is the standard deviation of a sample, then
the confidence limits of the standard deviation of the population are given by:

s ± zC sS �7�

where zC is the confidence coefficient corresponding to the required confidence
level.
For example, several samples of 50 fuses selected at random from a large
batch are tested when operating at a 10% overload current and the mean
time of the sampling distribution before the fuses failed is 16.50 minutes. The
standard error of the means is 1.4 minutes. The estimated mean time to failure
of the batch of fuses for a confidence level of 90% is determined as follows:

For the sampling distribution: the mean, mx D 16.50,

the standard error of the means, sx D 1.4

The estimated mean of the population is based on sampling distribution data
only and so expression (6) is used.
For an 90% confidence level, zC D 1.645 (from Table 83.1), thus
#x š zC�x D 16.50š �1.645��1.4� D 16.50š 2.30 minutes.
Thus, the 90% confidence level of the mean time to failure is from 14.20
minutes to 18.80 minutes.

Estimating the mean of a population based on a small sample size

The methods used earlier to estimate the population mean and standard devi-
ation rely on a relatively large sample size, usually taken as 30 or more. This
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is because when the sample size is large the sampling distribution of a param-
eter is approximately normally distributed. When the sample size is small,
usually taken as less than 30, the earlier techniques used for estimating the
population parameters become more and more inaccurate as the sample size
becomes smaller, since the sampling distribution no longer approximates to
a normal distribution. Investigations were carried out into the effect of small
sample sizes on the estimation theory by W. S. Gosset in the early twentieth
century and, as a result of his work, tables are available which enable a real-
istic estimate to be made, when sample sizes are small. In these tables, the

t-value is determined from the relationship t D �x � #�
s

p
�N� 1� where x is

the mean value of a sample, # is the mean value of the population from which
the sample is drawn, s is the standard deviation of the sample and N is the
number of independent observations in the sample. He published his findings
under the pen name of ‘Student’, and these tables are often referred to as the
‘Student’s t distribution’
The confidence limits of the mean value of a population based on a small
sample drawn at random from the population are given by

x ±
tC sp

.N − 1/
�8�

In this estimate, tC is called the confidence coefficient for small samples,
analogous to zC for large samples, s is the standard deviation of the sample, x
is the mean value of the sample and N is the number of members in the sample.
Table 83.2 is called ‘percentile values for Student’s t distribution’. The
columns are headed tp where p is equal to 0.995, 0.99, 0.975, . . . , 0.55. For
a confidence level of, say, 95%, the column headed t0.95 is selected and so
on. The rows are headed with the Greek letter ‘nu’, ', and are numbered from
1 to 30 in steps of 1, together with the numbers 40, 60, 120 and 1. These
numbers represent a quantity called the degrees of freedom, which is defined
as follows:

‘the sample number, N, minus the number of population parameters
which must be estimated for the sample’.

When determining the t-value, given by t D �x � #�
s

p
�N� 1�, it is necessary

to know the sample parameters x and s and the population parameter #. x and
s can be calculated for the sample, but usually an estimate has to be made
of the population mean #, based on the sample mean value. The number of
degrees of freedom, ', is given by the number of independent observations in
the sample, N, minus the number of population parameters which have to be

estimated, k, i.e. ' D N� k. For the equation t D �x � #�
s

p
�N� 1�, only #

has to be estimated, hence k D 1, and ' D N� 1
When determining the mean of a population based on a small sample size,
only one population parameter is to be estimated, and hence ' can always be
taken as (N� 1).
For example, a sample of 12 measurements of the diameter of a bar are
made and the mean of the sample is 1.850 cm. The standard deviation of
the samples is 0.16 mm. The (a) the 90% confidence limits and (b) the 70%
confidence limits for an estimate of the actual diameter of the bar, is determined
as follows:
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Table 83.2 Percentile values �tp� for Student’s t distribution with ' degrees of
freedom (shaded area D p)

tp

' t0.995 t0.99 t0.975 t0.95 t0.90 t0.80 t0.75 t0.70 t0.60 t0.55

1 63.66 31.82 12.71 6.31 3.08 1.376 1.000 0.727 0.325 0.158
2 9.92 6.96 4.30 2.92 1.89 1.061 0.816 0.617 0.289 0.142
3 5.84 4.54 3.18 2.35 1.64 0.978 0.765 0.584 0.277 0.137
4 4.60 3.75 2.78 2.13 1.53 0.941 0.741 0.569 0.271 0.134
5 4.03 3.36 2.57 2.02 1.48 0.920 0.727 0.559 0.267 0.132
6 3.71 3.14 2.45 1.94 1.44 0.906 0.718 0.553 0.265 0.131
7 3.50 3.00 2.36 1.90 1.42 0.896 0.711 0.549 0.263 0.130
8 3.36 2.90 2.31 1.86 1.40 0.889 0.706 0.546 0.262 0.130
9 3.25 2.82 2.26 1.83 1.38 0.883 0.703 0.543 0.261 0.129

10 3.17 2.76 2.23 1.81 1.37 0.879 0.700 0.542 0.260 0.129
11 3.11 2.72 2.20 1.80 1.36 0.876 0.697 0.540 0.260 0.129
12 3.06 2.68 2.18 1.78 1.36 0.873 0.695 0.539 0.259 0.128
13 3.01 2.65 2.16 1.77 1.35 0.870 0.694 0.538 0.259 0.128
14 2.98 2.62 2.14 1.76 1.34 0.868 0.692 0.537 0.258 0.128
15 2.95 2.60 2.13 1.75 1.34 0.866 0.691 0.536 0.258 0.128
16 2.92 2.58 2.12 1.75 1.34 0.865 0.690 0.535 0.258 0.128
17 2.90 2.57 2.11 1.74 1.33 0.863 0.689 0.534 0.257 0.128
18 2.88 2.55 2.10 1.73 1.33 0.862 0.688 0.534 0.257 0.127
19 2.86 2.54 2.09 1.73 1.33 0.861 0.688 0.533 0.257 0.127
20 2.84 2.53 2.09 1.72 1.32 0.860 0.687 0.533 0.257 0.127
21 2.83 2.52 2.08 1.72 1.32 0.859 0.686 0.532 0.257 0.127
22 2.82 2.51 2.07 1.72 1.32 0.858 0.686 0.532 0.256 0.127
23 2.81 2.50 2.07 1.71 1.32 0.858 0.685 0.532 0.256 0.127
24 2.80 2.49 2.06 1.71 1.32 0.857 0.685 0.531 0.256 0.127
25 2.79 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127
26 2.78 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127
27 2.77 2.47 2.05 1.70 1.31 0.855 0.684 0.531 0.256 0.127
28 2.76 2.47 2.05 1.70 1.31 0.855 0.683 0.530 0.256 0.127
29 2.76 2.46 2.04 1.70 1.31 0.854 0.683 0.530 0.256 0.127
30 2.75 2.46 2.04 1.70 1.31 0.854 0.683 0.530 0.256 0.127
40 2.70 2.42 2.02 1.68 1.30 0.851 0.681 0.529 0.255 0.126
60 2.66 2.39 2.00 1.67 1.30 0.848 0.679 0.527 0.254 0.126

120 2.62 2.36 1.98 1.66 1.29 0.845 0.677 0.526 0.254 0.126
1 2.58 2.33 1.96 1.645 1.28 0.842 0.674 0.524 0.253 0.126

For the sample: the sample size, N D 12; mean, x D 1.850 cm;

standard deviation s D 0.16 mm D 0.016 cm

Since the sample number is less than 30, the small sample estimate as given in
expression (8) must be used. The number of degrees of freedom, i.e. sample
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size minus the number of estimations of population parameters to be made,
is 12� 1, i.e. 11

(a) The percentile value corresponding to a confidence coefficient value of
t0.90 and a degree of freedom value of ' D 11 can be found by using
Table 83.2, and is 1.36, i.e. tC D 1.36. The estimated value of the mean
of the population is given by

x š tCsp
�N� 1�

D 1.850š �1.36��0.016�p
11

D 1.850š 0.0066 cm

Thus, the 90% confidence limits are 1.843 cm and 1.857 cm
This indicates that the actual diameter is likely to lie between 1.843 cm and
1.857 cm and that this prediction stands a 90% chance of being correct.

(b) The percentile value corresponding to t0.70 and to ' D 11 is obtained from
Table 83.2, and is 0.540, i.e. tC D 0.540.
The estimated value of the 70% confidence limits is given by:

xš tCsp
�N� 1�

D 1.850š �0.540��0.016�p
11

D 1.850š 0.0026 cm

Thus, the 70% confidence limits are 1.847 cm and 1.853 cm, i.e. the
actual diameter of the bar is between 1.847 cm and 1.853 cm and this
result has a 70% probability of being correct.



Laplace Transforms

84 Introduction to Laplace Transforms

Introduction

The solution of most electrical circuit problems can be reduced ultimately to
the solution of differential equations. The use of Laplace transforms provides
an alternative method to those discussed in Chapters 70 to 74 for solving linear
differential equations.

Definition of a Laplace transform

The Laplace transform of the function f�t� is defined by the integral∫1
0 e�stf�t� dt, where s is a parameter assumed to be a real number.

Common notations used for the Laplace transform

There are various commonly used notations for the Laplace transform of f�t�
and these include:

(i) L ff�t�g or Lff�t�g
(ii) L �f� or Lf

(iii) f�s� or f�s�

Also, the letter p is sometimes used instead of s as the parameter. The notation
adopted in this book will be f�t� for the original function and L f�t� for its
Laplace transform

Hence, from above: L ff .t/g =
∫∞

0 e−st f .t/dt �1�

Linearity property of the Laplace transform

From equation (1),

L fkf�t�g D
∫ 1

0
e�stkf�t�dt D k

∫ 1
0

e�stf�t�dt

i.e. L fkf�t�g D kL ff�t�g �2�

where k is any constant

Similarly, L faf�t�C b g�t�g D
∫ 1

0
e�st�af�t�C b g�t��dt

D a
∫ 1

0
e�stf�t� dt C b

∫ 1
0

e�stg�t� dt

i.e. L faf�t�C b g�t�g D aL ff�t�g C bL fg�t�g, �3�
where a and b are any real constants
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The Laplace transform is termed a linear operator because of the properties
shown in equations (2) and (3).

Laplace transforms of elementary functions

Using the definition of the Laplace transform in equation (1) a number of
elementary functions may be transformed, as summarised in Table 84.1.
For example,

L

{
1C 2t � 1

3
t4
}
D L f1g C 2L ftg � 1

3
L ft4g from equations (2) and (3)

D 1

s
C 2

(
1

s2

)
� 1

3

(
4!

s4C1

)
from (i), (vi) and (viii) of Table 84.1

D 1

s
C 2

s2
� 1

3

(
4.3.2.1

s5

)
D 1

s
Y

2
s2 −

8
s5

In another example,

L f5e2t � 3e�tg D 5L �e2t�� 3L fe�tg, from equations (2) and (3)

D 5
(

1

s� 2

)
� 3

(
1

s��1

)
from (iii) of Table 84.1

D 5

s� 2
� 3

sC 1
D 5�sC 1�� 3�s� 2�

�s� 2��s C 1�
D 2s Y 11

s2 − s − 2

Table 84.1 Elementary standard Laplace transforms

Function Laplace transforms
f�t� L ff�t�g D ∫10 e�stf �t� dt

(i) 1
1
s

(ii) k
k
s

(iii) eat 1
s� a

(iv) sin at
a

s2 C a2

(v) cos at
s

s2 C a2

(vi) t
1
s2

(vii) t2 2!
s3

(viii) tn�n D 1, 2, 3, . . .�
n!

snC1

(ix) cosh at
s

s2 � a2

(x) sinh at
a

s2 � a2
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In another example,

L f6 sin 3t � 4 cos 5tg D 6L fsin 3tg � 4L fcos 5tg

D 6
(

3

s2 C 32

)
� 4

(
s

s2 C 52

)

from (iv) and (v) of Table 84.1

D 18
s2 Y 9

−
4s

s2 Y 25

In another example,

L f2 cosh 2� � sinh 3�g D 2L fcosh 2�g � fsinh 3�g

D 2
(

s

s2 � 22

)
�
(

3

s2 � 32

)

from (ix) and (x) of Table 84.1

D 2s
s2 − 4

−
3

s2 − 9

85 Properties of Laplace Transforms

The Laplace transform of eatf .t/

From Chapter 84, the definition of the Laplace transform of f�t� is:

L ff�t�g D
∫ 1

0
e�stf�t� dt �1�

Thus L featf�t�g D
∫ 1

0
e�st�eatf�t�� dt D

∫ 1
0

e��s�a�f�t� dt �2�

(where a is a real constant)

Hence the substitution of �s� a� for s in the transform shown in equation (1)
corresponds to the multiplication of the original function f�t� by eat. This is
known as a shift theorem.

Laplace transforms of the form eat f .t/

A summary of Laplace transforms of the form eatf(t) is shown in Table 85.1

For example, from (i) of Table 85.1,

L f2t4e3tg D 2L ft4e3tg D 2
(

4!

�s� 3�4C1

)
D 2�4��3��2�

�s� 3�5
D 48

.s − 3/5
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Table 85.1 Laplace transforms of the form eatf�t�

Function Laplace transform
eatf�t� L featf�t�g

(a is a real constant)

(i) eattn n!
�s� a�nC1

(ii) eat sin ωt
ω

�s� a�2 C ω2

(iii) eat cos ωt
s� a

�s� a�2 C ω2

(iv) eat sinh ωt
ω

�s� a�2 � ω2

(v) eat cosh ωt
s� a

�s� a�2 � ω2

In another example, from (iii) of Table 85.1,

L f4e3t cos 5tg D 4L fe3t cos 5tg D 4
(

s� 3

�s� 3�2 C 52

)

D 4�s� 3�

s2 � 6sC 9C 25
D 4.s − 3/

s2 − 6s Y 34

The Laplace transforms of derivatives

(a) First derivative

L ff ′.t/g = sL ff .t/g− f .0/

or L

{
dy
dx

}
= sLfyg− y.0/


 �3�

where y�0� is the value of y at x D 0

(b) Second derivative

L ff ′′.t/g = s2
L ff .t/g− sf .0/ − f ′.0/

or L

{
d2y

dx2

}
= s2

L fyg− sy.0/ − y ′.0/


 �4�

where y0�0� is the value of
dy

dx
at x D 0.

Equations (3) and (4) are important and are used in the solution of
differential equations (see Chapter 87) and simultaneous differential equations
(Chapter 88).
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The initial and final value theorems

There are several Laplace transform theorems used to simplify and interpret the
solution of certain problems. Two such theorems are the initial value theorem
and the final value theorem.

(a) The initial value theorem states:

limit
t!0

[f .t/] = limit
s!∞

[sf .t/]

For example, to verify the initial value theorem for the voltage function
�5C 2 cos 3t� volts:

Let f�t� D 5C 2 cos 3t

L ff�t�g D L f5C 2 cos 3tg D 5

s
C 2s

s2 C 9

from (ii) and (v) of Table 84.1, page 415.

By the initial value theorem,

limit
t!0

[f�t�� D limit
s!1 [sf�t�]

i.e. limit
t!0

[5C 2 cos 3t] D limit
s!1

[
s

(
5

s
C 2s

s2 C 9

)]
D limit

s!1

[
5C 2s2

s2 C 9

]

i.e. 5C 2�1� D 5C 212

12 C 9
D 5C 2

i.e. 7 D 7, which verifies the theorem in this case.
The initial value of the voltage is thus 7 V.
(b) The final value theorem states:

limit
t!∞

[f .t/] = limit
s!0

[sff .t/g]

For example, to verify the final value theorem for the function
�2C 3e�2t sin 4t� cm, which represents the displacement of a particle:
Let f�t� D 2C 3e�2t sin 4t

L ff�t�g D L f2C 3e�2t sin 4tg D 2

s
C 3

(
4

�s��2�2 C 42

)

D 2

s
C 12

�sC 2�2 C 16

from (ii) of Table 84.1, page 415 and (ii) of Table 85.1 on page 417.
By the final value theorem,

limit
t!1 [f�t�] D limit

s!0
[sff�t�g]

i.e. limit
t!1 [2C 3e�2t sin 4t] D limit

s!0

[
s

(
2

s
C 12

�sC 2�2 C 16

)]
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D limit
s!0

[
2C 12s

�sC 2�2 C 16

]

i.e. 2C 0 D 2C 0

i.e. 2 = 2, which verifies the theorem in this case.
The final value of the displacement is thus 2 cm.
The initial and final value theorems are used in pulse circuit applications where
the response of the circuit for small periods of time, or the behaviour imme-
diately after the switch is closed, are of interest. The final value theorem is
particularly useful in investigating the stability of systems (such as in auto-
matic aircraft-landing systems) and is concerned with the steady state response
for large values of time t, i.e. after all transient effects have died away.

86 Inverse Laplace Transforms

Definition of the inverse Laplace transform

If the Laplace transform of a function f�t� is F�s�, i.e. L ff�t�g D F�s�, then
f�t� is called the inverse Laplace transform of F�s� and is written as

L f�t� D L
�1fF�s�g

For example, since L f1g D 1

s
then L

−1
{

1
s

}
= 1

In another example,

since L fsin atg D a

s2 C a2

then L
�1
{

a
s2 Y a2

}
= sin at , and so on.

Inverse Laplace transforms of simple functions

Tables of Laplace transforms, such as the tables in Chapters 84 and 85 (see
pages 415 and 417) may be used to find inverse Laplace transforms.

For example, from (iv) of Table 84.1, L
�1
{

a

s2 C a2

}
D sin at,

Hence L
�1
{

1

s2 C 9

}
D L

�1
{

1

s2 C 32

}
D 1

3
L
�1
{

3

s2 C 32

}
D 1

3
sin 3t

In another example, L
�1
{

5

3s� 1

}
D L

�1


 5

3
(

s� 1
3

)



D 5

3
L
�1


 1(

s� 1
3

)

 D 5

3
e.1=3/t

from (iii) of Table 84.1
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In another example, to determine L
�1
{

3

s4

}
:

From (viii) of Table 84.1, if s is to have a power of 4 then n D 3.

Thus L
�1
{

3!

s4

}
D t3 i.e. L

�1
{

6

s4

}
D t3

Hence L
�1
{

3

s4

}
D 1

2
L
�1
{

6

s4

}
D 1

2
t3

In another example, L
�1
{

7s

s2 C 4

}
D 7L

�1
{

s

s2 C 22

}

D 7 cos 2t , from (v) of Table 84.1
In another example,

L
�1
{

3

s2 � 4sC 13

}
D L

�1
{

3

�s� 2�2 C 32

}

D e2t sin 3t , from (ii) of Table 85.1
In another example,

L
�1
{

4s� 3

s2 � 4s� 5

}
D L

�1
{

4s� 3

�s� 2�2 � 32

}
D L

�1
{

4�s � 2�C 5

�s� 2�2 � 32

}

D L
�1
{

4�s � 2�

�s� 2�2 � 32

}
C L

�1
{

5

�s� 2�2 � 32

}
,

D 4e2t cosh 3t C L
�1

{
5
3 �3�

�s� 2�2 � 32

}
,

from (v) of Table 85.1

D 4e2t cosh 3t Y
5
3

e2t sinh 3t ,

from (iv) of Table 85.1.

Inverse Laplace transforms using partial fractions

Sometimes the function whose inverse is required is not recognizable as a
standard type, such as those listed in Tables 84.1 and 85.1. In such cases it
may be possible, by using partial fractions, to resolve the function into simpler
fractions that may be inverted on sight. For example, the function,

F�s� D 2s� 3

s�s� 3�

cannot be inverted on sight from Table 84.1. However, by using partial frac-

tions,
2s� 3

s�s� 3�
	 1

s
C 1

s� 3
which may be inverted as 1C e3t from (i) and

(iii) of Table 84.1.
Partial fractions are discussed in Chapter 14, and a summary of the forms of
partial fractions is given in Table 14.1 on page 61.
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For example, to determine L
�1
{

4s� 5

s2 � s� 2

}
:

4s� 5

s2 � s� 2
	 4s� 5

�s� 2��sC 1�
	 A

�s� 2�
C B

�sC 1�
	 A�sC 1�C B�s� 2�

�s� 2��sC 1�
Hence 4s� 5 	 A�sC 1�C B�s� 2�

When s D 2, 3 D 3A, from which, A D 1
When s D �1, �9 D �3B, from which, B D 3

Hence L
�1
{

4s� 5

s2 � s� 2

}
	 L

�1
{

1

s� 2
C 3

sC 1

}

D L
�1
{

1

s� 2

}
C L

�1
{

3

sC 1

}
D e2t Y 3e−t , from (iii) of Table 84.1

In another example, to determine L
�1

{
5s2 C 8s� 1

�sC 3��s2 C 1�

}
:

5s2 C 8s� 1

�sC 3��s2 C 1�
	 A

sC 3
C BsC C

�s2 C 1�
	 A�s2 C 1�C �BsC C��sC 3�

�sC 3��s2 C 1�

Hence 5s2 C 8s� 1 	 A�s2 C 1�C �BsCC��s C 3�
When s D �3, 20 D 10 A, from which, A D 2
Equating s2 terms gives: 5 D AC B, from which, B D 3, since A D 2
Equating s terms gives: 8 D 3B CC, from which, C D �1, since B D 3

Hence L
�1

{
5s2 C 8s� 1

�sC 3��s2 C 1�

}
	 L

�1
{

2

sC 3
C 3s � 1

s2 C 1

}

	 L
�1
{

2

sC 3

}
C L

�1
{

3s

s2 C 1

}

�L
�1
{

1

s2 C 1

}

D 2e−3t Y 3 cos t − sin t ,

from (iii), (v) and (iv) of Table 84.1

87 The Solution of Differential Equations Using
Laplace Transforms

Introduction

An alternative method of solving differential equations to that used in
Chapters 70 to 74 is possible by using Laplace transforms.
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Procedure to solve differential equations by using Laplace
transforms

(i) Take the Laplace transform of both sides of the differential equation
by applying the formulae for the Laplace transforms of derivatives (i.e.
equations (3) and (4) of Chapter 85) and, where necessary, using a list of
standard Laplace transforms, such as Tables 84.1 and 85.1 on pages 415
and 417.

(ii) Put in the given initial conditions, i.e. y�0� and y0�0�
(iii) Rearrange the equation to make L fyg the subject.
(iv) Determine y by using, where necessary, partial fractions, and taking the

inverse of each term by using Tables 84.1 and 85.1 on pages 415 and
417.

For example, to solve the differential equation 2
d2y

dx2
C 5

dy

dx
� 3y D 0, given

that when x D 0, y D 4 and
dy

dx
D 9:

Using the above procedure:

(i) 2L

{
d2y

dx2

}
C 5L

{
dy

dx

}
� 3L fyg D L f0g

2[s2
L fyg � sy�0�� y0�0�]C 5[sL fyg � y�0�]� 3L fyg D 0,

from equations (3) and (4) of Chapter 85
(ii) y�0� D 4 and y0�0� D 9

Thus 2[s2
L fyg � 4s� 9]C 5[sL fyg � 4]� 3L fyg D 0

i.e. 2s2
L fyg � 8s� 18C 5sL fyg � 20� 3L fyg D 0

(iii) Rearranging gives: �2s2 C 5s� 3�L fyg D 8sC 38

i.e. L fyg D 8sC 38

2s2 C 5s� 3

(iv) y D L
�1
{

8sC 38

2s2 C 5s� 3

}

8sC 38

2s2 C 5s � 3
	 8s C 38

�2s � 1��sC 3�
	 A

2s� 1
C B

sC 3

	 A�sC 3�C B�2s� 1�

�2s� 1��s C 3�

Hence 8sC 38 D A�sC 3�C B�2s� 1�

When s D 1
2 , 42 D 3 1

2 A, from which, A D 12

When s D �3, 14 D �7B, from which, B D �2

Hence y D L
�1
{

8sC 38

2s2 C 5s� 3

}
D L

�1
{

12

2s� 1
� 2

sC 3

}
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D L
�1


 12

2
(

s� 1
2

)

��1

{
2

sC 3

}

Hence y = 6 e
1
2 x − 2 e−3x , from (iii) of Table 84.1

In another example, to solve
d2y

dx2
� 3

dy

dx
D 9, given that when x D 0,

y D 0 and
dy

dx
D 0:

(i) L

{
d2y

dx2

}
� 3L

{
dy

dx

}
D L f9g

Hence [s2
L fyg � sy�0�� y0�0�]� 3[sL �y � y�0�] D 9

s

(ii) y�0� D 0 and y0(0) =0

Hence s2fyg � 3sfyg D 9

s

(iii) Rearranging gives: (s2 � 3s�L fyg D 9

s

i.e. L fyg D 9

s�s2 � 3s�
D 9

s2�s� 3�

(iv) y D L
�1
{

9

s2 �s� 3�

}

9

s2�s� 3�
	 A

s
C B

s2
C C

s� 3
	 A�s��s � 3�C B�s� 3�CCs2

s2�s� 3�

Hence 9 	 A�s��s� 3�C B�s� 3�CCs2

When s D 0, 9 D �3B, from which , B D �3

When s D 3, 9 D 9C, from which, C D 1

Equating s2 terms gives: 0 D ACC, from which, A D �1, since C D 1

Hence L
�1
{

9

s2�s� 3�

}
D L

�1
{
�1

s
� 3

s2
C 1

s� 3

}

D �1� 3x C e3x,

from (i), (vi) and (iii) of Table 84.1

i.e y = e3x − 3x − 1
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88 The Solution of Simultaneous Differential
Equations Using Laplace Transforms

Introduction

It is sometimes necessary to solve simultaneous differential equations. An
example occurs when two electrical circuits are coupled magnetically where
the equations relating the two currents i1 and i2 are typically:

L1
di1

dt
CM

di2

dt
C R1i1 D E1

L2
di2

dt
CM

di1

dt
C R2i2 D 0

where L represents inductance, R resistance, M mutual inductance and E1 the
p.d. applied to one of the circuits.

Procedure to solve simultaneous differential equations using
Laplace transforms

(i) Take the Laplace transform of both sides of each simultaneous equation
by applying the formulae for the Laplace transforms of derivatives (i.e.
equations (3) and (4) of Chapter 85, page 417) and using a list of standard
Laplace transforms, as in Table 84.1, page 415 and Table 85.1, page 417.

(ii) Put in the initial conditions, i.e. x�0�, y�0�, x0�0�, y0�0�
(iii) Solve the simultaneous equations for L fyg and L fxg by the normal alge-

braic method.
(iv) Determine y and x by using, where necessary, partial fractions, and taking

the inverse of each term.

For example, to solve the following pair of simultaneous differential equations

dy

dt
C x D 1

dx

dt
� y C 4et D 0

given that at t D 0, x D 0 and y D 0, using the above procedure:

(i) L

{
dy

dt

}
C L fxg D L f1g �1�

{
dx

dt

}
� L fyg C 4L fegt D 0 �2�

Equation (1) becomes:

[sL fyg � y�0�]C L fxg D 1

s
�10�
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from equation (3), page 417 and Table 84.1, page 415
Equation (2) becomes:

[sL fxg � x�0�]� L fyg D � 4

s� 1
�20�

(ii) x�0� D 0 and y�0� D 0 hence

Equation (10) becomes: sL fyg C L fxg D 1

s
�100�

and equation (20) becomes: sL fxg � L fyg D � 4

s� 1

or �L fyg C sL fxg D � 4

s� 1
�200�

(iii) 1ð equation (1) and sð equation �200� gives:

sL fyg C L fxg D 1

s
�3�

�sL fyg C s2
L fxg D � 4s

s� 1
�4�

Adding equations (3) and (4) gives:

�s2 C 1�L fxg D 1

s
� 4s

s� 1
D �s� 1�� s�4s�

s�s� 1�
D �4s2 C s� 1

s�s� 1�

from which, L fxg D �4s2 C s� 1

s�s� 1��s2 C 1�

Using partial fractions

�4s2 C s� 1

s�s� 1��s2 C 1�
	 A

s
C B

�s� 1�
C CsC D

�s2 C 1�

D A�s� 1��s2 C 1�C Bs�s2 C 1�C �CsC D�s�s� 1�

s�s� 1��s2 C 1�

Hence �4s2 C s� 1 D A�s� 1��s2 C 1�C Bs�s2 C 1�
C�CsC D�s�s� 1�

When s D 0, �1 D �A hence A = 1
When s D 1, �4 D 2B hence B = −2
Equating s3 coefficients:

0 D AC B CC hence C = 1 (since A D 1 and B D �2�

Equating s2 coefficients:

�4 D �AC D �C hence D = −2 (since A D 1 and C D 1�

Thus L fxg D �4s2 C s� 1

s�s� 1��s2 C 1�
D 1

s
� 2

�s� 1�
C s� 2

�s2 C 1�
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(iv) Hence x D L
�1
{

1

s
� 2

�s� 1�
C s� 2

�s2 C 1�

}

D L
�1
{

1

s
� 2

�s� 1�
C s

�s2 C 1�
� 2

�s2 C 1�

}

i.e. x = 1 − 2et Y cos t − 2 sin t from Table 84.1, page 415

The second equation given in the question is
dx

dt
� y C 4et D 0

from which,

y D dx

dt
C 4et D d

dt
�1� 2et C cos t � 2 sin t�C 4et

D �2et � sin t � 2 cos t C 4et

i.e. y = 2et − sin t − 2 cos t

[Alternatively, to determine y, return to equations (100) and (200)]



Fourier Series

89 Fourier Series for Periodic Functions of
Period 2p

Introduction

Fourier series provides a method of analysing periodic functions into their
constituent components. Alternating currents and voltages, displacement,
velocity and acceleration of slider-crank mechanisms and acoustic waves are
typical practical examples in engineering and science where periodic functions
are involved and often requiring analysis.

Periodic functions
A function f�x� is said to be periodic if f�x C T� D f�x� for all values of x,
where T is some positive number. T is the interval between two successive rep-
etitions and is called the period of the functions f�x�. For example, y D sin x
is periodic in x with period 2� since sin x D sin�x C 2�� D sin�x C 4��, and
so on. In general, if y D sin ωt then the period of the waveform is 2�/ω. The
function shown in Figure 89.1 is also periodic of period 2� and is defined
by:

f�x� D
{�1, when � � < x < 0

1, when 0 < x < �

If a graph of a function has no sudden jumps or breaks it is called a continuous
function, examples being the graphs of sine and cosine functions. However,
other graphs make finite jumps at a point or points in the interval. The square
wave shown in Figure 89.1 has finite discontinuities at x D �, 2�, 3�, and
so on. A great advantage of Fourier series over other series is that it can
be applied to functions that are discontinuous as well as those which are
continuous.

f (x)

0

1

−1

−π−2π π 2π x

Figure 89.1
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Fourier series
The basis of a Fourier series is that all functions of practical significance
which are defined in the interval�� � x � � can be expressed in terms of a
convergent trigonometric series of the form:

f�x� D a0 C a1 cos x C a2 cos 2x C a3 cos 3x C . .

C b1 sin x C b2 sin 2x C b3 sin 3x C . .

when a0, a1, a2, . . . b1, b2, . . . are real constants,

i.e. f .x/ = a0 Y

∞∑
n=1

.an cos nx Y bn sin nx/ �1�

where for the range �� to �:

and

a0 D 1

2�

∫ �

��
f�x� dx

an D 1

�

∫ �

��
f�x� cos nx dx �n D 1, 2, 3, . . .�

bn D 1

�

∫ �

��
f�x� sin nx dx �n D 1, 2, 3, . . .�

a0, an and bn are called the Fourier coefficients of the series and if these
can be determined, the series of equation (1) is called the Fourier series
corresponding to f�x�.
An alternative way of writing the series is by using the a cos x C b sin x D
c sin�x C ˛� relationship introduced in chapter 31,

i.e. f�x� D a0 C c1 sin�x C ˛1�C c2 sin�2x C ˛2�C . .C cn sin�nx C ˛n�,

where a0 is a constant, c1 D
√

a2
1 C b2

1, . . . cn D
√

a2
n C b2

n are the amplitudes

of the various components, and phase angle ˛n D tan�1 an

bn
.

For the series of equation (1): the term (a1 cos x C b1 sin x) or c1 sin�x C ˛1� is
called the first harmonic or the fundamental, the term �a2 cos 2x C b2 sin 2x�
or c2 sin�2x C ˛2� is called the second harmonic, and so on.
For an exact representation of a complex wave, an infinite number of terms
are, in general, required. In many practical cases, however, it is sufficient to
take the first few terms only.
For example, to obtain a Fourier series for the periodic function f�x� defined
as:

f�x� D
{�k, when � � < x < 0
Ck, when 0 < x < �

(The function is periodic outside of this range with period 2�):
The square wave function defined is shown in Figure 89.2. Since f�x� is given
by two different expressions in the two halves of the range the integration is
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f(x)

0

k

−k

π−π 2π x

Figure 89.2

performed in two parts, one from �� to 0 and the other from 0 to �.

From above: a0 D 1

2�

∫ �

��
f�x� dx D 1

2�

[∫ 0

��
�k dx C

∫ �

0
k dx

]

D 1

2�
f[�kx]0

�� C [kx]�
0 g D 0

[a0 is in fact the mean value of the waveform over a complete period of 2�
and this could have been deduced on sight from Figure 89.2]

an D 1

�

∫ �

��
f�x� cos nx dx D 1

�

{∫ 0

��
�k cos nx dx C

∫ �

0
k cos nx dx

}

D 1

�

{[�k sin nx

n

]0

��
C
[

k sin nx

n

]�

0

}
D 0

Hence a1, a2, a3, . . . are all zero (since sin 0 D sin��n�� D sin n� D 0), and
therefore no cosine terms will appear in the Fourier series.

bn D 1

�

∫ �

��
f�x� sin nx dx D 1

�

{∫ 0

��
�k sin nx dx C

∫ �

0
k sin nx dx

}

D 1

�

{[
k cos nx

n

]0

��
C
[�k cos nx

n

]�

0

}

When n is odd: bn D k

�

{[(
1

n

)
�
(
� 1

n

)]
C
[
�
(
� 1

n

)
�
(
� 1

n

)]}

D k

�

{
2

n
C 2

n

}
D 4k

n�

Hence b1 D 4k

�
, b3 D 4k

3�
, b5 D 4k

5�
, and so on

When n is even: bn D k

�

{[
1

n
� 1

n

]
C
[
� 1

n
�
(
� 1

n

)]}
D 0
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0 π/2 π−π/2−π

−π
−4

π
4

f (x)

P1

f (x)

x

−π −π/2 0 π/2 π x

P2

P1
f (x)

f (x)

π

−π

4/3 sin 3x

f (x)

π

−π/2

−π π/20 π x
4/5 sin 5x

P2

P3

f(x)

(c)

(b)

(a)

−π

Figure 89.3
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Hence, from equation (1), the Fourier series for the function shown in
Figure 89.2 is given by:

f�x� D a0 C
1∑

nD1

�an cos nx C bn sin nx� D 0C
1∑

nD1

�0C bn sin nx�

i.e. f�x� D 4k

�
sin x C 4k

3�
sin 3x C 4k

5�
sin 5x C . .

i.e. f .x/ =
4k
p

(
sin x Y

1
3

sin 3x Y
1
5

sin 5x Y · · ·
)

If k D � in the above Fourier then: f�x� D 4�sin x C 1
3 sin 3x C 1

5 sin 5x C . . .�
4 sin x is termed the first partial sum of the Fourier series of f�x�,(

4 sin x C 4
3 sin 3x

)
is termed the second partial sum of the Fourier series,

and
(

4 sin x C 4
3 sin 3x C 4

5 sin 5x
)

is termed the third partial sum, and so on.

Let P1 D 4 sin x, P2 D
(

4 sin x C 4
3 sin 3x

)

and P3 D
(

4 sin x C 4
3 sin 3x C 4

5 sin 5x
)

.

Graphs of P1, P2 and P3, obtained by drawing up tables of values, and adding
waveforms, are shown in Figures 89.3(a) to (c) and they show that the series
is convergent, i.e. continually approximating towards a definite limit as more
and more partial sums are taken, and in the limit will have the sum f�x� D �.
Even with just three partial sums, the waveform is starting to approach the
rectangular wave the Fourier series is representing.

90 Fourier Series for a Non-periodic Function
Over Range 2p

Expansion of non-periodic functions

If a function f�x� is not periodic then it cannot be expanded in a Fourier
series for all values of x. However, it is possible to determine a Fourier series
to represent the function over any range of width 2�.
Given a non-periodic function, a new function may be constructed by taking
the values of f�x� in the given range and then repeating them outside of the
given range at intervals of 2�. Since this new function is, by construction,
periodic with period 2�, it may then be expanded in a Fourier series for all
values of x. For example, the function f�x� D x is not a periodic function.
However, if a Fourier series for f�x� D x is required then the function is
constructed outside of this range so that it is periodic with period 2� as shown
by the broken lines in Figure 90.1.
For non-periodic functions, such as f�x� D x, the sum of the Fourier series
is equal to f�x� at all points in the given range but it is not equal to f�x� at
points outside of the range.
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f(x)
f(x) = x

2π

−2π 2π 4π0 x

Figure 90.1

For determining a Fourier series of a non-periodic function over a range
2�, exactly the same formulae for the Fourier coefficients are used as in
Chapter 89.
For example, to determine the Fourier series to represent the function f�x� D
2x in the range �� to C�:
The function f�x� D 2x is not periodic. The function is shown in the range
�� to � in Figure 90.2 and is then constructed outside of that range so that
it is periodic of period 2� (see broken lines) with the resulting saw-tooth
waveform.

For a Fourier series: f�x� D a0 C
1∑

nD1
�an cos nx C bn sin nx�

From Chapter 89,

a0 D 1

2�

∫ �

��
f�x� dx D 1

2�

∫ �

��
2x dx D 2

2�

[
x2

2

]�

��

D 0

an D 1

�

∫ �

��
f�x� cos nx dx D 1

�

∫ �

��
2x cos nx dx

D 2

�

[
x sin nx

n
�
∫

sin nx

n
dx

]�

��
by parts (see Chapter 62)

D 2

�

[
x sin nx

n
C cos nx

n2

]�

��

D 2

�

[(
0C cos n�

n2

)
�
(

0C cos n����

n2

)]
D 0

bn D 1

�

∫ �

��
f�x� sin nx dx D 1

�

∫ �

��
2x sin nx dx

f(x)
f(x) = 2x

2π

−2π

0 π 2π 3π x−2π −π

Figure 90.2
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D 2

�

[�x cos nx

n
�
∫ (� cos nx

n

)
dx

]�

��
by parts

D 2

�

[�x cos nx

n
C sin nx

n2

]�

��

D 2

�

[(�� cos n�

n
C sin n�

n2

)

�
(����� cos n����

n
C sin n����

n2

)]

D 2

�

[�� cos n�

n
� � cos��n��

n

]
D �4

n
cos n�

When n is odd, bn D 4
n . Thus b1 D 4, b3 D 4

3 , b5 D 4
5 , and so on.

When n is even, bn D �4
n . Thus b2 D � 4

2 , b4 D � 4
4 , b6 D � 4

6 , and so on.

Thus f�x� D 2x D 4 sin x � 4
2 sin 2x C 4

3 sin 3x � 4
4 sin 4x

C 4
5 sin 5x � 4

6 sin 6x C . .

i.e. 2x = 4
(

sin x − 1
2 sin 2x Y 1

3 sin 3x − 1
4 sin 4x

Y 1
5 sin 5x − 1

6 sin 6x Y . . .
)

for values of f�x� between �� and �. For values of f�x� outside the range
�� to C� the sum of the series is not equal to f�x�.

91 Even and Odd Functions and Half-range
Fourier Series

Even and odd functions

A function y D f�x� is said to be even if f��x� D f�x� for all values of x.
Graphs of even functions are always symmetrical about the y-axis (i.e. is a
mirror image). Two examples of even functions are y D x2 and y D cos x as
shown in Figure 37.12, page 193.
A function y D f�x� is said to be odd if f��x� D �f�x� for all values of
x. Graphs of odd functions are always symmetrical about the origin. Two
examples of odd functions are y D x3 and y D sin x as shown in Figure 37.13,
page 193.
Many functions are neither even nor odd.

Fourier cosine series
The Fourier series of an even periodic function f�x� having period 2� con-
tains cosine terms only (i.e. contains no sine terms) and may contain a
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constant term. Hence

f .x/ = a0 Y

∞∑
n=1

an cos nx

where a0 D 1

2�

∫ �
�� f�x�dx D 1

p

∫ p

0 f .x/dx (due to symmetry)

and

an D 1

�

∫ �

��
f�x� cos nx dx D 2

p

∫ p

0
f .x/ cos nx dx

For example, to determine the Fourier series for the periodic function defined
by:

f�x� D




�2, when � � < x < ��

2
2, when � �

2
< x <

�

2
and has a period of 2�

�2, when
�

2
< x < �

The square wave shown in Figure 91.1 is an even function since it is sym-
metrical about the f�x� axis.
Hence from above, the Fourier series is given by:

f�x� D a0 C
1∑

nD1
an cos nx (i.e. the series contains no sine terms).

a0 D 1

�

∫ �

0
f�x� dx D 1

�

{∫ �/2

0
2 dx C

∫ �

�/2
�2 dx

}

D 1

�

{
[2x]�/2

0 C [�2x]�
�/2

}
D 1

�
[���C [��2��� ����]] D 0

an D 2

�

∫ �

0
f�x� cos nx dx D 2

�

{∫ �/2

0
2 cos nx dx C

∫ �

�/2
�2 cos nx dx

}

D 4

�

{[
sin nx

n

]�/2

0
C
[� sin nx

n

]�

�/2

}

f (x)

2

−3π/2 −π −π/2 π/2 π 3π/2 x0 2π

−2

Figure 91.1
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D 4

�

{(
sin��/2�n

n
� 0
)
C
(

0� � sin��/2�n

n

)}

D 4

�

(
2 sin��/2�n

n

)
D 8

�n

(
sin

n�

2

)
When n is even, an D 0. When n is odd,

an D 8

�n
for n D 1, 5, 9, . . . and an D �8

�n
for n D 3, 7, 11, . . .

Hence a1 D 8

�
, a3 D �8

3�
, a5 D 8

5�
, and so on

Hence the Fourier series for the waveform of Figure 91.1 is given by:

f .x/ =
8
p

(
cos x −

1
3

cos 3x Y
1
5

cos 5x −
1
7

cos 7x Y . . .

)

Fourier sine series

The Fourier series of an odd periodic function f�x� having period 2� contains
sine terms only (i.e. contains no constant term and no cosine terms).

Hence f .x/ =

∞∑
n=1

bn sin nx

where bn D 1

�

∫ �

��
f�x� sin nx dx D 2

p

∫ p

0
f .x/ sin nx dx

For example, to obtain the Fourier series for the square wave shown in
Figure 91.2:
The square wave is an odd function since it is symmetrical about the origin.

Hence, from above, the Fourier series is given by: f�x� D
1∑

nD1
bn sin nx

The function is defined by: f�x� D
{�2, when � � < x < 0

2, when 0 < x < �

bn D 2

�

∫ �

0
f�x� sin nx dx D 2

�

∫ �

0
2 sin nx dx D 4

�

[� cos nx

n

]�

0

D 4

�

[(� cos n�

n

)
�
(
� 1

n

)]
D 4

�n
�1� cos n��

2

0

−2

π−π 2π 3π x

f(x)

Figure 91.2
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When n is even, bn D 0. When n is odd, bn D 4

�n
�1� ��1�� D 8

�n

Hence b1 D 8

�
, b3 D 8

3�
, b5 D 8

5�
, and so on

Hence the Fourier series is:

f .x/ =
8
p

(
sin x Y

1
3

sin 3x Y
1
5

sin 5x Y
1
7

sin 7x Y . . .

)

Half range Fourier series

When a function is defined over the range say 0 to � instead of from 0 to 2�
it may be expanded in a series of sine terms only or of cosine terms only. The
series produced is called a half-range Fourier series.
(a) If a half-range cosine series is required for the function f�x� D x in
the range 0 to � then an even periodic function is required. In Figure 91.3,
f�x� D x is shown plotted from x D 0 to x D �. Since an even function is
symmetrical about the f�x� axis the line AB is constructed as shown. If the
triangular waveform produced is assumed to be periodic of period 2� outside
of this range then the waveform is as shown in Figure 91.3. When a half range
cosine series is required then the Fourier coefficients a0 and an are calculated
as earlier, i.e.

f .x/ = a0 Y

∞∑
n=1

an cos nx

where a0 =
1
p

∫ p

0
f .x/ dx and an =

2
p

∫ p

0
f .x/ cos nx dx

For example, to determine the half-range Fourier cosine series to represent
the function f�x� D x in the range 0 � x � �:

When f�x� D x, a0 D 1

�

∫ �
0 f�x� dx D 1

�

∫ �
0 x dx D 1

�

[
x2

2

]�

0

D �

2

an D 2

�

∫ �

0
f�x� cos nx dx D 2

�

∫ �

0
x cos nx dx

D 2

�

[
x sin nx

n
C cos nx

n2

]�

0
by parts

−2π 0

B

A

f(x)
f(x) = x

−π π 2π

π

x

Figure 91.3
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D 2

�

[(
� sin n�

n
C cos n�

n2

)
�
(

0C cos 0

n2

)]

D 2

�

(
0C cos n�

n2 � cos 0

n2

)
D 2

�n2 �cos n� � 1�

When n is even, an D 0

When n is odd, an D 2

�n2 ��1� 1� D �4

�n2

Hence a1 D �4

�
, a3 D �4

�32
, a5 D �4

�52
, and so on. Hence the half range

Fourier cosine series is given by:

f .x/ = x =
p

2
−

4
p

(
cos x Y

1
32 cos 3x Y

1
52 cos 5x Y . . .

)

(b) If a half-range sine series is required for the function f�x� D x in the
range 0 to � then an odd periodic function is required. In Figure 91.4, f�x� D x
is shown plotted from x D 0 to x D �. Since an odd function is symmetrical
about the origin the line CD is constructed as shown. If the sawtooth waveform
produced is assumed to be periodic of period 2� outside of this range, then
the waveform is as shown in Figure 91.4. When a half-range sine series is
required then the Fourier coefficient bn is calculated as earlier, i.e.

f .x/ =

∞∑
n=1

bn sin nx where bn =
2
p

∫ p

0
f .x/ sin nx dx

For example, to determine the half-range Fourier sine series to represent the
function f�x� D x in the range 0 � x � �:

When f�x� D x, bn D 2

�

∫ �

0
f�x� sin nx dx D 2

�

∫ �

0
x sin nx dx

D 2

�

[�x cos nx

n
C sin nx

n2

]�

0
by parts

D 2

�

[(�� cos n�

n
C sin n�

n2

)
� �0C 0�

]
D � 2

n
cos n�

When n is odd, bn D 2

n
. Hence b1 D 2

1
, b3 D 2

3
, b5 D 2

5
and so on.

f(x)
f(x) = x

π

−π

−2π −π 0 2π 3π x
C

π

D

Figure 91.4
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When n is even, bn D � 2

n
. Hence b2 D �2

2
, b4 D �2

4
, b6 D �2

6
and so on.

Hence the half-range Fourier sine series is given by:

f .x/ = x = 2
(

sin x − 1
2 sin 2x Y 1

3 sin 3x − 1
4 sin 4x Y 1

5 sin 5x − · · ·
)

92 Fourier Series Over Any Range

Expansion of a periodic function of period L

A periodic function f�x� of period L repeats itself when x increases by L,
i.e. f�x C L� D f�x�. The change from functions dealt with previously having
period 2� to functions having period L is not difficult since it may be achieved
by a change of variable.

To find a Fourier series for a function f�x� in the range �L

2
� x � L

2
a new

variable u is introduced such that f�x�, as a function of u, has period 2�. If

u D 2�x

L
then, when x D �L

2
, u D �� and when x D L

2
, u D C�. Also, let

f�x� D f

(
Lu

2�

)
D F�u�. The Fourier series for F�u� is given by:

F�u� D a0 C
1∑

nD1

�an cos nuC bn sin nu�, where a0 D 1

2�

∫ �

��
F�u� du,

an D 1

�

∫ �

��
F�u� cos nu du and bn D 1

�

∫ �

��
F�u� sin nu du

It is however more usual to change the above formulae to terms of x. Since

u D 2�x

L
, then du D 2�

L
dx, and the limits of integration are �L

2
to CL

2
instead of from �� to C�. Hence the Fourier series expressed in terms of x
is given by:

f .x/ = a0 Y

∞∑
n=1

[
an cos

(
2pnx

L

)
Y bn sin

(
2pnx

L

)]

where, in the range �L

2
to CL

2
:

a0 =
1
L

∫ L=2

−L=2
f .x/ dx , an =

2
L

∫ L=2

−L=2
f .x/ cos

(
2pnx

L

)
dx

and bn =
2
L

∫ L=2

−L=2
f .x/ sin

(
2pnx

L

)
dx

(The limits of integration may be replaced by any interval of length L, such
as from 0 to L).
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For example, if the voltage from a square wave generator is of the form:

v�t� D
{ 0, �4 < t < 0

10, 0 < t < 4
and has a period of 8 ms, then the Fourier series

is obtained as follows:
The square wave is shown in Figure 92.1. The Fourier series is of the form:

v�t� D a0 C
1∑

nD1

[
an cos

(
2�nt

L

)
C bn sin

(
2�nt

L

)]

a0 D 1

L

∫ L/2

�L/2
v�t� dt D 1

8

∫ 4

�4
v�t� dt

D 1

8

{∫ 0

�4
0 dt C

∫ 4

0
10 dt

}
D 1

8
[10t]4

0 D 5

an D 2

L

∫ L/2

�L/2
v�t� cos

(
2�nt

L

)
dt D 2

8

∫ 4

�4
v�t� cos

(
2�nt

8

)
dt

D 1

4

{∫ 0

�4
0 cos

(
�nt

4

)
dt C

∫ 4

0
10 cos

(
�nt

4

)
dt

}

D 1

4




10 sin
(

�nt

4

)
(�n

4

)



4

0

D 10

�n
[sin �n� sin 0] D 0 for n D 1, 2, 3, . . .

bn D 2

L

∫ L/2

�L/2
v�t� sin

(
2�nt

L

)
dt D 2

8

∫ 4

�4
v�t� sin

(
2�nt

8

)
dt

D 1

4

{∫ 0

�4
0 sin

(
�nt

4

)
dt C

∫ 4

0
10 sin

(
�nt

4

)
dt

}

D 1

4



�10 cos

(
�nt

4

)
(�n

4

)



4

0

D �10

�n
[cos �n� cos 0]

v(t)

10

0 4 8−8 −4 12 t (ms)

Period L = 8 ms
Figure 92.1
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When n is even, bn D 0

When n is odd, b1 D �10

�
��1� 1� D 20

�
, b3 D �10

3�
��1� 1� D 20

3�
,

b5 D 20

5�
, and so on

Thus the Fourier series for the function v�t� is given by:

v.t/ = 5Y
20
p

[
sin
(

pt
4

)
Y

1
3

sin
(

3pt
4

)
Y

1
5

sin
(

5pt
4

)
Y · · ·

]

Half-range Fourier series for functions defined over range L

By making the substitution u D �x

L
, the range x D 0 to x D L corresponds to

the range u D 0 to u D �. Hence a function may be expanded in a series of
either cosine terms or sine terms only, i.e. a half-range Fourier series.
A half-range cosine series in the range 0 to L can be expanded as:

where

f .x/ = a0 Y

∞∑
n=1

an cos
(npx

L

)

a0 =
1
L

∫ L

0
f .x/ dx and an =

2
L

∫ L

0
f .x/ cos

(npx
L

)
dx

For example, the half-range Fourier cosine series for the function f�x� D x
in the range 0 � x � 2 is obtained as follows:
A half-range Fourier cosine series indicates an even function. Thus the graph
of f�x� D x in the range 0 to 2 is shown in Figure 92.2 and is extended outside
of this range so as to be symmetrical about the f�x� axis as shown by the
broken lines.

For a half-range cosine series: f�x� D a0 C
1∑

nD1

an cos
(n�x

L

)

a0 D 1

L

∫ L

0
f�x� dx D 1

2

∫ 2

0
x dx D 1

2

[
x2

2

]2

0

D 1

an D 2

L

∫ L

0
f�x� cos

(n�x

L

)
dx D 2

2

∫ 2

0
x cos

(n�x

2

)
dx

−4 −2 0 2 4 6 x

2

f(x)
f(x) = x

Figure 92.2
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D


 x sin

(n�x

2

)
(n�

2

) C
cos
(n�x

2

)
(n�

2

)2




2

0

D




2 sin n�(n�

2

) C cos n�(n�

2

)2


�


0C cos 0(n�

2

)2






D


 cos n�(n�

2

)2 �
1(n�

2

)2


 D

(
2

�n

)2

�cos n� � 1�

When n is even, an D 0

a1 D �8

�2
, a3 D �8

�232
, a5 D �8

�252
, and so on.

Hence the half-range Fourier cosine series for f�x� in the range 0 to 2 is
given by:

f .x/ = 1 −
8
p2

[
cos
(px

2

)
Y

1
32 cos

(
3px

2

)
Y

1
52 cos

(
5px

2

)
Y · · ·

]

A half-range sine series in the range 0 to L can be expanded as:

f .x/ =

∞∑
n=1

bn sin
(npx

L

)
where bn =

2
L

∫ L

0
f .x/ sin

(npx
L

)
dx

93 A Numerical Method of Harmonic Analysis

Introduction
Many practical waveforms can be represented by simple mathematical expres-
sions, and, by using Fourier series, the magnitude of their harmonic compo-
nents determined, as shown in Chapters 89 to 92. For waveforms not in this
category, analysis may be achieved by numerical methods.
Harmonic analysis is the process of resolving a periodic, non-sinusoidal quan-
tity into a series of sinusoidal components of ascending order of frequency.

Harmonic analysis on data given in tabular or graphical form
The Fourier coefficients a0, an and bn used in Chapters 89 to 92 all require
functions to be integrated, i.e.

a0 D 1

2�

∫ �

��
f�x� dx D 1

2�

∫ 2�

0
f�x� dx

D mean value of f�x� in the range � � to � or 0 to 2�
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an D 1

�

∫ �

��
f�x� cos nx dx D 1

�

∫ 2�

0
f�x� cos nx dx

D twice the mean value of f�x� cos nx in the range 0 to 2�

bn D 1

�

∫ �

��
f�x� sin nx dx D 1

�

∫ 2�

0
f�x� sin nx dx

D twice the mean value of f�x� sin nx in the range 0 to 2�

However, irregular waveforms are not usually defined by mathematical expres-
sions and thus the Fourier coefficients cannot be determined by using calculus.
In these cases, approximate methods, such as the trapezoidal rule, can be used
to evaluate the Fourier coefficients.
Most practical waveforms to be analysed are periodic. Let the period of a
waveform be 2� and be divided into p equal parts as shown in Figure 93.1.

The width of each interval is thus
2�

p
. Let the ordinates be labelled

y0, y1, y2, . . yp (note that y0 D yp). The trapezoidal rule states:

Area D
(

width of
interval

)[
1

2

(
firstC last
ordinate

)
C sum of remaining

ordinates

]

³ 2�

p

[
1

2
�y0 C yp�C y1 C y2 C y3 C . .

]

Since y0 D yp, then 1
2 �y0 C yp� D y0 D yp. Hence area ³ 2�

p

p∑
kD1

yk

Mean value D area

length of base
³ 1

2�

(
2�

p

) p∑
kD1

yk ³ 1

p

p∑
kD1

yk

However, a0 D mean value of f�x� in the range 0 to 2�

Thus a0 ≈
1
p

p∑
k=1

yk �1�

f (x)
y0 y1 y2 y3 y4

yp

x2ππ0
2π/p

Period = 2π

Figure 93.1
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Similarly, an D twice the mean value of f�x� cos nx in the range 0 to 2�,

thus an ≈
2
p

p∑
k=1

yk cos nxk �2�

and bn D twice the mean value of f�x� sin nx in the range 0 to 2�,

thus bn ≈
2
p

p∑
k=1

yk sin nxk �3�

For example, a graph of voltage V against angle � is shown in Figure 93.2.
The values of the ordinates y1, y2, y3, . . .. are 62, 35, �38, �64, �63, �52,
�28, 24, 80, 96, 90 and 70, the 12 equal intervals each being of width 30°.
(If a larger number of intervals are used, results having a greater accuracy are
achieved).
The voltage may be analysed into its first three constituent components as
follows:
The data is tabulated in the proforma shown in Table 93.1.

From equation (1), a0 ³ 1

p

p∑
kD1

yk D 1

12
�212� D 17.67 �since p D 12�

From equation (2), an ³ 2

p

p∑
kD1

yk cos nxk hence a1 ³ 2

12
�417.94� D 69.66,

a2 ³ 2

12
��39� D �6.50 and a3 ³ 2

12
��49� D �8.17

From equation (3), bn³ 2

p

p∑
kD1

yk sin nxk hence b1³ 2

12
��278.53� D �46.42,

b2 ³ 2

12
�29.43� D 4.91 and b3 ³ 2

12
�55� D 9.17
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Table 93.1

Ordinates � V cos � V cos � sin � V sin � cos 2� V cos 2� sin 2� V sin 2� cos 3� V cos 3� sin 3� V sin 3�

y1 30 62 0.866 53.69 0.5 31 0.5 31 0.866 53.69 0 0 1 62
y2 60 35 0.5 17.5 0.866 30.31 �0.5 �17.5 0.866 30.31 �1 �35 0 0
y3 90 �38 0 0 1 �38 �1 38 0 0 0 0 �1 38
y4 120 �64 �0.5 32 0.866 �55.42 �0.5 32 �0.866 55.42 1 �64 0 0
y5 150 �63 �0.866 54.56 0.5 �31.5 0.5 �31.5 �0.866 54.56 0 0 1 �63
y6 180 �52 �1 52 0 0 1 �52 0 0 �1 52 0 0
y7 210 �28 �0.866 24.25 �0.5 14 0.5 �14 0.866 �24.25 0 0 �1 28
y8 240 24 �0.5 �12 �0.866 �20.78 �0.5 �12 0.866 20.78 1 24 0 0
y9 270 80 0 0 �1 �80 �1 �80 0 0 0 0 1 80
y10 300 96 0.5 48 �0.866 �83.14 �0.5 �48 �0.866 �83.14 �1 �96 0 0
y11 330 90 0.866 77.94 �0.5 �45 0.5 45 �0.866 �77.94 0 0 �1 �90
y12 360 70 1 70 0 0 1 70 0 0 1 70 0 0

12∑
kD1

yk D 212
12∑

kD1

yk cos �k

12∑
kD1

yk sin �k

12∑
kD1

yk cos 2�k

12∑
kD1

yk sin 2�k

12∑
kD1

yk cos 3�k

12∑
kD1

yk sin 3�k

D 417.94 D �278.53 D �39 D 29.43 D �49 D 55
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Substituting these values into the Fourier series:

f�x� D a0 C
1∑

nD1

�an cos nx C bn sin nx�

gives: v = 17.67 Y 69.66 cos q − 6.50 cos 2q − 8.17 cos 3qY . . .

−46.42 sin qY 4.91 sin 2qY 9.17 sin 3q Y . . . �4�

Note that in equation (4), (�46.42 sin � C 69.66 cos �) comprises the funda-
mental, �4.91 sin 2� � 6.50 cos 2�� comprises the second harmonic and

�9.17 sin 3� � 8.17 cos 3�� comprises the third harmonic.

It is shown in Chapter 31 that: a sin ωt C b cos ωt D R sin�ωt C ˛�

where a D R cos ˛, b D R sin ˛, R D pa2 C b2 and ˛ D tan�1 b

a
Hence equation (4) is equivalent to:

v = 17.67 Y 83.71 sin.qY 2.16/ Y 8.15 sin.2q − 0.92/

Y12.28 sin.3q − 0.73/ volts

which is the form normally used with complex waveforms.

Complex waveform considerations

It is sometimes possible to predict the harmonic content of a waveform on
inspection of particular waveform characteristics.

(i) If a periodic waveform is such that the area above the horizontal axis is
equal to the area below then the mean value is zero. Hence a0 D 0 (see
Figure 93.3(a)).

(ii) An even function is symmetrical about the vertical axis and contains no
sine terms (see Figure 93.3(b)).

(iii) An odd function is symmetrical about the origin and contains no cosine
terms (see Figure 93.3(c)).

(iv) f�x� D f�x C �� represents a waveform which repeats after half a cycle
and only even harmonics are present (see Figure 93.3(d)).

(v) f�x� D �f�x C �� represents a waveform for which the positive and
negative cycles are identical in shape and only odd harmonics are present
(see Figure 93.3(e)).

For example, an alternating current i amperes is shown in Figure 93.4. The
waveform is analysed into its constituent harmonics as far as and including
the fifth harmonic, taking 30° intervals, as follows:
With reference to Figure 93.4, the following characteristics are noted:

(i) The mean value is zero since the area above the � axis is equal to the
area below it. Thus the constant term, or d.c. component, a0 D 0

(ii) Since the waveform is symmetrical about the origin the function i is odd,
which means that there are no cosine terms present in the Fourier series.

(iii) The waveform is of the form f��� D �f�� C �� which means that only
odd harmonics are present.
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f(x)

−2π
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Investigating waveform characteristics has thus saved unnecessary calculations
and in this case the Fourier series has only odd sine terms present, i.e.

i D b1 sin � C b3 sin 3� C b5 sin 5� C . .

A proforma, similar to Table 93.1, but without the ‘cosine terms’ columns
and without the ‘even sine terms’ columns in shown in Table 93.2 up to,
and including, the fifth harmonic, from which the Fourier coefficients b1,
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Table 93.2

Ordinate � i sin � i sin � sin 3� i sin 3� sin 5� i sin 5�

Y1 30 2 0.5 1 1 2 0.5 1
Y2 60 7 0.866 6.06 0 0 �0.866 �6.06
Y3 90 10 1 10 �1 �10 1 10
Y4 120 7 0.866 6.06 0 0 �0.866 �6.06
Y5 150 2 0.5 1 1 2 0.5 1
Y6 180 0 0 0 0 0 0 0
Y7 210 �2 �0.5 1 �1 2 �0.5 1
Y8 240 �7 �0.866 6.06 0 0 0.866 �6.06
Y9 270 �10 �1 10 1 �10 �1 10

Y10 300 �7 �0.866 6.06 0 0 0.866 �6.06
Y11 330 �2 �0.5 1 �1 2 �0.5 1
Y12 360 0 0 0 0 0 0 0

12∑
kD1

yk sin �k

12∑
kD1

yk sin 3�k

12∑
kD1

yk sin 5�k

D 48.24 D �12 D �0.24

b3 and b5 can be determined. Twelve co-ordinates are chosen and labelled
y1, y2, y3, . . y12 as shown in Figure 93.4.

From equation (3), bn D 2

p

p∑
kD1

ik sin n�k , where p D 12

Hence b1 ³ 2

12
�48.24� D 8.04, b3 ³ 2

12
��12� D �2.00,

and b5 ³ 2

12
��0.24� D �0.04

Thus the Fourier series for current i is given by:

i = 8.04 sin q − 2.00 sin 3q − 0.04 sin 5q
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Cramer’s rule, 241
Cross products, 215
Cubic equation, 177, 186
Cuboid, 96
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dx
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dx
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dx
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P
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Fourier series, 427
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half range, 436, 440
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periodic, period 2�, 427

Fractions, 4
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Frustum, 99
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Function of a function, 274
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Fundamental, 428
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Geometry, 109
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of a curve, 264
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logarithmic functions, 48

polar curves, 178
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Harmonic analysis, 441

numerical method, 441
Harmonics, 428
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trigonometric, 141

Imaginary number, 219
Implicit differentiation, 286

function, 286
Improper fraction, 4
Independent event, 387
Indices, 10, 18
Indicial equations, 48
Industrial inspection, 390
Inequalities, 40
Initial value theorem, 418
Integers, 1
Integral calculus, 264
Integrating factor, 358
Integration, 305

algebraic substitutions, 308
areas, 330
by partial fractions, 314
by parts, 318
centroids, 340
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definite, 307
introduction to, 305
mean and r.m.s. values, 336
numerical, 326
reduction formulae, 320
second moments of area, 346
standard, 306

tan
�

2
substitution, 316

using trigonometric and hyperbolic
substitutions, 310

volumes, 338
Interior angles, 110, 111
Interpolation, 158
Interval estimates, 406
Inverse functions, 193, 290

hyperbolic functions, 290
Laplace transforms, 419

using partial fractions, 420
of matrix, 233, 235
proportion, 6, 20
trigonometric functions, 194, 290

Invert-gate, 256
Irregular areas and volumes, 102
Isosceles triangle, 111
Iterative methods, 74

Karnaugh maps, 251

Lagging angles, 136
Lamina, 340
Laplace transforms, 414

definition of, 414
derivatives of, 417
inverse, 419
notations used, 414
of elementary functions, 415, 416
to solve differential equations, 421
to solve simultaneous differential

equations, 424
Laws of Boolean algebra, 248

growth and decay, 53
indices, 10, 18
logarithms, 46, 288
precedence, 3, 19
probability, 387

L.C.M., 2
Leading angles, 136
Least-squares regression line, 400
Leibniz notation, 266
L’Hopital’s rule, 74
Limiting value, 74, 265
Linear and quadratic equations

simultaneously, 39
Linear correlation, 398

extrapolation, 159, 401
first order differential equation, 358

interpolation, 158, 401
regression, 400

Logarithmic differentiation, 288
forms of inverse hyperbolic

functions, 292
function, 46, 185
graphs, 48, 186
scale, 166

Logarithms, 46
laws of, 46, 288

Logic circuits, 255
Log-linear graph paper, 168
Log-log graph paper, 166
Long division, 2

Maclaurin’s theorem, 71
numerical integration, 73

Mantissa, 12
Matrices, 231

addition and subtraction of, 231
for solving simultaneous equations, 235
multiplication of, 232

Matrix notation, 231
Maximum and minimum values, 171,

277, 299
applications of, 279

Mean value, 381, 408, 410
by integration, 336
of waveforms, 106

Measures of central tendency, 380
Median, 381
Mensuration, 86
Mid-ordinate rule, 103, 327
Minor of matrix, 234
Mixed numbers, 4
Mode, 381
Modulus, 41, 212, 222
Moment of force, 217
Multiple, 2

Nand-gate, 256
Napierian logarithms, 44, 52
Natural logarithms, 46, 52
Newton–Raphson method, 79
Nor-gate, 256
Normal curve, 392

distribution, 392
testing for, 396

equations, 401
probability paper, 396
standard variate, 393

Normals, 281
Norm of vector, 212
Nose-to-tail method, 200
Not-function, 244
Not-gate, 256
Number sequences, 64
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Numerator, 4
Numerical integration, 73, 326

method of harmonic analysis, 441
Numerical method for first order

differential equations, 367

Obtuse angle, 109
angled triangle, 111

Octagon, 86, 90
Octal numbers, 81
Odd functions, 56, 193

Fourier series, 433
Ogive, 378, 379
Ohm’s law, 20
Order of precedence, 3, 19
Ordinate, 155
Or-function, 244
Or-gate, 256
Osborne’s rule, 58, 147

Pappus’ theorem, 344
Parabola, 171, 283
Parallel axis theorem, 347

lines, 110
Parallelogram, 86, 88

method, 200
Parametric differentiation, 283

equations, 283
Partial areas under normal curve, 394

differentiation, 294
fractions, 61

integration of, 314
for Laplace transforms, 420

Particular integral, 364
solution of differential equation, 354

Pascal’s triangle, 67
Pentagon, 86
Percentage component bar charts, 375

relative frequency, 373
Percentages, 9
Percentiles, 386
Perfect square, 36
Period, 135, 191, 427
Periodic functions, 135, 191, 427

plotting of, 207
time, 139

Perpendicular axis theorem, 348
Phasor, 138
Pictograms, 373
Pie diagram, 376
Planimeter, 103
Point estimate, 406
Points of inflexion, 277
Poisson distribution, 391
Polar co-ordinates, 122

curves, 178, 187
form of complex number, 221

Polygon, 86
Polynomial division, 20
Population, 373
Power, 10
Power series for ex , 50
Practical problems, binomial theorem, 70

involving straight line graphs, 158
maximum/minimum values, 279
quadratic equations, 38
simple equations, 27
simultaneous equations, 31
triangles, 127

Principal value, 222
Prismoidal rule, 105
Probability, 386

laws of, 387
paper, 396

Product-moment formula, 398
Product rule, differentiation, 272
Proper fraction, 4
Pyramid, 96

frustum of, 99
Pythagoras’ theorem, 115

Quadratic equations, 35
formula, 38
inequalities, 44
graphs, 171, 186
practical problems, 38

Quadrilaterals, 86
Quartiles, 385
Quotient rule, differentiation, 273
Quotients, 24, 42

Radian, 93, 109
Radix, 80
Radius, 92

of gyration, 346
Rates of change, 276, 298
Ratio and proportion, 6
Reciprocal, 10

of matrix, 233, 235
ratios, 117

Rectangle, 86, 88
Rectangular axes, 155

co-ordinates, 125
hyperbola, 186, 283
prism, 96

Reduction formulae, 320
of non-linear laws to linear form, 160

Reflex angle, 110
Regions, 45
Regression, 400

coefficients, 401
Relationship between trigonometric and

hyperbolic functions, 145
Relative frequency, 373

velocity, 205
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Reliability, 406
Remainder theorem, 23
Resolution of phasors, by calculation, 209

vectors, 202
Rhombus, 87
Right angle, 109

angled triangle, 111, 118
R.m.s. values, 336

Saddle points, 299, 301
Sample, 403
Sampling distributions, 403

statistics, 407
theories, 403

Scalar multiplication, matrices, 232
product, 212

practical applications, 214
quantity, 199

Scalene triangle, 111
Scatter diagram, 398
Secant, 116
Sech, 55
Second moment of area, 346
Sector of a circle, 88, 92
Segment of circle, 92
Semicircle, 88, 92
Semi-interquartile range, 386
Sequences, 64
Series for cosh x and sinh x, 60

ex , 50
Set, 373
Shift theorem, Laplace transforms, 416
Short division, 2
Significant figures, 7
Similar triangles, 113
Simple equations, 25

practical problems, 27
Simpson’s rule, 103, 328
Simultaneous differential equations, by

Laplace transforms, 424
equations, 29
by Cramer’s rule, 241

determinants, 238
Gaussian elimination, 242
matrices, 235

practical problems, 31
Sine, 116

rule, 125
wave, 106, 130, 134

production of, 133
Sinh, 55
Sinusoidal form A sin�ωt š ˛�, 138
Slope of straight line, 156
Small changes, 282, 298
Space diagram, 206
Sphere, 96

frustum of, 100

Square, 86, 88
root, 10

Standard derivatives, 271
deviation, 383, 410
error of the means, 404
form, 12
integrals, 305

Stationary points, 278
Statistics, 373
Straight line graphs, 155

practical problems, 158
Student’s t distribution, 411, 412
Successive differentiation, 274
Sum to infinity, 66
Supplementary angles, 110
Surd, 118
Surface areas of solids, 95

frustum of, 99
Switching circuits, 244

Tally diagram, 377, 378
Tangent, 92, 116

wave, 130
Tangents to curves, 281
Tanh, 55

Tan
�

2
substitution, 316

Taylor’s series, 368
Theorem of Pappus, 344

Pythagoras, 115
Total differential, 297
Transformations, 187
Transpose matrix, 235
Transposition of formulae, 32
Transversal, 110
Trapezium, 87, 88
Trapezoidal rule, 103, 326, 442
Triangle, 86, 88
Triangles, area of, 126

congruent, 112
construction of, 114
properties of, 111
similar, 113
solution of right angled, 118

Trigonometric equations, 142
functions, 145, 186
identities, 141
ratios, 116

evaluation of, 120
fractional and surd forms, 117

substitutions, 310
waveforms, 129

Trigonometry, 115
practical situations, 127

Truth table, 244
Turning point, 171, 277
Two-state device, 244



454

Ungrouped data, presentation of, 373
Unit matrix, 233

triad, 211
Universal logic gates, 260

Vector addition, 199
products, 215

practical applications, 217
subtraction, 203

Vectors, 199
resolution of, 202

Velocity and acceleration, 276

Vertical bar chart, 373
Vertically opposite angles, 110
Volumes of frusta, 99

irregular solids, 105
similar shapes, 102
solids, 95
solids of revolution, 338

Wallis’s formula, 325
Waveforms, combination of, 207
Work done, 214

Zone of a sphere, 100


