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This book presents certain elements of nuclear physics at a level suitable for
undergraduate physics students or for nuclear engineers. The material is also
useful to scientists in other fields who wish to have more than a descriptive
understanding of nuclear physics. The book grew out of a one-quarter course
in nuclear physics for students who had as their physics preparation only a
one-year college course, as well as a survey course in atomic physics, but whose
mathematical preparation included calculus and ordinary differential equations.
The basic approach of the book is to present a limited amount of experi-
mental information and to give the reader a feeling for its physical implications
with the aid of quantum-mechanical concepts. Wherever possible, a preliminary
discussion on the basis of classical theories is given. Sufficient quantum
mechanics is introduced to permit correct order-of-magnitude estimates of
nuclear quantities. v



vi PREFACE

Beginning students of nuclear physics are often overwhelmed and dis-
couraged by the wealth and diversity of the experimental and theoretical
material. These tendencies have been avoided, first, by presenting only the im-
portant concepts in detail, and second, by giving as unified an approach as
possible, based on the nuclear shell model. Alse, comparisons are made between
atomic and nuclear phenomena whenever they are helpful.

The book begins with a brief description of nuclear concepts. The next
topic, nuclear structure, forms the heart of the subject. Those elements of
quantum mechanics are given that are needed for an understanding of nuclear
physics. Although radioactive decay and nuclear reactions reveal new aspects,
they are treated, so far as possible, as extensions of the concepts of nuclear
structure in order to emphasize the unity of the subject. The interactions of
nuclear radiations with matter are briefly reviewed, because they are basic
to the detection methods of nuclear radiations.

The material in the book is suitable for a one-semester course, and also for
a one-quarter course if either the appendix on the two-nucleon system, the
introduction of quantum mechanics, or the interaction of nuclear radiations
with matter are omitted. The background given here should make it possible
for the interested reader to pursue the study of nuclear accelerators, the
applications of fission or fusion, and elementary-particle physics in more
complete treatments. At the end of every chapter there are problems at various
levels of difficulty that have been chosen to illustrate and elaborate the text.
All the tabular or graphical material needed for their solution is included in the
book.

The book has profited from several preliminary reviews, in particular by
Professor W. E. Burcham, F.R.S., and from criticism by students. I owe the
greatest indebtedness and gratitude to Marion Middleton for her skillful and
accurate preparation of the manuscript and prior preliminary editions, and to my
wife for her unbounded patience.

WALTER E. MEYERHOF
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BASIC

CONCEPTS

1-1 INTRODUCTION

A study of nuclear physics centers around two main problems. First, one hopes
to understand the properties of the force which holds the nucleus together.
Second, one attempts to describe the behavior of systems of many particles,
such as nuclei are. These problems are related, since the properties of a system
of many particles are to a large extent determined by the force that binds the
particles together. But other aspects of such a system come about simply because
many particles are interacting.
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Physicists can discuss many-particle systems only within certain approxi-
mations, which are determined by the particular experimental fact they wish to
explain. For example, it is often sufficient to discuss the behavior of a certain
amount of gas in terms of the gas laws (Boyle’s law, Charles’ law); but this
omits details of molecular motion which one needs to describe in order to
understand the heat conductivity of a gas. In the case of nuclei, the approximate
descriptions are called models. Much of the discussion in this book is based on
such models, each one suited only for a limited range of experimental situations.

Although the historical development of nuclear physics will not be followed,
a few of the highlights are presented in Table I-1.

TABLE 1-1 Some of the highlights in the development of nuclear

physics

Discovery of radioactivity (Becquerel) 1896
Rutherford’s atomic model 1911
Discovery of isotopes (J. J. Thomson) 1912
Induced nuclear transmutation (Rutherford) 1919
Application of quantum mechanics to radioactivity:

Alpha decay (Gamow, Gurney, and Condon) 1928

Beta decay (Fermi) 1934
Discovery of neutron (Chadwick) 1932
n-p hypothesis (Heisenberg) 1932
Discovery of positron (Anderson) 1932
Role of mesons in nuclear forces (Yukawa) 1935
Discovery of 4 mesen (Anderson and Neddermeyer) 1936
Discovery of = meson (Powell) 1946

Nonconservation of parity in beta decay (Lee and Yang) 1956

Becquerel® (1896) is generally credited with the discovery of radioactivity.
This occurred when he noticed the accidental blackening of a photographic
plate adjacent to a certain mineral. Pierre and Marie Curie (1898) succeeded in
chemically separating the radioactive material (radium) from the ore. The
greatest understanding of radioactivity was achieved by Rutherford and collab-
orators. They proposed that radioactivity should produce a change in the
chemical species (1903) and investigated in detail the nature of the radiations.
Three types of radiation were discovered, called alpha, beta and gamma. Once
it was shown that alpha radiation consists of ionized helium atoms, the stage was
set for Rutherford’s interpretation of the alpha-particle scattering experiments
of Geiger and Marsden (1909). Rutherford (1911) demonstrated that the

! References to original papers can be found in the bibliography at the end of this book.
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scattering experiments could be explained only by assuming an atom consists of
a massive, positively charged nucleus, of diameter (A 1072 ¢cm) much smaller
than the atomic diameter (~ 0% cm), surrounded by electrons. (In a neutral
atom, the number of electrons is equal to the number of positive charges carried
by the nucleus.) The first consistent model of the motion of the atomic electrons
was accomplished by Bohr (1913).

Details of the nuclear constitution became clearer once the neutron had
been discovered by Chadwick (1932), leading to Heisenberg’s hypothesis (1932)
that nuclei consist of protons and neutrons. At that time, too, attempts were made
to understand the nuclear force. Experimentally, the force was found to be much
stronger than any force then known, such as the electrical or gravitational force,
and it also had a much shorter range. Taking up a suggestion by Heisenberg
that the nuclear force is caused by an exchange of particles between nuclear
constituents, Yukawa (1935) showed that if the exchanged particles are heavy
enough the main features of the force could be explained, These particles, now
called mesons, were later discovered in cosmic radiation.!

At present the main problems of nuclear physics, mentioned at the beginning
of this section, are solved in broad outline, although not in detail. We know what
properties the nuclear force possesses—it turns out to be a very complicated
force. We also have learned how to relate the important features of nuclear
models to the force. Yet many theoretical problems remain open. Experimentally,
unexpected aspects of nuclei are discovered as the tools of research become
more refined.

1-2 BASIC NUCLEAR PROPERTIES

Nuclei have certain time-independent properties such as mass, size, charge,
intrinsic angular momentum (often called rnuclear spin), and certain time-
dependent properties such as radioactive decay and artificial transmutations
(nuclear reactions). The nuclei also have excited states, whose energy is usually
treated under the first class of properties, but whose decay is one of the types of
radioactive decay. For an overall view of the field, each of the properties will be
examined briefly. In later chapters more details will be given.

1-2a Nuclear mass and charge.  Early chemical methods of mass comparison
had already brought out the following approximate relation (Prout, 1815):
M = integer x My (1-1)

where M = mass of a specific atom

My, = mass of a hydrogen atom
The integer is now called mass number and will be denoted by the symbol A.
It was shown by x-ray scattering (Barkla, 1911} that the number Z of atomic
electrons, and hence the number of positive nuclear charges, was not equal to

1 A more extensive historical account of the development of nuclear physics can be found in
Burcham, 1963, sec. 1-1.



4 BASIC NUCLEAR CONCEPTS

the mass number 4. This made plausible the first hypothesis of nuclear structure,
that nuclei consist of A protons and 4 —Z bound electrons. As mentioned above.
though, the discovery of the neutron (Chadwick, 1932) led Heisenberg (1932)
to suggest that protons and neutrons are the fundamental constituents of all
nuclei. The evidence for this is now beyond doubt, but can be understood only
on the basis of quantum mechanics. One decisive example will be mentioned
below. With the neutron-proton hypothesis we expect the mass of an atom
to be '
M ~ZMy + NM, (1-2)
where Z = number of protons in nucleus (atomic number)
N = number of neutrons in nucleus (neutron number)

M, = mass of a neutron

The discovery by Thomson (1912) of atomic species with identical chemical
properties but different masses (called isotopes) stimulated the development of
precise determinations of atomic or nuclear masses. This specialized branch of
nuclear physics, pioneered by Aston (1919), is known as mass spectrometry.
Its importance lies in the fact that a considerable amount of information
about nuclear forces and nuclear structure can be obtained from precise .iuss
measurements. This will be discussed in Chap. 2. We will see that there is a
difference between the left and right sides of Eq. (1-2), which represents the
nuclear binding energy.

1-2b Nuclear size. ~ The first detailed model of an atom, going beyond the
kinetic theory (solid sphere) model, was proposed by J. J. Thomson (ca.1900)
soon after his discovery of atomic electrons. The electrons were assumed to
float among massive positive charges of atomic dimensions (=10-% cm).
According to this model any high-speed particle could penetrate solid matter
only by a diffusion process. On the other hand, scattering experiments of alpha
particles by gold foils (Geiger and Marsden, 1909) showed a much larger amount
of back scattering than a diffusion process would allow. Rutherford noticed
that this implied the existence of a very small (£10~% cm) atomic nucleus,
exerting a simple electrical (coulomb) force on the alpha particle. He deduced
the law of scattering.! Later measurements showed that this law is not obeyed if :

1 The alpha-particle kinetic energy is too high.
12 The atomic number ol the scatterer is too low,

The critical energy T, and corresponding atomic number Z, at which the
scattering law breaks down, allow a rough estimate of the nuclear radius of the
scatterer. We have o assume, if the distance of separation between the alpha
particle and the center of the scatterer becomes smaller than this radius, nuclear
forces come into play which are much stronger than the coulomb force used to
derive the scattering law.

1 A brief derivation is given in Sec. 5-4¢.
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When an afpha particle is very distant from a given nucleus, it has only
Kinetic energy 7,. [t comes closest to the nucleus in a head-on collision. At that
point, the alpha particle has only potential energy if the recoil of the nucleus is
neglected. Hence, by conservation of energy,

2eZe
T, =
D
where 2¢ := charge of the alpha particle (¢ = 4.80 3 1071 esu)!
Ze = charge of the scattering nucleus
D = distance of closest approach

27e?
D —
T

o

(in clcctrostatic units) (1-3)

(1-4)

For example, alpha particles show deviations from pure coulomb scattering on
uranium beyond 25 Mev (1 Mev = 1.60 x 107® ergs).2 In that case

2% 92 /(48 x 10 1)

- 25-16410°

~ 100%¥%ecm = 10F (1 F=1fermi = 1071 cm)

D

More refined experiments, using the scattering of other nuclear particles
and of electrons, have shown that the radius at which nuclear effects occur can
be written approximately

R == R4 (1-5)
where R, is called the radius constant and has the values
R 1.4F for nuclear particle scattering on nuclei (1-6)
*“l2F for electron scattering on nuclei

The difference between these two values comes about as follows: In electron
scattering we determine the location of the positive (point) charges associated
with the protons in the nucleus. In nuclear-particle scattering we determine the
size of the nuclear-force-producing region affecting the particle. [t turns out
that the nuclear force extends beyond the region with which charge {(or mass)
are assoclated, making the nucleus appear larger than it actually is. The force
extension beyond nuclear matter is about 1 F and is determined by the range
of the nuclear force.

The simple form of Eq.(1-5) would be obtained if the nucleus were a spherical
assembly of A hard particles. In that case, the volume of the nucleus would be
proportional to A and the radius proportional to AY3. This simple model,
though correct in some respects, is oversimplified. Refined electron scattering
experiments (Hofstadter et al., 1953) show that the nuclear density distribution

' For accurate values of certain physical constants, see Appendix D.
? Accurate values of certain conversion factors are listed in Appendix D,
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nuclear matter
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does not have a sharp cutoff at the radius R, but has roughly the shape given in
Fig. 1-1. Nevertheless the concept of nuclear radius is often useful. Equation
(1-5) applied to U** gives R = 9 F which compares favorably with the estimate
provided by D from expression (1-4).

=24F FIGURE 1-1 Density distribution of nuclear
| matter in a nucleus.
[

~1.14"%F \

Vel

Distance from center of nucleus

1-2¢ Intrinsic angular momentum of a nucleus. The angular momentum' of a
nucleus is an important quantity because, as we will see, it restricts the structure
of complex nuclei and affects all dynamical nuclear properties. Only a few
details of the angular momentum of a system of particles will be discussed in
this section.

It is found experimentally and incorporated in the laws of quantum
mechanics that neutrons and protons have an intrinsic angular momentum 4,
like electrons. (#is Planck’s constant 4 divided by 27.) Since angular momentum
is a vector, the total angular momentum of a nucleus is the vector sum of the
angular momenta of its constituents. We find, experimentally, that complex
nuclei have angular momenta equal to 74, where

For even-4 nuclei: [ is an integer {including zero)

For odd-4 nuclei: T is an integer (including zero) plus one-half
For example, the nucleus of deuterium H? has 7 = | and the nucleus of Li* has
1=3

According to the quantum mechanical laws of addition of angular momenta,
any system of P particles can have an angular momentum (about its center of
mass) equal to an integer x /i if P is even, and an integer plus one-half % # if P
is odd. This applies to atomic electrons as well as to nuclear constituents,
Therefore, if the nucleus HZ were made up of two protons plus one electron (to
give Z = 1), we would expect 7 = } or 3. If, on the other hand, it consists of one
proton and one neutron, we expect / = 0 or 1. The latter value is in accord
with experiment. The same reasoning extended to other nuclei shows that

' Angular momentum is defined in footnote 2 at the end of Sec. 2-Za. The nuclear
angular momentum is often called nuclear spin, even though it has orbitat, as well as
intrinsic spin, contributions,
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nuclei cannot consist of protons and electrons but must consist of protons and
neutrons.!

We have not indicated how [ is measured. Both atomic and molecular
spectra are slightly influenced by magnetic effects due to the nuclear angular
momentum, and the value of / can often be inferred.? Nuclear transmutations
also are strongly affected by the angular momenta of the initial and final systems
because they have to satisfy the law of conservation of angular momentum.
This allows a determination of [ in certain cases.

1-2d Dynamic properties of nuclei, Nuclei, like atoms, can be in excited states
of definite energies. Transitions between excited states occur by emission of
electromagnetic radiation (gamma rays) completely analogous to light emission
from atoms. The main difference is that, whereas atomic states are separated by
energies of the order of an electron volt, the separations between nuclear states
are about 10* to 10% ev, Just as a study of atomic spectra allows a reconstruction
of atomic energy levels, which in turn has led to atomic models, a study of
gamma-ray spectra leads to nuclear energy states and nuclear models.

Nuclei can also be rransforned into each other. Some of the transformations
occur spontaneously by the emission of positive or negative electrons (beta rays)
or alpha particles. Other transformations can be induced by nuclear bombard-
ments. In all cases the total number of nucleons is conserved. Furthermore,
there are overall conservation of mass and energy, conservation of linear momen-
tum, and conservation of angular momentum. No contradictions to these
conservation laws have been found. They play an important role in most
aspects of nuclear physics.

1-2e Nomenclature. As in any specialized field, a certain nomenclature has
developed based on convenience and tradition. The important terms are given
below.

Nuclide A specific nuclear species, with a given proton number Z and
neutron number N

Isotopes Nuclides of same Z and different N

Isotones WNuclides of same N and different Z

Isobars  Nuclides of same mass number 4 (4 = Z + N)

Isomer  Nuclide in an excited state with a measurable half-life . wgste b

Nucleon Neutron or proton

Mesons  Particles of mass between the electron mass (#m,) and the proton
mass (M ;). The best-known mesons are = mesons (=270m,),
which play an important role in nuclear forces, and x4 mesons
{(207mg) which are important in cosmic-ray phenomena.

! For a summary of other arguments in favor of the proton-neutron hypothesis, see Burcham,
1963, sec. 9-1.
% Burcham, 1963, chap. 4.
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Positron Positively charged electron of mass m,

Photon  Quantum of electromagnetic radiation, commonly apparent as
light, x ray, or gamma ray

A given nuclide is specified by a symbol like Li”, 3Li", or ,Lil. The letters

denote the element. The right superscript gives the mass number A. The left
subscript gives the atomic number Z, the right subscript the neutron number N,
By recent convention the mass number is often given as the left superscript,
making the symbol "Li, JLi, or JLi,. In this book a nucleus in an excited state
is denoted by the symbol with a right superscript star, e.g., Li7*.

PROBLEMS

1-1

1-2

1-3

1-4

(a) An alpha particle of kinetic energy 7, makes a head-on collision with a nucleus
of atomic number Z and mass number A. Calculate the distance of closestapproach,
taking into account the recoil of the nucleus. (b} An 0.2-Mev proton makes a
head-on collision with an alpha particle at rest. What is the distance of closest
approach (in F)? (¢) If an alpha particle makes a head-on collision with a
proton at rest, what must be its kinetic energy so that the distance of closest
approach is identical to case (b)?

(a) A nucleus of mass number A makes a transition from an excited state to the
ground state by emission of a gamma ray. What is the difference between the
excitation energy E and the gamma-ray energy E, due to the fact that the nucleus
recoils? [The momentum of a photon is given by p, = E,Jc. See Egs. (2-1) and
(2-3).1  (b) If the above gamma ray is absorbed by a second nucleus of mass
number A, to what energy can it excite the second nucleus? (¢) Apply your
results to the case of the Fe*? nucleus which emits a 14-kev gamma ray.

If the radius of a nucleus is given by Eq. (1-5) with R, = 12 F, what is the density
of the nuclear matter (a) in gjcm?, (b) in nucleons/F??

Suppose that the density of nucleons p in a nucleus varies with a radial distance
r from the center of the nucleus as shown in the figure below. What fraction of
the nucleons lie in the surface region in the nuclei Al°7, Te!2%, and Po*®if o, =

0.17 F2 ¢ = 1.1 AY*F, a = 3.0 F? (This problem can be soilved without
evaluating any complicated integrals. )

Surface
region
l o |

«

\

r
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1-5 For the discussion of certain nuclear properties, it is convenient to define a root-

1-6

mean-square radius by

Rrmg = (J‘CID prt dr/J‘n przdr)}
[ 0

(a) Evaluate this for a nucleus of uniform density and for a nucleus whose density
is given by the figure of Prob. 1.4. (b) Apply your result to the nucleus Tel?*,

In Appendix A-1, it is shown that the density of nucleons in a deuterium
nucleus has a radical dependence approximately given by p = porZe-2+,
where « ! = 4.3 F. (a) Evaluate the rms radius of the deuteron, using the
definition given in Prob. 1-5. (b) Evaluate p,.






NUCLEAR STRUCTURE zzzzrszsmrss:

2-1 INTRODUCTION

Before discussing the structure of nuclei, we point out certain similarities and
differences with the electronic structure of atoms, Atomic electrons are arranged
in orbits, more accurately termed energy states, subject to the laws of quantum
mechanics. In each atom the electrons are distributed over several states as
a result of the so-called Pauli exclusion principle. Atomic electrons can be excited
into normally unoccupied states, or can be removed completely from the atom.
From such phenomena we are able to deduce the electronic structure of atoms.

11



12 NUCLEAR STRUCTURE

In nuclei there are two groups of like particles: protons, and neutrons.
Evidence will be presented showing that each of these groups is separately dis-
tributed over certain emergy states subject to the restrictions of the Pauli
exclusion principle.! Nuclei have excited states, and nucleons can be removed
from, or added to, nuclei. Much information about nuclear structure can be
obtained from a study of these phenomena.

Electrons and nucleons have intrinsic angular momenta, called intrinsic
spins. The total angular momentum of a system of interacting particles reflects
details of the forces between the particles. For example, from the (vector)
addition, or coupling, of electron angular momenta in atoms we can infer the
existence of a force connecting the spin and the orbital motion of an electron
in the electric field of the nucleus (spin-orbit coupling). In nuclei, there is also a
correlation between the orbital motion of each nucleon and its intrinsic spin,
but not of the same origin as for an atomic electron. In addition, the nuclear
force between two nucleons depends strongly on the relative orientation of
their spins.

The structure of nuclei is more complex than that of atoms. In an atom the
nucleus provides a common center of attraction for the electrons, whereas
interelectronic forces generally play a secondary role. Furthermore, the
predominant (coulomb) force is well understood. In nuclei there is no center of
attraction; the nucleons are held together by their mutual interactions which
turn out to be very complicated in detail. Nevertheless, as we will see, the short
range of nuclear forces and the Pauli exclusion principle conspire to provide an
effective overall force center for each nucleon. Also, atomic electrons represent
one group of like particles, whereas in nuclei there are two different groups of
like particles. This allows a richer variety of structures: there are about 100
types of atoms, but to date well over 1,000 different nuclides have been found.

2-2 ELEMENTS OF QUANTUM MECHANICS?

Neither atomic nor nuclear structure can be understood without the concepts of
quantum mechanics. The continuity of presentation will, therefore, be interrupted
to present some consequences of Schrodinger’s equation which replaces the
classical equation of motion. The solutions of this equation for two simple
situations illustrate the physical basis for many aspects of nuclear structure.

Because the main idea of quantum mechanics is brought out by the de
Broglie wave, a brief review of this concept will be given first.

2-2a de Broglie waves.  In the years 1900 to 1930 several decisive experiments
were performed which demonstrated that classical mechanics, based on Newton’s
law of motion, and classical electromagnetism, based on Maxwell's equations,

! See Sec. 2-5.
* The reader who is familiar with quantum mechanics may wish to proceed directly Lo the end

of this section.
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fail to describe the behavior of atomic and subatomic particles. For example,
experiments on the emission and absorption of electromagnetic radiation
showed that the energy E, of the radiation could be emitted (Planck, 1901) and
absorbed (Einstein, 1905) only in bundles of energy, called guanta, rather than
in a continuous manner as implied by Maxwell’s equations for the electro-
magnetic field. Each quantum has the value

E, = hy (2-1)

where & = Planck’s constant (4 = 6.62 x 102" erg-sec)

v = frequency of electromagnetic radiation
The quantum energy is conveniently related to the wavelength A of electro-
magnetic radiation by the relation

1,240
E_ (in Mevy) =

A(in F)
The scattering of x rays by atomic electrons (Compton, 1923) provided

evidence that the linear momentum p_ of each quantum of electromagnetic
radiation is given by

(2-2)

h
Pr=3 (2-3)

A
Therefore it is convenient to think of electromagnetic radiation as consisting
of photons with particlelike mechanical properties.
De Broglie (1924) proposed that, conversely, particles should have wave-
like properties. Assuming that this de Broglie wave is sinusoidal, the frequency
and wavelength were to be given by the inverse relations to (2-1) and (2-3)

W
= — 2-4
W=7 (2-4)
Ay = h (2-5)
P
where W is identified with the relativistic total energy® of the particle
W = mct (2-6)
My
=9 2-7
"I e @0
and p is the linear momentum
p=mp (2-8)

! For an eclementary treatment of relativistic effects in mechanics, see Kittell, Knight, and
Ruderman, 1965. vol. |, chaps. 10-12. The phrase “total energy™ is used with two different
meanings in this book. The relativistic total energy is the sum of the rest energy, the kinetic
energy, and the potential energy (if present). The nonrelativistic total energy is the sum of the
kinetic and the potential energies.
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In these relations
m == total mass of particle

my = rest mass of particle
v = speed ol particle!

¢ = speed of light
For later discussions we note that
W=my*+ T (2-9)

where T is the kinetic energy of the particle. For v ¢, T & ZIYIOL-'Z = 1p*imy.
Also, we can show from Egs. (2-6) to (2-8) that

Wt = PZCZ J‘; "1026‘4 (2_10)

which, for m, = 0, includes the relation between E, and p, obtained from Egs.
(2-1) and (2-3). For a neutron or proton, we find from Eq. (2-5) for ¢ < ¢ that
the de Broglie wavelength is related to the kinetic energy T by

28.6

A, (in F) = i Mt

(2-11)
Electron scattering experiments on nickel crystals (Davisson and Germer,
1927) gave conclusive evidence that the de Broglie hypothesis (2-5) indeed has a
basis in reality; but already in 1926 Schrédinger had proposed a differential
equation for more general de Broglie waves than sinusoidal ones.
With the Planck hypothesis (2-1) and an essentially ad hoc assumption
that the orbital angular momentum L of atomic electrons is quantized?

L = integer X A (2-12)

Bohr (1913) proposed a model for the hydrogen atom which explained the
optical emission spectrum of atomic hydrogen. The Schrdinger equation allows
a reinterpretation of Bohr's model and provides a satisfactory basis for relation
(2-12).

! In this book we will distinguish carefully between velocity v, which is a vector quantity, and
speed v, which is the magnitude of velocity.

2 In classical mechanics, Lhe orbital angular momentum of a particie of mass m, moving about
a fixed origin at a constant radial distance r with a speed ¢ is equal to m,er. More generally, the
orbital angular momentum is a vector, given by

L=rxmv=rxp (2-13)

for any radius vector r and velocity v. For a system of parlicles, the lotal orbilal angular
momentum is the vector sum of the individual momenta. 1t can be shown for a system not sub-
ject to an external torque (if » < ¢) that the total orbital angular momentum ejther about a
fixed origin or aboul the center of mass of the system is a constant vector, i.e., constant in
length, direction, and sense.
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2-2b Schridinger equation. The de Broglie wave can be considered as 2 mathe-
matical wave guiding the motion of a particle (Born, 1926). Its amplitude ‘¥ is a
function of space and time. Although it is not possible to derive the equation
governing the wave, various plausible arguments can be used to relate it to
familiar concepts such as conservation of energy. 1n this connection, we note
that in classical mechanics Newton's laws of motion also cannot be derived, but
are descriptions of experimental facts.
Schrdodinger’s equation is
h? oV

EURLL X1 R A 214
2my, Sy (2-14)

where, in Cartesian coordinates,
W ="¥(x,y,z,t) = ware function of particle
o Y oW
o o T
V = V(x,y,z,t) = potential energy of particle?

0 (2-15)

and i=1 1

If ¥ is independent of the time, we can separate space and time variables by
setting?

W ey, 2)r() (2-16)
Substituting into Eq. (2-14) and dividing by w7 we find

ey, i

= — 2-17
2my T dt ( )

Since the left-hand side of this equation depends only on space variables and
the right-hand side only on the time, the equation cannot be satisfied for all
points in space at all times unless each side has the same constant value. Call
this constant £. {We will see below that this is the nonrelativistic total energy
of the system.} From the right-hand side of Eq. (2-17) we then obtain

r = Ce-VEM (2-18)

For convenience we will set the arbitrary constant C equal to unity. The left-
hand side of Eq. (2-17) can be written

z ‘
P vy — Ey (2-19)

2my,

! As in classical mechanics, the potential energy is defined only within an arbitrary constant.
For the purposes of this book we will usually define V so that it is zero for x, y, z — <.
% This is a general technique for solving certain types of partial differential equations.
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This is called the time-independent Schridinger equation. It is an equation to
which we will refer often.

To interpret the equation, assume that the wave function ¢ depends only
on one coordinate, say x

y = pl(x) (2-20)
This can occur only if ¥is a function of x alone. Then,
d?y
Viy = -
Ve (2-21)

and Eq. (2-19) can be put into the form
d*yp

where k (called ware number) is defined by

htk?®
— =F— V(x) (2-23)
2m,

If ¥ happens to be independent of x so that k is also independent of x, Eq.
(2-22) is mathematically equivalent to a simple-harmonic-oscillator equation
with the solution

p = ae** + he'k= (2-24)

The arbitrary constants @ and b are determined by boundary conditions. One
special form of Eq. (2-24) is the sine function
p = Asin kx (2-25)

which is the de Broglie wave mentioned in Sec. 2-2a. The wave number k is
therefore related to the de Broglie wavelength by

2n
= — 2-26
T (2:26)
and hence to the momentum p of the particle by
k=2 (2-27)

A
according to Eq. (2-5). The plausibility of Eq. (2-27) is enhanced if we substitute
it into Eq. (2-23) to find the classical law of conservation of energy

PZ
st V=E (2-28)
13

We note that this law is obtained in classical mechanics if the forces acting on
the particle are conservative or, in other words, if the particle has a potential
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energy which does not depend directly on tiime. Exactly the same assumption
was made in expression (2-16) from which all subsequent equations followed.
We can therefore think of Eq. (2-19) as the quantum mechanical equivalent of
the law of conservation of energy.
We can go one step further and note from Eq. (2-18) that the angular

frequency m (= 2mv) of the (oscillating) wave function is given by

£ (2-29)

W = — -

A )
This corresponds to the de Broglie relation (2-4). The reason E rather than W
occurs in Eq. (2-28) is that the Schrédinger equation is the quantum mechanical
analog of the nonrelativistic energy law. The quantum mechanical replacement
for the relativistic energy expression is also known and was discovered by Dirac
{1928). Some of its consequences will be mentioned in Sec. 3-4d.

2-2¢ Interpretation of 1", Boundary conditions. The simple solution (2-24) can
serve to illustrate the two types of waves which Schrédinger’s equation (2-14) can
generate when V is independent of ¢: standing wares and traveling waves. To
obtain the former, we write Eq. (2-16) with the help of (2-18) and (2-29) in the
form

W = (g™ 4- be k)it (2-30

This is reminiscent of a standing wave on a string, whose deflection y from
equilibrium is given by
¥ = (asinkx + b cos kx) sin w? (2-31)
To obtain traveling waves, we write
"= geftkemol 4 pemkaTon (2-32)
which recalls a sine wave traveling in the +x direction
vy =asin (kx — wt) (2-33)
and a wave traveling in the —x direction
y = bsin(kx +— wi) (2-34)

For future purposes it is useful to note that we can always recognize from
the sign of £ whether a general wave function 'V’ will be a standing or traveling
wave. To show this, assume a one-dimensional situation and let the forces on
the particle extend only over a finite region of space so that

V(x)—0 as | x| = o0 (2-35)

From Eq. (2-23) it follows that as |x| — o0

2myE\}
K —» (7) (2-36)
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If £> 0, k will be a real quantity. The solutions of Eq. (2-22) can then be
written in the form (2-32) at large distance from the origin, so that'V" is a traveling
wave solution. If E < 0, Eq. (2-36) shows that k is pure imaginary far from the
origin, that is k — ix, where « is a real quantity. From Eq. (2-24) it then follows
that

P — ae” """ 4 petrr (2-37)
2m, |E[\t
where K= ( ;:2 ) (2-38)
Substituting into Eq. (2-16)
Y — p(x)et! (2-39)

where (x) is a real function. This has the mathematical form of a standing
wave. Therefore, positive £ means that at a large distance from the force center
¥ is a traveling wave and negative E means that it is a standing wave.

In accordance with the physical conditions on ', given below, we must set
b =0o0ra=0in Eq. (2-37) as x — 4o or — o respectively. Since far from
the force center V" becomes infinitesimally small, Eq. (2-39) tells us that a standing
wave solution represents a localized oscillating disturbance. The corresponding
state of the particle is therefore called a bound state. A traveling wave, on the
other hand, represents a disturbance coming towards a force center or traveling
away from it, such as occurs in the scattering of a particle or the diffraction
of a light wave by a slit.

After considering various scattering processes on the basis of Schrddinger’s
equation, Born (1926) suggested that ¥(x,y,z,!) should be regarded as a
“ghost wave” guiding the motion of a particle. He found that the expression’

W*\WV dx dy dz =|V|2 dx dy dz (2-40)

represents the probability of finding the particle in a particular volume
element dx dy dz. The quantity |¥(x,y,z,0)[% itself, is the probability per unit
volume of finding the particle near the point x, y, z. A connection with the
classical probability will be made in Sec. 2-2f.
From Eq. (2-16) and from the form (2-18) of 7, we see that for time-
independent potentials
¥zt = [pxy,2) (2-41)

Hence |¥'|2 is independent of time in that case.
Since |'¥'|2 is a physical probability, ¥ has the following properties:
1 It must be single valued and continuous everywhere.

2 All first partial derivatives of ¥, which turn out to be related to the
current density or flux of particles (number of particles per unit time
per unit cross-sectional area), must also be continuous.

* A superscript star denotes the complex conjugate of the quantity in question. Bars denote
the absolute magnitude. Note that (@ + i6)*(a + ib) = (a — ib)(a + ib) = @ -+ b* = |a + bl
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3 ¥ must never be infinite,

4 If V— o0,¥ — 0, since each term in Eq. (2-19) must remain finite.
Furthermore, for one particle localized in a certain region of space, such as an
atomic electron in a H atom,

f Wl dx dy dz = 1 (2-42)
all space
so that as r — =, y — 0 for any bound state. Equation (2-42) is called the
normalization condition.

FIGURE 2-1 Spherical coordinates. (a) One-particle system. (b)) Two-particle
systen. The center of mass is denoted by C.

m,
U ! i
i
\\\ i
x
(a) (b

2-2d Schridinger equation in spherical coordinates. Many physical potentials,
such as the coulomb potential, have spherical symmetry, In this case, one can
show! that the general wave function can be separated in spherical coordinates
r, 8, and ¢, illustrated in Fig. 2-1a.
w(r.0.6) = R(NO(O)D(¢) (2-43)
Imposition of the conditions that y must be single-valued and finite everywhere
restricts © and @ to the form
O(6) = Pi™(cos 0) (2-44)
D(g) — e (2-45)
where P{™ = associated Legendre polynomial? of the order / in cos 6
I, m = integers (including zero) with {m} </, and m positive or negative,
but / positive only

' Schiff, 1955, “Quantum Mechanics,” sec. 14, See also Prob. 2-7 at the end of this chapter.
* The lowest-order associated Legendre polynomials are P(g) = 1; P(‘l’) = cos §; PG =
(1 —cos?e)t = sin 4.
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One can show that the integers / and m are related to the orbital angular
momentum L of the particle (about the origin). The magnitude of L is

L=T[+ D (2-46)

and its z component is equal to mh.
The radial function R(r) in Eq. (2-43) is given by

B  du [l([ - 1)i? v :l _
2y @t e T V) = B (2-47)

where the substitution
u = rR(r) (2-48)

has been made to simplify the equation. The general form of the equation can
be appreciated on the basis of classical concepts. Consider the motion of a
particle in a central force field.! The particle will move in a plane. Decompose

FIGURE 2-2 Classical motion of a particle in a
central force field. The plane shown is the plane in
which the trajectory of the particle lies.

1 .

its instantaneous velocity v into components v, and v, which, respectively, are
radial and tangential to the instantaneous radius vector r of the particle, as
shown in Fig. 2-2. Conservation of energy gives

tmg(v? + 0, - V(r0)=E (2-49)

where ¥(r,f) is the potential associated with the central force field. Since there
can be no torque exerted on the particle by a central force, the orbital angular
momentum L of the particle

L =mp,r (2-50)

is a constant of the motion. Eliminating ¢, between Eqs. (2-49) and (2-50) we

obtain
2

tmge® + ~ V() =E (2-51)

2mgr®
This equation has the same relation to Eq. (2-47) as Eq. (2-28) has to Eq. (2-19).

! In classical mechanics, the spherically symmetric 1ype of potential considered in this scction
would be a special case of a central force field.




2-2  ELEMENTS OF QUANTUM MECHANICS 21

We see that the transition from classical to quantum mechanics makes plausi-

ble the substitution
L[| - 1)k (2-52)

in agreement with relation (2-46) which can be derived directly. The substitution
(2-52) will be used several times in this book.

Some characteristics of the radial solutions [Eq. (2-47)] will be discussed
in Sec. 2-5b. Here it is of interest only to point out that the equation for the
case [ = 0 (or L = 0, i.e., zero orbital angular momentum)

h? dPu
- Yy VMru=E 2-53
e dr? + Wrju = Eu (2-53)
has a mathematical form which is identical to the one-dimensional equation
(2-22). This identity will be helpful later on. We should note, though, that the
definition (2-48) of « requires always

u=20 at r=20 (2-54)

because R(r) must remain finite everywhere. (See condition 3 of the boundary
conditions in Sec. 2-2¢.)

2-2e¢ Wave equation for two particles under mutual forces. In nuclear physics
problems, the motion of two particles subject only to mutual forces is very
common. lt is, therefore, worthwhile to compare the classical method of
separating the motion of the center of mass and the motion abour the center of
mass with the quantum mechanical separation. If two particles of mass m,
and m, move under mutual forces F, and F,, the classical equations of motion
of either particle with respect to a fixed origin are

2
2-55
dr, (2-55)
o= m: g2
where F=-F (2-56)
Defining the coordinate of the center of mass by
N1y + Tttty
— 2-57
¢ m, + m, ( )

the motion of each particle can be expressed with respect to the center of mass
of the system. Under condition (2-56) the total force F, + F, on the system
m, + m, is zero and therefore the center of mass moves with constant (vector)
velocity. With respect to the center of mass, particle 1 has the radius vector

my

_ 2-58
e (2-38)
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and particle 2 the radius vector —rm,{(m;, — m,). Here
FP=r —1I; (2-59)

refers to the relative separation of the particles. The equation of motion of r
can be derived by substituting in Eq. (2-55) for r, the expression

my

=T +— 8 — o
r =Tr¢ - l'm1 ey (2-60)
Since dry/dt = constant, we find
dr
¥, — M, e (2-61)
nm

where M,= —*%_ -

= (2-62)

is the reduced mass of the system.
A separation of the motion similar to the classical one can be made for

Schrédinger’s equation. For this purpese we note that for two particles Eq.
‘o 10\ hnrarmo

N— -, el mes

A2 A2
Vg — — Vjy L Yy = Ey (2-63)

2m, 2m,

The wave function y depends on r; and r,, but for mutual forces ¥ depends only
on r; — r, = r. Using Cartesian coordinates, V,%p represents

V12w = T =t - (2'64)

and similarly for V,*p. Since x; and x, are functions of x¢ and x as given by
relations (2-57) and (2-59)

3x,  dx 0x, ' 9xe ox,

épy dy m
"5 o m e
a Oy v\ _ (%) 9x | 0 (Ov)0x.
an ax? axl(axl) - ax(axl) ax, axc(axl) ax,
oty o2y 2m, a2y my o\
- - - o e | —_— _
Ox® ' Ox Oxemy + me  Oxct (ml + mz) (2-66)
. d*y  dy oy 2m, oy my 2
| il BT -
Similarly Oxg?  Ox*  Ox Oxe my —my,  Ox¢ (ml -+ mz) (2-67)
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Eq. (2-63) can now be written

dx? = dy? EE

Wt 0%y 0t a2 A? o2 g2 g%
(2~ o ’P)_—_( LA ”’)+Vw=£w
2(my - my)

(2-68)

0xc® W 0z2

where M, is the reduced mass defined by Eq. (2-62). Since ¥ depends only on
X, ¥, 2, we can separate variables in this equation by the substitution

w(rre) = yoP)ye(re) (2-69)
This yields, after division by w,ye,
hz V2w0 ﬁ2 V‘ch
- +V:|+[— ]:E 2.70)
[ My oy, 2(m; + my) e ¢

Dividing the total energy E into the energy E. of the center-of-mass (c.m.)
motion and the energy E, with respect to the center of mass, the separate
coordinate dependence of the two bracketed quantities requires

2

M,

Viyy + Vyo = Egyg (2-71)

hﬂ

d S,
an 2 + m)

2Wc = Ecwc (2‘72)

The first of these equations resembles in all respects Eq. (2-19) for a single
particle, and is the quantum-mechanical analog of the energy equation corre-
sponding to Eq. (2-61). The second equation represents the c.m. motion with
constant velocity; this can be seen from the discussion following Eq. (2-23)
with ¥ set equal to zero.

In future expressions for a two-particle system, the subscript zero will be
dropped. We should always remember, though, that in the radial equation
(2-47), corresponding to Eq. (2-71), the orbital angular momentum expression
[{(/ + 1)]}% now refers to the sum of the orbital angular momenta of both
particles about the center of mass.

2-2f Particle in a closed cubical box. ~ We now apply the Schridinger equation
(2-19) to two simple problems which give us some insight into the properties
of a quantum mechanical systcm such as a nucleus. The first of these, a
particle in a closed box, simulates a situation in which a particle is in a bound
state, such as an electron in an atom or a nucleon in a nucleus. The second

problem is concerned with a beam of particles
A closed box must be represented by a potential which is infinitely high at

the position of the walls, since the particle cannot be outside the box and hence
v must be zero everywhere outside the box (see condition 4 of the boundary
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conditions in Sec. 2-2c). For convenience we can put ¥ = 0 inside the box,! as
indicated in Fig, 2-35. Substituting this into Eq. (2-19) and setting
P(xp.2) = X(OY¥(R)Z(2) (2-73)
it is easy to separate variables and to obtain
ldix 14y 1427
Bl Tl Bt N
X dx? + Ydyr 27 d* (274)

FIGURE 2-3 Particle in a closed cubical box. (a) Location of box. (b) Potential
shape. E is the total energy of the particle. (c) Shape of a typical wave function along
x direction (n, = 4). (d) Shape of the probability density corresponding to (¢). The
classical probability density is indicated by a dashed line.

z 0.0} a
14
E

Lj |

A
L
L
_r/ 0 L

(a) (h)

(¢) (d)

where k? is defined in terms of the (constant) energy E and mass m, of the particle
by

2myE
=
Each of the three terms on the left-hand side of Eq. (2-74) depends on a dif-
ferent, independent, coordinate. Since the sum of the three terms is equal to
a constant, each of the terms must bc equal to a constant. For example, we

can set
1 d2X
Yae ~ & (2-76)

k? (2-75)

! There is no particular meaning attached to ¥ = 0, See footnote following Eq. (2-15).
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and similarly for the other two equations, so that the separate constants are
related by
k2 + k24 k=K (2-77)

Equation (2-76) is identical to Eq. (2-22) and its solution is
X = a4 b e = (2-78)

The arbitrary constants a, and b, are determined by the boundary condition 4
of Sec. 2-2c:
X0 =0 X(L)=0 2-79)

Recalling that e'* = cos s 4 isins, we see that the first of these conditions
requires
X = A,sin k_x (2-80)

where A4, is an arbitrary constant, and the second condition restricts k, to the
values
now

k=" (2-81)
with n, equal to an integer. It is important to note for later work that only
positive integers are of interest. A change of sign of n, is equivalent to a sign
change of the arbitrary constant 4, in Eq. (2-80) and therefore does not produce
a new wave function. The value n#, = 0 is excluded, because in that case y = 0
throughout the box; Eq. (2-42) shows that there could then be no particle in
the box.

Proceeding similarly for the y and z solutions we find

Y=A,sink,y Z=Asink.z (2-82)
noo n_mw
h k, =2 d k== 2-83
where =7 an =7 (2-83)
Summarizing Eqgs. (2-80) and (2-82), the complete wave function is
v = Asink,xsin k,y sin k,z (2-84)
where A=A AA, (2-85)

Each component of this function is a simple de Broglie wave. For example, the
wavelength in the x direction is equal to
a2

== (2-86)

[\ ]

This is just the condition for producing a standing wave in the box with nodes at
the walls.
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The ccnstant 4 in Eq. (2-84) can be determined by the normalization
condition (2-42).

L nymx J‘L n,my J‘L n,mz
1= Azf sin? =~ d sin? = 4 sin? =~ dz
0 L L “J L
= A*({L)® (2-87)
(Each of the integrals is equal to L{2 by inspection, since the average value of

the sine-square function is equal to 4 over any number of complete half-periods.)
Choosing the positive sign for convenience,

A = (2/L)} (2-88)
yields the complete normalized solution
2\8
Y= (z) sin nzzx sin nerry sin nirz (2-89)

Let us compare the probability density [w|2 with its classical value. From
the point of view of Newtonian mechanics, we are treating the problem of a
particle bouncing around inside a closed box in a perfectly elastic manner, free
from any external forces. Such a particle has a constant speed wherever it is
within the box and, therefore, its probability density is equal to J/L* But this
is exactly the value toward which |y[? will tend if n, n,, n, = oo, for then each
sine-square function can be replaced by its average value } (see Fig. 2-3¢). This
is an illustration of the correspondence principle (Bohr, 1923) according to which
quantum mechanics can be approximated by classical mechanics whenever the
quantum numbers of the system, here n_, n,, and n,, become very large.

The boundary conditions (2-7%) and similar equations for ¥ and Z restrict
not only the form of the wave function but also the energy E of the system.
Substitution of Eqs. (2-81) and (2-83) into (2-77) and (2-75) gives

772&2

E = 2 2 L 2
(n:: +nv i nz)szLz

(2-90)

The boundary conditions on ¥, therefore, cause the quantization of the energy.
Similarly, the finiteness and single-valuedness of y (conditions / and 3 of Sec.
2-2c) cause the quantization of the orbital angular momentum (Sec. 2-2d). Al-
though this way of explaining quantization may seem unsatisfactory to the
reader, it is not possible to give a better understanding by any analogies or con-
cepts based on classical physics.

In Table 2-1 and Fig. 2-4, we show the lowest energy levels of the system in
units of w2A%/(2m,L*%). As mentioned above, no quantum number can have the
value zero and only positive quantum numbers are considered. The lowest
energy state, therefore, cannot be zero. We will show that this is in accord with
the uncertainty principle (Heisenberg, 1927). In the lowest state, the x component
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TABLE 2-1 Quantum numbers and energy levels of a particie
in a closed cubical box

n, n, n, (n2 + n? + nHt Z’HE::I:
1 1 1 1
1 2 6 3%

i 2 2 3

1 1 3 11 3

2 2 2 12 1

1 2 3 14 6

2 2 3 17 3

t This is the energy E in units of w*A*/(2m,L?). See Eq. (2-90).

} The three levels correspond to n, = 2, n, = 2 and n, = 2, respec-
tively. All three levels have the same energy but different wave func-
tions. They are called degenerate. A similar situation can occur for
the other cases.

of linear momentum is uncertain by the approximate amount
Ap, ~ 2p, (2-91)

because the direction of travel of the particle cannot be determined from its
wave function. The corresponding uncertainty in position is roughly equal to

- Ax ~ L (2-92)

Since the wave function is just a half-sine wave with zerosat x = 0and x = L,

E

1

FIGURE 24 Energy levels of a particle in a closed cubical box. 17
Note that the lowest energy state is not at zero energy.
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we cannot really locate the particle within a distance of the order of L. Recalling
p. = hk, [Eq. (2-27)] and using Eq. (2-81), we obtain within a factor of 2
ApAx (2-93)
This is one expression of the uncertainty principle.
It is instructive to compute the magnitude of the characteristic energy step
w2h2/(2myL?) which occurs in expression (2-90).
For an electron in an atom, my, = 9.1 « 107#® g, I & 1078 cm

AR m(1.05 » 10-%7)2
2myl? 2% 9.1 1078 x (716
A2 0.5 107 % ergs & 30 ev (2-94)
For a nucleon in a typical nucleus, my = 1.6 > 107 g, L & 5 v 107 cm
w22
—_— - S
It 6 Mev (2-95)

These values are of the correct order of magnitude and allow us to appreciate
the enormous difference between atomic and nuclear energies.

FIGURE 2-5 A simple potentjal barrier in one dimension. The
parsticles originating at x = — a0, and those traveling to the
right and left are indicated by their wave functions with arrows,
In each case, V' = pe ot

"
[ It 1
Yo
Y.
E \I,IH«-
¥,
X
0 L
2.2g Barrier penetration of a particle. The second problem to which we apply

Schridinger’s equation {(2-19) is the one-dimensional penetration of a potential
barrier by a beam of particles. A classical analog of this situation would be a
stream of marbles rolling normally up an incline. 1t is clear that if the (non-
relativistic) total energy £ of a marble does not exceed the maximum gravitational
potential energy V, corresponding to the top of the incline, the marble will
always roll back, i.c., it will be reflected by the potential barrier. On the other
hand, for £ > ¥, the marble will always go over the top. In a system in which
quantum effects are important, these results are strongly modified.

Figure 2-5 shows a simple potential barrier in one dimension. A stream of
particles is supposed to originate at x = — o and to travel toward the barrier,
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Le., towards the right. Assume that each particle has a total energy £. For
convenience divide space into three regions I, II, and 111, and set V; =0,
Vi1 = Vi Viup = 0. Because £ > V for regions I and I1I, the particles in these
regions are represented by the traveling wave solution (2-32) of Eq. (2-22). In
region I, particles can be reflected by the barrier towards the left, but in region
LI1, particles cannot travel towards the left because the source of particles is at

x = — oo and nothing in region 111 can reflect the particles back to the left. The
solutions of Eq. (2-22) in regions I and III are therefore

y1 = @’ + bie ™ =y, 4y (2-96)

Y1 = A = Y- (2-97)

where k% = 2m E/R®.
In region II the equation to be solved is

2
TV gy (2:98)
where K® = 2my(V, — E)A? (2-99)
The solution is
Yy = apet” + byem" (2-100)

which is a standing-wave-type solution of the form (2-39).1
The probability P of transmission of the flux of particles through the
barrier in the present case is equal to?
_ lynr- 12 _ lay|®
lpra|®0 Jay|?
where v is the speed of the particles. To evaluate this expression we note that the
(complex) coefficients @ and & are determined by assuring that y and dy/dx are
continuous at x = 0 and L. For example, at x = 0,
Y- T ¥ = ¥u leads to ay -+ by = ay + by (2-102)
and at x = L

Yir = Y- leads to are*t + bye L = ar et (2-103)

(2-101)

Similar equations are obtained for the derivatives.

* From a classical-mechanics point of view, it is of course puzzling that particles can be within
the barrier region I at all, because their kinetic energy would be negative there. IHowever, an
application of the uncertainty principle 1o this problem shows that if we wished to find out
whether a particle is really localized within the barrier we would have to give it momentum
sufficient to make its kinetic energy positive.

*In classical terms, a beam of particles traveling with a velocity v has a current density nv,
where n is the number of particles per unit volume in the beam, Current density is equal to
the number of particles traversing unit area perpendicular to v in unit time. Flux is equal to the
number of particles traversing, in any direction, unit area in unit time. For a beam of particles,
current density or flux can be used interchangeably, if we remember to place the unit area
perpendicular to the velocity vector. The correct quantum mechanical expression for current
density is given in Schiff, 1955, sec. 7. For plane waves, it reduces to |p|?v.
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Solving the preceding equations for ap;; and a; we find after some algebra!

2 -1
P=|14+—"sinh? L] -1
I: +4E(VD—E)Sm K (2-104)
which for «L 3> 1, i.e., sinh? xL ~ $et?*L, becomes
E E
P16\l — =)e=L (2-105)
Va b

The important factor in most physicai cases is the exponential. For example, for
a 5-Mev proton and ¥, = 10 Mev, L = 10-'? cm, Eq. (2-99} gives

C[2x 1.6 x 1077 x (10 — 5) x 1.6 x 10-5]4

K

1.05 x 10-%7
~ 5 x 10% cm!
Therefore gL — 710 — (,5 x 10
and P=(16 x0.5x05 x05x 10 =2x 101

Usually the term in front of the exponential is ignored and we write
Pr e (2-106)

where y = 2xL = 2[2my(V, — E)}L[A.
If ¥V is not a constant, but varies with x, we can show? that the same
expression for P holds approximately but with

y = ; f 2mo[V(x) — E dx (2-107)

where x, and x, are the classical furning points, i.e., the points at which £ = ¥(x)
as shown in Fig. 2-6.
FIGURE 2-6 A general potential barrier
in one dimension. The classical turning
points x, and x, are indicated.

In Sec. 2-2d, we mentioned that for a problem with spherical symmetry and
zero angular momentum, the same mathematical expressions are obtained as

' Evans, 1955, app. C.

*Schiff, 1955, sec. 28. Note that if the barrier is broken up between x, and x; into n
adjacent barriers of thickness Ax, so that x; — x; = n Ax, the total penetrability can be
written in terms of the individual penetrabilities as P = P.Py - - + Py = enitratovn, As
n~» oo and Ax = dx ~> 0, expression (2-107) is obtained.
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for the one-dimensional equation. Hence, in this case also, P ~ e~” with
2 [rs
y = E.l. 2m[V(r) — E]}t dr (2-108)
1

This expression will be useful in the discussion of alpha decay. If the potential
is due to the mutual influence of two particles, m, represents the reduced mass
[see Eq. (2-62)].

Figure 2-7 illustrates the shape of the wave function which would be
obtained if the constants a, b determined by the boundary conditions were
substituted into Egs. (2-96), (2-97), and (2-100). Note that in our example the
energy of the particle is not changed and hence the wavelength of the wave
function is identical on both sides of the barrier.

FIGURE 2-7 Illustration of the wave function for the barrier shown in
Fig. 2-5. The source of particles is located at x = —co.

iz

2-2h Parity.  We can see by inspection of Eqgs. (2-15) and (2-19) that the
substitutton x - —x, v = —y and z - —z (abbreviated by r = —r below)
will not alter the solutions of Schrodinger’s equation if

V{—x,—y,—27) = V{(x,y,2) (2-109)

The substitution r — —~—r is called the parity operation and a potential which
has the property expressed in Eq. (2-109) is said to be conservative under
the parity operation, or to “conserve parity.” It turns out that practically all
physical potentials, including those generated by nuclear forces, possess this
property.

For a potential of the form (2-109) the wave function ¢ in Eq. (2-19)
must have the property?

Y(—1) = (rf) (2-110)
or Y(—1) = —¥(r) (2-111)

Further, if any system, however complicated, has a wave function of a given
type it can never change over to a wave function of the other type (as long as
the interactions in the system remain parity-conserving). The wave function

' Schiff, 1955, sec. 23.
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(2-110) is said to possess even parity, or, briefly, is even; the other wave function
is odd.

The conservation of parity in nuclear interactions places important
restrictions on the dynamic nuclear processes (decays and reactions). Therefore
it is important to determine the parity of nuclear states by experimental or
theoretical means. The parity of a (standing) wave function can usually be
recognized from the quantum numbers, as we now show in a special case.

In the example of the particle in a closed cubical box, the parity of the wave
function (2-89) is not a definite quantity [since % = 0 outside the box, it is easy
to see that w(x) %= p(—x) for 0 < |x| < L]. This occurs because the location of
the box with respect to the origin (see Fig. 2-3a) causes ¥ nor to have the
property (2-109). If the origin is moved to the center of the box, ¥ will have the
property (2-109) and the wave function then has the form

B (2)’1 . (n,wx' nzw) ) (nyfry’ n nuﬂ-) ) (n,rrz’ n,rr) 9112
zprLsmL+2smL 2smL+2 (2-112)
where x°, y’, z’ are the coordinates measured with respect to the center of the
box (x’ = x — L/2, etc.). For any odd value of n, the first sine function becomes

nmx’'

2-113

Eeos = ( )

which has even parity. For any even value of n,, the first sine function becomes
Lsin 27X (2-114)

which has odd parity. Hence the overall parity of the above wave function is even
or odd depending on whether or not (n, + n, + n,) is an odd or even integer.

We can also show! that the wave function (2-43), applicable to spherical
potentials, has the parity (—1)*, where / is the orbital quantum number which
determines the orbital angular momentum [/(/ + 1)134 of the system.

Having now completed the discussion of those concepts of quantum
mechanics which we need for an understanding of nuclear structure, we can
return to the subject of nuclear physics.

2-3 NUCLEAR BINDING ENERGY

Every nucleus has a state of lowest energy, the ground state, and higher energy
states, called excited states. Much can be learned about nuclear forces from a
consideration of nuclei in their ground state, independently of whether these
nuclei happen to be stable or have the possibility to decay radioactively.
Systematic overall trends can be found in mass, radius, charge, abundance, ctc.
On closer examination certain periodicities become apparent also. Nuclear
models which have been developed to explain these properties can be divided

1 Schiff, 1953, sec. 14.
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roughly into semiclassical (particle) models, which allow a general understanding
of systematic trends and quantum (ware) mechanical models which alone give
insight into the periodicities. The liguid-drop model and the shell model are the
outstanding representatives of each class and will be described below.

2-3a Definitions. One of the most important quantities to be considered is the
nuclear mass. It is usually expressed in mass units, abbreviated by u, so defined
that the mass of one atom of C*? is equal to exactly 12.00 ... u.! Masses of
stable nuclides are listed in App. C.

The difference between the actual nuclear mass and the mass of all the
individual nucleons is called the foral binding energy By,1(A4,Z). 1t represents the
work necessary to dissociate the nucleus into separate nucleons or, conversely,
the energy which would be released if the separated nucleons were assembled
into a nucleus. For convenience, the masses of atoms rather than the masses of
nuclei are used in all calculations. This causes no difficulty, except that the binding
energy of the atomic electrons should also be considered.? For simplicity,
though, we will usually omit it. We can therefore write

Bio(A,Z) = [ZMy + NM, — M{A,Z)]c? (2-115)

where the definitions of the quantities are identical to those of Eqgs. (1-1) and
(1-2). The average binding energy per nucleon is given by

Bo{A.Z
By (A,Z) = —‘°‘; ) (2-116)
The following quantities are sometimes convenient, although we will not use
them (exceptin App. C)  Macc excess — M — A (2-117)
M— 4
Packing fraction = (2-118)

The work necessary to separate a proton, neutron, deuteron, or alpha
particle from a nucleus is called the separation energy S. Conversely, this energy
is released when such a particle is captured by a nucleus. For a neutron

S, = [M(4 — 1,Z) + M, — M(A4,Z)]¢* (2-119)

All separation energies can be expressed in terms of the total binding energies
of the nuclei involved by substituting the expression for the mass, obtained from
Eq. (2-115), into expressions similar to (2-119), We then find, for example,

S, = Btot(A»Z) - BtoL(A —1,2) (2'120)
S, = BiolA.Z) — Biy(A — 4,2 — 2) — B,(4,2) (2-121)

! Before 1960 it was common to set the mass of one atom of O'® equal to exactly 16.00. ..
atomic mass units (amu). This physical scale of atomic masses is not to be confused with the
chemical scale in which the average mass of one atom of oxygen in the natural isotopic mixlure
is set equal to 16.00. . ..

! Evans, 1955, chap. 3, sec. 2. See also Prob. 2-15.



34 NUCLEAR STRUCTURE

2-3b Average binding energy per nucleon. Saturation and short range of nuclear forces.
Expertmentally, B, can be determined from an accurate measurement of M by
mass spectrometry or from a determination of S by nuclear reaction studies.
The overall trends for B,,, are summarized in Fig. 2-8.

FIGURE 2-8 Average binding energy per nucleon versus mass number for the
naturally occurring nuclides (and Be%). Note the scale change on the abscissa at
A = 30. (By permission from Evans, 1955.)
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The most striking feature of B,,. is ifs approximate independence of A,
except for the lightest nuclei. Suppose that the binding energy (bonding energy
in chemical terms) of every nucleon to every other nucleon in the nucleus is
roughly equal to a constant C. In a nucleus with 4 nucleons there would then
be yA(A — 1) bonds and hence

Bio = 3CA(4 — 1) (2-122)
so that Byve ~ 3C(A — 1) (2-123)

in complete contradiction to Fig. 2-8. The approximate constancy of Byve
indicates that each nucleon is not bonded equally to every other nucleon, but
rather that nuclear forces between nucleons do not extend to more than a few
nucleons. Either the forces must have a very short range of the order of the
*‘diameter”” of one nucleon, or they saturate, like chemical bonds. Saturation
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means that the binding, or bonding, energy between one nucleon and the rest
of the nucleus reaches a limit once a certain total number of nucleons has been
assembled. From Fig. 2-8 it appears that with four nucleons, or more, saturation
has set in.

We can find out which of the aforementioned effects is of importance by
the following argument. The range of nuclear forces can be inferred from a
study of the scattering of two nucleons (p,p or n,p) and from the binding energy
of the deuteron.! We find that the range is of the order of 2 F, which is com-
parable to the diameter of a nucleon. This in itself might lead to a constant Bave,
if each nucleon were bonded only to its nearest neighbors. But the volume of a
nucleus would not vary proportional to 4, that is R # R,4} in contradiction
to Eq. (1-5). The reason for this is that the nucleons in a given nucleus arrange
themselves in such a way as to produce a system of minimum total energy.
With the above attractive nuclear force, the lowest potential energy is reached if
all nucleons crowd into a region so that each one is within about 2 F of the
others. The lowest kinetic energy is obtained if each nucleon moves in the
largest possible nuclear volume.? Since the potential energy turns out to be
dominant,? the nucleus would collapse® to a radius of the order of 2 F. Evidently
some other effect besides a short force range must occur.

Recent theories of nuclear structure trace saturation to two effects. First,
it has been established experimentally that at distances of the order of } F the
force between nucleons becomes strongly repulsive. We can say that nucleons have
a hard core. Although this alone would give an 4% dependence for the nuclear
radius, the calculated constant R in Eq. (1-5) comes out too small. Second, the
Pauli exclusion principle, which forbids two nucleons of the same kind, e.g.,
two protons, to occupy states with identical quantum numbers, produces
effects which keep nucleons apart from each other.®

In summary, a rough consideration of the nuclear binding energy and of
the nuclear volume already provides important clues about the nuclear force.
Before proceeding to more details, it is instructive to mention another physical
system in which the average binding energy per particle is a constant, namely a
solid or a liquid. The heat of vaporization ( is the total work necessary to
dissociate m grams of the substance into n separated molecules, at a constant
temperature. If M, 1s the mass of one molecule

m = nM, (2-124)
! See Appendix A.
* Compare Eq. (2-90) for one particle. Note that the kinetic energy decreases as L in-
creases.
? For a detailed derivation see Blait and Weisskopf, 1952, pp. 121ff.
¢ Nucleons cannot be regarded as hard spheres with definite diameters. Rather we must
consider them as force-exerting entities, which can overlap in accordance with the concepts o!
quantum mechanics.
’ For a pictorial and detailed presentation of these points, see Gomez, Walecka, and Weisskopf,
1958.
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The average binding energy per molecule is equal to

Q oM,

n m

(2-125)

Experimentally it is found that Q ~ m, and Q/m is called the latent heat of
vaporization. For water at 100°C

Q = 540 cal/g = 2.26 x 10™ ergs/g
m

18
M= —— 299 x 10-2
"= goaxiom 20 <10

Hence =675 % 10 ergs = 042 ev

2O

Comparing this with Bave we see again that atomic and nuclear energies are of
the order of ev and Mev, respectively, as indicated at the end of Sec. 2-2f
(Egs. (2-94) and (2-95)] in another connection.

Figure 2-8 shows that in the case of the lightest nuclei, those with a nucleon
constitution equal to an integral number of alpha particles have particularly
high binding energies per nucleon. This can be understood only on the basis of a
quantum mechanical model of nuclear structure in which the dependence of the
nuclear force on the intrinsic spin of nucleons is considered. We can appreciate,
though, that it is tempting to propose an alpha-particle model for these nuclei,
in which the alpha particles are coherent entities and the bonding occurs between
them rather than between individual nucleons. Such a model has met with
limited success.!

The other feature of Fig. 2-8 which we should note is the decrease of Bave
toward higher 4. This is caused by the increasing influence of the coulomb
force, as we will see below.

2-3c Separation energy systematics.  Typical regularities in the neutron sep-
aration energies S, are evident from Fig. 2-9. For a given Z, S, is larger for
nuclei with even N than with odd M. Similarly, for a given N, 5, is larger for
even Z than odd Z. The effect is caused by a property of the nuclear force
producing extra binding between pairs of identical nucleons in the same state,
which have opposite directed (total) angular momenta. This is also the cause of
the exceptional stability of the alpha particle structure, mentioned above. In
later sections, more evidence for such pairing will be given. The difference

S.(4,Z even N)— S (A —1,Z,N— 1) (2-126)

! Blatt and Weisskopf, 1952, pp. 292ff.
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is called the neutron pairing energy and varies from approximately 4 to 2 Mev
with increasing 4. Similar values are obtained for protons.

Pairing causes even-eren nuclei (Z even, N even) to be more stable than
even-odd or odd-even nuclei, and these in turn to be more tightly bound than
odd-odd nuclei. This is also apparent from the abundance systematics of stable
nuclides.

FIGURE 2-9 Neutron separation energies of lead isolopes as a function of neutron
number. (Data from H. T. Tu, *“‘Chart of Mass Differences,” Nuclear Data Sheets,
vol. 5, set 3, 1963.)
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2-3d Abundance systematics of stable nuclides. The nuclides found on the earth

are either stable or are radioactive with half-lives longer than approximately 10°
years,! since they were produced at least 5 x 10° years ago, according to current
theories. Figure 2-10 presents an N, Z plot for the known stable nuclides,?
divided into odd and even isobars. For light nuclides, the average line of
stability clusters around N = Z; for heavier ones, it deviates from this because
of the increasing importance of the coulomb force. For odd A, only one stable

! Decay products of long-lived nuclides are also found. See Sec. 4.2.
z See Appendix C.
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isobar exists (exceptions 4 = 113, 123). For even 4, only even-even nuclides
exist (exceptions 4 = 2, 6, 10, 14). A summary of the frequency of occurrence
is given in Table 2-2,

FIGURE 2-10 Neutron number versus proton number for stable nuclides. Odd isobars
are plotted on the left side and even isobars on the right side. Arrows point along the
“magic number” values of ¥ and Z: 20, 28, 50, 82, 126. The odd-odd isobars with
A = 2,6, 10, and 14 are also shown.
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Even-even nuclides occur most frequently. If stable nuclei were formed by a
process in which increased binding energy produced increased abundance, we
could deduce that even-even nuclei 2re the most stable type of nuclei, i.e., we
could equate abundance with stability, This would agree with the conclusions
drawn from separation energy systematics. The process of element formation
praobably was complex, but in one possible formation process, supernova
explosions, the binding energy of nuclei does play a dominant role in governing,
abundance. The belief now is that most nuclides (although not the most
abundant) were indeed formed in this process.!

! For more details of the process of element formation see Smith, 1965, chap. 22, and references
given there.




2-3 NUCLEAR BINDING ENERGY 39

TABLE 2-2 Frequency of occurrence of stable nuclides

N | even odd even odd
V4 ‘ even even odd odd
Number of nuclides ‘ 160 53 49 4

The relative abundance of isotopes and the cosmic abundance of nuclides
also possess interesting regularities. As an illustration, Fig. 2-11 gives the
relative isotopic abundance of the element tin (Z = 50). The lower relative
abundance of the isotopes with odd N is quite apparent. It is again connected
with the fact that the process of nuclide formation favored nuclides with higher
binding energy. Detailed studies of cosmic abundance lead to the same
conclusions.

Particularly high stability and high abundance with respect to neighboring
nuclides is associated with nuclides for which N or Z is equal to 2, 8, 20, 28, 50,
82, and 126, Some influence of these magic numbers can be noticed by close
inspection of Fig. 2-10; other evidence for their existence will be presented later.
The magic numbers reflect effects in nuclei very similar to the closing ol electronic
shells in atoms. There are good reasons why the numbers do not all agree with

FIGURE 2-11 Relative abundances of the tin isotopes as a function of
neutron number. The isotopes with N = 63, 71, 73 are not stable.
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the periods of the periodic table 2, 8, 18, 32, .... Before discussing this shell
model of nuclei, the liquid-drop model will be reviewed because it is easy to
understand and it explains most of the experimental data mentioned so far.

2-4 LIQUID-DROP MODEL. SEMIEMPIRICAL. MASS FORMULA

A detailed theory of nuclear binding, based on highly sophisticated mathematical
techniques and physical concepts, has been developed by Brueckner and co-
workers (1954-1961).. A much cruder model exists in which the finer features
of nuclear forces are ignored, but the strong internucleon attraction is stressed.
It was derived by von Weizsdcker (1935) on the basis of the liquid-drop analogy
for nuclear matter, suggested by Bohr, The essential assumptions are (see Sec.
2-3a):

I The nucleus consists of incompressible matter so that R ~ A},

2 The nuclear force is identical for every nucleon and in particular dees
not depend on whether it is a neutron or a proton.

3 The nuclear force saturates.

Coulomb and quantum mechanical effects are considered separately. From
assumptions 2 and 3, in an “infinitely” large nucleus of A nucleons the main
binding energy is proportional to 4. Actual nuclei are finite—usually a spherical
shape is assumed as in Fig. 2-12—hence nucleons on the surface are not attracted

FIGURE 2-12 A spherical nucleus in infinite nuclear matter.

as much as just estimated. A term proportional to the number of nucleons in
the surface or proportional to the surface area must be subtracted from the
infinite nucleus estimate. Also, the binding will be decreased because the coulomb
- repulsion acts between all pairs of protons. (Coulomb forces are long range and
do not saturate.) In addition, a term must be introduced which tends to give
largest binding to nuclei with N = Z. This term is a direct consequence of the
quantum mechanical behavior of neutrons and protons. Finally, correction
terms must be added which give largest binding to even-even nuclei and least
binding to odd-odd nuclei and which reflect the shell effects discussed above.
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The importance of the model lies in the fact that it explains the empirical
features of nuclear mass data. This tells us that the main binding energy term,
proportional to A4, must be correct. Since this term depends among other things
on the assumption of charge independence of nuclear forces, we can conclude
that n-n, p-p, and p-n nuclear interactions are identical. This important clue
about nuclear forces will be supported further.

Keeping in mind expression (2-115), we can write the total binding energy
of a nucleus

72 — 1 e
BiolA,Z) = ayA — a At — a. (—) — da ¥

3 4 b4 (2-127)

where  av4 = volume term
—a,A% = surface term ~ surface area 47 R?
-6 = pairing energy term,! chosen to be zero for odd-4 nuclides; for
even-even nuclides the + sign is used, for odd-odd nuciides the
— sign applies
n = shell term, positive if N or Z approaches a magic number

The other two terms, coulomb and asymmetry energy, are discussed below.

FIGURE 2-13 Coulomb energy of a
uniformly charged sphere. (a) Ac-
tual charge distribution; a layer of
thickness 4r is added to a sphere of
radius r. (b) Equivalent charge
distribution for purpose of potential
energy calculation. The density of
charge is called p.

Charge 4=r3dr p

Charge /3 wr’p

(k)

2-4a Coulomb energy of a spherical nucleus. Although coulomb forces act be-
tween pairs of protons, it is sufficient for the present purpose to consider the
nucleus as a uniformly charged sphere of charge Ze and charge density

Ze

7R

p= (2-128)

We can compute the coulomb energy in the following way. Assume a charged
sphere of radius r has been built up, as shown in Fig. 2-13a. The additional work
required to add a layer of thickness dr to the sphere can be calculated by
assuming the charge #mrp of the original sphere is concentrated at the center

* The magnitude of 4 is approximately equal to one-half of expression (2-126) as can be seen
by substituting Eq. (2-120) for each term and then applying Eq. (2-127).
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of the shell (see Fig. 2-136). The electrical potential energy of the nucleus is
therefore

k 1
¥ coutomb =J.0 $mrip - dmrdrp - ;

bt

18”2P2R5

&n|

Z2e?

7 (2-129)

Il
Wl w

using Eq. (2-128). Since, in agreement with a wave function picture, we have
assumed the charge of each proton to be “smeared” over the entire nucleus,
expression (2-129) contains a spurious “self-energy” term 3e®/(5R) for each
proton (found by setting Z = 1). Subtracting this term for Z protons gives the
correct interaction energy between all pairs of protons

3Z(Z — e
V coutomp = ST R (2-130)

Comparison with Eqs. (1-5) and (1-6) allows us to evaluate the constant a. in
Eq. (2-127)

_3é

=3 E

= 0.62 or 0.72 Mev for Rg=14o0r1.2F (2-131)

Qe

The coulomb term in Eq. (2-127) occurs with a negative sign because the
positive coulomb energy decreases the nuclear binding energy.

2-4b Asymmetry energy. A very simple model suffices to demonstrate the
form of the asymmetry term in Eq. (2-127). Since neutrons and protons obey
the laws of quantum mechanics, they must be in definite energy states, similar
to those of a closed box (Sec. 2-2f). For ease of calculation, assume that the
levels are equidistant with spacing A and that as a result of the Pauli exclusion
principle there is only one identical nucleon per level. Under the assumption
that forces between neutrons are identical to forces between protons except for
coulomb effects (see Sec. 2-4), the energy states of neutrons and of protons are
expected to be identical.

The asymmetry energy is the difference in nuclear energy of a nucleus with
neutron and protons numbers N and Z and that of the isobar with neutron and
proton numbers both equal to A/2. If, to make the former nucleus from the
latter, » protons have to be transformed into neutrons, iLe.,

N=3}A+w Z =44 —v or y=4(N—-2)
an amount of work equal to

MA = HN — Z)A (2-132)
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will have to be expended. This can be seen from Fig. 2-14. Note that each of the
» protons will have to be raised in energy by an amount »A. Since expression
(2-132) is always positive, the binding energy of a nucleus will always be less
for a nucleus with N % Z compared to one with N = Z. We can also show that
A ~ 1/4 by computing the energy Emax to which the levels of the nucleus have
to be filled to accommodate N neutrons and then setting A ~ Epax/N.

FIGURE 2-14 Model for the asymmetry term. Neutron Proton
Neutrons and protons are assumed to have £ states states

equidistant states of spacing A. Crosses represent

originally occupied states. In the transfer of three

protons to neutron states an energy 3 X 34 will

have to be expended. o
P P

AR S

e~

% g

3 %

2-4c Mass parabolas. Stability line. ~ With a little rearrangement of Eq. (2-127),
we can write the mass of a nucleus [see Eq. (2-115)] in the following way

M(A,Z)c* = xA + yZ L 222 F & — 1 (2-133)
a
where X = M*—ay+ ag—l—ﬁ
y=—das — (M, — Mu)® ~ —4a,
_4a. | a,
7 T o

For A = constant, Eq. (2-133) is the equation of a parabola. The minimum mass
occurs for Z = Z 4 (usually not an integer). The plot of Z versus A or N gives
the line of greatest nuclear stability. Setting d(Mc?)[0Z = 0 yields

Z, ==
47

A2
T+ Haga)at
This follows exactly the shape of the empirical stability line in Fig. 2-10. By

fitting the data we find }(a./a.) = 0.0078, so that with Eq. (2-131) the expected
value of @a is

(2-134)

as ~ 20 to 23 Meyv (2-135)

From expression (2-134), we can recognize that the deviation of the stability
line from ¥ = Z or Z = A/2is caused by the competition between the coulomb
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energy. which favors Z, <2 A2, and the asymmetry energy which favors
Zy= A/l

For odd-A isobars, & = 0. and Eq. (2-133) gives a single parabola, which is
shown in Fig. 2-15a for a typical case. We will see later (Sec. 4-6b) that if

MAZ)> M(A,Z + ) beta (electron) decay takes place from
ZtoZ + 1

M(A,Z) > M(A,Z — 1) electron capture and perhaps positron
decay? takes place from Zto Z — 1

(2-136)

FIGURE 2-15 Mass parabola for isobars. {2) Odd A nuclei. () Even A nuclei.
Full circles represent stable nuclides and open circles radioactive nuclides. Along the

ordinate, one division is’approximately equal to 1 Mev. {By permission from Evans,
1955.)

Odd 4 Even 4
A =135 g A=102
\
Hl \
\ \=—0dd 7, 0dd A /
.:, \ = _Even Z.even N / )
1l AR S
2 ' o 7
S ISR A
= R = A .r
N LR
y‘\\ﬁ F'C \yf7</'
- BA
B 7 s l
1 I [T |
Te 1 Xe Cs |Ba La Ce Nb Mo Tc Ru IRh Pd Ag Cd
|
. I 0 O O
52 53 54 55 156 57 58 41042 43 49 445 16 47 48
2T z=s51 TN g=aa7

(a) (f)

Itis clear from Fig. 2-15¢ that for odd-A nuclides there can be only one (stable)
isobar for which both these conditions do not occur. Figure 2-10 shows this is
indeed found. Two exceptions, at 4 = 113 and 123, are no doubt due to the
fact that in each case one of the isobars has an exceptionally tong half-lIife {10
yearsis an expermental lower limit) because the mass differences happen to be
exceptionally small.

L Positron decay can take place only if M(A,Z) = M(A, Z — 1) + 2in,, where my is the rest
mass of an electron. See Eq. (4-122).
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For even-4 isobars, two parabolas are generated by Eq. (2-133), differing
in mass by 20. A typical case is given in Fig. 2-15b. Depending on the curvature
of the parabolas and the separation 23, there can be several stable even-even
[sobars. Three is the largest number found in nature (see Fig. 2-10). There
should be no stable odd-odd nuclides. The exceptional cases H?, Li% B!, and
N are caused by rapid variations of the nuclear binding energy (Fig. 2-8) for
very light nuclides, because of nuclear structure effects which are not inciuded
in the liquid-drop model. Figure 2-15b shows that for certain odd-odd nuclides
both conditions (2-136) are met so that electron and positron decay from the
identical nuclide are possible and do indeed occur (see Fig. 4-28, Cu®).

FIGURE 2-16 Summary of liquid-drop 16
model treatment of average binding £ /— Yolume energy
energy. (By permission from Evans, 2 14 // Sﬁécggi;{g/;%
1955.) R 77
E‘ C lombbe \
’ ou ner
gz \\\\\\\\\X\\.}\\
52 g Y LR
s % Net binding
é Q 6 cnergy Asymmetry
= energy
gn 4
4 5 OF Mn®
< = g Cp' [ P B2
0 J_lj |_L| | lI 1 I_[ 1 ||
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2-4d Summary. Shell effects. The constants of the semiempirical mass formula
(2-127) can be determined by comparison with available data. The ““fit” is never
perfect, and hence several sets of coefficients have been used. Two such sets are
(in Mev; 1 u = 931 Mev)

av-:l4
av:16

a; = 13
a, =18

de = 0.60
ac = 0.72

8 = 34/4t
6= 11/4%

da = 19

2-137
aa = 23.5 ( )

The pairing term 9 should be roughly equal to one-half of the pairing energy
(2-126); the expressions given have some theoretical justification. The con-
tribution of the various terms to Bave 1s shown in Fig. 2-16.

If we use Eq. (2-127) without the shell model term # to predict neutron
separation energies [Eq. (2-120)], we discover interesting regularities in a com-
parison with experimental data. Figure 2-17 shows the quantity

AS, =S4, Z)exp — Su(AZ)oare ~ WZ,A) — Y(Z, A — 1) (2-138)
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The increasing binding on approach of the magic numbers (28), 50, 82, and 126
is striking.

FIGURE 217 Comparison of observed and calculated neutron separation
energies. The effect of shell closures on the neutron separation energy is apparent.
(By permission from Evans, 1955.)
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Although we have applied the liquid-drop model only to ground states of
nuclei, it can also be used for excited states. These would be produced by
oscillations of the nuclear “‘drop” or by ripples traveling over its surface. This
idea has been particularly successful in explaining certain features of nuclear
fission, which we will mention in Sec. 5.7.

The liquid-drop model stresses cooperative effects between many nucleons
in the nucleus and is the forerunner of the collective models of nuclear
structure. Implicit in it is a rapid sharing of energy between nucleons, which
forms the basis of Bohr's theory of the compound nucleus formation in nuclear
reactions.

2-5 SHELL MODEL

The periodic table of the elements is based on regularities in the chemical and
physical properties of atoms (valence, types of optical spectra, ionization
potential, etc.). The pericdicity results from the regular filling of the electronic
levels in order of increasing energy, subject to the Pauli exclusion principle
which restricts the number of electrons in each sublevel to two. If interelectronic
forces are represented approximately by an effective central field, each sublevel
is specified by three quantum numbers: the total or principal quantum number
Myot» the orbital or azimuthal quantum number /, and the magnetic quantum
number m. The latter two have been mentioned in Eqs. (2-44) and (2-45). The
total quantum number is given by

Mgt = N + ! (2'139)
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where the radial quanium number n is equal to the number of zeros (including
the one at r = 0) of the radial function u(r) defined in Eq. (2-48). [f a sublevel is
filled with two electrons, their intrinsic spin directions must have opposite
sense in order not to viclate the Pauli exclusion principle.

Shortly after the discovery of the neutron, it was proposed that periodicities
should also exist in nuclear properties (Bartlett, Guggenheimer, Elsasser, and
others, approx. 1933). Regularities were found in abundances and in alpha-
decay energies, which implied regularities in nuclear binding energies. It was
noted that nucleon numbers 2, 8, and 20 were associated with particular
stability. Since these numbers corresponded exactly to the first few periodicity
numbers for atomic electrons, a shell structure of nuclei seemed to be indicated.
On the whole, though, not much experimental evidence was available to the
carly shell-model advocates. Also, starting around 1935, successful applications
of the liquid-drop model of nuclei and of the compound nucleus model of
nuclear reactions suggested that the interaction between nucleons in a nucleus
should be so strong as to inhibit any noticeable shell structure.

We can appreciate the preceding statement if we use the form of Heisenberg’s
uncertainty principle which says that in any experiment of duration ¢ the energy
of any system can never be determined more accurately than within an
uncertainty I' where!

I't =~ h (2-140)

Suppose nucleons interact strongly in nuclei and that the mean time between
collisions is 1. If we would try to determine the energy which a nucleon has in
between two collisions, Eq. (2-140) predicts that the result will be uncertain by
hft. The longest time ¢ between collisions that would be reasonable for a nucleus
of radius R is of the order of the traversal time

R
A = (2-141)
v

where v is the speed of the nucleon within the nucleus. According to Eq. (2-27)

kh
p= L =2 (2-142)

My ni

Since the nucleon is confined to a region of linear dimension R, a relation
similar to (2-81) should hold

k ~ (2-143)

e

0 that (omitting numerical factors)
myR?

! ~y

(2-144)

! This form of the uncertainty principle is derived in another context in Sec. 4.3.
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Since ¢ is the Jongest time between coilisions, the minimum energy uncertainty

of one nucleon will be 2

myR?

~ (2-145)
But this is exactly of the same order of magnitude as the spacing of nuclear
energy levels [see expression (2-90) and its evaluation, Eq. (2-95)). Nuclear
energy states must therefore be so ““smeared out” in energy that no well-defined
shell structure should occur.

The fallacy in the above argument was recognized by Weisskopf (1951).
He pointed out that the Pauli exclusion principle severely restricts the possibility
of collisions between nucleons so that times between collisions are much longer
than estimated by Eq. (2-141). Consequently, level widths are much smaller
than implied by Eq. (2-145).

FIGURE 2-18 Restriction of nucleon-

nucleon collisions within a nucleus. (a)

el CO\ The indicated collision of particles 4
yali and B is not allowed, even though it

conserves energy, because the final

x X

states are already occupied. (b) Pos-

* x sible collisions are those involving
Ll i
\:\ g) exchange of energy levels or excited
B/ Y particles such as C.

(a) (b)

We can follow Weisskopf’s argument by referring to Fig. 2-184. For sim-
plicity we assume equidistant nuclear levels, each occupied by one nucleon.
Consider collisions between particles A and B. In most two-body collisions, the
individual kinetic energies are altered even if there is an overall conservation of
energy. If, now, the two particles are initially in filled energy states as shown
schematically in Fig. 2-18a, they cannot collide because the energy states into
which they would have to move are already occupied and therefore not available.
The only possible collisions are those in which the particles exchange places or
in which excited particles, such as C in Fig. 2-18b, participate. These are
relatively rare. Strong interaction between nucleons is therefore not in contra-
diction with the existence of shell model effects (i.e., long times between
collisions).

2-5a Experimental basis of the shell model.  To date an impressive body of
experimental material has been accumulated in which the regularities of nuclear
properties are apparent. These point to shell closures at the magic numbers 2,
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8, 20, 28, 50, 82, and 126, mentioned in Sec, 2-3d. Before describing the shell
model, we present some of the experimental evidence. More details will be given
subsequently.

One set of regularities involves nuclear energies directly or, as in abundance
data, indirectly (Fig. 2-10). The abundance data are replotted in Fig. 2-19 to
bring out the magic numbers more clearly. We can see that the number of iso-
tones (see Sec. 1-2e for definition) is particularly high when N is magic.

FIGURE 2-19 Number of stable isotones as a function of the neutron number. By
permission from B. H. Flowers, Progr. Nucl. Phys. 2: 235 (1952).]
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In connection with Fig. 2-17 we mentioned already that a Aigh neutron
separation energy is associated with nuclei for which ¥ = (magic number) (see
also Fig. 2-9}. In addition, Fig. 2-20 shows that for N = (magic number) 4 1
the neutron separation energy is particularly Jow. Note that on the abscissa of
Fig.2-20 the neutron number of the final nucleus is plotted. A similar phenomenon
is observed in the ionization potential of atoms, which is high for the rare
gases and low for the alkalis. Discontinuities are also present in alpha- and
beta-decay energies, which reflect discontinuities in nuclear binding energies.!

Magic nuclei, being more tightly bound, require more energy to be excited
than nonmagic nuclei. This is brought out in Fig. 2-21 in which the excitation
energies of the first excited states of even-even nuclei are plotted versus N and Z.
The effect of magic numbers extends also to higher excited states; in other words,
the spacing between levels is larger for magic nuclei than for other nuclei at
comparable excitation energies. Among other things, this results in smaller

! This will be discussed further in Sec. 4-5a. See, e.g., Fig. 4-12.
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FIGURE 2-20 Separation energy of the last neutron in the nucleus (Z, N + 1)
for Z = N (even), as a function of the neutron number N of the final nucleus.
For N = 2, 8, 20, and 28 the separation energy is particularly low. (After M. G.
Mayer and J. H. D. Jensen, “Elementary Theory of Nuclear Shell Structure,”
John Wiley & Sons, Inc., New York, 1955.)
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fast-neutron capture cross sections (Fig. 2-22). A cross section is a quantity
proportional to the probability that a nuclear reaction takes place.! Crudely
speaking, in order for neutron capture to be possible, a neutron of a given
kinetic energy must find an empty nuclear level at the correct energy. The
further spaced the levels are, therefore, the smaller is the probability of capture.

Regularities are also found in nuclear properties which depend on the total
angular momentum and parity of a nucleus, either in the ground state or in an
excited state. We will return to this topic at the end of Sec. 2-5¢. Finally, we note
that the values of nuclear moments which express fine details of the distribution

! See Sec. 5-4a.
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FIGURE 2-21 Energies of the first excited states of even-even nuclei. [By permission
from K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, Rev. Mod. Phys. 28:
432 (1956).]

5
p=)
© 3k i

E.>5 Proton
% N number
E \ _
= 2L I || I/N z
g
jaa]

l —

SYTAC
N
\Z
0 82 126

Ncutron number N

T T T [ T T TT T T T LR
| . |
|
. l . |
1 ' e, |
o 100F | et 2t
g | } e
g ! | '|
g ', .| !
2 | I : }
z 10 [ I 1
: 1 i |
[o} | 14 )
£ j i :
2 : i 1
E ! ! I
: . |
FIGURE 2-22 Capture cross sections i i |
for 1-Mev neutrons. (By permission sof 3ot 1261
from D. J. Hughes, “Pile Neutron L | X JIl L |
Research,” Addison-Wesiey Publish- 10 20 30 40 50 60 70 80 90 100 110120 130

ing Company, Inc., Reading, Mass.,
1953 Neutron number N




52 NUCLEAR STRUCTURE

of electric charge and of magnetic dipole strength in a nucleus show regular
features. A consideration of these effects is beyond the scope of our treatment,
although some mention will be made of them later on.

2-5b Single-particle shell model.  The basic assumption of any shell model is
that despite the strong overall attraction between nucleons which provides the
binding energy considered in Sec. 2-4, the motion of each nucleon is practically
independent of that of any other nucleon. As mentioned in Sec. 2-5, this apparent
contradiction is resolved by effects of the Pauli exclusion principle. If all inter-
nucleon couplings (called residual interactions) are ignored, we call the model
the single-particle shell model. In terms of Schrédinger’s equation (2-19), each
nucleon is then assumed to move in the same potential. The potential is spherical
in the simplest case, but there is good evidence that for nucleon numbers far
from closed shells the potential should have an ellipsoidal shape. This condition
will be considered later.

For any spherical potential, Schrodinger’s equation can be separated as
shown in Eq. (2-43), with the angular solutions (2-44) and (2-45). The shape of
the potential affects only the radial solution R{(r), or more conveniently
u(r) = rR(r):

2m, dr?

hA* dlu Il + DA® :| _

The boundary conditions on u, in particular as r — o0, cause u to be a finite
polynomial. The polynomial depends on two quantum numbers, the radial
quantum number n and the orbital quantum number /. As mentioned at the
beginning of Sec. 2-5, n is equal to the number of nodes of u. Solutions of Egq.
(2-146) exist only for definite values of E which also depend on n and /. This
situation is quite analogous to the problem of a particle in a closed box. There,
too, the boundary conditions determined the quantum numbers of the wave
function [Eq. (2-89}] and caused quantization of the energy [Eq. (2-90)].

A common notation for describing the energy states is similar to that used
in atomic physics. Whereas in atomic physics each state is specified by the total
quantum number n,,, [see Eq., (2-139)] and /, in nuclear physics each state is
specified by nand /. Also for / = 0, 1, 2, 3, 4, 5, we use the spectroscopic letters
s, p, d, f, g, h, respectively. A state denoted by 2p therefore means that n = 2,
=1

The simplest useful potentials are an infinite square well potential of
radius R

0 r<R
V= (2-147)
] r=R
or a harmonic oscillator potential

V = kmywir? (2-148)
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where « is the frequency of oscillation of the particle of mass /m,. More realistic
potentials are a finite square well potential

s VD r S R
V= (2-149)
0 r>R
or a rounded well potential which reflects the gradual fall-off of the nucleon
density shown in Fig. 1-1.

FIGURE 2-23 Energy levels of nucleons (a} in an infinite spherical square-well
potential (R = 8 F), (b) in a harmonic oscillator potential. The spectroscopic notation
(n, 1) and the total occupation number up to any particular level are given. The oscillator
number », Eq. 2-_150, is also shown. (By permission from Burcham. 1963.)
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The energy levels obtained for the potentials (2-147) and (2-148) are
presented in Fig. 2-23a and b, respectively. The spectroscopic notation is given
on the left side. Just as in the case of a closed cubical box, the energy of the lowest
states does not correspond to zero kinetic energy, and for the same reason.
There is no simple mathematical expression for the levels of an infinite square
well, but there is one for the harmonic oscillator potential:

E=(n,+n, +n, + Hho
= (v + Hho (2-150)
where n., n,, n, are three integral, positive, quantum numbers, which may also

have the value zero. The energy levels are equally spaced. As shown in Fig. 2-23b,
several levels are degenerate, i.e., the same energy is obtained for more than one
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set of quantum numbers. The number » is called the oscillator quantum
number.

It is also interesting to consider the radial wave function. For the s states
(I = 0) the mathematical identity of Eqs. (2-53) and (2-22) allows us to write
down wave functions for the infinite square well as?

. nmr
u=rR(r)= Csnn—ﬁ (2-151)

where C is a normalizing constant. For / # 0 more complicated functions are
obtained.? For any finite well for which V(r — o) — 0, u(r — ) has the
following form for a bound state (E < 0)

B u~e (2-152) ..
where « is defined by 1h**/m, = |E|. A few radial wave functions for the
finite square well are sketched in Fig. 2-24.

FIGURE 2-24 Schematic radial wave functions for a finite square well. For r — 0,
R(r) ~r*and for r - o, R(r) ~r~le==", where }/*«*/m, = |E|, the energy of the ievel
below }(r - o) = 0. See problem 2-13.
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In accordance with the Pauli exclusion principle each level can be filled
with identical nucleons such that no two nucleons have the same set of quantum

numbers n I om m, (2-153)

where m; = +1 or —4% is a quantum number specifying the direction of the

1 See Eqgs. (2-80) and (2-81), but note that (0) = 0, because R(0) must be finite independent of
the form of V{r).
* The first few functions are

u(l =1) = (sin p)/p — cos p

u(l = 2) = {(3/p*) — 11sin p — (3/p) cos p
where p = f(m)wr/R, f(r) = numerical factor depending on n. It can also be shown that for
r — 0, R(r) ~ ri. See Schiff, 1955, sec. 15.
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intrinsic nucleon spin. For example, if / = 3 the possible values of m are —3,
—2,—1,0, 1, 2, 3 and in each magnetic sublevel two nucleons may be placed with
m, = -+4 and —{, respectively. The maximum occupation number in this case
is therefore 2 x 7 = 14; in general it is equal to 2 x (2/ + 1). Figure 2-23
gives the total occupation number up to any particular level for the two po-
tentials shown. We would expect that whenever an (n,/) level is completely
filled that the nucleus should have particularly high stability, because the number
of nucleons is even and the maximum pairing effect comes into play. Also, if
the gap to the next (unfilled) energy state is large, a larger energy would be
required to excite the nucleus than if the gap is small. Therefore, magic-number
effects should occur at the major shell gaps. Although the magic numbers 2, 8,
and 20 are easily reproduced (see Fig. 2-23), the others (28, 50, 82, 126) are not
apparent. Even if the more realistic potential (2-149) or a rounded well potential
is used, this difficulty cannot be overcome. Since all the early shell models used
these types of potential, they were unable to fit the magic numbers and were
thought to be of limited usefulness.

2-5c Spin-orbit coupling model. It is to the credit of Mayer and of Haxel,
Jensen, and Suess (1949} that they recognized independently the missing
ingredient in the shell model presented so far. They proposed that a strong
interaction should exist between the orbital angular momentum and the intrinsic
spin angular momentum of each nucleon. According to the quantum-mechanical
coupling rules for angular momenta, the total angular momentum j# formed
by the vector addition of the orbital angular momentum /i and the intrinsic
spin sA must be such that j is restricted to the values?

j=1+3% or j=1I1—1}% (2-154)

If a strong spin-orbit interaction exists, a different energy is associated with
each of these two values of j, giving rise to a spin-orbit splitting of the levels.
In the spectroscopic notation, the j value is placed as a subscript to the ()
symbol. For example, in the case of the 1p shell, we obtain a splitting between
the lp; and lp, levels. It was found empirically that in nuclei the energy
level with the larger j value always lies below that with the smaller j value.

Figure 2-25 shows the effect of spin-orbit splitting on the energy levels of a
finite, rounded-well potential. The maximum occupation number for each level
(n,1); is given by 2j + 1 since according to the rules of quantum mechanics each
vector angular momentum v/ can have the projections m,/ along any given
axis where

my=—v,—v+ 1, —v+2,...,v—2,v—1,» (2-155)

and » is an integer or half-integer.

! Actually each angular momentum vector of the form wk has a magnitude [s®{v + DA, but
vh is the maximum value of the vector component along any given direction, Therefore, we

often call »h, or even v, the angular momentum,
'
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We can see from Fig. 2-25 that if the magnitude of the spin-orbit splitting
is properly adjusted, the major shell breaks occur at the experimentally deter-
mined magic numbers. Furthermore, if we assume that the angular momentum
of odd-A4 nuclei is determined solely by the odd-nucleon number, a remarkable
agreement 1s obtained between the ground state spins (and parities) of these
nuclei and the predictions of the spin-orbit coupling model. This agreement is

FIGURE 2-25 Energy levels in a rounded
potential well including a strong
spin-orbit  splitting. [By permission
from R. . Blin-Stoyle, Contemp. Phys.
1: 17 (1959).]

shown in Fig. 2-26a4 and & for odd-N and odd-Z nuclei. Considering also the
empirical finding that all even-even nuclei have zero ground-state spins, it
follows reasonably that in the ground state of any nucieus the net angular
momentum associated with an even N or Z is equal to zero.

A natural consequence of the spin-orbit shell model is that, close to the
major shell breaks, levels of large spin difference lte close together. If, for
example, near nucleon number 50 a nucleon occupies a 2pé tevel, we expect an
excited 1g, state nearby. This gives rise to numerous isomeric states* near the
shell breaks (see Fig. 2-26¢). The order of the levels is sometimes reversed by
small binding energy effects.

! These long-lived states are caused by large angular momentum differences and small energy
differences with respect to the ground state. This will be discussed further in Sec. 4-4.
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2-5d Other nuclear models.  Although the spin-orbit shell model has had one
of the most stimulating effects on nuclear structure physics, the simple form
given above cannot be sufficient. For example, the model cannot explain why
even-even nuclei always have a zero ground-state spin, or more generally, why
any even number of identical nucleons couples to zero ground-state spin.
Evidently there is a (residual) nucleon-nucleon interaction which favors the

FIGURE 2-26 (a, b) Angular momentum guantum number [ for the ground states of
o0dd-A nuclei, plotted versus the odd-nucleon number N or Z. (¢) Number of cases of
isomerism in odd-A nuclei versus the odd-nucleon number. Dashed vertical lines on
the abscissa indicate the magic numbers 2, 8, 20, 28, 50, 82 and 126, predicted by the
shell model of Mayer and Haxel, Jensen and Suess. The detailed spectroscopic
assignments (see Sec. 2-5c) are also given.
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pairing of nucleons with opposing angular momenta. An attractive interaction
between nucleons must therefore be added to the single nucleon spin-orbit
interaction, which gives rise to the pairing energy already encountered in Sec.
2-3c. From detailed theoretical considerations, it appears likely that the magnitude
of the pairing energy increases with the / value of the pair and that for this
reason the high-spin states (h33,i*2) predicted by the spin-orbit model (Fig.
2-25) are not found in odd-4 ground-state spins. For example, the energy of the
state consisting of six nucleons filling the 243 shell plus one 1A nucleon is
higher than the energy of five 2d% nucleons plus two paired 1422 nucleons, even
though the 245 level lies below the 143z level.

The properties of the pairing interaction can be made plausible by a
semiclassical argument. Assume there is an attractive residual force between
two like nucleons, i.e., a force beyond that already taken into accousnt in the
shell-model potential. If the force is of short range and attractive, the total
energy of the nucleus will be lowered if the two like nucleons are as close
together as possible. In classical language, the two nucleons should collide as
often as possible in their orbits. In quantum language, the wave functions should
overlap as much as possible. This situation is obtained if (1) the two particles
are in the same (n,/) state and (2) their orbital angular momenia I,/ and LA are
oppositely directed, as shown in Fig. 2-275. The particles will then collide most
often, or more specifically, their wave functions overlap best.!

FIGURE 2-27 Distorting effect of extra nucleons
on a closed shell nucleus. (a) One extra nucleon.
(b) Two extra nucleons with opposite orbital angular
momenta.

If the pairing forces were not of very short range, but extended perhaps
over the entire nucleus, there would be no energetic favoring of close distances
between the two interacting nucleons, because their interaction energy would be
approximately independent of their separation. In quantum language. the exact
overlap of the wave functions would not be so important in that case and there
would be no reason why states with /; — J, = 0 should be favored over other
orientations of the angular momentum vectors. Since, experimentally, states

! Since the intrinsic spin of the particles has been ignored in this argument, the Pauli exclusion
principle forbids the two like particles in the same (/) state 1o have lhe same m quantum
numbers. Therefore the angular momentum vectors are not allowed 1o be parallel, even
though this would give equally good overlap of the wave functions,
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with /, + I, = 0 are favored, we can reverse this argument and conclude that
the pairing force is of short range compared to the nuclear radius.

Another feature not included in the simple shell model is a distorting effect
of the “‘outermost’” nucleons on the other nucleons in a nucleus. Assume that
we add a single nucleon to a closed shell nucleus. This nucleon will usually have
a high / value (Fig. 2-25) and therefore its wave function will peak close to the
nuclear radius (Fig. 2-24). In terms of a classical picture we can say that the
nucleon circles around the closed-shell “core” of nucleons as shown in Fig. 2-27a.
The strong attraction between the nucleon and the core will distort the core.
The core exerts a centripetal force on the nucleon and the reaction to this force,
the centrifugal force, acts on the core. If two nucleons are outside the core, they
will run in the same orbits (but in opposite sense, because of the pairing effect).
Therefore, the distortion of the core will increase. If more and more nucleons
are added outside of the closed-shell core, a point will be reached at which the
core is permanently deformed, with an accompanying effect on the orbits,
Although a detailed consideration is beyond our treatment, one consequence
may be noted.

A quantum-mechanical body which has an axis of symmetry such as an
ellipsoid of revolution can undergo rotations about an axis perpendicular to the
symmetry axis. The energy level spectrum of such a *‘rotator’ is quite character-
istic. It is a remarkable fact that there are many cases of even-even nuclei in
which this spectrum has been found. This leads us to the conclusion that
permanently deformed nuclej indeed exist, as suggested above.

The energy spectrum can be “derived” by a semiclassical argument. The
classical kinetic energy of a rotating body is equal to

E= 1S (2-156)

where .# is the moment of inertia of the body about the axis of rotation and
is the angular frequency of rotation. In terms of the angular momentum L = S

LI
== (2-157)

Proceeding from a classical to a quantum mechanical model, we must replace
Lr by I(I + 1)A® [see Eq. (2-52)] where, for even-even nuclei, / is an even integer
with the lowest value zero:

I+ DAt
Y

E (2-158)

In Fig. 2-28 we compare this simple expression with a typical experimental
spectrum. The discrepancies at higher excitation energies can be understood.
Because the classical rotation frequency increases with increasing I value, the
nucleus will be slightly deformed by the larger centrifugal force and its moment
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of inertia will become larger. According to Eq. (2-158), the excitation energy
will decrease, exactly as found (Fig. 2-28).

FIGURE 2-28 Energy spectrum of a deformed

kev
12° " nucleus. (@) Theoretical spectrum of a quantum-
1098 mechanical rotator. (b) The spectrum of U3, [By
permission from F. S. Stephens, Phys. Rev. Letters 3;
435 (1959) and Burcham, 1963.]
167 787
r
8 523
6" 309
4+ 148
27 ! 45
0" [ 1] 0

Collective rotation  Experimental, U*™*

{a) (b)

From the foregoing discussion it appears that the single-particle shell
model is valid particularly near the closed shells. As the nucleon numbers
deviate more and more from the magic numbers, cooperative effects appear
between nucleons. These are most easily incorporated into coflective models,
in which rotational motion, discussed above, and vibratonal motion are built
in from the start. Theoretical advances have shown, though, that collective
effects can also be obtained by modifications of the shell model. It is then
necessary to include in the shell model potential the following terms:

A dominant spherical potential

A spin-orbit interaction

An interaction of rather short range, which tends to make the nucleus
spherical and tends to pair up nucleons

A long-range term which tends to distort the nucleus

Any theory of nuclear forces must include these features. It is cur hope that the
meson theory of nuclear forces (Chap. 6) will be able to explain more and more
of these properties.

2-6 ENERGY LEVELS OF NUCLEI

In any finite potential well, such as that shown in Figs. 2-25 or 2-29, there are
bound energy levels, corresponding to states of energy! E << 0, and unbound or
virtual levels corresponding to states of energy E > 0 (see Sec. 2-2¢). Virtual

t As previously, we assume V(r — o) = 0.
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states cannot be understood on any classical model. They result from the fact
that the de Broglie wave of a nucleon is reflected at the edge of the potential
well even though its total energy exceeds the potential energy everywhere. If
the de Broglie wavelength happens to be such that approximately standing
waves are formed within the potential well, the amplitude of the wave function
can be very large within the well, and a virtual state occurs. This means there

is a large probability for a nucleon of quite well-defined energy to be found
within the nucleus.

FIGURE 2-29 Schematic representation of nuclear levels. (By per-
mission from Burcham, 1963.)

Particle emission

Virtual levels
Zero of energy

I Bound levels

(unoccupied)
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The reflection coefficient of a potential step may be derived using the
method illustrated in Sec. 2-2g. In Fig. 2-5,let L — cc and assume E > V. Then

Y=y + Y1 = 2™ + b (2-159)
Y1 = ¥Yu- = aye™** (2-160)
E— V) 2mgE\}
where k = (Zm,, - b) and k= ( ii: ) (2-161)
Applying boundary conditions at x = 0 yields
ay+ by =ap from  y;=yy
K’ dyy . dyy;
aI—bI—aH-E from E—E
From these two equations, we find immediately that the reflection coefficient
is equal to
|6, (1 — k’/k)‘
t i 2-162
jat ~ \T T Rk @162



62 NUCLEAR STRUCTURE

For k’/k £ 1, this is approximately equal to 1 — 4k’/k. If E/V, = 1.01, the
reflection coefficient is about 0.7.

We will show later on (see Sec. 4-3), in connection with the dynamic nuclear
properties, that the nucleon leaves the virtual state after some mean life T,
causing it to have a width for particle emission given by!

JES d (2-163)
T
As indicated in Fig. 2-29, a virtual state can also decay to a lower state by gamma
emission,? analogous to the emission of light by excited atoms. Bound levels
can decay only by gamma emission,

According to the single-particle shell model, a given nucleus (Z,N) consists
of Z protons and / neutrons normally placed into bound levels (protons and
neutrons each into their own potential well) in accordance with the Pauli
exclusion principle. In the ground state of the nucleus, all nucleons are in their
lowest energy states. The simplest excited states of the nucleus are then formed
by promoting the outermost (or least bound) nucleon to a higher state, The
corresponding excitation spectrum of the nucleus is called the single-particle
level spectrum, with levels as shown in Fig. 2-25,

An actual level spectrum is shown in Fig. 2-30. Even though it is practically
certain that not all levels have as yet been found, we can see that there are
already many more levels than expected from the single-particle spectrum of
Fig. 2-25. Present theories indicate that the single-particle spectrum is actually
dissolved among many levels each of which consists of complicated excitations
of more than one particle. The distribution of the single-particle levels is
indicated schematically in Fig. 2-30.

Figure 2-30 also shows that the density of energy states (number of states
per unit energy interval) increases with increasing excitation energy. This occurs
because a given excitation energy can be reached by a greater variety of excita-
tions of nucleons as the energy increases.” Incomplete theoretical arguments are
available to predict the energy variation of [evel density, yielding?

p=1/A = Poea\/E (2-164)

where p = level density
A = spacing between levels
po =~ 1 to 0.01 (Mev)™?, for 4 = 20 to 200
a~1to7 (Mev) 4, for 4 = 20 to 200

! Compare Eq. (2-140). Equation (2-163) will be derived in Sec. 4-3.

? For unusual exceptions, see Sec. 4-4e.

3 The densily of single-parlicle levels also increases with excitation energy, but fnis plays a
relatively minor role in the increase of actual level density,

¢ Burcham, 1963, sec. 15.3.4; Blatt and Weisskopf{, 1952, chap. 8, sec. 6.
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FIGURE 2-30 Level spectrum of Sc#.
Note the change in energy scale between
4 and 5 Mev. The angular momentum
I, of the last odd proton is shown. The
splitting up of the single particle
structure into the actual levels is also
indicated. {Adapted from K. Way,
A. Artna, and N. B. Gove, (eds.),
“Reprint of WNuclear Data Sheets,
1955-1965,"" Academic Press, Inc., New
York, 1966.]
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Although, with a very few exceptions, highly excited states of nuclei
cannot be described in detail, definite regularities have been observed for low-
lying states. For odd-A nuclei, low-lying states can be related to the shell model,
especially if the nucleon numbers are close to magic numbers. Not only energy
values, but also spins and parities can be explained. For nucleon numbers
between magic values, it is generally more profitable to describe the states in
terms of a collective model. For even-even nuclei, excited states can only be
preduced by breaking up a pair of nucleons. This requires so much (pairing)
energy that even the lowest excited states consist of complicated excitations,
which usually are more easily described by the concepts of wvibrations and
rotations of the nucleus than in shell model terms. The regular pattern of the
first excited states of these nuclei is apparent from Fig. 2-21. Such a simple
pattern is not found for odd-4 nuclei. For odd-odd nuclei the lowest excited
states can be explained by assuming that the odd protens couple to an angular
momentum I/ and the odd neutrons to I A. The angular momentum ¥/ of the
nycleus is then given by

I=1,+1I, (2-165)

where the quantum mechanical addition rules obtain, ie., I = I, — I ],...
|I, + I.| in integral steps. The ground state is usually formed if the intrinsic
spin of the last odd neutron is parallel to the intrinsic spin of the last odd
proton. The lowest excited states consist of other orientations of I, and I,,.

A study of the level structure of odd-odd nuclei requires, therefore, that
the nuclear force described at the end of Sec. 2-5d must contain yet another
term, which tends to align the intrinsic spins of nucleons. The simplest odd-odd
nucleus is H2 It has 7, = } and I, = . In its ground state / = 1, and in its
(virtual) first excited state 7 = 0. The energy difference between these states is
2.3 Mev, which gives the order of magnitude of the spin-spin interaction. We
must not confuse the latter with the pairing interaction, which tends to align
the erbital angular momenta of twe identical nucleons so that the total angular
momentum is zero.

2-7 CHARGE SYMMETRY AND CHARGE INDEPENDENCE
OF NUCLEAR FORCES

The derivation of the semiempirical mass formula assumed that the main
binding energy between nucleons is independent of their nature, i.e., that p-p,
n-n, and n-p nuclear forces are identical. Since the semiempirical mass formula
is not accurate, it is of interest to present more direct evidence for this charge
independence of nuclear forces.

Pairs of nuclei for which Z, = n, N, = n', and Z, = n’, N, == u (where n
and #' are integers) are called mirror nuclei. The most common ones huve
n"=n—1or n =n— 2 Figure 2-31 compares the level spectra of such a
pair, Li" (Z =3, N = 4) and Be’ (Z =4, N = 3). Not only energies of the
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states, but also the angular momenta and parities, agree closely. We can infer
from this that nuclear forces are charge symmetric, i.e., p-p and n-n forces are
identical.

Consider the schematic presentation of Li” and Be” shown in Fig. 2-32. In
each nucleus, the nuclear bonds are identical except for those of the (last) odd
nucleon. Therefore, if the excitation spectra of these nuclei are identical, we can
state

3E,,+3E, ., =3E, ,+3E,, (2-166)

where E represents the bond-energy difference between the excited and the ground

FIGURE 2-31 Comparison of the energy levels of- Li* and Be’.
Uncertain levels are shown in dashed lines. Corresponding
levels are connected by dotted lines. Measured spins and parities
are given. [Adapted from T. Lauritsen and F. Ajzenberg-Selove,
Nucl. Phys. T8: 1 (1966).]
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states. Hence
E ,=E,., (2-167)
It 15 obviously tempting to conclude that the bond energies themselves are
also equal. That this is so can be shown from the masses of the mirror nuclei in
their ground state. If, indeed, nuclear forces are charge symmetric, we can see

FIGURE 2-33 Mass difference between mirror nuclei versus (Z; — 1}4%,
according to Eq. {2-168). (Data from C. E. Gleit, C. W. Tang, and
C. D. Coryell, “Beta-Decay Transition Probabilities,”” Nuclear Data
Sheets, vol. 5, set 5, 1963.)
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from Fig. 2-32 or from the semiempirical mass formula [Eq. (2-127)] that the
mass difference between two mirror nuclei with Z; = Z, + 1 is

[M(Z,,4) ~ M(Zy,A))e? = |Zy(Z, — 1) — Zo(Zy — 1)) i—R + (Mg — M)
6 2
— (2, — Do + (Mg — M) (2-168)

The left-hand side of this equation can be determined either directly or from the
positron decay energy between the two isobars (see Sec. 4-6b). The right-hand
side can be calculated from Eq. (1-5) and agrees with the left side, so that the
assumed charge symmetry of nuclear forces is indeed valid. Figure 2-33 summa-
rizes the results of many measurements. A plot of the mass difference, corrected
for (My — M,)c? (= —0.78 Mev), versus (Z, — 1)/A} should pass through
the origin if charge symmetry is valid.! The deviation apparent on Fig. 2-33
results from shell-model effects, which give slightly different effective radii to
the nuclei (Z,,4) and (Z,,4) because the wave functions of the protons are
different.

Interesting similarities between levels are also found if we compare masses
of mirror triads

(Z,=n—1,Ny=n+1) (Z,=n,N,=n) (Zs=n+ L,N;=n—1)

in their ground and excited states. Figure 2-34 gives the states of the triad
Be®, B%, C! for which n = 5, after correcting each mass for the coulomb
energy. Again we see that the levels of the mirrer nuclei Be!® and C!° are prac-
tically identical,?2 but only certain levels in B® correspond to these states. If we
analyze this by considering the bonds involved, as in Fig. 2-35a, we find that
for the identical levels in Bel, B, and C°, p-p, n-n and n-p forces must be
identical, but also there are many more levels in B'® than in Be and CY.
This is a direct consequence of the Pauli exclusion principle.

To gain some understanding, let us consider the simplest mirror triad, n®,
H?, He?. (Although #? and He? are not stable structures, the argument given is
correct.) In the lowest states, which are ls states, the Pauli exclusion principle
requires opposing intrinsic spins in #2 and He?, but not in H2 Therefore, the
n-p system has more states than the n-n or p-p system. It is also suggestive from
this example that charge independence of nuclear forces holds only if the nucleons
are in identical states as far as their angular momenta (orbital and intrinsic
spin) are concerned. This is confirmed by a detailed analysis of n-p and p-p
scattering® and is a further important feature of the nuclear force.

! The plot also allows a determination of the radius constant R, (Eq. (1-5)). See Prob. 2-26.
? Probably, not all low-lying levels of C'° have been found.
® See Appendix A, Secs. A-3 to A-5.
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FIGURE 2-3¢ Comparison of the mirror triad Be!®, B!?, and C'°, Each mass has been
corrected for the coulomb energy, and the neutron-proton mass difference. Uncertain
levels are shown in dashed lines. Corresponding levels are connected by dotted lines.
Measured spins and parities are given. [Adapted from T. Lauritsen and F., Ajzenberg-
Selove, Nucl. Phys. 78: 1 (1966).]
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PROBLEMS

2-1

22

2-3
24

2-5

2-6

2-7

2-8

29

Prove that a particle of rest mass m, and kinetic energy 7 always has more
momentum than a photon of energy hv = T, independent of the value of T.

It is desired to use the nonrelativistic expression for kinetic energy in order to
calculate the speed of a particle of mass m,. What is the highest allowed energy
of the particle (in units of my?) so that the calculated speed is correct within
1 percent?

What is the speed of a particle whose kinetic energy is equal to its rest energy ?

Calculate the de Broglie wavelengths of a 10-ev electron, a 10-Mev alpha
particle, and a 10-g bullet moving with a speed of 1,000 m/sec.

At what rate (in g/sec) is matter converted into energy in a nuclear reactor which
produces 2 megawatts of power?

{(a) A discus thrower spins a disc weighing 3 kg in a radius of 0.5 m at 1 rps.
What is the angular momentum of the disc in units of i? (b) If a neutron were
to move inside of a nucleus in a 5-F radius with 3 units of orbital angular momen-
tum, what would its speed be? (This classical picture of nuclear motion is
incorrect and must be replaced by the wave-function concept.)

In spherical coordinates the expression VZy in Eq. (2-19) is

13'231,; ' 1 2 _oa'p 1 Ry
?_‘-’a_rrﬁ)"rzsineae SMO%6) T sin? 0\ o

(a) Show that a substitution of the form (2-43) separates the variables. (b)
Show that the radial equation can be put into the form (2-47) by appropriate
definition of the separation constant. (c) Give the equation for the ¢ variable
and show that it has the solution (2-45) jf the separation constant is appro-
priately defined.

A particle of mass /1, is just being bound by a one-dimensional potential well

of width 2 and depth —1,. What is the minimum value of V== 0?

{Hint: This problem can be solved with the simple de Broglie wave concept,
but this must be justified. Otherwise. the more tedious way of using boundary
conditions at x = ¢ and x = —a must be used. In either case ask yourself what
the condition of “just being bound™ implies.)

-W

A parallel beam of particles of kinetic energy T, is sent over a potential drop as
shown in the figure on p. 70. Calculate the reflection coefficient of the particles
at the potential step as a function of T} and V.
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2-10

2-11

2-12

~

(a) Calculate the energies of the lowest two / = 0 states of a particle (mass m)
in a closed spherical box of radius R and give the normalized wave functions for
these states. (b) Calculate the energies in Mev if m, = mass of a neutron,
R=35F

Suppose N identical particles are placed into a closed cubical box so that only
one particle is in one state and that the states are filled in order of increasing
energy. (a) Establish a relation between N and (n,2 + n,? + n,%)max.

(Hint: Each set of integral numbers n., n,, n, represents one state. Hence, if one
plots the occupied states as points in a Cartesian coordinate system with axes
along n,, n,, n, the volume of the occupied space is just equal to the total number
of occupied states.) (b) What is the maximum energy to which the states are
filled ? (This entire problem is difficult.)

A beam of particles of rest mass m, and kinetic energy T encounters a potential
step of height V, (>-T)as shown. Calculate (a)} The wave function for x > 0.
{b) The reflection coefficient at the potential step. (Answer without calculation,
if you wish.) (c) Is the wave function for x > 0 changed if the potential step
is decreased to zero at x > L? (d) Does the reflection coefficient atx =0
change under this condition ?

2-13

2-14

4 x

0 L

(a) Show that for a spherical potential V'(r) such that ¥(r — «) = 0, the radial
solution of Schrédinger’s equation, Eq. (2-47), for a bound state has the asymp-
totic solution

u(r - @) ~ e "
where « is given by
it my = |E|

{b) Also show that Eq. (2-47) is satisfied for » — 0 by the solution
R(r —~0) ~r

{a) Use Fig. 2-8 to estimate the overall energy (in Mev) which is released if U%®
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2-15

2-16

2-17

2-18

2-19

2-20

221

2-22

2-23

fissions spontancously into two equal fragments with the release of four neutrons,
and if the fission products decay to stable end-product nuclei (to which Fig. 2-8
applies). (b) What fraction of the U mass is converted into energy?

Refer to Appendix C. (2) What s the total binding energy of Ca?® in Mev and
what is the average binding energy per nucleon? (b) The total electronic binding
energy of an atom of atomic number Z is approximately given by 15.73 Z% ev.
What corrections (in percent) must be made to the answers of part (a), if we wish
to compute the purely nuclear total and average binding energies?

Calculate, from the semiempirical mass formula, the binding energies of the last
neutron in Pb*” and Pb**®. Use any set of consistent energy parameters.

Use the semiempirical mass formula to determine which isobars with 4 = 102
should be stable and compute the most stable Z [Eq. (2-134)]. Use any consistent
set of energy parameters. See Appendix C for the actual stable isobars.

Use the semiempirical mass formmula to compute the mass difference between
29Cu® and 5,Zn®. {Compare with Fig. 4-28.)

(a) Use the semiempirical mass formula to compute the decay energy in alpha
decay. (The alpha-decay energy is equal to the negative of the alpha separation
energy.) (b) Apply your equation to the decay of 4,P0o?'? to g,Pb** using any
consistent set of energy parameters. (Compare with Fig. 4-17.) Use the empirical
value of 28.3 Mev for the binding energy of the alpha particle.

(a) Use the semiempirical mass formula to compute, for a given A4, the rela-
tion between Z and N for a nucleus which has zero proton separation energy.
(b) Compute N/Z for the case 4 = 100, using a consistent set of energy
paramcters. (See Fig. 4-11.)

Use the semiempirical mass formula to calculate the percentage contribution to
the average binding energy per nucleon of the volume energy, the surface
energy, the coulomb energy, and the asymmetry energy for 4 = 60 and 240.
(See Fig. 2-16.)

On the basis of the single-particie shell model, including spin-orbit coupling,
what would be the expected ground-state spectroscopic configurations of the
following nuclei:

C!1, §c#5, Nifl, Ge™, In1%, Talsl Ti203, Am21?
The measured spins are, respectively,

23 2> 2y 23 2y 25 23 ¢

If you find any discrepancy between your expectations and experiment, try to
give some explanation.

In odd-odd nuclei, an interaction between the last odd neutron and the last odd
proton must be taken into account in order to explain ground state spins. The
coupling favors parallel intrinsic spins of the odd proton and odd neutron.
(This is not to be confused with the pairing coupling for identical nucleons which
favors anti-parallel orbital angular momenta.) On this basis give the expected
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2-24

2-25

2-26

NUCLEAR STRUCTURE

ground-state spins and parities for the following nuclei:
Nl Kdo yeo Bjos
The measured spins are, respectively,
1,4,2,6
The energies (in Mev) and spins of the lowest excited states of Ta®? are

Energy, Mev Spin

0.100 2
0.329 4
0.680 6

(a) Do these values agree with the rotational model for permanently deformed
nuclei? (b) What is the moment of inertia of the nucleus (in g-cm?) about the
axis of rotation?

Use Fig. 2-30 to compute the density of levels of Sc'! as a function of excitation
energy. Break up the excitation-energy scale into 1-Mev intervals and compute
the number of levels per Mev. By making a plot on semilog paper, check whether
Eq. (2-164) is approximately satisfied. If so, compute ilic consiants p, and a.

The following mirror nuclei decay by emitting positrons whose maximum energy
in Mev is listed:

ct 097 P® 395
NE 118 S 4.40
ol 173 A% 496
F7 175 Ca® 5.49
Mg® 3.09 St 5.95
A 324

Make a plot similar to Fig. 2-33 and determine the radius constant R, assuming
each nucleus is a uniformly charged sphere. [See Eq. (4-122) for the relation
between positron decay energy and mass difference.]
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3-1 INTRODUCTION

The chapters following the present one will deal with the dynamic properties of
nuclei: radioactive decay and nuclear reactions. The present chapter is concerned
with the experimental investigation of these properties. This always requires the
detection of nuclear particles or electromagnetic radiation, briefly called nuclear
radiations. Usually the intensity (number of detected events per unit time) and
the (kinetic) energy of the radiation are determined. Most intensity measure-
ments rely on ionization produced when the radiations pass through matter,
The energy measurement either involves ionization or atomic excitation, or the
deflection of charged particles in electric and magnetic fields. For low-energy
neutrons and gamma rays, crystal diffraction also gives a very precise energy
deteriaination.
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Strictly speaking, these subjects lie outside the field of nuclear physics.
Yet they are so basic to nuclear investigations that we must mention at least the
most important concepts. For more extensive discussions the reader is referred
to other books.! The passage through matter of charged particles, neutrons and
gamma radiation, will be treated separately because they each involve different
characteristic processes.

3-2 INTERACTION OF CHARGED PARTICLES WITH MATTER

A charged particle passing through neutral atoms interacts mainly by means of
the coulomb force with the electrons in the atoms. Even though in each encounter
the particle loses on the average not more than a few electron volts of kinetic
energy, ionization and excitation of atoms give the greatest energy loss per unit
path length of the particle. The loss of kinetic energy in a nuclear encounter
would be much larger, but such collisions are extremely rare compared to
atomic encounters, roughly in proportion to the area of cross section of a nucleus
compared to that of an atom, i.e., 1072* ¢cm?/1071% cm* = [0~®. Hence, they do
not contribute appreciably to the overall energy loss.

For kinetic energies larger than about M,c%, where M, is the rest mass of
the particle, energy loss by emission of electromagnetic radiation becomes
increasingly important. The radiation is called bremsstrahiung (decelerating
radiation). It is caused by the same mechanism as the emission of continuous
x rays. The basic process can be understood classically. According to Maxwell’s
equations, any accelerated charge radiates electromagnetic radiation (see Sec.
4-4b). If a charged particle passes close to a nucleus, its velocity vector will be
rapidly changed (at least in direction if not in magnitude), so that the particle
undergoes an acceleration and hence it radiates.

A crude idea of the important concepts of the energy loss process by
collision (i.e., excitation and ionization of atoms) can be obtained by assuming
that the charged particle is heavy and that it collides with a free electron. The
loss of kinetic energy of the heavy particle must then be equal to the gain of
kinetic energy of the electron. The latter can be estimated from the impact given
to the electron as the charged particle passes by. If x and y coordinates are
chosen as shown on Fig. 3-1, the impact equations for the electron are

fo dt ~ 0 (3-1)
fF, dt = p, (3-2)
where F = F, + F, = coulomb force exerted on the electron

! = time
p. = momentum imparted to electron (only the y component is nonzero)

! Burcham, 1963, chaps. 5-8; or Evans, 1935, chaps. 18-28.
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Equation (3-1) 1s a good approximation because the velocity of the heavy
particle is practically unaffected by the encounter. If the impact paramerert of
the collision is b, the integral in Eq. (3-2) can be estimated {rom the time of the
impact

TS (3-3)

where v is the speed of the heavy particle, and the average magnitude of F,
during that time

ze?
(Fy)nve ~ ? (3-4)
where ze is the charge of the heavy particle. Hence from Eq. (3-2)
ze? (3-5)
Fe™ 5 i
FIGURE 3-1 Encounter between
a heavy charged particle of mass y
M, and a free electron of mass B
, X | db e, mo
my,. The impact parameter b is
indicated. 1 /'r 7
F /
b l’ll
1t
it
* :: X
ze M., ¥ 1
3
Wy
AY
dx

A much cleaner estimate of the momentum imparted to the electron [Eq.
{3-5)] can be obtained by an application of Gauss’ law of electrostatics

J‘E +dS = 4myg (in electrostatic units) (3-6)

where E is the electric field at the surface of any closed volume surrounding a
charge g, and d8S is an element of surface. Applying this theorem in a system
of reference in which the heavy particle is at rest to an infinite cylinder of radius
b, as shown in Fig. 3-1, we find

F
.[ L 27wb dx = 4nze 3-7
e

! The impact parameter in a collision between 1wo particles is the smallest distance at which
the centers of the particles would pass each other, if there were no force between the particles.
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With respect to the heavy particle, the electron travels a distance dx = v dt
along the cylinder surface in a time 4 so that

ze?
F,di =2—
.[ Tk

=P (3-8)
in accordance with Eq. (3-2). This yields the more correct estimate of p,

—2% 39
pa“‘ bU (-)

so that the kinetic energy gained by the electron (mass m,) and lost by the heavy
particle 1s

82 22294 -

P 22 (3-10)

2452
2m,  mgb®v

If there are » atoms per unit volume, each with Z electrons, then in a path
length dx there will be
nZ 2wbdb - dx (3-11)

electrons within a distance b to 6 4 db from the path of the heavy particle. To
each of these electrons, the particle loses an amount of energy given by expression
(3-10) so that the total energy loss per unit path is

AT [t dp 22

bmln
o 477'64221'12 ln bma,x
B “ml:ivz bmin

2724

2,2
myb?v

(3-12)

This expression is approximate, because for nearly head-on collisions Eq. {3-10)
is not valid.! Nevertheless, it suffices for the present purpose.

In reality the electrons in the stopping material are not free but bound to
atoms (or to the solid if the material is in solid form). Since each atom has
electronic energy levels the particle cannot transfer any energy to the atom
unless it excites the atom at least to its first excited state. In classical terms, we
can argue that the time of impact [Eq. (3-3)] must not be longer than the period
of rotation of a typical electron in its orbit in order that energy will be transferred
to the electron in the atom.

—

Almax ~ - (3-13)

<

! A complete derivation can be found in Evans, 1955, chap. 18.
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where v is the frequency of rotation. Using Eq. (3-3) this gives

bmax A

A ]

(3-14)

The minimum impact parameter is limited by the uncertainty principle,
because the electron cannot be located with respect to the heavy particle more
closely than jts de Broglie wavelength, If Eq. (2-93) is applied in the relative
coordinate system of the electron and the particle, we see that

byin & h 3-15
min Mgy (’ )

Therefore, we obtain
dT  4ne'z?nZ ] 2mgv?
~ n

dx mgt? Tave

(3-16)

where v has been replaced by a mean ionization and excitation potential fave
of the atoms in the stopping material' and a factor 2 has been added in the
logarithm term in accord with an exact quantum mechanical calculation.* The
other symbols in this equation are, as previously,

ze = charge of heavy particle
m, = mass of electron
v = speed of heavy particle

nZ = number of electrons per unit volume in stopping material

Experimentally, the energy loss is determined by the number of ion pairs
formed along the path of the particle. By ion pair, we describe the positive and
negative constituents which resuit from an ionizing encounter. If on the average,
an energy w has to be lost by the heavy particle in order to produce one ion
pair, the number of ion pairs i per unit path is given by

dT
——=wi 3-17

o (3-17)
The quantity w is the result of complicated processes: (1) there is atomic
excitation as well as ionization, (2) an ejected electron can have sufficient energy
[see Eq. (3-10)] to produce secondary ionizaticn in turn.? Empirically, in a given

! Theoreticaily and experimentally, /,,, ~ Z, approximately (Bloch, 1933). The proportionality
constant is about 13 ev for most substances, except H, and He, for which it is 19 and 22 ev,
respectively (Sternheimer, 1961).

2 Forv ~ ¢, the terms —In (I — v*/¢*) — v?/c* have to be added to the logarithm term in Eq.
(3-16).

® This can be seen quite clearly on Fig. 3-5a. See also Prob. 3-6. The ejected electrons are often
called delta rays.
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material, w is, fortuitously, practically independent of the kinetic energy or of
the nature of the particle. For air, it has the value 35.0 ev for 5-kev electrons,
35.2 ev for 5.3-Mev alpha particles, and 33.3 ev for 340-Mev protons.

Before comparing expression (3-16) with experiment, it is convenient to
introduce the concept of mean range R, which is the average distance traveled

FIGURE 3-2 Empirical energy loss curve for prbtons in air. (a)
Low energy portion. Eq. (3-16) foliows this curve down to T’ =~ 0.3
Mev with I,,, = 80ev. Below this energy, capture and loss of
electrons reduces the average value of z (see Fig. 3-3). () High
energy portion. The minimum energy loss occurs at T ~ 1500 Mev.
(By permission from H. A. Bethe and J. Ashkin, in E. Segre, (ed.),
“Experimental Nuclear Physics,”” vol. 1, John Wiley & Sons, Inc.,
New York, 1953, as adapted by Burcham, 1963.)
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(in a given direction) before the particle loses its kinetic energy 7, completely:

_ R [0 dx
Re| dx=| Zar
jo l .JT,,dT

Ts dT —1
T

{€ the logarithm term m Eq. {3-16) were independent of v
_ Ty
R Nf TdT ~ T2 (3-19)
0

but actually no such simple range curve is found. {See Figs. 3-9 and 3-10.) The
range of a single particie may be slightly larger or smaller than expression (3-18)
because there are statistical variations in the amount of energy lost per unit
path length und in the total number of ions pairs formed. This is called
straggling.

Figure 3-2 gives an experimentally determined energy loss curve for protons
in air. Since the number of atoms per unit volume # is related to density of the
material p, Avogadro’s number .47, and the atomic weight & by

A p
2

the energy loss is often given as —dT/(p dx) because it is then independent of
the physical constitution of the stopping material.

Curve (a) of Fig. 3-2 shows that at very low energies the energy loss of the
proton decreases rather than increases as might be expected from the 1/v?
dependence of Eq. (3-16). This results from intermittent capture and subsequent
loss of electrons by the proton, which decreases the average value of z in Eq.
(3-16) with decreasing speed v of the proton (Fig. 3-3). As the proton slows down,
the probability of electron capture predominates over the loss until the proton
finally becomes a hydrogen atom. It can then lose energy ounly by elastic
collisions. The number of ion pairs per unit path towards the end of the particle’s
track shows this same reduction caused by the capture and loss process (Fig. 3-4).

The cloud-chamber photographs shown in Fig. 3-5 illustrate these effects
very clearly (for an alpha particle). In a cloud chamber supersaturated vapor,
usually water. is artificially generated. The ion pairs produced by a charged
particle serve as condensation centers for the vapor. By proper timing and
illumination, it is possible to photograph tracks whose droplet density is
directly proportional to 7 [Eq. (3-17)].* In Fig. 3-5a the ionization produced by
the ejected electrons, called defta rays, can be seen. As the alpha particle loses
energy the delta rays become less energetic. Towards the end of the range (Fig.
3-5d) the ionization first incredses noticeably, as shown in Fig. 3-3, and then

n —=

(3-20)

1 For more details on cloud chambers, see Burcham, 1963, sec. 6-2,
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FIGURE 3-3 Mean charge z of slow protons and alpha particles
as a function of their speed v. (By permission from Evans, 1955.)
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FIGURE 34 Number of ion pairs per unit path for a
single proton and a single alpha particle as a function
of residual range. The residual range is the distance
left to travel until the particle comes to rest. The
horizontal scale is such that on the left part of the
diagram both particles have similar speeds. The proton
range then is 0.2 air-cm shorter than the alpha-particle
range. (By permission from Evans, 1955.)
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falls off as the mean charge of the alpha particle decreases. At the same time,
the kinks in the alpha-particle tracks show the occurrence of atomic collisions
with the cloud-chamber gas.

The energy loss of fast electrons in matter is caused by the same mechanisms
as for heavy charged particles, and the energy loss formula is practically
identical to Eq. (3-16). The following differences, however, should be noted:
(1) Because the incident electron and the electron in the stopping material have
the same mass, there is much more scattering of the incident electron (in fact
we cannot tell which one was the incident electron). Hence, the path length in the
stopping material can be considerably longer than the straight line distance or
range in the material. Figure 3-6 illustrates this situation.! (2) As the charge z of

' Note that immediately after collision, the angle between the electrons is 90°. This is a
consequence of the nonrelativistic laws of energy and momentum conservation [see Eq.
(1-29)1, applicable here because the incident electron has only 56-kev energy.
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the incident particle never changes. the energy loss of electrons by ionization
is appreciable down to energies in the ev range. This causes the blobs at the end
of the electron tracks in Fig. 3-6. (3) For a given kinetic energy, electrons have
higher speeds than heavy particles. Therefore, the energy loss by radiation for
electrons is important at much lower energies than for protons, for example.
This is shown in Fig. 3-7.

FIGURE 3-5 Alpha-particle tracks in a cloud chamber. On each figure the initial
energy and the equivalent path length in air at 1 atm and 15°C is shown. Note the
more energetic delta rays at the higher energies. [By permission from T. Alper, On
Delta Rays and the Relation between Range and Velocity of Slow Electrons, Z.
Physik, 76: 172 (1932), J. Springer, Publishers, Berlin. Reproduced from W. Gentner,
H. Maier-Leibnitz, and W. Bothe, “An Atlas of Typical Expansion Chamber Photo-
graphs,” Pergamon Press, London, 1954.]
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FIGURE 3-6 Track of a 56-kev electron in a cloud chamber. The arrow points to the
start of the electron track. In this picture, 59-kev x-rays were used to release the initial
electron causing the small blob at the beginning of the track because of an Auger
effect. This is further described at end of Sec. 3-4c. [By permission from L. H. Martin,
J. C. Bower, and T. H. Laby, Proc. Roy. Soc. (London) A148: 40 (1935). Reproduced
from W. Gentner, H. Maier-Leibnitz, and W. Bothe, ‘‘An Atlas of Typical Expansion
Chamber Photographs,”” Pergamon Press, London, 1954.]

T T T T FIGURE 3-7 Energy loss of electrons
and protons in lead. (From W. Heitler,
1954, as adapted by Burcham, 1963, by
permission.)
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A typical experimental arrangement for the detection of charged particles
is presented in Fig. 3-84. In a good-geometry situation, collimators are used
which prevent particles, scattered by the absorber, from reaching the detector.
Curves (b), (¢), and (d) give a schematic representation of the absorption curves
for heavy charged particles, monoenergetic electrons, and beta rays, respectively.
Beta rays have a distribution of initial energies (see Sec. 4-6d) and hence have a
particularly complicated absorption curve.?

FIGURE 3-8 Schematic absorption curves for charged particles emitted by a radio-
active source. (2) Experimental arrangement. (b) Absorption curve for heavy
particles. (c) Absorption curve for monoenergetic electrons. (&) Absorption curve
for beta rays. R
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The range of charged particles, as determined by an absorption curve, or
in a cloud cliamber or photographic emulsion,? is a convenient but not very
precise method of determining the energy of a charged particle. The method is
limited because of straggling to an accuracy between 1 and 5 percent. Figure
3-9 shows a range-energy curve for protons in air at atmospheric pressure; in

! Empirically it is found that the initial part of the absorption curve follows approximately
g feomeisath "where ¢ is the thickness of the absorber and the constant depends on the beta-ray
end-point energy.

?In a photographic emulsion, the passage of ionizing radiation through the silver halide
crystals causes developable grains to be formed. For details see Powell, Fowler, and Perkins,
1959.




FIGURE 3-9 Range-energy relationship for protons in air at 1 atm and 15°C,
The relationship of Eq. (3-19) is shown in dotted lines. (Adapted from H. A. Bethe
and J. Ashkin, Passage of Radiations through Matter, in E. Segré (ed.), “Experi-

mental Nuclear Physics,”” vol. 1, John Wiley & Sons, Inc., New York, 1953.)
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aluminum, a similar curve is obtained with the range decreased by a factor of
approximately! 1/1600. A range-energy curve for electrons is given in Fig. 3-10.
Neither curve has the simple energy dependence of Eq. (3-19).

More accurate methods of energy determination consist in measuring
electronically the total number of ion pairs formed in the stopping material
(ionization chamber, gas proportional counter, solid-state proportional counter)
or in detecting the total light emitted in the ionization-excitation process
(scintillation counter).? In all these cases one relies on che approximate constancy
of w in Eq. (3-17). The detectors must always be calibrated with particles of
known energy.

The energy of charged particles can be determined absolutely from their
path in known electric or magnetic fields (in an evacuated space, to avoid
scattering). In the simplest of such instruments, called spectrometers,? the charged
particles are deflected into a circular path of radius r by a uniform magnetic
field of induction B. The momentum p of the particle is then given by

p =eBr (3-21)

(all electromagnetic or MKS units)and the kinetic energy can be determined from
Eqgs. (2-9) and (2-10) or from 4p?/m, in the nonrelativistic situation.

3-3 INTERACTION OF NEUTRONS WITH MATTER

The interaction of neutrons with matter is not only of experimental or theoretical
interest but has important practical applications, particularly in the operation of
reactors.* The present discussion will be restricted to the energy loss of neutrons
by elastic collisions.

3-3a Energy loss of neutrons. Because neutrons are neutral, they cannot lose
energy by ionization, Nuclear encounters, though rare, are the only possible
means of energy loss. Most of these collisions are elastic; that is, the struck
nucleus is not excited, but in some cases the inelastic excitation can contribute
to the energy loss.

In any collision, momentum is conserved, and if the collision is elastic,
kinetic energy is conserved also. We will neglect relativistic effects, i.e., our
derivation will not be applicable to neutrons of energy above 200 Mev.® It is
convenient to consider the collision both in the laboratory (lab.) and in the
center-of-mass {c.m.) coordinate systems (Fig. 3-11).

Before collision, particle | of mass M, and speed v, collides with particle 2

! Evans, 19585, chap. 22, sec. Je.

? For details see Burcham, 1963, sec. 6-1.

3 For details see Burcham, 1963, sec. 7-2,

* Kaplan, 1962, chap. 18; Segre, 1964, chap. 12.

* The derivation is also applicable (o elastic collisions of electrons of energy below about
100 kev, as in Fig. 3-6. For the relativistic case, see Segre, 1964, app. G.
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FIGURE 3-10 Range-energy relationship for electrons in aluminum. To
obtain the range in cm, divide the range in mg/cm? by the density of Al, 2700
mg/cm?®. The relationship of Eq. (3-19) is shown in dotted lines. [Empirical
relationship of L. Katz and A. S. Penfold, Rev. Mod. Phys. 24: 28 (1952) as
shown by J. B. Marion, Nucl. Data Tables, U.S. At. Energy Comm, 1960, part 3,
available from U.S. Government Printing Office, Washington, D. C.]
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of mass M,, which is at rest. After the collision, the particles move with speeds
v, and vy, respectively, at angles 6, and 6, in the lab. system (Fig. 3-11a). The
collision takes place in a plane because initially there is no momentum perpen-
dicular to the velocity v;. The center of mass of the system moves with a speed

_ M,
M+ M,

Up

(3-22)

in the direction of v,.

FIGURE 3-11 Elastic collision of two particles. (a) Laboratory system. (&) Center
of mass system. (c) Laboratory system.

Before collision After collision

C
. N ———
M, N YoM,
(a) Lab. system
V=%, —u, C V, =n,
—p —— ¥ — =
M, M,

(h) C.m. system

{¢) Lab.system

If the vector v, is subtracted from all velocity vectors, the center of mass
evidently is at rest, so that the c.m. system is obtained by this procedure (Fig.
3-116}. In this system both particles have identical and opposing vector momenta,
both before and after collision. In addition, conservation of kinetic energy
requires that each particle retain its speed during the collision.” Hence, if ¥, and

! See Prob. 3-14.
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V, are the c.m. speeds of the two particles before collision, we have

MV, = M,V, (3-23)
and ¥V, and ¥, are also the speeds after the collision. Furthermore
V, =1, (3-24)

by construction of the c.m. system. The angle of collision ® in the c.m. system
depends on the details of the collision.

To return to the lab, system, the velocity v, has to be added to all velocity
vectors in the c.m. system (Fig. 3-11c). All relations concerning speeds and
angles can now be read off the figure immediately. For example, the energy of
particle 1 in the lab. system after collision is

T, = M2
= } M (V2 4 v + 2V, cos ) (3-25)
This has maximum and minimum values at ® = 0° and ® = 180°, respectively:
(T)max = Th (3-26)

(Tl’)mm = tM,(V, — vy)?
= M, (v, — 20,)

=T, (H)z (3-27)
If M, = M,, we find from Eq. (3-25)
T, = T,(1 + cos ©)/2, (T)pin =0 (3-28)
and from the fact that ¥, = V, = v, it is easy to show that
6, + 0, = 90° 3-29)
for any collision.
3-3b Energy distribution of neutrons after collision. For neutrons up to several

Mev kinetic energy, it is approximately correct to assume in a collision with a
nucleus the distribution of the scattered neutrons is isotropic in the c.m. system.!
Under these conditions the number of neutrons scattered into a given solid
angle dQ in the c.m. system is proportional to d€2. The probability of scattering
into d€2 is thus

d}

~ 2msin 0 4o
B 4
= }sin O dO (3-30)

! This is another way of stating that the neutron elastic scattering cross section in the c.m.
system is isotropic. See Sec. 5-4d and Appendix A-2.
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Each neutron which is scattered into an angular interval @ to © + d® also has
its energy changed from 7', to the interval T'| to T, 4 4T, where dT, is given by
differentiating Eq. (3-25)

dT, = (—)M,Vp,sin © dO (3-31)

Hence, the probability of scattering into this energy interval is

P(dT,) = P(dQ)
dT,
=1 3-32
2M Vv, (3-32)
from Eqgs. (3-30) and (3-31). Figure 3-12 shows a plot of the probability dis-
tribution P(dT,)/dT,, which is of course just the energy distribution of the
neutrons after a single collision.

FIGURE 3-12 Energy distribution of neutrons after one
collision.

P (dT!)
aT;

T
Tl, min T,
For a hydrogen scatterer, (T),, = 0 [Eq. (3-28)], so that the average

energy after collision is
(T]'.)ave = %Tl

The energy distribution of neutrons after n collisions can also be calculated.!
We might expect that after n collisions the average energy is approximately

(T{)ave i ('})nTl

If neutrons collide with a hydrogen scatterer, the recoil protons have the
same energy distribution as the scattered neutrons. Figure 3-13 shows an actual
proton recoil energy distribution in an organic scintillator. As we mentioned at
the end of Sec. 3-2, in proton energy loss by ionization and excitation, the
number of photons emitted happens to be nearly proportional to the energy
loss. If the light emitted by a scintillator is allowed to fall on the photosensitive
surface of a photomultiplier, the encrgy loss in the scintillator can be determined
by electronic means. The rounding off of the energy distribution in Fig, 3-13, as

! Segre, 1964, chap. 12,
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FIGURE 3-13 Pulse-height spectra of recoil protons in an
organic scintillator (stilbene) produced by monoenergetic
neutrons from the H%d,n} reaction. (a) Experimental spectra
taken with a stilbene crystal 1 cm in diameter and 0.1 ¢cm thick.
(b) Proton energy spectra deduced from the top figure, after
subtracting background and correcting for nonlinear response
of the stilbene scintillator. [By permission from C. D. Swartz and
G. Owen, Recoil Detection in Scintillators, in J. B. Marion
and J. L. Fowler, (eds.), “Fast Neutron Physics,” vol. I, chap.
HIB, Interscience Publishers, Inc., New York, 1960.]
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compared to the ideal distribution of Fig. 3-12, is caused by statistical effects in
the photomultiplier. If the scintillator is calibrated with neutrons of known
energy, it can be used to determine unknown neutron energies. This is generally
successful only if there are not more than a few monoenergetic neutron groups,
well separated in energy.

Absolute neutron energy measurements can be made by determining the
flight time of neutrons over a known distance. Using electronic timing techniques
with resolutions of 10~? sec and path lengths of meters, this method can be
extended to the Mev energy range.! The diffraction of neutrons by crystals is
also used for energy determination below a few ev, where the de Broglie wave-

length of neutrons [Eq. (2-11)] becomes comparable to crystal lattice spacings
(107% cm = 10° F).

3-4 INTERACTION OF GAMMA RADIATION WITH MATTER

Gamma radiation is the name commonly given to electromagnetic radiation of
nuclear origin. It usually has a wavelength smaller than about 10° F or photon
energy larger than about 0.1 Mev [see Eq. (2-2)). The interaction processes of
gamma rays with matter are complex. Certain features of the interaction can be
understood with classical arguments, i.e., on the basis of Maxwell's equations;
but only quantum electrodynamics describes the correct physical situation.
Indeed we should recall that the photoelectric effect and the Compton effect are
two of the basic experiments which first demonstrated the inadequacy of
Maxwell’s equations and the need to introduce quantum concepts (see Sec. 2-2a).

Classical electrodynamics shows that an accelerated charged particle
radiates. Hence, when electromagnetic radiation of frequency » encounters a
loosely bound electron, the induced acceleration causes the electron to reradiate
some of the electromagnetic energy at the same frequency. The phenomenon is
called Thomson scattering; its quantum extension is the Compton effect.

Next imagine that the electron is bound to an atom and circulates around a
nucleus with a frequency %, As with the forced oscillation of any resonating
system, we expect the most pronounced effect of the incident electromagnetic
radiation on the electron to occur if v = v,. The largest energy transfer to the
electron occurs under this resonance condition,? and the electron then has the
greatest chance to be separated from the atom. The quantum extension of this
process is the photoelectric effect.

A third interaction mechanism, pair production by gamma rays, has
no classical analog.

3-4a Attenuation of gamma rays.  The attenuation of a beam of gamma rays
through an absorber is fundamentally different from that of a beam of heavy

' The time of flight of a I-Mev neutron is 0.7 X 10 sec/cm of path. See Burcham, 1963,
sec. 7-3, for details.
* This reasoning formed the basis of Eq. (3-13).
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charged particles (Fig, 3-8b). The latter undergo many small interactions which
hardly affect the direction of the particle. If gamma rays pass through matter,
each gamma ray either does not interact at all, or it is removed completely from
the beam by absorption or scattering.! This causes an exponential attenuation
with increasing absorber thickness.

FIGURE 3-14 Aitenuation of gamma-ray beam by an absorber. (a) Intensity of
beam at various points. () Attenuation curve.
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Suppose [, gamma rays per unit time are incident normally on an absorber
and that at a penetration depth x the unaffected beam has an intensity [, as
shown in Fig. 3-14. The fractional number of gamma rays removed from the
beam will be proportional to dx, because the individual attenuation processes
are completely independent of each other.

di
— 7= dx (3-33)
where the proportionality constant u is called the /inear attenuation coefficient

Integration of Eq. (3-33) for an absorber of thickness ¢ gives
I, = Ient (3-34)
It should be noted that /, is the intensity of the unaffected beam. The thickness

t, needed to attenuate the beam to one-half of its original intensity is called
half-value thickness. Substitution into Eq. (3-34) yields

In2 0.693
ty= 0= = 2207 (3-35)
I /2
For 3-Mev gamma rays attenuated by lead, 4 ~ 0.5 in.
Since attenuation is caused by three independent processes, Compton

effect, photoelectric effect, and pair production, we can write
p=pc Tt ug + po (3-36)

! The scattering of gamrmna rays into very small (forward) angles by bound electrons in atorns,
called Rayleigh scattering, is ignored here. See Evans, 1955, chap. 23; Burcham, (963, sec. 5-4.
* In common usage ¢ is also called the total linear absorption coefficient, although scattering
and absorption both contribute to attenuation of the gamma-ray beam.
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where each partial attenuation coefficient is proportional to the probability of
occurrence of the particular process. Each coefficient is also proportional to
the number of atoms per unit volume of absorber [see Eq. (3-20)], and thus
it is useful to define the mass absorption coefficient pn/p where p is the density of
the material. The mass absorption coefficient is independent of the physical
state of the absorber. In terms of it we can rewrite Eq. (3-34)

I, = Ioe—(u/p)pt (3-37)

The fractional intensity of gamma rays removed from the beam by one
particular process only, for example, by Compton scattering, is equal to

B I, — 1,

v 5
The exponential term is not e~#¢, because all attenuation processes occur even
if only Compton scattered gamma rays are observed.

Typical mass attenuation coeflicients are shown in Figs. 3-15 and 3-16.
The various interaction mechanisms are predominant over different gamma-ray
energy regions. Their energy dependence cannot be understood without complex
quantum mechanical calculations.® We will, however, discuss the general
nature of each process.

. Ke (1 — e#) (3-38)
W

3-4b Compton effect. It is easy to show that energy and momentum cannot be
conserved if a photon is completely absorbed by a free electron at rest.? Therefore,
in the interaction of a gamma ray with a loosely bound electron, the gamma ray
must be scattered (with an appropriate loss in energy). This corresponds to the
classical reemission of electromagnetie radiation mentioned previously.

Figure 3-17 shows the interaction process and our notation. From con-
servation of momentum we find

pr=p,cosf + p,cos ¢ (3-39)
0= —p,sinf + p,sing (3-40)

Conservation of energy gives
E,=E +T, (341)
Upon elimination of p, and ¢ we find that

Fed= = cost) (342)
myc

where A’ and 4 are the wavelengths of the scattered and incident gamma rays,
respectively. In Egs. (3-39) to (3-41), expressions (2-1) and (2-3) must be used

1 See Heitler, 1954.

2 Electrons in matter are of course neither free nor at rest. Nevertheless, they can be considered
as such for the present purpose if (1) the incident photon energy is much larger than the binding
energy of the electrons (ionization potential in a gas or work function in a solid), and (2}

the incident photon momentum is much larger than the momentum of the struck electron,
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for E, and p, and the relativistic expressions (2-8) and (2-9) for p. and T..
The quantity A/m.c is called the Compton wavelength of the electron and has
the value h

— =2426F (3-43)
myc

The shift in wavelength (3-42) is independent of the incident gamma-ray energy.

FIGURE 3-15 Mass attenuation coefficient for gamma rays in aluminum as a function
of gamma-ray energy. The coefficients for the photoelectric effect (1g/p), the Compton
effect (uc/p), and the pair effect (up/p) are shown separately. To obtain the coefficients
in cm™1, multiply by the density of Al = 2.70 g/cm®. (By permission from Evans, 1955.)
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For very high-energy gamma rays, i.e., E, 3 myc? (= 0.511 Mev) or 2 << hfmyc,
we can neglect 2 with respect to A’ for all scattering angles 0 except near 0°, so
that
, myet
E ~—— 3-44
" 1—cosf (3-44)
FIGURE 3-16 Mass attenuation coefficient for gamma rays in lead as a function of
gamma-ray energy. The coefficients for the photoelectric effect (uz/p), the Compton
effect (u¢/p), and the pair effect (up/p) are shown separately. To obtain the coefficients

in cm~1, multiply by the density of Pb = 11.35 gm/cm?. (By permission from Evans,
1855.)
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FIGURE 3-17 Interaction of gamma ray with a free electron.

Recoil electron

P, E:
Incident gamma ray (A)

Scattered gamma ray (A")

The probability of Compton scattering can be calculated only with the
Dirac equation. The angular distribution of Compton scattered gamma radi-
ation, tL.e., relative number of photons scattered into a small angle d€2 at an
angle 6, is shown in Fig. 3-18. For very small photon energies, it approaches
the classical distribution (Thomson scattering). One can show! from Maxwell’s
equations that the classical angular distribution should be proportional to
1 4 cos? 4.

Gamma-ray detectors are sensitive to the ionization produced by the recoil
electrons. Typical calculated recoil energy distributions are shown in Fig. 3-19.
If the scattered photon has minimum energy (6 = 180° in Fig. 3-17), the recoil

FIGURE 3-18 Angular distribution (intensity per unit solid
angle} of Compton-scattered gamma rays as a function of the
scattering angle for various incident gamma-ray energies E,. All
curves have been normalized at 0°. (By permission from Heitler,
1954.)
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1 See Burcham, 1963, sec. 5.4.2.
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electron will have maximum energy
T,(max) == E, — E_(0 = 180°) (345)
For high-energy gamma rays, according to Eq. (3-44)
T, (max) a» E, — §myc®
~ E, — 0.255 Mev (3-46)

We can understand that the recoil energy distribution peaks near 7,(max) (see
Fig. 3-19), because for an appreciable range of angles 6 near § = 180°, cos §

FIGURE 3-19 Energy distribution of Compton electrons as a
function of electron energy for various incident gamma-ray
energies E_. [By permission from C. M. Davisson and R. D.
Evans, Rev. Mod. Phys., 24: 79 (1952).]
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remains close to the value —1 and so E] remains close to the value }m,c?.
Figure 3-20 shows an actual Compton-electron energy distribution from the
gamma-ray bombardment of an organic scintillator. The rounding off of the
energy distribution is caused by statistical effects in the photomultiplier used
to detect the light from the scintillator,

FIGURE 3-20 Pulse-height spectra of Compton electrons pro-
duced by 0.51- and 1.28-Mev gamma rays (from Na?2) in an
organic scintillator (stilbene). No correction has been made for
the slightly nonlinear energy response of the scintillator. The
stilbene crystal was in the form of a cylinder of 3.8-cm diam
and 2-cm length. (By permission from C. D. Swartz and G.
Owen, Recoil Detection in Scintillators, in J. B. Marion and
J. L. Fowler, (eds.), “Fast Neutron Physics,” vol. 1, chap.
IIB, Interscience Publishers, Inc., New York, 1960.)
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If the gamma ray is scattered by a bound electron which is not removed
from its atom, Egs. (3-39) to (3-41) also hold, but p, and 7, now refer to the
entire atom which recoils with the bound electron. Hence in Eq. (3-42), m, must
be replaced by the mass of the atom. The shift in wavelength is negligible for
most purposes. This type of scattering is called Rayleigh scattering. It increases
with the atomic number Z of the scatterer, since the binding energy of the inner
electrons is proportional to Z% so that an increasing fraction of the atomic
electrons must be considered as bound. The angular distribution is nor like that
given in Fig. 3-18, because the radiation scattered from all bound electrons in
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one atom interferes coherently. As a result, Rayleigh scattering is sharply
peaked about 6 = 0°,

Gamma radiation can also scatter on the nucleus without excitation
(Thomson scattering) or with excitation. The first process interferes coherently
with Rayleigh scattering, but has a much smaller probability.

FIGURE 3-21 [nteraction of a gamma ray with a bound electron.

Ejected electron

P E, = hy

Incident gamma ray

Recoiling atom, excited to energy state E,

3-4c Photoelectric effect. A gamma ray can transfer its energy to an electron
originally bound in an atom because the atom can then take up some of the
recoil momentum, as shown in Fig. 3-21. Conservation of momentum

Pr=P TP 347
and conservation of energy
E,=T,+T,+ Eg (3-48)

can be simultaneously satisfied. In Eq. (3-48), E, is the binding energy of the
electron in the atom,' which is also the excitation energy of the atom after the
electron has been ejected. It is not difficult to show that the recoil kinetic energy
T, is of order (my/M)T,, where my and M, are the masses of the electron and
atom, respectively. Since my/M, ~ 1074, T, can be neglected for most purposes
so that

T,=hv — Eg (3-49)

For gamma rays above about } Mev, photoelectrons are most probably
ejected from the K shell of an atom because, for these electrons, the classical
resonance condition (Sec. 3-4) is most nearly satisfied. Theangular distribution of
photoelectrons is given in Fig. 3-22. For low-energy gamma rays, the distribution
is practically symmetric about & = 90°; this can be understood classically
since the photoelectrons should be ejected parallel to the electric field vector
of the incident radiation.

The probability of photoelectric emission is shown on Figs. 3-15 and 3-16.
The probability increases as hAv — E;; or v — »,, where », = Ep/h is the fre-
quency of the absorption edge. This is caused by the resonance effect mentioned

'For K electrons, Ep =~ 13.6 (Z — 1)° ev.
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FIGURE 3-22 Angular distribution (intensity per unit solid angle) of photoelectrons
as a function of the angle between the electrons and the incident gamma rays. The
energy of the incident gamma radiation is given for each curve. {By permission from
C. M. Davisson and R. D. Evans, Rev. Mod. Phys., 24: 79 (1952).]
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in Sec. 3-4. Above the absorption edge, the probability of photoelectric emission
varies roughly as Z°E"%5, where Z is the atomic number of the interacting atom.

The photoelectric effect is always accompanied by a secondary process,
since the atom does not remain in its excited energy state Ep. Either x rays are
emitted by the atom, or electrons are released from the outer atomic shells,
which carry away the available excitation energy. These are called Auger
electrons.! In any dense material, the secondary radiations are absorbed in turn
with a high probability. This occurs in most scintillators which are used for
gamma-ray detection (see Fig. 3-26).

3-4d Pair production.  Crudely speaking, the Schrodinger equation is the
quantum mechanical equivalent of the nonrelativistic conservation of energy

"In Fig. 3-6 the initial electron was a photoelectron from the K shell of an argon atom,
released by an incident 59-kev photon. Instead of K x rays from the argon atom, a 3-kev
Auger electron was ejected from the L shell, causing the small blob at the start of the photo-
electron track.
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equation [Eq. (2-28)] and the Dirac equation is the quantum mechanical
equivalent of the relativistic equation

W= +(pct + moictht + ¥ (3-50)

which can be obtained from Eq. (2-10). For the moment let us assume that the
potential ¥is equal to zero. The ambiguity in sign of the square root in Eq. (3-30)
is not a mathematical accident. It was shown by Dirac that positive energies W
represent a particle of rest mass m, and momentum p and that the negative

energy states represent a particle of rest mass —m, and momentum —p (Fig.
3-23).

FIGURE 3-23 Creation of an electron-positron pair according to the
Dirac theory. :
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Since the minimum value of p? is zero, no particles can occupy the energy
interval myc? > W = —myc? To overcome the difficulty that ordinary (positive-
energy) electrons would make transitions to negative energy states until they
are completely filled, Dirac assumed that nature is such that (1) all negative
energy states are filled with electrons in the absence of any field or matter, and
(2) no effect of these electrons is noticeable in the absence of any field or matter.!
Suppose, now, that an electron is ejected from a negative energy state by action
of a gamma ray. The creation of the Aole in the negative energy states means
that the system under consideration acquires a mass —(—r1,), a momentum
—(—p), and a charge —(—e). The creation of the hole, therefore, corresponds
to the appearance of a particle of mass 7, momentum p, and charge +e. The
kinetic energy T, of this hole particle would be equal to }p?/m, in the non-
relativistic approximation or be given accurately by Eq. (2-9). The particle is
called a positron. It was discovered by Anderson (1932). Tt occurs in several
nuclear processes and its existence is well established.

! More complex formulations of the Dirac equation avoid these drastic assumptions but give
identical results.
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When the hole is created, an electron also appears in a positive energy
state with kinetic energy T,. From conservation of energy (see Fig. 3-23)

b =T, + T, + 2myc? (3-51)

It is possible to show that this equation cannot be satisfied together with the
momentum conservation p, = p, + p,. Therefore an electron-positron pair can
be produced only in the neighborhood of a third particle which can take up
some momentum. If the third particle is a nucleus, it will take up hardly any
energy (as in the photoelectric effect), so that Eq. (3-51) still holds to a very good
approximation. The minimum energy for pair production obviously occurs for
T, + T, = 0, that is, iy = 2mqc® ~ 1.02 Mev.

Figure 3-24 shows a set of stefeoscopic photographs of an electron-positron
pair produced in an expansion cloud chamber by a 7-Mev photon. The cloud
chamber was filled with air. A magnetic field was applied in order to deter-
mine the momenta of both particles. In this particular event the momenta
happened to be nearly equal.

FIGURE 3-24 Electron-positron pair produced by 7-Mev gamma ray in a cloud
chamber (stereoscopic photograph). The cloud chamber was filled with air at 1.75 atm
pressure. A magnetic field was applied to curve the particle tracks. The energy loss of
the particles can be noticed by the decreasing radius of the spiral paths. The gamma-
ray source was external to the chamber. Note the Compton and photoelectrons
released in the chamber wall. [By permission from J.. A. Phillips and P. G. Kruger,
Phys. Rev. 76: 1471 (1949). Reproduced from W. Gentner, H. Maier-Leibnitz, and
W. Bothe, “An Atlas of Typical Expansion Chamber Photographs,” Pergamon
Press, London, 1954 ]
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The angular and energy distributions of the electrons and positrons can be
calculated from the Dirac theory. The energy distribution is shown in Fig, 3-25,
Roughly speaking, all energies are equally probable. The total probability of
pair formation, corresponding to the area under the curves of Fig. 3-25, is given
in Figs. 3-15 and 3-16 for Al and Pb. The probability is roughly proportional to
Z*, Pair formation can also occur in the neighborhood of atomic electrons if
hv = 4mgyc® It is less probable than pair production near a nucleus by a factor
approximately equal to 1/(4Z).1

! Evans, 1955, chap. 24, sec. 2h.

FIGURE 3.25 Energy distribution of positrons (or electrons) as a function of the
relative positron energy T,/(7, + T,) for various incident gamma-tay energies E,.
Distributions for pair formation in aluminum and lead are shown. [By permission
from C. M. Davisson and R. D. Evans, Rev. Mod. Phys. 24: 79 (1952).]
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3-5 INTERACTION OF POSITRONS WITH MATTER

The energy loss of positrons passing through matter, as that of electrons, occurs
by ionization and bremsstrahlung (see Sec. 3-2). In addition, positrons can
annihilate with electrons by a process which is the inverse of pair production. The
annihilation probability turns out to be greatest for very slow positrons. If
such a positron annihilates with a free electron, conservation of linear momentum
requires that at least two gamma rays be emitted so that each of these has an
energy equal to myc?(= 0.511 Mev). This radiation is called annihilation
radiation. If the electron is bound in an atom, annihilation with the production
of a single photon can occur because the atom can take up the necessary
momentum. This is a relatively rare process.

A positron and an electron can also form a type of atom, in which each
one of the two particles moves about its common center of mass. This structure
is called positronium and was first detected by Deutsch (1949-1951). The
positronium atom is short-lived (/1010 sec or ~10~7 sec, depending on the
relative spin orientations of the two particles), because the electron and positron
annihilate each other.?

3-6 DETECTION OF NUCLEAR RADIATIONS

We discuss briefly the inorganic scintillator and the semiconductor detectors, both
of which have advanced the art of gamma-ray and charged-particle detection
tremendously.?

The most commeon inorganic scintillator detector, invented by Hofstadter
(1949), uses a sodium iodide crystal. The light emitted in the ionization-excitation
process lies in the ultraviolet and is not easily detected. The crystal is therefore
activated with a fraction of a percent of thallium iodide which shifts the wave-
lengths into the visible region, suitable for photomultiplier detection. In the
sodium iodide crystal, an entering gamma ray interacts mainly by the three
processes we have discussed: Compton effect, photoelectric effect,® and, if
E, > 1.02 Mev, pair production. Figure 3-26 shows a typical pulse height
spectrum for 1.37- and 2.75-Mev photons in a sodium iodide detector. The
Compton-electron distributions are very similar to those shown in Fig. 3-20 for
an organic scintillator, in which photoelectric effect and pair production are
usually negligible. The photoelectric peaks are not only due to the true photo-
electric effect, but also due to the reabsorption of scattered low-energy Compton
gamma rays. The peaks are spread out in energy because of statistical effects in
the photomultiplier. Annihilation radiation can also be reabsorbed, but the

1 For further details see Deutsch and Berko, 1965.

* For other detectors see Burcham, 1963, chap. 6.

3 Since the photoclectric ¢ffect and pair production are roughly proportional to Z* and Z?,
respectively, these two interactions take place predominately in the iodine atoms.




FIGURE 3-26 Pulse-height spectra of 1.37- and 2.75-Mev gamma rays (from Na®)
in a sodium iodide detector. The photo peaks are marked by the energy only. For the
other peaks, the following notation is used: P2 = two-escape pair peak, Pl = one-
escape pair peak, C -~ Compton edge. The detector was a cylinder, 7.6-cm diam
and 7.6-cm long, placed at a distance of 10 cm from the radicactive source. A Be
absorber removed beta radiation. Na? emits 1.37- and 2.75-Mev gamma rays of
equal intensity. (By permission from R. L. Heath, “‘Scintillation Spectrometry Gamma-
Ray Spectrum Catatog,” Phillips Petroleum Company, Idaho Falls, 1964.)
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FIGURE 3-27 Pulse-height spectra of 1.37- and 2.75-Mev gamma rays of Na* in a
lithium-drifted germanium detector. The same notation as in Fig. 3-26 applies. The
detector had a 1.9-cm diam and was 0.5 cm thick. (By permission from A. J. Tavendale,
*“Proceedings of the Second International Symposium on Nuclear Electronics, Paris,
Nov. 1963, p. 235, European Nuclear Energy Agency, Paris, 1964.)
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3-6 DETECTION OF NUCLEAR RADIATIONS

Table 3-1

Common nuclear detectors

107

Particle

| Derecror

Method of detection

Remarks

Heavy charged

Tonization chamber

Total no. of ion pairs

Can be used to deter-

using proton re-
coils from thin
organic lining or
nuclear reactions
with appropriate
filling gas

particles; & proportonal determined by col- mine T, if particle
electrons counter lecting charged stops in chamber.
partners of one sign,
e.g. electrons.
Semiconductor [onization produces Used to determine T,.
detector electron-hole pairs.
Total charge is col-
lected.
Geiger counter Lonization initliates Good for intensity
brief discharge. determination only.
Cloud chamber or Path made visible by Can be used to deter-
photographic ionization causing mine T, from range.
emulsion droplet condensation Type of particle can
or developable be recognized from
grains. droplet or grain
count along path.
Scintillation Uses light produced in T, proportional to
delector cxcitation of atorns. light produced.
Neutrons Any of the above

lonization by recoiling
protons.

T, from end point of
recoil distribution.

Ionization by reaction
products.

Some reactions can
be used to deter-
mine Tj.

Organic scintillator
and photomulti-
plier

Using light produced
in excitation of
atom by recoiling
protons.

T, [rom end point of
recoil distribution.

The above methods
for neutrons
require T, > 0.1 Mev.

Gamma rays

Geiger counter

Electrons released in
wall of counter
ionize gas and initi-
ate discharge.

Good for intensity
determination only.

Nal scintillation
detector

Light produced in ioni-
zation and excitation
by electrons released
in the three inter-
action processes.

T, proportional to
light produced; Av
inferred [rom
electron energy
distributions.

Semiconductor
detector

Electrons produced
create electron-hole
pairs. Total charge
is collected.

A inferred from
electron energy
distributions.

t The initial kinetic energy of the particle is called T
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finite probability of escape of either one photon or both means that often
either the energy E, — myc? or the energy £, — 2m,c? is deposited in the crystal.
This gives rise to the one-escape and rwo-escape pair peaks.

In a semiconductor detector, the electrons released in the excitation process
are detected directly by electronic means. The semiconducting material is
treated so that its normal conductivity is practically zero, making it sensitive to
the extra electrons produced by an entering gamma ray or charged particle.
Because of the electronic structure of a semiconductor, only about 3 ev are
needed to produce a conducting electron in a typical semiconducting material
(silicon or germanium).! This reduces statistical effects in the number of charge
carriers, giving energy resolutions down to 0.1 percent. Figure 3-27 shows a
semiconductor spectrum for the same gamma radiation as in Fig. 3-26. There is
an appreciable increase in resolution. As in a sodium iodide detector, the electron
distributions from the various interaction processes are apparent.

The most common nuclear detectors are listed in Table 3-1. Considerable
sophisticated electronics has been developed to determine such phenomena as
the coincident occurrence of several radiations or the total charge collected by a
detector.® In the detection of nuclear particles, fluctuations caused by the
random nature of the disintegration or production processes must be con-
sidered.®

PROBLEMS

3-1 The energy loss of a heavy charged particle (charge ze) of speed v in a material
with n atoms per unit volume (atomic number Z) is, in electrostatic cgs units,

—dTldx = [4=22nZ[(m®)]In 2mg?(l) — In (1 — v¥[c?) — v¥/c?]

where m, = mass of an electron.

Show that this expression passes through a minimum as » is varied and find the
approximate kinetic energy of the particle at that speed. Relativistic expressions
must be used.

3-2  Omitting the last two terms [—1In (1 — v¥/¢?) — v¥/¢”] in the energy-loss ex-
pression in Problem 3-1, calculate the energy loss of a 10-Mev alpha particle
in aluminum, for which I = 150 ev.

3-3 (a) If the energy loss of a 10-Mev proton in air is 50 kev/em, what is the energy
loss of a 40-Mev alpha particle? (The answer can be written immediately.)

i For details see Dearnaley and Northrup, 1963,

* The technology of nuclear particle detection is rapidly evolving. A fairly complete account
is given in Siegbahn, 1965. Recent developments are summarized in the Trans. Nuel. Sc. of
the Institute of Electrical and Electronics Engineers.

3 See Sec. 4-2a, or for more details, Evans, 1955, chaps. 26-28.
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34

3-5

3-6

3-7

3-8

3-10

3-12

(b) Assuming the energy-loss equations for protons and for nonrelativistic
electrons are identical, at what kinetic energy does an electron have the same
energy loss as a 10-Mev proton?

The energy-loss formula for heavy charged particles in a monoatomic substance
is often written
—dTldx = 4we'z®nZ B, [(my?)

where B, is called the atomic stopping number per electron.

Suppose an absorbing material consists of a fraction f; (by number) of atoms of
kind 1 (Z}, A;) and a fraction f; of atoms of kind 2 (Z,, 4,). (a) Derive an
equation for the energy loss of heavy charged particles in this material in terms
of B, and B,,. Call the mass density of the material p. (b) For 8-Mev alpha
particles, observed values of B, are 5.6 for hydrogen and 4.0 for nitrogen.
Compute the energy loss of 8-Mev alpha particles in ammonia gas (NHy) at
NTP.

Compute the number of ion pairs per millimeter of path generated by 2-Mev
protons in nitrogen gas at NTP. Assume I = 80 ev and w = 35ev.

(a) Show that the number of delta rays per unit path length released by a heavy
charged particle passing through matter is given by

27e'22nZ dT,
mOU2 TGZ

if the delta rays have kinetic energies between 7, and T, + <7,. (b) Compute
the number of delta rays per millimeter of path, which have kinetic energies in
excess of 0.5 kev, for 2-Mev protons passing through nitrogen gas at NTP,

Show that atpha particles and protons of the same initial speed have approxi-
mately the same range in any stopping material. Why is this not accurately true?
Which particle should have a slightly longer range and why?

What is the energy of a proton which has approximately the same range as the
total path length of a 0.1-Mev electron?

Figure 3-10 shows that the range of 0.2-Meyv electrons in aluminum is 43 mg/cmz.
Neglecting the effect of differing values of the average ionization potential 7,
compute the approximate path length of these electrons in air at | atm and 15°C.
Assume that the energy loss for nonrelativistic electrons is given by the same
equation as for heavy charged particles.

A beam of monoenergetic neutrons is sent into an jonization chamber, filled
with monoatomic gas. The energy distribution of the recoiling atoms is found to
have a spread equal to 9.5 percent of the maximum recoil energy. What gas is in
the ionization chamber ?

A beam of 2.0-Mev neutrons is scattered by a very thin slab of paraffin [approxi-
mately (CH,),]. The thickness is so small that no multiple scattering of neutrons
takes place, only single scattering. What are the energies of neutrons scattered
through 90°? What are the corresponding energies of the recoiling nuclei?

Prove that if a particle collides elastically with another particle of the same mass
which is at rest, after the scattering, the angle between the two particles is 90°.
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A particle of mass M collides elastically with a particle of mass M, at rest.
Show that, if M, > M,, the lab. angle of M after the collision cannot exceed the
value sin™ M,/ M.

(a) Show that conservation of kinetic energy and linear momentum during an
elastic coliision (Fig. 3-11) require that in the c.m. system the speed of each
particle before the collision be equal to its speed after collision. (b) Does the
relative speed of particle 1 with respect to particle 2 change during an elastic
collision (1) in the c.m. system, (2} in the lab. system?

(a) Compute approximately the number of collisions necessary to bring the
average energy of 1-Mev neutrons in a large block of carbon to thermal energies
(~1/40 ev). (b) Make an order of magnitude estimate for the time involved in
slowing down the neutrons.

A radioactive source is surrounded with a thin absorber to remove beta rays.
The remaining gamma radiation is absorbed in aluminum, with the following
results:

Absorber thickness  Detected activity | Absorber thickness Detected activity
(cm) (countsjmin) (cm) (countsfmin)
0 3,510 1.0 1,740
0.1 3,180 1.5 1,470
0.2 2,870 2.0 1,280
0.3 2,630 3.0 1,000
0.4 2,430 4.0 790
0.5 2,260 5.0 620
0.6 2,120 6.0 510
0.7 2,000 7.0 400

Analyze these data and find (a) The absorption coefficient of each of the gamma
rays and the corresponding half-value thickness. (b) The energy of the gamma
rays (use Fig. 3-15). (c) The relative intensity of the gamma rays emitted by the
source.

A pencil beam of gamma rays passes through 2.0 cm of lead. The incident beam
consists 30 percent of 0.4-Mev photons and 70 percent of 1.5-Mev photons.
What is the fractional intensity of the transmitted beam? For data use Fig. 3-16.-

Suppose a lead absorber is used to measure the attenuation coefficient of gamma
rays. A study of Fig. 3-16 will convince you that if the observed mass absorption
coefficient lies between | and 7 cm?/g or between 0.04 and 0.09 cm?/g, two
possible gamma-ray energies could give such a coefficient. How would you
propose to remove this ambiguity by absorption experiments alone?

Suppose a beam of gamma radiation, containing a continuous distribution of
photon energies up to 50 Mev, such as might occur in bremsstrahlung, is passed
through a very thick absorber of lead. Which gamma-ray energy will emerge
with the largest relative intensity ?
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3-20

3-21

3-22
323

3-24

3-25

3-26
327

A radioactive source emits 1-Mev beta rays and |-Mev gamma rays. The
available detector is sensitive to both beta and gamma rays. How would you
propose to make the detector insensitive to beta rays, while allowing most of the
gamma rays to be detected ?

A beam of 1.6-Mev gamma rays bombards a gold leaf. Some electrons emerge
with 0.7-Mev Kinetic energy. Assuming that the electrons were not rescattered
nor lost energy by bremsstrahlung, can you teli whether they are photo, Compton,
or pair electrons and at which angle to the incident gamma-ray beam they were
emitted ?

Prove that a photon cannot transfer all its energy to a free electron.

Prove that a photon (of energy exceeding 2myc?) cannot undergo a pair effect in
free space.

Prove that in the photoelectric effect on a free atom (for example, in a mono-
atomic gas), the recoil energy of the atom is of the order of magnitude (my/M,)T,
where m, and M, are the rest masses of the electron and atom respectively and
T, is the energy of the photoelectron. Assume that the incident gamma-ray

energy is much larger than the binding energy of the electron which is ejected
from the atom.

A sodium jodide detector consisting of a 7-cm cube of material is bombarded
with a pencil beam of 2.8-Mev gamma rays normal to one face of the cube.
(a) What fraction of the gamma rays is detected? (b) What fraction of the
detected gamma rays appears in the photo peak, the Compton distribution, and
the pair peaks, assuming no reabsorption of Compton gamma rays or of
annihilation quanta? (c) Make a rough estimate of the relative fraction of pair
events that appear in the full-energy (photo) peak, in the one-escape peak, and
in the two-escape peak. Compare with Fig. 3-26. (Attenuation coefficients for
photons in sodium iodide can be found in Evans, 1955, chap. 25, sec. 1. The
following data will be helpful: for 0.51-Mev photons, & = 0.33cm™; for
2.8-Mev photons, 4 = 0.135cm™, ug = 2.5 x 1073 ecm™, pe = 0.113 ecm™,
up = 0.020cm™)

Calculate the ionization energy of positronium.

In Fig. 3-24, the diameter of the cloud chamber is 30 cm. From the additional
information given in the figure caption, can you compute an approximate value
for the magnetic field which was applied?
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4-1 INTRODUCTION

The rest of this book is concerned with a discussion of the dynamic, or
time-varying, properties of nuclei: radioactive decay and nuclear reactions.
Both of these are characterized by a transition from some initial system to some
final system, occurring either spontaneously (radioactive decay) or artificially
(nuclear reaction). Hence, from a theoretical point of view there is a strong
similarity.

Whether a process occurs spontaneously or only artificially is simply a
matter of energetics. If the total energy of the final system is less than that of
the initial system, the transition can occur spontaneously. Usually, the larger the
energy difference the greater is the transition rate. If the total energy of the
final system exceeds that of the initial system, a transition will occur only if some
energy is furnished to the initial system. 113
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In the present chapter we will deal with radioactive decay. Within several
years of the discovery of radioactivity, it was found that the naturally occurring
radioactive nuclides emit one or more of three types of radiations,! which were
differentiated by their penetrability:

Alpha rays—stopped by a sheet of paper
Beta rays—stopped by #% inch of lead
Gamma rays—can penetrate through several inches of lead

Ingenious and careful experiments were performed by many investigators, which
showed that alpha rays are nuclei of He?, beta rays are electrons and gamma
rays are electromagnetic radiation. Each of these decay modes illuminates a
different aspect of nuclear structure and will be considered in turn. The time
dependence of radioactive decay, however, is common to all modes, and will
be discussed first.

42 RADIOACTIVITY

The initial radicactive nuclide in any decay mode is called the parent, and the
(heavy) product nuclide is called the daughter. The simplest situation occurs if
the daughter is stable. Tf several successive generations of daughters are
radioactive, we speak of a radioactive decay chain.

4-2a Decay of a single radjoisotope. The basic cxperimental fact of radioactive
decay is that the probability for any one nucleus to decay within a small time
interval dt is independent of any external influence,? including the decay of
another nucleus. All nuclei of a given nuclide have identical decay probability.
Hence the probability P{dr) of a radioactive decay in d¢ is proportional only to
dt if dt is small enough so that P(dr) < 1. The proportionality constant A,
called the decay constant, is different for different nuclides and decay modes.

Hence
P(dt) = A dt (4-1)

To calculate the probability that a given nucleus survives for a time interval ¢
divide the time interval f into n equal intervals of duration dt. The probability
to survive the first interval is
1 — P(dt)

to survive the second interval

[1 — P(dn))?
and to survive the nth interval

[1 — P(dn)]"

! For a good historical account, see Rutherford, Chadwick, and Ellis, 1930.

* In very special situations, it is possible to change the half-life for electron capture (Sec. 4-6f)
of a radioisotope by a few percent by embedding it in various chemical compounds (see, e.g.,
Cooper, Hollander, and Rasmussen, 1965).
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which can be written, using Eq. (4-1)

/ A\t
l—Addyr=|1l ——)—>¢* (4-2)
n n—> D
&—0

This is the survival probability for one nucleus. If N, identical nuclei were
present initially, the number most probably surviving after a time ¢ is

N = Nye™ (4-3)

This equation can also be derived in a simpler fashion by noting that if N
nuclei are present, the number probably decaying in a time d? is

—dN = P(df)N
= AdiN (4-4)

since every decay reduces N. Equation (4-2) follows by a simple integration.

Equation (4-4) does not imply that in every time interval df exactly the
same number of nuclei dN of the total number N disintegrates. Only the most
probable number d¥ is calculated, since Eq. (4- 1) is a statement about probability.
Tt is easy to show that there must be variations in the time intervals between
successive decays. Conversely, in any given time interval there must be fluctu-
ations in the number of nuclei decaying.

Consider a sample of N nuclei. From Eq. (4-4) the average time f between
successive decays is

dt 1

.:—2—— -5
=N T an (4-3)

If 7 is short compared to 1/4, the probability of one decay occurring in the entire
sample in a small interval of time 4f is just dt/f. The probability that there be no
decay in a finite time interval #( <1/4) is equal to (1 — di/f)'/*, following the
same reasoning that led to Eq. (4-2). Therefore, the probability for no decay
within ¢, but one decay within the interval between ¢ and ¢ + dt is

L
[ [ —— (“6)
t f odi—o t
This gives us the distribution of time intervals between successive decays and
shows that small time intervals are more probable than long time intervals.
Conversely, in repeated equal time intervals the number of nuclei decaying
in a given sample must have statistical fluctuations about the most probable
mean (ignoring the decrease in the size of the sample due to decay). One can
show,! if the most probable number of disintegrations in a time interval ¢, is Ny,
there is roughly a 68 percent chance that the actual number of decays lies

between N, — \/7\/—1 and N; + V' N,.

L Evans 1955, chap. 26.
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The haif-life t; of radioactive decay is the time interval in which the original
number of nuclei is reduced to one-half [compare Eq. (3-35)].

in2  0.693
1, = — = —— 4-7
LY 2 47

The mean life + is the average time of survival of a radioactive nucleus. From

Eqgs. (4-3) and (4-4)
J-r dN fwrNoe—‘! Adi
[1]

T = =

de No

! 48
=3 (4-8)

The decay of each radioactive nucleus is signaled by the emission of a decay
particle (alpha, beta, or gamma ray). The number of decay particles (radiation)
dN, emitted from a sample of N radioactive nuclei in a time dt is

dN, = —dN = iNdt (4-9)

from Eq. (4-4). The rate of generation of decay particles is called activity. From
Eqgs. (4-6) and (4-2) the activity is

dN
T = AN
dt
= ANge *
- (dz ) e (4-10)
0

Common units of activity are the Curie (1C = 3.70 ~ 10 dis/sec)! and the
Rutherford (1R = 10¢® dis/sec).

If a single nuclide can decay by more than one process, for example by
alpha and beta decay. the probability of decay is increased. The probabilities
of the individual decay modes are additive since the possibility of alpha decay
is independent of the possibility of beta decay. For a sample of ¥ nuclei, the
decrease of N in a time dr is caused by both decay modes:

—dN = dN, — dN,
= ANdt + 2,Ndr 4-11)
By integration
N = Npg=athp)t — Ny~Hut (4-12)

! By international convention it has been proposed that the Curie should be abbreviated by
Ce or Ci to avoid confusion with the coulomb. We usc the older notation since ne confusion
will occur here.
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We call 4,/4,,,; the branching ratio for alpha decay. The experimental half-life
is (In 2){ 2,4
The alpha activity is equal to
dN,
dr

= J,N
— ] Nye tat4p (4-13)

and similarly for the beta activity. The decay is governed by 1, 4+ 1, because
the nuclide is not prevented from beta decay even if only alpha decay is observed.
[Compare Eq. (3-38).]

4-2b Production of a radioisotope by nuclear bombardment. Suppose that a
sample of material is bombarded with neutrons and that a radivisotope is
produced at a steady rate .? The radioisotope decays at a rate —AN where N
is the number of radiocactive nuclei present. The net rate of change of N is
therefore

P Q0 — AN (4-14)
Rearranging,
dN
—Q N dt
d(Q — iN)
or W = —1 dt
By integration
Q — AN = (Q — AN),_je™* 4-15)
IfN_,=0
_9 -y
N=Z(—e* (4-16)

As soon as the bombardment stops, the radiocisotope decays in accordance with
Eq. (4-2). The number of radioactive nuclei as a function of time is plotted in
Fig. 4-1. Usually it is not worthwhile to bembard for longer than two to three
half-lives since } to % of the maximum number of radioactive nuclei (Q/4) is
then produced. The activity during bombardment is given by AN, not by
—dN]dt.

4-2¢ Production of a radioisotope by a decaying parent. Suppose a parent 1
decays with a decay constant 4, and produces a daughter 2 and radiation r;, and
that the daughter decays in turn with a decay constant 4, producing a stable

* This implies that the bombardment hardly uses up the original material, a good assumption
except for bombardments in high-flux reactors.
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End of bombardment FIGURE 4-1 Production of radioiso-
tope by nuclear bombardment.

IS R —

nuclide 3 and radiation r,.
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34+ n

If Ny, N3, and N are the respective numbers of radioactive nuclei present at any
given time ¢, we find

daN

— = —hM (4-17)

dN.

d—z’ = 14Ny — Ao, (4-18)
!

aN.

7,“ = JyN, (4-19)

In deriving Eq. (4-18) we only need to remember that every decaying nucleus 1
produces one nucleus 2. Since 2 is radioactive, it also decays.

If &y, is the original number of nuclei 1 present, we obtain from Eq. (4-17)
[see Eq. (4-3)]

N, = N et (4-20)
Substitution into Eq. (4-18) yields
dN, .
Tit— - AZNZ = ;‘lNloe “ut (4-21)

The complete solution of this inhomogeneous differential equation consists

of a general solution of the homogeneous equation
dN.
772 + 2N, =0 (4-22)

plus any particular solution of the original equation (4-21). A general solution
of Eq. (4-22) is
N, = Ce 2! (4-23)

where C is a constant, determined below by initial conditions. A particular
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solution of Eq. (4-21) of the form N, = Ke™*' can be attempted. Substitution

into Eq. (4-21) then yields K = N;34,/(4; — 4,). The complete solution of Eq.
(4-21) is therefore
N,

Ny = 2L it 4 Comiat (4-24)
Ay — 4

If initially no nuclei 2 are present we can evaluate C and find

NIO}‘I

2:/12‘-11

(e-—lli _ —Azt) (4_25)

Substitution into Eq. (4-19) allows an immediate integration

Nk, (e—m e“v‘)

— )+ ¢ (4-26)

If Ny = 0 at r = 0, the constant C’ is determined and

N3

- Nlo}qlz(l — e Mt . 1 — 8_"21) (4.27)

12 - A‘l A‘l 2‘2

4-2d Special cases.  If in the previous example the parent | is short-lived
compared to the daughter 2, i.e., 4, > A,, then after a long time 1(>1/4,)

efllt < e—l.!
so that Eq. (4-25) gives
Nk

0 4-28
L — 4 (4-28)

Therefore, the decay of 2 after a long time is determined only by its own
half-life. This is shown schematically in Fig. 4-2a.

FIGURE 4-2 Decay of a radioactive daughter, (a) Short-lived parent. (b) Long
lived parent.

Ny ~ et

(a) (h)
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If the parent 1 is long-lived compared to the daughter 2, i.e., 4, > 4, then
after a long time #( >1/4;).
v, ~ o

T2 — A

et (4-29)

The decay of 2 after a long time is therefore determined by the haif-life of 1, as
shown on Fig. 4-25. Also, under these conditions,

M A (4-30)
Nl }'2 - }'1
and ,12_N2 _ acu:vfty of 2
AyN;  activity of 1
A (4-31)
Ay — Ay

This state of affairs is called transient equilibrium. If 1, < 4,, the activities are
equal and secular equilibrium is obtained.

4-3 WIDTHS OF DECAYING STATES

The spontaneous decay of a nuclear state may be considered from a quantum
mechantcal point of view. The finite lifetime of the state causes an uncertainty
in its energy. In any experiment the energy will be found to have a spread,
called width, given by Eq. (2-163)

D =hi=" (4-32)

where 7 is the mean life of the state [Eq. (4-8)]. This expression will now be
derived.

Mean lives of typical nuclear decay processes lie between 107 sec and
1018 years. Even the shortest lifetime is many times longer than the period of a
typical nuclear motion which is of the order of the nuclear traversal time (2-144),
i.e,, approxtmately 107%** sec. Therefore from this point of view, the nuclear
state in question is practically stable and we can attempt to write its wave
function in the form (2-16)

Wi(r,r) = p(rye i (4-33)

where r represents symbolically all the coordinates of the nucleus and W is the
total energy (or mass) of the nucleus.

But the nucleus does decay. The probability of finding it in a given volume
element must decrease in accordance with Eq. (4-2), which means that't' must
have the property

[W(r,n)2 = [¥(r, r = 0)%* (4-34)

where A is the decay constant.
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Substitution of Eq. (4-33) into (4-34) shows that W must be an imaginary
quantity. If we call its real part E;, we find by comparing Eqs. (4-33) and (4-34)
W = E, — }ihd (4-35)

that is, W(r,1) = p(r)e~*Eohit-21/2 (4-36)
A decaying state is therefore not a state of definite energy £ of the form

p(r)e "E/ME Nevertheless, it can be represented by a superposition of states of
slightly different energies E, each with a different amplitude A(E)

W(r, 1) = p(r) f A(E)eEM* dE (4-37)

Using the techniques of Fourier analysis, we can show that the energies E
are grouped about a mean energy E; with a spread of the order of Al. Equating
Eqs. (4-36) and (4-37), A(E) is computed from the relation

e = J.w A(E)e—i[lE—Eo)/ﬂ]t dE (4_38)

—_—a0

According to the Fourier theorem! any well-behaved function f(r) can be
represented as

Q =]
f(t):zl— lim e*"“"dcoJ. et f(t') dt’ (4-39)

T Q—w J =0 -

Applying this to the function e?/2-itFhe/0? we find
1 o
A(E) = — G(E—Eo)h=ajelt jg!
(£) 21T’i,l-0 ¢
i 1
- 2m E — Eg + ifdf2
where it has been assumed that the decaying system was prepared at the time

t = 0. The probability of finding the system with a given energy E is proportional
to the absolute square of the amplitude A(£)
1 1

AE)E=— 441

AEN = 45— Ty (4-41)
This curve, shown in Fig. 4-3, has a Lorentzian shape. 1t peaks at the mean
energy £, and has a width I' at half-height given by Eq. (4-32). Substituting
numerical values we obtain

I (in ev) = 0.66 x 10715/7 (in sec)
= 0.46 X 10—‘5/4’% (in sec) (4-42)
where ty is the half-life of the state.

(4-40)

1 See Franklin, 1940, sec, 299.
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FIGURE 4-3 Probability of finding a decaying state with a
definite energy E. The siate has a width T' = /4 where 7 is the

decay constant,

AL
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A nucleus can be brought to an excited state by a variety of means. For example,
alpha and beta decay can leave nuclei excited, and in many nuclear reactions
excited nuclei are produced.

An excited nucleus can always decay to a lower-energy state by emission
of electromagnetic radiation or by internal conversion (discussed in Sec. 4-4e).
In the simplest case, in which both of the levels involved are single-proton
states,’ the decay consists of a transition of the proton from the higher to the
lower state. This is analogous to the transition of an excited electron in an atom
from a higher to a lower level, which is accompanied by electromagnetic
emission or ejection of an Auger electron. In general, nuclear states are not
single-particle states (see Fig, 2-30), so that a complicated rearrangement of
nucleons occurs during gamma decay.

The underlying features of electromagnetic emission can be understood
with classical concepts derived from Maxwell’s equations. Finer details can be
explained only by using quantum mechanics. The difference in angular momenta
and the relative parities of the nuclear states involved in the transition play a
crucial role in determining the transition probability. We will examine this after
a brief discussion of energetics.

4-4a Energetics of gamma decay. If the initial excited nucleus has a rest mass
M} and the final state has a rest mass M|, conservation of energy and momentum
require (see Fig. 4-4

9 8 ) Myct = My? + E, + T, (4-43)

0=p,+p. (4-44)

*In analogy with classical electrodynamics, we expect that only charged particles should
radiate. In reality neutron transitions can also produce radiation: first, because the protons
in the nucleus have 1o be displaced to keep the center of mass fixcd; sceond, because
neutrons as well as protons radiate as a result of their magnetic moments.
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FIGURE 44 Gamma decay of a nucleus. (@) Energy diagram. (b) Momentum
diagram.

=M%l

Po = M,¥

L G

Total energy
I

|-M.,c“2
(a) (b)

where E,, p, = energy and momentum of gamma ray
T,, p, = recoil kinetic energy and momentum of final nucleus

The recoil speed of the nucleus is so small that nonrelativistic formulae may be
used to compute T,
2
T, - Po_
M,

_pr
2M,

E 2
i =
0

using Eqs. (2-1) and (2-3). If, typically, E, = 2 Mev and 4 = 50
22
L= 50 o3 M
~ 40 ev

For most purposes this is negligible.! Hence the gamma-ray energy is
E, ~ (M} — My)c? (4-46)

1 If M, represents the ground state mass and the gamma ray of energy E, is used to excite
another nucleus of the same nuclide, the maximum excitation energy which can be reached is
M} — 27T,, because the second nucleus will also recoil. Since most bound nuclear levels have
widths much less than 1 ev [see Eqgs. (4-69)], the state M cannot be excited unless the recoil
energy loss is restored by moving either the source or the target to obtain the appropriate

energy by Doppler shift of the gamma-ray energy.
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4-4b Decay constant for gamma decay, Gamma decay of an excited nucleus re-
quires some time, just like the decay of an excited atom. Half-lives of excited
atomic states are typically 10~% sec for valence electrons and 10-75 sec for hole
states formed after electron ejection from an inner electronic shell. Nuclear
excited states have half-lives for gamma emission® ranging from 10 % sec to
longer than 100 years.

These half-lives can be crudely estimated on the basis of semiclassical
considerations. It can be shown from Maxwell's equations that an accelerated
point charge e radiates electromagnetic radiation at a rate (ail quantities in
electrostatic units)

dE. 2é%a®

BT 3 e (4-47)
where ¢ = (a2 + a2 + a2} is the acceleration of the charge. This formula
does not hold for an extended charge distribution because interference effects
have to be considered.

To make a simple model of the emission process, let us assume that the
radiating charge (electron in atom. proton in nucleus) oscillates with a simple
harmonic motion

X = X, COS wl (4-48)

and similarly for y and z. It is reasonable to choose the amplitudes such that
X! + 3+ 2t~ R (4-49)
where R is radius of atom or nucleus. Then
a ~ Rw?cos wt (4-50)

Substituting into Eq. (4-47), the average energy radiated over many cycles is
given by

& Jave 30 (30

(dE) R w?
ve ‘
since (€os? ! )ave = i.

Even though this expression is derived from classical equations, we must
take into account the fact that electromagnetic radiation is radiated in quanta.
To make the transition from classical to quantum theory, we assume that each
photon is emitted during a mean time interval +. The average rate of energy
emission is then given by

=— (4-52)

dt [ave T

(dE') hv

' If particle decay can occur (see Sec. 2-6), half-lives of nuclear states can be uas short as
the estimate (2-144) indicates, i.e., [07 sec.
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where we associate r with the mean life for gamma decay [r = 1/4,; see Eq.
(4-8)]. (Do not confuse the wavelength 4, of electromagnetic radiation with the
decay constant 4.) Substituting into Eq. (4-51) and noting that @ = 2mv, we
obtain
82R2E 3
i~ .
It

(4-53)

The mass of the emitting particle does not enter into this expression. Applying
it to an atom (R & 10~® cm) emitting a 1-ev photon and to a nucleus (R &
5 x 10718 cm) emitting a 1-Mev photon, we find for the atom

(4.80 X 10719(10-%)%(1.60 x 10-12)°
v 3(1.05 x 10-27)4(3 x 10%)
1y ~ 7 x 1077 sec

A

~¢ 10° sec™!

and for the nucleus

N (4.80 x 10719%(5 x 10~13)%(1.60 x 10—¢)3
[ 3(1.05 x 107233 x 1019)3
1y 3 x 1016 sec

A A 2 X 1048 sec!

Although atomic half-lives are indeed of the order of the calculated magnitude
and some nuclear half-lives are as short as estimated, the large range of actual
nuclear half-lives for gamma emission shows that some important effects have
not been considered in expression (4-53).

4-4c¢ Quantum-mechanical effects. We have previously pointed out that in
atomic and nuclear systems the position of a particle is not a meaningful
concept, since it cannot be determined without gross disturbance of the system
(Heisenberg's uncertainty principle). Only the probability of finding the particle
in a particular volume element dx dy dz can be determined, i.e., ¥*%V dx dy dz.
We showed in Sec. 2-2¢ that for time-independent potentials this quantity is
independent of time.

When a system is emitting electromagnetic radiation, it is subjected to a
time-dependent potential created by the oscillating electric and magnetic fields
in which it is immersed. Therefore, the quantity ¥"*'¥" is no longer time independ-
ent [see Eq. (4-34)]. One finds in a quantum-mechanical formulation of the
emission process! taking the system from an initial state / to a final state f that
the position coordinate x of Eq. (4-48) has to be replaced by a transition matrix
element

f‘l”'}x‘l’[ dx dy dz + cc. = l:ftp;xipi dx dy dz] LB BRI 4 ¢ c,

= xne ' L ce. (4-54)
1 Schiff, 1955, sec. 66.
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where the quantum condition Aw = E; — E; has been assumed and xg; is an
abbreviated notation for the (time-independent) matrix element in brackets.
The letters c.c. mean complex conjugate of the preceding expression. The
expression for the transition probability is analogous to Eq. (4-53),

_4(lxnl® + [yl 1 [z0ME?

}“)' kY

(4-55)
It is important to discuss certain properties of a typical matrix element
X = f’cp}xwi dx dy d:= (4-56)

First, this matrix element, being a physically observable gquantity,! cannot
depend on the coordinate system used. It must have the same value in a left-
handed coordinate system as in a right-handed system; in other words it must
be invariant to the parity operation (Scc. 2-2h) x— —x, y > —y,
7 — —z. Now, if the statcs / and f have the same parity [see Sec. 2-2h], we
sec from Eq. (4-56) that

Xgi — —Xri (4-57)

under the parity operation. Therefore xr; must vanish. Since the same reasoning
applies to yti and zpi, we find 4, = 0 according to Eq. (4-55). This is our first
example of a selection rule. A selection rule generally states a condition which
is necessary in order for a given process to occur. Here the condition is that the
states / and /' must have opposite parity in order that the gamma decay described
by the matrix element (4-56) takes place (because then xi — x¢; under the parity
operation). If we denote parity by =, the requirement is

T = — Ty (4-58)

It turns out, even if the parities of 7 and f'are opposite, the matrix element
(4-56) still vanishes unless the angular momenta I; and Ir of the states are such
that they differ vectorially by unit vector angular momentum (in units of &, of
course) which means that

Ii—Lh=+41lor0 with Jr = [; = 0 forbidden (4-59)

The requirement that the angular momentum vector change during the emission
process can be understood classically. One can show that electromagnetic
radiation, emitted by an oscillating charge of the type (4-48), carries away
angular momentum. This means, if the radiaticn is absorbed by a large, perfectly
absorbing, hollow sphere at whose center the oscillating charge is located, such
a sphere would acquire angular momentum. According to the classical calcula-
tions, based on Maxwell’s equations, angular momentum is lost at a continuous

! In the simple case (4-55) only the absolute square of the matrix element is observable, but in
other situations Lhe matrix element itself can be determined.
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rate by the radiating system. Quantum calculations show, though, that the
angular momentum change must occur in a discrete step. [The same difference
occurs in the energy emission process—see Eq. (4-52).]

4-4d Classification of gamma decays. It would seem from the preceding
discussion that no gamma decay can take place between nuclear levels unless
they fulfill the very restrictive conditions (4-58) and (4-59). But the entire
derivation assumed that the electromagnetic radiation was generated by a
point charge in motion. In reality, the nucleus is an extended charge distribution
in which currents flow, generated by the orbital as well as spin motions of the
nucleons. The electric and magnetic fields produced in a transition are therefore
much more complicated than implied in Eg. (4-47).

In a classical calculation one proceeds as follows. The actual charge-current
distribution is expanded in multipole moments each of which has given dimen-
sionality. For a static distribution of charges e, located at (x,,y;z;) the
multipole moments have a dimensionality 3 e;x,~ for a moment of order L.

For example, if L =0, Y e, is simply the total charge. If L=1, X e;x; is a

component of the electric dipole moment of the system. If the particles carry
magnetic moments as well as charges one can also expand the distribution of
magnetization in magnetic multipole moments.

When the charges oscillate, each multipole moment emits a characteristic
electric and magnetic field pattern (except the moment with L = 0). The
emitted fields can be grouped first by the order of the emitting moment and
second by the effect of the parity operation. Conventionally, we speak of electric
and magnetic multipole radiation, although there is generally no simple corre-
spondence with the static multipole fields. For example, electric dipole radiation,
which is assumed by Eq. (4-48), emits an electric field which changes sign under
the parity operation, while magnetic dipole radiation created by an oscillating
current loop, for example, does not change sign (see Fig. 4-5).

Although in a classical radiation problem the parity property is of no
particular importance, it is very important for the gamma decay between
nuclear states. Indeed, if the particular multipole radiation between the initial
state i and the final state / produces a parity change =,, conservation of parity
would require

——— (4-60)

Experimentally it has been found that in electromagnetic decays this selection
rule is obeyed to a very high order of precision.

In quantum mechanical calculations®* each multipole moment of order
L, is found to produce radiation which carries off an anguiar momentum LA,

! Fig. 4-5 is only schematic. For a full treatment see De Benedetti, 1964, sec. 1.15.
? Blatt and Weisskopf, 1952, chap. 12, sec. 2.
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the electric field E radiated according te classical

E FIGURE 4-5 Effect of the parity operation on
E theory by (a) an electric dipole, () a magnetic
(a) z dipole, (c)an electric quadrupole. (By permission
I/ . from Burcham, 1963.)
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so that conservation of angular momentum requires
L=L+L, (4-61)
The parity change =, is directly related to L,, and

For electric multipole radiation, =, = (—1)L~
(4-62)

For magnetic multipole radiation, =, = —(— )%~
Table 4-1 gives the classification of a few common types of radiation. We see
that the radiation considered in Sec. 4-4c is E1l radiation.

Although this classification may seem complicated, a great simplifi-
cation is brought about by the fact that in practice in a given transition
usually one and at most two multipole radiations are of importance. This
occurs because in the expression for the gamma transition probability

A, = ALED) 4 2(M1) +- A(E2) + - - - (4-63)

a certain set of terms is climinated by the selection rules (4-60) and (4-61), and
for the remainder the decay constant of the multipole of lowest order usually
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TABLE 41 Classification of gamma radiation

Name Abbreviation L, m,
Electric dipole El 1 -1
Magnetic dipole Ml 1 +1
Electric quadrupole E2 2 |
Magnetic quadrupole M2 2 -1
Electric octupole E} 3 -1

TABLE 42 Examples of gamma decays
Initial staret Final state Predominant decay mode

2t 0t E2t

1+ 0F Mid

¥ ¥ E1

2% 2+ M1

gt ' Ma

ot ot no gamma decay

t The total angular momentum and parity of each state is given.
1 Only possible decay mode for this transition.

exceeds that of all the other multipoles by a factor of at least 102 to 10¢. In Table
4-2 the selection rules (4-61) and (4-62) have been applied to a few specific
examples.

Theoretical estimates of the decay constants are only approximate, because
the nuclear wave functions which enter into transition matrix elements such
as (4-56) are only approximately known. For a single-proton transition in
which the final state is an s state, Weisskopf? has estimated that for a nucleus of
radius R

e* (RYL

A(EL,) ~ S fi_l,(z.)’ (4-64)
2

and A(ML,) ~ IO(M,CR) A(EL) (4-65)

where S is a statistical factor and M, is the proton mass.
2(L, + 1) ( 3 )2
= 4-66
Ll X3 x5 QL+ DI*\L, +3 (4-66)

! Blatt and Weisskopf, 1952, p. 627,
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X, is the wavelength of the electromagnetic radiation divided by 2=. From
Eq. (2-2)
197
I({nF)=—"__ 4-67
Ain B) = i Mew) (4-67)
Typical values of R/, are therefore around 1/40 (R = 5 F, E, = 1 Mev) so that,
even without the factor S, multipoles differing by unity in their order differ by
10-? in decay rate. In addition, S decreases by a factor of about 102 for each
order.! Assuming R = 1.24% F,

A(ML,) ~ 0.347¥2 (EL,) (4-68)

so that magnetic multipole radiation is less probable than electric multipole
radiation of the same order. Note, though, that the two can never occur together
because their parities differ according to Eq. (4-62).

Figure 4-6 plots the results of Eqgs. (4-64) and (4-65) for a nucleus with
A = 55. Actually for L, = 1, Eq. (4-64) gives practically the same result as the
semiclassical estimate (4-53). We can also use Eqs. (4-64) and (4-65) to estimate

! R. D. Evans, 1955, p. 214.

FIGURE 4-6 Half-life for gamma-ray multi-
pole emission according to the Weisskopf
estimate (4-64) and (4-65) for a nucleus
with 4 = 55. (By permission from A. H.
Wapstra, G. J. Nijgh, and R. Van Lieshout,
“Nuclear Spectroscopy Tables,” North Hoi-
land Publishing Company, Amsterdam,
1959, as adapted by Burcham, 1963.)
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gamma-decay widths (Sec. 4-3). With I, in ev and E, in Mev,

I'(E1) = 0.068E,34%

[ (M1) = 0.021E2

[ (E2) = 4.9 X 1078E,54} (4-69)
I (M2) = 1.5 x 10-8E,54%

I',(E3) = 2.3 X 1074E,74?

Figures 4-7 and 4-8 compare some experimental mean lives = with the
Weisskopf estimates (4-64) and (4-65). In most cases the mean life is longer
than estimated.! One exceptional group is formed by the E2 transitions, which
are appreciably more rapid than predicted in regions of nucleon numbers
between closed shells, This can be understcod on the basis of the collective
model (Sec. 2-5d) because oscillating and rotating nuclei imply a coherent
motion of several nucleons. In the decay constant (4-64), we must, therefore,
insert (ne)* instead of e, where n is the effective number of nucleons moving
coherently. There are also other ways to express the coherence effect; in particular
the E2 decay constant of a deformed nucleus can be related to its static electric
quadrupole moment.

4-4e Internal conversion.  The electric and magnetic fields, which are created
for a very short time as one or more nucleons in the nucleus rearrange themselves
during a transition from an initial to a final state, can give rise to another
transition process, known as internal conversion. The nuclear energy E; — E,
is transferred directly to an atomic electron, which is ejected with a kinetic energy

Te = .Ej - Ef - EB (4'70)

where Ej; is the binding energy of the electron in the atomic shell from which it
has been ejected. (The recoil energy of the atom has been neglected in this
equation.) Although Eq. (4-70) resembles Eq. (3-49) of the external photoelectric
effect in form, internal conversion is not an internal photoelectric effect, but
an additional process by which a nucleus can release excitation energy, besides
gamma emission. This comes about because internal conversion is produced by
the (time varying) coulomb field of the nucleus, which has a radial direction.
Gamma emission is caused by transverse electric and magnetic fields. Different
field components enter in the two processes and hence the processes are
independent. The total decay constant for deexcitation of the state is, therefore

Aor = A, + 4, “4-71)
where 4, is the decay probability by internal conversion and 4, has been estimated
! This is expressed by the concept of hindrance factor, shown in Fig. 4-7 for El and M1

transitions. The hindrance factor is the ratio r(experimental)/7(Weisskopf}, where 7 is the
mean life for gamma decay (= 1/4,).



FIGURE 4-7 Comparison of experimental mean lives for gamma decay with Weiss-
kopf estimates [Eqgs. (4-64) and (4-65)] versus gamma-ray energy. The ratio of the
lifetimes is called hindrance factor. Top curve for E1l transitions, bottom curve for M1
transitions. {(Adapted from N. B. Gove, Beta and Gamma Transition Probabilities,
in N. B. Gove and R. L. Robinson, (eds.), “Nuclear Spin and Parity Assignments,”
Academic Press Inc., New York, 1966.)
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in the preceding sections. Depending on the origin of the ejected electrons, 4,
can be decomposed into the decay probability for K, L, M - + - emission

A=A+ A+ Ay + 0 (4-72)

Experimentally, these processes can be distinguished by the different energies of
the emitted electrons.
Although the calculations of the absolute decay constant 1, is beset by
difficulties similar to the calculation of the gamma decay constant 4, the ratio
e
— = (4-73)
l)’
FIGURE 4-8 Reduced gamma-ray mean life for electric quadrupole transitions
against neutron number. The Weisskopf estimate (4-64) corresponds to the horizontal
line shown. (By permiission from W. M. Currie, *‘E2 Mean-Lives in Even-Even Nuclei,”
Nuclear Data Sheets, vol, 5, set 2, 1962.)
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which is called conversion coefficient, can be computed to within a few percent.
The usefulness of internal conversion for nuclear structure studies lies in the
fact that for a given energy difference E; — E; and for a given atomic number Z
of the decaying nucleus, the conversion coefficient depends sensitively on the
type and multipolarity of the accompanying electromagnetic transition. It is an
increasing function of L, and Z and a decreasing function of E; — E,. Typical
values of a K conversion coefficient ax = 4x/4, are shown in Fig. 4-9.

— 1T * F 1 T T 1111 U FIGURE 4-9 K-shell internal conversion
M5\ coefficient for Z = 40 plotted against
ES5 %\ wZr transition energy. (By permission from

Evans, 1955.)

I R B B ' |

0.1 02 0304 06 1 2 3 4

Nuclear transition energy E; — E;, Mev

Although gamma decay between two nuclear states both with spins and
parity 07 is absolutely forbidden, decay by internal conversion can take place.
Transitions of the kind 0+ — 0~ can occur only by two-photon emission, but
have not yet been detected.

Internal conversion is always accompanied by a secondary process because
the atom is left in an excited state of energy E;. The energy is released by x rays
or Auger electrons (see Sec. 3-4c).

For transition energies £; — E; > 2myc®, where s, is the electron rest mass,
decay can also take place by creation of an electron-positron pair. As in internal
conversion, this internal pair formation is an additional decay mode consisting
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in a direct transfer of the decay energy to the virfual negative-energy electrons
(see Fig. 3-23). The process has a probability of approximately 10~ compared
to gamma decay. In the case of 0t — Ot transitions, it can predominate over
internal conversion if the decay energy is high enough.

4-4f Nuclear structure information from gamma decay. A study of gamma decay
reinforces the usefulness of nuclear models. In particular, the single-particle
shell model provides the guiding concepts in an understanding of the decay
probability. Since the decay is determined by the spatial overlap of the initial
and final wave functions [see, for example, expression (4-56)], fine details of the
wave functions become apparent. Presently, they are not all clear and form the
basis of further research. In a few cases of nuclei removed by one nucleen from
doubly magic numbers, it has been possible to reproduce experimental decay
constants. Also, for permanently deformed nuclei, the decay probability between
rotational states (Sec. 2-5d) is well understood.

4-5 ALPHA DECAY

Alpha radioactivity has been investigated for a long time because the naturally
radioactive substances which led to the discovery of radioactivity (Becquerel,
1896) were found to be alpha emitters (Curie, Rutherford). From the point of
view of nuclear structure, alpha decay represents particle decay of a virtual
nuclear level (Fig. 2-29) and can serve as a prototype for this phenomencn. We
will encounter this type of decay again in our study of nuclear reactions (Sec.
5-5).

As we will elaborate below, most nuclides with 4 > 150 arc unstable
against alpha decay. For the lighter nuclides, alpha decay is very improbable.
The decay constant deercases cxponentially with decreasing decay energy and,
close to 4 = 150, the decay energy is practically zero (Fig. 4-11). The nuclides
near N = 82 are exceptional because sheill effects provide additional decay
energy.

In the experimental information on alpha decay, several systematic trends
are apparent. First, the dependence of the decay energy on A (or Z or N) is
regular except near magic numbers. The trend is in accord with the semiempirical
mass formula® (Sec. 2-4). Second, for nuclides with a given Z, the half-life is a
smooth function of the decay energy, especially for even-even nuclei. This
relationship reflects the decay mechanism. Third, the energy spectra of alpha

particles give information about the level schemes of the parent or daughter
nuclei.

4-5a Energetics of alpha decay. If the parent nucleus P has a nuclear mass M 13
and the daughter nucleus D has a nuclear mass M, conservation of energy and

! See Probs. 4-14 and 4-15.
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momentum require (see Fig. 4-10)

Mpt =Mpct 4+ Tp+ M+ T, (4-74)

0=pp+op (4-75)

where M, = nuclear mass of alpha particle
T,, p, = kinetic energy and momentum of alpha particle
Tp, pp = recoil kinetic energy and momentum of daughter nucleus

FIGURE 4-1¢ Alpha decay of a nucleus. (a) Energy diagram. (b) Momentum
diagram.

- M,
pa, 1o -1

Tolal energy

= (Mot M)

(A—-4,2--2)

(a) (h)

Since it is usual to tabulate atomic rather than nuclear masses, it is convenient
to add the masses of the atomic electrons, and their binding energies, to both
sides of Eq. (4-74). The electron masses balance exactly and their binding
energies balance within a few ev, so that we can write Eq. (4-74) in terms of
atomic masses

Mpet = (Mp + M) + T + T, (4-76)

The decay energy Q, is defined as the sum of the resultant kinetic energies
0. =T,+T, (4-77)

From Eq. (4-76), Q, is also equal to the difference between the initial and final
masses
Q, = [Mp — (Mp + M)]c? (4-78)

It is typical of this decay, as well as of nuclear reactions, that Q values can be
determined either by particle spectroscopy, i.€., kinetic energy measurements, or
by mass spectroscopy. The identity of the measured Q values then demonstrates
mass-energy equivalence and conservation, on which Eq. (4-76) is based.

The kinetic energies T, and T, are small enough so that nonrelativistic
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expressions may be used to evaluate them,

(4-79)

The recoil kinetic energy T, is not negligible, as it is in gamma decay. Sub-
stituting Eq. (4-79) in Eq. (4-77)

Q ‘MD_;_Mu
a MD
A

Y14

T,

T, (4-80)

where A is the mass number of the parent. The alpha-particle kinetic energy T,
is always less than the decay energy Q,.

It is clear from the above considerations that alpha decay cannot take
place unless @, is positive. Referring to Eq. (2-119) and the corresponding
definition of alpha separation energy S,, we see from Eq. (4-78) that

0, = -5, (4-81)
Hence, (), can be related to the total binding energies of the nuclei by Eq. (2-121)
Qo = Bioum(d — 4, Z — 2) + Bioy(42) — Buupf(4.2)  (4-82)

Substitution of the semiempirical binding-energy equation (2-127) gives the
regions of alpha instability indicated in Fig. 4-11. For the stable nuclei, we find
Q, > 0 for 4 > 150. The curves shown do not include shell effects. From Eq.
(4-32) we can see, though, that whenever the daughter nucleus (4 — 4,7 — 2)
is magic, i.e., has a large binding energy, the alpha-decay energy is particularly
high. Conversely, whenever the parent nucleus is magic, the decay energy is
particularly low. This is demonstrated in a striking fashion in Fig. 4-12. For
Np = 126, Q. is large; for N, = 126, it is small. Similarly for Z,, = 82, Q. is
large; for Z, = 82, Q. is negative and no alpha decay exists.! Also, in the
rare-earth region, alpha decay is found for nuclides with &, > 82 because of
these shell effects.

Returning once more to Fig 4-11, we should note that the various curves
refer to the ground states of the nuclei involved. Sufficiently highly excited
states of nuclei can emit alpha particles in any region of 4 and Z, since for

! Negative O values are not shown on Fig. 4-12 which refers only to observed alpha-decay
energies.
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FIGURE 4-11 Stability limits predicted by the semiempirical mass formula. Stability
limits for various values of @, (in Mev) are shown. The region of beta-stable even-even
nuclei is indicated by cross hatching. Siability limits for n, p, and & emission (by odd N,
odd-Z, and odd-odd nuclei, respectively) are also given. (By permission from G. C.
Hanna, Alpha Radioactivity, in E. Segré, (ed.), “Experimental Nuclear Physics,”
vol. 3, John Wiley & Sons, Inc., New York, 1959.)
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sufficiently large values of Mp the right-hand side of Eq. (4-78) can always be
made positive. Figure 4-11 also shows the regions for neutron, proton, and
deuteron instability predicted by the semiempirical mass formula. We see that
ground states of nuclei lying close to the stability line (Sec. 2-4c) are stable
against these decay modes. The reason alpha decay occurs has to do with the
exceptionally large value of By ,, (= 28.3 Mev), which allows Q, in Eq. (4-82)
to be positive for a certain region of Z and N near the stability line.

4-5b Decay constant for alpha decay. The first recognition of systematic trends
in the decay constant for alpha decay was made by Geiger and Nuttall (1911).
They found a linear relationship between the logarithm of the decay constant
and the logarithm of the range of alpha particles from a given naturally radio-
active decay chain. It has since been found that this relationship is based on
decay-energy and lifetime systematics and is valid only over a limited range of
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nuclides. Recent experiments show that for ground state decays between even-
even nuclides the following relation is valid, which will be derived below,

logty =a+ ‘/% (4-83)

a and b are functions of Z. If @, is expressed in Mev and ¢, in seconds one
findst
—1.61Z,% —21.4

a =
b~ 1.61Z, (4-84)

1 Segré, 1964, p. 278.

FIGURE 4-12 Alpha-decay energy versus neutron number of the parent
for various proton numbers. (Adapted from Segre, 1964.)
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The available data are plotted in Fig. 4-13 according to Eq. (4-83). For decays
to excited states or for decays between odd-A4 (or odd-odd) nuclei, the half-lives
are usually longer than for neighboring even-even nuclei with the same decay
energy. The multiplicative factor by which such a half-life is longer is called
hindrance factor. 1t is, of course, the task of any theory of alpha decay to explain
relation (4-83) as well as the hindrance factors.

Physicists who tried to account for alpha emission before the discovery of

FIGURE 4-13 Half-life decay-energy systematics for heavy even-even nuciei. The
data are plotted in accordance with Eq. (4-83}, i.e., the ordinate is on a logarithmic
scale and the abscissa is on a scale varying as V'Q,. Points corresponding to the same
Z p are connected by straight lines. [Adapted from C. J. Gallagher and J. O. Rasmusson,
J. Inorg. Nucl. Chem. 3: 333 (1957).]
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quantum mechanics faced the following dilemma. Tt was known, for example,
that no breakdown of Rutherford’s alpha-particle scattering law occurred with
8.6-Mev alpha particles on 3, U?® (see Sec. |-2b). Hence, up to a certain distance
from the 4, U** nucleus, the potential encountered by the alpha particles is pure
coulomb, as shown on Fig, 4-14. Yet, 5, U emits 4.2-Mev particles, forming
0o Th?3%. Since the coulomb potential does not change much between U and
Th, how could the alpha particle ever get out of the nucleus, i.c., over the
potential barrier, which must exceed 8.6 Mev?

FIGURE 4-15 Mechanism of alpha decay according to theory of Gamow and
of Gurney and Condon. The alpha particle exists inside the potential well
formed by nuclear and coulomb forces. The amplitude of its wave function is
large inside the well, but there is a small probability of leakage through the
potential barrier. (After Burcham, 1963.)
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Gamow (1928) and Gurney and Condon (1928), independently, were
able to provide the answer to this question by a quantum-mechanical calcu-
lation, which we will now discuss. These authors assumed that the alpha
particle exists within the nucleus, confined by a nuclear potential approxi-
mately as shown in Fig. 4-15. The potential within the nucleus is assumed to
be zero to simulate the coulomb effect inside the nucleus. The exact depth of
the potential within the nucleus does not affect the final result materially.
Although it is believed, today, that the alpha particles do not preexist inside
the nucleus with high probability, but are formed in the surface region, the
theory gives a goed account of relation (4-83).

From a semiclassical point of view, the probability of decay per unit time

A, is equal to the number of collisions per second which the alpha particle makes

with the wall of the confining potential well multiplied by the probability P

that the particle penctrates the potential barrier. Within a small numerical factor
Uin

Ao~ 2P (4-85)
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where vy, is the alpha-particle speed inside the nucleus. Various approximations
can be made for P as long as a semiclassical approach is used, the simplest
being Eq. (2-106):

Paet {4-86)

where y is given by Eq. (2-108). Calling ze the charge of the alpha particle, we
keep the formulae general for later application,

2 [k zZ et $
B ) PR

R

The distance b is indicated in Fig. 4-15. Because of recoil effects, the reduced
mass M, of the alpha particle appears in this equation:

MM,

M,=__"D
T M, -+ M,

(4-88)
(see Sec. 2-2¢). The integral in Eq. (4-87) can be evaluated in a straightforward
manner giving
_ AzZpe?
r= hv

[cos 1 Vy) — Vp(1 — V)] (4-89)

where v = relative velocity of alpha particle and daughter nucleus
y=Rlb= QB (4-90)

The last identity follows from Eqs. (4-91) and (4-92) below. The coulomb
barrier height B is given by (see Fig. 4-15)

2Z et
= 4' 1
R (4-91)

B

Z 2
and we note that Q.= -Mp* = Z4p® (4-92)

2 b

by definition of the turning point b (see Figs. 2-6 and 4-15).
For thick barriers, i.e., b > R or Q, < B, we can expand the bracket! in
Eq. (4-89)

(cosVy) — Vil — V) ~ 4w — 2Vy (4-93)
2nzZ pet
to obtain ¥ & Trzthe — -; (22Z pet M R)} (4-94)

! Evans, 1955, p. 876.
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Summarizing Eqs. (4-85), (4-86), and (4-94) for alpha decay through a thick
barrier

}_ Uin exp [_ 47721)32

R
e 2 3
hv + ; (ZpetMR) :l (4-95)

Substituting for v from Eq. (4-92), we see that the form of Eq. (4-83) and the Z
dependence (4-84) are reproduced. An increase in Z,, will thicken the barrier,
hence decrease A,. An increase in R will decrease the barrier thickness, hence
increase A,

To appreciate the order of magnitude of the terms in Eq. (4-95), we will
evaluate it for the 4.2-Mev alpha particles from ,,U?%, ignoring recoil effects.
From Eq. (4-92)

2 x 4.2 x 1.60 x 108\
”N( A% 165 x 105 )
ar 1.43 x 10* cm/sec
R = 1.4(234)} 1018
= 8.6 x 103 cm

Since for the potential assumed (Fig. 4-15), the speed v, of the particle inside
the nucleus is the same as the speed » far from the nucleus

’%‘ ~ 1.7 x 108 sec (4-96)

The first term of the exponent in Eq. (4-95) is

—4nZ et . —47 x 90 x (4.80 x 107192
kv 1.05x 1072 x 1.43 x 10°

= —173 (4-97)

The second term of the exponent is

8 8
-(Z 2j‘l R 4 - 4. 10192 65 —24
}i( pe*M,R) l’05><10_2,1[90><( 80 x 107192 x 4 x 1.65 X 10
% 8.6 x 10-13]¢
=83 (4-98)
Hence P =% o 1073 (4-99)

indicating the extremely small transmission probability typical of alpha decay.
Combining this with Eq. (4-96)

A, &~ 1.7 x 10728 secl

1y A~ 4.1 X 107 sec = 1.3 x 101° years
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The experimental half-life is 0.45 x 10" years, a remarkable agreement con-
sidering the simplifications made.
From Eq. (4-91) we can evaluate

290 x (4.80 x 107192

i 8.6 x 1013 eres
= 30 Mev (4-100)
and from Eq. (4-90) = g? = 8—6—%)
=61 x 107¥ cm (4-101)

This is indeed a thick barrier and justifies the approximation (4-93).

A comparison of Eq. (4-95) with the experimental material (Fig. 4-13)
allows a determination of R, because 4, is very sensitive to R. We see from the
evaluation (4-98) that a 2-percent change in R changes 4, roughly by a factor of
2. The available data are consistent with the relation R = R,4* and require R,
to lie between 1.4 and [.5 F.

FIGURE 4-16 Effect of angular momentum change in alpha decay. (a) Classical
interpretation. (b) Modification of the effective barrier thickness.
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4-5c Hindrance factors,  The theory as presented above applies only to ground-
state decays between even-even nuclei because then no angular momentum
is carried off by the alpha particle. If the decay takes place from an excited
state of the parent or to an excited state of the daughter (see Sec. 4-5d), an
angular momentum change will generally be involved (see Fig. 2-28 for a typical
level scheme). This affects the decay constant.

Even classically we can imagine that the alpha particle leaves the nucleus
in such a manner that the daughter nucleus acquires angular momentum. If, as
indicated in Fig. 4-164, the alpha particle leaves with a velocity v, which has a




4-5 ALPHA DECAY 145

tangential component v,, conservation of angular momentum® requires that the
daughter nucleus receive an angular momentum equal to

L=Mgyp,r (4-102)
Also, the kinetic energy of the alpha particle can be divided into a radial part
tMp?2 (4-103)

and a tangential part, which can be written

IMp2 =

s m (4-104)

This follows a derivation given already in Sec. 2-2d. Neglecting recoil effects,
conservation of energy requires

M2+

2

2M 2

+ W =E (4-105)

The second term on the left can be considered as a centrifugal potential energy
and can be combined with the potential energy F(r). Angular momentum
change in alpha decay, therefore, increases the effective thickness of the barrier
(Fig. 4-166) and increases the half-life of the decay. The increase turns out to
depend on the ratio?

__ centrifugal barrier height
~ coulomb barrier height

W+ DR
- 2M,2Ze*R
~ 0002/ +1) forZ~9% Ras102cm (4-106)

and consists in multiplying the second term in Eq. (4-94) or in the exponent of
Eq. (4-95) by 1| — }5. In the example at the end of Sec. 4-5b, the hindrance
factor so obtained for / = 2 would be equal to [see Eq. (4-98)]

exp (83 X+ x0.002x2x%x3)~~ 1.6

which is, of course, very small compared to the effect of Q, or R.

In odd-A4 or odd-odd nuclei the shell model predicts a reduced probability
of finding an alpha-particle configuration within a nucleus. Alpha-decay from
such nuclei is, therefore, hindered with respect to even-even nuclei, even if no
orbital angular momentum is carried off by the alpha particle.

! Conservation of angular momentum takes place about the center of mass. For simplicity, we
assume in Eqgs. (4-102) to (4-106) that the center of mass is practically at the center of the
daughter nucleus.

*R. D. Evans, 1955, p. 877,
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Alpha decay from oriented nuclei has shown that nuclei far from the
closed shell configurations are indeed deformed as suggested by the collective
model (Sec. 2-5d). In these nuclei, the nuclear potential takes on the ellipsoidal
shape of the mass distribution. Where the barrier is thinnest, preferential decay
probability is expected. This has been found by aligning the nuclei and observing
the angular distribution of the alpha particles with respect to the direction of
nuclear alignment.

4-5d Alpha-particle spectra. In many alpha decays the daughter nuclei can be
left in several excited states, giving rise to fine structure in the alpha spectra. A
typical decay is shown in Fig. 4-17a. The differences in the dranching ratiost
are mainly due to the decay-energy differences, although there is some influence
from the angular momentum carried off by the alpha particle.

Alpha decay can also take place from cxcited statcs of the parent, as
shown in Fig. 4-17b for Po®!2, producing long-range alpha particles. In that
case, the intensity of each alpha branch depends (1) on the branching fo
the level. and (2) on the competition between alpha and gamma decay.

Both types of alpha spectra are very useful in the level scheme investigations
of nuclei, especially if they are combined with gamma-decay studies. In this way
one has been able to delineate the applicability of the shell model and the
collective model to various regions of the periedic table above A = 150.

4-6 BETA DECAY

Beta decay is the most common type of radioactive decay because all nuclides
not lying in the valley of stability (see Fig. 4-11 or Fig. 2-15) are susceptible
to beta activity. The process consists in the cmission of an electron directly
from a nucleus. Both positive and negative electrons can be emitted, in some
cases from the same nuclide. Rutherford and Soddy (1903) demonstrated by
chemical means that the atomic number of a nuclide increases by unity during
negative beta decay. It was later shown that the atomic number decreases by
unity during positron radioactivity (discovered by Curie and Joliot, 1934).
Initial investigation of beta radioactivity confused conversion electrons with the
electrons emitted from the nucleus. Chadwick (1914) showed, though, that
whereas the former are monoenergetic the latter have a continuous energy
distribution for a given nuclide.?

4-6a Neutrino hypothesis.  The continuous energy distribution of electrons (or
positrons) in beta decay proved to be a great puzzle, although the maximum
energy of the distribution corresponds exactly to that expected from the mass
difference of the parent and the daughter. Neglecting the recoil of the daughter

! The branching ratio is the fractional decay probability, usually expressed in percent, from a
given initial state of a system to one of several possible final states of the system.
? A single nucleus emits only one electron with a given kinetic energy.
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FIGURE 4-17 Typical alpha-decay schemes. (a) Decay to excited states of a
daughter nucleus. Spins and parities of the states are indicated. () Decay from
excited states of a parent nucleus (Po?!2). The numbers adjacent to each transition
give the intensities relative to 100 Po*'? ground-state transitions. (Adapted from
Segre, 1964, and from K. Way, N. B. Gove, C. L. McGinnis, R. Nakasima,
Energy Levels of Nuclei, 4 = 21to 4 = 212, and J. Scheer, Energy Levels of
the Heavy Nuclei, 4 = 213 to 4 = 257, in A. M. and K. H. Hellwege, Editors,
Landolt-Bornstein, group 1, vol. 1, “Energy Levels of Nuclei, A = 5to A = 257,”
Springer-Verlag, OHG, Berlin, 1961.)
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nucleus, because it is of order (m,/M 7)) T,(max), where 7, is the kinetic energy
of the nuclear electron, we find that

T,(max) = [Mp — (M} + my)]c? (4-107)

1n this equation, the primed masses are nuclear masses and my, is the rest mass
of the electron.

FIGURE 4-18 Apparent nonconservation of linear momentum in the beta decay
He® — Li® + ¢~ (By permission from J. Csikay and A. Szalay, Proc. Intern. Congr.
Nucl. Phys. Paris, 1958, Publications Dunod, Paris, 1959.)

In addition to a possible violation of the energy conservation law by all
electrons except those with maximum energy, there also appears to be a violation
of the conservation law for angular momentum. We recall that on the basis of
the neutron-proton hypothesis all odd-4 nuclei are expected to have half-integral
angular momenta (Sec. 1-2c). This is, indeed, the case. Since the emitted electron
itself has spin %, it would change the angular momentum of the nucleus by this
amount.! A decay of the type

H? — He? 4 e~ (4-108)

LIf the electron orbital angular momentum is also considered, the electron could carry off
4,2, 5, ...} A units of angular momentum,
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would therefore require He® to have integral angular momentum, in contradiction
to the facts.

Although investigated long after the neutrino hypothesis was put forward,
beta decay seemed to violate also the law of conservation of linear momentum,
Figure 4-18 shows a cloud-chamber photograph of the decay (from rest)

Het — JLi® + e~ (4-109)

in which the momentum vectors of the final products clearly do not add up to
zero, as they should,

All difficulties concerning the conservation laws were overcome by the
neutrino hypothesis of Pauli (1933). He proposed that another particle, besides
the electron, is emitted in beta decay. To this particle, he assigned zero charge,
zero or nearly zero mass (experimentally, the mass is known to be less than
1/2000 of the electron mass), and an intrinsic angular momentum 44. The
particle would carry off energy and linear momentum in accordance with Egs.
(2-9) and (2-10).

W=T=pe (4-110)
if the rest mass is exactly zero.

The beta decays (4-108) and (4-109) would then be of the form

H? = He® + e~ + 5 (4-111)
;Heb > . Lit + e + 7 (4-112)

where, by definition, 7 is called an antineutrino.* A typical positron decay would
be
NB— CB et + (4-113)

where » is called a neurrino. With this assumption, the electron or positron
kinetic energy T, would be given by

T, = [M} — (M}, + mp)jct — W, (4-114)

v)

where W, is the energy (4-110) carried off by the antineutrino or neutrino.?
Therefore, even though the mass difference for a given decay is fixed, the
electrons can have a continuous energy distribution. Also, in the decays (4-111)
to (4-113), angular and linear momentum can be balanced.

Although it may seem from the above discussion that the neutrino exists
only to save the conservation laws of physics, its reality is now beyond doubt.
The neutrino, having no charge (and no magnetic moment), does not produce

! Since the neutrino has a spin §, it is expected to obey the Dirac theory (see Sec. 3-4d). In
addition to a neutrino, an antiparticle, called antineutrino, should also exist. We discuss the
difference between these particles in Sec. 4-6g. Just as electron is a generic term used for
positrons and negative electrons, neutrino is a term often used generically for a neutrino or an
antineutrino. Usually no confusion results.

? This equation neglects the recoil kinetic energy of the daughter nucleus. See Eq. (4-115).
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any ionization and therefore cannot be detected directly. Furthermore, it does
not carry electric and magnetic fields like a photon and does not exert electro-
magnetic forces on an electron. But in an interaction with a nucleus, a neutrino
can produce the inverse beta-decay reaction and this behavior has been detected
(see Sec. 4-6p).

4-6b Energetics of beta decay.  Conservation of energy and momentum require

Mpc? = Mpc? + Ty, + mye? + T, + W, (4-115)
where nuclear masses are again primed, and
0=pp+p +0p, (4-116)

where, in addition to the quantities mentioned previously, the recoil kinetic
energy Ty and momentum py, of the daughter nucleus are included. The order
of magnitude of T}, can be shown to be (mo/ M )T, + W,,))- For most purposes
it is, therefore, negligible.

As in alpha decay, it is convenient to rewrite Eq. (4-115) in terms of
atomic masses. Since the atomic number of the daughter nucleus is Z, + 1 in
electron decay and Z; — 1 in positron decay, we find for electron decay

Mpcz == ﬂrch‘z + Te‘ —l— Tﬁ (4'117)
and for positron decay
MPC2 == A{Dcz + 2’"002 + T£+ + Tv (4'118)
In these expressions, it has been assumed that the neutrino has zero rest mass
and that atomic electron binding-energy differences are negligible. The corre-
sponding definitions of the @ values are

Qs = T,- + T, = T,-(max) (4-119)
0, = (Mp — Mp)c (4-120)
Qe = T,o + T, = T,.(max) (4-121)
Qp- = (Mp — Mp — 2m))c (4-122)

where the first lines are definitions and the second lines follow from Eqgs. (4-117)
and (4-118). Negative electron decay is therefore possible if Mp 7 > Mpz,.1);
positron decay can occur only if Mp, z > 2m, + M z_;,. Another process,
called electron capture, can always occur if M, 5 > My, . We will discuss
this in Sec. 4-6f.

Since beta-decay energies give directly mass differences of isobars, they can
be used to construct mass parabolas (Fig. 2-15} and to test the predictions of
the semiempirical mass formula. In the case of mirror nuclei, decay energies
can yield values for the nuclear radius [Eq. (2-168) and Fig. 2-33]. Nuclear shell
effects are also reflected in these energies.

4-6¢c Decay constant for beta decay. Measured half-lives for beta decay vary
approximately from 102 sec to 10 years. As in gamma decay, we can classify
various types of beta decay by the orbital angular momentum which the
electron and neutrino carry off, and by the parity change which occurs. In
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addition, we can distinguish decays in which the intrinsic spins of the electron
and neutrino are approximately parallel (Gamow-Teller decays) or antiparallel
(Fermi decays). For the most common class of beta decays, the allowed transitions
(in which zero orbital angular momentum is carried off), the decay constant
increases roughly as the fifth power of the decay energy. These eflects are
explained in the theory of beta decay developed by Fermi (1934).

In an explanation of the beta-decay process, it is no longer possible to be
guided by classical concepts, because one is now faced with the creation of two
particles which did not preexist in the nucleus. The only classical theory con-
cerned with a creation process is the emission of electromagnetic radiation from
an accelerated charge. The rate of radiation [Eq. (4-47)] is determined by the
specific nature of electric and magnetic fields and hence cannot be adapted
directly to an electron-neutrino field. Nevertheless, Fermi developed a quantum
theory of beta decay in analogy with the guantum theory of electromagnetic
decay. The latter has to be considered briefly to gain the necessary background.

In the quantum mechanical treatment of a transition probability, we
examine the entire system, which here would be the nucleus and the electro-
magnetic field that surrounds it. The transition takes the system from an
initial state (excited nucleus +- zero radiation) to a final state (final nucleus -
radiation). We assume that only a very small disturbance is needed to effect the
transition, so that no energy needs to be added to the system, and the transition
occurs at a constant energy. The justification for this is the fact that radioactive
decay times, i.e., lifetimes, are very long compared to nuclear periods. Effectively,
the transition proceeds extremely slowly on a nuclear time scale, and the system
is practically undisturbed on a nuclear time scale. In other words, the initial
system needs to be only infinitesimally disturbed to make the transition proceed.

For convenience, the system is placed into a large closed box,! resulting
in energy states which are enumerable (Sec. 2-2f). Inside this box the radi-
ation fleld forms standing waves, each of which has a certain energy, shown
schematically in Fig. 419a. In the initial state, the excited nucleus + zero
radiation occupy only one definite energy level. The other levels are empty. One
can show? from the complete Schrédinger equation (2-14) that if the system is
subjected to a (time-dependent) potential of the form indicated in Fig. 4-19b,
the system can make a transition to levels close by the initial level. Each of these
levels corresponds to the final nucleus - one photon. The energy spread AE of
the group levels which can be reached at time ¢ after the perturbing potential
AV is turned on, is approximately equal to 4/t in accordance with the uncertainty
principle.? As the time ¢ increases AE tends to zero, so that energy conservation

* For simplicity, the box will be considered cubical, with a volume L?, The nucleus is placed
at the center of the box (see Sec. 2-2h).

2 Schiff, 1955, sec. 29,

? If a system is subjected to any type of experimental condition or observation for a time /,
the energy is uncertain by Aft. Compare Sec. 4-3, where a system is observed for an effective
tune 7.
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FIGURE 4-19 Quantum-mechanical treatment of transition probability. (a) Tran-
sition from initial state to a group of final states. Dashed levels are empty; solid levels
are occupied.  (b) Perturbing potential producing the transition.

= dN levels {av

= = in dE S E—
b4 z — i
2 = | dE
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is finally obtained. Nevertheless, the decay constant (transition probability per
unit time) is found to be proportional to dN/dE, the number of final states per
unit energy. The complete expression for the decay constant is

2
1:——
k

2d
fw}"(system) AV y(system)dx dy dz d_]EV (4-123)

The integral extends over the velume of the box containing the system. Note
that the wave functions refer to the entire system. In the case of gamma decay

y, = y(excited nucleus) (4-124)

yr = p(final nucleus) y(photon) (4-125)

As mentioned above, the photon wave function is assumed to form
standing waves inside the closed box, so that conditions (2-81) and (2-83) apply
to the wave vector k of the radiation. From this it is easy to calculate the
density of states dN/dE. The wave function ¢ (photon) is very similar to Eq.
(2-112); to every set of integers n., n,, n. there belongs one state of the

photon. To compute dN/dE, we use the fact that the length n of the radius
vector in n space (Fig. 4-20) is directly proportional to the momentum p of

the photon p=(pt + p,? +Pzz)i
= h(k2 + k2 + kD

A
= Iﬂ (nxz + nvz + n})é

A
- I” n (4-126)

where Eqs. (2-27), (2-81), and (2-83) have been applied. The number of states dN
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FIGURE 4-20 Volume in n-space. The length of
the radius vector is proportional to the momentum.
The number of states within a certain momentum
range is equal to the number of sets of positive
integers, n_, n,, n, within the volume corresponding
to the momentum range.

n,

corresponding to momenta lying between p and p 4 dp is equal to the number
of sets of positive integers n_, n,, n, lying between n and » - dn, where from
Eq. (4-126)

L
dn = —d, 4-127
— (4-127)
Since the volume in » space associated with each set of integers n,, n,, n, is a

cube of unit volume, any volume in n space is numerically equal to the number
of sets of integers n,, n,, n, within it. Therefore,

dN = }dwn®dn
- P;:ﬁ; ];3 (4-128)
and g = %:jff)[ﬁ {4-129)
For photons E, = p,c [Egs. (2-1) and (2-3)] so that
Z'_g _ f_z;% (4-130)

where a factor 2 has been included to take into account the two possible
directions of transverse polarization of electromagnetic radiation, which
represent independent states for the photons.

The calculation of the gamma decay constant requires evaluations of the
squared matrix element in Eq. (4-123). Note that the factor L* in Eq. (4-130) is
cancelled by a factor 1/L® due to the normalization of y(photon) [compare Egq.
(2-112)]. Also, for electric dipole radiation, Eq. (4-55) is obtained after a com-
plete evaluation of Eq. (4-123).
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Proceeding now to beta decay, we can use the formalism of Eq. (4-123) by
identifying for (negative) electron decay, e.g.,

y,(system) = y(parent nucleus) (4-131)
y(system) = y(daughter nucleus) y(electron) y(antineutrino)  (4-132)

To compute the density of states, i.e., to obtain enumerable states, the system is
again placed at the center of a large box, as shown in Fig. 4-21. The number of
final states per unit energy is the number dMo¢ of electron-antineutrino states

FIGURE 4-21 Beta decay (for negative

W, (system)

e electron emission). For computational
t purposes the system is placed into a
i large box of volume L2 P is the parent

N and D the daughter nucleus.

V¥, (system)

in an energy range dQ,- [Eq. (4-119)]. Since for every electron state there is an
independent set dN; of available antineutrino states

dNior = dN,_ dN, (4-133)

dN,. and dN, are each given by expression (4-128). From Eq. (4-123), the beta
transition probability per unit time is equal to

277' dNto'_
T -
P (4134)
where, using Egs. (4-131) and (4-132),
A =J.1p}')w:"1,u? AV yp dx dy dz (4-135)

The subscripts D and P refer to daughter and parent, respectively.

Expression (4-134) contains the square of a certain matrix element .4 and
the density of states dN,/dQ,_. Since the latter determines mainly the shape
of a beta spectrum, it will be taken up first.

4-6d Shape of beta spectrum.  The evaluation of dNiot/dQ,- depends on the
type of experimental observation made. For example, if electrons are detected
within a certain fixed momentum range dp,. or energy range 67,_, then from
Eg. (4-119)
dNiwor _ dNior
a0, ~ T,
,dp; L®

=P P E (4-136)
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using Egs. (4-133) and (4-128). Relations (4-110) and (4-119)

. dp, 1
give df; - (4-137)
T - — T
and pp=— (ma? : (4-138)
dn, L®
so that % p2[T(max) — LT (4-139)

agQ,

where the minus sign has been omitted from the subscripts because the same
equation applies to positron decay. Substituting into expression (4-134), we
find! for the probability per unit time A(p,)dp, that an electron is emitted with
momentum in the range p, to p, + dp,

|-#1*

A(Pe)épe = PeE[Te(max) - Te]zap

* 2R

(4-140)

We can also transform this into the probability per unit time that the kinetic
energy of the electron lies in the range 7, to T, + 67,, by using Eqs. (2-9) and
(2-10) to relate p, and T,. (In beta decay, electrons are usually emitted with
relativistic speeds so that the nonrelativistic approximations are insufficient.)
ATIT, = p(T, + [ T,(max) — T,]%4T, e (4-141
¢ e = Pl e 1yt e ax) ¢ [4 m - )
The quantity |.#|? is practically independent of electron energy in the most
common type of beta decay, but after evaluation is found to contain a coulomb
penetration factor. Nonrelativistically, this is identical to Eq. (4-86) with y
given by the first term of Eq. (4-94).2 For electrons z = —1, and for positrons
z = 4 1. Therefore, the low-energy part of an electron distribution is enhanced;
the electron is held back by the electric field of the nucleus. Positrons are
repelled by the nucleus and the low-energy part of the energy spectrum is
depleted. These eflects are shown in Fig. 4-22. It is usual to separate the
penetrability effects from |.#]* and to denote the penetrability (4-86) by
KZp,p.), called the Fermi function. Then
‘12
Apop, = F(Zp,p.)p AT ,(max) — T,J*op, AT (4-142)
2m3cchT

where the prime on .#" indicates that penetrability effects have been removed.
Equation (4-142) is the basis of the Kurie plot of beta spectra which is
conveniently used to determine 7,(max). In a beta-ray spectrometer one obtains

! In all subsequent equations, the factor L® has been absorbed into |.#* because it is cancelled
by the normalization constants of v,- and v;.

* Since in the second term of Eq. (4-94) M, has to be replaced by the electron mass, the second
term is negligible, as can be seen from Lhe evaluations (4-97) and (4-98).
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directly a quantity proportional to A(p,). Hence, the plot of

[A(Pe)/F(ZDape)]&
Pe
against T, yields a straight line if 4" is independent of p,. The straight line
intersects the abscissa at T, = T, (max). Although beta-ray spectra are found
in which ' is energy dependent, spurious deviations from a straight-line
Kurie plot may occur. These might be caused by scattering and energy loss

(4-143)

FIGURE 4-22 Shapes of experimental beta-ray spectra. (a) Number
of beta rays per unit momentum interval versus electron momentum.
The units of momentum are gauss cm, because the product Br can
be used t0 measure momentum [see Eq. (3.21)]. (#) Number of beta
rays per unit energy interval versus kinetic energy. In both types of
presentation the enhancement of the low-energy part of the f-
spectra and the depletion in the case of f* spectra are noticeable,
{By permission from J. R. Reitz, Phys. Rev. 77: 10 (1950), and Evans,

1955}
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FIGURE 4-23 Kurie plot of the beta spectrum of L =T T
§35. Curves A and B have been displaced vertically for
clarity. The curves show the effect of increasing source
thickness, which enhances the low-energy part of the . r
spectrum due to scattering and energy loss in the source
material. [By permission from R. D. Albert and C. S.
Wu, Phys. Rev. 74: 847 (1948).]
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of electrons in the radioactive source (Fig. 4-23). The shape of the Kurie plot
near T,(max) has also been used to set an upper limit to the neutrino mass.!

4-6e Lifetime and classification of beta decays. The decay constant for beta
decay is obtained by integrating expression (4-142) over the entire spectrum

Pe(MAX)
b= N0 @,
o

no m05c4
=J- FZp,mnP(wy — w) dn [ A7|? (4-144)
0 2mh?
where for convenience a reduced momentum
= P o _ pdmax) (4-145)
myC mec
and a reduced total energy )
w T T
W= = —* | woz'(—mix-)+1 (4-146)
myc?  mye myc

have been introduced. The integral (4-144) has been evaluated numerically, If

A’ is energy independent, one finds
.. mgSch
Ay = f(Zp,wo) |LA|?

2K
The f function is plotted in Fig. 4-24. It is roughly proportional to T ,*(max).

(4-147)

! Burcham, 1963, p. 603.
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Although there exists no general estimate for |.#’|® analogous to the
Weisskopf estimate for 4 [Eq. (4-64)], Eq. (4-147) is used in the classification
of beta decays. It is usual to extract from .4~ the order of magnitude g of the
interaction potential AV [Eq. (4135)] and to rewrite Eq. (4-147) in the form

!
fZpwoty = i—ﬁ;l“ (4-148)

2m3h7 In 2

Where [0 == T

mycg
as 6,000 sec (4-149)
jl
M=— (4-150)
. g

FIGURE 4-24 Plot of the f~function versus the maximum kinetic energy of the beta
ray, for eleciron and positron emitters. Z is the atomic number of the daughter
nucleus. For T,(max) > | Mev, fis roughly proportional to the fifth power of 7,(max).
[By permission from E. Feenberg and G. Trigg, Rev. Mod. Phys. 22: 399 {1950), as
adapted by Evans, 1955.]
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Equation (4-148) very neatly separates the kinematical factors in beta decay
from the nuclear effects contained in M (or .#"). As in gamma decay, M is
sensitive to selection rules and to the orbital momentum L,k carried off by the
electron-neutrino pair. The magnitude of |M|? is decreased roughly by 1072 to
10~* for unit increase in L. Since the electron-neutrino pair also carries off
intrinsic spin angular momentum Sk, conservation of angular momentum

requires 1p =1, + L, + S, (4-151)

where, as previously, the subscripts # and D denote parent and daughter. One
can show that the parity change in beta decay is (—1)*, so that parity

conservation requires = (— 1) g, (4-152)

The quantity |M|? can be expanded in terms of increasing order in L,. This is
analogous to the expansion (4-63) for gamma decay.

M2 = IM(Lg = O)]* + |IM(Ly = DI* + |M(Lg = 2)}* + - -+ (4-153)

The lowest value of L; satisfying Eqs. (4-151) and 4-152) will determine the
dominant term in |M|? and thus the magnitude of fy or 4;. Decays with L, = 0
are called allowed, with Ly = | first forbidden, Ly = 2 second forbidden, etc.
We mentioned, in Sec. 4-6¢, that decays with S, == 0 (Fermi decays) are dis-
tinguished from those with S; = 1 (Gamow-Teller decays), but the difference
in |[M|2 for these two types of decay is not appreciable.

The selection rules (4-151) and (4-152) are applied to some specific examples
in Table 4-3.

Experimental log fr, values are shown in Fig. 4-25. Decays with the lowest
values, clustering around 3.5, occur between mirror nuclei (Sec. 2-7). They are
called super-allowed because the wave functions of the initial and final nuclei

TABLE 4-3 Examples of beta decays

Initial nucleust Final nucleus Predominant decay mode
,He®  (07) sLi® (1) Allowed, G.T.}
QO (0Y) N+ (01) Allowed, F.1
ot (3h) H G Allowed, G.T. and F. mixed
S® (Y wCB 3N Allowed, G. T. and F. mixed
WY (3 oS (Y First forbidden, G.T.}
wC®¥ (29 1sA%* (21 First forbidden, G.T. and
F. mixed
(Bel® (3 5B Q") Second forbiddern, G.T.}-

t The total angular momentum and parity of each state is given.
¥ Only possible decay mode, called unique transiiion.
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overlap so perfectly that the value of [M]? [Eq. (4-150)] is approximately equal
to unity.! In a single-particle shell model we would assume that the last proton,
for example, emits a positron and neutrino, and becomes a neutron. In a mirror
nucleus, the neutron would have the identical wave function as the proton, so
that there is full overlap between their wave functions. In most other nuclei, the

FIGURE 4-25 Frequency distribution of log fr, values for the known beta emitters,
(By permission from C. E. Gleit, C. W. Tang, and C. D. Coryell, *“Beta-Decay Tran-
sition Probabilities,”” Nuclear Data Sheets, vol. 5, set 5, 1963.)
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last proton and neutron are in different shells. Figure 4-25 shows that this
decreases the decay probability by about 10-2. The extreme sensitivity of beta-
decay rates to the overlap of the initial and final nuclear wave functions causes
the large spread among the various orders of beta decay apparent in Fig. 4-25.
Also, this usually makes it impossible to recognize the order of a given beta
decay solely from the fi; value. Independent information on spins and parities
must be available and was, in fact, used to construct Fig. 4-25.

! For more accurate evaluations see Segré, 1964, scc. 9-9.
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4-6f Electron-capture decay. Another process which is analogous to positron
decay was discovered by Alvarez (1937). Under certain conditions, an atomic
electron can be captured by a nucleus with the emission of a neutrino. The most
probable capture is from the X shell because a K electron has the greatest
probability of being inside the nucleus.*

FIGURE 4-26 Electron-capture
process. In the example shown a K
electron is captured, although cap-
ture can also take place from an
outer atomic shell.

Z Z—1

Initial state Final state

The energetics of the process can be recognized from Fig. 4-26. In the initial
state there is a parent atom. In the final state, there is an excited daughter atom
plus a neutrino. Note that in the final state the nuclear charge and the number of
atomic electrons still balance. From conservation of energy

Mpc? = Myc* + Eg + T, (4-154)

where Ep is the binding energy of the (missing) electron in the daughter nucleus.
The atomic masses refer to the atoms in their ground states. The recoil energy
of the daughter nucleus has been neglected. The @ value for electron capture is
defined to be equal to the kinetic energy of the neutrino

Qe.c. - Tv
- (Mp — MD)Cz - EB (4'155)

Since for valence-electron capture Ej & 0, electron capture can always occur if
M piz) > Mpz_y- Electron capture from an inner atomic shell is followed by a
secondary process, the emission of x rays or Auger electrons (see Sec. 3-4c) by
the daughter atom.

Figure 4-27 summarizes the energetics of the three beta-decay processes.
All three types of beta decay can also lead to excited states. Typical decay
schemes are presented in Fig. 4-28.

The decay constant 4, . for electron capture can be calculated by the same
theory as presented previously. Because only one particle is emitted, expression
(4-129) for the density of states applies. For allowed transitions 4, , turns out
to be proportional to 7,2 [compare Eq. (4-130)]. Theratio 4, . [4,+ is practically

! The electronic s wave function is finite at the origin. (Compare to the wave functions for a
square well, Fig. 2-24.) In most cases, the probability of capture from the L shell is approxi-
mately 10 percent of that from the K shell. (Robinson and Fink, 1960.)

Neutrino
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FIGURE 4-27 Energetics of beta-decay processes. (a) f~decay. (b) §* and electron
capture decay. 8 decay is possible if M. ;) — My, ) > 2m,y. (c) Only electron
capture decay occurs if 0 < Mp(zy — My z 4y < 2m,,.
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FIGURE 4-28 Typical decay schemes of beta emitters. Nuclear levels not populated in
beta decay are shown in dotted lines. (These levels have been found by means of
nuclear reactions.) Branching ratios are given in percent. Log /1, values are shown in
brackets. (By permission from K. Way, A. Artna, and N. B. Gove, (eds.), “‘Reprint
of Nuclear Data Sheets, 1959-1965," Academic Press Inc., New York, 1966.)
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independent of any nuclear effects and so forms a good check of the theory of
beta decay. Figure 4-29 shows the calculated ratio for the probability of K
capture compared to positron emission. Good agreement with experiment has
been found. Once the theory has been checked, the ratio 4, . /4;+ can be used
to estimate decay energies.

FIGURE 4-29 Probability of K-electron capture coms- 4
pared to positron decay, plotted versus end-point energy of \\
the positron spectrum for various atomic numbers of the 3 V
daughter nuclide. The plot applies to allowed spectra \‘\ &
only. [By permission from E. Feenberg and G. Trigg, Rev. 2 NN
Mod. Phys. 22: 399 (1950), adapted by Evans, 1955.] = \\& 'Qt?o
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4-6g Inverse beta decay.  The theory of beta decay predicts that neutrinos
should have a very small, but finite interaction probability with nuclei, about
107'* times smaller than for ordinary nuclear reactions. We mentioned in
Sec. 4-6a that such an interaction was found by Reines and Cowan (1953).
They searched for the reaction

St p—nt et (4-156)

where the antineutrinos were produced by beta decays occurring in a nuclear
reactor. This reaction is the /inverse of neutron beta decay

n—op+e +73 (4-157)

because in the sense of the Dirac theory (Sec. 3-4d) the creation of an electron
is identical to the destruction of a positron. In other words, the process

n+et—p+ 7 (4-158)

is completely equivalent to beta decay.
In reaction (4-156), the creation of a neutron was signaled by detection of
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annihilation radiation from the positron, followed after several microseconds by
the detection of slow-neutron capture gamma radiation (see Sec. 5-5c). Such a
sequence of events selects reaction (4-156) from all possible backgrounds. By
turning the antineutrino-producing! reacter on and off, the probability for
producing the reaction could be checked and was found to be in agreement
with theory.

In an analogous experiment, Davis (1955) tried to produce the inverse to
the electron-capture process

1A + e — ,CI¥7 + » (4-160)
but was unable to detect the reaction
CI7 4 vy —> A¥ | o (4-161)

adjacent to a reactor. Since a reactor produces antineutrinos,! this clearly
demonstrates that nentrinos and antineutrinos are different particles. We now
know that they are distinguished by the direction of their intrinsic spin: Neutrinos
have their intrinsic spins antiparallel to the direction of travel; antineutrinos
have their intrinsic spins parallel to the direction of travel [Goldhaber, Grodzins,
and Sunyar (1958)].

4-6h Parity nonconservation in beta decay. The property of neutrinos just de-
scribed does not conserve parity and leads to a certain type of nonconservation
of parity in beta decay, in agreement with experiment. Consider a neutrino
traveling to the right as shown in Fig. 4-30a. Its intrinsic spin angular momentum
sfi points to the left. If this property of the neutrino would conserve parity, the
mirror situation, Fig. 4-30b, would also be possible: the neutrino would travel
to the left, but its spin sk would also point to the left because the angular

FIGURE 4-30 Parity nonconserving property of neutrino. (g) Neutrino traveling
to right with a velocity v,. (b) Experiment as seen in mirror; this situation does not
occur in nature for a neutrino.

‘_% -__@__5_'_

Mirror

{a) (&)

! Neutron capture on stable nuclides usually produces beta-radioactive nuclides, which
emit antineutrinos.
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momentum vector does not change direction in this mirror experiment.! This
situation, however, cannot occur for the neutrino, because, as stated above, all
neutrinos have their spins antiparallel to their velocity vectors. The situation
depicted in Fig. 4-30f corresponds to an ansineutrino. In other words, the mirror
experiment is possible only if the particle is changed to an antiparticle.

This parity nonconserving property of neutrinos was first found in a series
of experiments suggested by Lee and Yang (1956). They predicted on the basis
of certain meson decays that mirror experiments in beta decay do not occur in
nature, unless every one of the light particles (electron, antineutrino) is changed
into its antiparticle (positron, neutrino). In particular, two parity nonconserving
cffects were predicted and found: (1) The angular distribution of beta rays from
polarized nuclei is not symmetrical about a plane through the nucleus, per-
pendicular to the axis of polarization. (2) Electrons emitted in beta decay have
their spins preferentially antiparallel to their direction of travel, and the opposite
occurs for positrons. That these two properties do not conserve parity can be
seen by considerations similar to those described in connection with Fig. 4-30.2

Parity nonconserving effects occur only for the light particles in beta decay.
Nuclear states have a definite parity with extremely high precision so that
selection rule (4-152) must be obeyed. Also, ordinary electrons do not have any
preferential direction of polarization.

4-6i Nuclear structure information from beta decay. Part of the nuclear structure
information from beta decay is similar to that obtained from gamma decay.
The decay energies are useful to check energy systematics in‘nuclei, particularly
the semiempirical mass formula and shell effects. The matrix element .# [Eq.
(4-135)] is very sensitive to the overlap between the parent and daughter wave
functions. In mirror nuclei the overlap is practically perfect; this gives added
support to the charge symmetry of nuclear interactions (Sec. 2-7). Also in
mirror triads (see e.g., Fig. 2-34), beta transitions between corresponding levels,
where permitted energetically, are superallowed. This indicates perfect overlap
between the wave functions, and supports charge independence of nuclear forces
(Sec. 2-7).

The interaction potential AV [Eq. (4-135)] also contains valuable infor-
mation, which will provide new insight into the role played by various mesons
within the nucleus. At present, only some general limitations on A¥ required by
symmetry and by parity nonconserving effects are understood. The magnitude
g of the interaction potential has not yet been explained. Empirically it is
approximately 10-° times as small as nuclear interactions or 10-* times as small
as electromagnetic interactions. The beta-decay interaction is therefore called a
weak interaction. Presumably, it is caused by a force field which is not nuclear,
electromagnetic, or gravitational.

' If we assume the neutrino angular momentum can be treated as that of a rotating body, we
can see that the sense of rotation is not altered by the mirror experiment proposed in Fig. 4-30.
2 Burcham, 1963, sec. 16-7,
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PROBLEMS

4-1

4-2

44

A radioactive source consists of a mixture of two radioactive nuclides whose
initial activities are identical, One nuclide decays with a half-life of } year, the
other with a half-life of § year. What fraction of the initial activity remains after
1 year? ‘

The natural abundance of U?* is 0.72 percent and of U?* 99.3 percent. Assuming
that in the process of element formation, both isotopes had been formed with
equal abundance, what can we infer about the time at which the elements were
formed? The half-lives of U®® and U%® are 6.8 ~ 10° and 4.6 - 10° years,
respectively.

A radioactive sample produced in a nuclear reactor has the following decay
curve:

Time of Time of
observation, Activity, observation, Activity,
min counts{sec min countsfsec
0 366 10 128
1 289 15 99
2 241 20 78
3 210 25 63
4 189 30 50
5 173 35 42
6 161 40 35
7 151 45 30

After several hours a constant background of 15 counts/sec was observed.
Compute the half-lives and relative initial activities of the radioactive isotopes
in the sample.

The radioactive nuclide Na? (#, = 14.8 hours} can be produced by neutron
bombardment of Na®. If the production rate of Na?! is 10%/sec, and the bom-
bardment is started with a fresh sample of Na®*, compute (a) The maximum
activity of Na® (in curies) which could be produced. (b) The bombardment
time needed to produce 90 percent of the maximum activity. (¢) The number
of radioactive atoms of Na?! left 3 hours after the bombardment (b) was stopped.
{a) One gram of the element potassium emits 29 8~ particles/sec due to the decay
of K* (natural abundance 0.012 atom percent). Because of competing electron-
capture decay to an excited state of A", gamma-rays are also emitted. One finds
N_IN; -=0.12. There is no electron-capture decay to the ground state of A*.
What is the half-life of K**? (b) This radioactive decay can be used to
determine the geological age of a mineral by measuring the concentration
ratio of K to A'®. We have to assume that all A'® present is from the decay
of K* and that no A+ has escaped from the mineral. What is the age of a
mineral for which N(A*)/N(K+*') = 0.5?
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4-6  (a) A radioactive parent nuclide has a radioactive daughter. Find an expression
for the time at which the activity of the daughter is a maximum, assuming an
initially pure radioactive parent, What is the ratio of the activity of the parent
to that of the daughter at that time? (b) An initially pure sample of Th##*
(1 = 18.2 days) decays into Ra®® (¢, = 11.7 days) by alpha emission. Ra®? is
also an alpha emitter; when is its actjvity at a maximum? (¢) What will be the
ratio of the activity of Th?¥? to the activity of Ra®® after several months?

4-7 Radium (Ra®8, r, = 1622 years) decays into radon (Em®%, ¢, = 3.82 days),
which is a monoatomic gas. A sample of 100 mC initially pure radium is
allowed to come to equilibrium with its decay products for several months.
Compute the number of radon atoms present at that time. What volume would
this gas occupy at NTP?

4-8  Aninitiaily pure sample of 10 mC Ra E(Bi®?, ¢, = 5.01 days) is allowed to decay
to polonium (Po™®, ¢, = 138.4 days). Compute the maximum activity of the
polonium,

49 The nuclide Co® has an isomeric level as shown. (a) What are the separate decay
constants for f, e, and 3 decay? {(b) What is the appropriate Weisskopf
estimate for the gamma decay constant? (¢} What is the width of the isomeric
state of Co® (in ev)?

2+ t,, = 10.5min 0.059 Mev
/ Y e~
B~ (0.28°)
57 0 Mev
a,= 35
Oylapiay: =14:3:1

4-10 In B! a gamma transition leads from a level at 9.28 Mev (spin-parity §%) to a
level at 4.46 Mev (spin-parity §7). What is the dominant multipolarity of the
transition? Calculate the expected gamma width (in ev) on the basis of the
Weisskopf model. (The measured value of T', is equal to 5.4 ev.)

4-11 In Zr?, an isomeric level at 2.315 Mev has a half-life of 0.83 sec. The level has a
16 percent branch to a state at 2.182 Mev and a 84 percent branch to the ground
state. The two transitions have X conversion coefficients of 2.C and of 4 x 1074,
respectively. Use Eqs. (4-69) and Fig. 4-9 to suggest multipolarities for the
transitions and possible spin and parity assignments for the levels.

4-12 The beta decay of ..Cs'*" Jeads to an isomeric state of ,,Ba'®*", which decays
by a transition of 0.6616 Mev. Compute the energies of the K and L conver-
sion electrons. {(The K and L binding energies for Cs are 35.9 and 5.7 kev and
for Ba 37.4 and 6.0 kev, respectively.)

4-13 In Fig. 4-17a, the alpha-decay energy of Pu?3 is given, as well as energies of
excited states of U®4, Compute the kinetic energy of the alpha-particle group
that leads to the 0.499-Mev excited state of U?%4,
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4-14

4-15

4-16

4-17

4-18

4-19

4-20

4-21

+22

4-23

4-25

RADIOACTIVE DECAY

(2) Show from the semiempirical mass formula that for a given isotope the slope
of the alpha-decay energy versus neutron number should be negative. (b)
Compute values of the slope for Z = 86 and N = 120, 130, using any consistent
set of energy parameters. Compare with Fig. 4-12.

(a) Show from the semiempirical mass formula that for a given isotope the slope
of the alpha-decay energy versus atomic number should be positive. ()
Compute the slope for N = 120, near Z = 84, using any consistent set of
energy parameters. Compare with Fig. 4-12.

The nuclide Nd** emits 1.83-Mev alpha particles. Use (Eq. 4-95) to estimate its
haif-life. (The experimental half-life is 2.4 x 10'° years.)

Assume that two isotopes of the element 4 Cf (4 =~ 250), differing in neutron
number by 4, have identical alpha-decay energies. (a) Which isotope should
have the longer half-life? (b) Compute the expected percentage difference in
the half-lives.

Calculate the end-point energy of the beta spectrum of the neutron (in Mev)
from the neutron and the hydrogen masses.

Show that if the end-point energy of a beta emitter is much less than mygc?, the
ratio of the average beta energy to the endpoint energy is 4. Assume that the
Fermi function is approximately constant cver the energy interval in question.

Assume that in Fig. 4-18 the angle between the recoiling Li® nucleus and the
electron is 90°. From this fact alone show that the kinetic energy of the electron
shown must be less than one-half of the maximum available energy. (You may
find a graphical sclution useful.)

Assume that in the decay shown in Fig. 4-18 the angle between the recoiling Li®
nucleus and the electron is 90° and that the Li® nucleus has the same momentum
magnitude as the electron. Compute the kinetic energies of the three product
particles of this decay (Li® e~, #). The decay energy of He® is 3.57 Mev.

Show by use of the uncertainty principle that the kinetic energy spread of
electrons inside the C'¥ nucleus is large compared te the largest beta-ray end-
point energies found in light nuclei (= 15 Mev). (Use relativistic expressions, but
you may assume that for the hypothetical electron inside the nucleus p > myc.)
This discrepancy is sometimes used as an argument against the existence of
electrons in nuclei.

Assuming a Be? nucleus is at rest before a K-capture takes place, what velocity
(in ecm/sec) and what energy (in ev) are imparted to it after the K-capture
process, assuming the neutrino has zero rest mass ? (The atomic mass difference
between Be? and Li7 is 0.86 Mev.)

A 2.57-cm® ampule containing tritium gas at NTP was found to produce heat
at a rate of 0.1909 cal/hour. The half-life of tritium is 12.46 years and its beta
spectrum has an end-point energy of 19.4 kev. Compute: (a) The activity of
the tritium sample in curies.  (b) The average energy of the beta particles emitted.
(c) The ratio of the average energy to the maximum energy (see Prob. 4-19).

In the following table, certain initial and final nuclear states are given. State
whether natural radioactive decay between these states is permitted, and if so,
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describe the dominant decay mode as accurately as you can. Assume that always
{Miniti1 — Munade® = 2 Mev,

1
(2)
(3)
)
(5)
(6)
¢)]
(8)
©)
(19)

;;;m;m;;;ml;

Initial nucleus

Final nucleus
Z I parity A zZ I parity
ZzZ 1 — A V4 1 +
Z 3 + A z I +
4 0 - A zZ 0 —
z s + A z 4 +
z 3 - A Z -1 3 -
z ) + A Z -1 i -
V4 o - A Z +1 0 -
zZ 2 + A Z +1 1 —
z 0 - A zZ-2 2 +
V4 0 + | A—-4 Z -2 2 +

4-26 The figure below shows the decay scheme of Br®. (a) Use the information
given and Fig. 4-24 to compute the log-fr values of the three beta decays. (b)
Use Fig. 4-29 to compute the expected K/f* ratio for the positron branch.
(c) Classify the various branches by order and type.

asBl’m

t.,= 18 min

B~ (13.9%

e.c.{(5.0%)Y .-

BT (2.67)
0.87 Mev

)

1.38 Mev

Y0.62 Mev

80 80
293¢ % Kr
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5-1 INTRODUCTION

Between 1919, when Rutherford announced the discovery of the artificial nuclear

transmutationt
Het 4 N4 . H! 4+ O17 5-D

and 1939, when fission was discovered (Hahn and Strassman, Meitner and
Frisch), nearly all known nuclear processes which could be initiated with
bombarding emergies up to approximately 10 Mev were found. Since then,
bombarding energies have been extended to roughly 10 Bev, and many new
types of reactions have been produced, particularly those involving mesons and
other unstable particles. Although it is now clear that mesons play a fundamental
role in nuclear forces, the present discussion is limited to nuclear reactions
below the threshold for meson production (=150 Mev).

! A cloud-chamber photograph of this reaction is shown in Fig. 5-7.

171
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Detailed theories of nuclear reaction were patterned after the two, apparently
contradictory, models of nuclear structure mentioned in Chap. 2: the liquid-
drop model and the shell model. In one theory, it was assumed (Bohr, 1936)
that a nuclear projectile incident on a nuclens would interact strongly with all
the nucleons in the nucleus and quickly share its energy with them. The compound
nucleus so created would decay in a manner independent of its mode of for-
mation. In the reaction theory based on the shell model (Bethe, 1940; Fernbach,
Serber, and Taylor, 1949; Feshbach, Porter, and Weisskopf, 1954), it was
proposed that an incident nucleon would interact with the nucleus via the shell-
model potential and that the probability of absorption into the compound%
nucleus would be relatively small. These different aspects of a nuclear reaction
can be unified into a single theory (Weisskopf, 1957; Feshbach, 1958).

FIGURE 5-1 Sequence of stages in a nuclear reaction according to Weisskopf.
(By permission from Weisskopf, 1957.)

Independent particle Compound system stage Finalstage
stage

Direct interaction

Multiple collistons

and collective effects

Compound nucleus

Decay

of
compound
nuclcus

According to Weisskopf, any nuclear reaction proceeds through a series
of stages, indicated schematically in Fig. 5-1. When the incident particle
reaches the edge of the nuclear potential, the first interaction will be a partial
reflection of the wave function, called shape elastic scattering. We recall that
any potential discontinuity has a finite reflection coefficient for an incident wave
[see Eq. (2-162)] which is independent of the direction of travel of the wave. The
part of the wave function which enters the nucleus undergoes absorption.
Feshbach proposes that the first step in the absorption process consists of a two-
body collision. In other words, if the incident particle is a single nucleon, it
interacts with a single nucleon in the nucleus and raises it to an unfilled level as
shown 1n Fig. 5-2. If the struck nucleon leaves, a direct reaction occurs. Pre-
sumably this process becormes more probable at higher energies because, then,
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at least one nucleon would have a good chance of receiving enough energy to
leave the nucleus.

If the struck nucleon does not leave the nucleus, more complicated inter-
actions can set in. The incident nucleon (or the struck nucleon) may interact
with a second nucleon in the nucleus, in turn raising it to an unfilled level.
Under proper conditions the nucleus could be excited to a collective state
(Sec. 2-5d), and one of the nucleons could leave. If this does not occur, each
of the (three) nucleons which are now in unfilled levels in the nucleus can
interact with other nucleons until finally the energy sharing envisaged by the
compound-nucleus theory has occurred.

FIGURE 5-2 First step in a nuclear reaction according to the
unified reaction theory of Feshbach. The incident particle collides
with one nucleon in the nucleus and raises it to a higher state.
If the nucleon leaves, a direct reaction occurs (shown in dotted
lines). Neutrons and protons are not distinguished in the diagram.

Incident particle

S r———
T, Shape el?stlc
scatlering

ot = e e e

Energy

b 15

o :(G
A

The compound nucleus is formed in such a complicated set of interactions
that it probably does not “remember” details of the initial stage of formation.
Hence, its decay should be independent of the way it was preduced. It may
happen that the incident particle (or a particle of the same kind as the incident
particle) is emitted by the compound nucleus with the same (c.m.) energy
as the incident particle. This is called compound elastic scattering. The particle
so emerging cannot be distinguished from the shape elastically scattered particle,
except possibly by a slight time delay.

We can also understand from this picture of a nuclear reaction that as the
incident (c.m.) energy T, is varied (Fig. 5-2) it may exactly correspond to a
virtual level of the nuclear potential (Fig. 2-29). The probability of finding the
incident particle in the nucleus is then high and the nuclear reaction probability
has a potential or single-particle resonance. It is more difficult to see that the
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probability of compound-nucleus formation also has many resonances
(compound-nucleus resonances). We can only note that any quantum-mechanical
system of high excitation! has many close-lying levels because, then, many
different modes of excitation can occur with similar excitation energies. At
present, both the energy and the width of compound-nucleus resonances can be
expressed only in terms of empirical constants (see Sec. 5-5), but theoretical
understanding is developing.

Certain aspects of nuclear reactions are independent of the detailed inter-
action mechanism and can be derived from conservation of energy, linear
momentum, and angular momentum. Parity is also conserved to an extremely
high degree. Further, the number and kind of nucleons in any reaction is constant
until reaction energies are high encugh to create nucleon-antinucleon pairs.?
We will discuss the application of these conservation laws to nuclear reactions
before considering details of the probability of interaction or cross section,

5.2 APPLICATION OF CONSERVATION LAWS

For bombarding energies below 100 Mev, nuclear reactions usually produce
two products, i.e., they are of the type

At X—biY (5-2)

where a = bombarding particle
X — target (at rest in the lab. system)
& = light reaction product
Y = heavy reaction product

To shorten the notation a reaction of the type (5-2) is designated by
Xab)Y (5-3)

Commonly, one reaction product is light and the other heavy because of
the binding energies of the nuclei involved. In some cases 4 and Y have com-
parable masses (spallation reaction or fission), or are identical. If 4 is a gamma
ray, we speak of a capture reaction in which Y is the compound nucleus.

In most cases in which more than two products appear, it is possible to
describe the process as a rapid sequence of two-product reactions

a+ X—b+ 1,
Yi—=b,+ T,
Yo by + ¥, (5-4)

! The excitation energy of the compound nucleus is § + T, where S is the separation energy
of the incident particle from the ground state of the compound nucleus (see Fig. 5-22). § is of
the order of 8 Mev for protons and neutrons.

* If antinucieons are counted negatively, the total number of nucleens in all known reactions
is conserved.
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Reaction (5-1) is an example of the type (5-2). Note that the number of
neutrons and protons is conserved. Presently the number of known reactions
is in the thousands.

5-2a Energetics. Conservation of linear momentum. Since the number of protons
remains unchanged in a reaction, all masses can be written as atomic masses if
electron binding-energy differences of a few ev are ignorsd. Conservation of
energy, therefore, gives for the reaction (5-2)

Macz ‘i— Ta + MXCZ = MbCz + Tb + MYCZ ‘i‘ Ty' (5'5)

where T represents the (lab.) kinetic energy of each particle. The masses of a
and X are ground-state masses. On the other hand, many reactions leave ¥ in
excited states; in that case, M, represents the total mass energy of that state.

The @ value of the reaction is defined as the difference betweén the final
and initial kinetic energies [compare Eq. (4-77}]

Q=T+Ty - T, (5-6)
Q= [M, + My — (M, + My)]c* (5-7)
If Q is positive, the reaction is said to be exoergic; if Q is negative, it is endo-

ergic. A reaction cannot take place unless particles b and ¥ emerge with positive
kinetic energies, thatis, T, + Ty = 0 or

Q+T,=0 (5-8)

Although this condition is necessary, it is not sufficient.

The Q value is an important quantity in a nuclear reaction. It can be
determined from mass spectroscopy [Eq. (5-7)] or by measuring kinetic energies
[Eq. (5-6)]. We can show, as a result of linear momentum conservation, only 7,
and the angle & of & with respect to the direction of a (Fig. 5-3) need to be deter-
mined. [n the lab. system

My, = Myvy cos ¢ + My, cos b
0= Mypovysing — My, sin 9 (5-9

FIGURE 5-3 Nuclear reaction in the lab. system. (a} Initial situation. (4) Final

situation.
My, vy
Y/
M ’
. M., Vs x Y A
a X

-~~-\L
b
My, v,

(a) (b)
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In order to eliminate ¢, substitute Mv = (2MT)? for each particle and rewrite
the equations
(M, T )Y — (M, T) cos f§ = (M, Ty)! cos ¢

(M,T,)tsin 0 = (M, Ty) sin (5-10)
Squaring both equations and adding
M, T, — XM, T,M,T)t cos 0 + M,T, = M, T, (5-11)
Eliminating T with the help of Eq. (5-6)

Mb) ( Ma‘) 2
=Tyl +—)—T{l— — (M, T,M,T,) cos 0 (5-
Q b( AIY a MY‘ A{Y( ata b b) COS) (5 12)

This is called the Q equation. Special cases of interest are those with # = 90°
and those with zero bombarding energy 7,. The latter reaction is possible only
with neutrons, since the coulomb barrier prevents nuclear reactions with zero-
energy charged particles. Energetically, the situation is then similar to Eq.
{4-80).

Part of the incident energy T, is used up as kinetic energy of the center of
mass and is not available for the nuclear reaction itself. Although we can study
all the resulting effects by means! of Eq. (5-12), more insight is gained if we
consider the reaction in the c.m. system,? shown in Fig. 5-4 (see also Fig. 3-11).
The kinetic energy of the center of mass is

Tem. = %(Ma -+ Mx)l’02 (5-13)

where vy = v, M, /(M, + My) is the speed of the center of mass. The kinetic
energy 7, of the initial particles in the c.m. system can be calculated in two
equivalent ways as

=T, Tem. (5-14)

or To=8M V2 - 1M V2 (5-15)

where ¥ represents the speed of each particle in the ¢.m. system (Fig. 5-4).
Equations (5-14) and (5-15) both yield

My 4 (5-16)
0 Ma T MX a
The energy acailable for the nuclear reaction is
Q+T, (5-17)

! R. D. Evans, 1955, chap. 12, sec. 2.

* Since the mass of the system changes from M, -~ My to M, + My, the c.m. system is not
identical for the initial and final products. As long as all velocities are nonrelativistic and the
fractional mass difference is small, this effect can be ignored. 1{ it cannot be ignored, it is more
useful to define a center-of-momentum system, which does not change during the reaction.
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FIGURE 5-4 Nuclear reaction in c.m. system. {Compare Fig. 3-11.) (a) Initial sit-
uation. (b) Final situation. The speed of the center of mass is vy, = M,/
(M, - My). Also MV, = M, V.

{N:
M,,.Va:va_vo M\"‘r.\' =—Y Y \‘\C
ae— oX 0 R —
b%Vb
(a) (b)

which is equal to the kinetic energy of the reaction products in the c.m.
system
Q + To= MV + §MypVy? (5-18)

This is easy to <ee, because if T, p, is added to both sides of Eq. (5-18), the
result is identical to Eq. (5-6).

A necessary and sufficient condition that the reaction proceed is that the
right-hand side of Eq. (5-18) be positive, i.e.,

0+ T, =0 (5-19)

This would automatically satisfy Eq. (5-8). Using Eq. (5-16), the same condition
is
;oo —OWM, + My)

-20
. = My (5-20)

In the case of an endoergic reaction (Q < 0), Eq. (5-20) gives the threshold
energy of the reaction. The threshold energy can also be derived by noting
that at threshold, particles » and Y both move with the speed v, in the lab.
system

(Ty + Tydimresn = M, + My (5-21)

After a short calculation, using M, + M} ~ M, + M, Eq. (5-20) is obtained.

We can return to the lab. system from Fig. 5-4b by adding the velocity v, to
the velocities shown. Numerous interesting situations can then be examined
geometrically.? For example, in the case of an endoergic reaction, particles &
can appear with two different kinetic energies at the same lab. angle 0, if T, is
only slightly above the threshold energy. This occurs because T, determines
only the c.m. speed V; [see Eq. (5-18) and note that M, V), = M,V ] and not
the dircction of the velocity V,. As shown in Fig. 5-5, under suitable conditions

*See Prob. 5-1.
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FIGURE 5-5 Velocity diagram for particle 4 at an energy slightly above
threshold of an endoergic reaction. At certain lab. angles 6, particle b
appears with two different kinetic energies ;M,v,? and M2

\Z

two different velocities V, and V, of same magnitude can produce particles b at
a given lab. angle 0 with different speeds v, and ¢;.

It is convenient to plot the c.m. mass-energy information for a nuclear
reaction on a diagram similar to Fig. 5-6. The example illustrates an endoergic
reaction (Q << 0).

A famous cloud-chamber photograph® of the (endoergic} nuclear reaction
(5-1) N'4(,p)O'7 is shown in Fig. 5-7. The alpha particles were emitted by a
thorium active deposit® which produces principal alpha groups of 8.8 Mev from
Po*'*(Th C’) and 6.1 Mev from Bi?'* (Th C). From the path length of the
interacting alpha particle (Fig. 5-7), its cnergy at the place of collision was
calculated

! Blackett and Lees, 1932,
* A partial decay scheme is reproduced in Fig. 4-17b. Note that values of (., and not T, are
given. For more details see Evans, 1955, p. 516, fig. 1-3. :

FIGURE 5-6 Center-of-mass energetics of a nuclear reaction. The illustration
applies to an endoergic reaction, that is, @ = (M, + My)c® — (M, — M )c? < 0.
The compound-system mass energy is also indicated.

w 2
Mi g

/N

(M, + M)

To (My + My)C

Energy

(M, + M)
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to be 3.9 Mev. The angle and range of the emitted proton allowed Q to be com-
puted from Eq. (5-12), with the result 0 = —1.2 Mev. We can appreciate the
small probability of a nuclear interaction (see Sec. 5-4) by noting that in 400,000
alpha-particle tracks only eight reactions of the type shown in Fig. 5-7 were
found.

FIGURE 5-7 Nuclear reaction N¥(x,p)O' in a cloud chamber. A thorium active
deposit, not shown in the photograph, provided alpha-particle groups of 6.1 and
8.8 Mev. One alpha particle of the higher-energy group, with a computed energy of
3.9 Mev at the place of collision, produced the reaction shown. [By permission
from P. M. S. Blackett and D. S. iees, Proc. Roy. Soc. (London) Al136: 325
(1932). Reproduced from W. Gentner, H. Maier-Leibnitz, and W. Bothe, “An
Atlas of Typical Expansion Chamber Photographs,” Pergamon Press, London,
1954.]

5-2b Other conservation laws. Nuclear reactions are most conveniently dis-
cussed in the c.m. system. Conservation of angular momentum in the reaction
X(a,b)Y then requires

L+Iy+h x=L+1y +1 ¢ (5-22)

where 1 is the total angular momentum of each nucleus {in units of A), and /
is the orbital angular momentum of each pair of particles about the center of



180 NUCLEAR REACTIONS

mass.! Parity conservation requires

7 x(— Dot = mmp(— 1)y (5-23)
where =« is the parity of each nuclear state involved in the reaction. These
conservation laws impose restrictions on the reaction probability. But even if
the conservation laws allow a reaction to proceed, the reaction rate sometimes
may be so minute that its occurrence cannot be detected with available equip-
ment.

5-3 TYPES OF NUCLEAR REACTIONS

Depending on the circumstances, it is convenient to classify nuclear reactions
by the type of bombarding particle, bombarding energy, target, or reaction
product. In the first case we distinguish:

Charged-particle reactions, produced by p, d, «, C12, 0, .
(p = proton, d = deuteron, & = alpha particle; the last two reactions are
called heavy-ion reactions)

Neutron reactions

FPhotonuclear reactions, produced by gamma rays

Electron-induced reactions
If the bombarding energy is specified we speak informally of

Thermal energies =~ gy ev

Epithermal energies ~ 1 ev

Slow-neutron energies ~ 1 kev

Fast-neutron energies ~ 0.1 — 10 Mev

Low-energy charged particles ~= 0.1 — 10 Mev

High energies ~+ 10 — 100 Mev
Targets are often called

Light nuclei, if A <40

Medium-weight nuclei, if 40 < 4 < 150

Heavy nuclei, if A > 150
If the light reaction product is identical to the incident particle and has identical
energy (in the c.m. system), the reaction is called elastic scattering. If only the
c.m. energy is different, inelastic scattering occurs. If only gamma rays are

emitted, we speak of a capture reaction. If the product nuclei have comparable
masses, the reaction is called spallation or fission.

! Classically, for a two-particle system, the total orbital angular momentum about the
cm. is equal to AMv X r, where M, = M M./ (M L+ M) is the reduced mass, v the rela-
tive velocity of the particles and r the relative position vector of one particle with respect
to the other, The corresponding Schrodinger equation in Eq. (2-71) or Eq. (2-146)
with ni, set equal to the reduced mass (Sec. 2.2¢).
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As an illustration, we give the following examples in the shorthand notation
(5-3):

NY(p,p)N14 proton elastic scattering
NY(p,p yN1* proton inelastic scattering!
N¥(p,a)C'? or C12* (p,a) reaction

N¥(p,»)O or O15* proton-capture reaction
N4(5,p)C13 or C13* photonuclear reaction
N%(n,Li%)Be® or Be** spallation reaction
Be¥(Li¢,n)N" or N14* heavy-ion reaction

If the reaction mechanism is clear from the experimental information, this
can also be specified. We distinguish direct reactions and compound-nucleus
reactions (see Fig. 5-1). Under certain circumstances, charged particles can
excite the target nucleus through the electric field pulse created at the nucleus
when they pass close by without penetrating the “nuclear radius.” This is called
coulomb excitation.

The variety of nuclear reactions which can occur is summarized in Table
5-1. (There are slight variances with the nomenclature given above.) Although
the table may appear complex, there are many common features among nuclear
reactions, which we will discuss below.

5-4 CROSS SECTIONS

The probability of occurrence of a nuclear reaction is conveniently expressed
in terms of the concept of cross section.

5-4a Definition of cross section.  Since interactions in a reaction take place
with individual target nuclei independently of each other, it is useful to refer
the probability of a nuclear reaction to one target nucleus. Assume that in a
given experiment a thin slab? of target material is struck by a monoenergetic
beam consisting of I particles per unit time distributed uniformly over an area
A, as shown in Fig. 5-8a. If the nuclear reaction produces N light product
particles per unit time, we can pretend that with each target nucleus there is
associated an area o (perpendicular to the incident beam) such that if the center
of a bombarding particle strikes inside of o, there is a Aif and a reaction is
produced; and if the center of the bombarding particle misses a, no reaction is
produced. The quantity o is called cross section and gives a measure of the
reaction probability per target nucleus. It is a fictitious area, which need not be
related to the cross sectional area (7R?) of the struck nucleus. We could also
describe the reaction probability by the ratio N//, but this quantity depends on

* As before, an excited nucleus is denoted by a superscript asterisk. A prime on the light
product particle indicates inelastic scattering.

? The slab should be so thin that a given bombarding particle sirikes no more than one target
nucleus.
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TABLE 5-1 Nuclear reactions with intermediate and heavy nuclei§

This tablelists the nuclear reactions occurring in each group. The symbolslisted refer to the emerging parricle in a reaction characterized
by thetype of target, the Lype of incidenu particle (columns), and the energy range (rows). The order of symbols in each group corresponds
roughiy to the order of Lhe yields of the corresponding reactions. Reactions whose yield 1s usually less than about 10-% of the leading
one are omitied.

Abbreviations: el = elastic, inel = inelastic, res = resonances, ¢ = coulomb excitation. The abbreviation {res) refers to all reactions
listed in the box. The elastic scatlering of charged particles is omitted, since it cannor easily be separated from the nonnuciear conlomb
scattering. Fission is also omitted, since i1 occurs only with a few of the heaviest elements.

Intermediare Nuclel Heavy Nuclei
Incident Particle n P x d n P A d
Energy of
Incident Parricle
Low n(el) (N)4 (N (N) v (N) (N {N)
0 — I Kev b4 n(el)
(res) (res)
nel) n n P nel)
Intermediare ¥ ¥ v n v
1-500 kev {res) a 4 c (res) (8% (&) (8)
< c
(res) {res)
n(el) L] n P niel) n n 'y
n(inel) Pinel) P n n(inely plincl) P n
High P a alinel) pn P Y ¥ pn
0.5-10 Mev x c c 2n [ c < 2n
(res for {res for (res for c c
lower lower lower
energies) encrgies) energies)
2n 2n 27 4 n 2n 2n P 1
a(inel) 3 n 2n n(inel) n n 2n
nlel) pinel) P pn niely plinel) P np
P np np 3n P np np 3n
Very high np 2p 2p d(inel} pn 2p 2p d(inel)
10-50 Mev 2p a alinely tritons 2p x a(inel) tritons
@ three or three or three or x three or three or three or
three or more more more three or more more more
more particles particles particles more particles particles particles
particles particles

$ (N) = No appreciable reaction probability,
$ (S) = Very smallreaction probability.
§ By permission from Blatt and Weisskopf, 1952, chap. 9.

FIGURE 5-8 Basic experimental arrangement to determine the cross section of a
nuclear reaction. (a) Side view. (b) View along beam direction.

Ax

—
o ©
o o o o
=—=) = &
A S —— [
e — Q °
I / _//Oo
o [ 0o ©

(a) (b)



5-4 CROSS SECTIONS 183

the target density as well as its thickness Ax, whereas ¢ is associated with an
individual target nucleus.

The probability that any one bombarding particle has a hit is equal to
N/l and is also equal to the projected total cross section of all target nuclei
lying within the area 4, as seen along the beam direction' (Fig. 5-8b), divided by
A.If there are n target nuclei per unit volume in the target material, n4Ax, such
nuclel are within reach of any bombarding particle in the beam. Each target
nucleus has an associated cross section o so that

NinAAxcr 5.4
7~ 4 (5-24)

This relation can be used in two ways. First, it can serve as a definition of
cross section, by writing

N

= UAynA B0) (5-25)

= number of light product particles per unit time,
per unit incident flux, and per target nucleus.?

The unit of cross section is ¢cm? or barn (Ib = 10~ ¢m?). In theoretical cal-
culations® Ax is usually chosen such that n4 Ax = | and the flux of particles is
written as

1
Z = n,v, (5-26)
where n, = number of bombarding particles per unit volume

in the beam
v, = relative velocity between bombarding particﬁs
and target nuclei

Second, relation (5-24) can be used to compute the yield N of light reaction
products if ¢ is known

N =nocAxT (5-27)

This assumes the slab is so thin that no appreciable depletion of the beam takes
place. If the slab is too thick for this assumption to be valid, since every reaction
depletes the beam by one particle, we find (for a thickness dx)

dN = —dI
=nodxl (5-28)

' The target is assumed to be so thin that no nuclear cross section ¢ is shadowed by
another target nucleus.

*Flux is defined here as number of particles per unit time per unit area of cross section
perpendicular to the beam, i.e., I/A. See also second footnote in Sec. 2-2g.

}See Sec. A-2.




184 NUCLEAR REACTIONS

Integrating over the full thickness ¢ of the slab (compare Fig. 3-14),
I, = Le~net (5-29)

which is mathematically identical to Eq. (3-34). The quantity no is, therefore,
the linear attenuation coefficient of the beam. The ratio /,/], is sometimes called
the transmission of the slab.

For order-of-magnitude orientation let us assume that ¢ ~ 0.1 b and that
the interaction takes place in a cloud chamber at atmospheric pressure
(n ~ 3 x 10" cm™3, Ax ~ 10 cm). From Eq. (5-27), we find for the probability
of interaction per beam particle

N
7% 3x 10 x0.1x1072x 10

~ 3 x 1073

This is of the order of magnitude of the experimental reaction probability which
we mentioned at the end of Sec. 5-2a in connection with the N'*(«,p)O!7 reaction
(Fig. 5-7). In a solid, typical atomic densities [Eq. (3-20)] are’ n &~ 5 x 102 cm™3,

In general, a given bombarding particle and target can react in a variety of
ways (see example at the end of Sec. 5-3) producing a variety of light reaction
products Ny, N, N, ... per unit time. The totai cross section is then defined in
analogy with Eq. (5-25) as

L Mt Nt Ny
ot ([ A)(nA Ax)

(5-30)

It is convenient to define also a partial cross section for the ith process by

® _ N; )
% = U A)nA Bx) G-31)

so that Ttot = 2 0, (5-32)

If the partial cross sections are known, Eq. (5-31) can be rewritten in the form
(3-27) 10 compute the rate at which the particular reaction products appear. For
a thick slab, an equation similar to (3-38) must be used in order to compute this
rate.
N, g, _
2= (1 — e 5-33
I, Ctot ( ( )
In many nuclear reactions, the light product particles are not produced in
an isotropic manner with respect to the incident beam direction. We therefore
define a differential cross section da/d<) in terms of the number of light reaction
products dN emitted per unit time in a small solid angle dQ at some angle

! See Appendix B.
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FIGURE 5-9 Basic experimental
arrangement to determine a dif-
ferential reaction cross section.
The detector for the light reaction
products subtends a small solid
angle dfQ at the target.

with respect to the beam (Fig. 5-9). From Eq. (5-24)

1dN _ nd Ax dojdQ

&4 (5-3%)
so that differential cross section (per target nucleus) is given by
do dNjdQ)
(5-35)

dQ  (IJA)(nd Ax)

In order to distinguish o from do/dQQ, a cross-section a is soretimes called
an integrated cross section, since

da
o= —dQ 5-36
f a0 (5-36)
allspace
5-4b Energy and angular dependence of experimental cross sections. It is the aim

of any theory of nuclear reactions to explain the energy and angular dependence
of cross sections in terms of certain nuclear parameters. Most cross sections
have a typical behavior, shown schematically for neutrons in Fig. 5-10 and for
protons in Fig. 5-11. (The target is assumed to be a medium weight nuclide.)
Some actual cross sections are shown in the following sections. Unfortunately,
no complete set of cross sections exists for any one nucleus.

5-4¢c Coulomb cross section.  The elastic scattering of low-energy charged
particles is determined purely by coulomb forces. Since it is possible to compute
the differential cross section by means of classical concepts this can serve as an
application of Eq. (5-35). The integrated elastic scattering cross section is
theoretically infinite and hence o1t has no meaning for charged particles.
Assume a beam of I charged particles per unit time bombards a thin foil.
Consider the effect of a single target nucleus, as shown in Fig. 5-12a2. We can
show in a simple way that a particle whose impact parameter is y will be deflected
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FIGURE 5-10 Schematic neutron cross sections for a medium weight nucleus. (a)
Total cross section. (b) Elastic-scattering cross section. (c) Inelastic-scattering
cross section. (d) Typical reaction [(n,«)] cross section. (e) Capture cross section.
{ /) Differential elastic scattering cross section.
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FIGURE 5-11 Schematic proton cross sections for a medium weight nucleus. ()
Inelastic-scattering cross section. () Typical endoergic reaction {(p,n)] cross section.
(c) Typical exoergic reaction cross section. (d) Capture cross section. (e) Dif-
ferential elastic-scattering cross section. For charged particles the concept of total
cross section is not meaningful because the integrated elastic-scattering ¢ross section is
theoretically infinite (see Sec. 5-4c¢).
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through a c.m. angle © given by

tan }0 = % (5-37)

where D is the classical distance of closest approach Eq. (1-4) for a head-on
collision.

D_zZez 5.38
=T (5-38)

FIGURE 5-12 Effect of a single target nucleus of charge Ze on a beam of charged
particles of charge ze. (a) A particle with impact parameter y is deflected through
an angle O. ¢ is the angle between the bisector of the initial and final directions of V
and the instantaneous radius vector r of the particle. (b) Momentum diagram.

M, Vs IFdt

Mo Vin

(b)

for a particle of c.m. kinetic energy T, = §M,V,* This equation takes into
account recoil effects if M is set equal to the reduced mass [compare Eq. (4-79)}
and V¥, is the relative velocity between a beam particle and the nucleus when they
are far separated.

Equation (5-37) is immediately derived if we realize that the overall
momentum change of the particle is caused by the impulse of the coulomb force
(Fig. 5-12b). The impulse can be evaluated with the help of the law of conser-
vation of angular momentum about the center of mass. The coulomb ferce is a
central force and, hence, angular momentum about the force center is con-
served during the collision.

d
MYy = Aforz-%j (5-39)

where ¢ is the angle between the bisector of the initial and final directions of V
and the radius vector r of the particle. Now, taking all components along the
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bisector, the momentum diagram of Fig. 5-12b gives (since ¥, = ¥y = Vy)
2M,V,sin 10 = J Fcos § dr

Ze? 2 1!
fz e cos LPr dy
r Voy
zZe’J
cos ¢ d (5-40
| cos pa )

where Eq. (5-39) has been used to eliminate dt. Integrating the last expression
from —i(m — ©) to +4(m — B), Eq. (5-37) is obtained.

FIGURE 5-13 Solid-angle element for coulomb cross-section
calculation.

—%}ﬁ

To compute the cross section, we need to find the number of beam particles
per unit time scattered into a small solid angle 4Q when a beam of / particles
per unit time, spread over an area A, strikes the target (see Fig. 5-13). From Fig.
5-12a, we can see that all beam particles arriving with impact parameters
between y and v +— dy will be scattered into the solid angle!

dQ = 2z sin 0 40| (5-41)
shown in Fig. 5-13. The fractional number of beam particles so scattered is
27y dv|A, yielding for dN/d()

dN  12nydyjd

d) 27 sin O |dO|
Substituting into Eq. (5-35), and noting that only a single target nucleus is being
considered (nA Ax = 1)

(5-42)

do ydy
Rl e A 5-4
dQ)  sin QO |dO)| (5-43)
From Eq. (5-37)
D |dO)|
= - 4
Y = 4sin? 30 (5-49)

! As p increased, @ decreased. Therefore, for a positive dy, 4@ is negative.
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Writing sin ® = 2 sin {O cos {0, we obtain
do__ D 5-45
dQ  16sin* 30 (5-43)
This is called the Rutherford or coulomb cross section. For order of magnitude
orientation we note that, for example, 5.2-Mev protons scattered by ,,Co%
(see Fig. 5-14) give D ~ 7.6 F, and D¥/16 ~ 0.036 b.
We mentioned in Sec. 1-2b that if the closest distance of approach becomes

FIGURE 5-14 Differential elastic proton scattering cross section for Co® divided by
the Rutherford cross section, versus c.m. proton scattering angle. (By permission from
F. K. McGowan, W. T. Milner, and H. J. Kim, “Nuclear Cross Sections for Charged-
Particle Induced Reactions,” vol. ORNL-CPX-1, Charged Particle Cross-Section
Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1964.)

t — 1 I T T T T 1
1.5+ 2Co™ (p, p) e
T, =5.2 Mev
1 —_— e
0.8 |- A
o 0.6} -
Gl
N
g€ 4 y
.2
E
=~
.2
g
2
e
@)

l | | ] | | | |
0 20 40 60 80 100 120 140 160 180

Scattering angle ®, {c.m.)




5-4 CROSS SECTIONS 191

of the order of the nuclear radius R, Eq. (5-45) breaks down. For a general
collision (Fig. 5-12a), this distance ry,;,, depends on the scattering angle © and is
equal to!
D 1
Mmin == E(m + l) L (5-40)
From Fig. 5-14 we see that for protons on Co®®, the Rutherford scattering law
breaks down at ® =~ 50° for T, = 5.2 Mev and at @ = 30° for T, = 7.5 Mev.
Substituting into Eq. (5-46), both of these points give a consistent value of
rmin = 13 F, a value which is considerably larger than the sum of the “Co3?
radius” (5.5 F) and the “proton radius” (~1.4 F) computed from Eq. (1-5).
This is another reminder that we must not think of a sharp cutoff of the nuclear
force at the nuclear surface (see Fig. 1-1).

When Eq. (5-45) is integrated over all space, an infinite result is obtained,
because according to Eq. (5-37), any impact parameter, however large, gives a
small deflection to a charged particle. In principle, therefore, no beam particle is
unaffected by a target nucleus independently of its impact parameter, and the
integrated cross section is infinite.?

At very small angles, Rutherford scattering always dominates the differential
elastic-scattering cross section of charged particles. It is therefore convenient to

divide the measured cross section by expression (5-45), as has been done in
Fig. 5-14.

5-4d Qualitative discussion of neutron cross sections.  Before details of a guantum
mechanical theory of cross sections are considered, it is useful to discuss the
qualitative features that are present. In order to avoid complications due to
coulomb effects, neutron cross sections will be considered.

A beam of neutrons must be represented by a (traveling) wave function of
the form (2-32). For travel along the -}-x direction, this is

y(incident beam) = ae™** (5-47)

The most important feature of this function is the wave number k or the reduced
de Broglie wavelength 1 = /(2m) = l/k. Its value, given by Eq. (2-11), is for
neutrons (or protons)

4.55

A0 E) = i Mo

(5-48)

Table 5-2 evaluates this expression for some typical energies.

' R. D. Evans, 1955, app. B, sec. 3g. Note that D is the distance of closest approach for a
head-on collision (& = 180°), rpia for a genera) collision.

% In a real substance, the atomic electrons will shield the nuclear charge for impact parameters
y larger than about 10-° cm. This corresponds to such small deflection angles [see Eq. (5-37)]
that the scattered particles are still within the original beam. Therefore, in most situations
the integrated cross section cannot be determined.
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TABLE 52 Reduced de Broglie

NUCLEAR REACTIONS

wavelengths of neutrons

T AF)
lev 4550
100 ev 455
10 kev 455
1 Mev 4.55
100 Mev 0.443%

t Relativistic value.

Nuclear radii [Eq. (1-5)] of medium weight nuclei are between S and 8§ F,
so that X > R until energies in excess of about 1 Mev are reached. We would
therefore expect that the particle properties of neutrons are not too important
in nuclear interactions for energies well below 1 Mev and that the wave nature of
neutrons should predominate at these energies. Direct collisions (Fig. 5-1)
between the incident neutron and a nucleon in the nucleus should dominate only
neutron cross sections well above 1 Mev,

Let us now consider various idealized encounters of a neutron with a
nucleus. If a beam of neutrons strikes a perfectly reflecting nucleus, only elastic
scattering can occur. The neutron wave is reflected and diffracted by the nucleus
as indicated schematically in Fig. 5-15a. These two waves interfere. The

FIGURE 5-15 Effect of a nucleus on a neutron wave (schematic). (a) Perfectly
reflecting nucleus. Reflection and diffraction occur. (b) Perfectly absorbing nucleus.
Only diffraction occurs. {c) Partially transparent nucleus. The wave transmitted
through the nucleus can interfere with the reflected and diffracted waves.

(a) (b) (¢}
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(integrated) clastic scattering cross section at low energies (x > R) is found’
to be equal to 4=R>.

If the nucleus is perfectly absorbing, there will be no reflected wave, but
diffraction scattering still occurs (Fig. 5-15b). The high-energy elastic-scattering
cross section has the approximate value #R2, and the total cross section is
approximately equal to® 27R2% If the nucleus is partially transparent to the
incident neutrons, the transmitted wave interferes with the reflected and diffracted
waves (Fig. 5-15¢). For certain energies, i.e., wavelengths, we may expect
that constructive interference occurs, for others, destructive interference.
Rescnances in cross sections are caused by such interference phenomena. Where
resonances occur, cross sections are of the order of =42, rather than 47 R?, which
holds between resonances; hence, slow neutron cross sections can be much
greater than geometrical cross sections.

FIGURE 5-16 Classical interpretation of M,, V¥,
orbital angular momentum imparted in a s
nuclear reaction. M, is the reduced mass

MM (M, + Mx). ¥

In a more detailed discussion of cross sections, it is useful to consider the
orbital angular momcntum brought into the system (bombarding particle -
target nucleus) by the reaction because this may influence the cross section as a
result of the sclection rules (5-22) and (5-23). Classically, if the bombarding
particle has an impact parameter y with respect to the nucleus (Fig. 5-16), the
orbital ¢.m. angular momentum is equal to M,V y [see Eq. (5-39) and footnote
after Eq. (5-22)], where V, is the relative velocity of the two particles when they
are far separated. In reality, though, the orbital angular momentum is quantized
and equal to /. vA. (This is abbreviated Lk below.) We can therefore identify
roughly®

LB~ MV, (5-49)
1 yMOVa
a "~ A
Y
PR 5-50
: (5-50)

where £ is the c.m. reduced de Broglie wavelength of the neutron.

! Burcham, 1964, pp. 518-520,

2 See Sec. A-2, Eq. (A-27).

3 Such arguments can be shown to be more correct for large quantum numbers than for small
ones, in accordance with Bohr's correspondence principle. Compare the discussion following
Eq. (2-89).
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If y > R (Fig. 5-16), the bombarding particle should not have much effect
on the target nucleus because it would be outside the range of nuclear forces.
Therefore, we expect the most important nuclear interactions to occur with
those bombarding particles which have orbital angular momenta less than or
equal fo a maximum value

I (max) =~ ; (5-51)
Referring to Table 5-2, we find that interactions which occur with bombarding
energies below about 0.1 Mev should be predominantly s wave, i.e., have
I, = 0. (For a hydrogen target this statement obtains to approximately 10-Mev
neutron lab. energy.) As a result, the differential elastic-neutron-scattering
cross section is isotropic in the ¢.m. system up to these energies.! This agrees
with observation.

The decomposition of the incident wave into partial waves each associated
with a definite orbital angular momentum is called partial wave analysis and
is described briefly in Appendix A-2. More details can be found elsewhere.?

5-5 COMPOUND-NUCLEUS REACTIONS

For bombarding energies below 0.1 to 1 Mev, nuclear reactions generally
proceed through the compound-nucleus mechanism (Fig. 5-1). The reason is
that once a particle finds itself within the nucleus, the reflection coefficient at
the edge of the potential well (Fig. 5-2) is close to unity.® For a bombarding
particle of energy T, entering a square well of depth V, the reflection coefficient,
given by Eq. (2-162), is approximately equal to

1 — 4TVt if T, <V, (5-52)

If ¥y~ 40 Mev, a typical value, the reflection coefficient for Ty = 0.1 Mev is
approximately equal to 0.8. The particle is therefore likely to stay an appreciable
time within the nucleus, and the chain of processes indicated in Fig. 5-1 can
proceed to the compound-nucleus stage.

The characteristic feature of experimental cross sections in this energy
range is the appearance of many sharp resonances (Figs. 5-17, 5-18). As we
mentioned in Sec. 5-1, the detailed nature of the resonances is not easy to describe
in terms of the shell model, but consists of very complicated excitations of many
nucleons in the nucleus. From a wave point of view, though, the resonances are
caused by the interference between the wave emerging from the nucleus and the
diffracted and reflected waves of the bombarding particle? (Fig. 5-15¢).

! We used this fact in the derivation of Eq. (3-30). See also Sec. A-2.

¥ Burcham, 1963, sec. 14-2.

3 The expression for the reflection coefficient at a potential discontinuity is independent of
the direction of travel.

¢ Blatt and Weisskopf, 1952, chap. 8, sec. 7.
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FIGURE 5-17 Total and elastic neutron scattering cross section of
cadmium. The resonance at 0.18 ev is caused by Cd'!3 (12 percent abun-
dance). The dashed line at low energies is for a 1fv dependence of the
cross section. (Adapted from D. J. Hughes and J. A. Harvey, “*Neutron
Cross Sections,” Ist ed., and D.J. Hughes and R. B. Schwartz, ““Neutron
Cross Sections,” 2d ed., Brookhaven National Laboratory, Upton,
New York, 1955 and 1958.)
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The basic assumption of the compound-nucleus model is that the compound
nucleus has been formed in such a complex manner that it has “forgotten’” how
it has been formed. The cross section for the reaction X(a,5) ¥ can then be split
up into a formation cross section of the compound nucleus C* corresponding
to the process

at+ X—>C* (5-53)

and the fractional probability that C* breaks up into particles! b 4 Y. We can
therefore write
a(a,b) = 0, (T P,(E) (5-54)

where 7Y is the (c.m.) bombarding energy and E the corresponding excitation
energy of the compound nucleus. These energies are related as shown in Fig.
5-19.

! A particular breakup mode is called a channel. For example, 2 4 X, 2"+ X*, b + Y are
different channels.
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5-5a Formation of the compound nucleus.  For the present, we will assume that
is a spinless, neutral particle, so that spin and coulomb effects can be ignored.
If the bombarding energy T, is such that C is formed in an excited state of energy
E*, this state will of course be a virtual state, because it can always decay back
to @ + X. Therefore, it will have a finite width " [Eq. (4-32)], due to its finite

FIGURE 5-18 Total neutron cross section of sulfur (95%; S32). (By permission from
D. J. Hughes and J. A. Harvey, “Neutron Cross Sections,” Ist ed., and D. J. Hughes
and R. B. Schwartz, “Neutron Cross Sections,” 2d ed., Brookhaven National Lab-
oratory, Upton, New York, 1955 and 1958.)
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FIGURE 5-19 Reaction X(a,b)Y

proceeding through a compound
nucleus. This figure should be
— compared with Fig. 5-6. §, and

b+Y S, are the separation energies of
a and b, respectively, from C.
T, is the c.m. energy of a [T, =
E* T Mx|(M, + M)l

at+X
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lifetime. The cross section for formation of the compound nucleus is expected
to be proportional to the probability of finding the nucleus at an energy E,
given by Eq. (4-41). A complete quantum mechanical calculation® shows that
. r.r
G, = L
a,C ket (E _ E#)? + I‘2/4

(5-55)

where I' {7 is the decay constant for decay of the compound state into channel
a + X. We call I the total width of the state and T', the partial width for decay
into g + X, In general

F:Fa+rb+r‘b’+r‘b'+"' (5'56)

where T, + - are the partial widths for any other channels energetically al-
lowed. This equation follows immediately from the relation between the total

and partial decay constants [compare Eq. (4-12)].
The wavelength £ in Eq. (5-55) is the reduced de Broglie wavelength of a
in the c.m. system. We note that for neutrons (or protons)

0.65

ﬂxz (ln barns) = —Jm
0

(5-57)

[t is convenient to express the resonance energy £* in terms of the corresponding
(c.m.) bombarding energy T (see Fig. 5-19) so that Eq. (5-55) becomes
r.r

(T — T3 + T4 59

Oy, — 7722

Many tabulations give the lab. energies T, and T.* corresponding to T, and 7.
If these energies are used in Eq. (5-58), the widths must also be converted to the
lab. system by using a relation similar to (5-16)

T(lab) = Tyc.m.)(M, + My)/M (5-59)

If spin is considered, the right-hand side of Eq. (5-58) must be multiplied by the
factor
2/ +1

& = AL T D 1 D

where J is the total angular momentum of the compound state and the other
spins have been defined before [Eq. (5-22)]. A given compound state can be
formed only by those orbital angular momenta /, which satisfy the relations

L+Ix4+84 =1 (3-61)
r (=D =7 J (5-62)

(5-60)

'Blatt and Weisskopf, 1952, 398ff. For a derivation starting with Eq. (4-41) see
Burcham, 1963, p. 532.
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where = is the parity of the compound state. In addition, conditions (5-22) and
(5-23) must be satisfied,

5-5b Decay of the compound nucleus. From the definition (5-56) it foilows that
the probability P, of decay of a compound state [Eq. (5-54)] into channel & -+ ¥
ts given by
r,
P = 5-

V=T (5-63)
where T'; is the appropriate partial width. Combining this with Egs. (5-58) and
(5-60) we find

Fan

(Ty — T3 + 74 o9

olab) = g mA?

This is known as the Breii-Wigner resonance formula. Equation (5-64) is valid
for all channels except the elastic scattering channel for which the interference
with diffraction and reflection scattering have to be considered. For neutrons
one finds

a(nn) = 4rr29[g_,

r 2
n | iéln . .l _ s o
ATy =Ty sy | g sin ﬂ]

(5-65)

where ¢, is an energy-dependent quantity known as the hard-sphere phase
shift. For I, =0, ¢ = R/L.

We will see [Eq. (5-69)] that as T, -0, I', — 0. Since, under the same
conditions, sin ¢ — R/X, the elastic-scattering cross section approaches 4=R*
at very low bombarding energies. It is usual in low-energy neutron physics
to express the elastic-scattering cross section in terms of a so-called scartering
length! a as

o(nn)y _.q = 4mwa? (5-66)

In the simple case just discussed, l«| == R: but in general this is not true, either
because /, # 0 or because the influence of resonances is not negligible (see Sec.
5-6a).

Figure 5-20 shows some typical cross-section shapes calculated with Eqgs.
(5-64) and (5-65). Both shapes can be recognized in Figs. 5-17, 5-18.

Before discussing special applications of the Breit-Wigner formula we
make a few remarks about partial widths. Any partial width T', is simply
another way of representing the decay constant 4, for the process

C*—>b+ Y (5-67)

This is exactly like radioactive (alpha or gamma) decay and so we can apply the
concepts embodied in Egs. (4-69), (4-95), or (4-123). From the latter we find

1 See Sec. A-2.
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FIGURE 5-20 Typical Breit-Wigner resonance shapes. (a) Reaction cross section.
(b) Elastic scattering cross section for s-wave neutrons.
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that the width must be proportional to the density of final states (4-129) which
for particles is proportional to

p ~
2 4 _. pMg Vb -
P (5-68)

the relative velocity of the particles in the channel b + Y. Here M, is the
reduced mass of channel b + Y. From Eq. (4-95) we realize that for charged
particles the width must also be proportional to a coulomb penetrability factor.
But cven in the absence of a coulomb barrier, the centrifugal barrier alone
(Fig. 4-16b) can decrease the width. To take both these factors into account one
usually writes

Iy == 2k, RP(b, )y,® (5-69)

where the factor 2 is introduced for convenience, and
k, = c.m. wave number of channel b + ¥ = M,,v,/k
R = “nuclear radius™ ~ Ry(A4,® + ApY3) (A = mass number)
P(b,Y) = penetration factor, which is unity for s-wave neutrons
y,? = experimentally determined constant, called the reduced width
The largest possible particle width that any channel can have is given by
the estimate

h
T'y(max) ~ - (5-70)
where f is the time necessary for particle b to pass by the nucleus
R
i — (5-71)
oy
hu,, h?
Fb(max) ~ —RT 21 kbR(m) (5-72)
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This has been written in the form of Eq. (5-69). The quantity in parentheses is
called the single particle width [see Eq. (2-145)),' and one often compares experi-
mental reduced widths to it. If 2 & A2 Mg, RE), the compound state in question
can be thought of as consisting mainly of particle b moving in a potential
provided by Y. Values of reduced widths as small as 107 of the single particle
width are common, indicating the complex nature of compound-nucleus states.

Gamma-ray widths are given directly by Eq. (4-69). Normally, particle
widths (5-69) exceed gamma-ray widths if the particle kinetic energy in the
particular channel is above [ kev. For (virtual) levels of the compound nucleus,
gamma decay is therefore rare unless the levels lie within a few kev of the [owest
separation energy, or Special circumstances inhibit particle decay.

5-5¢ Special cases.

I Low-energy neutron reaction cross sections.

Neutron reactions which are energetically permitted for zero-energy
neutrons (capture or exoergic reactions) have a |/r cross-section dependence at
low energies, if no resonance lies too close to the neutron separation energy of
the compound nucleus (i.e., near zero neutron kinetic energy). Under this
condition, T, can be neglected with respect to 7% in Eq. (5-64)

T,T,

k3

O'(”,b) - g_]‘ﬂ'.z-2 W

(5-73)
If I' € T*, or if I" does not depend sensitively on the neutron energy, then since
A~~1/v, [Eq. (5-48)] and I', ~ v, [Eq. (5-69)]

o(n,b) ~ Ii (5-74)

This type of low-energy behavior can be seen in Fig. 5-17. In fact, the major

part of the low-energy Cd total neutron cross section is caused by the Cd!*3(n,y)

reaction and hence Eq. (5-64) can be applied to the prominent resonance. A

detailed fit of the (n,n) and (n,y) cross sections below 2 ev yields the following
values for the resonance parameters:

Tr=018ev
[, =0.65:10%ev  (assuming J = 1)
I, =01lev (assuming J = 1)

Comparison of I', with Eq. (5-69) gives y,% = 0.15 ev for the reduced
width, which can be compared to a single-particle width (Eq. (5-72)] of approxi-
mately 1 Mev. Therefore, this particular state of the compound nucleus Cd'!* has

* The width in Eq.(2-145) refers to a quasi-bound state, whereas the width estimates in Eq.(5-72)
refer to a free particle. The difference lies in the time 1. In Eq. (2-141), ¢ refers to the time for
passing through ihe nucleus; in Eq. (5-70), 1 is the time needed to pass by the nucleus.
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a very complex structure. Experimentally one finds that only 0.1 percent of the
gamma rays go to the ground state! of Cd"* so the width for that transition
alone would be ', = 107% ev. The Weisskopf single-particle estimate [Eq.
(4-69)] for an M1 transition of 9 Mev, corresponding to the 1 — 0* ground
state transition, is I', & 13 ev, showing again that the compound state is not
at all single-particle-like.

FIGURE 5-21 Inelastic neutron scattering. (a) Energetics. (b} Typical cross
section. T% corresponds to a rescnance of the compound nucleus.

a{n,n)
E,
0 T
(a) ()
2 Inelastic neutron scattering.
For this reaction Eq. (5-64) gives
| B
o(nn) = gymi? o7 (5-75)

(T, — T3 + 24
Close to the threshold of the reaction, which may correspond to the energy E;
of the first excited state of the target nucleus (Fig. 5-214), the energy dependence
of Eq. (5-75) is dominated by T',.. If s-wave neutrons are produced so that the
penetration factor in Eq. (5-69) is unity,

I~z

~(Ty — El)& (5'76)

n

In Fig. 5-225 this energy dependence (schematically shown in Fig. 5-214)
disappears in the resonance structure.

3 Emission of charged particles.

If charged particles are emitted in an exoergic neutron reaction, the low-
energy dependence of the cross section is dominated by the 1fv, dependence.
In an endoergic reaction, the energy dependence near the threshold is dominated

! A knowledge of slow-neutron capture gamma-ray spectra is a useful tool in nuclear level
scheme investigations. See Groshev et al., 1959.
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FIGURE 5.22 (a) Neutron reaction cross sections for 1,8%2. () Inelastic neutron
scattering cross section for ,Si*®. (By permission from J. R. Stehn et al., “Neutron
Cross Sections,” 2d ed., suppl. no. 2, vol. 1, Sigma Center, Brookhaven National
Laboratory, Upton, New York, 1964.)
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by the coulomb penetration factor (4-86) in Eq. (5-69)

[, ~e? 571
1

where, according to Eq. (4-94), Yo~ — (5-78)
Up

The cross section therefore rises very slowly above threshold, as indicated

schematically in Fig. 5-104. Experimental cross sections are shown in Fig.
5-22a.

4 Charged-particle induced reactions.

At low energy, all exoergic reactions of this type are dominated by the
coulomb penetration factor of the incident particle. Endoergic charged-particle
reactions have an energy dependence near threshold of the form (5-76) or (5-77)
for neutron or charged-particle emission, respectively. Figure 5-23 is an ex-
ample of an endoergic reaction in which neutrons are emitted.

5-6 DIRECT REACTIONS

From the general discussion in Secs. 5-1 and 5-5, it appears that with increasing
energy of the bombarding particle the first stage of the interaction process
shown in Fig. 5-1 becomes more important and the later stages less important.
There is considerable experimental evidence that, on thc whole, this is correct,
although examples of reactions proceeding through very highly excited compound
states are known.

5-6a Optical model.  In a theory which emphasizes the first stage of a nuclear
reaction (Fig. 5-1), the interaction of the incident particle with the nucleus can
be represented by a potential. If the absorption into the compound system is a
relatively minor effect, it can be taken into account in a phenomenological way
by adding a complex term to the effective potential

Vef! = V + iU (5_79)

A simple one-dimensional calculation shows that such a potential will produce
absorption of a wave function.

Consider a beam of particles of mass M, encountering a complex potential
step as indicated in Fig. 5-24a. Outside the potential step, the form of the
entering wave is e’ [see Eq. (5-47)]. Inside the potential step, the wave function
will be of the form

a'e™™’= (5-80)

where k' is such that (see Fig. 5-24a)
Rk'®
2M,

=T+ V, + iU, (5-81)



FIGURE 5-23 (p,n) cross section for Co®, (By permission from F. K. McGowan,
W. T. Milner, and H. J. Kim, *“Nuclear Cross Sections for Charged-Particle Induced
Reactions,” vol. ORNL-CPX-1, Charged Particle Cross-Section Center, Oak Ridge
National Laboratory, Oak Ridge, Tennessee, 1964.)
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FIGURE 5-24 The effect of a complex potential 2
on a wave function. (¢) Potential energy E
diagram. (&) Schematic wave function (the aeiks 43
wave function is complex).
T
0
— (Vi +ilUs)
(a)
¥
()

The incident kinetic energy is denoted by T = }A%k%/M, Equation (5-81)
obviously requires that k" be complex. Defining its real and imaginary parts by

i
k’ i — -
K+ (5-82)

and substituting intoc Eq. (5-80), the wave function inside will be
g e “LeiEKa (5-83)

In other words, the wave is absorbed as it penetrates into the potential step.
Substitution of Eq. (5-82) into (5-81) gives

K

= - 4
L T, (5-84)
-+ 3
and K %[W} (5-85)

if I/L € K.

This model of the nuclear interaction has been particularly successful in
explaining total and elastic cross secttons at high energies. From detailed fits of
experimental cross sections, the values of ¥, and U, listed” in Table 5-3 have been

* The values in Table 5-3 apply to a rounded well {(Sec. 2-5b) and are only meant to indicate
orders of magnitude.
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found. Values of K and L calculated from Eqs. (5-84) and (5-85) are also given
in the table. As the incident energy increases, nucler become more absorbent
(L decreases).

TABLE 5-3 Approximate optical model parameters for
protons and neutronst

T, Vas | U, ‘ K, L,
Meyv Mev l Meyv l F1 L F
0—4 50 ’ 3 1.6 22
10 50 7 1.7 10
17 50 8.5 1.8
40 35 15 1.9 5

t From H. Feshbach, The Complex Potential Model, in
F. Ajzenberg-Selove (ed.), *Nuclear Spectroscopy,” Academic
Press Inc., New York, 1960, part B, Chap. 6.D, by permission.

The model predicts broad resonances in cross sections as a function of
energy. One of these can be recognized in Fig. 5-18 near 3 Mev. Compound
resonances are, of course, omitted from the description of the interaction in
terms of expression (5-79). Nevertheless, the model predicts that some features
of the first step of the interaction process should show through even at the
compound nucleus stage. For example, whenever the bombarding particle is in
a virtual state of the potential well, enhanced compound-nucleus cross sections
are predicted. A virtual state requires that the incident particle form an
approximate standing wave in the potential well [see Eq. (2-143)]

- $ingige ~ R (5-86)
where n = an integer
Ainside & 27K is the wavelength inside the well
R = nuclear radius
Substituting the low-energy value of K from Table 5-3, we predict that enhanced
cross sections should occur for nuclei with mass numbers!

A =~ 2n?
~ 2,16, 54, 128, 250 (5-87)
Such effects have been observed. For example, the low-energy elastic neutron
scattering cross section, instead of having the value 4~ R® expected from Eq.

(5-65), has peaks near the values of A predicted by Eq. (5-87). This is shown in
Fig. 5-25. The reduced widths y,? are similarly affected.

! This relation has to be modified for the permanently deformed nuclei (Sec. 2-5d) near A ~ 150.
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The optical model has also been successful in explaining the forward
peaking of the neutron differential elastic-scattering cross section, at higher
energies, of which Fig. 5-26 is a typical example. The forward peaking is caused
by the interference effects discussed in connection with Fig. 5-15¢.

FIGURE 5-25 The apparent nuciear ra- 11
dius Rapp, inferred from the low-energy 10k
neutron scattering cross section o(a,n} = 9k
4m(Rapp)?, as a function of the mass L i
number 4. The points are experimental.  § 8r
The dashed line represents Rapp = 1.354%. = 7t
The other curves are cbtained by means of 2 -
. . s = 6 f\ -
various optical-model theories. (By per- & A
mission from K. K. Seth, quoted in & 5[ ' A
Marion and Fowler, 1963.) £ 4 s :/ -
fatt 1
2 30 ]
t
2 ’-/ :
1 - ! J
0
0 40 80 120 160 200 240

Mass number A4

5-6b Surface interaction model. ~ We note from Table 5-3 that for high incident
energies the mean free path 4L becomes comparable to the nuclear radius.! If
we push this effect to the extreme, we can assume that at these energies all
nuclear interactions occur only at the surface. Such a model would be especially
appropriate for complex bombarding particles, for which the mean free path is
smaller than for neutrons and protons.

We can show that the model will give characteristic diffraction patterns for
elastic scattering. An oversimplified view of the surface interaction is sketched
in Fig. 5-27. If only points 4 and B in the nucleus are assumed to rescatter the
incident wave, constructive interference at a c.m. angle © requires that

CB + BD = nl (5-88)

where n is an integer and A is the wavelength of the incident radiation. Hence,
peaks in the elastic scattering cross section should occur whenever
)

2:2Rsin }® = ni (5-89)
!The mean free path in the nucleus is equal to L, because it is defined for a flux of

particles. From Eq. (5-83), the flux is proportional to |a"|e™". (See second footnote in
Sec. 2-2g.)



FIGURE 5-26 Differential elastic neutron scattering cross section of
Co?® for lab. neutron energies of I and 14 Mev versus the cosine of the
c.m. scattering angle. (By permission from M. D. Goldberg, V. M. May,
and J. R. Stehn, “*Angular Distributions in Neutron-Induced Reactions,”
2d ed., vol. 2, Sigma Center, Brookhaven National Laboratory,
Upton, New York, 1962.)
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FIGURE 5-27 Oversimplified view of
surface interaction model. In the figure
it is assumed that only the points A and
B on the surface of the nucleus scatter
the incident particles into the angle ©.
All other incident particles are assumed
to be completely absorbed.




FIGURE 5-28 Differential elastic scattering cross section for alpha particles on Fe®®,
divided by the Rutherford scattering cross section, as the function of the ¢c.m. scattering
angle. The incident lab. energy is 64 Mev. (By permission from F. K. McGowan, W. T.
Milner, and H. J. Kim, *“Nuclear Cross Sections for Charged-Particle Induced Re-
actions,”’ vol. ORNL-CPX-1, Charged Particle Cross-Section Center, Oak Ridge
National Laboratory, Oak Ridge, Tennessee, 1964.)
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FIGURE 5-29 Differential cross section for the S*(d,p)S** reaction.
The incident deuteron energy is 4.0 Mev. Only those protons are
detected which leave S% in its first excited state at 0.84 Mev. [By
permission from I. B. Teplov and B. A. lurev, J. Expil. Theorer.
Phys. (U.S.S.R.), 34: 334 (1958); English Transl. Sovier Phys. JETP,

7:233, (1958).]
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Figures 5-14 and 5-28 show differential elastic scattering cross section for protons
and alpha particles in which the diffraction peaks follow approximately relation
(5-89). We recognize that this provides a means for obtaining the nuclear
radius. Indeed, expression (1-5) was obtained experimentally from such
experiments.

5-6¢ Stripping reactions.  If a complex bombarding particle encounters a
nucleus, it can break up on impact such that only one part of it interacts
strongly with the nucleus and the other part leaves with practically no interaction.
Evidence for such processes has been found, especially for incident deuterons
and other relatively loosely bound structures. It is a characteristic feature of
these reactions that the noninteracting component of the bombarding particle
travels off predominantly in the forward direction, i.e., in the direction of the
incident beam. Figure 5-29 gives a typical example.

5-7 FISSION

A reaction X(a,b) Y is called fission, if 5 and Y have comparable masses. Some
nuclei fission spontaneously. Usually fission is produced only if sufficient energy
is given to a nucleus by capture of a slow neutron or by bombardment with
n,p,d--- or gamma rays. As far as we know, the fission process always
proceeds through a compound-nucleus stage. The compound nucleus breaks up
into two parts with some prompt neutron emission. The reason for this will
become apparent immediately.

The fission process was discovered by Hahn and Strassmann (1939) by
means of radiochemical experiments. They showed that the bombardment of
uranium by neutrons produces elements from the middie of the periodic table,
and not trans-uranium elements, as was believed previously.

The two main nuclear components, called fission fragments, do not have
equal masses because of energetics. The mass distribution is probably influenced
by shell effects. Figure 5-30 shows that prompt fission fragments are not stable,
because in the fission process both fragments keep the same neutron-proton
ratio as the original compound nucleus which lies close to the stability line. The
fragments are very neutron rich. Hence, prompt neutron emission is favored.
Negative beta and gamma decay eventually take the fission products toward
the stability line. In some cases excited states, which lic above the neutron
separation energy of the particular nucleus, are populated by beta decay, so that
delayed neutron emission occurs.!

By checking the line of constant N/Z for a typical fissioning nucleus like
92 U8 with the N-Z plot, Fig. 2-10, we see that this line passes close by the doubly

! The delay is with respect to the initial fission event, Neutron decay of any virtual state occurs
within times of the order of the estimate (5-71), that is, 107 sec.
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magic nucleus Z = 50, N = 82. We would therefore expect A4 = 132 to be a
prominent mass number on the final mass-yield curve. This checks quite well
with experiment (Fig. 5-31), but probably does not furnish the entire explanation
for the shape of the mass-yield curve.

FIGURE 5-30 Location of fission fragments with
respect to stability line. The example shown is
. e ; 236
Line of constant—~_ o for the fission of the compound nucleus 4, U?3.
N/Z
/ Stability line
/I Region of
, ' initial
1 fission
/ | fragments
|
]
i
|
| | 7
50 100

5-7a Energy release in fission.  The kinetic energies of the prompt fission
fragments can be computed from the semiempirical mass formula. For example,
consider the fission process

U5 4+ thermaln— Y, + ¥, (5-90)

where Y, and Y, have the same N/Z ratio as U%¢, Then

O(prompt) = Ty + Ty,
= [M(U®) + M, — (My, + My )}
= Biot( Y1) + Bioi(Yy) — Biai(U*™) (5-91)
The total binding energies can be calculated from Eq. (2-127) with the result
Q(prompt) ~ 170 Mev.
The overall encrgy release for the final fission products includes the energy

release by beta rays, gamma rays, and antineutrinos, as well as the energy
carried off by neutrons, The Q value then is

Q(overall) = Bioi( ¥;) + Bror(¥,) — Bio(U¥3) (5-92)




5-7 FISSION 213

where Y| and Y, are the final fission products which lie near the stability line.
If the mass numbers of these products are 132 and 100, respectively, assuming 4
neutrons are released, Fig. 2-8 gives for a rough estimate

Q(overall) &~ 132 x 8.3 + 100 x 8.5 — 235 x 7.5 Mev
A 210 Mev

A more accurate calculation from actual masses gives the values in Table 5-4.
Noting that antineutrinos do not produce any usable energy, we find that
3.2 x 10" fissions/sec produce 1 watt of power.

FIGURE 5-31 Mass-yield curve for the thermal-neutron fission of
Uz, U2%, and Pu?®. (By permission from A. M. Weinberg and E.
Wigner, ““The Physical Theory of Neutron Chain Reactors,” Univer-
sity of Chicago Press, Chicago, 1959.)
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Table 54 Average energy release in fission of U235t

NUCLEAR REACTIONS

Kinetic energy of fission fragments (4 ~ 95 and 140) 165 4+ 5 Mev
Kinetic energy of prompt and delayed neutrons 5
(2-3 neutrons)

Prompt gamma rays (=5 gamma rays) 6 +1

Beta rays (~ 7 beta rays) 8415

Antineutrinos 12 +£ 2.5

Radioactive gamma rays 61
Total energy release Q(overall) 204 + 7 Meyv

t By permission from Segre, 1964, chap. 11, sec. 11.

5-7Tb Details of the fission process.  The original theory of the fission process
was developed by Bohr and Wheeler (1939) on the basis of the liquid-drop model.
The process is now envisaged to occur as shown on Fig. 5-32. The binding energy
of the captured neutron sets the compound nucleus into violent vibrations
which break up the nucleus. Prompt neutrons are released. Some fission
fragments are formed in excited states which decay by gamma radiation with

£=0 O Neutron

Prompt
emission
=10 se ::::"C) Q:: Prompt y-ray
emission

Unstable
fragments

B, v and delayed
neutron emission
from fragments

FIGURE 5-32  Schematic develop-
ment of the fission process. The time
scale gives orders of magnitude only.

(By permission from Burcham,
1963.)
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FIGURE 5-33 Calculated prompt energy re-
lease in symumetric fission [Eq. (5-91)].

215

Q (prompt)

170 Mev

236

typical lifetimes of 10713 to 10712 sec, after which most fission fragments decay
by negative beta decay towards the stability line.

If we calculate the energy released (5-91) when a nucleus (4,Z) is converted
into two nuclei (3 4,4Z), which is called symmetric fission, we find! from the semi-
empirical mass formula that Q(prompt) is positive for nuclei with 4 > 85
(Fig. 5-33). Yet such light nuclei do not fission spontaneously. We must therefore

conclude that there is a fission barrier.

The best way to recognize this is to reverse the fission process. Assume that
two spherical nuclei, each (}4,4Z), are brought together as shown in Fig. 5-34a.

! Evans, 1955, p. 386,

FIGURE 5-34 Fission barrier.

(a) Symmetric fission fragments. (b} Corresponding

potential energy diagram. The approximate shape of the system is given below the
abscissa. In case 1, the nucleus would promptly decay by spontaneous fission. In case
2, a certain amount of activation energy Eex has to be furnished to produce fission.

(After Evans, 1955.)
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NUCLEAR REACTIONS

FIGURE 5-35 Low-energy neutron fission cross section o(n,f) of U3 For com-
parison, the total neutron cross section ooy of U3 is shown also. The difference
between the two cross sections is mainly o(n.y). (By permission from D. J. Hughes and
J. A. Harvey, “Neutron Cross Sections,” 1st ed. and J. R. Stehn et al., “Neutron Cross
Sections,” 2d ed,, suppl. no. 2, vol. 3, Sigma Center, Brookhaven National l.aboratory,

Upton, New York, 1955 and 1965.)
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The potential energy between the spheres is equal to (3Z2)%?r, where r is the
distance between the centers. When the spheres touch (Fig. 5-348), nuclear
forces begin to act and the spheres will coalesce. Two cases can occur:

! The potential energy never decreases as the system takes on its shape
of least distortion, i.e., a spherical shape.

2 The potential energy does decrease as the system takes on a spherical

shape.
Conversely, starting with the spherical nucleus, case / leads to spontaneous
fission; case 2 gives fission only if a certain excitation energy is provided,! which
is denoted by E,, in Fig. 5-345. The energy release Q(prompt) is approximately
equal to the barrier height E,,. According to Bohr and Wheeler, the shape of the
fissioning nucleus first becomes ellipsoidal. On this basis one can calculate the
form of the potential curve in Fig. 5-345 near r = 0 and show? that case / is
obtained only forZ > |15. Known nuclel, therefore, do not undergo spontaneous
fission as their major mode of decay.

In a nucleus like U?*, the excitation energy E., (5-6 Mev) is furnished by
the binding energy of the captured neutron (a7 Mev). Fission therefore occurs
with thermal neutrons. In the case of U?®, only about 5 Mev are gained when a
thermal neutron is captured. This is less than Egy, and the nucleus will fission
only with fast neutrons. The difference in neutron binding energies 1s caused by
the pairing term 4 in Eq. (2-127). Hence, most fissionable even-even nuclei have
fission thresholds, whereas most odd-A nuclei can fission with thermal neutrons.

5-7c Fission cross section. ~ Because fission proceeds through a compound
nucleus, the fission cross section is expected to follow Eq. (5-64) with ', = I"
and I'y = I',, where I', is called the fission width. This quantity is pro-
portional to the probability that a given compound-nucleus level decays by
fission.

The fission cross section of U?® is shown in Fig. 5-35. The thermal neutron
part of this cross section follows the 1/v law [Eq. (5-74)]. At higher energies
compound-nucleus resonances occur. The other major cross section which
contributes to the total neutron cross section of U is neutron capture
[U235(n,y)U%S]. The elastic scattering cross section at ev energies is approximately
10 b, which is very close to the value 47 R? expected from Eq. (5-65). For the
lowest resonance, shown in Fig. 5-35, the experimental parameters are

T} =029 ev I', =0.035ev
J=3"or 4 ', ~ 0.004 ev
I',=010ev
' This statement is somewhat cversimplified because there can be tunneling through the
barrier in case 2 (Sec. 2-2g), i.e., spontaneous fission can occur in this case also, but the

probability is very small.
*Evans, 1955, pp. 387t
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The threshold behavior of the U?* fission cross section (Fig. 5-36) is
determined mainly by the fission penetrability factor, which is very similar to
Egs. (4-86) and (4-94). The interesting steps at higher energies are caused by
secondary processes. The lowest threshold is, of course, caused by the reaction

U8 4 p— U%%* — fission

(5-93)

The next process sets in when neutrons have sufficiently high energies to provide
the fission activation energy of U?# by inelastic scattering

U2¥(n,n")U?8* — fission

(5-94)

FIGURE 5-36 Fast-neutron fission cross section of U%#, Thresholds
of various processes are indicated. (Adapted from J. R. Stehn et al,,
“Neutron Cross Sections,” 2d ed., suppl. no. 2, vol. 3, Sigma Center,
Brookhaven National Laboratory, Upton, New York, 1965.)
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Another process can start when U7 can be created with sufficient excitation
energy to fission
U8(n,2m)U¥* — fission (5-95)
and so on.
A detailed examination of the lowest threshold has revealed finer steps in
the U fission cross section (two are shown on Fig. 5-36). These steps have led
to a more complete description of the fission process than given above.!

PROBLEMS

5-1  Using the notation of Sec. 5-2 prove, if @ is the c.m. angle of emission of particle
b, and 8 the lab. angle, that
~ (vgf¥y) + cos ©

t 8
€0 sin ©
. Yo .
and sin(® — 6) =—sin 0
Ve

5-2  Prove that Eqs. (5-14) and (5-15) are equivalent.

5-3  Show that in the reaction X(a, b)Y, the energy of particle b in the c.m. system is
equal to

(My/M)[Q + (1 — M,/M)T.)

where M =M, + My ~ M, + My
T, = lab. kinetic energy of particle a
Q = Q value of reaction.

5-4 (a) Compute the threshold energy for the C'? + y — 3 He® reaction. Use
Appendix C. (b) If in this reaction, two of the alpha particles come off in the
same direction with the same kinetic energy, what fraction of the available
energy is carried off by the third alpha particle?

5-5 (a) Compute the Q values of the H® + H2 — He® + n reaction and of the
H?® + H? —~ He® + n reaction. (b) Assume an electrostatic accelerator is
available which will accelerate any particle of charge e to 4 Mev. What is the
maximum neutron energy which could be produced using this accelerator in
combination with either of the above reactions? (The mass of H? is 3.016050 u.
The other masses can be locked up in Appendix C.)

5-6 (a) It is desired to obtain neutrons with a maximum energy of 2.0 Mev by
bombarding tritium with protons. What must the energy of the protons be?
[The threshold energy for the H3(p,n) He? reaction is 1.019 Mev.] (b) For the
conditions of part (a), what is the minimum energy of the neutrons emitted ?
() In which direction are the neutrons in parts (a) and (b) emitted, relative to the
incident proton beam? [Answer this question first for yourself before starting
(a) and (b).]

1 Wheeler, 1563.
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59

5-10

5-11

5-12

5-13

5-14

5-15

5-16

NUCLEAR REACTIONS

The H(p,mHe?® reaction has a threshold energy of 1.019 Mev. (a) If H® is
bombarded with 1.100-Mev protons, what are the energies of the neutrons
produced at 0° (in the forward direction)? (b) If H? is bombarded with 1.019-
Mev protons, what are the energy and direction of the neutrons produced?

The reaction Li’(p,m)Be’ (Q = — 1.64 Mev) is widely used for the production of
monoenergetic neutrons. (a) What is the maximum neutron energy which
can be produced with a 3-Mev proton accelerator? (b) If 3-Mev protons are
used, what is the angle with respect to the proton beam axis, at which neutrons
of 1.0-Mev energy are emitted?

The reaction of Prob. 5-8 has a differential cross section of 50 mb/sr at 0° and at
a bombarding energy of 3.0 Mev. If a Li’ target is 50 kev thick to 3.0 Mev
protons, what is the number of neutrons/sec/sr emitted in the forward
direction for a bombarding beam current of 1 uA? The energy loss of Li for
3-Mev protons is 100 kev-cm?/mg.

A rectangular metallic cell of dimensions $ cm x $cm x | cm has a very thin
foil window over one of the <m x }-cm square surfaces. The cell contains pure
tritium at NTP. A 1-4A beam of 3.0-Mev protons enters the window parallel to
the long side of the cell. Calculate the total yield of neutrons/sec. The cross
section for the H3(p,n)He® reaction is 0.50 barn for 3.0-Mev protons. (Neglect
the energy loss of the proton beam in the foil and in the gas. Assume that
tritium is a perfect gas.)

N has excited states at 2.31 and 3.95 Mev. If N" gas is bombarded with
5.00-Mev neutrons, what are the energies of neutrons appearing at 90° with
respect to the incident direction?

The $%(n,«)Si?° reaction has a prominent resonance at 2.80-Mev neutron lab.
energy (see Fig. 5-22a). (a) Does this indicate a virtual state in the compound
or in the final nucleus? (b) What is the energy of this state above the ground
state? (Use Appendix C.)

(a) Compute the classical distance of closest approach for a head-on collision in
the scattering process appropriate to Fig. 5-28. (b) Is this distance larger or
smaller than the nuclear radius of Fe®? (c) Compute the Rutherford scattering
cross section at the ¢.m. angles of 10° and 70°.

The reaction C'3%d,p)C" (Q = 16.16 Mev) has a resonance at a deuteron (lab.)
energy of 2.45 Mev. Can you predict from this whether or not the reaction
BY(a,n)NM (0 = 10.99 Mev) may be expected to have a resonance and at which
alpha (lab.) energy this would occur?

(a) The effect of a (d,p) reaction is to add a neutron to the target nucleus. Show
that the binding energy of the last neutron in the product nucleus is given by the
sum of the { value of the (d,p) reaction and the binding energy of the deuteron.
(b) The reactions Pb®7(d,p)Pb**® and Pb2"*(d,p)Pb®® have Q values of 5.14 and
1.64 Mev, respectively. What are the binding energies of the last neutron in
Pb™ and Pb2™? (¢) Can you explain the difference between these binding
energies on the basis of some nuclear model ?

A state in C'% at 17.2-Mev excitation energy can decay by emission of either a
proton or an alpha particle. The total width of the state is 1.16 Mev. The reaction
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5-18

5-19

5-20

5-21

5-22

5-23

5-24

B'(p,x)Be® has a peak cross section of 0.16 b at a (lab.) proton energy of 1.4 Mev,
which corresponds to the excitation of the 17.2-Mev state of C'2. Neglecting all
spin factors, what can you say about the partial widths I', and I'; from these
data?

The U3(n,y)U% reaction has a resonance at an energy Tg§=029ev (see
Fig. 5-35). Appropriate data are given in Sec. 5-7c. (a) Compute the ratio
o(nn)fo(n,y) at the resonance. (b) Compute the magnitude of a(n,y) at the
resonance. (c¢) Compute the neutron reduced width of the resonance. (d)
Compute the lifetime of this level.

Show that the shape of the Co®(p,n) cross section near threshold follows
approximately Eq. (5-76). The cross section is shown in Fig. 5-23. The threshold
energy of the reaction is 1.89 Mev.

(a) Compute the expression J‘ o(a,b) dT, for Eq. (5-64), assuming all the widths
0

to be constant. This is known as a resonance integral and has applications in
nuclear reactor theory. (b) Compute the resonance integral for the (n,y)
resonance in U?® described in Sec. 5-7c. For simplicity take the widths as
constants, even though this is not a good assumption here.

Analyze Fig. 5-28 on the basis of Eq. (5-89). (a) Is the relation between © and
n satisfied? (b) What value of 4 do you obtain, and does it make sense?
[Because Eq. (5-89) is completely oversimplified, you should not expect more
than gualitative agreement.]

If the two fission fragments of (U + n) fission have the mass numbers and
total kinetic energy given in Table 5-4, what are their individual kinetic energies ?
Is your answer accurate, and if not, why not?

Compute from the semiempirical mass formula the value of 4 at which
Q(prompt) [Eq. (5-91)] is zero for symmetric fission. (See Fig. 5-33.)

Suppose U fissions into two fragments with 4 = 91 and 4 = 139, plus
several neutrons. (a) What is the potential energy between the two fission
fragments at the point at which they have just separated? (b) If these fragments
decay only by beta and gamma decay, what would you expect the stable end
preducts of the fission chains to be?

A beam of 0.1-ev neutrons bombards a 1-cm cube of patural uranium metal.
If the flux of the beam is 10'% neutrons/sec/cm?, what is the rate generation of
heat in the block due to the slow-neutron fission of U%® (natural abundance
0.72 percent)? Use information from Fig. 5-35 and Table 5-4. Conversion
factors are given in Appendix D.
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6-1 INTRODUCTION

As we mentioned at the beginning of the book, the two central problems in
nuclear physics are, first, to understand the nature of the force acting between
nucleons and, second, to explain the properties of a complex nucleus (many-
nucleon system) in terms of the nuclear force. These problems, although
obviously related, are essentially different, for even if the nuclear force were
known perfectly, there would still be the problem of dealing with a many-
particle system. This is present even in classical physics. 223
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In Chaps. 2 and 5 we saw how one can understand properties of a complex
nucleus in terms of nuclear models. These models require that, at least in a
complex nucleus, the nuclear force has the following properties:

1 There is a dominant short-range part, which is central and which
provides the overall shell-model potential.

2 There is a part whose range is much smaller than the nuclear radius,
which tends to make the nucleus spherical and to pair up nucleons.

3 There is a part whose range is of the order of the nuclear radius, which
tends to distort the nucleus.

There is a spin-orbit interaction,
There is a spin-spin interaction.
The force is charge independent.

NS

The force saturates.

More information concerning the force between two nucleons can be
obtained from the simplest two-nucleon system, the deuteron, and from proton-
proton as well as neutron-proton scattering. On the other hand, neutron-
neutron scattering cannot be investigated with presently available neutron
fluxes.* The interpretation of experiments, such as those discussed in Appendix
A, supports the short-range aspects (property /) of the dominant part of the
nuclear force. The range is about 2 F and an attractive potential of approximately
30 Mev is found, if the force is represented by a potential interaction. The
properties 4, 5, and 6, given above, are also confirmed, although it appears that
charge independence of the nuclear force is not perfect.

Two other properties, which are helpful in explaining saturation (property 7,
see Sec. 2-3b), can be deduced from high-energy nucleon-nucleon scattering.
At a distance of about } F, the nucleon-nucleon force becomes very repulsive;
pictorially, we speak of a hard core. Also, there is a force which can change a
neutron into a proton during a collision. This is called exchange force and will
be discussed further below. It is many orders of magnitude stronger than the
beta-decay interaction, which can also change a neutron into a proton, and
vice versa,

62 MESON THEORY OF NUCLEAR FORCES

In modern physical theories, any attractive force between two particles is
regarded as the exchange of an attractive property. The following example can
serve as an illustration. Consider two protons, separated by a distance of the
order of 10=% cm. They will repel each other by the coulomb force. If an electron
is placed in their neighborhood (Fig. 6-1a), both protons will be attracted to the

* In this connection, we remark that the free two-nucleon force may not be identical in all
respects to the two-nucleon force inside a complex nucleus. So far, there is no evidence
available that the forces are different.
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FIGURE 6-1 Illustration of an exchange
force between two protons: (a) in an 0
{(H,)" molecule, (b)in a nucleus.

0 3
~o"

]
=10 cm =~ 10 ¥ cm
)] (b)

electron. In fact, the force of attraction is sufficiently strong to overcome the
original repulsion, and a stable (H,)* molecule can be formed. In this example,
the exchanged attractive property between the two particles is an electron.

If a third proton is placed in the neighborhood of an (H,)* molecule, the
system will not be stable. This is caused by the Pauli exclusion principle. In the
lowest-energy state, which is a s state, the two original protons must have
antiparallel intrinsic spins. A third proton, placed into the same state, would
violate the Pauli exclusion principle. If it is placed into a higher energy state, the
average distance of separation increases (compare with Fig. 2-24), and the
exchange force is very much weakened. Therefore an exchange force can
saturate. Indeed, the original explanation of the saturation of nuclear forces
(Sec. 2-3b) was made in terms of exchange forces (Heisenberg, 1932), although
currently the hard core in the nuclear force is also recognized as an important
contributor to saturation.

Yukawa (1935) first suggested that some heavy particle, later found to be a
w meson, also called pion, should be exchanged between two nucleons in a
nucleus (Fig. 6-15) in order to provide binding with a sufficiently short range.
Although at first he assumed that only charged mesons are exchanged between
nucleons, later neutral mesons were included in the theory, and indeed =", m®,
and 7 mesons are now known to exist.

To show that the range of the force is related to the mass of the exchanged
particle, consider the following model of the exchange mechanism between two
protons (Fig. 6-15). Assume that normally the #° meson is contained virtually
in one of the protons. The mass of this object is M, the mass of a proton. Now
suppose that from time to time the proton dissociates into a real #° meson and
a proton. The mass of such an object would be M, + m, where m, is the mass
of a 7 meson (Fig. 6-2a). According to the uncertainty principle expression
(4-32), a temporary dissociation would be allowable if it does not take a time

longer than ¢, where
t ~ AE[R (6-1)
and from Fig. 6-2b
AE = (M, + m,)c® — M, c?

= m,c? (6-2)
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FIGURE 6-2 Dissociation of a proton into a proton and »° meson. (a) Pictorial

diagram. (b) Energy diagram.
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The greatest distance the meson could travel in this time is
r(max) ~ ct (6-3)
where c is the speed of light. Hence
i
r(max) = (6-4)
m,c

This gives an estimate for the range of the pion exchange force.
The same expression can be derived by assuming that the wave function of

the #° meson, in the region where it is far separated from the proton, is given
by the Schrédinger equation (2-47) with [ = 0
kt d*

S (E— V)

I

- 2m, dr®
= —AEu (6-5)
The corresponding solution is of the form
u — ge*” + be—*r (6-6)
2m, AE)}
K = .(mﬂ—) (6_7)

where
h

in complete analogy to the one-dimensional equations (2-99) and (2-100).
Since the system is bound, #(r — o) = 0 and a = 0 [see Eq. (2-42)]. At large
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distances from the proton the #® wave function is therefore [Eq. (2-48)]

b
Y- e (6-8)
r
where K = m’;c (6-9)

A factor V'2 has been omitted in Eq. {6-9) in accordance with the result for
obtained by using a relativistic wave equation,! rather than Eq. (6-5). Another
proton, brought into the neighborhood of the first one, will feel the effect of the
m-meson *“‘cloud” {6-8) and under reasonable assumptions’ the strength of the
interaction between the two protons is proportional to expression (6-8). This is
called the Yukawa potential. Tts “range” is given by 1/«, which is identical to
Eq. (6-4). Substituting the known mass of the = meson (~270m,), we find

~14F (6-10)

A=

which is of the right magnitude to account for the range of the nuclear force.

Detailed analysis of the high-energy nucleon-nucleon scattering has shown
that at large distances {r > 2 F) the radial dependence of the nuclear interaction
is correctly given by expression (6-8). We can account for charge independence
by assuming =, 7% and =~ mesons are exchanged between nucleons, i.e., that
within each nucleon the following dissociation takes place from time to time
(compare Fig. 6-24g)

p>prm pontat

6-11
n—n+4 7l n—p-+m @10

This dissociation also explains the charge-exchange process in a high-energy
nuclear collision between a neutron and a proton: a charged 7 meson is transferred
from one to the other.

It has been possible to investigate the charge cloud around nucleons by
high-energy electron scattering {Hofstadter et al., 1960; Littauer et al., 1961).
The picture implied by the processes (6-11) appears to be correct: the outer
charge of a protion is positive, and that of a neutron predominantly negative
(Fig. 6-3).

For reasons that would take us too far afield, the spin-orbit part of the
nuclear force cannot be caused by! the processes (6-11). Also, the shorter-range
(r <~ 2 F) properties of the nuclear force must be influenced strongly by the
exchange of other mesons or by multiple pion exchange. The same reasoning
which leads to Eq. (6-4) shows that if » pions are exchanged between nucleons,
the range decreases by roughly 1/n. Particles which decay predominantly into

! Brink, 19635, chap. 6.
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T T T T FIGURE 6-3 Radial charge distribution
in the proton and neutron versus radial
distance from the center. The charge
density is denoted by p and 4nr¥p is the
total charge between r and - + dr.
{Adapted from Littauer, Schopper, and
Wilson, 1961.)

Radial distance r, F

two or more pions have, in fact, been found and may play a role in determining
the nuclear force at distances of separation less than 2 F.

If indeed the proton and neutron have the complicated structure implied
by the processes {6-11), we might expect to find excited states of the pion-
nucleon system. Figure 6-4 shows that pion-proton total cross sections indeed
have resonances. From the discussion in Chap. 5 it should be clear that these
resonances reflect excited states of the compound system. The nucleon therefore

FIGURE 64 Total proton-pion cross section versus total energy of the compound
system. (By permission from Segré, 1964.)
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FIGURE 6-5 Excited states of a L TP
nucleon, inferred from Fig. 6.4 and -
other experiments. [By permission - YRN
from A. H. Rosenfeld et al.,, Rer. i 2!
Mod. Phys. 37: 633 (1965).] i
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does have excited states. A tentative assignment of spins and parities is given in
Fig. 6-5.

Pursuit of this interesting topic is beyond the scope of the present treatment.
It does, however, cause us to reflect whether all physical systems are complex.
As time progresses and experimental tools become more refined, the search for
more fundamental systems might actually lead to systems of progressively
greater complexity. First, man was faced with the complexity of the solar
system, into which order was brought by classifying the motion of the planets.
Next, the Mendeléef table provided an order for chemical complexity, which
was clarified further by the electronic structure of atoms. At the nuclear level,
the proton-neutron structure indicates another hierarchy of complexity. Now,
the nucleons themselves are found to be complex structures and nearly 100
other unstable particles are known. We may well speculate whether the
hierarchies of complexity will continue to increase. Or will we finally find particles
which create each other by their mutual interactions and which will form the
basic substance from which all other particles are made 7"

! For a lucid description of the present state of knowledge and speculation see Foldy, 1965.

p+a
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PROBLEMS

These problems require a study of Appendix A.

6-1 Suppose the proton-pion interaction is represented by a square well potentiai of
1 F radius. What is the depth of the potential? (Refer to Fig. 6-2.)

6-2 Compute an exact vajue for the rms radius of the deuteron, Eq. (A-13), using the
correct internal and external wave functions.

6-3 Ten-Mev neutrons are scattered by He®. What is the highest partial wave, ie.,
that of Jargest angular momentum, which you expect to be influenced by the
nuclear interaction between the neutron and the He* nucleus?

64 Prove Eq. (A-30).

6-5 (a) Show that for a square well of depth V), and range r,, the scattering length «
for a spinless neutron is given by the relation (M, = reduced mass of neutron)

1
Kycot Kyro = — where Ky = QM Vy)ijk
a

(b) Comnute ~ for ¥, = 36 Mev, ry, = 2.0 F, and n-p scattering.
6-6 Prove Eq. (A-57).




NUCLEAR
FORCE INFORMATION FROM #zmmmz A
THE TWO-NUCLEON SYSTEM

~

The methods of extracting information about the nuclear force from the prop-
erties of the two-nucleon system are fairly complicated®. Nevertheless, an
understanding of the methods can be given insofar as they require only a sophis-
tication in quantum mechanics consistent with the rest of our presentation,
The two-nucleon system allows us to apply to the simplest complex
nucleus H? the ideas presented in Chaps. 2 and 5. We can study on the one hand
the level structure of H? and on the other hand a nuclear reaction (neutron-
proton scattering) involving the same compound system. The problem is
calculable in detail, because with only two nucleons interacting, the potential

! Brink, 1965. 231
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between the nucleons, which gives the level structure, also describes the nuclear
reaction in a simple fashion (Wigner, 1933). By comparing the n-p system with
the p-p system and the n-n system (possible only indirectly), one can also obtain
information about the charge independence of the nuclear force (Sec. 2-7).

A-1 STRUCTURE OF THE DEUTERON

The binding energy of the deuteron is 2.23 Mev. It has been determined by
measuring the energy of the gamma rays emitted in the thermal neutron capture
by protons

n+ H'=H*+y

The inverse reaction has also been used, employing electrons of known energy
to produce external bremsstrahlung for the photodisintegration of the deuteron.
No stable excited states of the deuteron have been found. Various reactions,
including n-p scattering, have led to the discovery of a virtual state (see Fig.
2-29) at approximately 70-kev energy above the n-p breakup threshold, ie.,
at an excitation energy of 2.30 Mev above the ground state.

To gain some insight about extracting nuclear force information from the
deuteron level structure, we nfake the simplest possible assumption about the
force. We assume that the force is central and caused by a potential of the form

—V, for r<r,
V(ir)= (A-1)

0 for r>r,
where r is the internucleon distance. This is called a square well potential. It
has a constant value throughout a spherical volume of radius r,. Even though
this shape of potential is very much oversimplified in comparison with the true
nature of the nuclear force (Sec. 6-2), we calculate the level structure of a system
described by this potential. We use the radial Schrodinger equation (2-47)

with the substitution :

my, = M (A-2)

for the reduced mass [Eq. (2-62)]. Consistent with the approximations we will
make, the proton mass is set equal to the neutron mass and both are denoted
by M. ’

There is good evidence that the ground state of the deuteron is a 1s state,
i.e., has / = 0. First, the lowest-energy state in practically any potential is an
s state! (see Figs. 2-23 or 2-25 and also recall the ground state of the hydrogen
atom). Second, the magnetic moment of the deuteron is nearly equal to the
algebraic sum of the proton and neutron moments. indicating that the intrinsic

1 This is because the 1s-wave function has the smallest curvature and, hence, the smallest value
of —d®u/dr®, which is related to the average kinetic energy in quantum mechanics [compare
Egs. (2-47) and (2-51)]. The average potential energy is less dependent on the shape of the wave
function and therefore the kinetic energy often determines the total energy.
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spins of these particles are aligned and that there is no orbital motion of the
proton with respect to the neutron.! This is consistent with the total angular
momentum / = | of the deuteron ground state.
For / = 0, the s-wave Schrédinger equation (2-53) can be used for the radial
wave function R(r) = u(r)fr. Substituting Eq. (A-2)
2 J2
- %%}—: + V(r)u = Eu (A-3)
As we mentioned in Sec. 2-2d, this equation is mathematically equivalent to the
one-dimensional equation (2-22), except for the additional requirement u(0) = 0
[Eq. (2-54)]. We divide the radial space into the regions r < r, where V¥ = —VJ;
and r > ry where ¥ = 0. For the ground state of the deuteron, we can set
E = —B, where B is the binding energy of the deuteron. We find for r < r,

u = age'¥" | pe= K7 where K= [M(V, — B)l}/h (A4)
and for r > r,
u=der + ber where « = (MB)}/h (A-5)

Reference to Sec. 2-2g shows the mathematical correctness of these general
solutions. Physically, the following boundary conditions must be imposed :

1 u(0) =0, to keep R(0) finite.

2 u(r - o) =0, since we are dealing with a bound state [Eq. (2-42)].

3 At r = ry, the values and derivatives of the functions (A-4) and (A-5)

must match.
Condition / gives a = —b, so that we can write for r < #;
u = csin Kr (A-6)
where ¢ is a new constant. Condition 2 gives @’ = 0, so that for r > r,
u=>ber" (A-T)
Condition 3 gives,? after eliminating ¢ and &',
Kcot Kry= —«x (A-8)
or, with the help of Egs. (A-4) and (A-5)
an kry = — & = (Y2 (4-9)
K B

! Orbital motion of the proton would have a magnetic effect similar to that of a current loop
and so produce an additional magnetic momenL.

* The same relation can be obtained by matching the quantity (1/uXdu/dr), called logarithmic
derivative, at r == r, instead of matching u and dufdr separately. The logarithmic derivative
is a useful quantity because it also occurs in reaction theory.
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We will find later that ¥, ~ 36 Meyv, so that! with B = 2.23 Meyv,

Kro & (A-10)
Using Eq. (A-4) once more, we obtain
T 2h2

Vo ~ (12’) — ~ 1.0 Mev-barn (A-11)

In other words, from the deuteron binding energy alone, we cannot determine
roand ¥,, but only the above combination. An examination of the n-p scattering
cross section (Sec. A-3) gives ro &~ 2F, yielding ¥, ~ 36 Mev from Eq. (A-9).

FIGURE A-1 (a) Square well potential for the bound state of the deuteron. (b)
Corresponding radial wave function u(r) = rR(r).

v [
o r, (20F)

-B
(2.23 Mev)

1 1 1 r

4 6 8
Radial distance, F

-
(36 Mev)

(a) (b)

The wave function u(r) is shown in Fig. A-1. Inside the nuclear potential,
the wave function is approximately one-quarter of a sine wave. Because it must
match a decreasing exponential for r > ro, Kry must be slightly larger than
90° [see footnote preceding Eq. (A-10)]. The relatively slow fallofl of the wave
function, characterized by the 1/e-falloff distance [Eq. (A-7)]

h
—— =43
(MB)}

1 A more accurate value for Kr, from Eq. (A-9) is [16° rather than 90°.

1
- =

(A-12)
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means that the two nucleons in the deuteron spend a large fraction of their time
at separations r > r,. This is the classically forbidden region of negative kinetic
energy, which we encountered in Sec. 2-2g. 1f we define a mean-square nuclear
radius R, for the deuteron by

j rERYr)r® dr
Rins = _Om—_ (A-13)
f R¥r)r?dr
0

substitution of the wave function (A-7) for the entire region produces an over-
estimate and gives A

R = QMB) 30F (A-14)
This can be compared with the value 2.0 F found by electron scattering (Sec.
1-2b).

For the virtual state of the deuteron, the total angular momentum is zero,
and we turn to the n-p scattering problem to find out more about the state.
Since, relatively speaking, the virtual state lies close to the ground state, we also
expect its wave function inside the appropriate nuclear potential to be approxi-
mately equal to a one-quarter sine wave.! For the moment, we leave it an open
question whether the range or strength, or both, of the potential needed to
describe the virtual state are different from the ground-state potential.

A-2 SCATTERING THEORY

Scattering amplitude. =~ To see how the potential influences n-p scattering,
we need to consider some parts of quantum-mechanical scattering theory.?
In essence we are dealing with a three-dimensional problem very similar to the
one-dimensional problem of Sec. 2-2g, where we considered the reflection (i.e.,
scattering) and transmission of a beam of particles by a potential barrier.

We consider a single scattering nucleus, represented as in Fig. A-2 by a
potential V. For simplicity, we assume that V is spherically symmetric so that it
depends only on the radial distance r of the scattered particle from the center of
the scatterer. Qur aim will be to compute the differential scattering cross section
do/d{} using Eq. (5-35). For this purpose we must find the number of particles
dN, scattered in unit time by one target nucleus into a solid angle 4€2 (Fig. 5-9),
and we must compute the incident flux Fy, [Eq. (5-26)]. Then,

do  dN,/d§}
Q" F
! The virtual state cannot be the 2s state in the potential — V,. For such a state, the wave
function would be approximately a three-quarter sine wave within r < ro. This triples the
valug of K [compare Eq. (A-10)] and puts the excitation energy at nine times the value

(Vo — B), i.e., at about 300 Mev above the bottom of the potential.
? Schiff, 1955, sec. 18.

(A-15)
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FIGURE A-2 Quantum-mechanical scattering problem. The total wave function far
from the scattering potential F'(r) consists of an incident plane wave 'V'j, and a scattered
spherical wave 's.. The number of particles scattered per unit time into a small solid
angle d(2 at a scattering angle f is denoted by diV,.

‘PSC

Far from the scatterer, the wave function consists of an incident part
¥, representing the incoming beam of particles, and a scattered part ¥,
representing the scattered particles. As in Eqgs. (2-32) or (2-96)

\Fin — geilkz—owt) (A-16)
where k = (2moT)}/li = wave number of particles incident along z direction
my = reduced mass of incoming particle
T, = c.m. kinetic energy of incoming particle
The angular frequency w is given by Eq. (2-29), but will not be used in the
problem because we look at the scattering process in a steady-state fashion.
We assume there is a continuous supply of incoming particles (or, better, waves)
and a continuous scattering away from the scattering center. The particles not
affected by the scatterer go “to infinity” along the beam direction. According
to Eq. (5-26) the incoming flux of particles is
Fip =YV 0
= laftv (A-17)

where v is the speed of an incoming particle with respect to the scatterer.
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Far from the scatterer, the scattered particles will travel in a radial direction.
They are therefore represented by a radially outgoing, traveling wave e'® =",
But the total number of particles traversing a spherical surface surrounding the
scatterer must be independent of the radius r of the surface. Hence, we write

ei(lcr—wl)

\P'so = af(e)

where a is included for convenience and f(f) is an amplitude factor, independent
of r, which must be calculated from the complete Schrédinger equation. The
amplitude f(0) is called the scartering amplitude. The number of particles dN;
scattered per unit time into the solid angle d€2 (see Fig. A-2) is equal to the
flux of scattered particles W', v multiplied by the area r? d€2 cut out by 4Q
on a spherical surface of radius r.

dN, =1t vr2dQ
= a2 | /(0)|2 v dQ (A-19)
Note that since we wrote W, in the form (A-18), dN, is independent of r. In a

radial motion, the number of particles traveling within the cone defined by 4Q
must be independent of r.

Substituting Egs. (A-17) and (A-19) into Eq. (A-15) we find for the differ-
ential scattering cross section

(A-18)

r

do
0= |/ (®)? (A-20)

and for the integrated scattering cross section [Eq. (5-36)]

a =f| (0)[? dQ (A-21)

Our problem has now been simplified in the following way. If, far from the
scatterer, we can find a solution of the (time-independent) Schrédinger equation
(2-19)

k2
. — 5— Viy + Vy = Ey (A-22)
2m,
and can put it into the form
p = afe™s — /(8) rt 7] (A-23)
then the factor f(f) can immediately be recognized as the scattering amplitude
and used to compute the differential scattering cross section [Eq. (A-20)].

Partial wave analysis.! Qur task is made easier if we can write the
solution (A-23) completely in the spherical coordinates r and 6, which we
introduced in Sec. 2-2d. (For a spherically symmetric potential there can be no
¢-angle dependence of the solution.) For this purpose, we decompose both

! Schiff, 1955, sec. 19.
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terms in the right brackets of Eq. (A-23) into partial waves, each corresponding
to an orbital angular momentum / (in units of 4).

From a semiclassical point of view, we are characterizing the particles in
the incident beam by their impact parameters y, shown in Fig. 5-21, which can
extend from zero to “infinity.” Each impact parameter is related to / by
Eq. (5-30) y o~ I (A-24)
where & = l/k is the reduced de Broglie wavelength of the incident particles.
Classically, y can be distributed in a continuous manner. In reality, though, / is
quantized in integral steps so that the incident beam must be decomposed into
zones, shown schematically in Fig. A-3. Each zone is characterized by a given /.
We note in passing that this picture can be used in nuclear reaction theory to
make an estimate of the total reaction cross section, i.e., the cross section due
to all processes except shape elastic scattering. The area of each of the zones in
Fig.“A-3 is approximately

a(yt — ¥y =mA( 4+ 1) — B = 2] + 1)mi? (A-25)

If all the particles up to a certain /,,, react with the target nucleus and the
other particles do not react at all

max

!
Oreact = i z (21 + 1) = W’Tz[(lmnx + 1)2] (A'26)

0

FIGURE A-3 Semiclassical view of
partial wave analysis. The incident
beam, seen in cross section on the
figure, consists of particles of
varying impact parameters y,, re-
lated to the angular momentum /[
by Eq. (A-24). A nuclear interaction
of radial extension R affects only
those particles whose impact param-
eters lie approximately within R.
This figure should be compared
with Fig. 5-21, which shows a side
view of the motion of a particle in
the beam.
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If /.,y 1s given by Eq. (5-51) we find
Oreget =~ 7"'(R + 1)2 (A"27)

This can be used only for very crude estimates of the energy dependence of this
cross section.,

When we discussed the separated solution (2-43) of the Schrédinger equa-
tion in spherical coordinates, we mentioned that it was of the form

R(r) Pi™ (cos ) e'™ (A-28)

where / was the orbital angular momentum of the wave. Therefore, it seems
reasonable that if we have a general solution of the Schrddinger equation
F(r, 6) (which does not have a g-angle dependence) and make a series expansion
of the form?

F(r,6) = E Fy(r)P(cos 8) (A-29)
1=0

each coefficient F,(r) is associated with a definite orbital angular momentum /.
For the incoming wave function ei**( = ¢ < ) one can show that far from
the origin (r > 1/k)

sin (kr — 41m)

F(r)=1i2+1) (A-30)
kr
and in particular for the s wave component of e*2
ink
Fn =22 (A-31)
kr

For the scattering amplitude f(8), we define (constant) partial wave scattering
amplitudes f; by the relation

f6) =3 fiPi(cos 6) (A-32)
1=0

The further simplification we have now accomplished is the following.
Assume that we have solved the Schrédinger equation (A-22) for a given I and
have the solution in the form (A-28) (with m = 0 to eliminate the ¢ angle,
since we are considering only spherically symmetric potentials)

R(r)P(cos 6)
! Pfcos 0) is called a Legendre polynomial and is identical with the associated Legendre

polynomial P;"(cos 8). The first few polynomials are Py = 1, P, = cos §, Py = H(3cos* 8 — 1).
They obey an orthogonality relation

JAPIP!’ d{cos8) =0 if IEN and f}’,’ d(cos ) = 2/(21 + 1)

This can be used to cvaluate the coefficients Fi(r) in particular cases by multiplying both sides
of Eq. (A-29} by P and integrating over d(cos §).
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far from the scatterer. This expression can now be compared with the /th
component of expression (A-23). In particular, if we restrict ourselves to s
waves, we find with the help of Eqgs. (A-31) and (A-32)

sin kr n e”")
kr °

R(r) = a(
= i [(I —+ 2ikf)e"’“' _ e—l‘kr]
2ikr ’

or u(r) ~ (1 + 2ikfo)etsr — e-ter (A-33)

where we concentrate just on the radial dependence of the wave function. By
putting the radial wave function in this form, we can recognize the scattering
amplitude f; by inspection. From Eq. (A-20) we can then compute the s-wave
differential scattering cross section

AP A-34
E-ﬁ—lfol (A-34)

which is independent! of the angile 6. Also, from Eq. (A-21)

o = 4n|fy* (A-35)

We will show below that, far from the scatterer, the s-wave wave function? can
always be put into the form (A-33).

S-wave phase shift. =~ We reasoned in Sec. 5-4d that only those bombarding
particles with a given / (translate now: partial waves with a given ) should be
affected by the nuclear interaction, for which / < R/x. In the case of n-p
scattering, R would have to be identified with the range r, (2 F) of the inter-
action, rather than with the radius of the deuteron. Looking at Table 5-2, we
see that for c.m. energies below about 5 Mev (lab. energies below 10 Mev) the
n-p interaction should take place only with /= 0. We therefore restrict our
discussion henceforth to s waves,

In this case, the Schrédinger equation which has to be solved is again Eq.
(A-3); but in the scattering problem, the energy E is positive and equal to the
c.m. kinetic energy T, of the incoming particle. As we showed in the pre-
ceding section, we must find the solution far from the scatterer and put it into
the form (A-33) to compute dofdS2. “‘Far from the scatterer” means that ¥{(r)
should be zero there, which for the square weil (A-1) applies for r > r,. Hence,

we need to solve only the equation
h* d?u
T (A-36)

! We used this fact in Sec. 3-3b.
t This can also be extended to other / values.
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The most general solution is
u = Asin(kr + dy) (A-37)

where k = (MTy)}/h, and 4 and 6, are constants which must be determined by
the solution of Eq. (A-3) in the region where V(r) is finite. The quantity d, is
called the s-ware phase shift. It is often used instead of f, to parameterize the
differential cross section (A-34). Let us attempt to write Eq. (A-37) in the form
(A-33)
Ae—ido
2i

7 —

(eziao evkr emikr) (A-38)

First, we see that this can be done. Second, we find that
| + 2ikfy = &%

etid — 1 g sin 4,

= = -39

or fo= "7 k (A-39)
do  sin? g, )

Hence 0w A%sin? 4, (A-40)

and o = 4w X% sin? §, (A-41)

The significance of the phase shift can be appreciated by the following
argument. 1f there were no potential at all, Eq. (A-36) would be the correct
Schrddinger equation everywhere, even at r = 0; and Eq. (A-37) would be the
correct solution. But since u(0) = 0 [see Eq. (2-54)], we must set 6, = O in this
case so that

u = Asin kr (A-42)

is the actual solution. Also o = 0, which is obvious, because without scatterer
there can be no scattering. The phase shift d, is, therefore, the shift in the phase
of the wave function when the potential is “turned on.” One can show that if an
attractive potential is turned on slowly,! 8, is always positive at first, and if a
repulsive potential is turned on slowly 8, is always negative at first. A positive
d, means that the wave function is “pulled in,” as shown in Fig. A-4.

Scattering length. Another useful parameter, especially in work with very
slow neutrons, is called the scattering length.? This is defined as the negative of
the value of f; [Eq. (A-39)] in the limit of zero incident energy or & — 0.

@ = lim x—o _f;) (A_43)
Since f, cannot become infinite as kK — O (otherwise ¢ would become infinite)

' We mean that if the potential is written as xM(r), a is slowly changed from 0 to 1.
* This parameter was intreduced in Sec. 5-5b.
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FIGURE A-4 Definition of the phase shift. Without a scattering potential, the wave
function would be of the form u = A4 sin kr. The presence of a potential ¥(r) alters
the wave function 1o « = Asin(kr + ;) far from the scatterer, where F(r) = 0.
For an attractive potential, the wave function is pulled in and & is positive.

/—u = Asin (kr +6,)

-
> \\

u

/|
!
!
!
/
F
/
/
{ kr
—
Positive
Eq. (A-39) shows that 8, must also approach zerc and that!
e'esin 4, da
&= timpag — = (A-dd)
The cross section (A-41) can then be written
o(k — 0) = drat (A-45)

The following physical significance can be attached to «. At very low
energies the wave function (A-37), cutside the range of the potential, can be

written .
u= Asink(r — a)

-1 Ak(f - (L) (A-46)
The scattering length is therefore the extrapolated intercept of the wave function
on the r axis, as shown in Fig. A-5. We can also see that if the inner wave

! The definition (A-43) does not tell whether @ will be zero or finite, although physically we
expect a finite scattering cross section even at very low energies.
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function has a negative slope at » = ry, « is positive.! Since a negative slope
implies a possible bound state (see Fig. A-1), scattering from a potential giving
a bound state produces a positive «. Similarly, if the potential gives only a
virtual state, the slope of the inner wave function at r = r, is positive and = is
negative. These cases are shown in Figs. A-5a and b, respectively.

! Correctly, we should say that the logarithmic derivative at r, determines the sign of @ because
A could be positive or negative. But (1/u)(du/dr) is independent of A4.

FIGURE A-5 Definition of scattering length. At very low energies,
the neutron wave function far from the scatterer can be written
u ~ AK(r — a). If the potential gives rise to a bound state, « is
positive as in (a). If the potential gives rise to an unbound (virtual)
state, « is negative as in (b).

u

E)

i u=Ak(r—a)
] /

'

1

1

1

1

! r
ry

a
Positive
(a)
i
: u=Ak(r—a)
| :
/./' i
_ ; .
ry
a
Negative

5




244 NUCLEAR FORCE INFORMATION FROM THE TWO-NUCLEON SYSTEM

A-3 NEUTRON-PROTON SCATTERING

The parameterization of the s-wave scattering cross section by the scattering
amplitude f; or the phase shift §, (or by the scattering length «) is a matter of
convenience. We still have to solve the problem in terms of the actual nuclear
interaction, but our task is facilitated by the parameterization,

For the n-p scattering problem, we again make the simple assumption of a
square well [Eq. (A-1)] for the nuclear potential and solve Eq. (A-3) in the region
r < ro. The solution has the mathematical form (A-6}

u=Csin K'r where K = [M(V,+ T}k (A-47)

We recall that Ty is the c.m. kinetic energy of the incoming particles. The
value and derivative of the function (A-47) must be matched at r = r, to the
outer wave function (A-37). Elimination of the constants 4 and C yields

K’ cot K'ry = k cot (krg + &) (A-48)
To solve this equation rapidly for d, we make the following temporary
simplifications.

/  We assume that the scattering length « [see Eq. (A-44)] is much larger
than the range r, of the potential, so that, at least at very low neutron
energies, kry can be neglected with respect to .

2 For low incident energies (T, < V) we assume
K'~K (A-49)

where K is given by Eq. (A-4). The implication is that the shape of the
inner wave function is practically independent of the energy E in Eq.
(A-3) as long as |E| <€ V.

Comparing now Eq. (A-48) with Eq. (A-8) we find
kcotdy~ —x (A-50)

where « is given by Eq. (A-5). Substituting into Eq. (A-40) and noting that
sin®* a = /(1 + cot? «), we finally obtain

do 1K l A5
dQ " kP42 MT,~ B (A-51)
4zht | 52
and A barn {A-52)

M T,+ B (T, + B)in Mev

For T, < B{= 2.23 Mev), this gives ¢ &~ 2.3 b in strong disagreement with the
experimental result of 20.4 b shown in Fig. A-6. (Note that the lab. Kinetic energy
T, = 2T, is plotted along the abscissa of the figure.) At higher energies, Eq.
(A-52) approaches the experimental cross section.
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FIGURE A-6 Integrated neutron-proton scattering cross section per proton in
hydrogen gas. (@) Experimental curve. At low energies a rise in the cross section
caused by molecular binding effects and thermal motion can be noticed. (b) Cross
section calculated by Eq. (A-51). The cross section calculated by Eq. (A-55) follows
the experimental curve closely. (Experimental cross section from D. J. Hughes and
R. B. Schwartz, *"Neutron Cross Sections,”” Brookhaven National Lab,, BNL 325, 2d
ed., U.S. Government Printing Office, Washington, 1958.)
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Wigner (1933)! suggested a way to overcome this discrepancy. He noted
that in n-p scattering, the particles could collide either with total spin | (called
the triplet state) or with total spin 0 (called the singlet state). If the nuclear
interaction should have a different strength or range (or both), Eq. (A-40),
and hence Eq. (A-52), would have to be modified.

The probability of colliding in a triplet state is three times that of colliding
in a singlet state, because the total spin vector S can have 25 + 1 orientations in
space. Each orientation is characterized by the magnetic spin quantum number
m, [analogous to m of Eq. (2-44)] which can range from —S to § in integral
steps. If S = 0, only m, = 0 can occur, but if § =1, m, = —1, 0, 1 are
possible. Therefore do 3sin?d,  1sin?é,,

aQ 4 Kk 4k

(A-53)

where the subscripts t and s denote the triplet and singlet contributions re-
spectively.

! Unpublished, see Bethe and Bacher, 1937,
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From the discussion in Sec. A-1, we know that the triplet interaction gives
rise to the ground state of the deuteron at an energy £ = —B. If the singlet
interaction produces a state of energy E = E* (where E* could be positive or
negative), one finds for the integrated cross section

"ﬁz( N ) A-55
¢~ — - -
M\Ty,+ B T,+ |E¥ ( )
Comparison with the low-energy n-p cross section yields |£*| &~ 70 kev and
gives rather good agreement with the entire experimental cross section (Fig.
A-6).

Since the energy £* is quite small compared to ¥ the singlet wave function
inside the nuclear potential is also approximately a one-quarter sine wave, as in
the triplet case (Fig. A-1). Therefore we cannot obtain more information about
the strength ¥y, and range ry, of the singlet interaction than is given by Eq.(A-11)
for the triplet interaction. In other words, up to this point we only know

Vorroi® = Vogros: &~ 1.0 Mev-bam (A-56)

The zereo-range approximation kry << d, which we have made [Eq. (A-50)]
hides all the information about the range of the nuclear interaction. Had we not
made the two simplifications preceding Eq. (A-50), we would have found the
same cross section expressions (A-51) and (A-52), but multiplied by a factor!

(1 + To + higher-order terms in powers of E) (A-5T)
K K

The singlet cross section must also be corrected.! Using information from
neutron scattering on parahydrogen, discussed in Sec. A-4, and from proton-
proton scattering, the various range and strength parameters can be extracted.
They are summarized in Sec. A-5 and indicate quite clearly that nuclear forces
are spin-dependent, i.e., the interaction is quite different in the singlet and triplet
states.

Although we have treated only the square well potential, there is a general
method available for extracting range and strength information from nuclear
data, which is applicable to potentials of arbitrary radial shape. It is called the
effective range approximation !

A-4 VIRTUAL STATE OF THE DEUTERON. NEUTRON
SCATTERING BY PARAHYDROGEN

Schwinger and Teller (1937) suggested a method of verifying directly that the
n-p interaction is indeed spin-dependent. This proposal also allowed them to
determine the sign of the singlet excitation energy £E* in Eq. (A-55).

' Evans, 1955, chap. 10, sec. 3
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The dimensions of ordinary molecules are of the order of 10~ cm = 10% F.
If neutrons are scattered by molecules, the scattering will take place independ-
ently on the various nuclei in each molecule, as long as the neutron (reduced)
de Broglie wavelength is much less than the distance between nuclei. This
corresponds to neutron energies above about 1 ev (see Table 5-2). But for
neutron energies less than approximately 10~% ev, neutron scattering takes
place from the entire molecule. We say that the scattering from the nuclei in the
molecule i1s now coherent.

From the point of view of scattering theory, the potential ¥ of the molecule
in Eq. (A-22) is made up of the individual scattering potentials ¥} + ¥, + - - of
the nuclei. As long as the neutron wavelength is much larger than the inter-
nuclear distance, the scattered wave far from the molecule will move in a radial
direction with respect to the center of the molecule. The exact location of the
individual nuclei plays no role in this approximation. The total wave function of
the scattering problem is, therefore, analogous to Eq. (A-23)

v = ales + [f{B) + fo(f) + - - I etkr) (A-58)

where each scattering amplitude corresponds to a particular nucleus. It then
follows from the derivation preceding Eq. (A-20) that

d
Eg=M@+mm+~v (A-59)

In the case of s-wave scattering, the integrated scattering cross section per
molecule (A-35) becomes in obvious notation

o =4 |fu + foa + - (A-60)
which, at the very low neutron energies implied in our derivation, can also be
written in terms of the individual scattering lengths (A-43)

0 = 4dm(a, + ag L+ - ) (A-61)

Let us apply this to neutron scattering by hydrogen molecules. In a hydro-
gen molecule, the spins of the two protons can either be aligned (orthohydrogen)
or opposed {parahydrogen). At room temperature there is a statistical mixture
of these two types of molecules (in the ratio 3:1). At very low temperatures
(<290°K), hydrogen gas consists only of parahydrogen molecules, because their
internal molecular energy is smaller than that of orthohydrogen.

A neutron scattered by a parahydrogen molecule will find itself in the
triplet state with respect to one proton and in the singlet state with respect to
the other proton. In the scattering cross section (A-61), the triplet and singlet
scattering lengths should therefore occur in the ratio 3:1. Taking into account
other spin factors, Schwinger and Teller (1937) showed!

Opara = 6.60 (32, + 4y
Blatt and Weisskopf, 1952, chap. 2, secs. 3.C and D.
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Experimentally, 6,,., ~ 5 b, leading to
[3a, + a4 ~8.7F (A-62)

Writing the low-energy n-p cross section (T, > | ev) at room temperature
in terms of the scattering lengths, we find from Eqs. (A-53) and (A-44)

o = n(3ad + ag) (A-63)
where, by comparison with expression (A-51) or (A-55)
a, ~x'=43F (A-64)
so that from the experimental value o = 20.4 b (Fig. A-6)
2y~ =24 F (A-65)

To satisfy Eq. (A-62), we must use the minus sign for a;. From our discussion
at the end of Sec. A-2 and from Fig. A-5, we then see that the singlet interaction
must give rise to a virtual state.

By applying Eq. (A-48) at very low energies, we can obtain equations
relating the well parameters (r, and ¥;) to the scattering lengths for the triplet
and singlet interactions.! This permits us to extract the separate parameters.

A-5 PARAMETERS OF THE TWO-NUCLEON FORCE

An analysis of proton-proton scattering is also very useful, because the low
energy p-p scattering can take place only in the singlet s state. A triplet s state
for two protons would violate the Pauli exclusion principle.? Of course, coulomb
scattering has to be considered, but it is modified from Eq. (5-45) because of
the identity of the two particles. (After the scattering, it is impossible to dis-
tinguish the incident particle from the target nucleus!) Mott (1930) first calcu-
lated this quantum-mechanical effect. Coulomb and nuclear scattering interfere
coherently. An expression similar to (A-59) must be used for the cross section.
The resulting expression is of the form

do(p,p) _ doyen sin? dyq
= A, 8y6) + A-66
a0 aq T AG %) T (A-66)
where A(8, d,,) is an interference term. A typical cros: tection is shewn in Fig,

A-7. From an analysis of the data, one finds a coulomb-corrected singlet scatter-
ing length of —17 F and a singlet range parameter rys = 2.7 F.

Table A-1 summarizes the available information we have discussed. The
difference between the singlet and triplet interactions is very marked and con-
firms the spin dependence of the nuclear force found in complex nuclei. The
major difference between the singlet scattering lengths for n-p and for p-p

! See Prob. 6-5.
 The lowest triplet s slate is also absent for the two electrons in a helium atom.
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scattering can be attributed to the different magnetic moments of the neutron
and proton. A small residual difference has led to the suspicion that the nuclear
force might not be completely charge independent. The #-n interaction (also
possible in the singlet s state only, at low energies) can be inferred indirectly
from reactions such as H* + 7= — 2n 4~ y or H® - n — 2n + p. A value of
—17 F is consistent with the data and indicates charge symmetry of the nuclear

force.

FIGURE A-7 Differential cross section for
proton-proton elastic scattering for 2.4-Mev
protons. Near a c.m. angle of 90° (lab. angle
of 457, the scattering is mainly caused by
nuclear interaction. At forward and back-
ward angles, the coulomb interaction pre-
dominates. [By permission from J. D.
Jackson and J. M. Blatt, Rev. Mod. Phys.
22:77 (1950).]
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TABLE A-1 Square well parameters for the two-nucleon interactiont

Interaction Scattering length «, Range rq, Strength V,,
F F Mev

Triplet 5.4 2.0 36

Singlet —23.7%, 17§ ~2.5 18

t From M. A. Preston, Physics of the Nucleus, Addison-Wesley Publishing Co., Inc.,

Reading, 1962, by permission.
1 For (n-p) interaction.
§ For (p-p) interaction.

180°







PHYSICAL
PROPERTIES OF wzmrmztrrtatat vttt
THE ELEMENTST

Atomic Atomic or Density Nucleilcn?®
number Element molecular weight glem® (x 10%%)
Z K4 P n
1 H, 2.016 899 x 10~% **

2 He 4,003 17.85 x 107® *

3 Li 6.940 0.534 4.64
4 Be 9.013 1.85 12.37
5 B 10.82 2.34» 13.03
6 C 12.01 2.25° 11.29
7 N, 28.02 1.25 x 1073 **
8 0, 32.000 143 x 10-3 .
9 F, 38.00 1.69 x 1073 **

10 Ne 20.18 9.00 x 10— *

11 Na 22.99 0.97 2.54
12 Mg 24,32 1.74 431
13 Al 26.98 2.702 6.03
14 Si 28.09 2.329 5.00
15 P 30.98 1.82¢ 3.54

*Amorphous vGraphite °Yellow phosphorus, P,; mol. wt = 12392
dRhombic, Sg; mol. wt. = 256.53 eSolid, 29.6°C.; melting point = 29.8°C.
Black crystal, As,; mol. wt. = 299.64 eAmorphous, Seg; mol. wt. = 631.68
"Hexagonal 1At 22.5°C Tetragonal (ordinary; £) kMetallic tantalum
*Monoatomic gas; 2.69 x 101 nucleifcm® at NTP **Diatomic gas; 538 x 10t
nuclei/cm?® at NTP

t From J. B. Marion, 1960 Nuclear Data Tables, Part 111, Nuclear Data Project, Natl. Acad.
Sci.—Natl. Res. Council, Nucl. Sci. Ser., Washington, 1960. Available from U.S. Government
Printing Office, Washinglon, D.C.
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PHYSICAL PROPERTIES OF THE ELEMENTS

Atomic | i Atomic or Density, | Nucleijem?®
number . Element molecular weight glem® {~ 10%2)

Z ! ks p n

16 s 32.066 2.07¢ 3.89
17 Cl, 70.91 3.214 x 1073 **

18 A 39.944 1.784 x 1073 *

19 K 39.10 0.86 1.33
20 Ca 40.08 1.55 2.33
21 Sc 44.96 2.5 3.35
22 Ti 47.90 4.5 5.66
23 \s 50.95 5.96 7.05
24 Cr 52,01 7.20 8.34
25 Mn 54.94 7.20 7.90
26 Fe 55.85 7.86 8.48
27 Co 58.94 8.9 9.10
28 Ni 58.71 8.90 9.13
29 Cu 63.54 8.92 8.46
30 Zn 65.38 7.14 6.58
31 Ga 69.72 5.904¢ 5.10
32 Ge 72.60 5.35 444
33 As 74.91 5727 461
34 Se 78.96 4.82¢ 368
35 Br, | 159.83 2.928 ' 2.07
36 Kr | 83.80 3.71 x 102 .

37 Rb 85.48 1.532 1.08
38 Sr 87.63 2.6 1.79
39 Y 88.92 5.51 373
40 Zr 91.22 6.4 4.23
41 Nb 9291 8.55 ’ 5.54
42 Mo | 95.95 10.2 6.40
43 Te i 98 — —_—
44 Ru 101.1 12.06" 119
45 Rh 102.91 12.4 . 1.26
46 Pd 106.70 11.40! | 644
47 Ag 107.88 10.5 : 5.86
48 Cd . 112.41 8.642 I 463
49 In | 114.82 7.30 | 383
50 Sn 118.70 7.28 | 3.70
51 sb | 121.76 6.684 | 3.07
52 Te, 255.22 | 625 ‘ 2.95
53 I, 253.81 4.93 I 234
54 Xe ! 131.3 ’ 585 « 100 |+

55 Cs | 132.91 | 1813 \ 0.85
56 Ba 4 137.36 L35 ! 1.54
57 La 138.92 ; 6.15 o267

|
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Atomic Atomic or Density, Nucleilcm?®

number Element molecular weight glen? (< 10%%)
Z kg P n
58 Ce 140.13 6.7 2,88
59 Pr - 140,92 6.5 2.78
60 Nd 144.27 6.9 2.88
61 Pm 145 — —
62 Sm 150.35 7.9 3.09
63 Eu 152.00 5.22 2.07
64 Gd 157.26 7.95 3.05
65 Td 158.93 8.33 3.16
66 Dy 162.51 8.56 3.17
67 Ho 164.94 8.76 3.20
68 Er 167.20 9.16 3.30
69 Tm 168.94 9.35 3.33
70 Yb 173.04 7.01 244
7 Lu 174.99 9.74 3.35
72 Hf 178.60 13.3 4.49
73 Ta 180.95 16.6*% 5.53
74 W 183.86 19.3 6.32
75 Re 186.22 20.53 6.64
76 Os 190.20 22,48 7.12
77 Ir 192.2 22,42 7.03
78 Pt 195.09 21.45 6.62
79 Au 197.0 19.3 5.90
80 Hg 200.61 13.55 4,07
81 Tl 204.39 11.85 3.49
82 Pb 207.21 11.34 3.30
83 Bi 209.00 9.80 2.83
84 Po 210 9.24 2.65
85 At 211 — —
86 Rn 222.00 9.73 x 1073 *
87 Fr 223 — —
88 Ra 226.05 5 L3
89 Ac 227 — —
90 Th 232,05 11.2 2.94
91 Pa 231 154 4.02
92 U 238.07 18.7 4.73
93 Np 237 — —
94 Pu 239 19.74 4.98







PROPERTIES
OF STABLE
NUCLIDES'

(1) Atomic number; (2) Chemical symbol; (3) Name; (4) Mass number; (5) Neutron number; (6) Mass excess in
milli-mass-units based on C% = 12.000 ... u; (7) Ground-state spin; (8) Ground-state parity: (9) Relative abun-
danee of isotope in element, in percent; (10) Notes. Uncertainties in the last one or two significant figures are
given in parentheses.

z| s Name AN WMy | g | | Relative Notes
W @ €)] “@ | () (6) @ | ® 9) {0y
0| n Neutron 1= 1 8.66544(43) | 4 o P ;14 = 12.8 min.
1| H |Hydrogen 1 0| 7.82522(8) | & | + 99,985
2 1| 14.10219(11) | 1 + 0.015
2 | He |Helium 3 1| 160299423y | 3 |(+) | =107
4 2| 2.60361(37)| 0 | + |=a100
3| Li [Lithium 6 3| 15.1263(10) 1 7.35
7 4| 16.005311) | 1 |[(—) 92.65
4 | Be | Beryllium 9 5| 12.1858(9) i | - 100
5| B | Boron 10 5| 12.938%(7) 3| + 19.20
11 6| 9.30509(43)| ¥ [(—) 80.80
6| C |Carbon 12 6| o0.0000021) | O |(+) 98.893(5)
13 7| 3.3543(T) P - 1.107(5)
7| N | Nitrogen 14 7] 3.0743807)| 1 + 99.273(2)
|15 8| 0.108109) } | - 0.727(2)
8|0 |Oxygen 16 8| —5.08506(28)| ¢ | + 99.5186(7)
17 9| —0.8666(9) £ |+ 0.0745(5)
18 | (0| —0.84017(34)| 0 | + 0.4068(5)
9| F |Fluorine 19 | 10| —1.5954(T) |+ 100
10 | Ne | Neon 20 | 10| —7.5596(5) 0 | () 90.920(36)
21 | 11| —6.150807) | ¥ | + 0.258(1)
22 | 12| —8.6155(6) 0 | (+) 8.822(18)
11 | Na |Sodium 23 | 12]|—10.2274(16) | § | + 100
12 | Mg | Magnesium 24 12| —14.9554(19) | (O) | (+) 78.6(2)
25 | 13|—14.1603¢20) | § |(+) 10.12(2)
26 | 14|—17.4091(24) | ©) { () 11.20(4)
13 | Al | Aluminum 27 | 14| —18.465121) | & |(+) | 100
14 | Si | Silicon 28 | 14]—23.072931) | (0) | (4} 92.17(1)
29 | 15|—23.5092(36) | } |(+) 4.71(2)
30 | 16|—26.2393(43) | (0) | (+) 3.12(2)

* Denotes radioactive nucleus. The table includes the neutron and some radioactive nuclei of geological signifi-
cance.

t From G. L. Trigg, Systematics of Stable Nuclei, in D. W. Gray (ed.), “American Institute of Physics
Handbook,” 2d ed., McGraw-Hill Book Company, New York, 1963, by permission.




256 PROPERTIES OF STABLE NUCLIDES

z| s Name AN 1M—a) | T | = f”’z’“’e Notes
| @ &) @ |9 ©® O | @ T 0
15| P |Phosphorus | 31 | 16|—26.2366(15) | % |(+4)| 100
16| S | Sulfur 32 | 16|—27.9262(11) | © | + 95.02(30)
33 | 17]—28.5395(30) | 3 + 0.750(15)
34 | 18(—32.1355(31) | O | + 4.215(84)
36 | 20(—32.9095(35) | (O) | (+) 0.017(2)
17| C1 | Chlorine 35 | 18|—31.145528) | % | + 75.529(24)
37 1 20|—34.104122) | § | + 24.471(24)
18 | Ar |Argon 36 | 18(—32.4519(34) | (©) |(+) 0.337(1)
A | e 38 | 20|—37.275524) | (©) | (4) 0.063(1)

40 | 22|—376162(8) | (O |(+) 99.600(1)
19 | K |Potassium 39 | 20]|—36.2860(30) | 3 |(+) 93.126(5)
40% | 21 [—35.9921(36) | 4 |(—) 0.0112(5) | EC(12.4%), -(87.6%);
ty = 1.28 X 10° years.

41 | 22|—38.1649(46) | # + 6.862(5)
20 | Ca |Calcium 40 | 20|—37.4108(37) | (O |(+) 96.92(3)
42 | 22|—-41.372344) | (0) |(4+) 0.64(1)
43 | 23|—41.2200048) | § |{(—) 0.132(4)
44 | 24|—44.5103(48) | (0) | (+) 2.13(4)
46 | 26|-—46.3112(41) | (O) | (+) 0.0032
48 | 28|—47.481(15) O (1) 0.0179(7)
21| Sc¢ | Scandium 45 | 24|—44.081142) | § |(—) 100
22 | Ti | Titanium 46 | 24|—47.3666(37) | (0) | (+) 7.992)
47 | 25|—48.242(8) $ () 7.32(2)
48 | 26|—52.0522(36) | O |(+) 73.99%(7)
49 | 27|—52.1334(35) 3 (=) 5.46(2)
50 | 28|—55.2109(48) | (O |[(+) 5.25(5)
23 | V | Vanadium 50% | 27 [—52.8354(40) 6 | (+) 0.24(1) EC; 13 = 4 x 10!t years.
51 | 28|—56.0221(42) | ¥ |[(—) 99.76(1)
24 | Cr | Chromium 50 | 26|—53.9493(45) | (O |[(+) 4.31(4)

52 | 28|—59.4863(36) | (O) |(+) 83.76(14)
53 | 29|—59.3489(37) § () 9.55(9)

54 | 30|—61.1206(48) | (©) | (+) 2.38(2)
25 | Mo |Manganese | 55 | 30|—61.9464(41) | § |(—)| 100
26 | Fe |Iron 54 | 28 |—60.379(6) © [ () 5.81(1)

56 | 30| —65.068(6) O () 91.64(2)
57 | 31| —64.606(6) 3 | 2.21(1)

58 | 32|—66.728(7) O | (+) 0.34(1)
27| Co |Cobalt 59 | 32|—66.810946) | ¥ |(—)| 100
28 | Ni | Nickel 58 | 30|— 64.658(6) O | (+) 67.76(22)
60 | 32|—69.217(6) © | () 26.16(66)
61 | 33|—68.951(9) @ () 1.25(3)
62 | 34|—71.655(D O () 3.66(1)
64 | 36|—72.041(6) O () 1.16(20)
29 | Cu | Copper 63 | 34| --70.406(6) 3 | — 69.12(5)
65 | 36|—72.214(6) 3 | — 30.88(5)
30 | Zn | Zinc 64 | 34|—70.855(5) © [ () 48.89

66 | 36| —73.952(10) 0 | ) 27.81
67 | 37(—72.851(11) § — 4.11
68 | 38 |—75.135(9) O (P 18.56

70 | 40 | —74.652(16) © | (-H) 0.62
31 | Ga | Gallium 69 | 38| —74.318(28) 3| — 60.22(16)
71 | 40[—75.16(5) i | — 39.78(16)
32| Ge | Germanium | 70 | 38 |—75.723(20) o | () 20.52(17)
72 | 40 |—78.26(5) O 1 (+) 27.43(21)
73 | 41 |—76.647) 3 + 7.76(8)
74 | 42|—78.85(6) O | ) 36.54(23)

76 | 44 |—78.64(9) O | (4 7.76(8)
33 | As | Arsenic 75 | 42 |—78.42(5) 3 — 100
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z!| s Name | AN [10M—a | I | = Relative Notes
@ @ 6) OMG) ) o e TG (10)
34 | Se | Selenium 74 | 40 |—77.55(6) 0 | (+) 0.87(1)
76 | 42|—80.771(48) | (0 | (+) 9.02(7)
77 | 43 |—80.066(48) ¥ |~ 7.58(7)
78 | 44 |—82.652(48) 0 | (+) 23.52(2)
80 | 461 -83.488(17) 0 | (+) 49.82(20)
82 | 48 | —83.34(7) 0 | +) 9,19(20)
35| Br | Bromine 79 | 44| —81.652(19) | - 50.537(10)
81 | 46 | —83.656(37) | - 49.463(10)
36 | Kr | Krypton 78 | 42 (--79.632(5) ©0) | (+) 0.354(2)
80 | 44 | —83.612(13) ©) | (+) 2.27(1)
82 | 46 |—86.517(8) ©) | (+) 11.56(2)
83 | 47 |—85.869(8) 3 |+ 11.55(2)
84 | 48 |—88.456(5) o | (+) 56.90(12)
86 | 50 |—89.383(8) © | (+) 17.37(3)
37 | Rb | Rubidium 85 | 48|—88.29(6) | - 72.15(5)
87* 50 |—90.82(8) i | - 27.85(5) B-: 1y = 5.0 % 10" years.
38 | Sr | Strontium 84 | 46 |—86.624(11) | (@ | (+) 0.55(1)
86 | 48 |—90.74(8) ©) | (+) 9.75(4)
87 | 49| —91.11(8) 3 |+ 6.96(1)
88 | 50|—94.39(9) ©) | (+) 82.74(6)
39| Y Yttrium 89 | 50| —94.57(9) 3 — 100
40 | Zr | Zirconium 90 | 50 |—95.68(9) o) | (+) 51.46
91 | 51(—94.75(10) | + 11.23
92 | 52|--95.41(11) ©) | (+) 17.11
94 | 54 | —93.86(36) ©) | (+) 17.40
96 | 56 |—91.8(8) © | (+) 2.80
41 | Nb | Niobium 93 | 52|-—93.98(11) ¥ + 100 Formerly known as colum-
bium, chemical symbol
Cb.
42 | Mo | Molybdenum| 92 | 50(-—93.71(13) 0 | (+) 15.86(16)
94 | 52|—95.26(13) ©) | (+) 9.12(9)
95 | 53|—94.28(36) | ... 15.70(16)
96 | 54 |—95.45(36) o [+ 16.50(17)
97 | 55 |—94.25(40) g |... 9.45(10)
98 | 56 | —94.49(41) ) |(+) 23.75(8)
100 | 58|—92.43(49) © | (+) 9.62(10)
44 | Ru | Ruthenjum 96 | 52[—92.4(7) © |(+) 5.57(8)
98 | 54|—94.5(8) ©) | (+) 1.86(4)
99 | 55|—93.92(49) PN 12.7(1)
100 | 56 |—95.782(5) ) [(+) 12.6(1) *
101 | 57)—94.423(3) § | (+) 17.1(1) 1
102 | 58 [—96.28(20) © | (+) 31.6(2)
104 | 60 |—94.47(40) © | (+) 18.5(1)
45 | Rh | Rhodium 103 | 58 |—95.20(20) 3 | — 100
46 | Pd | Palladium 102 | 56| —95.06(19) © | (+) 0.80(1)
104 | 58 |—96.44(20) ©) | (+) 9.3(1)
105 | 59|—95.36(27) 8 | + 22.6(2)
106 | 60| —96.80(12) ) | (+) 27.2(3)
108 | 62| ~96.08(12) ©) | (+) 26.8(3)
110 | 64|—95.50(32) © |[(+) 13.5(1)
47 | Ag | Silver 107 | 601—95.03(11) i | - 51.35(7)
109 | 62 |—95.30(11) P | - 48.65(7)

t From J. H. E. Mattauch, W. Thiele, and A. H. Wapstra, 1964, Atomic Mass Table, Nuclear Phys.,

67:1 (1965).
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49

50

St

52

53
54

55
56

57

58

59

Sn

Sh

Cs
Ba

La

Pr

Name

3

Cadmium

Indium

Tin

A nh'mnny

Tellurium

lodine
Xenon

Cesium
Barium

Lanthanum

Cerium

Praseodymium

)

106
108
110
111
112
113
114
116
113

115*
112
114
115
116
117
118
119
120
122
124
121
123
120
122
123

124
125
126
128
130
127
124
126
[28
129
130
131
132
134
136
133
130
132
134
135
136
137
138
138*

139
136
138
140
142
41

&)

58
60
62
63
64
65
66
68
64

66
62
64
63
66
67
68
69
70
72
74
70
72
68
70
71

72
73
74
76
78
74
70
72
74
75
76
77
78
80
82
78
74
76
78
79
80
81
82
81

82
78
80
82
84
82

1M —d) | I | = Relarive Notes
®) o | ® abundance (i0)
)

—94.05(37) O [+ 1.215

—96.00(12) 0 |(+) 0.875

—97.03(11) © | () 12.39

—95.85(19) |+ 12.75

—97.16(11) o [ ) 24.07

—95.39(10) |+ 12.26

—~96.43(10) O [(+) 28.86

—94.99(32) O [(+) 7.58

—95.72(10) 3 + 4.26(5) Stability against EC not

certain; ry > 10" years.

—95.93(10) 3| + 95.74(5) =ity = 6 x 10" years.

—95.06(11) ) [(+H) 0.90(1)

—97.04(10) ) | (+) 0.61(1)

—~96.47(11) |+ 0.35(1)

—97.89(19) © [(+) 14.07(8)

—96.94(19) |+ 7.54(3)

—98.21(19) © [ (+) 23.98(3)

—96.61(20) 3|+ 8.62(1)

—97.87(14) ©) [ ($) 33.03(12)

—96.59(14) ©) | (+) 4.78(1)

—94.76(13) © [(+) 6.11(1)

—96.25(14) H + 57.25(3)

—95.85(14) H + 42.75(3)

—95.49(40) 0 | (+) 0.091(1)

—97.00(13) © | (+) 2.49(2)

—95.82(13) 4 + 0.89(2) EC indicated by mass, but
uncertain; ry > 1012
years.

—97.24(13) ©) | (+) 4.63(5)

—95.58(13) |+ 7.01(1)

—96.758(37) O [ (H) 18.72(4)

—95.29(14) ) | (+) 31.72(1)

—93.30(14) o | (+) 34.46(9)

—95,648(23) |+ 100

—93.88(16) o | (+) 0.09614(36)

—95.831(32) ©) | () 0.08956(36)

—96.462(10) O | 1.919(4)

—95.216(10) |+ 26.44(7)

—96.490(9) o [+ 4.074(10)

—94.913(7) |+ 21.18(5)

—95.838(8) o [+ 26.89(6)

—94.602(8) 0 [+ 10.44(2)

—92.779(10) © [+) 8.869(9)

—94.91(15) 3|+ 100

—93.753(24) ) | (+ 0.13(2)

—94.88(32) o [(+) 0.19(2)

—95.69(15) 0 [ () 2.66(5)

—94.43(26) 3 [ (+) 6.73(12)

—95.64(14) © | (+) 8.07(10)

—94.44(13) 3| + 11.87(25)

—94.99(8) © | (+) 70.41(35)

—93.19(8) 5 | — 0.089(1.5) | EC 70%, 8~ 30%:

ty = 1.0 % 10! years.

—93.94(8) ) 99.911(1.5)

—92.9(5) o) | () 0.193(5)

—94.28(8) O | () 0.250(5)

—94.72(5) o) | (+) 88.48(10)

—90.96(8) O [ (+) 11.07(10)

—92.61((46) § | + 100
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V4
)

62

63

64

65
66

67
68

69
70

"

72

73

PROPERTIES OF STABLE NUCLIDES
S Name A|N[1IM—a) | T | = f"";“”e Notes
@ Q) ORRS) (6) @) | @ | avrghnee o)
Nd | Neodymium | 142 | 82 [—92.522(47) ©) [(+) 27.09(3)
143 | 83 [—90.38(5) i | (=) 12.14(2)
144* 84 [—90.10(5) o) | (+) 23.83(3) & 1y =5 X 10" years.
145 | 85 [—87.84(15) i (=) 8.29(1)
146 | 86 [—87.31(15) ©) | (+) 17.26(2)
148 | 88 |—83.52(16) ©) | (+) 5.74(2)
150 | 90 |—79.29(15) O [{(+) 5.63(2)
Sm | Samarium 144 | 82 |—88.35(24) @ | (+) 3.02(2)
147%| 85|—85.38(5) 3 | () 14.87(4) o; 3= 1.3 » 10" years.
148 | 86 |—85.44(13) 0 | (+) 11.22(3)
149 | 87 [—83.0713) ) 13.82(4)
150 | 88 [—82.99(13) ) | () 7.40(2)
152 | 90|—80.65(33) ©) | (+) 26.80(5)
154 | 92|—78.33(30) ) | (+) 22.88(6)
Eu | Europium 151 | 88 |—80.37(18) | () 47.86(8)
153 | 90 [—79.28(35) P+ 52.14(8)
Gd | Gadolinium | 152 | 88 |—80.60(33) ©) | (+) 0.205(1)
154 | 90 [—79.77(28) ©) [+ 2.23(3)
155 | 91|—77.99(26) 3 | (=) 15.1(1.5)
156 | 92|—77.76(26) 0 | (+) 20.6(2)
157 | 93|—75.96(27) 3 | (=) 15.7(1.6)
158 | 94 |—75.81(27) 0 | (+) 24.5(2.5)
160 | 96 |—72.7(5) ) | (+) 21.6(2)
Tb | Terbium 159 | 94(—75.7(11) 3 [ ()| 100
Dy | Dysprosium (156 | 90 |—76.07(18) ) {(+) 0.0524(5) | t
158 | 92|—75.55(3) 0 [ (+) 0.0902(9) 1
160 | 94 |—76.0(10) ©) [(+) 2.294(11)
161 | 95|—74.2(10) () 18.88(9)
162 | 96 |—74.3(10) 0 | (+H) 25.53(13)
163 | 97 |—72.4(10) £ | (—) 24.97(12)
164 | 98 (—71.9(10) 0 | (H) 28.18(12)
Ho | Holmium 165 | 98 | —70.4(7) 3 | (=] 100
Er | Erbium 162 | 94 |—71.26(9) O | (+) 0.136(3) t
164 | 96 [—71.4(7) ©) | (+) 1.56(3)
166 | 98 [—68.6(6) © | (+) 33.41(3)
167 | 99 |—67.9(6) A RES) 22.94(2)
168 | 100 |—68.6(6} ©) | (+) 27.07(3)
170 | 102 |—64.9(21) ©) | (+) 14.88(2)
Tm | Thulium 169 | 100 |—65.755(34) ¥ | ()| 100 1
Yb | Ytterbium 168 | 98 | —65.84(16) © |+ 0.135(2) 1
170 | 100 | —64.98(6) O (P 3.14(4) 1
171 [ 10! [—63.57¢7) (=) 14.4(1.5) 1
172 | 102 | —63.64(T) o) | &) 21.9(2.5) 1
[73 | 103 |—61.94(7) 3 | (=) 16.2(2) 1
174 | 104 | —61,26(6) o) | (+) 31.6(4) 1
176 106 | —57.32(7) o [+ 12.6(1.5) t
Lu | Lutecium 175 | 104 | —59.36(6) 3 | (+H 97.412(13) | t
176*| 105 | —58.56(46) P A 2.588(13) B8-:E questionable.
1y = 2.4 X 10'®years.
Hf | Hafnium 174 (102 |—59.64(7) 0 [ (+H 0.163(2) 1
176 | 104 | —59.66(46) ©) | (+) 5.21(2)
177 | 105 |—58.08(46) 3§ | (=) 18.56(6)
178 | 106 [—57.51(44) © [P 27.10(10)
179 | 107 |- 55.58(44) PN ES) 13.75(5)
180 | 108 [ —54.88(43) 0 | () 35.22(10)

Ta | Tantalum 180 1107 |—54.28(38) oo | e 0.0123(3) Mode of decay not estab-
lished: 71 > 1.7(3) x 1019
years.

181 | 108 | —53.82(38) 3|+ 99.9877(3)




PROPERTIES OF STABLE NUCLIDES

75

76

77

78

79
80

81

82

83

90
92

Re

Os

Pt

Au
Hg

T

Pb

Bi

Th
U

Name

(€)]

Tungsten

Rhenium

Osmium

Iridium

Platinum

Gold
Mercury

Thallium

Lead

Bismuth

Thorium
Urapium

A

4

180

182
183
184
186
185
187*

184
186
187
188
189
190
192
191
193
190*
192*
194
195
196
198
197
196
198
199
200
201
202
204
203
205
204
206
207
208
209*

232*
234*
235*
238+

Relative

N | 103(M — A) I L Notes

®) (6) @) | @ | undnce {10)

106 | —55.03(38) 0 1(+) 0.126(6) The name “‘wolfram™ is
gradually becoming
common.

108 |- 53.53(38) 0 [ (+) 26.31(3)

109 [—51.51(38) 1 [(=) 14.28(1)

110 |—50.85(39) ©) | (+} 30.64(3)

112|—48.6(16) ©) | (+) 28.64(1)

110 | —45.9(16) i + 37.07(6)

112 | —45.02(34) § + 62.93(6) ty variously reported as
< 10" and >10'¢ years.

108 |—47.25(7) 0 | (+) 0.018(2) 1

110 —47.06(35) ) | () 1.59(5)

111 ]|—45.03(34) t (=) 1.64(5)

112 |—45.02(30) ) | (+) 13.3(2)

113]—42.78(33) 1 [ (=) 16.1(2)

114 |—42.58(36) © |(+) 26.4(3)

116 | —39.49(34) © [ () 41.0(2)

114|—40.10(29) 3|+ 38.5

116 | —37.66(29) 61.5

112 |—40.83(41) 0) | (+) 0.0127(5) a;ry = 5.9 x 10! years.

114 | —39.53(29) 0 | (+) 0.78(1) a; ry & 10'® years.

116|—37.57(24) 0 | (+) 32.9(1)

117]—35.54(24) 3 — 33.8(1)

118 ]—35.38(24) 0 [ (+) 25.4(1)

120 |—32.47(31) © |+ 7.19(4)

118 |—33.448(16) 4 + 100

116 |—34.181(18) 0 | () 0.146(5)

118 |—33.231(15) 0 | (+) 10.02(1)

119 |—31.744(20) 3 - 16.84(4)

120 [—31.656(14) @ | (+) 23.13(8)

121 |—29.685(18) 2 () 13.22(5)

122 [ —29.370(23) ) | (+) 29.80(3)

124 [—26.518(19) o | ) 6.85(1)

122 | —27.669(40) y | + 29.50

124 | —25.538(27) 3 [(+) 70.50

122 | —26.931(24) ) | (+) 14

124 |—25.541{(12) O [ (+) 25

125 |—24.102(12) 3 — 22

126 |—23.356(12) O | () 52

126 |—19.583(27) g (=) | 100 Activity disputed :

a1y == 2 X 10' years,

1421 38.211(42) Q) | (+) 100 a; 1y = 1.39 x 10'C years.

142 40.90(6) O |+ 0.0057(2) | a: 13 = 2.48 < 10° years.

143 | 43.933(43) i [(—) 0.7204(7) a1y = 7.1 x 108 years.

146 | 50.76(8) 0 | (+) 99,2739(7) o; 1} = 4.51 = 10° years.




VALUES
OF PHYSICAL CONSTANTS D
AND CONVERSION FACTORS'

General physical constants. Least-squares adjusted output values of 1963. The digits in parentheses following each
quoted value represent the standard deviation errorin the final digits of the quoted vaiue as computed on the criterion
ofinternal consistency. The unified scale of atomic weights is used throughout (12C = 12). C = coulomb; J = joule;
N = newton; u = mass unit.

Unis
Constant Value
mks cgs
Speed of light in vacuum ¢ 2.997925(1) X10*ms~! x10%cms!
Elementary charge e 1.602(0(2) 10°1* C 10~%%emu
4.80298(7) 10~ esu
Avogadro’s number 4" 6.02252(9) 1026 kmole=! 10** mole-?
Mass unit 1.66043(2) 10727 kg 1o-Hg
Electron rest mass m, 9.10908(13) 10-9kg 1078 ¢g
5.48597(3) 1074y 1071y
Proton rest mass Mp 1.67252(3) 10-% kg 10-Hg
1.00727663(8) u u
Neutron rest mass M, 1.67482(3) 107" kg 107%g
1.0086654(4) u u
Faraday constant 4"e 9.64870(5) 10 C mole™? 107 emu
2.89261(2) 104 esu
Planck h 6.62559(16) 10-37J s 10027 erg s
anck constant p _ 49, 1.054494(25) 1074 J s 10-erg s
Charge-to-mass ratio for electron e/mq 1.758796(6) 10N Ckg? 107emu
5.27274(2) 107 esu
Rydberg constant 2r2myet/hic 1.0973731(1) 10" m-! 10°cm—?!
Bohr radius h2/mye? 5.29167(2) 10-'m 107 cm
himge 2.42621(2) 1072 m 10~ ¢m
Compton wavelength of electron fl/mzc 3.86144(3) 10-1*m 10~ ¢m
hiM ¢ 1.321398(13) 10-¥m 1073 cm
Compton wavelength of proton h/M:c 2.10307(2) 10~ m 10-Mcm

+ From E. R. Cohen and J. W. M. DuMond, Rev. Mod. Phys., 37: 537 (1965), by permission.
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VALUES OF PHYSICAL CONSTANTS AND CONVERSION FACTORS

Conversion factor

Value

1 electron volt

E.A,

lu

Proton mass M 2
Neutron mass M ,c?
Flectron mass mgce?®
Rydberyg 2aimget A2

Gas conslant

Standard volume of
ideal gas at NTP
Mass on physical scale (O = 16)

Mass on unified scale (C'? = 12)
Mass on chemical scale (O == 16)

Mass on unified scale (C'? == {2)

1.60210(2) % 10-1% §
1.60210(2) x 10 *2erg
8065.73(8) cm~!
2.41804(2) » 10451

12398.10(13) X 10%evem
931.478(5) Mev

938.256(5) Mev

939.550(5) Mev

511006(2) ev

2.17971(5) » 10-ilerg
13.60535(13) ev

8.31434 X 107 erg mole~! deg?!
0.082053 liter atm mole~! deg=!
82.055 ¢cm® atm mole~! deg !
1.9872 caly mole! deg™!

22413.6 cm® mole!

1.000317917(17)

1.000043(5)




Each reference gives at least the original paper and mentions in brackets the
section in this book where it is quoted. Sometimes the reader is also referred to
review articles. More references and reading selections suitable for our level of
presentation can be found in J. G. Cunninghame, “Introduction to the Atomic
Nucleus,” Elsevier Publishing Company, New York, 1964.

Alvarez, L.:  Phys. Rev., 52:134 (1937). [Sec. 4-6f)
Anderson, C. D.: Science, 76:238 (1932); Phys. Rev., 43:491 (1933). [Sec. 3-4d]

and S. H. Neddermeyer: Phyps. Rev., 50:263 (1936); S. H. Neddermeyer and
C. D. Anderson: Phys. Rev., 51:884 (1937). [Sec. 1-1]

Aston, F. W.: Phil. Mag., 38:709 (1919); ““Mass Spectra and Isotopes,” Edward Arnold
(Publishers) Ltd., London, 1933. [Sec. 1-2a]

ar.
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Absorption coefficient, 92n Alpha decay, hindrance factor in, 140, 144
Absorption curve, 83, 92 momentum conservation in, 136
Absorption edge, 99 penetrability in, 141-143
Abundance, influence of shell effects on, Q value of, 136
49 regions of instability to, 137
of occurrence of stable nuclides, 39 (See also Radioactive decay)
relative, table of, 255-260 Alpha particle, capture and loss of electrons
of stable isotones, 49 by, 80
systematics of, 3740 fine structure in spectra of, 146
of tin isotopes, 39 ionization in matter by, 79, 8l
Activity, 116 long-range, 146
Allowed beta transition, 151, 159 Alpha-particle model of nucleus, 36
Alpha decay, 135-146 Alpha-particle scattering, 4, 185-188
decay constant of, 138-141 Alpha ray, 114
decay energy of, 136, 139 (See alse Alpha decay, Alpha particle)

energy conservation in, 136 Alvarez, L., 161 265
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Anderson, C. D., 2, 101
Angular momentum, coupling in odd-odd
nuclei of, 64
of even-A nuclei, 6
nuclear, qualitative discussion of, 6
table of, 255-260
of odd-A nuclei, 6, 57
orbital, brought into a reaction, 193
of one particle, classical, 14n, 20
quantum-mechanical, 20
selection rule for, 126, 128, 159, 179, 197
of two particles, classical, 180n
quantum-mechanical addition law of, 6
relation between classical and quantum
expressions of, 21
total, of one nucleon, 55
(See also Spin})
Angular-momentum conservation, in beta
decay, 159
in compound-nucleus formation, 197
in gamma decay, 128
in nuclear reaction, 179
in two-particle collision, 188
Annihilation radiation, 104
Antineutrino (see Neutrino)
Aston, F. W, 4
Asymmetry energy, 42
Atomic number, 4
Atomic weight, table of, 251-253
Attenuation of gamma rays, 91-93
Auger effect, 100, 134, 161
Average binding energy (see Binding energy)

Bacher, R. F,, 245n
Barkla, C. G, 3
Barrier (see Coulomb barrier, Fission barrier,
Potential barrier)
Barrier penetration, 30, 199, 203
in alpha decay, 141, 145
in beta decay, 155
in fission, 217n
for rectangular barrier, 28-31
Bartlett, J. H., 47
Berko, 5., 104n
Bequerel, H., 2, 135
Beta decay, 146-165
allowed transitions in, 151, 159
classification of, 157-160
condition for, 44, 150
decay constant of, 150-154, 157-160
energy conservalion in, 150

INDEX

Beta decay, f function for, 157, 158
Fermi decay in, 151, 159
Fermi function for, 155
St value of, 158, 160
Gamow-Teller decay in, 151, 153
inverse, 163
Kurie plot for, 155
momentum conservation in, 150
parity conservation in, [64
Q value of, 150
shape of spectrum in, 154-157
superallowed transition in. 159
(See also Radioactive decay)
Beta spectrum, 154-157
Beta ray, 114
absorption curve of, 83
polarization of, 165
{See also Beta decay, Spectrometer)
Bethe, H. A., 172, 2451
Binding energy, of atomic electrons, 33
average, of molecules in liquid, 36
per nucleon, 34-36
of magic nuclei, 49
in mirror nuclei, 65, 67
nuclear, 32-40
total, 33
from semiempirical mass formula, 41
Blackett, P. M. 8., 178#»
Blatt, J. B., 35n, 36n, 62n, 1271, 1291, 194n,
197n, 2471
Bloch, F., 77n
Bohr, N, 3, 14, 26, 172, 214
Bohr correspondence principle, 26
Bohr model of H atom, 14
Born, M, 15, 18
Bound state, 18
(See alse Energy levels)
Boundary condition (see Wave function)
Branching ratio, 117, 146
Breit-Wigner resonance formula, 198
Bremsstrahlung, 74
Brink, D. M., 227n, 231n
Brueckner, K. A, 40
Burcham, W. E., 3n, 7n, 62n, 74n, 19q, 851,
91n, 104n, 157u, 165n, 194n

Capture reaction, 174, 180
Center of mass, coordinate of, 21
kinetic energy of, 176
separation of motion of and
classical, 21

about,
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Center of mass, separation of motion of and
about, quantum-mechanical, 22

Center-of-mass system, 87, 176

Centrifugal barrier, 145, 199

Centrifugal potential, 145

Chadwick, I., 2, 3, 4, 114p, 146

Channel, 195n

Charge, nuclear, 3 0

Charge cloud around nucleon, 227, 228

Charge independence (see Nuclear force)

Charged-particle cross section (see Cross
section)

Charged-particle reaction (see Nuclear
reaction)

Charged particles, detection of, 107

energy loss of, 74-85
mean charge in matter of, 79

Chemical scale of atomic weight, 33

Classification of decay (see Alpha decay,
Beta decay, Gamma decay)

Cloud chamber, 79, 107

Coherent scattering, 247

Collective models, 60

Collision, of charged particles, 185-189
elastic, 87
of nucleons in nucleus, 47, 173
Compound elastic scattering, 173
Compound nucleus, angular momentum

conservation in formation of, 197
decay of, 198-200
energy levels of, 196
formation of, 195-198
parity conservation in formation of, 197
qualitative discussion of, 173
resonances in, 174, 198
Compton, A. H., 13
Compton effect, 91, 93-99
Compton wavelength, 94, 262
Condon, E. U, 2, 141
Conservation, of angular momentum, energy,
momentum, parity (see Angular momen-
tum conservation, Energy conservation,
Momentum conservation, Parity conser-
vation) ]
Conversion coetficient, 134
Conversion factors, 262
Cooper, J. A., 114n
Correspondence principle, 26
Coulomb barrier, 142
Coulomb cross section, 185-191
Coulomb energy, 41
Coulomb excitation, 181
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Cowan, C. L., Jr., 163
Cross section, for capture of 1-Mev neutrons,
51
charged-particle induced, 203
for charged-particle production, 201
for compound-nucleus formation, 195-198
coulomb, 185-191
definition of, 181
differential, 184, 240
for p-p scattering, 248, 249
for s-wave scattering, 240
in terms of scattering amplitude, 237
for elastic alpha-particle scattering by Fe®®,
209
for elastic neutron scattering by Cd, 195
for elastic neutron scattering by Co%,
208
for elastic proton scattering by Co®*,
190
elastic scattering, 198
energy dependence of, 185-187, 194-211
evaluation of w42 in, 197
for fission, 217-219
of U5 by neutrons, 216
of U2 by neutrons, 218
inelastic scattering, 201
for Si?® {n, '), 202
integrated, 185
for n-p scattering, 245
in terms of scattering amplitude, 237
for n-p scattering, 244-248
neutron, low-energy, 200
for molecules, 247
qualitative discussion of, 191-194
partial, 184
reaction, for Co®*® (p,n), 204
for §%* (d,p), 210
for §% (n,a), 202
for 5% (n,p), 202
total, 238
resonances in, 193
resonance formula for, 198
spin factor in, 197
total, 184
for neutrons on Cd, 195
for neutrons on U#%, 216
for pions on proton, 228
Curie, 1., 146
Curie, M., 2, 135
Curie, P., 2, 135
Curie, definition of, 116
Current density, 29
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Daughter nuclide, 114, 117

Davis, R., 164

Davisson, C., 14

Dearnaley, G., 108#

De Benedetti, S., 127x

de Broglie, L., 13

de Broglie wave, 12-15
effect on location of particle, 77
frequency in terms of energy, 13, 17
wavelength, of neutron or proton, 14

reduced, 191, 192
in terms of momentum, 13

Decay (see Compound nucleus, Radioactive

decay) )

Decay constant, of alpha decay, 138-141
of beta decay, 150~154, 157-160
definition of, 114
of electron-capture decay, 161, 163
of gamma decay, 124-135
quantum-mechanical calculation of, 152

Decay energy, in alpha decay, 136
in beta decay, 44, 150
in mirror nuclei, 66

Deformed nucleus, 59, 135

Degenerate energy level, 27, 53

Delayed neutron emission, 211

Delta ray, 77n, 79, 81

Density, of nuclear energy levels, 62
of states, in beta decay, 154, 155

in cubical box, 153

for particles, 199

for photons, 153
table of, 251-254

Detectors, 104-107
(See also Scintillator)

Deuteron, ground-state wave function, 233
radius of, 235
structure of, 232
virtual state of, 246-248

Deutsch, M., 104

Differential cross section (see Cross section)

Diffraction of neutrons, by crystals, 91
by nuclei, 193

Dipole moment, 127

Dirac, P. A. M, 17

Dirac equation, 101, 149, 163

Direct reacticn, 172, 203-21]

(See also Nuclear reaction)
Distance of closest approach of charged
particles, in general collision, 190
in head-on collision, 5, 188
Doppler shift, 123
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Effective range approximation, 246
Einstein, A., 13
Elastic collision, 87
Elastic scallering (see Cross section, Nuclear
reaction)
Electric dipole moment, 50, 127
Electric multipole radiation, 127-129
Electromagnetic radiation (see Gamma decay,
Gamma ray, Photon)
Electron, absorption curve of, 83
capture and loss by charged particle of, 79
Compton wavelength of, 94, 261
energy loss of, 80-82
Electron-capture decay, 44, 161-163
inverse, 164
Electron decay (see Beta decay)
Electron energy distribution, in beta spec-
trum, 156
in Compton effect, 97
Electron-positron pair, 102, 134
creation by gamma ray of, 101
(See alse Gamma ray, Pair formation,
Pair production)
Elements, formation of, 38
table of, 251-254
Ellis, C. D., 114n
Elsasser, W. M., 47
Endoergic reaction, 177, 178
Energy, epithermal, 180
nonrelativistic total, 13
of particle after elastic collision, 88
relativistic total, 13
spin-orbit interaction, 12, 55, 56
spin-spin interaction, 64
thermal, 180
Energy conservation, in alpha decay, 136
in beta decay, 150
classical law of, 16
in Compton effect, 93
in electron-capture decay, 161
in gamma decay, 122
in nuclear reaction, 175
in pair production, 102
in photoelectric effect, 99
Energy dependence of cross section, 185-187,
194-211
Energy distribution, of beta rays, 156
of Compton ¢lectrons, 57
of neutrons after collision, 88-91
of positrons in gamma-ray pair production,
103
Energy levels, of A%, 162
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Energy levels, of B'?, 68
of Be?, 65
of Be!'®, 68
of C°, 68
in closed box, 27, 153
of compound nucleus, 196-198
degenerate, 27, 53
density in nuclei of, 62
of even-even nuclei, 51, 64
in harmonic oscillator potential, 53
in infinite square well potential, 53
isomeric, 56
of Li?, 65
of N4, 162
of nuclei, 60-64
of nucleon, 229
occupation number of, 55
of odd-odd nuclei, 64
of Pb*¢, 147
of Po'?, 147
regularities in, 64
of rotator, 59
in rounded-well potential, 56
of Sc4, 63
of U2 147
virtual, 60, 173, 206
of compound nucleus, 196
of deuteron, 246-248
Energy loss, by collision, 74
by radiation, 81
(See also Charged particles, Electron, Posi-
tron, Neutron)
Energy release in fission, 212-214
Energy state (see Energy levels)
Epithermal energy, 180
Equilibrium, secular, 120
transient, 120
Evans, R, D., 30n, 33n, 74n, 76n, 130n, 176n,
178n, 191n
Exchange force, 224-227
Excited states (see Energy levels)
Exclusion principle, 11, 47, 54, 58n
effect on charge independence of nuclear
force of, 67
effect on collisions in nucteus of, 48
effect on p-p scattering of, 248
effect on saturation of, 35, 225

[ function, 157
Fermi, E., 151
Fermi, definition of, 5
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Fermi decay, 151, 159
Fermi function, 155
Fermi theory of beta decay, 151-157
Fernbach, S., 172
Feshbach, H., 172
Fine structure in alpha decay, 146
Fink, R. W, 161n
Fission, 174, 180, 211-219%
mass-yield curve, 212, 213
Q values, 212-214
symmetric, 215
Fission barrier, 215
Fission cross section, 217-219
Fission fragments, 211
Fission threshold, 217
Fission width, 217
Fluctuations, statistical, 91, 98, 108, 115
Flux, 29, 183, 236
Foldy, L., 229
Fourier theorem, 121
Fowler, P. H., 83x
Frisch, O. R., 171
St value, 158, 160

Gamma decay, 121-135
classification of, 127-131
hindrance factor in, 131
Weisskopf estimate of decay constant,

129-133
(See also Radioactive decay)

Gamma decay widths, 131

Gamma ray, attenuation of, 91-93
Compton effect of, 91, 93-99
detection of, 96, 105, 107
Doppler shift of energy of, 123
linear attenuation coefficient, 92
mass attenuation coefficient, 92

in aluminum, 94

in lead, 95
momentum of, 13
pair production by, 100-103
photoelectric effect by, 91, 99
Rayleigh scattering of, 98
Thomson scattering of, 91, 96
wavelength of, 13

reduced, 130

Gamow, G., 2, 141

Gamow-Teller decay, 151, 159

Gauss law of electrostatics, 75

Geiger, H,, 2, 4, 138

Geiger counter, 107
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Geiger-Nuttall law, 138
Germer, L. H., 14
Goldhaber, M., i64
Gomez, L. C,, 35n
Grodzins, L., 164
Groshev, L. V., 201x
Guggenheimer, K., 47
Gurney, R. W, 2, 141

Hahn, O., 171, 211
Half-life, for alpha decay, 139, 140
for beta decay, 157-160
definition of, 16
for gamma decay, 124-132
of geological significance, 255-260
relation to width of, 121
Half-value thickness, 92
Hard core in nuclear force, 35
Haxel, O. J., 55
Heisenberg, W, 2, 3, 4, 26, 225
Heisenberg uncertainty principle (see Un-
certainty principle)
Heitler, W., 93n
Hindrance factor, in alpha decay, 140-144
in gamma decay, 131
Hofstadter, R., 5, 104, 227
Hollander, J. M., 114n

Impact parameter, 75, 185, 193
Inelastic scattering (see Cross section, Nuclear
reaction)
Integrated cross section (see Cross section)
Internal conversion, 131
Internal pair production, 134
Inverse beta decay, 163
Inverse electron-capture decay, 164
Ton pair, 77
Ionization and excitation potential, mean, 77
Isobar, 7
Isomer, 7
Isomerism, occurrence of, 57
shell model explanation of, 56
Isotone, 7
abundance of, 49
Isotope, 7
discovery of, 4
relative abundance of, 255-260
table of, 255-260

Jensen, J. D., 55
Joliot, F., 146
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Kaplan, 1., 85
K-electron capture, 163
Kinetic energy, negative, 29n, 235
of recoil, 123, 137
relation to total energy, 14
(See also Energy)
Kittel, C., 13u
Knight, W. D., 13
K-shell internal conversion coefficient, 134
Kurie plot, 155

Lee, T. D, 2, 165
Lees, D. S, 178n
Legendre polynomial, 239

associated, 192
Level (see Energy levels)
Lifetime (see Mean life)
Line of stability (see Stability line)
Linear absorption coefficient, 92
Linear attenuation coefficient, 92
Linear momentum, 13

(See also Momentum conser vation)
Liquid drop model, 33, 4046
Littauer, R. M., 227
Logarithmic derivative of wave function, 233,
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Long-range alpha particles, 146

Magic nucleus (see Binding encrgy, Magic
numbers, Shell model)
Magic numbers, 39
experimental evidence for, 38, 48-52, 57
Magnetic moment, 52, 122n
of deuteron, 232
Magnetic multipole radiation, 128
Magnetic quantum number (see Quantum
number)
Magnetic spectrometer, 85
Marsden, E., 2, 4
Mass, nuclear, 3
relation to binding energy of, 33
table of, 255-262
reduced, 22, 142
total, 13
Mass absorption coefficient, 93
Mass excess, 33
table of, 255-260
Mass number, 3
Mass parabola, 43-45
Mass unit, 33
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Mass unit, energy equivalent of, 262
Mass-yield curve in fission, 212, 213
Matrix element (see Transition matrix
element)
Maxwell’s equations, breakdown of, 12
rate of angular momentum radiation
according to, 126
rate of energy radiation according to, 124
use in understanding gamma-ray inter-
actions of, 91
Mayer, M. G., 35
Mean free path in nucleus, 207n
Mean life, 116
relation to width of, 121
(See also Decay constant)
Meitner, L., 171
Meson, 7
mu, 7
pi, 7, 225
role in nuclear force of, 225-229
Mirror nuclei, 64
mass difference between, 66, 67
Mirror triad, 67
Moment of inertia of nucleus, 59
Momentum, 13
(See aiso Momentum conservation)
Momentum conservation, in alpha decay, 136
in beta decay, 150
in collision, 88, 175
in Compton effect, 93
in gamma decay, 122
in nuclear reaction, 175
in photoelectric effect, 99
Mott, N. F., 248
Multipole moment, 50, 127
Multipole radiation, 127
Muon, 7

Neddermeyer, S. H., 2
Negative kinetic energy, 29n, 235
Neutrino, 146-150, 163, 164
Neutron, charge cloud of, 227
de Broglie wavelength of, 14
reduced, 191, 192
detection of, 107
diffraction by crystals of, 91
diffraction by nuclei of, 192
energy after single collision, 88-91
energy loss in matter, 85-91
scattering by molecules of, 247
scattering by parahydrogen of, 246
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Neutron, time of flight of, 91

Neutron cross section (see Cross section)

Neutron number, 4

Neutron separation energy, 33

according to semiempirical mass formula,
45, 46

of lead isotopes, 37

of nuclei (Z, N 4 1) with Z = N, 50

Nonrelativistic energy (see Energy)

Northrup, D. C,, 108

Notation, for atomic energy states, 52

for nuclear energy states, 52, 55
for nuclides, 8

Nuclear angular momentum (see Angular
momenturn, Spin)

Nuclear binding energy (see Binding energy)

Nuclear charge, 3

Nuclear force, charge independence of, 64-

68, 249
from decay of mirror nuclei, 165
effect of exclusion principle on, 67
in liquid drop model, 41
charge symmetry, of, 6468, 249
from decay of mirror nuclei, 165
exchange force in, 224-227
hard core in, 35
meson theory of, 224-229
pairing energy in, 36
properties of, 224
range of, 226, 227, 246, 249
saturation of, 34-36, 225
strength parameters of, 246, 249

Nuclear mass (see Mass)

Nuclear models (see Collective model, Com-
pound nucleus, Direct reaction, Liquid-
drop model, Shell model)

Nuclear physics, historical development of, 2

Nuclear radius (see Radius)

Nuclear reaction, angular momentum con-
servation in, 179

charged-particle, 180
compound-nucleus, 194

cross section of (see Cross section)
elastic scattering, 180
endoergic, 177, 178

energy available for, 176
energy conservation in, 175
inelastic scattering, 180
momentum conservation in, 175
nucleon conservation in, 174n
parity conservation in, 180
photonuclear, 180, 232
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Nuclear reaction, Q equation of, 176
Q@ value of, 175
threshold energy for endoergic, 177, 178
types of, 180-182
{See also Cross section)
Nuclear spin (see Angular momentum, Spin)
Nucleon, 7
spin of, 55
Nuclide, 7
stable, table of, 255-260
Number of atoms per unit volume, 79
table of, 251-253
Nuttall, J. M., 138

Occupation number of level, 55
Optical model, 203-207
Orbital quantum number, 19, 46
(See also Quantum number)
Organic scintillator, 89, 90, 98
Orthogonality relation for Legendre poly-
nomials, 239
Oscillator, harmonic, 52-54, 124
Oscillator quantum number, 54

Packing fraction, 33
Pair formation in gamma decay, 134
Pair production, by gamma rays, 100-103
in neighborhood of atomic electron, 103
Pairing energy, 36
influence on nuclear structure of, 58
range of, 58
in semiempirical mass formula, 41
Parent nuclide, 114
long-lived compared to daughter, 120
produced by nuclear bombardment, 117
short-lived compared to daughter, 119
Parity, 31
selection rule, in beta decay, 159
in compound-nucleus formation, 197
in gamma decay, 126, 127
Parity conservation, in beta decay, 159
in compound-nucleus formation, 197
in gamma decay, 127
in nuclear reaction, 180
Parity nonconservation in beta decay, 164
Partial cross section, 184
Partial waves, 237-240
Particle, in closed cubical box, 23
in potential well (see Shell model)
Pauli, W., 54, 149
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Pauli exclusion principle (see Exclusion
principle}
Penetrability (see Barrier penetration)
Perkins, D. H., 83
Phase shift, hard-sphere, 198
s-wave, 240, 24|
Photodisintegration of deuteron, 232
Photoelectric effect, 91, 99, 100
Photon, 8
momentumn of, 13
wavelength in terms of energy of, 13, 130
(See also Gamma decay, Gamma ray)
Physical constants, 261
Physical scale of atomic weight, 33n
Pion, 7, 225
Planck, M., 13
Planck’s constant, 13
Porter, C. E., 172
Positron, 8
annihilation of, 104
discovery of, 101
interaction with matter of, 104
(See also Pair formation, Pair production)
Positron decay (see Beta decay)
Positronium, 104
Potential, complex, 203
harmonic oscillator, 52
rounded well, 53
square well, 52
in deuteron, 232
standing wave in, 206
step, reflection coefficient of, 61, 194
Yukawa, 227
Potential barrier, 29
(See also Barrier penetration)
Powell, C. F., 2, 83n
Probability density, for particle in closed
box, 26
in quantum mechanics, 18
Proton, capture and loss of electron by, 79,
80
charge cloud of, 227
energy loss of, 74-82
spin of, 55
(See also Charged particle)
Prout’s hypothesis, 3

Q equation, 176

Q value, of alpha decay, 136, 137
of beta decay, 150
of electron-capture decay, 161
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Q value, of fission, 212-214
of nuclear reaction, 175
Quantum mechanics, 12-32
computation of transition probability by,
151
effects in gamma decay of, 125
Quantum number, for cubical box, 25, 27
magnetic, 19, 46, 54
orbital, 19, 46
(See also Angular momentum)
oscillator, 54
radial, 47
total, 46
total angular momentum, 55

Radial quantum number, 47
Radial wave equation (see Schrédinger
equation)
Radial wave function (see Wave function)
Radiation rate according to Maxwell’s
equations, 124
Radioactive decay, 114-120
of Be’, 162
of Bi's, 147
of Br?®, 169
of CI*¢, 162
of Cu%, 162
of O, 162
of Pu 147
regions of instability to, 137
statistical fluctuations in, 115
(See also Alpha decay, Beta decay, Gamma
decay)
Radioactive decay chain, 114
Radioisotope production, by bombardment,
117
by radioactive parent, 117
Radius, of deuteron, 235
nuclear, 5, 40
determination of, 144, 211
root-mean-square, 235
Radius constant, 5
Range, definition of mean, 78
of nuclear force, 226, 227, 246, 249
effect on saturation of, 34
Range-energy relationship, 79
for electrons in aluminum, 86
for protons in air, 84
Rasmussen, J. O., 114n
Rayleigh scattering, 92n, 98
Reaction (see Nuclear reaction)
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Recoil energy, in alpha decay, 137
in gamma decay, 123
Reduced mass, 22
for alpha decay, 142
Reduced width, 199
Refiection coefficient of potential step, 61, 194
Reines, F., 163
Relativistic energy (see Energy)
Residual interaction, 52, 58
Resonance, in compound nucleus, 174
in cross section, 193, 198
in potential interaction, 173
Rest mass, 14
Robinson, B. L., 161n
Ruderman, M. A, 13n
Rutherford, E., 2, 4, 114n, 135, 146
Rutherford, definition of, 116
Rutherford cross section, 185-191

Saturation of nuclear force, 34-36
Scattering amplitude, 235
Scattering length, 198, 241-243
singlet, 247, 248
triplet, 247, 248
Schiff, L. 1., 15n, 29a, 30n, 31n, 32n, 54n,
125n, 145n, 151n, 2350, 237n
Schrédinger, E., 14
Schrodinger equation, 15-17
for motion about center of mass, 23
for motion of center of mass, 23
radial, 20, 52, 226, 233
in spherical coordinates, 19-21
time-independent, 15, 16
for two particles, 21-23
Scintillator, inorganic, 104
organic, response to gamma rays of, 98
response to neutrons of, 89, 90
Secular equilibrium, 120
Segre, E., 85r, 89a, 1397, 1601
Selection rule, 126
(See also Angular momentum conservation,
Parity conservation)
Self-energy, coulomb, 42
Semiconductor detector, 104, 106, 108
Semiempirical mass formula, 40-46
constants of, 45
effect of shell effects on, 45
predictions of stability limits by, 138
Separation energy, 33
influence of shell effects on, 49
of neutron (see Neutron separation energy)
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Separation energy, relation to total binding
energy of, 33
systematics of, 36, 37
Separation of center-of-mass motion, 2I,
22
Separation of variables
equation, 15, 24
Serber, R., 172
Shape elastic scattering, 172
Shell model, 33, 46-57
experimental basis of, 48-52
relation to magic numbers of, 48, 49
single-particle, 52-55
Weisskopf argument for existence of, 48
Single-particle width, 199
Singlet scattering length, 247, 248
Singlet state of deuteron, 245
Smith, C. M. H., 38n
Soddy, F., 146
Sodium iodide detector, 104, 105
Spallation reaction, 174, 180
Spectrometer, magnetic, 85
Spectroscopic notation, 52, 55
Spin, of antineutrino, 164
intrinsic, 12
of neutrino, 164
of nucleon, 55
of nucleus, 6n
(See also Angular momentum)
Spin factor in cross sections, 197
Spin-orbit coupling in atoms, 12
Spin-orbit coupling shell model, 55, 56
Spin-spin interaction, 64
Stability limits against radioactive decay,
138
Stability line, 37, 38, 138
according to semiempirical mass formula,
43
effect on fission of, 212
Standing wave (see Wave function)
Stassmann, F., 171, 211
State (see Energy level)
Statistical fluctuations in radioactive decay,
115
Sternheimer, R. M., 77n
Straggling, 79
Stripping reactions, 211
Suess, H. E,, 55
Sunyar, A, W, 164
Super-allowed beta transition, 159
Surface interaction model, 207
s-wave phase shift, 240, 241

in  Schrédinger
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Taylor, T. B., 172
Thermal energy, 180
Thomson, 1.1, 2, 4
Thomson scattering, 91, 96
Threshold energy, 177, 178

in fission, 217
Time, of flight of neutron, 91n

of impact, 75

to pass by a nucleus, 199

of traversal through a nucleus, 47
Total angular momentum, 55

quantum number for, 55

(See also Angular momentum)
Total binding energy (see Binding energy)
Total cross section (see Cross section)
Total energy (see Energy)
Total mass (see Mass)
Total quantum number, 46
Transient equilibrium, 120
Transition matrix element, in “beta decay,

154, 158

in gamma decay, 125
Transition probability, 151
Transmission, through barrier, 30

through slab, 184
Traveling wave (see Wave function)
Traversal time, 47
Triplet scattering length, 247, 248
Triplet state of deuteron, 245
Tunneling, 217

(See also Barrier penetration)
Turning point, 30, 142

Uncertainty principle. 26
effect on shell structure of, 47
relation to transition probability of, 151
(See aiso Width)

Virtual energy level (see Energy levels)
von Weizsicker, C. F., 40

Walecka, J. D., 35n
Wave equation (see Schrodinger equation)
Wave function, 15
boundary conditions for, 17-19
for particle in box, 25
for two-nucleon problem, 233, 244
condition for standing wave, 25, 206
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Wave [unction, of deuteron ground state, 233
interpretation of, 17-19
logarithmic derivative of, 233, 243
normalization condition for, 19
for particle in closed box, 26
parity of, 31
radial, 20
standing wave form of, 17
traveling wave form of, 17, 191
radial, 237
Wave number. 16
Wavelength (see de Broglie wave, Gamma
ray}
Weak interaction, 165
Weisskopf, V. F., 35n, 36n, 48, 620, 127,
129, 172, 194n, 197n, 247n
Weisskopf estimate of gamma decay con-
stant, 129-133
Wheeler, J. A., 214, 219x
Width, of decaying state, 120
for fission, 217
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Width, for gamma decay, 131
for particle emission, 62, 199
reduced, 199
relation to half-life of, 121
relation between lab. and c.m. systems of,
197
relation to mean life of, 62, 121
single-particle, 199
Wigner, E., 232, 245

x-ray production, in electron-capture decay,
161
in internal conversion, 134
in photoelectric effect, 100

Yang, C. N,, 2, 165
Yield, 183

Yukawa, H., 3, 225
Yukawa potential, 227
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